
MariaDB

Server

Documentation

2
0
2
4
-0
3

From the MariaDB Knowledge Base

Ian Gilûllan (Editor)

Dedicated to bazaar builders everywhere.

Licence

The Knowledge Base content from which this pdf is generated is either licensed under the terms of the GPL, version 2, originally

generated from the server fill_help_tables.sql file, or both of the following two licenses:

The Creative Commons Attribution/ShareAlike 3.0 Unported license (CC-BY-SA).

The Gnu FDL license (GFDL or FDL).

Please see the source page on the Knowledge Base for the definitive licence, and seek proper legal advice if you are in any doubt

about what you are and are not allowed to do with material released under these licenses.

If you find any errors, please see Reporting Documentation Bugs

Generated from the MariaDB Knowledge Base on 2024-03-11

2/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/gnu-general-public-license-version-2
http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/copyleft/fdl.html
https://mariadb.com/kb/en/reporting-documentation-bugs/
https://mariadb.com/kb/en/documentation/

Preface
If you9re contemplating whether to devote some time to this book, read this:

MariaDB Server is a general-purpose, open source, relational database management system, optimised for performance

and easy usabiility; it has its roots in MySQL Server, and is an alternative to Postgres, Oracle Database and other relational

and NoSQL databases

This book is the full documentation on MariaDB Server, a <Reference Manual Plus= which includes aspects of a User9s

Guide; it is based on the contents of the MariaDB Knowledge base (https://mariadb.com/kb/), an open, community-edited

site contributed to since the inception of MariaDB in 2009

This edition is not specific to any version of MariaDB Server, but includes functionality up to the latest version of MariaDB at

the time of generation

This preface describes the goals, structure and contents of the documentation. Reading it is intended as a helpful step in

understanding how to best use the manual to improve productivity in using MariaDB Server.

This Book9s <Prehistory=

As noted, MariaDB Server has its roots in MySQL Server. It started as a fork of MySQL Server, using the same GPLv2 license.

However, although the MySQL Server documentation was always publicly available, it was never released using a free

documentation license. This means that the documentation of MariaDB Server was created from scratch. Or rather, from the

online help texts, which had a compatible open licence that made them usable as a starting point.

The place to which documentation was written was labelled the <Knowledge Base=, by MySQL and MariaDB creator Michael

<Monty= Widenius. The Knowledge Base was 3 and remains 3 a community effort. As with many community efforts, there are core

contributors around whom the work is centered. This is where Daniel Bartholomew loaded the online help text, as a first seed. For

roughly the last ten years, the core editor of the MariaDB Knowledge Base has been Ian Gilfillan, working for MariaDB Foundation

and based in South Africa. Hence, his name is on the cover of the book. However, there are a large number of other contributors,

many of whom come from MariaDB Corporation 3 both as developers of code and as documentation writers. They are listed on

https://mariadb.com/kb/stats/users/ .

With now some 3000 pages in this book, most of the initial holes in the documentation have been filled. There should now be no

reason to do as in the very early days of MariaDB Server 3 namely look up MariaDB features in the MySQL documentation. On

the contrary, the functionality of the two databases have diverged considerably, so you would be ill advised not to use this

MariaDB Server specific documentation.

The First Edition

The first edition of the MariaDB Server Documentation as a PDF file was released in April 2022. Prior to this, the contents were

accessible as individual Knowledge Base (KB) articles. But already in 2014 3 over seven years before 3 the user base requested

a PDF version, as seen by MariaDB9s Jira entry https://jira.mariadb.org/browse/MDEV-6881 MariaDB Documentation

improvements. There, user Stoykov pointed out that MariaDB documentation already had search capabilities and a way to mirror

the KB in an offline version 3 but lacked downloadable PDF and EPUB versions,

Fast forward some seven years and a number of upvotes and watchers, we decided to devote resources to it. Creating a PDF

from an HTML file is something Python is good at, and Dorje Gilfillan did all the tweaking necessary to merge the individual KB

pages into one huge HTML file for PDF conversion.

This Book9s Structure

We had to impose a chapter structure on the book which is only indirectly visible from a collection of KB articles on the web. This

means that the work in compiling the PDF isn9t just about merging many KB pages in an order that could be derived from the

hierarchical pointers between the articles. It also involves cleaning up that structure.

As a result, you will see two tables of contents. One is a one-pager overview with just the two top levels of hierarchy. The other is

over 30 pages long. True to the Open Source mantra of <release early, release often=, we believe that the structure can still be

improved upon 3 but it is a good starting point. We have seven overall chapters, and the structures below them all make sense at

some level.

To get the most out of the book, we recommend you to spend time making yourself familiar with the table of contents. It will give

you an idea of existing functionality. Just browsing it through may give you ideas of commands you didn't know existed.

This Book9s Format

There is currently just one version of the book. It9s delivered in the PDF format, and in the Golden Ratio aspect ratio 3 meaning,

A4. As we envision it to be read mostly on-screen anyway, we wanted to avoid the additional complexity of also providing a US

Letter format. If we meet demand for further versions, doing US Letter is of course an option; however, given there are many ways

to improve the documentation, we would also like to understand how adding another aspect ratio of the PDF would benefit the

users in practice.

We don9t yet provide the ePub format. Again, if you desire ePub, please educate us as to what added benefits you expect of ePub

on top of PDF.
3/4161

https://mariadb.com/kb/
https://mariadb.com/kb/stats/users/
https://jira.mariadb.org/browse/MDEV-6881

Use Cases For This Book

We expect the main use case for the PDF version of the book to be offline access. Offline may be imposed by a flaky or non-

existent internet, but also by self-imposed abstinence from the many distractions of being online.

We expect that browsing the PDF will enable concentrated time to be spent on learning about MariaDB Server. The search

functionality of PDF browsers helps in finding out about commands and syntax you already know of; browsing through a PDF 3 in

particular the clickable Table of Contents 3 will hopefully provide you with an educational overview better than the online KB does.

We expect downloading the manual into laptops, tablets and phones will make sense. If you have the MariaDB Server

Documentation on your phone, you can turn waiting time into something productive, perhaps even fun.

What we should work on

We have lots of room for improvement. That said, our foremost goal now is to get the book out, to get it used. User feedback will

help us determine the right priority for our already existing ideas for improvements. We will likely get other requests beyond what

we currently have in mind.

In the area of basic usability, an index has been spoken about. Looking up commands through searches or through browsing the

table of contents is ok, but an index also has use cases. Our plan here starts from automatic indexing based on keywords of the

headers of individual articles.

In the area of layout, we are looking at finding icons that make the PDF look more like a book, and less like a web page. We

already solved the first issue, which was to find a clearer visual distinction between links within the PDF and links to the web.

In the area of structure, the length of individual chapters varies a lot. It may make sense to move around chapters in the TOC

tree, to be more balanced. It may be that the reader expects another ordering based on experiences from other databases. It may

even be that we lack entire topics. For instance, we eliminated the Release Notes for unsupported versions of MariaDB, even

though these are still accessible on the KB.

In the area of accessibility, there may be places we should publish the PDF to make it easier to find, download, and use.

The common denominator for all of the above is that we need your feedback on what makes sense for you as a user of MariaDB

Server.

Give Us Feedback

We would like to pick the brains of individual users. At conferences, asking open-ended questions is easy and feels productive for

both parties, when meeting in the corridors between talks. Replicating the same productive discussion on-line is much harder. It

takes effort from both parties. It feels like work.

We are still looking for the best way for you to give us meaningful feedback. Feel free to approach us over Zulip

(https://mariadb.zulipchat.com/ 3 the Documentation topic). Also email to foundation@mariadb.org will find its way to us.

When you find individual bugs, please enter them into Jira using the guidelines mentioned in the KB article

https://mariadb.com/kb/en/reporting-documentation-bugs/ .

Acknowledgements

Compiling any book requires more effort than expected by the authors, and more than visible to the readers. This book is no

exception. It has been over ten years in the making.

The primary thanks go to Ian Gilfillan, as the overall editor of the book and as the individually most productive author.

Close to Ian, we have Daniel Bartholomew. Daniel even beats Ian when it comes to articles created, and comes second on

articles edited.

Among the community contributors, we want to highlight Federico Razzoli. He has two accounts, totalling 4488, at the time of

writing 3 making him rank third amongst personal contributors.

When it comes to organisational contributors, the largest one is MariaDB Corporation. With them coding most of the features, they

also stand for the lion9s share of their documentation. As writers, besides Daniel Bartholomew whom we already mentioned

several times, we want to highlight Russell Dyer, Kenneth Dyer, Geoff Montee, and Jacob Moorman.

As the developer of the KB software itself, Bryan Alsdorf deserves special acknowledgement.

A special thanks goes to Michael <Monty= Widenius, the creator of MariaDB. Monty has always understood the importance of

documentation. He is leading by example, with a large number of personal edits. In fact, Monty has the second highest number of

edits amongst developers, after Sergei Golubchik and followed by Sergey Petrunia 3 all of which have over a thousand edits.

Amongst the prolific contributors within the MariaDB Corporation Engineering team, the Connectors team stands out, with Diego

Dupin, Georg Richter, and Lawrin Novitzky ranking near the top. However, we have decided not to include Connectors

documentation in this first edition; we are contemplating whether it should be a separate PDF manual.

Other past and present Engineering team members, in decreasing order of number of edits, are David Hill, Dipti Joshi, David

4/4161

https://mariadb.zulipchat.com/
https://mariadb.com/kb/en/reporting-documentation-bugs/

Thompson, Massimiliano Pinto, Kolbe Kegel, Vladislav Vaintroub, Ralf Gebhardt, Markus Mäkelä, Sunanda Menon, the late

Rasmus Johansson, Todd Stoffel, Elena Stepanova, Julien Fritsch, and Alexander Barkov. They all have more than one hundred

edits, which is a lot.

As a true Open Source project, MariaDB Server documentation attracts attention and plentiful contributions also from outside the

MariaDB Corporation Documentation and Engineering teams. We want to highlight those with over a hundred edits: Colin Charles

and Stephane Varoqui, both of MariaDB Corporation, and Daniel Black, of MariaDB Foundation.

Amongst community contributors in the over-a-hundred-edits category, we want to mention especially Alena Subotina, with edits

related to the dbforge documentation tool, and Juan Telleria, with edits often related to R Statistical Programming. Prolific

contributors whose contributions are not visible in this English manual are Esper Ecyan (Japanese) and Hector Stredel (French);

Federico Razzoli (Italian) has many edits also in English.

We also want to extend a thank you to the code developers who make work easy for the documentation team through thoroughly

prepared, reusable texts in Jira; in this category, Marko Mäkelä and Oleksandr Byelkin come to mind.

As for the PDF manual, it has been teamwork between Ian and his son Dorje Gilfillan. Ian has done what editors do, Dorje has

coded the Python code that compiles the KB pages into one.

All in all, thank you to everyone who has contributed to this book! We hope compiling it into one volume is of use for you, and we

would love to hear what you think about the end result.

Munich, Germany, October 2022

Kaj Arnö, CEO, MariaDB Foundation

5/4161

Chapter Contents
48

48

894

1280

1435

1436

1951

2017

2086

2112

2139

2139

2278

2280

2280

2394

2475

2760

2761

2761

2761

2786

2795

2798

2803

2803

2888

2900

3545

3695

3696

3740

3755

3791

3817

4129

4130

4146

4156

Chapter 1 Using MariaDB Server

1.1 SQL Statements & Structure

1.2 Built-in Functions

1.3 Clients & Utilities

Chapter 2 MariaDB Administration

2.1 Getting, Installing, and Upgrading MariaDB

2.2 User & Server Security

2.3 Backing Up and Restoring Databases

2.4 Server Monitoring & Logs

2.5 Partitioning Tables

2.6 MariaDB Audit Plugin

2.7 Variables and Modes

2.8 Copying Tables Between Different MariaDB Databases and MariaDB Servers

Chapter 3 High Availability & Performance Tuning

3.1 MariaDB Replication

3.2 MariaDB Galera Cluster

3.3 Optimization and Tuning

3.4 Connection Redirection Mechanism in the MariaDB Client/Server Protocol

Chapter 4 Programming & Customizing MariaDB

4.1 Programmatic & Compound Statements

4.2 Stored Routines

4.3 Triggers & Events

4.4 Views

4.5 User-Defined Functions

Chapter 5 Columns, Storage Engines, and Plugins

5.1 Data Types

5.2 Character Sets and Collations

5.3 Storage Engines

5.4 Plugins

Chapter 6 Training & Tutorials

6.1 Beginner MariaDB Articles

6.2 Basic MariaDB Articles

6.3 Intermediate MariaDB Articles

6.4 Advanced MariaDB Articles

Chapter 7 MariaDB Server Releases

Chapter 8 The Community

8.1 Bug Tracking

8.2 Contributing & Participating

8.3 Legal Matters

6/4161

Table of Contents
48

48

48

49

50

57

61

62

78

78

79

81

83

83

84

85

86

87

88

89

90

104

105

106

107

107

107

107

108

108

108

109

110

111

111

112

127

130

132

132

133

134

135

136

137

140

142

144

146

148

149

150

150

151

152

153

156

161

161

162

164

164

164

167

Chapter 1 Using MariaDB Server

1.1 SQL Statements & Structure

1.1.1 SQL Statements

1.1.1.1 Account Management SQL Commands

1.1.1.1.1 CREATE USER

1.1.1.1.2 ALTER USER

1.1.1.1.3 DROP USER

1.1.1.1.4 GRANT

1.1.1.1.5 RENAME USER

1.1.1.1.6 REVOKE

1.1.1.1.7 SET PASSWORD

1.1.1.1.8 CREATE ROLE

1.1.1.1.9 DROP ROLE

1.1.1.1.10 SET ROLE

1.1.1.1.11 SET DEFAULT ROLE

1.1.1.1.12 SHOW GRANTS

1.1.1.1.13 SHOW CREATE USER

1.1.1.2 Administrative SQL Statements

1.1.1.2.1 Table Statements

1.1.1.2.1.1 ALTER

1.1.1.2.1.1.1 ALTER TABLE

1.1.1.2.1.1.2 ALTER DATABASE

1.1.1.2.1.1.3 ALTER EVENT

1.1.1.2.1.1.4 ALTER FUNCTION

1.1.1.2.1.1.5 ALTER LOGFILE GROUP

1.1.1.2.1.1.6 ALTER PROCEDURE

1.1.1.2.1.1.7 ALTER SEQUENCE

1.1.1.2.1.1.8 ALTER SERVER

1.1.1.2.1.1.9 ALTER TABLESPACE

1.1.1.2.1.1.10 ALTER USER

1.1.1.2.1.1.11 ALTER VIEW

1.1.1.2.1.2 ANALYZE TABLE

1.1.1.2.1.3 CHECK TABLE

1.1.1.2.1.4 CHECK VIEW

1.1.1.2.1.5 CHECKSUM TABLE

1.1.1.2.1.6 CREATE TABLE

1.1.1.2.1.7 DELETE

1.1.1.2.1.8 DROP TABLE

1.1.1.2.1.9 Installing System Tables (mariadb-install-db)

1.1.1.2.1.10 mysqlcheck

1.1.1.2.1.11 OPTIMIZE TABLE

1.1.1.2.1.12 RENAME TABLE

1.1.1.2.1.13 REPAIR TABLE

1.1.1.2.1.14 REPAIR VIEW

1.1.1.2.1.15 REPLACE

1.1.1.2.1.16 SHOW COLUMNS

1.1.1.2.1.17 SHOW CREATE TABLE

1.1.1.2.1.18 SHOW INDEX

1.1.1.2.1.19 TRUNCATE TABLE

1.1.1.2.1.20 UPDATE

1.1.1.2.1.21 IGNORE

1.1.1.2.1.22 System-Versioned Tables

1.1.1.2.2 ANALYZE and EXPLAIN Statements

1.1.1.2.2.1 ANALYZE FORMAT=JSON

1.1.1.2.2.2 ANALYZE FORMAT=JSON Examples

1.1.1.2.2.3 ANALYZE Statement

1.1.1.2.2.4 EXPLAIN

1.1.1.2.2.5 EXPLAIN ANALYZE

1.1.1.2.2.6 EXPLAIN FORMAT=JSON

1.1.1.2.2.7 SHOW EXPLAIN

1.1.1.2.2.8 Using Buffer UPDATE Algorithm

1.1.1.2.3 BACKUP Commands

1.1.1.2.3.1 BACKUP STAGE

1.1.1.2.3.2 BACKUP LOCK

7/4161

168

168

168

168

173

174

174

175

188

189

191

192

192

193

199

199

200

200

201

202

202

203

204

205

206

206

207

209

210

210

212

212

212

212

213

213

214

217

218

219

222

225

225

226

227

227

227

228

228

229

230

230

231

232

233

234

234

235

235

236

237

238

240

243

243

244

244

1.1.1.2.3.3 Mariabackup and BACKUP STAGE Commands

1.1.1.2.3.4 Storage Snapshots and BACKUP STAGE Commands

1.1.1.2.4 FLUSH Commands

1.1.1.2.4.1 FLUSH

1.1.1.2.4.2 FLUSH QUERY CACHE

1.1.1.2.4.3 FLUSH TABLES FOR EXPORT

1.1.1.2.5 Replication Commands

1.1.1.2.5.1 CHANGE MASTER TO

1.1.1.2.5.2 START SLAVE

1.1.1.2.5.3 STOP SLAVE

1.1.1.2.5.4 RESET REPLICA/SLAVE

1.1.1.2.5.5 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

1.1.1.2.5.6 SHOW RELAYLOG EVENTS

1.1.1.2.5.7 SHOW SLAVE STATUS

1.1.1.2.5.8 SHOW MASTER STATUS

1.1.1.2.5.9 SHOW SLAVE HOSTS

1.1.1.2.5.10 RESET MASTER

1.1.1.2.6 Plugin SQL Statements

1.1.1.2.6.1 SHOW PLUGINS

1.1.1.2.6.2 SHOW PLUGINS SONAME

1.1.1.2.6.3 INSTALL PLUGIN

1.1.1.2.6.4 UNINSTALL PLUGIN

1.1.1.2.6.5 INSTALL SONAME

1.1.1.2.6.6 UNINSTALL SONAME

1.1.1.2.6.7 mysql_plugin

1.1.1.2.7 SET Commands

1.1.1.2.7.1 SET

1.1.1.2.7.2 SET CHARACTER SET

1.1.1.2.7.3 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

1.1.1.2.7.4 SET NAMES

1.1.1.2.7.5 SET PASSWORD

1.1.1.2.7.6 SET ROLE

1.1.1.2.7.7 SET SQL_LOG_BIN

1.1.1.2.7.8 SET STATEMENT

1.1.1.2.7.9 SET TRANSACTION

1.1.1.2.7.10 SET Variable

1.1.1.2.8 SHOW

1.1.1.2.8.1 About SHOW

1.1.1.2.8.2 Extended Show

1.1.1.2.8.3 SHOW ANALYZE

1.1.1.2.8.4 SHOW AUTHORS

1.1.1.2.8.5 SHOW BINARY LOGS

1.1.1.2.8.6 SHOW BINLOG EVENTS

1.1.1.2.8.7 SHOW CHARACTER SET

1.1.1.2.8.8 SHOW CLIENT_STATISTICS

1.1.1.2.8.9 SHOW COLLATION

1.1.1.2.8.10 SHOW COLUMNS

1.1.1.2.8.11 SHOW CONTRIBUTORS

1.1.1.2.8.12 SHOW CREATE DATABASE

1.1.1.2.8.13 SHOW CREATE EVENT

1.1.1.2.8.14 SHOW CREATE FUNCTION

1.1.1.2.8.15 SHOW CREATE PACKAGE

1.1.1.2.8.16 SHOW CREATE PACKAGE BODY

1.1.1.2.8.17 SHOW CREATE PROCEDURE

1.1.1.2.8.18 SHOW CREATE SEQUENCE

1.1.1.2.8.19 SHOW CREATE TABLE

1.1.1.2.8.20 SHOW CREATE TRIGGER

1.1.1.2.8.21 SHOW CREATE USER

1.1.1.2.8.22 SHOW CREATE VIEW

1.1.1.2.8.23 SHOW DATABASES

1.1.1.2.8.24 SHOW ENGINE

1.1.1.2.8.25 SHOW ENGINE INNODB STATUS

1.1.1.2.8.26 SHOW ENGINES

1.1.1.2.8.27 SHOW ERRORS

1.1.1.2.8.28 SHOW EVENTS

1.1.1.2.8.29 SHOW FUNCTION CODE

1.1.1.2.8.30 SHOW FUNCTION STATUS

8/4161

245

245

245

246

246

246

247

248

248

248

248

250

251

251

253

255

256

256

256

256

256

257

259

261

261

263

263

265

267

267

268

268

268

272

273

275

277

277

278

278

280

280

281

282

283

283

283

284

284

286

287

288

289

292

293

294

295

295

296

296

297

298

299

300

301

301

303

1.1.1.2.8.31 SHOW GRANTS

1.1.1.2.8.32 SHOW INDEX

1.1.1.2.8.33 SHOW INDEX_STATISTICS

1.1.1.2.8.34 SHOW LOCALES

1.1.1.2.8.35 SHOW BINLOG STATUS

1.1.1.2.8.36 SHOW OPEN TABLES

1.1.1.2.8.37 SHOW PACKAGE BODY STATUS

1.1.1.2.8.38 SHOW PACKAGE STATUS

1.1.1.2.8.39 SHOW PLUGINS

1.1.1.2.8.40 SHOW PLUGINS SONAME

1.1.1.2.8.41 SHOW PRIVILEGES

1.1.1.2.8.42 SHOW PROCEDURE CODE

1.1.1.2.8.43 SHOW PROCEDURE STATUS

1.1.1.2.8.44 SHOW PROCESSLIST

1.1.1.2.8.45 SHOW PROFILE

1.1.1.2.8.46 SHOW PROFILES

1.1.1.2.8.47 SHOW QUERY_RESPONSE_TIME

1.1.1.2.8.48 SHOW RELAYLOG EVENTS

1.1.1.2.8.49 SHOW REPLICA HOSTS

1.1.1.2.8.50 SHOW REPLICA STATUS

1.1.1.2.8.51 SHOW STATUS

1.1.1.2.8.52 SHOW TABLE STATUS

1.1.1.2.8.53 SHOW TABLES

1.1.1.2.8.54 SHOW TABLE_STATISTICS

1.1.1.2.8.55 SHOW TRIGGERS

1.1.1.2.8.56 SHOW USER_STATISTICS

1.1.1.2.8.57 SHOW VARIABLES

1.1.1.2.8.58 SHOW WARNINGS

1.1.1.2.8.59 SHOW WSREP_MEMBERSHIP

1.1.1.2.8.60 SHOW WSREP_STATUS

1.1.1.2.9 System Tables

1.1.1.2.9.1 Information Schema

1.1.1.2.9.1.1 Information Schema Tables

1.1.1.2.9.1.1.1 Information Schema InnoDB Tables

1.1.1.2.9.1.1.1.1 Information Schema INNODB_BUFFER_PAGE Table

1.1.1.2.9.1.1.1.2 Information Schema INNODB_BUFFER_PAGE_LRU Table

1.1.1.2.9.1.1.1.3 Information Schema INNODB_BUFFER_POOL_PAGES Table

1.1.1.2.9.1.1.1.4 Information Schema INNODB_BUFFER_POOL_PAGES_BLOB Table

1.1.1.2.9.1.1.1.5 Information Schema INNODB_BUFFER_POOL_PAGES_INDEX Table

1.1.1.2.9.1.1.1.6 Information Schema INNODB_BUFFER_POOL_STATS Table

1.1.1.2.9.1.1.1.7 Information Schema INNODB_CHANGED_PAGES Table

1.1.1.2.9.1.1.1.8 Information Schema INNODB_CMP and INNODB_CMP_RESET Tables

1.1.1.2.9.1.1.1.9 Information Schema INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

1.1.1.2.9.1.1.1.10 Information Schema INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables

1.1.1.2.9.1.1.1.11 Information Schema INNODB_FT_BEING_DELETED Table

1.1.1.2.9.1.1.1.12 Information Schema INNODB_FT_CONFIG Table

1.1.1.2.9.1.1.1.13 Information Schema INNODB_FT_DEFAULT_STOPWORD Table

1.1.1.2.9.1.1.1.14 Information Schema INNODB_FT_DELETED Table

1.1.1.2.9.1.1.1.15 Information Schema INNODB_FT_INDEX_CACHE Table

1.1.1.2.9.1.1.1.16 Information Schema INNODB_FT_INDEX_TABLE Table

1.1.1.2.9.1.1.1.17 Information Schema INNODB_LOCK_WAITS Table

1.1.1.2.9.1.1.1.18 Information Schema INNODB_LOCKS Table

1.1.1.2.9.1.1.1.19 Information Schema INNODB_METRICS Table

1.1.1.2.9.1.1.1.20 Information Schema INNODB_MUTEXES Table

1.1.1.2.9.1.1.1.21 Information Schema INNODB_SYS_COLUMNS Table

1.1.1.2.9.1.1.1.22 Information Schema INNODB_SYS_DATAFILES Table

1.1.1.2.9.1.1.1.23 Information Schema INNODB_SYS_FIELDS Table

1.1.1.2.9.1.1.1.24 Information Schema INNODB_SYS_FOREIGN Table

1.1.1.2.9.1.1.1.25 Information Schema INNODB_SYS_FOREIGN_COLS Table

1.1.1.2.9.1.1.1.26 Information Schema INNODB_SYS_INDEXES Table

1.1.1.2.9.1.1.1.27 Information Schema INNODB_SYS_SEMAPHORE_WAITS Table

1.1.1.2.9.1.1.1.28 Information Schema INNODB_SYS_TABLES Table

1.1.1.2.9.1.1.1.29 Information Schema INNODB_SYS_TABLESPACES Table

1.1.1.2.9.1.1.1.30 Information Schema INNODB_SYS_TABLESTATS Table

1.1.1.2.9.1.1.1.31 Information Schema INNODB_SYS_VIRTUAL Table

1.1.1.2.9.1.1.1.32 Information Schema INNODB_TABLESPACES_ENCRYPTION Table

1.1.1.2.9.1.1.1.33 Information Schema INNODB_TABLESPACES_SCRUBBING Table

9/4161

303

305

306

307

307

307

308

308

308

309

309

309

310

310

310

311

311

314

317

317

318

320

322

323

324

325

327

328

328

331

332

332

333

334

334

335

335

336

337

337

347

348

350

351

351

352

353

354

357

358

359

360

361

361

362

363

364

364

365

365

368

369

370

371

371

371

374

1.1.1.2.9.1.1.1.34 Information Schema INNODB_TRX Table

1.1.1.2.9.1.1.1.35 Information Schema TEMP_TABLES_INFO Table

1.1.1.2.9.1.1.2 Information Schema MyRocks Tables

1.1.1.2.9.1.1.2.1 Information Schema ROCKSDB_CFSTATS Table

1.1.1.2.9.1.1.2.2 Information Schema ROCKSDB_CF_OPTIONS Table

1.1.1.2.9.1.1.2.3 Information Schema ROCKSDB_COMPACTION_STATS Table

1.1.1.2.9.1.1.2.4 Information Schema ROCKSDB_DBSTATS Table

1.1.1.2.9.1.1.2.5 Information Schema ROCKSDB_DDL Table

1.1.1.2.9.1.1.2.6 Information Schema ROCKSDB_DEADLOCK Table

1.1.1.2.9.1.1.2.7 Information Schema ROCKSDB_GLOBAL_INFO Table

1.1.1.2.9.1.1.2.8 Information Schema ROCKSDB_INDEX_FILE_MAP Table

1.1.1.2.9.1.1.2.9 Information Schema ROCKSDB_LOCKS Table

1.1.1.2.9.1.1.2.10 Information Schema ROCKSDB_PERF_CONTEXT Table

1.1.1.2.9.1.1.2.11 Information Schema ROCKSDB_PERF_CONTEXT_GLOBAL Table

1.1.1.2.9.1.1.2.12 Information Schema ROCKSDB_SST_PROPS Table

1.1.1.2.9.1.1.2.13 Information Schema ROCKSDB_TRX Table

1.1.1.2.9.1.1.3 ColumnStore Information Schema Tables

1.1.1.2.9.1.1.4 Information Schema ALL_PLUGINS Table

1.1.1.2.9.1.1.5 Information Schema APPLICABLE_ROLES Table

1.1.1.2.9.1.1.6 Information Schema CHARACTER_SETS Table

1.1.1.2.9.1.1.7 Information Schema CHECK_CONSTRAINTS Table

1.1.1.2.9.1.1.8 Information Schema CLIENT_STATISTICS Table

1.1.1.2.9.1.1.9 Information Schema COLLATION_CHARACTER_SET_APPLICABILITY Table

1.1.1.2.9.1.1.10 Information Schema COLLATIONS Table

1.1.1.2.9.1.1.11 Information Schema COLUMN_PRIVILEGES Table

1.1.1.2.9.1.1.12 Information Schema COLUMNS Table

1.1.1.2.9.1.1.13 Information Schema DISKS Table

1.1.1.2.9.1.1.14 Information Schema ENABLED_ROLES Table

1.1.1.2.9.1.1.15 Information Schema ENGINES Table

1.1.1.2.9.1.1.16 Information Schema EVENTS Table

1.1.1.2.9.1.1.17 Information Schema FEEDBACK Table

1.1.1.2.9.1.1.18 Information Schema FILES Table

1.1.1.2.9.1.1.19 Information Schema GEOMETRY_COLUMNS Table

1.1.1.2.9.1.1.20 Information Schema GLOBAL_STATUS and SESSION_STATUS Tables

1.1.1.2.9.1.1.21 Information Schema GLOBAL_VARIABLES and SESSION_VARIABLES Tables

1.1.1.2.9.1.1.22 Information Schema INDEX_STATISTICS Table

1.1.1.2.9.1.1.23 Information Schema KEY_CACHES Table

1.1.1.2.9.1.1.24 Information Schema KEY_COLUMN_USAGE Table

1.1.1.2.9.1.1.25 Information Schema KEY_PERIOD_USAGE Table

1.1.1.2.9.1.1.26 Information Schema KEYWORDS Table

1.1.1.2.9.1.1.27 Information Schema LOCALES Table

1.1.1.2.9.1.1.28 Information Schema METADATA_LOCK_INFO Table

1.1.1.2.9.1.1.29 Information Schema MROONGA_STATS Table

1.1.1.2.9.1.1.30 Information Schema OPTIMIZER_TRACE Table

1.1.1.2.9.1.1.31 Information Schema PARAMETERS Table

1.1.1.2.9.1.1.32 Information Schema PARTITIONS Table

1.1.1.2.9.1.1.33 Information Schema PERIODS Table

1.1.1.2.9.1.1.34 Information Schema PLUGINS Table

1.1.1.2.9.1.1.35 Information Schema PROCESSLIST Table

1.1.1.2.9.1.1.36 Information Schema PROFILING Table

1.1.1.2.9.1.1.37 Information Schema QUERY_CACHE_INFO Table

1.1.1.2.9.1.1.38 Information Schema QUERY_RESPONSE_TIME Table

1.1.1.2.9.1.1.39 Information Schema REFERENTIAL_CONSTRAINTS Table

1.1.1.2.9.1.1.40 Information Schema ROUTINES Table

1.1.1.2.9.1.1.41 Information Schema SCHEMA_PRIVILEGES Table

1.1.1.2.9.1.1.42 Information Schema SCHEMATA Table

1.1.1.2.9.1.1.43 Information Schema SPATIAL_REF_SYS Table

1.1.1.2.9.1.1.44 Information Schema SPIDER_ALLOC_MEM Table

1.1.1.2.9.1.1.45 Information Schema SPIDER_WRAPPER_PROTOCOLS Table

1.1.1.2.9.1.1.46 Information Schema SQL_FUNCTIONS Table

1.1.1.2.9.1.1.47 Information Schema STATISTICS Table

1.1.1.2.9.1.1.48 Information Schema SYSTEM_VARIABLES Table

1.1.1.2.9.1.1.49 Information Schema TABLE_CONSTRAINTS Table

1.1.1.2.9.1.1.50 Information Schema TABLE_PRIVILEGES Table

1.1.1.2.9.1.1.51 Information Schema TABLE_STATISTICS Table

1.1.1.2.9.1.1.52 Information Schema TABLES Table

1.1.1.2.9.1.1.53 Information Schema TABLESPACES Table

10/4161

375

375

376

376

376

377

378

379

380

380

381

381

381

382

382

386

388

389

389

390

390

391

392

393

394

395

396

397

399

400

402

403

405

407

409

411

413

415

416

417

418

419

420

420

421

422

422

423

424

425

426

427

428

429

430

431

433

434

434

435

436

437

438

439

440

440

441

1.1.1.2.9.1.1.54 Information Schema THREAD_POOL_GROUPS Table

1.1.1.2.9.1.1.55 Information Schema THREAD_POOL_QUEUES Table

1.1.1.2.9.1.1.56 Information Schema THREAD_POOL_STATS Table

1.1.1.2.9.1.1.57 Information Schema THREAD_POOL_WAITS Table

1.1.1.2.9.1.1.58 Information Schema TRIGGERS Table

1.1.1.2.9.1.1.59 Information Schema USER_PRIVILEGES Table

1.1.1.2.9.1.1.60 Information Schema USER_STATISTICS Table

1.1.1.2.9.1.1.61 Information Schema USER_VARIABLES Table

1.1.1.2.9.1.1.62 Information Schema VIEWS Table

1.1.1.2.9.1.1.63 Information Schema WSREP_MEMBERSHIP Table

1.1.1.2.9.1.1.64 Information Schema WSREP_STATUS Table

1.1.1.2.9.1.2 Extended SHOW

1.1.1.2.9.1.3 TIME_MS column in INFORMATION_SCHEMA.PROCESSLIST

1.1.1.2.9.2 Performance Schema

1.1.1.2.9.2.1 Performance Schema Tables

1.1.1.2.9.2.1.1 List of Performance Schema Tables

1.1.1.2.9.2.1.2 Performance Schema accounts Table

1.1.1.2.9.2.1.3 Performance Schema cond_instances Table

1.1.1.2.9.2.1.4 Performance Schema events_stages_current Table

1.1.1.2.9.2.1.5 Performance Schema events_stages_history Table

1.1.1.2.9.2.1.6 Performance Schema events_stages_history_long Table

1.1.1.2.9.2.1.7 Performance Schema events_stages_summary_by_account_by_event_name Table

1.1.1.2.9.2.1.8 Performance Schema events_stages_summary_by_host_by_event_name Table

1.1.1.2.9.2.1.9 Performance Schema events_stages_summary_by_thread_by_event_name Table

1.1.1.2.9.2.1.10 Performance Schema events_stages_summary_by_user_by_event_name Table

1.1.1.2.9.2.1.11 Performance Schema events_stages_summary_global_by_event_name Table

1.1.1.2.9.2.1.12 Performance Schema events_statements_current Table

1.1.1.2.9.2.1.13 Performance Schema events_statements_history Table

1.1.1.2.9.2.1.14 Performance Schema events_statements_history_long Table

1.1.1.2.9.2.1.15 Performance Schema events_statements_summary_by_account_by_event_name Table

1.1.1.2.9.2.1.16 Performance Schema events_statements_summary_by_digest Table

1.1.1.2.9.2.1.17 Performance Schema events_statements_summary_by_host_by_event_name Table

1.1.1.2.9.2.1.18 Performance Schema events_statements_summary_by_program Table

1.1.1.2.9.2.1.19 Performance Schema events_statements_summary_by_thread_by_event_name Table

1.1.1.2.9.2.1.20 Performance Schema events_statements_summary_by_user_by_event_name Table

1.1.1.2.9.2.1.21 Performance Schema events_statements_summary_global_by_event_name Table

1.1.1.2.9.2.1.22 Performance Schema events_transactions_current Table

1.1.1.2.9.2.1.23 Performance Schema events_transactions_history Table

1.1.1.2.9.2.1.24 Performance Schema events_transactions_history_long Table

1.1.1.2.9.2.1.25 Performance Schema events_transactions_summary_by_account_by_event_name Table

1.1.1.2.9.2.1.26 Performance Schema events_transactions_summary_by_host_by_event_name Table

1.1.1.2.9.2.1.27 Performance Schema events_transactions_summary_by_thread_by_event_name Table

1.1.1.2.9.2.1.28 Performance Schema events_transactions_summary_by_user_by_event_name Table

1.1.1.2.9.2.1.29 Performance Schema events_transactions_summary_global_by_event_name Table

1.1.1.2.9.2.1.30 Performance Schema events_waits_current Table

1.1.1.2.9.2.1.31 Performance Schema events_waits_history Table

1.1.1.2.9.2.1.32 Performance Schema events_waits_history_long Table

1.1.1.2.9.2.1.33 Performance Schema events_waits_summary_by_account_by_event_name Table

1.1.1.2.9.2.1.34 Performance Schema events_waits_summary_by_host_by_event_name Table

1.1.1.2.9.2.1.35 Performance Schema events_waits_summary_by_instance Table

1.1.1.2.9.2.1.36 Performance Schema events_waits_summary_by_thread_by_event_name Table

1.1.1.2.9.2.1.37 Performance Schema events_waits_summary_by_user_by_event_name Table

1.1.1.2.9.2.1.38 Performance Schema events_waits_summary_global_by_event_name Table

1.1.1.2.9.2.1.39 Performance Schema file_instances Table

1.1.1.2.9.2.1.40 Performance Schema file_summary_by_event_name Table

1.1.1.2.9.2.1.41 Performance Schema file_summary_by_instance Table

1.1.1.2.9.2.1.42 Performance Schema global_status Table

1.1.1.2.9.2.1.43 Performance Schema hosts Table

1.1.1.2.9.2.1.44 Performance Schema host_cache Table

1.1.1.2.9.2.1.45 Performance Schema memory_summary_by_account_by_event_name Table

1.1.1.2.9.2.1.46 Performance Schema memory_summary_by_host_by_event_name Table

1.1.1.2.9.2.1.47 Performance Schema memory_summary_by_thread_by_event_name Table

1.1.1.2.9.2.1.48 Performance Schema memory_summary_by_user_by_event_name Table

1.1.1.2.9.2.1.49 Performance Schema memory_summary_global_by_event_name Table

1.1.1.2.9.2.1.50 Performance Schema metadata_locks Table

1.1.1.2.9.2.1.51 Performance Schema mutex_instances Table

1.1.1.2.9.2.1.52 Performance Schema objects_summary_global_by_type Table

11/4161

441

442

443

444

444

445

445

446

446

447

449

449

450

450

464

465

465

466

467

468

468

469

469

470

470

471

472

474

476

477

477

479

483

491

492

492

494

495

496

497

499

499

500

502

503

504

505

505

506

507

508

509

509

510

511

512

513

513

514

515

515

516

516

517

517

518

518

1.1.1.2.9.2.1.53 Performance Schema performance_timers Table

1.1.1.2.9.2.1.54 Performance Schema prepared_statements_instances Table

1.1.1.2.9.2.1.55 Performance Schema replication_applier_configuration Table

1.1.1.2.9.2.1.56 Performance Schema replication_applier_status Table

1.1.1.2.9.2.1.57 Performance Schema replication_applier_status_by_coordinator Table

1.1.1.2.9.2.1.58 Performance Schema replication_applier_status_by_worker Table

1.1.1.2.9.2.1.59 Performance Schema replication_connection_configuration Table

1.1.1.2.9.2.1.60 Performance Schema rwlock_instances Table

1.1.1.2.9.2.1.61 Performance Schema session_account_connect_attrs Table

1.1.1.2.9.2.1.62 Performance Schema session_connect_attrs Table

1.1.1.2.9.2.1.63 Performance Schema session_status Table

1.1.1.2.9.2.1.64 Performance Schema setup_actors Table

1.1.1.2.9.2.1.65 Performance Schema setup_consumers Table

1.1.1.2.9.2.1.66 Performance Schema setup_instruments Table

1.1.1.2.9.2.1.67 Performance Schema setup_objects Table

1.1.1.2.9.2.1.68 Performance Schema setup_timers Table

1.1.1.2.9.2.1.69 Performance Schema socket_instances Table

1.1.1.2.9.2.1.70 Performance Schema socket_summary_by_event_name Table

1.1.1.2.9.2.1.71 Performance Schema socket_summary_by_instance Table

1.1.1.2.9.2.1.72 Performance Schema status_by_account Table

1.1.1.2.9.2.1.73 Performance Schema status_by_host Table

1.1.1.2.9.2.1.74 Performance Schema status_by_thread Table

1.1.1.2.9.2.1.75 Performance Schema status_by_user Table

1.1.1.2.9.2.1.76 Performance Schema table_handles Table

1.1.1.2.9.2.1.77 Performance Schema table_io_waits_summary_by_index_usage Table

1.1.1.2.9.2.1.78 Performance Schema table_io_waits_summary_by_table Table

1.1.1.2.9.2.1.79 Performance Schema table_lock_waits_summary_by_table Table

1.1.1.2.9.2.1.80 Performance Schema threads Table

1.1.1.2.9.2.1.81 Performance Schema user_variables_by_thread Table

1.1.1.2.9.2.1.82 Performance Schema users Table

1.1.1.2.9.2.2 Performance Schema Overview

1.1.1.2.9.2.3 Performance Schema Status Variables

1.1.1.2.9.2.4 Performance Schema System Variables

1.1.1.2.9.2.5 Performance Schema Digests

1.1.1.2.9.2.6 PERFORMANCE_SCHEMA Storage Engine

1.1.1.2.9.3 The mysql Database Tables

1.1.1.2.9.3.1 mysql.column_stats Table

1.1.1.2.9.3.2 mysql.columns_priv Table

1.1.1.2.9.3.3 mysql.db Table

1.1.1.2.9.3.4 mysql.event Table

1.1.1.2.9.3.5 mysql.func Table

1.1.1.2.9.3.6 mysql.general_log Table

1.1.1.2.9.3.7 mysql.global_priv Table

1.1.1.2.9.3.8 mysql.gtid_slave_pos Table

1.1.1.2.9.3.9 mysql.help_category Table

1.1.1.2.9.3.10 mysql.help_keyword Table

1.1.1.2.9.3.11 mysql.help_relation Table

1.1.1.2.9.3.12 mysql.help_topic Table

1.1.1.2.9.3.13 mysql.index_stats Table

1.1.1.2.9.3.14 mysql.innodb_index_stats

1.1.1.2.9.3.15 mysql.innodb_table_stats

1.1.1.2.9.3.16 mysql.password_reuse_check_history Table

1.1.1.2.9.3.17 mysql.plugin Table

1.1.1.2.9.3.18 mysql.proc Table

1.1.1.2.9.3.19 mysql.procs_priv Table

1.1.1.2.9.3.20 mysql.roles_mapping Table

1.1.1.2.9.3.21 mysql.servers Table

1.1.1.2.9.3.22 mysql.slow_log Table

1.1.1.2.9.3.23 mysql.tables_priv Table

1.1.1.2.9.3.24 mysql.table_stats Table

1.1.1.2.9.3.25 mysql.time_zone Table

1.1.1.2.9.3.26 mysql.time_zone_leap_second Table

1.1.1.2.9.3.27 mysql.time_zone_name Table

1.1.1.2.9.3.28 mysql.time_zone_transition Table

1.1.1.2.9.3.29 mysql.time_zone_transition_type Table

1.1.1.2.9.3.30 mysql.transaction_registry Table

1.1.1.2.9.3.31 mysql.user Table

12/4161

521

522

522

523

524

524

525

525

526

526

527

527

528

529

530

530

531

532

532

533

534

534

535

535

536

537

538

538

539

540

540

541

541

542

542

543

543

544

545

546

547

548

548

548

549

551

551

552

552

553

554

554

555

556

557

557

559

559

560

561

562

565

569

571

574

574

577

1.1.1.2.9.3.32 Spider mysql Database Tables

1.1.1.2.9.3.32.1 mysql.spider_link_failed_log Table

1.1.1.2.9.3.32.2 mysql.spider_link_mon_servers Table

1.1.1.2.9.3.32.3 mysql.spider_tables Table

1.1.1.2.9.3.32.4 mysql.spider_table_crd Table

1.1.1.2.9.3.32.5 mysql.spider_table_position_for_recovery Table

1.1.1.2.9.3.32.6 mysql.spider_table_sts Table

1.1.1.2.9.3.32.7 mysql.spider_xa Table

1.1.1.2.9.3.32.8 mysql.spider_xa_failed_log Table

1.1.1.2.9.3.32.9 mysql.spider_xa_member Table

1.1.1.2.9.4 Sys Schema

1.1.1.2.9.4.1 Sys Schema sys_config Table

1.1.1.2.9.4.2 Sys Schema Stored Functions

1.1.1.2.9.4.2.1 extract_schema_from_file_name

1.1.1.2.9.4.2.2 extract_table_from_file_name

1.1.1.2.9.4.2.3 format_bytes

1.1.1.2.9.4.2.4 format_path

1.1.1.2.9.4.2.5 format_statement

1.1.1.2.9.4.2.6 format_time

1.1.1.2.9.4.2.7 list_add

1.1.1.2.9.4.2.8 list_drop

1.1.1.2.9.4.2.9 ps_is_account_enabled

1.1.1.2.9.4.2.10 ps_is_consumer_enabled

1.1.1.2.9.4.2.11 ps_is_instrument_default_enabled

1.1.1.2.9.4.2.12 ps_is_instrument_default_timed

1.1.1.2.9.4.2.13 ps_is_thread_instrumented

1.1.1.2.9.4.2.14 ps_thread_account

1.1.1.2.9.4.2.15 ps_thread_id

1.1.1.2.9.4.2.16 ps_thread_stack

1.1.1.2.9.4.2.17 ps_thread_trx_info

1.1.1.2.9.4.2.18 quote_identifier

1.1.1.2.9.4.2.19 sys_get_config

1.1.1.2.9.4.2.20 version_major

1.1.1.2.9.4.2.21 version_minor

1.1.1.2.9.4.2.22 version_patch

1.1.1.2.9.4.3 Sys Schema Stored Procedures

1.1.1.2.9.4.3.1 create_synonym_db

1.1.1.2.9.4.3.2 optimizer_switch Helper Functions

1.1.1.2.9.4.3.3 ps_trace_thread

1.1.1.2.9.4.3.4 ps_truncate_all_tables

1.1.1.2.9.4.3.5 statement_performance_analyzer

1.1.1.2.9.4.3.6 table_exists

1.1.1.2.9.4.4 Sys Schema Views

1.1.1.2.9.4.4.1 privileges_by_table_by_level

1.1.1.2.9.5 mariadb_schema

1.1.1.2.9.6 Writing Logs Into Tables

1.1.1.2.10 BINLOG

1.1.1.2.11 PURGE BINARY LOGS

1.1.1.2.12 CACHE INDEX

1.1.1.2.13 DESCRIBE

1.1.1.2.14 EXECUTE Statement

1.1.1.2.15 HELP Command

1.1.1.2.16 KILL [CONNECTION | QUERY]

1.1.1.2.17 LOAD INDEX

1.1.1.2.18 RESET

1.1.1.2.19 SHUTDOWN

1.1.1.2.20 USE [DATABASE]

1.1.1.3 Data Definition

1.1.1.3.1 CREATE

1.1.1.3.1.1 CREATE DATABASE

1.1.1.3.1.2 CREATE EVENT

1.1.1.3.1.3 CREATE FUNCTION

1.1.1.3.1.4 CREATE FUNCTION UDF

1.1.1.3.1.5 CREATE INDEX

1.1.1.3.1.6 CREATE LOGFILE GROUP

1.1.1.3.1.7 CREATE PACKAGE

1.1.1.3.1.8 CREATE PACKAGE BODY

13/4161

580

584

584

584

585

585

585

587

587

591

593

599

601

601

601

601

601

601

601

601

601

601

601

601

601

602

603

604

605

606

606

607

607

607

608

608

608

609

609

609

610

610

611

612

615

615

615

615

616

616

619

620

620

620

623

625

625

626

627

627

629

630

631

631

631

631

631

1.1.1.3.1.9 CREATE PROCEDURE

1.1.1.3.1.10 CREATE ROLE

1.1.1.3.1.11 CREATE SEQUENCE

1.1.1.3.1.12 CREATE SERVER

1.1.1.3.1.13 CREATE TABLE

1.1.1.3.1.14 CREATE TABLESPACE

1.1.1.3.1.15 CREATE TRIGGER

1.1.1.3.1.16 CREATE USER

1.1.1.3.1.17 CREATE VIEW

1.1.1.3.1.18 Silent Column Changes

1.1.1.3.1.19 Generated (Virtual and Persistent/Stored) Columns

1.1.1.3.1.20 Invisible Columns

1.1.1.3.2 ALTER

1.1.1.3.2.1 ALTER TABLE

1.1.1.3.2.2 ALTER DATABASE

1.1.1.3.2.3 ALTER EVENT

1.1.1.3.2.4 ALTER FUNCTION

1.1.1.3.2.5 ALTER LOGFILE GROUP

1.1.1.3.2.6 ALTER PROCEDURE

1.1.1.3.2.7 ALTER SEQUENCE

1.1.1.3.2.8 ALTER SERVER

1.1.1.3.2.9 ALTER TABLESPACE

1.1.1.3.2.10 ALTER USER

1.1.1.3.2.11 ALTER VIEW

1.1.1.3.3 DROP

1.1.1.3.3.1 DROP DATABASE

1.1.1.3.3.2 DROP EVENT

1.1.1.3.3.3 DROP FUNCTION

1.1.1.3.3.4 DROP FUNCTION UDF

1.1.1.3.3.5 DROP INDEX

1.1.1.3.3.6 DROP LOGFILE GROUP

1.1.1.3.3.7 DROP PACKAGE

1.1.1.3.3.8 DROP PACKAGE BODY

1.1.1.3.3.9 DROP PROCEDURE

1.1.1.3.3.10 DROP ROLE

1.1.1.3.3.11 DROP SEQUENCE

1.1.1.3.3.12 DROP SERVER

1.1.1.3.3.13 DROP TABLE

1.1.1.3.3.14 DROP TABLESPACE

1.1.1.3.3.15 DROP TRIGGER

1.1.1.3.3.16 DROP USER

1.1.1.3.3.17 DROP VIEW

1.1.1.3.4 Atomic DDL

1.1.1.3.5 CONSTRAINT

1.1.1.3.6 MERGE

1.1.1.3.7 RENAME TABLE

1.1.1.3.8 TRUNCATE TABLE

1.1.1.4 Data Manipulation

1.1.1.4.1 Selecting Data

1.1.1.4.1.1 SELECT

1.1.1.4.1.2 Joins & Subqueries

1.1.1.4.1.2.1 Joins

1.1.1.4.1.2.1.1 Joining Tables with JOIN Clauses

1.1.1.4.1.2.1.2 More Advanced Joins

1.1.1.4.1.2.1.3 JOIN Syntax

1.1.1.4.1.2.1.4 Comma vs JOIN

1.1.1.4.1.2.2 Subqueries

1.1.1.4.1.2.2.1 Scalar Subqueries

1.1.1.4.1.2.2.2 Row Subqueries

1.1.1.4.1.2.2.3 Subqueries and ALL

1.1.1.4.1.2.2.4 Subqueries and ANY

1.1.1.4.1.2.2.5 Subqueries and EXISTS

1.1.1.4.1.2.2.6 Subqueries in a FROM Clause

1.1.1.4.1.2.2.7 Subquery Optimizations

1.1.1.4.1.2.2.7.1 Subquery Optimizations Map

1.1.1.4.1.2.2.7.2 Semi-join Subquery Optimizations

1.1.1.4.1.2.2.7.3 Table Pullout Optimization

14/4161

631

631

631

631

632

632

632

633

635

638

641

644

645

645

648

650

652

652

654

656

661

663

664

665

665

665

666

666

666

666

668

668

671

672

673

673

676

676

677

678

678

679

679

679

680

683

685

685

685

685

685

685

687

687

687

688

691

691

691

692

694

695

696

697

698

699

700

1.1.1.4.1.2.2.7.4 Non-semi-join Subquery Optimizations

1.1.1.4.1.2.2.7.5 Subquery Cache

1.1.1.4.1.2.2.7.6 Condition Pushdown Into IN subqueries

1.1.1.4.1.2.2.7.7 Conversion of Big IN Predicates Into Subqueries

1.1.1.4.1.2.2.7.8 EXISTS-to-IN Optimization

1.1.1.4.1.2.2.7.9 Optimizing GROUP BY and DISTINCE Clauses in Subqueries

1.1.1.4.1.2.2.8 Subqueries and JOINs

1.1.1.4.1.2.2.9 Subquery Limitations

1.1.1.4.1.2.3 UNION

1.1.1.4.1.2.4 EXCEPT

1.1.1.4.1.2.5 INTERSECT

1.1.1.4.1.2.6 Precedence Control in Table Operations

1.1.1.4.1.2.7 MINUS

1.1.1.4.1.3 LIMIT

1.1.1.4.1.4 ORDER BY

1.1.1.4.1.5 GROUP BY

1.1.1.4.1.6 Common Table Expressions

1.1.1.4.1.6.1 WITH

1.1.1.4.1.6.2 Non-Recursive Common Table Expressions Overview

1.1.1.4.1.6.3 Recursive Common Table Expressions Overview

1.1.1.4.1.7 SELECT WITH ROLLUP

1.1.1.4.1.8 SELECT INTO OUTFILE

1.1.1.4.1.9 SELECT INTO DUMPFILE

1.1.1.4.1.10 FOR UPDATE

1.1.1.4.1.11 LOCK IN SHARE MODE

1.1.1.4.1.12 Optimizer Hints

1.1.1.4.1.13 PROCEDURE

1.1.1.4.1.14 HANDLER

1.1.1.4.1.15 DUAL

1.1.1.4.1.16 SELECT ... OFFSET ... FETCH

1.1.1.4.2 Inserting & Loading Data

1.1.1.4.2.1 INSERT

1.1.1.4.2.2 INSERT DELAYED

1.1.1.4.2.3 INSERT SELECT

1.1.1.4.2.4 LOAD Data into Tables or Index

1.1.1.4.2.4.1 LOAD DATA INFILE

1.1.1.4.2.4.2 LOAD INDEX

1.1.1.4.2.4.3 LOAD XML

1.1.1.4.2.4.4 LOAD_FILE

1.1.1.4.2.5 Concurrent Inserts

1.1.1.4.2.6 HIGH_PRIORITY and LOW_PRIORITY

1.1.1.4.2.7 IGNORE

1.1.1.4.2.8 INSERT - Default & Duplicate Values

1.1.1.4.2.9 INSERT IGNORE

1.1.1.4.2.10 INSERT ON DUPLICATE KEY UPDATE

1.1.1.4.2.11 INSERT...RETURNING

1.1.1.4.3 Changing & Deleting Data

1.1.1.4.3.1 DELETE

1.1.1.4.3.2 HIGH_PRIORITY and LOW_PRIORITY

1.1.1.4.3.3 IGNORE

1.1.1.4.3.4 REPLACE

1.1.1.4.3.5 REPLACE...RETURNING

1.1.1.4.3.6 TRUNCATE TABLE

1.1.1.4.3.7 UPDATE

1.1.1.5 Prepared Statements

1.1.1.5.1 PREPARE Statement

1.1.1.5.2 Out Parameters in PREPARE

1.1.1.5.3 EXECUTE STATEMENT

1.1.1.5.4 DEALLOCATE / DROP PREPARE

1.1.1.5.5 EXECUTE IMMEDIATE

1.1.1.6 Programmatic & Compound Statements

1.1.1.6.1 Using Compound Statements Outside of Stored Programs

1.1.1.6.2 BEGIN END

1.1.1.6.3 CASE Statement

1.1.1.6.4 DECLARE CONDITION

1.1.1.6.5 DECLARE HANDLER

1.1.1.6.6 DECLARE Variable

15/4161

701

704

705

705

706

707

707

707

708

710

710

711

711

713

714

714

716

717

718

718

718

718

719

719

719

720

722

722

723

726

727

728

728

730

730

731

731

734

734

734

735

735

735

736

736

737

740

741

741

741

743

745

745

747

791

792

798

799

800

801

802

803

804

804

807

807

807

1.1.1.6.7 FOR

1.1.1.6.8 GOTO

1.1.1.6.9 IF

1.1.1.6.10 ITERATE

1.1.1.6.11 Labels

1.1.1.6.12 LEAVE

1.1.1.6.13 LOOP

1.1.1.6.14 REPEAT LOOP

1.1.1.6.15 RESIGNAL

1.1.1.6.16 RETURN

1.1.1.6.17 SELECT INTO

1.1.1.6.18 SET Variable

1.1.1.6.19 SIGNAL

1.1.1.6.20 WHILE

1.1.1.6.21 Cursors

1.1.1.6.21.1 Cursor Overview

1.1.1.6.21.2 DECLARE CURSOR

1.1.1.6.21.3 OPEN

1.1.1.6.21.4 FETCH

1.1.1.6.21.5 CLOSE

1.1.1.7 Stored Routine Statements

1.1.1.7.1 CALL

1.1.1.7.2 DO

1.1.1.8 Table Statements

1.1.1.9 Transactions

1.1.1.9.1 START TRANSACTION

1.1.1.9.2 COMMIT

1.1.1.9.3 ROLLBACK

1.1.1.9.4 SET TRANSACTION

1.1.1.9.5 LOCK TABLES

1.1.1.9.6 SAVEPOINT

1.1.1.9.7 Metadata Locking

1.1.1.9.8 SQL statements That Cause an Implicit Commit

1.1.1.9.9 Transaction Timeouts

1.1.1.9.10 UNLOCK TABLES

1.1.1.9.11 WAIT and NOWAIT

1.1.1.9.12 XA Transactions

1.1.1.9.13 READ COMMITTED

1.1.1.9.14 READ UNCOMMITTED

1.1.1.9.15 REPEATABLE READ

1.1.1.9.16 SERIALIZABLE

1.1.1.10 HELP Command

1.1.1.11 Comment Syntax

1.1.1.12 Built-in Functions

1.1.2 SQL Language Structure

1.1.2.1 Identifier Names

1.1.2.2 Identifier Case-sensitivity

1.1.2.3 Binary Literals

1.1.2.4 Boolean Literals

1.1.2.5 Date and Time Literals

1.1.2.6 Hexadecimal Literals

1.1.2.7 Identifier Qualifiers

1.1.2.8 Identifier to File Name Mapping

1.1.2.9 MariaDB Error Code Reference

1.1.2.10 Numeric Literals

1.1.2.11 Reserved Words

1.1.2.12 SQLSTATE

1.1.2.13 String Literals

1.1.2.14 Table Value Constructors

1.1.2.15 User-Defined Variables

1.1.3 Geographic & Geometric Features

1.1.3.1 GIS Resources

1.1.3.2 GIS features in 5.3.3

1.1.3.3 Geometry Types

1.1.3.4 Geometry Hierarchy

1.1.3.5 Geometry Constructors

1.1.3.6 Geometry Properties

16/4161

807

807

807

807

807

807

807

807

812

812

813

813

813

814

814

814

816

817

817

818

821

821

822

822

828

830

835

837

837

837

840

840

841

841

842

842

842

843

844

844

845

845

845

846

847

848

849

849

851

851

852

853

855

855

856

857

858

858

858

859

860

860

861

862

862

863

864

1.1.3.7 Geometry Relations

1.1.3.8 LineString Properties

1.1.3.9 MBR (Minimum Bounding Rectangle)

1.1.3.10 Point Properties

1.1.3.11 Polygon Properties

1.1.3.12 WKB

1.1.3.13 WKT

1.1.3.14 MySQL/MariaDB Spatial Support Matrix

1.1.3.15 SPATIAL INDEX

1.1.3.16 GeoJSON

1.1.3.16.1 ST_AsGeoJSON

1.1.3.16.2 ST_GeomFromGeoJSON

1.1.4 NoSQL

1.1.4.1 CONNECT

1.1.4.2 HANDLER

1.1.4.2.1 HANDLER Commands

1.1.4.2.2 HANDLER for MEMORY Tables

1.1.4.3 HandlerSocket

1.1.4.3.1 HandlerSocket Installation

1.1.4.3.2 HandlerSocket Configuration Options

1.1.4.3.3 HandlerSocket Client Libraries

1.1.4.3.4 Testing HandlerSocket in a Source Distribution

1.1.4.3.5 HandlerSocket External Resources

1.1.4.4 Dynamic Columns

1.1.4.5 Dynamic Columns from MariaDB 10

1.1.4.6 Dynamic Column API

1.1.4.7 Dynamic Columns from MariaDB 10

1.1.4.8 JSON Functions

1.1.4.9 LOAD_FILE

1.1.5 Operators

1.1.5.1 Arithmetic Operators

1.1.5.1.1 Addition Operator (+)

1.1.5.1.2 DIV

1.1.5.1.3 Division Operator (/)

1.1.5.1.4 MOD

1.1.5.1.5 Modulo Operator (%)

1.1.5.1.6 Multiplication Operator (*)

1.1.5.1.7 Subtraction Operator (-)

1.1.5.2 Assignment Operators

1.1.5.2.1 Assignment Operator (:=)

1.1.5.2.2 Assignment Operator (=)

1.1.5.3 Bit Functions and Operators

1.1.5.4 Comparison Operators

1.1.5.4.1 Not Equal Operator: !=

1.1.5.4.2 <

1.1.5.4.3 <=

1.1.5.4.4 <=>

1.1.5.4.5 =

1.1.5.4.6 >

1.1.5.4.7 >=

1.1.5.4.8 BETWEEN AND

1.1.5.4.9 COALESCE

1.1.5.4.10 GREATEST

1.1.5.4.11 IN

1.1.5.4.12 INTERVAL

1.1.5.4.13 IS

1.1.5.4.14 IS NOT

1.1.5.4.15 IS NOT NULL

1.1.5.4.16 IS NULL

1.1.5.4.17 ISNULL

1.1.5.4.18 LEAST

1.1.5.4.19 NOT BETWEEN

1.1.5.4.20 NOT IN

1.1.5.5 Logical Operators

1.1.5.5.1 !

1.1.5.5.2 &&

1.1.5.5.3 XOR

17/4161

865

866

867

868

871

873

873

875

875

875

875

876

876

878

880

880

880

889

893

894

895

911

914

915

924

936

937

939

939

940

941

941

942

942

942

943

943

943

944

944

945

945

946

946

947

949

950

950

951

951

952

953

954

955

955

957

958

959

959

960

961

962

962

962

963

964

964

1.1.5.5.4 ||

1.1.5.6 Operator Precedence

1.1.6 Sequences

1.1.6.1 Sequence Overview

1.1.6.2 CREATE SEQUENCE

1.1.6.3 SHOW CREATE SEQUENCE

1.1.6.4 ALTER SEQUENCE

1.1.6.5 DROP SEQUENCE

1.1.6.6 SEQUENCE Functions

1.1.6.6.1 LASTVAL

1.1.6.6.2 NEXT VALUE for sequence_name

1.1.6.6.3 NEXTVAL

1.1.6.6.4 PREVIOUS VALUE FOR sequence_name

1.1.6.6.5 SETVAL

1.1.6.7 SHOW TABLES

1.1.7 Temporal Tables

1.1.7.1 System-Versioned Tables

1.1.7.2 Application-Time Periods

1.1.7.3 Bitemporal Tables

1.2 Built-in Functions

1.2.1 Function and Operator Reference

1.2.2 String Functions

1.2.2.1 Regular Expressions Functions

1.2.2.1.1 Regular Expressions Overview

1.2.2.1.2 Perl Compatible Regular Expressions (PCRE) Documentation

1.2.2.1.3 NOT REGEXP

1.2.2.1.4 REGEXP

1.2.2.1.5 REGEXP_INSTR

1.2.2.1.6 REGEXP_REPLACE

1.2.2.1.7 REGEXP_SUBSTR

1.2.2.1.8 RLIKE

1.2.2.2 Dynamic Columns Functions

1.2.2.2.1 COLUMN_ADD

1.2.2.2.2 COLUMN_CHECK

1.2.2.2.3 COLUMN_CREATE

1.2.2.2.4 COLUMN_DELETE

1.2.2.2.5 COLUMN_EXISTS

1.2.2.2.6 COLUMN_GET

1.2.2.2.7 COLUMN_JSON

1.2.2.2.8 COLUMN_LIST

1.2.2.3 ASCII

1.2.2.4 BIN

1.2.2.5 BINARY Operator

1.2.2.6 BIT_LENGTH

1.2.2.7 CAST

1.2.2.8 CHAR Function

1.2.2.9 CHAR_LENGTH

1.2.2.10 CHARACTER_LENGTH

1.2.2.11 CHR

1.2.2.12 CONCAT

1.2.2.13 CONCAT_WS

1.2.2.14 CONVERT

1.2.2.15 ELT

1.2.2.16 EXPORT_SET

1.2.2.17 EXTRACTVALUE

1.2.2.18 FIELD

1.2.2.19 FIND_IN_SET

1.2.2.20 FORMAT

1.2.2.21 FROM_BASE64

1.2.2.22 HEX

1.2.2.23 INSTR

1.2.2.24 LCASE

1.2.2.25 LEFT

1.2.2.26 INSERT Function

1.2.2.27 LENGTH

1.2.2.28 LENGTHB

1.2.2.29 LIKE

18/4161

967

967

967

968

969

970

970

971

971

972

976

976

976

977

977

977

978

978

979

979

979

980

981

982

983

983

984

984

984

987

988

988

989

990

990

991

991

992

992

993

993

995

998

1001

1003

1004

1005

1007

1007

1008

1008

1009

1009

1009

1010

1010

1011

1012

1015

1015

1015

1016

1017

1018

1018

1019

1020

1.2.2.30 LOAD_FILE

1.2.2.31 LOCATE

1.2.2.32 LOWER

1.2.2.33 LPAD

1.2.2.34 LTRIM

1.2.2.35 MAKE_SET

1.2.2.36 MATCH AGAINST

1.2.2.37 Full-Text Index Stopwords

1.2.2.38 MID

1.2.2.39 NATURAL_SORT_KEY

1.2.2.40 NOT LIKE

1.2.2.41 NOT REGEXP

1.2.2.42 OCTET_LENGTH

1.2.2.43 ORD

1.2.2.44 POSITION

1.2.2.45 QUOTE

1.2.2.46 REPEAT Function

1.2.2.47 REPLACE Function

1.2.2.48 REVERSE

1.2.2.49 RIGHT

1.2.2.50 RPAD

1.2.2.51 RTRIM

1.2.2.52 SFORMAT

1.2.2.53 SOUNDEX

1.2.2.54 SOUNDS LIKE

1.2.2.55 SPACE

1.2.2.56 STRCMP

1.2.2.57 SUBSTR

1.2.2.58 SUBSTRING

1.2.2.59 SUBSTRING_INDEX

1.2.2.60 TO_BASE64

1.2.2.61 TO_CHAR

1.2.2.62 TRIM

1.2.2.63 TRIM_ORACLE

1.2.2.64 UCASE

1.2.2.65 UNCOMPRESS

1.2.2.66 UNCOMPRESSED_LENGTH

1.2.2.67 UNHEX

1.2.2.68 UPDATEXML

1.2.2.69 UPPER

1.2.2.70 WEIGHT_STRING

1.2.2.71 Type Conversion

1.2.3 Date & Time Functions

1.2.3.1 Microseconds in MariaDB

1.2.3.2 Date and Time Units

1.2.3.3 ADD_MONTHS

1.2.3.4 ADDDATE

1.2.3.5 ADDTIME

1.2.3.6 CONVERT_TZ

1.2.3.7 CURDATE

1.2.3.8 CURRENT_DATE

1.2.3.9 CURRENT_TIME

1.2.3.10 CURRENT_TIMESTAMP

1.2.3.11 CURTIME

1.2.3.12 DATE FUNCTION

1.2.3.13 DATEDIFF

1.2.3.14 DATE_ADD

1.2.3.15 DATE_FORMAT

1.2.3.16 DATE_SUB

1.2.3.17 DAY

1.2.3.18 DAYNAME

1.2.3.19 DAYOFMONTH

1.2.3.20 DAYOFWEEK

1.2.3.21 DAYOFYEAR

1.2.3.22 EXTRACT

1.2.3.23 FORMAT_PICO_TIME

1.2.3.24 FROM_DAYS

19/4161

1020

1022

1023

1024

1025

1025

1025

1026

1027

1028

1028

1029

1029

1031

1031

1032

1033

1033

1034

1036

1037

1038

1039

1039

1040

1040

1041

1042

1042

1043

1044

1045

1046

1047

1047

1048

1049

1050

1051

1052

1053

1054

1056

1058

1059

1060

1061

1062

1063

1064

1065

1066

1068

1070

1071

1072

1073

1073

1075

1076

1077

1078

1080

1080

1080

1081

1081

1.2.3.25 FROM_UNIXTIME

1.2.3.26 GET_FORMAT

1.2.3.27 HOUR

1.2.3.28 LAST_DAY

1.2.3.29 LOCALTIME

1.2.3.30 LOCALTIMESTAMP

1.2.3.31 MAKEDATE

1.2.3.32 MAKETIME

1.2.3.33 MICROSECOND

1.2.3.34 MINUTE

1.2.3.35 MONTH

1.2.3.36 MONTHNAME

1.2.3.37 NOW

1.2.3.38 PERIOD_ADD

1.2.3.39 PERIOD_DIFF

1.2.3.40 QUARTER

1.2.3.41 SECOND

1.2.3.42 SEC_TO_TIME

1.2.3.43 STR_TO_DATE

1.2.3.44 SUBDATE

1.2.3.45 SUBTIME

1.2.3.46 SYSDATE

1.2.3.47 TIME Function

1.2.3.48 TIMEDIFF

1.2.3.49 TIMESTAMP FUNCTION

1.2.3.50 TIMESTAMPADD

1.2.3.51 TIMESTAMPDIFF

1.2.3.52 TIME_FORMAT

1.2.3.53 TIME_TO_SEC

1.2.3.54 TO_DAYS

1.2.3.55 TO_SECONDS

1.2.3.56 UNIX_TIMESTAMP

1.2.3.57 UTC_DATE

1.2.3.58 UTC_TIME

1.2.3.59 UTC_TIMESTAMP

1.2.3.60 WEEK

1.2.3.61 WEEKDAY

1.2.3.62 WEEKOFYEAR

1.2.3.63 YEAR

1.2.3.64 YEARWEEK

1.2.4 Aggregate Functions

1.2.4.1 Stored Aggregate Functions

1.2.4.2 AVG

1.2.4.3 BIT_AND

1.2.4.4 BIT_OR

1.2.4.5 BIT_XOR

1.2.4.6 COUNT

1.2.4.7 COUNT DISTINCT

1.2.4.8 GROUP_CONCAT

1.2.4.9 JSON_ARRAYAGG

1.2.4.10 JSON_OBJECTAGG

1.2.4.11 MAX

1.2.4.12 MIN

1.2.4.13 STD

1.2.4.14 STDDEV

1.2.4.15 STDDEV_POP

1.2.4.16 STDDEV_SAMP

1.2.4.17 SUM

1.2.4.18 VARIANCE

1.2.4.19 VAR_POP

1.2.4.20 VAR_SAMP

1.2.5 Numeric Functions

1.2.5.1 Addition Operator (+)

1.2.5.2 Subtraction Operator (-)

1.2.5.3 Division Operator (/)

1.2.5.4 Multiplication Operator (*)

1.2.5.5 Modulo Operator (%)

20/4161

1081

1081

1082

1083

1083

1084

1084

1084

1085

1086

1086

1087

1088

1088

1089

1090

1090

1090

1090

1091

1092

1093

1093

1094

1095

1095

1096

1096

1097

1098

1099

1100

1100

1101

1102

1103

1104

1104

1105

1105

1106

1107

1107

1108

1108

1108

1109

1109

1110

1110

1110

1111

1111

1111

1112

1113

1113

1114

1114

1115

1116

1117

1117

1117

1118

1119

1119

1.2.5.6 DIV

1.2.5.7 ABS

1.2.5.8 ACOS

1.2.5.9 ASIN

1.2.5.10 ATAN

1.2.5.11 ATAN2

1.2.5.12 CEIL

1.2.5.13 CEILING

1.2.5.14 CONV

1.2.5.15 COS

1.2.5.16 COT

1.2.5.17 CRC32

1.2.5.18 CRC32C

1.2.5.19 DEGREES

1.2.5.20 EXP

1.2.5.21 FLOOR

1.2.5.22 GREATEST

1.2.5.23 LEAST

1.2.5.24 LN

1.2.5.25 LOG

1.2.5.26 LOG10

1.2.5.27 LOG2

1.2.5.28 MOD

1.2.5.29 OCT

1.2.5.30 PI

1.2.5.31 POW

1.2.5.32 POWER

1.2.5.33 RADIANS

1.2.5.34 RAND

1.2.5.35 ROUND

1.2.5.36 SIGN

1.2.5.37 SIN

1.2.5.38 SQRT

1.2.5.39 TAN

1.2.5.40 TRUNCATE

1.2.6 Control Flow Functions

1.2.6.1 CASE OPERATOR

1.2.6.2 DECODE

1.2.6.3 DECODE_ORACLE

1.2.6.4 IF Function

1.2.6.5 IFNULL

1.2.6.6 NULLIF

1.2.6.7 NVL

1.2.6.8 NVL2

1.2.7 Pseudo Columns

1.2.7.1 _rowid

1.2.8 Secondary Functions

1.2.8.1 Bit Functions and Operators

1.2.8.1.1 Operator Precedence

1.2.8.1.2 &

1.2.8.1.3 <<

1.2.8.1.4 >>

1.2.8.1.5 BIT_COUNT

1.2.8.1.6 ^

1.2.8.1.7 |

1.2.8.1.8 ~

1.2.8.1.9 Parentheses

1.2.8.1.10 TRUE FALSE

1.2.8.2 Encryption, Hashing and Compression Functions

1.2.8.2.1 AES_DECRYPT

1.2.8.2.2 AES_ENCRYPT

1.2.8.2.3 COMPRESS

1.2.8.2.4 DECODE

1.2.8.2.5 DES_DECRYPT

1.2.8.2.6 DES_ENCRYPT

1.2.8.2.7 ENCODE

1.2.8.2.8 ENCRYPT

21/4161

1120

1120

1121

1121

1122

1122

1123

1124

1124

1124

1125

1125

1126

1126

1127

1128

1128

1129

1129

1130

1131

1133

1134

1136

1139

1139

1141

1142

1143

1143

1143

1144

1144

1145

1148

1149

1150

1150

1150

1151

1151

1152

1152

1153

1153

1154

1155

1155

1156

1157

1158

1158

1159

1160

1161

1161

1161

1161

1161

1162

1162

1163

1164

1164

1164

1164

1165

1.2.8.2.9 KDF

1.2.8.2.10 MD5

1.2.8.2.11 OLD_PASSWORD

1.2.8.2.12 PASSWORD

1.2.8.2.13 RANDOM_BYTES

1.2.8.2.14 SHA1

1.2.8.2.15 SHA2

1.2.8.2.16 UNCOMPRESS

1.2.8.2.17 UNCOMPRESSED_LENGTH

1.2.8.3 Information Functions

1.2.8.3.1 BENCHMARK

1.2.8.3.2 BINLOG_GTID_POS

1.2.8.3.3 CHARSET

1.2.8.3.4 COERCIBILITY

1.2.8.3.5 COLLATION

1.2.8.3.6 CONNECTION_ID

1.2.8.3.7 CURRENT_ROLE

1.2.8.3.8 CURRENT_USER

1.2.8.3.9 DATABASE

1.2.8.3.10 DECODE_HISTOGRAM

1.2.8.3.11 DEFAULT

1.2.8.3.12 FOUND_ROWS

1.2.8.3.13 LAST_INSERT_ID

1.2.8.3.14 LAST_VALUE

1.2.8.3.15 PROCEDURE ANALYSE

1.2.8.3.16 ROWNUM

1.2.8.3.17 ROW_COUNT

1.2.8.3.18 SCHEMA

1.2.8.3.19 SESSION_USER

1.2.8.3.20 SYSTEM_USER

1.2.8.3.21 USER

1.2.8.3.22 VERSION

1.2.8.4 Miscellaneous Functions

1.2.8.4.1 GET_LOCK

1.2.8.4.2 INET6_ATON

1.2.8.4.3 INET6_NTOA

1.2.8.4.4 INET_ATON

1.2.8.4.5 INET_NTOA

1.2.8.4.6 IS_FREE_LOCK

1.2.8.4.7 IS_IPV4

1.2.8.4.8 IS_IPV4_COMPAT

1.2.8.4.9 IS_IPV4_MAPPED

1.2.8.4.10 IS_IPV6

1.2.8.4.11 IS_USED_LOCK

1.2.8.4.12 MASTER_GTID_WAIT

1.2.8.4.13 MASTER_POS_WAIT

1.2.8.4.14 NAME_CONST

1.2.8.4.15 RELEASE_ALL_LOCKS

1.2.8.4.16 RELEASE_LOCK

1.2.8.4.17 SLEEP

1.2.8.4.18 SYS_GUID

1.2.8.4.19 UUID

1.2.8.4.20 UUID_SHORT

1.2.8.4.21 VALUES / VALUE

1.2.9 Special Functions

1.2.9.1 Dynamic Columns Functions

1.2.9.2 Galera Functions

1.2.9.2.1 WSREP_LAST_SEEN_GTID

1.2.9.2.2 WSREP_LAST_WRITTEN_GTID

1.2.9.2.3 WSREP_SYNC_WAIT_UPTO_GTID

1.2.9.3 Geographic Functions

1.2.9.3.1 Geometry Constructors

1.2.9.3.1.1 BUFFER

1.2.9.3.1.2 CONVEXHULL

1.2.9.3.1.3 GEOMETRYCOLLECTION

1.2.9.3.1.4 LINESTRING

1.2.9.3.1.5 MULTILINESTRING

22/4161

1165

1166

1166

1166

1166

1167

1168

1169

1169

1169

1170

1171

1172

1172

1172

1172

1172

1172

1172

1172

1172

1172

1172

1172

1173

1174

1174

1175

1175

1175

1176

1176

1177

1177

1177

1178

1179

1179

1179

1180

1180

1180

1180

1181

1182

1182

1183

1183

1184

1184

1185

1185

1186

1186

1187

1187

1188

1188

1188

1189

1189

1189

1189

1189

1190

1190

1191

1.2.9.3.1.6 MULTIPOINT

1.2.9.3.1.7 MULTIPOLYGON

1.2.9.3.1.8 POINT

1.2.9.3.1.9 PointOnSurface

1.2.9.3.1.10 POLYGON

1.2.9.3.1.11 ST_BUFFER

1.2.9.3.1.12 ST_CONVEXHULL

1.2.9.3.1.13 ST_INTERSECTION

1.2.9.3.1.14 ST_POINTONSURFACE

1.2.9.3.1.15 ST_SYMDIFFERENCE

1.2.9.3.1.16 ST_UNION

1.2.9.3.2 Geometry Properties

1.2.9.3.2.1 BOUNDARY

1.2.9.3.2.2 DIMENSION

1.2.9.3.2.3 ENVELOPE

1.2.9.3.2.4 GeometryN

1.2.9.3.2.5 GeometryType

1.2.9.3.2.6 IsClosed

1.2.9.3.2.7 IsEmpty

1.2.9.3.2.8 IsRing

1.2.9.3.2.9 IsSimple

1.2.9.3.2.10 NumGeometries

1.2.9.3.2.11 SRID

1.2.9.3.2.12 ST_BOUNDARY

1.2.9.3.2.13 ST_DIMENSION

1.2.9.3.2.14 ST_ENVELOPE

1.2.9.3.2.15 ST_GEOMETRYN

1.2.9.3.2.16 ST_GEOMETRYTYPE

1.2.9.3.2.17 ST_ISCLOSED

1.2.9.3.2.18 ST_ISEMPTY

1.2.9.3.2.19 ST_IsRing

1.2.9.3.2.20 ST_IsSimple

1.2.9.3.2.21 ST_NUMGEOMETRIES

1.2.9.3.2.22 ST_RELATE

1.2.9.3.2.23 ST_SRID

1.2.9.3.3 Geometry Relations

1.2.9.3.3.1 CONTAINS

1.2.9.3.3.2 CROSSES

1.2.9.3.3.3 DISJOINT

1.2.9.3.3.4 EQUALS

1.2.9.3.3.5 INTERSECTS

1.2.9.3.3.6 OVERLAPS

1.2.9.3.3.7 ST_CONTAINS

1.2.9.3.3.8 ST_CROSSES

1.2.9.3.3.9 ST_DIFFERENCE

1.2.9.3.3.10 ST_DISJOINT

1.2.9.3.3.11 ST_DISTANCE

1.2.9.3.3.12 ST_DISTANCE_SPHERE

1.2.9.3.3.13 ST_EQUALS

1.2.9.3.3.14 ST_INTERSECTS

1.2.9.3.3.15 ST_LENGTH

1.2.9.3.3.16 ST_OVERLAPS

1.2.9.3.3.17 ST_TOUCHES

1.2.9.3.3.18 ST_WITHIN

1.2.9.3.3.19 TOUCHES

1.2.9.3.3.20 WITHIN

1.2.9.3.4 LineString Properties

1.2.9.3.4.1 ENDPOINT

1.2.9.3.4.2 GLENGTH

1.2.9.3.4.3 NumPoints

1.2.9.3.4.4 PointN

1.2.9.3.4.5 STARTPOINT

1.2.9.3.4.6 ST_ENDPOINT

1.2.9.3.4.7 ST_NUMPOINTS

1.2.9.3.4.8 ST_POINTN

1.2.9.3.4.9 ST_STARTPOINT

1.2.9.3.5 MBR (Minimum Bounding Rectangle)

23/4161

1191

1191

1192

1192

1193

1193

1194

1195

1195

1196

1196

1196

1197

1197

1197

1197

1197

1197

1197

1198

1198

1198

1199

1199

1200

1201

1202

1202

1202

1202

1203

1203

1203

1203

1203

1203

1204

1204

1204

1204

1204

1204

1204

1204

1205

1205

1205

1205

1205

1206

1206

1206

1207

1207

1207

1209

1209

1209

1209

1209

1209

1209

1209

1210

1210

1210

1210

1.2.9.3.5.1 MBR Definition

1.2.9.3.5.2 MBRContains

1.2.9.3.5.3 MBRDisjoint

1.2.9.3.5.4 MBREqual

1.2.9.3.5.5 MBRIntersects

1.2.9.3.5.6 MBROverlaps

1.2.9.3.5.7 MBRTouches

1.2.9.3.5.8 MBRWithin

1.2.9.3.6 Point Properties

1.2.9.3.6.1 ST_X

1.2.9.3.6.2 ST_Y

1.2.9.3.6.3 X

1.2.9.3.6.4 Y

1.2.9.3.7 Polygon Properties

1.2.9.3.7.1 AREA

1.2.9.3.7.2 CENTROID

1.2.9.3.7.3 ExteriorRing

1.2.9.3.7.4 InteriorRingN

1.2.9.3.7.5 NumInteriorRings

1.2.9.3.7.6 ST_AREA

1.2.9.3.7.7 ST_CENTROID

1.2.9.3.7.8 ST_ExteriorRing

1.2.9.3.7.9 ST_InteriorRingN

1.2.9.3.7.10 ST_NumInteriorRings

1.2.9.3.8 WKB

1.2.9.3.8.1 Well-Known Binary (WKB) Format

1.2.9.3.8.2 AsBinary

1.2.9.3.8.3 AsWKB

1.2.9.3.8.4 MLineFromWKB

1.2.9.3.8.5 MPointFromWKB

1.2.9.3.8.6 MPolyFromWKB

1.2.9.3.8.7 GeomCollFromWKB

1.2.9.3.8.8 GeometryCollectionFromWKB

1.2.9.3.8.9 GeometryFromWKB

1.2.9.3.8.10 GeomFromWKB

1.2.9.3.8.11 LineFromWKB

1.2.9.3.8.12 LineStringFromWKB

1.2.9.3.8.13 MultiLineStringFromWKB

1.2.9.3.8.14 MultiPointFromWKB

1.2.9.3.8.15 MultiPolygonFromWKB

1.2.9.3.8.16 PointFromWKB

1.2.9.3.8.17 PolyFromWKB

1.2.9.3.8.18 PolygonFromWKB

1.2.9.3.8.19 ST_AsBinary

1.2.9.3.8.20 ST_AsWKB

1.2.9.3.8.21 ST_GeomCollFromWKB

1.2.9.3.8.22 ST_GeometryCollectionFromWKB

1.2.9.3.8.23 ST_GeometryFromWKB

1.2.9.3.8.24 ST_GeomFromWKB

1.2.9.3.8.25 ST_LineFromWKB

1.2.9.3.8.26 ST_LineStringFromWKB

1.2.9.3.8.27 ST_PointFromWKB

1.2.9.3.8.28 ST_PolyFromWKB

1.2.9.3.8.29 ST_PolygonFromWKB

1.2.9.3.9 WKT

1.2.9.3.9.1 WKT Definition

1.2.9.3.9.2 AsText

1.2.9.3.9.3 AsWKT

1.2.9.3.9.4 GeomCollFromText

1.2.9.3.9.5 GeometryCollectionFromText

1.2.9.3.9.6 GeometryFromText

1.2.9.3.9.7 GeomFromText

1.2.9.3.9.8 LineFromText

1.2.9.3.9.9 LineStringFromText

1.2.9.3.9.10 MLineFromText

1.2.9.3.9.11 MPointFromText

1.2.9.3.9.12 MPolyFromText

24/4161

1211

1211

1211

1211

1211

1211

1211

1212

1212

1212

1212

1213

1213

1213

1213

1214

1214

1214

1216

1217

1219

1219

1220

1220

1221

1222

1222

1223

1224

1224

1225

1225

1226

1227

1227

1228

1228

1229

1229

1230

1230

1231

1231

1232

1232

1232

1233

1233

1234

1234

1235

1235

1237

1238

1238

1243

1243

1244

1245

1246

1246

1246

1247

1247

1247

1248

1250

1.2.9.3.9.13 MultiLineStringFromText

1.2.9.3.9.14 MultiPointFromText

1.2.9.3.9.15 MultiPolygonFromText

1.2.9.3.9.16 PointFromText

1.2.9.3.9.17 PolyFromText

1.2.9.3.9.18 PolygonFromText

1.2.9.3.9.19 ST_AsText

1.2.9.3.9.20 ST_ASWKT

1.2.9.3.9.21 ST_GeomCollFromText

1.2.9.3.9.22 ST_GeometryCollectionFromText

1.2.9.3.9.23 ST_GeometryFromText

1.2.9.3.9.24 ST_GeomFromText

1.2.9.3.9.25 ST_LineFromText

1.2.9.3.9.26 ST_LineStringFromText

1.2.9.3.9.27 ST_PointFromText

1.2.9.3.9.28 ST_PolyFromText

1.2.9.3.9.29 ST_PolygonFromText

1.2.9.4 JSON Functions

1.2.9.4.1 Differences between JSON_QUERY and JSON_VALUE

1.2.9.4.2 JSONPath Expressions

1.2.9.4.3 JSON_ARRAY

1.2.9.4.4 JSON_ARRAYAGG

1.2.9.4.5 JSON_ARRAY_APPEND

1.2.9.4.6 JSON_ARRAY_INSERT

1.2.9.4.7 JSON_ARRAY_INTERSECT

1.2.9.4.8 JSON_COMPACT

1.2.9.4.9 JSON_CONTAINS

1.2.9.4.10 JSON_CONTAINS_PATH

1.2.9.4.11 JSON_DEPTH

1.2.9.4.12 JSON_DETAILED

1.2.9.4.13 JSON_EQUALS

1.2.9.4.14 JSON_EXISTS

1.2.9.4.15 JSON_EXTRACT

1.2.9.4.16 JSON_INSERT

1.2.9.4.17 JSON_KEYS

1.2.9.4.18 JSON_LENGTH

1.2.9.4.19 JSON_LOOSE

1.2.9.4.20 JSON_MERGE

1.2.9.4.21 JSON_MERGE_PATCH

1.2.9.4.22 JSON_MERGE_PRESERVE

1.2.9.4.23 JSON_NORMALIZE

1.2.9.4.24 JSON_OBJECT

1.2.9.4.25 JSON_OBJECT_FILTER_KEYS

1.2.9.4.26 JSON_OBJECT_TO_ARRAY

1.2.9.4.27 JSON_OBJECTAGG

1.2.9.4.28 JSON_OVERLAPS

1.2.9.4.29 JSON_PRETTY

1.2.9.4.30 JSON_QUERY

1.2.9.4.31 JSON_QUOTE

1.2.9.4.32 JSON_REMOVE

1.2.9.4.33 JSON_REPLACE

1.2.9.4.34 JSON_SCHEMA_VALID

1.2.9.4.35 JSON_SEARCH

1.2.9.4.36 JSON_SET

1.2.9.4.37 JSON_TABLE

1.2.9.4.38 JSON_TYPE

1.2.9.4.39 JSON_UNQUOTE

1.2.9.4.40 JSON_VALID

1.2.9.4.41 JSON_VALUE

1.2.9.5 SEQUENCE Functions

1.2.9.6 Spider Functions

1.2.9.6.1 SPIDER_BG_DIRECT_SQL

1.2.9.6.2 SPIDER_COPY_TABLES

1.2.9.6.3 SPIDER_DIRECT_SQL

1.2.9.6.4 SPIDER_FLUSH_TABLE_MON_CACHE

1.2.9.7 Window Functions

1.2.9.7.1 Window Functions Overview

25/4161

1254

1254

1254

1255

1255

1255

1256

1257

1259

1259

1259

1260

1260

1261

1261

1262

1262

1262

1263

1265

1266

1268

1269

1270

1270

1270

1270

1270

1270

1270

1270

1270

1271

1277

1280

1282

1282

1295

1296

1296

1296

1300

1301

1302

1302

1302

1302

1313

1315

1319

1321

1321

1324

1325

1330

1331

1332

1333

1333

1334

1334

1336

1336

1337

1337

1338

1339

1.2.9.7.2 AVG

1.2.9.7.3 BIT_AND

1.2.9.7.4 BIT_OR

1.2.9.7.5 BIT_XOR

1.2.9.7.6 COUNT

1.2.9.7.7 CUME_DIST

1.2.9.7.8 DENSE_RANK

1.2.9.7.9 FIRST_VALUE

1.2.9.7.10 JSON_ARRAYAGG

1.2.9.7.11 JSON_OBJECTAGG

1.2.9.7.12 LAG

1.2.9.7.13 LAST_VALUE

1.2.9.7.14 LEAD

1.2.9.7.15 MAX

1.2.9.7.16 MEDIAN

1.2.9.7.17 MIN

1.2.9.7.18 NTH_VALUE

1.2.9.7.19 NTILE

1.2.9.7.20 PERCENT_RANK

1.2.9.7.21 PERCENTILE_CONT

1.2.9.7.22 PERCENTILE_DISC

1.2.9.7.23 RANK

1.2.9.7.24 ROW_NUMBER

1.2.9.7.25 STD

1.2.9.7.26 STDDEV

1.2.9.7.27 STDDEV_POP

1.2.9.7.28 STDDEV_SAMP

1.2.9.7.29 SUM

1.2.9.7.30 VARIANCE

1.2.9.7.31 VAR_POP

1.2.9.7.32 VAR_SAMP

1.2.9.7.33 Aggregate Functions as Window Functions

1.2.9.7.34 ColumnStore Window Functions

1.2.9.7.35 Window Frames

1.3 Clients & Utilities

1.3.1 mariadb Client

1.3.2 mariadb Command-Line Client

1.3.3 Delimiters

1.3.4 mysql Command-line Client

1.3.5 Aria Clients and Utilities

1.3.5.1 aria_chk

1.3.5.2 aria_pack

1.3.5.3 aria_read_log

1.3.5.4 aria_s3_copy

1.3.6 Backup, Restore and Import Clients

1.3.6.1 Mariabackup

1.3.6.2 mariadb-dump

1.3.6.3 mariadb-hotcopy

1.3.6.4 mariadb-import

1.3.7 Graphical and Enhanced Clients

1.3.8 MyISAM Clients and Utilities

1.3.8.1 myisamchk

1.3.8.2 Memory and Disk Use With myisamchk

1.3.8.3 myisamchk Table Information

1.3.8.4 myisamlog

1.3.8.5 myisampack

1.3.8.6 myisam_ftdump

1.3.9 dbdeployer

1.3.10 EXPLAIN Analyzer

1.3.11 EXPLAIN Analyzer API

1.3.12 innochecksum

1.3.13 msql2mysql

1.3.14 my_print_defaults

1.3.15 mysqladmin

1.3.16 mariadb-binlog

1.3.16.1 Using mariadb-binlog

1.3.16.2 mariadb-binlog Options

26/4161

1343

1348

1348

1350

1350

1354

1359

1364

1365

1368

1369

1371

1374

1376

1377

1377

1378

1379

1379

1382

1383

1390

1395

1396

1397

1398

1399

1400

1400

1409

1410

1412

1414

1416

1419

1424

1424

1429

1430

1431

1431

1431

1432

1432

1432

1432

1432

1433

1433

1433

1433

1434

1434

1434

1434

1434

1435

1435

1435

1435

1436

1437

1437

1438

1439

1441

1446

1.3.16.3 Annotate_rows_log_event

1.3.16.4 mysqlbinlog

1.3.17 mariadb-stress-test

1.3.18 mariadb-test

1.3.18.1 mariadb-test Overview

1.3.18.2 mariadb-test Auxiliary Files

1.3.18.3 mariadb-test-run.pl Options

1.3.18.4 Pausing mariadb-test-run.pl

1.3.18.5 mariadb-test and mariadb-test-embedded

1.3.18.6 New Features for mysqltest in MariaDB

1.3.18.7 Debugging MariaDB With a Debugger

1.3.18.8 The Debug Sync Facility

1.3.18.9 Code Coverage with dgcov

1.3.18.10 Installing MinIO for Usage With mariadb-test-run

1.3.19 perror

1.3.20 replace Utility

1.3.21 resolveip

1.3.22 resolve_stack_dump

1.3.23 xtstat

1.3.24 mariadb-access

1.3.25 mariadb-admin

1.3.26 mariadb-check

1.3.27 mariadb-conv

1.3.28 mariadb-convert-table-format

1.3.29 mariadb-dumpslow

1.3.30 mariadb-embedded

1.3.31 mariadb-find-rows

1.3.32 mariadb-fix-extensions

1.3.33 mariadb-install-db

1.3.34 mariadb-plugin

1.3.35 mariadb-report

1.3.36 mariadb-secure-installation

1.3.37 mariadb-setpermission

1.3.38 mariadb-show

1.3.39 mariadb-slap

1.3.40 mariadb-tzinfo-to-sql

1.3.41 mariadb-upgrade

1.3.42 mariadb-waitpid

1.3.43 Legacy Clients and Utilities

1.3.43.1 mysqlaccess

1.3.43.2 mysqldump

1.3.43.3 mysqldumpslow

1.3.43.4

1.3.43.5 mysql_convert_table_format

1.3.43.6 mysql_embedded

1.3.43.7 mysql_find_rows

1.3.43.8 mysql_fix_extensions

1.3.43.9 mysqlhotcopy

1.3.43.10 mysqlimport

1.3.43.11 mysql_install_db

1.3.43.12 mysql_plugin

1.3.43.13 mysqlreport

1.3.43.14 mysql_secure_installation

1.3.43.15 mysql_setpermission

1.3.43.16 mysqlshow

1.3.43.17 mysqlslap

1.3.43.18 mysql_tzinfo_to_sql

1.3.43.19 mysql_upgrade

1.3.43.20 mysql_waitpid

Chapter 2 MariaDB Administration

2.1 Getting, Installing, and Upgrading MariaDB

2.1.1 Where to Download MariaDB

2.1.2 MariaDB Binary Packages

2.1.2.1 Installing MariaDB RPM Files

2.1.2.1.1 About the MariaDB RPM Files

2.1.2.1.2 Installing MariaDB with yum/dnf

2.1.2.1.3 Installing MariaDB with zypper

27/4161

1451

1452

1453

1453

1454

1455

1455

1456

1465

1473

1473

1475

1476

1477

1478

1479

1479

1481

1484

1484

1486

1487

1487

1487

1488

1488

1490

1491

1492

1494

1494

1494

1495

1498

1499

1500

1502

1503

1503

1503

1505

1507

1508

1510

1511

1515

1516

1517

1519

1520

1522

1524

1525

1527

1528

1529

1530

1531

1534

1535

1536

1538

1539

1539

1542

1546

1547

2.1.2.1.4 Installing MariaDB With the rpm Tool

2.1.2.1.5 Checking MariaDB RPM Package Signatures

2.1.2.1.6 Troubleshooting MariaDB Installs on Red Hat/CentOS

2.1.2.1.7 MariaDB for DirectAdmin Using RPMs

2.1.2.1.8 MariaDB Installation (Version 10.1.21) via RPMs on CentOS 7

2.1.2.1.9 Why Source RPMs (SRPMs) Aren't Packaged For Some Platforms

2.1.2.1.10 Building MariaDB from a Source RPM

2.1.2.2 Installing MariaDB .deb Files

2.1.2.3 Installing MariaDB MSI Packages on Windows

2.1.2.4 Installing MariaDB Server PKG packages on macOS

2.1.2.5 Installing MariaDB Binary Tarballs

2.1.2.6 Installing MariaDB Server on macOS Using Homebrew

2.1.2.7 Installing MariaDB Windows ZIP Packages

2.1.2.8 Compiling MariaDB From Source

2.1.2.8.1 Get, Build and Test Latest MariaDB the Lazy Way

2.1.2.8.2 MariaDB Source Code

2.1.2.8.3 Build Environment Setup for Linux

2.1.2.8.4 Generic Build Instructions

2.1.2.8.5 Compiling MariaDB with Extra Modules/Options

2.1.2.8.5.1 Using MariaDB with TCMalloc or jemalloc

2.1.2.8.5.2 Specifying Which Plugins to Build

2.1.2.8.6 Creating the MariaDB Source Tarball

2.1.2.8.7 Creating the MariaDB Binary Tarball

2.1.2.8.8 Build Environment Setup for Mac

2.1.2.8.9 Building MariaDB From a Source RPM

2.1.2.8.10 Building MariaDB on CentOS

2.1.2.8.11 Building MariaDB on Fedora

2.1.2.8.12 Building MariaDB on Debian

2.1.2.8.13 Building MariaDB on FreeBSD

2.1.2.8.14 Building MariaDB on Gentoo

2.1.2.8.15 Building MariaDB on Solaris and OpenSolaris

2.1.2.8.16 Building MariaDB on Ubuntu

2.1.2.8.17 Building MariaDB on Windows

2.1.2.8.18 Creating a Debian Repository

2.1.2.8.19 Building MariaDB From Source Using musl-based GNU/Linux

2.1.2.8.20 Compiling MariaDB for Debugging

2.1.2.8.21 Cross-compiling MariaDB

2.1.2.8.22 MariaDB Source Configuration Options

2.1.2.8.23 Building RPM Packages From Source

2.1.2.8.24 Compile and Using MariaDB with Sanitizers (ASAN, UBSAN, TSAN, MSAN)

2.1.2.9 Distributions Which Include MariaDB

2.1.2.10 Running Multiple MariaDB Server Processes

2.1.2.11 Installing MariaDB Alongside MySQL

2.1.2.12 GPG

2.1.2.13 MariaDB Platform Deprecation Policy

2.1.2.14 Automated MariaDB Deployment and Administration

2.1.2.14.1 Why to Automate MariaDB Deployments and Management

2.1.2.14.2 A Comparison Between Automation Systems

2.1.2.14.3 Ansible and MariaDB

2.1.2.14.3.1 Ansible Overview for MariaDB Users

2.1.2.14.3.2 Deploying to Remote Servers with Ansible

2.1.2.14.3.3 Deploying Docker Containers with Ansible

2.1.2.14.3.4 Existing Ansible Modules and Roles for MariaDB

2.1.2.14.3.5 Installing MariaDB .deb Files with Ansible

2.1.2.14.3.6 Running mariadb-tzinfo-to-sql with Ansible

2.1.2.14.3.7 Managing Secrets in Ansible

2.1.2.14.4 Puppet and MariaDB

2.1.2.14.4.1 Puppet Overview for MariaDB Users

2.1.2.14.4.2 Bolt Examples

2.1.2.14.4.3 Puppet hiera Configuration System

2.1.2.14.4.4 Deploying Docker Containers with Puppet

2.1.2.14.4.5 Existing Puppet Modules for MariaDB

2.1.2.14.5 Vagrant and MariaDB

2.1.2.14.5.1 Vagrant Overview for MariaDB Users

2.1.2.14.5.2 Creating a Vagrantfile

2.1.2.14.5.3 Vagrant Security Concerns

2.1.2.14.5.4 Running MariaDB ColumnStore containers on Linux, Windows and MacOS

28/4161

1548

1549

1551

1556

1557

1558

1559

1562

1565

1567

1567

1572

1573

1575

1578

1583

1588

1588

1590

1592

1593

1594

1596

1596

1597

1602

1603

1605

1606

1607

1608

1610

1611

1614

1617

1619

1621

1622

1623

1623

1625

1626

1626

1630

1634

1634

1635

1635

1636

1638

1646

1646

1692

1696

1698

1701

1705

1705

1708

1708

1712

1713

1725

1726

1726

1726

1727

2.1.2.14.6 MariaDB Containers

2.1.2.14.6.1 Benefits of Managing MariaDB Containers with Orchestration Software

2.1.2.14.6.2 Installing and Using MariaDB via Docker

2.1.2.14.6.3 Container Backup and Restoration

2.1.2.14.6.4 Container Security Concerns

2.1.2.14.6.5 Adding Plugins to the MariaDB Docker Official Image

2.1.2.14.6.6 Setting Up a LAMP Stack with Docker Compose

2.1.2.14.6.7 Creating a Custom Container Image

2.1.2.14.6.8 MariaDB Server Docker Official Image Environment Variables

2.1.2.14.6.9 Running MariaDB ColumnStore Docker containers on Linux, Windows and MacOS

2.1.2.14.6.10 Docker Official Image Frequently Asked Questions

2.1.2.14.6.11 MariaDB Container Cheat Sheet

2.1.2.14.6.12 Using Healthcheck.sh

2.1.2.14.6.13 Docker and AWS EC2

2.1.2.14.6.14 Docker and Google Cloud

2.1.2.14.6.15 Docker and Microsoft Azure

2.1.2.14.7 Kubernetes and MariaDB

2.1.2.14.8 Kubernetes Overview for MariaDB Users

2.1.2.14.9 Kubernetes Operators for MariaDB

2.1.2.14.10 Automating Upgrades with MariaDB.Org Downloads REST API

2.1.2.14.11 HashiCorp Vault and MariaDB

2.1.2.14.12 Orchestrator Overview

2.1.2.14.13 Rotating Logs on Unix and Linux

2.1.2.14.14 Automating MariaDB Tasks with Events

2.1.2.15 MariaDB Package Repository Setup and Usage

2.1.3 Upgrading MariaDB

2.1.3.1 Upgrading Between Major MariaDB Versions

2.1.3.2 Upgrading Between Minor Versions on Linux

2.1.3.3 Upgrading from MariaDB 11.2 to MariaDB 11.3

2.1.3.4 Upgrading from MariaDB 11.1 to MariaDB 11.2

2.1.3.5 Upgrading from MariaDB 11.0 to MariaDB 11.1

2.1.3.6 Upgrading from MariaDB 10.11 to MariaDB 11.0

2.1.3.7 Upgrading from MariaDB 10.6 to MariaDB 10.11

2.1.3.8 Upgrading from MariaDB 10.5 to MariaDB 10.6

2.1.3.9 Upgrading from MariaDB 10.4 to MariaDB 10.5

2.1.3.10 Upgrading from MariaDB 10.3 to MariaDB 10.4

2.1.3.11 Upgrading MariaDB on Windows

2.1.3.12 Upgrading Galera Cluster

2.1.3.12.1 Upgrading Between Minor Versions with Galera Cluster

2.1.3.12.2 Upgrading from MariaDB 10.4 to MariaDB 10.5 with Galera Cluster

2.1.3.12.3 Upgrading from MariaDB 10.3 to MariaDB 10.4 with Galera Cluster

2.1.3.13 Upgrading from MySQL to MariaDB

2.1.3.13.1 Upgrading from MySQL to MariaDB

2.1.3.13.2 Moving from MySQL to MariaDB in Debian 9

2.1.3.13.3 Screencast for Upgrading MySQL to MariaDB (Obsolete)

2.1.4 Downgrading between Major Versions of MariaDB

2.1.5 Compiling MariaDB From Source

2.1.6 Starting and Stopping MariaDB

2.1.6.1 Starting and Stopping MariaDB Server

2.1.6.2 Configuring MariaDB with Option Files

2.1.6.3 mysqld Configuration Files and Groups

2.1.6.4 mariadbd Options

2.1.6.5 What to Do if MariaDB Doesn't Start

2.1.6.6 Running MariaDB from the Build Directory

2.1.6.7 mysql.server

2.1.6.8 mysqld_safe

2.1.6.9 mysqladmin

2.1.6.10 Switching Between Different Installed MariaDB Versions

2.1.6.11 Specifying Permissions for Schema (Data) Directories and Tables

2.1.6.12 mysqld_multi

2.1.6.13 launchd

2.1.6.14 systemd

2.1.6.15 sysVinit

2.1.6.16 Mariadb-admin

2.1.6.17 mariadbd

2.1.6.18 mariadbd-multi

2.1.6.19 mariadbd-safe

29/4161

1727

1727

1727

1730

1731

1731

1732

1734

1735

1735

1735

1736

1736

1736

1738

1738

1738

1739

1739

1739

1740

1740

1741

1741

1742

1743

1743

1744

1747

1753

1753

1756

1759

1762

1765

1768

1771

1774

1778

1778

1782

1785

1788

1792

1795

1798

1802

1805

1805

1816

1827

1838

1848

1859

1869

1879

1889

1890

1890

1890

1891

1898

1899

1900

1901

1903

1907

2.1.7 MariaDB Performance & Advanced Configurations

2.1.7.1 Fusion-io

2.1.7.1.1 Fusion-io Introduction

2.1.7.1.2 Atomic Write Support

2.1.7.1.3 InnoDB Page Flushing

2.1.7.2 Configuring Linux for MariaDB

2.1.7.3 Configuring MariaDB for Optimal Performance

2.1.7.4 Configuring Swappiness

2.1.8 Troubleshooting Installation Issues

2.1.8.1 Troubleshooting Connection Issues

2.1.8.2 Installation issues on Windows

2.1.8.3 Troubleshooting MariaDB Installs on Red Hat/CentOS

2.1.8.4 Installation issues on Debian and Ubuntu

2.1.8.4.1 Differences in MariaDB in Debian (and Ubuntu)

2.1.8.4.2 Upgrading from MySQL to MariaDB

2.1.8.4.3 Creating a Debian Repository

2.1.8.4.4 apt-upgrade Fails, But the Database is Running

2.1.8.5 What to Do if MariaDB Doesn't Start

2.1.8.6 Installing on an Old Linux Version

2.1.8.7 Error: symbol mysql_get_server_name, version libmysqlclient_16 not defined

2.1.9 Installing System Tables (mysql_install_db)

2.1.10 mysql_install_db.exe

2.1.11 Configuring MariaDB with Option Files

2.1.12 MariaDB Environment Variables

2.1.13 MariaDB on Amazon AWS

2.1.14 Migrating to MariaDB

2.1.14.1 Migrating to MariaDB from MySQL

2.1.14.1.1 MySQL vs MariaDB: Performance

2.1.14.1.2 MariaDB versus MySQL: Compatibility

2.1.14.1.3 Upgrading from MySQL to MariaDB

2.1.14.1.4 Incompatibilities and Feature Differences Between MariaDB 11.3 and MySQL 8.0

2.1.14.1.5 Incompatibilities and Feature Differences Between MariaDB 11.2 and MySQL 8.0

2.1.14.1.6 Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL 8.0

2.1.14.1.7 Incompatibilities and Feature Differences Between MariaDB 11.0 and MySQL 8.0

2.1.14.1.8 Incompatibilities and Feature Differences Between MariaDB 10.11 and MySQL 8.0

2.1.14.1.9 Incompatibilities and Feature Differences Between MariaDB 10.6 and MySQL 8.0

2.1.14.1.10 Incompatibilities and Feature Differences Between MariaDB 10.5 and MySQL 8.0

2.1.14.1.11 Incompatibilities and Feature Differences Between MariaDB 10.4 and MySQL 8.0

2.1.14.1.12 Function Differences Between MariaDB and MySQL

2.1.14.1.12.1 Function Differences Between MariaDB 11.3 and MySQL 8.0

2.1.14.1.12.2 Function Differences Between MariaDB 11.2 and MySQL 8.0

2.1.14.1.12.3 Function Differences Between MariaDB 11.1 and MySQL 8.0

2.1.14.1.12.4 Function Differences Between MariaDB 11.0 and MySQL 8.0

2.1.14.1.12.5 Function Differences Between MariaDB 10.11 and MySQL 8.0

2.1.14.1.12.6 Function Differences Between MariaDB 10.6 and MySQL 8.0

2.1.14.1.12.7 Function Differences Between MariaDB 10.5 and MySQL 8.0

2.1.14.1.12.8 Function Differences Between MariaDB 10.4 and MySQL 8.0

2.1.14.1.13 System Variable Differences between MariaDB and MySQL

2.1.14.1.13.1 System Variable Differences Between MariaDB 11.3 and MySQL 8.0

2.1.14.1.13.2 System Variable Differences Between MariaDB 11.2 and MySQL 8.0

2.1.14.1.13.3 System Variable Differences Between MariaDB 11.1 and MySQL 8.0

2.1.14.1.13.4 System Variable Differences Between MariaDB 11.0 and MySQL 8.0

2.1.14.1.13.5 System Variable Differences Between MariaDB 10.11 and MySQL 8.0

2.1.14.1.13.6 System Variable Differences Between MariaDB 10.6 and MySQL 8.0

2.1.14.1.13.7 System Variable Differences Between MariaDB 10.5 and MySQL 8.0

2.1.14.1.13.8 System Variable Differences Between MariaDB 10.4 and MySQL 8.0

2.1.14.1.14 Upgrading from MySQL 5.7 to MariaDB 10.2

2.1.14.1.15 Installing MariaDB Alongside MySQL

2.1.14.1.16 Moving from MySQL to MariaDB in Debian 9

2.1.14.2 Migrating to MariaDB from SQL Server

2.1.14.2.1 Understanding MariaDB Architecture

2.1.14.2.2 SQL Server Features Not Available in MariaDB

2.1.14.2.3 SQL Server Features Implemented Differently in MariaDB

2.1.14.2.4 MariaDB Features Not Available in SQL Server

2.1.14.2.5 Setting Up MariaDB for Testing for SQL Server Users

2.1.14.2.6 Syntax Differences between MariaDB and SQL Server

2.1.14.2.7 SQL Server and MariaDB Types Comparison

30/4161

1912

1918

1921

1923

1925

1931

1934

1934

1937

1941

1951

1951

1951

1951

1952

1952

1957

1959

1963

1965

1966

1969

1972

1973

1973

1975

1976

1976

1977

1977

1978

1979

1979

1980

1980

1980

1984

1986

1988

1990

1993

1997

1997

1997

2000

2001

2001

2001

2002

2005

2005

2005

2005

2005

2005

2006

2006

2006

2006

2006

2006

2011

2011

2012

2012

2012

2013

2.1.14.2.8 MariaDB Transactions and Isolation Levels for SQL Server Users

2.1.14.2.9 MariaDB Authorization and Permissions for SQL Server Users

2.1.14.2.10 Repairing MariaDB Tables for SQL Server Users

2.1.14.2.11 MariaDB Backups Overview for SQL Server Users

2.1.14.2.12 MariaDB Replication Overview for SQL Server Users

2.1.14.2.13 Moving Data Between SQL Server and MariaDB

2.1.14.2.14 SQL_MODE=MSSQL

2.1.14.3 Migrating to MariaDB from PostgreSQL

2.1.14.3.1 SQL_MODE=ORACLE

2.1.14.4 Installing MariaDB on IBM Cloud

2.1.14.5 mysqld Configuration Files and Groups

2.2 User & Server Security

2.2.1 Securing MariaDB

2.2.1.1 Encryption

2.2.1.1.1 Data-in-Transit Encryption

2.2.1.1.1.1 Secure Connections Overview

2.2.1.1.1.2 Certificate Creation with OpenSSL

2.2.1.1.1.3 Securing Connections for Client and Server

2.2.1.1.1.4 Replication with Secure Connections

2.2.1.1.1.5 Securing Communications in Galera Cluster

2.2.1.1.1.6 SSL/TLS System Variables

2.2.1.1.1.7 SSL/TLS Status Variables

2.2.1.1.1.8 Using TLSv1.3

2.2.1.1.2 Data-at-Rest Encryption

2.2.1.1.2.1 Data-at-Rest Encryption Overview

2.2.1.1.2.2 Why Encrypt MariaDB Data?

2.2.1.1.2.3 Key Management and Encryption Plugins

2.2.1.1.2.4 Encrypting Binary Logs

2.2.1.1.2.5 Aria Encryption

2.2.1.1.2.5.1 Aria Encryption Overview

2.2.1.1.2.5.2 Aria Enabling Encryption

2.2.1.1.2.5.3 Aria Disabling Encryption

2.2.1.1.2.5.4 Aria Encryption Keys

2.2.1.1.2.6 InnoDB Encryption

2.2.1.1.2.6.1 InnoDB Encryption Overview

2.2.1.1.2.6.2 Enabling InnoDB Encryption

2.2.1.1.2.6.3 Disabling InnoDB Encryption

2.2.1.1.2.6.4 InnoDB Background Encryption Threads

2.2.1.1.2.6.5 InnoDB Encryption Keys

2.2.1.1.2.6.6 InnoDB Encryption Troubleshooting

2.2.1.1.3 TLS and Cryptography Libraries Used by MariaDB

2.2.1.2 Running mysqld as root

2.2.1.3 mysql_secure_installation

2.2.1.4 Security-Enhanced Linux with MariaDB

2.2.2 User Account Management

2.2.2.1 Account Management SQL Commands

2.2.2.2 Data-in-Transit Encryption

2.2.2.3 Roles

2.2.2.3.1 Roles Overview

2.2.2.3.2 CREATE ROLE

2.2.2.3.3 DROP ROLE

2.2.2.3.4 CURRENT_ROLE

2.2.2.3.5 SET ROLE

2.2.2.3.6 SET DEFAULT ROLE

2.2.2.3.7 GRANT

2.2.2.3.8 REVOKE

2.2.2.3.9 mysqlroles_mapping Table

2.2.2.3.10 Information Schema APPLICABLE_ROLES Table

2.2.2.3.11 Information Schema ENABLED_ROLES Table

2.2.2.4 Catalogs

2.2.2.4.1 Catalogs Overview

2.2.2.4.2 Starting with Catalogs

2.2.2.4.3 Catalog Status Variables

2.2.2.4.4 DROP CATALOG

2.2.2.4.5 USE CATALOG

2.2.2.5 Account Locking

2.2.2.6 Authentication from MariaDB 10.4

31/4161

2016

2017

2018

2020

2020

2020

2021

2030

2058

2059

2061

2063

2064

2066

2067

2071

2073

2075

2078

2082

2082

2086

2086

2086

2087

2093

2095

2098

2098

2103

2103

2103

2104

2104

2108

2108

2108

2108

2108

2109

2111

2112

2112

2112

2112

2112

2113

2125

2126

2126

2127

2129

2130

2131

2132

2132

2133

2134

2138

2138

2139

2139

2139

2139

2139

2192

2270

2.2.2.7 User Password Expiry

2.3 Backing Up and Restoring Databases

2.3.1 Backup and Restore Overview

2.3.2 Replication as a Backup Solution

2.3.3 mysqldump

2.3.4 Mariabackup

2.3.4.1 Mariabackup Overview

2.3.4.2 Mariabackup Options

2.3.4.3 Full Backup and Restore with Mariabackup

2.3.4.4 Incremental Backup and Restore with Mariabackup

2.3.4.5 Partial Backup and Restore with Mariabackup

2.3.4.6 Restoring Individual Tables and Partitions with Mariabackup

2.3.4.7 Setting up a Replica with Mariabackup

2.3.4.8 Files Backed Up By Mariabackup

2.3.4.9 Files Created by Mariabackup

2.3.4.10 Using Encryption and Compression Tools With Mariabackup

2.3.4.11 How Mariabackup Works

2.3.4.12 Mariabackup and BACKUP STAGE Commands

2.3.4.13 mariabackup SST Method

2.3.4.14 Manual SST of Galera Cluster Node with Mariabackup

2.3.4.15 Individual Database Restores with MariaBackup from Full Backup

2.3.5 mariadb-hotcopy

2.4 Server Monitoring & Logs

2.4.1 Overview of MariaDB Logs

2.4.2 Error Log

2.4.3 Setting the Language for Error Messages

2.4.4 General Query Log

2.4.5 Slow Query Log

2.4.5.1 Slow Query Log Overview

2.4.5.2 Slow Query Log Extended Statistics

2.4.5.3 mysqldumpslow

2.4.5.4 EXPLAIN in the Slow Query Log

2.4.5.5 mysqlslow_log Table

2.4.6 Rotating Logs on Unix and Linux

2.4.7 Binary Log

2.4.8 InnoDB Redo Log

2.4.9 InnoDB Undo Log

2.4.10 MyISAM Log

2.4.11 Transaction Coordinator Log

2.4.11.1 Transaction Coordinator Log Overview

2.4.11.2 Heuristic Recovery with the Transaction Coordinator Log

2.4.12 SQL Error Log Plugin

2.4.13 Writing Logs Into Tables

2.4.14 Performance Schema

2.4.15 MariaDB Audit Plugin

2.5 Partitioning Tables

2.5.1 Partitioning Overview

2.5.2 Partitioning Types

2.5.2.1 Partitioning Types Overview

2.5.2.2 LIST Partitioning Type

2.5.2.3 RANGE Partitioning Type

2.5.2.4 HASH Partitioning Type

2.5.2.5 KEY Partitioning Type

2.5.2.6 LINEAR HASH Partitioning Type

2.5.2.7 LINEAR KEY Partitioning Type

2.5.2.8 RANGE COLUMNS and LIST COLUMNS Partitioning Types

2.5.3 Partition Pruning and Selection

2.5.4 Partition Maintenance

2.5.5 Partitioning Limitations with MariaDB

2.5.6 Partitions Files

2.5.7 Partitions Metadata

2.5.8 Information Schema PARTITIONS Table

2.6 MariaDB Audit Plugin

2.7 Variables and Modes

2.7.1 Full List of MariaDB Options, System and Status Variables

2.7.2 Server System Variables

2.7.3 OLD_MODE

32/4161

2272

2278

2278

2280

2280

2282

2285

2285

2288

2288

2289

2289

2293

2295

2309

2313

2335

2341

2342

2343

2343

2346

2348

2349

2349

2349

2349

2349

2349

2350

2353

2353

2353

2353

2353

2354

2355

2355

2357

2358

2358

2358

2360

2361

2361

2361

2369

2370

2377

2377

2379

2380

2384

2388

2388

2392

2392

2394

2394

2395

2398

2400

2400

2402

2406

2411

2412

2.7.4 SQL_MODE

2.7.5 SQL_MODE-MSSQL

2.8 Copying Tables Between Different MariaDB Databases and MariaDB Servers

Chapter 3 High Availability & Performance Tuning

3.1 MariaDB Replication

3.1.1 Replication Overview

3.1.2 Replication Commands

3.1.3 Setting Up Replication

3.1.4 Setting up a Replica with Mariabackup

3.1.5 Read-Only Replicas

3.1.6 Replication as a Backup Solution

3.1.7 Multi-Source Replication

3.1.8 Replication Threads

3.1.9 Global Transaction ID

3.1.10 Parallel Replication

3.1.11 Replication and Binary Log System Variables

3.1.12 Replication and Binary Log Status Variables

3.1.13 Binary Log

3.1.13.1 Overview of the Binary Log

3.1.13.2 Activating the Binary Log

3.1.13.3 Using and Maintaining the Binary Log

3.1.13.4 Binary Log Formats

3.1.13.5 Binary Logging of Stored Routines

3.1.13.6 SHOW BINARY LOGS

3.1.13.7 PURGE BINARY LOGS

3.1.13.8 SHOW BINLOG EVENTS

3.1.13.9 SHOW MASTER STATUS

3.1.13.10 Binlog Event Checksums

3.1.13.11 Binlog Event Checksum Interoperability

3.1.13.12 Group Commit for the Binary Log

3.1.13.13 mariadb-binlog

3.1.13.14 Transaction Coordinator Log

3.1.13.15 Compressing Events to Reduce Size of the Binary Log

3.1.13.16 Encrypting Binary Logs

3.1.13.17 Flashback

3.1.13.18 Relay Log

3.1.13.19 Replication and Binary Log System Variables

3.1.14 Unsafe Statements for Statement-based Replication

3.1.15 Replication and Foreign Keys

3.1.16 Relay Log

3.1.17 Group Commit for the Binary Log

3.1.18 Selectively Skipping Replication of Binlog Events

3.1.19 Binlog Event Checksums

3.1.20 Annotate_rows_log_event

3.1.21 Row-based Replication With No Primary Key

3.1.22 Replication Filters

3.1.23 Running Triggers on the Replica for Row-based Events

3.1.24 Semisynchronous Replication

3.1.25 Using MariaDB Replication with MariaDB Galera Cluster

3.1.25.1 Using MariaDB Replication with MariaDB Galera Cluster

3.1.25.2 Using MariaDB GTIDs with MariaDB Galera Cluster

3.1.25.3 Configuring MariaDB Replication between MariaDB Galera Cluster and MariaDB Server

3.1.25.4 Configuring MariaDB Replication between Two MariaDB Galera Clusters

3.1.26 Delayed Replication

3.1.27 Replication When the Primary and Replica Have Different Table Definitions

3.1.28 Restricting Speed of Reading Binlog from Primary by a Replica

3.1.29 Changing a Replica to Become the Primary

3.1.30 Replication with Secure Connections

3.2 MariaDB Galera Cluster

3.2.1 What is MariaDB Galera Cluster?

3.2.2 About Galera Replication

3.2.3 Galera Use Cases

3.2.4 MariaDB Galera Cluster - Known Limitations

3.2.5 Tips on Converting to Galera

3.2.6 Getting Started with MariaDB Galera Cluster

3.2.7 Configuring MariaDB Galera Cluster

3.2.8 State Snapshot Transfers (SSTs) in Galera Cluster

33/4161

2413

2417

2417

2419

2424

2426

2433

2447

2447

2449

2451

2452

2464

2465

2465

2465

2465

2465

2475

2476

2476

2477

2477

2477

2477

2478

2478

2482

2483

2486

2490

2490

2490

2490

2499

2502

2502

2506

2509

2510

2517

2518

2518

2518

2519

2521

2525

2526

2527

2528

2530

2534

2537

2537

2538

2539

2539

2540

2542

2543

2545

2548

2549

2549

2550

2552

2553

3.2.8.1 Introduction to State Snapshot Transfers (SSTs)

3.2.8.2 mariabackup SST Method

3.2.8.3 Manual SST of Galera Cluster Node With Mariabackup

3.2.8.4 xtrabackup-v2 SST Method

3.2.8.5 Manual SST of Galera Cluster Node With Percona XtraBackup

3.2.9 Galera Cluster Status Variables

3.2.10 Galera Cluster System Variables

3.2.11 Building the Galera wsrep Package on Ubuntu and Debian

3.2.12 Building the Galera wsrep Package on Fedora

3.2.13 Installing Galera from Source

3.2.14 Galera Test Repositories

3.2.15 wsrep_provider_options

3.2.16 Galera Cluster Address

3.2.17 Galera Load Balancer

3.2.18 Upgrading Galera Cluster

3.2.19 Using MariaDB Replication with MariaDB Galera Cluster

3.2.20 Securing Communications in Galera Cluster

3.2.21 Installing MariaDB Galera on IBM Cloud

3.3 Optimization and Tuning

3.3.1 Hardware Optimization

3.3.2 Operating System Optimizations

3.3.2.1 Configuring Linux for MariaDB

3.3.2.2 Configuring Swappiness

3.3.2.3 Filesystem Optimizations

3.3.3 Optimization and Indexes

3.3.3.1 The Essentials of an Index

3.3.3.2 Getting Started with Indexes

3.3.3.3 Full-Text Indexes

3.3.3.3.1 Full-Text Index Overview

3.3.3.3.2 Full-Text Index Stopwords

3.3.3.3.3 MATCH AGAINST

3.3.3.3.4 myisam_ftdump

3.3.3.4 ANALYZE TABLE

3.3.3.5 Building the best INDEX for a given SELECT

3.3.3.6 Compound (Composite) Indexes

3.3.3.7 EXPLAIN

3.3.3.8 Foreign Keys

3.3.3.9 Ignored Indexes

3.3.3.10 Index Statistics

3.3.3.11 Latitude/Longitude Indexing

3.3.3.12 Primary Keys with Nullable Columns

3.3.3.13 SHOW EXPLAIN

3.3.3.14 Spatial Index

3.3.3.15 Storage Engine Index Types

3.3.4 Query Optimizations

3.3.4.1 Index Hints: How to Force Query Plans

3.3.4.2 Subquery Optimizations

3.3.4.2.1 Subquery Optimizations Map

3.3.4.2.2 Semi-join Subquery Optimizations

3.3.4.2.3 Table Pullout Optimization

3.3.4.2.4 Non-semi-join Subquery Optimizations

3.3.4.2.5 Subquery Cache

3.3.4.2.6 Condition Pushdown Into IN subqueries

3.3.4.2.7 Conversion of Big IN Predicates Into Subqueries

3.3.4.2.8 EXISTS-to-IN Optimization

3.3.4.2.9 Optimizing GROUP BY and DISTINCT Clauses in Subqueries

3.3.4.3 Optimization Strategies

3.3.4.3.1 DuplicateWeedout Strategy

3.3.4.3.2 FirstMatch Strategy

3.3.4.3.3 LooseScan Strategy

3.3.4.3.4 Semi-join Materialization Strategy

3.3.4.3.5 Improvements to ORDER BY Optimization

3.3.4.4 Optimizations for Derived Tables

3.3.4.4.1 Condition Pushdown into Derived Table Optimization

3.3.4.4.2 Derived Table Merge Optimization

3.3.4.4.3 Derived Table with Key Optimization

3.3.4.4.4 Lateral Derived Optimization

34/4161

2555

2555

2556

2557

2558

2559

2559

2559

2561

2563

2563

2563

2565

2568

2569

2569

2570

2573

2575

2578

2579

2582

2584

2585

2586

2586

2590

2592

2595

2598

2603

2608

2609

2610

2615

2618

2619

2620

2621

2625

2630

2631

2633

2633

2634

2635

2636

2636

2636

2636

2636

2636

2639

2641

2643

2650

2652

2653

2653

2654

2654

2654

2654

2654

2655

2655

2655

3.3.4.5 Table Elimination

3.3.4.5.1 What is Table Elimination?

3.3.4.5.2 Table Elimination in MariaDB

3.3.4.5.3 Table Elimination User Interface

3.3.4.5.4 Table Elimination in Other Databases

3.3.4.5.5 Table Elimination External Resources

3.3.4.6 Statistics for Optimizing Queries

3.3.4.6.1 Engine-Independent Table Statistics

3.3.4.6.2 Histogram-Based Statistics

3.3.4.6.3 Index Statistics

3.3.4.6.4 InnoDB Persistent Statistics

3.3.4.6.5 Slow Query Log Extended Statistics

3.3.4.6.6 User Statistics

3.3.4.7 MIN/MAX optimization

3.3.4.8 Filesort with Small LIMIT Optimization

3.3.4.9 LIMIT ROWS EXAMINED

3.3.4.10 Block-Based Join Algorithms

3.3.4.11 index_merge sort_intersection

3.3.4.12 optimizer_switch

3.3.4.13 Extended Keys

3.3.4.14 How to Quickly Insert Data Into MariaDB

3.3.4.15 Index Condition Pushdown

3.3.4.16 Query Limits and Timeouts

3.3.4.17 Aborting Statements that Exceed a Certain Time to Execute

3.3.4.18 Partition Pruning and Selection

3.3.4.19 Big DELETEs

3.3.4.20 Charset Narrowing Optimization

3.3.4.21 Data Sampling: Techniques for Efficiently Finding a Random Row

3.3.4.22 Data Warehousing High Speed Ingestion

3.3.4.23 Data Warehousing Summary Tables

3.3.4.24 Data Warehousing Techniques

3.3.4.25 Equality propagation optimization

3.3.4.26 FORCE INDEX

3.3.4.27 Groupwise Max in MariaDB

3.3.4.28 GUID/UUID Performance

3.3.4.29 IGNORE INDEX

3.3.4.30 not_null_range_scan Optimization

3.3.4.31 Optimizing for "Latest News"-style Queries

3.3.4.32 Pagination Optimization

3.3.4.33 Pivoting in MariaDB

3.3.4.34 Rollup Unique User Counts

3.3.4.35 Rowid Filtering Optimization

3.3.4.36 Sargable DATE and YEAR

3.3.4.37 Sargable UPPER

3.3.4.38 USE INDEX

3.3.5 Optimizing Tables

3.3.5.1 OPTIMIZE TABLE

3.3.5.2 ANALYZE TABLE

3.3.5.3 Choosing the Right Storage Engine

3.3.5.4 Converting Tables from MyISAM to InnoDB

3.3.5.5 Histogram-Based Statistics

3.3.5.6 Defragmenting InnoDB Tablespaces

3.3.5.7 Entity-Attribute-Value Implementation

3.3.5.8 IP Range Table Performance

3.3.6 MariaDB Memory Allocation

3.3.7 System Variables

3.3.7.1 System and Status Variables Added By Major Release

3.3.7.1.1 System Variables Added in MariaDB 11.4

3.3.7.1.2 System Variables Added in MariaDB 11.3

3.3.7.1.3 System Variables Added in MariaDB 11.2

3.3.7.1.4 System Variables Added in MariaDB 11.1

3.3.7.1.5 System Variables Added in MariaDB 11.0

3.3.7.1.6 Status Variables Added in MariaDB 11.0

3.3.7.1.7 System Variables Added in MariaDB 10.11

3.3.7.1.8 System Variables Added in MariaDB 10.6

3.3.7.1.9 Status Variables Added in MariaDB 10.6

3.3.7.1.10 System Variables Added in MariaDB 10.5

35/4161

2656

2657

2658

2658

2658

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2710

2712

2712

2713

2713

2713

2715

2715

2715

2720

2720

2720

2720

2721

2721

2721

2722

2722

2722

2722

2722

2723

2723

2724

2729

2733

2733

2734

2735

2735

2735

2736

2738

2739

2739

2739

2740

2741

2741

2741

2747

2747

2748

3.3.7.1.11 Status Variables Added in MariaDB 10.5

3.3.7.1.12 System Variables Added in MariaDB 10.4

3.3.7.1.13 Status Variables Added in MariaDB 10.4

3.3.7.2 Full List of MariaDB Options, System and Status Variables

3.3.7.3 Server Status Variables

3.3.7.4 Server System Variables

3.3.7.5 Aria Status Variables

3.3.7.6 Aria System Variables

3.3.7.7 CONNECT System Variables

3.3.7.8 Galera Cluster Status Variables

3.3.7.9 Galera Cluster System Variables

3.3.7.10 InnoDB Server Status Variables

3.3.7.11 InnoDB System Variables

3.3.7.12 MariaDB Audit Plugin ÿ Status Variables

3.3.7.13 Mroonga Status Variables

3.3.7.14 Mroonga System Variables

3.3.7.15 MyISAM System Variables

3.3.7.16 MyRocks System Variables

3.3.7.17 MyRocks Status Variables

3.3.7.18 OQGRAPH System and Status Variables

3.3.7.19 Performance Schema Status Variables

3.3.7.20 Performance Schema System Variables

3.3.7.21 Replication and Binary Log Status Variables

3.3.7.22 Replication and Binary Log System Variables

3.3.7.23 Semisynchronous Replication Plugin Status Variables

3.3.7.24 Semisynchronous Replication

3.3.7.25 Sphinx Status Variables

3.3.7.26 Spider Status Variables

3.3.7.27 Spider Server System Variables

3.3.7.28 SQL Error Log System Variables and Options

3.3.7.29 SSL/TLS Status Variables

3.3.7.30 SSL/TLS System Variables

3.3.7.31 Thread Pool System and Status Variables

3.3.7.32 MariaDB Optimization for MySQL Users

3.3.7.33 InnoDB Buffer Pool

3.3.7.34 InnoDB Change Buffering

3.3.7.35 Optimizing table_open_cache

3.3.7.36 Optimizing key_buffer_size

3.3.7.37 Segmented Key Cache

3.3.7.38 Big Query Settings

3.3.7.39 Sample my.cnf Files

3.3.7.40 Handling Too Many Connections

3.3.7.41 System Variable Differences between MariaDB and MySQL

3.3.7.42 MariaDB Memory Allocation

3.3.7.43 Setting Innodb Buffer Pool Size Dynamically

3.3.8 Buffers, Caches and Threads

3.3.8.1 Thread Pool

3.3.8.2 Thread Pool in MariaDB

3.3.8.3 Thread Groups in the Unix Implementation of the Thread Pool

3.3.8.4 Thread Pool System and Status Variables

3.3.8.5 Thread Pool in MariaDB 5.1 - 5.3

3.3.9 Thread States

3.3.9.1 Delayed Insert Connection Thread States

3.3.9.2 Delayed Insert Handler Thread States

3.3.9.3 Event Scheduler Thread States

3.3.9.4 General Thread States

3.3.9.5 Master Thread States

3.3.9.6 Query Cache Thread States

3.3.9.7 Slave Connection Thread States

3.3.9.8 Slave I/O Thread States

3.3.9.9 Slave SQL Thread States

3.3.9.10 InnoDB Buffer Pool

3.3.9.11 InnoDB Change Buffering

3.3.9.12 Query Cache

3.3.9.13 Segmented Key Cache

3.3.9.14 Subquery Cache

3.3.9.15 Thread Command Values

36/4161

2748

2749

2749

2749

2749

2749

2749

2751

2751

2757

2758

2758

2760

2760

2760

2760

2760

2760

2761

2761

2761

2762

2762

2764

2766

2766

2766

2766

2766

2766

2766

2766

2766

2766

2782

2783

2785

2785

2785

2785

2785

2785

2785

2785

2785

2785

2785

2785

2785

2785

2786

2786

2786

2787

2790

2790

2790

2790

2790

2790

2791

2791

2791

2791

2792

2794

2794

3.3.10 Optimizing Data Structure

3.3.10.1 Numeric vs String Fields

3.3.10.2 Optimizing MEMORY Tables

3.3.10.3 Optimizing String and Character Fields

3.3.11 MariaDB Internal Optimizations

3.3.11.1 Binary Log Group Commit and InnoDB Flushing Performance

3.3.11.2 Fair Choice Between Range and Index_merge Optimizations

3.3.11.3 Improvements to ORDER BY Optimization

3.3.11.4 Multi Range Read Optimization

3.3.12 Compression

3.3.12.1 Encryption, Hashing and Compression Functions

3.3.12.2 Storage-Engine Independent Column Compression

3.3.12.3 InnoDB Page Compression

3.3.12.4 Compression Plugins

3.3.12.5 Compressing Events to Reduce Size of the Binary Log

3.3.12.6 InnoDB COMPRESSED Row Format

3.3.12.7 ColumnStore Compression Mode

3.4 Connection Redirection Mechanism in the MariaDB Client/Server Protocol

Chapter 4 Programming & Customizing MariaDB

4.1 Programmatic & Compound Statements

4.2 Stored Routines

4.2.1 Stored Procedures

4.2.1.1 Stored Procedure Overview

4.2.1.2 Stored Routine Privileges

4.2.1.3 CREATE PROCEDURE

4.2.1.4 ALTER PROCEDURE

4.2.1.5 DROP PROCEDURE

4.2.1.6 SHOW CREATE PROCEDURE

4.2.1.7 SHOW PROCEDURE CODE

4.2.1.8 SHOW PROCEDURE STATUS

4.2.1.9 Binary Logging of Stored Routines

4.2.1.10 Information Schema ROUTINES Table

4.2.1.11 SQL_MODE=ORACLE

4.2.1.12 Stored Procedure Internals

4.2.2 Stored Functions

4.2.2.1 Stored Function Overview

4.2.2.2 Stored Routine Privileges

4.2.2.3 CREATE FUNCTION

4.2.2.4 ALTER FUNCTION

4.2.2.5 DROP FUNCTION

4.2.2.6 SHOW CREATE FUNCTION

4.2.2.7 SHOW FUNCTION STATUS

4.2.2.8 SHOW FUNCTION CODE

4.2.2.9 Stored Aggregate Functions

4.2.2.10 Binary Logging of Stored Routines

4.2.2.11 Stored Function Limitations

4.2.2.12 Information Schema ROUTINES Table

4.2.3 Stored Routine Statements

4.2.4 Binary Logging of Stored Routines

4.2.5 Stored Routine Limitations

4.2.6 Stored Routine Privileges

4.3 Triggers & Events

4.3.1 Triggers

4.3.1.1 Trigger Overview

4.3.1.2 Binary Logging of Stored Routines

4.3.1.3 CREATE TRIGGER

4.3.1.4 DROP TRIGGER

4.3.1.5 Information Schema TRIGGERS Table

4.3.1.6 Running Triggers on the Replica for Row-based Events

4.3.1.7 SHOW CREATE TRIGGER

4.3.1.8 SHOW TRIGGERS

4.3.1.9 Trigger Limitations

4.3.1.10 Triggers and Implicit Locks

4.3.2 Event Scheduler

4.3.2.1 Events Overview

4.3.2.2 Event Limitations

4.3.2.3 CREATE EVENT

37/4161

2794

2794

2794

2794

2794

2794

2794

2795

2795

2795

2795

2795

2795

2795

2797

2797

2798

2798

2798

2799

2801

2803

2803

2803

2803

2803

2803

2806

2807

2810

2811

2812

2813

2815

2816

2816

2818

2819

2819

2820

2820

2821

2821

2822

2823

2823

2823

2823

2824

2824

2825

2825

2826

2827

2827

2828

2829

2831

2832

2839

2841

2841

2841

2841

2842

2842

2847

4.3.2.4 ALTER EVENT

4.3.2.5 DROP EVENT

4.3.2.6 Information Schema EVENTS Table

4.3.2.7 SHOW EVENTS

4.3.2.8 SHOW CREATE EVENT

4.3.2.9 Automating MariaDB Tasks with Events

4.3.2.10 mysql.event Table

4.4 Views

4.4.1 Creating & Using Views

4.4.2 CREATE VIEW

4.4.3 ALTER VIEW

4.4.4 DROP VIEW

4.4.5 SHOW CREATE VIEW

4.4.6 Inserting and Updating with Views

4.4.7 RENAME TABLE

4.4.8 View Algorithms

4.4.9 Information Schema VIEWS Table

4.4.10 SHOW TABLES

4.5 User-Defined Functions

4.5.1 Creating User-Defined Functions

4.5.2 User-Defined Functions Calling Sequences

4.5.3 User-Defined Functions Security

4.5.4 CREATE FUNCTION UDF

4.5.5 DROP FUNCTION UDF

4.5.6 mysql.func Table

Chapter 5 Columns, Storage Engines, and Plugins

5.1 Data Types

5.1.1 Numeric Data Types

5.1.1.1 Numeric Data Type Overview

5.1.1.2 TINYINT

5.1.1.3 BOOLEAN

5.1.1.4 SMALLINT

5.1.1.5 MEDIUMINT

5.1.1.6 INT

5.1.1.7 INTEGER

5.1.1.8 BIGINT

5.1.1.9 DECIMAL

5.1.1.10 DEC, NUMERIC, FIXED

5.1.1.11 NUMBER

5.1.1.12 FLOAT

5.1.1.13 DOUBLE

5.1.1.14 DOUBLE PRECISION

5.1.1.15 BIT

5.1.1.16 Floating-point Accuracy

5.1.1.17 INT1

5.1.1.18 INT2

5.1.1.19 INT3

5.1.1.20 INT4

5.1.1.21 INT8

5.1.2 String Data Types

5.1.2.1 String Literals

5.1.2.2 BINARY

5.1.2.3 BLOB

5.1.2.4 BLOB and TEXT Data Types

5.1.2.5 CHAR

5.1.2.6 CHAR BYTE

5.1.2.7 ENUM

5.1.2.8 INET4

5.1.2.9 INET6

5.1.2.10 JSON Data Type

5.1.2.11 MEDIUMBLOB

5.1.2.12 MEDIUMTEXT

5.1.2.13 LONGBLOB

5.1.2.14 LONG and LONG VARCHAR

5.1.2.15 LONGTEXT

5.1.2.16 ROW

5.1.2.17 TEXT

38/4161

2848

2848

2848

2850

2851

2852

2854

2856

2866

2866

2866

2867

2868

2870

2875

2876

2876

2882

2882

2884

2888

2889

2890

2890

2898

2898

2898

2899

2899

2899

2900

2900

2900

2900

2900

2900

2901

2903

2905

2907

2909

2909

2909

2910

2912

2930

2989

3015

3016

3018

3019

3019

3020

3022

3027

3028

3029

3030

3034

3035

3036

3038

3040

3040

3047

3050

3051

5.1.2.18 TINYBLOB

5.1.2.19 TINYTEXT

5.1.2.20 VARBINARY

5.1.2.21 VARCHAR

5.1.2.22 SET Data Type

5.1.2.23 UUID Data Type

5.1.2.24 Data Type Storage Requirements

5.1.2.25 Supported Character Sets and Collations

5.1.2.26 Character Sets and Collations

5.1.3 Date and Time Data Types

5.1.3.1 DATE

5.1.3.2 TIME

5.1.3.3 DATETIME

5.1.3.4 TIMESTAMP

5.1.3.5 YEAR Data Type

5.1.4 Geometry Types

5.1.5 AUTO_INCREMENT

5.1.6 Data Type Storage Requirements

5.1.7 AUTO_INCREMENT FAQ

5.1.8 NULL Values

5.2 Character Sets and Collations

5.2.1 Character Set and Collation Overview

5.2.2 Supported Character Sets and Collations

5.2.3 Setting Character Sets and Collations

5.2.4 Unicode

5.2.5 SHOW CHARACTER SET

5.2.6 SHOW COLLATION

5.2.7 Information Schema CHARACTER_SETS Table

5.2.8 Information Schema COLLATIONS Table

5.2.9 Internationalization and Localization

5.2.9.1 Setting the Language for Error Messages

5.2.9.2 Locales plugin

5.2.9.3 mariadb-tzinfo-to-sql

5.2.10 SET CHARACTER SET

5.2.11 SET NAMES

5.3 Storage Engines

5.3.1 Choosing the Right Storage Engine

5.3.2 InnoDB

5.3.2.1 InnoDB Versions

5.3.2.2 InnoDB Limitations

5.3.2.3 InnoDB Troubleshooting

5.3.2.3.1 InnoDB Troubleshooting Overview

5.3.2.3.2 InnoDB Data Dictionary Troubleshooting

5.3.2.3.3 InnoDB Recovery Modes

5.3.2.3.4 Troubleshooting Row Size Too Large Errors with InnoDB

5.3.2.4 InnoDB System Variables

5.3.2.5 InnoDB Server Status Variables

5.3.2.6 AUTO_INCREMENT Handling in InnoDB

5.3.2.7 InnoDB Buffer Pool

5.3.2.8 InnoDB Change Buffering

5.3.2.9 InnoDB Doublewrite Buffer

5.3.2.10 InnoDB Tablespaces

5.3.2.10.1 InnoDB System Tablespaces

5.3.2.10.2 InnoDB File-Per-Table Tablespaces

5.3.2.10.3 InnoDB Temporary Tablespaces

5.3.2.11 InnoDB File Format

5.3.2.12 InnoDB Row Formats

5.3.2.12.1 InnoDB Row Formats Overview

5.3.2.12.2 InnoDB REDUNDANT Row Format

5.3.2.12.3 InnoDB COMPACT Row Format

5.3.2.12.4 InnoDB DYNAMIC Row Format

5.3.2.12.5 InnoDB COMPRESSED Row Format

5.3.2.12.6 Troubleshooting Row Size Too Large Errors with InnoDB

5.3.2.13 InnoDB Strict Mode

5.3.2.14 InnoDB Redo Log

5.3.2.15 InnoDB Undo Log

5.3.2.16 InnoDB Page Flushing

39/4161

3053

3055

3055

3055

3061

3078

3087

3103

3104

3105

3113

3114

3115

3116

3119

3120

3120

3122

3122

3128

3129

3130

3136

3137

3138

3138

3139

3140

3141

3143

3146

3147

3149

3151

3157

3157

3159

3160

3161

3163

3166

3169

3170

3172

3173

3177

3177

3179

3224

3238

3241

3242

3254

3262

3270

3275

3276

3280

3281

3288

3290

3291

3296

3298

3299

3304

3304

5.3.2.17 InnoDB Purge

5.3.2.18 Information Schema InnoDB Tables

5.3.2.19 InnoDB Online DDL

5.3.2.19.1 InnoDB Online DDL Overview

5.3.2.19.2 InnoDB Online DDL Operations with the INPLACE Alter Algorithm

5.3.2.19.3 InnoDB Online DDL Operations with the NOCOPY Alter Algorithm

5.3.2.19.4 InnoDB Online DDL Operations with the INSTANT Alter Algorithm

5.3.2.19.5 Instant ADD COLUMN for InnoDB

5.3.2.20 Binary Log Group Commit and InnoDB Flushing Performance

5.3.2.21 InnoDB Page Compression

5.3.2.22 InnoDB Data Scrubbing

5.3.2.23 InnoDB Lock Modes

5.3.2.24 InnoDB Monitors

5.3.2.25 InnoDB Encryption Overview

5.3.3 MariaDB ColumnStore

5.3.4 Aria

5.3.4.1 Aria Storage Engine

5.3.4.2 Aria Clients and Utilities

5.3.4.3 Aria FAQ

5.3.4.4 Aria Storage Formats

5.3.4.5 Aria Status Variables

5.3.4.6 Aria System Variables

5.3.4.7 Aria Group Commit

5.3.4.8 Benchmarking Aria

5.3.4.9 Aria Two-step Deadlock Detection

5.3.4.10 Aria Encryption Overview

5.3.4.11 The Aria Name

5.3.5 Archive

5.3.6 BLACKHOLE

5.3.7 CONNECT

5.3.7.1 Introduction to the CONNECT Engine

5.3.7.2 Installing the CONNECT Storage Engine

5.3.7.3 CONNECT Create Table Options

5.3.7.4 CONNECT Data Types

5.3.7.5 Current Status of the CONNECT Handler

5.3.7.6 CONNECT Table Types

5.3.7.6.1 CONNECT Table Types Overview

5.3.7.6.2 Inward and Outward Tables

5.3.7.6.3 CONNECT Table Types - Data Files

5.3.7.6.4 CONNECT Zipped File Tables

5.3.7.6.5 CONNECT DOS and FIX Table Types

5.3.7.6.6 CONNECT DBF Table Type

5.3.7.6.7 CONNECT BIN Table Type

5.3.7.6.8 CONNECT VEC Table Type

5.3.7.6.9 CONNECT CSV and FMT Table Types

5.3.7.6.10 CONNECT - NoSQL Table Types

5.3.7.6.11 CONNECT - Files Retrieved Using Rest Queries

5.3.7.6.12 CONNECT JSON Table Type

5.3.7.6.13 CONNECT XML Table Type

5.3.7.6.14 CONNECT INI Table Type

5.3.7.6.15 CONNECT - External Table Types

5.3.7.6.16 CONNECT ODBC Table Type: Accessing Tables From Another DBMS

5.3.7.6.17 CONNECT JDBC Table Type: Accessing Tables from Another DBMS

5.3.7.6.18 CONNECT MONGO Table Type: Accessing Collections from MongoDB

5.3.7.6.19 CONNECT MYSQL Table Type: Accessing MySQL/MariaDB Tables

5.3.7.6.20 CONNECT PROXY Table Type

5.3.7.6.21 CONNECT XCOL Table Type

5.3.7.6.22 CONNECT OCCUR Table Type

5.3.7.6.23 CONNECT PIVOT Table Type

5.3.7.6.24 CONNECT TBL Table Type: Table List

5.3.7.6.25 CONNECT - Using the TBL and MYSQL Table Types Together

5.3.7.6.26 CONNECT Table Types - Special "Virtual" Tables

5.3.7.6.27 CONNECT Table Types - VIR

5.3.7.6.28 CONNECT Table Types - OEM: Implemented in an External LIB

5.3.7.6.29 CONNECT Table Types - Catalog Tables

5.3.7.7 CONNECT - Security

5.3.7.8 CONNECT - OEM Table Example

40/4161

3306

3307

3308

3309

3309

3310

3312

3313

3313

3320

3322

3324

3327

3331

3340

3340

3341

3342

3342

3348

3349

3350

3352

3352

3354

3356

3356

3361

3361

3362

3362

3363

3364

3365

3365

3366

3366

3366

3367

3368

3371

3372

3372

3372

3373

3373

3374

3375

3376

3379

3380

3380

3395

3423

3423

3424

3425

3426

3427

3429

3429

3431

3432

3432

3433

3434

3435

5.3.7.9 Using CONNECT

5.3.7.9.1 Using CONNECT - General Information

5.3.7.9.2 Using CONNECT - Virtual and Special Columns

5.3.7.9.3 Using CONNECT - Importing File Data Into MariaDB Tables

5.3.7.9.4 Using CONNECT - Exporting Data From MariaDB

5.3.7.9.5 Using CONNECT - Indexing

5.3.7.9.6 Using CONNECT - Condition Pushdown

5.3.7.9.7 USING CONNECT - Offline Documentation

5.3.7.9.8 Using CONNECT - Partitioning and Sharding

5.3.7.10 CONNECT - Making the GetRest Library

5.3.7.11 CONNECT - Adding the REST Feature as a Library Called by an OEM Table

5.3.7.12 CONNECT - Compiling JSON UDFs in a Separate Library

5.3.7.13 CONNECT System Variables

5.3.7.14 JSON Sample Files

5.3.8 CSV

5.3.8.1 CSV Overview

5.3.8.2 Checking and Repairing CSV Tables

5.3.9 FederatedX

5.3.9.1 About FederatedX

5.3.9.2 Differences Between FederatedX and Federated

5.3.10 MEMORY Storage Engine

5.3.11 MERGE

5.3.12 Mroonga

5.3.12.1 About Mroonga

5.3.12.2 Mroonga Overview

5.3.12.3 Mroonga Status Variables

5.3.12.4 Mroonga System Variables

5.3.12.5 Mroonga User-Defined Functions

5.3.12.5.1 Creating Mroonga User-Defined Functions

5.3.12.5.2 last_insert_grn_id

5.3.12.5.3 mroonga_command

5.3.12.5.4 mroonga_escape

5.3.12.5.5 mroonga_highlight_html

5.3.12.5.6 mroonga_normalize

5.3.12.5.7 mroonga_snippet

5.3.12.5.8 mroonga_snippet_html

5.3.12.6 Information Schema MROONGA_STATS Table

5.3.13 MyISAM

5.3.13.1 MyISAM Overview

5.3.13.2 MyISAM System Variables

5.3.13.3 MyISAM Storage Formats

5.3.13.4 MyISAM Clients and Utilities

5.3.13.5 MyISAM Index Storage Space

5.3.13.6 MyISAM Log

5.3.13.7 Concurrent Inserts

5.3.13.8 Segmented Key Cache

5.3.14 MyRocks

5.3.14.1 About MyRocks for MariaDB

5.3.14.2 Getting Started with MyRocks

5.3.14.3 Building MyRocks in MariaDB

5.3.14.4 Loading Data Into MyRocks

5.3.14.5 MyRocks Status Variables

5.3.14.6 MyRocks System Variables

5.3.14.7 MyRocks Transactional Isolation

5.3.14.8 MyRocks and Replication

5.3.14.9 MyRocks and Group Commit with Binary log

5.3.14.10 Optimizer Statistics in MyRocks

5.3.14.11 Differences Between MyRocks Variants

5.3.14.12 MyRocks and Bloom Filters

5.3.14.13 MyRocks and CHECK TABLE

5.3.14.14 MyRocks and Data Compression

5.3.14.15 MyRocks and Index-Only Scans

5.3.14.16 MyRocks and START TRANSACTION WITH CONSISTENT SNAPSHOT

5.3.14.17 MyRocks Column Families

5.3.14.18 MyRocks in MariaDB 10.2 vs MariaDB 10.3

5.3.14.19 MyRocks Performance Troubleshooting

5.3.15 OQGRAPH

41/4161

3435

3436

3438

3442

3442

3442

3443

3443

3449

3450

3452

3453

3454

3458

3461

3462

3466

3467

3468

3468

3468

3470

3485

3489

3490

3494

3497

3498

3526

3530

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3532

3533

3533

3535

3536

3536

3536

3536

3536

3538

3541

3544

3545

3546

3551

3551

3553

3553

3553

3553

5.3.15.1 Installing OQGRAPH

5.3.15.2 OQGRAPH Overview

5.3.15.3 OQGRAPH Examples

5.3.15.4 Compiling OQGRAPH

5.3.15.5 Building OQGRAPH Under Windows

5.3.15.6 OQGRAPH System and Status Variables

5.3.16 S3 Storage Engine

5.3.16.1 Using the S3 Storage Engine

5.3.16.2 Testing the Connections to S3

5.3.16.3 S3 Storage Engine Internals

5.3.16.4 aria_s3_copy

5.3.16.5 S3 Storage Engine Status Variables

5.3.16.6 S3 Storage Engine System Variables

5.3.17 Sequence Storage Engine

5.3.18 SphinxSE

5.3.18.1 About SphinxSE

5.3.18.2 Installing Sphinx

5.3.18.3 Configuring Sphinx

5.3.18.4 Installing and Testing SphinxSE with MariaDB

5.3.18.5 Sphinx Status Variables

5.3.19 Spider

5.3.19.1 Spider Storage Engine Overview

5.3.19.2 Spider Installation

5.3.19.3 Spider Storage Engine Core Concepts

5.3.19.4 Spider Use Cases

5.3.19.5 Spider Cluster Management

5.3.19.6 Spider Feature Matrix

5.3.19.7 Spider System Variables

5.3.19.8 Spider Table Parameters

5.3.19.9 Spider Status Variables

5.3.19.10 Spider Functions

5.3.19.10.1 SPIDER_BG_DIRECT_SQL

5.3.19.10.2 SPIDER_COPY_TABLES

5.3.19.10.3 SPIDER_DIRECT_SQL

5.3.19.10.4 SPIDER_FLUSH_TABLE_MON_CACHE

5.3.19.11 Spider mysql Database Tables

5.3.19.11.1 mysqlspider_link_failed_log Table

5.3.19.11.2 mysqlspider_link_mon_servers Table

5.3.19.11.3 mysqlspider_tables Table

5.3.19.11.4 mysqlspider_table_crd Table

5.3.19.11.5 mysqlspider_table_position_for_recovery Table

5.3.19.11.6 mysqlspider_table_sts Table

5.3.19.11.7 mysqlspider_xa Table

5.3.19.11.8 mysqlspider_xa_failed_log Table

5.3.19.11.9 mysqlspider_xa_member Table

5.3.19.12 Information Schema SPIDER_ALLOC_MEM Table

5.3.19.13 Information Schema SPIDER_WRAPPER_PROTOCOLS Table

5.3.19.14 Spider Differences Between SpiderForMySQL and MariaDB

5.3.19.15 Spider Case Studies

5.3.19.16 Spider Benchmarks

5.3.19.17 Spider FAQ

5.3.20 Information Schema ENGINES Table

5.3.21 PERFORMANCE_SCHEMA Storage Engine

5.3.22 Storage Engine Development

5.3.22.1 Storage Engine FAQ

5.3.22.2 Engine-defined New Table/Field/Index Attributes

5.3.22.3 Table Discovery

5.3.23 Converting Tables from MyISAM to InnoDB

5.3.24 Machine Learning with MindsDB

5.4 Plugins

5.4.1 Plugin Overview

5.4.2 Information on Plugins

5.4.2.1 List of Plugins

5.4.2.2 Information Schema PLUGINS Table

5.4.2.3 Information Schema ALL_PLUGINS Table

5.4.3 Plugin SQL Statements

5.4.4 Creating and Building Plugins

42/4161

3553

3554

3555

3556

3558

3558

3562

3562

3563

3564

3569

3569

3570

3578

3580

3582

3585

3592

3592

3603

3608

3611

3621

3625

3627

3628

3629

3631

3634

3635

3637

3637

3638

3639

3645

3647

3652

3658

3666

3669

3673

3673

3673

3674

3675

3675

3679

3681

3683

3683

3685

3689

3691

3691

3693

3694

3695

3696

3696

3699

3702

3705

3709

3713

3716

3721

3725

5.4.4.1 Specifying Which Plugins to Build

5.4.4.2 Writing Plugins for MariaDB

5.4.5 MariaDB Audit Plugin

5.4.5.1 MariaDB Audit Plugin - Installation

5.4.5.2 MariaDB Audit Plugin - Configuration

5.4.5.3 MariaDB Audit Plugin - Log Settings

5.4.5.4 MariaDB Audit Plugin - Location and Rotation of Logs

5.4.5.5 MariaDB Audit Plugin - Log Format

5.4.5.6 MariaDB Audit Plugin - Versions

5.4.5.7 MariaDB Audit Plugin Options and System Variables

5.4.5.8 MariaDB Audit Plugin - Status Variables

5.4.6 Authentication Plugins

5.4.6.1 Pluggable Authentication Overview

5.4.6.2 Authentication Plugin - mysql_native_password

5.4.6.3 Authentication Plugin - mysql_old_password

5.4.6.4 Authentication Plugin - ed25519

5.4.6.5 Authentication Plugin - GSSAPI

5.4.6.6 Authentication with Pluggable Authentication Modules (PAM)

5.4.6.6.1 Authentication Plugin - PAM

5.4.6.6.2 User and Group Mapping with PAM

5.4.6.6.3 Configuring PAM Authentication and User Mapping with Unix Authentication

5.4.6.6.4 Configuring PAM Authentication and User Mapping with LDAP Authentication

5.4.6.7 Authentication Plugin - Unix Socket

5.4.6.8 Authentication Plugin - Named Pipe

5.4.6.9 Authentication Plugin - SHA-256

5.4.7 Password Validation Plugins

5.4.7.1 Simple Password Check Plugin

5.4.7.2 Cracklib Password Check Plugin

5.4.7.3 Password Reuse Check Plugin

5.4.7.4 Password Validation Plugin API

5.4.7.5 password_reuse_check_interval

5.4.8 Key Management and Encryption Plugins

5.4.8.1 Encryption Key Management

5.4.8.2 File Key Management Encryption Plugin

5.4.8.3 Hashicorp Key Management Plugin

5.4.8.4 AWS Key Management Encryption Plugin

5.4.8.5 Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin Setup Guide

5.4.8.6 Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin Advanced Usage

5.4.8.7 Eperi Key Management Encryption Plugin

5.4.8.8 Encryption Plugin API

5.4.9 MariaDB Replication & Cluster Plugins

5.4.9.1 Semisynchronous Replication

5.4.9.2 WSREP_INFO Plugin

5.4.10 Storage Engines

5.4.11 Other Plugins

5.4.11.1 Feedback Plugin

5.4.11.2 Locales Plugin

5.4.11.3 METADATA_LOCK_INFO Plugin

5.4.11.4 MYSQL_JSON

5.4.11.5 Query Cache Information Plugin

5.4.11.6 Query Response Time Plugin

5.4.11.7 SQL Error Log Plugin

5.4.11.8 User Statistics

5.4.11.9 User Variables Plugin

5.4.11.10 Disks Plugin

5.4.11.11 Compression Plugins

Chapter 6 Training & Tutorials

6.1 Beginner MariaDB Articles

6.1.1 A MariaDB Primer

6.1.2 MariaDB Basics

6.1.3 Getting Data from MariaDB

6.1.4 Adding and Changing Data in MariaDB

6.1.5 Altering Tables in MariaDB

6.1.6 Changing Times in MariaDB

6.1.7 Doing Time with MariaDB

6.1.8 Importing Data into MariaDB

6.1.9 Making Backups with mariadb-dump

43/4161

3727

3730

3731

3732

3735

3736

3740

3741

3744

3747

3751

3751

3752

3753

3755

3756

3756

3757

3757

3758

3759

3759

3760

3761

3762

3763

3763

3764

3764

3765

3768

3770

3770

3770

3771

3771

3772

3775

3776

3777

3777

3781

3782

3783

3785

3787

3788

3790

3790

3791

3791

3791

3792

3793

3793

3794

3795

3799

3802

3802

3803

3803

3807

3808

3808

3808

3813

6.1.10 MariaDB String Functions

6.1.11 Restoring Data from Dump Files

6.1.12 Basic SQL Queries: A Quick SQL Cheat Sheet

6.1.13 Connecting to MariaDB

6.1.14 External Tutorials

6.1.15 Useful MariaDB Queries

6.2 Basic MariaDB Articles

6.2.1 Basic SQL Debugging

6.2.2 Configuring MariaDB for Remote Client Access

6.2.3 Creating & Using Views

6.2.4 Getting Started with Indexes

6.2.5 Joining Tables with JOIN Clauses

6.2.6 The Essentials of an Index

6.2.7 Troubleshooting Connection Issues

6.3 Intermediate MariaDB Articles

6.3.1 Database Theory

6.3.1.1 Introduction to Relational Databases

6.3.1.2 Exploring Early Database Models

6.3.1.3 Understanding the Hierarchical Database Model

6.3.1.4 Understanding the Network Database Model

6.3.1.5 Understanding the Relational Database Model

6.3.1.6 Relational Databases: Basic Terms

6.3.1.7 Relational Databases: Table Keys

6.3.1.8 Relational Databases: Foreign Keys

6.3.1.9 Relational Databases: Views

6.3.1.10 Database Design

6.3.1.10.1 Database Design: Overview

6.3.1.10.2 Database Lifecycle

6.3.1.10.3 Database Design Phase 1: Analysis

6.3.1.10.4 Database Design Phase 2: Conceptual Design

6.3.1.10.5 Database Design Phase 2: Logical and Physical Design

6.3.1.10.6 Database Design Phase 3: Implementation

6.3.1.10.7 Database Design Phase 4: Testing

6.3.1.10.8 Database Design Phase 5: Operation

6.3.1.10.9 Database Design Phase 6: Maintenance

6.3.1.10.10 Database Design Example Phase 1: Analysis

6.3.1.10.11 Database Design Example Phase 2: Design

6.3.1.10.12 Database Design Example Phase 3: Implementation

6.3.1.10.13 Database Design Example Phases 4-6: Testing, Operation and Maintenance

6.3.1.11 Database Normalization

6.3.1.11.1 Database Normalization Overview

6.3.1.11.2 Database Normalization: 1st Normal Form

6.3.1.11.3 Database Normalization: 2nd Normal Form

6.3.1.11.4 Database Normalization: 3rd Normal Form

6.3.1.11.5 Database Normalization: Boyce-Codd Normal Form

6.3.1.11.6 Database Normalization: 4th Normal Form

6.3.1.11.7 Database Normalization: 5th Normal Form and Beyond

6.3.1.11.8 Understanding Denormalization

6.3.1.12 ACID: Concurrency Control with Transactions

6.3.2 Starting and Stopping MariaDB

6.4 Advanced MariaDB Articles

6.4.1 Development Articles

6.4.1.1 MariaDB Internals Documentation

6.4.1.1.1 Query Optimizer

6.4.1.1.1.1 Optimizer Trace

6.4.1.1.1.1.1 Optimizer Trace Overview

6.4.1.1.1.1.2 Optimizer Trace Guide

6.4.1.1.1.1.3 Basic Optimizer Trace Example

6.4.1.1.1.1.4 How to Collect Large Optimizer Traces

6.4.1.1.1.1.5 Optimizer Trace for Developers

6.4.1.1.1.2 Optimizer Development

6.4.1.1.1.3 The Optimizer Cost Model from MariaDB 11.0

6.4.1.1.2 Using MariaDB with Your Programs (API)

6.4.1.1.2.1 Error Codes

6.4.1.1.2.1.1 MariaDB Error Codes

6.4.1.1.2.1.2 Operating System Error Codes

6.4.1.1.2.1.3 SQLSTATE

44/4161

3813

3816

3817

3819

3819

3821

3821

3825

3826

3827

3829

3829

3833

3836

3838

3839

3840

3840

3844

3847

3850

3851

3851

3853

3853

3857

3861

3863

3864

3865

3866

3867

3867

3871

3874

3875

3876

3877

3878

3882

3882

3886

3890

3893

3894

3895

3897

3898

3899

3899

3901

3901

3905

3908

3909

3911

3912

3914

3916

3918

3918

3920

3920

3923

3924

3926

3927

6.4.1.1.2.2 Progress Reporting

6.4.1.2 EXPLAIN FORMAT=JSON in MySQL

Chapter 7 MariaDB Server Releases

7.0.0.1 MariaDB Server 11.4

7.0.0.2 Changes and Improvements in MariaDB 11.4

7.0.0.3 Release Notes - MariaDB 11.4 Series

7.0.0.3.1 MariaDB 11.4.1 Release Notes

7.0.0.3.2 MariaDB 11.4.0 Release Notes

7.0.0.4 MariaDB Server 11.3

7.0.0.5 Changes and Improvements in MariaDB 11.3

7.0.0.6 Release Notes - MariaDB 11.3 Series

7.0.0.6.1 MariaDB 11.3.2 Release Notes

7.0.0.6.2 MariaDB 11.3.1 Release Notes

7.0.0.6.3 MariaDB 11.3.0 Release Notes

7.0.0.7 MariaDB Server 11.2

7.0.0.8 Changes and Improvements in MariaDB 11.2

7.0.0.9 Release Notes - MariaDB 11.2 Series

7.0.0.9.1 MariaDB 11.2.3 Release Notes

7.0.0.9.2 MariaDB 11.2.2 Release Notes

7.0.0.9.3 MariaDB 11.2.1 Release Notes

7.0.0.9.4 MariaDB 11.2.0 Release Notes

7.0.0.10 MariaDB Server 11.1

7.0.0.11 Changes and Improvements in MariaDB 11.1

7.0.0.12 Release Notes - MariaDB 11.1 Series

7.0.0.12.1 MariaDB 11.1.4 Release Notes

7.0.0.12.2 MariaDB 11.1.3 Release Notes

7.0.0.12.3 MariaDB 11.1.2 Release Notes

7.0.0.12.4 MariaDB 11.1.1 Release Notes

7.0.0.12.5 MariaDB 11.1.0 Release Notes

7.0.0.13 MariaDB Server 11.0

7.0.0.14 Changes and Improvements in MariaDB 11.0

7.0.0.15 Release Notes - MariaDB 11.0 Series

7.0.0.15.1 MariaDB 11.0.4 Release Notes

7.0.0.15.2 MariaDB 11.0.3 Release Notes

7.0.0.15.3 MariaDB 11.0.2 Release Notes

7.0.0.15.4 MariaDB 11.0.1 Release Notes

7.0.0.15.5 MariaDB 11.0.0 Release Notes

7.0.1 MariaDB Server 10.11

7.0.1.1 Changes and Improvements in MariaDB 10.11

7.0.1.2 Release Notes - MariaDB 10.11 Series

7.0.1.2.1 MariaDB 10.11.7 Release Notes

7.0.1.2.2 MariaDB 10.11.6 Release Notes

7.0.1.2.3 MariaDB 10.11.5 Release Notes

7.0.1.2.4 MariaDB 10.11.4 Release Notes

7.0.1.2.5 MariaDB 10.11.3 Release Notes

7.0.1.2.6 MariaDB 10.11.2 Release Notes

7.0.1.2.7 MariaDB 10.11.1 Release Notes

7.0.1.2.8 MariaDB 10.11.0 Release Notes

7.0.2 MariaDB Server 10.10

7.0.2.1 Changes and Improvements in MariaDB 10.10

7.0.2.2 Release Notes - MariaDB 10.10 Series

7.0.2.2.1 MariaDB 10.10.7 Release Notes

7.0.2.2.2 MariaDB 10.10.6 Release Notes

7.0.2.2.3 MariaDB 10.10.5 Release Notes

7.0.2.2.4 MariaDB 10.10.4 Release Notes

7.0.2.2.5 MariaDB 10.10.3 Release Notes

7.0.2.2.6 MariaDB 10.10.2 Release Notes

7.0.2.2.7 MariaDB 10.10.1 Release Notes

7.0.2.2.8 MariaDB 10.10.0 Release Notes

7.0.3 MariaDB Server 10.9

7.0.3.1 Changes and Improvements in MariaDB 10.9

7.0.3.2 Release Notes - MariaDB 10.9 Series

7.0.3.2.1 MariaDB 10.9.8 Release Notes

7.0.3.2.2 MariaDB 10.9.7 Release Notes

7.0.3.2.3 MariaDB 10.9.6 Release Notes

7.0.3.2.4 MariaDB 10.9.5 Release Notes

7.0.3.2.5 MariaDB 10.9.4 Release Notes

45/4161

3928

3929

3932

3934

3935

3935

3937

3937

3940

3940

3944

3945

3949

3953

3955

3956

3958

3960

3961

3962

3964

3967

3968

3969

3971

3972

3973

3974

3976

3978

3978

3985

3986

3989

3992

3995

3996

3997

3998

4000

4002

4004

4005

4007

4008

4010

4011

4013

4014

4015

4017

4017

4019

4020

4023

4025

4027

4029

4029

4035

4036

4039

4042

4044

4045

4046

4047

7.0.3.2.6 MariaDB 10.9.3 Release Notes

7.0.3.2.7 MariaDB 10.9.2 Release Notes

7.0.3.2.8 MariaDB 10.9.1 Release Notes

7.0.3.2.9 MariaDB 10.9.0 Release Notes

7.0.4 MariaDB Server 10.8

7.0.4.1 Changes and Improvements in MariaDB 10.8

7.0.5 MariaDB Server 10.7

7.0.5.1 Changes and Improvements in MariaDB 10.7

7.0.6 MariaDB Server 10.6

7.0.6.1 Changes and Improvements in MariaDB 10.6

7.0.6.2 Release Notes - MariaDB 10.6 Series

7.0.6.2.1 MariaDB 10.6.17 Release Notes

7.0.6.2.2 MariaDB 10.6.16 Release Notes

7.0.6.2.3 MariaDB 10.6.15 Release Notes

7.0.6.2.4 MariaDB 10.6.14 Release Notes

7.0.6.2.5 MariaDB 10.6.13 Release Notes

7.0.6.2.6 MariaDB 10.6.12 Release Notes

7.0.6.2.7 MariaDB 10.6.11 Release Notes

7.0.6.2.8 MariaDB 10.6.10 Release Notes

7.0.6.2.9 MariaDB 10.6.9 Release Notes

7.0.6.2.10 MariaDB 10.6.8 Release Notes

7.0.6.2.11 MariaDB 10.6.7 Release Notes

7.0.6.2.12 MariaDB 10.6.6 Release Notes

7.0.6.2.13 MariaDB 10.6.5 Release Notes

7.0.6.2.14 MariaDB 10.6.4 Release Notes

7.0.6.2.15 MariaDB 10.6.3 Release Notes

7.0.6.2.16 MariaDB 10.6.2 Release Notes

7.0.6.2.17 MariaDB 10.6.1 Release Notes

7.0.6.2.18 MariaDB 10.6.0 Release Notes

7.0.7 MariaDB Server 10.5

7.0.7.1 Changes and Improvements in MariaDB 10.5

7.0.7.2 Release Notes - MariaDB 10.5 Series

7.0.7.2.1 MariaDB 10.5.24 Release Notes

7.0.7.2.2 MariaDB 10.5.23 Release Notes

7.0.7.2.3 MariaDB 10.5.22 Release Notes

7.0.7.2.4 MariaDB 10.5.21 Release Notes

7.0.7.2.5 MariaDB 10.5.20 Release Notes

7.0.7.2.6 MariaDB 10.5.19 Release Notes

7.0.7.2.7 MariaDB 10.5.18 Release Notes

7.0.7.2.8 MariaDB 10.5.17 Release Notes

7.0.7.2.9 MariaDB 10.5.16 Release Notes

7.0.7.2.10 MariaDB 10.5.15 Release Notes

7.0.7.2.11 MariaDB 10.5.14 Release Notes

7.0.7.2.12 MariaDB 10.5.13 Release Notes

7.0.7.2.13 MariaDB 10.5.12 Release Notes

7.0.7.2.14 MariaDB 10.5.11 Release Notes

7.0.7.2.15 MariaDB 10.5.10 Release Notes

7.0.7.2.16 MariaDB 10.5.9 Release Notes

7.0.7.2.17 MariaDB 10.5.8 Release Notes

7.0.7.2.18 MariaDB 10.5.7 Release Notes

7.0.7.2.19 MariaDB 10.5.6 Release Notes

7.0.7.2.20 MariaDB 10.5.5 Release Notes

7.0.7.2.21 MariaDB 10.5.4 Release Notes

7.0.7.2.22 MariaDB 10.5.3 Release Notes

7.0.7.2.23 MariaDB 10.5.2 Release Notes

7.0.7.2.24 MariaDB 10.5.1 Release Notes

7.0.7.2.25 MariaDB 10.5.0 Release Notes

7.0.8 MariaDB Server 10.4

7.0.8.1 Changes and Improvements in MariaDB 10.4

7.0.8.2 Release Notes - MariaDB 10.4 Series

7.0.8.2.1 MariaDB 10.4.33 Release Notes

7.0.8.2.2 MariaDB 10.4.32 Release Notes

7.0.8.2.3 MariaDB 10.4.31 Release Notes

7.0.8.2.4 MariaDB 10.4.30 Release Notes

7.0.8.2.5 MariaDB 10.4.29 Release Notes

7.0.8.2.6 MariaDB 10.4.28 Release Notes

7.0.8.2.7 MariaDB 10.4.27 Release Notes

46/4161

4049

4051

4053

4054

4055

4057

4058

4059

4061

4062

4063

4065

4065

4067

4069

4071

4072

4073

4074

4075

4076

4077

4079

4080

4081

4082

4084

4085

4091

4092

4098

4098

4105

4105

4112

4112

4120

4120

4124

4124

4126

4126

4129

4130

4130

4134

4136

4142

4142

4143

4144

4146

4147

4147

4148

4152

4152

4152

4152

4152

4156

4156

4157

4161

7.0.8.2.8 MariaDB 10.4.26 Release Notes

7.0.8.2.9 MariaDB 10.4.25 Release Notes

7.0.8.2.10 MariaDB 10.4.24 Release Notes

7.0.8.2.11 MariaDB 10.4.23 Release Notes

7.0.8.2.12 MariaDB 10.4.22 Release Notes

7.0.8.2.13 MariaDB 10.4.21 Release Notes

7.0.8.2.14 MariaDB 10.4.20 Release Notes

7.0.8.2.15 MariaDB 10.4.19 Release Notes

7.0.8.2.16 MariaDB 10.4.18 Release Notes

7.0.8.2.17 MariaDB 10.4.17 Release Notes

7.0.8.2.18 MariaDB 10.4.16 Release Notes

7.0.8.2.19 MariaDB 10.4.15 Release Notes

7.0.8.2.20 MariaDB 10.4.14 Release Notes

7.0.8.2.21 MariaDB 10.4.13 Release Notes

7.0.8.2.22 MariaDB 10.4.12 Release Notes

7.0.8.2.23 MariaDB 10.4.11 Release Notes

7.0.8.2.24 MariaDB 10.4.10 Release Notes

7.0.8.2.25 MariaDB 10.4.9 Release Notes

7.0.8.2.26 MariaDB 10.4.8 Release Notes

7.0.8.2.27 MariaDB 10.4.7 Release Notes

7.0.8.2.28 MariaDB 10.4.6 Release Notes

7.0.8.2.29 MariaDB 10.4.5 Release Notes

7.0.8.2.30 MariaDB 10.4.4 Release Notes

7.0.8.2.31 MariaDB 10.4.3 Release Notes

7.0.8.2.32 MariaDB 10.4.2 Release Notes

7.0.8.2.33 MariaDB 10.4.1 Release Notes

7.0.8.2.34 MariaDB 10.4.0 Release Notes

7.0.8.3 Changes & Improvements in MariaDB 10.3

7.0.9 MariaDB Server 10.2

7.0.9.1 Changes & Improvements in MariaDB 10.2

7.0.10 MariaDB Server 10.1

7.0.10.1 Changes & Improvements in MariaDB 10.1

7.0.11 MariaDB Server 10.0

7.0.11.1 Changes & Improvements in MariaDB 10.0

7.0.12 MariaDB Server 5.5

7.0.12.1 Changes & Improvements in MariaDB 5.5

7.0.13 MariaDB Server 5.3

7.0.13.1 Changes & Improvements in MariaDB 5.3

7.0.14 MariaDB Server 5.2

7.0.14.1 Changes & Improvements in MariaDB 5.2

7.0.15 MariaDB Server 5.1

7.0.15.1 Changes & Improvements in MariaDB 5.1

Chapter 8 The Community

8.1 Bug Tracking

8.1.1 MariaDB Community Bug Reporting

8.1.2 Reporting Documentation Bugs

8.1.3 MariaDB Community Bug Processing

8.1.4 MariaDB Security Bug Fixing Policy

8.1.5 Building MariaDB Server for Debugging

8.1.6 Extracting Entries from the Binary Log

8.1.7 Profiling Memory Usage

8.2 Contributing & Participating

8.2.1 Getting Help With MariaDB

8.2.2 Contributing to the MariaDB Project

8.2.3 Contributing Code

8.2.4 Donate to the Foundation

8.2.5 Sponsoring the MariaDB Project

8.2.6 Using Git with MariaDB

8.2.6.1 MariaDB Source Code

8.2.6.2 Using Git

8.2.6.3 Configuring Git to Send Commit Notices

8.3 Legal Matters

8.3.1 GNU General Public License, Version 2

8.3.2 Legal Notices for the Knowledge Base

47/4161

1 Using MariaDB Server
Documentation on using MariaDB Server.

SQL Statements & Structure

SQL statements, structure, and rules.

Built-in Functions

Functions and procedures in MariaDB.

Clients & Utilities

Client and utility programs for MariaDB.

1.1 SQL Statements & Structure
The letters SQL stand for Structured Query Language. As with all languages4even computer languages4there are

grammar rules. This includes a certain structure to statements, acceptable punctuation (i.e., operators and delimiters), and a

vocabulary (i.e., reserve words).

SQL Statements

Explanations of all of the MariaDB SQL statements.

SQL Language Structure

Explanation of SQL grammar rules, including reserved words and literals.

Geographic & Geometric Features

Spatial extensions for geographic and geometric features.

NoSQL

NoSQL-related commands and interfaces

Operators

Operators for comparing and assigning values.

Sequences

Sequence objects, an alternative to AUTO_INCREMENT.

Temporal Tables

MariaDB supports system-versioning, application-time periods and bitemporal tables.

Unleashing the Power of Advanced SQL: Joins, Subqueries, and Set Operations

SQL (Structured Query Language) is a highly potent language used in the rea...

There are 19 related questions .

1.1.1 SQL Statements
Complete list of SQL statements for data definition, data manipulation, etc.

Account Management SQL Commands

CREATE/DROP USER, GRANT, REVOKE, SET PASSWORD etc.

Administrative SQL Statements

SQL statements for setting, flushing and displaying server variables and resources.

Data Definition

SQL commands for defining data, such as ALTER, CREATE, DROP, RENAME etc.

Data Manipulation

SQL commands for querying and manipulating data, such as SELECT, UPDATE, DELETE etc.

48/4161

https://mariadb.com/kb/en/unleashing-the-power-of-advanced-sql-joins-subqueries-and-set-operations/
https://mariadb.com/kb/en/sql-statements-structure/+questions/

Prepared Statements

Prepared statements from any client using the text based prepared statement interface.

Programmatic & Compound Statements

Compound SQL statements for stored routines and in general.

Stored Routine Statements

SQL statements related to creating and using stored routines.

Table Statements

Documentation on creating, altering, analyzing and maintaining tables.

Transactions

Sequence of statements that are either completely successful, or have no effect on any schemas

HELP Command

The HELP command will retrieve syntax and help within the mariadb client.

Comment Syntax

Comment syntax and style.

Built-in Functions

Functions and procedures in MariaDB.

There are 26 related questions .

1.1.1.1 Account Management SQL Commands
CREATE/DROP USER, GRANT, REVOKE, SET PASSWORD etc.

CREATE USER

Create new MariaDB accounts.

ALTER USER

Modify an existing MariaDB account.

DROP USER

Remove one or more MariaDB accounts.

GRANT

Create accounts and set privileges or roles.

RENAME USER

Rename user account.

REVOKE

Remove privileges or roles.

SET PASSWORD

Assign password to an existing MariaDB user.

CREATE ROLE

Add new roles.

DROP ROLE

Drop a role.

SET ROLE

Enable a role.

8

1

1

6

4

1

49/4161

https://mariadb.com/kb/en/sql-statements/+questions/

SET DEFAULT ROLE

Sets a default role for a specified (or current) user.

SHOW GRANTS

View GRANT statements.

SHOW CREATE USER

Show the CREATE USER statement that creates a specified user.

There are 3 related questions .

5

9

1.1.1.1.1 CREATE USER

Syntax

CREATE [OR REPLACE] USER [IF NOT EXISTS]

 user_specification [,user_specification ...]

 [REQUIRE {NONE | tls_option [[AND] tls_option ...] }]

 [WITH resource_option [resource_option ...]]

 [lock_option] [password_option]

user_specification:

 username [authentication_option]

authentication_option:

 IDENTIFIED BY 'password'

 | IDENTIFIED BY PASSWORD 'password_hash'

 | IDENTIFIED {VIA|WITH} authentication_rule [OR authentication_rule ...]

authentication_rule:

 authentication_plugin

 | authentication_plugin {USING|AS} 'authentication_string'

 | authentication_plugin {USING|AS} PASSWORD('password')

tls_option:

 SSL

 | X509

 | CIPHER 'cipher'

 | ISSUER 'issuer'

 | SUBJECT 'subject'

resource_option:

 MAX_QUERIES_PER_HOUR count

 | MAX_UPDATES_PER_HOUR count

 | MAX_CONNECTIONS_PER_HOUR count

 | MAX_USER_CONNECTIONS count

 | MAX_STATEMENT_TIME time

password_option:

 PASSWORD EXPIRE

 | PASSWORD EXPIRE DEFAULT

 | PASSWORD EXPIRE NEVER

 | PASSWORD EXPIRE INTERVAL N DAY

lock_option:

 ACCOUNT LOCK

 | ACCOUNT UNLOCK

}

50/4161

https://mariadb.com/kb/en/account-management-sql-commands/+questions/

Contents
1. Syntax

2. Description

3. OR REPLACE

4. IF NOT EXISTS

5. Authentication Options

1. IDENTIFIED BY 'password'

2. IDENTIFIED BY PASSWORD 'password_hash'

3. IDENTIFIED {VIA|WITH} authentication_plugin

6. TLS Options

7. Resource Limit Options

8. Account Names

1. Host Name Component

2. User Name Component

3. Anonymous Accounts

1. Fixing a Legacy Default Anonymous Account

9. Password Expiry

10. Account Locking

Description
The CREATE USER statement creates new MariaDB accounts. To use it, you must have the global CREATE USER privilege

or the INSERT privilege for the mysql database. For each account, CREATE USER creates a new row in mysql.user (until

MariaDB 10.3 this is a table, from MariaDB 10.4 it's a view) or mysql.global_priv_table (from MariaDB 10.4) that has no

privileges.

If any of the specified accounts, or any permissions for the specified accounts, already exist, then the server returns ERROR

1396 (HY000) . If an error occurs, CREATE USER will still create the accounts that do not result in an error. Only one error

is produced for all users which have not been created:

ERROR 1396 (HY000):

 Operation CREATE USER failed for 'u1'@'%','u2'@'%'

CREATE USER , DROP USER, CREATE ROLE, and DROP ROLE all produce the same error code when they fail.

See Account Names below for details on how account names are specified.

OR REPLACE
If the optional OR REPLACE clause is used, it is basically a shortcut for:

DROP USER IF EXISTS name;

CREATE USER name ...;

For example:

CREATE USER foo2@test IDENTIFIED BY 'password';

ERROR 1396 (HY000): Operation CREATE USER failed for 'foo2'@'test'

CREATE OR REPLACE USER foo2@test IDENTIFIED BY 'password';

Query OK, 0 rows affected (0.00 sec)

IF NOT EXISTS
When the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the specified user already

exists.

For example:

51/4161

CREATE USER foo2@test IDENTIFIED BY 'password';

ERROR 1396 (HY000): Operation CREATE USER failed for 'foo2'@'test'

CREATE USER IF NOT EXISTS foo2@test IDENTIFIED BY 'password';

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1973 | Can't create user 'foo2'@'test'; it already exists |

+-------+------+--+

Authentication Options

IDENTIFIED BY 'password'

The optional IDENTIFIED BY clause can be used to provide an account with a password. The password should be

specified in plain text. It will be hashed by the PASSWORD function prior to being stored in the

mysql.user/mysql.global_priv_table table.

For example, if our password is mariadb , then we can create the user with:

CREATE USER foo2@test IDENTIFIED BY 'mariadb';

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED BY PASSWORD 'password_hash'

The optional IDENTIFIED BY PASSWORD clause can be used to provide an account with a password that has already been

hashed. The password should be specified as a hash that was provided by the PASSWORD function. It will be stored in the

mysql.user/mysql.global_priv_table table as-is.

For example, if our password is mariadb , then we can find the hash with:

SELECT PASSWORD('mariadb');

+---+

| PASSWORD('mariadb') |

+---+

| *54958E764CE10E50764C2EECBB71D01F08549980 |

+---+

1 row in set (0.00 sec)

And then we can create a user with the hash:

CREATE USER foo2@test IDENTIFIED BY PASSWORD '*54958E764CE10E50764C2EECBB71D01F08549980';

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED {VIA|WITH} authentication_plugin

The optional IDENTIFIED VIA authentication_plugin allows you to specify that the account should be authenticated

by a specific authentication plugin. The plugin name must be an active authentication plugin as per SHOW PLUGINS. If it

doesn't show up in that output, then you will need to install it with INSTALL PLUGIN or INSTALL SONAME.

VIA and WITH are synonyms.

For example, this could be used with the PAM authentication plugin:

52/4161

CREATE USER foo2@test IDENTIFIED VIA pam;

Some authentication plugins allow additional arguments to be specified after a USING or AS keyword. For example, the

PAM authentication plugin accepts a service name:

CREATE USER foo2@test IDENTIFIED VIA pam USING 'mariadb';

The exact meaning of the additional argument would depend on the specific authentication plugin.

The USING or AS keyword can also be used to provide a plain-text password to a plugin if it's provided as an

argument to the PASSWORD() function. This is only valid for authentication plugins that have implemented a hook for

the PASSWORD() function. For example, the ed25519 authentication plugin supports this:

CREATE USER safe@'%' IDENTIFIED VIA ed25519 USING PASSWORD('secret');

One can specify many authentication plugins, they all work as alternatives ways of authenticating a user:

CREATE USER safe@'%' IDENTIFIED VIA ed25519 USING PASSWORD('secret') OR unix_socket;

By default, when you create a user without specifying an authentication plugin, MariaDB uses the mysql_native_password

plugin.

TLS Options
By default, MariaDB transmits data between the server and clients without encrypting it. This is generally acceptable when

the server and client run on the same host or in networks where security is guaranteed through other means. However, in

cases where the server and client exist on separate networks or they are in a high-risk network, the lack of encryption does

introduce security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network

between them.

To mitigate this concern, MariaDB allows you to encrypt data in transit between the server and clients using the Transport

Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the SSL

protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still uses

the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix ssl_, but

internally, MariaDB only supports its secure successors.

See Secure Connections Overview for more information about how to determine whether your MariaDB server has TLS

support.

You can set certain TLS-related restrictions for specific user accounts. For instance, you might use this with user accounts

that require access to sensitive data while sending it across networks that you do not control. These restrictions can be

enabled for a user account with the CREATE USER, ALTER USER, or GRANT statements. The following options are

available:

Option Description

REQUIRE

NONE
TLS is not required for this account, but can still be used.

REQUIRE

SSL

The account must use TLS, but no valid X509 certificate is required. This option cannot be combined with

other TLS options.

REQUIRE

X509

The account must use TLS and must have a valid X509 certificate. This option implies REQUIRE SSL . This

option cannot be combined with other TLS options.

REQUIRE

ISSUER

'issuer'

The account must use TLS and must have a valid X509 certificate. Also, the Certificate Authority must be

the one specified via the string issuer . This option implies REQUIRE X509 . This option can be combined

with the SUBJECT , and CIPHER options in any order.

REQUIRE

SUBJECT

'subject'

The account must use TLS and must have a valid X509 certificate. Also, the certificate's Subject must be the

one specified via the string subject . This option implies REQUIRE X509 . This option can be combined

with the ISSUER , and CIPHER options in any order.

MariaDB starting with 10.4.0

MariaDB starting with 10.4.3

53/4161

REQUIRE

CIPHER

'cipher'

The account must use TLS, but no valid X509 certificate is required. Also, the encryption used for the

connection must use a specific cipher method specified in the string cipher . This option implies REQUIRE

SSL . This option can be combined with the ISSUER , and SUBJECT options in any order.

The REQUIRE keyword must be used only once for all specified options, and the AND keyword can be used to separate

individual options, but it is not required.

For example, you can create a user account that requires these TLS options with the following:

CREATE USER 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland'

 AND ISSUER '/C=FI/ST=Somewhere/L=City/ O=Some Company/CN=Peter

Parker/emailAddress=p.parker@marvel.com'

 AND CIPHER 'SHA-DES-CBC3-EDH-RSA';

If any of these options are set for a specific user account, then any client who tries to connect with that user account will

have to be configured to connect with TLS.

See Securing Connections for Client and Server for information on how to enable TLS on the client and server.

Resource Limit Options
It is possible to set per-account limits for certain server resources. The following table shows the values that can be set per

account:

Limit Type Decription

MAX_QUERIES_PER_HOUR Number of statements that the account can issue per hour (including updates)

MAX_UPDATES_PER_HOUR Number of updates (not queries) that the account can issue per hour

MAX_CONNECTIONS_PER_HOUR Number of connections that the account can start per hour

MAX_USER_CONNECTIONS

Number of simultaneous connections that can be accepted from the same account; if it is

0, max_connections will be used instead; if max_connections is 0, there is no limit

for this account's simultaneous connections.

MAX_STATEMENT_TIME
Timeout, in seconds, for statements executed by the user. See also Aborting Statements

that Exceed a Certain Time to Execute.

If any of these limits are set to 0 , then there is no limit for that resource for that user.

Here is an example showing how to create a user with resource limits:

CREATE USER 'someone'@'localhost' WITH

 MAX_USER_CONNECTIONS 10

 MAX_QUERIES_PER_HOUR 200;

The resources are tracked per account, which means 'user'@'server' ; not per user name or per connection.

The count can be reset for all users using FLUSH USER_RESOURCES, FLUSH PRIVILEGES or mariadb-admin reload.

Per account resource limits are stored in the user table, in the mysql database. Columns used for resources limits are

named max_questions , max_updates , max_connections (for MAX_CONNECTIONS_PER_HOUR), and

max_user_connections (for MAX_USER_CONNECTIONS).

Account Names
Account names have both a user name component and a host name component, and are specified as

'user_name'@'host_name' .

The user name and host name may be unquoted, quoted as strings using double quotes (") or single quotes ('), or

quoted as identifiers using backticks (`). You must use quotes when using special characters (such as a hyphen) or

wildcard characters. If you quote, you must quote the user name and host name separately (for example

'user_name'@'host_name').

Host Name Component

If the host name is not provided, it is assumed to be '%' .

54/4161

Host names may contain the wildcard characters % and _ . They are matched as if by the LIKE clause. If you need to use

a wildcard character literally (for example, to match a domain name with an underscore), prefix the character with a

backslash. See LIKE for more information on escaping wildcard characters.

Host name matches are case-insensitive. Host names can match either domain names or IP addresses. Use

'localhost' as the host name to allow only local client connections. On Linux, the loopback interface (127.0.0.1) will not

match 'localhost' as it is not considered a local connection: this means that only connections via UNIX-domain sockets will

match 'localhost'.

You can use a netmask to match a range of IP addresses using 'base_ip/netmask' as the host name. A user with an IP

address ip_addr will be allowed to connect if the following condition is true:

ip_addr & netmask = base_ip

For example, given a user:

CREATE USER 'maria'@'247.150.130.0/255.255.255.0';

the IP addresses satisfying this condition range from 247.150.130.0 to 247.150.130.255.

Using 255.255.255.255 is equivalent to not using a netmask at all. Netmasks cannot be used for IPv6 addresses.

Note that the credentials added when creating a user with the '%' wildcard host will not grant access in all cases. For

example, some systems come with an anonymous localhost user, and when connecting from localhost this will take

precedence.

Before MariaDB 10.6, the host name component could be up to 60 characters in length. Starting from MariaDB 10.6, it can

be up to 255 characters.

User Name Component

User names must match exactly, including case. A user name that is empty is known as an anonymous account and is

allowed to match a login attempt with any user name component. These are described more in the next section.

For valid identifiers to use as user names, see Identifier Names.

It is possible for more than one account to match when a user connects. MariaDB selects the first matching account after

sorting according to the following criteria:

Accounts with an exact host name are sorted before accounts using a wildcard in the host name. Host names using a

netmask are considered to be exact for sorting.

Accounts with a wildcard in the host name are sorted according to the position of the first wildcard character. Those

with a wildcard character later in the host name sort before those with a wildcard character earlier in the host name.

Accounts with a non-empty user name sort before accounts with an empty user name.

Accounts with an empty user name are sorted last. As mentioned previously, these are known as anonymous

accounts. These are described more in the next section.

The following table shows a list of example account as sorted by these criteria:

+---------+-------------+

| User | Host |

+---------+-------------+

| joffrey | 192.168.0.3 |

| | 192.168.0.% |

| joffrey | 192.168.% |

| | 192.168.% |

+---------+-------------+

Once connected, you only have the privileges granted to the account that matched, not all accounts that could have

matched. For example, consider the following commands:

CREATE USER 'joffrey'@'192.168.0.3';

CREATE USER 'joffrey'@'%';

GRANT SELECT ON test.t1 to 'joffrey'@'192.168.0.3';

GRANT SELECT ON test.t2 to 'joffrey'@'%';

If you connect as joffrey from 192.168.0.3 , you will have the SELECT privilege on the table test.t1 , but not on the

table test.t2 . If you connect as joffrey from any other IP address, you will have the SELECT privilege on the table

test.t2 , but not on the table test.t1 .

55/4161

Usernames can be up to 80 characters long before 10.6 and starting from 10.6 it can be 128 characters long.

Anonymous Accounts

Anonymous accounts are accounts where the user name portion of the account name is empty. These accounts act as

special catch-all accounts. If a user attempts to log into the system from a host, and an anonymous account exists with a

host name portion that matches the user's host, then the user will log in as the anonymous account if there is no more

specific account match for the user name that the user entered.

For example, here are some anonymous accounts:

CREATE USER ''@'localhost';

CREATE USER ''@'192.168.0.3';

Fixing a Legacy Default Anonymous Account

On some systems, the mysql.db table has some entries for the ''@'%' anonymous account by default. Unfortunately,

there is no matching entry in the mysql.user/mysql.global_priv_table table, which means that this anonymous account

doesn't exactly exist, but it does have privileges--usually on the default test database created by mariadb-install-db.

These account-less privileges are a legacy that is leftover from a time when MySQL's privilege system was less advanced.

This situation means that you will run into errors if you try to create a ''@'%' account. For example:

CREATE USER ''@'%';

ERROR 1396 (HY000): Operation CREATE USER failed for ''@'%'

The fix is to DELETE the row in the mysql.db table and then execute FLUSH PRIVILEGES:

DELETE FROM mysql.db WHERE User='' AND Host='%';

FLUSH PRIVILEGES;

Note that FLUSH PRIVILEGES is only needed if one modifies the mysql tables directly. It is not needed when using

CREATE USER , DROP USER , GRANT etc.

And then the account can be created:

CREATE USER ''@'%';

Query OK, 0 rows affected (0.01 sec)

See MDEV-13486 for more information.

Password Expiry

Besides automatic password expiry, as determined by default_password_lifetime, password expiry times can be set on

an individual user basis, overriding the global setting, for example:

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

See User Password Expiry for more details.

Account Locking

Account locking permits privileged administrators to lock/unlock user accounts. No new client connections will be

permitted if an account is locked (existing connections are not affected). For example:

CREATE USER 'marijn'@'localhost' ACCOUNT LOCK;

See Account Locking for more details.

From MariaDB 10.4.7 and MariaDB 10.5.8, the lock_option and password_option clauses can occur in either order.

MariaDB starting with 10.4.3

MariaDB starting with 10.4.2

56/4161

https://jira.mariadb.org/browse/MDEV-13486

1.1.1.1.2 ALTER USER

Syntax

ALTER USER [IF EXISTS]

 user_specification [,user_specification] ...

 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]

 [WITH resource_option [resource_option] ...]

 [lock_option] [password_option]

user_specification:

 username [authentication_option]

authentication_option:

 IDENTIFIED BY 'password'

 | IDENTIFIED BY PASSWORD 'password_hash'

 | IDENTIFIED {VIA|WITH} authentication_rule [OR authentication_rule] ...

authentication_rule:

 authentication_plugin

 | authentication_plugin {USING|AS} 'authentication_string'

 | authentication_plugin {USING|AS} PASSWORD('password')

tls_option

 SSL

 | X509

 | CIPHER 'cipher'

 | ISSUER 'issuer'

 | SUBJECT 'subject'

resource_option

 MAX_QUERIES_PER_HOUR count

 | MAX_UPDATES_PER_HOUR count

 | MAX_CONNECTIONS_PER_HOUR count

 | MAX_USER_CONNECTIONS count

 | MAX_STATEMENT_TIME time

password_option:

 PASSWORD EXPIRE

 | PASSWORD EXPIRE DEFAULT

 | PASSWORD EXPIRE NEVER

 | PASSWORD EXPIRE INTERVAL N DAY

lock_option:

 ACCOUNT LOCK

 | ACCOUNT UNLOCK

}

Contents
1. Syntax

2. Description

3. IF EXISTS

4. Account Names

5. Authentication Options

1. IDENTIFIED BY 'password'

2. IDENTIFIED BY PASSWORD 'password_hash'

3. IDENTIFIED {VIA|WITH} authentication_plugin

6. TLS Options

7. Resource Limit Options

8. Password Expiry

9. Account Locking

Description
The ALTER USER statement modifies existing MariaDB accounts. To use it, you must have the global CREATE USER

privilege or the UPDATE privilege for the mysql database. The global SUPER privilege is also required if the read_only

system variable is enabled.

57/4161

If any of the specified user accounts do not yet exist, an error results. If an error occurs, ALTER USER will still modify the

accounts that do not result in an error. Only one error is produced for all users which have not been modified.

For renaming an existing account (user name and/or host), see RENAME USER.

IF EXISTS
When the IF EXISTS clause is used, MariaDB will return a warning instead of an error for each specified user that does

not exist.

Account Names
For ALTER USER statements, account names are specified as the username argument in the same way as they are for

CREATE USER statements. See account names from the CREATE USER page for details on how account names are

specified.

CURRENT_USER or CURRENT_USER() can also be used to alter the account logged into the current session. For example,

to change the current user's password to mariadb :

ALTER USER CURRENT_USER() IDENTIFIED BY 'mariadb';

Authentication Options

From MariaDB 10.4, it is possible to use more than one authentication plugin for each user account. For example, this

can be useful to slowly migrate users to the more secure ed25519 authentication plugin over time, while allowing the

old mysql_native_password authentication plugin as an alternative for the transitional period. See Authentication from

MariaDB 10.4 for more.

When running ALTER USER , not specifying an authentication option in the IDENTIFIED VIA clause will remove that

authentication method. (However this was not the case before MariaDB 10.4.13, see MDEV-21928)

For example, a user is created with the ability to authenticate via both a password and unix_socket:

CREATE USER 'bob'@'localhost'

 IDENTIFIED VIA mysql_native_password USING PASSWORD('pwd')

 OR unix_socket;

SHOW CREATE USER 'bob'@'localhost'\G

*************************** 1. row ***************************

CREATE USER for bob@localhost: CREATE USER `bob`@`localhost`

 IDENTIFIED VIA mysql_native_password

 USING '*975B2CD4FF9AE554FE8AD33168FBFC326D2021DD'

 OR unix_socket

If the user's password is updated, but unix_socket authentication is not specified in the IDENTIFIED VIA clause,

unix_socket authentication will no longer be permitted.

ALTER USER 'bob'@'localhost' IDENTIFIED VIA mysql_native_password

 USING PASSWORD('pwd2');

SHOW CREATE USER 'bob'@'localhost'\G

*************************** 1. row ***************************

CREATE USER for bob@localhost: CREATE USER `bob`@`localhost`

 IDENTIFIED BY PASSWORD '*38366FDA01695B6A5A9DD4E428D9FB8F7EB75512'

IDENTIFIED BY 'password'

The optional IDENTIFIED BY clause can be used to provide an account with a password. The password should be

specified in plain text. It will be hashed by the PASSWORD function prior to being stored to the mysql.user table.

For example, if our password is mariadb , then we can set the account's password with:

ALTER USER foo2@test IDENTIFIED BY 'mariadb';

MariaDB starting with 10.4

58/4161

https://jira.mariadb.org/browse/MDEV-21928

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED BY PASSWORD 'password_hash'

The optional IDENTIFIED BY PASSWORD clause can be used to provide an account with a password that has already been

hashed. The password should be specified as a hash that was provided by the PASSWORD#function. It will be stored to

the mysql.user table as-is.

For example, if our password is mariadb , then we can find the hash with:

SELECT PASSWORD('mariadb');

+---+

| PASSWORD('mariadb') |

+---+

| *54958E764CE10E50764C2EECBB71D01F08549980 |

+---+

And then we can set an account's password with the hash:

ALTER USER foo2@test

 IDENTIFIED BY PASSWORD '*54958E764CE10E50764C2EECBB71D01F08549980';

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED {VIA|WITH} authentication_plugin

The optional IDENTIFIED VIA authentication_plugin allows you to specify that the account should be authenticated

by a specific authentication plugin. The plugin name must be an active authentication plugin as per SHOW PLUGINS. If it

doesn't show up in that output, then you will need to install it with INSTALL PLUGIN or INSTALL SONAME.

For example, this could be used with the PAM authentication plugin:

ALTER USER foo2@test IDENTIFIED VIA pam;

Some authentication plugins allow additional arguments to be specified after a USING or AS keyword. For example, the

PAM authentication plugin accepts a service name:

ALTER USER foo2@test IDENTIFIED VIA pam USING 'mariadb';

The exact meaning of the additional argument would depend on the specific authentication plugin.

In MariaDB 10.4 and later, the USING or AS keyword can also be used to provide a plain-text password to a plugin if it's

provided as an argument to the PASSWORD() function. This is only valid for authentication plugins that have implemented

a hook for the PASSWORD() function. For example, the ed25519 authentication plugin supports this:

ALTER USER safe@'%' IDENTIFIED VIA ed25519 USING PASSWORD('secret');

TLS Options
By default, MariaDB transmits data between the server and clients without encrypting it. This is generally acceptable when

the server and client run on the same host or in networks where security is guaranteed through other means. However, in

cases where the server and client exist on separate networks or they are in a high-risk network, the lack of encryption does

introduce security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network

between them.

To mitigate this concern, MariaDB allows you to encrypt data in transit between the server and clients using the Transport

Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the SSL

protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still uses

59/4161

the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix ssl_, but

internally, MariaDB only supports its secure successors.

See Secure Connections Overview for more information about how to determine whether your MariaDB server has TLS

support.

You can set certain TLS-related restrictions for specific user accounts. For instance, you might use this with user accounts

that require access to sensitive data while sending it across networks that you do not control. These restrictions can be

enabled for a user account with the CREATE USER, ALTER USER, or GRANT statements. The following options are

available:

Option Description

REQUIRE

NONE
TLS is not required for this account, but can still be used.

REQUIRE

SSL

The account must use TLS, but no valid X509 certificate is required. This option cannot be combined with

other TLS options.

REQUIRE

X509

The account must use TLS and must have a valid X509 certificate. This option implies REQUIRE SSL . This

option cannot be combined with other TLS options.

REQUIRE

ISSUER

'issuer'

The account must use TLS and must have a valid X509 certificate. Also, the Certificate Authority must be

the one specified via the string issuer . This option implies REQUIRE X509 . This option can be combined

with the SUBJECT , and CIPHER options in any order.

REQUIRE

SUBJECT

'subject'

The account must use TLS and must have a valid X509 certificate. Also, the certificate's Subject must be the

one specified via the string subject . This option implies REQUIRE X509 . This option can be combined

with the ISSUER , and CIPHER options in any order.

REQUIRE

CIPHER

'cipher'

The account must use TLS, but no valid X509 certificate is required. Also, the encryption used for the

connection must use a specific cipher method specified in the string cipher . This option implies REQUIRE

SSL . This option can be combined with the ISSUER , and SUBJECT options in any order.

The REQUIRE keyword must be used only once for all specified options, and the AND keyword can be used to separate

individual options, but it is not required.

For example, you can alter a user account to require these TLS options with the following:

ALTER USER 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland' AND

 ISSUER '/C=FI/ST=Somewhere/L=City/ O=Some Company/CN=Peter Parker/emailAddress=p.parker@marvel.com'

 AND CIPHER 'SHA-DES-CBC3-EDH-RSA';

If any of these options are set for a specific user account, then any client who tries to connect with that user account will

have to be configured to connect with TLS.

See Securing Connections for Client and Server for information on how to enable TLS on the client and server.

Resource Limit Options
It is possible to set per-account limits for certain server resources. The following table shows the values that can be set per

account:

Limit Type Description

MAX_QUERIES_PER_HOUR Number of statements that the account can issue per hour (including updates)

MAX_UPDATES_PER_HOUR Number of updates (not queries) that the account can issue per hour

MAX_CONNECTIONS_PER_HOUR Number of connections that the account can start per hour

MAX_USER_CONNECTIONS

Number of simultaneous connections that can be accepted from the same account; if it is

0, max_connections will be used instead; if max_connections is 0, there is no limit

for this account's simultaneous connections.

MAX_STATEMENT_TIME
Timeout, in seconds, for statements executed by the user. See also Aborting Statements

that Exceed a Certain Time to Execute.

If any of these limits are set to 0 , then there is no limit for that resource for that user.

Here is an example showing how to set an account's resource limits:

60/4161

ALTER USER 'someone'@'localhost' WITH

 MAX_USER_CONNECTIONS 10

 MAX_QUERIES_PER_HOUR 200;

The resources are tracked per account, which means 'user'@'server' ; not per user name or per connection.

The count can be reset for all users using FLUSH USER_RESOURCES, FLUSH PRIVILEGES or mysqladmin reload.

Per account resource limits are stored in the user table, in the mysql database. Columns used for resources limits are

named max_questions , max_updates , max_connections (for MAX_CONNECTIONS_PER_HOUR), and

max_user_connections (for MAX_USER_CONNECTIONS).

Password Expiry

Besides automatic password expiry, as determined by default_password_lifetime, password expiry times can be set on

an individual user basis, overriding the global setting, for example:

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE NEVER;

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE DEFAULT;

See User Password Expiry for more details.

Account Locking

Account locking permits privileged administrators to lock/unlock user accounts. No new client connections will be

permitted if an account is locked (existing connections are not affected). For example:

ALTER USER 'marijn'@'localhost' ACCOUNT LOCK;

See Account Locking for more details.

From MariaDB 10.4.7 and MariaDB 10.5.8, the lock_option and password_option clauses can occur in either order.

MariaDB starting with 10.4.3

MariaDB starting with 10.4.2

1.1.1.1.3 DROP USER

Syntax

DROP USER [IF EXISTS] user_name [, user_name] ...

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
The DROP USER statement removes one or more MariaDB accounts. It removes privilege rows for the account from all

grant tables. To use this statement, you must have the global CREATE USER privilege or the DELETE privilege for the

mysql database. Each account is named using the same format as for the CREATE USER statement; for example,

'jeffrey'@'localhost' . If you specify only the user name part of the account name, a host name part of '%' is used.

For additional information about specifying account names, see CREATE USER.

Note that, if you specify an account that is currently connected, it will not be deleted until the connection is closed. The

connection will not be automatically closed.

If any of the specified user accounts do not exist, ERROR 1396 (HY000) results. If an error occurs, DROP USER will still

drop the accounts that do not result in an error. Only one error is produced for all users which have not been dropped:

61/4161

ERROR 1396 (HY000): Operation DROP USER failed for 'u1'@'%','u2'@'%'

Failed CREATE or DROP operations, for both users and roles, produce the same error code.

IF EXISTS

If the IF EXISTS clause is used, MariaDB will return a note instead of an error if the user does not exist.

Examples

DROP USER bob;

DROP USER foo2@localhost,foo2@'127.%';

IF EXISTS :

DROP USER bob;

ERROR 1396 (HY000): Operation DROP USER failed for 'bob'@'%'

DROP USER IF EXISTS bob;

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+---+

| Level | Code | Message |

+-------+------+---+

| Note | 1974 | Can't drop user 'bob'@'%'; it doesn't exist |

+-------+------+---+

1.1.1.1.4 GRANT

62/4161

Contents
1. Syntax

2. Description

1. Account Names

2. Implicit Account Creation

3. Privilege Levels

1. The USAGE Privilege

2. The ALL PRIVILEGES Privilege

3. The GRANT OPTION Privilege

4. Global Privileges

1. BINLOG ADMIN

2. BINLOG MONITOR

3. BINLOG REPLAY

4. CONNECTION ADMIN

5. CREATE USER

6. FEDERATED ADMIN

7. FILE

8. GRANT OPTION

9. PROCESS

10. READ_ONLY ADMIN

11. RELOAD

12. REPLICATION CLIENT

13. REPLICATION MASTER ADMIN

14. REPLICA MONITOR

15. REPLICATION REPLICA

16. REPLICATION SLAVE

17. REPLICATION SLAVE ADMIN

18. SET USER

19. SHOW DATABASES

20. SHUTDOWN

21. SUPER

5. Database Privileges

6. Table Privileges

7. Column Privileges

8. Function Privileges

9. Procedure Privileges

10. Proxy Privileges

4. Authentication Options

1. IDENTIFIED BY 'password'

2. IDENTIFIED BY PASSWORD 'password_hash'

3. IDENTIFIED {VIA|WITH} authentication_plugin

5. Resource Limit Options

6. TLS Options

7. Roles

1. Syntax

8. TO PUBLIC

1. Syntax

3. Grant Examples

1. Granting Root-like Privileges

Syntax

63/4161

GRANT

 priv_type [(column_list)]

 [, priv_type [(column_list)]] ...

 ON [object_type] priv_level

 TO user_specification [user_options ...]

user_specification:

 username [authentication_option]

 | PUBLIC

authentication_option:

 IDENTIFIED BY 'password'

 | IDENTIFIED BY PASSWORD 'password_hash'

 | IDENTIFIED {VIA|WITH} authentication_rule [OR authentication_rule ...]

authentication_rule:

 authentication_plugin

 | authentication_plugin {USING|AS} 'authentication_string'

 | authentication_plugin {USING|AS} PASSWORD('password')

GRANT PROXY ON username

 TO user_specification [, user_specification ...]

 [WITH GRANT OPTION]

GRANT rolename TO grantee [, grantee ...]

 [WITH ADMIN OPTION]

grantee:

 rolename

 username [authentication_option]

user_options:

 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]

 [WITH with_option [with_option] ...]

object_type:

 TABLE

 | FUNCTION

 | PROCEDURE

 | PACKAGE

 | PACKAGE BODY

priv_level:

 *

 | *.*

 | db_name.*

 | db_name.tbl_name

 | tbl_name

 | db_name.routine_name

with_option:

 GRANT OPTION

 | resource_option

resource_option:

 MAX_QUERIES_PER_HOUR count

 | MAX_UPDATES_PER_HOUR count

 | MAX_CONNECTIONS_PER_HOUR count

 | MAX_USER_CONNECTIONS count

 | MAX_STATEMENT_TIME time

tls_option:

 SSL

 | X509

 | CIPHER 'cipher'

 | ISSUER 'issuer'

 | SUBJECT 'subject'

Description
The GRANT statement allows you to grant privileges or roles to accounts. To use GRANT , you must have the GRANT

OPTION privilege, and you must have the privileges that you are granting.

64/4161

Use the REVOKE statement to revoke privileges granted with the GRANT statement.

Use the SHOW GRANTS statement to determine what privileges an account has.

Account Names

For GRANT statements, account names are specified as the username argument in the same way as they are for CREATE

USER statements. See account names from the CREATE USER page for details on how account names are specified.

Implicit Account Creation

The GRANT statement also allows you to implicitly create accounts in some cases.

If the account does not yet exist, then GRANT can implicitly create it. To implicitly create an account with GRANT , a user is

required to have the same privileges that would be required to explicitly create the account with the CREATE USER

statement.

If the NO_AUTO_CREATE_USER SQL_MODE is set, then accounts can only be created if authentication information is

specified, or with a CREATE USER statement. If no authentication information is provided, GRANT will produce an error

when the specified account does not exist, for example:

show variables like '%sql_mode%' ;

+---------------+--+

| Variable_name | Value |

+---------------+--+

| sql_mode | NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---------------+--+

GRANT USAGE ON *.* TO 'user123'@'%' IDENTIFIED BY '';

ERROR 1133 (28000): Can't find any matching row in the user table

GRANT USAGE ON *.* TO 'user123'@'%'

 IDENTIFIED VIA PAM using 'mariadb' require ssl ;

Query OK, 0 rows affected (0.00 sec)

select host, user from mysql.user where user='user123' ;

+------+----------+

| host | user |

+------+----------+

| % | user123 |

+------+----------+

Privilege Levels

Privileges can be set globally, for an entire database, for a table or routine, or for individual columns in a table. Certain

privileges can only be set at certain levels.

Global privileges do not take effect immediately and are only applied to connections created after the GRANT statement was

executed.

Global privileges priv_type are granted using *.* for priv_level. Global privileges include privileges to administer the

database and manage user accounts, as well as privileges for all tables, functions, and procedures. Global privileges

are stored in the mysql.user table prior to MariaDB 10.4, and in mysql.global_priv table afterwards.

Database privileges priv_type are granted using db_name.* for priv_level, or using just * to use default database.

Database privileges include privileges to create tables and functions, as well as privileges for all tables, functions, and

procedures in the database. Database privileges are stored in the mysql.db table.

Table privileges priv_type are granted using db_name.tbl_name for priv_level, or using just tbl_name to specify a

table in the default database. The TABLE keyword is optional. Table privileges include the ability to select and

change data in the table. Certain table privileges can be granted for individual columns.

Column privileges priv_type are granted by specifying a table for priv_level and providing a column list after the

privilege type. They allow you to control exactly which columns in a table users can select and change.

Function privileges priv_type are granted using FUNCTION db_name.routine_name for priv_level, or using just

FUNCTION routine_name to specify a function in the default database.

Procedure privileges priv_type are granted using PROCEDURE db_name.routine_name for priv_level, or using just

PROCEDURE routine_name to specify a procedure in the default database.

The USAGE Privilege

65/4161

The USAGE privilege grants no real privileges. The SHOW GRANTS statement will show a global USAGE privilege for a

newly-created user. You can use USAGE with the GRANT statement to change options like GRANT OPTION and

MAX_USER_CONNECTIONS without changing any account privileges.

The ALL PRIVILEGES Privilege

The ALL PRIVILEGES privilege grants all available privileges. Granting all privileges only affects the given privilege level.

For example, granting all privileges on a table does not grant any privileges on the database or globally.

Using ALL PRIVILEGES does not grant the special GRANT OPTION privilege.

You can use ALL instead of ALL PRIVILEGES .

The GRANT OPTION Privilege

Use the WITH GRANT OPTION clause to give users the ability to grant privileges to other users at the given privilege level.

Users with the GRANT OPTION privilege can only grant privileges they have. They cannot grant privileges at a higher

privilege level than they have the GRANT OPTION privilege.

The GRANT OPTION privilege cannot be set for individual columns. If you use WITH GRANT OPTION when specifying

column privileges, the GRANT OPTION privilege will be granted for the entire table.

Using the WITH GRANT OPTION clause is equivalent to listing GRANT OPTION as a privilege.

Global Privileges

The following table lists the privileges that can be granted globally. You can also grant all database, table, and function

privileges globally. When granted globally, these privileges apply to all databases, tables, or functions, including those

created later.

To set a global privilege, use *.* for priv_level.

BINLOG ADMIN

Enables administration of the binary log, including the PURGE BINARY LOGS statement and setting the system variables:

binlog_annotate_row_events

binlog_cache_size

binlog_commit_wait_count

binlog_commit_wait_usec

binlog_direct_non_transactional_updates

binlog_expire_logs_seconds

binlog_file_cache_size

binlog_format

binlog_row_image

binlog_row_metadata

binlog_stmt_cache_size

expire_logs_days

log_bin_compress

log_bin_compress_min_len

log_bin_trust_function_creators

max_binlog_cache_size

max_binlog_size

max_binlog_stmt_cache_size

sql_log_bin and

sync_binlog.

Added in MariaDB 10.5.2.

BINLOG MONITOR

New name for REPLICATION CLIENT from MariaDB 10.5.2, (REPLICATION CLIENT still supported as an alias for

compatibility purposes). Permits running SHOW commands related to the binary log, in particular the SHOW BINLOG

STATUS and SHOW BINARY LOGS statements. Unlike REPLICATION CLIENT prior to MariaDB 10.5, SHOW REPLICA

STATUS isn't included in this privilege, and REPLICA MONITOR is required.

BINLOG REPLAY

Enables replaying the binary log with the BINLOG statement (generated by mariadb-binlog), executing SET timestamp

66/4161

when secure_timestamp is set to replication , and setting the session values of system variables usually included in

BINLOG output, in particular:

gtid_domain_id

gtid_seq_no

pseudo_thread_id

server_id.

Added in MariaDB 10.5.2

CONNECTION ADMIN

Enables administering connection resource limit options. This includes ignoring the limits specified by:

max_connections

max_user_connections and

max_password_errors.

The statements specified in init_connect are not executed, killing connections and queries owned by other users is

permitted. The following connection-related system variables can be changed:

connect_timeout

disconnect_on_expired_password

extra_max_connections

init_connect

max_connections

max_connect_errors

max_password_errors

proxy_protocol_networks

secure_auth

slow_launch_time

thread_pool_exact_stats

thread_pool_dedicated_listener

thread_pool_idle_timeout

thread_pool_max_threads

thread_pool_min_threads

thread_pool_oversubscribe

thread_pool_prio_kickup_timer

thread_pool_priority

thread_pool_size, and

thread_pool_stall_limit.

Added in MariaDB 10.5.2.

CREATE USER

Create a user using the CREATE USER statement, or implicitly create a user with the GRANT statement.

FEDERATED ADMIN

Execute CREATE SERVER, ALTER SERVER, and DROP SERVER statements. Added in MariaDB 10.5.2.

FILE

Read and write files on the server, using statements like LOAD DATA INFILE or functions like LOAD_FILE(). Also needed to

create CONNECT outward tables. MariaDB server must have the permissions to access those files.

GRANT OPTION

Grant global privileges. You can only grant privileges that you have.

PROCESS

Show information about the active processes, for example via SHOW PROCESSLIST or mariadb-admin processlist. If you

have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads (that is, threads

associated with the MariaDB account that you are using).

READ_ONLY ADMIN

User ignores the read_only system variable, and can perform write operations even when the read_only option is active.

Added in MariaDB 10.5.2.

67/4161

From MariaDB 10.11.0, the READ_ONLY ADMIN privilege has been removed from SUPER. The benefit of this is that one

can remove the READ_ONLY ADMIN privilege from all users and ensure that no one can make any changes on any non-

temporary tables. This is useful on replicas when one wants to ensure that the replica is kept identical to the primary.

RELOAD

Execute FLUSH statements or equivalent mariadb-admin commands.

REPLICATION CLIENT

Execute SHOW MASTER STATUS and SHOW BINARY LOGS informative statements. Renamed to BINLOG MONITOR in

MariaDB 10.5.2 (but still supported as an alias for compatibility reasons). SHOW SLAVE STATUS was part of

REPLICATION CLIENT prior to MariaDB 10.5.

REPLICATION MASTER ADMIN

Permits administration of primary servers, including the SHOW REPLICA HOSTS statement, and setting the

gtid_binlog_state, gtid_domain_id, master_verify_checksum and server_id system variables. Added in MariaDB 10.5.2.

REPLICA MONITOR

Permit SHOW REPLICA STATUS and SHOW RELAYLOG EVENTS. From MariaDB 10.5.9.

When a user would upgrade from an older major release to a MariaDB 10.5 minor release prior to MariaDB 10.5.9, certain

user accounts would lose capabilities. For example, a user account that had the REPLICATION CLIENT privilege in older

major releases could run SHOW REPLICA STATUS, but after upgrading to a MariaDB 10.5 minor release prior to MariaDB

10.5.9, they could no longer run SHOW REPLICA STATUS, because that statement was changed to require the

REPLICATION REPLICA ADMIN privilege.

This issue is fixed in MariaDB 10.5.9 with this new privilege, which now grants the user the ability to execute SHOW [ALL]

(SLAVE | REPLICA) STATUS.

When a database is upgraded from an older major release to MariaDB Server 10.5.9 or later, any user accounts with the

REPLICATION CLIENT or REPLICATION SLAVE privileges will automatically be granted the new REPLICA MONITOR

privilege. The privilege fix occurs when the server is started up, not when mariadb-upgrade is performed.

However, when a database is upgraded from an early 10.5 minor release to 10.5.9 and later, the user will have to fix any

user account privileges manually.

REPLICATION REPLICA

Synonym for REPLICATION SLAVE. From MariaDB 10.5.1.

REPLICATION SLAVE

Accounts used by replica servers on the primary need this privilege. This is needed to get the updates made on the master.

From MariaDB 10.5.1, REPLICATION REPLICA is an alias for REPLICATION SLAVE .

REPLICATION SLAVE ADMIN

Permits administering replica servers, including START REPLICA/SLAVE, STOP REPLICA/SLAVE, CHANGE MASTER,

SHOW REPLICA/SLAVE STATUS, SHOW RELAYLOG EVENTS statements, replaying the binary log with the BINLOG

statement (generated by mariadb-binlog), and setting the system variables:

gtid_cleanup_batch_size

gtid_ignore_duplicates

gtid_pos_auto_engines

gtid_slave_pos

gtid_strict_mode

init_slave

read_binlog_speed_limit

relay_log_purge

relay_log_recovery

replicate_do_db

replicate_do_table

replicate_events_marked_for_skip

replicate_ignore_db

replicate_ignore_table

replicate_wild_do_table

replicate_wild_ignore_table

68/4161

slave_compressed_protocol

slave_ddl_exec_mode

slave_domain_parallel_threads

slave_exec_mode

slave_max_allowed_packet

slave_net_timeout

slave_parallel_max_queued

slave_parallel_mode

slave_parallel_threads

slave_parallel_workers

slave_run_triggers_for_rbr

slave_sql_verify_checksum

slave_transaction_retry_interval

slave_type_conversions

sync_master_info

sync_relay_log, and

sync_relay_log_info.

Added in MariaDB 10.5.2.

SET USER

Enables setting the DEFINER when creating triggers, views, stored functions and stored procedures. Added in MariaDB

10.5.2.

SHOW DATABASES

List all databases using the SHOW DATABASES statement. Without the SHOW DATABASES privilege, you can still issue the

SHOW DATABASES statement, but it will only list databases containing tables on which you have privileges.

SHUTDOWN

Shut down the server using SHUTDOWN or the mariadb-admin shutdown command.

SUPER

Execute superuser statements: CHANGE MASTER TO, KILL (users who do not have this privilege can only KILL their

own threads), PURGE LOGS, SET global system variables, or the mariadb-admin debug command. Also, this permission

allows the user to write data even if the read_only startup option is set, enable or disable logging, enable or disable

replication on replica, specify a DEFINER for statements that support that clause, connect once reaching the

MAX_CONNECTIONS . If a statement has been specified for the init-connect mariadbd option, that command will not be

executed when a user with SUPER privileges connects to the server.

The SUPER privilege has been split into multiple smaller privileges from MariaDB 10.5.2 to allow for more fine-grained

privileges (MDEV-21743). The privileges are:

SET USER

FEDERATED ADMIN

CONNECTION ADMIN

REPLICATION SLAVE ADMIN

BINLOG ADMIN

BINLOG REPLAY

REPLICA MONITOR

BINLOG MONITOR

REPLICATION MASTER ADMIN

READ_ONLY ADMIN

However, the smaller privileges are still a part of the SUPER grant in MariaDB 10.5.2. From MariaDB 11.0.1 onwards, these

grants are no longer a part of SUPER and need to be granted separately (MDEV-29668).

From MariaDB 10.11.0, the READ_ONLY ADMIN privilege has been removed from SUPER . The benefit of this is that one

can remove the READ_ONLY ADMIN privilege from all users and ensure that no one can make any changes on any non-

temporary tables. This is useful on replicas when one wants to ensure that the replica is kept identical to the primary

(MDEV-29596).

Database Privileges

The following table lists the privileges that can be granted at the database level. You can also grant all table and function

privileges at the database level. Table and function privileges on a database apply to all tables or functions in that database,

69/4161

https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-29668
https://jira.mariadb.org/browse/MDEV-29596

including those created later.

To set a privilege for a database, specify the database using db_name.* for priv_level, or just use * to specify the default

database.

Privilege Description

CREATE

Create a database using the CREATE DATABASE statement, when the privilege is granted for a database.

You can grant the CREATE privilege on databases that do not yet exist. This also grants the CREATE

privilege on all tables in the database.

CREATE

ROUTINE
Create Stored Programs using the CREATE PROCEDURE and CREATE FUNCTION statements.

CREATE

TEMPORARY

TABLES

Create temporary tables with the CREATE TEMPORARY TABLE statement. This privilege enable writing

and dropping those temporary tables

DROP
Drop a database using the DROP DATABASE statement, when the privilege is granted for a database. This

also grants the DROP privilege on all tables in the database.

EVENT Create, drop and alter EVENT s.

GRANT

OPTION
Grant database privileges. You can only grant privileges that you have.

LOCK

TABLES

Acquire explicit locks using the LOCK TABLES statement; you also need to have the SELECT privilege on a

table, in order to lock it.

SHOW

CREATE

ROUTINE

Permit viewing the SHOW CREATE definition statement of a routine, for example SHOW CREATE

FUNCTION, even if not the routine owner. From MariaDB 11.3.0.

Table Privileges

Privilege Description

ALTER Change the structure of an existing table using the ALTER TABLE statement.

CREATE
Create a table using the CREATE TABLE statement. You can grant the CREATE privilege on tables that

do not yet exist.

CREATE

VIEW
Create a view using the CREATE_VIEW statement.

DELETE Remove rows from a table using the DELETE statement.

DELETE

HISTORY

Remove historical rows from a table using the DELETE HISTORY statement. Displays as DELETE

VERSIONING ROWS when running SHOW GRANTS until MariaDB 10.3.15 and until MariaDB 10.4.5

(MDEV-17655), or when running SHOW PRIVILEGES until MariaDB 10.5.2, MariaDB 10.4.13 and

MariaDB 10.3.23 (MDEV-20382). From MariaDB 10.3.4 . From MariaDB 10.3.5 , if a user has the

SUPER privilege but not this privilege, running mariadb-upgrade will grant this privilege as well.

DROP
Drop a table using the DROP TABLE statement or a view using the DROP VIEW statement. Also required

to execute the TRUNCATE TABLE statement.

GRANT

OPTION
Grant table privileges. You can only grant privileges that you have.

INDEX

Create an index on a table using the CREATE INDEX statement. Without the INDEX privilege, you can

still create indexes when creating a table using the CREATE TABLE statement if the you have the

CREATE privilege, and you can create indexes using the ALTER TABLE statement if you have the ALTER

privilege.

INSERT
Add rows to a table using the INSERT statement. The INSERT privilege can also be set on individual

columns; see Column Privileges below for details.

REFERENCES Unused.

SELECT
Read data from a table using the SELECT statement. The SELECT privilege can also be set on individual

columns; see Column Privileges below for details.

SHOW VIEW Show the CREATE VIEW statement to create a view using the SHOW CREATE VIEW statement.

70/4161

https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://jira.mariadb.org/browse/MDEV-17655
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://jira.mariadb.org/browse/MDEV-20382
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

TRIGGER

Required to run the CREATE TRIGGER, DROP TRIGGER, and SHOW CREATE TRIGGER statements.

When another user activates a trigger (running INSERT, UPDATE, or DELETE statements on the

associated table), for the trigger to execute, the user that defined the trigger should have the TRIGGER

privilege for the table. The user running the INSERT, UPDATE, or DELETE statements on the table is not

required to have the TRIGGER privilege.

UPDATE

Update existing rows in a table using the UPDATE statement. UPDATE statements usually include a

WHERE clause to update only certain rows. You must have SELECT privileges on the table or the

appropriate columns for the WHERE clause. The UPDATE privilege can also be set on individual columns;

see Column Privileges below for details.

Column Privileges

Some table privileges can be set for individual columns of a table. To use column privileges, specify the table explicitly and

provide a list of column names after the privilege type. For example, the following statement would allow the user to read the

names and positions of employees, but not other information from the same table, such as salaries.

GRANT SELECT (name, position) on Employee to 'jeffrey'@'localhost';

Privilege Description

INSERT

(column_list)

Add rows specifying values in columns using the INSERT statement. If you only have column-level

INSERT privileges, you must specify the columns you are setting in the INSERT statement. All other

columns will be set to their default values, or NULL .

REFERENCES

(column_list)
Unused.

SELECT

(column_list)

Read values in columns using the SELECT statement. You cannot access or query any columns for

which you do not have SELECT privileges, including in WHERE , ON , GROUP BY , and ORDER BY

clauses.

UPDATE

(column_list)

Update values in columns of existing rows using the UPDATE statement. UPDATE statements usually

include a WHERE clause to update only certain rows. You must have SELECT privileges on the table or

the appropriate columns for the WHERE clause.

Function Privileges

Privilege Description

ALTER

ROUTINE
Change the characteristics of a stored function using the ALTER FUNCTION statement.

EXECUTE
Use a stored function. You need SELECT privileges for any tables or columns accessed by the

function.

GRANT OPTION Grant function privileges. You can only grant privileges that you have.

Procedure Privileges

Privilege Description

ALTER

ROUTINE
Change the characteristics of a stored procedure using the ALTER PROCEDURE statement.

EXECUTE
Execute a stored procedure using the CALL statement. The privilege to call a procedure may allow you to

perform actions you wouldn't otherwise be able to do, such as insert rows into a table.

GRANT

OPTION
Grant procedure privileges. You can only grant privileges that you have.

GRANT EXECUTE ON PROCEDURE mysql.create_db TO maintainer;

Proxy Privileges

Privilege Description

71/4161

PROXY Permits one user to be a proxy for another.

The PROXY privilege allows one user to proxy as another user, which means their privileges change to that of the proxy

user, and the CURRENT_USER() function returns the user name of the proxy user.

The PROXY privilege only works with authentication plugins that support it. The default mysql_native_password

authentication plugin does not support proxy users.

The pam authentication plugin is the only plugin included with MariaDB that currently supports proxy users. The PROXY

privilege is commonly used with the pam authentication plugin to enable user and group mapping with PAM.

For example, to grant the PROXY privilege to an anonymous account that authenticates with the pam authentication plugin,

you could execute the following:

CREATE USER 'dba'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'dba'@'%' ;

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

GRANT PROXY ON 'dba'@'%' TO ''@'%';

A user account can only grant the PROXY privilege for a specific user account if the granter also has the PROXY privilege

for that specific user account, and if that privilege is defined WITH GRANT OPTION . For example, the following example

fails because the granter does not have the PROXY privilege for that specific user account at all:

SELECT USER(), CURRENT_USER();

+-----------------+-----------------+

| USER() | CURRENT_USER() |

+-----------------+-----------------+

| alice@localhost | alice@localhost |

+-----------------+-----------------+

SHOW GRANTS;

+--

---------------------------+

| Grants for alice@localhost

|

+--

---------------------------+

| GRANT ALL PRIVILEGES ON *.* TO 'alice'@'localhost' IDENTIFIED BY PASSWORD

'*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19' |

+--

---------------------------+

GRANT PROXY ON 'dba'@'localhost' TO 'bob'@'localhost';

ERROR 1698 (28000): Access denied for user 'alice'@'localhost'

And the following example fails because the granter does have the PROXY privilege for that specific user account, but it is

not defined WITH GRANT OPTION :

72/4161

SELECT USER(), CURRENT_USER();

+-----------------+-----------------+

| USER() | CURRENT_USER() |

+-----------------+-----------------+

| alice@localhost | alice@localhost |

+-----------------+-----------------+

SHOW GRANTS;

+--

---------------------------+

| Grants for alice@localhost

|

+--

---------------------------+

| GRANT ALL PRIVILEGES ON *.* TO 'alice'@'localhost' IDENTIFIED BY PASSWORD

'*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19' |

| GRANT PROXY ON 'dba'@'localhost' TO 'alice'@'localhost'

|

+--

---------------------------+

GRANT PROXY ON 'dba'@'localhost' TO 'bob'@'localhost';

ERROR 1698 (28000): Access denied for user 'alice'@'localhost'

But the following example succeeds because the granter does have the PROXY privilege for that specific user account, and

it is defined WITH GRANT OPTION :

SELECT USER(), CURRENT_USER();

+-----------------+-----------------+

| USER() | CURRENT_USER() |

+-----------------+-----------------+

| alice@localhost | alice@localhost |

+-----------------+-----------------+

SHOW GRANTS;

+--

---+

| Grants for alice@localhost

|

+--

---+

| GRANT ALL PRIVILEGES ON *.* TO 'alice'@'localhost' IDENTIFIED BY PASSWORD

'*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19' WITH GRANT OPTION |

| GRANT PROXY ON 'dba'@'localhost' TO 'alice'@'localhost' WITH GRANT OPTION

|

+--

---+

GRANT PROXY ON 'dba'@'localhost' TO 'bob'@'localhost';

A user account can grant the PROXY privilege for any other user account if the granter has the PROXY privilege for the

''@'%' anonymous user account, like this:

GRANT PROXY ON ''@'%' TO 'dba'@'localhost' WITH GRANT OPTION;

For example, the following example succeeds because the user can grant the PROXY privilege for any other user account:

73/4161

SELECT USER(), CURRENT_USER();

+-----------------+-----------------+

| USER() | CURRENT_USER() |

+-----------------+-----------------+

| alice@localhost | alice@localhost |

+-----------------+-----------------+

SHOW GRANTS;

+--

---+

| Grants for alice@localhost

|

+--

---+

| GRANT ALL PRIVILEGES ON *.* TO 'alice'@'localhost' IDENTIFIED BY PASSWORD

'*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19' WITH GRANT OPTION |

| GRANT PROXY ON ''@'%' TO 'alice'@'localhost' WITH GRANT OPTION

|

+--

---+

GRANT PROXY ON 'app1_dba'@'localhost' TO 'bob'@'localhost';

Query OK, 0 rows affected (0.004 sec)

GRANT PROXY ON 'app2_dba'@'localhost' TO 'carol'@'localhost';

Query OK, 0 rows affected (0.004 sec)

The default root user accounts created by mariadb-install-db have this privilege. For example:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION;

GRANT PROXY ON ''@'%' TO 'root'@'localhost' WITH GRANT OPTION;

This allows the default root user accounts to grant the PROXY privilege for any other user account, and it also allows the

default root user accounts to grant others the privilege to do the same.

Authentication Options

The authentication options for the GRANT statement are the same as those for the CREATE USER statement.

IDENTIFIED BY 'password'

The optional IDENTIFIED BY clause can be used to provide an account with a password. The password should be

specified in plain text. It will be hashed by the PASSWORD function prior to being stored.

For example, if our password is mariadb , then we can create the user with:

GRANT USAGE ON *.* TO foo2@test IDENTIFIED BY 'mariadb';

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

If the user account already exists and if you provide the IDENTIFIED BY clause, then the user's password will be changed.

You must have the privileges needed for the SET PASSWORD statement to change a user's password with GRANT .

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED BY PASSWORD 'password_hash'

The optional IDENTIFIED BY PASSWORD clause can be used to provide an account with a password that has already been

hashed. The password should be specified as a hash that was provided by the PASSWORD function. It will be stored as-is.

For example, if our password is mariadb , then we can find the hash with:

74/4161

SELECT PASSWORD('mariadb');

+---+

| PASSWORD('mariadb') |

+---+

| *54958E764CE10E50764C2EECBB71D01F08549980 |

+---+

1 row in set (0.00 sec)

And then we can create a user with the hash:

GRANT USAGE ON *.* TO foo2@test IDENTIFIED BY

 PASSWORD '*54958E764CE10E50764C2EECBB71D01F08549980';

If you do not specify a password with the IDENTIFIED BY clause, the user will be able to connect without a password. A

blank password is not a wildcard to match any password. The user must connect without providing a password if no

password is set.

If the user account already exists and if you provide the IDENTIFIED BY clause, then the user's password will be changed.

You must have the privileges needed for the SET PASSWORD statement to change a user's password with GRANT .

The only authentication plugins that this clause supports are mysql_native_password and mysql_old_password.

IDENTIFIED {VIA|WITH} authentication_plugin

The optional IDENTIFIED VIA authentication_plugin allows you to specify that the account should be authenticated

by a specific authentication plugin. The plugin name must be an active authentication plugin as per SHOW PLUGINS. If it

doesn't show up in that output, then you will need to install it with INSTALL PLUGIN or INSTALL SONAME.

For example, this could be used with the PAM authentication plugin:

GRANT USAGE ON *.* TO foo2@test IDENTIFIED VIA pam;

Some authentication plugins allow additional arguments to be specified after a USING or AS keyword. For example, the

PAM authentication plugin accepts a service name:

GRANT USAGE ON *.* TO foo2@test IDENTIFIED VIA pam USING 'mariadb';

The exact meaning of the additional argument would depend on the specific authentication plugin.

The USING or AS keyword can also be used to provide a plain-text password to a plugin if it's provided as an

argument to the PASSWORD() function. This is only valid for authentication plugins that have implemented a hook for

the PASSWORD() function. For example, the ed25519 authentication plugin supports this:

CREATE USER safe@'%' IDENTIFIED VIA ed25519

 USING PASSWORD('secret');

One can specify many authentication plugins, they all work as alternative ways of authenticating a user:

CREATE USER safe@'%' IDENTIFIED VIA ed25519

 USING PASSWORD('secret') OR unix_socket;

By default, when you create a user without specifying an authentication plugin, MariaDB uses the mysql_native_password

plugin.

Resource Limit Options

It is possible to set per-account limits for certain server resources. The following table shows the values that can be set per

account:

Limit Type Decription

MAX_QUERIES_PER_HOUR Number of statements that the account can issue per hour (including updates)

MariaDB starting with 10.4.0

MariaDB starting with 10.4.3

75/4161

MAX_UPDATES_PER_HOUR Number of updates (not queries) that the account can issue per hour

MAX_CONNECTIONS_PER_HOUR Number of connections that the account can start per hour

MAX_USER_CONNECTIONS

Number of simultaneous connections that can be accepted from the same account; if it is

0, max_connections will be used instead; if max_connections is 0, there is no limit

for this account's simultaneous connections.

MAX_STATEMENT_TIME
Timeout, in seconds, for statements executed by the user. See also Aborting Statements

that Exceed a Certain Time to Execute.

If any of these limits are set to 0 , then there is no limit for that resource for that user.

To set resource limits for an account, if you do not want to change that account's privileges, you can issue a GRANT

statement with the USAGE privilege, which has no meaning. The statement can name some or all limit types, in any order.

Here is an example showing how to set resource limits:

GRANT USAGE ON *.* TO 'someone'@'localhost' WITH

 MAX_USER_CONNECTIONS 0

 MAX_QUERIES_PER_HOUR 200;

The resources are tracked per account, which means 'user'@'server' ; not per user name or per connection.

The count can be reset for all users using FLUSH USER_RESOURCES, FLUSH PRIVILEGES or mariadb-admin reload.

Users with the CONNECTION ADMIN privilege (in MariaDB 10.5.2 and later) or the SUPER privilege are not restricted by

max_user_connections , max_connections , or max_password_errors .

Per account resource limits are stored in the user table, in the mysql database. Columns used for resources limits are

named max_questions , max_updates , max_connections (for MAX_CONNECTIONS_PER_HOUR), and

max_user_connections (for MAX_USER_CONNECTIONS).

TLS Options

By default, MariaDB transmits data between the server and clients without encrypting it. This is generally acceptable when

the server and client run on the same host or in networks where security is guaranteed through other means. However, in

cases where the server and client exist on separate networks or they are in a high-risk network, the lack of encryption does

introduce security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network

between them.

To mitigate this concern, MariaDB allows you to encrypt data in transit between the server and clients using the Transport

Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the SSL

protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still uses

the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix ssl_, but

internally, MariaDB only supports its secure successors.

See Secure Connections Overview for more information about how to determine whether your MariaDB server has TLS

support.

You can set certain TLS-related restrictions for specific user accounts. For instance, you might use this with user accounts

that require access to sensitive data while sending it across networks that you do not control. These restrictions can be

enabled for a user account with the CREATE USER, ALTER USER, or GRANT statements. The following options are

available:

Option Description

REQUIRE

NONE
TLS is not required for this account, but can still be used.

REQUIRE

SSL

The account must use TLS, but no valid X509 certificate is required. This option cannot be combined with

other TLS options.

REQUIRE

X509

The account must use TLS and must have a valid X509 certificate. This option implies REQUIRE SSL . This

option cannot be combined with other TLS options.

REQUIRE

ISSUER

'issuer'

The account must use TLS and must have a valid X509 certificate. Also, the Certificate Authority must be

the one specified via the string issuer . This option implies REQUIRE X509 . This option can be combined

with the SUBJECT , and CIPHER options in any order.

76/4161

REQUIRE

SUBJECT

'subject'

The account must use TLS and must have a valid X509 certificate. Also, the certificate's Subject must be the

one specified via the string subject . This option implies REQUIRE X509 . This option can be combined

with the ISSUER , and CIPHER options in any order.

REQUIRE

CIPHER

'cipher'

The account must use TLS, but no valid X509 certificate is required. Also, the encryption used for the

connection must use a specific cipher method specified in the string cipher . This option implies REQUIRE

SSL . This option can be combined with the ISSUER , and SUBJECT options in any order.

The REQUIRE keyword must be used only once for all specified options, and the AND keyword can be used to separate

individual options, but it is not required.

For example, you can create a user account that requires these TLS options with the following:

GRANT USAGE ON *.* TO 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland'

 AND ISSUER '/C=FI/ST=Somewhere/L=City/ O=Some Company/CN=Peter

Parker/emailAddress=p.parker@marvel.com'

 AND CIPHER 'SHA-DES-CBC3-EDH-RSA';

If any of these options are set for a specific user account, then any client who tries to connect with that user account will

have to be configured to connect with TLS.

See Securing Connections for Client and Server for information on how to enable TLS on the client and server.

Roles

Syntax

GRANT role TO grantee [, grantee ...]

[WITH ADMIN OPTION]

grantee:

 rolename

 username [authentication_option]

The GRANT statement is also used to grant the use of a role to one or more users or other roles. In order to be able to

grant a role, the grantor doing so must have permission to do so (see WITH ADMIN in the CREATE ROLE article).

Specifying the WITH ADMIN OPTION permits the grantee to in turn grant the role to another.

For example, the following commands show how to grant the same role to a couple different users.

GRANT journalist TO hulda;

GRANT journalist TO berengar WITH ADMIN OPTION;

If a user has been granted a role, they do not automatically obtain all permissions associated with that role. These

permissions are only in use when the user activates the role with the SET ROLE statement.

TO PUBLIC

Syntax

GRANT <privilege> ON <database>.<object> TO PUBLIC;

REVOKE <privilege> ON <database>.<object> FROM PUBLIC;

GRANT ... TO PUBLIC grants privileges to all users with access to the server. The privileges also apply to users

created after the privileges are granted. This can be useful when one only wants to state once that all users need to

have a certain set of privileges.

When running SHOW GRANTS, a user will also see all privileges inherited from PUBLIC. SHOW GRANTS FOR

PUBLIC will only show TO PUBLIC grants.

Grant Examples

MariaDB starting with 10.11

77/4161

Granting Root-like Privileges

You can create a user that has privileges similar to the default root accounts by executing the following:

CREATE USER 'alexander'@'localhost';

GRANT ALL PRIVILEGES ON *.* to 'alexander'@'localhost' WITH GRANT OPTION;

1.1.1.1.5 RENAME USER

Syntax

RENAME USER old_user TO new_user

 [, old_user TO new_user] ...

Description
The RENAME USER statement renames existing MariaDB accounts. To use it, you must have the global CREATE USER

privilege or the UPDATE privilege for the mysql database. Each account is named using the same format as for the

CREATE USER statement; for example, 'jeffrey'@'localhost' . If you specify only the user name part of the account

name, a host name part of '%' is used.

If any of the old user accounts do not exist or any of the new user accounts already exist, ERROR 1396 (HY000) results. If

an error occurs, RENAME USER will still rename the accounts that do not result in an error.

For modifying an existing account, see ALTER USER.

Examples

CREATE USER 'donald', 'mickey';

RENAME USER 'donald' TO 'duck'@'localhost', 'mickey' TO 'mouse'@'localhost';

Renaming the host component of a user

RENAME USER 'foo'@'1.2.3.4' TO 'foo'@'10.20.30.40';

1.1.1.1.6 REVOKE
Contents
1. Privileges

1. Syntax

2. Description

3. Examples

2. Roles

1. Syntax

2. Description

3. Example

Privileges

Syntax

78/4161

REVOKE

 priv_type [(column_list)]

 [, priv_type [(column_list)]] ...

 ON [object_type] priv_level

 FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION

 FROM user [, user] ...

Description

The REVOKE statement enables system administrators to revoke privileges (or roles - see section below) from MariaDB

accounts. Each account is named using the same format as for the GRANT statement; for example,

' jeffrey'@'localhost '. If you specify only the user name part of the account name, a host name part of ' % ' is used.

For details on the levels at which privileges exist, the allowable priv_type and priv_level values, and the syntax for

specifying users and passwords, see GRANT.

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the privileges that you are

revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and routine privileges for

the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege for the mysql

database. See GRANT.

Examples

REVOKE SUPER ON *.* FROM 'alexander'@'localhost';

Roles

Syntax

REVOKE role [, role ...]

 FROM grantee [, grantee2 ...]

REVOKE ADMIN OPTION FOR role FROM grantee [, grantee2]

Description

REVOKE is also used to remove a role from a user or another role that it's previously been assigned to. If a role has

previously been set as a default role, REVOKE does not remove the record of the default role from the mysql.user table. If

the role is subsequently granted again, it will again be the user's default. Use SET DEFAULT ROLE NONE to explicitly

remove this.

Before MariaDB 10.1.13 , the REVOKE role statement was not permitted in prepared statements.

Example

REVOKE journalist FROM hulda

1.1.1.1.7 SET PASSWORD

Syntax

79/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/

SET PASSWORD [FOR user] =

 {

 PASSWORD('some password')

 | OLD_PASSWORD('some password')

 | 'encrypted password'

 }

Contents
1. Syntax

2. Description

3. Authentication Plugin Support

4. Passwordless User Accounts

5. Example

Description
The SET PASSWORD statement assigns a password to an existing MariaDB user account.

If the password is specified using the PASSWORD() or OLD_PASSWORD() function, the literal text of the password should be

given. If the password is specified without using either function, the password should be the already-encrypted password

value as returned by PASSWORD() .

OLD_PASSWORD() should only be used if your MariaDB/MySQL clients are very old (< 4.0.0).

With no FOR clause, this statement sets the password for the current user. Any client that has connected to the server using

a non-anonymous account can change the password for that account.

With a FOR clause, this statement sets the password for a specific account on the current server host. Only clients that

have the UPDATE privilege for the mysql database can do this. The user value should be given in

user_name@host_name format, where user_name and host_name are exactly as they are listed in the User and Host

columns of the mysql.user table (or view in MariaDB-10.4 onwards) entry.

The argument to PASSWORD() and the password given to MariaDB clients can be of arbitrary length.

Authentication Plugin Support

In MariaDB 10.4 and later, SET PASSWORD (with or without PASSWORD()) works for accounts authenticated via any

authentication plugin that supports passwords stored in the mysql.global_priv table.

The ed25519 , mysql_native_password , and mysql_old_password authentication plugins store passwords in the

mysql.global_priv table.

If you run SET PASSWORD on an account that authenticates with one of these authentication plugins that stores

passwords in the mysql.global_priv table, then the PASSWORD() function is evaluated by the specific

authentication plugin used by the account. The authentication plugin hashes the password with a method that is

compatible with that specific authentication plugin.

The unix_socket , named_pipe , gssapi , and pam authentication plugins do not store passwords in the

mysql.global_priv table. These authentication plugins rely on other methods to authenticate the user.

If you attempt to run SET PASSWORD on an account that authenticates with one of these authentication plugins that

doesn't store a password in the mysql.global_priv table, then MariaDB Server will raise a warning like the

following:

SET PASSWORD is ignored for users authenticating via unix_socket plugin

See Authentication from MariaDB 10.4 for an overview of authentication changes in MariaDB 10.4.

In MariaDB 10.3 and before, SET PASSWORD (with or without PASSWORD()) only works for accounts authenticated via

mysql_native_password or mysql_old_password authentication plugins

Passwordless User Accounts
User accounts do not always require passwords to login.

MariaDB starting with 10.4

MariaDB until 10.3

80/4161

The unix_socket , named_pipe and gssapi authentication plugins do not require a password to authenticate the user.

The pam authentication plugin may or may not require a password to authenticate the user, depending on the specific

configuration.

The mysql_native_password and mysql_old_password authentication plugins require passwords for authentication,

but the password can be blank. In that case, no password is required.

If you provide a password while attempting to log into the server as an account that doesn't require a password, then

MariaDB server will simply ignore the password.

In MariaDB 10.4 and later, a user account can be defined to use multiple authentication plugins in a specific order of

preference. This specific scenario may be more noticeable in these versions, since an account could be associated

with some authentication plugins that require a password, and some that do not.

Example
For example, if you had an entry with User and Host column values of ' bob ' and ' %.loc.gov ', you would write the

statement like this:

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass');

If you want to delete a password for a user, you would do:

SET PASSWORD FOR 'bob'@localhost = PASSWORD("");

MariaDB starting with 10.4

1.1.1.1.8 CREATE ROLE

Syntax

CREATE [OR REPLACE] ROLE [IF NOT EXISTS] role

 [WITH ADMIN

 {CURRENT_USER | CURRENT_ROLE | user | role}]

Contents
1. Syntax

2. Description

1. WITH ADMIN

2. OR REPLACE

3. IF NOT EXISTS

3. Examples

Description
The CREATE ROLE statement creates one or more MariaDB roles. To use it, you must have the global CREATE USER

privilege or the INSERT privilege for the mysql database. For each account, CREATE ROLE creates a new row in the

mysql.user table that has no privileges, and with the corresponding is_role field set to Y . It also creates a record in the

mysql.roles_mapping table.

If any of the specified roles already exist, ERROR 1396 (HY000) results. If an error occurs, CREATE ROLE will still create

the roles that do not result in an error. The maximum length for a role is 128 characters. Role names can be quoted, as

explained in the Identifier names page. Only one error is produced for all roles which have not been created:

ERROR 1396 (HY000): Operation CREATE ROLE failed for 'a','b','c'

Failed CREATE or DROP operations, for both users and roles, produce the same error code.

PUBLIC and NONE are reserved, and cannot be used as role names. NONE is used to unset a role and PUBLIC has a

special use in other systems, such as Oracle, so is reserved for compatibility purposes.

For valid identifiers to use as role names, see Identifier Names.

81/4161

WITH ADMIN

The optional WITH ADMIN clause determines whether the current user, the current role or another user or role has use of

the newly created role. If the clause is omitted, WITH ADMIN CURRENT_USER is treated as the default, which means that the

current user will be able to GRANT this role to users.

OR REPLACE

If the optional OR REPLACE clause is used, it acts as a shortcut for:

DROP ROLE IF EXISTS name;

CREATE ROLE name ...;

IF NOT EXISTS

When the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the specified role already

exists. Cannot be used together with the OR REPLACE clause.

Examples

CREATE ROLE journalist;

CREATE ROLE developer WITH ADMIN lorinda@localhost;

Granting the role to another user. Only user lorinda@localhost has permission to grant the developer role:

 SELECT USER();

+-------------------+

| USER() |

+-------------------+

| henning@localhost |

+-------------------+

...

GRANT developer TO ian@localhost;

Access denied for user 'henning'@'localhost'

 SELECT USER();

+-------------------+

| USER() |

+-------------------+

| lorinda@localhost |

+-------------------+

GRANT m_role TO ian@localhost;

The OR REPLACE and IF NOT EXISTS clauses. The journalist role already exists:

CREATE ROLE journalist;

ERROR 1396 (HY000): Operation CREATE ROLE failed for 'journalist'

CREATE OR REPLACE ROLE journalist;

Query OK, 0 rows affected (0.00 sec)

CREATE ROLE IF NOT EXISTS journalist;

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+---+

| Level | Code | Message |

+-------+------+---+

| Note | 1975 | Can't create role 'journalist'; it already exists |

+-------+------+---+

82/4161

1.1.1.1.9 DROP ROLE

Syntax

DROP ROLE [IF EXISTS] role_name [,role_name ...]

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
The DROP ROLE statement removes one or more MariaDB roles. To use this statement, you must have the global CREATE

USER privilege or the DELETE privilege for the mysql database.

DROP ROLE does not disable roles for connections which selected them with SET ROLE. If a role has previously been set

as a default role, DROP ROLE does not remove the record of the default role from the mysql.user table. If the role is

subsequently recreated and granted, it will again be the user's default. Use SET DEFAULT ROLE NONE to explicitly

remove this.

If any of the specified user accounts do not exist, ERROR 1396 (HY000) results. If an error occurs, DROP ROLE will still

drop the roles that do not result in an error. Only one error is produced for all roles which have not been dropped:

ERROR 1396 (HY000): Operation DROP ROLE failed for 'a','b','c'

Failed CREATE or DROP operations, for both users and roles, produce the same error code.

IF EXISTS

If the IF EXISTS clause is used, MariaDB will return a warning instead of an error if the role does not exist.

Examples

DROP ROLE journalist;

The same thing using the optional IF EXISTS clause:

DROP ROLE journalist;

ERROR 1396 (HY000): Operation DROP ROLE failed for 'journalist'

DROP ROLE IF EXISTS journalist;

Query OK, 0 rows affected, 1 warning (0.00 sec)

Note (Code 1975): Can't drop role 'journalist'; it doesn't exist

1.1.1.1.10 SET ROLE

Syntax

SET ROLE { role | NONE }

Contents
1. Syntax

2. Description

3. Example

83/4161

Description
The SET ROLE statement enables a role, along with all of its associated permissions, for the current session. To unset a

role, use NONE .

If a role that doesn't exist, or to which the user has not been assigned, is specified, an ERROR 1959 (OP000): Invalid

role specification error occurs.

An automatic SET ROLE is implicitly performed when a user connects if that user has been assigned a default role. See

SET DEFAULT ROLE.

Example

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| NULL |

+--------------+

SET ROLE staff;

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| staff |

+--------------+

SET ROLE NONE;

SELECT CURRENT_ROLE();

+----------------+

| CURRENT_ROLE() |

+----------------+

| NULL |

+----------------+

1.1.1.1.11 SET DEFAULT ROLE
Contents
1. Syntax

2. Description

3. Examples

Syntax

SET DEFAULT ROLE { role | NONE } [FOR user@host]

Description
The SET DEFAULT ROLE statement sets a default role for a specified (or current) user. A default role is automatically

enabled when a user connects (an implicit SET ROLE statement is executed immediately after a connection is established).

To be able to set a role as a default, the role must already have been granted to that user, and one needs the privileges to

enable this role (if you cannot do SET ROLE X , you won't be able to do SET DEFAULT ROLE X). To set a default role for

another user one needs to have write access to the mysql database.

To remove a user's default role, use SET DEFAULT ROLE NONE [FOR user@host] . The record of the default role is not

removed if the role is dropped or revoked, so if the role is subsequently re-created or granted, it will again be the user's

default role.

The default role is stored in the default_role column in the mysql.user table/view, as well as in the Information Schema

APPLICABLE_ROLES table, so these can be viewed to see which role has been assigned to a user as the default.

84/4161

Examples
Setting a default role for the current user:

SET DEFAULT ROLE journalist;

Removing a default role from the current user:

SET DEFAULT ROLE NONE;

Setting a default role for another user. The role has to have been granted to the user before it can be set as default:

CREATE ROLE journalist;

CREATE USER taniel;

SET DEFAULT ROLE journalist FOR taniel;

ERROR 1959 (OP000): Invalid role specification `journalist`

GRANT journalist TO taniel;

SET DEFAULT ROLE journalist FOR taniel;

Viewing mysql.user:

select * from mysql.user where user='taniel'\G

*************************** 1. row ***************************

 Host: %

 User: taniel

...

 is_role: N

 default_role: journalist

...

Removing a default role for another user

SET DEFAULT ROLE NONE FOR taniel;

1.1.1.1.12 SHOW GRANTS
Contents
1. Syntax

2. Description

1. Users

2. Roles

1. Example

3. FOR PUBLIC

Syntax

SHOW GRANTS [FOR user|role]

Description
The SHOW GRANTS statement lists privileges granted to a particular user or role.

Users

The statement lists the GRANT statement or statements that must be issued to duplicate the privileges that are granted to a

MariaDB user account. The account is named using the same format as for the GRANT statement; for example,

' jeffrey'@'localhost '. If you specify only the user name part of the account name, a host name part of ' % ' is used. For

additional information about specifying account names, see GRANT.

85/4161

SHOW GRANTS FOR 'root'@'localhost';

+---+

| Grants for root@localhost |

+---+

| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |

+---+

To list the privileges granted to the account that you are using to connect to the server, you can use any of the following

statements:

SHOW GRANTS;

SHOW GRANTS FOR CURRENT_USER;

SHOW GRANTS FOR CURRENT_USER();

If SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER context (such as within a

stored procedure that is defined with SQL SECURITY DEFINER), the grants displayed are those of the definer and not the

invoker.

Note that the DELETE HISTORY privilege, introduced in MariaDB 10.3.4 , was displayed as DELETE VERSIONING ROWS

when running SHOW GRANTS until MariaDB 10.3.15 (MDEV-17655).

Roles

SHOW GRANTS can also be used to view the privileges granted to a role.

Example

SHOW GRANTS FOR journalist;

+--+

| Grants for journalist |

+--+

| GRANT USAGE ON *.* TO 'journalist' |

| GRANT DELETE ON `test`.* TO 'journalist' |

+--+

FOR PUBLIC

GRANT ... TO PUBLIC was introduced in MariaDB 10.11 to grant privileges to all users. SHOW GRANTS FOR PUBLIC

shows all these grants.

SHOW GRANTS FOR public;

+--+

| Grants for PUBLIC |

+--+

| GRANT ALL PRIVILEGES ON `dev_db`.* TO `PUBLIC` |

+--+

MariaDB starting with 10.11

1.1.1.1.13 SHOW CREATE USER

Syntax

SHOW CREATE USER [user]

Description
Shows the CREATE USER statement that creates the given user. The statement requires the SELECT privilege for the

mysql database, except for the current user. The CREATE USER statement for the current user is shown where no user is

specified.

86/4161

https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://jira.mariadb.org/browse/MDEV-17655

SHOW CREATE USER quotes identifiers according to the value of the sql_quote_show_create system variable.

Examples

CREATE USER foo4@test require cipher 'text'

 issuer 'foo_issuer' subject 'foo_subject';

SHOW CREATE USER foo4@test\G

*************************** 1. row ***************************

CREATE USER 'foo4'@'test'

 REQUIRE ISSUER 'foo_issuer'

 SUBJECT 'foo_subject'

 CIPHER 'text'

User Password Expiry:

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

SHOW CREATE USER 'monty'@'localhost';

+--+

| CREATE USER for monty@localhost |

+--+

| CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY |

+--+

1.1.1.2 Administrative SQL Statements
SQL statements for administering MariaDB.

Table Statements

Documentation on creating, altering, analyzing and maintaining tables.

ANALYZE and EXPLAIN Statements

Articles on the ANALYZE and EXPLAIN statements

BACKUP Commands

Commands used by backup tools.

FLUSH Commands

Commands to flush or reset various caches in MariaDB.

Replication Commands

List of replication-related commands.

Plugin SQL Statements

List of SQL statements related to plugins.

SET Commands

The SET commands

SHOW

Articles on the various SHOW commands.

System Tables

BINLOG

Internal statement generated by mariadb-binlog.

PURGE BINARY LOGS

PURGE BINARY LOGS removes all binary logs from the server, prior to the provided date or log file.

87/4161

CACHE INDEX

Caches MyISAM or Aria indexes

DESCRIBE

Information about columns in a table.

EXECUTE Statement

Executes a previously PREPAREd statement

HELP Command

The HELP command will retrieve syntax and help within the mariadb client.

KILL [CONNECTION | QUERY]

Kill connection by query or thread id.

LOAD INDEX

Loads one or more indexes from one or more MyISAM/Aria tables into a key buffer.

RESET

Overall description of the different RESET commands

SHUTDOWN

Shuts down the server.

USE [DATABASE]

Set the current default database.

There are 2 related questions .

1

1.1.1.2.1 Table Statements
Articles about creating, modifying, and maintaining tables in MariaDB.

ALTER

The various ALTER statements in MariaDB.

ANALYZE TABLE

Store key distributions for a table.

CHECK TABLE

Check table for errors.

CHECK VIEW

Check whether the view algorithm is correct.

CHECKSUM TABLE

Report a table checksum.

CREATE TABLE

Creates a new table.

DELETE

Delete rows from one or more tables.

DROP TABLE

Removes definition and data from one or more tables.

Installing System Tables (mariadb-install-db)

Using mariadb-install-db to create the system tables in the 'mysql' database directory.

4

1

2

10

2

88/4161

https://mariadb.com/kb/en/administrative-sql-statements/+questions/

mysqlcheck

Symlink or old name for mariadb-check.

mysql_upgrade

Symlink or old name for mariadb-upgrade.

OPTIMIZE TABLE

Reclaim unused space and defragment data.

RENAME TABLE

Change a table's name.

REPAIR TABLE

Repairs a table, if the storage engine supports this statement.

REPAIR VIEW

Fix view if the algorithms are swapped.

REPLACE

Equivalent to DELETE + INSERT, or just an INSERT if no rows are returned.

SHOW COLUMNS

Column information.

SHOW CREATE TABLE

Shows the CREATE TABLE statement that creates the table.

SHOW INDEX

Information about table indexes.

TRUNCATE TABLE

DROP and re-CREATE a table.

UPDATE

Modify rows in one or more tables.

Obsolete Table Commands

Table commands that have been removed from MariaDB

IGNORE

Suppress errors while trying to violate a UNIQUE constraint.

System-Versioned Tables

System-versioned tables record the history of all changes to table data.

There are 2 related questions .

1

6

1

1

2

24

1.1.1.2.1.1 ALTER
This category is for documentation on the various ALTER statements.

ALTER TABLE

Modify a table's definition.

ALTER DATABASE

Change the overall characteristics of a database.

ALTER EVENT

Change an existing event.

5

89/4161

https://mariadb.com/kb/en/obsolete-table-commands/
https://mariadb.com/kb/en/table-statements/+questions/

ALTER FUNCTION

Change the characteristics of a stored function.

ALTER LOGFILE GROUP

Only useful with MySQL Cluster, and has no effect in MariaDB.

ALTER PROCEDURE

Change stored procedure characteristics.

ALTER SEQUENCE

Change options for a SEQUENCE.

ALTER SERVER

Updates mysql.servers table.

ALTER TABLESPACE

ALTER TABLESPACE is not available in MariaDB.

ALTER USER

Modify an existing MariaDB account.

ALTER VIEW

Change a view definition.

There are 1 related questions .

1

1

2

1.1.1.2.1.1.1 ALTER TABLE

Syntax

ALTER [ONLINE] [IGNORE] TABLE [IF EXISTS] tbl_name

 [WAIT n | NOWAIT]

 alter_specification [, alter_specification] ...

alter_specification:

 table_option ...

 | ADD [COLUMN] [IF NOT EXISTS] col_name column_definition

 [FIRST | AFTER col_name]

 | ADD [COLUMN] [IF NOT EXISTS] (col_name column_definition,...)

 | ADD {INDEX|KEY} [IF NOT EXISTS] [index_name]

 [index_type] (index_col_name,...) [index_option] ...

 | ADD [CONSTRAINT [symbol]] PRIMARY KEY

 [index_type] (index_col_name,...) [index_option] ...

 | ADD [CONSTRAINT [symbol]]

 UNIQUE [INDEX|KEY] [index_name]

 [index_type] (index_col_name,...) [index_option] ...

 | ADD FULLTEXT [INDEX|KEY] [index_name]

 (index_col_name,...) [index_option] ...

 | ADD SPATIAL [INDEX|KEY] [index_name]

 (index_col_name,...) [index_option] ...

 | ADD [CONSTRAINT [symbol]]

 FOREIGN KEY [IF NOT EXISTS] [index_name] (index_col_name,...)

 reference_definition

 | ADD PERIOD FOR [time_period_name|SYSTEM_TIME] (start_column_name, end_column_name)

 | ALTER [COLUMN] col_name SET DEFAULT literal | (expression)

 | ALTER [COLUMN] col_name DROP DEFAULT

 | ALTER {INDEX|KEY} index_name [NOT] INVISIBLE

 | CHANGE [COLUMN] [IF EXISTS] old_col_name new_col_name column_definition

 [FIRST|AFTER col_name]

 | MODIFY [COLUMN] [IF EXISTS] col_name column_definition

 [FIRST | AFTER col_name]

 | DROP [COLUMN] [IF EXISTS] col_name [RESTRICT|CASCADE]
90/4161

https://mariadb.com/kb/en/alter/+questions/

 | DROP [COLUMN] [IF EXISTS] col_name [RESTRICT|CASCADE]

 | DROP PRIMARY KEY

 | DROP {INDEX|KEY} [IF EXISTS] index_name

 | DROP FOREIGN KEY [IF EXISTS] fk_symbol

 | DROP CONSTRAINT [IF EXISTS] constraint_name

 | DISABLE KEYS

 | ENABLE KEYS

 | RENAME [TO] new_tbl_name

 | ORDER BY col_name [, col_name] ...

 | RENAME COLUMN old_col_name TO new_col_name

 | RENAME {INDEX|KEY} old_index_name TO new_index_name

 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]

 | [DEFAULT] CHARACTER SET [=] charset_name

 | [DEFAULT] COLLATE [=] collation_name

 | DISCARD TABLESPACE

 | IMPORT TABLESPACE

 | ALGORITHM [=] {DEFAULT|INPLACE|COPY|NOCOPY|INSTANT}

 | LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

 | FORCE

 | partition_options

 | CONVERT TABLE normal_table TO partition_definition [{WITH | WITHOUT} VALIDATION]

 | CONVERT PARTITION partition_name TO TABLE tbl_name

 | ADD PARTITION [IF NOT EXISTS] (partition_definition)

 | DROP PARTITION [IF EXISTS] partition_names

 | TRUNCATE PARTITION partition_names

 | COALESCE PARTITION number

 | REORGANIZE PARTITION [partition_names INTO (partition_definitions)]

 | ANALYZE PARTITION partition_names

 | CHECK PARTITION partition_names

 | OPTIMIZE PARTITION partition_names

 | REBUILD PARTITION partition_names

 | REPAIR PARTITION partition_names

 | EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH | WITHOUT} VALIDATION]

 | REMOVE PARTITIONING

 | ADD SYSTEM VERSIONING

 | DROP SYSTEM VERSIONING

index_col_name:

 col_name [(length)] [ASC | DESC]

index_type:

 USING {BTREE | HASH | RTREE}

index_option:

 [KEY_BLOCK_SIZE [=] value

 | index_type

 | WITH PARSER parser_name

 | COMMENT 'string'

 | CLUSTERING={YES| NO}]

 [IGNORED | NOT IGNORED]

table_options:

 table_option [[,] table_option] ...

Contents
1. Syntax

2. Description

3. Privileges

4. Online DDL

1. ALTER ONLINE TABLE

5. WAIT/NOWAIT

6. IF EXISTS

7. Column Definitions

8. Index Definitions

9. Character Sets and Collations

10. Alter Specifications

1. Table Options

2. ADD COLUMN
91/4161

2. ADD COLUMN

3. DROP COLUMN

4. MODIFY COLUMN

5. CHANGE COLUMN

6. ALTER COLUMN

7. RENAME INDEX/KEY

8. RENAME COLUMN

9. ADD PRIMARY KEY

10. DROP PRIMARY KEY

11. ADD FOREIGN KEY

12. DROP FOREIGN KEY

13. ADD INDEX

14. DROP INDEX

15. ADD UNIQUE INDEX

16. DROP UNIQUE INDEX

17. ADD FULLTEXT INDEX

18. DROP FULLTEXT INDEX

19. ADD SPATIAL INDEX

20. DROP SPATIAL INDEX

21. ENABLE/ DISABLE KEYS

22. RENAME TO

23. ADD CONSTRAINT

24. DROP CONSTRAINT

25. ADD SYSTEM VERSIONING

26. DROP SYSTEM VERSIONING

27. ADD PERIOD FOR

28. FORCE

29. Partitions

1. ADD PARTITION

2. ANALYZE PARTITION

3. CHECK PARTITION

4. COALESCE PARTITION

5. CONVERT PARTITION / TABLE

6. DROP PARTITION

7. EXCHANGE PARTITION

8. OPTIMIZE PARTITION

9. REMOVE PARTITIONING

10. REORGANIZE PARTITION

11. TRUNCATE PARTITION

30. DISCARD TABLESPACE

31. IMPORT TABLESPACE

32. ALGORITHM

1. ALGORITHM=DEFAULT

2. ALGORITHM=COPY

3. ALGORITHM=INPLACE

4. ALGORITHM=NOCOPY

5. ALGORITHM=INSTANT

33. LOCK

1. DEFAULT

2. NONE

3. SHARED

4. EXCLUSIVE

11. Progress Reporting

12. Aborting ALTER TABLE Operations

13. Atomic ALTER TABLE

14. Replication

15. Examples

Description
ALTER TABLE enables you to change the structure of an existing table. For example, you can add or delete columns,

create or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can also change

the comment for the table and the storage engine of the table.

If another connection is using the table, a metadata lock is active, and this statement will wait until the lock is released. This

is also true for non-transactional tables.

When adding a UNIQUE index on a column (or a set of columns) which have duplicated values, an error will be produced

92/4161

and the statement will be stopped. To suppress the error and force the creation of UNIQUE indexes, discarding duplicates,

the IGNORE option can be specified. This can be useful if a column (or a set of columns) should be UNIQUE but it contains

duplicate values; however, this technique provides no control on which rows are preserved and which are deleted. Also,

note that IGNORE is accepted but ignored in ALTER TABLE ... EXCHANGE PARTITION statements.

This statement can also be used to rename a table. For details see RENAME TABLE.

When an index is created, the storage engine may use a configurable buffer in the process. Incrementing the buffer speeds

up the index creation. Aria and MyISAM allocate a buffer whose size is defined by aria_sort_buffer_size or

myisam_sort_buffer_size, also used for REPAIR TABLE. InnoDB allocates three buffers whose size is defined by

innodb_sort_buffer_size.

Privileges
Executing the ALTER TABLE statement generally requires at least the ALTER privilege for the table or the database..

If you are renaming a table, then it also requires the DROP, CREATE and INSERT privileges for the table or the database

as well.

Online DDL
Online DDL is supported with the ALGORITHM and LOCK clauses.

See InnoDB Online DDL Overview for more information on online DDL with InnoDB.

ALTER ONLINE TABLE

ALTER ONLINE TABLE also works for partitioned tables.

Online ALTER TABLE is available by executing the following:

ALTER ONLINE TABLE ...;

This statement is equivalent to the following:

ALTER TABLE ... LOCK=NONE;

See the LOCK alter specification for more information.

WAIT/NOWAIT
Set the lock wait timeout. See WAIT and NOWAIT.

IF EXISTS
The IF EXISTS and IF NOT EXISTS clauses are available for the following:

ADD COLUMN [IF NOT EXISTS]

ADD INDEX [IF NOT EXISTS]

ADD FOREIGN KEY [IF NOT EXISTS]

ADD PARTITION [IF NOT EXISTS]

CREATE INDEX [IF NOT EXISTS]

DROP COLUMN [IF EXISTS]

DROP INDEX [IF EXISTS]

DROP FOREIGN KEY [IF EXISTS]

DROP PARTITION [IF EXISTS]

CHANGE COLUMN [IF EXISTS]

MODIFY COLUMN [IF EXISTS]

DROP INDEX [IF EXISTS]

When IF EXISTS and IF NOT EXISTS are used in clauses, queries will not report errors when the condition is triggered

for that clause. A warning with the same message text will be issued and the ALTER will move on to the next clause in the

statement (or end if finished).

MariaDB starting with 10.5.2 93/4161

If this is directive is used after ALTER ... TABLE , one will not get an error if the table doesn't exist.

Column Definitions
See CREATE TABLE: Column Definitions for information about column definitions.

Index Definitions
See CREATE TABLE: Index Definitions for information about index definitions.

The CREATE INDEX and DROP INDEX statements can also be used to add or remove an index.

Character Sets and Collations

CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]

[DEFAULT] CHARACTER SET [=] charset_name

[DEFAULT] COLLATE [=] collation_name

See Setting Character Sets and Collations for details on setting the character sets and collations.

Alter Specifications

Table Options

See CREATE TABLE: Table Options for information about table options.

ADD COLUMN

... ADD COLUMN [IF NOT EXISTS] (col_name column_definition,...)

Adds a column to the table. The syntax is the same as in CREATE TABLE. If you are using IF NOT_EXISTS the column

will not be added if it was not there already. This is very useful when doing scripts to modify tables.

The FIRST and AFTER clauses affect the physical order of columns in the datafile. Use FIRST to add a column in the first

(leftmost) position, or AFTER followed by a column name to add the new column in any other position. Note that, nowadays,

the physical position of a column is usually irrelevant.

See also Instant ADD COLUMN for InnoDB.

DROP COLUMN

... DROP COLUMN [IF EXISTS] col_name [CASCADE|RESTRICT]

Drops the column from the table. If you are using IF EXISTS you will not get an error if the column didn't exist. If the

column is part of any index, the column will be dropped from them, except if you add a new column with identical name at

the same time. The index will be dropped if all columns from the index were dropped. If the column was used in a view or

trigger, you will get an error next time the view or trigger is accessed. Dropping a column that is part of a multi-column

UNIQUE constraint is not permitted. For example:

CREATE TABLE a (

 a int,

 b int,

 primary key (a,b)

);

ALTER TABLE x DROP COLUMN a;

[42000][1072] Key column 'A' doesn't exist in table

The reason is that dropping column a would result in the new constraint that all values in column b be unique. In order to

MariaDB starting with 10.5.2

94/4161

drop the column, an explicit DROP PRIMARY KEY and ADD PRIMARY KEY would be required. Up until MariaDB 10.2.7 ,

the column was dropped and the additional constraint applied, resulting in the following structure:

ALTER TABLE x DROP COLUMN a;

Query OK, 0 rows affected (0.46 sec)

DESC x;

+-------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-------+

| b | int(11) | NO | PRI | NULL | |

+-------+---------+------+-----+---------+-------+

MariaDB 10.4.0 supports instant DROP COLUMN. DROP COLUMN of an indexed column would imply DROP INDEX

(and in the case of a non-UNIQUE multi-column index, possibly ADD INDEX). These will not be allowed with

ALGORITHM=INSTANT, but unlike before, they can be allowed with ALGORITHM=NOCOPY

RESTRICT and CASCADE are allowed to make porting from other database systems easier. In MariaDB, they do nothing.

MODIFY COLUMN

Allows you to modify the type of a column. The column will be at the same place as the original column and all indexes on

the column will be kept. Note that when modifying column, you should specify all attributes for the new column.

CREATE TABLE t1 (a INT UNSIGNED AUTO_INCREMENT, PRIMARY KEY((a));

ALTER TABLE t1 MODIFY a BIGINT UNSIGNED AUTO_INCREMENT;

CHANGE COLUMN

Works like MODIFY COLUMN except that you can also change the name of the column. The column will be at the same

place as the original column and all index on the column will be kept.

CREATE TABLE t1 (a INT UNSIGNED AUTO_INCREMENT, PRIMARY KEY(a));

ALTER TABLE t1 CHANGE a b BIGINT UNSIGNED AUTO_INCREMENT;

ALTER COLUMN

This lets you change column options.

CREATE TABLE t1 (a INT UNSIGNED AUTO_INCREMENT, b varchar(50), PRIMARY KEY(a));

ALTER TABLE t1 ALTER b SET DEFAULT 'hello';

RENAME INDEX/KEY

From MariaDB 10.5.2, it is possible to rename an index using the RENAME INDEX (or RENAME KEY) syntax, for

example:

ALTER TABLE t1 RENAME INDEX i_old TO i_new;

RENAME COLUMN

From MariaDB 10.5.2, it is possible to rename a column using the RENAME COLUMN syntax, for example:

ALTER TABLE t1 RENAME COLUMN c_old TO c_new;

ADD PRIMARY KEY

MariaDB starting with 10.4.0

MariaDB starting with 10.5.2

MariaDB starting with 10.5.2

95/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/

Add a primary key.

For PRIMARY KEY indexes, you can specify a name for the index, but it is silently ignored, and the name of the index is

always PRIMARY .

See Getting Started with Indexes: Primary Key for more information.

DROP PRIMARY KEY

Drop a primary key.

For PRIMARY KEY indexes, you can specify a name for the index, but it is silently ignored, and the name of the index is

always PRIMARY .

See Getting Started with Indexes: Primary Key for more information.

ADD FOREIGN KEY

Add a foreign key.

For FOREIGN KEY indexes, a reference definition must be provided.

For FOREIGN KEY indexes, you can specify a name for the constraint, using the CONSTRAINT keyword. That name will be

used in error messages.

First, you have to specify the name of the target (parent) table and a column or a column list which must be indexed and

whose values must match to the foreign key's values. The MATCH clause is accepted to improve the compatibility with other

DBMS's, but has no meaning in MariaDB. The ON DELETE and ON UPDATE clauses specify what must be done when a

DELETE (or a REPLACE) statements attempts to delete a referenced row from the parent table, and when an UPDATE

statement attempts to modify the referenced foreign key columns in a parent table row, respectively. The following options

are allowed:

RESTRICT : The delete/update operation is not performed. The statement terminates with a 1451 error (SQLSTATE

'2300').

NO ACTION : Synonym for RESTRICT .

CASCADE : The delete/update operation is performed in both tables.

SET NULL : The update or delete goes ahead in the parent table, and the corresponding foreign key fields in the child

table are set to NULL . (They must not be defined as NOT NULL for this to succeed).

SET DEFAULT : This option is implemented only for the legacy PBXT storage engine, which is disabled by default and

no longer maintained. It sets the child table's foreign key fields to their DEFAULT values when the referenced parent

table key entries are updated or deleted.

If either clause is omitted, the default behavior for the omitted clause is RESTRICT .

See Foreign Keys for more information.

DROP FOREIGN KEY

Drop a foreign key.

See Foreign Keys for more information.

ADD INDEX

Add a plain index.

Plain indexes are regular indexes that are not unique, and are not acting as a primary key or a foreign key. They are also

not the "specialized" FULLTEXT or SPATIAL indexes.

See Getting Started with Indexes: Plain Indexes for more information.

DROP INDEX

Drop a plain index.

Plain indexes are regular indexes that are not unique, and are not acting as a primary key or a foreign key. They are also

not the "specialized" FULLTEXT or SPATIAL indexes.

See Getting Started with Indexes: Plain Indexes for more information.

96/4161

ADD UNIQUE INDEX

Add a unique index.

The UNIQUE keyword means that the index will not accept duplicated values, except for NULLs. An error will raise if you try

to insert duplicate values in a UNIQUE index.

For UNIQUE indexes, you can specify a name for the constraint, using the CONSTRAINT keyword. That name will be used

in error messages.

See Getting Started with Indexes: Unique Index for more information.

DROP UNIQUE INDEX

Drop a unique index.

The UNIQUE keyword means that the index will not accept duplicated values, except for NULLs. An error will raise if you try

to insert duplicate values in a UNIQUE index.

For UNIQUE indexes, you can specify a name for the constraint, using the CONSTRAINT keyword. That name will be used

in error messages.

See Getting Started with Indexes: Unique Index for more information.

ADD FULLTEXT INDEX

Add a FULLTEXT index.

See Full-Text Indexes for more information.

DROP FULLTEXT INDEX

Drop a FULLTEXT index.

See Full-Text Indexes for more information.

ADD SPATIAL INDEX

Add a SPATIAL index.

See SPATIAL INDEX for more information.

DROP SPATIAL INDEX

Drop a SPATIAL index.

See SPATIAL INDEX for more information.

ENABLE/ DISABLE KEYS

DISABLE KEYS will disable all non unique keys for the table for storage engines that support this (at least MyISAM and

Aria). This can be used to speed up inserts into empty tables.

ENABLE KEYS will enable all disabled keys.

RENAME TO

Renames the table. See also RENAME TABLE.

ADD CONSTRAINT

Modifies the table adding a constraint on a particular column or columns.

ALTER TABLE table_name

ADD CONSTRAINT [constraint_name] CHECK(expression);

Before a row is inserted or updated, all constraints are evaluated in the order they are defined. If any constraint fails, then

the row will not be updated. One can use most deterministic functions in a constraint, including UDF's.

97/4161

CREATE TABLE account_ledger (

 id INT PRIMARY KEY AUTO_INCREMENT,

 transaction_name VARCHAR(100),

 credit_account VARCHAR(100),

 credit_amount INT,

 debit_account VARCHAR(100),

 debit_amount INT);

ALTER TABLE account_ledger

ADD CONSTRAINT is_balanced

 CHECK((debit_amount + credit_amount) = 0);

The constraint_name is optional. If you don't provide one in the ALTER TABLE statement, MariaDB auto-generates a

name for you. This is done so that you can remove it later using DROP CONSTRAINT clause.

You can disable all constraint expression checks by setting the variable check_constraint_checks to OFF . You may find this

useful when loading a table that violates some constraints that you want to later find and fix in SQL.

To view constraints on a table, query information_schema.TABLE_CONSTRAINTS:

SELECT CONSTRAINT_NAME, TABLE_NAME, CONSTRAINT_TYPE

FROM information_schema.TABLE_CONSTRAINTS

WHERE TABLE_NAME = 'account_ledger';

+-----------------+----------------+-----------------+

| CONSTRAINT_NAME | TABLE_NAME | CONSTRAINT_TYPE |

+-----------------+----------------+-----------------+

| is_balanced | account_ledger | CHECK |

+-----------------+----------------+-----------------+

DROP CONSTRAINT

DROP CONSTRAINT for UNIQUE and FOREIGN KEY constraints was introduced in MariaDB 10.2.22 and MariaDB

10.3.13 .

DROP CONSTRAINT for CHECK constraints was introduced in MariaDB 10.2.1

Modifies the table, removing the given constraint.

ALTER TABLE table_name

DROP CONSTRAINT constraint_name;

When you add a constraint to a table, whether through a CREATE TABLE or ALTER TABLE...ADD CONSTRAINT

statement, you can either set a constraint_name yourself, or allow MariaDB to auto-generate one for you. To view

constraints on a table, query information_schema.TABLE_CONSTRAINTS. For instance,

CREATE TABLE t (

 a INT,

 b INT,

 c INT,

 CONSTRAINT CHECK(a > b),

 CONSTRAINT check_equals CHECK(a = c));

SELECT CONSTRAINT_NAME, TABLE_NAME, CONSTRAINT_TYPE

FROM information_schema.TABLE_CONSTRAINTS

WHERE TABLE_NAME = 't';

+-----------------+----------------+-----------------+

| CONSTRAINT_NAME | TABLE_NAME | CONSTRAINT_TYPE |

+-----------------+----------------+-----------------+

| check_equals | t | CHECK |

| CONSTRAINT_1 | t | CHECK |

+-----------------+----------------+-----------------+

To remove a constraint from the table, issue an ALTER TABLE...DROP CONSTRAINT statement. For example,

ALTER TABLE t DROP CONSTRAINT is_unique;

98/4161

https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

ADD SYSTEM VERSIONING

Add system versioning. See System-versioned tables.

DROP SYSTEM VERSIONING

Drop system versioning. See System-versioned tables.

ADD PERIOD FOR

See System-versioned tables, Application-time-period tables or Bitemporal Tables.

FORCE

ALTER TABLE ... FORCE can force MariaDB to re-build the table.

In MariaDB 5.5 and before, this could only be done by setting the ENGINE table option to its old value. For example, for an

InnoDB table, one could execute the following:

ALTER TABLE tab_name ENGINE = InnoDB;

The FORCE option can be used instead. For example, :

ALTER TABLE tab_name FORCE;

With InnoDB, the table rebuild will only reclaim unused space (i.e. the space previously used for deleted rows) if the

innodb_file_per_table system variable is set to ON (the default). If the system variable is OFF , then the space will not be

reclaimed, but it will be-re-used for new data that's later added.

The rebuild may fail if conditions are violated due to a change in the sql_mode. For example:

CREATE OR REPLACE TABLE x (d DATE DEFAULT '0000-00-00');

SET SQL_MODE='NO_ZERO_DATE';

ALTER TABLE x FORCE;

ERROR 1067 (42000): Invalid default value for 'd'

Partitions

ADD PARTITION

See Partitioning Overview: Adding Partitions for details.

ANALYZE PARTITION

See Partitioning Overview: Analyzing Partitions for details.

CHECK PARTITION

See Partitioning Overview: Checking Partitions for details.

COALESCE PARTITION

Reduces the number of HASH or KEY partitions in a table. See Partitioning Overview: Coalescing Partitions.

CONVERT PARTITION / TABLE

CONVERT PARTITION and CONVERT TABLE were introduced in MariaDB 10.7.1 .

CONVERT PARTITION can be used to remove a partition from a table and make this an ordinary table. For example:

ALTER TABLE partitioned_table CONVERT PARTITION part1 TO TABLE normal_table;

CONVERT PARTITION will take an existing table and move this to another table as its own partition with a specified partition
99/4161

https://mariadb.com/kb/en/mariadb-1071-release-notes/

definition. For example the following moves normal_table to a partition of partitioned_table with a definition that its

values, based on the PARTITION BY of the partitioned_table , are less than 12345.

ALTER TABLE partitioned_table CONVERT TABLE normal_table

 TO PARTITION part1 VALUES LESS THAN (12345);

From MariaDB 11.4, the optional [{WITH | WITHOUT} VALIDATION] is permitted.

See Partitioning Overview: Converting Partitions to/from Tables for more details.

See also 10.7 preview feature: CONVERT PARTITION (mariadb.org blog post)

DROP PARTITION

Used to drop specific partitions (and discard all data within the specified partitions) for RANGE and LIST partitions. See

Partitioning Overview: Dropping Partitions.

EXCHANGE PARTITION

This is used to exchange the contents of a partition with another table. This is performed by swapping the tablespaces of

the partition with the other table.

From MariaDB 11.4, the optional [{WITH | WITHOUT} VALIDATION] is permitted.

See Partitioning Overview: Exchanging Partitions for more details.

See also copying InnoDB's transportable tablespaces.

OPTIMIZE PARTITION

See Partitioning Overview: Optimizing Partitions for details.

REMOVE PARTITIONING

See Partitioning Overview: Removing Partitioning.

REORGANIZE PARTITION

See Partitioning Overview: Reorganizing Partitions.

TRUNCATE PARTITION

See Partitioning Overview: Truncating Partitions.

DISCARD TABLESPACE

This is used to discard an InnoDB table's tablespace.

See copying InnoDB's transportable tablespaces for more information.

IMPORT TABLESPACE

This is used to import an InnoDB table's tablespace. The tablespace should have been copied from its original server after

executing FLUSH TABLES FOR EXPORT.

See copying InnoDB's transportable tablespaces for more information.

ALTER TABLE ... IMPORT only applies to InnoDB tables. Most other popular storage engines, such as Aria and MyISAM,

will recognize their data files as soon as they've been placed in the proper directory under the datadir, and no special DDL is

required to import them.

ALGORITHM

The ALTER TABLE statement supports the ALGORITHM clause. This clause is one of the clauses that is used to implement

online DDL. ALTER TABLE supports several different algorithms. An algorithm can be explicitly chosen for an ALTER

TABLE operation by setting the ALGORITHM clause. The supported values are:

ALGORITHM=DEFAULT - This implies the default behavior for the specific statement, such as if no ALGORITHM clause

is specified.

100/4161

https://mariadb.org/10-7-preview-feature-convert-partition/

ALGORITHM=COPY

ALGORITHM=INPLACE

ALGORITHM=NOCOPY - This was added in MariaDB 10.3.7 .

ALGORITHM=INSTANT - This was added in MariaDB 10.3.7 .

See InnoDB Online DDL Overview: ALGORITHM for information on how the ALGORITHM clause affects InnoDB.

ALGORITHM=DEFAULT

The default behavior, which occurs if ALGORITHM=DEFAULT is specified, or if ALGORITHM is not specified at all, usually

only makes a copy if the operation doesn't support being done in-place at all. In this case, the most efficient available

algorithm will usually be used.

However, in MariaDB 10.3.6 and before, if the value of the old_alter_table system variable is set to ON , then the default

behavior is to perform ALTER TABLE operations by making a copy of the table using the old algorithm.

In MariaDB 10.3.7 and later, the old_alter_table system variable is deprecated. Instead, the alter_algorithm system

variable defines the default algorithm for ALTER TABLE operations.

ALGORITHM=COPY

ALGORITHM=COPY is the name for the original ALTER TABLE algorithm from early MariaDB versions.

When ALGORITHM=COPY is set, MariaDB essentially does the following operations:

-- Create a temporary table with the new definition

CREATE TEMPORARY TABLE tmp_tab (

...

);

-- Copy the data from the original table

INSERT INTO tmp_tab

 SELECT * FROM original_tab;

-- Drop the original table

DROP TABLE original_tab;

-- Rename the temporary table, so that it replaces the original one

RENAME TABLE tmp_tab TO original_tab;

This algorithm is very inefficient, but it is generic, so it works for all storage engines.

If ALGORITHM=COPY is specified, then the copy algorithm will be used even if it is not necessary. This can result in a lengthy

table copy. If multiple ALTER TABLE operations are required that each require the table to be rebuilt, then it is best to

specify all operations in a single ALTER TABLE statement, so that the table is only rebuilt once.

From MariaDB 11.2, ALTER TABLE can now do most operations with ALGORITHM=COPY, LOCK=NONE. See

LOCK=NONE.

ALGORITHM=INPLACE

ALGORITHM=COPY can be incredibly slow, because the whole table has to be copied and rebuilt. ALGORITHM=INPLACE was

introduced as a way to avoid this by performing operations in-place and avoiding the table copy and rebuild, when possible.

When ALGORITHM=INPLACE is set, the underlying storage engine uses optimizations to perform the operation while

avoiding the table copy and rebuild. However, INPLACE is a bit of a misnomer, since some operations may still require the

table to be rebuilt for some storage engines. Regardless, several operations can be performed without a full copy of the

table for some storage engines.

A more accurate name would have been ALGORITHM=ENGINE , where ENGINE refers to an "engine-specific" algorithm.

If an ALTER TABLE operation supports ALGORITHM=INPLACE , then it can be performed using optimizations by the

underlying storage engine, but it may rebuilt.

See InnoDB Online DDL Operations with ALGORITHM=INPLACE for more.

ALGORITHM=NOCOPY

ALGORITHM=NOCOPY was introduced in MariaDB 10.3.7 .

ALGORITHM=INPLACE can sometimes be surprisingly slow in instances where it has to rebuild the clustered index, because

101/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

when the clustered index has to be rebuilt, the whole table has to be rebuilt. ALGORITHM=NOCOPY was introduced as a way

to avoid this.

If an ALTER TABLE operation supports ALGORITHM=NOCOPY , then it can be performed without rebuilding the clustered

index.

If ALGORITHM=NOCOPY is specified for an ALTER TABLE operation that does not support ALGORITHM=NOCOPY , then an

error will be raised. In this case, raising an error is preferable, if the alternative is for the operation to rebuild the clustered

index, and perform unexpectedly slowly.

See InnoDB Online DDL Operations with ALGORITHM=NOCOPY for more.

ALGORITHM=INSTANT

ALGORITHM=INSTANT was introduced in MariaDB 10.3.7 .

ALGORITHM=INPLACE can sometimes be surprisingly slow in instances where it has to modify data files.

ALGORITHM=INSTANT was introduced as a way to avoid this.

If an ALTER TABLE operation supports ALGORITHM=INSTANT , then it can be performed without modifying any data files.

If ALGORITHM=INSTANT is specified for an ALTER TABLE operation that does not support ALGORITHM=INSTANT , then an

error will be raised. In this case, raising an error is preferable, if the alternative is for the operation to modify data files, and

perform unexpectedly slowly.

See InnoDB Online DDL Operations with ALGORITHM=INSTANT for more.

LOCK

The ALTER TABLE statement supports the LOCK clause. This clause is one of the clauses that is used to implement online

DDL. ALTER TABLE supports several different locking strategies. A locking strategy can be explicitly chosen for an ALTER

TABLE operation by setting the LOCK clause. The supported values are:

DEFAULT

Acquire the least restrictive lock on the table that is supported for the specific operation. Permit the maximum amount of

concurrency that is supported for the specific operation.

NONE

Acquire no lock on the table. Permit all concurrent DML. If this locking strategy is not permitted for an operation, then an

error is raised. From MariaDB 11.2, ALTER TABLE can do most operations with ALGORITHM=COPY, LOCK=NONE , that is, in

most cases, unless the algorithm and lock level are explicitly specified, ALTER TABLE will be performed using the COPY

algorithm while simultaneously allowing concurrent DML statements on the altered table. If this is not desired, one can

explicitly specify a different lock level or set old_mode to LOCK_ALTER_TABLE_COPY that will make ALGORITHM=COPY

use LOCK=SHARED by default (but still allowing LOCK=NONE to be specified explicitly).

SHARED

Acquire a read lock on the table. Permit read-only concurrent DML. If this locking strategy is not permitted for an operation,

then an error is raised.

EXCLUSIVE

Acquire a write lock on the table. Do not permit concurrent DML.

Different storage engines support different locking strategies for different operations. If a specific locking strategy is chosen

for an ALTER TABLE operation, and that table's storage engine does not support that locking strategy for that specific

operation, then an error will be raised.

If the LOCK clause is not explicitly set, then the operation uses LOCK=DEFAULT .

ALTER ONLINE TABLE is equivalent to LOCK=NONE . Therefore, the ALTER ONLINE TABLE statement can be used to

ensure that your ALTER TABLE operation allows all concurrent DML.

See InnoDB Online DDL Overview: LOCK for information on how the LOCK clause affects InnoDB.

Progress Reporting

102/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/alter-online-table
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/alter-online-table

MariaDB provides progress reporting for ALTER TABLE statement for clients that support the new progress reporting

protocol. For example, if you were using the mariadb client, then the progress report might look like this::

ALTER TABLE test ENGINE=Aria;

Stage: 1 of 2 'copy to tmp table' 46% of stage

The progress report is also shown in the output of the SHOW PROCESSLIST statement and in the contents of the

information_schema.PROCESSLIST table.

See Progress Reporting for more information.

Aborting ALTER TABLE Operations
If an ALTER TABLE operation is being performed and the connection is killed, the changes will be rolled back in a controlled

manner. The rollback can be a slow operation as the time it takes is relative to how far the operation has progressed.

Aborting ALTER TABLE ... ALGORITHM=COPY was made faster in MariaDB 10.2.13 by removing excessive undo

logging (MDEV-11415). This significantly shortened the time it takes to abort a running ALTER TABLE operation,

compared with earlier releases.

Atomic ALTER TABLE

From MariaDB 10.6, ALTER TABLE is atomic for most engines, including InnoDB, MyRocks, MyISAM and Aria

(MDEV-25180). This means that if there is a crash (server down or power outage) during an ALTER TABLE

operation, after recovery, either the old table and associated triggers and status will be intact, or the new table will be

active.

In older MariaDB versions one could get leftover #sql-alter..', '#sql-backup..' or 'table_name.frmß' files if the system

crashed during the ALTER TABLE operation.

See Atomic DDL for more information.

Replication

Before MariaDB 10.8.1 , ALTER TABLE got fully executed on the primary first, and only then was it replicated and

started executing on replicas. From MariaDB 10.8.1 , ALTER TABLE gains an option to replicate sooner and begin

executing on replicas when it merely starts executing on the primary, not when it finishes. This way the replication lag

caused by a heavy ALTER TABLE can be completely eliminated (MDEV-11675).

Examples
Adding a new column:

ALTER TABLE t1 ADD x INT;

Dropping a column:

ALTER TABLE t1 DROP x;

Modifying the type of a column:

ALTER TABLE t1 MODIFY x bigint unsigned;

Changing the name and type of a column:

ALTER TABLE t1 CHANGE a b bigint unsigned auto_increment;

Combining multiple clauses in a single ALTER TABLE statement, separated by commas:

ALTER TABLE t1 DROP x, ADD x2 INT, CHANGE y y2 INT;

MariaDB starting with 10.6.1

MariaDB starting with 10.8.1

103/4161

https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://jira.mariadb.org/browse/MDEV-11415
https://jira.mariadb.org/browse/MDEV-25180
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://jira.mariadb.org/browse/MDEV-11675

Changing the storage engine and adding a comment:

ALTER TABLE t1

 ENGINE = InnoDB

 COMMENT = 'First of three tables containing usage info';

Rebuilding the table (the previous example will also rebuild the table if it was already InnoDB):

ALTER TABLE t1 FORCE;

Dropping an index:

ALTER TABLE rooms DROP INDEX u;

Adding a unique index:

ALTER TABLE rooms ADD UNIQUE INDEX u(room_number);

From MariaDB 10.5.3, adding a primary key for an application-time period table with a WITHOUT OVERLAPS constraint:

ALTER TABLE rooms ADD PRIMARY KEY(room_number, p WITHOUT OVERLAPS);

From MariaDB 10.8.1 , ALTER query can be replicated faster with the setting of

SET @@SESSION.binlog_alter_two_phase = true;

prior the ALTER query. Binlog would contain two event groups

| master-bin.000001 | 495 | Gtid | 1 | 537 | GTID 0-1-2 START ALTER

| master-bin.000001 | 537 | Query | 1 | 655 | use `test`; alter table t

| master-bin.000001 | 655 | Gtid | 1 | 700 | GTID 0-1-3 COMMIT ALTER id

| master-bin.000001 | 700 | Query | 1 | 835 | use `test`; alter table t

of which the first one gets delivered to replicas before ALTER is taken to actual execution on the primary.

1.1.1.2.1.1.2 ALTER DATABASE
Modifies a database, changing its overall characteristics.

Syntax

ALTER {DATABASE | SCHEMA} [db_name]

 alter_specification ...

ALTER {DATABASE | SCHEMA} db_name

 UPGRADE DATA DIRECTORY NAME

alter_specification:

 [DEFAULT] CHARACTER SET [=] charset_name

 | [DEFAULT] COLLATE [=] collation_name

 | COMMENT [=] 'comment'

Contents
1. Syntax

2. Description

1. COMMENT

3. Examples

Description
ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics are stored in the

db.opt file in the database directory. To use ALTER DATABASE , you need the ALTER privilege on the database. ALTER

104/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/

SCHEMA is a synonym for ALTER DATABASE.

The CHARACTER SET clause changes the default database character set. The COLLATE clause changes the default

database collation. See Character Sets and Collations for more.

You can see what character sets and collations are available using, respectively, the SHOW CHARACTER SET and SHOW

COLLATION statements.

Changing the default character set/collation of a database does not change the character set/collation of any stored

procedures or stored functions that were previously created, and relied on the defaults. These need to be dropped and

recreated in order to apply the character set/collation changes.

The database name can be omitted from the first syntax, in which case the statement applies to the default database.

The syntax that includes the UPGRADE DATA DIRECTORY NAME clause was added in MySQL 5.1.23. It updates the name

of the directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping database names

to database directory names (see Identifier to File Name Mapping). This clause is for use under these conditions:

It is intended when upgrading MySQL to 5.1 or later from older versions.

It is intended to update a database directory name to the current encoding format if the name contains special

characters that need encoding.

The statement is used by mariadb-check (as invoked by mariadb-upgrade).

For example,if a database in MySQL 5.0 has a name of a-b-c, the name contains instance of the `-' character. In 5.0, the

database directory is also named a-b-c, which is not necessarily safe for all file systems. In MySQL 5.1 and up, the same

database name is encoded as a@002db@002dc to produce a file system-neutral directory name.

When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays a name such as a-

b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the name using the #mysql50# prefix. Use

UPGRADE DATA DIRECTORY NAME in this case to explicitly tell the server to re-encode the database directory name to the

current encoding format:

ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;

After executing this statement, you can refer to the database as a-b-c without the special #mysql50# prefix.

COMMENT

From MariaDB 10.5.0, it is possible to add a comment of a maximum of 1024 bytes. If the comment length exceeds

this length, a error/warning code 4144 is thrown. The database comment is also added to the db.opt file, as well as to

the information_schema.schemata table.

Examples

ALTER DATABASE test CHARACTER SET='utf8' COLLATE='utf8_bin';

From MariaDB 10.5.0:

ALTER DATABASE p COMMENT='Presentations';

MariaDB starting with 10.5.0

1.1.1.2.1.1.3 ALTER EVENT
Modifies one or more characteristics of an existing event.

Syntax

105/4161

ALTER

 [DEFINER = { user | CURRENT_USER }]

 EVENT event_name

 [ON SCHEDULE schedule]

 [ON COMPLETION [NOT] PRESERVE]

 [RENAME TO new_event_name]

 [ENABLE | DISABLE | DISABLE ON SLAVE]

 [COMMENT 'comment']

 [DO sql_statement]

Contents
1. Syntax

2. Description

3. Examples

Description
The ALTER EVENT statement is used to change one or more of the characteristics of an existing event without the need to

drop and recreate it. The syntax for each of the DEFINER , ON SCHEDULE , ON COMPLETION , COMMENT , ENABLE /

DISABLE , and DO clauses is exactly the same as when used with CREATE EVENT.

This statement requires the EVENT privilege. When a user executes a successful ALTER EVENT statement, that user

becomes the definer for the affected event.

(In MySQL 5.1.11 and earlier, an event could be altered only by its definer, or by a user having the SUPER privilege.)

ALTER EVENT works only with an existing event:

ALTER EVENT no_such_event ON SCHEDULE EVERY '2:3' DAY_HOUR;

ERROR 1539 (HY000): Unknown event 'no_such_event'

Examples

ALTER EVENT myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 2 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

1.1.1.2.1.1.4 ALTER FUNCTION

Syntax

ALTER FUNCTION func_name [characteristic ...]

characteristic:

 { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

Contents
1. Syntax

2. Description

3. Example

Description
This statement can be used to change the characteristics of a stored function. More than one change may be specified in an

ALTER FUNCTION statement. However, you cannot change the parameters or body of a stored function using this

statement; to make such changes, you must drop and re-create the function using DROP FUNCTION and CREATE

FUNCTION.

You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically to the function

106/4161

creator.) If binary logging is enabled, the ALTER FUNCTION statement might also require the SUPER privilege, as

described in Binary Logging of Stored Routines.

Example

ALTER FUNCTION hello SQL SECURITY INVOKER;

1.1.1.2.1.1.5 ALTER LOGFILE GROUP

Syntax

ALTER LOGFILE GROUP logfile_group

 ADD UNDOFILE 'file_name'

 [INITIAL_SIZE [=] size]

 [WAIT]

 ENGINE [=] engine_name

The ALTER LOGFILE GROUP statement is not supported by MariaDB. It was originally inherited from MySQL NDB

Cluster. See MDEV-19295 for more information.

1.1.1.2.1.1.6 ALTER PROCEDURE

Syntax

ALTER PROCEDURE proc_name [characteristic ...]

characteristic:

 { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

Description
This statement can be used to change the characteristics of a stored procedure. More than one change may be specified in

an ALTER PROCEDURE statement. However, you cannot change the parameters or body of a stored procedure using this

statement. To make such changes, you must drop and re-create the procedure using either CREATE OR REPLACE

PROCEDURE (since MariaDB 10.1.3) or DROP PROCEDURE and CREATE PROCEDURE (MariaDB 10.1.2 and

before).

You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is granted automatically to the

procedure creator. See Stored Routine Privileges.

Example

ALTER PROCEDURE simpleproc SQL SECURITY INVOKER;

1.1.6.4 ALTER SEQUENCE

1.1.1.2.1.1.8 ALTER SERVER

Syntax
107/4161

https://jira.mariadb.org/browse/MDEV-19295
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

ALTER SERVER server_name

 OPTIONS (option [, option] ...)

Contents
1. Syntax

2. Description

3. Examples

Description
Alters the server information for server_name, adjusting the specified options as per the CREATE SERVER command. The

corresponding fields in the mysql.servers table are updated accordingly. This statement requires the SUPER privilege or,

from MariaDB 10.5.2, the FEDERATED ADMIN privilege.

ALTER SERVER is not written to the binary log, irrespective of the binary log format being used. From MariaDB 10.1.13 ,

Galera replicates the CREATE SERVER, ALTER SERVER and DROP SERVER statements.

Examples

ALTER SERVER s OPTIONS (USER 'sally');

1.1.1.2.1.1.9 ALTER TABLESPACE

The ALTER TABLESPACE statement is not supported by MariaDB. It was originally inherited from MySQL NDB Cluster.

In MySQL 5.7 and later, the statement is also supported for InnoDB. However, MariaDB has chosen not to include that

specific feature. See MDEV-19294 for more information.

1.1.1.1.2 ALTER USER

1.1.1.2.1.1.11 ALTER VIEW

Syntax

ALTER

 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

 [DEFINER = { user | CURRENT_USER }]

 [SQL SECURITY { DEFINER | INVOKER }]

 VIEW view_name [(column_list)]

 AS select_statement

 [WITH [CASCADED | LOCAL] CHECK OPTION]

Contents
1. Syntax

2. Description

3. Example

Description
This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE VIEW and the

effect is the same as for CREATE OR REPLACE VIEW if the view exists. This statement requires the CREATE VIEW and

DROP privileges for the view, and some privilege for each column referred to in the SELECT statement. ALTER VIEW is

allowed only to the definer or users with the SUPER privilege.

Example

108/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://jira.mariadb.org/browse/MDEV-19294

ALTER VIEW v AS SELECT a, a*3 AS a2 FROM t;

1.1.1.2.1.2 ANALYZE TABLE

Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE tbl_name [,tbl_name ...]

 [PERSISTENT FOR

 { ALL

 | COLUMNS ([col_name [,col_name ...]]) INDEXES ([index_name [,index_name ...]])

 }

]

Contents
1. Syntax

2. Description

3. Engine-Independent Statistics / PERSISTENT FOR

4. Useful Variables

5. Examples

Description
ANALYZE TABLE analyzes and stores the key distribution for a table (index statistics). This statement works with MyISAM,

Aria and InnoDB tables. During the analysis, InnoDB will allow reads/writes, and MyISAM/Aria reads/inserts. For MyISAM

tables, this statement is equivalent to using myisamchk --analyze.

For more information on how the analysis works within InnoDB, see InnoDB Limitations.

MariaDB uses the stored key distribution to decide the order in which tables should be joined when you perform a join on

something other than a constant. In addition, key distributions can be used when deciding which indexes to use for a

specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

By default, ANALYZE TABLE statements are written to the binary log and will be replicated. The NO_WRITE_TO_BINLOG

keyword (LOCAL is an alias) will ensure the statement is not written to the binary log.

From MariaDB 10.3.19 , ANALYZE TABLE statements are not logged to the binary log if read_only is set. See also Read-

Only Replicas.

ANALYZE TABLE is also supported for partitioned tables. You can use ALTER TABLE ... ANALYZE PARTITION to

analyze one or more partitions.

The Aria storage engine supports progress reporting for the ANALYZE TABLE statement.

Engine-Independent Statistics / PERSISTENT FOR
ANALYZE TABLE supports engine-independent statistics. See Engine-Independent Table Statistics: Collecting Statistics

with the ANALYZE TABLE Statement for more information.

Useful Variables
For calculating the number of duplicates, ANALYZE TABLE uses a buffer of sort_buffer_size bytes per column. You can

slightly increase the speed of ANALYZE TABLE by increasing this variable.

Examples

109/4161

https://mariadb.com/kb/en/mariadb-10319-release-notes/

-- update all engine-independent statistics for all columns and indexes

ANALYZE TABLE tbl PERSISTENT FOR ALL;

-- update specific columns and indexes:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS (col1,col2,...) INDEXES (idx1,idx2,...);

-- empty lists are allowed:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS (col1,col2,...) INDEXES ();

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS () INDEXES (idx1,idx2,...);

-- the following will only update mysql.table_stats fields:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS () INDEXES ();

-- when use_stat_tables is set to 'COMPLEMENTARY' or 'PREFERABLY',

-- a simple ANALYZE TABLE collects engine-independent statistics for all columns and indexes.

SET SESSION use_stat_tables='COMPLEMENTARY';

ANALYZE TABLE tbl;

1.1.1.2.1.3 CHECK TABLE

Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

Description
CHECK TABLE checks a table or tables for errors. CHECK TABLE works for Archive, Aria, CSV, InnoDB and MyISAM

tables. For Aria and MyISAM tables, the key statistics are updated as well. For CSV, see also Checking and Repairing CSV

Tables.

As an alternative, myisamchk is a commandline tool for checking MyISAM tables when the tables are not being accessed.

For Aria tables, there is a similar tool: aria_chk.

For checking dynamic columns integrity, COLUMN_CHECK() can be used.

CHECK TABLE can also check views for problems, such as tables that are referenced in the view definition that no longer

exist.

CHECK TABLE is also supported for partitioned tables. You can use ALTER TABLE ... CHECK PARTITION to check one

or more partitions.

The meaning of the different options are as follows - note that this can vary a bit between storage engines:

FOR

UPGRADE

Do a very quick check if the storage format for the table has changed so that one needs to do a REPAIR.

This is only needed when one upgrades between major versions of MariaDB or MySQL. This is usually done

by running mariadb-upgrade .

FAST
Only check tables that has not been closed properly or are marked as corrupt. Only supported by the

MyISAM and Aria engines. For other engines the table is checked normally

CHANGED
Check only tables that has changed since last REPAIR / CHECK. Only supported by the MyISAM and Aria

engines. For other engines the table is checked normally.

QUICK
Do a fast check. For MyISAM and Aria, this means skipping the check of the delete link chain, which may

take some time.

MEDIUM
Scan also the data files. Checks integrity between data and index files with checksums. In most cases this

should find all possible errors.

EXTENDED

Does a full check to verify every possible error. For InnoDB, Aria, and MyISAM, verify for each row that all

its keys exists, and for those index keys, they point back to the primary clustered key. This may take a long

time on large tables. This option was previously ignored by InnoDB before MariaDB 10.6.11, MariaDB

10.7.7 , MariaDB 10.8.6 and MariaDB 10.9.4.

For most cases running CHECK TABLE without options or MEDIUM should be good enough.

The Aria storage engine supports progress reporting for this statement.

110/4161

https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/
https://mariadb.com/kb/en/mariadb-1077-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/

If you want to know if two tables are identical, take a look at CHECKSUM TABLE.

InnoDB
If CHECK TABLE finds an error in an InnoDB table, MariaDB might shutdown to prevent the error propagation. In this case,

the problem will be reported in the error log. Otherwise the table or an index might be marked as corrupted, to prevent use.

This does not happen with some minor problems, like a wrong number of entries in a secondary index. Those problems are

reported in the output of CHECK TABLE .

Each tablespace contains a header with metadata. This header is not checked by this statement.

During the execution of CHECK TABLE , other threads may be blocked.

Examples

check table y extended;

+--------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------+-------+----------+----------+

| test.y | check | status | OK |

+--------+-------+----------+----------+

1.1.1.2.1.4 CHECK VIEW

Syntax

CHECK VIEW view_name

Description
The CHECK VIEW statement was introduced in MariaDB 10.0.18 to assist with fixing MDEV-6916 , an issue introduced

in MariaDB 5.2 where the view algorithms were swapped. It checks whether the view algorithm is correct. It is run as part of

mariadb-upgrade, and should not normally be required in regular use.

1.1.1.2.1.5 CHECKSUM TABLE

Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

Contents
1. Syntax

2. Description

3. Identical Tables

4. Differences Between MariaDB and MySQL

Description
CHECKSUM TABLE reports a table checksum. This is very useful if you want to know if two tables are the same (for example

on a master and slave).

With QUICK , the live table checksum is reported if it is available, or NULL otherwise. This is very fast. A live checksum is

enabled by specifying the CHECKSUM=1 table option when you create the table; currently, this is supported only for Aria and

MyISAM tables.

With EXTENDED , the entire table is read row by row and the checksum is calculated. This can be very slow for large tables.

If neither QUICK nor EXTENDED is specified, MariaDB returns a live checksum if the table storage engine supports it and

scans the table otherwise.
111/4161

https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://jira.mariadb.org/browse/MDEV-6916

CHECKSUM TABLE requires the SELECT privilege for the table.

For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.

The table row format affects the checksum value. If the row format changes, the checksum will change. This means that

when a table created with a MariaDB/MySQL version is upgraded to another version, the checksum value will probably

change.

Two identical tables should always match to the same checksum value; however, also for non-identical tables there is a very

slight chance that they will return the same value as the hashing algorithm is not completely collision-free.

Identical Tables
Identical tables mean that the CREATE statement is identical and that the following variable, which affects the storage

formats, was the same when the tables were created:

mysql56-temporal-format

Differences Between MariaDB and MySQL
CHECKSUM TABLE may give a different result as MariaDB doesn't ignore NULL s in the columns as MySQL 5.1 does (Later

MySQL versions should calculate checksums the same way as MariaDB). You can get the 'old style' checksum in MariaDB

by starting mysqld with the --old option. Note however that that the MyISAM and Aria storage engines in MariaDB are

using the new checksum internally, so if you are using --old , the CHECKSUM command will be slower as it needs to

calculate the checksum row by row. Starting from MariaDB Server 10.9, --old is deprecated and will be removed in a

future release. Set --old-mode or OLD_MODE to COMPAT_5_1_CHECKSUM to get 'old style' checksum.

1.1.1.2.1.6 CREATE TABLE

Syntax

CREATE [OR REPLACE] [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

 (create_definition,...) [table_options]... [partition_options]

CREATE [OR REPLACE] [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

 [(create_definition,...)] [table_options]... [partition_options]

 select_statement

CREATE [OR REPLACE] [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

 { LIKE old_table_name | (LIKE old_table_name) }

select_statement:

 [IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

Contents
1. Syntax

2. Description

3. Privileges

4. CREATE OR REPLACE

1. Things to be Aware of With CREATE OR REPLACE

5. CREATE TABLE IF NOT EXISTS

6. CREATE TEMPORARY TABLE

7. CREATE TABLE ... LIKE

8. CREATE TABLE ... SELECT

9. Column Definitions

1. NULL and NOT NULL

2. DEFAULT Column Option

3. AUTO_INCREMENT Column Option

4. ZEROFILL Column Option

5. PRIMARY KEY Column Option

6. UNIQUE KEY Column Option

7. COMMENT Column Option

8. REF_SYSTEM_ID

9. Generated Columns

10. COMPRESSED

11. INVISIBLE
112/4161

11. INVISIBLE

12. WITH SYSTEM VERSIONING Column Option

13. WITHOUT SYSTEM VERSIONING Column Option

10. Index Definitions

1. Index Categories

1. Plain Indexes

2. PRIMARY KEY

3. UNIQUE

4. FOREIGN KEY

5. FULLTEXT

6. SPATIAL

2. Index Options

1. KEY_BLOCK_SIZE Index Option

2. Index Types

3. WITH PARSER Index Option

4. COMMENT Index Option

5. CLUSTERING Index Option

6. IGNORED / NOT IGNORED

11. Periods

12. Constraint Expressions

13. Table Options

1. [STORAGE] ENGINE

2. AUTO_INCREMENT

3. AVG_ROW_LENGTH

4. [DEFAULT] CHARACTER SET/CHARSET

5. CHECKSUM/TABLE_CHECKSUM

6. [DEFAULT] COLLATE

7. COMMENT

8. CONNECTION

9. DATA DIRECTORY/INDEX DIRECTORY

10. DELAY_KEY_WRITE

11. ENCRYPTED

12. ENCRYPTION_KEY_ID

13. IETF_QUOTES

14. INSERT_METHOD

15. KEY_BLOCK_SIZE

16. MIN_ROWS/MAX_ROWS

17. PACK_KEYS

18. PAGE_CHECKSUM

19. PAGE_COMPRESSED

20. PAGE_COMPRESSION_LEVEL

21. PASSWORD

22. RAID_TYPE

23. ROW_FORMAT

1. Supported MyISAM Row Formats

2. Supported Aria Row Formats

3. Supported InnoDB Row Formats

4. Other Storage Engines and ROW_FORMAT

24. SEQUENCE

25. STATS_AUTO_RECALC

26. STATS_PERSISTENT

27. STATS_SAMPLE_PAGES

28. TRANSACTIONAL

29. UNION

30. WITH SYSTEM VERSIONING

14. Partitions

15. Sequences

16. Atomic DDL

17. Examples

Description
Use the CREATE TABLE statement to create a table with the given name.

In its most basic form, the CREATE TABLE statement provides a table name followed by a list of columns, indexes, and

constraints. By default, the table is created in the default database. Specify a database with db_name.tbl_name . If you

quote the table name, you must quote the database name and table name separately as `db_name`.`tbl_name` . This is

particularly useful for CREATE TABLE ... SELECT, because it allows to create a table into a database, which contains data
113/4161

from other databases. See Identifier Qualifiers.

If a table with the same name exists, error 1050 results. Use IF NOT EXISTS to suppress this error and issue a note

instead. Use SHOW WARNINGS to see notes.

The CREATE TABLE statement automatically commits the current transaction, except when using the TEMPORARY

keyword.

For valid identifiers to use as table names, see Identifier Names.

Note: if the default_storage_engine is set to ColumnStore then it needs setting on all UMs. Otherwise when the tables

using the default engine are replicated across UMs they will use the wrong engine. You should therefore not use this

option as a session variable with ColumnStore.

Microsecond precision can be between 0-6. If no precision is specified it is assumed to be 0, for backward compatibility

reasons.

Privileges
Executing the CREATE TABLE statement requires the CREATE privilege for the table or the database.

CREATE OR REPLACE
If the OR REPLACE clause is used and the table already exists, then instead of returning an error, the server will drop the

existing table and replace it with the newly defined table.

This syntax was originally added to make replication more robust if it has to rollback and repeat statements such as CREATE

... SELECT on replicas.

CREATE OR REPLACE TABLE table_name (a int);

is basically the same as:

DROP TABLE IF EXISTS table_name;

CREATE TABLE table_name (a int);

with the following exceptions:

If table_name was locked with LOCK TABLES it will continue to be locked after the statement.

Temporary tables are only dropped if the TEMPORARY keyword was used. (With DROP TABLE, temporary tables are

preferred to be dropped before normal tables).

Things to be Aware of With CREATE OR REPLACE

The table is dropped first (if it existed), after that the CREATE is done. Because of this, if the CREATE fails, then the

table will not exist anymore after the statement. If the table was used with LOCK TABLES it will be unlocked.

One can't use OR REPLACE together with IF EXISTS .

Slaves in replication will by default use CREATE OR REPLACE when replicating CREATE statements that don''t use

IF EXISTS . This can be changed by setting the variable slave-ddl-exec-mode to STRICT .

CREATE TABLE IF NOT EXISTS
If the IF NOT EXISTS clause is used, then the table will only be created if a table with the same name does not already

exist. If the table already exists, then a warning will be triggered by default.

CREATE TEMPORARY TABLE
Use the TEMPORARY keyword to create a temporary table that is only available to the current session. Temporary tables are

dropped when the session ends. Temporary table names are specific to the session. They will not conflict with other

temporary tables from other sessions even if they share the same name. They will shadow names of non-temporary tables

or views, if they are identical. A temporary table can have the same name as a non-temporary table which is located in the

same database. In that case, their name will reference the temporary table when used in SQL statements. You must have

the CREATE TEMPORARY TABLES privilege on the database to create temporary tables. If no storage engine is specified,

114/4161

the default_tmp_storage_engine setting will determine the engine.

ROCKSDB temporary tables cannot be created by setting the default_tmp_storage_engine system variable, or using

CREATE TEMPORARY TABLE LIKE . Before MariaDB 10.7, they could be specified, but would silently fail, and a MyISAM

table would be created instead. From MariaDB 10.7 an error is returned. Explicitly creating a temporary table with

ENGINE=ROCKSDB has never been permitted.

CREATE TABLE ... LIKE
Use the LIKE clause instead of a full table definition to create an empty table with the same definition as another table,

including columns, indexes, and table options. Foreign key definitions, as well as any DATA DIRECTORY or INDEX

DIRECTORY table options specified on the original table, will not be created.

LIKE does not preserve the TEMPORARY status of the original table. To make the new table TEMPORARY as well, use

CREATE TEMPORARY TABLE ... LIKE .

LIKE does not work with views, only base tables. Attempting to use it on a view will result in an error:

CREATE VIEW v (mycol) AS SELECT 'abc';

CREATE TABLE v2 LIKE v;

ERROR 1347 (HY000): 'test.v' is not of type 'BASE TABLE'

The same version of the table storage format as found in the original table is used for the new table.

CREATE TABLE ... LIKE performs the same checks as CREATE TABLE . So a statement may fail if a change in the

SQL_MODE renders it invalid. For example:

CREATE OR REPLACE TABLE x (d DATE DEFAULT '0000-00-00');

SET SQL_MODE='NO_ZERO_DATE';

CREATE OR REPLACE TABLE y LIKE x;

ERROR 1067 (42000): Invalid default value for 'd'

CREATE TABLE ... SELECT
You can create a table containing data from other tables using the CREATE ... SELECT statement. Columns will be

created in the table for each field returned by the SELECT query.

You can also define some columns normally and add other columns from a SELECT . You can also create columns in the

normal way and assign them some values using the query, this is done to force a certain type or other field characteristics.

The columns that are not named in the query will be placed before the others. For example:

CREATE TABLE test (a INT NOT NULL, b CHAR(10)) ENGINE=MyISAM

 SELECT 5 AS b, c, d FROM another_table;

Remember that the query just returns data. If you want to use the same indexes, or the same columns attributes ([NOT]

NULL , DEFAULT , AUTO_INCREMENT) in the new table, you need to specify them manually. Types and sizes are not

automatically preserved if no data returned by the SELECT requires the full size, and VARCHAR could be converted into

CHAR . The CAST() function can be used to forcee the new table to use certain types.

Aliases (AS) are taken into account, and they should always be used when you SELECT an expression (function,

arithmetical operation, etc).

If an error occurs during the query, the table will not be created at all.

If the new table has a primary key or UNIQUE indexes, you can use the IGNORE or REPLACE keywords to handle

duplicate key errors during the query. IGNORE means that the newer values must not be inserted an identical value exists in

the index. REPLACE means that older values must be overwritten.

If the columns in the new table are more than the rows returned by the query, the columns populated by the query will be

placed after other columns. Note that if the strict SQL_MODE is on, and the columns that are not names in the query do not

have a DEFAULT value, an error will raise and no rows will be copied.

Concurrent inserts are not used during the execution of a CREATE ... SELECT .

If the table already exists, an error similar to the following will be returned:

115/4161

ERROR 1050 (42S01): Table 't' already exists

If the IF NOT EXISTS clause is used and the table exists, a note will be produced instead of an error.

To insert rows from a query into an existing table, INSERT ... SELECT can be used.

Column Definitions

create_definition:

 { col_name column_definition | index_definition | period_definition | CHECK (expr) }

column_definition:

 data_type

 [NOT NULL | NULL] [DEFAULT default_value | (expression)]

 [ON UPDATE [NOW | CURRENT_TIMESTAMP] [(precision)]]

 [AUTO_INCREMENT] [ZEROFILL] [UNIQUE [KEY] | [PRIMARY] KEY]

 [INVISIBLE] [{WITH|WITHOUT} SYSTEM VERSIONING]

 [COMMENT 'string'] [REF_SYSTEM_ID = value]

 [reference_definition]

 | data_type [GENERATED ALWAYS]

 AS [ROW {START|END} [NOT NULL ENABLE] [[PRIMARY] KEY]

 | (expression) [VIRTUAL | PERSISTENT | STORED]]

 [INVISIBLE] [UNIQUE [KEY]] [COMMENT 'string']

constraint_definition:

 CONSTRAINT [constraint_name] CHECK (expression)

Note: Until MariaDB 10.4, MariaDB accepts the shortcut format with a REFERENCES clause only in ALTER TABLE

and CREATE TABLE statements, but that syntax does nothing. For example:

CREATE TABLE b(for_key INT REFERENCES a(not_key));

MariaDB simply parses it without returning any error or warning, for compatibility with other DBMS's. Before MariaDB

10.2.1 this was also true for CHECK constraints. However, only the syntax described below creates foreign keys.

From MariaDB 10.5, MariaDB will attempt to apply the constraint. See Foreign Keys examples.

Each definition either creates a column in the table or specifies and index or constraint on one or more columns. See

Indexes below for details on creating indexes.

Create a column by specifying a column name and a data type, optionally followed by column options. See Data Types for a

full list of data types allowed in MariaDB.

NULL and NOT NULL

Use the NULL or NOT NULL options to specify that values in the column may or may not be NULL , respectively. By default,

values may be NULL . See also NULL Values in MariaDB.

DEFAULT Column Option

Specify a default value using the DEFAULT clause. If you don't specify DEFAULT then the following rules apply:

If the column is not defined with NOT NULL , AUTO_INCREMENT or TIMESTAMP , an explicit DEFAULT NULL will be

added. Note that in MySQL and in MariaDB before 10.1.6, you may get an explicit DEFAULT for primary key parts, if

not specified with NOT NULL.

The default value will be used if you INSERT a row without specifying a value for that column, or if you specify DEFAULT for

that column. Before MariaDB 10.2.1 you couldn't usually provide an expression or function to evaluate at insertion time.

You had to provide a constant default value instead. The one exception is that you may use CURRENT_TIMESTAMP as

the default value for a TIMESTAMP column to use the current timestamp at insertion time.

CURRENT_TIMESTAMP may also be used as the default value for a DATETIME

You can use most functions in DEFAULT . Expressions should have parentheses around them. If you use a non deterministic

function in DEFAULT then all inserts to the table will be replicated in row mode. You can even refer to earlier columns in the

116/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

DEFAULT expression (excluding AUTO_INCREMENT columns):

CREATE TABLE t1 (a int DEFAULT (1+1), b int DEFAULT (a+1));

CREATE TABLE t2 (a bigint primary key DEFAULT UUID_SHORT());

The DEFAULT clause cannot contain any stored functions or subqueries, and a column used in the clause must already

have been defined earlier in the statement.

It is possible to assign BLOB or TEXT columns a DEFAULT value. In versions prior to MariaDB 10.2.1 , assigning a

default to these columns was not possible.

You can also use DEFAULT (NEXT VALUE FOR sequence)

AUTO_INCREMENT Column Option

Use AUTO_INCREMENT to create a column whose value can can be set automatically from a simple counter. You can only

use AUTO_INCREMENT on a column with an integer type. The column must be a key, and there can only be one

AUTO_INCREMENT column in a table. If you insert a row without specifying a value for that column (or if you specify 0 ,

NULL , or DEFAULT as the value), the actual value will be taken from the counter, with each insertion incrementing the

counter by one. You can still insert a value explicitly. If you insert a value that is greater than the current counter value, the

counter is set based on the new value. An AUTO_INCREMENT column is implicitly NOT NULL . Use LAST_INSERT_ID to get

the AUTO_INCREMENT value most recently used by an INSERT statement.

ZEROFILL Column Option

If the ZEROFILL column option is specified for a column using a numeric data type, then the column will be set to

UNSIGNED and the spaces used by default to pad the field are replaced with zeros. ZEROFILL is ignored in expressions or

as part of a UNION. ZEROFILL is a non-standard MySQL and MariaDB enhancement.

PRIMARY KEY Column Option

Use PRIMARY KEY to make a column a primary key. A primary key is a special type of a unique key. There can be at most

one primary key per table, and it is implicitly NOT NULL .

Specifying a column as a unique key creates a unique index on that column. See the Index Definitions section below for

more information.

UNIQUE KEY Column Option

Use UNIQUE KEY (or just UNIQUE) to specify that all values in the column must be distinct from each other. Unless the

column is NOT NULL , there may be multiple rows with NULL in the column.

Specifying a column as a unique key creates a unique index on that column.

See the Index Definitions section below for more information.

COMMENT Column Option

You can provide a comment for each column using the COMMENT clause. The maximum length is 1024 characters. Use the

SHOW FULL COLUMNS statement to see column comments.

REF_SYSTEM_ID

REF_SYSTEM_ID can be used to specify Spatial Reference System IDs for spatial data type columns. For example:

CREATE TABLE t1(g GEOMETRY(9,4) REF_SYSTEM_ID=101);

Generated Columns

A generated column is a column in a table that cannot explicitly be set to a specific value in a DML query. Instead, its value

is automatically generated based on an expression. This expression might generate the value based on the values of other

columns in the table, or it might generate the value by calling built-in functions or user-defined functions (UDFs).

There are two types of generated columns:

117/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/

PERSISTENT or STORED : This type's value is actually stored in the table.

VIRTUAL : This type's value is not stored at all. Instead, the value is generated dynamically when the table is queried.

This type is the default.

Generated columns are also sometimes called computed columns or virtual columns.

For a complete description about generated columns and their limitations, see Generated (Virtual and Persistent/Stored)

Columns.

COMPRESSED

Certain columns may be compressed. See Storage-Engine Independent Column Compression.

INVISIBLE

Columns may be made invisible, and hidden in certain contexts. See Invisible Columns.

WITH SYSTEM VERSIONING Column Option

Columns may be explicitly marked as included from system versioning. See System-versioned tables for details.

WITHOUT SYSTEM VERSIONING Column Option

Columns may be explicitly marked as excluded from system versioning. See System-versioned tables for details.

Index Definitions

index_definition:

 {INDEX|KEY} [index_name] [index_type] (index_col_name,...) [index_option] ...

 {{{|}}} {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...) [index_option] ...

 {{{|}}} [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...) [index_option] ...

 {{{|}}} [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY] [index_name] [index_type]

(index_col_name,...) [index_option] ...

 {{{|}}} [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (index_col_name,...)

reference_definition

index_col_name:

 col_name [(length)] [ASC | DESC]

index_type:

 USING {BTREE | HASH | RTREE}

index_option:

 [KEY_BLOCK_SIZE [=] value

 {{{|}}} index_type

 {{{|}}} WITH PARSER parser_name

 {{{|}}} COMMENT 'string'

 {{{|}}} CLUSTERING={YES| NO}]

 [IGNORED | NOT IGNORED]

reference_definition:

 REFERENCES tbl_name (index_col_name,...)

 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

 [ON DELETE reference_option]

 [ON UPDATE reference_option]

reference_option:

 RESTRICT | CASCADE | SET NULL | NO ACTION

INDEX and KEY are synonyms.

Index names are optional, if not specified an automatic name will be assigned. Index name are needed to drop indexes and

appear in error messages when a constraint is violated.

Index Categories

118/4161

Plain Indexes

Plain indexes are regular indexes that are not unique, and are not acting as a primary key or a foreign key. They are also

not the "specialized" FULLTEXT or SPATIAL indexes.

See Getting Started with Indexes: Plain Indexes for more information.

PRIMARY KEY

For PRIMARY KEY indexes, you can specify a name for the index, but it is ignored, and the name of the index is always

PRIMARY . From MariaDB 10.3.18 and MariaDB 10.4.8, a warning is explicitly issued if a name is specified. Before then,

the name was silently ignored.

See Getting Started with Indexes: Primary Key for more information.

UNIQUE

The UNIQUE keyword means that the index will not accept duplicated values, except for NULLs. An error will raise if you try

to insert duplicate values in a UNIQUE index.

For UNIQUE indexes, you can specify a name for the constraint, using the CONSTRAINT keyword. That name will be used

in error messages.

Unique, if index type is not specified, is normally a BTREE index that can also be used by the optimizer to find rows. If

the key is longer than the max key length for the used storage engine, a HASH key will be created. This enables

MariaDB to enforce uniqueness for any type or number of columns.

See Getting Started with Indexes: Unique Index for more information.

FOREIGN KEY

For FOREIGN KEY indexes, a reference definition must be provided.

For FOREIGN KEY indexes, you can specify a name for the constraint, using the CONSTRAINT keyword. That name will be

used in error messages.

First, you have to specify the name of the target (parent) table and a column or a column list which must be indexed and

whose values must match to the foreign key's values. The MATCH clause is accepted to improve the compatibility with other

DBMS's, but has no meaning in MariaDB. The ON DELETE and ON UPDATE clauses specify what must be done when a

DELETE (or a REPLACE) statements attempts to delete a referenced row from the parent table, and when an UPDATE

statement attempts to modify the referenced foreign key columns in a parent table row, respectively. The following options

are allowed:

RESTRICT : The delete/update operation is not performed. The statement terminates with a 1451 error (SQLSTATE

'2300').

NO ACTION : Synonym for RESTRICT .

CASCADE : The delete/update operation is performed in both tables.

SET NULL : The update or delete goes ahead in the parent table, and the corresponding foreign key fields in the child

table are set to NULL . (They must not be defined as NOT NULL for this to succeed).

SET DEFAULT : This option is currently implemented only for the PBXT storage engine, which is disabled by default

and no longer maintained. It sets the child table's foreign key fields to their DEFAULT values when the referenced

parent table key entries are updated or deleted.

If either clause is omitted, the default behavior for the omitted clause is RESTRICT .

See Foreign Keys for more information.

FULLTEXT

Use the FULLTEXT keyword to create full-text indexes.

See Full-Text Indexes for more information.

SPATIAL

Use the SPATIAL keyword to create geometric indexes.

See SPATIAL INDEX for more information.

MariaDB starting with 10.5

119/4161

https://mariadb.com/kb/en/mariadb-10318-release-notes/

Index Options

KEY_BLOCK_SIZE Index Option

The KEY_BLOCK_SIZE index option is similar to the KEY_BLOCK_SIZE table option.

With the InnoDB storage engine, if you specify a non-zero value for the KEY_BLOCK_SIZE table option for the whole table,

then the table will implicitly be created with the ROW_FORMAT table option set to COMPRESSED . However, this does not

happen if you just set the KEY_BLOCK_SIZE index option for one or more indexes in the table. The InnoDB storage engine

ignores the KEY_BLOCK_SIZE index option. However, the SHOW CREATE TABLE statement may still report it for the

index.

For information about the KEY_BLOCK_SIZE index option, see the KEY_BLOCK_SIZE table option below.

Index Types

Each storage engine supports some or all index types. See Storage Engine Index Types for details on permitted index types

for each storage engine.

Different index types are optimized for different kind of operations:

BTREE is the default type, and normally is the best choice. It is supported by all storage engines. It can be used to

compare a column's value with a value using the =, >, >=, <, <=, BETWEEN , and LIKE operators. BTREE can also

be used to find NULL values. Searches against an index prefix are possible.

HASH is only supported by the MEMORY storage engine. HASH indexes can only be used for =, <=, and >=

comparisons. It can not be used for the ORDER BY clause. Searches against an index prefix are not possible.

RTREE is the default for SPATIAL indexes, but if the storage engine does not support it BTREE can be used.

Index columns names are listed between parenthesis. After each column, a prefix length can be specified. If no length is

specified, the whole column will be indexed. ASC and DESC can be specified. Prior to MariaDB 10.8, this was only for

compatibility with other DBMSs, but had no meaning in MariaDB. From MariaDB 10.8, individual columns in the index can

now be explicitly sorted in ascending or descending order. This can be useful for optimizing certain ORDER BY cases

(MDEV-13756 , MDEV-26938 , MDEV-26939 , MDEV-26996). From MariaDB 11.4.0, not only ascending, but also

descending, indexes can now be used to optimize MIN() and MAX() (MDEV-27576).

WITH PARSER Index Option

The WITH PARSER index option only applies to FULLTEXT indexes and contains the fulltext parser name. The fulltext

parser must be an installed plugin.

COMMENT Index Option

A comment of up to 1024 characters is permitted with the COMMENT index option.

The COMMENT index option allows you to specify a comment with user-readable text describing what the index is for. This

information is not used by the server itself.

CLUSTERING Index Option

The CLUSTERING index option is only valid for tables using the TokuDB storage engine.

IGNORED / NOT IGNORED

From MariaDB 10.6.0, indexes can be specified to be ignored by the optimizer. See Ignored Indexes.

Periods

period_definition:

 PERIOD FOR [time_period_name | SYSTEM_TIME] (start_column_name, end_column_name)

MariaDB supports System-versioned tables, Application-time-period tables or Bitemporal Tables.

Constraint Expressions

MariaDB starting with 10.6.0

120/4161

https://mariadb.com/kb/en/spatial/
https://jira.mariadb.org/browse/MDEV-13756
https://jira.mariadb.org/browse/MDEV-26938
https://jira.mariadb.org/browse/MDEV-26939
https://jira.mariadb.org/browse/MDEV-26996
https://jira.mariadb.org/browse/MDEV-27576
https://mariadb.com/kb/en/tokudb/

Note: Before MariaDB 10.2.1 , constraint expressions were accepted in the syntax but ignored.

MariaDB 10.2.1 introduced two ways to define a constraint:

CHECK(expression) given as part of a column definition.

CONSTRAINT [constraint_name] CHECK (expression)

Before a row is inserted or updated, all constraints are evaluated in the order they are defined. If any constraints fails, then

the row will not be updated. One can use most deterministic functions in a constraint, including UDFs.

create table t1 (a int check(a>0) ,b int check (b> 0), constraint abc check (a>b));

If you use the second format and you don't give a name to the constraint, then the constraint will get a auto generated

name. This is done so that you can later delete the constraint with ALTER TABLE DROP constraint_name.

One can disable all constraint expression checks by setting the variable check_constraint_checks to OFF . This is

useful for example when loading a table that violates some constraints that you want to later find and fix in SQL.

See CONSTRAINT for more information.

Table Options
For each individual table you create (or alter), you can set some table options. The general syntax for setting options is:

<OPTION_NAME> = <option_value>, [<OPTION_NAME> = <option_value> ...]

The equal sign is optional.

Some options are supported by the server and can be used for all tables, no matter what storage engine they use; other

options can be specified for all storage engines, but have a meaning only for some engines. Also, engines can extend

CREATE TABLE with new options.

If the IGNORE_BAD_TABLE_OPTIONS SQL_MODE is enabled, wrong table options generate a warning; otherwise, they

generate an error.

table_option:

 [STORAGE] ENGINE [=] engine_name

 | AUTO_INCREMENT [=] value

 | AVG_ROW_LENGTH [=] value

 | [DEFAULT] CHARACTER SET [=] charset_name

 | CHECKSUM [=] {0 | 1}

 | [DEFAULT] COLLATE [=] collation_name

 | COMMENT [=] 'string'

 | CONNECTION [=] 'connect_string'

 | DATA DIRECTORY [=] 'absolute path to directory'

 | DELAY_KEY_WRITE [=] {0 | 1}

 | ENCRYPTED [=] {YES | NO}

 | ENCRYPTION_KEY_ID [=] value

 | IETF_QUOTES [=] {YES | NO}

 | INDEX DIRECTORY [=] 'absolute path to directory'

 | INSERT_METHOD [=] { NO | FIRST | LAST }

 | KEY_BLOCK_SIZE [=] value

 | MAX_ROWS [=] value

 | MIN_ROWS [=] value

 | PACK_KEYS [=] {0 | 1 | DEFAULT}

 | PAGE_CHECKSUM [=] {0 | 1}

 | PAGE_COMPRESSED [=] {0 | 1}

 | PAGE_COMPRESSION_LEVEL [=] {0 .. 9}

 | PASSWORD [=] 'string'

 | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT|PAGE}

 | SEQUENCE [=] {0|1}

 | STATS_AUTO_RECALC [=] {DEFAULT|0|1}

 | STATS_PERSISTENT [=] {DEFAULT|0|1}

 | STATS_SAMPLE_PAGES [=] {DEFAULT|value}

 | TABLESPACE tablespace_name

 | TRANSACTIONAL [=] {0 | 1}

 | UNION [=] (tbl_name[,tbl_name]...)

 | WITH SYSTEM VERSIONING

121/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

[STORAGE] ENGINE

[STORAGE] ENGINE specifies a storage engine for the table. If this option is not used, the default storage engine is used

instead. That is, the default_storage_engine session option value if it is set, or the value specified for the --default-

storage-engine mariadbd startup option, or the default storage engine, InnoDB. If the specified storage engine is not

installed and active, the default value will be used, unless the NO_ENGINE_SUBSTITUTION SQL MODE is set (default). This

is only true for CREATE TABLE , not for ALTER TABLE . For a list of storage engines that are present in your server, issue a

SHOW ENGINES.

AUTO_INCREMENT

AUTO_INCREMENT specifies the initial value for the AUTO_INCREMENT primary key. This works for MyISAM, Aria, InnoDB,

MEMORY, and ARCHIVE tables. You can change this option with ALTER TABLE , but in that case the new value must be

higher than the highest value which is present in the AUTO_INCREMENT column. If the storage engine does not support this

option, you can insert (and then delete) a row having the wanted value - 1 in the AUTO_INCREMENT column.

AVG_ROW_LENGTH

AVG_ROW_LENGTH is the average rows size. It only applies to tables using MyISAM and Aria storage engines that have the

ROW_FORMAT table option set to FIXED format.

MyISAM uses MAX_ROWS and AVG_ROW_LENGTH to decide the maximum size of a table (default: 256TB, or the maximum

file size allowed by the system).

[DEFAULT] CHARACTER SET/CHARSET

[DEFAULT] CHARACTER SET (or [DEFAULT] CHARSET) is used to set a default character set for the table. This is the

character set used for all columns where an explicit character set is not specified. If this option is omitted or DEFAULT is

specified, database's default character set will be used. See Setting Character Sets and Collations for details on setting the

character sets.

CHECKSUM/TABLE_CHECKSUM

CHECKSUM (or TABLE_CHECKSUM) can be set to 1 to maintain a live checksum for all table's rows. This makes write

operations slower, but CHECKSUM TABLE will be very fast. This option is only supported for MyISAM and Aria tables.

[DEFAULT] COLLATE

[DEFAULT] COLLATE is used to set a default collation for the table. This is the collation used for all columns where an

explicit character set is not specified. If this option is omitted or DEFAULT is specified, database's default option will be

used. See Setting Character Sets and Collations for details on setting the collations

COMMENT

COMMENT is a comment for the table. The maximum length is 2048 characters. Also used to define table parameters when

creating a Spider table.

CONNECTION

CONNECTION is used to specify a server name or a connection string for a Spider, CONNECT, Federated or FederatedX

table.

DATA DIRECTORY/INDEX DIRECTORY

DATA DIRECTORY and INDEX DIRECTORY are supported for MyISAM and Aria, and DATA DIRECTORY is also supported

by InnoDB if the innodb_file_per_table server system variable is enabled, but only in CREATE TABLE, not in ALTER

TABLE. So, carefully choose a path for InnoDB tables at creation time, because it cannot be changed without dropping and

re-creating the table. These options specify the paths for data files and index files, respectively. If these options are omitted,

the database's directory will be used to store data files and index files. Note that these table options do not work for

partitioned tables (use the partition options instead), or if the server has been invoked with the --skip-symbolic-links startup

option. To avoid the overwriting of old files with the same name that could be present in the directories, you can use the --

keep_files_on_create option (an error will be issued if files already exist). These options are ignored if the

122/4161

NO_DIR_IN_CREATE SQL_MODE is enabled (useful for replication slaves). Also note that symbolic links cannot be used for

InnoDB tables.

DATA DIRECTORY works by creating symlinks from where the table would normally have been (inside the datadir) to where

the option specifies. For security reasons, to avoid bypassing the privilege system, the server does not permit symlinks

inside the datadir. Therefore, DATA DIRECTORY cannot be used to specify a location inside the datadir. An attempt to do so

will result in an error 1210 (HY000) Incorrect arguments to DATA DIRECTORY .

DELAY_KEY_WRITE

DELAY_KEY_WRITE is supported by MyISAM and Aria, and can be set to 1 to speed up write operations. In that case, when

data are modified, the indexes are not updated until the table is closed. Writing the changes to the index file altogether can

be much faster. However, note that this option is applied only if the delay_key_write server variable is set to 'ON'. If it is

'OFF' the delayed index writes are always disabled, and if it is 'ALL' the delayed index writes are always used, disregarding

the value of DELAY_KEY_WRITE .

ENCRYPTED

The ENCRYPTED table option can be used to manually set the encryption status of an InnoDB table. See InnoDB Encryption

for more information.

Aria does not support the ENCRYPTED table option. See MDEV-18049 .

See Data-at-Rest Encryption for more information.

ENCRYPTION_KEY_ID

The ENCRYPTION_KEY_ID table option can be used to manually set the encryption key of an InnoDB table. See InnoDB

Encryption for more information.

Aria does not support the ENCRYPTION_KEY_ID table option. See MDEV-18049 .

See Data-at-Rest Encryption for more information.

IETF_QUOTES

For the CSV storage engine, the IETF_QUOTES option, when set to YES , enables IETF-compatible parsing of embedded

quote and comma characters. Enabling this option for a table improves compatibility with other tools that use CSV, but is not

compatible with MySQL CSV tables, or MariaDB CSV tables created without this option. Disabled by default.

INSERT_METHOD

INSERT_METHOD is only used with MERGE tables. This option determines in which underlying table the new rows should be

inserted. If you set it to 'NO' (which is the default) no new rows can be added to the table (but you will still be able to perform

INSERT s directly against the underlying tables). FIRST means that the rows are inserted into the first table, and LAST

means that thet are inserted into the last table.

KEY_BLOCK_SIZE

KEY_BLOCK_SIZE is used to determine the size of key blocks, in bytes or kilobytes. However, this value is just a hint, and

the storage engine could modify or ignore it. If KEY_BLOCK_SIZE is set to 0, the storage engine's default value will be used.

With the InnoDB storage engine, if you specify a non-zero value for the KEY_BLOCK_SIZE table option for the whole table,

then the table will implicitly be created with the ROW_FORMAT table option set to COMPRESSED .

MIN_ROWS/MAX_ROWS

MIN_ROWS and MAX_ROWS let the storage engine know how many rows you are planning to store as a minimum and as a

maximum. These values will not be used as real limits, but they help the storage engine to optimize the table. MIN_ROWS is

only used by MEMORY storage engine to decide the minimum memory that is always allocated. MAX_ROWS is used to

decide the minimum size for indexes.

PACK_KEYS

PACK_KEYS can be used to determine whether the indexes will be compressed. Set it to 1 to compress all keys. With a

123/4161

https://jira.mariadb.org/browse/MDEV-18049
https://jira.mariadb.org/browse/MDEV-18049

value of 0, compression will not be used. With the DEFAULT value, only long strings will be compressed. Uncompressed

keys are faster.

PAGE_CHECKSUM

PAGE_CHECKSUM is only applicable to Aria tables, and determines whether indexes and data should use page checksums

for extra safety.

PAGE_COMPRESSED

PAGE_COMPRESSED is used to enable InnoDB page compression for InnoDB tables.

PAGE_COMPRESSION_LEVEL

PAGE_COMPRESSION_LEVEL is used to set the compression level for InnoDB page compression for InnoDB tables. The

table must also have the PAGE_COMPRESSED table option set to 1 .

Valid values for PAGE_COMPRESSION_LEVEL are 1 (the best speed) through 9 (the best compression), .

PASSWORD

PASSWORD is unused.

RAID_TYPE

RAID_TYPE is an obsolete option, as the raid support has been disabled since MySQL 5.0.

ROW_FORMAT

The ROW_FORMAT table option specifies the row format for the data file. Possible values are engine-dependent.

Supported MyISAM Row Formats

For MyISAM, the supported row formats are:

FIXED

DYNAMIC

COMPRESSED

The COMPRESSED row format can only be set by the myisampack command line tool.

See MyISAM Storage Formats for more information.

Supported Aria Row Formats

For Aria, the supported row formats are:

PAGE

FIXED

DYNAMIC .

See Aria Storage Formats for more information.

Supported InnoDB Row Formats

For InnoDB, the supported row formats are:

COMPACT

REDUNDANT

COMPRESSED

DYNAMIC .

If the ROW_FORMAT table option is set to FIXED for an InnoDB table, then the server will either return an error or a warning

depending on the value of the innodb_strict_mode system variable. If the innodb_strict_mode system variable is set to OFF ,

then a warning is issued, and MariaDB will create the table using the default row format for the specific MariaDB server

version. If the innodb_strict_mode system variable is set to ON , then an error will be raised.

124/4161

See InnoDB Storage Formats for more information.

Other Storage Engines and ROW_FORMAT

Other storage engines do not support the ROW_FORMAT table option.

SEQUENCE

If the table is a sequence, then it will have the SEQUENCE set to 1 .

STATS_AUTO_RECALC

STATS_AUTO_RECALC indicates whether to automatically recalculate persistent statistics (see STATS_PERSISTENT , below)

for an InnoDB table. If set to 1 , statistics will be recalculated when more than 10% of the data has changed. When set to

0 , stats will be recalculated only when an ANALYZE TABLE is run. If set to DEFAULT , or left out, the value set by the

innodb_stats_auto_recalc system variable applies. See InnoDB Persistent Statistics.

STATS_PERSISTENT

STATS_PERSISTENT indicates whether the InnoDB statistics created by ANALYZE TABLE will remain on disk or not. It can

be set to 1 (on disk), 0 (not on disk, the pre-MariaDB 10 behavior), or DEFAULT (the same as leaving out the option), in

which case the value set by the innodb_stats_persistent system variable will apply. Persistent statistics stored on disk allow

the statistics to survive server restarts, and provide better query plan stability. See InnoDB Persistent Statistics.

STATS_SAMPLE_PAGES

STATS_SAMPLE_PAGES indicates how many pages are used to sample index statistics. If 0 or DEFAULT, the default value,

the innodb_stats_sample_pages value is used. See InnoDB Persistent Statistics.

TRANSACTIONAL

TRANSACTIONAL is only applicable for Aria tables. In future Aria tables created with this option will be fully transactional,

but currently this provides a form of crash protection. See Aria Storage Engine for more details.

UNION

UNION must be specified when you create a MERGE table. This option contains a comma-separated list of MyISAM tables

which are accessed by the new table. The list is enclosed between parenthesis. Example: UNION = (t1,t2)

WITH SYSTEM VERSIONING

WITH SYSTEM VERSIONING is used for creating System-versioned tables.

Partitions

125/4161

partition_options:

 PARTITION BY

 { [LINEAR] HASH(expr)

 | [LINEAR] KEY(column_list)

 | RANGE(expr)

 | LIST(expr)

 | SYSTEM_TIME [INTERVAL time_quantity time_unit] [LIMIT num] }

 [PARTITIONS num]

 [SUBPARTITION BY

 { [LINEAR] HASH(expr)

 | [LINEAR] KEY(column_list) }

 [SUBPARTITIONS num]

]

 [(partition_definition [, partition_definition] ...)]

partition_definition:

 [PARTITION] partition_name

 [VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]

 [[STORAGE] ENGINE [=] engine_name]

 [COMMENT [=] 'comment_text']

 [DATA DIRECTORY [=] 'data_dir']

 [INDEX DIRECTORY [=] 'index_dir']

 [MAX_ROWS [=] max_number_of_rows]

 [MIN_ROWS [=] min_number_of_rows]

 [TABLESPACE [=] tablespace_name]

 [NODEGROUP [=] node_group_id]

 [(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:

 SUBPARTITION logical_name

 [[STORAGE] ENGINE [=] engine_name]

 [COMMENT [=] 'comment_text']

 [DATA DIRECTORY [=] 'data_dir']

 [INDEX DIRECTORY [=] 'index_dir']

 [MAX_ROWS [=] max_number_of_rows]

 [MIN_ROWS [=] min_number_of_rows]

 [TABLESPACE [=] tablespace_name]

 [NODEGROUP [=] node_group_id]

If the PARTITION BY clause is used, the table will be partitioned. A partition method must be explicitly indicated for

partitions and subpartitions. Partition methods are:

[LINEAR] HASH creates a hash key which will be used to read and write rows. The partition function can be any

valid SQL expression which returns an INTEGER number. Thus, it is possible to use the HASH method on an integer

column, or on functions which accept integer columns as an argument. However, VALUES LESS THAN and VALUES

IN clauses can not be used with HASH. An example:

CREATE TABLE t1 (a INT, b CHAR(5), c DATETIME)

 PARTITION BY HASH (YEAR(c));

[LINEAR] HASH can be used for subpartitions, too.

[LINEAR] KEY is similar to HASH, but the index has an even distribution of data. Also, the expression can only be a

column or a list of columns. VALUES LESS THAN and VALUES IN clauses can not be used with KEY.

RANGE partitions the rows using on a range of values, using the VALUES LESS THAN operator. VALUES IN is not

allowed with RANGE . The partition function can be any valid SQL expression which returns a single value.

LIST assigns partitions based on a table's column with a restricted set of possible values. It is similar to RANGE , but

VALUES IN must be used for at least 1 columns, and VALUES LESS THAN is disallowed.

SYSTEM_TIME partitioning is used for System-versioned tables to store historical data separately from current data.

Only HASH and KEY can be used for subpartitions, and they can be [LINEAR] .

It is possible to define up to 8092 partitions and subpartitions.

The number of defined partitions can be optionally specified as PARTITION count . This can be done to avoid specifying all

partitions individually. But you can also declare each individual partition and, additionally, specify a PARTITIONS count

clause; in the case, the number of PARTITION s must equal count.

126/4161

Also see Partitioning Types Overview.

From MariaDB 10.7, the PARTITION keyword is now optional as part of the partition definition, for example, instead of:

create or replace table t1 (x int)

 partition by range(x) (

 partition p1 values less than (10),

 partition p2 values less than (20),

 partition p3 values less than (30),

 partition p4 values less than (40),

 partition p5 values less than (50),

 partition pn values less than maxvalue);

the following can also be used:

create or replace table t1 (x int)

 partition by range(x) (

 p1 values less than (10),

 p2 values less than (20),

 p3 values less than (30),

 p4 values less than (40),

 p5 values less than (50),

 pn values less than maxvalue);

Sequences
CREATE TABLE can also be used to create a SEQUENCE. See CREATE SEQUENCE and Sequence Overview.

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL. CREATE TABLE is atomic, except for CREATE OR REPLACE , which is only

crash safe.

Examples

create table if not exists test (

a bigint auto_increment primary key,

name varchar(128) charset utf8,

key name (name(32))

) engine=InnoDB default charset latin1;

This example shows a couple of things:

Usage of IF NOT EXISTS ; If the table already existed, it will not be created. There will not be any error for the client,

just a warning.

How to create a PRIMARY KEY that is automatically generated.

How to specify a table-specific character set and another for a column.

How to create an index (name) that is only partly indexed (to save space).

The following clauses will work from MariaDB 10.2.1 only.

CREATE TABLE t1(

 a int DEFAULT (1+1),

 b int DEFAULT (a+1),

 expires DATETIME DEFAULT(NOW() + INTERVAL 1 YEAR),

 x BLOB DEFAULT USER()

);

MariaDB starting with 10.7.1

MariaDB starting with 10.6.1

1.1.1.2.1.7 DELETE

127/4161

https://mariadb.com/kb/en/mariadb-1071-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

Contents
1. Syntax

2. Description

1. PARTITION

2. FOR PORTION OF

3. RETURNING

4. Same Source and Target Table

5. DELETE HISTORY

3. Examples

1. Deleting from the Same Source and Target

Syntax
Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

 FROM tbl_name [PARTITION (partition_list)]

 [FOR PORTION OF period FROM expr1 TO expr2]

 [WHERE where_condition]

 [ORDER BY ...]

 [LIMIT row_count]

 [RETURNING select_expr

 [, select_expr ...]]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

 tbl_name[.*] [, tbl_name[.*]] ...

 FROM table_references

 [WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]

 FROM tbl_name[.*] [, tbl_name[.*]] ...

 USING table_references

 [WHERE where_condition]

Trimming history:

DELETE HISTORY

 FROM tbl_name [PARTITION (partition_list)]

 [BEFORE SYSTEM_TIME [TIMESTAMP|TRANSACTION] expression]

Description

Option Description

LOW_PRIORITY
Wait until all SELECT's are done before starting the statement. Used with storage engines that uses

table locking (MyISAM, Aria etc). See HIGH_PRIORITY and LOW_PRIORITY clauses for details.

QUICK

Signal the storage engine that it should expect that a lot of rows are deleted. The storage engine

engine can do things to speed up the DELETE like ignoring merging of data blocks until all rows are

deleted from the block (instead of when a block is half full). This speeds up things at the expanse of

lost space in data blocks. At least MyISAM and Aria support this feature.

IGNORE
Don't stop the query even if a not-critical error occurs (like data overflow). See How IGNORE works for

a full description.

For the single-table syntax, the DELETE statement deletes rows from tbl_name and returns a count of the number of

deleted rows. This count can be obtained by calling the ROW_COUNT() function. The WHERE clause, if given, specifies the

conditions that identify which rows to delete. With no WHERE clause, all rows are deleted. If the ORDER BY clause is

specified, the rows are deleted in the order that is specified. The LIMIT clause places a limit on the number of rows that can

be deleted.

For the multiple-table syntax, DELETE deletes from each tbl_name the rows that satisfy the conditions. In this case,

128/4161

ORDER BY and LIMIT> cannot be used. A DELETE can also reference tables which are located in different databases; see

Identifier Qualifiers for the syntax.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as described in

SELECT.

Currently, you cannot delete from a table and select from the same table in a subquery.

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege for any columns that

are only read, such as those named in the WHERE clause. See GRANT.

As stated, a DELETE statement with no WHERE clause deletes all rows. A faster way to do this, when you do not need to

know the number of deleted rows, is to use TRUNCATE TABLE . However, within a transaction or if you have a lock on the

table, TRUNCATE TABLE cannot be used whereas DELETE can. See TRUNCATE TABLE, and LOCK.

PARTITION

See Partition Pruning and Selection for details.

FOR PORTION OF

See Application Time Periods - Deletion by Portion.

RETURNING

It is possible to return a resultset of the deleted rows for a single table to the client by using the syntax DELETE ...

RETURNING select_expr [, select_expr2 ...]]

Any of SQL expression that can be calculated from a single row fields is allowed. Subqueries are allowed. The AS keyword

is allowed, so it is possible to use aliases.

The use of aggregate functions is not allowed. RETURNING cannot be used in multi-table DELETEs.

Same Source and Target Table

Until MariaDB 10.3.1 , deleting from a table with the same source and target was not possible. From MariaDB 10.3.1

, this is now possible. For example:

DELETE FROM t1 WHERE c1 IN (SELECT b.c1 FROM t1 b WHERE b.c2=0);

DELETE HISTORY

One can use DELETE HISTORY to delete historical information from System-versioned tables.

Examples
How to use the ORDER BY and LIMIT clauses:

DELETE FROM page_hit ORDER BY timestamp LIMIT 1000000;

How to use the RETURNING clause:

DELETE FROM t RETURNING f1;

+------+

| f1 |

+------+

| 5 |

| 50 |

| 500 |

+------+

MariaDB starting with 10.4.3

MariaDB starting with 10.3.1

MariaDB starting with 10.3.4

129/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/

The following statement joins two tables: one is only used to satisfy a WHERE condition, but no row is deleted from it; rows

from the other table are deleted, instead.

DELETE post FROM blog INNER JOIN post WHERE blog.id = post.blog_id;

Deleting from the Same Source and Target

CREATE TABLE t1 (c1 INT, c2 INT);

DELETE FROM t1 WHERE c1 IN (SELECT b.c1 FROM t1 b WHERE b.c2=0);

Until MariaDB 10.3.1 , this returned:

ERROR 1093 (HY000): Table 't1' is specified twice, both as a target for 'DELETE'

 and as a separate source for

From MariaDB 10.3.1 :

Query OK, 0 rows affected (0.00 sec)

1.1.1.2.1.8 DROP TABLE

Syntax

DROP [TEMPORARY] TABLE [IF EXISTS] [/*COMMENT TO SAVE*/]

 tbl_name [, tbl_name] ...

 [WAIT n|NOWAIT]

 [RESTRICT | CASCADE]

Contents
1. Syntax

2. Description

1. WAIT/NOWAIT

3. DROP TABLE in replication

4. Dropping an Internal #sql-... Table

5. Dropping All Tables in a Database

6. Atomic DROP TABLE

7. Examples

8. Notes

Description
DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table data and the table

definition are removed, as well as triggers associated to the table, so be careful with this statement! If any of the tables

named in the argument list do not exist, MariaDB returns an error indicating by name which non-existing tables it was unable

to drop, but it also drops all of the tables in the list that do exist.

Important: When a table is dropped, user privileges on the table are not automatically dropped. See GRANT.

If another thread is using the table in an explicit transaction or an autocommit transaction, then the thread acquires a

metadata lock (MDL) on the table. The DROP TABLE statement will wait in the "Waiting for table metadata lock" thread state

until the MDL is released. MDLs are released in the following cases:

If an MDL is acquired in an explicit transaction, then the MDL will be released when the transaction ends.

If an MDL is acquired in an autocommit transaction, then the MDL will be released when the statement ends.

Transactional and non-transactional tables are handled the same.

Note that for a partitioned table, DROP TABLE permanently removes the table definition, all of its partitions, and all of the

data which was stored in those partitions. It also removes the partitioning definition (.par) file associated with the dropped

table.

For each referenced table, DROP TABLE drops a temporary table with that name, if it exists. If it does not exist, and the

TEMPORARY keyword is not used, it drops a non-temporary table with the same name, if it exists. The TEMPORARY keyword

ensures that a non-temporary table will not accidentally be dropped.

130/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for each non-existent

table when using IF EXISTS . See SHOW WARNINGS.

If a foreign key references this table, the table cannot be dropped. In this case, it is necessary to drop the foreign key first.

RESTRICT and CASCADE are allowed to make porting from other database systems easier. In MariaDB, they do nothing.

The comment before the table names (/*COMMENT TO SAVE*/) is stored in the binary log. That feature can be used by

replication tools to send their internal messages.

It is possible to specify table names as db_name . tab_name . This is useful to delete tables from multiple databases with

one statement. See Identifier Qualifiers for details.

The DROP privilege is required to use DROP TABLE on non-temporary tables. For temporary tables, no privilege is

required, because such tables are only visible for the current session.

Note: DROP TABLE automatically commits the current active transaction, unless you use the TEMPORARY keyword.

From MariaDB 10.5.4, DROP TABLE reliably deletes table remnants inside a storage engine even if the .frm file is

missing. Before then, a missing .frm file would result in the statement failing.

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

DROP TABLE in replication
DROP TABLE has the following characteristics in replication:

DROP TABLE IF EXISTS are always logged.

DROP TABLE without IF EXISTS for tables that don't exist are not written to the binary log.

Dropping of TEMPORARY tables are prefixed in the log with TEMPORARY . These drops are only logged when running

statement or mixed mode replication.

One DROP TABLE statement can be logged with up to 3 different DROP statements:

DROP TEMPORARY TABLE list_of_non_transactional_temporary_tables

DROP TEMPORARY TABLE list_of_transactional_temporary_tables

DROP TABLE list_of_normal_tables

DROP TABLE on the primary is treated on the replica as DROP TABLE IF EXISTS . You can change that by setting slave-

ddl-exec-mode to STRICT .

Dropping an Internal #sql-... Table
From MariaDB 10.6, DROP TABLE is atomic and the following does not apply. Until MariaDB 10.5, if the mariadbd/mysqld

process is killed during an ALTER TABLE you may find a table named #sql-... in your data directory. In MariaDB 10.3,

InnoDB tables with this prefix will be deleted automatically during startup. From MariaDB 10.4, these temporary tables will

always be deleted automatically.

If you want to delete one of these tables explicitly you can do so by using the following syntax:

DROP TABLE `#mysql50##sql-...`;

When running an ALTER TABLE&ALGORITHM=INPLACE that rebuilds the table, InnoDB will create an internal #sql-ib

table. Until MariaDB 10.3.2 , for these tables, the .frm file will be called something else. In order to drop such a table

after a server crash, you must rename the #sql*.frm file to match the #sql-ib*.ibd file.

From MariaDB 10.3.3 , the same name as the .frm file is used for the intermediate copy of the table. The #sql-ib names

are used by TRUNCATE and delayed DROP.

From MariaDB 10.2.19 and MariaDB 10.3.10 , the #sql-ib tables will be deleted automatically.

Dropping All Tables in a Database
The best way to drop all tables in a database is by executing DROP DATABASE, which will drop the database itself, and all

MariaDB starting with 10.5.4

MariaDB starting with 10.3.1

131/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/

tables in it.

However, if you want to drop all tables in the database, but you also want to keep the database itself and any other non-

table objects in it, then you would need to execute DROP TABLE to drop each individual table. You can construct these

DROP TABLE commands by querying the TABLES table in the information_schema database. For example:

SELECT CONCAT('DROP TABLE IF EXISTS `', TABLE_SCHEMA, '`.`', TABLE_NAME, '`;')

FROM information_schema.TABLES

WHERE TABLE_SCHEMA = 'mydb';

Atomic DROP TABLE

From MariaDB 10.6, DROP TABLE for a single table is atomic (MDEV-25180) for most engines, including InnoDB,

MyRocks, MyISAM and Aria.

This means that if there is a crash (server down or power outage) during DROP TABLE , all tables that have been

processed so far will be completely dropped, including related trigger files and status entries, and the binary log will

include a DROP TABLE statement for the dropped tables. Tables for which the drop had not started will be left intact.

In older MariaDB versions, there was a small chance that, during a server crash happening in the middle of DROP

TABLE , some storage engines that were using multiple storage files, like MyISAM, could have only a part of its internal

files dropped.

In MariaDB 10.5, DROP TABLE was extended to be able to delete a table that was only partly dropped (MDEV-11412

) as explained above. Atomic DROP TABLE is the final piece to make DROP TABLE fully reliable.

Dropping multiple tables is crash-safe.

See Atomic DDL for more information.

Examples

DROP TABLE Employees, Customers;

Notes
Beware that DROP TABLE can drop both tables and sequences. This is mainly done to allow old tools like mariadb-dump

(previously mysqldump) to work with sequences.

MariaDB starting with 10.6.1

1.1.1.2.1.9 Installing System Tables (mariadb-
install-db)
mariadb-install-db initializes the MariaDB data directory and creates the system tables in the mysql database, if they

do not exist. MariaDB uses these tables to manage privileges, roles, and plugins. It also uses them to provide the data for

the help command in the mariadb client.

mariadb-install-db works by starting MariaDB Server's mysqld process in --bootstrap mode and sending commands to

create the system tables and their content.

There is a version specifically for Windows, mysql_install_db.exe.

To invoke mariadb-install-db , use the following syntax:

mariadb-install-db --user=mysql

For the options supported by mariadb-install-db, see mariadb-install-db: Options.

For the option groups read by mariadb-install-db, see mariadb-install-db: Option Groups.

See mariadb-install-db: Installing System Tables for information on the installation process.

See mariadb-install-db: Troubleshooting Issues for information on how to troubleshoot the installation process.

1.1.1.2.1.10 mysqlcheck
132/4161

https://jira.mariadb.org/browse/MDEV-25180
https://jira.mariadb.org/browse/MDEV-11412

mariadb-check is a tool for checking, repairing, analyzing and optimizing tables.

From MariaDB 10.4.6, mariadb-check is a symlink to mysqlcheck, the old name for the tool .

From MariaDB 10.5.2, mariadb-check is the name of the tool, with mysqlcheck a symlink .

See mariadb-check for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.1.1.2.1.11 OPTIMIZE TABLE

Syntax

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE

 tbl_name [, tbl_name] ...

 [WAIT n | NOWAIT]

Contents
1. Syntax

2. Description

1. WAIT/NOWAIT

2. Defragmenting

3. Updating an InnoDB fulltext index

4. Defragmenting InnoDB tablespaces

Description
OPTIMIZE TABLE has two main functions. It can either be used to defragment tables, or to update the InnoDB fulltext

index.

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

Defragmenting

OPTIMIZE TABLE works for InnoDB (before MariaDB 10.1.1 , only if the innodb_file_per_table server system variable is

set), Aria, MyISAM and ARCHIVE tables, and should be used if you have deleted a large part of a table or if you have made

many changes to a table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT columns).

Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row positions.

This statement requires SELECT and INSERT privileges for the table.

By default, OPTIMIZE TABLE statements are written to the binary log and will be replicated. The NO_WRITE_TO_BINLOG

keyword (LOCAL is an alias) will ensure the statement is not written to the binary log.

OPTIMIZE TABLE statements are not logged to the binary log if read_only is set. See also Read-Only Replicas.

OPTIMIZE TABLE is also supported for partitioned tables. You can use ALTER TABLE ... OPTIMIZE PARTITION to

optimize one or more partitions.

You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file. With other storage engines,

OPTIMIZE TABLE does nothing by default, and returns this message: " The storage engine for the table doesn't support

optimize". However, if the server has been started with the --skip-new option, OPTIMIZE TABLE is linked to ALTER

TABLE, and recreates the table. This operation frees the unused space and updates index statistics.

The Aria storage engine supports progress reporting for this statement.

If a MyISAM table is fragmented, concurrent inserts will not be performed until an OPTIMIZE TABLE statement is executed

on that table, unless the concurrent_insert server system variable is set to ALWAYS .

Updating an InnoDB fulltext index

133/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/

When rows are added or deleted to an InnoDB fulltext index, the index is not immediately re-organized, as this can be an

expensive operation. Change statistics are stored in a separate location . The fulltext index is only fully re-organized when

an OPTIMIZE TABLE statement is run.

By default, an OPTIMIZE TABLE will defragment a table. In order to use it to update fulltext index statistics, the

innodb_optimize_fulltext_only system variable must be set to 1 . This is intended to be a temporary setting, and should be

reset to 0 once the fulltext index has been re-organized.

Since fulltext re-organization can take a long time, the innodb_ft_num_word_optimize variable limits the re-organization to a

number of words (2000 by default). You can run multiple OPTIMIZE statements to fully re-organize the index.

Defragmenting InnoDB tablespaces

MariaDB 10.1.1 merged the Facebook/Kakao defragmentation patch, allowing one to use OPTIMIZE TABLE to

defragment InnoDB tablespaces. For this functionality to be enabled, the innodb_defragment system variable must be

enabled. No new tables are created and there is no need to copy data from old tables to new tables. Instead, this feature

loads n pages (determined by innodb-defragment-n-pages) and tries to move records so that pages would be full of

records and then frees pages that are fully empty after the operation. Note that tablespace files (including ibdata1) will not

shrink as the result of defragmentation, but one will get better memory utilization in the InnoDB buffer pool as there are

fewer data pages in use.

See Defragmenting InnoDB Tablespaces for more details.

1.1.1.2.1.12 RENAME TABLE

Syntax

RENAME TABLE[S] [IF EXISTS] tbl_name

 [WAIT n | NOWAIT]

 TO new_tbl_name

 [, tbl_name2 TO new_tbl_name2] ...

Contents
1. Syntax

2. Description

1. IF EXISTS

2. WAIT/NOWAIT

3. Privileges

4. Atomic RENAME TABLE

Description
This statement renames one or more tables or views, but not the privileges associated with them.

IF EXISTS

If this directive is used, one will not get an error if the table to be renamed doesn't exist.

The rename operation is done atomically, which means that no other session can access any of the tables while the rename

is running. For example, if you have an existing table old_table , you can create another table new_table that has the

same structure but is empty, and then replace the existing table with the empty one as follows (assuming that

backup_table does not already exist):

CREATE TABLE new_table (...);

RENAME TABLE old_table TO backup_table, new_table TO old_table;

tbl_name can optionally be specified as db_name . tbl_name . See Identifier Qualifiers. This allows to use RENAME to

move a table from a database to another (as long as they are on the same filesystem):

RENAME TABLE db1.t TO db2.t;

MariaDB starting with 10.5.2

134/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/

Note that moving a table to another database is not possible if it has some triggers. Trying to do so produces the following

error:

ERROR 1435 (HY000): Trigger in wrong schema

Also, views cannot be moved to another database:

ERROR 1450 (HY000): Changing schema from 'old_db' to 'new_db' is not allowed.

Multiple tables can be renamed in a single statement. The presence or absence of the optional S (RENAME TABLE or

RENAME TABLES) has no impact, whether a single or multiple tables are being renamed.

If a RENAME TABLE renames more than one table and one renaming fails, all renames executed by the same statement are

rolled back.

Renames are always executed in the specified order. Knowing this, it is also possible to swap two tables' names:

RENAME TABLE t1 TO tmp_table,

 t2 TO t1,

 tmp_table TO t2;

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

Privileges

Executing the RENAME TABLE statement requires the DROP, CREATE and INSERT privileges for the table or the database.

Atomic RENAME TABLE

From MariaDB 10.6, RENAME TABLE is atomic for most engines, including InnoDB, MyRocks, MyISAM and Aria

(MDEV-23842). This means that if there is a crash (server down or power outage) during RENAME TABLE , all tables

will revert to their original names and any changes to trigger files will be reverted.

In older MariaDB version there was a small chance that, during a server crash happening in the middle of RENAME

TABLE , some tables could have been renamed (in the worst case partly) while others would not be renamed.

See Atomic DDL for more information.

MariaDB starting with 10.6.1

1.1.1.2.1.13 REPAIR TABLE

Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE

 tbl_name [, tbl_name] ...

 [QUICK] [EXTENDED] [USE_FRM]

Contents
1. Syntax

2. Description

1. QUICK

2. EXTENDED

3. USE_FRM

4. Partitioned Tables

5. Progress Reporting

Description
REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as

135/4161

https://jira.mariadb.org/browse/MDEV-23842

myisamchk --recover tbl_name

or

aria_chk --recover tbl_name

See aria_chk and myisamchk for more.

REPAIR TABLE works for Archive, Aria, CSV and MyISAM tables. For InnoDB, see recovery modes. For CSV, see also

Checking and Repairing CSV Tables. For Archive, this statement also improves compression. If the storage engine does

not support this statement, a warning is issued.

This statement requires SELECT and INSERT privileges for the table.

By default, REPAIR TABLE statements are written to the binary log and will be replicated. The NO_WRITE_TO_BINLOG

keyword (LOCAL is an alias) will ensure the statement is not written to the binary log.

From MariaDB 10.3.19 , REPAIR TABLE statements are not logged to the binary log if read_only is set. See also Read-

Only Replicas.

When an index is recreated, the storage engine may use a configurable buffer in the process. Incrementing the buffer

speeds up the index creation. Aria and MyISAM allocate a buffer whose size is defined by aria_sort_buffer_size or

myisam_sort_buffer_size, also used for ALTER TABLE.

QUICK

When specified, REPAIR TABLE will not modify the data file, only attempting to repair the index file. The same behavior can

be achieved with myisamchk --recover --quick .

EXTENDED

Creates the index row by row rather than sorting and creating a single index. Similar to myisamchk --safe-recover.

USE_FRM

For use only when the index file is missing or its header corrupted. MariaDB then attempts to recreate it using the .frm file.

There is no equivalent myisamchk option.

Partitioned Tables

REPAIR TABLE is also supported for partitioned tables with the ALTER TABLE ... REPAIR PARTITION statement.

However, the USE_FRM option cannot be used with this statement on a partitioned table. See Repairing Partitions for

details.

Progress Reporting

The Aria storage engine supports progress reporting for this statement.

1.1.1.2.1.14 REPAIR VIEW

Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] VIEW view_name[, view_name] ... [FROM MYSQL]

Contents
1. Syntax

2. Description

Description
The REPAIR VIEW statement was introduced to assist with fixing MDEV-6916 , an issue introduced in MariaDB 5.2 where

the view algorithms were swapped compared to their MySQL on disk representation. It checks whether the view algorithm is
136/4161

https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://jira.mariadb.org/browse/MDEV-6916

correct. It is run as part of mariadb-upgrade, and should not normally be required in regular use.

By default it corrects the checksum and if necessary adds the mariadb-version field. If the optional FROM MYSQL clause is

used, and no mariadb-version field is present, the MERGE and TEMPTABLE algorithms are toggled.

By default, REPAIR VIEW statements are written to the binary log and will be replicated. The NO_WRITE_TO_BINLOG

keyword (LOCAL is an alias) will ensure the statement is not written to the binary log.

1.1.1.2.1.15 REPLACE

Syntax

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

[RETURNING select_expr

 [, select_expr ...]]

Or:

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)]

 SET col={expr | DEFAULT}, ...

[RETURNING select_expr

 [, select_expr ...]]

Or:

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 SELECT ...

[RETURNING select_expr

 [, select_expr ...]]

Contents
1. Syntax

2. Description

1. PARTITION

2. REPLACE RETURNING

1. Examples

3. Examples

Description
REPLACE works exactly like INSERT , except that if an old row in the table has the same value as a new row for a PRIMARY

KEY or a UNIQUE index, the old row is deleted before the new row is inserted. If the table has more than one UNIQUE

keys, it is possible that the new row conflicts with more than one row. In this case, all conflicting rows will be deleted.

The table name can be specified in the form db_name . tbl_name or, if a default database is selected, in the form

tbl_name (see Identifier Qualifiers). This allows to use REPLACE ... SELECT to copy rows between different databases.

The RETURNING clause was introduced in MariaDB 10.5.0

Basically it works like this:

BEGIN;

SELECT 1 FROM t1 WHERE key=# FOR UPDATE;

IF found-row

 DELETE FROM t1 WHERE key=# ;

ENDIF

INSERT INTO t1 VALUES (...);

END;

MariaDB starting with 10.5.0

137/4161

The above can be replaced with:

REPLACE INTO t1 VALUES (...)

REPLACE is a MariaDB/MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For other

MariaDB/MySQL extensions to standard SQL --- that also handle duplicate values --- see IGNORE and INSERT ON

DUPLICATE KEY UPDATE.

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement makes no sense. It

becomes equivalent to INSERT , because there is no index to be used to determine whether a new row duplicates another.

Values for all columns are taken from the values sSee Partition Pruning and Selection for details.pecified in the REPLACE

statement. Any missing columns are set to their default values, just as happens for INSERT . You cannot refer to values

from the current row and use them in the new row. If you use an assignment such as 'SET col = col + 1' , the

reference to the column name on the right hand side is treated as DEFAULT(col) , so the assignment is equivalent to 'SET

col = DEFAULT(col) + 1' .

To use REPLACE , you must have both the INSERT and DELETE privileges for the table.

There are some gotchas you should be aware of, before using REPLACE :

If there is an AUTO_INCREMENT field, a new value will be generated.

If there are foreign keys, ON DELETE action will be activated by REPLACE .

Triggers on DELETE and INSERT will be activated by REPLACE .

To avoid some of these behaviors, you can use INSERT ... ON DUPLICATE KEY UPDATE .

This statement activates INSERT and DELETE triggers. See Trigger Overview for details.

PARTITION

See Partition Pruning and Selection for details.

REPLACE RETURNING

REPLACE ... RETURNING returns a resultset of the replaced rows.

This returns the listed columns for all the rows that are replaced, or alternatively, the specified SELECT expression. Any SQL

expressions which can be calculated can be used in the select expression for the RETURNING clause, including virtual

columns and aliases, expressions which use various operators such as bitwise, logical and arithmetic operators, string

functions, date-time functions, numeric functions, control flow functions, secondary functions and stored functions. Along

with this, statements which have subqueries and prepared statements can also be used.

Examples

Simple REPLACE statement

REPLACE INTO t2 VALUES (1,'Leopard'),(2,'Dog') RETURNING id2, id2+id2

as Total ,id2|id2, id2&&id2;

+-----+-------+---------+----------+

| id2 | Total | id2|id2 | id2&&id2 |

+-----+-------+---------+----------+

| 1 | 2 | 1 | 1 |

| 2 | 4 | 2 | 1 |

+-----+-------+---------+----------+

Using stored functions in RETURNING

138/4161

DELIMITER |

CREATE FUNCTION f(arg INT) RETURNS INT

 BEGIN

 RETURN (SELECT arg+arg);

 END|

DELIMITER ;

PREPARE stmt FROM "REPLACE INTO t2 SET id2=3, animal2='Fox' RETURNING f2(id2),

UPPER(animal2)";

EXECUTE stmt;

+---------+----------------+

| f2(id2) | UPPER(animal2) |

+---------+----------------+

| 6 | FOX |

+---------+----------------+

Subqueries in the statement

REPLACE INTO t1 SELECT * FROM t2 RETURNING (SELECT id2 FROM t2 WHERE

id2 IN (SELECT id2 FROM t2 WHERE id2=1)) AS new_id;

+--------+

| new_id |

+--------+

| 1 |

| 1 |

| 1 |

| 1 |

+--------+

Subqueries in the RETURNING clause that return more than one row or column cannot be used..

Aggregate functions cannot be used in the RETURNING clause. Since aggregate functions work on a set of values and if

the purpose is to get the row count, ROW_COUNT() with SELECT can be used, or it can be used in REPLACE...SEL==

Description

REPLACE ... RETURNING returns a resultset of the replaced rows.

This returns the listed columns for all the rows that are replaced, or alternatively, the specified SELECT expression. Any SQL

expressions which can be calculated can be used in the select expression for the RETURNING clause, including virtual

columns and aliases, expressions which use various operators such as bitwise, logical and arithmetic operators, string

functions, date-time functions, numeric functions, control flow functions, secondary functions and stored functions. Along

with this, statements which have subqueries and prepared statements can also be used.

Examples
Simple REPLACE statement

REPLACE INTO t2 VALUES (1,'Leopard'),(2,'Dog') RETURNING id2, id2+id2

as Total ,id2|id2, id2&&id2;

+-----+-------+---------+----------+

| id2 | Total | id2|id2 | id2&&id2 |

+-----+-------+---------+----------+

| 1 | 2 | 1 | 1 |

| 2 | 4 | 2 | 1 |

+-----+-------+---------+----------+

Using stored functions in RETURNING

139/4161

DELIMITER |

CREATE FUNCTION f(arg INT) RETURNS INT

 BEGIN

 RETURN (SELECT arg+arg);

 END|

DELIMITER ;

PREPARE stmt FROM "REPLACE INTO t2 SET id2=3, animal2='Fox' RETURNING f2(id2),

UPPER(animal2)";

EXECUTE stmt;

+---------+----------------+

| f2(id2) | UPPER(animal2) |

+---------+----------------+

| 6 | FOX |

+---------+----------------+

Subqueries in the statement

REPLACE INTO t1 SELECT * FROM t2 RETURNING (SELECT id2 FROM t2 WHERE

id2 IN (SELECT id2 FROM t2 WHERE id2=1)) AS new_id;

+--------+

| new_id |

+--------+

| 1 |

| 1 |

| 1 |

| 1 |

+--------+

Subqueries in the RETURNING clause that return more than one row or column cannot be used..

Aggregate functions cannot be used in the RETURNING clause. Since aggregate functions work on a set of values and if

the purpose is to get the row count, ROW_COUNT() with SELECT can be used, or it can be used in

REPLACE...SELECT...RETURNING if the table in the RETURNING clause is not the same as the REPLACE table.

ECT...RETURNING if the table in the RETURNING clause is not the same as the REPLACE table.

1.1.1.2.1.16 SHOW COLUMNS

Syntax

SHOW [FULL] {COLUMNS | FIELDS} FROM tbl_name [FROM db_name]

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW COLUMNS displays information about the columns in a given table. It also works for views. The LIKE clause, if

present on its own, indicates which column names to match. The WHERE and LIKE clauses can be given to select rows

using more general conditions, as discussed in Extended SHOW.

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that MariaDB

sometimes changes data types when you create or alter a table. The conditions under which this occurs are described in

the Silent Column Changes article.

The FULL keyword causes the output to include the column collation and comments, as well as the privileges you have for

each column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In other words, these two

statements are equivalent:

140/4161

SHOW COLUMNS FROM mytable FROM mydb;

SHOW COLUMNS FROM mydb.mytable;

SHOW COLUMNS displays the following values for each table column:

Field indicates the column name.

Type indicates the column data type.

Collation indicates the collation for non-binary string columns, or NULL for other columns. This value is displayed only if you

use the FULL keyword.

The Null field contains YES if NULL values can be stored in the column, NO if not.

The Key field indicates whether the column is indexed:

If Key is empty, the column either is not indexed or is indexed only as a secondary column in a multiple-column, non-

unique index.

If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY KEY .

If Key is UNI, the column is the first column of a unique-valued index that cannot contain NULL values.

If Key is MUL, multiple occurrences of a given value are allowed within the column. The column is the first column of

a non-unique index or a unique-valued index that can contain NULL values.

If more than one of the Key values applies to a given column of a table, Key displays the one with the highest priority, in the

order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY KEY in the table. A

UNIQUE index may display as MUL if several columns form a composite UNIQUE index; although the combination of the

columns is unique, each column can still hold multiple occurrences of a given value.

The Default field indicates the default value that is assigned to the column.

The Extra field contains any additional information that is available about a given column.

Value Description

AUTO_INCREMENT The column was created with the AUTO_INCREMENT keyword.

PERSISTENT The column was created with the PERSISTENT keyword. (New in 5.3)

VIRTUAL The column was created with the VIRTUAL keyword. (New in 5.3)

on update

CURRENT_TIMESTAMP

The column is a TIMESTAMP column that is automatically updated on INSERT and

UPDATE .

Privileges indicates the privileges you have for the column. This value is displayed only if you use the FULL keyword.

Comment indicates any comment the column has. This value is displayed only if you use the FULL keyword.

SHOW FIELDS is a synonym for SHOW COLUMNS . Also DESCRIBE and EXPLAIN can be used as shortcuts.

You can also list a table's columns with:

mariadb-show db_name tbl_name

See the mariadb-show command for more details.

The DESCRIBE statement provides information similar to SHOW COLUMNS . The information_schema.COLUMNS table

provides similar, but more complete, information.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide information about

tables.

Examples

141/4161

SHOW COLUMNS FROM city;

+------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------+----------------+

| Id | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| Country | char(3) | NO | UNI | | |

| District | char(20) | YES | MUL | | |

| Population | int(11) | NO | | 0 | |

+------------+----------+------+-----+---------+----------------+

SHOW COLUMNS FROM employees WHERE Type LIKE 'Varchar%';

+---------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------------+-------------+------+-----+---------+-------+

| first_name | varchar(30) | NO | MUL | NULL | |

| last_name | varchar(40) | NO | | NULL | |

| position | varchar(25) | NO | | NULL | |

| home_address | varchar(50) | NO | | NULL | |

| home_phone | varchar(12) | NO | | NULL | |

| employee_code | varchar(25) | NO | UNI | NULL | |

+---------------+-------------+------+-----+---------+-------+

1.1.1.2.1.17 SHOW CREATE TABLE

Syntax

SHOW CREATE TABLE tbl_name

Contents
1. Syntax

2. Description

1. Index Order

3. Examples

Description
Shows the CREATE TABLE statement that creates the given table. The statement requires the SELECT privilege for the

table. This statement also works with views and SEQUENCE.

SHOW CREATE TABLE quotes table and column names according to the value of the sql_quote_show_create server system

variable.

Certain SQL_MODE values can result in parts of the original CREATE statement not being included in the output.

MariaDB-specific table options, column options, and index options are not included in the output of this statement if the

NO_TABLE_OPTIONS, NO_FIELD_OPTIONS and NO_KEY_OPTIONS SQL_MODE flags are used. All MariaDB-

specific table attributes are also not shown when a non-MariaDB/MySQL emulation mode is used, which includes

ANSI, DB2, POSTGRESQL, MSSQL, MAXDB or ORACLE.

Invalid table options, column options and index options are normally commented out (note, that it is possible to create a

table with invalid options, by altering a table of a different engine, where these options were valid). To have them

uncommented, enable the IGNORE_BAD_TABLE_OPTIONS SQL_MODE. Remember that replaying a CREATE TABLE

statement with uncommented invalid options will fail with an error, unless the IGNORE_BAD_TABLE_OPTIONS

SQL_MODE is in effect.

Note that SHOW CREATE TABLE is not meant to provide metadata about a table. It provides information about how the table

was declared, but the real table structure could differ a bit. For example, if an index has been declared as HASH , the

CREATE TABLE statement returned by SHOW CREATE TABLE will declare that index as HASH ; however, it is possible that

the index is in fact a BTREE , because the storage engine does not support HASH .

MariaDB permits TEXT and BLOB data types to be assigned a DEFAULT value. As a result, SHOW CREATE TABLE will

append a DEFAULT NULL to nullable TEXT or BLOB fields if no specific default is provided.

142/4161

Numbers are no longer quoted in the DEFAULT clause in SHOW CREATE statement. Prior to MariaDB 10.2.2 , MariaDB

quoted numbers.

Index Order

Indexes are sorted and displayed in the following order, which may differ from the order of the CREATE TABLE statement.

PRIMARY KEY

UNIQUE keys where all column are NOT NULL

UNIQUE keys that don't contain partial segments

Other UNIQUE keys

LONG UNIQUE keys

Normal keys

Fulltext keys

See sql/sql_table.cc for details.

Examples

SHOW CREATE TABLE t\G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE `t` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `s` char(60) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

With sql_quote_show_create off:

SHOW CREATE TABLE t\G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE t (

 id int(11) NOT NULL AUTO_INCREMENT,

 s char(60) DEFAULT NULL,

 PRIMARY KEY (id)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Unquoted numeric DEFAULTs, from MariaDB 10.2.2 :

CREATE TABLE td (link TINYINT DEFAULT 1);

SHOW CREATE TABLE td\G

*************************** 1. row ***************************

 Table: td

Create Table: CREATE TABLE `td` (

 `link` tinyint(4) DEFAULT 1

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Quoted numeric DEFAULTs, until MariaDB 10.2.1 :

CREATE TABLE td (link TINYINT DEFAULT 1);

SHOW CREATE TABLE td\G

*************************** 1. row ***************************

 Table: td

Create Table: CREATE TABLE `td` (

 `link` tinyint(4) DEFAULT '1'

) ENGINE=InnoDB DEFAULT CHARSET=latin1

SQL_MODE impacting the output:

143/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

SELECT @@sql_mode;

+---+

| @@sql_mode |

+---+

| STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---+

CREATE TABLE `t1` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `msg` varchar(100) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

;

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `msg` varchar(100) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

SET SQL_MODE=ORACLE;

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE "t1" (

 "id" int(11) NOT NULL,

 "msg" varchar(100) DEFAULT NULL,

 PRIMARY KEY ("id")

1.1.1.2.1.18 SHOW INDEX

Syntax

SHOW {INDEX | INDEXES | KEYS}

 FROM tbl_name [FROM db_name]

 [WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in ODBC.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These two statements are

equivalent:

SHOW INDEX FROM mytable FROM mydb;

SHOW INDEX FROM mydb.mytable;

SHOW KEYS and SHOW INDEXES are synonyms for SHOW INDEX .

You can also list a table's indexes with the mariadb-show command:

mariadb-show -k db_name tbl_name

The information_schema.STATISTICS table stores similar information.

The following fields are returned by SHOW INDEX .

144/4161

Field Description

Table Table name

Non_unique 1 if the index permits duplicate values, 0 if values must be unique.

Key_name Index name. The primary key is always named PRIMARY .

Seq_in_index The column's sequence in the index, beginning with 1 .

Column_name Column name.

Collation Either A , if the column is sorted in ascending order in the index, or NULL if it's not sorted.

Cardinality
Estimated number of unique values in the index. The cardinality statistics are calculated at various

times, and can help the optimizer make improved decisions.

Sub_part NULL if the entire column is included in the index, or the number of included characters if not.

Packed NULL if the index is not packed, otherwise how the index is packed.

Null NULL if NULL values are permitted in the column, an empty string if NULL s are not permitted.

Index_type
The index type, which can be BTREE , FULLTEXT , HASH or RTREE . See Storage Engine Index

Types.

Comment Other information, such as whether the index is disabled.

Index_comment Contents of the COMMENT attribute when the index was created.

Ignored Whether or not an index will be ignored by the optimizer. See Ignored Indexes. From MariaDB 10.6.0.

The WHERE and LIKE clauses can be given to select rows using more general conditions, as discussed in Extended

SHOW.

Examples

CREATE TABLE IF NOT EXISTS `employees_example` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `first_name` varchar(30) NOT NULL,

 `last_name` varchar(40) NOT NULL,

 `position` varchar(25) NOT NULL,

 `home_address` varchar(50) NOT NULL,

 `home_phone` varchar(12) NOT NULL,

 `employee_code` varchar(25) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `employee_code` (`employee_code`),

 KEY `first_name` (`first_name`,`last_name`)

) ENGINE=Aria;

INSERT INTO `employees_example` (`first_name`, `last_name`, `position`, `home_address`,

`home_phone`, `employee_code`)

 VALUES

 ('Mustapha', 'Mond', 'Chief Executive Officer', '692 Promiscuous Plaza', '326-555-3492',

'MM1'),

 ('Henry', 'Foster', 'Store Manager', '314 Savage Circle', '326-555-3847', 'HF1'),

 ('Bernard', 'Marx', 'Cashier', '1240 Ambient Avenue', '326-555-8456', 'BM1'),

 ('Lenina', 'Crowne', 'Cashier', '281 Bumblepuppy Boulevard', '328-555-2349', 'LC1'),

 ('Fanny', 'Crowne', 'Restocker', '1023 Bokanovsky Lane', '326-555-6329', 'FC1'),

 ('Helmholtz', 'Watson', 'Janitor', '944 Soma Court', '329-555-2478', 'HW1');

145/4161

SHOW INDEXES FROM employees_example\G

*************************** 1. row ***************************

 Table: employees_example

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 1

 Column_name: id

 Collation: A

 Cardinality: 6

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: NO

*************************** 2. row ***************************

 Table: employees_example

 Non_unique: 0

 Key_name: employee_code

 Seq_in_index: 1

 Column_name: employee_code

 Collation: A

 Cardinality: 6

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: NO

*************************** 3. row ***************************

 Table: employees_example

 Non_unique: 1

 Key_name: first_name

 Seq_in_index: 1

 Column_name: first_name

 Collation: A

 Cardinality: NULL

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: NO

*************************** 4. row ***************************

 Table: employees_example

 Non_unique: 1

 Key_name: first_name

 Seq_in_index: 2

 Column_name: last_name

 Collation: A

 Cardinality: NULL

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: NO

1.1.1.2.1.19 TRUNCATE TABLE

Syntax

TRUNCATE [TABLE] tbl_name

 [WAIT n | NOWAIT]

146/4161

Contents
1. Syntax

2. Description

1. WAIT/NOWAIT

2. Oracle-mode

3. Performance

Description
TRUNCATE TABLE empties a table completely. It requires the DROP privilege. See GRANT.

tbl_name can also be specified in the form db_name . tbl_name (see Identifier Qualifiers).

Logically, TRUNCATE TABLE is equivalent to a DELETE statement that deletes all rows, but there are practical differences

under some circumstances.

TRUNCATE TABLE will fail for an InnoDB table if any FOREIGN KEY constraints from other tables reference the table,

returning the error:

ERROR 1701 (42000): Cannot truncate a table referenced in a foreign key constraint

Foreign Key constraints between columns in the same table are permitted.

For an InnoDB table, if there are no FOREIGN KEY constraints, InnoDB performs fast truncation by dropping the original

table and creating an empty one with the same definition, which is much faster than deleting rows one by one. The

AUTO_INCREMENT counter is reset by TRUNCATE TABLE , regardless of whether there is a FOREIGN KEY constraint.

The count of rows affected by TRUNCATE TABLE is accurate only when it is mapped to a DELETE statement.

For other storage engines, TRUNCATE TABLE differs from DELETE in the following ways:

Truncate operations drop and re-create the table, which is much faster than deleting rows one by one, particularly for

large tables.

Truncate operations cause an implicit commit.

Truncation operations cannot be performed if the session holds an active table lock.

Truncation operations do not return a meaningful value for the number of deleted rows. The usual result is "0 rows

affected," which should be interpreted as "no information."

As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table with TRUNCATE

TABLE , even if the data or index files have become corrupted.

The table handler does not remember the last used AUTO_INCREMENT value, but starts counting from the

beginning. This is true even for MyISAM and InnoDB, which normally do not reuse sequence values.

When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data and index files are

dropped and re-created, while the partition definitions (.par) file is unaffected.

Since truncation of a table does not make any use of DELETE , the TRUNCATE statement does not invoke ON

DELETE triggers.

TRUNCATE TABLE will only reset the values in the Performance Schema summary tables to zero or null, and will not

remove the rows.

For the purposes of binary logging and replication, TRUNCATE TABLE is treated as DROP TABLE followed by CREATE

TABLE (DDL rather than DML).

TRUNCATE TABLE does not work on views. Currently, TRUNCATE TABLE drops all historical records from a system-

versioned table.

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

Oracle-mode

Oracle-mode from MariaDB 10.3 permits the optional keywords REUSE STORAGE or DROP STORAGE to be used.

TRUNCATE [TABLE] tbl_name [{DROP | REUSE} STORAGE] [WAIT n | NOWAIT]

These have no effect on the operation.

Performance

147/4161

TRUNCATE TABLE is faster than DELETE, because it drops and re-creates a table.

With InnoDB, TRUNCATE TABLE is slower if innodb_file_per_table=ON is set (the default). This is because TRUNCATE

TABLE unlinks the underlying tablespace file, which can be an expensive operation. See MDEV-8069 for more details.

The performance issues with innodb_file_per_table=ON can be exacerbated in cases where the InnoDB buffer pool is very

large and innodb_adaptive_hash_index=ON is set. In that case, using DROP TABLE followed by CREATE TABLE instead

of TRUNCATE TABLE may perform better. Setting innodb_adaptive_hash_index=OFF (it defaults to ON before MariaDB

10.5) can also help. In MariaDB 10.2 only, from MariaDB 10.2.19 , this performance can also be improved by setting

innodb_safe_truncate=OFF. See MDEV-9459 for more details.

Setting innodb_adaptive_hash_index=OFF can also improve TRUNCATE TABLE performance in general. See MDEV-16796

 for more details.

1.1.1.2.1.20 UPDATE

Syntax
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_reference

 [PARTITION (partition_list)]

 [FOR PORTION OF period FROM expr1 TO expr2]

 SET col1={expr1|DEFAULT} [,col2={expr2|DEFAULT}] ...

 [WHERE where_condition]

 [ORDER BY ...]

 [LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references

 SET col1={expr1|DEFAULT} [, col2={expr2|DEFAULT}] ...

 [WHERE where_condition]

Contents
1. Syntax

2. Description

1. PARTITION

2. FOR PORTION OF

3. UPDATE Statements With the Same Source and Target

3. Example

Description
For the single-table syntax, the UPDATE statement updates columns of existing rows in the named table with new values.

The SET clause indicates which columns to modify and the values they should be given. Each value can be given as an

expression, or the keyword DEFAULT to set a column explicitly to its default value. The WHERE clause, if given, specifies

the conditions that identify which rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is

specified, the rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows that can

be updated.

Until MariaDB 10.3.2 , for the multiple-table syntax, UPDATE updates rows in each table named in table_references that

satisfy the conditions. In this case, ORDER BY and LIMIT cannot be used. This restriction was lifted in MariaDB 10.3.2

and both clauses can be used with multiple-table updates. An UPDATE can also reference tables which are located in

different databases; see Identifier Qualifiers for the syntax.

where_condition is an expression that evaluates to true for each row to be updated.

table_references and where_condition are as specified as described in SELECT.

For single-table updates, assignments are evaluated in left-to-right order, while for multi-table updates, there is no guarantee

of a particular order. If the SIMULTANEOUS_ASSIGNMENT sql_mode (available from MariaDB 10.3.5) is set, UPDATE

statements evaluate all assignments simultaneously.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated. You need only the

SELECT privilege for any columns that are read but not modified. See GRANT.

148/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/delete-table
https://jira.mariadb.org/browse/MDEV-8069
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://jira.mariadb.org/browse/MDEV-9459
https://jira.mariadb.org/browse/MDEV-16796
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

The UPDATE statement supports the following modifiers:

If you use the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are reading from

the table. This affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE). See

HIGH_PRIORITY and LOW_PRIORITY clauses for details.

If you use the IGNORE keyword, the update statement does not abort even if errors occur during the update. Rows

for which duplicate-key conflicts occur are not updated. Rows for which columns are updated to values that would

cause data conversion errors are updated to the closest valid values instead.

PARTITION

See Partition Pruning and Selection for details.

FOR PORTION OF

See Application Time Periods - Updating by Portion.

UPDATE Statements With the Same Source and Target

From MariaDB 10.3.2 , UPDATE statements may have the same source and target.

For example, given the following table:

DROP TABLE t1;

CREATE TABLE t1 (c1 INT, c2 INT);

INSERT INTO t1 VALUES (10,10), (20,20);

Until MariaDB 10.3.1 , the following UPDATE statement would not work:

UPDATE t1 SET c1=c1+1 WHERE c2=(SELECT MAX(c2) FROM t1);

ERROR 1093 (HY000): Table 't1' is specified twice,

 both as a target for 'UPDATE' and as a separate source for data

From MariaDB 10.3.2 , the statement executes successfully:

UPDATE t1 SET c1=c1+1 WHERE c2=(SELECT MAX(c2) FROM t1);

SELECT * FROM t1;

+------+------+

| c1 | c2 |

+------+------+

| 10 | 10 |

| 21 | 20 |

+------+------+

Example
Single-table syntax:

UPDATE table_name SET column1 = value1, column2 = value2 WHERE id=100;

Multiple-table syntax:

UPDATE tab1, tab2 SET tab1.column1 = value1, tab1.column2 = value2 WHERE tab1.id = tab2.id;

MariaDB starting with 10.4.3

MariaDB starting with 10.3.2

1.1.1.2.1.21 IGNORE
The IGNORE option tells the server to ignore some common errors.

IGNORE can be used with the following statements:

149/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

DELETE

INSERT (see also INSERT IGNORE)

LOAD DATA INFILE

UPDATE

ALTER TABLE

CREATE TABLE ... SELECT

INSERT ... SELECT

The logic used:

Variables out of ranges are replaced with the maximum/minimum value.

SQL_MODEs STRICT_TRANS_TABLES , STRICT_ALL_TABLES , NO_ZERO_IN_DATE , NO_ZERO_DATE are ignored.

Inserting NULL in a NOT NULL field will insert 0 (in a numerical field), 0000-00-00 (in a date field) or an empty

string (in a character field).

Rows that cause a duplicate key error or break a foreign key constraint are not inserted, updated, or deleted.

The following errors are ignored:

Error

number
Symbolic error name Description

1022 ER_DUP_KEY Can't write; duplicate key in table '%s'

1048 ER_BAD_NULL_ERROR Column '%s' cannot be null

1062 ER_DUP_ENTRY Duplicate entry '%s' for key %d

1242 ER_SUBQUERY_NO_1_ROW Subquery returns more than 1 row

1264 ER_WARN_DATA_OUT_OF_RANGE Out of range value for column '%s' at row %ld

1265 WARN_DATA_TRUNCATED Data truncated for column '%s' at row %ld

1292 ER_TRUNCATED_WRONG_VALUE Truncated incorrect %s value: '%s'

1366 ER_TRUNCATED_WRONG_VALUE_FOR_FIELD Incorrect integer value

1369 ER_VIEW_CHECK_FAILED CHECK OPTION failed '%s.%s'

1451 ER_ROW_IS_REFERENCED_2 Cannot delete or update a parent row

1452 ER_NO_REFERENCED_ROW_2
Cannot add or update a child row: a foreign key

constraint fails (%s)

1526 ER_NO_PARTITION_FOR_GIVEN_VALUE Table has no partition for value %s

1586 ER_DUP_ENTRY_WITH_KEY_NAME Duplicate entry '%s' for key '%s'

1591 ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT Table has no partition for some existing values

1748 ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET Found a row not matching the given partition set

Ignored errors normally generate a warning.

A property of the IGNORE clause consists in causing transactional engines and non-transactional engines (like InnoDB and

Aria) to behave the same way. For example, normally a multi-row insert which tries to violate a UNIQUE contraint is

completely rolled back on InnoDB, but might be partially executed on Aria. With the IGNORE clause, the statement will be

partially executed in both engines.

Duplicate key errors also generate warnings. The OLD_MODE server variable can be used to prevent this.

1.1.7.1 System-Versioned Tables

1.1.1.2.2 ANALYZE and EXPLAIN Statements
ANALYZE FORMAT=JSON

Mix of the EXPLAIN FORMAT=JSON and ANALYZE statement features.

ANALYZE FORMAT=JSON Examples

Examples with ANALYZE FORMAT=JSON.

150/4161

ANALYZE Statement

Invokes the optimizer, executes the statement, and then produces EXPLAIN output.

ANALYZE: Interpreting execution stats for index-based access methods

This article describes how to interpret r_rows and r_filtered members in AN...

EXPLAIN

EXPLAIN returns information about index usage, as well as being a synonym for DESCRIBE.

EXPLAIN ANALYZE

Old implementation, now ANALYZE statement

EXPLAIN FORMAT=JSON

Variant of EXPLAIN that produces output in JSON form

SHOW EXPLAIN

Shows an execution plan for a running query.

Using Buffer UPDATE Algorithm

Explanation of UPDATE's "Using Buffer" algorithm.

1.1.1.2.2.1 ANALYZE FORMAT=JSON
Contents
1. Basic Execution Data

2. Advanced Execution Data

1. InnoDB engine statistics

3. SHOW ANALYZE FORMAT=JSON

4. Data About Individual Query Plan Nodes

5. Use Cases

ANALYZE FORMAT=JSON is a mix of the EXPLAIN FORMAT=JSON and ANALYZE statement features. The ANALYZE

FORMAT=JSON $statement will execute $statement , and then print the output of EXPLAIN FORMAT=JSON , amended

with data from the query execution.

Basic Execution Data
You can get the following also from tabular ANALYZE statement form:

r_rows is provided for any node that reads rows. It shows how many rows were read, on average

r_filtered is provided whenever there is a condition that is checked. It shows the percentage of rows left after

checking the condition.

Advanced Execution Data
The most important data not available in the regular tabular ANALYZE statement are:

r_loops field. This shows how many times the node was executed. Most query plan elements have this field.

r_total_time_ms field. It shows how much time in total, in milliseconds, was spent executing this node. If the node

has subnodes, their execution time is included.

r_buffer_size field. Query plan nodes that make use of buffers report the size of buffer that was was used.

InnoDB engine statistics

Starting from MariaDB 10.6.15, MariaDB 10.8.8 , MariaDB 10.9.8, MariaDB 10.10.6, MariaDB 10.11.5, MariaDB 11.0.3,

MariaDB 11.1.2 and MariaDB 11.2.1 (MDEV-31577), the following statistics are reported for InnoDB tables:

 "r_engine_stats": {

 "pages_accessed": integer,

 "pages_read_count": integer,

 "pages_read_time_ms": double,

 "old_rows_read": integer

 }

151/4161

https://mariadb.com/kb/en/analyze-interpreting-execution-stats-for-index-based-access-methods/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://jira.mariadb.org/browse/MDEV-31577

Only non-zero members are printed.

pages_accessed is the total number of buffer pool pages accessed when reading this table

pages_read_count is the number of pages that InnoDB had to read from disk for this table. (If the query touches

"hot" data in the InnoDB buffer pool, this value will be 0 and not present)

pages_read_time_ms is the total time spent reading the table.

old_rows_read is the number of old row versions that InnoDB had to read. Old row version is the version of the row

that is not visible to this transaction.

SHOW ANALYZE FORMAT=JSON

SHOW ANALYZE FORMAT=JSON for <connection_id> extends ANALYZE [FORMAT=JSON] <select> to allow one

to analyze a query currently running in another connection.

Data About Individual Query Plan Nodes
filesort node reports whether sorting was done with LIMIT n parameter, and how many rows were in the sort

result.

block-nl-join node has r_loops field, which allows to tell whether Using join buffer was efficient

range-checked-for-each-record reports counters that show the result of the check.

expression-cache is used for subqueries, and it reports how many times the cache was used, and what cache hit

ratio was.

union_result node has r_rows so one can see how many rows were produced after UNION operation

and so forth

Use Cases
See Examples of ANALYZE FORMAT=JSON.

MariaDB starting with 10.9

1.1.1.2.2.2 ANALYZE FORMAT=JSON
Examples

Example #1
Customers who have ordered more than 1M goods.

ANALYZE FORMAT=JSON

SELECT COUNT(*)

FROM customer

WHERE

 (SELECT SUM(o_totalprice) FROM orders WHERE o_custkey=c_custkey) > 1000*1000;

The query takes 40 seconds over cold cache

152/4161

EXPLAIN: {

 "query_block": {

 "select_id": 1,

 "r_loops": 1,

 "r_total_time_ms": 39872,

 "table": {

 "table_name": "customer",

 "access_type": "index",

 "key": "i_c_nationkey",

 "key_length": "5",

 "used_key_parts": ["c_nationkey"],

 "r_loops": 1,

 "rows": 150303,

 "r_rows": 150000,

 "r_total_time_ms": 270.3,

 "filtered": 100,

 "r_filtered": 60.691,

 "attached_condition": "((subquery#2) > <cache>((1000 * 1000)))",

 "using_index": true

 },

 "subqueries": [

 {

 "query_block": {

 "select_id": 2,

 "r_loops": 150000,

 "r_total_time_ms": 39531,

 "table": {

 "table_name": "orders",

 "access_type": "ref",

 "possible_keys": ["i_o_custkey"],

 "key": "i_o_custkey",

 "key_length": "5",

 "used_key_parts": ["o_custkey"],

 "ref": ["dbt3sf1.customer.c_custkey"],

 "r_loops": 150000,

 "rows": 7,

 "r_rows": 10,

 "r_total_time_ms": 39208,

 "filtered": 100,

 "r_filtered": 100

 }

 }

 }

]

 }

}

ANALYZE shows that 39.2 seconds were spent in the subquery, which was executed 150K times (for every row of outer

table).

1.1.1.2.2.3 ANALYZE Statement
Contents
1. Description

2. Command Output

3. Interpreting the Output

1. Joins

2. Meaning of NULL in r_rows and r_filtered

4. ANALYZE FORMAT=JSON

5. Notes

Description
The ANALYZE statement is similar to the EXPLAIN statement . ANALYZE statement will invoke the optimizer, execute

153/4161

the statement, and then produce EXPLAIN output instead of the result set. The EXPLAIN output will be annotated with

statistics from statement execution.

This lets one check how close the optimizer's estimates about the query plan are to the reality. ANALYZE produces an

overview, while the ANALYZE FORMAT=JSON command provides a more detailed view of the query plan and the query

execution.

The syntax is

ANALYZE explainable_statement;

where the statement is any statement for which one can run EXPLAIN.

Command Output
Consider an example:

ANALYZE SELECT * FROM tbl1

WHERE key1

 BETWEEN 10 AND 200 AND

 col1 LIKE 'foo%'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: tbl1

 type: range

possible_keys: key1

 key: key1

 key_len: 5

 ref: NULL

 rows: 181

 r_rows: 181

 filtered: 100.00

 r_filtered: 10.50

 Extra: Using index condition; Using where

Compared to EXPLAIN , ANALYZE produces two extra columns:

r_rows is an observation-based counterpart of the rows column. It shows how many rows were actually read from

the table.

r_filtered is an observation-based counterpart of the filtered column. It shows which fraction of rows was left

after applying the WHERE condition.

Interpreting the Output

Joins

Let's consider a more complicated example.

ANALYZE SELECT *

FROM orders, customer

WHERE

 customer.c_custkey=orders.o_custkey AND

 customer.c_acctbal < 0 AND

 orders.o_totalprice > 200*1000

154/4161

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | r_rows | filtered | r_filtered | Extra |

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

| 1 | SIMPLE | customer | ALL | PRIMARY,... | NULL | NULL | NULL

| 149095 | 150000 | 18.08 | 9.13 | Using where |

| 1 | SIMPLE | orders | ref | i_o_custkey | i_o_custkey | 5 |

customer.c_custkey | 7 | 10 | 100.00 | 30.03 | Using where |

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

Here, one can see that

For table customer, customer.rows=149095, customer.r_rows=150000. The estimate for number of rows we will

read was fairly precise

customer.filtered=18.08, customer.r_filtered=9.13. The optimizer somewhat overestimated the number of records

that will match selectivity of condition attached to `customer` table (in general, when you have a full scan and

r_filtered is less than 15%, it's time to consider adding an appropriate index).

For table orders, orders.rows=7, orders.r_rows=10. This means that on average, there are 7 orders for a given

c_custkey, but in our case there were 10, which is close to the expectation (when this number is consistently far from

the expectation, it may be time to run ANALYZE TABLE, or even edit the table statistics manually to get better query

plans).

orders.filtered=100, orders.r_filtered=30.03. The optimizer didn't have any way to estimate which fraction of

records will be left after it checks the condition that is attached to table orders (it's orders.o_totalprice > 200*1000).

So, it used 100%. In reality, it is 30%. 30% is typically not selective enough to warrant adding new indexes. For joins

with many tables, it might be worth to collect and use column statistics for columns in question, this may help the

optimizer to pick a better query plan.

Meaning of NULL in r_rows and r_filtered

Let's modify the previous example slightly

ANALYZE SELECT *

FROM orders, customer

WHERE

 customer.c_custkey=orders.o_custkey AND

 customer.c_acctbal < -0 AND

 customer.c_comment LIKE '%foo%' AND

 orders.o_totalprice > 200*1000;

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | r_rows | filtered | r_filtered | Extra |

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

| 1 | SIMPLE | customer | ALL | PRIMARY,... | NULL | NULL | NULL

| 149095 | 150000 | 18.08 | 0.00 | Using where |

| 1 | SIMPLE | orders | ref | i_o_custkey | i_o_custkey | 5 |

customer.c_custkey | 7 | NULL | 100.00 | NULL | Using where |

+----+-------------+----------+------+---------------+-------------+---------+---------------

-----+--------+--------+----------+------------+-------------+

Here, one can see that orders.r_rows=NULL and orders.r_filtered=NULL. This means that table orders was not scanned

even once. Indeed, we can also see customer.r_filtered=0.00. This shows that a part of WHERE attached to table

`customer` was never satisfied (or, satisfied in less than 0.01% of cases).

ANALYZE FORMAT=JSON
ANALYZE FORMAT=JSON produces JSON output. It produces much more information than tabular ANALYZE .

Notes
ANALYZE UPDATE or ANALYZE DELETE will actually make updates/deletes (ANALYZE SELECT will perform the

155/4161

select operation and then discard the resultset).

PostgreSQL has a similar command, EXPLAIN ANALYZE .

The EXPLAIN in the slow query log feature allows MariaDB to have ANALYZE output of slow queries printed into the

slow query log (see MDEV-6388).

1.1.1.2.2.4 EXPLAIN

Syntax

EXPLAIN tbl_name [col_name | wild]

Or

EXPLAIN [EXTENDED | PARTITIONS | FORMAT=JSON]

 {SELECT select_options | UPDATE update_options | DELETE delete_options}

Contents
1. Syntax

2. Description

1. Columns in EXPLAIN ... SELECT

1. "Select_type" Column

2. "Type" Column

3. "Extra" Column

2. EXPLAIN EXTENDED

3. Examples

1. Example of ref_or_null Optimization

Description
The EXPLAIN statement can be used either as a synonym for DESCRIBE or as a way to obtain information about how

MariaDB executes a SELECT , UPDATE or DELETE statement:

'EXPLAIN tbl_name' is synonymous with 'DESCRIBE tbl_name' or 'SHOW COLUMNS FROM tbl_name' .

When you precede a SELECT , UPDATE or a DELETE statement with the keyword EXPLAIN , MariaDB displays

information from the optimizer about the query execution plan. That is, MariaDB explains how it would process the

SELECT , UPDATE or DELETE , including information about how tables are joined and in which order. EXPLAIN

EXTENDED can be used to provide additional information.

EXPLAIN PARTITIONS is useful only when examining queries involving partitioned tables.

For details, see Partition pruning and selection.

ANALYZE statement performs the query as well as producing EXPLAIN output, and provides actual as well as

estimated statistics.

EXPLAIN output can be printed in the slow query log. See EXPLAIN in the Slow Query Log for details.

SHOW EXPLAIN shows the output of a running statement. In some cases, its output can be closer to reality than

EXPLAIN .

The ANALYZE statement runs a statement and returns information about its execution plan. It also shows additional

columns, to check how much the optimizer's estimation about filtering and found rows are close to reality.

There is an online EXPLAIN Analyzer that you can use to share EXPLAIN and EXPLAIN EXTENDED output with others.

EXPLAIN can acquire metadata locks in the same way that SELECT does, as it needs to know table metadata and,

sometimes, data as well.

Columns in EXPLAIN ... SELECT

Column name Description

id Sequence number that shows in which order tables are joined.

select_type What kind of SELECT the table comes from.

table Alias name of table. Materialized temporary tables for sub queries are named <subquery#>

156/4161

https://jira.mariadb.org/browse/MDEV-6388

type How rows are found from the table (join type).

possible_keys keys in table that could be used to find rows in the table

key The name of the key that is used to retrieve rows. NULL is no key was used.

key_len How many bytes of the key that was used (shows if we are using only parts of the multi-column key).

ref The reference that is used as the key value.

rows An estimate of how many rows we will find in the table for each key lookup.

Extra Extra information about this join.

Here are descriptions of the values for some of the more complex columns in EXPLAIN ... SELECT :

"Select_type" Column

The select_type column can have the following values:

Value Description Comment

DEPENDENT

SUBQUERY

The SUBQUERY is

DEPENDENT .

DEPENDENT

UNION
The UNION is DEPENDENT .

DERIVED
The SELECT is DERIVED

from the PRIMARY .

MATERIALIZED
The SUBQUERY is

MATERIALIZED .

Materialized tables will be populated at first access and will be

accessed by the primary key (= one key lookup). Number of rows in

EXPLAIN shows the cost of populating the table

PRIMARY

The SELECT is in the

outermost query, but there is

also a SUBQUERY within it.

SIMPLE

It is a simple SELECT query

without any SUBQUERY or

UNION .

SUBQUERY
The SELECT is a SUBQUERY

of the PRIMARY .

UNCACHEABLE

SUBQUERY

The SUBQUERY is

UNCACHEABLE .

UNCACHEABLE

UNION

The UNION is

UNCACHEABLE .

UNION
The SELECT is a UNION of

the PRIMARY .

UNION RESULT The result of the UNION .

LATERAL

DERIVED

The SELECT uses a Lateral

Derived optimization

"Type" Column

This column contains information on how the table is accessed.

Value Description

ALL

A full table scan is done for the table (all rows are read). This is bad if the table is large and the table

is joined against a previous table! This happens when the optimizer could not find any usable index

to access rows.

const
There is only one possibly matching row in the table. The row is read before the optimization phase

and all columns in the table are treated as constants.

eq_ref A unique index is used to find the rows. This is the best possible plan to find the row.

157/4161

fulltext A fulltext index is used to access the rows.

index_merge
A 'range' access is done for for several index and the found rows are merged. The key column

shows which keys are used.

index_subquery This is similar as ref, but used for sub queries that are transformed to key lookups.

index
A full scan over the used index. Better than ALL but still bad if index is large and the table is joined

against a previous table.

range The table will be accessed with a key over one or more value ranges.

ref_or_null
Like 'ref' but in addition another search for the 'null' value is done if the first value was not found.

This happens usually with sub queries.

ref
A non unique index or prefix of an unique index is used to find the rows. Good if the prefix doesn't

match many rows.

system The table has 0 or 1 rows.

unique_subquery This is similar as eq_ref, but used for sub queries that are transformed to key lookups

"Extra" Column

This column consists of one or more of the following values, separated by ';'

Note that some of these values are detected after the optimization phase.

The optimization phase can do the following changes to the WHERE clause:

Add the expressions from the ON and USING clauses to the WHERE clause.

Constant propagation: If there is column=constant , replace all column instances with this constant.

Replace all columns from ' const ' tables with their values.

Remove the used key columns from the WHERE (as this will be tested as part of the key lookup).

Remove impossible constant sub expressions. For example WHERE '(a=1 and a=2) OR b=1' becomes 'b=1' .

Replace columns with other columns that has identical values: Example: WHERE a=b and a=c may be treated as

'WHERE a=b and a=c and b=c' .

Add extra conditions to detect impossible row conditions earlier. This happens mainly with OUTER JOIN where we in

some cases add detection of NULL values in the WHERE (Part of ' Not exists ' optimization). This can cause an

unexpected ' Using where ' in the Extra column.

For each table level we remove expressions that have already been tested when we read the previous row. Example:

When joining tables t1 with t2 using the following WHERE 't1.a=1 and t1.a=t2.b' , we don't have to test

't1.a=1' when checking rows in t2 as we already know that this expression is true.

Value Description

const row not

found
The table was a system table (a table with should exactly one row), but no row was found.

Distinct
If distinct optimization (remove duplicates) was used. This is marked only for the last table in the

SELECT .

Full scan on NULL

key

The table is a part of the sub query and if the value that is used to match the sub query will be

NULL , we will do a full table scan.

Impossible HAVING The used HAVING clause is always false so the SELECT will return no rows.

Impossible WHERE

noticed after

reading const

tables.

The used WHERE clause is always false so the SELECT will return no rows. This case was

detected after we had read all 'const' tables and used the column values as constant in the

WHERE clause. For example: WHERE const_column=5 and const_column had a value of 4.

Impossible WHERE
The used WHERE clause is always false so the SELECT will return no rows. For example: WHERE

1=2

No matching

min/max row

During early optimization of MIN() / MAX() values it was detected that no row could match the

WHERE clause. The MIN() / MAX() function will return NULL .

no matching row

in const table
The table was a const table (a table with only one possible matching row), but no row was found.

No tables used
The SELECT was a sub query that did not use any tables. For example a there was no FROM

clause or a FROM DUAL clause.

158/4161

Not exists

Stop searching after more row if we find one single matching row. This optimization is used with

LEFT JOIN where one is explicitly searching for rows that doesn't exists in the LEFT JOIN

TABLE . Example: SELECT * FROM t1 LEFT JOIN t2 on (...) WHERE

t2.not_null_column IS NULL . As t2.not_null_column can only be NULL if there was no

matching row for on condition, we can stop searching if we find a single matching row.

Open_frm_only
For information_schema tables. Only the frm (table definition file was opened) was opened

for each matching row.

Open_full_table
For information_schema tables. A full table open for each matching row is done to retrieve the

requested information. (Slow)

Open_trigger_only
For information_schema tables. Only the trigger file definition was opened for each matching

row.

Range checked

for each record

(index map: ...)

This only happens when there was no good default index to use but there may some index that

could be used when we can treat all columns from previous table as constants. For each row

combination the optimizer will decide which index to use (if any) to fetch a row from this table.

This is not fast, but faster than a full table scan that is the only other choice. The index map is a

bitmask that shows which index are considered for each row condition.

Scanned 0/1/all

databases
For information_schema tables. Shows how many times we had to do a directory scan.

Select tables

optimized away

All tables in the join was optimized away. This happens when we are only using COUNT(*) ,

MIN() and MAX() functions in the SELECT and we where able to replace all of these with

constants.

Skip_open_table For information_schema tables. The queried table didn't need to be opened.

unique row not

found

The table was detected to be a const table (a table with only one possible matching row) during

the early optimization phase, but no row was found.

Using filesort

Filesort is needed to resolve the query. This means an extra phase where we first collect all

columns to sort, sort them with a disk based merge sort and then use the sorted set to retrieve

the rows in sorted order. If the column set is small, we store all the columns in the sort file to not

have to go to the database to retrieve them again.

Using index
Only the index is used to retrieve the needed information from the table. There is no need to

perform an extra seek to retrieve the actual record.

Using index

condition

Like ' Using where ' but the where condition is pushed down to the table engine for internal

optimization at the index level.

Using index

condition(BKA)
Like ' Using index condition ' but in addition we use batch key access to retrieve rows.

Using index for

group-by

The index is being used to resolve a GROUP BY or DISTINCT query. The rows are not read.

This is very efficient if the table has a lot of identical index entries as duplicates are quickly

jumped over.

Using

intersect(...)
For index_merge joins. Shows which index are part of the intersect.

Using join buffer
We store previous row combinations in a row buffer to be able to match each row against all of

the rows combinations in the join buffer at one go.

Using

sort_union(...)
For index_merge joins. Shows which index are part of the union.

Using temporary
A temporary table is created to hold the result. This typically happens if you are using GROUP BY ,

DISTINCT or ORDER BY .

Using where

A WHERE expression (in additional to the possible key lookup) is used to check if the row should

be accepted. If you don't have 'Using where' together with a join type of ALL , you are probably

doing something wrong!

Using where with

pushed condition

Like ' Using where ' but the where condition is pushed down to the table engine for internal

optimization at the row level.

Using buffer
The UPDATE statement will first buffer the rows, and then run the updates, rather than do updates

on the fly. See Using Buffer UPDATE Algorithm for a detailed explanation.

159/4161

EXPLAIN EXTENDED

The EXTENDED keyword adds another column, filtered, to the output. This is a percentage estimate of the table rows that

will be filtered by the condition.

An EXPLAIN EXTENDED will always throw a warning, as it adds extra Message information to a subsequent SHOW

WARNINGS statement. This includes what the SELECT query would look like after optimizing and rewriting rules are applied

and how the optimizer qualifies columns and tables.

Examples
As synonym for DESCRIBE or SHOW COLUMNS FROM :

DESCRIBE city;

+------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------+----------------+

| Id | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | YES | | NULL | |

| Country | char(3) | NO | UNI | | |

| District | char(20) | YES | MUL | | |

| Population | int(11) | YES | | NULL | |

+------------+----------+------+-----+---------+----------------+

A simple set of examples to see how EXPLAIN can identify poor index usage:

CREATE TABLE IF NOT EXISTS `employees_example` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `first_name` varchar(30) NOT NULL,

 `last_name` varchar(40) NOT NULL,

 `position` varchar(25) NOT NULL,

 `home_address` varchar(50) NOT NULL,

 `home_phone` varchar(12) NOT NULL,

 `employee_code` varchar(25) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `employee_code` (`employee_code`),

 KEY `first_name` (`first_name`,`last_name`)

) ENGINE=Aria;

INSERT INTO `employees_example` (`first_name`, `last_name`, `position`, `home_address`,

`home_phone`, `employee_code`)

 VALUES

 ('Mustapha', 'Mond', 'Chief Executive Officer', '692 Promiscuous Plaza', '326-555-3492',

'MM1'),

 ('Henry', 'Foster', 'Store Manager', '314 Savage Circle', '326-555-3847', 'HF1'),

 ('Bernard', 'Marx', 'Cashier', '1240 Ambient Avenue', '326-555-8456', 'BM1'),

 ('Lenina', 'Crowne', 'Cashier', '281 Bumblepuppy Boulevard', '328-555-2349', 'LC1'),

 ('Fanny', 'Crowne', 'Restocker', '1023 Bokanovsky Lane', '326-555-6329', 'FC1'),

 ('Helmholtz', 'Watson', 'Janitor', '944 Soma Court', '329-555-2478', 'HW1');

SHOW INDEXES FROM employees_example;

+-------------------+------------+---------------+--------------+---------------+-----------

+-------------+----------+--------+------+------------+---------+---------------+

| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation |

Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |

+-------------------+------------+---------------+--------------+---------------+-----------

+-------------+----------+--------+------+------------+---------+---------------+

| employees_example | 0 | PRIMARY | 1 | id | A |

7 | NULL | NULL | | BTREE | | |

| employees_example | 0 | employee_code | 1 | employee_code | A |

7 | NULL | NULL | | BTREE | | |

| employees_example | 1 | first_name | 1 | first_name | A |

NULL | NULL | NULL | | BTREE | | |

| employees_example | 1 | first_name | 2 | last_name | A |

NULL | NULL | NULL | | BTREE | | |

+-------------------+------------+---------------+--------------+---------------+-----------

+-------------+----------+--------+------+------------+---------+---------------+

SELECT on a primary key:

160/4161

EXPLAIN SELECT * FROM employees_example WHERE id=1;

+------+-------------+-------------------+-------+---------------+---------+---------+-------

+------+-------+

| id | select_type | table | type | possible_keys | key | key_len | ref |

rows | Extra |

+------+-------------+-------------------+-------+---------------+---------+---------+-------

+------+-------+

| 1 | SIMPLE | employees_example | const | PRIMARY | PRIMARY | 4 | const |

1 | |

+------+-------------+-------------------+-------+---------------+---------+---------+-------

+------+-------+

The type is const, which means that only one possible result could be returned. Now, returning the same record but

searching by their phone number:

EXPLAIN SELECT * FROM employees_example WHERE home_phone='326-555-3492';

+------+-------------+-------------------+------+---------------+------+---------+------+----

--+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows

| Extra |

+------+-------------+-------------------+------+---------------+------+---------+------+----

--+-------------+

| 1 | SIMPLE | employees_example | ALL | NULL | NULL | NULL | NULL | 6

| Using where |

+------+-------------+-------------------+------+---------------+------+---------+------+----

--+-------------+

Here, the type is All, which means no index could be used. Looking at the rows count, a full table scan (all six rows) had to

be performed in order to retrieve the record. If it's a requirement to search by phone number, an index will have to be

created.

SHOW EXPLAIN example:

SHOW EXPLAIN FOR 1;

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

| 1 | SIMPLE | tbl | index | NULL | a | 5 | NULL | 1000107 | Using index

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

1 row in set, 1 warning (0.00 sec)

Example of ref_or_null Optimization

SELECT * FROM table_name

 WHERE key_column=expr OR key_column IS NULL;

ref_or_null is something that often happens when you use subqueries with NOT IN as then one has to do an extra

check for NULL values if the first value didn't have a matching row.

1.1.1.2.2.5 EXPLAIN ANALYZE
The syntax for the EXPLAIN ANALYZE feature was changed to ANALYZE statement , available since MariaDB 10.1.0 .

See ANALYZE statement.

1.1.1.2.2.6 EXPLAIN FORMAT=JSON
Contents
1. Synopsis

2. Output is different from MySQL

3. Output Format

Synopsis

161/4161

https://mariadb.com/kb/en/mariadb-1010-release-notes/

EXPLAIN FORMAT=JSON is a variant of EXPLAIN command that produces output in JSON form. The output always has one

row which has only one column titled " JSON ". The contents are a JSON representation of the query plan, formatted for

readability:

EXPLAIN FORMAT=JSON SELECT * FROM t1 WHERE col1=1\G

*************************** 1. row ***************************

EXPLAIN: {

 "query_block": {

 "select_id": 1,

 "table": {

 "table_name": "t1",

 "access_type": "ALL",

 "rows": 1000,

 "filtered": 100,

 "attached_condition": "(t1.col1 = 1)"

 }

 }

}

Output is different from MySQL
The output of MariaDB's EXPLAIN FORMAT=JSON is different from EXPLAIN FORMAT=JSON in MySQL.The reasons for that

are:

MySQL's output has deficiencies. Some are listed here: EXPLAIN FORMAT=JSON in MySQL

The output of MySQL's EXPLAIN FORMAT=JSON is not defined. Even MySQL Workbench has trouble parsing it (see

this blog post).

MariaDB has query optimizations that MySQL does not have. Ergo, MariaDB generates query plans that MySQL does

not generate.

A (as yet incomplete) list of how MariaDB's output is different from MySQL can be found here: EXPLAIN FORMAT=JSON

differences from MySQL .

Output Format
TODO: MariaDB's output format description.

1.1.1.2.2.7 SHOW EXPLAIN
Contents
1. Syntax

2. Description

1. EXPLAIN FOR CONNECTION

2. FORMAT=JSON

3. Possible Errors

4. Differences Between SHOW EXPLAIN and EXPLAIN Outputs

1. Background

2. List of Recorded Differences

3. Required Permissions

Syntax

SHOW EXPLAIN [FORMAT=JSON] FOR <connection_id>;

EXPLAIN [FORMAT=JSON] FOR CONNECTION <connection_id>;

Description
The SHOW EXPLAIN command allows one to get an EXPLAIN (that is, a description of a query plan) of a query running in a

certain connection.

SHOW EXPLAIN FOR <connection_id>;

162/4161

http://s.petrunia.net/blog/?p=93
https://mariadb.com/kb/en/explain-formatjson-differences-from-mysql/

will produce an EXPLAIN output for the query that connection number connection_id is running. The connection id can

be obtained with SHOW PROCESSLIST.

SHOW EXPLAIN FOR 1;

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

| 1 | SIMPLE | tbl | index | NULL | a | 5 | NULL | 1000107 | Using index

+------+-------------+-------+-------+---------------+------+---------+------+---------+-------------+

1 row in set, 1 warning (0.00 sec)

The output is always accompanied with a warning which shows the query the target connection is running (this shows what

the EXPLAIN is for):

SHOW WARNINGS;

+-------+------+------------------------+

| Level | Code | Message |

+-------+------+------------------------+

| Note | 1003 | select sum(a) from tbl |

+-------+------+------------------------+

1 row in set (0.00 sec)

EXPLAIN FOR CONNECTION

The EXPLAIN FOR CONNECTION syntax was added for MySQL compatibility.

FORMAT=JSON

SHOW EXPLAIN [FORMAT=JSON] FOR <connection_id> extends SHOW EXPLAIN to return more detailed JSON

output.

Possible Errors

The output can be only produced if the target connection is currently running a query, which has a ready query plan. If this

is not the case, the output will be:

SHOW EXPLAIN FOR 2;

ERROR 1932 (HY000): Target is not running an EXPLAINable command

You will get this error when:

the target connection is not running a command for which one can run EXPLAIN

the target connection is running a command for which one can run EXPLAIN , but

there is no query plan yet (for example, tables are open and locks are acquired before the query plan is

produced)

Differences Between SHOW EXPLAIN and EXPLAIN Outputs

Background

In MySQL, EXPLAIN execution takes a slightly different route from the way the real query (typically the SELECT) is

optimized. This is unfortunate, and has caused a number of bugs in EXPLAIN . (For example, see MDEV-326 , MDEV-410

, and lp:1013343 . lp:992942 is not directly about EXPLAIN , but it also would not have existed if MySQL didn't try to

delete parts of a query plan in the middle of the query)

SHOW EXPLAIN examines a running SELECT , and hence its output may be slightly different from what EXPLAIN SELECT

would produce. We did our best to make sure that either the difference is negligible, or SHOW EXPLAIN 's output is closer to

reality than EXPLAIN 's output.

List of Recorded Differences

MariaDB starting with 10.9

MariaDB starting with 10.9

163/4161

https://jira.mariadb.org/browse/MDEV-326
https://jira.mariadb.org/browse/MDEV-410
https://bugs.launchpad.net/maria/+bug/1013343
https://bugs.launchpad.net/maria/+bug/992942

SHOW EXPLAIN may have Extra=' no matching row in const table ', where EXPLAIN would produce

Extra=' Impossible WHERE ... '

For queries with subqueries, SHOW EXPLAIN may print select_type==PRIMARY where regular EXPLAIN used to

print select_type==SIMPLE , or vice versa.

Required Permissions

Running SHOW EXPLAIN requires the same permissions as running SHOW PROCESSLIST would.

1.1.1.2.2.8 Using Buffer UPDATE Algorithm
This article explains the UPDATE statement's Using Buffer algorithm.

Take the following table and query:

Name Salary

Babatunde 1000

Jolana 1050

Pankaja 1300

UPDATE employees SET salary = salary+100 WHERE salary < 2000;

Suppose the employees table has an index on the salary column, and the optimizer decides to use a range scan on that

index.

The optimizer starts a range scan on the salary index. We find the first record Babatunde, 1000. If we do an on-the-fly

update, we immediately instruct the storage engine to change this record to be Babatunde, 1000+100=1100.

Then we proceed to search for the next record, and find Jolana, 1050. We instruct the storage engine to update it to be

Jolana, 1050+100=1150.

Then we proceed to search for the next record ... and what happens next depends on the storage engine. In some storage

engines, data changes are visible immediately, so we will find find the Babatunde, 1100 record that we wrote at the first

step, modifying it again, giving Babatunde an undeserved raise. Then we will see Babatunde again and again, looping

continually.

In order to prevent such situations, the optimizer checks whether the UPDATE statement is going to change key values for

the keys it is using. In that case, it will use a different algorithm:

1. Scan everyone with "salary<2000", remembering the rowids of the rows in a buffer.

2. Read the buffer and apply the updates.

This way, each row will be updated only once.

The Using buffer EXPLAIN output indicates that the buffer as described above will be used.

1.1.1.2.3 BACKUP Commands
Commands used by backup tools

BACKUP STAGE

Commands to be used by a MariaDB backup tool.

BACKUP LOCK

Blocks a table from DDL statements.

Mariabackup and BACKUP STAGE Commands

How Mariabackup could use BACKUP STAGE commands.

Storage Snapshots and BACKUP STAGE Commands

How storage snapshots could use BACKUP STAGE commands.

1.1.1.2.3.1 BACKUP STAGE

164/4161

The BACKUP STAGE commands were introduced in MariaDB 10.4.1.

Contents
1. Syntax

2. Goals with BACKUP STAGE Commands

3. BACKUP STAGE Commands

1. BACKUP STAGE START

2. BACKUP STAGE FLUSH

3. BACKUP STAGE BLOCK_DDL

4. BACKUP STAGE BLOCK_COMMIT

5. BACKUP STAGE END

4. Using BACKUP STAGE Commands with Backup Tools

1. Using BACKUP STAGE Commands with Mariabackup

2. Using BACKUP STAGE Commands with Storage Snapshots

5. Privileges

6. Notes

The BACKUP STAGE commands are a set of commands to make it possible to make an efficient external backup tool.

Syntax

BACKUP STAGE [START | FLUSH | BLOCK_DDL | BLOCK_COMMIT | END]

In the following text, a transactional table means InnoDB or "InnoDB-like engine with redo log that can lock redo purges and

can be copied without locks by an outside process".

Goals with BACKUP STAGE Commands
To be able to do a majority of the backup with the minimum possible server locks. Especially for transactional tables

(InnoDB, MyRocks etc) there is only need for a very short block of new commits while copying statistics and log

tables.

DDL are only needed to be blocked for a very short duration of the backup while mariabackup is copying the tables

affected by DDL during the initial part of the backup.

Most non transactional tables (those that are not in use) will be copied during BACKUP STAGE START . The

exceptions are system statistic and log tables that are not blocked during the backup until BLOCK_COMMIT .

Should work efficiently with backup tools that use disk snapshots.

Should work as efficiently as possible for all table types that store data on the local disks.

As little copying as possible under higher level stages/locks. For example, .frm (dictionary) and .trn (trigger) files

should be copying while copying the table data.

BACKUP STAGE Commands

BACKUP STAGE START

The START stage is designed for the following tasks:

Blocks purge of redo files for storage engines that needs this (Aria)

Start logging of DDL commands into 'datadir'/ddl.log. This may take a short time as the command has to wait until

there are no active DDL commands.

BACKUP STAGE FLUSH

The FLUSH stage is designed for the following tasks:

FLUSH all changes for inactive non-transactional tables, except for statistics and log tables.

Close all tables that are not in use, to ensure they are marked as closed for the backup.

BLOCK all new write locks for all non transactional tables (except statistics and log tables). The command will not

wait for tables that are in use by read-only transactions.

DDLs don't have to be blocked at this stage as they can't cause the table to be in an inconsistent state. This is true also for

non-transactional tables.

MariaDB starting with 10.4.1

165/4161

BACKUP STAGE BLOCK_DDL

The BLOCK_DDL stage is designed for the following tasks:

Wait for all statements using write locked non-transactional tables to end.

Blocks CREATE TABLE, DROP TABLE, TRUNCATE TABLE, and RENAME TABLE.

Blocks also start off a new ALTER TABLE and the final rename phase of ALTER TABLE. Running ALTER TABLES

are not blocked.

BACKUP STAGE BLOCK_COMMIT

The BLOCK_COMMIT stage is designed for the following tasks:

Lock the binary log and commit/rollback to ensure that no changes are committed to any tables. If there are active

commits or data to be copied to the binary log this will be allowed to finish. Active transactions will not affect

BLOCK_COMMIT .

This doesn't lock temporary tables that are not used by replication. However these will be blocked when it's time to

write to the binary log.

Lock system log tables and statistics tables, flush them and mark them closed.

When the BLOCK_COMMIT 's stages return, this is the 'backup time'. Everything committed will be in the backup and

everything not committed will roll back.

Transactional engines will continue to do changes to the redo log during the BLOCK COMMIT stage, but this is not important

as all of these will roll back later as the changes will not be committed.

BACKUP STAGE END

The END stage is designed for the following tasks:

End DDL logging

Free resources

Using BACKUP STAGE Commands with Backup Tools

Using BACKUP STAGE Commands with Mariabackup

The BACKUP STAGE commands are a set of commands to make it possible to make an efficient external backup tool. How

Mariabackup uses these commands depends on whether you are using the version that is bundled with MariaDB

Community Server or the version that is bundled with MariaDB Enterprise Server . See Mariabackup and BACKUP

STAGE Commands for some examples on how Mariabackup uses these commands.

If you would like to use a version of Mariabackup that uses the BACKUP STAGE commands in an efficient way, then

one option is to use MariaDB Enterprise Backup that is bundled with MariaDB Enterprise Server .

Using BACKUP STAGE Commands with Storage Snapshots

The BACKUP STAGE commands are a set of commands to make it possible to make an efficient external backup tool.

These commands could even be used by tools that perform backups by taking a snapshot of a file system, SAN, or some

other kind of storage device. See Storage Snapshots and BACKUP STAGE Commands for some examples on how to use

each BACKUP STAGE command in an efficient way.

Privileges
BACKUP STAGE requires the RELOAD privilege.

Notes
Only one connection can run BACKUP STAGE START . If a second connection tries, it will wait until the first one has

executed BACKUP STAGE END .

If the user skips a BACKUP STAGE , then all intermediate backup stages will automatically be run. This will allow us to

add new stages within the BACKUP STAGE hierarchy in the future with even more precise locks without causing

166/4161

https://mariadb.com/docs/products/mariadb-enterprise-server/
https://mariadb.com/docs/usage/mariadb-enterprise-backup/
https://mariadb.com/docs/products/mariadb-enterprise-server/

problems for tools using an earlier version of the BACKUP STAGE implementation.

One can use the max_statement_time or lock_wait_timeout system variables to ensure that a BACKUP STAGE

command doesn't block the server too long.

DDL logging will only be available in MariaDB Enterprise Server 10.2 and later.

A disconnect will automatically release backup stages.

There is no easy way to see which is the current stage.

1.1.1.2.3.2 BACKUP LOCK

The BACKUP LOCK command was introduced in MariaDB 10.4.2.

Contents
1. Syntax

2. Usage in a Backup Tool

3. Privileges

4. Notes

5. Implementation

BACKUP LOCK blocks a table from DDL statements. This is mainly intended to be used by tools like mariabackup that need

to ensure there are no DDLs on a table while the table files are opened. For example, for an Aria table that stores data in 3

files with extensions .frm, .MAI and .MAD. Normal read/write operations can continue as normal.

Syntax
To lock a table:

BACKUP LOCK table_name

To unlock a table:

BACKUP UNLOCK

Usage in a Backup Tool

BACKUP LOCK [database.]table_name;

 - Open all files related to a table (for example, t.frm, t.MAI and t.MYD)

BACKUP UNLOCK;

- Copy data

- Close files

This ensures that all files are from the same generation, that is created at the same time by the MariaDB server. This works,

because the open files will point to the original table files which will not be affected if there is any ALTER TABLE while

copying the files.

Privileges
BACKUP LOCK requires the RELOAD privilege.

Notes
The idea is that the BACKUP LOCK should be held for as short a time as possible by the backup tool. The time to take

an uncontested lock is very short! One can easily do 50,000 locks/unlocks per second on low end hardware.

One should use different connections for BACKUP STAGE commands and BACKUP LOCK .

Implementation
Internally, BACKUP LOCK is implemented by taking an MDLSHARED_HIGH_PRIO MDL lock on the table object, which

protects the table from any DDL operations.

MariaDB starting with 10.4.2

167/4161

https://mariadb.com/docs/products/mariadb-enterprise-server/

2.3.4.12 Mariabackup and BACKUP STAGE Commands

1.1.1.2.3.4 Storage Snapshots and BACKUP
STAGE Commands

The BACKUP STAGE commands were introduced in MariaDB 10.4.1.

Contents
1. Generic Backup Process with Storage Snapshots

The BACKUP STAGE commands are a set of commands to make it possible to make an efficient external backup tool.

These commands could even be used by tools that perform backups by taking a snapshot of a file system, SAN, or some

other kind of storage device.

Generic Backup Process with Storage Snapshots
A tool that backs up MariaDB by taking a snapshot of a file system, SAN, or some other kind of storage device could use

each BACKUP STAGE command in the following way:

First, execute the following:

BACKUP STAGE START

BACKUP STAGE BLOCK_COMMIT

Then, take the snapshot.

Then, execute the following:

BACKUP STAGE END

The above ensures that all non-transactional tables are properly flushed to disk before the snapshot is done. Using BACKUP

STAGE commands is also more efficient than using the FLUSH TABLES WITH READ LOCK command as the above set of

commands will not block or be blocked by write operations to transactional tables.

Note that when the backup is completed, one should delete all files with the "#sql" prefix, as these are files used by

concurrent running ALTER TABLE . Note that InnoDB will on server restart automatically delete any tables with the "#sql"

prefix.

MariaDB starting with 10.4.1

1.1.1.2.4 FLUSH Commands
Commands to reset (flush) various caches in MariaDB.

FLUSH

Clear or reload various internal caches.

FLUSH QUERY CACHE

Defragmenting the query cache

FLUSH TABLES FOR EXPORT

Flushes changes to disk for specific tables.

There are 2 related questions .

1.1.1.2.4.1 FLUSH

Syntax

168/4161

https://mariadb.com/kb/en/flush-commands/+questions/

FLUSH [NO_WRITE_TO_BINLOG | LOCAL]

 flush_option [, flush_option] ...

or when flushing tables:

FLUSH [NO_WRITE_TO_BINLOG | LOCAL] TABLES [table_list] [table_flush_option]

Contents
1. Syntax

2. Description

3. FLUSH RELAY LOGS

1. Compatibility with MySQL

4. FLUSH STATUS

1. Global Status Variables that Support FLUSH STATUS

5. The different usage of FLUSH TABLES

1. Purpose of FLUSH TABLES

2. Purpose of FLUSH TABLES WITH READ LOCK

3. Purpose of FLUSH TABLES table_list

4. Purpose of FLUSH TABLES table_list WITH READ LOCK

6. Implementation of FLUSH TABLES commands from MariaDB 10.4.8

1. Implementation of FLUSH TABLES

2. Implementation of FLUSH TABLES WITH READ LOCK

3. Implementation of FLUSH TABLES table_list

4. Implementation of FLUSH TABLES table_list FOR EXPORT

7. FLUSH SSL

8. Reducing Memory Usage

where table_list is a list of tables separated by , (comma).

Description
The FLUSH statement clears or reloads various internal caches used by MariaDB. To execute FLUSH , you must have the

RELOAD privilege. See GRANT.

The RESET statement is similar to FLUSH . See RESET.

You cannot issue a FLUSH statement from within a stored function or a trigger. Doing so within a stored procedure is

permitted, as long as it is not called by a stored function or trigger. See Stored Routine Limitations, Stored Function

Limitations and Trigger Limitations.

If a listed table is a view, an error like the following will be produced:

ERROR 1347 (HY000): 'test.v' is not BASE TABLE

By default, FLUSH statements are written to the binary log and will be replicated. The NO_WRITE_TO_BINLOG keyword

(LOCAL is an alias) will ensure the statement is not written to the binary log.

The different flush options are:

Option Description

CHANGED_PAGE_BITMAPS
XtraDB only. Internal command used for backup purposes. See the Information Schema

CHANGED_PAGE_BITMAPS Table .

CLIENT_STATISTICS Reset client statistics (see SHOW CLIENT_STATISTICS).

DES_KEY_FILE
Reloads the DES key file (Specified with the --des-key-file startup option).

HOSTS
Flush the hostname cache (used for converting ip to host names and for unblocking blocked

hosts. See max_connect_errors and performance_schema.host_cache

169/4161

https://mariadb.com/kb/en/about-xtradb/
https://mariadb.com/kb/en/information-schema-changed_page_bitmaps-table/

INDEX_STATISTICS Reset index statistics (see SHOW INDEX_STATISTICS).

[ERROR | ENGINE |

GENERAL | SLOW | BINARY |

RELAY] LOGS

Close and reopen the specified log type, or all log types if none are specified. FLUSH RELAY

LOGS [connection-name] can be used to flush the relay logs for a specific connection. Only

one connection can be specified per FLUSH command. See Multi-source replication. FLUSH

ENGINE LOGS will delete all unneeded Aria redo logs. FLUSH BINARY LOGS

DELETE_DOMAIN_ID=(list-of-domains) can be used to discard obsolete GTID domains

from the server's binary log state. In order for this to be successful, no event group from the

listed GTID domains can be present in existing binary log files. If some still exist, then they

must be purged prior to executing this command. If the command completes successfully,

then it also rotates the binary log.

MASTER Deprecated option, use RESET MASTER instead.

PRIVILEGES
Reload all privileges from the privilege tables in the mysql database. If the server is started

with --skip-grant-table option, this will activate the privilege tables again.

QUERY CACHE
Defragment the query cache to better utilize its memory. If you want to reset the query cache,

you can do it with RESET QUERY CACHE.

QUERY_RESPONSE_TIME See the QUERY_RESPONSE_TIME plugin.

SLAVE Deprecated option, use RESET REPLICA or RESET SLAVE instead.

SSL
Used to dynamically reinitialize the server's TLS context by reloading the files defined by

several TLS system variables. See FLUSH SSL for more information.

STATUS Resets all server status variables that can be reset to 0. Not all global status variables

support this, so not all global values are reset. See FLUSH STATUS for more information.

TABLE

Close tables given as options or all open tables if no table list was used. From MariaDB

10.4.1, using without any table list will only close tables not in use, and tables not locked by

the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant

and will not cause any waits, as it no longer waits for tables in use. When a table list is

provided, from MariaDB 10.4.1, the server will wait for the end of any transactions that are

using the tables. Previously, FLUSH TABLES only waited for the statements to complete.

TABLES Same as FLUSH TABLE .

TABLES ... FOR

EXPORT

For InnoDB tables, flushes table changes to disk to permit binary table copies while the

server is running. See FLUSH TABLES ... FOR EXPORT for more.

TABLES WITH READ

LOCK

Closes all open tables. New tables are only allowed to be opened with read locks until an

UNLOCK TABLES is given.

TABLES WITH READ

LOCK AND DISABLE

CHECKPOINT

As TABLES WITH READ LOCK but also disable all checkpoint writes by transactional table

engines. This is useful when doing a disk snapshot of all tables.

TABLE_STATISTICS Reset table statistics (see SHOW TABLE_STATISTICS).

USER_RESOURCES
Resets all per hour user resources. This enables clients that have exhausted their resources

to connect again.

USER_STATISTICS Reset user statistics (see SHOW USER_STATISTICS).

USER_VARIABLES Reset user variables (see User-defined variables).

You can also use the mariadb-admin client to flush things. Use mariadb-admin --help to examine what flush commands

it supports.

FLUSH RELAY LOGS

FLUSH RELAY LOGS 'connection_name';

Compatibility with MySQL

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical to using the channel_name directly

after the FLUSH command .

For example, one can now use:

MariaDB starting with 10.7.0

170/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/

FLUSH RELAY LOGS FOR CHANNEL 'connection_name';

FLUSH STATUS
Server status variables can be reset by executing the following:

FLUSH STATUS;

Global Status Variables that Support FLUSH STATUS

Not all global status variables support being reset by FLUSH STATUS . Currently, the following status variables are reset by

FLUSH STATUS :

Aborted_clients

Aborted_connects

Binlog_cache_disk_use

Binlog_cache_use

Binlog_stmt_cache_disk_use

Binlog_stmt_cache_use

Connection_errors_accept

Connection_errors_internal

Connection_errors_max_connections

Connection_errors_peer_address

Connection_errors_select

Connection_errors_tcpwrap

Created_tmp_files

Delayed_errors

Delayed_writes

Feature_check_constraint

Feature_delay_key_write

Max_used_connection_time

Max_used_connections

Opened_plugin_libraries

Performance_schema_accounts_lost

Performance_schema_cond_instances_lost

Performance_schema_digest_lost

Performance_schema_file_handles_lost

Performance_schema_file_instances_lost

Performance_schema_hosts_lost

Performance_schema_locker_lost

Performance_schema_mutex_instances_lost

Performance_schema_rwlock_instances_lost

Performance_schema_session_connect_attrs_lost

Performance_schema_socket_instances_lost

Performance_schema_stage_classes_lost

Performance_schema_statement_classes_lost

Performance_schema_table_handles_lost

Performance_schema_table_instances_lost

Performance_schema_thread_instances_lost

Performance_schema_users_lost

Qcache_hits

Qcache_inserts

Qcache_lowmem_prunes

Qcache_not_cached

Rpl_semi_sync_master_no_times

Rpl_semi_sync_master_no_tx

Rpl_semi_sync_master_timefunc_failures

Rpl_semi_sync_master_wait_pos_backtraverse

Rpl_semi_sync_master_yes_tx

Rpl_transactions_multi_engine

Server_audit_writes_failed

Slave_retried_transactions

Slow_launch_threads

171/4161

Ssl_accept_renegotiates

Ssl_accepts

Ssl_callback_cache_hits

Ssl_client_connects

Ssl_connect_renegotiates

Ssl_ctx_verify_depth

Ssl_ctx_verify_mode

Ssl_finished_accepts

Ssl_finished_connects

Ssl_session_cache_hits

Ssl_session_cache_misses

Ssl_session_cache_overflows

Ssl_session_cache_size

Ssl_session_cache_timeouts

Ssl_sessions_reused

Ssl_used_session_cache_entries

Subquery_cache_hit

Subquery_cache_miss

Table_locks_immediate

Table_locks_waited

Tc_log_max_pages_used

Tc_log_page_waits

Transactions_gtid_foreign_engine

Transactions_multi_engine

The different usage of FLUSH TABLES

Purpose of FLUSH TABLES

The purpose of FLUSH TABLES is to clean up the open table cache and table definition cache from not in use tables. This

frees up memory and file descriptors. Normally this is not needed as the caches works on a FIFO bases, but can be useful if

the server seams to use up to much memory for some reason.

Purpose of FLUSH TABLES WITH READ LOCK

FLUSH TABLES WITH READ LOCK is useful if you want to take a backup of some tables. When FLUSH TABLES WITH

READ LOCK returns, all write access to tables are blocked and all tables are marked as 'properly closed' on disk. The tables

can still be used for read operations.

Purpose of FLUSH TABLES table_list

FLUSH TABLES table_list is useful if you want to copy a table object/files to or from the server. This command puts a lock

that stops new users of the table and will wait until everyone has stopped using the table. The table is then removed from

the table definition and table cache.

Note that it's up to the user to ensure that no one is accessing the table between FLUSH TABLES and the table is copied to

or from the server. This can be secured by using LOCK TABLES.

If there are any tables locked by the connection that is using FLUSH TABLES all the locked tables will be closed as part of

the flush and reopened and relocked before FLUSH TABLES returns. This allows one to copy the table after FLUSH

TABLES returns without having any writes on the table. For now this works works with most tables, except InnoDB as

InnoDB may do background purges on the table even while it's write locked.

Purpose of FLUSH TABLES table_list WITH READ LOCK

FLUSH TABLES table_list WITH READ LOCK should work as FLUSH TABLES WITH READ LOCK , but only those tables

that are listed will be properly closed. However in practice this works exactly like FLUSH TABLES WITH READ LOCK as the

FLUSH command has anyway to wait for all WRITE operations to end because we are depending on a global read lock for

this code. In the future we should consider fixing this to instead use meta data locks.

Implementation of FLUSH TABLES commands from
MariaDB 10.4.8

172/4161

Implementation of FLUSH TABLES

Free memory and file descriptors not in use

Implementation of FLUSH TABLES WITH READ LOCK

Lock all tables read only for simple old style backup.

All background writes are suspended and tables are marked as closed.

No statement requiring table changes are allowed for any user until UNLOCK TABLES .

Instead of using FLUSH TABLE WITH READ LOCK one should in most cases instead use BACKUP STAGE

BLOCK_COMMIT.

Implementation of FLUSH TABLES table_list

Free memory and file descriptors for tables not in use from table list.

Lock given tables as read only.

Wait until all translations has ended that uses any of the given tables.

Wait until all background writes are suspended and tables are marked as closed.

Implementation of FLUSH TABLES table_list FOR EXPORT

Free memory and file descriptors for tables not in use from table list

Lock given tables as read.

Wait until all background writes are suspended and tables are marked as closed.

Check that all tables supports FOR EXPORT

No changes to these tables allowed until UNLOCK TABLES

This is basically the same behavior as in old MariaDB version if one first lock the tables, then do FLUSH TABLES . The

tables will be copyable until UNLOCK TABLES .

FLUSH SSL
In MariaDB 10.4 and later, the FLUSH SSL command can be used to dynamically reinitialize the server's TLS context. This

is most useful if you need to replace a certificate that is about to expire without restarting the server.

This operation is performed by reloading the files defined by the following TLS system variables:

ssl_cert

ssl_key

ssl_ca

ssl_capath

ssl_crl

ssl_crlpath

These TLS system variables are not dynamic, so their values can not be changed without restarting the server.

If you want to dynamically reinitialize the server's TLS context, then you need to change the certificate and key files at the

relevant paths defined by these TLS system variables, without actually changing the values of the variables. See MDEV-

19341 for more information.

Reducing Memory Usage
To flush some of the global caches that take up memory, you could execute the following command:

FLUSH LOCAL HOSTS,

 QUERY CACHE,

 TABLE_STATISTICS,

 INDEX_STATISTICS,

 USER_STATISTICS;

1.1.1.2.4.2 FLUSH QUERY CACHE

Description
173/4161

https://jira.mariadb.org/browse/MDEV-19341

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE statement. The statement

does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH TABLES statement

also does this.

1.1.1.2.4.3 FLUSH TABLES FOR EXPORT

Syntax

FLUSH TABLES table_name [, table_name] FOR EXPORT

Contents
1. Syntax

2. Description

3. Example

Description
FLUSH TABLES ... FOR EXPORT flushes changes to the specified tables to disk so that binary copies can be made while

the server is still running. This works for Archive, Aria, CSV, InnoDB, MyISAM and MERGE tables.

The table is read locked until one has issued UNLOCK TABLES.

If a storage engine does not support FLUSH TABLES FOR EXPORT , a 1031 error (SQLSTATE 'HY000') is produced.

If FLUSH TABLES ... FOR EXPORT is in effect in the session, the following statements will produce an error if attempted:

FLUSH TABLES WITH READ LOCK

FLUSH TABLES ... WITH READ LOCK

FLUSH TABLES ... FOR EXPORT

Any statement trying to update any table

If any of the following statements is in effect in the session, attempting FLUSH TABLES ... FOR EXPORT will produce an

error.

FLUSH TABLES ... WITH READ LOCK

FLUSH TABLES ... FOR EXPORT

LOCK TABLES ... READ

LOCK TABLES ... WRITE

FLUSH FOR EXPORT is not written to the binary log.

This statement requires the RELOAD and the LOCK TABLES privileges.

If one of the specified tables cannot be locked, none of the tables will be locked.

If a table does not exist, an error like the following will be produced:

ERROR 1146 (42S02): Table 'test.xxx' doesn't exist

If a table is a view, an error like the following will be produced:

ERROR 1347 (HY000): 'test.v' is not BASE TABLE

Example

FLUSH TABLES test.t1 FOR EXPORT;

Copy files related to the table (see below)

UNLOCK TABLES;

For a full description, please see copying MariaDB tables.

1.1.1.2.5 Replication Commands
174/4161

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

A list of replication-related commands. See replication for more replication-related information.

CHANGE MASTER TO

Set or change replica parameters for connecting to the primary.

START SLAVE

Start replica threads.

STOP SLAVE

Stop replica threads.

RESET REPLICA/SLAVE

Forget replica connection information and start a new relay log file.

SET GLOBAL SQL_SLAVE_SKIP_COUNTER

Skips a number of events from the primary.

SHOW RELAYLOG EVENTS

Show events in the relay log.

SHOW SLAVE STATUS

Show status for one or all primaries.

SHOW MASTER STATUS

Status information about the binary log.

SHOW SLAVE HOSTS

Display replicas currently registered with the primary.

RESET MASTER

Delete binary log files.

1

1

1

1.1.1.2.5.1 CHANGE MASTER TO

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Syntax

175/4161

https://jira.mariadb.org/browse/MDEV-18777
https://jira.mariadb.org/browse/MDEV-18777

CHANGE MASTER ['connection_name'] TO master_def [, master_def] ...

 [FOR CHANNEL 'channel_name']

master_def:

 MASTER_BIND = 'interface_name'

 | MASTER_HOST = 'host_name'

 | MASTER_USER = 'user_name'

 | MASTER_PASSWORD = 'password'

 | MASTER_PORT = port_num

 | MASTER_CONNECT_RETRY = interval

 | MASTER_HEARTBEAT_PERIOD = interval

 | MASTER_LOG_FILE = 'master_log_name'

 | MASTER_LOG_POS = master_log_pos

 | RELAY_LOG_FILE = 'relay_log_name'

 | RELAY_LOG_POS = relay_log_pos

 | MASTER_DELAY = interval

 | MASTER_SSL = {0|1}

 | MASTER_SSL_CA = 'ca_file_name'

 | MASTER_SSL_CAPATH = 'ca_directory_name'

 | MASTER_SSL_CERT = 'cert_file_name'

 | MASTER_SSL_CRL = 'crl_file_name'

 | MASTER_SSL_CRLPATH = 'crl_directory_name'

 | MASTER_SSL_KEY = 'key_file_name'

 | MASTER_SSL_CIPHER = 'cipher_list'

 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}

 | MASTER_USE_GTID = {current_pos|slave_pos|no}

 | MASTER_DEMOTE_TO_SLAVE = bool

 | IGNORE_SERVER_IDS = (server_id_list)

 | DO_DOMAIN_IDS = ([N,..])

 | IGNORE_DOMAIN_IDS = ([N,..])

176/4161

Contents
1. Syntax

2. Description

3. Multi-Source Replication

1. default_master_connection

2. connection_name

4. Options

1. Connection Options

1. MASTER_USER

2. MASTER_PASSWORD

3. MASTER_HOST

4. MASTER_PORT

5. MASTER_CONNECT_RETRY

6. MASTER_BIND

7. MASTER_HEARTBEAT_PERIOD

2. TLS Options

1. MASTER_SSL

2. MASTER_SSL_CA

3. MASTER_SSL_CAPATH

4. MASTER_SSL_CERT

5. MASTER_SSL_CRL

6. MASTER_SSL_CRLPATH

7. MASTER_SSL_KEY

8. MASTER_SSL_CIPHER

9. MASTER_SSL_VERIFY_SERVER_CERT

3. Binary Log Options

1. MASTER_LOG_FILE

2. MASTER_LOG_POS

4. Relay Log Options

1. RELAY_LOG_FILE

2. RELAY_LOG_POS

5. GTID Options

1. MASTER_USE_GTID

2. MASTER_DEMOTE_TO_SLAVE

6. Replication Filter Options

1. IGNORE_SERVER_IDS

2. DO_DOMAIN_IDS

3. IGNORE_DOMAIN_IDS

7. Delayed Replication Options

1. MASTER_DELAY

5. Changing Option Values

6. Option Persistence

7. GTID Persistence

8. Creating a Replica from a Backup

9. Example

Description
CHANGE MASTER is used to setup or change replication from another server (called master or primary) to the current server

(called slave or replica).

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical to using the channel_name directly

after CHANGE MASTER .

Multi-Source Replication
If you are using multi-source replication, then you need to specify a connection name when you execute CHANGE MASTER .

There are two ways to do this:

Setting the default_master_connection system variable prior to executing CHANGE MASTER .

Setting the connection_name parameter when executing CHANGE MASTER .

default_master_connection

MariaDB starting with 10.7.0

177/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/

SET default_master_connection = 'gandalf';

STOP SLAVE;

CHANGE MASTER TO

 MASTER_PASSWORD='new3cret';

START SLAVE;

connection_name

STOP SLAVE 'gandalf';

CHANGE MASTER 'gandalf' TO

 MASTER_PASSWORD='new3cret';

START SLAVE 'gandalf';

Options

Connection Options

MASTER_USER

The MASTER_USER option for CHANGE MASTER defines the user account that the replica will use to connect to the primary.

This user account will need the REPLICATION SLAVE privilege (or, from MariaDB 10.5.1, the REPLICATION REPLICA on

the primary.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_USER='repl',

 MASTER_PASSWORD='new3cret';

START SLAVE;

The maximum length of the MASTER_USER string is 96 characters until MariaDB 10.5, and 128 characters from MariaDB

10.6.

MASTER_PASSWORD

The MASTER_PASSWORD option for CHANGE MASTER defines the password that the replica will use to connect to the primary

as the user account defined by the MASTER_USER option.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_PASSWORD='new3cret';

START SLAVE;

The maximum length of the MASTER_PASSWORD string is 32 characters. The effective maximum length of the string

depends on how many bytes are used per character and can be up to 96 characters.

Due to MDEV-29994 , the password can be silently truncated to 41 characters when MariaDB is restarted. For this

reason it is recommended to use a password that is shorter than this.

MASTER_HOST

The MASTER_HOST option for CHANGE MASTER defines the hostname or IP address of the primary.

If you set the value of the MASTER_HOST option to the empty string, then that is not the same as not setting the option's

value at all. If you set the value of the MASTER_HOST option to the empty string, then the CHANGE MASTER command will

fail with an error. In MariaDB 5.3 and before, if you set the value of the MASTER_HOST option to the empty string, then the

CHANGE MASTER command would succeed, but the subsequent START SLAVE command would fail.

For example:

178/4161

https://jira.mariadb.org/browse/MDEV-29994

STOP SLAVE;

CHANGE MASTER TO

 MASTER_HOST='dbserver1.example.com',

 MASTER_USER='repl',

 MASTER_PASSWORD='new3cret',

 MASTER_USE_GTID=slave_pos;

START SLAVE;

If you set the value of the MASTER_HOST option in a CHANGE MASTER command, then the replica assumes that the

primary is different from before, even if you set the value of this option to the same value it had previously. In this

scenario, the replica will consider the old values for the primary's binary log file name and position to be invalid for the

new primary. As a side effect, if you do not explicitly set the values of the MASTER_LOG_FILE and

MASTER_LOG_POS options in the statement, then the statement will be implicitly appended with

MASTER_LOG_FILE='' and MASTER_LOG_POS=4 . However, if you enable GTID mode for replication by setting the

MASTER_USE_GTID option to some value other than no in the statement, then these values will effectively be

ignored anyway.

Replicas cannot connect to primaries using Unix socket files or Windows named pipes. The replica must connect to the

primary using TCP/IP.

The maximum length of the MASTER_HOST string is 60 characters until MariaDB 10.5, and 255 characters from MariaDB

10.6.

MASTER_PORT

The MASTER_PORT option for CHANGE MASTER defines the TCP/IP port of the primary.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_HOST='dbserver1.example.com',

 MASTER_PORT=3307,

 MASTER_USER='repl',

 MASTER_PASSWORD='new3cret',

 MASTER_USE_GTID=slave_pos;

START SLAVE;

If you set the value of the MASTER_PORT option in a CHANGE MASTER command, then the replica assumes that the

primary is different from before, even if you set the value of this option to the same value it had previously. In this

scenario, the replica will consider the old values for the primary's binary log file name and position to be invalid for the

new primary. As a side effect, if you do not explicitly set the values of the MASTER_LOG_FILE and

MASTER_LOG_POS options in the statement, then the statement will be implicitly appended with

MASTER_LOG_FILE='' and MASTER_LOG_POS=4 . However, if you enable GTID mode for replication by setting the

MASTER_USE_GTID option to some value other than no in the statement, then these values will effectively be

ignored anyway.

Replicas cannot connect to primaries using Unix socket files or Windows named pipes. The replica must connect to the

primary using TCP/IP.

MASTER_CONNECT_RETRY

The MASTER_CONNECT_RETRY option for CHANGE MASTER defines how many seconds that the replica will wait between

connection retries. The default is 60 .

STOP SLAVE;

CHANGE MASTER TO

 MASTER_CONNECT_RETRY=20;

START SLAVE;

179/4161

The number of connection attempts is limited by the master_retry_count option. It can be set either on the command-line or

in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

master_retry_count=4294967295

MASTER_BIND

The MASTER_BIND option for CHANGE MASTER is only supported by MySQL 5.6.2 and later and by MySQL NDB

Cluster 7.3.1 and later. This option is not supported by MariaDB. See MDEV-19248 for more information.

MASTER_HEARTBEAT_PERIOD

The MASTER_HEARTBEAT_PERIOD option for CHANGE MASTER can be used to set the interval in seconds between

replication heartbeats. Whenever the primary's binary log is updated with an event, the waiting period for the next heartbeat

is reset.

This option's interval argument has the following characteristics:

It is a decimal value with a range of 0 to 4294967 seconds.

It has a resolution of hundredths of a second.

Its smallest valid non-zero value is 0.001 .

Its default value is the value of the slave_net_timeout system variable divided by 2.

If it's set to 0 , then heartbeats are disabled.

Heartbeats are sent by the primary only if there are no unsent events in the binary log file for a period longer than the

interval.

If the RESET SLAVE statement is executed, then the heartbeat interval is reset to the default.

If the slave_net_timeout system variable is set to a value that is lower than the current heartbeat interval, then a

warning will be issued.

TLS Options

The TLS options are used for providing information about TLS. The options can be set even on replicas that are compiled

without TLS support. The TLS options are saved to either the default master.info file or the file that is configured by the

master_info_file option, but these TLS options are ignored unless the replica supports TLS.

See Replication with Secure Connections for more information.

MASTER_SSL

The MASTER_SSL option for CHANGE MASTER tells the replica whether to force TLS for the connection. The valid values

are 0 or 1 . Required to be set to 1 for the other MASTER_SSL* options to have any effect.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL=1;

START SLAVE;

MASTER_SSL_CA

The MASTER_SSL_CA option for CHANGE MASTER defines a path to a PEM file that should contain one or more X509

certificates for trusted Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute path, not a

relative path.

For example:

180/4161

https://jira.mariadb.org/browse/MDEV-19248

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

START SLAVE;

See Secure Connections Overview: Certificate Authorities (CAs) for more information.

The maximum length of MASTER_SSL_CA string is 511 characters.

MASTER_SSL_CAPATH

The MASTER_SSL_CAPATH option for CHANGE MASTER defines a path to a directory that contains one or more PEM files

that should each contain one X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option requires that

you use the absolute path, not a relative path. The directory specified by this option needs to be run through the openssl

rehash command.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CAPATH='/etc/my.cnf.d/certificates/ca/',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

START SLAVE;

See Secure Connections Overview: Certificate Authorities (CAs) for more information.

The maximum length of MASTER_SSL_CA_PATH string is 511 characters.

MASTER_SSL_CERT

The MASTER_SSL_CERT option for CHANGE MASTER defines a path to the X509 certificate file to use for TLS. This option

requires that you use the absolute path, not a relative path.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

START SLAVE;

The maximum length of MASTER_SSL_CERT string is 511 characters.

MASTER_SSL_CRL

The MASTER_SSL_CRL option for CHANGE MASTER defines a path to a PEM file that should contain one or more revoked

X509 certificates to use for TLS. This option requires that you use the absolute path, not a relative path.

This option is only supported if the server was built with OpenSSL. If the server was built with yaSSL, then this option is not

supported. See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1,

 MASTER_SSL_CRL='/etc/my.cnf.d/certificates/crl.pem';

START SLAVE;

181/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

The maximum length of MASTER_SSL_CRL string is 511 characters.

MASTER_SSL_CRLPATH

The MASTER_SSL_CRLPATH option for CHANGE MASTER defines a path to a directory that contains one or more PEM files

that should each contain one revoked X509 certificate to use for TLS. This option requires that you use the absolute path,

not a relative path. The directory specified by this variable needs to be run through the openssl rehash command.

This option is only supported if the server was built with OpenSSL. If the server was built with yaSSL, then this option is not

supported. See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1,

 MASTER_SSL_CRLPATH='/etc/my.cnf.d/certificates/crl/';

START SLAVE;

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

The maximum length of MASTER_SSL_CRL_PATH string is 511 characters.

MASTER_SSL_KEY

The MASTER_SSL_KEY option for CHANGE MASTER defines a path to a private key file to use for TLS. This option requires

that you use the absolute path, not a relative path.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

START SLAVE;

The maximum length of MASTER_SSL_KEY string is 511 characters.

MASTER_SSL_CIPHER

The MASTER_SSL_CIPHER option for CHANGE MASTER defines the list of permitted ciphers or cipher suites to use for TLS.

Besides cipher names, if MariaDB was compiled with OpenSSL, this option could be set to "SSLv3" or "TLSv1.2" to allow all

SSLv3 or all TLSv1.2 ciphers. Note that the TLSv1.3 ciphers cannot be excluded when using OpenSSL, even by using this

option. See Using TLSv1.3 for details.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1,

 MASTER_SSL_CIPHER='TLSv1.2';

START SLAVE;

The maximum length of MASTER_SSL_CIPHER string is 511 characters.

MASTER_SSL_VERIFY_SERVER_CERT

The MASTER_SSL_VERIFY_SERVER_CERT option for CHANGE MASTER enables server certificate verification. This option is

disabled by default prior to MariaDB 11.3.0, and enabled by default from MariaDB 11.3.0.

182/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_SSL_CERT='/etc/my.cnf.d/certificates/server-cert.pem',

 MASTER_SSL_KEY='/etc/my.cnf.d/certificates/server-key.pem',

 MASTER_SSL_CA='/etc/my.cnf.d/certificates/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

START SLAVE;

See Secure Connections Overview: Server Certificate Verification for more information.

Binary Log Options

These options are related to the binary log position on the primary.

MASTER_LOG_FILE

The MASTER_LOG_FILE option for CHANGE MASTER can be used along with MASTER_LOG_POS to specify the coordinates

at which the replica's I/O thread should begin reading from the primary's binary logs the next time the thread starts.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_LOG_FILE='master2-bin.001',

 MASTER_LOG_POS=4;

START SLAVE;

The MASTER_LOG_FILE and MASTER_LOG_POS options cannot be specified if the RELAY_LOG_FILE and

RELAY_LOG_POS options were also specified.

The MASTER_LOG_FILE and MASTER_LOG_POS options are effectively ignored if you enable GTID mode for

replication by setting the MASTER_USE_GTID option to some value other than no in the statement.

MASTER_LOG_POS

The MASTER_LOG_POS option for CHANGE MASTER can be used along with MASTER_LOG_FILE to specify the coordinates

at which the replica's I/O thread should begin reading from the primary's binary logs the next time the thread starts.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_LOG_FILE='master2-bin.001',

 MASTER_LOG_POS=4;

START SLAVE;

The MASTER_LOG_FILE and MASTER_LOG_POS options cannot be specified if the RELAY_LOG_FILE and

RELAY_LOG_POS options were also specified.

The MASTER_LOG_FILE and MASTER_LOG_POS options are effectively ignored if you enable GTID mode for

replication by setting the MASTER_USE_GTID option to some value other than no in the statement.

Relay Log Options

These options are related to the relay log position on the replica.

RELAY_LOG_FILE

183/4161

The RELAY_LOG_FILE option for CHANGE MASTER can be used along with the RELAY_LOG_POS option to specify the

coordinates at which the replica's SQL thread should begin reading from the relay log the next time the thread starts.

The CHANGE MASTER statement usually deletes all relay log files. However, if the RELAY_LOG_FILE and/or

RELAY_LOG_POS options are specified, then existing relay log files are kept.

When you want to change the relay log position, you only need to stop the replica's SQL thread. The replica's I/O thread

can continue running. The STOP SLAVE and START SLAVE statements support the SQL_THREAD option for this scenario.

For example:

STOP SLAVE SQL_THREAD;

CHANGE MASTER TO

 RELAY_LOG_FILE='slave-relay-bin.006',

 RELAY_LOG_POS=4025;

START SLAVE SQL_THREAD;

When the value of this option is changed, the metadata about the replica's SQL thread's position in the relay logs will also

be changed in the relay-log.info file or the file that is configured by the relay_log_info_file system variable.

The RELAY_LOG_FILE and RELAY_LOG_POS options cannot be specified if the MASTER_LOG_FILE and

MASTER_LOG_POS options were also specified.

RELAY_LOG_POS

The RELAY_LOG_POS option for CHANGE MASTER can be used along with the RELAY_LOG_FILE option to specify the

coordinates at which the replica's SQL thread should begin reading from the relay log the next time the thread starts.

The CHANGE MASTER statement usually deletes all relay log files. However, if the RELAY_LOG_FILE and/or

RELAY_LOG_POS options are specified, then existing relay log files are kept.

When you want to change the relay log position, you only need to stop the replica's SQL thread. The replica's I/O thread

can continue running. The STOP SLAVE and START SLAVE statements support the SQL_THREAD option for this scenario.

For example:

STOP SLAVE SQL_THREAD;

CHANGE MASTER TO

 RELAY_LOG_FILE='slave-relay-bin.006',

 RELAY_LOG_POS=4025;

START SLAVE SQL_THREAD;

When the value of this option is changed, the metadata about the replica's SQL thread's position in the relay logs will also

be changed in the relay-log.info file or the file that is configured by the relay_log_info_file system variable.

The RELAY_LOG_FILE and RELAY_LOG_POS options cannot be specified if the MASTER_LOG_FILE and

MASTER_LOG_POS options were also specified.

GTID Options

MASTER_USE_GTID

The MASTER_USE_GTID option for CHANGE MASTER can be used to configure the replica to use the global transaction ID

(GTID) when connecting to a primary. The possible values are:

current_pos - Replicate in GTID mode and use gtid_current_pos as the position to start downloading transactions

from the primary. Deprecated from MariaDB 10.10. Using to transition to primary can break the replication state if the

replica executes local transactions due to actively updating gtid_current_pos with gtid_binlog_pos and

gtid_slave_pos. Use the new, safe, MASTER_DEMOTE_TO_SLAVE=<bool> option instead.

slave_pos - Replicate in GTID mode and use gtid_slave_pos as the position to start downloading transactions from

the primary. From MariaDB 10.5.1, replica_pos is an alias for slave_pos .

no - Don't replicate in GTID mode.

For example:

184/4161

STOP SLAVE;

CHANGE MASTER TO

 MASTER_USE_GTID = current_pos;

START SLAVE;

Or:

STOP SLAVE;

SET GLOBAL gtid_slave_pos='0-1-153';

CHANGE MASTER TO

 MASTER_USE_GTID = slave_pos;

START SLAVE;

MASTER_DEMOTE_TO_SLAVE

Used to transition a primary to become a replica. Replaces the old MASTER_USE_GTID=current_pos with a safe

alternative by forcing users to set Using_Gtid=Slave_Pos and merging gtid_binlog_pos into gtid_slave_pos

once at CHANGE MASTER TO time. If gtid_slave_pos is more recent than gtid_binlog_pos (as in the case of

chain replication), the replication state should be preserved.

For example:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_DEMOTE_TO_SLAVE = 1;

START SLAVE;

Replication Filter Options

Also see Replication filters.

IGNORE_SERVER_IDS

The IGNORE_SERVER_IDS option for CHANGE MASTER can be used to configure a replica to ignore binary log events that

originated from certain servers. Filtered binary log events will not get logged to the replica9s relay log, and they will not be

applied by the replica.

The option's value can be specified by providing a comma-separated list of server_id values. For example:

STOP SLAVE;

CHANGE MASTER TO

 IGNORE_SERVER_IDS = (3,5);

START SLAVE;

If you would like to clear a previously set list, then you can set the value to an empty list. For example:

STOP SLAVE;

CHANGE MASTER TO

 IGNORE_SERVER_IDS = ();

START SLAVE;

DO_DOMAIN_IDS

The DO_DOMAIN_IDS option for CHANGE MASTER can be used to configure a replica to only apply binary log events if the

transaction's GTID is in a specific gtid_domain_id value. Filtered binary log events will not get logged to the replica9s relay

log, and they will not be applied by the replica.

The option's value can be specified by providing a comma-separated list of gtid_domain_id values. Duplicate values are

automatically ignored. For example:

STOP SLAVE;

CHANGE MASTER TO

 DO_DOMAIN_IDS = (1,2);

START SLAVE;

MariaDB starting with 10.10

185/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log

If you would like to clear a previously set list, then you can set the value to an empty list. For example:

STOP SLAVE;

CHANGE MASTER TO

 DO_DOMAIN_IDS = ();

START SLAVE;

The DO_DOMAIN_IDS option and the IGNORE_DOMAIN_IDS option cannot both be set to non-empty values at the

same time. If you want to set the DO_DOMAIN_IDS option, and the IGNORE_DOMAIN_IDS option was previously set,

then you need to clear the value of the IGNORE_DOMAIN_IDS option. For example:

STOP SLAVE;

CHANGE MASTER TO

 IGNORE_DOMAIN_IDS = (),

 DO_DOMAIN_IDS = (1,2);

START SLAVE;

The DO_DOMAIN_IDS option can only be specified if the replica is replicating in GTID mode. Therefore, the

MASTER_USE_GTID option must also be set to some value other than no in order to use this option.

IGNORE_DOMAIN_IDS

The IGNORE_DOMAIN_IDS option for CHANGE MASTER can be used to configure a replica to ignore binary log events if the

transaction's GTID is in a specific gtid_domain_id value. Filtered binary log events will not get logged to the replica9s relay

log, and they will not be applied by the replica.

The option's value can be specified by providing a comma-separated list of gtid_domain_id values. Duplicate values are

automatically ignored. For example:

STOP SLAVE;

CHANGE MASTER TO

 IGNORE_DOMAIN_IDS = (1,2);

START SLAVE;

If you would like to clear a previously set list, then you can set the value to an empty list. For example:

STOP SLAVE;

CHANGE MASTER TO

 IGNORE_DOMAIN_IDS = ();

START SLAVE;

The DO_DOMAIN_IDS option and the IGNORE_DOMAIN_IDS option cannot both be set to non-empty values at the

same time. If you want to set the IGNORE_DOMAIN_IDS option, and the DO_DOMAIN_IDS option was previously set,

then you need to clear the value of the DO_DOMAIN_IDS option. For example:

STOP SLAVE;

CHANGE MASTER TO

 DO_DOMAIN_IDS = (),

 IGNORE_DOMAIN_IDS = (1,2);

START SLAVE;

The IGNORE_DOMAIN_IDS option can only be specified if the replica is replicating in GTID mode. Therefore, the

MASTER_USE_GTID option must also be set to some value other than no in order to use this option.

Delayed Replication Options

MASTER_DELAY

186/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log

The MASTER_DELAY option for CHANGE MASTER can be used to enable delayed replication. This option specifies the time

in seconds (at least) that a replica should lag behind the primary up to a maximum value of 2147483647, or about 68 years.

Before executing an event, the replica will first wait, if necessary, until the given time has passed since the event was

created on the primary. The result is that the replica will reflect the state of the primary some time back in the past. The

default is zero, no delay.

STOP SLAVE;

CHANGE MASTER TO

 MASTER_DELAY=3600;

START SLAVE;

Changing Option Values
If you don't specify a given option when executing the CHANGE MASTER statement, then the option keeps its old value in

most cases. Most of the time, there is no need to specify the options that do not need to change. For example, if the

password for the user account that the replica uses to connect to its primary has changed, but no other options need to

change, then you can just change the MASTER_PASSWORD option by executing the following commands:

STOP SLAVE;

CHANGE MASTER TO

 MASTER_PASSWORD='new3cret';

START SLAVE;

There are some cases where options are implicitly reset, such as when the MASTER_HOST and MASTER_PORT options

are changed.

Option Persistence
The values of the MASTER_LOG_FILE and MASTER_LOG_POS options (i.e. the binary log position on the primary) and

most other options are written to either the default master.info file or the file that is configured by the master_info_file

option. The replica's I/O thread keeps this binary log position updated as it downloads events only when

MASTER_USE_GTID option is set to NO . Otherwise the file is not updated on a per event basis.

The master_info_file option can be set either on the command-line or in a server option group in an option file prior to

starting up the server. For example:

[mariadb]

...

master_info_file=/mariadb/myserver1-master.info

The values of the RELAY_LOG_FILE and RELAY_LOG_POS options (i.e. the relay log position) are written to either the

default relay-log.info file or the file that is configured by the relay_log_info_file system variable. The replica's SQL

thread keeps this relay log position updated as it applies events.

The relay_log_info_file system variable can be set either on the command-line or in a server option group in an option file

prior to starting up the server. For example:

[mariadb]

...

relay_log_info_file=/mariadb/myserver1-relay-log.info

GTID Persistence
If the replica is replicating binary log events that contain GTIDs, then the replica's SQL thread will write every GTID that it

applies to the mysql.gtid_slave_pos table. This GTID can be inspected and modified through the gtid_slave_pos system

variable.

If the replica has the log_slave_updates system variable enabled and if the replica has the binary log enabled, then every

write by the replica's SQL thread will also go into the replica's binary log. This means that GTIDs of replicated transactions

would be reflected in the value of the gtid_binlog_pos system variable.

Creating a Replica from a Backup
The CHANGE MASTER statement is useful for setting up a replica when you have a backup of the primary and you also have

187/4161

the binary log position or GTID position corresponding to the backup.

After restoring the backup on the replica, you could execute something like this to use the binary log position:

CHANGE MASTER TO

 MASTER_LOG_FILE='master2-bin.001',

 MASTER_LOG_POS=4;

START SLAVE;

Or you could execute something like this to use the GTID position:

SET GLOBAL gtid_slave_pos='0-1-153';

CHANGE MASTER TO

 MASTER_USE_GTID=slave_pos;

START SLAVE;

See Setting up a Replication Slave with Mariabackup for more information on how to do this with Mariabackup.

Example
The following example changes the primary and primary's binary log coordinates. This is used when you want to set up the

replica to replicate the primary:

CHANGE MASTER TO

 MASTER_HOST='master2.mycompany.com',

 MASTER_USER='replication',

 MASTER_PASSWORD='bigs3cret',

 MASTER_PORT=3306,

 MASTER_LOG_FILE='master2-bin.001',

 MASTER_LOG_POS=4,

 MASTER_CONNECT_RETRY=10;

START SLAVE;

1.1.1.2.5.2 START SLAVE

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Syntax

START SLAVE ["connection_name"] [thread_type [, thread_type] ...] [FOR CHANNEL

"connection_name"]

START SLAVE ["connection_name"] [SQL_THREAD] UNTIL

 MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos [FOR CHANNEL "connection_name"]

START SLAVE ["connection_name"] [SQL_THREAD] UNTIL

 RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos [FOR CHANNEL "connection_name"]

START SLAVE ["connection_name"] [SQL_THREAD] UNTIL

 MASTER_GTID_POS = <GTID position> [FOR CHANNEL "connection_name"]

START ALL SLAVES [thread_type [, thread_type]]

START REPLICA ["connection_name"] [thread_type [, thread_type] ...] -- from 10.5.1

START REPLICA ["connection_name"] [SQL_THREAD] UNTIL

 MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos -- from 10.5.1

START REPLICA ["connection_name"] [SQL_THREAD] UNTIL

 RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos -- from 10.5.1

START REPLICA ["connection_name"] [SQL_THREAD] UNTIL

 MASTER_GTID_POS = <GTID position> -- from 10.5.1

START ALL REPLICAS [thread_type [, thread_type]] -- from 10.5.1

thread_type: IO_THREAD | SQL_THREAD

188/4161

https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Syntax

2. Description

1. START SLAVE UNTIL

1. SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS

2. connection_name

3. START ALL SLAVES

4. START REPLICA

Description
START SLAVE (START REPLICA from MariaDB 10.5.1) with no thread_type options starts both of the replica threads (see

replication) needed to connect with a master setup with CHANGE MASTER TO . The I/O thread reads events from the

primary server and stores them in the relay log. The SQL thread reads events from the relay log and executes them. START

SLAVE requires the SUPER privilege, or, from MariaDB 10.5.2, the REPLICATION SLAVE ADMIN privilege.

If START SLAVE succeeds in starting the replica threads, it returns without any error. However, even in that case, it might

be that the replica threads start and then later stop (for example, because they do not manage to connect to the primary or

read its binary log, or some other problem). START SLAVE does not warn you about this. You must check the replica's error

log for error messages generated by the replica threads, or check that they are running satisfactorily with SHOW SLAVE

STATUS (SHOW REPLICA STATUS from MariaDB 10.5.1).

START SLAVE UNTIL

START SLAVE UNTIL refers to the SQL_THREAD replica position at which the SQL_THREAD replication will halt. If

SQL_THREAD isn't specified both threads are started.

START SLAVE UNTIL master_gtid_pos=xxx is also supported. See Global Transaction ID/START SLAVE UNTIL

master_gtid_pos=xxx for more details.

SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS

MariaDB 11.3 extended the START SLAVE UNTIL command with the options SQL_BEFORE_GTIDS and

SQL_AFTER_GTIDS to allow control of whether the replica stops before or after a provided GTID state. Its syntax is:

START SLAVE UNTIL (SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS)="<gtid_list>"

See Global Transaction ID#SQL_BEFORE_GTIDS/SQL_AFTER_GTIDS for details.

connection_name

If there is only one nameless primary, or the default primary (as specified by the default_master_connection system

variable) is intended, connection_name can be omitted. If provided, the START SLAVE statement will apply to the

specified primary. connection_name is case-insensitive.

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical as using the channel_name directly

after START SLAVE .

START ALL SLAVES

START ALL SLAVES starts all configured replicas (replicas with master_host not empty) that were not started before. It will

give a note for all started connections. You can check the notes with SHOW WARNINGS.

START REPLICA

START REPLICA is an alias for START SLAVE from MariaDB 10.5.1.

MariaDB starting with 11.3.0

MariaDB starting with 10.7.0

MariaDB starting with 10.5.1

1.1.1.2.5.3 STOP SLAVE

189/4161

https://mariadb.com/kb/en/mariadb-1130-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Syntax

STOP SLAVE ["connection_name"] [thread_type [, thread_type] ...] [FOR CHANNEL "connection_name"]

STOP ALL SLAVES [thread_type [, thread_type]]

STOP REPLICA ["connection_name"] [thread_type [, thread_type] ...] -- from 10.5.1

STOP ALL REPLICAS [thread_type [, thread_type]] -- from 10.5.1

thread_type: IO_THREAD | SQL_THREAD

Contents
1. Syntax

2. Description

1. STOP ALL SLAVES

2. connection_name

3. STOP REPLICA

Description
Stops the replica threads. STOP SLAVE requires the SUPER privilege, or, from MariaDB 10.5.2, the REPLICATION SLAVE

ADMIN privilege.

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name the thread or

threads to be stopped. In almost all cases, one never need to use the thread_type options.

STOP SLAVE waits until any current replication event group affecting one or more non-transactional tables has finished

executing (if there is any such replication group), or until the user issues a KILL QUERY or KILL CONNECTION statement.

Note that STOP SLAVE doesn't delete the connection permanently. Next time you execute START SLAVE or the MariaDB

server restarts, the replica connection is restored with it's original arguments. If you want to delete a connection, you should

execute RESET SLAVE.

STOP ALL SLAVES

STOP ALL SLAVES stops all your running replicas. It will give you a note for every stopped connection. You can check

the notes with SHOW WARNINGS.

connection_name

The connection_name option is used for multi-source replication.

If there is only one nameless master, or the default master (as specified by the default_master_connection system variable)

is intended, connection_name can be omitted. If provided, the STOP SLAVE statement will apply to the specified master.

connection_name is case-insensitive.

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical as using the channel_name directly

after STOP SLAVE .

STOP REPLICA

STOP REPLICA is an alias for STOP SLAVE from MariaDB 10.5.1.

MariaDB starting with 10.7.0

MariaDB starting with 10.5.1

190/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1070-release-notes/

1.1.1.2.5.4 RESET REPLICA/SLAVE

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Syntax

RESET REPLICA ["connection_name"] [ALL] [FOR CHANNEL "connection_name"] -- from MariaDB 10.5.1

RESET SLAVE ["connection_name"] [ALL] [FOR CHANNEL "connection_name"]

Contents
1. Syntax

2. Description

1. connection_name

2. RESET REPLICA

Description
RESET REPLICA/SLAVE makes the replica forget its replication position in the master's binary log. This statement is meant

to be used for a clean start. It deletes the master.info and relay-log.info files, all the relay log files, and starts a new relay log

file. To use RESET REPLICA/SLAVE, the replica threads must be stopped (use STOP REPLICA/SLAVE if necessary).

Note: All relay log files are deleted, even if they have not been completely executed by the slave SQL thread. (This is a

condition likely to exist on a replication slave if you have issued a STOP REPLICA/SLAVE statement or if the slave is

highly loaded.)

Note: RESET REPLICA does not reset the global gtid_slave_pos variable. This means that a replica server

configured with CHANGE MASTER TO MASTER_USE_GTID=slave_pos will not receive events with GTIDs occurring

before the state saved in gtid_slave_pos . If the intent is to reprocess these events, gtid_slave_pos must be

manually reset, e.g. by executing set global gtid_slave_pos="" .

Connection information stored in the master.info file is immediately reset using any values specified in the corresponding

startup options. This information includes values such as master host, master port, master user, and master password. If

the replica SQL thread was in the middle of replicating temporary tables when it was stopped, and RESET

REPLICA/SLAVE is issued, these replicated temporary tables are deleted on the slave.

The ALL also resets the PORT , HOST , USER and PASSWORD parameters for the slave. If you are using a connection

name, it will permanently delete it and it will not show up anymore in SHOW ALL REPLICAS/SLAVE STATUS.

connection_name

The connection_name option is used for multi-source replication.

If there is only one nameless primary, or the default primary (as specified by the default_master_connection system

variable) is intended, connection_name can be omitted. If provided, the RESET REPLICA/SLAVE statement will apply to

the specified primary. connection_name is case-insensitive.

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical as using the channel_name directly

after RESET REPLICA .

RESET REPLICA

RESET REPLICA is an alias for RESET SLAVE from MariaDB 10.5.1.

MariaDB starting with 10.7.0

MariaDB starting with 10.5.1

191/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1070-release-notes/

1.1.1.2.5.5 SET GLOBAL
SQL_SLAVE_SKIP_COUNTER

Syntax

SET GLOBAL sql_slave_skip_counter = N

Contents
1. Syntax

2. Description

3. Example

4. Multiple Replication Domains

Description
This statement skips the next N events from the primary. This is useful for recovering from replication stops caused by a

statement.

If multi-source replication is used, this statement applies to the default connection. It could be necessary to change the

value of the default_master_connection system variable.

Note that, if the event is a transaction, the whole transaction will be skipped. With non-transactional engines, an event is

always a single statement.

This statement is valid only when the replica threads are not running. Otherwise, it produces an error.

The statement does not automatically restart the replica threads.

Example

SHOW SLAVE STATUS \G

...

SET GLOBAL sql_slave_skip_counter = 1;

START SLAVE;

Multi-source replication:

SET @@default_master_connection = 'master_01';

SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;

START SLAVE;

Multiple Replication Domains
sql_slave_skip_counter can't be used to skip transactions on a replica if GTID replication is in use and if

gtid_slave_pos contains multiple gtid_domain_id values. In that case, you'll get an error like the following:

ERROR 1966 (HY000): When using parallel replication and GTID with multiple

 replication domains, @@sql_slave_skip_counter can not be used. Instead,

 setting @@gtid_slave_pos explicitly can be used to skip to after a given GTID

 position.

In order to skip transactions in cases like this, you will have to manually change gtid_slave_pos.

1.1.1.2.5.6 SHOW RELAYLOG EVENTS

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

192/4161

https://jira.mariadb.org/browse/MDEV-18777

Syntax

SHOW RELAYLOG ['connection_name'] EVENTS

 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

 [FOR CHANNEL 'channel_name']

Description
On replicas, this command shows the events in the relay log. If 'log_name' is not specified, the first relay log is shown.

Syntax for the LIMIT clause is the same as for SELECT ... LIMIT.

Using the LIMIT clause is highly recommended because the SHOW RELAYLOG EVENTS command returns the

complete contents of the relay log, which can be quite large.

This command does not return events related to setting user and system variables. If you need those, use mariadb-binlog.

On the primary, this command does nothing.

Requires the REPLICA MONITOR privilege (>= MariaDB 10.5.9), the REPLICATION SLAVE ADMIN privilege (>= MariaDB

10.5.2) or the REPLICATION SLAVE privilege (<= MariaDB 10.5.1).

connection_name

If there is only one nameless primary, or the default primary (as specified by the default_master_connection system

variable) is intended, connection_name can be omitted. If provided, the SHOW RELAYLOG statement will apply to the

specified primary. connection_name is case-insensitive.

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical as using the channel_name directly

after SHOW RELAYLOG .

MariaDB starting with 10.7.0

1.1.1.2.5.7 SHOW SLAVE STATUS

Syntax

SHOW SLAVE ["connection_name"] STATUS [FOR CHANNEL "connection_name"]

SHOW REPLICA ["connection_name"] STATUS -- From MariaDB 10.5.1

or

SHOW ALL SLAVES STATUS

SHOW ALL REPLICAS STATUS -- From MariaDB 10.5.1

Contents
1. Syntax

2. Description

1. Multi-Source

2. Column Descriptions

3. SHOW REPLICA STATUS

3. Examples

Description
This statement is to be run on a replica and provides status information on essential parameters of the replica threads.

This statement requires the SUPER privilege, the REPLICATION_CLIENT privilege, or, from MariaDB 10.5.2, the

REPLICATION SLAVE ADMIN privilege, or, from MariaDB 10.5.9, the REPLICA MONITOR privilege.

Multi-Source
193/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/

The ALL and "connection_name" options allow you to connect to many primaries at the same time.

ALL SLAVES (or ALL REPLICAS from MariaDB 10.5.1) gives you a list of all connections to the primary nodes.

The rows will be sorted according to Connection_name .

If you specify a connection_name , you only get the information about that connection. If connection_name is not used,

then the name set by default_master_connection is used. If the connection name doesn't exist you will get an error:

There is no master connection for 'xxx' .

The FOR CHANNEL keyword was added for MySQL compatibility. This is identical to using the channel_name directly

after SHOW SLAVE .

Column Descriptions

The order in which the columns appear depends on the MariaDB version. This means that extracting a column value is best

done by comparing the field name instead of using a fixed offset into the row.

Name Description

Connection_name
Name of the primary connection. Returned with SHOW ALL SLAVES STATUS (or

SHOW ALL REPLICAS STATUS from MariaDB 10.5.1) only.

Slave_SQL_State
State of SQL thread. Returned with SHOW ALL SLAVES STATUS (or SHOW ALL

REPLICAS STATUS from MariaDB 10.5.1) only. See Slave SQL Thread States.

Slave_IO_State State of I/O thread. See Slave I/O Thread States.

Master_host Master host that the replica is connected to.

Master_user Account user name being used to connect to the primary.

Master_port The port being used to connect to the primary.

Connect_Retry

Time in seconds between retries to connect. The default is 60. The CHANGE

MASTER TO statement can set this. The master-retry-count option determines the

maximum number of reconnection attempts.

Master_Log_File Name of the primary binary log file that the I/O thread is currently reading from.

Read_Master_Log_Pos Position up to which the I/O thread has read in the current primary binary log file.

Relay_Log_File Name of the relay log file that the SQL thread is currently processing.

Relay_Log_Pos
Position up to which the SQL thread has finished processing in the current relay log

file.

Relay_Master_Log_File
Name of the primary binary log file that contains the most recent event executed by

the SQL thread.

Slave_IO_Running Whether the replica I/O thread is running and connected (Yes), running but not

connected to a primary (Connecting) or not running (No).

Slave_SQL_Running Whether or not the SQL thread is running.

Replicate_Rewrite_DB
Databases specified for replicating and rewriting with the replicate_rewrite_db

option. Added in MariaDB 10.11

Replicate_Do_DB Databases specified for replicating with the replicate_do_db option.

Replicate_Ignore_DB Databases specified for ignoring with the replicate_ignore_db option.

Replicate_Do_Table Tables specified for replicating with the replicate_do_table option.

Replicate_Ignore_Table Tables specified for ignoring with the replicate_ignore_table option.

Replicate_Wild_Do_Table Tables specified for replicating with the replicate_wild_do_table option.

Replicate_Wild_Ignore_Table Tables specified for ignoring with the replicate_wild_ignore_table option.

Last_Errno Alias for Last_SQL_Errno (see below)

Last Error Alias for Last_SQL_Error (see below)

Skip_Counter
Number of events that a replica skips from the master, as recorded in the

sql_slave_skip_counter system variable.

MariaDB starting with 10.7.0

194/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/

Exec_Master_Log_Pos

Position up to which the SQL thread has processed in the current master binary log

file. Can be used to start a new replica from a current replica with the CHANGE

MASTER TO ... MASTER_LOG_POS option.

Relay_Log_Space Total size of all relay log files combined.

Until_Condition

Until_Log_File The MASTER_LOG_FILE value of the START SLAVE UNTIL condition.

Until_Log_Pos The MASTER_LOG_POS value of the START SLAVE UNTIL condition.

Master_SSL_Allowed
Whether an SSL connection is permitted (Yes), not permitted (No) or permitted but

without the replica having SSL support enabled (Ignored)

Master_SSL_CA_File The MASTER_SSL_CA option of the CHANGE MASTER TO statement.

Master_SSL_CA_Path The MASTER_SSL_CAPATH option of the CHANGE MASTER TO statement.

Master_SSL_Cert The MASTER_SSL_CERT option of the CHANGE MASTER TO statement.

Master_SSL_Cipher The MASTER_SSL_CIPHER option of the CHANGE MASTER TO statement.

Master_SSL_Key The MASTER_SSL_KEY option of the CHANGE MASTER TO statement.

Seconds_Behind_Master

Difference between the timestamp logged on the master for the event that the replica

is currently processing, and the current timestamp on the replica. Zero if the replica is

not currently processing an event. With serial replication, seconds_behind_master

is updated when the SQL thread begins executing a transaction. With parallel

replication, seconds_behind_master is updated only after transactions commit.

Starting in MariaDB 10.3.38 , 10.4.28, 10.5.19, 10.6.12, 10.8.7 , 10.9.5, 10.10.3,

and 10.11.2, an exception is drawn on the parallel replica to additionally update

seconds_behind_master when the first transaction received after idling is queued

to a worker for execution, to provide a reliable initial value for the duration until a

transaction commits. Additional behaviors to be aware of are as follows: 1)

Seconds_Behind_Master will update for ignored events, e.g. those skipped due to

sql_slave_skip_counter. 2) On the serial replica, transactions with prior timestamps

can update Seconds_Behind_Master such that it can go backwards, though this is

not true for the parallel replica. 3) When configured with MASTER_DELAY, as a

replicated transaction begins executing (i.e. on a serial or post-idle parallel replica),

Seconds_Behind_Master will update before delaying, and while delaying occurs

will grow to encompass the configured value. 4) There is a known issue, tracked by

MDEV-17516 , such that Seconds_Behind_Master will initially present as 0 on

replica restart until a replicated transaction begins executing, even if the last replica

session was lagging behind when stopped.

Master_SSL_Verify_Server_Cert
The MASTER_SSL_VERIFY_SERVER_CERT option of the CHANGE MASTER TO

statement.

Last_IO_Errno

Error code of the most recent error that caused the I/O thread to stop (also

recorded in the replica's error log). 0 means no error. RESET SLAVE or RESET

MASTER will reset this value.

Last_IO_Error

Error message of the most recent error that caused the I/O thread to stop (also

recorded in the replica's error log). An empty string means no error. RESET SLAVE or

RESET MASTER will reset this value.

Last_SQL_Errno

Error code of the most recent error that caused the SQL thread to stop (also

recorded in the replica's error log). 0 means no error. RESET SLAVE or RESET

MASTER will reset this value.

Last_SQL_Error

Error message of the most recent error that caused the SQL thread to stop (also

recorded in the replica's error log). An empty string means no error. RESET SLAVE or

RESET MASTER will reset this value.

Replicate_Ignore_Server_Ids

List of server_ids that are currently being ignored for replication purposes, or an

empty string for none, as specified in the IGNORE_SERVER_IDS option of the

CHANGE MASTER TO statement.

Master_Server_Id The master's server_id value.

Master_SSL_Crl The MASTER_SSL_CRL option of the CHANGE MASTER TO statement.

195/4161

https://mariadb.com/kb/en/mariadb-10338-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://jira.mariadb.org/browse/MDEV-17516
https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

Master_SSL_Crlpath The MASTER_SSL_CRLPATH option of the CHANGE MASTER TO statement.

Using_Gtid
Whether or not global transaction ID's are being used for replication (can be No ,

Slave_Pos , or Current_Pos).

Gtid_IO_Pos Current global transaction ID value.

Retried_transactions
Number of retried transactions for this connection. Returned with SHOW ALL SLAVES

STATUS only.

Max_relay_log_size
Max relay log size for this connection. Returned with SHOW ALL SLAVES STATUS

only.

Executed_log_entries
How many log entries the replica has executed. Returned with SHOW ALL SLAVES

STATUS only.

Slave_received_heartbeats
How many heartbeats we have got from the master. Returned with SHOW ALL

SLAVES STATUS only.

Slave_heartbeat_period
How often to request a heartbeat packet from the master (in seconds). Returned with

SHOW ALL SLAVES STATUS only.

Gtid_Slave_Pos

GTID of the last event group replicated on a replica server, for each replication

domain, as stored in the gtid_slave_pos system variable. Returned with SHOW ALL

SLAVES STATUS only.

SQL_Delay Value specified by MASTER_DELAY in CHANGE MASTER (or 0 if none).

SQL_Remaining_Delay

When the replica is delaying the execution of an event due to MASTER_DELAY , this is

the number of seconds of delay remaining before the event will be applied. Otherwise,

the value is NULL .

Slave_SQL_Running_State

The state of the SQL driver threads, same as in SHOW PROCESSLIST. When the

replica is delaying the execution of an event due to MASTER_DELAY , this field

displays: " Waiting until MASTER_DELAY seconds after master executed

event ".

Slave_DDL_Groups
This status variable counts the occurrence of DDL statements. This is a replica-side

counter for optimistic parallel replication.

Slave_Non_Transactional_Groups
This status variable counts the occurrence of non-transactional event groups. This is

a replica-side counter for optimistic parallel replication.

Slave_Transactional_Groups
This status variable counts the occurrence of transactional event groups. This is a

replica-side counter for optimistic parallel replication.

SHOW REPLICA STATUS

SHOW REPLICA STATUS is an alias for SHOW SLAVE STATUS from MariaDB 10.5.1.

Examples
If you issue this statement using the mariadb client, you can use a \G statement terminator rather than a semicolon to

obtain a more readable vertical layout.

MariaDB starting with 10.5.1

196/4161

SHOW SLAVE STATUS\G

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: db01.example.com

 Master_User: replicant

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000010

 Read_Master_Log_Pos: 548

 Relay_Log_File: relay-bin.000004

 Relay_Log_Pos: 837

 Relay_Master_Log_File: mariadb-bin.000010

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 548

 Relay_Log_Space: 1497

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 101

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Using_Gtid: No

 Gtid_IO_Pos:

197/4161

SHOW ALL SLAVES STATUS\G

*************************** 1. row ***************************

 Connection_name:

 Slave_SQL_State: Slave has read all relay log; waiting for the slave I/O thread

to update it

 Slave_IO_State: Waiting for master to send event

 Master_Host: db01.example.com

 Master_User: replicant

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000010

 Read_Master_Log_Pos: 3608

 Relay_Log_File: relay-bin.000004

 Relay_Log_Pos: 3897

 Relay_Master_Log_File: mariadb-bin.000010

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 3608

 Relay_Log_Space: 4557

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 101

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Using_Gtid: No

 Gtid_IO_Pos:

 Retried_transactions: 0

 Max_relay_log_size: 104857600

 Executed_log_entries: 40

 Slave_received_heartbeats: 11

 Slave_heartbeat_period: 1800.000

 Gtid_Slave_Pos: 0-101-2320

You can also access some of the variables directly from status variables:

198/4161

SET @@default_master_connection="test" ;

show status like "%slave%"

Variable_name Value

Com_show_slave_hosts 0

Com_show_slave_status 0

Com_start_all_slaves 0

Com_start_slave 0

Com_stop_all_slaves 0

Com_stop_slave 0

Rpl_semi_sync_slave_status OFF

Slave_connections 0

Slave_heartbeat_period 1800.000

Slave_open_temp_tables 0

Slave_received_heartbeats 0

Slave_retried_transactions 0

Slave_running OFF

Slaves_connected 0

Slaves_running 1

1.1.1.2.5.8 SHOW MASTER STATUS

Syntax

SHOW MASTER STATUS

SHOW BINLOG STATUS -- From MariaDB 10.5.2

Description
Provides status information about the binary log files of the primary.

This statement requires the SUPER privilege, the REPLICATION_CLIENT privilege, or, from MariaDB 10.5.2, the BINLOG

MONITOR privilege.

To see information about the current GTIDs in the binary log, use the gtid_binlog_pos variable.

SHOW MASTER STATUS was renamed to SHOW BINLOG STATUS in MariaDB 10.5.2, but the old name remains an alias for

compatibility purposes.

Example

SHOW MASTER STATUS;

+--------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------------+----------+--------------+------------------+

| mariadb-bin.000016 | 475 | | |

+--------------------+----------+--------------+------------------+

SELECT @@global.gtid_binlog_pos;

+--------------------------+

| @@global.gtid_binlog_pos |

+--------------------------+

| 0-1-2 |

+--------------------------+

1.1.1.2.5.9 SHOW SLAVE HOSTS
Contents
1. Syntax

2. Description

1. SHOW REPLICA HOSTS

Syntax
199/4161

SHOW SLAVE HOSTS

SHOW REPLICA HOSTS -- from MariaDB 10.5.1

Description
This command is run on the primary and displays a list of replicas that are currently registered with it. Only replicas started

with the --report-host=host_name option are visible in this list.

The output looks like this:

SHOW SLAVE HOSTS;

+------------+-----------+------+-----------+

| Server_id | Host | Port | Master_id |

+------------+-----------+------+-----------+

| 192168010 | iconnect2 | 3306 | 192168011 |

| 1921680101 | athena | 3306 | 192168011 |

+------------+-----------+------+-----------+

Server_id : The unique server ID of the replica server, as configured in the server's option file, or on the command

line with --server-id=value.

Host : The host name of the replica server, as configured in the server's option file, or on the command line with --

report-host=host_name . Note that this can differ from the machine name as configured in the operating system.

Port : The port the replica server is listening on.

Master_id : The unique server ID of the primary server that the replica server is replicating from.

Some MariaDB and MySQL versions report another variable, rpl_recovery_rank. This variable was never used, and was

eventually removed in MariaDB 10.1.2 .

Requires the REPLICATION MASTER ADMIN privilege (>= MariaDB 10.5.2) or the REPLICATION SLAVE privilege (<=

MariaDB 10.5.1).

SHOW REPLICA HOSTS

SHOW REPLICA HOSTS is an alias for SHOW SLAVE HOSTS from MariaDB 10.5.1.

MariaDB starting with 10.5.1

1.1.1.2.5.10 RESET MASTER
RESET MASTER [TO #]

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and creates a new binary log

file with a suffix of .000001.

If TO # is given, then the first new binary log file will start from number #.

This statement is for use only when the master is started for the first time, and should never be used if any slaves are

actively replicating from the binary log.

1.1.1.2.6 Plugin SQL Statements
Plugin commands.

SHOW PLUGINS

Display information about installed plugins.

SHOW PLUGINS SONAME

Information about all available plugins, installed or not.

INSTALL PLUGIN

Install a plugin.3

200/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/

UNINSTALL PLUGIN

Remove a single installed plugin.

INSTALL SONAME

Installs all plugins from a given library.

UNINSTALL SONAME

Remove all plugins belonging to a specified library.

mysql_plugin

Symlink or old name for mariadb-plugin.

2

1.1.1.2.6.1 SHOW PLUGINS

Syntax

SHOW PLUGINS;

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW PLUGINS displays information about installed plugins. The Library column indicates the plugin library - if it is

NULL , the plugin is built-in and cannot be uninstalled.

The PLUGINS table in the information_schema database contains more detailed information.

For specific information about storage engines (a particular type of plugin), see the information_schema.ENGINES table

and the SHOW ENGINES statement.

Examples

SHOW PLUGINS;

+----------------------------+----------+--------------------+-------------+---------+

| Name | Status | Type | Library | License |

+----------------------------+----------+--------------------+-------------+---------+

| binlog | ACTIVE | STORAGE ENGINE | NULL | GPL |

| mysql_native_password | ACTIVE | AUTHENTICATION | NULL | GPL |

| mysql_old_password | ACTIVE | AUTHENTICATION | NULL | GPL |

| MRG_MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |

| MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |

| CSV | ACTIVE | STORAGE ENGINE | NULL | GPL |

| MEMORY | ACTIVE | STORAGE ENGINE | NULL | GPL |

| FEDERATED | ACTIVE | STORAGE ENGINE | NULL | GPL |

| PERFORMANCE_SCHEMA | ACTIVE | STORAGE ENGINE | NULL | GPL |

| Aria | ACTIVE | STORAGE ENGINE | NULL | GPL |

| InnoDB | ACTIVE | STORAGE ENGINE | NULL | GPL |

| INNODB_TRX | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

...

| INNODB_SYS_FOREIGN | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_FOREIGN_COLS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| SPHINX | ACTIVE | STORAGE ENGINE | NULL | GPL |

| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL | GPL |

| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL | GPL |

| FEEDBACK | DISABLED | INFORMATION SCHEMA | NULL | GPL |

| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |

| pam | ACTIVE | AUTHENTICATION | auth_pam.so | GPL |

+----------------------------+----------+--------------------+-------------+---------+

201/4161

1.1.1.2.6.2 SHOW PLUGINS SONAME

Syntax

SHOW PLUGINS SONAME { library | LIKE 'pattern' | WHERE expr };

Description
SHOW PLUGINS SONAME displays information about compiled-in and all server plugins in the plugin_dir directory,

including plugins that haven't been installed.

Examples

SHOW PLUGINS SONAME 'ha_example.so';

+----------+---------------+----------------+---------------+---------+

| Name | Status | Type | Library | License |

+----------+---------------+----------------+---------------+---------+

| EXAMPLE | NOT INSTALLED | STORAGE ENGINE | ha_example.so | GPL |

| UNUSABLE | NOT INSTALLED | DAEMON | ha_example.so | GPL |

+----------+---------------+----------------+---------------+---------+

There is also a corresponding information_schema table, called ALL_PLUGINS , which contains more complete

information.

1.1.1.2.6.3 INSTALL PLUGIN

Syntax

INSTALL PLUGIN [IF NOT EXISTS] plugin_name SONAME 'plugin_library'

Contents
1. Syntax

2. Description

1. IF NOT EXISTS

3. Examples

Description
This statement installs an individual plugin from the specified library. To install the whole library (which could be required),

use INSTALL SONAME. See also Installing a Plugin.

plugin_name is the name of the plugin as defined in the plugin declaration structure contained in the library file. Plugin

names are not case sensitive. For maximal compatibility, plugin names should be limited to ASCII letters, digits, and

underscore, because they are used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL

environments.

plugin_library is the name of the shared library that contains the plugin code. The file name extension can be omitted

(which makes the statement look the same on all architectures).

The shared library must be located in the plugin directory (that is, the directory named by the plugin_dir system variable).

The library must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir is plugin directory under the

directory named by the pkglibdir configuration variable, but it can be changed by setting the value of plugin_dir at

server startup. For example, set its value in a my.cnf file:

[mysqld]

plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base directory (the value of the

basedir system variable).

202/4161

INSTALL PLUGIN adds a line to the mysql.plugin table that describes the plugin. This table contains the plugin name

and library file name.

INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This enables the plugin to

pick up any relevant options from those files. It is possible to add plugin options to an option file even before loading a

plugin (if the loose prefix is used). It is also possible to uninstall a plugin, edit my.cnf , and install the plugin again.

Restarting the plugin this way enables it to the new option values without a server restart.

INSTALL PLUGIN also loads and initializes the plugin code to make the plugin available for use. A plugin is initialized by

executing its initialization function, which handles any setup that the plugin must perform before it can be used.

To use INSTALL PLUGIN , you must have the INSERT privilege for the mysql.plugin table.

At server startup, the server loads and initializes any plugin that is listed in the mysql.plugin table. This means that a

plugin is installed with INSTALL PLUGIN only once, not every time the server starts. Plugin loading at startup does not

occur if the server is started with the --skip-grant-tables option.

When the server shuts down, it executes the de-initialization function for each plugin that is loaded so that the plugin has a

chance to perform any final cleanup.

If you need to load plugins for a single server startup when the --skip-grant-tables option is given (which tells the

server not to read system tables), use the --plugin-load mysqld option.

IF NOT EXISTS

When the IF NOT EXISTS clause is used, MariaDB will return a note instead of an error if the specified plugin already

exists. See SHOW WARNINGS.

Examples

INSTALL PLUGIN sphinx SONAME 'ha_sphinx.so';

The extension can also be omitted:

INSTALL PLUGIN innodb SONAME 'ha_xtradb';

From MariaDB 10.4.0:

INSTALL PLUGIN IF NOT EXISTS example SONAME 'ha_example';

Query OK, 0 rows affected (0.104 sec)

INSTALL PLUGIN IF NOT EXISTS example SONAME 'ha_example';

Query OK, 0 rows affected, 1 warning (0.000 sec)

SHOW WARNINGS;

+-------+------+------------------------------------+

| Level | Code | Message |

+-------+------+------------------------------------+

| Note | 1968 | Plugin 'example' already installed |

+-------+------+------------------------------------+

MariaDB starting with 10.4.0

1.1.1.2.6.4 UNINSTALL PLUGIN

Syntax

UNINSTALL PLUGIN [IF EXISTS] plugin_name

203/4161

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
This statement removes a single installed plugin. To uninstall the whole library which contains the plugin, use UNINSTALL

SONAME. You cannot uninstall a plugin if any table that uses it is open.

plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The server executes the plugin's

deinitialization function and removes the row for the plugin from the mysql.plugin table, so that subsequent server

restarts will not load and initialize the plugin. UNINSTALL PLUGIN does not remove the plugin's shared library file.

To use UNINSTALL PLUGIN , you must have the DELETE privilege for the mysql.plugin table.

IF EXISTS

If the IF EXISTS clause is used, MariaDB will return a note instead of an error if the plugin does not exist. See SHOW

WARNINGS.

Examples

UNINSTALL PLUGIN example;

From MariaDB 10.4.0:

UNINSTALL PLUGIN IF EXISTS example;

Query OK, 0 rows affected (0.099 sec)

UNINSTALL PLUGIN IF EXISTS example;

Query OK, 0 rows affected, 1 warning (0.000 sec)

SHOW WARNINGS;

+-------+------+-------------------------------+

| Level | Code | Message |

+-------+------+-------------------------------+

| Note | 1305 | PLUGIN example does not exist |

+-------+------+-------------------------------+

MariaDB starting with 10.4.0

1.1.1.2.6.5 INSTALL SONAME

Syntax

INSTALL SONAME 'plugin_library'

Contents
1. Syntax

2. Description

3. Examples

Description
This statement is a variant of INSTALL PLUGIN. It installs all plugins from a given plugin_library . See INSTALL

PLUGIN for details.

plugin_library is the name of the shared library that contains the plugin code. The file name extension (for example,

libmyplugin.so or libmyplugin.dll) can be omitted (which makes the statement look the same on all architectures).

The shared library must be located in the plugin directory (that is, the directory named by the plugin_dir system

204/4161

variable). The library must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir is plugin directory

under the directory named by the pkglibdir configuration variable, but it can be changed by setting the value of

plugin_dir at server startup. For example, set its value in a my.cnf file:

[mysqld]

plugin_dir=/path/to/plugin/directory

If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base directory (the value of the

basedir system variable).

INSTALL SONAME adds one or more lines to the mysql.plugin table that describes the plugin. This table contains the

plugin name and library file name.

INSTALL SONAME causes the server to read option (my.cnf) files just as during server startup. This enables the plugin to

pick up any relevant options from those files. It is possible to add plugin options to an option file even before loading a

plugin (if the loose prefix is used). It is also possible to uninstall a plugin, edit my.cnf , and install the plugin again.

Restarting the plugin this way enables it to the new option values without a server restart.

INSTALL SONAME also loads and initializes the plugin code to make the plugin available for use. A plugin is initialized by

executing its initialization function, which handles any setup that the plugin must perform before it can be used.

To use INSTALL SONAME , you must have the INSERT privilege for the mysql.plugin table.

At server startup, the server loads and initializes any plugin that is listed in the mysql.plugin table. This means that a

plugin is installed with INSTALL SONAME only once, not every time the server starts. Plugin loading at startup does not

occur if the server is started with the --skip-grant-tables option.

When the server shuts down, it executes the de-initialization function for each plugin that is loaded so that the plugin has a

chance to perform any final cleanup.

If you need to load plugins for a single server startup when the --skip-grant-tables option is given (which tells the

server not to read system tables), use the --plugin-load mysqld option.

If you need to install only one plugin from a library, use the INSTALL PLUGIN statement.

Examples
To load the XtraDB storage engine and all of its information_schema tables with one statement, use

INSTALL SONAME 'ha_xtradb';

This statement can be used instead of INSTALL PLUGIN even when the library contains only one plugin:

INSTALL SONAME 'ha_sequence';

1.1.1.2.6.6 UNINSTALL SONAME

Syntax

UNINSTALL SONAME [IF EXISTS] 'plugin_library'

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
This statement is a variant of UNINSTALL PLUGIN statement, that removes all plugins belonging to a specified

plugin_library . See UNINSTALL PLUGIN for details.

plugin_library is the name of the shared library that contains the plugin code. The file name extension (for example,

205/4161

libmyplugin.so or libmyplugin.dll) can be omitted (which makes the statement look the same on all architectures).

To use UNINSTALL SONAME , you must have the DELETE privilege for the mysql.plugin table.

IF EXISTS

If the IF EXISTS clause is used, MariaDB will return a note instead of an error if the plugin library does not exist. See

SHOW WARNINGS.

Examples
To uninstall the XtraDB plugin and all of its information_schema tables with one statement, use

UNINSTALL SONAME 'ha_xtradb';

From MariaDB 10.4.0:

UNINSTALL SONAME IF EXISTS 'ha_example';

Query OK, 0 rows affected (0.099 sec)

UNINSTALL SONAME IF EXISTS 'ha_example';

Query OK, 0 rows affected, 1 warning (0.000 sec)

SHOW WARNINGS;

+-------+------+-------------------------------------+

| Level | Code | Message |

+-------+------+-------------------------------------+

| Note | 1305 | SONAME ha_example.so does not exist |

+-------+------+-------------------------------------+

MariaDB starting with 10.4.0

1.3.43.12 mysql_plugin

1.1.1.2.7 SET Commands
SET

Set a variable value.

SET CHARACTER SET

Maps all strings sent between the current client and the server with the given mapping.

SET GLOBAL SQL_SLAVE_SKIP_COUNTER

Skips a number of events from the primary.

SET NAMES

The character set used to send statements to the server, and results back to the client.

SET PASSWORD

Assign password to an existing MariaDB user.

SET ROLE

Enable a role.

SET SQL_LOG_BIN

Set binary logging for the current connection.

SET STATEMENT

Set variable values on a per-query basis.

SET TRANSACTION

Sets the transaction isolation level.

1

1

5

206/4161

SET Variable

Used to insert a value into a variable with a code block.

There are 1 related questions .

1

1.1.1.2.7.1 SET

Syntax

SET variable_assignment [, variable_assignment] ...

variable_assignment:

 user_var_name = expr

 | [GLOBAL | SESSION] system_var_name = expr

 | [@@global. | @@session. | @@]system_var_name = expr

Contents
1. Syntax

2. Description

1. GLOBAL / SESSION

2. DEFAULT

3. Examples

One can also set a user variable in any expression with this syntax:

user_var_name:= expr

Description
The SET statement assigns values to different types of variables that affect the operation of the server or your client. Older

versions of MySQL employed SET OPTION , but this syntax was deprecated in favor of SET without OPTION , and was

removed in MariaDB 10.0.

Changing a system variable by using the SET statement does not make the change permanently. To do so, the change

must be made in a configuration file.

For setting variables on a per-query basis, see SET STATEMENT.

See SHOW VARIABLES for documentation on viewing server system variables.

See Server System Variables for a list of all the system variables.

GLOBAL / SESSION

When setting a system variable, the scope can be specified as either GLOBAL or SESSION.

A global variable change affects all new sessions. It does not affect any currently open sessions, including the one that

made the change.

A session variable change affects the current session only.

If the variable has a session value, not specifying either GLOBAL or SESSION will be the same as specifying SESSION. If

the variable only has a global value, not specifying GLOBAL or SESSION will apply to the change to the global value.

DEFAULT

Setting a global variable to DEFAULT will restore it to the server default, and setting a session variable to DEFAULT will

restore it to the current global value.

Examples
innodb_sync_spin_loops is a global variable.

207/4161

https://mariadb.com/kb/en/set-commands/+questions/

skip_parallel_replication is a session variable.

max_error_count is both global and session.

SELECT VARIABLE_NAME, SESSION_VALUE, GLOBAL_VALUE FROM

 INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME IN ('max_error_count', 'skip_parallel_replication', 'innodb_sync_spin_loops');

+---------------------------+---------------+--------------+

| VARIABLE_NAME | SESSION_VALUE | GLOBAL_VALUE |

+---------------------------+---------------+--------------+

| MAX_ERROR_COUNT | 64 | 64 |

| SKIP_PARALLEL_REPLICATION | OFF | NULL |

| INNODB_SYNC_SPIN_LOOPS | NULL | 30 |

+---------------------------+---------------+--------------+

Setting the session values:

SET max_error_count=128;Query OK, 0 rows affected (0.000 sec)

SET skip_parallel_replication=ON;Query OK, 0 rows affected (0.000 sec)

SET innodb_sync_spin_loops=60;

ERROR 1229 (HY000): Variable 'innodb_sync_spin_loops' is a GLOBAL variable

 and should be set with SET GLOBAL

SELECT VARIABLE_NAME, SESSION_VALUE, GLOBAL_VALUE FROM

 INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME IN ('max_error_count', 'skip_parallel_replication', 'innodb_sync_spin_loops');

+---------------------------+---------------+--------------+

| VARIABLE_NAME | SESSION_VALUE | GLOBAL_VALUE |

+---------------------------+---------------+--------------+

| MAX_ERROR_COUNT | 128 | 64 |

| SKIP_PARALLEL_REPLICATION | ON | NULL |

| INNODB_SYNC_SPIN_LOOPS | NULL | 30 |

+---------------------------+---------------+--------------+

Setting the global values:

SET GLOBAL max_error_count=256;

SET GLOBAL skip_parallel_replication=ON;

ERROR 1228 (HY000): Variable 'skip_parallel_replication' is a SESSION variable

 and can't be used with SET GLOBAL

SET GLOBAL innodb_sync_spin_loops=120;

SELECT VARIABLE_NAME, SESSION_VALUE, GLOBAL_VALUE FROM

 INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME IN ('max_error_count', 'skip_parallel_replication', 'innodb_sync_spin_loops');

+---------------------------+---------------+--------------+

| VARIABLE_NAME | SESSION_VALUE | GLOBAL_VALUE |

+---------------------------+---------------+--------------+

| MAX_ERROR_COUNT | 128 | 256 |

| SKIP_PARALLEL_REPLICATION | ON | NULL |

| INNODB_SYNC_SPIN_LOOPS | NULL | 120 |

+---------------------------+---------------+--------------+

SHOW VARIABLES will by default return the session value unless the variable is global only.

208/4161

SHOW VARIABLES LIKE 'max_error_count';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_error_count | 128 |

+-----------------+-------+

SHOW VARIABLES LIKE 'skip_parallel_replication';

+---------------------------+-------+

| Variable_name | Value |

+---------------------------+-------+

| skip_parallel_replication | ON |

+---------------------------+-------+

SHOW VARIABLES LIKE 'innodb_sync_spin_loops';

+------------------------+-------+

| Variable_name | Value |

+------------------------+-------+

| innodb_sync_spin_loops | 120 |

+------------------------+-------+

Using the inplace syntax:

SELECT (@a:=1);

+---------+

| (@a:=1) |

+---------+

| 1 |

+---------+

SELECT @a;

+------+

| @a |

+------+

| 1 |

+------+

1.1.1.2.7.2 SET CHARACTER SET

Syntax

SET {CHARACTER SET | CHARSET}

 {charset_name | DEFAULT}

Description
Sets the character_set_client and character_set_results session system variables to the specified character set and

collation_connection to the value of collation_database, which implicitly sets character_set_connection to the value of

character_set_database.

This maps all strings sent between the current client and the server with the given mapping.

Example

209/4161

SHOW VARIABLES LIKE 'character_set_%';

+--------------------------+--------+

| Variable_name | Value |

+--------------------------+--------+

| character_set_client | utf8 |

| character_set_connection | utf8 |

| character_set_database | latin1 |

| character_set_filesystem | binary |

| character_set_results | utf8 |

| character_set_server | latin1 |

| character_set_system | utf8 |

+--------------------------+--------+

SHOW VARIABLES LIKE 'collation%';

+----------------------+-------------------+

| Variable_name | Value |

+----------------------+-------------------+

| collation_connection | utf8_general_ci |

| collation_database | latin1_swedish_ci |

| collation_server | latin1_swedish_ci |

+----------------------+-------------------+

SET CHARACTER SET utf8mb4;

SHOW VARIABLES LIKE 'character_set_%';

+--------------------------+---------+

| Variable_name | Value |

+--------------------------+---------+

| character_set_client | utf8mb4 |

| character_set_connection | latin1 |

| character_set_database | latin1 |

| character_set_filesystem | binary |

| character_set_results | utf8mb4 |

| character_set_server | latin1 |

| character_set_system | utf8 |

+--------------------------+---------+

SHOW VARIABLES LIKE 'collation%';

+----------------------+-------------------+

| Variable_name | Value |

+----------------------+-------------------+

| collation_connection | latin1_swedish_ci |

| collation_database | latin1_swedish_ci |

| collation_server | latin1_swedish_ci |

+----------------------+-------------------+

1.1.1.2.5.5 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

1.1.1.2.7.4 SET NAMES

Syntax

SET NAMES {'charset_name'

 [COLLATE 'collation_name'] | DEFAULT}

Contents
1. Syntax

2. Description

3. Examples

Description
Sets the character_set_client, character_set_connection, character_set_results and, implicitly, the collation_connection

session system variables to the specified character set and collation.

This determines which character set the client will use to send statements to the server, and the server will use for sending

210/4161

results back to the client.

ucs2 , utf16 , utf16le and utf32 are not valid character sets for SET NAMES , as they cannot be used as client

character sets.

The collation clause is optional. If not defined (or if DEFAULT is specified), the default collation for the character set will be

used.

Quotes are optional for the character set or collation clauses.

Examples

SELECT VARIABLE_NAME, SESSION_VALUE

 FROM INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'character_set_c%' OR

 VARIABLE_NAME LIKE 'character_set_re%' OR

 VARIABLE_NAME LIKE 'collation_c%';

+--------------------------+-----------------+

| VARIABLE_NAME | SESSION_VALUE |

+--------------------------+-----------------+

| CHARACTER_SET_RESULTS | utf8 |

| CHARACTER_SET_CONNECTION | utf8 |

| CHARACTER_SET_CLIENT | utf8 |

| COLLATION_CONNECTION | utf8_general_ci |

+--------------------------+-----------------+

SET NAMES big5;

SELECT VARIABLE_NAME, SESSION_VALUE

 FROM INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'character_set_c%' OR

 VARIABLE_NAME LIKE 'character_set_re%' OR

 VARIABLE_NAME LIKE 'collation_c%';

+--------------------------+-----------------+

| VARIABLE_NAME | SESSION_VALUE |

+--------------------------+-----------------+

| CHARACTER_SET_RESULTS | big5 |

| CHARACTER_SET_CONNECTION | big5 |

| CHARACTER_SET_CLIENT | big5 |

| COLLATION_CONNECTION | big5_chinese_ci |

+--------------------------+-----------------+

SET NAMES 'latin1' COLLATE 'latin1_bin';

SELECT VARIABLE_NAME, SESSION_VALUE

 FROM INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'character_set_c%' OR

 VARIABLE_NAME LIKE 'character_set_re%' OR

 VARIABLE_NAME LIKE 'collation_c%';

+--------------------------+---------------+

| VARIABLE_NAME | SESSION_VALUE |

+--------------------------+---------------+

| CHARACTER_SET_RESULTS | latin1 |

| CHARACTER_SET_CONNECTION | latin1 |

| CHARACTER_SET_CLIENT | latin1 |

| COLLATION_CONNECTION | latin1_bin |

+--------------------------+---------------+

SET NAMES DEFAULT;

SELECT VARIABLE_NAME, SESSION_VALUE

 FROM INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'character_set_c%' OR

 VARIABLE_NAME LIKE 'character_set_re%' OR

 VARIABLE_NAME LIKE 'collation_c%';

+--------------------------+-------------------+

| VARIABLE_NAME | SESSION_VALUE |

+--------------------------+-------------------+

| CHARACTER_SET_RESULTS | latin1 |

| CHARACTER_SET_CONNECTION | latin1 |

| CHARACTER_SET_CLIENT | latin1 |

| COLLATION_CONNECTION | latin1_swedish_ci |

+--------------------------+-------------------+

211/4161

1.1.1.1.7 SET PASSWORD

1.1.1.1.10 SET ROLE

1.1.1.2.7.7 SET SQL_LOG_BIN

Syntax

SET [SESSION] sql_log_bin = {0|1}

Description
Sets the sql_log_bin system variable, which disables or enables binary logging for the current connection, if the client has

the SUPER privilege. The statement is refused with an error if the client does not have that privilege.

Before MariaDB 5.5 and before MySQL 5.6 one could also set sql_log_bin as a global variable. This was disabled as

this was too dangerous as it could damage replication.

1.1.1.2.7.8 SET STATEMENT
Contents
1. Syntax

2. Description

3. Examples

4. Limitations

5. Source

SET STATEMENT can be used to set the value of a system variable for the duration of the statement. It is also possible to

set multiple variables.

Syntax

SET STATEMENT var1=value1 [, var2=value2, ...]

 FOR <statement>

where varN is a system variable (list of allowed variables is provided below), and valueN is a constant literal.

Description
SET STATEMENT var1=value1 FOR stmt

is roughly equivalent to

SET @save_value=@@var1;

SET SESSION var1=value1;

stmt;

SET SESSION var1=@save_value;

The server parses the whole statement before executing it, so any variables set in this fashion that affect the parser may not

have the expected effect. Examples include the charset variables, sql_mode=ansi_quotes, etc.

Examples
One can limit statement execution time max_statement_time :

SET STATEMENT max_statement_time=1000 FOR SELECT ... ;

One can switch on/off individual optimizations:
212/4161

SET STATEMENT optimizer_switch='materialization=off' FOR SELECT;

It is possible to enable MRR/BKA for a query:

SET STATEMENT join_cache_level=6, optimizer_switch='mrr=on' FOR SELECT ...

Note that it makes no sense to try to set a session variable inside a SET STATEMENT :

#USELESS STATEMENT

SET STATEMENT sort_buffer_size = 100000 for SET SESSION sort_buffer_size = 200000;

For the above, after setting sort_buffer_size to 200000 it will be reset to its original state (the state before the SET

STATEMENT started) after the statement execution.

Limitations
There are a number of variables that cannot be set on per-query basis. These include:

autocommit

character_set_client

character_set_connection

character_set_filesystem

collation_connection

default_master_connection

debug_sync

interactive_timeout

gtid_domain_id

last_insert_id

log_slow_filter

log_slow_rate_limit

log_slow_verbosity

long_query_time

min_examined_row_limit

profiling

profiling_history_size

query_cache_type

rand_seed1

rand_seed2

skip_replication

slow_query_log

sql_log_off

tx_isolation

wait_timeout

Source
The feature was originally implemented as a Google Summer of Code 2009 project by Joseph Lukas.

Percona Server 5.6 included it as Per-query variable statement

MariaDB ported the patch and fixed many bugs. The task in MariaDB Jira is MDEV-5231 .

1.1.1.9.4 SET TRANSACTION

1.1.1.2.7.10 SET Variable

Syntax

SET var_name = expr [, var_name = expr] ...

213/4161

http://www.percona.com/doc/percona-server/5.6/flexibility/per_query_variable_statement.html
https://jira.mariadb.org/browse/MDEV-5231

Contents
1. Syntax

2. Description

Description
The SET statement in stored programs is an extended version of the general SET statement. Referenced variables may be

ones declared inside a stored program, global system variables, or user-defined variables.

The SET statement in stored programs is implemented as part of the pre-existing SET syntax. This allows an extended

syntax of SET a=x,

b=y, ... where different variable types (locally declared variables, global and session server variables, user-defined

variables) can be mixed. This also allows combinations of local variables and some options that make sense only for system

variables; in that case, the options are recognized but ignored.

SET can be used with both local variables and user-defined variables.

When setting several variables using the columns returned by a query, SELECT INTO should be preferred.

To set many variables to the same value, the LAST_VALUE() function can be used.

Below is an example of how a user-defined variable may be set:

SET @x = 1;

1.1.1.2.8 SHOW
Articles on the various SHOW commands.

About SHOW

General information about the SHOW statement.

Extended Show

Extended SHOW with WHERE and LIKE.

SHOW ANALYZE

Retrieve ANALYZE-like output from a currently running statement.

SHOW AUTHORS

Information about the people who work on MariaDB.

SHOW BINARY LOGS

SHOW BINARY LOGS lists all binary logs on the server.

SHOW BINLOG EVENTS

Show events in the binary log.

SHOW CHARACTER SET

Available character sets.

SHOW CLIENT_STATISTICS

Statistics about client connections.

SHOW COLLATION

Supported collations.

SHOW COLUMNS

Column information.

SHOW CONTRIBUTORS

Companies and people who financially contribute to MariaDB.

SHOW CREATE DATABASE

Shows the CREATE DATABASE statement that creates the database.

214/4161

SHOW CREATE EVENT

Displays the CREATE EVENT statement that creates a given event.

SHOW CREATE FUNCTION

Shows the CREATE statement that creates the function.

SHOW CREATE PACKAGE

Show the CREATE statement that creates the given package specification.

SHOW CREATE PACKAGE BODY

Show the CREATE statement that creates the given package body (i.e. implementation).

SHOW CREATE PROCEDURE

Shows the CREATE statement that creates the specific stored procedure.

SHOW CREATE SEQUENCE

Shows the CREATE SEQUENCE statement that creates the sequence.

SHOW CREATE TABLE

Shows the CREATE TABLE statement that creates the table.

SHOW CREATE TRIGGER

Shows the CREATE TRIGGER statement that creates the trigger.

SHOW CREATE USER

Show the CREATE USER statement that creates a specified user.

SHOW CREATE VIEW

Shows the CREATE VIEW statement that creates a view.

SHOW DATABASES

Lists the databases on the server.

SHOW ENGINE

Show storage engine information.

SHOW ENGINE INNODB STATUS

Display extensive InnoDB information.

SHOW ENGINES

Server storage engine info

SHOW ERRORS

Displays errors.

SHOW EVENTS

Shows information about events

SHOW EXPLAIN

Shows an execution plan for a running query.

SHOW FUNCTION CODE

Representation of the internal implementation of the stored function

SHOW FUNCTION STATUS

Stored function characteristics

SHOW GRANTS

View GRANT statements.

SHOW INDEX

Information about table indexes.

1

9

215/4161

SHOW INDEX_STATISTICS

Index usage statistics.

SHOW INNODB STATUS (removed)

Removed synonym for SHOW ENGINE INNODB STATUS

SHOW LOCALES

View locales information.

SHOW MASTER STATUS

Status information about the binary log.

SHOW OPEN TABLES

List non-temporary open tables.

SHOW PACKAGE BODY STATUS

Returns characteristics of stored package bodies (implementations).

SHOW PACKAGE STATUS

Returns characteristics of stored package specifications.

SHOW PLUGINS

Display information about installed plugins.

SHOW PLUGINS SONAME

Information about all available plugins, installed or not.

SHOW PRIVILEGES

Shows the list of supported system privileges.

SHOW PROCEDURE CODE

Display internal implementation of a stored procedure.

SHOW PROCEDURE STATUS

Stored procedure characteristics.

SHOW PROCESSLIST

Running threads and information about them.

SHOW PROFILE

Display statement resource usage

SHOW PROFILES

Show statement resource usage

SHOW QUERY_RESPONSE_TIME

Retrieving information from the QUERY_RESPONSE_TIME plugin.

SHOW RELAYLOG EVENTS

Show events in the relay log.

SHOW SLAVE HOSTS

Display replicas currently registered with the primary.

SHOW SLAVE STATUS

Show status for one or all primaries.

SHOW STATUS

Server status information.

SHOW TABLE STATUS

SHOW TABLES with information about non-temporary tables.

1

1

216/4161

https://mariadb.com/kb/en/show-innodb-status-removed/

SHOW TABLES

List of non-temporary tables, views or sequences.

SHOW TABLE_STATISTICS

Table usage statistics.

SHOW TRIGGERS

Shows currently-defined triggers

SHOW USER_STATISTICS

User activity statistics.

SHOW VARIABLES

Displays the values of system variables.

SHOW WARNINGS

Displays errors, warnings and notes.

SHOW WSREP_MEMBERSHIP

Galera node cluster membership information.

SHOW WSREP_STATUS

Galera node cluster status information.

There are 1 related questions .

1.1.1.2.8.1 About SHOW
SHOW has many forms that provide information about databases, tables, columns, or status information about the server.

These include:

SHOW AUTHORS

SHOW CHARACTER SET [like_or_where]

SHOW COLLATION [like_or_where]

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]

SHOW CONTRIBUTORS

SHOW CREATE DATABASE db_name

SHOW CREATE EVENT event_name

SHOW CREATE PACKAGE package_name

SHOW CREATE PACKAGE BODY package_name

SHOW CREATE PROCEDURE proc_name

SHOW CREATE TABLE tbl_name

SHOW CREATE TRIGGER trigger_name

SHOW CREATE VIEW view_name

SHOW DATABASES [like_or_where]

SHOW ENGINE engine_name {STATUS | MUTEX}

SHOW [STORAGE] ENGINES

SHOW ERRORS [LIMIT [offset,] row_count]

SHOW [FULL] EVENTS

SHOW FUNCTION CODE func_name

SHOW FUNCTION STATUS [like_or_where]

SHOW GRANTS FOR user

SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INNODB STATUS

SHOW OPEN TABLES [FROM db_name] [like_or_where]

SHOW PLUGINS

SHOW PROCEDURE CODE proc_name

SHOW PROCEDURE STATUS [like_or_where]

SHOW PRIVILEGES

SHOW [FULL] PROCESSLIST

SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]

SHOW PROFILES

SHOW [GLOBAL | SESSION] STATUS [like_or_where]

217/4161

https://mariadb.com/kb/en/show/+questions/
https://mariadb.com/kb/en/show-innodb-status/

SHOW TABLE STATUS [FROM db_name] [like_or_where]

SHOW TABLES [FROM db_name] [like_or_where]

SHOW TRIGGERS [FROM db_name] [like_or_where]

SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]

SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:

 LIKE 'pattern'

 | WHERE expr

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that can contain the

SQL " % " and " _ " wildcard characters. The pattern is useful for restricting statement output to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which rows to display.

See Extended Show.

1.1.1.2.8.2 Extended Show
Contents
1. Examples

The following SHOW statements can be extended by using a WHERE clause and a LIKE clause to refine the results:

SHOW CHARACTER SET

SHOW COLLATION

SHOW COLUMNS

SHOW DATABASES

SHOW FUNCTION STATUS

SHOW INDEX

SHOW OPEN TABLES

SHOW PACKAGE STATUS

SHOW PACKAGE BODY STATUS

SHOW INDEX

SHOW PROCEDURE STATUS

SHOW STATUS

SHOW TABLE STATUS

SHOW TABLES

SHOW TRIGGERS

SHOW VARIABLES

As with a regular SELECT , the WHERE clause can be used for the specific columns returned, and the LIKE clause with the

regular wildcards.

Examples

SHOW TABLES;

+----------------------+

| Tables_in_test |

+----------------------+

| animal_count |

| animals |

| are_the_mooses_loose |

| aria_test2 |

| t1 |

| view1 |

+----------------------+

Showing the tables beginning with a only.

218/4161

SHOW TABLES WHERE Tables_in_test LIKE 'a%';

+----------------------+

| Tables_in_test |

+----------------------+

| animal_count |

| animals |

| are_the_mooses_loose |

| aria_test2 |

+----------------------+

Variables whose name starts with aria and with a valued of greater than 8192:

SHOW VARIABLES WHERE Variable_name LIKE 'aria%' AND Value >8192;

+------------------------------+---------------------+

| Variable_name | Value |

+------------------------------+---------------------+

| aria_checkpoint_log_activity | 1048576 |

| aria_log_file_size | 1073741824 |

| aria_max_sort_file_size | 9223372036853727232 |

| aria_pagecache_buffer_size | 134217728 |

| aria_sort_buffer_size | 134217728 |

+------------------------------+---------------------+

Shortcut, just returning variables whose name begins with aria.

SHOW VARIABLES LIKE 'aria%';

+--+---------------------+

| Variable_name | Value |

+--+---------------------+

| aria_block_size | 8192 |

| aria_checkpoint_interval | 30 |

| aria_checkpoint_log_activity | 1048576 |

| aria_force_start_after_recovery_failures | 0 |

| aria_group_commit | none |

| aria_group_commit_interval | 0 |

| aria_log_file_size | 1073741824 |

| aria_log_purge_type | immediate |

| aria_max_sort_file_size | 9223372036853727232 |

| aria_page_checksum | ON |

| aria_pagecache_age_threshold | 300 |

| aria_pagecache_buffer_size | 134217728 |

| aria_pagecache_division_limit | 100 |

| aria_recover | NORMAL |

| aria_repair_threads | 1 |

| aria_sort_buffer_size | 134217728 |

| aria_stats_method | nulls_unequal |

| aria_sync_log_dir | NEWFILE |

| aria_used_for_temp_tables | ON |

+--+---------------------+

1.1.1.2.8.3 SHOW ANALYZE

SHOW ANALYZE was added in MariaDB 10.9.

Contents
1. Syntax

2. Description

3. Intended Usage

4. Examples

1. Example 1: Row Counts

2. Example 2: Timing Information

Syntax

MariaDB starting with 10.9

219/4161

SHOW ANALYZE [FORMAT=JSON] FOR <connection_id>;

Description
SHOW ANALYZE allows one to retrieve ANALYZE-like output from a currently running statement. The command

SHOW ANALYZE [FORMAT=JSON] FOR <connection_id>;

connects to the query running in connection connection_id , gets information about the query plan it is executing, also

gets information about the runtime statistics of the execution so far and returns it in a format similar to ANALYZE

[FORMAT=JSON] output.

This is similar to the SHOW EXPLAIN command, the difference being that SHOW ANALYZE also produces runtime statistics

information.

Intended Usage
Imagine you're trying to troubleshoot a query that never finishes. Since it doesn't finish, it is not possible to get ANALYZE

output for it. With SHOW ANALYZE , you can get the runtime statistics without waiting for the query to finish.

Examples

Example 1: Row Counts

Consider the tables orders and customer and a join query finding the total amount of orders from customers with Gold

status:

explain format=json

select sum(orders.amount)

from

 customer join orders on customer.cust_id=orders.cust_id

where

 customer.status='GOLD';

The EXPLAIN for this query looks like this:

+------+-------------+----------+------+---------------+---------+---------+------------------+--------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+----------+------+---------------+---------+---------+------------------+--------+-------------+

| 1 | SIMPLE | customer | ALL | PRIMARY | NULL | NULL | NULL | 199786 | Using where |

| 1 | SIMPLE | orders | ref | cust_id | cust_id | 5 | customer.cust_id | 1 | |

+------+-------------+----------+------+---------------+---------+---------+------------------+--------+-------------+

We run the SELECT, and it has been running for 30 seconds. Let's try SHOW ANALYZE :

show analyze format=json for 3;

| {

 "r_query_time_in_progress_ms": 32138,

^ this shows how long the query has been running.

220/4161

 "query_block": {

 "select_id": 1,

 "r_loops": 1,

 "nested_loop": [

 {

 "table": {

 "table_name": "customer",

 "access_type": "ALL",

 "possible_keys": ["PRIMARY"],

 "r_loops": 1,

 "rows": 199786,

 "r_rows": 110544,

^ rows shows the number of rows expected. r_rows in this example shows how many rows were processed so far (110K

out of expected 200K). r_loops above shows we're doing the first table scan (which is obvious for this query plan).

 "filtered": 100,

 "r_filtered": 9.538283398,

 "attached_condition": "customer.`status` = 'GOLD'"

 }

 },

 {

 "table": {

 "table_name": "orders",

 "access_type": "ref",

 "possible_keys": ["cust_id"],

 "key": "cust_id",

 "key_length": "5",

 "used_key_parts": ["cust_id"],

 "ref": ["test.customer.cust_id"],

 "r_loops": 10544,

 "rows": 1,

 "r_rows": 99.99222307,

^ here, rows: 1 shows the optimizer was expecting 1 order per customer. But r_rows: 99.9 shows that execution has

found on average 100 orders per customer. This may be the reason the query is slower than expected!

The final chunk of the output doesn't have anything interesting but here it is:

 "filtered": 100,

 "r_filtered": 100

 }

 }

]

 }

}

Example 2: Timing Information

Regular SELECT queries collect row count information, so SHOW ANALYZE can display it. However, detailed timing

information is not collected, as collecting it may have CPU overhead. But if the target query is collecting timing information,

SHOW ANALYZE will display it. How does one get the target query to collect timing information? Currently there is one way: if

the target is running ANALYZE , it IS collecting timing information. Re-running the previous example:

Connection 1> ANALYZE SELECT ... ;

221/4161

Connection 2> SHOW ANALYZE FORMAT=JSON FOR <connection_id>;

ANALYZE

{

 "r_query_time_in_progress_ms": 30727,

 "query_block": {

 "select_id": 1,

 "r_loops": 1,

 "nested_loop": [

 {

 "table": {

 "table_name": "customer",

 "access_type": "ALL",

 "possible_keys": ["PRIMARY"],

 "r_loops": 1,

 "rows": 199786,

 "r_rows": 109994,

 "r_table_time_ms": 232.699,

 "r_other_time_ms": 46.355,

^ Now, ANALYZE prints timing information in members named r_..._time_ms . One can see that so far, out of 30

seconds, only 232 millisecond were spent in reading the customer table. The bottleneck is elsewhere...

 "filtered": 100,

 "r_filtered": 9.085950143,

 "attached_condition": "customer.`status` = 'GOLD'"

 }

 },

 {

 "table": {

 "table_name": "orders",

 "access_type": "ref",

 "possible_keys": ["cust_id"],

 "key": "cust_id",

 "key_length": "5",

 "used_key_parts": ["cust_id"],

 "ref": ["test.customer.cust_id"],

 "r_loops": 9994,

 "rows": 1,

 "r_rows": 99.99779868,

 "r_table_time_ms": 29460.609,

 "r_other_time_ms": 986.842,

^ 29.4 seconds were spent reading the orders table (and 0.986 seconds in processing the obtained rows). Now we can see

where the query is spending time.

 "filtered": 100,

 "r_filtered": 100

 }

 }

]

 }

}

1.1.1.2.8.4 SHOW AUTHORS

Syntax

SHOW AUTHORS

Description
The SHOW AUTHORS statement displays information about the people who work on MariaDB. For each author, it displays

Name, Location, and Comment values. All columns are encoded as latin1.

These include:

222/4161

First the active people in MariaDB are listed.

Then the active people in MySQL.

Last the people that have contributed to MariaDB/MySQL in the past.

The order is somewhat related to importance of the contribution given to the MariaDB project, but this is not 100% accurate.

There is still room for improvement and debate...

Example

SHOW AUTHORS\G

*************************** 1. row ***************************

 Name: Michael (Monty) Widenius

Location: Tusby, Finland

 Comment: Lead developer and main author

*************************** 2. row ***************************

 Name: Sergei Golubchik

Location: Kerpen, Germany

 Comment: Architect, Full-text search, precision math, plugin framework, merges etc

*************************** 3. row ***************************

 Name: Igor Babaev

Location: Bellevue, USA

 Comment: Optimizer, keycache, core work

*************************** 4. row ***************************

 Name: Sergey Petrunia

Location: St. Petersburg, Russia

 Comment: Optimizer

*************************** 5. row ***************************

 Name: Oleksandr Byelkin

Location: Lugansk, Ukraine

 Comment: Query Cache (4.0), Subqueries (4.1), Views (5.0)

*************************** 6. row ***************************

 Name: Timour Katchaounov

Location: Sofia , Bulgaria

 Comment: Optimizer

*************************** 7. row ***************************

 Name: Kristian Nielsen

Location: Copenhagen, Denmark

 Comment: Replication, Async client prototocol, General buildbot stuff

*************************** 8. row ***************************

 Name: Alexander (Bar) Barkov

Location: Izhevsk, Russia

 Comment: Unicode and character sets

*************************** 9. row ***************************

 Name: Alexey Botchkov (Holyfoot)

Location: Izhevsk, Russia

 Comment: GIS extensions, embedded server, precision math

*************************** 10. row ***************************

 Name: Daniel Bartholomew

Location: Raleigh, USA

 Comment: MariaDB documentation, Buildbot, releases

*************************** 11. row ***************************

 Name: Colin Charles

Location: Selangor, Malesia

 Comment: MariaDB documentation, talks at a LOT of conferences

*************************** 12. row ***************************

 Name: Sergey Vojtovich

Location: Izhevsk, Russia

 Comment: initial implementation of plugin architecture, maintained native storage engines

(MyISAM, MEMORY, ARCHIVE, etc), rewrite of table cache

*************************** 13. row ***************************

 Name: Vladislav Vaintroub

Location: Mannheim, Germany

 Comment: MariaDB Java connector, new thread pool, Windows optimizations

*************************** 14. row ***************************

 Name: Elena Stepanova

Location: Sankt Petersburg, Russia

 Comment: QA, test cases

*************************** 15. row ***************************

 Name: Georg Richter

Location: Heidelberg, Germany

 Comment: New LGPL C connector, PHP connector

*************************** 16. row ***************************

 Name: Jan Lindström
223/4161

Location: Ylämylly, Finland

 Comment: Working on InnoDB

*************************** 17. row ***************************

 Name: Lixun Peng

Location: Hangzhou, China

 Comment: Multi Source replication

*************************** 18. row ***************************

 Name: Olivier Bertrand

Location: Paris, France

 Comment: CONNECT storage engine

*************************** 19. row ***************************

 Name: Kentoku Shiba

Location: Tokyo, Japan

 Comment: Spider storage engine, metadata_lock_info Information schema

*************************** 20. row ***************************

 Name: Percona

Location: CA, USA

 Comment: XtraDB, microslow patches, extensions to slow log

*************************** 21. row ***************************

 Name: Vicentiu Ciorbaru

Location: Bucharest, Romania

 Comment: Roles

*************************** 22. row ***************************

 Name: Sudheera Palihakkara

Location:

 Comment: PCRE Regular Expressions

*************************** 23. row ***************************

 Name: Pavel Ivanov

Location: USA

 Comment: Some patches and bug fixes

*************************** 24. row ***************************

 Name: Konstantin Osipov

Location: Moscow, Russia

 Comment: Prepared statements (4.1), Cursors (5.0), GET_LOCK (10.0)

*************************** 25. row ***************************

 Name: Ian Gilfillan

Location: South Africa

 Comment: MariaDB documentation

*************************** 26. row ***************************

 Name: Federico Razolli

Location: Italy

 Comment: MariaDB documentation Italian translation

*************************** 27. row ***************************

 Name: Guilhem Bichot

Location: Bordeaux, France

 Comment: Replication (since 4.0)

*************************** 28. row ***************************

 Name: Andrei Elkin

Location: Espoo, Finland

 Comment: Replication

*************************** 29. row ***************************

 Name: Dmitri Lenev

Location: Moscow, Russia

 Comment: Time zones support (4.1), Triggers (5.0)

*************************** 30. row ***************************

 Name: Marc Alff

Location: Denver, CO, USA

 Comment: Signal, Resignal, Performance schema

*************************** 31. row ***************************

 Name: Mikael Ronström

Location: Stockholm, Sweden

 Comment: NDB Cluster, Partitioning, online alter table

*************************** 32. row ***************************

 Name: Ingo Strüwing

Location: Berlin, Germany

 Comment: Bug fixing in MyISAM, Merge tables etc

*************************** 33. row ***************************

 Name: Marko Mäkelä

Location: Helsinki, Finland

 Comment: InnoDB core developer

...

224/4161

1.1.1.2.8.5 SHOW BINARY LOGS

Syntax

SHOW BINARY LOGS

SHOW MASTER LOGS

Description
Lists the binary log files on the server. This statement is used as part of the procedure described in PURGE BINARY LOGS

, that shows how to determine which logs can be purged.

This statement requires the SUPER privilege, the REPLICATION_CLIENT privilege, or, from MariaDB 10.5.2, the BINLOG

MONITOR privilege.

Examples

SHOW BINARY LOGS;

+--------------------+-----------+

| Log_name | File_size |

+--------------------+-----------+

| mariadb-bin.000001 | 19039 |

| mariadb-bin.000002 | 717389 |

| mariadb-bin.000003 | 300 |

| mariadb-bin.000004 | 333 |

| mariadb-bin.000005 | 899 |

| mariadb-bin.000006 | 125 |

| mariadb-bin.000007 | 18907 |

| mariadb-bin.000008 | 19530 |

| mariadb-bin.000009 | 151 |

| mariadb-bin.000010 | 151 |

| mariadb-bin.000011 | 125 |

| mariadb-bin.000012 | 151 |

| mariadb-bin.000013 | 151 |

| mariadb-bin.000014 | 125 |

| mariadb-bin.000015 | 151 |

| mariadb-bin.000016 | 314 |

+--------------------+-----------+

1.1.1.2.8.6 SHOW BINLOG EVENTS

Syntax

SHOW BINLOG EVENTS

 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Description
Shows the events in the binary log. If you do not specify ' log_name ', the first binary log is displayed.

Requires the BINLOG MONITOR privilege (>= MariaDB 10.5.2) or the REPLICATION SLAVE privilege (<= MariaDB

10.5.1).

Example

225/4161

https://mariadb.com/kb/en/purge-logs/

SHOW BINLOG EVENTS IN 'mysql_sandbox10019-bin.000002';

+-------------------------------+-----+-------------------+-----------+-------------+--------

--+

| Log_name | Pos | Event_type | Server_id | End_log_pos | Info

|

+-------------------------------+-----+-------------------+-----------+-------------+--------

--+

| mysql_sandbox10019-bin.000002 | 4 | Format_desc | 1 | 248 | Server

ver: 10.0.19-MariaDB-log, Binlog ver: 4 |

| mysql_sandbox10019-bin.000002 | 248 | Gtid_list | 1 | 273 | []

|

| mysql_sandbox10019-bin.000002 | 273 | Binlog_checkpoint | 1 | 325 |

mysql_sandbox10019-bin.000002 |

| mysql_sandbox10019-bin.000002 | 325 | Gtid | 1 | 363 | GTID 0-

1-1 |

| mysql_sandbox10019-bin.000002 | 363 | Query | 1 | 446 | CREATE

DATABASE blog |

| mysql_sandbox10019-bin.000002 | 446 | Gtid | 1 | 484 | GTID 0-

1-2 |

| mysql_sandbox10019-bin.000002 | 484 | Query | 1 | 571 | use

`blog`; CREATE TABLE bb (id INT) |

+-------------------------------+-----+-------------------+-----------+-------------+--------

--+

1.1.1.2.8.7 SHOW CHARACTER SET

Syntax

SHOW CHARACTER SET

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present on its own, indicates

which character set names to match. The WHERE and LIKE clauses can be given to select rows using more general

conditions, as discussed in Extended SHOW.

The same information can be queried from the Information Schema CHARACTER_SETS table.

See Setting Character Sets and Collations for details on specifying the character set at the server, database, table and

column levels.

Examples

SHOW CHARACTER SET LIKE 'latin%';

+---------+-----------------------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------------------+-------------------+--------+

| latin1 | cp1252 West European | latin1_swedish_ci | 1 |

| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |

| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |

| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |

+---------+-----------------------------+-------------------+--------+

226/4161

SHOW CHARACTER SET WHERE Maxlen LIKE '2';

+---------+---------------------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+---------------------------+-------------------+--------+

| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |

| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |

| euckr | EUC-KR Korean | euckr_korean_ci | 2 |

| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |

| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |

| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |

| cp932 | SJIS for Windows Japanese | cp932_japanese_ci | 2 |

+---------+---------------------------+-------------------+--------+

1.1.1.2.8.8 SHOW CLIENT_STATISTICS

Syntax

SHOW CLIENT_STATISTICS

Description
The SHOW CLIENT_STATISTICS statement is part of the User Statistics feature. It was removed as a separate statement in

MariaDB 10.1.1 , but effectively replaced by the generic SHOW information_schema_table statement. The

information_schema.CLIENT_STATISTICS table holds statistics about client connections.

The userstat system variable must be set to 1 to activate this feature. See the User Statistics and

information_schema.CLIENT_STATISTICS articles for more information.

Example

SHOW CLIENT_STATISTICS\G

*************************** 1. row ***************************

 Client: localhost

 Total_connections: 35

Concurrent_connections: 0

 Connected_time: 708

 Busy_time: 2.5557979999999985

 Cpu_time: 0.04123740000000002

 Bytes_received: 3883

 Bytes_sent: 21595

 Binlog_bytes_written: 0

 Rows_read: 18

 Rows_sent: 115

 Rows_deleted: 0

 Rows_inserted: 0

 Rows_updated: 0

 Select_commands: 70

 Update_commands: 0

 Other_commands: 0

 Commit_transactions: 1

 Rollback_transactions: 0

 Denied_connections: 0

 Lost_connections: 0

 Access_denied: 0

 Empty_queries: 35

5.2.6 SHOW COLLATION

1.1.1.2.1.16 SHOW COLUMNS

227/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

1.1.1.2.8.11 SHOW CONTRIBUTORS

Syntax

SHOW CONTRIBUTORS

Description
The SHOW CONTRIBUTORS statement displays information about the companies and people who financially contribute to

MariaDB. For each contributor, it displays Name , Location , and Comment values. All columns are encoded as latin1 .

It displays all members and sponsors of the MariaDB Foundation as well as other financial contributors.

Example

SHOW CONTRIBUTORS;

+---------------------+-------------------------------+--------------------------------------

-----------------------+

| Name | Location | Comment

|

+---------------------+-------------------------------+--------------------------------------

-----------------------+

| Alibaba Cloud | https://www.alibabacloud.com/ | Platinum Sponsor of the MariaDB

Foundation |

| Tencent Cloud | https://cloud.tencent.com | Platinum Sponsor of the MariaDB

Foundation |

| Microsoft | https://microsoft.com/ | Platinum Sponsor of the MariaDB

Foundation |

| MariaDB Corporation | https://mariadb.com | Founding member, Platinum Sponsor of

the MariaDB Foundation |

| ServiceNow | https://servicenow.com | Platinum Sponsor of the MariaDB

Foundation |

| Intel | https://www.intel.com | Platinum Sponsor of the MariaDB

Foundation |

| SIT | https://sit.org | Platinum Sponsor of the MariaDB

Foundation |

| Visma | https://visma.com | Gold Sponsor of the MariaDB Foundation

|

| DBS | https://dbs.com | Gold Sponsor of the MariaDB Foundation

|

| IBM | https://www.ibm.com | Gold Sponsor of the MariaDB Foundation

|

| Automattic | https://automattic.com | Silver Sponsor of the MariaDB

Foundation |

| Percona | https://www.percona.com/ | Sponsor of the MariaDB Foundation

|

| Galera Cluster | https://galeracluster.com | Sponsor of the MariaDB Foundation

|

| Google | USA | Sponsoring encryption, parallel

replication and GTID |

| Facebook | USA | Sponsoring non-blocking API, LIMIT

ROWS EXAMINED etc |

| Ronald Bradford | Brisbane, Australia | EFF contribution for UC2006 Auction

|

| Sheeri Kritzer | Boston, Mass. USA | EFF contribution for UC2006 Auction

|

| Mark Shuttleworth | London, UK. | EFF contribution for UC2006 Auction

|

+---------------------+-------------------------------+--------------------------------------

-----------------------+

1.1.1.2.8.12 SHOW CREATE DATABASE

Syntax
228/4161

https://mariadb.org/en/supporters

Syntax
SHOW CREATE {DATABASE | SCHEMA} db_name

Contents
1. Syntax

2. Description

3. Examples

Description
Shows the CREATE DATABASE statement that creates the given database. SHOW CREATE SCHEMA is a synonym for

SHOW CREATE DATABASE . SHOW CREATE DATABASE quotes database names according to the value of the

sql_quote_show_create server system variable.

Examples

SHOW CREATE DATABASE test;

+----------+---+

| Database | Create Database |

+----------+---+

| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |

+----------+---+

SHOW CREATE SCHEMA test;

+----------+---+

| Database | Create Database |

+----------+---+

| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |

+----------+---+

With sql_quote_show_create off:

SHOW CREATE DATABASE test;

+----------+---+

| Database | Create Database |

+----------+---+

| test | CREATE DATABASE test /*!40100 DEFAULT CHARACTER SET latin1 */ |

+----------+---+

With a comment, from MariaDB 10.5:

SHOW CREATE DATABASE p;

+----------+--+

| Database | Create Database |

+----------+--+

| p | CREATE DATABASE `p` /*!40100 DEFAULT CHARACTER SET latin1 */ COMMENT 'presentations' |

+----------+--+

1.1.1.2.8.13 SHOW CREATE EVENT

Syntax

SHOW CREATE EVENT event_name

Description
This statement displays the CREATE EVENT statement that creates a given event, as well as the SQL_MODE that was

used when the trigger has been created and the character set used by the connection. To find out which events are present,

use SHOW EVENTS.

SHOW CREATE EVENT quotes identifiers according to the value of the sql_quote_show_create system variable. Prior to

229/4161

MariaDB 10.6.5, MariaDB 10.5.13 and MariaDB 10.4.22, the output of this statement was unreliably affected by the

sql_quote_show_create system variable.

The information_schema.EVENTS table provides similar, but more complete, information.

Examples

SHOW CREATE EVENT test.e_daily\G

*************************** 1. row ***************************

 Event: e_daily

 sql_mode:

 time_zone: SYSTEM

 Create Event: CREATE EVENT `e_daily`

 ON SCHEDULE EVERY 1 DAY

 STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR

 ON COMPLETION NOT PRESERVE

 ENABLE

 COMMENT 'Saves total number of sessions then

 clears the table each day'

 DO BEGIN

 INSERT INTO site_activity.totals (time, total)

 SELECT CURRENT_TIMESTAMP, COUNT(*)

 FROM site_activity.sessions;

 DELETE FROM site_activity.sessions;

 END

character_set_client: latin1

collation_connection: latin1_swedish_ci

 Database Collation: latin1_swedish_ci

1.1.1.2.8.14 SHOW CREATE FUNCTION

Syntax

SHOW CREATE FUNCTION func_name

Description
This statement is similar to SHOW CREATE PROCEDURE but for stored functions.

SHOW CREATE FUNCTION quotes identifiers according to the value of the sql_quote_show_create system variable. Prior to

MariaDB 10.6.5, MariaDB 10.5.13 and MariaDB 10.4.22, the output of this statement was unreliably affected by the

sql_quote_show_create system variable.

Example

SHOW CREATE FUNCTION VatCents\G

*************************** 1. row ***************************

 Function: VatCents

 sql_mode:

 Create Function: CREATE DEFINER=`root`@`localhost` FUNCTION `VatCents`(price

DECIMAL(10,2)) RETURNS int(11)

 DETERMINISTIC

BEGIN

 DECLARE x INT;

 SET x = price * 114;

 RETURN x;

END

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

1.1.1.2.8.15 SHOW CREATE PACKAGE
230/4161

Syntax

SHOW CREATE PACKAGE [db_name .] package_name

Contents
1. Syntax

2. Description

3. Examples

Description
The SHOW CREATE PACKAGE statement can be used when Oracle SQL_MODE is set. It shows the CREATE statement that

creates the given package specification.

SHOW CREATE PACKAGE quotes identifiers according to the value of the sql_quote_show_create system variable.

Examples

SHOW CREATE PACKAGE employee_tools\G

*************************** 1. row ***************************

 Package: employee_tools

 sql_mode:

PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ORACLE,NO_KEY_OPTIONS,NO_TABLE_OPTIONS,NO_FIELD_OPTION

S,NO_AUTO_CREATE_USER

 Create Package: CREATE DEFINER="root"@"localhost" PACKAGE "employee_tools" AS

 FUNCTION getSalary(eid INT) RETURN DECIMAL(10,2);

 PROCEDURE raiseSalary(eid INT, amount DECIMAL(10,2));

 PROCEDURE raiseSalaryStd(eid INT);

 PROCEDURE hire(ename TEXT, esalary DECIMAL(10,2));

END

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

1.1.1.2.8.16 SHOW CREATE PACKAGE BODY

Syntax

SHOW CREATE PACKAGE BODY [db_name .] package_name

Contents
1. Syntax

2. Description

3. Examples

Description
The SHOW CREATE PACKAGE BODY statement shows the CREATE PACKAGE BODY statement that creates the given

package body (i.e. the implementation of the package). CREATE PACKAGE BODY can be used when Oracle SQL_MODE is

set, or from MariaDB 11.4.

SHOW CREATE PACKAGE BODY quotes identifiers according to the value of the sql_quote_show_create system variable.

Examples

231/4161

SHOW CREATE PACKAGE BODY employee_tools\G

*************************** 1. row ***************************

 Package body: employee_tools

 sql_mode:

PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ORACLE,NO_KEY_OPTIONS,NO_TABLE_OPTIONS,NO_FIELD_OPTION

S,NO_AUTO_CREATE_USER

 Create Package Body: CREATE DEFINER="root"@"localhost" PACKAGE BODY "employee_tools" AS

 stdRaiseAmount DECIMAL(10,2):=500;

 PROCEDURE log (eid INT, ecmnt TEXT) AS

 BEGIN

 INSERT INTO employee_log (id, cmnt) VALUES (eid, ecmnt);

 END;

 PROCEDURE hire(ename TEXT, esalary DECIMAL(10,2)) AS

 eid INT;

 BEGIN

 INSERT INTO employee (name, salary) VALUES (ename, esalary);

 eid:= last_insert_id();

 log(eid, 'hire ' || ename);

 END;

 FUNCTION getSalary(eid INT) RETURN DECIMAL(10,2) AS

 nSalary DECIMAL(10,2);

 BEGIN

 SELECT salary INTO nSalary FROM employee WHERE id=eid;

 log(eid, 'getSalary id=' || eid || ' salary=' || nSalary);

 RETURN nSalary;

 END;

 PROCEDURE raiseSalary(eid INT, amount DECIMAL(10,2)) AS

 BEGIN

 UPDATE employee SET salary=salary+amount WHERE id=eid;

 log(eid, 'raiseSalary id=' || eid || ' amount=' || amount);

 END;

 PROCEDURE raiseSalaryStd(eid INT) AS

 BEGIN

 raiseSalary(eid, stdRaiseAmount);

 log(eid, 'raiseSalaryStd id=' || eid);

 END;

BEGIN

 log(0, 'Session ' || connection_id() || ' ' || current_user || ' started');

END

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

1.1.1.2.8.17 SHOW CREATE PROCEDURE

Syntax

SHOW CREATE PROCEDURE proc_name

Contents
1. Syntax

2. Description

3. Examples

Description
This statement is a MariaDB extension. It returns the exact string that can be used to re-create the named stored procedure,

as well as the SQL_MODE that was used when the trigger has been created and the character set used by the connection..

A similar statement, SHOW CREATE FUNCTION, displays information about stored functions.

232/4161

Both statements require that:

you are the owner of the routine;

you have the SHOW CREATE ROUTINE privilege (from MariaDB 11.3.0); or

have the SELECT privilege on the mysql.proc table.

When none of the above statements are true, the statements display NULL for the Create Procedure or Create

Function field.

Warning Users with SELECT privileges on mysql.proc or USAGE privileges on *.* can view the text of routines,

even when they do not have privileges for the function or procedure itself.

SHOW CREATE PROCEDURE quotes identifiers according to the value of the sql_quote_show_create system variable. Prior to

MariaDB 10.6.5, MariaDB 10.5.13 and MariaDB 10.4.22, the output of this statement was unreliably affected by the

sql_quote_show_create system variable.

Examples
Here's a comparison of the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

SHOW CREATE PROCEDURE test.simpleproc\G

*************************** 1. row ***************************

 Procedure: simpleproc

 sql_mode:

 Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)

 BEGIN

 SELECT COUNT(*) INTO param1 FROM t;

 END

character_set_client: latin1

collation_connection: latin1_swedish_ci

 Database Collation: latin1_swedish_ci

SHOW CREATE FUNCTION test.hello\G

*************************** 1. row ***************************

 Function: hello

 sql_mode:

 Create Function: CREATE FUNCTION `hello`(s CHAR(20))

 RETURNS CHAR(50)

 RETURN CONCAT('Hello, ',s,'!')

character_set_client: latin1

collation_connection: latin1_swedish_ci

 Database Collation: latin1_swedish_ci

When the user issuing the statement does not have privileges on the routine, attempting to CALL the procedure raises Error

1370.

CALL test.prc1();

Error 1370 (42000): execute command denied to

 user 'test_user'@'localhost' for routine 'test'.'prc1'

If the user neither has privilege to the routine nor the SELECT privilege on mysql.proc table, it raises Error 1305, informing

them that the procedure does not exist.

SHOW CREATE TABLES test.prc1\G

Error 1305 (42000): PROCEDURE prc1 does not exist

1.1.1.2.8.18 SHOW CREATE SEQUENCE

Syntax

SHOW CREATE SEQUENCE sequence_name;

233/4161

Contents
1. Syntax

2. Description

3. Example

4. Notes

Description
Shows the CREATE SEQUENCE statement that creates the given sequence. The statement requires the SELECT privilege

for the table.

SHOW CREATE SEQUENCE quotes identifiers according to the value of the sql_quote_show_create system variable.

Example

CREATE SEQUENCE s1 START WITH 50;

SHOW CREATE SEQUENCE s1\G;

*************************** 1. row ***************************

 Table: s1

Create Table: CREATE SEQUENCE `s1` start with 50 minvalue 1 maxvalue 9223372036854775806

 increment by 1 cache 1000 nocycle ENGINE=InnoDB

Notes
If you want to see the underlying table structure used for the SEQUENCE you can use SHOW CREATE TABLE on the

SEQUENCE . You can also use SELECT to read the current recorded state of the SEQUENCE :

SHOW CREATE TABLE s1\G

*************************** 1. row ***************************

 Table: s1

Create Table: CREATE TABLE `s1` (

 `next_not_cached_value` bigint(21) NOT NULL,

 `minimum_value` bigint(21) NOT NULL,

 `maximum_value` bigint(21) NOT NULL,

 `start_value` bigint(21) NOT NULL COMMENT 'start value when sequences is created

 or value if RESTART is used',

 `increment` bigint(21) NOT NULL COMMENT 'increment value',

 `cache_size` bigint(21) unsigned NOT NULL,

 `cycle_option` tinyint(1) unsigned NOT NULL COMMENT '0 if no cycles are allowed,

 1 if the sequence should begin a new cycle when maximum_value is passed',

 `cycle_count` bigint(21) NOT NULL COMMENT 'How many cycles have been done'

) ENGINE=InnoDB SEQUENCE=1

SELECT * FROM s1\G

*************************** 1. row ***************************

next_not_cached_value: 50

 minimum_value: 1

 maximum_value: 9223372036854775806

 start_value: 50

 increment: 1

 cache_size: 1000

 cycle_option: 0

 cycle_count: 0

1.1.1.2.1.17 SHOW CREATE TABLE

1.1.1.2.8.20 SHOW CREATE TRIGGER

Syntax

SHOW CREATE TRIGGER trigger_name

234/4161

Contents
1. Syntax

2. Description

3. Examples

Description
This statement shows a CREATE TRIGGER statement that creates the given trigger, as well as the SQL_MODE that was

used when the trigger has been created and the character set used by the connection.

The TRIGGER privilege is required on the table the trigger is defined for to execute this statement.

SHOW CREATE TRIGGER quotes identifiers according to the value of the sql_quote_show_create system variable. Prior to

MariaDB 10.6.5, MariaDB 10.5.13 and MariaDB 10.4.22, the output of this statement was unreliably affected by the

sql_quote_show_create system variable.

Examples

SHOW CREATE TRIGGER example\G

*************************** 1. row ***************************

 Trigger: example

 sql_mode: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,STRICT_ALL_TABLES

,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_

ENGINE_SUBSTITUTION

SQL Original Statement: CREATE DEFINER=`root`@`localhost` TRIGGER example BEFORE

 INSERT ON t FOR EACH ROW

BEGIN

 SET NEW.c = NEW.c * 2;

END

 character_set_client: cp850

 collation_connection: cp850_general_ci

 Database Collation: utf8_general_ci

 Created: 2016-09-29 13:53:34.35

The Created column was added in MariaDB 10.2.3 as part of introducing multiple trigger events per action.

1.1.1.1.13 SHOW CREATE USER

1.1.1.2.8.22 SHOW CREATE VIEW

Syntax

SHOW CREATE VIEW view_name

Description
This statement shows a CREATE VIEW statement that creates the given view, as well as the character set used by the

connection when the view was created. This statement also works with views.

SHOW CREATE VIEW quotes table, column and stored function names according to the value of the sql_quote_show_create

server system variable.

Examples

235/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

SHOW CREATE VIEW example\G

*************************** 1. row ***************************

 View: example

 Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL

SECURITY DEFINER VIEW `example` AS (select `t`.`id` AS `id`,`t`.`s` AS `s` from

`t`)

character_set_client: cp850

collation_connection: cp850_general_ci

With sql_quote_show_create off:

SHOW CREATE VIEW example\G

*************************** 1. row ***************************

 View: example

 Create View: CREATE ALGORITHM=UNDEFINED DEFINER=root@localhost SQL SECU

RITY DEFINER VIEW example AS (select t.id AS id,t.s AS s from t)

character_set_client: cp850

collation_connection: cp850_general_ci

Grants
To be able to see a view, you need to have the SHOW VIEW and the SELECT privilege on the view:

GRANT SHOW VIEW,SELECT ON test_database.test_view TO 'test'@'localhost';

1.1.1.2.8.23 SHOW DATABASES

Syntax

SHOW {DATABASES | SCHEMAS}

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW DATABASES lists the databases on the MariaDB server host. SHOW SCHEMAS is a synonym for SHOW DATABASES .

The LIKE clause, if present on its own, indicates which database names to match. The WHERE and LIKE clauses can be

given to select rows using more general conditions, as discussed in Extended SHOW.

You see only those databases for which you have some kind of privilege, unless you have the global SHOW DATABASES

privilege. You can also get this list using the mariadb-show command.

If the server was started with the --skip-show-database option, you cannot use this statement at all unless you have the

SHOW DATABASES privilege.

The list of results returned by SHOW DATABASES is based on directories in the data directory, which is how MariaDB

implements databases. It's possible that output includes directories that do not correspond to actual databases.

The Information Schema SCHEMATA table also contains database information.

Examples

236/4161

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| test |

+--------------------+

SHOW DATABASES LIKE 'm%';

+---------------+

| Database (m%) |

+---------------+

| mysql |

+---------------+

1.1.1.2.8.24 SHOW ENGINE
Contents
1. Syntax

2. Description

1. SHOW ENGINE INNODB STATUS

2. SHOW ENGINE INNODB MUTEX

3. SHOW ENGINE PERFORMANCE_SCHEMA STATUS

4. SHOW ENGINE ROCKSDB STATUS

Syntax

SHOW ENGINE engine_name {STATUS | MUTEX}

Description
SHOW ENGINE displays operational information about a storage engine. The following statements currently are supported:

SHOW ENGINE INNODB STATUS

SHOW ENGINE INNODB MUTEX

SHOW ENGINE PERFORMANCE_SCHEMA STATUS

SHOW ENGINE ROCKSDB STATUS

If the Sphinx Storage Engine is installed, the following is also supported:

SHOW ENGINE SPHINX STATUS

See SHOW ENGINE SPHINX STATUS .

Older (and now removed) synonyms were SHOW INNODB STATUS for SHOW ENGINE INNODB STATUS and SHOW MUTEX

STATUS for SHOW ENGINE INNODB MUTEX .

SHOW ENGINE INNODB STATUS

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor about the state of the

InnoDB storage engine. See SHOW ENGINE INNODB STATUS for more.

SHOW ENGINE INNODB MUTEX

SHOW ENGINE INNODB MUTEX displays InnoDB mutex statistics.

The statement displays the following output fields:

Type: Always InnoDB.

Name: The source file where the mutex is implemented, and the line number in the file where the mutex is created.

237/4161

The line number is dependent on the MariaDB version.

Status: This field displays the following values if UNIV_DEBUG was defined at compilation time (for example, in

include/univ.h in the InnoDB part of the source tree). Only the os_waits value is displayed if UNIV_DEBUG was not

defined. Without UNIV_DEBUG , the information on which the output is based is insufficient to distinguish regular

mutexes and mutexes that protect rw-locks (which allow multiple readers or a single writer). Consequently, the output

may appear to contain multiple rows for the same mutex.

count indicates how many times the mutex was requested.

spin_waits indicates how many times the spinlock had to run.

spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits provides the

average round count.)

os_waits indicates the number of operating system waits. This occurs when the spinlock did not work (the

mutex was not locked during the spinlock and it was necessary to yield to the operating system and wait).

os_yields indicates the number of times a the thread trying to lock a mutex gave up its timeslice and yielded to

the operating system (on the presumption that allowing other threads to run will free the mutex so that it can be

locked).

os_wait_times indicates the amount of time (in ms) spent in operating system waits, if the timed_mutexes

system variable is 1 (ON). If timed_mutexes is 0 (OFF), timing is disabled, so os_wait_times is 0.

timed_mutexes is off by default.

Information from this statement can be used to diagnose system problems. For example, large values of spin_waits and

spin_rounds may indicate scalability problems.

The information_schema.INNODB_MUTEXES table provides similar information.

SHOW ENGINE PERFORMANCE_SCHEMA STATUS

This statement shows how much memory is used for performance_schema tables and internal buffers.

The output contains the following fields:

Type: Always performance_schema .

Name: The name of a table, the name of an internal buffer, or the performance_schema word, followed by a dot

and an attribute. Internal buffers names are enclosed by parenthesis. performance_schema means that the

attribute refers to the whole database (it is a total).

Status: The value for the attribute.

The following attributes are shown, in this order, for all tables:

row_size: The memory used for an individual record. This value will never change.

row_count: The number of rows in the table or buffer. For some tables, this value depends on a server system

variable.

memory: For tables and performance_schema , this is the result of row_size * row_count .

For internal buffers, the attributes are:

count

size

SHOW ENGINE ROCKSDB STATUS

See also MyRocks Performance Troubleshooting

1.1.1.2.8.25 SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB STATUS is a specific form of the SHOW ENGINE statement that displays the InnoDB Monitor

output, which is extensive InnoDB information which can be useful in diagnosing problems.

The following sections are displayed

Status: Shows the timestamp, monitor name and the number of seconds, or the elapsed time between the current

time and the time the InnoDB Monitor output was last displayed. The per-second averages are based upon this time.

BACKGROUND THREAD: srv_master_thread lines show work performed by the main background thread.

SEMAPHORES: Threads waiting for a semaphore and stats on how the number of times threads have needed a spin

or a wait on a mutex or rw-lock semaphore. If this number of threads is large, there may be I/O or contention issues.

Reducing the size of the innodb_thread_concurrency system variable may help if contention is related to thread

scheduling. Spin rounds per wait shows the number of spinlock rounds per OS wait for a mutex.

LATEST FOREIGN KEY ERROR: Only shown if there has been a foreign key constraint error, it displays the failed

statement and information about the constraint and the related tables.

LATEST DETECTED DEADLOCK: Only shown if there has been a deadlock, it displays the transactions involved in

the deadlock and the statements being executed, held and required locked and the transaction rolled back to.
238/4161

TRANSACTIONS: The output of this section can help identify lock contention, as well as reasons for the deadlocks.

FILE I/O: InnoDB thread information as well as pending I/O operations and I/O performance statistics.

INSERT BUFFER AND ADAPTIVE HASH INDEX: InnoDB insert buffer (old name for the change buffer) and

adaptive hash index status information, including the number of each type of operation performed, and adaptive hash

index performance.

LOG: InnoDB log information, including current log sequence number, how far the log has been flushed to disk, the

position at which InnoDB last took a checkpoint, pending writes and write performance statistics.

BUFFER POOL AND MEMORY: Information on buffer pool pages read and written, which allows you to see the

number of data file I/O operations performed by your queries. See InnoDB Buffer Pool for more. Similar information is

also available from the INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS table.

ROW OPERATIONS:Information about the main thread, including the number and performance rate for each type of

row operation.

If the innodb_status_output_locks system variable is set to 1 , extended lock information will be displayed.

Example output:

=====================================

2019-09-06 12:44:13 0x7f93cc236700 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 4 seconds

BACKGROUND THREAD

srv_master_thread loops: 2 srv_active, 0 srv_shutdown, 83698 srv_idle

srv_master_thread log flush and writes: 83682

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 15

OS WAIT ARRAY INFO: signal count 8

RW-shared spins 0, rounds 20, OS waits 7

RW-excl spins 0, rounds 0, OS waits 0

RW-sx spins 0, rounds 0, OS waits 0

Spin rounds per wait: 20.00 RW-shared, 0.00 RW-excl, 0.00 RW-sx

TRANSACTIONS

Trx id counter 236

Purge done for trx's n:o < 236 undo n:o < 0 state: running

History list length 22

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 421747401994584, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 421747401990328, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

FILE I/O

I/O thread 0 state: waiting for completed aio requests (insert buffer thread)

I/O thread 1 state: waiting for completed aio requests (log thread)

I/O thread 2 state: waiting for completed aio requests (read thread)

I/O thread 3 state: waiting for completed aio requests (read thread)

I/O thread 4 state: waiting for completed aio requests (read thread)

I/O thread 5 state: waiting for completed aio requests (read thread)

I/O thread 6 state: waiting for completed aio requests (write thread)

I/O thread 7 state: waiting for completed aio requests (write thread)

I/O thread 8 state: waiting for completed aio requests (write thread)

I/O thread 9 state: waiting for completed aio requests (write thread)

Pending normal aio reads: [0, 0, 0, 0] , aio writes: [0, 0, 0, 0] ,

 ibuf aio reads:, log i/o's:, sync i/o's:

Pending flushes (fsync) log: 0; buffer pool: 0

286 OS file reads, 171 OS file writes, 22 OS fsyncs

0.00 reads/s, 0 avg bytes/read, 0.00 writes/s, 0.00 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2, 0 merges

merged operations:

 insert 0, delete mark 0, delete 0

discarded operations:

 insert 0, delete mark 0, delete 0

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)
239/4161

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)

Hash table size 34679, node heap has 0 buffer(s)

0.00 hash searches/s, 0.00 non-hash searches/s

LOG

Log sequence number 445926

Log flushed up to 445926

Pages flushed up to 445926

Last checkpoint at 445917

0 pending log flushes, 0 pending chkp writes

18 log i/o's done, 0.00 log i/o's/second

BUFFER POOL AND MEMORY

Total large memory allocated 167772160

Dictionary memory allocated 50768

Buffer pool size 8012

Free buffers 7611

Database pages 401

Old database pages 0

Modified db pages 0

Percent of dirty pages(LRU & free pages): 0.000

Max dirty pages percent: 75.000

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 0, not young 0

0.00 youngs/s, 0.00 non-youngs/s

Pages read 264, created 137, written 156

0.00 reads/s, 0.00 creates/s, 0.00 writes/s

No buffer pool page gets since the last printout

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s

LRU len: 401, unzip_LRU len: 0

I/O sum[0]:cur[0], unzip sum[0]:cur[0]

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue

0 read views open inside InnoDB

Process ID=4267, Main thread ID=140272021272320, state: sleeping

Number of rows inserted 1, updated 0, deleted 0, read 1

0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

Number of system rows inserted 0, updated 0, deleted 0, read 0

0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT

============================

1.1.1.2.8.26 SHOW ENGINES

Syntax

SHOW [STORAGE] ENGINES

Description
SHOW ENGINES displays status information about the server's storage engines. This is particularly useful for checking

whether a storage engine is supported, or to see what the default engine is. SHOW TABLE TYPES is a deprecated synonym.

The information_schema.ENGINES table provides the same information.

Since storage engines are plugins, different information about them is also shown in the information_schema.PLUGINS

table and by the SHOW PLUGINS statement.

240/4161

Note that both MySQL's InnoDB and Percona's XtraDB replacement are labeled as InnoDB . However, if XtraDB is in use,

it will be specified in the COMMENT field. See XtraDB and InnoDB. The same applies to FederatedX .

The output consists of the following columns:

Engine indicates the engine's name.

Support indicates whether the engine is installed, and whether it is the default engine for the current session.

Comment is a brief description.

Transactions , XA and Savepoints indicate whether transactions, XA transactions and transaction savepoints

are supported by the engine.

Examples

241/4161

https://mariadb.com/kb/en/federatedx/

SHOW ENGINES\G

*************************** 1. row ***************************

 Engine: InnoDB

 Support: DEFAULT

 Comment: Supports transactions, row-level locking, and foreign keys

Transactions: YES

 XA: YES

 Savepoints: YES

*************************** 2. row ***************************

 Engine: CSV

 Support: YES

 Comment: CSV storage engine

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 3. row ***************************

 Engine: MyISAM

 Support: YES

 Comment: MyISAM storage engine

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 4. row ***************************

 Engine: BLACKHOLE

 Support: YES

 Comment: /dev/null storage engine (anything you write to it disappears)

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 5. row ***************************

 Engine: FEDERATED

 Support: YES

 Comment: FederatedX pluggable storage engine

Transactions: YES

 XA: NO

 Savepoints: YES

*************************** 6. row ***************************

 Engine: MRG_MyISAM

 Support: YES

 Comment: Collection of identical MyISAM tables

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 7. row ***************************

 Engine: ARCHIVE

 Support: YES

 Comment: Archive storage engine

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 8. row ***************************

 Engine: MEMORY

 Support: YES

 Comment: Hash based, stored in memory, useful for temporary tables

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 9. row ***************************

 Engine: PERFORMANCE_SCHEMA

 Support: YES

 Comment: Performance Schema

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 10. row ***************************

 Engine: Aria

 Support: YES

 Comment: Crash-safe tables with MyISAM heritage

Transactions: NO

 XA: NO

 Savepoints: NO

10 rows in set (0.00 sec)

242/4161

1.1.1.2.8.27 SHOW ERRORS

Syntax

SHOW ERRORS [LIMIT [offset,] row_count]

SHOW ERRORS [LIMIT row_count OFFSET offset]

SHOW COUNT(*) ERRORS

Contents
1. Syntax

2. Description

3. Examples

Description
This statement is similar to SHOW WARNINGS, except that instead of displaying errors, warnings, and notes, it displays

only errors.

The LIMIT clause has the same syntax as for the SELECT statement.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number from the

error_count variable.

SHOW COUNT(*) ERRORS;

SELECT @@error_count;

The value of error_count might be greater than the number of messages displayed by SHOW WARNINGS if the

max_error_count system variable is set so low that not all messages are stored.

For a list of MariaDB error codes, see MariaDB Error Codes .

Examples

SELECT f();

ERROR 1305 (42000): FUNCTION f does not exist

SHOW COUNT(*) ERRORS;

+-----------------------+

| @@session.error_count |

+-----------------------+

| 1 |

+-----------------------+

SHOW ERRORS;

+-------+------+---------------------------+

| Level | Code | Message |

+-------+------+---------------------------+

| Error | 1305 | FUNCTION f does not exist |

+-------+------+---------------------------+

1.1.1.2.8.28 SHOW EVENTS

Syntax

SHOW EVENTS [{FROM | IN} schema_name]

 [LIKE 'pattern' | WHERE expr]

Description
Shows information about Event Manager events (created with CREATE EVENT). Requires the EVENT privilege. Without any

243/4161

https://mariadb.com/kb/en/mariadb-error-codes/

arguments, SHOW EVENTS lists all of the events in the current schema:

SELECT CURRENT_USER(), SCHEMA();

+----------------+----------+

| CURRENT_USER() | SCHEMA() |

+----------------+----------+

| jon@ghidora | myschema |

+----------------+----------+

SHOW EVENTS\G

*************************** 1. row ***************************

 Db: myschema

 Name: e_daily

 Definer: jon@ghidora

 Time zone: SYSTEM

 Type: RECURRING

 Execute at: NULL

 Interval value: 10

 Interval field: SECOND

 Starts: 2006-02-09 10:41:23

 Ends: NULL

 Status: ENABLED

 Originator: 0

character_set_client: latin1

collation_connection: latin1_swedish_ci

 Database Collation: latin1_swedish_ci

To see the event action, use SHOW CREATE EVENT instead, or look at the information_schema.EVENTS table.

To see events for a specific schema, use the FROM clause. For example, to see events for the test schema, use the

following statement:

SHOW EVENTS FROM test;

The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given to select rows using

more general conditions, as discussed in Extended Show.

4.2.2.8 SHOW FUNCTION CODE

1.1.1.2.8.30 SHOW FUNCTION STATUS

Syntax

SHOW FUNCTION STATUS

 [LIKE 'pattern' | WHERE expr]

Description
This statement is similar to SHOW PROCEDURE STATUS but for stored functions.

The LIKE clause, if present on its own, indicates which function names to match.

The WHERE and LIKE clauses can be given to select rows using more general conditions, as discussed in Extended

SHOW.

The information_schema.ROUTINES table contains more detailed information.

Examples
Showing all stored functions:

244/4161

SHOW FUNCTION STATUS\G

*************************** 1. row ***************************

 Db: test

 Name: VatCents

 Type: FUNCTION

 Definer: root@localhost

 Modified: 2013-06-01 12:40:31

 Created: 2013-06-01 12:40:31

 Security_type: DEFINER

 Comment:

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

Stored functions whose name starts with 'V':

SHOW FUNCTION STATUS LIKE 'V%' \G

*************************** 1. row ***************************

 Db: test

 Name: VatCents

 Type: FUNCTION

 Definer: root@localhost

 Modified: 2013-06-01 12:40:31

 Created: 2013-06-01 12:40:31

 Security_type: DEFINER

 Comment:

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

Stored functions with a security type of 'DEFINER':

SHOW FUNCTION STATUS WHERE Security_type LIKE 'DEFINER' \G

*************************** 1. row ***************************

 Db: test

 Name: VatCents

 Type: FUNCTION

 Definer: root@localhost

 Modified: 2013-06-01 12:40:31

 Created: 2013-06-01 12:40:31

 Security_type: DEFINER

 Comment:

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

1.1.1.1.12 SHOW GRANTS

1.1.1.2.1.18 SHOW INDEX

1.1.1.2.8.33 SHOW INDEX_STATISTICS

Syntax

SHOW INDEX_STATISTICS

Description
The SHOW INDEX_STATISTICS statement was introduced in MariaDB 5.2 as part of the User Statistics feature. It was

removed as a separate statement in MariaDB 10.1.1 , but effectively replaced by the generic SHOW

information_schema_table statement. The information_schmea.INDEX_STATISTICS table shows statistics on index

usage and makes it possible to do such things as locating unused indexes and generating the commands to remove them.

245/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

The userstat system variable must be set to 1 to activate this feature. See the User Statistics and

information_schema.INDEX_STATISTICS table for more information.

Example

SHOW INDEX_STATISTICS;

+--------------+-------------------+------------+-----------+

| Table_schema | Table_name | Index_name | Rows_read |

+--------------+-------------------+------------+-----------+

| test | employees_example | PRIMARY | 1 |

+--------------+-------------------+------------+-----------+

1.1.1.2.8.34 SHOW LOCALES
SHOW LOCALES was introduced as part of the Information Schema plugin extension .

SHOW LOCALES is used to return locales information as part of the Locales plugin. While the

information_schema.LOCALES table has 8 columns, the SHOW LOCALES statement will only display 4 of them:

Example

SHOW LOCALES;

+-----+-------+-------------------------------------+------------------------+

| Id | Name | Description | Error_Message_Language |

+-----+-------+-------------------------------------+------------------------+

| 0 | en_US | English - United States | english |

| 1 | en_GB | English - United Kingdom | english |

| 2 | ja_JP | Japanese - Japan | japanese |

| 3 | sv_SE | Swedish - Sweden | swedish |

...

1.1.1.2.5.8 SHOW BINLOG STATUS

1.1.1.2.8.36 SHOW OPEN TABLES

Syntax

SHOW OPEN TABLES [FROM db_name]

 [LIKE 'pattern' | WHERE expr]

Description
SHOW OPEN TABLES lists the non- TEMPORARY tables that are currently open in the table cache. See

http://dev.mysql.com/doc/refman/5.1/en/table-cache.html .

The FROM and LIKE clauses may be used.

The FROM clause, if present, restricts the tables shown to those present in the db_name database.

The LIKE clause, if present on its own, indicates which table names to match. The WHERE and LIKE clauses can be

given to select rows using more general conditions, as discussed in Extended SHOW.

The following information is returned:

Column Description

Database Database name.

Name Table name.

In_use Number of table instances being used.

246/4161

https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://mariadb.com/kb/en/server-locale/
http://dev.mysql.com/doc/refman/5.1/en/table-cache.html

Name_locked 1 if the table is name-locked, e.g. if it is being dropped or renamed, otherwise 0 .

Before MariaDB 5.5, each use of, for example, LOCK TABLE ... WRITE would increment In_use for that table. With the

implementation of the metadata locking improvements in MariaDB 5.5, LOCK TABLE... WRITE acquires a strong MDL

lock, and concurrent connections will wait on this MDL lock, so any subsequent LOCK TABLE... WRITE will not increment

In_use .

Example

SHOW OPEN TABLES;

+----------+---------------------------+--------+-------------+

| Database | Table | In_use | Name_locked |

+----------+---------------------------+--------+-------------+

...

| test | xjson | 0 | 0 |

| test | jauthor | 0 | 0 |

| test | locks | 1 | 0 |

...

+----------+---------------------------+--------+-------------+

1.1.1.2.8.37 SHOW PACKAGE BODY STATUS

Oracle-style packages were introduced in MariaDB 10.3.5 .

Syntax

SHOW PACKAGE BODY STATUS

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
The SHOW PACKAGE BODY STATUS statement returns characteristics of stored package bodies (implementations), such as

the database, name, type, creator, creation and modification dates, and character set information. A similar statement, SHOW

PACKAGE STATUS , displays information about stored package specifications.

The LIKE clause, if present, indicates which package names to match. The WHERE and LIKE clauses can be given to

select rows using more general conditions, as discussed in Extended SHOW.

The ROUTINES table in the INFORMATION_SCHEMA database contains more detailed information.

Examples

SHOW PACKAGE BODY STATUS LIKE 'pkg1'\G

*************************** 1. row ***************************

 Db: test

 Name: pkg1

 Type: PACKAGE BODY

 Definer: root@localhost

 Modified: 2018-02-27 14:44:14

 Created: 2018-02-27 14:44:14

 Security_type: DEFINER

 Comment: This is my first package body

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

MariaDB starting with 10.3.5

247/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

1.1.1.2.8.38 SHOW PACKAGE STATUS

Oracle-style packages were introduced in MariaDB 10.3.5 .

Syntax

SHOW PACKAGE STATUS

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
The SHOW PACKAGE STATUS statement returns characteristics of stored package specifications, such as the database,

name, type, creator, creation and modification dates, and character set information. A similar statement, SHOW PACKAGE

BODY STATUS , displays information about stored package bodies (i.e. implementations).

The LIKE clause, if present, indicates which package names to match. The WHERE and LIKE clauses can be given to

select rows using more general conditions, as discussed in Extended SHOW.

The ROUTINES table in the INFORMATION_SCHEMA database contains more detailed information.

Examples

SHOW PACKAGE STATUS LIKE 'pkg1'\G

*************************** 1. row ***************************

 Db: test

 Name: pkg1

 Type: PACKAGE

 Definer: root@localhost

 Modified: 2018-02-27 14:38:15

 Created: 2018-02-27 14:38:15

 Security_type: DEFINER

 Comment: This is my first package

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

MariaDB starting with 10.3.5

1.1.1.2.6.1 SHOW PLUGINS

1.1.1.2.6.2 SHOW PLUGINS SONAME

1.1.1.2.8.41 SHOW PRIVILEGES

Syntax

SHOW PRIVILEGES

Description
SHOW PRIVILEGES shows the list of system privileges that the MariaDB server supports. The exact list of privileges

depends on the version of your server.

Note that before MariaDB 10.3.23 , MariaDB 10.4.13 and MariaDB 10.5.2 , the Delete history privilege displays as
248/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/

Delete versioning rows (MDEV-20382).

Example
From MariaDB 10.5.9

SHOW PRIVILEGES;

+--------------------------+---------------------------------------+-------------------------

---+

| Privilege | Context | Comment

|

+--------------------------+---------------------------------------+-------------------------

---+

| Alter | Tables | To alter the table

|

| Alter routine | Functions,Procedures | To alter or drop stored

functions/procedures |

| Create | Databases,Tables,Indexes | To create new databases

and tables |

| Create routine | Databases | To use CREATE

FUNCTION/PROCEDURE |

| Create temporary tables | Databases | To use CREATE TEMPORARY

TABLE |

| Create view | Tables | To create new views

|

| Create user | Server Admin | To create new users

|

| Delete | Tables | To delete existing rows

|

| Delete history | Tables | To delete versioning

table historical rows |

| Drop | Databases,Tables | To drop databases,

tables, and views |

| Event | Server Admin | To create, alter, drop

and execute events |

| Execute | Functions,Procedures | To execute stored routines

|

| File | File access on server | To read and write files

on the server |

| Grant option | Databases,Tables,Functions,Procedures | To give to other users

those privileges you possess |

| Index | Tables | To create or drop indexes

|

| Insert | Tables | To insert data into

tables |

| Lock tables | Databases | To use LOCK TABLES

(together with SELECT privilege) |

| Process | Server Admin | To view the plain text of

currently executing queries |

| Proxy | Server Admin | To make proxy user

possible |

| References | Databases,Tables | To have references on

tables |

| Reload | Server Admin | To reload or refresh

tables, logs and privileges |

| Binlog admin | Server | To purge binary logs

|

| Binlog monitor | Server | To use SHOW BINLOG STATUS

and SHOW BINARY LOG |

| Binlog replay | Server | To use BINLOG (generated

by mariadb-binlog) |

| Replication master admin | Server | To monitor connected

slaves |

| Replication slave admin | Server | To start/stop slave and

apply binlog events |

| Slave monitor | Server | To use SHOW SLAVE STATUS

and SHOW RELAYLOG EVENTS |

| Replication slave | Server Admin | To read binary log events

from the master |

| Select | Tables | To retrieve rows from

table |

| Show databases | Server Admin | To see all databases with

SHOW DATABASES |

| Show view | Tables | To see views with SHOW 249/4161

https://jira.mariadb.org/browse/MDEV-20382

| Show view | Tables | To see views with SHOW

CREATE VIEW |

| Shutdown | Server Admin | To shut down the server

|

| Super | Server Admin | To use KILL thread, SET

GLOBAL, CHANGE MASTER, etc. |

| Trigger | Tables | To use triggers

|

| Create tablespace | Server Admin | To create/alter/drop

tablespaces |

| Update | Tables | To update existing rows

|

| Set user | Server | To create views and

stored routines with a different definer |

| Federated admin | Server | To execute the CREATE

SERVER, ALTER SERVER, DROP SERVER statements |

| Connection admin | Server | To bypass connection

limits and kill other users' connections |

| Read_only admin | Server | To perform write

operations even if @@read_only=ON |

| Usage | Server Admin | No privileges - allow

connect only |

+--------------------------+---------------------------------------+-------------------------

---+

41 rows in set (0.000 sec)

1.1.1.2.8.42 SHOW PROCEDURE CODE

Syntax

SHOW PROCEDURE CODE proc_name

Contents
1. Syntax

2. Description

3. Examples

Description
This statement is a MariaDB extension that is available only for servers that have been built with debugging support. It

displays a representation of the internal implementation of the named stored procedure. A similar statement, SHOW

FUNCTION CODE , displays information about stored functions.

Both statements require that you be the owner of the routine or have SELECT access to the mysql.proc table.

If the named routine is available, each statement produces a result set. Each row in the result set corresponds to one

"instruction" in the routine. The first column is Pos, which is an ordinal number beginning with 0. The second column is

Instruction, which contains an SQL statement (usually changed from the original source), or a directive which has meaning

only to the stored-routine handler.

Examples

250/4161

DELIMITER //

CREATE PROCEDURE p1 ()

 BEGIN

 DECLARE fanta INT DEFAULT 55;

 DROP TABLE t2;

 LOOP

 INSERT INTO t3 VALUES (fanta);

 END LOOP;

 END//

Query OK, 0 rows affected (0.00 sec)

SHOW PROCEDURE CODE p1//

+-----+--+

| Pos | Instruction |

+-----+--+

| 0 | set fanta@0 55 |

| 1 | stmt 9 "DROP TABLE t2" |

| 2 | stmt 5 "INSERT INTO t3 VALUES (fanta)" |

| 3 | jump 2 |

+-----+--+

1.1.1.2.8.43 SHOW PROCEDURE STATUS

Syntax

SHOW PROCEDURE STATUS

 [LIKE 'pattern' | WHERE expr]

Description
This statement is a MariaDB extension. It returns characteristics of a stored procedure, such as the database, name, type,

creator, creation and modification dates, and character set information. A similar statement, SHOW FUNCTION STATUS ,

displays information about stored functions.

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE and LIKE clauses can be

given to select rows using more general conditions, as discussed in Extended SHOW.

The ROUTINES table in the INFORMATION_SCHEMA database contains more detailed information.

Examples

SHOW PROCEDURE STATUS LIKE 'p1'\G

*************************** 1. row ***************************

 Db: test

 Name: p1

 Type: PROCEDURE

 Definer: root@localhost

 Modified: 2010-08-23 13:23:03

 Created: 2010-08-23 13:23:03

 Security_type: DEFINER

 Comment:

character_set_client: latin1

collation_connection: latin1_swedish_ci

 Database Collation: latin1_swedish_ci

1.1.1.2.8.44 SHOW PROCESSLIST

Syntax

251/4161

SHOW [FULL] PROCESSLIST

Description
SHOW PROCESSLIST shows you which threads are running. You can also get this information from the

information_schema.PROCESSLIST table or the mariadb-admin processlist command. If you have the PROCESS

privilege , you can see all threads. Otherwise, you can see only your own threads (that is, threads associated with the

MariaDB account that you are using). If you do not use the FULL keyword, only the first 100 characters of each statement

are shown in the Info field.

The columns shown in SHOW PROCESSLIST are:

Name Description

ID The client's process ID.

USER The username associated with the process.

HOST The host the client is connected to.

DB The default database of the process (NULL if no default).

COMMAND The command type. See Thread Command Values.

TIME

The amount of time, in seconds, the process has been in its current state. For a replica SQL thread before

MariaDB 10.1, this is the time in seconds between the last replicated event's timestamp and the replica

machine's real time.

STATE See Thread States.

INFO The statement being executed.

PROGRESS The total progress of the process (0-100%) (see Progress Reporting).

See TIME_MS column in information_schema.PROCESSLIST for differences in the TIME column between MariaDB and

MySQL.

The information_schema.PROCESSLIST table contains the following additional columns:

Name Description

TIME_MS The amount of time, in milliseconds, the process has been in its current state.

STAGE The stage the process is currently in.

MAX_STAGE The maximum number of stages.

PROGRESS The progress of the process within the current stage (0-100%).

MEMORY_USED The amount of memory used by the process.

EXAMINED_ROWS The number of rows the process has examined.

QUERY_ID Query ID.

Note that the PROGRESS field from the information schema, and the PROGRESS field from SHOW PROCESSLIST display

different results. SHOW PROCESSLIST shows the total progress, while the information schema shows the progress for the

current stage only.

Threads can be killed using their thread_id or their query_id, with the KILL statement.

Since queries on this table are locking, if the performance_schema is enabled, you may want to query the THREADS table

instead.

Examples

252/4161

SHOW PROCESSLIST;

+----+-----------------+-----------+------+---------+------+------------------------+--------

----------+----------+

| Id | User | Host | db | Command | Time | State | Info

| Progress |

+----+-----------------+-----------+------+---------+------+------------------------+--------

----------+----------+

| 2 | event_scheduler | localhost | NULL | Daemon | 2693 | Waiting on empty queue | NULL

| 0.000 |

| 4 | root | localhost | NULL | Query | 0 | Table lock | SHOW

PROCESSLIST | 0.000 |

+----+-----------------+-----------+------+---------+------+------------------------+--------

----------+----------+

1.1.1.2.8.45 SHOW PROFILE

Syntax

SHOW PROFILE [type [, type] ...]

 [FOR QUERY n]

 [LIMIT row_count [OFFSET offset]]

type:

 ALL

 | BLOCK IO

 | CONTEXT SWITCHES

 | CPU

 | IPC

 | MEMORY

 | PAGE FAULTS

 | SOURCE

 | SWAPS

Description
The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates resource usage for

statements executed during the course of the current session.

Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF). Profiling is enabled by setting

profiling to 1 or ON :

SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the master. The size of the list is controlled by the

profiling_history_size session variable, which has a default value of 15 . The maximum value is 100 . Setting the

value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILES and SHOW PROFILE , so you will find neither of those statements in the

profile list. Malformed statements are profiled. For example, SHOW PROFILING is an illegal statement, and a syntax error

occurs if you try to execute it, but it will show up in the profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n clause, the output

pertains to the most recently executed statement. If FOR QUERY n is included, SHOW PROFILE displays information for

statement n. The values of n correspond to the Query_ID values displayed by SHOW PROFILES .

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is given, OFFSET offset

may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like the State values displayed by

SHOW PROCESSLIST (see General Thread States), although there might be some minor differences in interpretation for

the two statements for some status values.

Optional type values may be specified to display specific additional types of information:

ALL displays all information

BLOCK IO displays counts for block input and output operations

253/4161

CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

CPU displays user and system CPU usage times

IPC displays counts for messages sent and received

MEMORY is not currently implemented

PAGE FAULTS displays counts for major and minor page faults

SOURCE displays the names of functions from the source code, together with the name and line number of the file in

which the function occurs

SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

The information_schema.PROFILING table contains similar information.

Examples

254/4161

SELECT @@profiling;

+-------------+

| @@profiling |

+-------------+

| 0 |

+-------------+

SET profiling = 1;

USE test;

DROP TABLE IF EXISTS t1;

CREATE TABLE T1 (id INT);

SHOW PROFILES;

+----------+------------+--------------------------+

| Query_ID | Duration | Query |

+----------+------------+--------------------------+

| 1 | 0.00009200 | SELECT DATABASE() |

| 2 | 0.00023800 | show databases |

| 3 | 0.00018900 | show tables |

| 4 | 0.00014700 | DROP TABLE IF EXISTS t1 |

| 5 | 0.24476900 | CREATE TABLE T1 (id INT) |

+----------+------------+--------------------------+

SHOW PROFILE;

+----------------------+----------+

| Status | Duration |

+----------------------+----------+

| starting | 0.000042 |

| checking permissions | 0.000044 |

| creating table | 0.244645 |

| After create | 0.000013 |

| query end | 0.000003 |

| freeing items | 0.000016 |

| logging slow query | 0.000003 |

| cleaning up | 0.000003 |

+----------------------+----------+

SHOW PROFILE FOR QUERY 4;

+--------------------+----------+

| Status | Duration |

+--------------------+----------+

| starting | 0.000126 |

| query end | 0.000004 |

| freeing items | 0.000012 |

| logging slow query | 0.000003 |

| cleaning up | 0.000002 |

+--------------------+----------+

SHOW PROFILE CPU FOR QUERY 5;

+----------------------+----------+----------+------------+

| Status | Duration | CPU_user | CPU_system |

+----------------------+----------+----------+------------+

| starting | 0.000042 | 0.000000 | 0.000000 |

| checking permissions | 0.000044 | 0.000000 | 0.000000 |

| creating table | 0.244645 | 0.000000 | 0.000000 |

| After create | 0.000013 | 0.000000 | 0.000000 |

| query end | 0.000003 | 0.000000 | 0.000000 |

| freeing items | 0.000016 | 0.000000 | 0.000000 |

| logging slow query | 0.000003 | 0.000000 | 0.000000 |

| cleaning up | 0.000003 | 0.000000 | 0.000000 |

+----------------------+----------+----------+------------+

1.1.1.2.8.46 SHOW PROFILES

Syntax

255/4161

SHOW PROFILES

Description
The SHOW PROFILES statement displays profiling information that indicates resource usage for statements executed during

the course of the current session. It is used together with SHOW PROFILE .

1.1.1.2.8.47 SHOW
QUERY_RESPONSE_TIME
It is possible to use SHOW QUERY_RESPONSE_TIME as an alternative for retrieving information from the

QUERY_RESPONSE_TIME plugin.

This was introduced as part of the Information Schema plugin extension .

1.1.1.2.5.6 SHOW RELAYLOG EVENTS

1.1.1.2.5.9 SHOW REPLICA HOSTS

1.1.1.2.5.7 SHOW REPLICA STATUS

1.1.1.2.8.51 SHOW STATUS

Syntax

SHOW [GLOBAL | SESSION] STATUS

 [LIKE 'pattern' | WHERE expr]

Description
SHOW STATUS provides server status information. This information also can be obtained using the mariadb-admin

extended-status command, or by querying the Information Schema GLOBAL_STATUS and SESSION_STATUS tables. The

LIKE clause, if present, indicates which variable names to match. The WHERE clause can be given to select rows using

more general conditions.

With the GLOBAL modifier, SHOW STATUS displays the status values for all connections to MariaDB. With SESSION , it

displays the status values for the current connection. If no modifier is present, the default is SESSION . LOCAL is a synonym

for SESSION . If you see a lot of 0 values, the reason is probably that you have used SHOW STATUS with a new connection

instead of SHOW GLOBAL STATUS .

Some status variables have only a global value. For these, you get the same value for both GLOBAL and SESSION .

See Server Status Variables for a full list, scope and description of the variables that can be viewed with SHOW STATUS .

The LIKE clause, if present on its own, indicates which variable name to match.

The WHERE and LIKE clauses can be given to select rows using more general conditions, as discussed in Extended

SHOW.

Examples

256/4161

https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

SHOW GLOBAL STATUS;

+--+-----------------------------

-----------+

| Variable_name | Value

|

+--+-----------------------------

-----------+

| Aborted_clients | 0

|

| Aborted_connects | 0

|

| Access_denied_errors | 0

|

| Acl_column_grants | 0

|

| Acl_database_grants | 2

|

| Acl_function_grants | 0

|

| Acl_procedure_grants | 0

|

| Acl_proxy_users | 2

|

| Acl_role_grants | 0

|

| Acl_roles | 0

|

| Acl_table_grants | 0

|

| Acl_users | 6

|

| Aria_pagecache_blocks_not_flushed | 0

|

| Aria_pagecache_blocks_unused | 15706

|

...

| wsrep_local_index | 18446744073709551615

|

| wsrep_provider_name |

|

| wsrep_provider_vendor |

|

| wsrep_provider_version |

|

| wsrep_ready | OFF

|

| wsrep_thread_count | 0

|

+--+-----------------------------

-----------+

516 rows in set (0.00 sec)

Example of filtered output:

SHOW STATUS LIKE 'Key%';

+------------------------+--------+

| Variable_name | Value |

+------------------------+--------+

| Key_blocks_not_flushed | 0 |

| Key_blocks_unused | 107163 |

| Key_blocks_used | 0 |

| Key_blocks_warm | 0 |

| Key_read_requests | 0 |

| Key_reads | 0 |

| Key_write_requests | 0 |

| Key_writes | 0 |

+------------------------+--------+

8 rows in set (0.00 sec)

1.1.1.2.8.52 SHOW TABLE STATUS
257/4161

Syntax

SHOW TABLE STATUS [{FROM | IN} db_name]

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Views

4. Example

Description
SHOW TABLE STATUS works like SHOW TABLES, but provides more extensive information about each table (until MariaDB

11.2.0, only non-TEMPORARY tables are shown).

The LIKE clause, if present on its own, indicates which table names to match. The WHERE and LIKE clauses can be

given to select rows using more general conditions, as discussed in Extended SHOW.

The following information is returned:

Column Description

Name Table name.

Engine Table storage engine.

Version Version number from the table's .frm file.

Row_format Row format (see InnoDB, Aria and MyISAM row formats).

Rows Number of rows in the table. Some engines, such as InnoDB may store an estimate.

Avg_row_length Average row length in the table.

Data_length
For InnoDB, the index size, in pages, multiplied by the page size. For Aria and MyISAM, length of the

data file, in bytes. For MEMORY, the approximate allocated memory.

Max_data_length
Maximum length of the data file, ie the total number of bytes that could be stored in the table. Not

used in InnoDB.

Index_length Length of the index file.

Data_free

Bytes allocated but unused. For InnoDB tables in a shared tablespace, the free space of the shared

tablespace with small safety margin. An estimate in the case of partitioned tables - see the

PARTITIONS table.

Auto_increment Next AUTO_INCREMENT value.

Create_time

Time the table was created. Some engines just return the ctime information from the file system layer

here, in that case the value is not necessarily the table creation time but rather the time the file system

metadata for it had last changed.

Update_time

Time the table was last updated. On Windows, the timestamp is not updated on update, so MyISAM

values will be inaccurate. In InnoDB, if shared tablespaces are used, will be NULL , while buffering

can also delay the update, so the value will differ from the actual time of the last UPDATE , INSERT or

DELETE .

Check_time Time the table was last checked. Not kept by all storage engines, in which case will be NULL .

Collation Character set and collation.

Checksum Live checksum value, if any.

Create_options Extra CREATE TABLE options.

Comment Table comment provided when MariaDB created the table.

Max_index_length Maximum index length (supported by MyISAM and Aria tables).

Temporary

Until MariaDB 11.2.0, placeholder to signal that a table is a temporary table and always "N", except

"Y" for generated information_schema tables and NULL for views. From MariaDB 11.2.0, will also be

set to "Y" for local temporary tables.

Similar information can be found in the information_schema.TABLES table as well as by using mariadb-show:
258/4161

mariadb-show --status db_name

Views
For views, all columns in SHOW TABLE STATUS are NULL except 'Name' and 'Comment'

Example

show table status\G

*************************** 1. row ***************************

 Name: bus_routes

 Engine: InnoDB

 Version: 10

 Row_format: Dynamic

 Rows: 5

 Avg_row_length: 3276

 Data_length: 16384

Max_data_length: 0

 Index_length: 0

 Data_free: 0

 Auto_increment: NULL

 Create_time: 2017-05-24 11:17:46

 Update_time: NULL

 Check_time: NULL

 Collation: latin1_swedish_ci

 Checksum: NULL

 Create_options:

 Comment:

1.1.1.2.8.53 SHOW TABLES

Syntax

SHOW [FULL] TABLES [FROM db_name]

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW TABLES lists the tables (until MariaDB 11.2.0, only non- TEMPORARY tables are shown), sequences and views in a

given database.

The LIKE clause, if present on its own, indicates which table names to match. The WHERE and LIKE clauses can be

given to select rows using more general conditions, as discussed in Extended SHOW. For example, when searching for

tables in the test database, the column name for use in the WHERE and LIKE clauses will be Tables_in_test

The FULL modifier is supported such that SHOW FULL TABLES displays a second output column. Values for the second

column, Table_type , are BASE TABLE for a table, VIEW for a view and SEQUENCE for a sequence.

You can also get this information using:

mariadb-show db_name

See mariadb-show for more details.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or mariadb-show

db_name .

259/4161

The information_schema.TABLES table, as well as the SHOW TABLE STATUS statement, provide extended information

about tables.

Examples

SHOW TABLES;

+----------------------+

| Tables_in_test |

+----------------------+

| animal_count |

| animals |

| are_the_mooses_loose |

| aria_test2 |

| t1 |

| view1 |

+----------------------+

Showing the tables beginning with a only.

SHOW TABLES WHERE Tables_in_test LIKE 'a%';

+----------------------+

| Tables_in_test |

+----------------------+

| animal_count |

| animals |

| are_the_mooses_loose |

| aria_test2 |

+----------------------+

Showing tables and table types:

SHOW FULL TABLES;

+----------------+------------+

| Tables_in_test | Table_type |

+----------------+------------+

| s1 | SEQUENCE |

| student | BASE TABLE |

| v1 | VIEW |

+----------------+------------+

Showing temporary tables: <= MariaDB 11.1

CREATE TABLE t (t int(11));

CREATE TEMPORARY TABLE t (t int(11));

CREATE TEMPORARY TABLE te (t int(11));

SHOW TABLES;

+----------------+

| Tables_in_test |

+----------------+

| t |

+----------------+

From MariaDB 11.2.0:

CREATE TABLE t (t int(11));

CREATE TEMPORARY TABLE t (t int(11));

CREATE TEMPORARY TABLE te (t int(11));

SHOW TABLES;

+----------------+

| Tables_in_test |

+----------------+

| te |

| t |

| t |

+----------------+

260/4161

1.1.1.2.8.54 SHOW TABLE_STATISTICS

Syntax

SHOW TABLE_STATISTICS

Description
The SHOW TABLE_STATISTICS statementis part of the User Statistics feature. It was removed as a separate statement in

MariaDB 10.1.1 , but effectively replaced by the generic SHOW information_schema_table statement. The

information_schema.TABLE_STATISTICS table shows statistics on table usage

The userstat system variable must be set to 1 to activate this feature. See the User Statistics and

information_schema.TABLE_STATISTICS articles for more information.

Example

SHOW TABLE_STATISTICS\G

*************************** 1. row ***************************

 Table_schema: mysql

 Table_name: proxies_priv

 Rows_read: 2

 Rows_changed: 0

Rows_changed_x_#indexes: 0

*************************** 2. row ***************************

 Table_schema: test

 Table_name: employees_example

 Rows_read: 7

 Rows_changed: 0

Rows_changed_x_#indexes: 0

*************************** 3. row ***************************

 Table_schema: mysql

 Table_name: user

 Rows_read: 16

 Rows_changed: 0

Rows_changed_x_#indexes: 0

*************************** 4. row ***************************

 Table_schema: mysql

 Table_name: db

 Rows_read: 2

 Rows_changed: 0

Rows_changed_x_#indexes: 0

1.1.1.2.8.55 SHOW TRIGGERS

Syntax

SHOW TRIGGERS [FROM db_name]

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database unless a FROM clause is

given). This statement requires the TRIGGER privilege (prior to MySQL 5.1.22, it required the SUPER privilege).

261/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

The LIKE clause, if present on its own, indicates which table names to match and causes the statement to display triggers

for those tables. The WHERE and LIKE clauses can be given to select rows using more general conditions, as discussed in

Extended SHOW.

Similar information is stored in the information_schema.TRIGGERS table.

If there are multiple triggers for the same action, then the triggers are shown in action order.

Examples
For the trigger defined at Trigger Overview:

SHOW triggers Like 'animals' \G

*************************** 1. row ***************************

 Trigger: the_mooses_are_loose

 Event: INSERT

 Table: animals

 Statement: BEGIN

 IF NEW.name = 'Moose' THEN

 UPDATE animal_count SET animal_count.animals = animal_count.animals+100;

 ELSE

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

 END IF;

END

 Timing: AFTER

 Created: 2016-09-29 13:53:34.35

 sql_mode:

 Definer: root@localhost

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

Listing all triggers associated with a certain table:

SHOW TRIGGERS FROM test WHERE `Table` = 'user' \G

*************************** 1. row ***************************

 Trigger: user_ai

 Event: INSERT

 Table: user

 Statement: BEGIN END

 Timing: AFTER

 Created: 2016-09-29 13:53:34.35

 sql_mode:

 Definer: root@%

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

SHOW triggers WHERE Event Like 'Insert' \G

*************************** 1. row ***************************

 Trigger: the_mooses_are_loose

 Event: INSERT

 Table: animals

 Statement: BEGIN

 IF NEW.name = 'Moose' THEN

 UPDATE animal_count SET animal_count.animals = animal_count.animals+100;

 ELSE

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

 END IF;

END

 Timing: AFTER

 Created: 2016-09-29 13:53:34.35

 sql_mode:

 Definer: root@localhost

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

MariaDB starting with 10.2.3

262/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

character_set_client is the session value of the character_set_client system variable when the trigger

was created.

collation_connection is the session value of the collation_connection system variable when the trigger

was created.

Database Collation is the collation of the database with which the trigger is associated.

These columns were added in MariaDB/MySQL 5.1.21.

Old triggers created before MySQL 5.7 and MariaDB 10.2.3 has NULL in the Created column.

1.1.1.2.8.56 SHOW USER_STATISTICS

Syntax

SHOW USER_STATISTICS

Description
The SHOW USER_STATISTICS statement is part of the User Statistics feature. It was removed as a separate statement in

MariaDB 10.1.1 , but effectively replaced by the generic SHOW information_schema_table statement. The

information_schema.USER_STATISTICS table holds statistics about user activity. You can use this table to find out such

things as which user is causing the most load and which users are being abusive. You can also use this table to measure

how close to capacity the server may be.

The userstat system variable must be set to 1 to activate this feature. See the User Statistics and

information_schema.USER_STATISTICS table for more information.

Example

SHOW USER_STATISTICS\G

*************************** 1. row ***************************

 User: root

 Total_connections: 1

Concurrent_connections: 0

 Connected_time: 3297

 Busy_time: 0.14113400000000006

 Cpu_time: 0.017637000000000003

 Bytes_received: 969

 Bytes_sent: 22355

 Binlog_bytes_written: 0

 Rows_read: 10

 Rows_sent: 67

 Rows_deleted: 0

 Rows_inserted: 0

 Rows_updated: 0

 Select_commands: 7

 Update_commands: 0

 Other_commands: 0

 Commit_transactions: 1

 Rollback_transactions: 0

 Denied_connections: 0

 Lost_connections: 0

 Access_denied: 0

 Empty_queries: 7

1.1.1.2.8.57 SHOW VARIABLES

Syntax

SHOW [GLOBAL | SESSION] VARIABLES

 [LIKE 'pattern' | WHERE expr]

263/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

Contents
1. Syntax

2. Description

3. Examples

Description
SHOW VARIABLES shows the values of MariaDB system variables. This information also can be obtained using the

mariadb-admin variables command. The LIKE clause, if present, indicates which variable names to match. The WHERE

clause can be given to select rows using more general conditions.

With the GLOBAL modifier, SHOW VARIABLES displays the values that are used for new connections to MariaDB. With

SESSION , it displays the values that are in effect for the current connection. If no modifier is present, the default is

SESSION . LOCAL is a synonym for SESSION . With a LIKE clause, the statement displays only rows for those variables

with names that match the pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'maria_group_commit';

SHOW SESSION VARIABLES LIKE 'maria_group_commit';

To get a list of variables whose name match a pattern, use the " % " wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%maria%';

SHOW GLOBAL VARIABLES LIKE '%maria%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, because " _ " is a

wildcard that matches any single character, you should escape it as " _ " to match it literally. In practice, this is rarely

necessary.

The WHERE and LIKE clauses can be given to select rows using more general conditions, as discussed in Extended

SHOW.

See SET for information on setting server system variables.

See Server System Variables for a list of all the variables that can be set.

You can also see the server variables by querying the Information Schema GLOBAL_VARIABLES and

SESSION_VARIABLES tables.

Examples

SHOW VARIABLES LIKE 'aria%';

+--+---------------------+

| Variable_name | Value |

+--+---------------------+

| aria_block_size | 8192 |

| aria_checkpoint_interval | 30 |

| aria_checkpoint_log_activity | 1048576 |

| aria_force_start_after_recovery_failures | 0 |

| aria_group_commit | none |

| aria_group_commit_interval | 0 |

| aria_log_file_size | 1073741824 |

| aria_log_purge_type | immediate |

| aria_max_sort_file_size | 9223372036853727232 |

| aria_page_checksum | ON |

| aria_pagecache_age_threshold | 300 |

| aria_pagecache_buffer_size | 134217728 |

| aria_pagecache_division_limit | 100 |

| aria_recover | NORMAL |

| aria_repair_threads | 1 |

| aria_sort_buffer_size | 134217728 |

| aria_stats_method | nulls_unequal |

| aria_sync_log_dir | NEWFILE |

| aria_used_for_temp_tables | ON |

+--+---------------------+

264/4161

SELECT VARIABLE_NAME, SESSION_VALUE, GLOBAL_VALUE FROM

 INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'max_error_count' OR

 VARIABLE_NAME LIKE 'innodb_sync_spin_loops';

+---------------------------+---------------+--------------+

| VARIABLE_NAME | SESSION_VALUE | GLOBAL_VALUE |

+---------------------------+---------------+--------------+

| MAX_ERROR_COUNT | 64 | 64 |

| INNODB_SYNC_SPIN_LOOPS | NULL | 30 |

+---------------------------+---------------+--------------+

SET GLOBAL max_error_count=128;

SELECT VARIABLE_NAME, SESSION_VALUE, GLOBAL_VALUE FROM

 INFORMATION_SCHEMA.SYSTEM_VARIABLES WHERE

 VARIABLE_NAME LIKE 'max_error_count' OR

 VARIABLE_NAME LIKE 'innodb_sync_spin_loops';

+---------------------------+---------------+--------------+

| VARIABLE_NAME | SESSION_VALUE | GLOBAL_VALUE |

+---------------------------+---------------+--------------+

| MAX_ERROR_COUNT | 64 | 128 |

| INNODB_SYNC_SPIN_LOOPS | NULL | 30 |

+---------------------------+---------------+--------------+

SET GLOBAL max_error_count=128;

SHOW VARIABLES LIKE 'max_error_count';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_error_count | 64 |

+-----------------+-------+

SHOW GLOBAL VARIABLES LIKE 'max_error_count';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_error_count | 128 |

+-----------------+-------+

Because the following variable only has a global scope, the global value is returned even when specifying SESSION (in this

case by default):

SHOW VARIABLES LIKE 'innodb_sync_spin_loops';

+------------------------+-------+

| Variable_name | Value |

+------------------------+-------+

| innodb_sync_spin_loops | 30 |

+------------------------+-------+

1.1.1.2.8.58 SHOW WARNINGS

Syntax

SHOW WARNINGS [LIMIT [offset,] row_count]

SHOW ERRORS [LIMIT row_count OFFSET offset]

SHOW COUNT(*) WARNINGS

Contents
1. Syntax

2. Description

3. Examples

1. Stack Trace

Description

265/4161

SHOW WARNINGS shows the error, warning, and note messages that resulted from the last statement that generated

messages in the current session. It shows nothing if the last statement used a table and generated no messages. (That is, a

statement that uses a table but generates no messages clears the message list.) Statements that do not use tables and do

not generate messages have no effect on the message list.

A note is different to a warning in that it only appears if the sql_notes variable is set to 1 (the default), and is not converted

to an error if strict mode is enabled.

A related statement, SHOW ERRORS , shows only the errors.

The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and notes. You can also retrieve

this number from the warning_count variable:

SHOW COUNT(*) WARNINGS;

SELECT @@warning_count;

The value of warning_count might be greater than the number of messages displayed by SHOW WARNINGS if the

max_error_count system variable is set so low that not all messages are stored.

The LIMIT clause has the same syntax as for the SELECT statement .

SHOW WARNINGS can be used after EXPLAIN EXTENDED to see how a query is internally rewritten by MariaDB.

If the sql_notes server variable is set to 1, Notes are included in the output of SHOW WARNINGS ; if it is set to 0, this

statement will not show (or count) Notes.

The results of SHOW WARNINGS and SHOW COUNT(*) WARNINGS are directly sent to the client. If you need to access those

information in a stored program, you can use the GET DIAGNOSTICS statement instead.

For a list of MariaDB error codes, see MariaDB Error Codes .

The mariadb client also has a number of options related to warnings. The \W command will show warnings after every

statement, while \w will disable this. Starting the client with the --show-warnings option will show warnings after every

statement.

MariaDB implements a stored routine error stack trace. SHOW WARNINGS can also be used to show more information. See

the example below.

Examples

SELECT 1/0;

+------+

| 1/0 |

+------+

| NULL |

+------+

SHOW COUNT(*) WARNINGS;

+-------------------------+

| @@session.warning_count |

+-------------------------+

| 1 |

+-------------------------+

SHOW WARNINGS;

+---------+------+---------------+

| Level | Code | Message |

+---------+------+---------------+

| Warning | 1365 | Division by 0 |

+---------+------+---------------+

Stack Trace

Displaying a stack trace:

266/4161

https://mariadb.com/kb/en/get-diagnostics/
https://mariadb.com/kb/en/mariadb-error-codes/

DELIMITER $$

CREATE OR REPLACE PROCEDURE p1()

 BEGIN

 DECLARE c CURSOR FOR SELECT * FROM not_existing;

 OPEN c;

 CLOSE c;

 END;

$$

CREATE OR REPLACE PROCEDURE p2()

 BEGIN

 CALL p1;

 END;

$$

DELIMITER ;

CALL p2;

ERROR 1146 (42S02): Table 'test.not_existing' doesn't exist

SHOW WARNINGS;

+-------+------+---+

| Level | Code | Message |

+-------+------+---+

| Error | 1146 | Table 'test.not_existing' doesn't exist |

| Note | 4091 | At line 6 in test.p1 |

| Note | 4091 | At line 4 in test.p2 |

+-------+------+---+

SHOW WARNINGS displays a stack trace, showing where the error actually happened:

Line 4 in test.p1 is the OPEN command which actually raised the error

Line 3 in test.p2 is the CALL statement, calling p1 from p2.

1.1.1.2.8.59 SHOW WSREP_MEMBERSHIP
SHOW WSREP_MEMBERSHIP is part of the WSREP_INFO plugin.

Syntax

SHOW WSREP_MEMBERSHIP

Description
The SHOW WSREP_MEMBERSHIP statement returns Galera node cluster membership information. It returns the same

information as found in the information_schema.WSREP_MEMBERSHIP table. Only users with the SUPER privilege can

access this information.

Examples

SHOW WSREP_MEMBERSHIP;

+-------+--------------------------------------+----------+-----------------+

| Index | Uuid | Name | Address |

+-------+--------------------------------------+----------+-----------------+

| 0 | 19058073-8940-11e4-8570-16af7bf8fced | my_node1 | 10.0.2.15:16001 |

| 1 | 19f2b0e0-8942-11e4-9cb8-b39e8ee0b5dd | my_node3 | 10.0.2.15:16003 |

| 2 | d85e62db-8941-11e4-b1ef-4bc9980e476d | my_node2 | 10.0.2.15:16002 |

+-------+--------------------------------------+----------+-----------------+

1.1.1.2.8.60 SHOW WSREP_STATUS
SHOW WSREP_STATUS is part of the WSREP_INFO plugin.

Syntax

267/4161

SHOW WSREP_STATUS

Description
The SHOW WSREP_STATUS statement returns Galera node and cluster status information. It returns the same information as

found in the information_schema.WSREP_STATUS table. Only users with the SUPER privilege can access this

information.

Examples

SHOW WSREP_STATUS;

+------------+-------------+----------------+--------------+

| Node_Index | Node_Status | Cluster_Status | Cluster_Size |

+------------+-------------+----------------+--------------+

| 0 | Synced | Primary | 3 |

+------------+-------------+----------------+--------------+

1.1.1.2.9 System Tables
Information Schema

Articles about the Information Schema

Performance Schema

Monitoring server performance.

The mysql Database Tables

mysql database tables.

Sys Schema

Collection of views, functions and procedures to help administrators get in...

mariadb_schema

mariadb_schema is used to enforce MariaDB native types independent of SQL_MODE.

Writing Logs Into Tables

The general query log and the slow query log can be written into system tables

1.1.1.2.9.1 Information Schema
Articles about the Information Schema

Information Schema Tables

Tables in the Information_Schema database

Extended Show

Extended SHOW with WHERE and LIKE.

TIME_MS column in INFORMATION_SCHEMA.PROCESSLIST

Microseconds in the INFORMATION_SCHEMA.PROCESSLIST table

There are 1 related questions .

1.1.1.2.9.1.1 Information Schema Tables
Information Schema InnoDB Tables

All InnoDB-specific Information Schema tables.

268/4161

https://mariadb.com/kb/en/information-schema/+questions/

Information Schema MyRocks Tables

List of Information Schema tables specifically related to MyRocks.

Information Schema XtraDB Tables

All XtraDB-specific Information Schema tables.

ColumnStore Information Schema Tables

ColumnStore-related Information Schema tables

Information Schema ALL_PLUGINS Table

Information about server plugins, whether installed or not.

Information Schema APPLICABLE_ROLES Table

Roles available to be used.

Information Schema CHARACTER_SETS Table

Supported character sets.

Information Schema CHECK_CONSTRAINTS Table

Supported check constraints.

Information Schema CLIENT_STATISTICS Table

Statistics about client connections.

Information Schema COLLATION_CHARACTER_SET_APPLICABILITY Table

Collations and associated character sets

Information Schema COLLATIONS Table

Supported collations.

Information Schema COLUMN_PRIVILEGES Table

Column privileges

Information Schema COLUMNS Table

Information about table fields.

Information Schema DISKS Table

Plugin that allows the disk space situation to be monitored.

Information Schema ENABLED_ROLES Table

Enabled roles for the current session.

Information Schema ENGINES Table

Storage engine information.

Information Schema EVENTS Table

Server event information

Information Schema FEEDBACK Table

Contents submitted by the Feedback Plugin

Information Schema FILES Table

The FILES tables is unused in MariaDB.

Information Schema GEOMETRY_COLUMNS Table

Support for Spatial Reference systems for GIS data

Information Schema GLOBAL_STATUS and SESSION_STATUS Tables

Global and session status variables

Information Schema GLOBAL_VARIABLES and SESSION_VARIABLES Tables

Global and session system variables

269/4161

https://mariadb.com/kb/en/information-schema-xtradb-tables/

Information Schema INDEX_STATISTICS Table

Statistics on index usage

Information Schema KEY_CACHES Table

Segmented key cache statistics.

Information Schema KEY_COLUMN_USAGE Table

Key columns that have constraints.

Information Schema KEY_PERIOD_USAGE Table

Information about Application-Time Periods.

Information Schema KEYWORDS Table

MariaDB keywords.

Information Schema LOCALES Table

Compiled-in server locales.

Information Schema METADATA_LOCK_INFO Table

Active metadata locks.

Information Schema MROONGA_STATS Table

Mroonga activities statistics.

Information Schema OPTIMIZER_TRACE Table

Contains Optimizer Trace information.

Information Schema PARAMETERS Table

Information about stored procedures and stored functions parameters.

Information Schema PARTITIONS Table

Table partition information.

Information Schema PERIODS Table

Information about application time periods.

Information Schema PLUGINS Table

Information Schema table containing information on plugins installed on a server.

Information Schema PROCESSLIST Table

Thread information.

Information Schema PROFILING Table

Statement resource usage

Information Schema QUERY_CACHE_INFO Table

View the contents of the query cache.

Information Schema QUERY_RESPONSE_TIME Table

Query time information.

Information Schema REFERENTIAL_CONSTRAINTS Table

Foreign key information

Information Schema ROUTINES Table

Stored procedures and stored functions information

Information Schema SCHEMA_PRIVILEGES Table

Database privilege information

Information Schema SCHEMATA Table

Information about databases.

270/4161

Information Schema SPATIAL_REF_SYS Table

Information on each spatial reference system used in the database.

Information Schema SPIDER_ALLOC_MEM Table

Information about Spider's memory usage.

Information Schema SPIDER_WRAPPER_PROTOCOLS Table

Installed along with the Spider storage engine.

Information Schema SQL_FUNCTIONS Table

Functions in MariaDB.

Information Schema STATISTICS Table

Table index information.

Information Schema SYSTEM_VARIABLES Table

Current global and session values and various metadata of all system variables.

Information Schema TABLE_CONSTRAINTS Table

Tables containing constraints.

Information Schema TABLE_PRIVILEGES Table

Table privileges.

Information Schema TABLE_STATISTICS Table

Statistics on table usage.

Information Schema TABLES Table

Database table information.

Information Schema TABLESPACES Table

Information about active tablespaces.

Information Schema THREAD_POOL_GROUPS Table

Information Schema THREAD_POOL_GROUPS Table.

Information Schema THREAD_POOL_QUEUES Table

Information Schema THREAD_POOL_QUEUES Table.

Information Schema THREAD_POOL_STATS Table

Information Schema THREAD_POOL_STATS Table.

Information Schema THREAD_POOL_WAITS Table

Information Schema THREAD_POOL_WAITS Table.

Information Schema TRIGGERS Table

Information about triggers

Information Schema USER_PRIVILEGES Table

Global user privilege information derived from the mysql.global_priv grant table

Information Schema USER_STATISTICS Table

User activity

Information Schema USER_VARIABLES Table

User-defined variable information.

Information Schema VIEWS Table

Information about views.

Information Schema WSREP_MEMBERSHIP Table

Galera node cluster membership information.

271/4161

Information Schema WSREP_STATUS Table

Galera node cluster status information.

There are 3 related questions .

1.1.1.2.9.1.1.1 Information Schema InnoDB
Tables
List of Information Schema tables specifically related to InnoDB. Tables that are specific to XtraDB shares with InnoDB are

listed in Information Schema XtraDB Tables .

Information Schema INNODB_BUFFER_PAGE Table

Buffer pool page information.

Information Schema INNODB_BUFFER_PAGE_LRU Table

Buffer pool pages and their eviction order.

Information Schema INNODB_BUFFER_POOL_PAGES Table

XtraDB buffer pool page information.

Information Schema INNODB_BUFFER_POOL_PAGES_BLOB Table

XtraDB buffer pool blob pages.

Information Schema INNODB_BUFFER_POOL_PAGES_INDEX Table

XtraDB buffer pool index pages.

Information Schema INNODB_BUFFER_POOL_STATS Table

InnoDB buffer pool information.

Information Schema INNODB_CHANGED_PAGES Table

Modified pages from the bitmap file data.

Information Schema INNODB_CMP and INNODB_CMP_RESET Tables

XtraDB/InnoDB compression performances with different page sizes.

Information Schema INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables

Number of InnoDB compressed pages of different page sizes.

Information Schema INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

XtraDB/InnoDB compression performances for different indexes and tables.

Information Schema INNODB_FT_BEING_DELETED Table

Fulltext being deleted.

Information Schema INNODB_FT_CONFIG Table

InnoDB fulltext metadata.

Information Schema INNODB_FT_DEFAULT_STOPWORD Table

Default InnoDB stopwords.

Information Schema INNODB_FT_DELETED Table

Deleted InnoDB fulltext rows.

Information Schema INNODB_FT_INDEX_CACHE Table

Newly added fulltext row information.

Information Schema INNODB_FT_INDEX_TABLE Table

InnoDB fulltext information.

272/4161

https://mariadb.com/kb/en/information-schema-tables/+questions/
https://mariadb.com/kb/en/information-schema-xtradb-tables/

Information Schema INNODB_LOCK_WAITS Table

Blocked InnoDB transactions.

Information Schema INNODB_LOCKS Table

InnoDB lock information.

Information Schema INNODB_METRICS Table

InnoDB performance metrics.

Information Schema INNODB_MUTEXES Table

Monitor mutex waits.

Information Schema INNODB_SYS_COLUMNS Table

InnoDB column information.

Information Schema INNODB_SYS_DATAFILES Table

InnoDB tablespace paths.

Information Schema INNODB_SYS_FIELDS Table

Fields part of an InnoDB index.

Information Schema INNODB_SYS_FOREIGN Table

InnoDB foreign key information.

Information Schema INNODB_SYS_FOREIGN_COLS Table

Foreign key column information.

Information Schema INNODB_SYS_INDEXES Table

InnoDB index information.

Information Schema INNODB_SYS_SEMAPHORE_WAITS Table

Information about current semaphore waits.

Information Schema INNODB_SYS_TABLES Table

InnoDB table information.

Information Schema INNODB_SYS_TABLESPACES Table

InnoDB tablespace information.

Information Schema INNODB_SYS_TABLESTATS Table

InnoDB status for high-level performance monitoring.

Information Schema INNODB_SYS_VIRTUAL Table

Information about base columns of virtual columns.

Information Schema INNODB_TABLESPACES_ENCRYPTION Table

Encryption metadata for InnoDB tablespaces.

Information Schema INNODB_TABLESPACES_SCRUBBING Table

Data scrubbing information.

Information Schema INNODB_TRX Table

Currently-executing InnoDB locks.

Information Schema TEMP_TABLES_INFO Table

Information about active InnoDB temporary tables.

2

1.1.1.2.9.1.1.1.1 Information Schema
INNODB_BUFFER_PAGE Table
The Information Schema INNODB_BUFFER_PAGE table contains information about pages in the buffer pool.

273/4161

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

POOL_ID
Buffer Pool identifier. From MariaDB 10.5.1 returns a value of 0, since multiple InnoDB buffer

pool instances has been removed.

BLOCK_ID Buffer Pool Block identifier.

SPACE Tablespace identifier. Matches the SPACE value in the INNODB_SYS_TABLES table.

PAGE_NUMBER Buffer pool page number.

PAGE_TYPE

Page type; one of allocated (newly-allocated page), index (B-tree node), undo_log

(undo log page), inode (index node), ibuf_free_list (insert buffer free list),

ibuf_bitmap (insert buffer bitmap), system (system page), trx_system (transaction

system data), file_space_header (file space header), extent_descriptor (extent

descriptor page), blob (uncompressed blob page), compressed_blob (first compressed

blob page), compressed_blob2 (subsequent compressed blob page) or unknown .

FLUSH_TYPE Flush type.

FIX_COUNT
Count of the threads using this block in the buffer pool. When it is zero, the block can be

evicted from the buffer pool.

IS_HASHED Whether or not a hash index has been built on this page.

NEWEST_MODIFICATION Most recent modification's Log Sequence Number.

OLDEST_MODIFICATION Oldest modification's Log Sequence Number.

ACCESS_TIME Abstract number representing the time the page was first accessed.

TABLE_NAME Table that the page belongs to.

INDEX_NAME Index that the page belongs to, either a clustered index or a secondary index.

NUMBER_RECORDS Number of records the page contains.

DATA_SIZE Size in bytes of all the records contained in the page.

COMPRESSED_SIZE Compressed size in bytes of the page, or NULL for pages that aren't compressed.

PAGE_STATE
Page state; one of FILE_PAGE (page from a file) or MEMORY (page from an in-memory object)

for valid data, or one of NULL , READY_FOR_USE , NOT_USED , REMOVE_HASH .

IO_FIX
Whether there is I/O pending for the page; one of IO_NONE (no pending I/O), IO_READ (read

pending), IO_WRITE (write pending).

IS_OLD Whether the page is old or not.

FREE_PAGE_CLOCK
Freed_page_clock counter, which tracks the number of blocks removed from the end of the

least recently used (LRU) list, at the time the block was last placed at the head of the list.

The related INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU table contains the same information, but with an

LRU (least recently used) position rather than block id.

Examples

274/4161

DESC information_schema.innodb_buffer_page;

+---------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------------------+---------------------+------+-----+---------+-------+

| POOL_ID | bigint(21) unsigned | NO | | 0 | |

| BLOCK_ID | bigint(21) unsigned | NO | | 0 | |

| SPACE | bigint(21) unsigned | NO | | 0 | |

| PAGE_NUMBER | bigint(21) unsigned | NO | | 0 | |

| PAGE_TYPE | varchar(64) | YES | | NULL | |

| FLUSH_TYPE | bigint(21) unsigned | NO | | 0 | |

| FIX_COUNT | bigint(21) unsigned | NO | | 0 | |

| IS_HASHED | varchar(3) | YES | | NULL | |

| NEWEST_MODIFICATION | bigint(21) unsigned | NO | | 0 | |

| OLDEST_MODIFICATION | bigint(21) unsigned | NO | | 0 | |

| ACCESS_TIME | bigint(21) unsigned | NO | | 0 | |

| TABLE_NAME | varchar(1024) | YES | | NULL | |

| INDEX_NAME | varchar(1024) | YES | | NULL | |

| NUMBER_RECORDS | bigint(21) unsigned | NO | | 0 | |

| DATA_SIZE | bigint(21) unsigned | NO | | 0 | |

| COMPRESSED_SIZE | bigint(21) unsigned | NO | | 0 | |

| PAGE_STATE | varchar(64) | YES | | NULL | |

| IO_FIX | varchar(64) | YES | | NULL | |

| IS_OLD | varchar(3) | YES | | NULL | |

| FREE_PAGE_CLOCK | bigint(21) unsigned | NO | | 0 | |

+---------------------+---------------------+------+-----+---------+-------+

SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE\G

...

*************************** 6. row ***************************

 POOL_ID: 0

 BLOCK_ID: 5

 SPACE: 0

 PAGE_NUMBER: 11

 PAGE_TYPE: INDEX

 FLUSH_TYPE: 1

 FIX_COUNT: 0

 IS_HASHED: NO

NEWEST_MODIFICATION: 2046835

OLDEST_MODIFICATION: 0

 ACCESS_TIME: 2585566280

 TABLE_NAME: `SYS_INDEXES`

 INDEX_NAME: CLUST_IND

 NUMBER_RECORDS: 57

 DATA_SIZE: 4016

 COMPRESSED_SIZE: 0

 PAGE_STATE: FILE_PAGE

 IO_FIX: IO_NONE

 IS_OLD: NO

 FREE_PAGE_CLOCK: 0

...

1.1.1.2.9.1.1.1.2 Information Schema
INNODB_BUFFER_PAGE_LRU Table
The Information Schema INNODB_BUFFER_PAGE_LRU table contains information about pages in the buffer pool and how

they are ordered for eviction purposes.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

POOL_ID
Buffer Pool identifier. From MariaDB 10.5.1 returns a value of 0, since multiple InnoDB buffer

pool instances has been removed.

LRU_POSITION LRU (Least recently-used), for determining eviction order from the buffer pool.

SPACE Tablespace identifier. Matches the SPACE value on the INNODB_SYS_TABLES table.

275/4161

PAGE_NUMBER Buffer pool page number.

PAGE_TYPE

Page type; one of allocated (newly-allocated page), index (B-tree node), undo_log

(undo log page), inode (index node), ibuf_free_list (insert buffer free list),

ibuf_bitmap (insert buffer bitmap), system (system page), trx_system (transaction

system data), file_space_header (file space header), extent_descriptor (extent

descriptor page), blob (uncompressed blob page), compressed_blob (first compressed

blob page), compressed_blob2 (subsequent compressed blob page) or unknown .

FLUSH_TYPE Flush type.

FIX_COUNT
Count of the threads using this block in the buffer pool. When it is zero, the block can be

evicted from the buffer pool.

IS_HASHED Whether or not a hash index has been built on this page.

NEWEST_MODIFICATION Most recent modification's Log Sequence Number.

OLDEST_MODIFICATION Oldest modification's Log Sequence Number.

ACCESS_TIME Abstract number representing the time the page was first accessed.

TABLE_NAME Table that the page belongs to.

INDEX_NAME Index that the page belongs to, either a clustered index or a secondary index.

NUMBER_RECORDS Number of records the page contains.

DATA_SIZE Size in bytes of all the records contained in the page.

COMPRESSED_SIZE Compressed size in bytes of the page, or NULL for pages that aren't compressed.

PAGE_STATE
Page state; one of FILE_PAGE (page from a file) or MEMORY (page from an in-memory object)

for valid data, or one of NULL , READY_FOR_USE , NOT_USED , REMOVE_HASH .

IO_FIX
Whether there is I/O pending for the page; one of IO_NONE (no pending I/O), IO_READ (read

pending), IO_WRITE (write pending).

IS_OLD Whether the page is old or not.

FREE_PAGE_CLOCK
Freed_page_clock counter, which tracks the number of blocks removed from the end of the

LRU list, at the time the block was last placed at the head of the list.

The related INFORMATION_SCHEMA.INNODB_BUFFER_PAGE table contains the same information, but with a block id

rather than LRU position.

Example

DESC information_schema.innodb_buffer_page_lru;

+---------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------------------+---------------------+------+-----+---------+-------+

| POOL_ID | bigint(21) unsigned | NO | | 0 | |

| LRU_POSITION | bigint(21) unsigned | NO | | 0 | |

| SPACE | bigint(21) unsigned | NO | | 0 | |

| PAGE_NUMBER | bigint(21) unsigned | NO | | 0 | |

| PAGE_TYPE | varchar(64) | YES | | NULL | |

| FLUSH_TYPE | bigint(21) unsigned | NO | | 0 | |

| FIX_COUNT | bigint(21) unsigned | NO | | 0 | |

| IS_HASHED | varchar(3) | YES | | NULL | |

| NEWEST_MODIFICATION | bigint(21) unsigned | NO | | 0 | |

| OLDEST_MODIFICATION | bigint(21) unsigned | NO | | 0 | |

| ACCESS_TIME | bigint(21) unsigned | NO | | 0 | |

| TABLE_NAME | varchar(1024) | YES | | NULL | |

| INDEX_NAME | varchar(1024) | YES | | NULL | |

| NUMBER_RECORDS | bigint(21) unsigned | NO | | 0 | |

| DATA_SIZE | bigint(21) unsigned | NO | | 0 | |

| COMPRESSED_SIZE | bigint(21) unsigned | NO | | 0 | |

| COMPRESSED | varchar(3) | YES | | NULL | |

| IO_FIX | varchar(64) | YES | | NULL | |

| IS_OLD | varchar(3) | YES | | NULL | |

| FREE_PAGE_CLOCK | bigint(21) unsigned | NO | | 0 | |

+---------------------+---------------------+------+-----+---------+-------+

276/4161

SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU\G

...

*************************** 6. row ***************************

 POOL_ID: 0

 LRU_POSITION: 5

 SPACE: 0

 PAGE_NUMBER: 11

 PAGE_TYPE: INDEX

 FLUSH_TYPE: 1

 FIX_COUNT: 0

 IS_HASHED: NO

NEWEST_MODIFICATION: 2046835

OLDEST_MODIFICATION: 0

 ACCESS_TIME: 2585566280

 TABLE_NAME: `SYS_INDEXES`

 INDEX_NAME: CLUST_IND

 NUMBER_RECORDS: 57

 DATA_SIZE: 4016

 COMPRESSED_SIZE: 0

 COMPRESSED: NO

 IO_FIX: IO_NONE

 IS_OLD: NO

 FREE_PAGE_CLOCK: 0

...

1.1.1.2.9.1.1.1.3 Information Schema
INNODB_BUFFER_POOL_PAGES Table
The Information Schema INNODB_BUFFER_POOL_PAGES table is a Percona enhancement, and is only available for XtraDB,

not InnoDB (see XtraDB and InnoDB). It contains a record for each page in the buffer pool.

It has the following columns:

Column Description

PAGE_TYPE
Type of page; one of index , undo_log , inode , ibuf_free_list , allocated, bitmap , sys ,

trx_sys , fsp_hdr , xdes , blob , zblob , zblob2 and unknown .

SPACE_ID Tablespace ID.

PAGE_NO Page offset within tablespace.

LRU_POSITION Page position in the LRU (least-recently-used) list.

FIX_COUNT
Page reference count, incremented each time the page is accessed. 0 if the page is not currently

being accessed.

FLUSH_TYPE Flush type of the most recent flush. 0 (LRU), 2 (flush_list)

1.1.1.2.9.1.1.1.4 Information Schema
INNODB_BUFFER_POOL_PAGES_BLOB
Table
The Information Schema INNODB_BUFFER_POOL_PAGES_BLOB table is a Percona enchancement, and is only available for

XtraDB, not InnoDB (see XtraDB and InnoDB). It contains information about buffer pool blob pages.

It has the following columns:

Column Description

SPACE_ID Tablespace ID.

PAGE_NO Page offset within tablespace.

COMPRESSED 1 if the blob contains compressed data, 0 if not.

PART_LEN Page data length.

277/4161

NEXT_PAGE_NO Next page number.

LRU_POSITION Page position in the LRU (least-recently-used) list.

FIX_COUNT
Page reference count, incremented each time the page is accessed. 0 if the page is not currently

being accessed.

FLUSH_TYPE Flush type of the most recent flush. 0 (LRU), 2 (flush_list)

1.1.1.2.9.1.1.1.5 Information Schema
INNODB_BUFFER_POOL_PAGES_INDEX
Table
The Information Schema INNODB_BUFFER_POOL_PAGES table is a Percona enhancement, and is only available for XtraDB,

not InnoDB (see XtraDB and InnoDB). It contains information about buffer pool index pages.

It has the following columns:

Column Description

INDEX_ID Index name

SPACE_ID Tablespace ID

PAGE_NO Page offset within tablespace.

N_RECS Number of user records on the page.

DATA_SIZE Total data size in bytes of records in the page.

HASHED 1 if the block is in the adaptive hash index, 0 if not.

ACCESS_TIME Page's last access time.

MODIFIED 1 if the page has been modified since being loaded, 0 if not.

DIRTY 1 if the page has been modified since it was last flushed, 0 if not

OLD 1 if the page in the in the old blocks of the LRU (least-recently-used) list, 0 if not.

LRU_POSITION Position in the LRU (least-recently-used) list.

FIX_COUNT
Page reference count, incremented each time the page is accessed. 0 if the page is not currently

being accessed.

FLUSH_TYPE Flush type of the most recent flush. 0 (LRU), 2 (flush_list)

1.1.1.2.9.1.1.1.6 Information Schema
INNODB_BUFFER_POOL_STATS Table
The Information Schema INNODB_BUFFER_POOL_STATS table contains information about pages in the buffer pool, similar to

what is returned with the SHOW ENGINE INNODB STATUS statement.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

POOL_ID
Buffer Pool identifier. From MariaDB 10.5.1 returns a value of 0, since multiple

InnoDB buffer pool instances has been removed.

POOL_SIZE Size in pages of the buffer pool.

FREE_BUFFERS
Number of free pages in the buffer pool.

DATABASE_PAGES Total number of pages in the buffer pool.

OLD_DATABASE_PAGES Number of pages in the old sublist.

278/4161

MODIFIED_DATABASE_PAGES Number of dirty pages.

PENDING_DECOMPRESS Number of pages pending decompression.

PENDING_READS Pending buffer pool level reads.

PENDING_FLUSH_LRU Number of pages in the LRU pending flush.

PENDING_FLUSH_LIST Number of pages in the flush list pending flush.

PAGES_MADE_YOUNG Pages moved from the old sublist to the new sublist.

PAGES_NOT_MADE_YOUNG Pages that have remained in the old sublist without moving to the new sublist.

PAGES_MADE_YOUNG_RATE Hits that cause blocks to move to the top of the new sublist.

PAGES_MADE_NOT_YOUNG_RATE
Hits that do not cause blocks to move to the top of the new sublist due to the

innodb_old_blocks delay not being met.

NUMBER_PAGES_READ Number of pages read.

NUMBER_PAGES_CREATED Number of pages created.

NUMBER_PAGES_WRITTEN Number of pages written.

PAGES_READ_RATE
Number of pages read since the last printout divided by the time elapsed,

giving pages read per second.

PAGES_CREATE_RATE
Number of pages created since the last printout divided by the time elapsed,

giving pages created per second.

PAGES_WRITTEN_RATE
Number of pages written since the last printout divided by the time elapsed,

giving pages written per second.

NUMBER_PAGES_GET Number of logical read requests.

HIT_RATE Buffer pool hit rate.

YOUNG_MAKE_PER_THOUSAND_GETS For every 1000 gets, the number of pages made young.

NOT_YOUNG_MAKE_PER_THOUSAND_GETS For every 1000 gets, the number of pages not made young.

NUMBER_PAGES_READ_AHEAD Number of pages read ahead.

NUMBER_READ_AHEAD_EVICTED
Number of pages read ahead by the read-ahead thread that were later evicted

without being accessed by any queries.

READ_AHEAD_RATE
Pages read ahead since the last printout divided by the time elapsed, giving

read-ahead rate per second.

READ_AHEAD_EVICTED_RATE

Read-ahead pages not accessed since the last printout divided by time

elapsed, giving the number of read-ahead pages evicted without access per

second.

LRU_IO_TOTAL Total least-recently used I/O.

LRU_IO_CURRENT Least-recently used I/O for the current interval.

UNCOMPRESS_TOTAL Total number of pages decompressed.

UNCOMPRESS_CURRENT Number of pages decompressed in the current interval

Examples

279/4161

DESC information_schema.innodb_buffer_pool_stats;

+----------------------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------------------------+---------------------+------+-----+---------+-------+

| POOL_ID | bigint(21) unsigned | NO | | 0 | |

| POOL_SIZE | bigint(21) unsigned | NO | | 0 | |

| FREE_BUFFERS | bigint(21) unsigned | NO | | 0 | |

| DATABASE_PAGES | bigint(21) unsigned | NO | | 0 | |

| OLD_DATABASE_PAGES | bigint(21) unsigned | NO | | 0 | |

| MODIFIED_DATABASE_PAGES | bigint(21) unsigned | NO | | 0 | |

| PENDING_DECOMPRESS | bigint(21) unsigned | NO | | 0 | |

| PENDING_READS | bigint(21) unsigned | NO | | 0 | |

| PENDING_FLUSH_LRU | bigint(21) unsigned | NO | | 0 | |

| PENDING_FLUSH_LIST | bigint(21) unsigned | NO | | 0 | |

| PAGES_MADE_YOUNG | bigint(21) unsigned | NO | | 0 | |

| PAGES_NOT_MADE_YOUNG | bigint(21) unsigned | NO | | 0 | |

| PAGES_MADE_YOUNG_RATE | double | NO | | 0 | |

| PAGES_MADE_NOT_YOUNG_RATE | double | NO | | 0 | |

| NUMBER_PAGES_READ | bigint(21) unsigned | NO | | 0 | |

| NUMBER_PAGES_CREATED | bigint(21) unsigned | NO | | 0 | |

| NUMBER_PAGES_WRITTEN | bigint(21) unsigned | NO | | 0 | |

| PAGES_READ_RATE | double | NO | | 0 | |

| PAGES_CREATE_RATE | double | NO | | 0 | |

| PAGES_WRITTEN_RATE | double | NO | | 0 | |

| NUMBER_PAGES_GET | bigint(21) unsigned | NO | | 0 | |

| HIT_RATE | bigint(21) unsigned | NO | | 0 | |

| YOUNG_MAKE_PER_THOUSAND_GETS | bigint(21) unsigned | NO | | 0 | |

| NOT_YOUNG_MAKE_PER_THOUSAND_GETS | bigint(21) unsigned | NO | | 0 | |

| NUMBER_PAGES_READ_AHEAD | bigint(21) unsigned | NO | | 0 | |

| NUMBER_READ_AHEAD_EVICTED | bigint(21) unsigned | NO | | 0 | |

| READ_AHEAD_RATE | double | NO | | 0 | |

| READ_AHEAD_EVICTED_RATE | double | NO | | 0 | |

| LRU_IO_TOTAL | bigint(21) unsigned | NO | | 0 | |

| LRU_IO_CURRENT | bigint(21) unsigned | NO | | 0 | |

| UNCOMPRESS_TOTAL | bigint(21) unsigned | NO | | 0 | |

| UNCOMPRESS_CURRENT | bigint(21) unsigned | NO | | 0 | |

+----------------------------------+---------------------+------+-----+---------+-------+

1.1.1.2.9.1.1.1.7 Information Schema
INNODB_CHANGED_PAGES Table
The Information Schema INNODB_CHANGED_PAGES Table contains data about modified pages from the bitmap file. It is

updated at checkpoints by the log tracking thread parsing the log, so does not contain real-time data.

The number of records is limited by the value of the innodb_max_changed_pages system variable.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

SPACE_ID Modified page space id

PAGE_ID Modified page id

START_LSN Interval start after which page was changed (equal to checkpoint LSN)

END_LSN Interval end before which page was changed (equal to checkpoint LSN)

1.1.1.2.9.1.1.1.8 Information Schema
INNODB_CMP and INNODB_CMP_RESET
Tables
The INNODB_CMP and INNODB_CMP_RESET tables contain status information on compression operations related to

compressed XtraDB/InnoDB tables.

280/4161

The PROCESS privilege is required to query this table.

These tables contain the following columns:

Column Name Description

PAGE_SIZE
Compressed page size, in bytes. This value is unique in the table; other values are totals which refer

to pages of this size.

COMPRESS_OPS

How many times a page of the size PAGE_SIZE has been compressed. This happens when a new

page is created because the compression log runs out of space. This value includes both successful

operations and compression failures.

COMPRESS_OPS_OK

How many times a page of the size PAGE_SIZE has been successfully compressed. This value

should be as close as possible to COMPRESS_OPS . If it is notably lower, either avoid compressing

some tables, or increase the KEY_BLOCK_SIZE for some compressed tables.

COMPRESS_TIME
Time (in seconds) spent to compress pages of the size PAGE_SIZE . This value includes time spent

in compression failures.

UNCOMPRESS_OPS
How many times a page of the size PAGE_SIZE has been uncompressed. This happens when an

uncompressed version of a page is created in the buffer pool, or when a compression failure occurs.

UNCOMPRESS_TIME Time (in seconds) spent to uncompress pages of the size PAGE_SIZE .

These tables can be used to measure the effectiveness of XtraDB/InnoDB table compression. When you have to decide a

value for KEY_BLOCK_SIZE , you can create more than one version of the table (one for each candidate value) and run a

realistic workload on them. Then, these tables can be used to see how the operations performed with different page sizes.

INNODB_CMP and INNODB_CMP_RESET have the same columns and always contain the same values, but when

INNODB_CMP_RESET is queried, both the tables are cleared. INNODB_CMP_RESET can be used, for example, if a script

periodically logs the performances of compression in the last period of time. INNODB_CMP can be used to see the

cumulated statistics.

Examples

SELECT * FROM information_schema.INNODB_CMP\G

**************************** 1. row *****************************

 page_size: 1024

 compress_ops: 0

compress_ops_ok: 0

 compress_time: 0

 uncompress_ops: 0

uncompress_time: 0

...

1.1.1.2.9.1.1.1.9 Information Schema
INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables
The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on compressed pages in the buffer

pool (see InnoDB COMPRESSED format).

The PROCESS privilege is required to query this table.

These tables contain the following columns:

Column Name Description

PAGE_SIZE
Compressed page size, in bytes. This value is unique in the table; other values are totals

which refer to pages of this size.

BUFFER_POOL_INSTANCE
Buffer Pool identifier. From MariaDB 10.5.1 returns a value of 0, since multiple InnoDB buffer

pool instances has been removed.

PAGES_USED Number of pages of the size PAGE_SIZE which are currently in the buffer pool.

281/4161

PAGES_FREE

Number of pages of the size PAGE_SIZE which are currently free, and thus are available for

allocation. This value represents the buffer pool's fragmentation. A totally unfragmented buffer

pool has at most 1 free page.

RELOCATION_OPS

How many times a page of the size PAGE_SIZE has been relocated. This happens when

data exceeds a page (because a row must be copied into a new page) and when two pages

are merged (because their data shrunk and can now be contained in one page).

RELOCATION_TIME
Time (in seconds) spent in relocation operations for pages of the size PAGE_SIZE . This

column is reset when the INNODB_CMPMEM_RESET table is queried.

These tables can be used to measure the effectiveness of InnoDB table compression. When you have to decide a value for

KEY_BLOCK_SIZE , you can create more than one version of the table (one for each candidate value) and run a realistic

workload on them. Then, these tables can be used to see how the operations performed with different page sizes.

INNODB_CMPMEM and INNODB_CMPMEM_RESET have the same columns and always contain the same values, but when

INNODB_CMPMEM_RESET is queried, the RELOCATION_TIME column from both the tables are cleared.

INNODB_CMPMEM_RESET can be used, for example, if a script periodically logs the performances of compression in the last

period of time. INNODB_CMPMEM can be used to see the cumulated statistics.

Example

SELECT * FROM information_schema.INNODB_CMPMEM\G

********************** 1. row **********************

 page_size: 1024

 buffer_pool_instance: 0

 pages_used: 0

 pages_free: 0

 reloacation_ops: 0

 relocation_time: 0

1.1.1.2.9.1.1.1.10 Information Schema
INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables
The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables contain status information on compression

operations related to compressed XtraDB/InnoDB tables, grouped by individual indexes. These tables are only populated if

the innodb_cmp_per_index_enabled system variable is set to ON .

The PROCESS privilege is required to query this table.

These tables contains the following columns:

Column Name Description

DATABASE_NAME Database containing the index.

TABLE_NAME Table containing the index.

INDEX_NAME Other values are totals which refer to this index's compression.

COMPRESS_OPS

How many times a page of INDEX_NAME has been compressed. This happens when a new page is

created because the compression log runs out of space. This value includes both successful

operations and compression failures.

COMPRESS_OPS_OK

How many times a page of INDEX_NAME has been successfully compressed. This value should be

as close as possible to COMPRESS_OPS . If it is notably lower, either avoid compressing some

tables, or increase the KEY_BLOCK_SIZE for some compressed tables.

COMPRESS_TIME
Time (in seconds) spent to compress pages of the size PAGE_SIZE . This value includes time spent

in compression failures.

UNCOMPRESS_OPS
How many times a page of INDEX_NAME has been uncompressed. This happens when an

uncompressed version of a page is created in the buffer pool, or when a compression failure occurs.

UNCOMPRESS_TIME Time (in seconds) spent to uncompress pages of INDEX_NAME .

These tables can be used to measure the effectiveness of XtraDB/InnoDB compression, per table or per index. The values
282/4161

in these tables show which tables perform better with index compression, and which tables cause too many compression

failures or perform too many compression/uncompression operations. When compression performs badly for a table, this

might mean that you should change its KEY_BLOCK_SIZE , or that the table should not be compressed.

INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET have the same columns and always contain the same

values, but when INNODB_CMP_PER_INDEX_RESET is queried, both the tables are cleared.

INNODB_CMP_PER_INDEX_RESET can be used, for example, if a script periodically logs the performances of compression in

the last period of time. INNODB_CMP_PER_INDEX can be used to see the cumulated statistics.

1.1.1.2.9.1.1.1.11 Information Schema
INNODB_FT_BEING_DELETED Table
The Information Schema INNODB_FT_BEING_DELETED table is only used while document ID's in the related

INNODB_FT_DELETED are being removed from an InnoDB fulltext index while an OPTIMIZE TABLE is underway. At all

other times the table will be empty.

The SUPER privilege is required to view the table, and it also requires the innodb_ft_aux_table system variable to be set.

It has the following column:

Column Description

DOC_ID
Document ID of the row being deleted. Either an underlying ID value, or a sequence value generated by

InnoDB if no usable option exists.

1.1.1.2.9.1.1.1.12 Information Schema
INNODB_FT_CONFIG Table
The Information Schema INNODB_FT_CONFIG table contains InnoDB fulltext index metadata.

The SUPER privilege is required to view the table, and it also requires the innodb_ft_aux_table system variable to be set.

It has the following columns:

Column Description

KEY Metadata item name.

VALUE Associated value.

Example

SELECT * FROM INNODB_FT_CONFIG;

+---------------------------+-------+

| KEY | VALUE |

+---------------------------+-------+

| optimize_checkpoint_limit | 180 |

| synced_doc_id | 6 |

| last_optimized_word | |

| deleted_doc_count | 0 |

| total_word_count | |

| optimize_start_time | |

| optimize_end_time | |

| stopword_table_name | |

| use_stopword | 1 |

| table_state | 0 |

+---------------------------+-------+

1.1.1.2.9.1.1.1.13 Information Schema
INNODB_FT_DEFAULT_STOPWORD Table
The Information Schema INNODB_FT_DEFAULT_STOPWORD table contains a list of default stopwords used when creating an

InnoDB fulltext index.

283/4161

The PROCESS privilege is required to view the table.

It has the following column:

Column Description

VALUE
Default stopword for an InnoDB fulltext index. Setting either the innodb_ft_server_stopword_table or the

innodb_ft_user_stopword_table system variable will override this.

Example

SELECT * FROM information_schema.INNODB_FT_DEFAULT_STOPWORD\G

*************************** 1. row ***************************

value: a

*************************** 2. row ***************************

value: about

*************************** 3. row ***************************

value: an

*************************** 4. row ***************************

value: are

...

*************************** 36. row ***************************

value: www

1.1.1.2.9.1.1.1.14 Information Schema
INNODB_FT_DELETED Table
The Information Schema INNODB_FT_DELETED table contains rows that have been deleted from an InnoDB fulltext index.

This information is then used to filter results on subsequent searches, removing the need to expensively reorganise the

index each time a row is deleted.

The fulltext index is then only reorganized when an OPTIMIZE TABLE statement is underway. The related

INNODB_FT_BEING_DELETED table contains rows being deleted while an OPTIMIZE TABLE is in the process of running.

The SUPER privilege is required to view the table, and it also requires the innodb_ft_aux_table system variable to be set.

It has the following column:

Column Description

DOC_ID
Document ID of the deleted row deleted. Either an underlying ID value, or a sequence value generated by

InnoDB if no usable option exists.

Example

SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;

+--------+

| DOC_ID |

+--------+

| 2 |

+--------+

DELETE FROM test.ft_innodb LIMIT 1;

SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;

+--------+

| DOC_ID |

+--------+

| 2 |

| 3 |

+--------+

1.1.1.2.9.1.1.1.15 Information Schema

284/4161

INNODB_FT_INDEX_CACHE Table
The Information Schema INNODB_FT_INDEX_CACHE table contains information about rows that have recently been inserted

into an InnoDB fulltext index. To avoid re-organizing the fulltext index each time a change is made, which would be very

expensive, new changes are stored separately and only integrated when an OPTIMIZE TABLE is run.

The SUPER privilege is required to view the table, and it also requires the innodb_ft_aux_table system variable to be set.

It has the following columns:

Column Description

WORD
Word from the text of a newly added row. Words can appear multiple times in the table, once per

DOC_ID and POSITION combination.

FIRST_DOC_ID First document ID where this word appears in the index.

LAST_DOC_ID Last document ID where this word appears in the index.

DOC_COUNT Number of rows containing this word in the index.

DOC_ID Document ID of the newly added row, either an appropriate ID column or an internal InnoDB value.

POSITION
Position of this word instance within the DOC_ID , as an offset added to the previous POSITION

instance.

Note that for OPTIMIZE TABLE to process InnoDB fulltext index data, the innodb_optimize_fulltext_only system variable

needs to be set to 1 . When this is done, and an OPTIMIZE TABLE statement run, the INNODB_FT_INDEX_CACHE table

will be emptied, and the INNODB_FT_INDEX_TABLE table will be updated.

Examples

SELECT * FROM INNODB_FT_INDEX_CACHE;

+------------+--------------+-------------+-----------+--------+----------+

| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |

+------------+--------------+-------------+-----------+--------+----------+

| and | 4 | 4 | 1 | 4 | 0 |

| arrived | 4 | 4 | 1 | 4 | 20 |

| ate | 1 | 1 | 1 | 1 | 4 |

| everybody | 1 | 1 | 1 | 1 | 8 |

| goldilocks | 4 | 4 | 1 | 4 | 9 |

| hungry | 3 | 3 | 1 | 3 | 8 |

| then | 4 | 4 | 1 | 4 | 4 |

| wicked | 2 | 2 | 1 | 2 | 4 |

| witch | 2 | 2 | 1 | 2 | 11 |

+------------+--------------+-------------+-----------+--------+----------+

9 rows in set (0.00 sec)

INSERT INTO test.ft_innodb VALUES(3,'And she ate a pear');

SELECT * FROM INNODB_FT_INDEX_CACHE;

+------------+--------------+-------------+-----------+--------+----------+

| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |

+------------+--------------+-------------+-----------+--------+----------+

| and | 4 | 5 | 2 | 4 | 0 |

| and | 4 | 5 | 2 | 5 | 0 |

| arrived | 4 | 4 | 1 | 4 | 20 |

| ate | 1 | 5 | 2 | 1 | 4 |

| ate | 1 | 5 | 2 | 5 | 8 |

| everybody | 1 | 1 | 1 | 1 | 8 |

| goldilocks | 4 | 4 | 1 | 4 | 9 |

| hungry | 3 | 3 | 1 | 3 | 8 |

| pear | 5 | 5 | 1 | 5 | 14 |

| she | 5 | 5 | 1 | 5 | 4 |

| then | 4 | 4 | 1 | 4 | 4 |

| wicked | 2 | 2 | 1 | 2 | 4 |

| witch | 2 | 2 | 1 | 2 | 11 |

+------------+--------------+-------------+-----------+--------+----------+

285/4161

OPTIMIZE TABLE test.ft_innodb\G

*************************** 1. row ***************************

 Table: test.ft_innodb

 Op: optimize

Msg_type: note

Msg_text: Table does not support optimize, doing recreate + analyze instead

*************************** 2. row ***************************

 Table: test.ft_innodb

 Op: optimize

Msg_type: status

Msg_text: OK

2 rows in set (2.24 sec)

SELECT * FROM INNODB_FT_INDEX_CACHE;

+------------+--------------+-------------+-----------+--------+----------+

| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |

+------------+--------------+-------------+-----------+--------+----------+

| and | 4 | 5 | 2 | 4 | 0 |

| and | 4 | 5 | 2 | 5 | 0 |

| arrived | 4 | 4 | 1 | 4 | 20 |

| ate | 1 | 5 | 2 | 1 | 4 |

| ate | 1 | 5 | 2 | 5 | 8 |

| everybody | 1 | 1 | 1 | 1 | 8 |

| goldilocks | 4 | 4 | 1 | 4 | 9 |

| hungry | 3 | 3 | 1 | 3 | 8 |

| pear | 5 | 5 | 1 | 5 | 14 |

| she | 5 | 5 | 1 | 5 | 4 |

| then | 4 | 4 | 1 | 4 | 4 |

| wicked | 2 | 2 | 1 | 2 | 4 |

| witch | 2 | 2 | 1 | 2 | 11 |

+------------+--------------+-------------+-----------+--------+----------+

13 rows in set (0.00 sec)

The OPTIMIZE TABLE statement has no effect, because the innodb_optimize_fulltext_only variable wasn't set:

SHOW VARIABLES LIKE 'innodb_optimize_fulltext_only';

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| innodb_optimize_fulltext_only | OFF |

+-------------------------------+-------+

SET GLOBAL innodb_optimize_fulltext_only =1;

OPTIMIZE TABLE test.ft_innodb;

+----------------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+----------------+----------+----------+----------+

| test.ft_innodb | optimize | status | OK |

+----------------+----------+----------+----------+

SELECT * FROM INNODB_FT_INDEX_CACHE;

Empty set (0.00 sec)

1.1.1.2.9.1.1.1.16 Information Schema
INNODB_FT_INDEX_TABLE Table
The Information Schema INNODB_FT_INDEX_TABLE table contains information about InnoDB fulltext indexes. To avoid re-

organizing the fulltext index each time a change is made, which would be very expensive, new changes are stored

separately and only integrated when an OPTIMIZE TABLE is run. See the INNODB_FT_INDEX_CACHE table.

The SUPER privilege is required to view the table, and it also requires the innodb_ft_aux_table system variable to be set.

It has the following columns:

Column Description

WORD
Word from the text of a column with a fulltext index. Words can appear multiple times in the table, once

per DOC_ID and POSITION combination.

286/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb-server-system-variables#innodb_optimize_fulltext_only

FIRST_DOC_ID First document ID where this word appears in the index.

LAST_DOC_ID Last document ID where this word appears in the index.

DOC_COUNT Number of rows containing this word in the index.

DOC_ID Document ID of the newly added row, either an appropriate ID column or an internal InnoDB value.

POSITION
Position of this word instance within the DOC_ID , as an offset added to the previous POSITION

instance.

Note that for OPTIMIZE TABLE to process InnoDB fulltext index data, the innodb_optimize_fulltext_only system variable

needs to be set to 1 . When this is done, and an OPTIMIZE TABLE statement run, the INNODB_FT_INDEX_CACHE table

will be emptied, and the INNODB_FT_INDEX_TABLE table will be updated.

Examples

SELECT * FROM INNODB_FT_INDEX_TABLE;

Empty set (0.00 sec)

SET GLOBAL innodb_optimize_fulltext_only =1;

OPTIMIZE TABLE test.ft_innodb;

+----------------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+----------------+----------+----------+----------+

| test.ft_innodb | optimize | status | OK |

+----------------+----------+----------+----------+

SELECT * FROM INNODB_FT_INDEX_TABLE;

+------------+--------------+-------------+-----------+--------+----------+

| WORD | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |

+------------+--------------+-------------+-----------+--------+----------+

| and | 4 | 5 | 2 | 4 | 0 |

| and | 4 | 5 | 2 | 5 | 0 |

| arrived | 4 | 4 | 1 | 4 | 20 |

| ate | 1 | 5 | 2 | 1 | 4 |

| ate | 1 | 5 | 2 | 5 | 8 |

| everybody | 1 | 1 | 1 | 1 | 8 |

| goldilocks | 4 | 4 | 1 | 4 | 9 |

| hungry | 3 | 3 | 1 | 3 | 8 |

| pear | 5 | 5 | 1 | 5 | 14 |

| she | 5 | 5 | 1 | 5 | 4 |

| then | 4 | 4 | 1 | 4 | 4 |

| wicked | 2 | 2 | 1 | 2 | 4 |

| witch | 2 | 2 | 1 | 2 | 11 |

+------------+--------------+-------------+-----------+--------+----------+

1.1.1.2.9.1.1.1.17 Information Schema
INNODB_LOCK_WAITS Table
The Information Schema INNODB_LOCK_WAITS table contains information about blocked InnoDB transactions. The

PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

REQUESTING_TRX_ID Requesting transaction ID from the INNODB_TRX table.

REQUESTED_LOCK_ID Lock ID from the INNODB.LOCKS table for the waiting transaction.

BLOCKING_TRX_ID Blocking transaction ID from the INNODB_TRX table.

BLOCKING_LOCK_ID
Lock ID from the INNODB.LOCKS table of a lock held by a transaction that is blocking another

transaction.

The table is often used in conjunction with the INNODB_LOCKS and INNODB_TRX tables to diagnose problematic locks

and transactions.

287/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb-server-system-variables#innodb_optimize_fulltext_only

1.1.1.2.9.1.1.1.18 Information Schema
INNODB_LOCKS Table
The Information Schema INNODB_LOCKS table stores information about locks that InnoDB transactions have requested but

not yet acquired, or that are blocking another transaction.

It has the following columns:

Column Description

LOCK_ID Lock ID number - the format is not fixed, so do not rely upon the number for information.

LOCK_TRX_ID Lock's transaction ID. Matches the INNODB_TRX.TRX_ID column.

LOCK_MODE

Lock mode. One of S (shared), X (exclusive), IS (intention shared), IX (intention exclusive row lock),

S_GAP (shared gap lock), X_GAP (exclusive gap lock), IS_GAP (intention shared gap lock), IX_GAP

(intention exclusive gap lock) or AUTO_INC (auto-increment table level lock).

LOCK_TYPE Whether the lock is RECORD (row level) or TABLE level.

LOCK_TABLE Name of the locked table,or table containing locked rows.

LOCK_INDEX Index name if a RECORD LOCK_TYPE , or NULL if not.

LOCK_SPACE Tablespace ID if a RECORD LOCK_TYPE , or NULL if not.

LOCK_PAGE Locked record page number if a RECORD LOCK_TYPE , or NULL if not.

LOCK_REC Locked record heap number if a RECORD LOCK_TYPE , or NULL if not.

LOCK_DATA
Locked record primary key as an SQL string if a RECORD LOCK_TYPE , or NULL if not. If no primary key

exists, the internal InnoDB row_id number is instead used. To avoid unnecessary IO, also NULL if the

locked record page is not in the buffer pool

The table is often used in conjunction with the INNODB_LOCK_WAITS and INNODB_TRX tables to diagnose problematic

locks and transactions

Example

288/4161

-- session 1

START TRANSACTION;

UPDATE t SET id = 15 WHERE id = 10;

-- session 2

DELETE FROM t WHERE id = 10;

-- session 1

USE information_schema;

SELECT l.*, t.*

 FROM information_schema.INNODB_LOCKS l

 JOIN information_schema.INNODB_TRX t

 ON l.lock_trx_id = t.trx_id

 WHERE trx_state = 'LOCK WAIT' \G

*************************** 1. row ***************************

 lock_id: 840:40:3:2

 lock_trx_id: 840

 lock_mode: X

 lock_type: RECORD

 lock_table: `test`.`t`

 lock_index: PRIMARY

 lock_space: 40

 lock_page: 3

 lock_rec: 2

 lock_data: 10

 trx_id: 840

 trx_state: LOCK WAIT

 trx_started: 2019-12-23 18:43:46

 trx_requested_lock_id: 840:40:3:2

 trx_wait_started: 2019-12-23 18:43:46

 trx_weight: 2

 trx_mysql_thread_id: 46

 trx_query: DELETE FROM t WHERE id = 10

 trx_operation_state: starting index read

 trx_tables_in_use: 1

 trx_tables_locked: 1

 trx_lock_structs: 2

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 1

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

.

1.1.1.2.9.1.1.1.19 Information Schema
INNODB_METRICS Table

Contents
1. Enabling and Disabling Counters

2. Resetting Counters

3. Simplifying from MariaDB 10.6

4. Examples

The Information Schema INNODB_METRICS table contains a list of useful InnoDB performance metrics. Each row in the

table represents an instrumented counter that can be stopped, started and reset, and which can be grouped together by

module.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

NAME Unique counter name.

289/4161

SUBSYSTEM
InnoDB subsystem. See below for the matching module to use to enable/disable monitoring this

subsytem with the innodb_monitor_enable and innodb_monitor_disable system variables.

COUNT Count since being enabled.

MAX_COUNT Maximum value since being enabled.

MIN_COUNT Minimum value since being enabled.

AVG_COUNT Average value since being enabled.

COUNT_RESET Count since last being reset.

MAX_COUNT_RESET Maximum value since last being reset.

MIN_COUNT_RESET Minimum value since last being reset.

AVG_COUNT_RESET Average value since last being reset.

TIME_ENABLED Time last enabled.

TIME_DISABLED Time last disabled

TIME_ELAPSED Time since enabled

TIME_RESET Time last reset.

STATUS Whether the counter is currently enabled to disabled.

TYPE Item type; one of counter , value , status_counter , set_owner , set_member .

COMMENT Counter description.

Enabling and Disabling Counters
Most of the counters are disabled by default. To enable them, use the innodb_monitor_enable system variable. You can

either enable a variable by its name, for example:

SET GLOBAL innodb_monitor_enable = icp_match;

or enable a number of counters grouped by module. The SUBSYSTEM field indicates which counters are grouped together,

but the following module names need to be used:

Module Name Subsytem Field

module_metadata metadata

module_lock lock

module_buffer buffer

module_buf_page buffer_page_io

module_os os

module_trx transaction

module_purge purge

module_compress compression

module_file file_system

module_index index

module_adaptive_hash
adaptive_hash_index From MariaDB 10.6.2, if innodb_adaptive_hash_index is disabled

(the default), adaptive_hash_index will not be updated.

module_ibuf_system change_buffer

module_srv server

module_ddl ddl

module_dml dml

module_log recovery

290/4161

module_icp icp

There are four counters in the icp subsystem:

SELECT NAME, SUBSYSTEM FROM INNODB_METRICS WHERE SUBSYSTEM='icp';

+------------------+-----------+

| NAME | SUBSYSTEM |

+------------------+-----------+

| icp_attempts | icp |

| icp_no_match | icp |

| icp_out_of_range | icp |

| icp_match | icp |

+------------------+-----------+

To enable them all, use the associated module name from the table above, module_icp .

SET GLOBAL innodb_monitor_enable = module_icp;

The % wildcard, used to represent any number of characters, can also be used when naming counters, for example:

SET GLOBAL innodb_monitor_enable = 'buffer%'

To disable counters, use the innodb_monitor_disable system variable, using the same naming rules as described above for

enabling.

Counter status is not persistent, and will be reset when the server restarts. It is possible to use the options on the command

line, or the innodb_monitor_enable option only in a configuration file.

Resetting Counters
Counters can also be reset. Resetting sets all the *_COUNT_RESET values to zero, while leaving the *_COUNT values,

which perform counts since the counter was enabled, untouched. Resetting is performed with the innodb_monitor_reset (for

individual counters) and innodb_monitor_reset_all (for all counters) system variables.

Simplifying from MariaDB 10.6

From MariaDB 10.6, the interface was simplified by removing the following:

buffer_LRU_batches_flush

buffer_LRU_batch_flush_pages

buffer_LRU_batches_evict

buffer_LRU_batch_evict_pages

and by making the following reflect the status variables:

buffer_LRU_batch_flush_total_pages: innodb_buffer_pool_pages_LRU_flushed

buffer_LRU_batch_evict_total_pages: innodb_buffer_pool_pages_LRU_freed

The intention is to eventually remove the interface entirely (see MDEV-15706).

Examples
MariaDB 10.8:

SELECT name,subsystem,type,comment FROM INFORMATION_SCHEMA.INNODB_METRICS\G

*************************** 1. row ***************************

 name: metadata_table_handles_opened

subsystem: metadata

 type: counter

 comment: Number of table handles opened

*************************** 2. row ***************************

 name: lock_deadlocks

subsystem: lock

 type: value

 comment: Number of deadlocks

*************************** 3. row ***************************

 name: lock_timeouts

MariaDB starting with 10.6

291/4161

https://jira.mariadb.org/browse/MDEV-15706

 name: lock_timeouts

subsystem: lock

 type: value

 comment: Number of lock timeouts

*************************** 4. row ***************************

 name: lock_rec_lock_waits

subsystem: lock

 type: counter

 comment: Number of times enqueued into record lock wait queue

*************************** 5. row ***************************

 name: lock_table_lock_waits

subsystem: lock

 type: counter

 comment: Number of times enqueued into table lock wait queue

*************************** 6. row ***************************

 name: lock_rec_lock_requests

subsystem: lock

 type: counter

 comment: Number of record locks requested

*************************** 7. row ***************************

 name: lock_rec_lock_created

subsystem: lock

 type: counter

 comment: Number of record locks created

*************************** 8. row ***************************

 name: lock_rec_lock_removed

subsystem: lock

 type: counter

 comment: Number of record locks removed from the lock queue

*************************** 9. row ***************************

 name: lock_rec_locks

subsystem: lock

 type: counter

 comment: Current number of record locks on tables

*************************** 10. row ***************************

 name: lock_table_lock_created

subsystem: lock

 type: counter

 comment: Number of table locks created

...

*************************** 207. row ***************************

 name: icp_attempts

subsystem: icp

 type: counter

 comment: Number of attempts for index push-down condition checks

*************************** 208. row ***************************

 name: icp_no_match

subsystem: icp

 type: counter

 comment: Index push-down condition does not match

*************************** 209. row ***************************

 name: icp_out_of_range

subsystem: icp

 type: counter

 comment: Index push-down condition out of range

*************************** 210. row ***************************

 name: icp_match

subsystem: icp

 type: counter

 comment: Index push-down condition matches

1.1.1.2.9.1.1.1.20 Information Schema
INNODB_MUTEXES Table
The INNODB_MUTEXES table monitors mutex and rw locks waits. It has the following columns:

Column Description

NAME Name of the lock, as it appears in the source code.

292/4161

CREATE_FILE File name of the mutex implementation.

CREATE_LINE Line number of the mutex implementation.

OS_WAITS How many times the mutex occurred.

The CREATE_FILE and CREATE_LINE columns depend on the InnoDB/XtraDB version.

Note that since MariaDB 10.2.2 , the table has only been providing information about rw_lock_t, not any mutexes. From

MariaDB 10.2.2 until MariaDB 10.2.32 , MariaDB 10.3.23 , MariaDB 10.4.13 and MariaDB 10.5.1, the NAME column

was not populated (MDEV-21636).

The SHOW ENGINE INNODB STATUS statement provides similar information.

Examples

SELECT * FROM INNODB_MUTEXES;

+------------------------------+---------------------+-------------+----------+

| NAME | CREATE_FILE | CREATE_LINE | OS_WAITS |

+------------------------------+---------------------+-------------+----------+

| &dict_sys->mutex | dict0dict.cc | 989 | 2 |

| &buf_pool->flush_state_mutex | buf0buf.cc | 1388 | 1 |

| &log_sys->checkpoint_lock | log0log.cc | 1014 | 2 |

| &block->lock | combined buf0buf.cc | 1120 | 1 |

+------------------------------+---------------------+-------------+----------+

1.1.1.2.9.1.1.1.21 Information Schema
INNODB_SYS_COLUMNS Table
The Information Schema INNODB_SYS_COLUMNS table contains information about InnoDB fields.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

TABLE_ID Table identifier, matching the value from INNODB_SYS_TABLES.TABLE_ID.

NAME Column name.

POS
Ordinal position of the column in the table, starting from 0 . This value is adjusted when columns are added

or removed.

MTYPE Numeric column type identifier, (see the table below for an explanation of its values).

PRTYPE Binary value of the InnoDB precise type, representing the data type, character set code and nullability.

LEN Column length. For multi-byte character sets, represents the length in bytes.

The column MTYPE uses a numeric column type identifier, which has the following values:

Column Type Identifier Description

1 VARCHAR

2 CHAR

3 FIXBINARY

4 BINARY

5 BLOB

6 INT

7 SYS_CHILD

8 SYS

9 FLOAT

293/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://jira.mariadb.org/browse/MDEV-21636

10 DOUBLE

11 DECIMAL

12 VARMYSQL

13 MYSQL

Example

SELECT * FROM information_schema.INNODB_SYS_COLUMNS LIMIT 3\G

*************************** 1. row ***************************

TABLE_ID: 11

 NAME: ID

 POS: 0

 MTYPE: 1

 PRTYPE: 524292

 LEN: 0

*************************** 2. row ***************************

TABLE_ID: 11

 NAME: FOR_NAME

 POS: 0

 MTYPE: 1

 PRTYPE: 524292

 LEN: 0

*************************** 3. row ***************************

TABLE_ID: 11

 NAME: REF_NAME

 POS: 0

 MTYPE: 1

 PRTYPE: 524292

 LEN: 0

3 rows in set (0.00 sec)

1.1.1.2.9.1.1.1.22 Information Schema
INNODB_SYS_DATAFILES Table

The INNODB_SYS_DATAFILES table was added in MariaDB 10.0.4 , and removed in MariaDB 10.6.0.

The Information Schema INNODB_SYS_DATAFILES table contains information about InnoDB datafile paths. It was intended

to provide metadata for tablespaces inside InnoDB tables, which was never implemented in MariaDB and was removed in

MariaDB 10.6. The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

SPACE Numeric tablespace. Matches the INNODB_SYS_TABLES.SPACE value.

PATH Tablespace datafile path.

Example

SELECT * FROM INNODB_SYS_DATAFILES;

+-------+--------------------------------+

| SPACE | PATH |

+-------+--------------------------------+

| 19 | ./test/t2.ibd |

| 20 | ./test/t3.ibd |

...

| 68 | ./test/animals.ibd |

| 69 | ./test/animal_count.ibd |

| 70 | ./test/t.ibd |

+-------+--------------------------------+

MariaDB until 10.5

294/4161

https://mariadb.com/kb/en/mariadb-1004-release-notes/

1.1.1.2.9.1.1.1.23 Information Schema
INNODB_SYS_FIELDS Table
The Information Schema INNODB_SYS_FIELDS table contains information about fields that are part of an InnoDB index.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

INDEX_ID Index identifier, matching the value from INNODB_SYS_INDEXES.INDEX_ID.

NAME Field name, matching the value from INNODB_SYS_COLUMNS.NAME.

POS Ordinal position of the field within the index, starting from 0 . This is adjusted as columns are removed.

Example

SELECT * FROM information_schema.INNODB_SYS_FIELDS LIMIT 3\G

*************************** 1. row ***************************

INDEX_ID: 11

 NAME: ID

 POS: 0

*************************** 2. row ***************************

INDEX_ID: 12

 NAME: FOR_NAME

 POS: 0

*************************** 3. row ***************************

INDEX_ID: 13

 NAME: REF_NAME

 POS: 0

3 rows in set (0.00 sec)

1.1.1.2.9.1.1.1.24 Information Schema
INNODB_SYS_FOREIGN Table
The Information Schema INNODB_SYS_FOREIGN table contains information about InnoDB foreign keys.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

ID Database name and foreign key name.

FOR_NAME Database and table name of the foreign key child.

REF_NAME Database and table name of the foreign key parent.

N_COLS Number of foreign key index columns.

TYPE Bit flag providing information about the foreign key.

The TYPE column provides a bit flag with information about the foreign key. This information is OR 'ed together to read:

Bit Flag Description

1 ON DELETE CASCADE

2 ON UPDATE SET NULL

4 ON UPDATE CASCADE

8 ON UPDATE SET NULL

16 ON DELETE NO ACTION

295/4161

32 ON UPDATE NO ACTION

Example

SELECT * FROM INNODB_SYS_FOREIGN\G

*************************** 1. row ***************************

 ID: mysql/innodb_index_stats_ibfk_1

FOR_NAME: mysql/innodb_index_stats

REF_NAME: mysql/innodb_table_stats

 N_COLS: 2

 TYPE: 0

...

1.1.1.2.9.1.1.1.25 Information Schema
INNODB_SYS_FOREIGN_COLS Table
The Information Schema INNODB_SYS_FOREIGN_COLS table contains information about InnoDB foreign key columns.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

ID Foreign key index associated with this column, matching the INNODB_SYS_FOREIGN.ID field.

FOR_COL_NAME Child column name.

REF_COL_NAME Parent column name.

POS Ordinal position of the column in the table, starting from 0.

1.1.1.2.9.1.1.1.26 Information Schema
INNODB_SYS_INDEXES Table
The Information Schema INNODB_SYS_INDEXES table contains information about InnoDB indexes.

The PROCESS privilege is required to view the table.

It has the following columns:

Field Type Null Key Default Description

INDEX_ID
bigint(21)

unsigned
NO 0 A unique index identifier.

NAME varchar(64) NO

Index name, lowercase for all user-created indexes, or

uppercase for implicitly-created indexes; PRIMARY (primary

key), GEN_CLUST_INDEX (index representing primary key

where there isn't one), ID_IND , FOR_IND (validating foreign

key constraint) , REF_IND .

TABLE_ID
bigint(21)

unsigned
NO 0

Table identifier, matching the value from

INNODB_SYS_TABLES.TABLE_ID.

TYPE int(11) NO 0

Numeric type identifier; one of 0 (secondary index), 1

(clustered index), 2 (unique index), 3 (primary index), 32

(full-text index).

N_FIELDS int(11) NO 0

Number of columns in the index. GEN_CLUST_INDEX's have

a value of 0 as the index is not based on an actual column in

the table.

PAGE_NO int(11) NO 0
Index B-tree's root page number. -1 (unused) for full-text

indexes, as they are laid out over several auxiliary tables.

296/4161

SPACE int(11) NO 0

Tablespace identifier where the index resides. 0 represents

the InnoDB system tablespace, while any other value

represents a table created in file-per-table mode (see the

innodb_file_per_table system variable). Remains unchanged

after a TRUNCATE TABLE statement, and not necessarily

unique.

MERGE_THRESHOLD int(11) NO 0

Example

SELECT * FROM information_schema.INNODB_SYS_INDEXES LIMIT 3\G

*************************** 1. row ***************************

 INDEX_ID: 11

 NAME: ID_IND

 TABLE_ID: 11

 TYPE: 3

 N_FIELDS: 1

 PAGE_NO: 302

 SPACE: 0

MERGE_THRESHOLD: 50

*************************** 2. row ***************************

 INDEX_ID: 12

 NAME: FOR_IND

 TABLE_ID: 11

 TYPE: 0

 N_FIELDS: 1

 PAGE_NO: 303

 SPACE: 0

MERGE_THRESHOLD: 50

*************************** 3. row ***************************

 INDEX_ID: 13

 NAME: REF_IND

 TABLE_ID: 11

 TYPE: 3

 N_FIELDS: 1

 PAGE_NO: 304

 SPACE: 0

MERGE_THRESHOLD: 50

3 rows in set (0.00 sec)

1.1.1.2.9.1.1.1.27 Information Schema
INNODB_SYS_SEMAPHORE_WAITS Table
The Information Schema INNODB_SYS_SEMAPHORE_WAITS table is meant to contain information about current

semaphore waits. At present it is not correctly populated. See MDEV-21330 .

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

THREAD_ID Thread id waiting for semaphore

OBJECT_NAME Semaphore name

FILE File name where semaphore was requested

LINE Line number on above file

WAIT_TIME Wait time

WAIT_OBJECT

WAIT_TYPE Object type (mutex, rw-lock)

HOLDER_THREAD_ID Holder thread id

HOLDER_FILE File name where semaphore was acquired

297/4161

https://jira.mariadb.org/browse/MDEV-21330

HOLDER_LINE Line number for above

CREATED_FILE Creation file name

CREATED_LINE Line number for above

WRITER_THREAD Last write request thread id

RESERVATION_MODE Reservation mode (shared, exclusive)

READERS Number of readers if only shared mode

WAITERS_FLAG Flags

LOCK_WORD Lock word (for developers)

LAST_READER_FILE Removed

LAST_READER_LINE Removed

LAST_WRITER_FILE Last writer file name

LAST_WRITER_LINE Above line number

OS_WAIT_COUNT Wait count

1.1.1.2.9.1.1.1.28 Information Schema
INNODB_SYS_TABLES Table
The Information Schema INNODB_SYS_TABLES table contains information about InnoDB tables.

The PROCESS privilege is required to view the table.

It has the following columns:

Field Type Null Key Default Description

TABLE_ID bigint(21) unsigned NO 0 Unique InnoDB table identifier.

NAME varchar(655) NO
Database and table name, or the uppercase InnoDB

system table name.

FLAG int(11) NO 0 See Flag below

N_COLS

int(11) unsigned (>=

MariaDB 10.5)

int(11) (<= MariaDB

10.4)

NO 0

Number of columns in the table. The count includes two

or three hidden InnoDB system columns, appended to

the end of the column list: DB_ROW_ID (if there is no

primary key or unique index on NOT NULL columns),

DB_TRX_ID, DB_ROLL_PTR.

SPACE

int(11) unsigned (>=

MariaDB 10.5)

int(11) (<= MariaDB

10.4)

NO 0

Tablespace identifier where the index resides. 0

represents the InnoDB system tablespace, while any

other value represents a table created in file-per-table

mode (see the innodb_file_per_table system variable).

Remains unchanged after a TRUNCATE TABLE

statement.

FILE_FORMAT varchar(10) YES NULL
InnoDB file format (Antelope or Barracuda). Removed in

MariaDB 10.3.

ROW_FORMAT

enum('Redundant',

'Compact',

'Compressed',

'Dynamic') (>=

MariaDB 10.5)

varchar(12) (<=

MariaDB 10.4)

YES NULL
InnoDB storage format (Compact, Redundant, Dynamic,

or Compressed).

ZIP_PAGE_SIZE int(11) unsigned NO 0 For Compressed tables, the zipped page size.

SPACE_TYPE

enum('Single','System')

(>= MariaDB 10.5)

varchar(10) (<=

MariaDB 10.4)

YES NULL

298/4161

Flag
The flag field returns the dict_table_t::flags that correspond to the data dictionary record.

Bit Description

0 Set if ROW_FORMAT is not REDUNDANT.

1 to

4

0 , except for ROW_FORMAT=COMPRESSED, where they will determine the KEY_BLOCK_SIZE (the

compressed page size).

5 Set for ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED.

6 Set if the DATA DIRECTORY attribute was present when the table was originally created.

7 Set if the page_compressed attribute is present.

8 to

11
Determine the page_compression_level.

12

13

Normally 00 , but 11 for "no-rollback tables" (MariaDB 10.3 CREATE SEQUENCE). In MariaDB 10.1, these bits

could be 01 or 10 for ATOMIC_WRITES=ON or ATOMIC_WRITES=OFF.

Note that the table flags returned here are not the same as tablespace flags (FSP_SPACE_FLAGS).

Example

SELECT * FROM information_schema.INNODB_SYS_TABLES LIMIT 2\G

*************************** 1. row ***************************

 TABLE_ID: 14

 NAME: SYS_DATAFILES

 FLAG: 0

 N_COLS: 5

 SPACE: 0

 ROW_FORMAT: Redundant

ZIP_PAGE_SIZE: 0

 SPACE_TYPE: System

*************************** 2. row ***************************

 TABLE_ID: 11

 NAME: SYS_FOREIGN

 FLAG: 0

 N_COLS: 7

 SPACE: 0

 ROW_FORMAT: Redundant

ZIP_PAGE_SIZE: 0

 SPACE_TYPE: System

2 rows in set (0.00 sec)

1.1.1.2.9.1.1.1.29 Information Schema
INNODB_SYS_TABLESPACES Table
The Information Schema INNODB_SYS_TABLESPACES table contains information about InnoDB tablespaces. Until MariaDB

10.5 it was based on the internal SYS_TABLESPACES table. This internal table was removed in MariaDB 10.6.0, so this

Information Schema table has been repurposed to directly reflect the filesystem (fil_system.space_list).

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

SPACE Unique InnoDB tablespace identifier.

NAME Database and table name separated by a backslash, or the uppercase InnoDB system table name.

FLAG
1 if a DATA DIRECTORY option has been specified in CREATE TABLE , otherwise 0 .

FILE_FORMAT InnoDB file format. Removed in MariaDB 10.3.1

299/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

ROW_FORMAT

InnoDB storage format used for this tablespace. If the Antelope file format is used, this value is

always Compact or Redundant . When a table's checksum algorithm is full_crc32 (the default

from MariaDB 10.5), the value can only be Compressed or NULL .

PAGE_SIZE

Page size in bytes for this tablespace. Until MariaDB 10.5.0, this was the value of the

innodb_page_size variable. From MariaDB 10.6.0, contains the physical page size of a page

(previously ZIP_PAGE_SIZE).

ZIP_PAGE_SIZE Zip page size for this tablespace. Removed in MariaDB 10.6.0.

SPACE_TYPE
Tablespace type. Can be General for general tablespaces or Single for file-per-table

tablespaces. Introduced MariaDB 10.2.1 . Removed MariaDB 10.5.0.

FS_BLOCK_SIZE File system block size. Introduced MariaDB 10.2.1 .

FILE_SIZE Maximum size of the file, uncompressed. Introduced MariaDB 10.2.1 .

ALLOCATED_SIZE Actual size of the file as per space allocated on disk. Introduced MariaDB 10.2.1 .

FILENAME
Tablespace datafile path, previously part of the INNODB_SYS_DATAFILES table. Added in MariaDB

10.6.0.

Examples
MariaDB 10.4:

DESC information_schema.innodb_sys_tablespaces;

+----------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------+---------------------+------+-----+---------+-------+

| SPACE | int(11) unsigned | NO | | 0 | |

| NAME | varchar(655) | NO | | | |

| FLAG | int(11) unsigned | NO | | 0 | |

| ROW_FORMAT | varchar(22) | YES | | NULL | |

| PAGE_SIZE | int(11) unsigned | NO | | 0 | |

| ZIP_PAGE_SIZE | int(11) unsigned | NO | | 0 | |

| SPACE_TYPE | varchar(10) | YES | | NULL | |

| FS_BLOCK_SIZE | int(11) unsigned | NO | | 0 | |

| FILE_SIZE | bigint(21) unsigned | NO | | 0 | |

| ALLOCATED_SIZE | bigint(21) unsigned | NO | | 0 | |

+----------------+---------------------+------+-----+---------+-------+

From MariaDB 10.4:

SELECT * FROM information_schema.INNODB_SYS_TABLESPACES LIMIT 2\G

*************************** 1. row ***************************

 SPACE: 2

 NAME: mysql/innodb_table_stats

 FLAG: 33

 ROW_FORMAT: Dynamic

 PAGE_SIZE: 16384

 ZIP_PAGE_SIZE: 0

 SPACE_TYPE: Single

 FS_BLOCK_SIZE: 4096

 FILE_SIZE: 98304

ALLOCATED_SIZE: 98304

*************************** 2. row ***************************

 SPACE: 3

 NAME: mysql/innodb_index_stats

 FLAG: 33

 ROW_FORMAT: Dynamic

 PAGE_SIZE: 16384

 ZIP_PAGE_SIZE: 0

 SPACE_TYPE: Single

 FS_BLOCK_SIZE: 4096

 FILE_SIZE: 98304

ALLOCATED_SIZE: 98304

1.1.1.2.9.1.1.1.30 Information Schema
300/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

INNODB_SYS_TABLESTATS Table
The Information Schema INNODB_SYS_TABLESTATS table contains InnoDB status information. It can be used for

developing new performance-related extensions, or high-level performance monitoring.

The PROCESS privilege is required to view the table.

Note that the MySQL InnoDB and Percona XtraDB versions of the tables differ (see XtraDB and InnoDB).

It contains the following columns:

Column Description

TABLE_ID Table ID, matching the INNODB_SYS_TABLES.TABLE_ID value.

SCHEMA Database name (XtraDB only).

NAME Table name, matching the INNODB_SYS_TABLES.NAME value.

STATS_INITIALIZED Initialized if statistics have already been collected, otherwise Uninitialized .

NUM_ROWS
Estimated number of rows currently in the table. Updated after each statement modifying the

data, but uncommited transactions mean it may not be accurate.

CLUST_INDEX_SIZE
Number of pages on disk storing the clustered index, holding InnoDB table data in primary

key order, or NULL if not statistics yet collected.

OTHER_INDEX_SIZE
Number of pages on disk storing secondary indexes for the table, or NULL if not statistics yet

collected.

MODIFIED_COUNTER Number of rows modified by statements modifying data.

AUTOINC Auto_increment value.

REF_COUNT Countdown to zero, when table metadata can be removed from the table cache. (InnoDB only)

MYSQL_HANDLES_OPENED (XtraDB only).

1.1.1.2.9.1.1.1.31 Information Schema
INNODB_SYS_VIRTUAL Table

The INNODB_SYS_VIRTUAL table was added in MariaDB 10.2.

The Information Schema INNODB_SYS_VIRTUAL table contains information about base columns of virtual columns. The

PROCESS privilege is required to view the table.

It contains the following columns:

Field Type Null Key Default Description

TABLE_ID bigint(21) unsigned NO 0

POS int(11) unsigned NO 0

BASE_POS int(11) unsigned NO 0

MariaDB starting with 10.2

1.1.1.2.9.1.1.1.32 Information Schema
INNODB_TABLESPACES_ENCRYPTION
Table
The Information Schema INNODB_TABLESPACES_ENCRYPTION table contains metadata about encrypted InnoDB

tablespaces. When you enable encryption for an InnoDB tablespace , an entry for the tablespace is added to this table. If

you later disable encryption for the InnoDB tablespace, then the row still remains in this table, but the ENCRYPTION_SCHEME

and CURRENT_KEY_VERSION columns will be set to 0 .

Viewing this table requires the PROCESS privilege, although a bug in versions before MariaDB 10.4.14 and MariaDB 10.5.5

mean the SUPER privilege was required (MDEV-23003).

301/4161

https://jira.mariadb.org/browse/MDEV-23003

It contains the following columns:

Column Description

SPACE InnoDB tablespace ID.

NAME Path to the InnoDB tablespace file, without the extension.

ENCRYPTION_SCHEME
Key derivation algorithm. Only 1 is currently used to represent an algorithm. If this

value is 0 , then the tablespace is unencrypted.

KEYSERVER_REQUESTS
Number of times InnoDB has had to request a key from the encryption key

management plugin. The three most recent keys are cached internally.

MIN_KEY_VERSION
Minimum key version used to encrypt a page in the tablespace. Different pages

may be encrypted with different key versions.

CURRENT_KEY_VERSION
Key version that will be used to encrypt pages. If this value is 0 , then the

tablespace is unencrypted.

KEY_ROTATION_PAGE_NUMBER
Page that a background encryption thread is currently rotating. If key rotation is not

enabled, then the value will be NULL .

KEY_ROTATION_MAX_PAGE_NUMBER
When a background encryption thread starts rotating a tablespace, the field

contains its current size. If key rotation is not enabled, then the value will be NULL .

CURRENT_KEY_ID Key ID for the encryption key currently in use.

ROTATING_OR_FLUSHING
Current key rotation status. If this value is 1 , then the background encryption

threads are working on the tablespace. See MDEV-11738 .

When the InnoDB system tablespace is encrypted, it is represented in this table with the special name: innodb_system .

Example

SELECT * FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME LIKE 'db_encrypt%';

+-------+--+-------------------+-----------------

---+-----------------+---------------------+--------------------------+----------------------

--------+

| SPACE | NAME | ENCRYPTION_SCHEME |

KEYSERVER_REQUESTS | MIN_KEY_VERSION | CURRENT_KEY_VERSION | KEY_ROTATION_PAGE_NUMBER |

KEY_ROTATION_MAX_PAGE_NUMBER |

+-------+--+-------------------+-----------------

---+-----------------+---------------------+--------------------------+----------------------

--------+

| 18 | db_encrypt/t_encrypted_existing_key | 1 |

1 | 1 | 1 | NULL |

NULL |

| 19 | db_encrypt/t_not_encrypted_existing_key | 1 |

0 | 1 | 1 | NULL |

NULL |

| 20 | db_encrypt/t_not_encrypted_non_existing_key | 1 |

0 | 4294967295 | 4294967295 | NULL |

NULL |

| 21 | db_encrypt/t_default_encryption_existing_key | 1 |

1 | 1 | 1 | NULL |

NULL |

| 22 | db_encrypt/t_encrypted_default_key | 1 |

1 | 1 | 1 | NULL |

NULL |

| 23 | db_encrypt/t_not_encrypted_default_key | 1 |

0 | 1 | 1 | NULL |

NULL |

| 24 | db_encrypt/t_defaults | 1 |

1 | 1 | 1 | NULL |

NULL |

+-------+--+-------------------+-----------------

---+-----------------+---------------------+--------------------------+----------------------

--------+

7 rows in set (0.00 sec)

302/4161

https://jira.mariadb.org/browse/MDEV-11738

1.1.1.2.9.1.1.1.33 Information Schema
INNODB_TABLESPACES_SCRUBBING Table

InnoDB and XtraDB data scrubbing was introduced in MariaDB 10.1.3 . The table was removed in MariaDB 10.5.2 -

see MDEV-15528 .

The Information Schema INNODB_TABLESPACES_SCRUBBING table contains data scrubbing information.

The PROCESS privilege is required to view the table.

It has the following columns:

Column Description

SPACE InnoDB table space id number.

NAME Path to the table space file, without the extension.

COMPRESSED The compressed page size, or zero if uncompressed.

LAST_SCRUB_COMPLETED
Date and time when the last scrub was completed, or NULL if never been

performed.

CURRENT_SCRUB_STARTED Date and time when the current scrub started, or NULL if never been performed.

CURRENT_SCRUB_ACTIVE_THREADS Number of threads currently scrubbing the tablespace.

CURRENT_SCRUB_PAGE_NUMBER Page that the scrubbing thread is currently scrubbing, or NULL if not enabled.

CURRENT_SCRUB_MAX_PAGE_NUMBER
When a scrubbing starts rotating a table space, the field contains its current size.

NULL if not enabled.

ON_SSD
The field contains 1 when MariaDB detects that the table space is on a SSD

based storage. 0 if not SSD or it could not be determined (since MariaDB 10.4.4)

Example

SELECT * FROM information_schema.INNODB_TABLESPACES_SCRUBBING LIMIT 1\G

*************************** 1. row ***************************

 SPACE: 1

 NAME: mysql/innodb_table_stats

 COMPRESSED: 0

 LAST_SCRUB_COMPLETED: NULL

 CURRENT_SCRUB_STARTED: NULL

 CURRENT_SCRUB_PAGE_NUMBER: NULL

CURRENT_SCRUB_MAX_PAGE_NUMBER: 0

 ROTATING_OR_FLUSHING: 0

1 rows in set (0.00 sec)

MariaDB 10.1.3 - 10.5.1

1.1.1.2.9.1.1.1.34 Information Schema
INNODB_TRX Table
The Information Schema INNODB_TRX table stores information about all currently executing InnoDB transactions.

It has the following columns:

Column Description

TRX_ID Unique transaction ID number.

TRX_STATE
Transaction execution state; one of RUNNING , LOCK WAIT , ROLLING BACK or

COMMITTING .

TRX_STARTED Time that the transaction started.

303/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://jira.mariadb.org/browse/MDEV-15528

TRX_REQUESTED_LOCK_ID
If TRX_STATE is LOCK_WAIT , the INNODB_LOCKS.LOCK_ID value of the lock being

waited on. NULL if any other state.

TRX_WAIT_STARTED
If TRX_STATE is LOCK_WAIT , the time the transaction started waiting for the lock,

otherwise NULL .

TRX_WEIGHT

Transaction weight, based on the number of locked rows and the number of altered

rows. To resolve deadlocks, lower weighted transactions are rolled back first.

Transactions that have affected non-transactional tables are always treated as having

a heavier weight.

TRX_MYSQL_THREAD_ID

Thread ID from the PROCESSLIST table (note that the locking and transaction

information schema tables use a different snapshot from the processlist, so records

may appear in one but not the other).

TRX_QUERY SQL that the transaction is currently running.

TRX_OPERATION_STATE Transaction's current state, or NULL .

TRX_TABLES_IN_USE
Number of InnoDB tables currently being used for processing the current SQL

statement.

TRX_TABLES_LOCKED Number of InnoDB tables that that have row locks held by the current SQL statement.

TRX_LOCK_STRUCTS Number of locks reserved by the transaction.

TRX_LOCK_MEMORY_BYTES
Total size in bytes of the memory used to hold the lock structures for the current

transaction in memory.

TRX_ROWS_LOCKED

Number of rows the current transaction has locked. locked by this transaction. An

approximation, and may include rows not visible to the current transaction that are

delete-marked but physically present.

TRX_ROWS_MODIFIED Number of rows added or changed in the current transaction.

TRX_CONCURRENCY_TICKETS
Indicates how much work the current transaction can do before being swapped out,

see the innodb_concurrency_tickets system variable.

TRX_ISOLATION_LEVEL Isolation level of the current transaction.

TRX_UNIQUE_CHECKS
Whether unique checks are on or off for the current transaction. Bulk data are a

case where unique checks would be off.

TRX_FOREIGN_KEY_CHECKS
Whether foreign key checks are on or off for the current transaction. Bulk data are

a case where foreign keys checks would be off.

TRX_LAST_FOREIGN_KEY_ERROR Error message for the most recent foreign key error, or NULL if none.

TRX_ADAPTIVE_HASH_LATCHED
Whether the adaptive hash index is locked by the current transaction or not. One

transaction at a time can change the adaptive hash index.

TRX_ADAPTIVE_HASH_TIMEOUT

Whether the adaptive hash index search latch shoild be relinquished immediately or

reserved across all MariaDB calls. 0 if there is no contention on the adaptive hash

index, in which case the latch is reserved until completion, otherwise counts down to

zero and the latch is released after each row lookup.

TRX_IS_READ_ONLY 1 if a read-only transaction, otherwise 0 .

TRX_AUTOCOMMIT_NON_LOCKING

1 if the transaction only contains this one statement, that is, a SELECT statement not

using FOR UPDATE or LOCK IN SHARED MODE , and with autocommit on. If this and

TRX_IS_READ_ONLY are both 1, the transaction can be optimized by the storrage

engine to reduce some overheads

The table is often used in conjunction with the INNODB_LOCKS and INNODB_LOCK_WAITS tables to diagnose

problematic locks and transactions.

XA transactions are not stored in this table. To see them, XA RECOVER can be used.

Example

304/4161

-- session 1

START TRANSACTION;

UPDATE t SET id = 15 WHERE id = 10;

-- session 2

DELETE FROM t WHERE id = 10;

-- session 1

USE information_schema;

SELECT l.*, t.*

 FROM information_schema.INNODB_LOCKS l

 JOIN information_schema.INNODB_TRX t

 ON l.lock_trx_id = t.trx_id

 WHERE trx_state = 'LOCK WAIT' \G

*************************** 1. row ***************************

 lock_id: 840:40:3:2

 lock_trx_id: 840

 lock_mode: X

 lock_type: RECORD

 lock_table: `test`.`t`

 lock_index: PRIMARY

 lock_space: 40

 lock_page: 3

 lock_rec: 2

 lock_data: 10

 trx_id: 840

 trx_state: LOCK WAIT

 trx_started: 2019-12-23 18:43:46

 trx_requested_lock_id: 840:40:3:2

 trx_wait_started: 2019-12-23 18:43:46

 trx_weight: 2

 trx_mysql_thread_id: 46

 trx_query: DELETE FROM t WHERE id = 10

 trx_operation_state: starting index read

 trx_tables_in_use: 1

 trx_tables_locked: 1

 trx_lock_structs: 2

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 1

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

1.1.1.2.9.1.1.1.35 Information Schema
TEMP_TABLES_INFO Table

The TEMP_TABLES_INFO table was introduced in MariaDB 10.2.2 and was removed in MariaDB 10.2.4 . See

MDEV-12459 progress on an alternative.

The Information Schema TEMP_TABLES_INFO table contains information about active InnoDB temporary tables. All user

and system-created temporary tables are reported when querying this table, with the exception of optimized internal

temporary tables. The data is stored in memory.

Previously, InnoDB temp table metadata was rather stored in InnoDB system tables.

It has the following columns:

Column Description

TABLE_ID Table ID.

NAME Table name.

MariaDB 10.2.2 - 10.2.3

305/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://jira.mariadb.org/browse/MDEV-12459

N_COLS
Number of columns in the temporary table, including three hidden columns that InnoDB

creates (DB_ROW_ID , DB_TRX_ID , and DB_ROLL_PTR).

SPACE

Numerical identifier for the tablespace identifier holding the temporary table. Compressed

temporary tables are stored by default in separate per-table tablespaces in the temporary file

directory. For non-compressed tables, the shared temporary table is named ibtmp1 , found

in the data directory. Always a non-zero value, and regenerated on server restart.

PER_TABLE_TABLESPACE
If TRUE , the temporary table resides in a separate per-table tablespace. If FALSE , it resides

in the shared temporary tablespace.

IS_COMPRESSED TRUE if the table is compressed.

The PROCESS privilege is required to view the table.

Examples

CREATE TEMPORARY TABLE t (i INT) ENGINE=INNODB;

SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO;

+----------+--------------+--------+-------+----------------------+---------------+

| TABLE_ID | NAME | N_COLS | SPACE | PER_TABLE_TABLESPACE | IS_COMPRESSED |

+----------+--------------+--------+-------+----------------------+---------------+

| 39 | #sql1c93_3_1 | 4 | 64 | FALSE | FALSE |

+----------+--------------+--------+-------+----------------------+---------------+

Adding a compressed table:

SET GLOBAL innodb_file_format="Barracuda";

CREATE TEMPORARY TABLE t2 (i INT) ROW_FORMAT=COMPRESSED ENGINE=INNODB;

SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO;

+----------+--------------+--------+-------+----------------------+---------------+

| TABLE_ID | NAME | N_COLS | SPACE | PER_TABLE_TABLESPACE | IS_COMPRESSED |

+----------+--------------+--------+-------+----------------------+---------------+

| 40 | #sql1c93_3_3 | 4 | 65 | TRUE | TRUE |

| 39 | #sql1c93_3_1 | 4 | 64 | FALSE | FALSE |

+----------+--------------+--------+-------+----------------------+---------------+

1.1.1.2.9.1.1.2 Information Schema MyRocks
Tables
List of Information Schema tables specifically related to MyRocks.

Information Schema ROCKSDB_CFSTATS Table

The Information Schema ROCKSDB_CFSTATS table is included as part of the MyR...

Information Schema ROCKSDB_CF_OPTIONS Table

Information about MyRocks Column Families.

Information Schema ROCKSDB_COMPACTION_STATS Table

The Information Schema ROCKSDB_COMPACTION_STATS table is included as part o...

Information Schema ROCKSDB_DBSTATS Table

The Information Schema ROCKSDB_DBSTATS table is included as part of the MyR...

Information Schema ROCKSDB_DDL Table

The Information Schema ROCKSDB_DDL table is included as part of the MyRocks...

Information Schema ROCKSDB_DEADLOCK Table

The Information Schema ROCKSDB_DEADLOCK table is included as part of the My...

306/4161

Information Schema ROCKSDB_GLOBAL_INFO Table

The Information Schema ROCKSDB_GLOBAL_INFO table is included as part of the...

Information Schema ROCKSDB_INDEX_FILE_MAP Table

The Information Schema ROCKSDB_INDEX_FILE_MAP table is included as part of ...

Information Schema ROCKSDB_LOCKS Table

The Information Schema ROCKSDB_LOCKS table is included as part of the MyRoc...

Information Schema ROCKSDB_PERF_CONTEXT Table

Per-table/partition counters.

Information Schema ROCKSDB_PERF_CONTEXT_GLOBAL Table

Global counters.

Information Schema ROCKSDB_SST_PROPS Table

The Information Schema ROCKSDB_SST_PROPS table is included as part of the M...

Information Schema ROCKSDB_TRX Table

The Information Schema ROCKSDB_TRX table is included as part of the MyRocks...

1.1.1.2.9.1.1.2.1 Information Schema
ROCKSDB_CFSTATS Table
The Information Schema ROCKSDB_CFSTATS table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

CF_NAME

STAT_TYPE

VALUE

1.1.1.2.9.1.1.2.2 Information Schema
ROCKSDB_CF_OPTIONS Table
The Information Schema ROCKSDB_CF_OPTIONS table is included as part of the MyRocks storage engine, and contains

infomation about MyRocks column families.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

CF_NAME Column family name.

OPTION_TYPE

VALUE

1.1.1.2.9.1.1.2.3 Information Schema
ROCKSDB_COMPACTION_STATS Table
The Information Schema ROCKSDB_COMPACTION_STATS table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

307/4161

Column Description

CF_NAME

LEVEL

TYPE

VALUE

1.1.1.2.9.1.1.2.4 Information Schema
ROCKSDB_DBSTATS Table
The Information Schema ROCKSDB_DBSTATS table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

STAT_TYPE

VALUE

1.1.1.2.9.1.1.2.5 Information Schema
ROCKSDB_DDL Table
The Information Schema ROCKSDB_DDL table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

TABLE_SCHEMA

TABLE_NAME

PARTITION_NAME

INDEX_NAME

COLUMN_FAMILY

INDEX_NUMBER

INDEX_TYPE

KV_FORMAT_VERSION

TTL_DURATION

INDEX_FLAGS

CF

AUTO_INCREMENT

1.1.1.2.9.1.1.2.6 Information Schema
ROCKSDB_DEADLOCK Table
The Information Schema ROCKSDB_DEADLOCK table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

308/4161

DEADLOCK_ID

TIMESTAMP

TRANSACTION_ID

CF_NAME

WAITING_KEY

LOCK_TYPE

INDEX_NAME

TABLE_NAME

ROLLED_BACK

1.1.1.2.9.1.1.2.7 Information Schema
ROCKSDB_GLOBAL_INFO Table
The Information Schema ROCKSDB_GLOBAL_INFO table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

TYPE

NAME

VALUE

1.1.1.2.9.1.1.2.8 Information Schema
ROCKSDB_INDEX_FILE_MAP Table
The Information Schema ROCKSDB_INDEX_FILE_MAP table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

COLUMN_FAMILY

INDEX_NUMBER

SST_NAME

NUM_ROWS

DATA_SIZE

ENTRY_DELETES

ENTRY_SINGLEDELETES

ENTRY_MERGES

ENTRY_OTHERS

DISTINCT_KEYS_PREFIX

1.1.1.2.9.1.1.2.9 Information Schema
ROCKSDB_LOCKS Table
The Information Schema ROCKSDB_LOCKS table is included as part of the MyRocks storage engine.

309/4161

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

COLUMN_FAMILY_ID

TRANSACTION_ID

KEY

MODE

1.1.1.2.9.1.1.2.10 Information Schema
ROCKSDB_PERF_CONTEXT Table
The Information Schema ROCKSDB_PERF_CONTEXT table is included as part of the MyRocks storage engine and includes

per-table/partition counters .

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

TABLE_SCHEMA

TABLE_NAME

PARTITION_NAME

STAT_TYPE

VALUE

Note: for multi-table queries, all counter increments are "billed" to the first table in the query:

https://github.com/facebook/mysql-5.6/issues/1018

1.1.1.2.9.1.1.2.11 Information Schema
ROCKSDB_PERF_CONTEXT_GLOBAL Table
The Information Schema ROCKSDB_PERF_CONTEXT_GLOBAL table is included as part of the MyRocks storage engine and

includes global counter information.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

STAT_TYPE

VALUE

1.1.1.2.9.1.1.2.12 Information Schema
ROCKSDB_SST_PROPS Table
The Information Schema ROCKSDB_SST_PROPS table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

SST_NAME

COLUMN_FAMILY

310/4161

https://github.com/facebook/mysql-5.6/issues/1018

DATA_BLOCKS

ENTRIES

RAW_KEY_SIZE

RAW_VALUE_SIZE

DATA_BLOCK_SIZE

INDEX_BLOCK_SIZE

INDEX_PARTITIONS

TOP_LEVEL_INDEX_SIZE

FILTER_BLOCK_SIZE

COMPRESSION_ALGO

CREATION_TIME

1.1.1.2.9.1.1.2.13 Information Schema
ROCKSDB_TRX Table
The Information Schema ROCKSDB_TRX table is included as part of the MyRocks storage engine.

The PROCESS privilege is required to view the table.

It contains the following columns:

Column Description

TRANSACTION_ID

STATE

NAME

WRITE_COUNT

LOCK_COUNT

TIMEOUT_SEC

WAITING_KEY

WAITING_COLUMN_FAMILY_ID

IS_REPLICATION

SKIP_TRX_API

READ_ONLY

HAS_DEADLOCK_DETECTION

NUM_ONGOING_BULKLOAD

THREAD_ID

QUERY

1.1.1.2.9.1.1.3 ColumnStore Information
Schema Tables

311/4161

1. COLUMNSTORE_TABLES

2. COLUMNSTORE_COLUMNS

3. COLUMNSTORE_EXTENTS

4. COLUMNSTORE_FILES

5. Stored Procedures

1. total_usage()

2. table_usage()

3. compression_ratio()

MariaDB ColumnStore has four Information Schema tables that expose information about the table and column storage.

These tables were added in version 1.0.5 of ColumnStore and were heavily modified for 1.0.6.

COLUMNSTORE_TABLES
The first table is the INFORMATION_SCHEMA.COLUMNSTORE_TABLES. This contains information about the tables

inside ColumnStore. The table layout is as follows:

Column Description

TABLE_SCHEMA The database schema for the table

TABLE_NAME The table name

OBJECT_ID The ColumnStore object ID for the table

CREATION_DATE The date the table was created

COLUMN_COUNT The number of columns in the table

AUTOINCREMENT The start autoincrement value for the table set during CREATE TABLE

Note: Tables created with ColumnStore 1.0.4 or lower will have the year field of the creation data set incorrectly by

1900 years.

COLUMNSTORE_COLUMNS
The INFORMATION_SCHEMA.COLUMNSTORE_COLUMNS table contains information about every single column inside

ColumnStore. The table layout is as follows:

Column Description

TABLE_SCHEMA The database schema for the table

TABLE_NAME The table name for the column

COLUMN_NAME The column name

OBJECT_ID The object ID for the column

DICTIONARY_OBJECT_ID The dictionary object ID for the column (NULL if there is no dictionary object

LIST_OBJECT_ID Placeholder for future information

TREE_OBJECT_ID Placeholder for future information

DATA_TYPE The data type for the column

COLUMN_LENGTH The data length for the column

COLUMN_POSITION The position of the column in the table, starting at 0

COLUMN_DEFAULT The default value for the column

IS_NULLABLE Whether or not the column can be set to NULL

NUMERIC_PRECISION The numeric precision for the column

NUMERIC_SCALE The numeric scale for the column

IS_AUTOINCREMENT Set to 1 if the column is an autoincrement column

COMPRESSION_TYPE The type of compression (either "None" or "Snappy")

312/4161

COLUMNSTORE_EXTENTS
This table displays the extent map in a user consumable form. An extent is a collection of details about a section of data

related to a columnstore column. A majority of columns in ColumnStore will have multiple extents and the columns table

above can be joined to this one to filter results by table or column. The table layout is as follows:

Column Description

OBJECT_ID The object ID for the extent

OBJECT_TYPE Whether this is a "Column" or "Dictionary" extent

LOGICAL_BLOCK_START ColumnStore's internal start LBID for this extent

LOGICAL_BLOCK_END ColumnStore's internal end LBID for this extent

MIN_VALUE This minimum value stored in this extent

MAX_VALUE The maximum value stored in this extent

WIDTH The data width for the extent

DBROOT The DBRoot number for the extent

PARTITION_ID The parition ID for the extent

SEGMENT_ID The segment ID for the extent

BLOCK_OFFSET The block offset for the data file, each data file can contain multiple extents for a column

MAX_BLOCKS The maximum number of blocks for the extent

HIGH_WATER_MARK The last block committed to the extent (starting at 0)

STATE The state of the extent (see below)

STATUS
The availability status for the column which is either "Available", "Unavailable" or "Out of

service"

DATA_SIZE The uncompressed data size for the extent calculated as (HWM + 1) * BLOCK_SIZE

Notes:

1. The state is "Valid" for a normal state, "Invalid" if a cpimport has completed but the table has not yet been

accessed (min/max values will be invalid) or "Updating" if there is a DML statement writing to the column

2. In ColumnStore the block size is 8192 bytes

3. By default ColumnStore will write create an extent file of 256*1024*WIDTH bytes for the first partition, if this is

too small then for uncompressed data it will create a file of the maximum size for the extent (MAX_BLOCKS *

BLOCK_SIZE). Snappy always compression adds a header block.

4. Object IDs of less than 3000 are for internal tables and will not appear in any of the information schema tables

5. Prior to 1.0.12 / 1.1.2 DATA_SIZE was incorrectly calculated

6. HWM is set to zero for the lower segments when there are multiple segments in an extent file, these can be

observed when BLOCK_OFFSET > 0

7. When HWM is 0 the DATA_SIZE will show 0 instead of 8192 to avoid confusion when there is multiple

segments in an extent file

COLUMNSTORE_FILES
The columnstore_files table provides information about each file associated with extensions. Each extension can reuse a

file at different block offsets so this is not a 1:1 relationship to the columnstore_extents table.

Column Description

OBJECT_ID The object ID for the extent

SEGMENT_ID The segment ID for the extent

PARTITION_ID The partition ID for the extent

FILENAME
The full path and filename for the extent file, multiple extents for the same column can

point to this file with different BLOCK_OFFSETs

FILE_SIZE The disk file size for the extent

313/4161

COMPRESSED_DATA_SIZE The amount of the compressed file used, NULL if this is an uncompressed file

Stored Procedures
A few stored procedures were added in 1.0.6 to provide summaries based on the information schema tables. These can be

accessed from the COLUMNSTORE_INFO schema.

total_usage()

The total_usage() procedure gives a total disk usage summary for all the columns in ColumnStore with the exception of the

columns used for internal maintenance. It is executed using the following query:

> call columnstore_info.total_usage();

table_usage()

The table_usage() procedure gives a the total data disk usage, dictionary disk usage and grand total disk usage per-table. It

can be called in several ways, the first gives a total for each table:

> call columnstore_info.table_usage(NULL, NULL);

Or for a specific table, my_table in my_schema in this example:

> call columnstore_info.table_usage('my_schema', 'my_table');

You can also request all tables for a specified schema:

> call columnstore_info.table_usage('my_schema', NULL);

Note: The quotes around the table name are required, an error will occur without them.

compression_ratio()

The compression_ratio() procedure calculates the average compression ratio across all the compressed extents in

ColumnStore. It is called using:

> call columnstore_info.compression_ratio();

Note: The compression ratio is incorrectly calculated before versions 1.0.12 / 1.1.2

1.1.1.2.9.1.1.4 Information Schema
ALL_PLUGINS Table

Description
The Information Schema ALL_PLUGINS table contains information about server plugins, whether installed or not.

It contains the following columns:

Column Description

PLUGIN_NAME Name of the plugin.

PLUGIN_VERSION Version from the plugin's general type descriptor.

PLUGIN_STATUS Plugin status, one of ACTIVE , INACTIVE , DISABLED , DELETED or NOT INSTALLED .

314/4161

PLUGIN_TYPE
Plugin type; STORAGE ENGINE , INFORMATION_SCHEMA , AUTHENTICATION ,

REPLICATION , DAEMON or AUDIT .

PLUGIN_TYPE_VERSION Version from the plugin's type-specific descriptor.

PLUGIN_LIBRARY

Plugin's shared object file name, located in the directory specified by the plugin_dir

system variable, and used by the INSTALL PLUGIN and UNINSTALL PLUGIN

statements. NULL if the plugin is complied in and cannot be uninstalled.

PLUGIN_LIBRARY_VERSION Version from the plugin's API interface.

PLUGIN_AUTHOR Author of the plugin.

PLUGIN_DESCRIPTION Description.

PLUGIN_LICENSE Plugin's licence.

LOAD_OPTION
How the plugin was loaded; one of OFF , ON , FORCE or FORCE_PLUS_PERMANENT . See

Installing Plugins.

PLUGIN_MATURITY
Plugin's maturity level; one of Unknown , Experimental , Alpha , Beta , 'Gamma , and

Stable .

PLUGIN_AUTH_VERSION Plugin's version as determined by the plugin author. An example would be '0.99 beta 1'.

It provides a superset of the information shown by the SHOW PLUGINS SONAME statement, as well as the

information_schema.PLUGINS table. For specific information about storage engines (a particular type of plugin), see the

Information Schema ENGINES table and the SHOW ENGINES statement.

The table is not a standard Information Schema table, and is a MariaDB extension.

Example

315/4161

SELECT * FROM information_schema.all_plugins\G

*************************** 1. row ***************************

 PLUGIN_NAME: binlog

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: STORAGE ENGINE

 PLUGIN_TYPE_VERSION: 100314.0

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: MySQL AB

 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: FORCE

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

*************************** 2. row ***************************

 PLUGIN_NAME: mysql_native_password

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: AUTHENTICATION

 PLUGIN_TYPE_VERSION: 2.1

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: R.J.Silk, Sergei Golubchik

 PLUGIN_DESCRIPTION: Native MySQL authentication

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: FORCE

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

*************************** 3. row ***************************

 PLUGIN_NAME: mysql_old_password

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: AUTHENTICATION

 PLUGIN_TYPE_VERSION: 2.1

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: R.J.Silk, Sergei Golubchik

 PLUGIN_DESCRIPTION: Old MySQL-4.0 authentication

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: FORCE

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

...

*************************** 104. row ***************************

 PLUGIN_NAME: WSREP_MEMBERSHIP

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: NOT INSTALLED

 PLUGIN_TYPE: INFORMATION SCHEMA

 PLUGIN_TYPE_VERSION: 100314.0

 PLUGIN_LIBRARY: wsrep_info.so

PLUGIN_LIBRARY_VERSION: 1.13

 PLUGIN_AUTHOR: Nirbhay Choubey

 PLUGIN_DESCRIPTION: Information about group members

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: OFF

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

*************************** 105. row ***************************

 PLUGIN_NAME: WSREP_STATUS

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: NOT INSTALLED

 PLUGIN_TYPE: INFORMATION SCHEMA

 PLUGIN_TYPE_VERSION: 100314.0

 PLUGIN_LIBRARY: wsrep_info.so

PLUGIN_LIBRARY_VERSION: 1.13

 PLUGIN_AUTHOR: Nirbhay Choubey

 PLUGIN_DESCRIPTION: Group view information

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: OFF

 PLUGIN_MATURITY: Stable

316/4161

1.1.1.2.9.1.1.5 Information Schema
APPLICABLE_ROLES Table
The Information Schema APPLICABLE_ROLES table shows the role authorizations that the current user may use.

It contains the following columns:

Column Description Added

GRANTEE Account that the role was granted to.

ROLE_NAME Name of the role.

IS_GRANTABLE Whether the role can be granted or not.

IS_DEFAULT Whether the role is the user's default role or not MariaDB 10.1.3

The current role is in the ENABLED_ROLES Information Schema table.

Example

SELECT * FROM information_schema.APPLICABLE_ROLES;

+----------------+-------------+--------------+------------+

| GRANTEE | ROLE_NAME | IS_GRANTABLE | IS_DEFAULT |

+----------------+-------------+--------------+------------+

| root@localhost | journalist | YES | NO |

| root@localhost | staff | YES | NO |

| root@localhost | dd | YES | NO |

| root@localhost | dog | YES | NO |

+----------------+-------------+--------------+------------+

1.1.1.2.9.1.1.6 Information Schema
CHARACTER_SETS Table
The Information Schema CHARACTER_SETS table contains a list of supported character sets, their default collations and

maximum lengths.

It contains the following columns:

Column Description

CHARACTER_SET_NAME Name of the character set.

DEFAULT_COLLATE_NAME Default collation used.

DESCRIPTION Character set description.

MAXLEN Maximum length.

The SHOW CHARACTER SET statement returns the same results (although in a different order), and both can be refined in

the same way. For example, the following two statements return the same results:

SHOW CHARACTER SET WHERE Maxlen LIKE '2';

and

SELECT * FROM information_schema.CHARACTER_SETS

WHERE MAXLEN LIKE '2';

See Setting Character Sets and Collations for details on specifying the character set at the server, database, table and

column levels, and Supported Character Sets and Collations for a full list of supported characters sets and collations.

Example

317/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/

SELECT CHARACTER_SET_NAME FROM information_schema.CHARACTER_SETS

WHERE DEFAULT_COLLATE_NAME LIKE '%chinese%';

+--------------------+

| CHARACTER_SET_NAME |

+--------------------+

| big5 |

| gb2312 |

| gbk |

+--------------------+

1.1.1.2.9.1.1.7 Information Schema
CHECK_CONSTRAINTS Table
The Information Schema CHECK_CONSTRAINTS table stores metadata about the constraints defined for tables in all

databases.

It contains the following columns:

Column Description

CONSTRAINT_CATALOG Always contains the string 'def'.

CONSTRAINT_SCHEMA Database name.

CONSTRAINT_NAME Constraint name.

TABLE_NAME Table name.

LEVEL Type of the constraint ('Column' or 'Table'). From MariaDB 10.5.10

CHECK_CLAUSE Constraint clause.

Example
A table with a numeric table check constraint and with a default check constraint name:

CREATE TABLE t (a int, CHECK (a>10));

To see check constraint call check_constraints table from information schema.

SELECT * from INFORMATION_SCHEMA.CHECK_CONSTRAINTS\G

*************************** 1. row ***************************

CONSTRAINT_CATALOG: def

 CONSTRAINT_SCHEMA: test

 CONSTRAINT_NAME: CONSTRAINT_1

 TABLE_NAME: t

 CHECK_CLAUSE: `a` > 10

A new table check constraint called a_upper :

ALTER TABLE t ADD CONSTRAINT a_upper CHECK (a<100);

SELECT * from INFORMATION_SCHEMA.CHECK_CONSTRAINTS\G

318/4161

*************************** 1. row ***************************

CONSTRAINT_CATALOG: def

 CONSTRAINT_SCHEMA: test

 CONSTRAINT_NAME: CONSTRAINT_1

 TABLE_NAME: t

 CHECK_CLAUSE: `a` > 10

*************************** 2. row ***************************

CONSTRAINT_CATALOG: def

 CONSTRAINT_SCHEMA: test

 CONSTRAINT_NAME: a_upper

 TABLE_NAME: t

 CHECK_CLAUSE: `a` < 100

A new table tt with a field check constraint called b , as well as a table check constraint called b_upper :

CREATE TABLE tt(b int CHECK(b>0),CONSTRAINT b_upper CHECK(b<50));

SELECT * from INFORMATION_SCHEMA.CHECK_CONSTRAINTS;

+--------------------+-------------------+-----------------+------------+--------------+

| CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA | CONSTRAINT_NAME | TABLE_NAME | CHECK_CLAUSE |

+--------------------+-------------------+-----------------+------------+--------------+

| def | test | b | tt | `b` > 0 |

| def | test | b_upper | tt | `b` < 50 |

| def | test | CONSTRAINT_1 | t | `a` > 10 |

| def | test | a_upper | t | `a` < 100 |

+--------------------+-------------------+-----------------+------------+--------------+

Note: The name of the field constraint is the same as the field name.

After dropping the default table constraint called CONSTRAINT_1 :

ALTER TABLE t DROP CONSTRAINT CONSTRAINT_1;

SELECT * from INFORMATION_SCHEMA.CHECK_CONSTRAINTS;

+--------------------+-------------------+-----------------+------------+--------------+

| CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA | CONSTRAINT_NAME | TABLE_NAME | CHECK_CLAUSE |

+--------------------+-------------------+-----------------+------------+--------------+

| def | test | b | tt | `b` > 0 |

| def | test | b_upper | tt | `b` < 50 |

| def | test | a_upper | t | `a` < 100 |

+--------------------+-------------------+-----------------+------------+--------------+

Trying to insert invalid arguments into table t and tt generates an error.

INSERT INTO t VALUES (10),(20),(100);

ERROR 4025 (23000): CONSTRAINT `a_upper` failed for `test`.`t`

INSERT INTO tt VALUES (10),(-10),(100);

ERROR 4025 (23000): CONSTRAINT `b` failed for `test`.`tt`

INSERT INTO tt VALUES (10),(20),(100);

ERROR 4025 (23000): CONSTRAINT `b_upper` failed for `test`.`tt`

From MariaDB 10.5.10:

319/4161

create table majra(check(x>0), x int, y int check(y < 0), z int,

 constraint z check(z>0), constraint xyz check(x<10 and y<10 and

z<10));

Query OK, 0 rows affected (0.036 sec)

show create table majra;

+-------+--

----------------------------------+

| Table | Create Table

|

+-------+--

----------------------------------+

| majra | CREATE TABLE `majra` (

 `x` int(11) DEFAULT NULL,

 `y` int(11) DEFAULT NULL CHECK (`y` < 0),

 `z` int(11) DEFAULT NULL,

 CONSTRAINT `CONSTRAINT_1` CHECK (`x` > 0),

 CONSTRAINT `z` CHECK (`z` > 0),

 CONSTRAINT `xyz` CHECK (`x` < 10 and `y` < 10 and `z` < 10)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-------+--

----------------------------------+

1 row in set (0.000 sec)

select * from information_schema.check_constraints where table_name='majra';

+--------------------+-------------------+------------+-----------------+--------+-----------

-------------------------+

| CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA | TABLE_NAME | CONSTRAINT_NAME | LEVEL | CHECK_CLAUSE

|

+--------------------+-------------------+------------+-----------------+--------+-----------

-------------------------+

| def | test | majra | y | Column | `y` < 0

|

| def | test | majra | CONSTRAINT_1 | Table | `x` > 0

|

| def | test | majra | z | Table | `z` > 0

|

| def | test | majra | xyz | Table | `x` < 10

and `y` < 10 and `z` < 10 |

+--------------------+-------------------+------------+-----------------+--------+-----------

-------------------------+

4 rows in set (0.001 sec)

1.1.1.2.9.1.1.8 Information Schema
CLIENT_STATISTICS Table
The Information Schema CLIENT_STATISTICS table holds statistics about client connections. This is part of the User

Statistics feature, which is not enabled by default.

It contains the following columns:

Field Type Notes

CLIENT VARCHAR(64) The IP address or hostname the connection originated from.

TOTAL_CONNECTIONS INT(21) The number of connections created for this client.

CONCURRENT_CONNECTIONS INT(21) The number of concurrent connections for this client.

CONNECTED_TIME INT(21)
The cumulative number of seconds elapsed while there were

connections from this client.

320/4161

BUSY_TIME DOUBLE
The cumulative number of seconds there was activity on

connections from this client.

CPU_TIME DOUBLE

The cumulative CPU time elapsed while servicing this client's

connections. Note that this number may be wrong on SMP system if

there was a CPU migration for the thread during the execution of

the query.

BYTES_RECEIVED INT(21) The number of bytes received from this client's connections.

BYTES_SENT INT(21) The number of bytes sent to this client's connections.

BINLOG_BYTES_WRITTEN INT(21)
The number of bytes written to the binary log from this client's

connections.

ROWS_READ INT(21) The number of rows read by this client's connections.

ROWS_SENT INT(21) The number of rows sent by this client's connections.

ROWS_DELETED INT(21) The number of rows deleted by this client's connections.

ROWS_INSERTED INT(21) The number of rows inserted by this client's connections.

ROWS_UPDATED INT(21) The number of rows updated by this client's connections.

SELECT_COMMANDS INT(21)
The number of SELECT commands executed from this client's

connections.

UPDATE_COMMANDS INT(21)
The number of UPDATE commands executed from this client's

connections.

OTHER_COMMANDS INT(21)
The number of other commands executed from this client's

connections.

COMMIT_TRANSACTIONS INT(21)

The number of COMMIT commands issued by this client's

connections.

ROLLBACK_TRANSACTIONS INT(21)
The number of ROLLBACK commands issued by this client's

connections.

DENIED_CONNECTIONS INT(21) The number of connections denied to this client.

LOST_CONNECTIONS INT(21)
The number of this client's connections that were terminated

uncleanly.

ACCESS_DENIED INT(21)
The number of times this client's connections issued commands

that were denied.

EMPTY_QUERIES INT(21)
The number of times this client's connections sent queries that

returned no results to the server.

TOTAL_SSL_CONNECTIONS INT(21)
The number of TLS connections created for this client. (>= MariaDB

10.1.1)

MAX_STATEMENT_TIME_EXCEEDED INT(21)

The number of times a statement was aborted, because it was

executed longer than its MAX_STATEMENT_TIME threshold. (>=

MariaDB 10.1.1)

Example

321/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

SELECT * FROM information_schema.CLIENT_STATISTICS\G

*************************** 1. row ***************************

 CLIENT: localhost

 TOTAL_CONNECTIONS: 3

CONCURRENT_CONNECTIONS: 0

 CONNECTED_TIME: 4883

 BUSY_TIME: 0.009722

 CPU_TIME: 0.0102131

 BYTES_RECEIVED: 841

 BYTES_SENT: 13897

 BINLOG_BYTES_WRITTEN: 0

 ROWS_READ: 0

 ROWS_SENT: 214

 ROWS_DELETED: 0

 ROWS_INSERTED: 207

 ROWS_UPDATED: 0

 SELECT_COMMANDS: 10

 UPDATE_COMMANDS: 0

 OTHER_COMMANDS: 13

 COMMIT_TRANSACTIONS: 0

 ROLLBACK_TRANSACTIONS: 0

 DENIED_CONNECTIONS: 0

 LOST_CONNECTIONS: 0

 ACCESS_DENIED: 0

 EMPTY_QUERIES: 1

1.1.1.2.9.1.1.9 Information Schema
COLLATION_CHARACTER_SET_APPLICABILITY
Table
The Information Schema COLLATION_CHARACTER_SET_APPLICABILITY table shows which character sets are associated

with which collations.

It contains the following columns:

Column Description

COLLATION_NAME Collation name.

CHARACTER_SET_NAME Name of the associated character set.

COLLATION_CHARACTER_SET_APPLICABILITY is essentially a subset of the COLLATIONS table.

SELECT COLLATION_NAME,CHARACTER_SET_NAME FROM information_schema.COLLATIONS;

and

SELECT * FROM information_schema.COLLATION_CHARACTER_SET_APPLICABILITY;

will return identical results.

See Setting Character Sets and Collations for details on specifying the character set at the server, database, table and

column levels.

Example

322/4161

SELECT * FROM information_schema.COLLATION_CHARACTER_SET_APPLICABILITY

WHERE CHARACTER_SET_NAME='utf32';

+---------------------+--------------------+

| COLLATION_NAME | CHARACTER_SET_NAME |

+---------------------+--------------------+

| utf32_general_ci | utf32 |

| utf32_bin | utf32 |

| utf32_unicode_ci | utf32 |

| utf32_icelandic_ci | utf32 |

| utf32_latvian_ci | utf32 |

| utf32_romanian_ci | utf32 |

| utf32_slovenian_ci | utf32 |

| utf32_polish_ci | utf32 |

| utf32_estonian_ci | utf32 |

| utf32_spanish_ci | utf32 |

| utf32_swedish_ci | utf32 |

| utf32_turkish_ci | utf32 |

| utf32_czech_ci | utf32 |

| utf32_danish_ci | utf32 |

| utf32_lithuanian_ci | utf32 |

| utf32_slovak_ci | utf32 |

| utf32_spanish2_ci | utf32 |

| utf32_roman_ci | utf32 |

| utf32_persian_ci | utf32 |

| utf32_esperanto_ci | utf32 |

| utf32_hungarian_ci | utf32 |

| utf32_sinhala_ci | utf32 |

| utf32_german2_ci | utf32 |

| utf32_croatian_ci | utf32 |

+---------------------+--------------------+

1.1.1.2.9.1.1.10 Information Schema
COLLATIONS Table

Contents
1. NO PAD collations

2. Example

The Information Schema COLLATIONS table contains a list of supported collations.

It contains the following columns:

Column Description

COLLATION_NAME Name of the collation.

CHARACTER_SET_NAME Associated character set.

ID Collation id.

IS_DEFAULT Whether the collation is the character set's default.

IS_COMPILED Whether the collation is compiled into the server.

SORTLEN Sort length, used for determining the memory used to sort strings in this collation.

The SHOW COLLATION statement returns the same results and both can be reduced in a similar way.

For example, in MariaDB 10.6, the following two statements return the same results:

SHOW COLLATION WHERE Charset LIKE 'utf8mb3';

and

SELECT * FROM information_schema.COLLATIONS

WHERE CHARACTER_SET_NAME LIKE 'utf8mb3';

In MariaDB 10.5 and before, utf8 should be specified instead of utf8mb3 .

323/4161

NO PAD collations
NO PAD collations regard trailing spaces as normal characters. You can get a list of all NO PAD collations as follows:

SELECT collation_name FROM information_schema.COLLATIONS

WHERE collation_name LIKE "%nopad%";

+------------------------------+

| collation_name |

+------------------------------+

| big5_chinese_nopad_ci |

| big5_nopad_bin |

...

Example

SELECT * FROM information_schema.COLLATIONS;

+------------------------------+--------------------+------+------------+-------------+---------+

| COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT | IS_COMPILED | SORTLEN |

+------------------------------+--------------------+------+------------+-------------+---------+

| big5_chinese_ci | big5 | 1 | Yes | Yes | 1 |

| big5_bin | big5 | 84 | | Yes | 1 |

| big5_chinese_nopad_ci | big5 | 1025 | | Yes | 1 |

| big5_nopad_bin | big5 | 1108 | | Yes | 1 |

| dec8_swedish_ci | dec8 | 3 | Yes | Yes | 1 |

| dec8_bin | dec8 | 69 | | Yes | 1 |

| dec8_swedish_nopad_ci | dec8 | 1027 | | Yes | 1 |

| dec8_nopad_bin | dec8 | 1093 | | Yes | 1 |

| cp850_general_ci | cp850 | 4 | Yes | Yes | 1 |

| cp850_bin | cp850 | 80 | | Yes | 1 |

...

1.1.1.2.9.1.1.11 Information Schema
COLUMN_PRIVILEGES Table
The Information Schema COLUMN_PRIVILEGES table contains column privilege information derived from the

mysql.columns_priv grant table.

It has the following columns:

Column Description

GRANTEE In the format user_name@host_name .

TABLE_CATALOG Always def .

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

COLUMN_NAME Column name.

PRIVILEGE_TYPE One of SELECT , INSERT , UPDATE or REFERENCES .

IS_GRANTABLE Whether the user has the GRANT OPTION for this privilege.

Similar information can be accessed with the SHOW FULL COLUMNS and SHOW GRANTS statements. See the GRANT article

for more about privileges.

This information is also stored in the columns_priv table, in the mysql system database.

For a description of the privileges that are shown in this table, see column privileges.

Example
In the following example, no column-level privilege has been explicitly assigned:

324/4161

SELECT * FROM information_schema.COLUMN_PRIVILEGES;

Empty set

1.1.1.2.9.1.1.12 Information Schema COLUMNS
Table
The Information Schema COLUMNS table provides information about columns in each table on the server.

It contains the following columns:

Column Description

TABLE_CATALOG Always contains the string 'def'.

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

COLUMN_NAME Column name.

ORDINAL_POSITION Column position in the table. Can be used for ordering.

COLUMN_DEFAULT

Default value for the column. Literals are quoted to distinguish them from

expressions. NULL means that the column has no default. In MariaDB 10.2.6 and

earlier, no quotes were used for any type of default and NULL can either mean that

there is no default, or that the default column value is NULL .

IS_NULLABLE Whether the column can contain NULL s.

DATA_TYPE The column's data type.

CHARACTER_MAXIMUM_LENGTH Maximum length.

CHARACTER_OCTET_LENGTH Same as the CHARACTER_MAXIMUM_LENGTH except for multi-byte character sets.

NUMERIC_PRECISION
For numeric types, the precision (number of significant digits) for the column. NULL

if not a numeric field.

NUMERIC_SCALE
For numeric types, the scale (significant digits to the right of the decimal point).

NULL if not a numeric field.

DATETIME_PRECISION Fractional-seconds precision, or NULL if not a time data type.

CHARACTER_SET_NAME Character set if a non-binary string data type, otherwise NULL.

COLLATION_NAME Collation if a non-binary string data type, otherwise NULL.

COLUMN_TYPE Column definition, a MySQL and MariaDB extension.

COLUMN_KEY
Index type. PRI for primary key, UNI for unique index, MUL for multiple index. A

MySQL and MariaDB extension.

EXTRA

Additional information about a column, for example whether the column is an

invisible column, or WITHOUT SYSTEM VERSIONING if the table is not a system-

versioned table. A MySQL and MariaDB extension.

PRIVILEGES Which privileges you have for the column. A MySQL and MariaDB extension.

COLUMN_COMMENT Column comments.

IS_GENERATED
Indicates whether the column value is generated (virtual, or computed). Can be

ALWAYS or NEVER .

GENERATION_EXPRESSION
The expression used for computing the column value in a generated (virtual, or

computed) column.

IS_SYSTEM_TIME_PERIOD_START From MariaDB 11.4.1.

IS_SYSTEM_TIME_PERIOD_END From MariaDB 11.4.1.

It provides information similar to, but more complete, than SHOW COLUMNS and mariadb-show.

325/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/

Examples

SELECT * FROM information_schema.COLUMNS\G

...

*************************** 9. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: t2

 COLUMN_NAME: j

 ORDINAL_POSITION: 1

 COLUMN_DEFAULT: NULL

 IS_NULLABLE: YES

 DATA_TYPE: longtext

CHARACTER_MAXIMUM_LENGTH: 4294967295

 CHARACTER_OCTET_LENGTH: 4294967295

 NUMERIC_PRECISION: NULL

 NUMERIC_SCALE: NULL

 DATETIME_PRECISION: NULL

 CHARACTER_SET_NAME: utf8mb4

 COLLATION_NAME: utf8mb4_bin

 COLUMN_TYPE: longtext

 COLUMN_KEY:

 EXTRA:

 PRIVILEGES: select,insert,update,references

 COLUMN_COMMENT:

 IS_GENERATED: NEVER

 GENERATION_EXPRESSION: NULL

...

CREATE TABLE t (

 s1 VARCHAR(20) DEFAULT 'ABC',

 s2 VARCHAR(20) DEFAULT (concat('A','B')),

 s3 VARCHAR(20) DEFAULT ("concat('A','B')"),

 s4 VARCHAR(20),

 s5 VARCHAR(20) DEFAULT NULL,

 s6 VARCHAR(20) NOT NULL,

 s7 VARCHAR(20) DEFAULT 'NULL' NULL,

 s8 VARCHAR(20) DEFAULT 'NULL' NOT NULL

);

SELECT

 table_name,

 column_name,

 ordinal_position,

 column_default,

 column_default IS NULL

FROM information_schema.COLUMNS

WHERE table_schema=DATABASE()

AND TABLE_NAME='t';

+------------+-------------+------------------+-----------------------+------------------------+

| table_name | column_name | ordinal_position | column_default | column_default IS NULL |

+------------+-------------+------------------+-----------------------+------------------------+

| t | s1 | 1 | 'ABC' | 0 |

| t | s2 | 2 | concat('A','B') | 0 |

| t | s3 | 3 | 'concat(''A'',''B'')' | 0 |

| t | s4 | 4 | NULL | 0 |

| t | s5 | 5 | NULL | 0 |

| t | s6 | 6 | NULL | 1 |

| t | s7 | 7 | 'NULL' | 0 |

| t | s8 | 8 | 'NULL' | 0 |

+------------+-------------+------------------+-----------------------+------------------------+

In the results above, the two single quotes in concat(''A'',''B'') indicate an escaped single quote - see string-literals.

Note that while mariadb client appears to show the same default value for columns s5 and s6 , the first is a 4-character

string "NULL", while the second is the SQL NULL value.

From MariaDB 11.3:

326/4161

CREATE TABLE t(

 x INT,

 start_timestamp TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

 end_timestamp TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

 PERIOD FOR SYSTEM_TIME(start_timestamp, end_timestamp)

) WITH SYSTEM VERSIONING;

SELECT TABLE_NAME, COLUMN_NAME, ORDINAL_POSITION,

 IS_SYSTEM_TIME_PERIOD_START, IS_SYSTEM_TIME_PERIOD_END

 FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='t'\G

*************************** 1. row ***************************

 TABLE_NAME: t

 COLUMN_NAME: x

 ORDINAL_POSITION: 1

IS_SYSTEM_TIME_PERIOD_START: NO

 IS_SYSTEM_TIME_PERIOD_END: NO

*************************** 2. row ***************************

 TABLE_NAME: t

 COLUMN_NAME: start_timestamp

 ORDINAL_POSITION: 2

IS_SYSTEM_TIME_PERIOD_START: YES

 IS_SYSTEM_TIME_PERIOD_END: NO

*************************** 3. row ***************************

 TABLE_NAME: t

 COLUMN_NAME: end_timestamp

 ORDINAL_POSITION: 3

IS_SYSTEM_TIME_PERIOD_START: NO

 IS_SYSTEM_TIME_PERIOD_END: YES

1.1.1.2.9.1.1.13 Information Schema DISKS
Table

Contents
1. Description

2. Example

Description
The DISKS table is created when the DISKS plugin is enabled, and shows metadata about disks on the system.

Before MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26 and MariaDB 10.1.41 , this plugin did not check user

privileges. When it is enabled, any user can query the INFORMATION_SCHEMA.DISKS table and see all the information it

provides.

Since MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26 and MariaDB 10.1.41 , it requires the FILE privilege.

The plugin only works on Linux.

The table contains the following columns:

Column Description

DISK Name of the disk itself.

PATH Mount point of the disk.

TOTAL Total space in KiB.

USED Used amount of space in KiB.

AVAILABLE Amount of space in KiB available to non-root users.

Note that as the amount of space available to root (OS user) may be more that what is available to non-root users,

'available' + 'used' may be less than 'total'.

All paths to which a particular disk has been mounted are reported. The rationale is that someone might want to take

different action e.g. depending on which disk is relevant for a particular path. This leads to the same disk being reported

multiple times.

327/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/

Example

SELECT * FROM information_schema.DISKS;

+-----------+-------+----------+---------+-----------+

| Disk | Path | Total | Used | Available |

+-----------+-------+----------+---------+-----------+

| /dev/vda1 | / | 26203116 | 2178424 | 24024692 |

| /dev/vda1 | /boot | 26203116 | 2178424 | 24024692 |

| /dev/vda1 | /etc | 26203116 | 2178424 | 24024692 |

+-----------+-------+----------+---------+-----------+

1.1.1.2.9.1.1.14 Information Schema
ENABLED_ROLES Table
The Information Schema ENABLED_ROLES table shows the enabled roles for the current session.

It contains the following column:

Column Description

ROLE_NAME The enabled role name, or NULL .

This table lists all roles that are currently enabled, one role per row 4 the current role, roles granted to the current role, roles

granted to these roles and so on. If no role is set, the row contains a NULL value.

The roles that the current user can enable are listed in the APPLICABLE_ROLES Information Schema table.

See also CURRENT_ROLE().

Examples

SELECT * FROM information_schema.ENABLED_ROLES;

+-----------+

| ROLE_NAME |

+-----------+

| NULL |

+-----------+

SET ROLE staff;

SELECT * FROM information_schema.ENABLED_ROLES;

+-----------+

| ROLE_NAME |

+-----------+

| staff |

+-----------+

1.1.1.2.9.1.1.15 Information Schema ENGINES
Table
The Information Schema ENGINES table displays status information about the server's storage engines.

It contains the following columns:

Column Description

ENGINE Name of the storage engine.

SUPPORT Whether the engine is the default, or is supported or not.

COMMENT Storage engine comments.

TRANSACTIONS Whether or not the engine supports transactions.

XA Whether or not the engine supports XA transactions.

328/4161

SAVEPOINTS Whether or not savepoints are supported.

It provides identical information to the SHOW ENGINES statement. Since storage engines are plugins, different information

about them is also shown in the information_schema.PLUGINS table and by the SHOW PLUGINS statement.

The table is not a standard Information Schema table, and is a MySQL and MariaDB extension.

Note that both MySQL's InnoDB and Percona's XtraDB replacement are labeled as InnoDB . However, if XtraDB is in use,

it will be specified in the COMMENT field. See XtraDB and InnoDB. The same applies to FederatedX .

Example

329/4161

https://mariadb.com/kb/en/federatedx/

SELECT * FROM information_schema.ENGINES\G;

*************************** 1. row ***************************

 ENGINE: InnoDB

 SUPPORT: DEFAULT

 COMMENT: Supports transactions, row-level locking, and foreign keys

TRANSACTIONS: YES

 XA: YES

 SAVEPOINTS: YES

*************************** 2. row ***************************

 ENGINE: CSV

 SUPPORT: YES

 COMMENT: CSV storage engine

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 3. row ***************************

 ENGINE: MyISAM

 SUPPORT: YES

 COMMENT: MyISAM storage engine

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 4. row ***************************

 ENGINE: BLACKHOLE

 SUPPORT: YES

 COMMENT: /dev/null storage engine (anything you write to it disappears)

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 5. row ***************************

 ENGINE: FEDERATED

 SUPPORT: YES

 COMMENT: FederatedX pluggable storage engine

TRANSACTIONS: YES

 XA: NO

 SAVEPOINTS: YES

*************************** 6. row ***************************

 ENGINE: MRG_MyISAM

 SUPPORT: YES

 COMMENT: Collection of identical MyISAM tables

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 7. row ***************************

 ENGINE: ARCHIVE

 SUPPORT: YES

 COMMENT: Archive storage engine

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 8. row ***************************

 ENGINE: MEMORY

 SUPPORT: YES

 COMMENT: Hash based, stored in memory, useful for temporary tables

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 9. row ***************************

 ENGINE: PERFORMANCE_SCHEMA

 SUPPORT: YES

 COMMENT: Performance Schema

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

*************************** 10. row ***************************

 ENGINE: Aria

 SUPPORT: YES

 COMMENT: Crash-safe tables with MyISAM heritage

TRANSACTIONS: NO

 XA: NO

 SAVEPOINTS: NO

10 rows in set (0.00 sec)

330/4161

Check if a given storage engine is available:

SELECT SUPPORT FROM information_schema.ENGINES WHERE ENGINE LIKE 'tokudb';

Empty set

Check which storage engine supports XA transactions:

SELECT ENGINE FROM information_schema.ENGINES WHERE XA = 'YES';

+--------+

| ENGINE |

+--------+

| InnoDB |

+--------+

1.1.1.2.9.1.1.16 Information Schema EVENTS
Table
The Information Schema EVENTS table stores information about Events on the server.

It contains the following columns:

Column Description

EVENT_CATALOG Always def .

EVENT_SCHEMA Database where the event was defined.

EVENT_NAME Event name.

DEFINER Event definer.

TIME_ZONE Time zone used for the event's scheduling and execution, by default SYSTEM .

EVENT_BODY SQL .

EVENT_DEFINITION The SQL defining the event.

EVENT_TYPE Either ONE TIME or RECURRING .

EXECUTE_AT DATETIME when the event is set to execute, or NULL if recurring.

INTERVAL_VALUE Numeric interval between event executions for a recurring event, or NULL if not recurring.

INTERVAL_FIELD Interval unit (e.g., HOUR)

SQL_MODE The SQL_MODE at the time the event was created.

STARTS Start DATETIME for a recurring event, NULL if not defined or not recurring.

ENDS End DATETIME for a recurring event, NULL if not defined or not recurring.

STATUS One of ENABLED , DISABLED or / SLAVESIDE_DISABLED .

ON_COMPLETION The ON COMPLETION clause, either PRESERVE or NOT PRESERVE .

CREATED When the event was created.

LAST_ALTERED When the event was last changed.

LAST_EXECUTED When the event was last run.

EVENT_COMMENT The comment provided in the CREATE EVENT statement, or an empty string if none.

ORIGINATOR MariaDB server ID on which the event was created.

CHARACTER_SET_CLIENT character_set_client system variable session value at the time the event was created.

COLLATION_CONNECTION collation_connection system variable session value at the time the event was created.

DATABASE_COLLATION Database collation with which the event is linked.

The SHOW EVENTS and SHOW CREATE EVENT statements provide similar information.

331/4161

1.1.1.2.9.1.1.17 Information Schema
FEEDBACK Table
The Information Schema FEEDBACK table is created when the Feedback Plugin is enabled, and contains the complete

contents submitted by the plugin.

It contains two columns:

Column Description

VARIABLE_NAME Name of the item of information being collected.

VARIABLE_VALUE Contents of the item of information being collected.

It is possible to disable automatic collection, by setting the feedback_url variable to an empty string, and to submit the

contents manually, as follows:

$ mysql -e 'SELECT * FROM information_schema.FEEDBACK' > report.txt

Then you can send it by opening https://mariadb.org/feedback_plugin/post in your browser, and uploading

your generated report.txt . Or you can do it from the command line with (for example):

$ curl -F data=@report.txt https://mariadb.org/feedback_plugin/post

Manual uploading allows you to be absolutely sure that we receive only the data shown in the

information_schema.FEEDBACK table and that no private or sensitive information is being sent.

Example

SELECT * FROM information_schema.FEEDBACK\G

...

*************************** 906. row ***************************

 VARIABLE_NAME: Uname_sysname

VARIABLE_VALUE: Linux

*************************** 907. row ***************************

 VARIABLE_NAME: Uname_release

VARIABLE_VALUE: 3.13.0-53-generic

*************************** 908. row ***************************

 VARIABLE_NAME: Uname_version

VARIABLE_VALUE: #89-Ubuntu SMP Wed May 20 10:34:39 UTC 2015

*************************** 909. row ***************************

 VARIABLE_NAME: Uname_machine

VARIABLE_VALUE: x86_64

*************************** 910. row ***************************

 VARIABLE_NAME: Uname_distribution

VARIABLE_VALUE: lsb: Ubuntu 14.04.2 LTS

*************************** 911. row ***************************

 VARIABLE_NAME: Collation used latin1_german1_ci

VARIABLE_VALUE: 1

*************************** 912. row ***************************

 VARIABLE_NAME: Collation used latin1_swedish_ci

VARIABLE_VALUE: 18

*************************** 913. row ***************************

 VARIABLE_NAME: Collation used utf8_general_ci

VARIABLE_VALUE: 567

*************************** 914. row ***************************

 VARIABLE_NAME: Collation used latin1_bin

VARIABLE_VALUE: 1

*************************** 915. row ***************************

 VARIABLE_NAME: Collation used binary

VARIABLE_VALUE: 16

*************************** 916. row ***************************

 VARIABLE_NAME: Collation used utf8_bin

VARIABLE_VALUE: 4044

1.1.1.2.9.1.1.18 Information Schema FILES
332/4161

https://mariadb.org/feedback_plugin/post

Table
The FILES tables is unused in MariaDB. See MDEV-11426 .

1.1.1.2.9.1.1.19 Information Schema
GEOMETRY_COLUMNS Table

Description
The Information Schema GEOMETRY_COLUMNS table provides support for Spatial Reference systems for GIS data.

It contains the following columns:

Column Type Null Description

F_TABLE_CATALOG VARCHAR(512) NO
Together with F_TABLE_SCHEMA and F_TABLE_NAME , the fully qualified

name of the featured table containing the geometry column.

F_TABLE_SCHEMA VARCHAR(64) NO
Together with F_TABLE_CATALOG and F_TABLE_NAME , the fully

qualified name of the featured table containing the geometry column.

F_TABLE_NAME VARCHAR(64) NO
Together with F_TABLE_CATALOG and F_TABLE_SCHEMA , the fully

qualified name of the featured table containing the geometry column.

F_GEOMETRY_COLUMN VARCHAR(64) NO Name of the column in the featured table that is the geometry golumn.

G_TABLE_CATALOG VARCHAR(512) NO

G_TABLE_SCHEMA VARCHAR(64) NO Database name of the table implementing the geometry column.

G_TABLE_NAME VARCHAR(64) NO Table name that is implementing the geometry column.

G_GEOMETRY_COLUMN VARCHAR(64) NO

STORAGE_TYPE TINYINT(2) NO Binary geometry implementation. Always 1 in MariaDB.

GEOMETRY_TYPE INT(7) NO
Integer reflecting the type of geometry stored in this column (see table

below).

COORD_DIMENSION TINYINT(2) NO
Number of dimensions in the spatial reference system. Always 2 in

MariaDB.

MAX_PPR TINYINT(2) NO Always 0 in MariaDB.

SRID SMALLINT(5) NO
ID of the Spatial Reference System used for the coordinate geometry in

this table. It is a foreign key reference to the SPATIAL_REF_SYS table .

Storage_type
The integers in the storage_type field match the geometry types as follows:

Integer Type

0 GEOMETRY

1 POINT

3 LINESTRING

5 POLYGON

7 MULTIPOINT

9 MULTILINESTRING

11 MULTIPOLYGON

Example

333/4161

https://jira.mariadb.org/browse/MDEV-11426

CREATE TABLE g1(g GEOMETRY(9,4) REF_SYSTEM_ID=101);

SELECT * FROM information_schema.GEOMETRY_COLUMNS\G

*************************** 1. row ***************************

 F_TABLE_CATALOG: def

 F_TABLE_SCHEMA: test

 F_TABLE_NAME: g1

F_GEOMETRY_COLUMN:

 G_TABLE_CATALOG: def

 G_TABLE_SCHEMA: test

 G_TABLE_NAME: g1

G_GEOMETRY_COLUMN: g

 STORAGE_TYPE: 1

 GEOMETRY_TYPE: 0

 COORD_DIMENSION: 2

 MAX_PPR: 0

 SRID: 101

1.1.1.2.9.1.1.20 Information Schema
GLOBAL_STATUS and SESSION_STATUS
Tables
The Information Schema GLOBAL_STATUS and SESSION_STATUS tables store a record of all status variables and their

global and session values respectively. This is the same information as displayed by the SHOW STATUS commands SHOW

GLOBAL STATUS and SHOW SESSION STATUS .

They contain the following columns:

Column Description

VARIABLE_NAME Status variable name.

VARIABLE_VALUE Global or session value.

Example

SELECT * FROM information_schema.GLOBAL_STATUS;

+---+--------------------+

| VARIABLE_NAME | VARIABLE_VALUE |

+---+--------------------+

...

| BINLOG_SNAPSHOT_FILE | mariadb-bin.000208 |

| BINLOG_SNAPSHOT_POSITION | 369 |

...

| THREADS_CONNECTED | 1 |

| THREADS_CREATED | 1 |

| THREADS_RUNNING | 1 |

| UPTIME | 57358 |

| UPTIME_SINCE_FLUSH_STATUS | 57358 |

+---+--------------------+

1.1.1.2.9.1.1.21 Information Schema
GLOBAL_VARIABLES and
SESSION_VARIABLES Tables
The Information Schema GLOBAL_VARIABLES and SESSION_VARIABLES tables stores a record of all system variables

and their global and session values respectively. This is the same information as displayed by the SHOW VARIABLES

commands SHOW GLOBAL VARIABLES and SHOW SESSION VARIABLES .

It contains the following columns:

Column Description

334/4161

VARIABLE_NAME System variable name.

VARIABLE_VALUE Global or session value.

Example

SELECT * FROM information_schema.GLOBAL_VARIABLES ORDER BY VARIABLE_NAME\G

*************************** 1. row *****************************

 VARIABLE_NAME: ARIA_BLOCK_SIZE

VARIABLE_VALUE: 8192

*************************** 2. row *****************************

 VARIABLE_NAME: ARIA_CHECKPOINT_LOG_ACTIVITY

VARIABLE_VALUE: 1048576

*************************** 3. row *****************************

 VARIABLE_NAME: ARIA_CHECKPOINT_INTERVAL

VARIABLE_VALUE: 30

...

*************************** 455. row ***************************

 VARIABLE_NAME: VERSION_COMPILE_MACHINE

VARIABLE_VALUE: x86_64

*************************** 456. row ***************************

 VARIABLE_NAME: VERSION_COMPILE_OS

VARIABLE_VALUE: debian-linux-gnu

*************************** 457. row ***************************

 VARIABLE_NAME: WAIT_TIMEOUT

VARIABLE_VALUE: 600

1.1.1.2.9.1.1.22 Information Schema
INDEX_STATISTICS Table
The Information Schema INDEX_STATISTICS table shows statistics on index usage and makes it possible to do such

things as locating unused indexes and generating the commands to remove them.

This is part of the User Statistics feature, which is not enabled by default.

It contains the following columns:

Field Type Notes

TABLE_SCHEMA VARCHAR(192) The schema (database) name.

TABLE_NAME VARCHAR(192) The table name.

INDEX_NAME VARCHAR(192) The index name (as visible in SHOW CREATE TABLE).

ROWS_READ INT(21) The number of rows read from this index.

Example

SELECT * FROM information_schema.INDEX_STATISTICS

WHERE TABLE_NAME = "author";

+--------------+------------+------------+-----------+

| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | ROWS_READ |

+--------------+------------+------------+-----------+

| books | author | by_name | 15 |

+--------------+------------+------------+-----------+

1.1.1.2.9.1.1.23 Information Schema
KEY_CACHES Table
The Information Schema KEY_CACHES table shows statistics about the segmented key cache,.

It contains the following columns:

335/4161

Column Name Description

KEY_CACHE_NAME The name of the key cache

SEGMENTS total number of segments (set to NULL for regular key caches)

SEGMENT_NUMBER
segment number (set to NULL for any regular key caches and for rows containing aggregation

statistics for segmented key caches)

FULL_SIZE memory for cache buffers/auxiliary structures

BLOCK_SIZE size of the blocks

USED_BLOCKS number of currently used blocks

UNUSED_BLOCKS number of currently unused blocks

DIRTY_BLOCKS number of currently dirty blocks

READ_REQUESTS number of read requests

READS number of actual reads from files into buffers

WRITE_REQUESTS number of write requests

WRITES number of actual writes from buffers into files

Example

SELECT * FROM information_schema.KEY_CACHES \G

********************** 1. row **********************

KEY_CACHE_NAME: default

SEGMENTS: NULL

SEGMENT_NUMBER: NULL

 FULL_SIZE: 134217728

 BLOCK_SIZE: 1024

 USED_BLOCKS: 36

 UNUSED_BLOCKS: 107146

 DIRTY_BLOCKS: 0

 READ_REQUESTS: 40305

 READS: 21

WRITE_REQUESTS: 19239

 WRITES: 358

1.1.1.2.9.1.1.24 Information Schema
KEY_COLUMN_USAGE Table
The Information Schema KEY_COLUMN_USAGE table shows which key columns have constraints.

It contains the following columns:

Column Description

CONSTRAINT_CATALOG Always def .

CONSTRAINT_SCHEMA Database name of the constraint.

CONSTRAINT_NAME Name of the constraint (PRIMARY for the primary key).

TABLE_CATALOG Always #def .

TABLE_SCHEMA Database name of the column constraint.

TABLE_NAME Table name of the column constraint.

COLUMN_NAME Column name of the constraint.

ORDINAL_POSITION Position of the column within the constraint.

POSITION_IN_UNIQUE_CONSTRAINT For foreign keys, the position in the unique constraint.

REFERENCED_TABLE_SCHEMA For foreign keys, the referenced database name.

336/4161

REFERENCED_TABLE_NAME For foreign keys, the referenced table name.

REFERENCED_COLUMN_NAME For foreign keys, the referenced column name.

Example

SELECT * FROM information_schema.KEY_COLUMN_USAGE LIMIT 1 \G

********************** 1. row **********************

 CONSTRAINT_CATALOG: def

 CONSTRAINT_SCHEMA: my_website

 CONSTRAINT_NAME: PRIMARY

 TABLE_CATALOG: def

 TABLE_SCHEMA: users

 COLUMN_NAME: user_id

 ORDINAL_POSITION: 1

POSITION_IN_UNIQUE_CONSTRAINT: NULL

 REFERENCED_TABLE_SCHEMA: NULL

 REFERENCED_TABLE_NAME: NULL

 REFERENCED_COLUMN_NAME: NULL

1.1.1.2.9.1.1.25 Information Schema
KEY_PERIOD_USAGE Table

The Information Schema KEY_PERIOD_USAGE table shows information about Application-Time Periods.

It contains the following columns:

Column Description

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

PERIOD_NAME

Example

MariaDB starting with 11.4.1

1.1.1.2.9.1.1.26 Information Schema
KEYWORDS Table

The KEYWORDS table was added in MariaDB 10.6.3.

Description
The Information Schema KEYWORDS table contains the list of MariaDB keywords.

It contains a single column:

Column Description

WORD Keyword

MariaDB starting with 10.6.3

337/4161

The table is not a standard Information Schema table, and is a MariaDB extension.

Example

SELECT * FROM INFORMATION_SCHEMA.KEYWORDS;

+-------------------------------+

| WORD |

+-------------------------------+

| && |

| <= |

| <> |

| != |

| >= |

| << |

| >> |

| <=> |

| ACCESSIBLE |

| ACCOUNT |

| ACTION |

| ADD |

| ADMIN |

| AFTER |

| AGAINST |

| AGGREGATE |

| ALL |

| ALGORITHM |

| ALTER |

| ALWAYS |

| ANALYZE |

| AND |

| ANY |

| AS |

| ASC |

| ASCII |

| ASENSITIVE |

| AT |

| ATOMIC |

| AUTHORS |

| AUTO_INCREMENT |

| AUTOEXTEND_SIZE |

| AUTO |

| AVG |

| AVG_ROW_LENGTH |

| BACKUP |

| BEFORE |

| BEGIN |

| BETWEEN |

| BIGINT |

| BINARY |

| BINLOG |

| BIT |

| BLOB |

| BLOCK |

| BODY |

| BOOL |

| BOOLEAN |

| BOTH |

| BTREE |

| BY |

| BYTE |

| CACHE |

| CALL |

| CASCADE |

| CASCADED |

| CASE |

| CATALOG_NAME |

| CHAIN |

| CHANGE |

| CHANGED |

| CHAR |

| CHARACTER |

| CHARSET |

| CHECK |
338/4161

| CHECKPOINT |

| CHECKSUM |

| CIPHER |

| CLASS_ORIGIN |

| CLIENT |

| CLOB |

| CLOSE |

| COALESCE |

| CODE |

| COLLATE |

| COLLATION |

| COLUMN |

| COLUMN_NAME |

| COLUMNS |

| COLUMN_ADD |

| COLUMN_CHECK |

| COLUMN_CREATE |

| COLUMN_DELETE |

| COLUMN_GET |

| COMMENT |

| COMMIT |

| COMMITTED |

| COMPACT |

| COMPLETION |

| COMPRESSED |

| CONCURRENT |

| CONDITION |

| CONNECTION |

| CONSISTENT |

| CONSTRAINT |

| CONSTRAINT_CATALOG |

| CONSTRAINT_NAME |

| CONSTRAINT_SCHEMA |

| CONTAINS |

| CONTEXT |

| CONTINUE |

| CONTRIBUTORS |

| CONVERT |

| CPU |

| CREATE |

| CROSS |

| CUBE |

| CURRENT |

| CURRENT_DATE |

| CURRENT_POS |

| CURRENT_ROLE |

| CURRENT_TIME |

| CURRENT_TIMESTAMP |

| CURRENT_USER |

| CURSOR |

| CURSOR_NAME |

| CYCLE |

| DATA |

| DATABASE |

| DATABASES |

| DATAFILE |

| DATE |

| DATETIME |

| DAY |

| DAY_HOUR |

| DAY_MICROSECOND |

| DAY_MINUTE |

| DAY_SECOND |

| DEALLOCATE |

| DEC |

| DECIMAL |

| DECLARE |

| DEFAULT |

| DEFINER |

| DELAYED |

| DELAY_KEY_WRITE |

| DELETE |

| DELETE_DOMAIN_ID |

| DESC |

| DESCRIBE |
339/4161

| DESCRIBE |

| DES_KEY_FILE |

| DETERMINISTIC |

| DIAGNOSTICS |

| DIRECTORY |

| DISABLE |

| DISCARD |

| DISK |

| DISTINCT |

| DISTINCTROW |

| DIV |

| DO |

| DOUBLE |

| DO_DOMAIN_IDS |

| DROP |

| DUAL |

| DUMPFILE |

| DUPLICATE |

| DYNAMIC |

| EACH |

| ELSE |

| ELSEIF |

| ELSIF |

| EMPTY |

| ENABLE |

| ENCLOSED |

| END |

| ENDS |

| ENGINE |

| ENGINES |

| ENUM |

| ERROR |

| ERRORS |

| ESCAPE |

| ESCAPED |

| EVENT |

| EVENTS |

| EVERY |

| EXAMINED |

| EXCEPT |

| EXCHANGE |

| EXCLUDE |

| EXECUTE |

| EXCEPTION |

| EXISTS |

| EXIT |

| EXPANSION |

| EXPIRE |

| EXPORT |

| EXPLAIN |

| EXTENDED |

| EXTENT_SIZE |

| FALSE |

| FAST |

| FAULTS |

| FEDERATED |

| FETCH |

| FIELDS |

| FILE |

| FIRST |

| FIXED |

| FLOAT |

| FLOAT4 |

| FLOAT8 |

| FLUSH |

| FOLLOWING |

| FOLLOWS |

| FOR |

| FORCE |

| FOREIGN |

| FORMAT |

| FOUND |

| FROM |

| FULL |

| FULLTEXT |

| FUNCTION |
340/4161

| FUNCTION |

| GENERAL |

| GENERATED |

| GET_FORMAT |

| GET |

| GLOBAL |

| GOTO |

| GRANT |

| GRANTS |

| GROUP |

| HANDLER |

| HARD |

| HASH |

| HAVING |

| HELP |

| HIGH_PRIORITY |

| HISTORY |

| HOST |

| HOSTS |

| HOUR |

| HOUR_MICROSECOND |

| HOUR_MINUTE |

| HOUR_SECOND |

| ID |

| IDENTIFIED |

| IF |

| IGNORE |

| IGNORED |

| IGNORE_DOMAIN_IDS |

| IGNORE_SERVER_IDS |

| IMMEDIATE |

| IMPORT |

| INTERSECT |

| IN |

| INCREMENT |

| INDEX |

| INDEXES |

| INFILE |

| INITIAL_SIZE |

| INNER |

| INOUT |

| INSENSITIVE |

| INSERT |

| INSERT_METHOD |

| INSTALL |

| INT |

| INT1 |

| INT2 |

| INT3 |

| INT4 |

| INT8 |

| INTEGER |

| INTERVAL |

| INVISIBLE |

| INTO |

| IO |

| IO_THREAD |

| IPC |

| IS |

| ISOLATION |

| ISOPEN |

| ISSUER |

| ITERATE |

| INVOKER |

| JOIN |

| JSON |

| JSON_TABLE |

| KEY |

| KEYS |

| KEY_BLOCK_SIZE |

| KILL |

| LANGUAGE |

| LAST |

| LAST_VALUE |

| LASTVAL |

| LEADING |
341/4161

| LEADING |

| LEAVE |

| LEAVES |

| LEFT |

| LESS |

| LEVEL |

| LIKE |

| LIMIT |

| LINEAR |

| LINES |

| LIST |

| LOAD |

| LOCAL |

| LOCALTIME |

| LOCALTIMESTAMP |

| LOCK |

| LOCKED |

| LOCKS |

| LOGFILE |

| LOGS |

| LONG |

| LONGBLOB |

| LONGTEXT |

| LOOP |

| LOW_PRIORITY |

| MASTER |

| MASTER_CONNECT_RETRY |

| MASTER_DELAY |

| MASTER_GTID_POS |

| MASTER_HOST |

| MASTER_LOG_FILE |

| MASTER_LOG_POS |

| MASTER_PASSWORD |

| MASTER_PORT |

| MASTER_SERVER_ID |

| MASTER_SSL |

| MASTER_SSL_CA |

| MASTER_SSL_CAPATH |

| MASTER_SSL_CERT |

| MASTER_SSL_CIPHER |

| MASTER_SSL_CRL |

| MASTER_SSL_CRLPATH |

| MASTER_SSL_KEY |

| MASTER_SSL_VERIFY_SERVER_CERT |

| MASTER_USER |

| MASTER_USE_GTID |

| MASTER_HEARTBEAT_PERIOD |

| MATCH |

| MAX_CONNECTIONS_PER_HOUR |

| MAX_QUERIES_PER_HOUR |

| MAX_ROWS |

| MAX_SIZE |

| MAX_STATEMENT_TIME |

| MAX_UPDATES_PER_HOUR |

| MAX_USER_CONNECTIONS |

| MAXVALUE |

| MEDIUM |

| MEDIUMBLOB |

| MEDIUMINT |

| MEDIUMTEXT |

| MEMORY |

| MERGE |

| MESSAGE_TEXT |

| MICROSECOND |

| MIDDLEINT |

| MIGRATE |

| MINUS |

| MINUTE |

| MINUTE_MICROSECOND |

| MINUTE_SECOND |

| MINVALUE |

| MIN_ROWS |

| MOD |

| MODE |

| MODIFIES |

| MODIFY | 342/4161

| MODIFY |

| MONITOR |

| MONTH |

| MUTEX |

| MYSQL |

| MYSQL_ERRNO |

| NAME |

| NAMES |

| NATIONAL |

| NATURAL |

| NCHAR |

| NESTED |

| NEVER |

| NEW |

| NEXT |

| NEXTVAL |

| NO |

| NOMAXVALUE |

| NOMINVALUE |

| NOCACHE |

| NOCYCLE |

| NO_WAIT |

| NOWAIT |

| NODEGROUP |

| NONE |

| NOT |

| NOTFOUND |

| NO_WRITE_TO_BINLOG |

| NULL |

| NUMBER |

| NUMERIC |

| NVARCHAR |

| OF |

| OFFSET |

| OLD_PASSWORD |

| ON |

| ONE |

| ONLINE |

| ONLY |

| OPEN |

| OPTIMIZE |

| OPTIONS |

| OPTION |

| OPTIONALLY |

| OR |

| ORDER |

| ORDINALITY |

| OTHERS |

| OUT |

| OUTER |

| OUTFILE |

| OVER |

| OVERLAPS |

| OWNER |

| PACKAGE |

| PACK_KEYS |

| PAGE |

| PAGE_CHECKSUM |

| PARSER |

| PARSE_VCOL_EXPR |

| PATH |

| PERIOD |

| PARTIAL |

| PARTITION |

| PARTITIONING |

| PARTITIONS |

| PASSWORD |

| PERSISTENT |

| PHASE |

| PLUGIN |

| PLUGINS |

| PORT |

| PORTION |

| PRECEDES |

| PRECEDING |

| PRECISION | 343/4161

| PRECISION |

| PREPARE |

| PRESERVE |

| PREV |

| PREVIOUS |

| PRIMARY |

| PRIVILEGES |

| PROCEDURE |

| PROCESS |

| PROCESSLIST |

| PROFILE |

| PROFILES |

| PROXY |

| PURGE |

| QUARTER |

| QUERY |

| QUICK |

| RAISE |

| RANGE |

| RAW |

| READ |

| READ_ONLY |

| READ_WRITE |

| READS |

| REAL |

| REBUILD |

| RECOVER |

| RECURSIVE |

| REDO_BUFFER_SIZE |

| REDOFILE |

| REDUNDANT |

| REFERENCES |

| REGEXP |

| RELAY |

| RELAYLOG |

| RELAY_LOG_FILE |

| RELAY_LOG_POS |

| RELAY_THREAD |

| RELEASE |

| RELOAD |

| REMOVE |

| RENAME |

| REORGANIZE |

| REPAIR |

| REPEATABLE |

| REPLACE |

| REPLAY |

| REPLICA |

| REPLICAS |

| REPLICA_POS |

| REPLICATION |

| REPEAT |

| REQUIRE |

| RESET |

| RESIGNAL |

| RESTART |

| RESTORE |

| RESTRICT |

| RESUME |

| RETURNED_SQLSTATE |

| RETURN |

| RETURNING |

| RETURNS |

| REUSE |

| REVERSE |

| REVOKE |

| RIGHT |

| RLIKE |

| ROLE |

| ROLLBACK |

| ROLLUP |

| ROUTINE |

| ROW |

| ROWCOUNT |

| ROWNUM |
344/4161

| ROWS |

| ROWTYPE |

| ROW_COUNT |

| ROW_FORMAT |

| RTREE |

| SAVEPOINT |

| SCHEDULE |

| SCHEMA |

| SCHEMA_NAME |

| SCHEMAS |

| SECOND |

| SECOND_MICROSECOND |

| SECURITY |

| SELECT |

| SENSITIVE |

| SEPARATOR |

| SEQUENCE |

| SERIAL |

| SERIALIZABLE |

| SESSION |

| SERVER |

| SET |

| SETVAL |

| SHARE |

| SHOW |

| SHUTDOWN |

| SIGNAL |

| SIGNED |

| SIMPLE |

| SKIP |

| SLAVE |

| SLAVES |

| SLAVE_POS |

| SLOW |

| SNAPSHOT |

| SMALLINT |

| SOCKET |

| SOFT |

| SOME |

| SONAME |

| SOUNDS |

| SOURCE |

| STAGE |

| STORED |

| SPATIAL |

| SPECIFIC |

| REF_SYSTEM_ID |

| SQL |

| SQLEXCEPTION |

| SQLSTATE |

| SQLWARNING |

| SQL_BIG_RESULT |

| SQL_BUFFER_RESULT |

| SQL_CACHE |

| SQL_CALC_FOUND_ROWS |

| SQL_NO_CACHE |

| SQL_SMALL_RESULT |

| SQL_THREAD |

| SQL_TSI_SECOND |

| SQL_TSI_MINUTE |

| SQL_TSI_HOUR |

| SQL_TSI_DAY |

| SQL_TSI_WEEK |

| SQL_TSI_MONTH |

| SQL_TSI_QUARTER |

| SQL_TSI_YEAR |

| SSL |

| START |

| STARTING |

| STARTS |

| STATEMENT |

| STATS_AUTO_RECALC |

| STATS_PERSISTENT |

| STATS_SAMPLE_PAGES |

| STATUS |
345/4161

| STATUS |

| STOP |

| STORAGE |

| STRAIGHT_JOIN |

| STRING |

| SUBCLASS_ORIGIN |

| SUBJECT |

| SUBPARTITION |

| SUBPARTITIONS |

| SUPER |

| SUSPEND |

| SWAPS |

| SWITCHES |

| SYSDATE |

| SYSTEM |

| SYSTEM_TIME |

| TABLE |

| TABLE_NAME |

| TABLES |

| TABLESPACE |

| TABLE_CHECKSUM |

| TEMPORARY |

| TEMPTABLE |

| TERMINATED |

| TEXT |

| THAN |

| THEN |

| TIES |

| TIME |

| TIMESTAMP |

| TIMESTAMPADD |

| TIMESTAMPDIFF |

| TINYBLOB |

| TINYINT |

| TINYTEXT |

| TO |

| TRAILING |

| TRANSACTION |

| TRANSACTIONAL |

| THREADS |

| TRIGGER |

| TRIGGERS |

| TRUE |

| TRUNCATE |

| TYPE |

| TYPES |

| UNBOUNDED |

| UNCOMMITTED |

| UNDEFINED |

| UNDO_BUFFER_SIZE |

| UNDOFILE |

| UNDO |

| UNICODE |

| UNION |

| UNIQUE |

| UNKNOWN |

| UNLOCK |

| UNINSTALL |

| UNSIGNED |

| UNTIL |

| UPDATE |

| UPGRADE |

| USAGE |

| USE |

| USER |

| USER_RESOURCES |

| USE_FRM |

| USING |

| UTC_DATE |

| UTC_TIME |

| UTC_TIMESTAMP |

| VALUE |

| VALUES |

| VARBINARY |

| VARCHAR |

| VARCHARACTER |
346/4161

| VARCHARACTER |

| VARCHAR2 |

| VARIABLES |

| VARYING |

| VIA |

| VIEW |

| VIRTUAL |

| VISIBLE |

| VERSIONING |

| WAIT |

| WARNINGS |

| WEEK |

| WEIGHT_STRING |

| WHEN |

| WHERE |

| WHILE |

| WINDOW |

| WITH |

| WITHIN |

| WITHOUT |

| WORK |

| WRAPPER |

| WRITE |

| X509 |

| XOR |

| XA |

| XML |

| YEAR |

| YEAR_MONTH |

| ZEROFILL |

| || |

+-------------------------------+

694 rows in set (0.000 sec)

1.1.1.2.9.1.1.27 Information Schema LOCALES
Table

Description
The Information Schema LOCALES table contains a list of all compiled-in locales. It is only available if the LOCALES plugin

has been installed.

It contains the following columns:

Column Description

ID Row ID.

NAME Locale name, for example en_GB .

DESCRIPTION Locale description, for example English - United Kingdom .

MAX_MONTH_NAME_LENGTH Numeric length of the longest month in the locale

MAX_DAY_NAME_LENGTH Numeric length of the longest day name in the locale.

DECIMAL_POINT Decimal point character (some locales use a comma).

THOUSAND_SEP Thousand's character separator,

ERROR_MESSAGE_LANGUAGE Error message language.

The table is not a standard Information Schema table, and is a MariaDB extension.

The SHOW LOCALES statement returns a subset of the information.

Example

347/4161

SELECT * FROM information_schema.LOCALES;

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

| ID | NAME | DESCRIPTION | MAX_MONTH_NAME_LENGTH |

MAX_DAY_NAME_LENGTH | DECIMAL_POINT | THOUSAND_SEP | ERROR_MESSAGE_LANGUAGE |

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

| 0 | en_US | English - United States | 9 |

9 | . | , | english |

| 1 | en_GB | English - United Kingdom | 9 |

9 | . | , | english |

| 2 | ja_JP | Japanese - Japan | 3 |

3 | . | , | japanese |

| 3 | sv_SE | Swedish - Sweden | 9 |

7 | , | | swedish |

| 4 | de_DE | German - Germany | 9 |

10 | , | . | german |

| 5 | fr_FR | French - France | 9 |

8 | , | | french |

| 6 | ar_AE | Arabic - United Arab Emirates | 6 |

8 | . | , | english |

| 7 | ar_BH | Arabic - Bahrain | 6 |

8 | . | , | english |

| 8 | ar_JO | Arabic - Jordan | 12 |

8 | . | , | english |

...

| 106 | no_NO | Norwegian - Norway | 9 |

7 | , | . | norwegian |

| 107 | sv_FI | Swedish - Finland | 9 |

7 | , | | swedish |

| 108 | zh_HK | Chinese - Hong Kong SAR | 3 |

3 | . | , | english |

| 109 | el_GR | Greek - Greece | 11 |

9 | , | . | greek |

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

1.1.1.2.9.1.1.28 Information Schema
METADATA_LOCK_INFO Table
The Information Schema METADATA_LOCK_INFO table is created by the metadata_lock_info plugin. It shows active

metadata locks and user locks (the locks acquired with GET_LOCK).

It has the following columns:

Column Description

THREAD_ID

LOCK_MODE

One of MDL_INTENTION_EXCLUSIVE , MDL_SHARED , MDL_SHARED_HIGH_PRIO , MDL_SHARED_READ ,

MDL_SHARED_READ_ONLY , MDL_SHARED_WRITE , MDL_SHARED_NO_WRITE ,

MDL_SHARED_NO_READ_WRITE , MDL_SHARED_UPGRADABLE or MDL_EXCLUSIVE .

LOCK_DURATION One of MDL_STATEMENT , MDL_TRANSACTION or MDL_EXPLICIT

LOCK_TYPE

One of Global read lock , Schema metadata lock , Table metadata lock , Stored

function metadata lock , Stored procedure metadata lock , Trigger metadata lock ,

Event metadata lock , Commit lock or User lock .

TABLE_SCHEMA

TABLE_NAME

"LOCK_MODE" Descriptions

The LOCK_MODE column can have the following values:

Value Description

348/4161

MDL_INTENTION_EXCLUSIVE

An intention exclusive metadata lock (IX). Used only for scoped locks. Owner of this type

of lock can acquire upgradable exclusive locks on individual objects. Compatible with

other IX locks, but is incompatible with scoped S and X locks. IX lock is taken in

SCHEMA namespace when we intend to modify object metadata. Object may refer table,

stored procedure, trigger, view/etc.

MDL_SHARED

A shared metadata lock (S). To be used in cases when we are interested in object

metadata only and there is no intention to access object data (e.g. for stored routines or

during preparing prepared statements). We also mis-use this type of lock for open

HANDLERs, since lock acquired by this statement has to be compatible with lock

acquired by LOCK TABLES ... WRITE statement, i.e. SNRW (We can't get by by

acquiring S lock at HANDLER ... OPEN time and upgrading it to SR lock for HANDLER

... READ as it doesn't solve problem with need to abort DML statements which wait on

table level lock while having open HANDLER in the same connection). To avoid

deadlock which may occur when SNRW lock is being upgraded to X lock for table on

which there is an active S lock which is owned by thread which waits in its turn for table-

level lock owned by thread performing upgrade we have to use

thr_abort_locks_for_thread() facility in such situation. This problem does not arise for

locks on stored routines as we don't use SNRW locks for them. It also does not arise

when S locks are used during PREPARE calls as table-level locks are not acquired in

this case. This lock is taken for global read lock, when caching a stored procedure in

memory for the duration of the transaction and for tables used by prepared statements.

MDL_SHARED_HIGH_PRIO

A high priority shared metadata lock. Used for cases when there is no intention to access

object data (i.e. data in the table). "High priority" means that, unlike other shared locks, it

is granted ignoring pending requests for exclusive locks. Intended for use in cases when

we only need to access metadata and not data, e.g. when filling an

INFORMATION_SCHEMA table. Since SH lock is compatible with SNRW lock, the

connection that holds SH lock lock should not try to acquire any kind of table-level or

row-level lock, as this can lead to a deadlock. Moreover, after acquiring SH lock, the

connection should not wait for any other resource, as it might cause starvation for X

locks and a potential deadlock during upgrade of SNW or SNRW to X lock (e.g. if the

upgrading connection holds the resource that is being waited for).

MDL_SHARED_READ

A shared metadata lock (SR) for cases when there is an intention to read data from

table. A connection holding this kind of lock can read table metadata and read table data

(after acquiring appropriate table and row-level locks). This means that one can only

acquire TL_READ, TL_READ_NO_INSERT, and similar table-level locks on table if one

holds SR MDL lock on it. To be used for tables in SELECTs, subqueries, and LOCK

TABLE ... READ statements.

MDL_SHARED_WRITE

A shared metadata lock (SW) for cases when there is an intention to modify (and not just

read) data in the table. A connection holding SW lock can read table metadata and

modify or read table data (after acquiring appropriate table and row-level locks). To be

used for tables to be modified by INSERT, UPDATE, DELETE statements, but not LOCK

TABLE ... WRITE or DDL). Also taken by SELECT ... FOR UPDATE.

MDL_SHARED_UPGRADABLE

An upgradable shared metadata lock for cases when there is an intention to modify (and

not just read) data in the table. Can be upgraded to MDL_SHARED_NO_WRITE and

MDL_EXCLUSIVE. A connection holding SU lock can read table metadata and modify or

read table data (after acquiring appropriate table and row-level locks). To be used for the

first phase of ALTER TABLE.

MDL_SHARED_READ_ONLY

A shared metadata lock for cases when we need to read data from table and block all

concurrent modifications to it (for both data and metadata). Used by LOCK TABLES

READ statement.

MDL_SHARED_NO_WRITE

An upgradable shared metadata lock which blocks all attempts to update table data,

allowing reads. A connection holding this kind of lock can read table metadata and read

table data. Can be upgraded to X metadata lock. Note, that since this type of lock is not

compatible with SNRW or SW lock types, acquiring appropriate engine-level locks for

reading (TL_READ* for MyISAM, shared row locks in InnoDB) should be contention-free.

To be used for the first phase of ALTER TABLE, when copying data between tables, to

allow concurrent SELECTs from the table, but not UPDATEs.

349/4161

MDL_SHARED_NO_READ_WRITE

An upgradable shared metadata lock which allows other connections to access table

metadata, but not data. It blocks all attempts to read or update table data, while allowing

INFORMATION_SCHEMA and SHOW queries. A connection holding this kind of lock

can read table metadata modify and read table data. Can be upgraded to X metadata

lock. To be used for LOCK TABLES WRITE statement. Not compatible with any other

lock type except S and SH.

MDL_EXCLUSIVE

An exclusive metadata lock (X). A connection holding this lock can modify both table's

metadata and data. No other type of metadata lock can be granted while this lock is held.

To be used for CREATE/DROP/RENAME TABLE statements and for execution of

certain phases of other DDL statements.

Examples
User lock:

SELECT GET_LOCK('abc',1000);

+----------------------+

| GET_LOCK('abc',1000) |

+----------------------+

| 1 |

+----------------------+

SELECT * FROM information_schema.METADATA_LOCK_INFO;

+-----------+--------------------------+---------------+-----------+--------------+------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+--------------------------+---------------+-----------+--------------+------------+

| 61 | MDL_SHARED_NO_READ_WRITE | MDL_EXPLICIT | User lock | abc | |

+-----------+--------------------------+---------------+-----------+--------------+------------+

Table metadata lock:

START TRANSACTION;

INSERT INTO t VALUES (1,2);

SELECT * FROM information_schema.METADATA_LOCK_INFO \G

*************************** 1. row ***************************

 THREAD_ID: 4

 LOCK_MODE: MDL_SHARED_WRITE

LOCK_DURATION: MDL_TRANSACTION

 LOCK_TYPE: Table metadata lock

 TABLE_SCHEMA: test

 TABLE_NAME: t

SELECT * FROM information_schema.METADATA_LOCK_INFO;

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Global read lock | | |

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Commit lock | | |

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Schema metadata lock | dbname | |

| 31 | MDL_SHARED_NO_READ_WRITE | MDL_EXPLICIT | Table metadata lock | dbname | exotics |

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

1.1.1.2.9.1.1.29 Information Schema
MROONGA_STATS Table
The Information Schema MROONGA_STATS table only exists if the Mroonga storage engine is installed, and contains

information about its activities.

350/4161

Column Description

VERSION Mroonga version.

rows_written Number of rows written into Mroonga tables.

rows_read Number of rows read from all Mroonga tables.

This table always contains 1 row.

1.1.1.2.9.1.1.30 Information Schema
OPTIMIZER_TRACE Table

Optimizer Trace was introduced in MariaDB 10.4.3.

Description
The Information Schema OPTIMIZER_TRACE table contains Optimizer Trace information.

It contains the following columns:

Column Description

QUERY Displays the query that was asked to be traced.

TRACE A JSON document displaying the stats we collected when the query was run.

MISSING_BYTES_BEYOND_MAX_MEM_SIZE

For huge trace, where the trace is truncated due to the

optimizer_trace_max_mem_size limit being reached, displays the bytes that

are missing in the trace

INSUFFICENT_PRIVILEGES
Set to 1 if the user running the trace does not have the privileges to see the

trace.

Structure:

SHOW CREATE TABLE INFORMATION_SCHEMA.OPTIMIZER_TRACE \G

*************************** 1. row ***************************

 Table: OPTIMIZER_TRACE

Create Table: CREATE TEMPORARY TABLE `OPTIMIZER_TRACE` (

 `QUERY` longtext NOT NULL DEFAULT '',

 `TRACE` longtext NOT NULL DEFAULT '',

 `MISSING_BYTES_BEYOND_MAX_MEM_SIZE` int(20) NOT NULL DEFAULT 0,

 `INSUFFICIENT_PRIVILEGES` tinyint(1) NOT NULL DEFAULT 0

) ENGINE=Aria DEFAULT CHARSET=utf8 PAGE_CHECKSUM=0

MariaDB starting with 10.4.3

1.1.1.2.9.1.1.31 Information Schema
PARAMETERS Table
The Information Schema PARAMETERS table stores information about stored procedures and stored functions parameters.

It contains the following columns:

Column Description

SPECIFIC_CATALOG Always def .

SPECIFIC_SCHEMA Database name containing the stored routine parameter.

SPECIFIC_NAME Stored routine name.

ORDINAL_POSITION Ordinal position of the parameter, starting at 1 . 0 for a function RETURNS clause.

PARAMETER_MODE One of IN , OUT , INOUT or NULL for RETURNS.

PARAMETER_NAME Name of the parameter, or NULL for RETURNS.

351/4161

DATA_TYPE The column's data type.

CHARACTER_MAXIMUM_LENGTH Maximum length.

CHARACTER_OCTET_LENGTH Same as the CHARACTER_MAXIMUM_LENGTH except for multi-byte character sets.

NUMERIC_PRECISION
For numeric types, the precision (number of significant digits) for the column. NULL if not

a numeric field.

NUMERIC_SCALE
For numeric types, the scale (significant digits to the right of the decimal point). NULL if

not a numeric field.

DATETIME_PRECISION Fractional-seconds precision, or NULL if not a time data type.

CHARACTER_SET_NAME Character set if a non-binary string data type, otherwise NULL .

COLLATION_NAME Collation if a non-binary string data type, otherwise NULL .

DTD_IDENTIFIER Description of the data type.

ROUTINE_TYPE PROCEDURE or FUNCTION .

Information from this table is similar to that found in the param_list column in the mysql.proc table, and the output of the

SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

To obtain information about the routine itself, you can query the Information Schema ROUTINES table.

Example

SELECT * FROM information_schema.PARAMETERS

LIMIT 1 \G

********************** 1. row **********************

 SPECIFIC_CATALOG: def

 SPECIFIC_SCHEMA: accounts

 SPECIFIC_NAME: user_counts

 ORDINAL_POSITION: 1

 PARAMETER_MODE: IN

 PARAMETER_NAME: user_order

 DATA_TYPE: varchar

CHARACTER_MAXIMUM_LENGTH: 255

 CHARACTER_OCTET_LENGTH: 765

 NUMERIC_PRECISION: NULL

 NUMERIC_SCALE: NULL

 DATETIME_PRECISION: NULL

 CHARACTER_SET_NAME: utf8

 COLLATION_NAME: utf8_general_ci

 DTD_IDENTIFIER: varchar(255)

 ROUTINE_TYPE: PROCEDURE

1.1.1.2.9.1.1.32 Information Schema
PARTITIONS Table
The Information Schema PARTITIONS contains information about table partitions, with each record corresponding to a

single partition or subpartition of a partitioned table. Each non-partitioned table also has a record in the PARTITIONS table,

but most of the values are NULL .

It contains the following columns:

Column Description

TABLE_CATALOG Always def .

TABLE_SCHEMA Database name.

TABLE_NAME Table name containing the partition.

PARTITION_NAME Partition name.

SUBPARTITION_NAME Subpartition name, or NULL if not a subpartition.

PARTITION_ORDINAL_POSITION Order of the partition starting from 1.

352/4161

SUBPARTITION_ORDINAL_POSITION Order of the subpartition starting from 1.

PARTITION_METHOD
The partitioning type; one of RANGE, LIST, HASH, LINEAR HASH, KEY or

LINEAR KEY.

SUBPARTITION_METHOD
Subpartition type; one of HASH , LINEAR HASH , KEY or LINEAR KEY , or NULL

if not a subpartition.

PARTITION_EXPRESSION
Expression used to create the partition by the CREATE TABLE or ALTER TABLE

statement.

SUBPARTITION_EXPRESSION
Expression used to create the subpartition by the CREATE TABLE or ALTER

TABLE statement, or NULL if not a subpartition.

PARTITION_DESCRIPTION

For a RANGE partition, contains either MAXINTEGER or an integer, as set in the

VALUES LESS THAN clause. For a LIST partition, contains a comma-separated

list of integers, as set in the VALUES IN . For a SYSTEM_TIME INTERVAL

partition, shows a defined upper boundary timestamp for historical values (the last

history partition can contain values above the upper boundary). NULL if another

type of partition.

TABLE_ROWS Number of rows in the table (may be an estimate for some storage engines).

AVG_ROW_LENGTH Average row length, that is DATA_LENGTH divided by TABLE_ROWS

DATA_LENGTH Total number of bytes stored in all rows of the partition.

MAX_DATA_LENGTH Maximum bytes that could be stored in the partition.

INDEX_LENGTH Size in bytes of the partition index file.

DATA_FREE Unused bytes allocated to the partition.

CREATE_TIME Time the partition was created

UPDATE_TIME Time the partition was last modified.

CHECK_TIME
Time the partition was last checked, or NULL for storage engines that don't record

this information.

CHECKSUM Checksum value, or NULL if none.

PARTITION_COMMENT Partition comment, truncated to 80 characters, or an empty string if no comment.

NODEGROUP Node group, only used for MySQL Cluster, defaults to 0 .

TABLESPACE_NAME Always default .

1.1.1.2.9.1.1.33 Information Schema PERIODS
Table

The Information Schema PERIODS table provides information about Application-Time Periods.

It contains the following columns:

Column Description

TABLE_CATALOG Always contains the string 'def'.

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

PERIOD Period name.

START_COLUMN_NAME Name of the column that starts the period.

END_COLUMN_NAME Name of the column that ends the period.

Example

MariaDB starting with 11.4.1

353/4161

CREATE OR REPLACE TABLE t1(

 name VARCHAR(50),

 date_1 DATE,

 date_2 DATE,

 PERIOD FOR date_period(date_1, date_2)

);

SELECT * FROM INFORMATION_SCHEMA.PERIODS;

+---------------+--------------+------------+-------------+-------------------+-----------------+

| TABLE_CATALOG | TABLE_SCHEMA | TABLE_NAME | PERIOD | START_COLUMN_NAME | END_COLUMN_NAME |

+---------------+--------------+------------+-------------+-------------------+-----------------+

| def | test | t1 | date_period | date_1 | date_2 |

+---------------+--------------+------------+-------------+-------------------+-----------------+

1.1.1.2.9.1.1.34 Information Schema PLUGINS
Table
The Information Schema PLUGINS table contains information about server plugins.

It contains the following columns:

Column Description

PLUGIN_NAME Name of the plugin.

PLUGIN_VERSION Version from the plugin's general type descriptor.

PLUGIN_STATUS Plugin status, one of ACTIVE , INACTIVE , DISABLED or DELETED .

PLUGIN_TYPE
Plugin type; STORAGE ENGINE , INFORMATION_SCHEMA , AUTHENTICATION ,

REPLICATION , DAEMON or AUDIT .

PLUGIN_TYPE_VERSION Version from the plugin's type-specific descriptor.

PLUGIN_LIBRARY

Plugin's shared object file name, located in the directory specified by the plugin_dir system

variable, and used by the INSTALL PLUGIN and UNINSTALL PLUGIN statements. NULL

if the plugin is complied in and cannot be uninstalled.

PLUGIN_LIBRARY_VERSION Version from the plugin's API interface.

PLUGIN_AUTHOR Author of the plugin.

PLUGIN_DESCRIPTION Description.

PLUGIN_LICENSE Plugin's licence.

LOAD_OPTION
How the plugin was loaded; one of OFF , ON , FORCE or FORCE_PLUS_PERMANENT . See

Installing Plugins.

PLUGIN_MATURITY
Plugin's maturity level; one of Unknown , Experimental , Alpha , Beta , 'Gamma , and

Stable .

PLUGIN_AUTH_VERSION Plugin's version as determined by the plugin author. An example would be '0.99 beta 1'.

It provides a superset of the information shown by the SHOW PLUGINS statement. For specific information about storage

engines (a particular type of plugins), see the information_schema.ENGINES table and the SHOW ENGINES statement.

This table provides a subset of the Information Schema information_schema.ALL_PLUGINS table, which contains all

available plugins, installed or not.

The table is not a standard Information Schema table, and is a MariaDB extension.

Examples

The easiest way to get basic information on plugins is with SHOW PLUGINS:

354/4161

SHOW PLUGINS;

+----------------------------+----------+--------------------+-------------+---------+

| Name | Status | Type | Library | License |

+----------------------------+----------+--------------------+-------------+---------+

| binlog | ACTIVE | STORAGE ENGINE | NULL | GPL |

| mysql_native_password | ACTIVE | AUTHENTICATION | NULL | GPL |

| mysql_old_password | ACTIVE | AUTHENTICATION | NULL | GPL |

| MRG_MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |

| MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |

| CSV | ACTIVE | STORAGE ENGINE | NULL | GPL |

| MEMORY | ACTIVE | STORAGE ENGINE | NULL | GPL |

| FEDERATED | ACTIVE | STORAGE ENGINE | NULL | GPL |

| PERFORMANCE_SCHEMA | ACTIVE | STORAGE ENGINE | NULL | GPL |

| Aria | ACTIVE | STORAGE ENGINE | NULL | GPL |

| InnoDB | ACTIVE | STORAGE ENGINE | NULL | GPL |

| INNODB_TRX | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_LOCKS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_LOCK_WAITS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_CMP | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_CMP_RESET | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_CMPMEM | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_CMPMEM_RESET | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_BUFFER_PAGE | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_BUFFER_PAGE_LRU | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_BUFFER_POOL_STATS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_METRICS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_DEFAULT_STOPWORD | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_INSERTED | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_DELETED | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_BEING_DELETED | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_CONFIG | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_INDEX_CACHE | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_FT_INDEX_TABLE | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_TABLES | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_TABLESTATS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_INDEXES | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_COLUMNS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_FIELDS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_FOREIGN | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| INNODB_SYS_FOREIGN_COLS | ACTIVE | INFORMATION SCHEMA | NULL | GPL |

| SPHINX | ACTIVE | STORAGE ENGINE | NULL | GPL |

| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL | GPL |

| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL | GPL |

| FEEDBACK | DISABLED | INFORMATION SCHEMA | NULL | GPL |

| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |

| pam | ACTIVE | AUTHENTICATION | auth_pam.so | GPL |

+----------------------------+----------+--------------------+-------------+---------+

SELECT LOAD_OPTION

FROM INFORMATION_SCHEMA.PLUGINS

WHERE PLUGIN_NAME LIKE 'tokudb';

Empty set

The equivalent SELECT query would be:

SELECT PLUGIN_NAME, PLUGIN_STATUS,

PLUGIN_TYPE, PLUGIN_LIBRARY, PLUGIN_LICENSE

FROM INFORMATION_SCHEMA.PLUGINS;

Other SELECT queries can be used to see additional information. For example:

355/4161

SELECT PLUGIN_NAME, PLUGIN_DESCRIPTION,

PLUGIN_MATURITY, PLUGIN_AUTH_VERSION

FROM INFORMATION_SCHEMA.PLUGINS

WHERE PLUGIN_TYPE='STORAGE ENGINE'

ORDER BY PLUGIN_MATURITY \G

*************************** 1. row ***************************

 PLUGIN_NAME: FEDERATED

 PLUGIN_DESCRIPTION: FederatedX pluggable storage engine

 PLUGIN_MATURITY: Beta

PLUGIN_AUTH_VERSION: 2.1

*************************** 2. row ***************************

 PLUGIN_NAME: Aria

 PLUGIN_DESCRIPTION: Crash-safe tables with MyISAM heritage

 PLUGIN_MATURITY: Gamma

PLUGIN_AUTH_VERSION: 1.5

*************************** 3. row ***************************

 PLUGIN_NAME: PERFORMANCE_SCHEMA

 PLUGIN_DESCRIPTION: Performance Schema

 PLUGIN_MATURITY: Gamma

PLUGIN_AUTH_VERSION: 0.1

*************************** 4. row ***************************

 PLUGIN_NAME: binlog

 PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 5. row ***************************

 PLUGIN_NAME: MEMORY

 PLUGIN_DESCRIPTION: Hash based, stored in memory, useful for temporary tables

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 6. row ***************************

 PLUGIN_NAME: MyISAM

 PLUGIN_DESCRIPTION: MyISAM storage engine

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 7. row ***************************

 PLUGIN_NAME: MRG_MyISAM

 PLUGIN_DESCRIPTION: Collection of identical MyISAM tables

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 8. row ***************************

 PLUGIN_NAME: CSV

 PLUGIN_DESCRIPTION: CSV storage engine

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 9. row ***************************

 PLUGIN_NAME: InnoDB

 PLUGIN_DESCRIPTION: Supports transactions, row-level locking, and foreign keys

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.2.5

*************************** 10. row ***************************

 PLUGIN_NAME: BLACKHOLE

 PLUGIN_DESCRIPTION: /dev/null storage engine (anything you write to it disappears)

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 11. row ***************************

 PLUGIN_NAME: ARCHIVE

 PLUGIN_DESCRIPTION: Archive storage engine

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

*************************** 12. row ***************************

 PLUGIN_NAME: partition

 PLUGIN_DESCRIPTION: Partition Storage Engine Helper

 PLUGIN_MATURITY: Stable

PLUGIN_AUTH_VERSION: 1.0

Check if a given plugin is available:

356/4161

SELECT LOAD_OPTION

FROM INFORMATION_SCHEMA.PLUGINS

WHERE PLUGIN_NAME LIKE 'tokudb';

Empty set

Show authentication plugins:

SELECT PLUGIN_NAME, LOAD_OPTION

FROM INFORMATION_SCHEMA.PLUGINS

WHERE PLUGIN_TYPE LIKE 'authentication' \G

*************************** 1. row ***************************

PLUGIN_NAME: mysql_native_password

LOAD_OPTION: FORCE

*************************** 2. row ***************************

PLUGIN_NAME: mysql_old_password

LOAD_OPTION: FORCE

1.1.1.2.9.1.1.35 Information Schema
PROCESSLIST Table

Contents
1. Example

The Information Schema PROCESSLIST table contains information about running threads.

Similar information can also be returned with the SHOW [FULL] PROCESSLIST statement, or the mariadb-admin

processlist command.

It contains the following columns:

Column Description

ID Connection identifier.

USER MariaDB User.

HOST

The hostname from which this thread is connected.

For Unix socket connections, localhost . For TCP/IP connections, the TCP port is appended (e.g.

192.168.1.17:58061 or other-host.company.com:58061). For system user , this column is

blank ('').

DB Default database, or NULL if none.

COMMAND
Type of command running, corresponding to the Com_ status variables. See Thread Command

Values.

TIME Seconds that the thread has spent on the current COMMAND so far.

STATE Current state of the thread. See Thread States.

INFO Statement the thread is executing, or NULL if none.

TIME_MS
Time in milliseconds with microsecond precision that the thread has spent on the current COMMAND

so far (see more).

STAGE The stage the process is currently in.

MAX_STAGE The maximum number of stages.

PROGRESS The progress of the process within the current stage (0-100%).

MEMORY_USED Memory in bytes used by the thread.

MAX_MEMORY_USED Maximum memory in bytes used by the thread.

EXAMINED_ROWS
Rows examined by the thread. Only updated by UPDATE, DELETE, and similar statements. For

SELECT and other statements, the value remains zero.

SENT_ROWS Number of rows sent by the statement being executed. From MariaDB 11.3.0.

357/4161

QUERY_ID Query ID.

INFO_BINARY Binary data information

TID Thread ID (MDEV-6756)

Note that as a difference to MySQL, in MariaDB the TIME column (and also the TIME_MS column) are not affected by any

setting of @TIMESTAMP . This means that it can be reliably used also for threads that change @TIMESTAMP (such as the

replication SQL thread). See also MySQL Bug #22047 .

As a consequence of this, the TIME column of SHOW FULL PROCESSLIST and INFORMATION_SCHEMA.PROCESSLIST can

not be used to determine if a slave is lagging behind. For this, use instead the Seconds_Behind_Master column in the

output of SHOW SLAVE STATUS.

Note that the PROGRESS field from the information schema, and the PROGRESS field from SHOW PROCESSLIST display

different results. SHOW PROCESSLIST shows the total progress, while the information schema shows the progress for the

current stage only.. To retrieve a similar "total" Progress value from information_schema.PROCESSLIST as the one from

SHOW PROCESSLIST , use

SELECT CASE WHEN Max_Stage < 2 THEN Progress ELSE (Stage-1)/Max_Stage*100+Progress/Max_Stage END

 AS Progress FROM INFORMATION_SCHEMA.PROCESSLIST;

Example

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST\G

*************************** 1. row ***************************

 ID: 9

 USER: msandbox

 HOST: localhost

 DB: NULL

 COMMAND: Query

 TIME: 0

 STATE: Filling schema table

 INFO: SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

 TIME_MS: 0.351

 STAGE: 0

 MAX_STAGE: 0

 PROGRESS: 0.000

 MEMORY_USED: 85392

EXAMINED_ROWS: 0

 QUERY_ID: 15

 INFO_BINARY: SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST

 TID: 11838

*************************** 2. row ***************************

 ID: 5

 USER: system user

 HOST:

 DB: NULL

 COMMAND: Daemon

 TIME: 0

 STATE: InnoDB shutdown handler

 INFO: NULL

 TIME_MS: 0.000

 STAGE: 0

 MAX_STAGE: 0

 PROGRESS: 0.000

 MEMORY_USED: 24160

EXAMINED_ROWS: 0

 QUERY_ID: 0

 INFO_BINARY: NULL

 TID: 3856

...

1.1.1.2.9.1.1.36 Information Schema
PROFILING Table

358/4161

https://jira.mariadb.org/browse/MDEV-6756
http://bugs.mysql.com/bug.php?id=22047

The Information Schema PROFILING table contains information about statement resource usage. Profiling information is

only recorded if the profiling session variable is set to 1.

It contains the following columns:

Column Name Description

QUERY_ID Query_ID.

SEQ Sequence number showing the display order for rows with the same QUERY_ID .

STATE Profiling state.

DURATION Time in seconds that the statement has been in the current state.

CPU_USER User CPU usage in seconds.

CPU_SYSTEM System CPU usage in seconds.

CONTEXT_VOLUNTARY Number of voluntary context switches.

CONTEXT_INVOLUNTARY Number of involuntary context switches.

BLOCK_OPS_IN Number of block input operations.

BLOCK_OPS_OUT Number of block output operations.

MESSAGES_SENT Number of communications sent.

MESSAGES_RECEIVED Number of communications received.

PAGE_FAULTS_MAJOR Number of major page faults.

PAGE_FAULTS_MINOR Number of minor page faults.

SWAPS Number of swaps.

SOURCE_FUNCTION Function in the source code executed by the profiled state.

SOURCE_FILE File in the source code executed by the profiled state.

SOURCE_LINE Line in the source code executed by the profiled state.

It contains similar information to the SHOW PROFILE and SHOW PROFILES statements.

Profiling is enabled per session. When a session ends, its profiling information is lost.

1.1.1.2.9.1.1.37 Information Schema
QUERY_CACHE_INFO Table

Description
The table is not a standard Information Schema table, and is a MariaDB extension.

The QUERY_CACHE_INFO table is created by the QUERY_CACHE_INFO plugin, and allows you to see the contents of the

query cache. It creates a table in the information_schema database that shows all queries that are in the cache. You must

have the PROCESS privilege (see GRANT) to use this table.

It contains the following columns:

Column Description

STATEMENT_SCHEMA Database used when query was included

STATEMENT_TEXT Query text

RESULT_BLOCKS_COUNT Number of result blocks

RESULT_BLOCKS_SIZE Size in bytes of result blocks

RESULT_BLOCKS_SIZE_USED Size in bytes of used blocks

LIMIT Added MariaDB 10.1.8 .

MAX_SORT_LENGTH Added MariaDB 10.1.8 .

359/4161

https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/

GROUP_CONCAT_MAX_LENGTH Added MariaDB 10.1.8 .

CHARACTER_SET_CLIENT Added MariaDB 10.1.8 .

CHARACTER_SET_RESULT Added MariaDB 10.1.8 .

COLLATION Added MariaDB 10.1.8 .

TIMEZONE Added MariaDB 10.1.8 .

DEFAULT_WEEK_FORMAT Added MariaDB 10.1.8 .

DIV_PRECISION_INCREMENT Added MariaDB 10.1.8 .

SQL_MODE Added MariaDB 10.1.8 .

LC_TIME_NAMES Added MariaDB 10.1.8 .

CLIENT_LONG_FLAG Added MariaDB 10.1.8 .

CLIENT_PROTOCOL_41 Added MariaDB 10.1.8 .

PROTOCOL_TYPE Added MariaDB 10.1.8 .

MORE_RESULTS_EXISTS Added MariaDB 10.1.8 .

IN_TRANS Added MariaDB 10.1.8 .

AUTOCOMMIT Added MariaDB 10.1.8 .

PACKET_NUMBER Added MariaDB 10.1.8 .

HITS Incremented each time the query cache is hit. Added MariaDB 10.3.2 .

For example:

SELECT * FROM information_schema.QUERY_CACHE_INFO;

+------------------+-----------------+---------------------+--------------------+------------

-------------+

| STATEMENT_SCHEMA | STATEMENT_TEXT | RESULT_BLOCKS_COUNT | RESULT_BLOCKS_SIZE |

RESULT_BLOCKS_SIZE_USED |

+------------------+-----------------+---------------------+--------------------+------------

-------------+

...

| test | SELECT * FROM a | 1 | 512 |

143 |

| test | select * FROM a | 1 | 512 |

143 |

...

+------------------+-----------------+---------------------+--------------------+------------

1.1.1.2.9.1.1.38 Information Schema
QUERY_RESPONSE_TIME Table

Description
The Information Schema QUERY_RESPONSE_TIME table contains information about queries that take a long time to execute

. It is only available if the QUERY_RESPONSE_TIME plugin has been installed.

It contains the following columns:

Column Description

TIME Time interval

COUNT Count of queries falling into the time interval

TOTAL Total execution time of all queries for this interval

See QUERY_RESPONSE_TIME plugin for a full description.

The table is not a standard Information Schema table, and is a MariaDB extension.
360/4161

https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

SHOW QUERY_RESPONSE_TIME is available from MariaDB 10.1.1 as an alternative for retrieving the data.

Example

SELECT * FROM information_schema.QUERY_RESPONSE_TIME;

+----------------+-------+----------------+

| TIME | COUNT | TOTAL |

+----------------+-------+----------------+

| 0.000001 | 0 | 0.000000 |

| 0.000010 | 17 | 0.000094 |

| 0.000100 | 4301 0.236555 |

| 0.001000 | 1499 | 0.824450 |

| 0.010000 | 14851 | 81.680502 |

| 0.100000 | 8066 | 443.635693 |

| 1.000000 | 0 | 0.000000 |

| 10.000000 | 0 | 0.000000 |

| 100.000000 | 1 | 55.937094 |

| 1000.000000 | 0 | 0.000000 |

| 10000.000000 | 0 | 0.000000 |

| 100000.000000 | 0 | 0.000000 |

| 1000000.000000 | 0 | 0.000000 |

| TOO LONG | 0 | TOO LONG |

+----------------+-------+----------------+

1.1.1.2.9.1.1.39 Information Schema
REFERENTIAL_CONSTRAINTS Table
The Information Schema REFERENTIAL_CONSTRAINTS table contains information about foreign keys. The single columns

are listed in the KEY_COLUMN_USAGE table.

It has the following columns:

Column Description

CONSTRAINT_CATALOG Always def .

CONSTRAINT_SCHEMA Database name, together with CONSTRAINT_NAME identifies the foreign key.

CONSTRAINT_NAME Foreign key name, together with CONSTRAINT_SCHEMA identifies the foreign key.

UNIQUE_CONSTRAINT_CATALOG Always def .

UNIQUE_CONSTRAINT_SCHEMA
Database name, together with UNIQUE_CONSTRAINT_NAME and

REFERENCED_TABLE_NAME identifies the referenced key.

UNIQUE_CONSTRAINT_NAME
Referenced key name, together with UNIQUE_CONSTRAINT_SCHEMA and

REFERENCED_TABLE_NAME identifies the referenced key.

MATCH_OPTION Always NONE .

UPDATE_RULE
The Update Rule; one of CASCADE , SET NULL , SET DEFAULT , RESTRICT , NO

ACTION .

DELETE_RULE The Delete Rule; one of CASCADE , SET NULL , SET DEFAULT , RESTRICT , NO

ACTION .

TABLE_NAME Table name from the TABLE_CONSTRAINTS table.

REFERENCED_TABLE_NAME
Referenced key table name, together with UNIQUE_CONSTRAINT_SCHEMA and

UNIQUE_CONSTRAINT_NAME identifies the referenced key.

1.1.1.2.9.1.1.40 Information Schema
ROUTINES Table
The Information Schema ROUTINES table stores information about stored procedures and stored functions.

It contains the following columns:

361/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/

Column Description

SPECIFIC_NAME

ROUTINE_CATALOG Always def .

ROUTINE_SCHEMA Database name associated with the routine.

ROUTINE_NAME Name of the routine.

ROUTINE_TYPE Whether the routine is a PROCEDURE or a FUNCTION .

DATA_TYPE The return value's data type (for stored functions).

CHARACTER_MAXIMUM_LENGTH Maximum length.

CHARACTER_OCTET_LENGTH Same as the CHARACTER_MAXIMUM_LENGTH except for multi-byte character sets.

NUMERIC_PRECISION
For numeric types, the precision (number of significant digits) for the column. NULL if

not a numeric field.

NUMERIC_SCALE
For numeric types, the scale (significant digits to the right of the decimal point). NULL if

not a numeric field.

DATETIME_PRECISION Fractional-seconds precision, or NULL if not a time data type.

CHARACTER_SET_NAME Character set if a non-binary string data type, otherwise NULL .

COLLATION_NAME Collation if a non-binary string data type, otherwise NULL.

DATA_TYPE The column's data type.

ROUTINE_BODY Always SQL .

ROUTINE_DEFINITION Definition of the routine.

EXTERNAL_NAME Always NULL .

EXTERNAL_LANGUAGE Always SQL .

PARAMETER_STYLE Always SQL .

IS_DETERMINISTIC
Whether the routine is deterministic (can produce only one result for a given list of

parameters) or not.

SQL_DATA_ACCESS One of READS SQL DATA , MODIFIES SQL DATA , CONTAINS SQL , or NO SQL .

SQL_PATH Always NULL .

SECURITY_TYPE INVOKER or DEFINER . Indicates which user's privileges apply to this routine.

CREATED Date and time the routine was created.

LAST_ALTERED Date and time the routine was last changed.

SQL_MODE The SQL_MODE at the time the routine was created.

ROUTINE_COMMENT Comment associated with the routine.

DEFINER If the SECURITY_TYPE is DEFINER , this value indicates which user defined this routine.

CHARACTER_SET_CLIENT The character set used by the client that created the routine.

COLLATION_CONNECTION The collation (and character set) used by the connection that created the routine.

DATABASE_COLLATION
The default collation (and character set) for the database, at the time the routine was

created.

It provides information similar to, but more complete, than the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS

statements.

For information about the parameters accepted by the routine, you can query the information_schema.PARAMETERS

table.

1.1.1.2.9.1.1.41 Information Schema
SCHEMA_PRIVILEGES Table

362/4161

The Information Schema SCHEMA_PRIVILEGES table contains information about database privileges.

It contains the following columns:

Column Description

GRANTEE Account granted the privilege in the format user_name@host_name .

TABLE_CATALOG Always def

TABLE_SCHEMA Database name.

PRIVILEGE_TYPE The granted privilege.

IS_GRANTABLE Whether the privilege can be granted.

The same information in a different format can be found in the mysql.db table.

1.1.1.2.9.1.1.42 Information Schema
SCHEMATA Table
The Information Schema SCHEMATA table stores information about databases on the server.

It contains the following columns:

Column Description

CATALOG_NAME Always def .

SCHEMA_NAME Database name.

DEFAULT_CHARACTER_SET_NAME Default character set for the database.

DEFAULT_COLLATION_NAME Default collation.

SQL_PATH Always NULL .

SCHEMA_COMMENT Database comment. From MariaDB 10.5.0.

Example

SELECT * FROM INFORMATION_SCHEMA.SCHEMATA\G

*************************** 1. row ***************************

 CATALOG_NAME: def

 SCHEMA_NAME: information_schema

DEFAULT_CHARACTER_SET_NAME: utf8

 DEFAULT_COLLATION_NAME: utf8_general_ci

 SQL_PATH: NULL

*************************** 2. row ***************************

 CATALOG_NAME: def

 SCHEMA_NAME: mysql

DEFAULT_CHARACTER_SET_NAME: latin1

 DEFAULT_COLLATION_NAME: latin1_swedish_ci

 SQL_PATH: NULL

*************************** 3. row ***************************

 CATALOG_NAME: def

 SCHEMA_NAME: performance_schema

DEFAULT_CHARACTER_SET_NAME: utf8

 DEFAULT_COLLATION_NAME: utf8_general_ci

 SQL_PATH: NULL

*************************** 4. row ***************************

 CATALOG_NAME: def

 SCHEMA_NAME: test

DEFAULT_CHARACTER_SET_NAME: latin1

 DEFAULT_COLLATION_NAME: latin1_swedish_ci

 SQL_PATH: NULL

...

From MariaDB 10.5.0:

363/4161

SELECT * FROM INFORMATION_SCHEMA.SCHEMATA\G

...

*************************** 2. row ***************************

 CATALOG_NAME: def

 SCHEMA_NAME: presentations

DEFAULT_CHARACTER_SET_NAME: latin1

 DEFAULT_COLLATION_NAME: latin1_swedish_ci

 SQL_PATH: NULL

 SCHEMA_COMMENT: Presentations for conferences

...

1.1.1.2.9.1.1.43 Information Schema
SPATIAL_REF_SYS Table

Description
The Information Schema SPATIAL_REF_SYS table stores information on each spatial reference system used in the

database.

It contains the following columns:

Column Type Null Description

SRID smallint(5) NO
An integer value that uniquely identifies each Spatial Reference System within a

database.

AUTH_NAME varchar(512) NO
The name of the standard or standards body that is being cited for this reference

system.

AUTH_SRID smallint(5) NO The numeric ID of the coordinate system in the above authority's catalog.

SRTEXT varchar(2048) NO The Well-known Text Representation of the Spatial Reference System.

Note: See MDEV-7540 .

See Aso
information_schema.GEOMETRY_COLUMNS table.

1.1.1.2.9.1.1.44 Information Schema
SPIDER_ALLOC_MEM Table
The Information Schema SPIDER_ALLOC_MEM table is installed along with the Spider storage engine. It shows information

about Spider's memory usage.

It contains the following columns:

Column Description

ID

FUNC_NAME

FILE_NAME

LINE_NO

TOTAL_ALLOC_MEM

CURRENT_ALLOC_MEM

ALLOC_MEM_COUNT

FREE_MEM_COUNT

364/4161

https://jira.mariadb.org/browse/MDEV-7540

1.1.1.2.9.1.1.45 Information Schema
SPIDER_WRAPPER_PROTOCOLS Table

The Information Schema SPIDER_WRAPPER_PROTOCOLS table is installed along with the Spider storage engine from

MariaDB 10.5.4.

It contains the following columns:

Column Type Description

WRAPPER_NAME varchar(64)

WRAPPER_VERSION varchar(20)

WRAPPER_DESCRIPTION longtext

WRAPPER_MATURITY varchar(12)

MariaDB starting with 10.5.4

1.1.1.2.9.1.1.46 Information Schema
SQL_FUNCTIONS Table

The SQL_FUNCTIONS table was added in MariaDB 10.6.3.

Description
The Information Schema SQL_FUNCTIONS table contains the list of MariaDB functions.

It contains a single column:

Column Description

FUNCTION Function name

The table is not a standard Information Schema table, and is a MariaDB extension.

Example

SELECT * FROM INFORMATION_SCHEMA.SQL_FUNCTIONS;

+---------------------------+

| FUNCTION |

+---------------------------+

| ADDDATE |

| ADD_MONTHS |

| BIT_AND |

| BIT_OR |

| BIT_XOR |

| CAST |

| COUNT |

| CUME_DIST |

| CURDATE |

| CURTIME |

| DATE_ADD |

| DATE_SUB |

| DATE_FORMAT |

| DECODE |

| DENSE_RANK |

| EXTRACT |

| FIRST_VALUE |

| GROUP_CONCAT |

| JSON_ARRAYAGG |

| JSON_OBJECTAGG |

| LAG |

| LEAD |

| MAX |

MariaDB starting with 10.6.3

365/4161

| MAX |

| MEDIAN |

| MID |

| MIN |

| NOW |

| NTH_VALUE |

| NTILE |

| POSITION |

| PERCENT_RANK |

| PERCENTILE_CONT |

| PERCENTILE_DISC |

| RANK |

| ROW_NUMBER |

| SESSION_USER |

| STD |

| STDDEV |

| STDDEV_POP |

| STDDEV_SAMP |

| SUBDATE |

| SUBSTR |

| SUBSTRING |

| SUM |

| SYSTEM_USER |

| TRIM |

| TRIM_ORACLE |

| VARIANCE |

| VAR_POP |

| VAR_SAMP |

| ABS |

| ACOS |

| ADDTIME |

| AES_DECRYPT |

| AES_ENCRYPT |

| ASIN |

| ATAN |

| ATAN2 |

| BENCHMARK |

| BIN |

| BINLOG_GTID_POS |

| BIT_COUNT |

| BIT_LENGTH |

| CEIL |

| CEILING |

| CHARACTER_LENGTH |

| CHAR_LENGTH |

| CHR |

| COERCIBILITY |

| COLUMN_CHECK |

| COLUMN_EXISTS |

| COLUMN_LIST |

| COLUMN_JSON |

| COMPRESS |

| CONCAT |

| CONCAT_OPERATOR_ORACLE |

| CONCAT_WS |

| CONNECTION_ID |

| CONV |

| CONVERT_TZ |

| COS |

| COT |

| CRC32 |

| DATEDIFF |

| DAYNAME |

| DAYOFMONTH |

| DAYOFWEEK |

| DAYOFYEAR |

| DEGREES |

| DECODE_HISTOGRAM |

| DECODE_ORACLE |

| DES_DECRYPT |

| DES_ENCRYPT |

| ELT |

| ENCODE |

| ENCRYPT |

| EXP |

366/4161

| EXPORT_SET |

| EXTRACTVALUE |

| FIELD |

| FIND_IN_SET |

| FLOOR |

| FORMAT |

| FOUND_ROWS |

| FROM_BASE64 |

| FROM_DAYS |

| FROM_UNIXTIME |

| GET_LOCK |

| GREATEST |

| HEX |

| IFNULL |

| INSTR |

| ISNULL |

| IS_FREE_LOCK |

| IS_USED_LOCK |

| JSON_ARRAY |

| JSON_ARRAY_APPEND |

| JSON_ARRAY_INSERT |

| JSON_COMPACT |

| JSON_CONTAINS |

| JSON_CONTAINS_PATH |

| JSON_DEPTH |

| JSON_DETAILED |

| JSON_EXISTS |

| JSON_EXTRACT |

| JSON_INSERT |

| JSON_KEYS |

| JSON_LENGTH |

| JSON_LOOSE |

| JSON_MERGE |

| JSON_MERGE_PATCH |

| JSON_MERGE_PRESERVE |

| JSON_QUERY |

| JSON_QUOTE |

| JSON_OBJECT |

| JSON_REMOVE |

| JSON_REPLACE |

| JSON_SET |

| JSON_SEARCH |

| JSON_TYPE |

| JSON_UNQUOTE |

| JSON_VALID |

| JSON_VALUE |

| LAST_DAY |

| LAST_INSERT_ID |

| LCASE |

| LEAST |

| LENGTH |

| LENGTHB |

| LN |

| LOAD_FILE |

| LOCATE |

| LOG |

| LOG10 |

| LOG2 |

| LOWER |

| LPAD |

| LPAD_ORACLE |

| LTRIM |

| LTRIM_ORACLE |

| MAKEDATE |

| MAKETIME |

| MAKE_SET |

| MASTER_GTID_WAIT |

| MASTER_POS_WAIT |

| MD5 |

| MONTHNAME |

| NAME_CONST |

| NVL |

| NVL2 |

| NULLIF |

| OCT |
367/4161

| OCTET_LENGTH |

| ORD |

| PERIOD_ADD |

| PERIOD_DIFF |

| PI |

| POW |

| POWER |

| QUOTE |

| REGEXP_INSTR |

| REGEXP_REPLACE |

| REGEXP_SUBSTR |

| RADIANS |

| RAND |

| RELEASE_ALL_LOCKS |

| RELEASE_LOCK |

| REPLACE_ORACLE |

| REVERSE |

| ROUND |

| RPAD |

| RPAD_ORACLE |

| RTRIM |

| RTRIM_ORACLE |

| SEC_TO_TIME |

| SHA |

| SHA1 |

| SHA2 |

| SIGN |

| SIN |

| SLEEP |

| SOUNDEX |

| SPACE |

| SQRT |

| STRCMP |

| STR_TO_DATE |

| SUBSTR_ORACLE |

| SUBSTRING_INDEX |

| SUBTIME |

| SYS_GUID |

| TAN |

| TIMEDIFF |

| TIME_FORMAT |

| TIME_TO_SEC |

| TO_BASE64 |

| TO_CHAR |

| TO_DAYS |

| TO_SECONDS |

| UCASE |

| UNCOMPRESS |

| UNCOMPRESSED_LENGTH |

| UNHEX |

| UNIX_TIMESTAMP |

| UPDATEXML |

| UPPER |

| UUID |

| UUID_SHORT |

| VERSION |

| WEEKDAY |

| WEEKOFYEAR |

| WSREP_LAST_WRITTEN_GTID |

| WSREP_LAST_SEEN_GTID |

| WSREP_SYNC_WAIT_UPTO_GTID |

| YEARWEEK |

+---------------------------+

234 rows in set (0.001 sec)

1.1.1.2.9.1.1.47 Information Schema
STATISTICS Table
The Information Schema STATISTICS table provides information about table indexes.

It contains the following columns:

368/4161

Column Description

TABLE_CATALOG Always def .

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

NON_UNIQUE 1 if the index can have duplicates, 0 if not.

INDEX_SCHEMA Database name.

INDEX_NAME Index name. The primary key is always named PRIMARY .

SEQ_IN_INDEX The column sequence number, starting at 1.

COLUMN_NAME Column name.

COLLATION A for sorted in ascending order, or NULL for unsorted.

CARDINALITY

Estimate of the number of unique values stored in the index based on statistics stored as integers.

Higher cardinalities usually mean a greater chance of the index being used in a join. Updated by the

ANALYZE TABLE statement or myisamchk -a.

SUB_PART NULL if the whole column is indexed, or the number of indexed characters if partly indexed.

PACKED NULL if not packed, otherwise how the index is packed.

NULLABLE YES if the column may contain NULLs, empty string if not.

INDEX_TYPE Index type, one of BTREE , RTREE , HASH or FULLTEXT . See Storage Engine Index Types.

COMMENT Index comments from the CREATE INDEX statement.

IGNORED Whether or not an index will be ignored by the optimizer. See Ignored Indexes. From MariaDB 10.6.0.

The SHOW INDEX statement produces similar output.

Example

SELECT * FROM INFORMATION_SCHEMA.STATISTICS\G

...

*************************** 85. row ***************************

TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: table1

 NON_UNIQUE: 1

 INDEX_SCHEMA: test

 INDEX_NAME: col2

 SEQ_IN_INDEX: 1

 COLUMN_NAME: col2

 COLLATION: A

 CARDINALITY: 6

 SUB_PART: NULL

 PACKED: NULL

 NULLABLE:

 INDEX_TYPE: BTREE

 COMMENT:

INDEX_COMMENT:

...

1.1.1.2.9.1.1.48 Information Schema
SYSTEM_VARIABLES Table
The Information Schema SYSTEM_VARIABLES table shows current values and various metadata of all system variables.

It contains the following columns:

Column Description

369/4161

VARIABLE_NAME
System variable name.

SESSION_VALUE Session value of the variable or NULL if the variable only has a global scope.

GLOBAL_VALUE Global value of the variable or NULL if the variable only has a session scope.

GLOBAL_VALUE_ORIGIN
How the global value was set 4 a compile-time default, auto-configured by the server,

configuration file (or a command line), with the SQL statement.

DEFAULT_VALUE Compile-time default value of the variable.

VARIABLE_SCOPE Global, session, or session-only.

VARIABLE_TYPE Data type of the variable value.

VARIABLE_COMMENT Help text, usually shown in mysqld --help --verbose .

NUMERIC_MIN_VALUE For numeric variables 4 minimal allowed value.

NUMERIC_MAX_VALUE For numeric variables 4 maximal allowed value.

NUMERIC_BLOCK_SIZE For numeric variables 4 a valid value must be a multiple of the "block size".

ENUM_VALUE_LIST For ENUM , SET , and FLAGSET variables 4 the list of recognized values.

READ_ONLY
Whether a variable can be set with the SQL statement. Note that many "read only" variables

can still be set on the command line.

COMMAND_LINE_ARGUMENT
Whether an argument is required when setting the variable on the command line. NULL

when a variable can not be set on the command line.

GLOBAL_VALUE_PATH
Which config file the variable got its value from. NULL if not set in any config file. Added in

MariaDB 10.5.0.

Example

SELECT * FROM information_schema.SYSTEM_VARIABLES

 WHERE VARIABLE_NAME='JOIN_BUFFER_SIZE'\G

*************************** 1. row *****************************

 VARIABLE_NAME: JOIN_BUFFER_SIZE

 SESSION_VALUE: 131072

 GLOBAL_VALUE: 131072

 GLOBAL_VALUE_ORIGIN: COMPILE-TIME

 DEFAULT_VALUE: 131072

 VARIABLE_SCOPE: SESSION

 VARIABLE_TYPE: BIGINT UNSIGNED

 VARIABLE_COMMENT: The size of the buffer that is used for joins

 NUMERIC_MIN_VALUE: 128

 NUMERIC_MAX_VALUE: 18446744073709551615

 NUMERIC_BLOCK_SIZE: 128

 ENUM_VALUE_LIST: NULL

 READ_ONLY: NO

COMMAND_LINE_ARGUMENT: REQUIRED

1.1.1.2.9.1.1.49 Information Schema
TABLE_CONSTRAINTS Table
The Information Schema TABLE_CONSTRAINTS table contains information about tables that have constraints.

It has the following columns:

Column Description

CONSTRAINT_CATALOG Always def .

CONSTRAINT_SCHEMA Database name containing the constraint.

CONSTRAINT_NAME Constraint name.

TABLE_SCHEMA Database name.

370/4161

TABLE_NAME Table name.

CONSTRAINT_TYPE Type of constraint; one of UNIQUE , PRIMARY KEY , FOREIGN KEY or CHECK .

The REFERENTIAL_CONSTRAINTS table has more information about foreign keys.

1.1.1.2.9.1.1.50 Information Schema
TABLE_PRIVILEGES Table
The Information Schema TABLE_PRIVILEGES table contains table privilege information derived from the mysql.tables_priv

grant table.

It has the following columns:

Column Description

GRANTEE In the format user_name@host_name .

TABLE_CATALOG Always def .

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

PRIVILEGE_TYPE One of SELECT , INSERT , UPDATE , REFERENCES , ALTER , INDEX , DROP or CREATE VIEW .

IS_GRANTABLE Whether the user has the GRANT OPTION for this privilege.

Similar information can be accessed with the SHOW GRANTS statement. See the GRANT article for more about privileges.

For a description of the privileges that are shown in this table, see table privileges.

1.1.1.2.9.1.1.51 Information Schema
TABLE_STATISTICS Table
The Information Schema TABLE_STATISTICS table shows statistics on table usage.

This is part of the User Statistics feature, which is not enabled by default.

It contains the following columns:

Field Type Notes

TABLE_SCHEMA varchar(192) The schema (database) name.

TABLE_NAME varchar(192) The table name.

ROWS_READ int(21) The number of rows read from the table.

ROWS_CHANGED int(21) The number of rows changed in the table.

ROWS_CHANGED_X_INDEXES int(21)
The number of rows changed in the table, multiplied by the number of

indexes changed.

Example

SELECT * FROM INFORMATION_SCHEMA.TABLE_STATISTICS WHERE TABLE_NAME='user';

+--------------+------------+-----------+--------------+------------------------+

| TABLE_SCHEMA | TABLE_NAME | ROWS_READ | ROWS_CHANGED | ROWS_CHANGED_X_INDEXES |

+--------------+------------+-----------+--------------+------------------------+

| mysql | user | 5 | 2 | 2 |

+--------------+------------+-----------+--------------+------------------------+

1.1.1.2.9.1.1.52 Information Schema TABLES
Table

371/4161

Contents
1. Examples

1. View Tables in Order of Size

The Information Schema table shows information about the various tables (until MariaDB 11.2.0, only non- TEMPORARY

tables, except for tables from the Information Schema database) and views on the server.

It contains the following columns:

Column Description

TABLE_CATALOG Always def .

TABLE_SCHEMA Database name.

TABLE_NAME Table name.

TABLE_TYPE

One of BASE TABLE for a regular table, VIEW for a view, SYSTEM VIEW for Information Schema

tables, SYSTEM VERSIONED for system-versioned tables, SEQUENCE for sequences or, from

MariaDB 11.2.0, TEMPORARY for local temporary tables.

ENGINE Storage Engine.

VERSION Version number from the table's .frm file

ROW_FORMAT Row format (see InnoDB, Aria and MyISAM row formats).

TABLE_ROWS Number of rows in the table. Some engines, such as XtraDB and InnoDB may store an estimate.

AVG_ROW_LENGTH Average row length in the table.

DATA_LENGTH
For InnoDB/XtraDB, the index size, in pages, multiplied by the page size. For Aria and MyISAM,

length of the data file, in bytes. For MEMORY, the approximate allocated memory.

MAX_DATA_LENGTH
Maximum length of the data file, ie the total number of bytes that could be stored in the table. Not

used in XtraDB and InnoDB.

INDEX_LENGTH Length of the index file.

DATA_FREE

Bytes allocated but unused. For InnoDB tables in a shared tablespace, the free space of the

shared tablespace with small safety margin. An estimate in the case of partitioned tables - see the

PARTITIONS table.

AUTO_INCREMENT Next AUTO_INCREMENT value.

CREATE_TIME

Time the table was created. Some engines just return the ctime information from the file system

layer here, in that case the value is not necessarily the table creation time but rather the time the

file system metadata for it had last changed.

UPDATE_TIME

Time the table was last updated. On Windows, the timestamp is not updated on update, so

MyISAM values will be inaccurate. In InnoDB, if shared tablespaces are used, will be NULL, while

buffering can also delay the update, so the value will differ from the actual time of the last UPDATE ,

INSERT or DELETE .

CHECK_TIME Time the table was last checked. Not kept by all storage engines, in which case will be NULL .

TABLE_COLLATION Character set and collation.

CHECKSUM Live checksum value, if any.

CREATE_OPTIONS Extra CREATE TABLE options.

TABLE_COMMENT Table comment provided when MariaDB created the table.

MAX_INDEX_LENGTH Maximum index length (supported by MyISAM and Aria tables). Added in MariaDB 10.3.5 .

TEMPORARY

Until MariaDB 11.2.0, placeholder to signal that a table is a temporary table and always "N", except

"Y" for generated information_schema tables and NULL for views. From MariaDB 11.2.0, will also

be set to "Y" for local temporary tables. Added in MariaDB 10.3.5 .

Although the table is standard in the Information Schema, all but TABLE_CATALOG , TABLE_SCHEMA , TABLE_NAME ,

TABLE_TYPE , ENGINE and VERSION are MySQL and MariaDB extensions.

SHOW TABLES lists all tables in a database.

Examples
372/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

From MariaDB 10.3.5 :

SELECT * FROM information_schema.tables WHERE table_schema='test'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: xx5

 TABLE_TYPE: BASE TABLE

 ENGINE: InnoDB

 VERSION: 10

 ROW_FORMAT: Dynamic

 TABLE_ROWS: 0

 AVG_ROW_LENGTH: 0

 DATA_LENGTH: 16384

 MAX_DATA_LENGTH: 0

 INDEX_LENGTH: 0

 DATA_FREE: 0

 AUTO_INCREMENT: NULL

 CREATE_TIME: 2020-11-18 15:57:10

 UPDATE_TIME: NULL

 CHECK_TIME: NULL

 TABLE_COLLATION: latin1_swedish_ci

 CHECKSUM: NULL

 CREATE_OPTIONS:

 TABLE_COMMENT:

MAX_INDEX_LENGTH: 0

 TEMPORARY: N

*************************** 2. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: xx4

 TABLE_TYPE: BASE TABLE

 ENGINE: MyISAM

 VERSION: 10

 ROW_FORMAT: Fixed

 TABLE_ROWS: 0

 AVG_ROW_LENGTH: 0

 DATA_LENGTH: 0

 MAX_DATA_LENGTH: 1970324836974591

 INDEX_LENGTH: 1024

 DATA_FREE: 0

 AUTO_INCREMENT: NULL

 CREATE_TIME: 2020-11-18 15:56:57

 UPDATE_TIME: 2020-11-18 15:56:57

 CHECK_TIME: NULL

 TABLE_COLLATION: latin1_swedish_ci

 CHECKSUM: NULL

 CREATE_OPTIONS:

 TABLE_COMMENT:

MAX_INDEX_LENGTH: 17179868160

 TEMPORARY: N

...

Example with temporary = 'y', from MariaDB 10.3.5 :

373/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

SELECT * FROM information_schema.tables WHERE temporary='y'\G

 *************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: information_schema

 TABLE_NAME: INNODB_FT_DELETED

 TABLE_TYPE: SYSTEM VIEW

 ENGINE: MEMORY

 VERSION: 11

 ROW_FORMAT: Fixed

 TABLE_ROWS: NULL

 AVG_ROW_LENGTH: 9

 DATA_LENGTH: 0

 MAX_DATA_LENGTH: 9437184

 INDEX_LENGTH: 0

 DATA_FREE: 0

 AUTO_INCREMENT: NULL

 CREATE_TIME: 2020-11-17 21:54:02

 UPDATE_TIME: NULL

 CHECK_TIME: NULL

 TABLE_COLLATION: utf8_general_ci

 CHECKSUM: NULL

 CREATE_OPTIONS: max_rows=1864135

 TABLE_COMMENT:

MAX_INDEX_LENGTH: 0

 TEMPORARY: Y

...

View Tables in Order of Size

Returns a list of all tables in the database, ordered by size:

SELECT table_schema as `DB`, table_name AS `Table`,

 ROUND(((data_length + index_length) / 1024 / 1024), 2) `Size (MB)`

 FROM information_schema.TABLES

 ORDER BY (data_length + index_length) DESC;

+--------------------+---------------------------------------+-----------+

| DB | Table | Size (MB) |

+--------------------+---------------------------------------+-----------+

| wordpress | wp_simple_history_contexts | 7.05 |

| wordpress | wp_posts | 6.59 |

| wordpress | wp_simple_history | 3.05 |

| wordpress | wp_comments | 2.73 |

| wordpress | wp_commentmeta | 2.47 |

| wordpress | wp_simple_login_log | 2.03 |

...

From MariaDB 11.2.0

CREATE TEMPORARY TABLE foo.t1 (a int);

SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='foo' AND TEMPORARY='y'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: foo

 TABLE_NAME: t1

 TABLE_TYPE: TEMPORARY

...

 TEMPORARY: Y

1.1.1.2.9.1.1.53 Information Schema
TABLESPACES Table
The Information Schema TABLESPACES table contains information about active tablespaces..

The table is a MariaDB and MySQL extension, and does not include information about InnoDB tablespaces.

Column Description

374/4161

TABLESPACE_NAME

ENGINE

TABLESPACE_TYPE

LOGFILE_GROUP_NAME

EXTENT_SIZE

AUTOEXTEND_SIZE

MAXIMUM_SIZE

NODEGROUP_ID

TABLESPACE_COMMENT

1.1.1.2.9.1.1.54 Information Schema
THREAD_POOL_GROUPS Table

The Information Schema THREAD_POOL_GROUPS table was introduced in MariaDB 10.5.0.

The table provides information about thread pool groups, and contains the following columns:

Column Description

GROUP_ID the thread group this row is showing data for

CONNECTIONS the number of clients currently connected to this thread group

THREADS total number of threads in this group (ACTIVE+STANDBY+LISTENER)

ACTIVE_THREADS number of threads currently executing a query

STANDBY_THREADS number of threads in reserve that do not currently execute anything

QUEUE_LENGTH number of client requests waiting for execution

HAS_LISTENER
whether there is an active listener thread right now, always 1 if thread_pool_dedicated_listener is

ON

IS_STALLED
whether there's currently an active worker thread in this group that has exceeded

thread_pool_stall_limit time

Setting thread_pool_dedicated_listener will give each group its own dedicated listener, and the listener thread will not pick

up work items. As a result, the actual queue size in the table will be more exact, since IO requests are immediately

dequeued from poll, without delay.

MariaDB starting with 10.5

1.1.1.2.9.1.1.55 Information Schema
THREAD_POOL_QUEUES Table

The Information Schema THREAD_POOL_QUEUES table was introduced in MariaDB 10.5.0.

The table provides information about thread pool queues, and contains the following columns:

Column Description

GROUP_ID the thread group this row is showing data for

POSITION position in the groups queue

PRIORITY request priority, see priority scheduling

CONNECTION_ID ID of the client connection that submitted the queued request

MariaDB starting with 10.5

375/4161

QUEUEING_TIME_MICROSECONDS how long the request has already been waiting in the queue in microseconds

Setting thread_poll_exact_stats will provides better queueing time statistics by using a high precision timestamp, at a small

performance cost, for the time when the connection was added to the queue. This timestamp helps calculate the queuing

time shown in the table.

Setting thread_pool_dedicated_listener will give each group its own dedicated listener, and the listener thread will not pick

up work items. As a result, the queueing time in the table will be more exact, since IO requests are immediately dequeued

from poll, without delay.

1.1.1.2.9.1.1.56 Information Schema
THREAD_POOL_STATS Table

The Information Schema THREAD_POOL_STATS table was introduced in MariaDB 10.5.0.

The table provides performance counter information for the thread pool, and contains the following columns:

Column Description

GROUP_ID the thread group this row is showing data for

THREAD_CREATIONS number of threads created for this group so far

THREAD_CREATIONS_DUE_TO_STALL number of threads created due to detected stalls

WAKES

WAKES_DUE_TO_STALL

THROTTLES how often thread creation was throttled, see also: thread-creation-throttling

STALLS number of detected stalls

POLLS_BY_LISTENER

POLLS_BY_WORKER

DEQUEUES_BY_LISTENER

DEQUEUES_BY_WORKER

MariaDB starting with 10.5

1.1.1.2.9.1.1.57 Information Schema
THREAD_POOL_WAITS Table

The Information Schema THREAD_POOL_WAITS table was introduced in MariaDB 10.5.0.

The table provides wait counters for the thread pool, and contains the following columns:

Column Description

REASON name of the reason for waiting, e.g. ROW_LOCK, DISKIO, NET ...

COUNT how often a wait for this specific reason has happened so far

MariaDB starting with 10.5

1.1.1.2.9.1.1.58 Information Schema
TRIGGERS Table

Contents

The Information Schema TRIGGERS table contains information about triggers.

It has the following columns:

376/4161

Column Description

TRIGGER_CATALOG Always def .

TRIGGER_SCHEMA Database name in which the trigger occurs.

TRIGGER_NAME Name of the trigger.

EVENT_MANIPULATION The event that activates the trigger. One of INSERT , UPDATE or 'DELETE .

EVENT_OBJECT_CATALOG Always def .

EVENT_OBJECT_SCHEMA Database name on which the trigger acts.

EVENT_OBJECT_TABLE Table name on which the trigger acts.

ACTION_ORDER

Indicates the order that the action will be performed in (of the list of a table's triggers

with identical EVENT_MANIPULATION and ACTION_TIMING values). Before MariaDB

10.2.3 introduced the FOLLOWS and PRECEDES clauses, always 0

ACTION_CONDITION NULL

ACTION_STATEMENT Trigger body, UTF-8 encoded.

ACTION_ORIENTATION Always ROW .

ACTION_TIMING Whether the trigger acts BEFORE or AFTER the event that triggers it.

ACTION_REFERENCE_OLD_TABLE Always NULL .

ACTION_REFERENCE_NEW_TABLE Always NULL .

ACTION_REFERENCE_OLD_ROW Always OLD .

ACTION_REFERENCE_NEW_ROW Always NEW .

CREATED Always NULL .

SQL_MODE The SQL_MODE when the trigger was created, and which it uses for execution.

DEFINER The account that created the trigger, in the form user_name@host_name

CHARACTER_SET_CLIENT
The client character set when the trigger was created, from the session value of the

character_set_client system variable.

COLLATION_CONNECTION
The client collation when the trigger was created, from the session value of the

collation_connection system variable.

DATABASE_COLLATION Collation of the associated database.

Queries to the TRIGGERS table will return information only for databases and tables for which you have the TRIGGER

privilege. Similar information is returned by the SHOW TRIGGERS statement.

1.1.1.2.9.1.1.59 Information Schema
USER_PRIVILEGES Table
The Information Schema USER_PRIVILEGES table contains global user privilege information derived from the

mysql.global_priv grant table.

It contains the following columns:

Column Description

GRANTEE In the format user_name@host_name .

TABLE_CATALOG Always def .

PRIVILEGE_TYPE
The specific privilege, for example CREATE USER , RELOAD , SHUTDOWN , SELECT , INSERT ,

UPDATE or REFERENCES .

IS_GRANTABLE Whether the user has the GRANT OPTION for this privilege.

The database, table and column privileges returned here are the ones granted on all databases and tables, and by

implication all columns.

Similar information can be accessed with the SHOW GRANTS statement. See the GRANT article for more about privileges.
377/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

This information is also stored in the mysql.global_priv table, in the mysql system database.

1.1.1.2.9.1.1.60 Information Schema
USER_STATISTICS Table
The Information Schema USER_STATISTICS table holds statistics about user activity. This is part of the User Statistics

feature, which is not enabled by default.

You can use this table to find out such things as which user is causing the most load and which users are being abusive.

You can also use this table to measure how close to capacity the server may be.

It contains the following columns:

Field Type Notes

USER varchar(48)
The username. The value '#mysql_system_user#' appears

when there is no username (such as for the slave SQL thread).

TOTAL_CONNECTIONS int(21) The number of connections created for this user.

CONCURRENT_CONNECTIONS int(21) The number of concurrent connections for this user.

CONNECTED_TIME int(21)
The cumulative number of seconds elapsed while there were

connections from this user.

BUSY_TIME double
The cumulative number of seconds there was activity on

connections from this user.

CPU_TIME double
The cumulative CPU time elapsed while servicing this user's

connections.

BYTES_RECEIVED int(21) The number of bytes received from this user's connections.

BYTES_SENT int(21) The number of bytes sent to this user's connections.

BINLOG_BYTES_WRITTEN int(21)
The number of bytes written to the binary log from this user's

connections.

ROWS_READ int(21) The number of rows read by this user's connections.

ROWS_SENT int(21) The number of rows sent by this user's connections.

ROWS_DELETED int(21) The number of rows deleted by this user's connections.

ROWS_INSERTED int(21) The number of rows inserted by this user's connections.

ROWS_UPDATED int(21) The number of rows updated by this user's connections.

SELECT_COMMANDS int(21)
The number of SELECT commands executed from this user's

connections.

UPDATE_COMMANDS int(21)
The number of UPDATE commands executed from this user's

connections.

OTHER_COMMANDS int(21)
The number of other commands executed from this user's

connections.

COMMIT_TRANSACTIONS int(21)
The number of COMMIT commands issued by this user's

connections.

ROLLBACK_TRANSACTIONS int(21)
The number of ROLLBACK commands issued by this user's

connections.

DENIED_CONNECTIONS int(21) The number of connections denied to this user.

LOST_CONNECTIONS int(21)
The number of this user's connections that were terminated

uncleanly.

ACCESS_DENIED int(21)
The number of times this user's connections issued commands that

were denied.

EMPTY_QUERIES int(21)

The number of times this user's connections sent queries to the

server that did not return data to the client (a per-user aggregate of

the empty_queries status variable).

378/4161

TOTAL_SSL_CONNECTIONS int(21) The number of TLS connections created for this user.

MAX_STATEMENT_TIME_EXCEEDED int(21)
The number of times a statement was aborted, because it was

executed longer than its MAX_STATEMENT_TIME threshold.

Example

SELECT * FROM information_schema.USER_STATISTICS\G

*************************** 1. row ***************************

 USER: root

 TOTAL_CONNECTIONS: 1

CONCURRENT_CONNECTIONS: 0

 CONNECTED_TIME: 297

 BUSY_TIME: 0.001725

 CPU_TIME: 0.001982

 BYTES_RECEIVED: 388

 BYTES_SENT: 2327

 BINLOG_BYTES_WRITTEN: 0

 ROWS_READ: 0

 ROWS_SENT: 12

 ROWS_DELETED: 0

 ROWS_INSERTED: 13

 ROWS_UPDATED: 0

 SELECT_COMMANDS: 4

 UPDATE_COMMANDS: 0

 OTHER_COMMANDS: 3

 COMMIT_TRANSACTIONS: 0

 ROLLBACK_TRANSACTIONS: 0

 DENIED_CONNECTIONS: 0

 LOST_CONNECTIONS: 0

 ACCESS_DENIED: 0

 EMPTY_QUERIES: 1

1.1.1.2.9.1.1.61 Information Schema
USER_VARIABLES Table

Contents
1. Description

2. Example

Description
The USER_VARIABLES table is created when the user_variables plugin is enabled, and contains information about user-

defined variables.

The table contains the following columns:

Column Description

VARIABLE_NAME Variable name.

VARIABLE_VALUE Variable value.

VARIABLE_TYPE Variable type.

CHARACTER_SET_NAME Character set.

User variables are reset and the table emptied with the FLUSH USER_VARIABLES statement.

Example

379/4161

https://mariadb.com/kb/en/secure-connections/

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

+---------------+----------------+---------------+--------------------+

| VARIABLE_NAME | VARIABLE_VALUE | VARIABLE_TYPE | CHARACTER_SET_NAME |

+---------------+----------------+---------------+--------------------+

| var | 0 | INT | utf8 |

| var2 | abc | VARCHAR | utf8 |

+---------------+----------------+---------------+--------------------+

1.1.1.2.9.1.1.62 Information Schema VIEWS
Table
The Information Schema VIEWS table contains information about views. The SHOW VIEW privilege is required to view the

table.

It has the following columns:

Column Description

TABLE_CATALOG Aways def .

TABLE_SCHEMA Database name containing the view.

TABLE_NAME View table name.

VIEW_DEFINITION Definition of the view.

CHECK_OPTION YES if the WITH CHECK_OPTION clause has been specified, NO otherwise.

IS_UPDATABLE Whether the view is updatable or not.

DEFINER Account specified in the DEFINER clause (or the default when created).

SECURITY_TYPE SQL SECURITY characteristic, either DEFINER or INVOKER .

CHARACTER_SET_CLIENT
The client character set when the view was created, from the session value of the

character_set_client system variable.

COLLATION_CONNECTION
The client collation when the view was created, from the session value of the

collation_connection system variable.

ALGORITHM The algorithm used in the view. See View Algorithms.

Example

SELECT * FROM information_schema.VIEWS\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: v

 VIEW_DEFINITION: select `test`.`t`.`qty` AS `qty`,`test`.`t`.`price` AS `price`,

(`test`.`t`.`qty` * `test`.`t`.`price`) AS `value` from `test`.`t`

 CHECK_OPTION: NONE

 IS_UPDATABLE: YES

 DEFINER: root@localhost

 SECURITY_TYPE: DEFINER

CHARACTER_SET_CLIENT: utf8

COLLATION_CONNECTION: utf8_general_ci

 ALGORITHM: UNDEFINED

1.1.1.2.9.1.1.63 Information Schema
WSREP_MEMBERSHIP Table
The WSREP_STATUS table makes Galera node cluster membership information available through the Information Schema.

The same information can be returned using the SHOW WSREP_MEMBERSHIP statement. Only users with the SUPER

can access information from this table.

The WSREP_MEMBERSHIP table is part of the WSREP_INFO plugin.

380/4161

Example

SELECT * FROM information_schema.WSREP_MEMBERSHIP;

+-------+--------------------------------------+-------+-----------------+

| INDEX | UUID | NAME | ADDRESS |

+-------+--------------------------------------+-------+-----------------+

| 0 | 46da96e3-6e9e-11e4-95a2-f609aa5444b3 | node1 | 10.0.2.15:16000 |

| 1 | 5f6bc72a-6e9e-11e4-84ed-57ec6780a3d3 | node2 | 10.0.2.15:16001 |

| 2 | 7473fd75-6e9e-11e4-91de-0b541ad91bd0 | node3 | 10.0.2.15:16002 |

+-------+--------------------------------------+-------+-----------------+

1.1.1.2.9.1.1.64 Information Schema
WSREP_STATUS Table
The WSREP_STATUS table makes Galera node cluster status information available through the Information Schema. The

same information can be returned using the SHOW WSREP_STATUS statement. Only users with the SUPER privilege can

access information from this table.

The WSREP_STATUS table is part of the WSREP_INFO plugin.

Example

SELECT * FROM information_schema.WSREP_STATUS\G

*************************** 1. row ***************************

 NODE_INDEX: 0

 NODE_STATUS: Synced

 CLUSTER_STATUS: Primary

 CLUSTER_SIZE: 3

 CLUSTER_STATE_UUID: 00b0fbad-6e84-11e4-8a8b-376f19ce8ee7

CLUSTER_STATE_SEQNO: 2

 CLUSTER_CONF_ID: 3

 GAP: NO

 PROTOCOL_VERSION: 3

1.1.1.2.8.2 Extended SHOW

1.1.1.2.9.1.3 TIME_MS column in
INFORMATION_SCHEMA.PROCESSLIST
In MariaDB, an extra column TIME_MS has been added to the INFORMATION_SCHEMA.PROCESSLIST table. This

column shows the same information as the column ' TIME ', but in units of milliseconds with microsecond precision (the unit

and precision of the TIME column is one second).

For details about microseconds support in MariaDB, see microseconds in MariaDB.

The value displayed in the TIME and TIME_MS columns is the period of time that the given thread has been in its current

state. Thus it can be used to check for example how long a thread has been executing the current query, or for how long it

has been idle.

select id, time, time_ms, command, state from

 information_schema.processlist, (select sleep(2)) t;

+----+------+----------+---------+-----------+

| id | time | time_ms | command | state |

+----+------+----------+---------+-----------+

| 37 | 2 | 2000.493 | Query | executing |

+----+------+----------+---------+-----------+

Note that as a difference to MySQL, in MariaDB the TIME column (and also the TIME_MS column) are not affected by any

setting of @TIMESTAMP. This means that it can be reliably used also for threads that change @TIMESTAMP (such as the

replication SQL thread). See also MySQL Bug #22047 .

381/4161

http://bugs.mysql.com/bug.php?id=22047

As a consequence of this, the TIME column of SHOW FULL PROCESSLIST and INFORMATION_SCHEMA.PROCESSLIST can

not be used to determine if a slave is lagging behind. For this, use instead the Seconds_Behind_Master column in the

output of SHOW SLAVE STATUS.

The addition of the TIME_MS column is based on the microsec_process patch, developed by Percona .

1.1.1.2.9.2 Performance Schema
The MariaDB Performance Schema is a feature for monitoring the performance of your MariaDB server. It is not enabled by

default - see the overview for details on activating.

Performance Schema Tables

Tables making up the MariaDB Performance Schema.

Performance Schema Overview

Quick overview of the Performance Schema.

Performance Schema Status Variables

Performance Schema status variables.

Performance Schema System Variables

Performance Schema system variables.

Performance Schema Digests

Normalized statements with data values removed

PERFORMANCE_SCHEMA Storage Engine

PERFORMANCE_SCHEMA storage engine, a mechanism for implementing the feature.

There are 4 related questions .

2

1.1.1.2.9.2.1 Performance Schema Tables
Tables that are part of the MariaDB Performance Schema, a feature for monitoring the performance of MariaDB server.

List of Performance Schema Tables

List and short description of all performance_schema tables.

Performance Schema accounts Table

Account connection information.

Performance Schema cond_instances Table

List of instrumented condition objects.

Performance Schema events_stages_current Table

Current stage events.

Performance Schema events_stages_history Table

Most recent stage events per thread.

Performance Schema events_stages_history_long Table

Most recent completed stage events.

Performance Schema events_stages_summary_by_account_by_event_name Table

Stage events, summarized by account and event name.

Performance Schema events_stages_summary_by_host_by_event_name Table

Stage events summarized by host and event name.

Performance Schema events_stages_summary_by_thread_by_event_name Table

Stage events summarized by thread and event name.

382/4161

http://www.percona.com/
https://mariadb.com/kb/en/performance-schema/+questions/

Performance Schema events_stages_summary_by_user_by_event_name Table

Stage events summarized by user and event name.

Performance Schema events_stages_summary_global_by_event_name Table

Event summaries.

Performance Schema events_statements_current Table

Current statement events.

Performance Schema events_statements_history Table

Most recent statement events per thread

Performance Schema events_statements_history_long Table

Most recent statement events.

Performance Schema events_statements_summary_by_account_by_event_name
Table

Statement events summarized by account and event name.

Performance Schema events_statements_summary_by_digest Table

Statement events summarized by schema and digest.

Performance Schema events_statements_summary_by_host_by_event_name
Table

Statement events summarized by host and event name.

Performance Schema events_statements_summary_by_program Table

Summarizes events for a particular stored program.

Performance Schema events_statements_summary_by_thread_by_event_name
Table

Statement events summarized by thread and event name.

Performance Schema events_statements_summary_by_user_by_event_name
Table

Statement events summarized by user and event name.

Performance Schema events_statements_summary_global_by_event_name Table

Statement events summarized by event name.

Performance Schema events_transactions_current Table

Current transaction events for each thread.

Performance Schema events_transactions_history Table

Most recent completed transaction events for each thread.

Performance Schema events_transactions_history_long Table

Most recent completed transaction events that have ended globally.

Performance Schema events_transactions_summary_by_account_by_event_name
Table

Transaction events aggregated by account and event name.

Performance Schema events_transactions_summary_by_host_by_event_name
Table

Transaction events aggregated by host and event name.

Performance Schema events_transactions_summary_by_thread_by_event_name
Table

Transaction events aggregated by thread and event name.

Performance Schema events_transactions_summary_by_user_by_event_name
Table

Transaction events aggregated by user and event name.

383/4161

Performance Schema events_transactions_summary_global_by_event_name Table

Transaction events aggregated by event name.

Performance Schema events_waits_current Table

Current wait events

Performance Schema events_waits_history Table

Most recent wait events per thread

Performance Schema events_waits_history_long Table

Most recent completed wait events

Performance Schema events_waits_summary_by_account_by_event_name Table

Wait events summarized by account and event name.

Performance Schema events_waits_summary_by_host_by_event_name Table

Wait events summarized by host and event name.

Performance Schema events_waits_summary_by_instance Table

Wait events summarized by instance

Performance Schema events_waits_summary_by_thread_by_event_name Table

Wait events summarized by thread and event name.

Performance Schema events_waits_summary_by_user_by_event_name Table

Wait events summarized by user and event name.

Performance Schema events_waits_summary_global_by_event_name Table

Wait events summarized by event name.

Performance Schema file_instances Table

List of file instruments.

Performance Schema file_summary_by_event_name Table

File events summarized by event name.

Performance Schema file_summary_by_instance Table

File events summarized by instance.

Performance Schema global_status Table

Status variables and their global values.

Performance Schema hosts Table

Hosts used to connect to the server.

Performance Schema host_cache Table

Host_cache information.

Performance Schema memory_summary_by_account_by_event_name Table

Memory usage statistics aggregated by account and event.

Performance Schema memory_summary_by_host_by_event_name Table

Memory usage statistics aggregated by host and event.

Performance Schema memory_summary_by_thread_by_event_name Table

Memory usage statistics aggregated by thread and event.

Performance Schema memory_summary_by_user_by_event_name Table

Memory usage statistics aggregated by user and event.

Performance Schema memory_summary_global_by_event_name Table

Memory usage statistics aggregated by event and event.

384/4161

Performance Schema metadata_locks Table

Metadata lock information.

Performance Schema mutex_instances Table

Seen mutexes

Performance Schema objects_summary_global_by_type Table

Aggregates object wait events.

Performance Schema performance_timers Table

Available event timers

Performance Schema prepared_statements_instances Table

Aggregated statistics of prepared statements.

Performance Schema replication_applier_configuration Table

Configuration settings affecting replica transactions.

Performance Schema replication_applier_status Table

Information about the general transaction execution status on the slave.

Performance Schema replication_applier_status_by_coordinator Table

Coordinator thread status used in multi-threaded replicas to manage multiple workers.

Performance Schema replication_applier_status_by_worker Table

Slave worker thread specific information.

Performance Schema replication_connection_configuration Table

Replica configuration settings used for connecting to the primary.

Performance Schema rwlock_instances Table

Seen read-write locks

Performance Schema session_account_connect_attrs Table

Connection attributes for the current session.

Performance Schema session_connect_attrs Table

Connection attributes for all sessions.

Performance Schema session_status Table

Status variables and their session values.

Performance Schema setup_actors Table

Determines whether monitoring is enabled for host/user combinations.

Performance Schema setup_consumers Table

Lists the types of consumers for which event information is available.

Performance Schema setup_instruments Table

List of instrumented object classes

Performance Schema setup_objects Table

Which objects are monitored.

Performance Schema setup_timers Table

Currently selected event timers

Performance Schema socket_instances Table

Active server connections.

Performance Schema socket_summary_by_event_name Table

Aggregates timer and byte count statistics for all socket I/O operations by socket instrument.

385/4161

Performance Schema socket_summary_by_instance Table

Aggregates timer and byte count statistics for all socket I/O operations by socket instance.

Performance Schema status_by_account Table

Status variable information by user/host account.

Performance Schema status_by_host Table

Status variable information by host.

Performance Schema status_by_thread Table

Status variable information about active foreground threads.

Performance Schema status_by_user Table

Status variable information by user.

Performance Schema table_handles Table

Table lock information.

Performance Schema table_io_waits_summary_by_index_usage Table

Table I/O waits by index.

Performance Schema table_io_waits_summary_by_table Table

Table I/O waits by table.

Performance Schema table_lock_waits_summary_by_table Table

Table lock waits by table.

Performance Schema threads Table

Each server thread is represented as a row in the threads table.

Performance Schema users Table

User connection information.

Performance Schema user_variables_by_thread Table

User-defined variables and the threads that defined them.

1.1.1.2.9.2.1.1 List of Performance Schema
Tables
Below is a list of all Performance Schema tables as well as a brief description of each of them.

Table Description

accounts Client account connection statistics.

cond_instances Synchronization object instances.

events_stages_current Current stage events.

events_stages_history Ten most recent stage events per thread.

events_stages_history_long Ten thousand most recent stage events.

events_stages_summary_by_account_by_event_name
Summarized stage events per account and event

name.

events_stages_summary_by_host_by_event_name Summarized stage events per host and event name.

events_stages_summary_by_thread_by_event_name
Summarized stage events per thread and event

name.

events_stages_summary_by_user_by_event_name
Summarized stage events per user name and event

name.

events_stages_summary_global_by_event_name Summarized stage events per event name.

events_statements_current Current statement events.

386/4161

events_statements_history Ten most recent events per thread.

events_statements_history_long Ten thousand most recent stage events.

events_statements_summary_by_account_by_event_name
Summarized statement events per account and event

name.

events_statements_summary_by_digest
Summarized statement events by scheme and

digest.

events_statements_summary_by_host_by_event_name
Summarized statement events by host and event

name.

events_statements_summary_by_program Events for a particular stored program.

events_statements_summary_by_thread_by_event_name
Summarized statement events by thread and event

name.

events_statements_summary_by_user_by_event_name
Summarized statement events by user and event

name.

events_statements_summary_global_by_event_name Summarized statement events by event name.

events_transactions_current Current transaction events for each thread.

events_transactions_history
Most recent completed transaction events for each

thread.

events_transactions_history_long
Most recent completed transaction events that have

ended globally.

events_transactions_summary_by_account_by_event_name
Transaction events aggregated by account and

event.

events_transactions_summary_by_host_by_event_name Transaction events aggregated by host and event..

events_transactions_summary_by_thread_by_event_name Transaction events aggregated by thread and event..

events_transactions_summary_by_user_by_event_name Transaction events aggregated by user and event..

events_transactions_summary_global_by_event_name Transaction events aggregated by event name.

events_waits_current Current wait events.

events_waits_history Ten most recent wait events per thread.

events_waits_history_long Ten thousand most recent wait events per thread.

events_waits_summary_by_account_by_event_name
Summarized wait events by account and event

name.

events_waits_summary_by_host_by_event_name Summarized wait events by host and event name.

events_waits_summary_by_instance Summarized wait events by instance.

events_waits_summary_by_thread_by_event_name Summarized wait events by thread and event name.

events_waits_summary_by_user_by_event_name Summarized wait events by user and event name.

events_waits_summary_global_by_event_name Summarized wait events by event name.

file_instances Seen files.

file_summary_by_event_name File events summarized by event name.

file_summary_by_instance File events summarized by instance.

global_status Global status variables and values.

host_cache Host and IP information.

hosts Connections by host.

memory_summary_by_account_by_event_name
Memory usage statistics aggregated by account and

event.

memory_summary_by_host_by_event_name
Memory usage statistics aggregated by host. and

event.

387/4161

memory_summary_by_thread_by_event_name
Memory usage statistics aggregated by thread and

event..

memory_summary_by_user_by_event_name
Memory usage statistics aggregated by user and

event..

memory_summary_global_by_event_name Memory usage statistics aggregated by event.

metadata_locks Metadata locks.

mutex_instances Seen mutexes.

objects_summary_global_by_type Object wait events.

performance_timers Available event timers.

prepared_statements_instances Aggregate statistics of prepared statements.

replication_applier_configuration Configuration settings affecting replica transactions.

replication_applier_status General transaction execution status on the replica.

replication_applier_status_by_coordinator Coordinator thread specific information.

replication_applier_status_by_worker Replica worker thread specific information.

replication_connection_configuration
Rreplica's configuration settings used for connecting

to the primary.

rwlock_instances Seen read-write locks.

session_account_connect_attrs Current session connection attributes.

session_connect_attrs All session connection attributes.

session_status Session status variables and values.

setup_actors Details on foreground thread monitoring.

setup_consumers Consumers for which event information is stored.

setup_instruments Instrumented objects for which events are collected.

setup_objects Objects to be monitored.

setup_timers Currently selected event timers.

socket_instances Active connections.

socket_summary_by_event_name Timer and byte count statistics by socket instrument.

socket_summary_by_instance Timer and byte count statistics by socket instance.

status_by_account Status variable info by host/user account.

status_by_host Status variable info by host.

status_by_thread Status variable info about active foreground threads.

status_by_user Status variable info by user.

table_handles Table lock information.

table_io_waits_summary_by_index_usage Aggregate table I/O wait events by index.

table_io_waits_summary_by_table Aggregate table I/O wait events by table.

table_lock_waits_summary_by_table Aggregate table lock wait events by table.

threads Server thread information.

user_variables_by_thread User-defined variables by thread.

users Connection statistics by user.

1.1.1.2.9.2.1.2 Performance Schema accounts
Table

388/4161

Description
Each account that connects to the server is stored as a row in the accounts table, along with current and total connections.

The table size is determined at startup by the value of the performance_schema_accounts_size system variable. If this is

set to 0, account statistics will be disabled.

Column Description

USER The connection's client user name for the connection, or NULL if an internal thread.

HOST The connection client's host name, or NULL if an internal thread.

CURRENT_CONNECTIONS Current connections for the account.

TOTAL_CONNECTIONS Total connections for the account.

The USER and HOST values shown here are the username and host used for user connections, not the patterns used to

check permissions.

Example

SELECT * FROM performance_schema.accounts;

+------------------+-----------+---------------------+-------------------+

| USER | HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |

+------------------+-----------+---------------------+-------------------+

| root | localhost | 1 | 2 |

| NULL | NULL | 20 | 23 |

| debian-sys-maint | localhost | 0 | 35 |

+------------------+-----------+---------------------+-------------------+

1.1.1.2.9.2.1.3 Performance Schema
cond_instances Table

Description
The cond_instances table lists all conditions while the server is executing. A condition, or instrumented condition object,

is an internal code mechanism used for signalling that a specific event has occurred so that any threads waiting for this

condition can continue.

The maximum number of conditions stored in the performance schema is determined by the

performance_schema_max_cond_instances system variable.

Column Description

NAME Client user name for the connection, or NULL if an internal thread.

OBJECT_INSTANCE_BEGIN Address in memory of the instrumented condition.

1.1.1.2.9.2.1.4 Performance Schema
events_stages_current Table
The events_stages_current table contains current stage events, with each row being a record of a thread and its most

recent stage event.

The table contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

389/4161

END_EVENT_ID NULL when the event starts, set to the thread's current event number at the end of the event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END
Value in picoseconds when the event timing ended, or NULL if the event has not ended or

timing is not collected.

TIMER_WAIT
Value in picoseconds of the event's duration or NULL if the event has not ended or timing is not

collected.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. One of transaction , statement , stage or wait .

It is possible to empty this table with a TRUNCATE TABLE statement.

The related tables, events_stages_history and events_stages_history_long derive their values from the current events.

1.1.1.2.9.2.1.5 Performance Schema
events_stages_history Table
The events_stages_history table by default contains the ten most recent completed stage events per thread. This

number can be adjusted by setting the performance_schema_events_stages_history_size system variable when the server

starts up.

The table structure is identical to the events_stage_current table structure, and contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

END_EVENT_ID NULL when the event starts, set to the thread's current event number at the end of the event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END
Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. One of transaction , statement , stage or wait .

It is possible to empty this table with a TRUNCATE TABLE statement.

events_stages_current and events_stages_history_long are related tables.

1.1.1.2.9.2.1.6 Performance Schema
events_stages_history_long Table
The events_stages_history_long table by default contains the ten thousand most recent completed stage events. This

number can be adjusted by setting the performance_schema_events_stages_history_long_size system variable when the

server starts up.

The table structure is identical to the events_stage_current table structure, and contains the following columns:

Column Description

390/4161

THREAD_ID
Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

END_EVENT_ID NULL when the event starts, set to the thread's current event number at the end of the event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. One of transaction , statement , stage or wait .

It is possible to empty this table with a TRUNCATE TABLE statement.

events_stages_current and events_stages_history are related tables.

1.1.1.2.9.2.1.7 Performance Schema
events_stages_summary_by_account_by_event_name
Table
The table lists stage events, summarized by account and event name.

It contains the following columns:

Column Description

USER User. Used together with HOST and EVENT_NAME for grouping events.

HOST Host. Used together with USER and EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER and HOST for grouping events.

COUNT_STAR Number of summarized events, which includes all timed and untimed events.

SUM_TIMER_WAIT Total wait time of the timed summarized events.

MIN_TIMER_WAIT Minimum wait time of the timed summarized events.

AVG_TIMER_WAIT Average wait time of the timed summarized events.

MAX_TIMER_WAIT Maximum wait time of the timed summarized events.

Example

391/4161

SELECT * FROM events_stages_summary_by_account_by_event_name\G

...

*************************** 325. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: stage/sql/Waiting for event metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 326. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: stage/sql/Waiting for commit lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 327. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: stage/aria/Waiting for a resource

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.8 Performance Schema
events_stages_summary_by_host_by_event_name
Table
The table lists stage events, summarized by host and event name.

It contains the following columns:

Column Description

HOST Host. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with HOST for grouping events.

COUNT_STAR Number of summarized events, which includes all timed and untimed events.

SUM_TIMER_WAIT Total wait time of the timed summarized events.

MIN_TIMER_WAIT Minimum wait time of the timed summarized events.

AVG_TIMER_WAIT Average wait time of the timed summarized events.

MAX_TIMER_WAIT Maximum wait time of the timed summarized events.

Example

392/4161

SELECT * FROM events_stages_summary_by_host_by_event_name\G

...

*************************** 216. row ***************************

 HOST: NULL

 EVENT_NAME: stage/sql/Waiting for event metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 217. row ***************************

 HOST: NULL

 EVENT_NAME: stage/sql/Waiting for commit lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 218. row ***************************

 HOST: NULL

 EVENT_NAME: stage/aria/Waiting for a resource

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.9 Performance Schema
events_stages_summary_by_thread_by_event_name
Table
The table lists stage events, summarized by thread and event name.

It contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_NAME uniquely identifies the row.

EVENT_NAME Event name. Used together with THREAD_ID for grouping events.

COUNT_STAR Number of summarized events, which includes all timed and untimed events.

SUM_TIMER_WAIT Total wait time of the timed summarized events.

MIN_TIMER_WAIT Minimum wait time of the timed summarized events.

AVG_TIMER_WAIT Average wait time of the timed summarized events.

MAX_TIMER_WAIT Maximum wait time of the timed summarized events.

Example

393/4161

SELECT * FROM events_stages_summary_by_thread_by_event_name\G

...

*************************** 2287. row ***************************

 THREAD_ID: 64

 EVENT_NAME: stage/sql/Waiting for event metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 2288. row ***************************

 THREAD_ID: 64

 EVENT_NAME: stage/sql/Waiting for commit lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 2289. row ***************************

 THREAD_ID: 64

 EVENT_NAME: stage/aria/Waiting for a resource

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.10 Performance Schema
events_stages_summary_by_user_by_event_name
Table
The table lists stage events, summarized by user and event name.

It contains the following columns:

Column Description

USER User. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER for grouping events.

COUNT_STAR Number of summarized events, which includes all timed and untimed events.

SUM_TIMER_WAIT Total wait time of the timed summarized events.

MIN_TIMER_WAIT Minimum wait time of the timed summarized events.

AVG_TIMER_WAIT Average wait time of the timed summarized events.

MAX_TIMER_WAIT Maximum wait time of the timed summarized events.

Example

394/4161

SELECT * FROM events_stages_summary_by_user_by_event_name\G

...

*************************** 325. row ***************************

 USER: NULL

 EVENT_NAME: stage/sql/Waiting for event metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 326. row ***************************

 USER: NULL

 EVENT_NAME: stage/sql/Waiting for commit lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 327. row ***************************

 USER: NULL

 EVENT_NAME: stage/aria/Waiting for a resource

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.11 Performance Schema
events_stages_summary_global_by_event_name
Table
The table lists stage events, summarized by thread and event name.

It contains the following columns:

Column Description

EVENT_NAME Event name.

COUNT_STAR Number of summarized events, which includes all timed and untimed events.

SUM_TIMER_WAIT Total wait time of the timed summarized events.

MIN_TIMER_WAIT Minimum wait time of the timed summarized events.

AVG_TIMER_WAIT Average wait time of the timed summarized events.

MAX_TIMER_WAIT Maximum wait time of the timed summarized events.

Example

395/4161

SELECT * FROM events_stages_summary_global_by_event_name\G

...

*************************** 106. row ***************************

 EVENT_NAME: stage/sql/Waiting for trigger metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 107. row ***************************

 EVENT_NAME: stage/sql/Waiting for event metadata lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 108. row ***************************

 EVENT_NAME: stage/sql/Waiting for commit lock

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 109. row ***************************

 EVENT_NAME: stage/aria/Waiting for a resource

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.12 Performance Schema
events_statements_current Table
The events_statements_current table contains current statement events, with each row being a record of a thread and

its most recent statement event.

The table contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID

uniquely identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced

the event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END
Value in picoseconds when the event timing ended, or NULL if the event has not ended or

timing is not collected.

TIMER_WAIT
Value in picoseconds of the event's duration or NULL if the event has not ended or timing

is not collected.

LOCK_TIME
Time in picoseconds spent waiting for locks. The time is calculated in microseconds but

stored in picoseconds for compatibility with other timings.

SQL_TEXT The SQL statement, or NULL if the command is not associated with an SQL statement.

DIGEST Statement digest.

DIGEST_TEXT Statement digest text.

CURRENT_SCHEMA Statement's default database for the statement, or NULL if there was none.

396/4161

OBJECT_SCHEMA Reserved, currently NULL

OBJECT_NAME Reserved, currently NULL

OBJECT_TYPE Reserved, currently NULL

OBJECT_INSTANCE_BEGIN Address in memory of the statement object.

MYSQL_ERRNO Error code. See MariaDB Error Codes for a full list.

RETURNED_SQLSTATE The SQLSTATE value.

MESSAGE_TEXT Statement error message. See MariaDB Error Codes .

ERRORS 0 if SQLSTATE signifies completion (starting with 00) or warning (01), otherwise 1 .

WARNINGS Number of warnings from the diagnostics area.

ROWS_AFFECTED Number of rows affected the statement affected.

ROWS_SENT Number of rows returned.

ROWS_EXAMINED Number of rows read during the statement's execution.

CREATED_TMP_DISK_TABLES Number of on-disk temp tables created by the statement.

CREATED_TMP_TABLES Number of temp tables created by the statement.

SELECT_FULL_JOIN Number of joins performed by the statement which did not use an index.

SELECT_FULL_RANGE_JOIN Number of joins performed by the statement which used a range search of the first table.

SELECT_RANGE Number of joins performed by the statement which used a range of the first table.

SELECT_RANGE_CHECK
Number of joins without keys performed by the statement that check for key usage after

each row.

SELECT_SCAN Number of joins performed by the statement which used a full scan of the first table.

SORT_MERGE_PASSES
Number of merge passes by the sort algorithm performed by the statement. If too high,

you may need to increase the sort_buffer_size.

SORT_RANGE Number of sorts performed by the statement which used a range.

SORT_ROWS Number of rows sorted by the statement.

SORT_SCAN Number of sorts performed by the statement which used a full table scan.

NO_INDEX_USED 0 if the statement performed a table scan with an index, 1 if without an index.

NO_GOOD_INDEX_USED
0 if a good index was found for the statement, 1 if no good index was found. See the

Range checked for each record description in the EXPLAIN article.

NESTING_EVENT_ID Reserved, currently NULL .

NESTING_EVENT_TYPE Reserved, currently NULL .

It is possible to empty this table with a TRUNCATE TABLE statement.

The related tables, events_statements_history and events_statements_history_long derive their values from the current

events table.

1.1.1.2.9.2.1.13 Performance Schema
events_statements_history Table
The events_statements_history table by default contains the ten most recent completed statement events per thread.

This number can be adjusted by setting the performance_schema_events_statements_history_size system variable when

the server starts up.

The table structure is identical to the events_statements_current table structure, and contains the following columns:

The table contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

397/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID

uniquely identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced

the event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

LOCK_TIME
Time in picoseconds spent waiting for locks. The time is calculated in microseconds but

stored in picoseconds for compatibility with other timings.

SQL_TEXT The SQL statement, or NULL if the command is not associated with an SQL statement.

DIGEST Statement digest.

DIGEST_TEXT Statement digest text.

CURRENT_SCHEMA Statement's default database for the statement, or NULL if there was none.

OBJECT_SCHEMA Reserved, currently NULL

OBJECT_NAME Reserved, currently NULL

OBJECT_TYPE Reserved, currently NULL

OBJECT_INSTANCE_BEGIN Address in memory of the statement object.

MYSQL_ERRNO Error code. See MariaDB Error Codes for a full list.

RETURNED_SQLSTATE The SQLSTATE value.

MESSAGE_TEXT Statement error message. See MariaDB Error Codes .

ERRORS 0 if SQLSTATE signifies completion (starting with 00) or warning (01), otherwise 1 .

WARNINGS Number of warnings from the diagnostics area.

ROWS_AFFECTED Number of rows affected the statement affected.

ROWS_SENT Number of rows returned.

ROWS_EXAMINED Number of rows read during the statement's execution.

CREATED_TMP_DISK_TABLES Number of on-disk temp tables created by the statement.

CREATED_TMP_TABLES Number of temp tables created by the statement.

SELECT_FULL_JOIN Number of joins performed by the statement which did not use an index.

SELECT_FULL_RANGE_JOIN Number of joins performed by the statement which used a range search of the first table.

SELECT_RANGE Number of joins performed by the statement which used a range of the first table.

SELECT_RANGE_CHECK
Number of joins without keys performed by the statement that check for key usage after

each row.

SELECT_SCAN Number of joins performed by the statement which used a full scan of the first table.

SORT_MERGE_PASSES
Number of merge passes by the sort algorithm performed by the statement. If too high,

you may need to increase the sort_buffer_size.

SORT_RANGE Number of sorts performed by the statement which used a range.

SORT_ROWS Number of rows sorted by the statement.

SORT_SCAN Number of sorts performed by the statement which used a full table scan.

NO_INDEX_USED 0 if the statement performed a table scan with an index, 1 if without an index.

NO_GOOD_INDEX_USED
0 if a good index was found for the statement, 1 if no good index was found. See the

Range checked for each record description in the EXPLAIN article.

398/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

NESTING_EVENT_ID Reserved, currently NULL .

NESTING_EVENT_TYPE Reserved, currently NULL .

It is possible to empty this table with a TRUNCATE TABLE statement.

events_statements_current and events_statements_history_long are related tables.

1.1.1.2.9.2.1.14 Performance Schema
events_statements_history_long Table
The events_statements_history_long table by default contains the ten thousand most recent completed statement

events. This number can be adjusted by setting the performance_schema_events_statements_history_long_size system

variable when the server starts up.

The table structure is identical to the events_statements_current table structure, and contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID

uniquely identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced

the event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

LOCK_TIME
Time in picoseconds spent waiting for locks. The time is calculated in microseconds but

stored in picoseconds for compatibility with other timings.

SQL_TEXT The SQL statement, or NULL if the command is not associated with an SQL statement.

DIGEST Statement digest.

DIGEST_TEXT Statement digest text.

CURRENT_SCHEMA Statement's default database for the statement, or NULL if there was none.

OBJECT_SCHEMA Reserved, currently NULL

OBJECT_NAME Reserved, currently NULL

OBJECT_TYPE Reserved, currently NULL

OBJECT_INSTANCE_BEGIN Address in memory of the statement object.

MYSQL_ERRNO Error code. See MariaDB Error Codes for a full list.

RETURNED_SQLSTATE The SQLSTATE value.

MESSAGE_TEXT Statement error message. See MariaDB Error Codes .

ERRORS 0 if SQLSTATE signifies completion (starting with 00) or warning (01), otherwise 1 .

WARNINGS Number of warnings from the diagnostics area.

ROWS_AFFECTED Number of rows affected the statement affected.

ROWS_SENT Number of rows returned.

ROWS_EXAMINED Number of rows read during the statement's execution.

CREATED_TMP_DISK_TABLES Number of on-disk temp tables created by the statement.

CREATED_TMP_TABLES Number of temp tables created by the statement.

399/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

SELECT_FULL_JOIN Number of joins performed by the statement which did not use an index.

SELECT_FULL_RANGE_JOIN Number of joins performed by the statement which used a range search of the first table.

SELECT_RANGE Number of joins performed by the statement which used a range of the first table.

SELECT_RANGE_CHECK
Number of joins without keys performed by the statement that check for key usage after

each row.

SELECT_SCAN Number of joins performed by the statement which used a full scan of the first table.

SORT_MERGE_PASSES
Number of merge passes by the sort algorithm performed by the statement. If too high,

you may need to increase the sort_buffer_size.

SORT_RANGE Number of sorts performed by the statement which used a range.

SORT_ROWS Number of rows sorted by the statement.

SORT_SCAN Number of sorts performed by the statement which used a full table scan.

NO_INDEX_USED 0 if the statement performed a table scan with an index, 1 if without an index.

NO_GOOD_INDEX_USED
0 if a good index was found for the statement, 1 if no good index was found. See the

Range checked for each record description in the EXPLAIN article.

NESTING_EVENT_ID Reserved, currently NULL .

NESTING_EVENT_TYPE Reserved, currently NULL .

It is possible to empty this table with a TRUNCATE TABLE statement.

events_statements_current and events_statements_history are related tables.

1.1.1.2.9.2.1.15 Performance Schema
events_statements_summary_by_account_by_event_name
Table
The Performance Schema events_statements_summary_by_account_by_event_name table contains statement events

summarized by account and event name. It contains the following columns:

Column Description

USER User. Used together with HOST and EVENT_NAME for grouping events.

HOST Host. Used together with USER and EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER and HOST for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_current table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

400/4161

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOIN column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

401/4161

SELECT * FROM events_statements_summary_by_account_by_event_name\G

...

*************************** 521. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: statement/com/Error

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

*************************** 522. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: statement/com/

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1.1.1.2.9.2.1.16 Performance Schema
events_statements_summary_by_digest Table
The Performance Schema digest is a hashed, normalized form of a statement with the specific data values removed. It

allows statistics to be gathered for similar kinds of statements.

The Performance Schema events_statements_summary_by_digest table records statement events summarized by

schema and digest. It contains the following columns:

Column Description

402/4161

SCHEMA NAME Database name. Records are summarised together with DIGEST .

DIGEST Performance Schema digest. Records are summarised together with SCHEMA NAME .

DIGEST TEXT The unhashed form of the digest.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_current table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOIN column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

FIRST_SEEN Time at which the digest was first seen.

LAST_SEEN Time at which the digest was most recently seen.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

The events_statements_summary_by_digest table is limited in size by the performance_schema_digests_size system

variable. Once the limit has been reached and the table is full, all entries are aggregated in a row with a NULL digest. The

COUNT_STAR value of this NULL row indicates how many digests are recorded in the row and therefore gives an indication

of whether performance_schema_digests_size should be increased to provide more accurate statistics.

1.1.1.2.9.2.1.17 Performance Schema
events_statements_summary_by_host_by_event_name

403/4161

Table
The Performance Schema events_statements_summary_by_host_by_event_name table contains statement events

summarized by host and event name. It contains the following columns:

Column Description

HOST Host. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with HOST for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_currentd table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOINW column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

404/4161

SELECT * FROM events_statements_summary_by_host_by_event_name\G

...

*************************** 347. row ***************************

 HOST: NULL

 EVENT_NAME: statement/com/Error

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

*************************** 348. row ***************************

 HOST: NULL

 EVENT_NAME: statement/com/

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1.1.1.2.9.2.1.18 Performance Schema
events_statements_summary_by_program
Table

The events_statements_summary_by_program table, along with many other new Performance Schema tables,

was added in MariaDB 10.5.2.

Each row in the the Performance Schema events_statements_summary_by_program table summarizes events for a

particular stored program (stored procedure, stored function, trigger or event).

MariaDB starting with 10.5.2

405/4161

It contains the following fields.

Column Type Null Description

OBJECT_TYPE

enum('EVENT',

'FUNCTION',

'PROCEDURE',

'TABLE',

'TRIGGER')

YES Object type for which the summary is generated.

OBJECT_SCHEMA varchar(64) NO
The schema of the object for which the summary is

generated.

OBJECT_NAME varchar(64) NO
The name of the object for which the summary is

generated.

COUNT_STAR
bigint(20)

unsigned
NO

The number of summarized events (from

events_statements_current). This value includes all

events, whether timed or nontimed.

SUM_TIMER_WAIT
bigint(20)

unsigned
NO

The number of summarized events (from

events_statements_current). This value includes all

events, whether timed or nontimed.

MIN_TIMER_WAIT
bigint(20)

unsigned
NO

The minimum wait time of the summarized timed

events.

AVG_TIMER_WAIT
bigint(20)

unsigned
NO The average wait time of the summarized timed events.

MAX_TIMER_WAIT
bigint(20)

unsigned
NO

The maximum wait time of the summarized timed

events.

COUNT_STATEMENTS
bigint(20)

unsigned
NO

Total number of nested statements invoked during

stored program execution.

SUM_STATEMENTS_WAIT
bigint(20)

unsigned
NO

The total wait time of the summarized timed

statements. This value is calculated only for timed

statements because nontimed statements have a wait

time of NULL. The same is true for the other

xxx_STATEMENT_WAIT values.

MIN_STATEMENTS_WAIT
bigint(20)

unsigned
NO

The minimum wait time of the summarized timed

statements.

AVG_STATEMENTS_WAIT
bigint(20)

unsigned
NO

The average wait time of the summarized timed

statements.

MAX_STATEMENTS_WAIT
bigint(20)

unsigned
NO

The maximum wait time of the summarized timed

statements.

SUM_LOCK_TIME
bigint(20)

unsigned
NO

The total time spent (in picoseconds) waiting for table

locks for the summarized statements.

SUM_ERRORS
bigint(20)

unsigned
NO

The total number of errors that occurend for the

summarized statements.

SUM_WARNINGS
bigint(20)

unsigned
NO

The total number of warnings that occurend for the

summarized statements.

SUM_ROWS_AFFECTED
bigint(20)

unsigned
NO

The total number of affected rows by the summarized

statements.

SUM_ROWS_SENT
bigint(20)

unsigned
NO

The total number of rows returned by the summarized

statements.

SUM_ROWS_EXAMINED
bigint(20)

unsigned
NO

The total number of rows examined by the summarized

statements.The total number of affected rows by the

summarized statements.

SUM_CREATED_TMP_DISK_TABLES
bigint(20)

unsigned
NO

The total number of on-disk temporary tables created

by the summarized statements.

SUM_CREATED_TMP_TABLES
bigint(20)

unsigned
NO

The total number of in-memory temporary tables

created by the summarized statements.

406/4161

SUM_SELECT_FULL_JOIN
bigint(20)

unsigned
NO

The total number of full joins executed by the

summarized statements.

SUM_SELECT_FULL_RANGE_JOIN
bigint(20)

unsigned
NO

The total number of range search joins executed by the

summarized statements.

SUM_SELECT_RANGE
bigint(20)

unsigned
NO

The total number of joins that used ranges on the first

table executed by the summarized statements.

SUM_SELECT_RANGE_CHECK
bigint(20)

unsigned
NO

The total number of joins that check for key usage after

each row executed by the summarized statements.

SUM_SELECT_SCAN
bigint(20)

unsigned
NO

The total number of joins that did a full scan of the first

table executed by the summarized statements.

SUM_SORT_MERGE_PASSES
bigint(20)

unsigned
NO

The total number of merge passes that the sort

algorithm has had to do for the summarized statements.

SUM_SORT_RANGE
bigint(20)

unsigned
NO

The total number of sorts that were done using ranges

for the summarized statements.

SUM_SORT_ROWS
bigint(20)

unsigned
NO

The total number of sorted rows that were sorted by the

summarized statements.

SUM_SORT_SCAN
bigint(20)

unsigned
NO

The total number of sorts that were done by scanning

the table by the summarized statements.

SUM_NO_INDEX_USED
bigint(20)

unsigned
NO

The total number of statements that performed a table

scan without using an index.

SUM_NO_GOOD_INDEX_USED
bigint(20)

unsigned
NO

The total number of statements where no good index

was found.

1.1.1.2.9.2.1.19 Performance Schema
events_statements_summary_by_thread_by_event_name
Table
The Performance Schema events_statements_summary_by_thread_by_event_name table contains statement events

summarized by thread and event name. It contains the following columns:

Column Description

THREAD_ID
Thread associated with the event. Together with EVENT_NAME uniquely identifies the

row.

EVENT_NAME Event name. Used together with THREAD_ID for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_current table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

407/4161

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOIN column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

408/4161

SELECT * FROM events_statements_summary_by_thread_by_event_name\G

...

*************************** 3653. row ***************************

 THREAD_ID: 64

 EVENT_NAME: statement/com/Error

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

*************************** 3654. row ***************************

 THREAD_ID: 64

 EVENT_NAME: statement/com/

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1.1.1.2.9.2.1.20 Performance Schema
events_statements_summary_by_user_by_event_name
Table
The Performance Schema events_statements_summary_by_user_by_event_name table contains statement events

summarized by user and event name. It contains the following columns:

Column Description

USER User. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER for grouping events.

409/4161

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_current table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOIN column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

410/4161

SELECT * FROM events_statements_summary_by_user_by_event_name\G

...

*************************** 521. row ***************************

 USER: NULL

 EVENT_NAME: statement/com/Error

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

*************************** 522. row ***************************

 USER: NULL

 EVENT_NAME: statement/com/

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1.1.1.2.9.2.1.21 Performance Schema
events_statements_summary_global_by_event_name
Table
The Performance Schema events_statements_summary_global_by_event_name table contains statement events

summarized by event name. It contains the following columns:

Column Description

EVENT_NAME Event name.

COUNT_STAR Number of summarized events

411/4161

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

SUM_LOCK_TIME Sum of the LOCK_TIME column in the events_statements_current table.

SUM_ERRORS Sum of the ERRORS column in the events_statements_current table.

SUM_WARNINGS Sum of the WARNINGS column in the events_statements_current table.

SUM_ROWS_AFFECTED Sum of the ROWS_AFFECTED column in the events_statements_current table.

SUM_ROWS_SENT Sum of the ROWS_SENT column in the events_statements_current table.

SUM_ROWS_EXAMINED Sum of the ROWS_EXAMINED column in the events_statements_current table.

SUM_CREATED_TMP_DISK_TABLES
Sum of the CREATED_TMP_DISK_TABLES column in the

events_statements_current table.

SUM_CREATED_TMP_TABLES
Sum of the CREATED_TMP_TABLES column in the events_statements_current

table.

SUM_SELECT_FULL_JOIN
Sum of the SELECT_FULL_JOIN column in the events_statements_current

table.

SUM_SELECT_FULL_RANGE_JOIN
Sum of the SELECT_FULL_RANGE_JOIN column in the

events_statements_current table.

SUM_SELECT_RANGE Sum of the SELECT_RANGE column in the events_statements_current table.

SUM_SELECT_RANGE_CHECK
Sum of the SELECT_RANGE_CHECK column in the events_statements_current

table.

SUM_SELECT_SCAN Sum of the SELECT_SCAN column in the events_statements_current table.

SUM_SORT_MERGE_PASSES
Sum of the SORT_MERGE_PASSES column in the events_statements_current

table.

SUM_SORT_RANGE Sum of the SORT_RANGE column in the events_statements_current table.

SUM_SORT_ROWS Sum of the SORT_ROWS column in the events_statements_current table.

SUM_SORT_SCAN Sum of the SORT_SCAN column in the events_statements_current table.

SUM_NO_INDEX_USED Sum of the NO_INDEX_USED column in the events_statements_current table.

SUM_NO_GOOD_INDEX_USED
Sum of the NO_GOOD_INDEX_USED column in the events_statements_current

table.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

412/4161

SELECT * FROM events_statements_summary_global_by_event_name\G

...

*************************** 173. row ***************************

 EVENT_NAME: statement/com/Error

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

*************************** 174. row ***************************

 EVENT_NAME: statement/com/

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 SUM_LOCK_TIME: 0

 SUM_ERRORS: 0

 SUM_WARNINGS: 0

 SUM_ROWS_AFFECTED: 0

 SUM_ROWS_SENT: 0

 SUM_ROWS_EXAMINED: 0

SUM_CREATED_TMP_DISK_TABLES: 0

 SUM_CREATED_TMP_TABLES: 0

 SUM_SELECT_FULL_JOIN: 0

 SUM_SELECT_FULL_RANGE_JOIN: 0

 SUM_SELECT_RANGE: 0

 SUM_SELECT_RANGE_CHECK: 0

 SUM_SELECT_SCAN: 0

 SUM_SORT_MERGE_PASSES: 0

 SUM_SORT_RANGE: 0

 SUM_SORT_ROWS: 0

 SUM_SORT_SCAN: 0

 SUM_NO_INDEX_USED: 0

 SUM_NO_GOOD_INDEX_USED: 0

1.1.1.2.9.2.1.22 Performance Schema
events_transactions_current Table

The events_transactions_current table was introduced in MariaDB 10.5.2.

The events_transactions_current table contains current transaction events for each thread.

The table size cannot be figured, and always stores one row for each thread, showing the current status of the thread's most

recent monitored transaction event.

The table contains the following columns:

Column Type Description

MariaDB starting with 10.5.2

413/4161

THREAD_ID bigint(20) unsigned The thread associated with the event.

EVENT_ID bigint(20) unsigned The event id associated with the event.

END_EVENT_ID bigint(20) unsigned

This column is set to NULL when the event

starts and updated to the thread current event

number when the event ends.

EVENT_NAME varchar(128)

The name of the instrument from which the

event was collected. This is a NAME value from

the setup_instruments table.

STATE

enum('ACTIVE',

'COMMITTED',

'ROLLED BACK')

The current transaction state. The value is

ACTIVE (after START TRANSACTION or

BEGIN), COMMITTED (after COMMIT), or

ROLLED BACK (after ROLLBACK).

TRX_ID bigint(20) unsigned Unused.

GTID varchar(64)
Transaction GTID, using the format DOMAIN-

SERVER_ID-SEQUENCE_NO.

XID_FORMAT_ID int(11)
XA transaction format ID for GTRID and BQUAL

values.

XID_GTRID varchar(130) XA global transaction ID.

XID_BQUAL varchar(130) XA transaction branch qualifier.

XA_STATE varchar(64)

The state of the XA transaction. The value is

ACTIVE (after XA START), IDLE (after XA

END), PREPARED (after XA PREPARE),

ROLLED BACK (after XA ROLLBACK), or

COMMITTED (after XA COMMIT).

SOURCE varchar(64)

The name of the source file containing the

instrumented code that produced the event and

the line number in the file at which the

instrumentation occurs.

TIMER_START bigint(20) unsigned
The unit is picoseconds. When event timing

started. NULL if event has no timing information.

TIMER_END bigint(20) unsigned
The unit is picoseconds. When event timing

ended. NULL if event has no timing information.

TIMER_WAIT bigint(20) unsigned
The unit is picoseconds. Event duration. NULL if

event has not timing information.

ACCESS_MODE
enum('READ ONLY',

'READ WRITE')
Transaction access mode.

ISOLATION_LEVEL varchar(64)

Transaction isolation level. One of:

REPEATABLE READ, READ COMMITTED,

READ UNCOMMITTED, or SERIALIZABLE.

AUTOCOMMIT enum('YES','NO')
Whether autcommit mode was enabled when

the transaction started.

NUMBER_OF_SAVEPOINTS bigint(20) unsigned
The number of SAVEPOINT statements issued

during the transaction.

NUMBER_OF_ROLLBACK_TO_SAVEPOINT bigint(20) unsigned
The number of ROLLBACK_TO_SAVEPOINT

statements issued during the transaction.

NUMBER_OF_RELEASE_SAVEPOINT bigint(20) unsigned
The number of RELEASE_SAVEPOINT

statements issued during the transaction.

OBJECT_INSTANCE_BEGIN bigint(20) unsigned Unused.

NESTING_EVENT_ID bigint(20) unsigned
The EVENT_ID value of the event within which

this event is nested.

NESTING_EVENT_TYPE

enum('TRANSACTION',

'STATEMENT',

'STAGE', 'WAIT')

The nesting event type.

414/4161

1.1.1.2.9.2.1.23 Performance Schema
events_transactions_history Table

The events_transactions_history table was introduced in MariaDB 10.5.2.

The events_transactions_history table contains the most recent completed transaction events for each thread.

The number of records stored per thread in the table is determined by the

performance_schema_events_transactions_history_size system variable, which is autosized on startup.

If adding a completed transaction event would cause the table to exceed this limit, the oldest thread row is discarded.

All of a thread's rows are discarded when the thread ends.

The table contains the following columns:

Column Type Description

THREAD_ID bigint(20) unsigned The thread associated with the event.

EVENT_ID bigint(20) unsigned The event id associated with the event.

END_EVENT_ID bigint(20) unsigned

This column is set to NULL when the event

starts and updated to the thread current event

number when the event ends.

EVENT_NAME varchar(128)

The name of the instrument from which the

event was collected. This is a NAME value from

the setup_instruments table.

STATE

enum('ACTIVE',

'COMMITTED','

ROLLED BACK')

The current transaction state. The value is

ACTIVE (after START TRANSACTION or

BEGIN), COMMITTED (after COMMIT), or

ROLLED BACK (after ROLLBACK).

TRX_ID bigint(20) unsigned Unused.

GTID varchar(64)
Transaction GTID, using the format DOMAIN-

SERVER_ID-SEQUENCE_NO.

XID_FORMAT_ID int(11)
XA transaction format ID for GTRID and

BQUAL values.

XID_GTRID varchar(130) XA global transaction ID.

XID_BQUAL varchar(130) XA transaction branch qualifier.

XA_STATE varchar(64)

The state of the XA transaction. The value is

ACTIVE (after XA START), IDLE (after XA

END), PREPARED (after XA PREPARE),

ROLLED BACK (after XA ROLLBACK), or

COMMITTED (after XA COMMIT).

SOURCE varchar(64)

The name of the source file containing the

instrumented code that produced the event and

the line number in the file at which the

instrumentation occurs.

TIMER_START bigint(20) unsigned

The unit is picoseconds. When event timing

started. NULL if event has no timing

information.

TIMER_END bigint(20) unsigned
The unit is picoseconds. When event timing

ended. NULL if event has no timing information.

TIMER_WAIT bigint(20) unsigned
The unit is picoseconds. Event duration. NULL

if event has not timing information.

ACCESS_MODE
enum('READ ONLY',

'READ WRITE')
Transaction access mode.

MariaDB starting with 10.5.2

415/4161

ISOLATION_LEVEL varchar(64)

Transaction isolation level. One of:

REPEATABLE READ, READ COMMITTED,

READ UNCOMMITTED, or SERIALIZABLE.

AUTOCOMMIT enum('YES', 'NO') NO

NUMBER_OF_SAVEPOINTS bigint(20) unsigned
The number of SAVEPOINT statements issued

during the transaction.

NUMBER_OF_ROLLBACK_TO_SAVEPOINT bigint(20) unsigned
The number of ROLLBACK_TO_SAVEPOINT

statements issued during the transaction.

NUMBER_OF_RELEASE_SAVEPOINT bigint(20) unsigned
The number of RELEASE_SAVEPOINT

statements issued during the transaction.

OBJECT_INSTANCE_BEGIN bigint(20) unsigned Unused.

NESTING_EVENT_ID bigint(20) unsigned
The EVENT_ID value of the event within which

this event is nested.

NESTING_EVENT_TYPE

enum('TRANSACTION','

STATEMENT', 'STAGE',

'WAIT')

The nesting event type.

1.1.1.2.9.2.1.24 Performance Schema
events_transactions_history_long Table

The events_transactions_history_long table was introduced in MariaDB 10.5.2.

The events_transactions_history_long table contains the most recent completed transaction events that have ended

globally, across all threads.

The number of records stored in the table is determined by the

performance_schema_events_transactions_history_long_size system variable, which is autosized on startup.

If adding a completed transaction would cause the table to exceed this limit, the oldest row, regardless of thread, is

discarded.

The table contains the following columns:

Column Type Description

THREAD_ID bigint(20) unsigned The thread associated with the event.

EVENT_ID bigint(20) unsigned The event id associated with the event.

END_EVENT_ID bigint(20) unsigned

This column is set to NULL when the event

starts and updated to the thread current event

number when the event ends.

EVENT_NAME varchar(128)

The name of the instrument from which the

event was collected. This is a NAME value from

the setup_instruments table.

STATE

enum('ACTIVE',

'COMMITTED','

ROLLED BACK')

The current transaction state. The value is

ACTIVE (after START TRANSACTION or

BEGIN), COMMITTED (after COMMIT), or

ROLLED BACK (after ROLLBACK).

TRX_ID bigint(20) unsigned Unused.

GTID varchar(64)
Transaction GTID, using the format DOMAIN-

SERVER_ID-SEQUENCE_NO.

XID_FORMAT_ID int(11)
XA transaction format ID for GTRID and

BQUAL values.

XID_GTRID varchar(130) XA global transaction ID.

XID_BQUAL varchar(130) XA transaction branch qualifier.

MariaDB starting with 10.5.2

416/4161

XA_STATE varchar(64)

The state of the XA transaction. The value is

ACTIVE (after XA START), IDLE (after XA

END), PREPARED (after XA PREPARE),

ROLLED BACK (after XA ROLLBACK), or

COMMITTED (after XA COMMIT).

SOURCE varchar(64)

The name of the source file containing the

instrumented code that produced the event and

the line number in the file at which the

instrumentation occurs.

TIMER_START bigint(20) unsigned

The unit is picoseconds. When event timing

started. NULL if event has no timing

information.

TIMER_END bigint(20) unsigned
The unit is picoseconds. When event timing

ended. NULL if event has no timing information.

TIMER_WAIT bigint(20) unsigned
The unit is picoseconds. Event duration. NULL

if event has not timing information.

ACCESS_MODE
enum('READ ONLY',

'READ WRITE')
Transaction access mode.

ISOLATION_LEVEL varchar(64)

Transaction isolation level. One of:

REPEATABLE READ, READ COMMITTED,

READ UNCOMMITTED, or SERIALIZABLE.

AUTOCOMMIT enum('YES', 'NO') NO

NUMBER_OF_SAVEPOINTS bigint(20) unsigned
The number of SAVEPOINT statements issued

during the transaction.

NUMBER_OF_ROLLBACK_TO_SAVEPOINT bigint(20) unsigned
The number of ROLLBACK_TO_SAVEPOINT

statements issued during the transaction.

NUMBER_OF_RELEASE_SAVEPOINT bigint(20) unsigned
The number of RELEASE_SAVEPOINT

statements issued during the transaction.

OBJECT_INSTANCE_BEGIN bigint(20) unsigned Unused.

NESTING_EVENT_ID bigint(20) unsigned
The EVENT_ID value of the event within which

this event is nested.

NESTING_EVENT_TYPE

enum('TRANSACTION','

STATEMENT', 'STAGE',

'WAIT')

The nesting event type.

1.1.1.2.9.2.1.25 Performance Schema
events_transactions_summary_by_account_by_event_name
Table

The events_transactions_summary_by_account_by_event_name table was introduced in MariaDB 10.5.2.

The events_transactions_summary_by_account_by_event_name table contains information on transaction events

aggregated by account and event name.

The table contains the following columns:

Column Type Description

USER char(32) User for which summary is generated.

HOST char(60) Host for which summary is generated.

EVENT_NAME varchar(128) Event name for which summary is generated.

COUNT_STAR
bigint(20)

unsigned

The number of summarized events. This value includes all events, whether

timed or nontimed.

MariaDB starting with 10.5.2

417/4161

SUM_TIMER_WAIT
bigint(20)

unsigned

The total wait time of the summarized timed events. This value is calculated

only for timed events because nontimed events have a wait time of NULL.

The same is true for the other xxx_TIMER_WAIT values.

MIN_TIMER_WAIT
bigint(20)

unsigned
The minimum wait time of the summarized timed events.

AVG_TIMER_WAIT
bigint(20)

unsigned
The average wait time of the summarized timed events.

MAX_TIMER_WAIT
bigint(20)

unsigned
The maximum wait time of the summarized timed events.

COUNT_READ_WRITE
bigint(20)

unsigned
The total number of only READ/WRITE transaction events.

SUM_TIMER_READ_WRITE
bigint(20)

unsigned
The total wait time of only READ/WRITE transaction events.

MIN_TIMER_READ_WRITE
bigint(20)

unsigned
The minimum wait time of only READ/WRITE transaction events.

AVG_TIMER_READ_WRITE
bigint(20)

unsigned
The average wait time of only READ/WRITE transaction events.

MAX_TIMER_READ_WRITE
bigint(20)

unsigned
The maximum wait time of only READ/WRITE transaction events.

COUNT_READ_ONLY
bigint(20)

unsigned
The total number of only READ ONLY transaction events.

SUM_TIMER_READ_ONLY
bigint(20)

unsigned
The total wait time of only READ ONLY transaction events.

MIN_TIMER_READ_ONLY
bigint(20)

unsigned
The minimum wait time of only READ ONLY transaction events.

AVG_TIMER_READ_ONLY
bigint(20)

unsigned
The average wait time of only READ ONLY transaction events.

MAX_TIMER_READ_ONLY
bigint(20)

unsigned
The maximum wait time of only READ ONLY transaction events.

1.1.1.2.9.2.1.26 Performance Schema
events_transactions_summary_by_host_by_event_name
Table

The events_transactions_summary_by_host_by_event_name table was introduced in MariaDB 10.5.2.

The events_transactions_summary_by_host_by_event_name table contains information on transaction events

aggregated by host and event name.

The table contains the following columns:

Column Type Description

HOST char(60) Host for which summary is generated.

EVENT_NAME varchar(128) Event name for which summary is generated.

COUNT_STAR
bigint(20)

unsigned

The number of summarized events. This value includes all events, whether

timed or nontimed.

SUM_TIMER_WAIT
bigint(20)

unsigned

The total wait time of the summarized timed events. This value is calculated

only for timed events because nontimed events have a wait time of NULL.

The same is true for the other xxx_TIMER_WAIT values.

MIN_TIMER_WAIT
bigint(20)

unsigned
The minimum wait time of the summarized timed events.

MariaDB starting with 10.5.2

418/4161

AVG_TIMER_WAIT
bigint(20)

unsigned
The average wait time of the summarized timed events.

MAX_TIMER_WAIT
bigint(20)

unsigned
The maximum wait time of the summarized timed events.

COUNT_READ_WRITE
bigint(20)

unsigned
The total number of only READ/WRITE transaction events.

SUM_TIMER_READ_WRITE
bigint(20)

unsigned
The total wait time of only READ/WRITE transaction events.

MIN_TIMER_READ_WRITE
bigint(20)

unsigned
The minimum wait time of only READ/WRITE transaction events.

AVG_TIMER_READ_WRITE
bigint(20)

unsigned
The average wait time of only READ/WRITE transaction events.

MAX_TIMER_READ_WRITE
bigint(20)

unsigned
The maximum wait time of only READ/WRITE transaction events.

COUNT_READ_ONLY
bigint(20)

unsigned
The total number of only READ ONLY transaction events.

SUM_TIMER_READ_ONLY
bigint(20)

unsigned
The total wait time of only READ ONLY transaction events.

MIN_TIMER_READ_ONLY
bigint(20)

unsigned The minimum wait time of only READ ONLY transaction events.

AVG_TIMER_READ_ONLY
bigint(20)

unsigned
The average wait time of only READ ONLY transaction events.

MAX_TIMER_READ_ONLY
bigint(20)

unsigned
The maximum wait time of only READ ONLY transaction events.

1.1.1.2.9.2.1.27 Performance Schema
events_transactions_summary_by_thread_by_event_name
Table

The events_transactions_summary_by_thread_by_event_name table was introduced in MariaDB 10.5.2.

The events_transactions_summary_by_thread_by_event_name table contains information on transaction events

aggregated by thread and event name.

The table contains the following columns:

+----------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+---------------------+------+-----+---------+-------+

| THREAD_ID | bigint(20) unsigned | NO | | NULL | |

| EVENT_NAME | varchar(128) | NO | | NULL | |

| COUNT_STAR | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

+----------------------+---------------------+------+-----+---------+-------+

MariaDB starting with 10.5.2

419/4161

1.1.1.2.9.2.1.28 Performance Schema
events_transactions_summary_by_user_by_event_name
Table

The events_transactions_summary_by_user_by_event_name table was introduced in MariaDB 10.5.2.

The events_transactions_summary_by_user_by_event_name table contains information on transaction events

aggregated by user and event name.

The table contains the following columns:

+----------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+---------------------+------+-----+---------+-------+

| USER | char(32) | YES | | NULL | |

| EVENT_NAME | varchar(128) | NO | | NULL | |

| COUNT_STAR | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

+----------------------+---------------------+------+-----+---------+-------+

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.29 Performance Schema
events_transactions_summary_global_by_event_name
Table

The events_transactions_summary_global_by_event_name table was introduced in MariaDB 10.5.2.

The events_transactions_summary_global_by_event_name table contains information on transaction events

aggregated by event name.

The table contains the following columns:

MariaDB starting with 10.5.2

420/4161

+----------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+---------------------+------+-----+---------+-------+

| EVENT_NAME | varchar(128) | NO | | NULL | |

| COUNT_STAR | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_WAIT | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_WRITE | bigint(20) unsigned | NO | | NULL | |

| COUNT_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| SUM_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MIN_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| AVG_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

| MAX_TIMER_READ_ONLY | bigint(20) unsigned | NO | | NULL | |

+----------------------+---------------------+------+-----+---------+-------+

1.1.1.2.9.2.1.30 Performance Schema
events_waits_current Table
The events_waits_current table contains the status of a thread's most recently monitored wait event, listing one event

per thread.

The table contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END
Value in picoseconds when the event timing ended, or NULL if the event has not ended or

timing is not collected.

TIMER_WAIT
Value in picoseconds of the event's duration or NULL if the event has not ended or timing is

not collected.

SPINS
Number of spin rounds for a mutex, or NULL if spin rounds are not used, or spinning is not

instrumented.

OBJECT_SCHEMA
Name of the schema that contains the table for table I/O objects, otherwise NULL for file I/O

and synchronization objects.

OBJECT_NAME
File name for file I/O objects, table name for table I/O objects, the socket's IP:PORT value

for a socket object or NULL for a synchronization object.

INDEX NAME Name of the index, PRIMARY for the primary key, or NULL for no index used.

OBJECT_TYPE
FILE for a file object, TABLE or TEMPORARY TABLE for a table object, or NULL for a

synchronization object.

OBJECT_INSTANCE_BEGIN Address in memory of the object.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. Either statement , stage or wait .

421/4161

OPERATION Operation type, for example read, write or lock

NUMBER_OF_BYTES Number of bytes that the operation read or wrote, or NULL for table I/O waits.

FLAGS Reserved for use in the future.

It is possible to empty this table with a TRUNCATE TABLE statement.

The related tables, events_waits_history and events_waits_history_long derive their values from the current events.

1.1.1.2.9.2.1.31 Performance Schema
events_waits_history Table
The events_waits_history table by default contains the ten most recent completed wait events per thread. This number

can be adjusted by setting the performance_schema_events_waits_history_size system variable when the server starts up.

The table structure is identical to the events_waits_current table structure, and contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

SPINS
Number of spin rounds for a mutex, or NULL if spin rounds are not used, or spinning is not

instrumented.

OBJECT_SCHEMA
Name of the schema that contains the table for table I/O objects, otherwise NULL for file I/O

and synchronization objects.

OBJECT_NAME
File name for file I/O objects, table name for table I/O objects, the socket's IP:PORT value

for a socket object or NULL for a synchronization object.

INDEX NAME Name of the index, PRIMARY for the primary key, or NULL for no index used.

OBJECT_TYPE
FILE for a file object, TABLE or TEMPORARY TABLE for a table object, or NULL for a

synchronization object.

OBJECT_INSTANCE_BEGIN Address in memory of the object.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. Either statement , stage or wait .

OPERATION Operation type, for example read, write or lock

NUMBER_OF_BYTES Number of bytes that the operation read or wrote, or NULL for table I/O waits.

FLAGS Reserved for use in the future.

It is possible to empty this table with a TRUNCATE TABLE statement.

events_waits_current and events_waits_history_long are related tables.

1.1.1.2.9.2.1.32 Performance Schema
events_waits_history_long Table
The events_waits_history_long table by default contains the ten thousand most recent completed wait events. This

422/4161

number can be adjusted by setting the performance_schema_events_waits_history_long_size system variable when the

server starts up.

The table structure is identical to the events_waits_current table structure, and contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_ID uniquely identifies the row.

EVENT_ID
Thread's current event number at the start of the event. Together with THREAD_ID uniquely

identifies the row.

END_EVENT_ID
NULL when the event starts, set to the thread's current event number at the end of the

event.

EVENT_NAME Event instrument name and a NAME from the setup_instruments table

SOURCE
Name and line number of the source file containing the instrumented code that produced the

event.

TIMER_START Value in picoseconds when the event timing started or NULL if timing is not collected.

TIMER_END Value in picoseconds when the event timing ended, or NULL if timing is not collected.

TIMER_WAIT Value in picoseconds of the event's duration or NULL if timing is not collected.

SPINS
Number of spin rounds for a mutex, or NULL if spin rounds are not used, or spinning is not

instrumented.

OBJECT_SCHEMA
Name of the schema that contains the table for table I/O objects, otherwise NULL for file I/O

and synchronization objects.

OBJECT_NAME
File name for file I/O objects, table name for table I/O objects, the socket's IP:PORT value

for a socket object or NULL for a synchronization object.

INDEX_NAME Name of the index, PRIMARY for the primary key, or NULL for no index used.

OBJECT_TYPE
FILE for a file object, TABLE or TEMPORARY TABLE for a table object, or NULL for a

synchronization object.

OBJECT_INSTANCE_BEGIN Address in memory of the object.

NESTING_EVENT_ID EVENT_ID of event within which this event nests.

NESTING_EVENT_TYPE Nesting event type. Either statement , stage or wait .

OPERATION Operation type, for example read, write or lock

NUMBER_OF_BYTES Number of bytes that the operation read or wrote, or NULL for table I/O waits.

FLAGS Reserved for use in the future.

It is possible to empty this table with a TRUNCATE TABLE statement.

events_waits_current and events_waits_history are related tables.

1.1.1.2.9.2.1.33 Performance Schema
events_waits_summary_by_account_by_event_name
Table
The Performance Schema events_waits_summary_by_account_by_event_name table contains wait events

summarized by account and event name. It contains the following columns:

Column Description

USER User. Used together with HOST and EVENT_NAME for grouping events.

HOST Host. Used together with USER and EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER and HOST for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

423/4161

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

SELECT * FROM events_waits_summary_by_account_by_event_name\G

...

*************************** 915. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 916. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 917. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: wait/io/socket/sql/client_connection

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 918. row ***************************

 USER: NULL

 HOST: NULL

 EVENT_NAME: idle

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.34 Performance Schema
events_waits_summary_by_host_by_event_name
Table
The Performance Schema events_waits_summary_by_host_by_event_name table contains wait events summarized by

host and event name. It contains the following columns:

Column Description

HOST Host. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER and HOST for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

424/4161

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

SELECT * FROM events_waits_summary_by_host_by_event_name\G

...

*************************** 610. row ***************************

 HOST: NULL

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 611. row ***************************

 HOST: NULL

 EVENT_NAME: wait/io/socket/sql/client_connection

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 612. row ***************************

 HOST: NULL

 EVENT_NAME: idle

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.35 Performance Schema
events_waits_summary_by_instance Table
The Performance Schema events_waits_summary_by_instance table contains wait events summarized by instance. It

contains the following columns:

Column Description

EVENT_NAME Event name. Used together with OBJECT_INSTANCE_BEGIN for grouping events.

OBJECT_INSTANCE_BEGIN
If an instrument creates multiple instances, each instance has a unique

OBJECT_INSTANCE_BEGIN value to allow for grouping by instance.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

425/4161

SELECT * FROM events_waits_summary_by_instance\G

...

*************************** 202. row ***************************

 EVENT_NAME: wait/io/file/sql/binlog

OBJECT_INSTANCE_BEGIN: 140578961969856

 COUNT_STAR: 6

 SUM_TIMER_WAIT: 90478331960

 MIN_TIMER_WAIT: 263344

 AVG_TIMER_WAIT: 15079721848

 MAX_TIMER_WAIT: 67760576376

*************************** 203. row ***************************

 EVENT_NAME: wait/io/file/sql/dbopt

OBJECT_INSTANCE_BEGIN: 140578961970560

 COUNT_STAR: 6

 SUM_TIMER_WAIT: 39891428472

 MIN_TIMER_WAIT: 387168

 AVG_TIMER_WAIT: 6648571412

 MAX_TIMER_WAIT: 24503293304

*************************** 204. row ***************************

 EVENT_NAME: wait/io/file/sql/dbopt

OBJECT_INSTANCE_BEGIN: 140578961971264

 COUNT_STAR: 6

 SUM_TIMER_WAIT: 39902495024

 MIN_TIMER_WAIT: 177888

 AVG_TIMER_WAIT: 6650415692

 MAX_TIMER_WAIT: 21026400404

1.1.1.2.9.2.1.36 Performance Schema
events_waits_summary_by_thread_by_event_name
Table
The Performance Schema events_waits_summary_by_thread_by_event_name table contains wait events summarized

by thread and event name. It contains the following columns:

Column Description

THREAD_ID Thread associated with the event. Together with EVENT_NAME uniquely identifies the row.

EVENT_NAME Event name. Used together with THREAD_ID for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

426/4161

SELECT * FROM events_waits_summary_by_thread_by_event_name\G

...

*************************** 6424. row ***************************

 THREAD_ID: 64

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 6425. row ***************************

 THREAD_ID: 64

 EVENT_NAME: wait/io/socket/sql/client_connection

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 6426. row ***************************

 THREAD_ID: 64

 EVENT_NAME: idle

 COUNT_STAR: 73

SUM_TIMER_WAIT: 22005252162000000

MIN_TIMER_WAIT: 3000000

AVG_TIMER_WAIT: 301441810000000

MAX_TIMER_WAIT: 4912417573000000

1.1.1.2.9.2.1.37 Performance Schema
events_waits_summary_by_user_by_event_name
Table
The Performance Schema events_waits_summary_by_user_by_event_name table contains wait events summarized by

user and event name. It contains the following columns:

Column Description

USER User. Used together with EVENT_NAME for grouping events.

EVENT_NAME Event name. Used together with USER for grouping events.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

427/4161

SELECT * FROM events_waits_summary_by_user_by_event_name\G

...

*************************** 916. row ***************************

 USER: NULL

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 917. row ***************************

 USER: NULL

 EVENT_NAME: wait/io/socket/sql/client_connection

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 918. row ***************************

 USER: NULL

 EVENT_NAME: idle

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

1.1.1.2.9.2.1.38 Performance Schema
events_waits_summary_global_by_event_name
Table
The Performance Schema events_waits_summary_global_by_event_name table contains wait events summarized by

event name. It contains the following columns:

Column Description

EVENT_NAME Event name.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

The *_TIMER_WAIT columns only calculate results for timed events, as non-timed events have a NULL wait time.

Example

428/4161

SELECT * FROM events_waits_summary_global_by_event_name\G

...

*************************** 303. row ***************************

 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 304. row ***************************

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 305. row ***************************

 EVENT_NAME: wait/io/socket/sql/client_connection

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 306. row ***************************

 EVENT_NAME: idle

 COUNT_STAR: 265

SUM_TIMER_WAIT: 46861125181000000

MIN_TIMER_WAIT: 1000000

AVG_TIMER_WAIT: 176834434000000

MAX_TIMER_WAIT: 4912417573000000

1.1.1.2.9.2.1.39 Performance Schema
file_instances Table

Description
The file_instances table lists instances of instruments seen by the Performance Schema when executing file I/O

instrumentation, and the associated files. Only files that have been opened, and that have not been deleted, will be listed in

the table.

The performance_schema_max_file_instances system variable specifies the maximum number of instrumented file objects.

Column Description

FILE_NAME File name.

EVENT_NAME Instrument name associated with the file.

OPEN_COUNT Open handles on the file. A value of greater than zero means that the file is currently open.

Example

429/4161

SELECT * FROM performance_schema.file_instances WHERE OPEN_COUNT>0;

+--+--------------------------------------

+------------+

| FILE_NAME | EVENT_NAME |

OPEN_COUNT |

+--+--------------------------------------

+------------+

| /var/log/mysql/mariadb-bin.index | wait/io/file/sql/binlog_index |

1 |

| /var/lib/mysql/ibdata1 | wait/io/file/innodb/innodb_data_file |

2 |

| /var/lib/mysql/ib_logfile0 | wait/io/file/innodb/innodb_log_file |

2 |

| /var/lib/mysql/ib_logfile1 | wait/io/file/innodb/innodb_log_file |

2 |

| /var/lib/mysql/mysql/gtid_slave_pos.ibd | wait/io/file/innodb/innodb_data_file |

3 |

| /var/lib/mysql/mysql/innodb_index_stats.ibd | wait/io/file/innodb/innodb_data_file |

3 |

| /var/lib/mysql/mysql/innodb_table_stats.ibd | wait/io/file/innodb/innodb_data_file |

3 |

...

1.1.1.2.9.2.1.40 Performance Schema
file_summary_by_event_name Table
The Performance Schema file_summary_by_event_name table contains file events summarized by event name. It

contains the following columns:

Column Description

EVENT_NAME Event name.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ Number of all read operations, including FGETS , FGETC , FREAD , and READ .

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

SUM_NUMBER_OF_BYTES_READ Bytes read by read operations.

COUNT_WRITE
Number of all write operations, including FPUTS , FPUTC , FPRINTF , VFPRINTF ,

FWRITE , and PWRITE .

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

SUM_NUMBER_OF_BYTES_WRITE Bytes written by write operations.

COUNT_MISC

Number of all miscellaneous operations not counted above, including CREATE ,

DELETE , OPEN , CLOSE , STREAM_OPEN , STREAM_CLOSE , SEEK , TELL , FLUSH ,

STAT , FSTAT , CHSIZE , RENAME , and SYNC .

SUM_TIMER_MISC Total wait time of all miscellaneous operations that are timed.

430/4161

MIN_TIMER_MISC Minimum wait time of all miscellaneous operations that are timed.

AVG_TIMER_MISC Average wait time of all miscellaneous operations that are timed.

MAX_TIMER_MISC Maximum wait time of all miscellaneous operations that are timed.

I/O operations can be avoided by caching, in which case they will not be recorded in this table.

You can TRUNCATE the table, which will reset all counters to zero.

Example

SELECT * FROM file_summary_by_event_name\G

...

*************************** 49. row ***************************

 EVENT_NAME: wait/io/file/aria/MAD

 COUNT_STAR: 60

 SUM_TIMER_WAIT: 397234368

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 6620224

 MAX_TIMER_WAIT: 16808672

 COUNT_READ: 0

 SUM_TIMER_READ: 0

 MIN_TIMER_READ: 0

 AVG_TIMER_READ: 0

 MAX_TIMER_READ: 0

 SUM_NUMBER_OF_BYTES_READ: 0

 COUNT_WRITE: 0

 SUM_TIMER_WRITE: 0

 MIN_TIMER_WRITE: 0

 AVG_TIMER_WRITE: 0

 MAX_TIMER_WRITE: 0

SUM_NUMBER_OF_BYTES_WRITE: 0

 COUNT_MISC: 60

 SUM_TIMER_MISC: 397234368

 MIN_TIMER_MISC: 0

 AVG_TIMER_MISC: 6620224

 MAX_TIMER_MISC: 16808672

*************************** 50. row ***************************

 EVENT_NAME: wait/io/file/aria/control

 COUNT_STAR: 3

 SUM_TIMER_WAIT: 24055778544

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 8018592848

 MAX_TIMER_WAIT: 24027262400

 COUNT_READ: 1

 SUM_TIMER_READ: 24027262400

 MIN_TIMER_READ: 0

 AVG_TIMER_READ: 24027262400

 MAX_TIMER_READ: 24027262400

 SUM_NUMBER_OF_BYTES_READ: 52

 COUNT_WRITE: 0

 SUM_TIMER_WRITE: 0

 MIN_TIMER_WRITE: 0

 AVG_TIMER_WRITE: 0

 MAX_TIMER_WRITE: 0

SUM_NUMBER_OF_BYTES_WRITE: 0

 COUNT_MISC: 2

 SUM_TIMER_MISC: 28516144

 MIN_TIMER_MISC: 0

 AVG_TIMER_MISC: 14258072

 MAX_TIMER_MISC: 27262208

1.1.1.2.9.2.1.41 Performance Schema
file_summary_by_instance Table
The Performance Schema file_summary_by_instance table contains file events summarized by instance. It contains

the following columns:

431/4161

Column Description

FILE_NAME File name.

EVENT_NAME Event name.

OBJECT_INSTANCE_BEGIN
Address in memory. Together with FILE_NAME and EVENT_NAME uniquely identifies a

row.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ Number of all read operations, including FGETS , FGETC , FREAD , and READ .

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

SUM_NUMBER_OF_BYTES_READ Bytes read by read operations.

COUNT_WRITE
Number of all write operations, including FPUTS , FPUTC , FPRINTF , VFPRINTF ,

FWRITE , and PWRITE .

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

SUM_NUMBER_OF_BYTES_WRITE Bytes written by write operations.

COUNT_MISC

Number of all miscellaneous operations not counted above, including CREATE ,

DELETE , OPEN , CLOSE , STREAM_OPEN , STREAM_CLOSE , SEEK , TELL , FLUSH ,

STAT , FSTAT , CHSIZE , RENAME , and SYNC .

SUM_TIMER_MISC Total wait time of all miscellaneous operations that are timed.

MIN_TIMER_MISC Minimum wait time of all miscellaneous operations that are timed.

AVG_TIMER_MISC Average wait time of all miscellaneous operations that are timed.

MAX_TIMER_MISC Maximum wait time of all miscellaneous operations that are timed.

I/O operations can be avoided by caching, in which case they will not be recorded in this table.

You can TRUNCATE the table, which will reset all counters to zero.

Example

432/4161

SELECT * FROM file_summary_by_instance\G

...

*************************** 204. row ***************************

 FILE_NAME: /var/lib/mysql/test/db.opt

 EVENT_NAME: wait/io/file/sql/dbopt

 OBJECT_INSTANCE_BEGIN: 140578961971264

 COUNT_STAR: 6

 SUM_TIMER_WAIT: 39902495024

 MIN_TIMER_WAIT: 177888

 AVG_TIMER_WAIT: 6650415692

 MAX_TIMER_WAIT: 21026400404

 COUNT_READ: 1

 SUM_TIMER_READ: 21026400404

 MIN_TIMER_READ: 21026400404

 AVG_TIMER_READ: 21026400404

 MAX_TIMER_READ: 21026400404

 SUM_NUMBER_OF_BYTES_READ: 65

 COUNT_WRITE: 0

 SUM_TIMER_WRITE: 0

 MIN_TIMER_WRITE: 0

 AVG_TIMER_WRITE: 0

 MAX_TIMER_WRITE: 0

SUM_NUMBER_OF_BYTES_WRITE: 0

 COUNT_MISC: 5

 SUM_TIMER_MISC: 18876094620

 MIN_TIMER_MISC: 177888

 AVG_TIMER_MISC: 3775218924

 MAX_TIMER_MISC: 18864558060

*************************** 205. row ***************************

 FILE_NAME: /var/log/mysql/mariadb-bin.000157

 EVENT_NAME: wait/io/file/sql/binlog

 OBJECT_INSTANCE_BEGIN: 140578961971968

 COUNT_STAR: 6

 SUM_TIMER_WAIT: 73985877680

 MIN_TIMER_WAIT: 251136

 AVG_TIMER_WAIT: 12330979468

 MAX_TIMER_WAIT: 73846656340

 COUNT_READ: 0

 SUM_TIMER_READ: 0

 MIN_TIMER_READ: 0

 AVG_TIMER_READ: 0

 MAX_TIMER_READ: 0

 SUM_NUMBER_OF_BYTES_READ: 0

 COUNT_WRITE: 2

 SUM_TIMER_WRITE: 62583004

 MIN_TIMER_WRITE: 27630192

 AVG_TIMER_WRITE: 31291284

 MAX_TIMER_WRITE: 34952812

SUM_NUMBER_OF_BYTES_WRITE: 369

 COUNT_MISC: 4

 SUM_TIMER_MISC: 73923294676

 MIN_TIMER_MISC: 251136

 AVG_TIMER_MISC: 18480823560

 MAX_TIMER_MISC: 73846656340

1.1.1.2.9.2.1.42 Performance Schema
global_status Table

The global_status table was added in MariaDB 10.5.2.

The global_status table contains a list of status variables and their global values. The table only stores status variable

statistics for threads which are instrumented, and does not collect statistics for Com_xxx variables.

The table contains the following columns:

Column Description

VARIABLE_NAME The global status variable name.

MariaDB starting with 10.5.2

433/4161

VARIABLE_VALUE The global status variable value.

TRUNCATE TABLE resets global status variables, including thread, account, host, and user status, but not those that are

never reset by the server.

1.1.1.2.9.2.1.43 Performance Schema hosts
Table

Description
The hosts table contains a row for each host used by clients to connect to the server, containing current and total

connections.

The size is determined by the performance_schema_hosts_size system variable, which, if set to zero, will disable

connection statistics in the hosts table.

It contains the following columns:

Column Description

HOST
Host name used by the client to connect, NULL for internal threads or user sessions that failed

to authenticate.

CURRENT_CONNECTIONS Current number of the host's connections.

TOTAL_CONNECTIONS Total number of the host's connections

Example

SELECT * FROM hosts;

+-----------+---------------------+-------------------+

| HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |

+-----------+---------------------+-------------------+

| localhost | 1 | 45 |

| NULL | 20 | 23 |

+-----------+---------------------+-------------------+

1.1.1.2.9.2.1.44 Performance Schema
host_cache Table
The host_cache table contains host and IP information from the host_cache, used for avoiding DNS lookups for new client

connections.

The host_cache table contains the following columns:

Column Description

IP Client IP address.

HOST IP's resolved DNS host name, or NULL if unknown.

HOST_VALIDATED

YES if the IP-to-host DNS lookup was successful, and the HOST

column can be used to avoid DNS calls, or NO if unsuccessful, in

which case DNS lookup is performed for each connect until either

successful or a permanent error.

SUM_CONNECT_ERRORS

Number of connection errors. Counts only protocol handshake

errors for hosts that passed validation. These errors count

towards max_connect_errors.

COUNT_HOST_BLOCKED_ERRORS
Number of blocked connections because SUM_CONNECT_ERRORS

exceeded the max_connect_errors system variable.

COUNT_NAMEINFO_TRANSIENT_ERRORS Number of transient errors during IP-to-host DNS lookups.

434/4161

COUNT_NAMEINFO_PERMANENT_ERRORS Number of permanent errors during IP-to-host DNS lookups.

COUNT_FORMAT_ERRORS
Number of host name format errors, for example a numeric host

column.

COUNT_ADDRINFO_TRANSIENT_ERRORS
Number of transient errors during host-to-IP reverse DNS

lookups.

COUNT_ADDRINFO_PERMANENT_ERRORS
Number of permanent errors during host-to-IP reverse DNS

lookups.

COUNT_FCRDNS_ERRORS

Number of forward-confirmed reverse DNS errors, which occur

when IP-to-host DNS lookup does not match the originating IP

address.

COUNT_HOST_ACL_ERRORS

Number of errors occurring because no user from the host is

permitted to log in. These attempts return error code 1130

ER_HOST_NOT_PRIVILEGED and do not proceed to username and

password authentication.

COUNT_NO_AUTH_PLUGIN_ERRORS

Number of errors due to requesting an authentication plugin that

was not available. This can be due to the plugin never having

been loaded, or the load attempt failing.

COUNT_AUTH_PLUGIN_ERRORS

Number of errors reported by an authentication plugin. Plugins

can increment COUNT_AUTHENTICATION_ERRORS or

COUNT_HANDSHAKE_ERRORS instead, but, if specified or the error

is unknown, this column is incremented.

COUNT_HANDSHAKE_ERRORS Number of errors detected at the wire protocol level.

COUNT_PROXY_USER_ERRORS
Number of errors detected when a proxy user is proxied to a user

that does not exist.

COUNT_PROXY_USER_ACL_ERRORS
Number of errors detected when a proxy user is proxied to a user

that exists, but the proxy user doesn't have the PROXY privilege.

COUNT_AUTHENTICATION_ERRORS Number of errors where authentication failed.

COUNT_SSL_ERRORS Number of errors due to TLS problems.

COUNT_MAX_USER_CONNECTIONS_ERRORS Number of errors due to the per-user quota being exceeded.

COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS Number of errors due to the per-hour quota being exceeded.

COUNT_DEFAULT_DATABASE_ERRORS
Number of errors due to the user not having permission to access

the specified default database, or it not existing.

COUNT_INIT_CONNECT_ERRORS
Number of errors due to statements in the init_connect system

variable.

COUNT_LOCAL_ERRORS
Number of local server errors, such as out-of-memory errors,

unrelated to network, authentication, or authorization.

COUNT_UNKNOWN_ERRORS
Number of unknown errors that cannot be allocated to another

column.

FIRST_SEEN Timestamp of the first connection attempt by the IP.

LAST_SEEN Timestamp of the most recent connection attempt by the IP.

FIRST_ERROR_SEEN Timestamp of the first error seen from the IP.

LAST_ERROR_SEEN Timestamp of the most recent error seen from the IP.

The host_cache table, along with the host_cache , is cleared with FLUSH HOSTS, TRUNCATE TABLE host_cache

or by setting the host_cache_size system variable at runtime.

1.1.1.2.9.2.1.45 Performance Schema
memory_summary_by_account_by_event_name
Table

MariaDB starting with 10.5.2
435/4161

https://mariadb.com/kb/en/mariadb-error-codes/

The memory_summary_by_account_by_event_name table was introduced in MariaDB 10.5.2.

There are five memory summary tables in the Performance Schema that share a number of fields in common. These

include:

memory_summary_by_account_by_event_name

memory_summary_by_host_by_event_name

memory_summary_by_thread_by_event_name

memory_summary_by_user_by_event_name

memory_global_by_event_name

The memory_summary_by_account_by_event_name table contains memory usage statistics aggregated by account and

event.

The table contains the following columns:

Field Type Null Default Description

USER char(32) YES NULL User portion of the account.

HOST char(60) YES NULL Host portion of the account.

EVENT_NAME varchar(128) NO NULL Event name.

COUNT_ALLOC
bigint(20)

unsigned
NO NULL Total number of allocations to memory.

COUNT_FREE
bigint(20)

unsigned
NO NULL

Total number of attempts to free the allocated

memory.

SUM_NUMBER_OF_BYTES_ALLOC
bigint(20)

unsigned
NO NULL Total number of bytes allocated.

SUM_NUMBER_OF_BYTES_FREE
bigint(20)

unsigned
NO NULL Total number of bytes freed

LOW_COUNT_USED bigint(20) NO NULL
Lowest number of allocated blocks (lowest

value of CURRENT_COUNT_USED).

CURRENT_COUNT_USED bigint(20) NO NULL
Currently allocated blocks that have not been

freed (COUNT_ALLOC minus COUNT_FREE).

HIGH_COUNT_USED bigint(20) NO NULL
Highest number of allocated blocks (highest

value of CURRENT_COUNT_USED).

LOW_NUMBER_OF_BYTES_USED bigint(20) NO NULL Lowest number of bytes used.

CURRENT_NUMBER_OF_BYTES_USED bigint(20) NO NULL
Current number of bytes used (total allocated

minus total freed).

HIGH_NUMBER_OF_BYTES_USED bigint(20) NO NULL Highest number of bytes used.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.46 Performance Schema
memory_summary_by_host_by_event_name
Table

The memory_summary_by_host_by_event_name table was introduced in MariaDB 10.5.2.

There are five memory summary tables in the Performance Schema that share a number of fields in common. These

include:

memory_summary_by_account_by_event_name

memory_summary_by_host_by_event_name

memory_summary_by_thread_by_event_name

memory_summary_by_user_by_event_name

memory_global_by_event_name

The memory_summary_by_host_by_event_name table contains memory usage statistics aggregated by host and event.

The table contains the following columns:

MariaDB starting with 10.5.2

436/4161

Field Type Null Default Description

HOST char(60) YES NULL Host portion of the account.

EVENT_NAME varchar(128) NO NULL Event name.

COUNT_ALLOC
bigint(20)

unsigned
NO NULL Total number of allocations to memory.

COUNT_FREE
bigint(20)

unsigned
NO NULL

Total number of attempts to free the allocated

memory.

SUM_NUMBER_OF_BYTES_ALLOC
bigint(20)

unsigned
NO NULL Total number of bytes allocated.

SUM_NUMBER_OF_BYTES_FREE
bigint(20)

unsigned
NO NULL Total number of bytes freed

LOW_COUNT_USED bigint(20) NO NULL
Lowest number of allocated blocks (lowest

value of CURRENT_COUNT_USED).

CURRENT_COUNT_USED bigint(20) NO NULL
Currently allocated blocks that have not been

freed (COUNT_ALLOC minus COUNT_FREE).

HIGH_COUNT_USED bigint(20) NO NULL
Highest number of allocated blocks (highest

value of CURRENT_COUNT_USED).

LOW_NUMBER_OF_BYTES_USED bigint(20) NO NULL Lowest number of bytes used.

CURRENT_NUMBER_OF_BYTES_USED bigint(20) NO NULL
Current number of bytes used (total allocated

minus total freed).

HIGH_NUMBER_OF_BYTES_USED bigint(20) NO NULL Highest number of bytes used.

1.1.1.2.9.2.1.47 Performance Schema
memory_summary_by_thread_by_event_name
Table

The memory_summary_by_thread_by_event_name table was introduced in MariaDB 10.5.2.

There are five memory summary tables in the Performance Schema that share a number of fields in common. These

include:

memory_summary_by_account_by_event_name

memory_summary_by_host_by_event_name

memory_summary_by_thread_by_event_name

memory_summary_by_user_by_event_name

memory_global_by_event_name

The memory_summary_by_thread_by_event_name table contains memory usage statistics aggregated by thread and

event.

The table contains the following columns:

Field Type Null Default Description

THREAD_ID
bigint(20)

unsigned
NO NULL Thread id.

EVENT_NAME varchar(128) NO NULL Event name.

COUNT_ALLOC
bigint(20)

unsigned
NO NULL Total number of allocations to memory.

COUNT_FREE
bigint(20)

unsigned
NO NULL

Total number of attempts to free the allocated

memory.

SUM_NUMBER_OF_BYTES_ALLOC
bigint(20)

unsigned
NO NULL Total number of bytes allocated.

MariaDB starting with 10.5.2

437/4161

SUM_NUMBER_OF_BYTES_FREE
bigint(20)

unsigned
NO NULL Total number of bytes freed

LOW_COUNT_USED bigint(20) NO NULL
Lowest number of allocated blocks (lowest

value of CURRENT_COUNT_USED).

CURRENT_COUNT_USED bigint(20) NO NULL
Currently allocated blocks that have not been

freed (COUNT_ALLOC minus COUNT_FREE).

HIGH_COUNT_USED bigint(20) NO NULL
Highest number of allocated blocks (highest

value of CURRENT_COUNT_USED).

LOW_NUMBER_OF_BYTES_USED bigint(20) NO NULL Lowest number of bytes used.

CURRENT_NUMBER_OF_BYTES_USED bigint(20) NO NULL
Current number of bytes used (total allocated

minus total freed).

HIGH_NUMBER_OF_BYTES_USED bigint(20) NO NULL Highest number of bytes used.

1.1.1.2.9.2.1.48 Performance Schema
memory_summary_by_user_by_event_name
Table

The memory_summary_by_user_by_event_name table was introduced in MariaDB 10.5.2.

There are five memory summary tables in the Performance Schema that share a number of fields in common. These

include:

memory_summary_by_account_by_event_name

memory_summary_by_host_by_event_name

memory_summary_by_thread_by_event_name

memory_summary_by_user_by_event_name

memory_global_by_event_name

The memory_summary_by_user_by_event_name table contains memory usage statistics aggregated by user and event.

The table contains the following columns:

Field Type Null Default Description

USER char(32) YES NULL User portion of the account.

EVENT_NAME varchar(128) NO NULL Event name.

COUNT_ALLOC
bigint(20)

unsigned
NO NULL Total number of allocations to memory.

COUNT_FREE
bigint(20)

unsigned
NO NULL

Total number of attempts to free the allocated

memory.

SUM_NUMBER_OF_BYTES_ALLOC
bigint(20)

unsigned
NO NULL Total number of bytes allocated.

SUM_NUMBER_OF_BYTES_FREE
bigint(20)

unsigned
NO NULL Total number of bytes freed

LOW_COUNT_USED bigint(20) NO NULL
Lowest number of allocated blocks (lowest

value of CURRENT_COUNT_USED).

CURRENT_COUNT_USED bigint(20) NO NULL
Currently allocated blocks that have not been

freed (COUNT_ALLOC minus COUNT_FREE).

HIGH_COUNT_USED bigint(20) NO NULL
Highest number of allocated blocks (highest

value of CURRENT_COUNT_USED).

LOW_NUMBER_OF_BYTES_USED bigint(20) NO NULL Lowest number of bytes used.

CURRENT_NUMBER_OF_BYTES_USED bigint(20) NO NULL
Current number of bytes used (total allocated

minus total freed).

HIGH_NUMBER_OF_BYTES_USED bigint(20) NO NULL Highest number of bytes used.

MariaDB starting with 10.5.2

438/4161

1.1.1.2.9.2.1.49 Performance Schema
memory_summary_global_by_event_name
Table

The memory_summary_global_by_event_name table was introduced in MariaDB 10.5.2.

There are five memory summary tables in the Performance Schema that share a number of fields in common. These

include:

memory_summary_by_account_by_event_name

memory_summary_by_host_by_event_name

memory_summary_by_thread_by_event_name

memory_summary_by_user_by_event_name

memory_global_by_event_name

The memory_summary_global_by_event_name table contains memory usage statistics aggregated by event and event.

The table contains the following columns:

Field Type Null Default Description

EVENT_NAME varchar(128) NO NULL Event name.

COUNT_ALLOC
bigint(20)

unsigned
NO NULL Total number of allocations to memory.

COUNT_FREE
bigint(20)

unsigned
NO NULL

Total number of attempts to free the allocated

memory.

SUM_NUMBER_OF_BYTES_ALLOC
bigint(20)

unsigned
NO NULL Total number of bytes allocated.

SUM_NUMBER_OF_BYTES_FREE
bigint(20)

unsigned
NO NULL Total number of bytes freed

LOW_COUNT_USED bigint(20) NO NULL
Lowest number of allocated blocks (lowest

value of CURRENT_COUNT_USED).

CURRENT_COUNT_USED bigint(20) NO NULL
Currently allocated blocks that have not been

freed (COUNT_ALLOC minus COUNT_FREE).

HIGH_COUNT_USED bigint(20) NO NULL
Highest number of allocated blocks (highest

value of CURRENT_COUNT_USED).

LOW_NUMBER_OF_BYTES_USED bigint(20) NO NULL Lowest number of bytes used.

CURRENT_NUMBER_OF_BYTES_USED bigint(20) NO NULL
Current number of bytes used (total allocated

minus total freed).

HIGH_NUMBER_OF_BYTES_USED bigint(20) NO NULL Highest number of bytes used.

Example
Seeing what memory was most often allocated for:

SELECT * FROM memory_summary_global_by_event_name

 ORDER BY count_alloc DESC LIMIT 1\G

*************************** 1. row ***************************

 EVENT_NAME: memory/sql/QUICK_RANGE_SELECT::alloc

 COUNT_ALLOC: 147976

 COUNT_FREE: 147976

 SUM_NUMBER_OF_BYTES_ALLOC: 600190656

 SUM_NUMBER_OF_BYTES_FREE: 600190656

 LOW_COUNT_USED: 0

 CURRENT_COUNT_USED: 0

 HIGH_COUNT_USED: 68

 LOW_NUMBER_OF_BYTES_USED: 0

CURRENT_NUMBER_OF_BYTES_USED: 0

 HIGH_NUMBER_OF_BYTES_USED: 275808

MariaDB starting with 10.5.2

439/4161

1.1.1.2.9.2.1.50 Performance Schema
metadata_locks Table

The metadata_locks table was introduced in MariaDB 10.5.2.

The metadata_locks table contains metadata lock information.

To enable metadata lock instrumention, at runtime:

UPDATE performance_schema.setup_instruments SET enabled='YES', timed='YES'

 WHERE name LIKE 'wait/lock/metadata%';

or in the configuration file:

performance-schema-instrument='wait/lock/metadata/sql/mdl=ON'

The table is by default autosized, but the size can be configured with the performance_schema_max_metadata_locks

system variabe.

The table is read-only, and TRUNCATE TABLE cannot be used to empty the table.

The table contains the following columns:

Field Type Null Default Description

OBJECT_TYPE varchar(64) NO NULL

Object type. One of BACKUP , COMMIT , EVENT , FUNCTION ,

GLOBAL , LOCKING SERVICE , PROCEDURE , SCHEMA ,

TABLE , TABLESPACE , TRIGGER (unused) or USER LEVEL

LOCK .

OBJECT_SCHEMA varchar(64) YES NULL Object schema.

OBJECT_NAME varchar(64) YES NULL Object name.

OBJECT_INSTANCE_BEGIN
bigint(20)

unsigned
NO NULL Address in memory of the instrumented object.

LOCK_TYPE varchar(32) NO NULL

Lock type. One of BACKUP_FTWRL1 , BACKUP_START ,

BACKUP_TRANS_DML , EXCLUSIVE ,

INTENTION_EXCLUSIVE , SHARED , SHARED_HIGH_PRIO ,

SHARED_NO_READ_WRITE , SHARED_NO_WRITE ,

SHARED_READ , SHARED_UPGRADABLE or SHARED_WRITE .

LOCK_DURATION varchar(32) NO NULL

Lock duration. One of EXPLICIT (locks released by explicit

action, for example a global lock acquired with FLUSH

TABLES WITH READ LOCK) , STATEMENT (locks implicitly

released at statement end) or TRANSACTION (locks implicitly

released at transaction end).

LOCK_STATUS varchar(32) NO NULL

Lock status. One of GRANTED , KILLED , PENDING ,

POST_RELEASE_NOTIFY , PRE_ACQUIRE_NOTIFY ,

TIMEOUT or VICTIM .

SOURCE varchar(64) YES NULL

Source file containing the instrumented code that produced

the event, as well as the line number where the

instrumentation occurred. This allows one to examine the

source code involved.

OWNER_THREAD_ID
bigint(20)

unsigned
YES NULL Thread that requested the lock.

OWNER_EVENT_ID
bigint(20)

unsigned
YES NULL Event that requested the lock.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.51 Performance Schema
mutex_instances Table

440/4161

Description
The mutex_instances table lists all mutexes that the Performance Schema seeing while the server is executing.

A mutex is a code mechanism for ensuring that threads can only access resources one at a time. A second thread

attempting to access a resource will find it protected by a mutex, and will wait for it to be unlocked.

The performance_schema_max_mutex_instances system variable specifies the maximum number of instrumented mutex

instances.

Column Description

NAME Instrument name associated with the mutex.

OBJECT_INSTANCE_BEGIN Memory address of the instrumented mutex.

LOCKED_BY_THREAD_ID The THREAD_ID of the locking thread if a thread has a mutex locked, otherwise NULL .

1.1.1.2.9.2.1.52 Performance Schema
objects_summary_global_by_type Table
It aggregates object wait events, and contains the following columns:

Column Description

OBJECT_TYPE Groups records together with OBJECT_SCHEMA and OBJECT_NAME .

OBJECT_SCHEMA Groups records together with OBJECT_TYPE and OBJECT_NAME .

OBJECT_NAME Groups records together with OBJECT_SCHEMA and OBJECT_TYPE .

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

You can TRUNCATE the table, which will reset all counters to zero.

Example

SELECT * FROM objects_summary_global_by_type\G

...

*************************** 101. row ***************************

 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: test

 OBJECT_NAME: v

 COUNT_STAR: 0

SUM_TIMER_WAIT: 0

MIN_TIMER_WAIT: 0

AVG_TIMER_WAIT: 0

MAX_TIMER_WAIT: 0

*************************** 102. row ***************************

 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: test

 OBJECT_NAME: xx2

 COUNT_STAR: 2

SUM_TIMER_WAIT: 1621920

MIN_TIMER_WAIT: 481344

AVG_TIMER_WAIT: 810960

MAX_TIMER_WAIT: 1140576

1.1.1.2.9.2.1.53 Performance Schema

441/4161

performance_timers Table

Description
The performance_timers table lists available event timers.

It contains the following columns:

Column Description

TIMER_NAME Time name, used in the setup_timers table.

TIMER_FREQUENCY Number of timer units per second. Dependent on the processor speed.

TIMER_RESOLUTION Number of timer units by which timed values increase each time.

TIMER_OVERHEAD

Minimum timer overhead, determined during initialization by calling the timer 20 times and

selecting the smallest value. Total overhead will be at least double this, as the timer is called at the

beginning and end of each timed event.

Any NULL values indicate that that particular timer is not available on your platform, Any timer names with a non-NULL

value can be used in the setup_timers table.

Example

SELECT * FROM performance_timers;

+-------------+-----------------+------------------+---------------------+

| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |

+-------------+-----------------+------------------+---------------------+

| CYCLE | 2293651741 | 1 | 28 |

| NANOSECOND | 1000000000 | 1 | 48 |

| MICROSECOND | 1000000 | 1 | 52 |

| MILLISECOND | 1000 | 1000 | 9223372036854775807 |

| TICK | 106 | 1 | 496 |

+-------------+-----------------+------------------+---------------------+

1.1.1.2.9.2.1.54 Performance Schema
prepared_statements_instances Table

The prepared_statements_instances table was introduced in MariaDB 10.5.2.

The prepared_statements_instances table contains aggregated statistics of prepared statements.

The maximum number of rows in the table is determined by the performance_schema_max_prepared_statement_instances

system variable, which is by default autosized on startup.

The table contains the following columns:

+-----------------------------+--+-----

-+-----+---------+-------+

| Field | Type | Null

| Key | Default | Extra |

+-----------------------------+--+-----

-+-----+---------+-------+

| OBJECT_INSTANCE_BEGIN | bigint(20) unsigned | NO

| | NULL | |

| STATEMENT_ID | bigint(20) unsigned | NO

| | NULL | |

| STATEMENT_NAME | varchar(64) | YES

| | NULL | |

| SQL_TEXT | longtext | NO

| | NULL | |

| OWNER_THREAD_ID | bigint(20) unsigned | NO

| | NULL | |

| OWNER_EVENT_ID | bigint(20) unsigned | NO

| | NULL | |

MariaDB starting with 10.5.2

442/4161

| | NULL | |

| OWNER_OBJECT_TYPE | enum('EVENT','FUNCTION','PROCEDURE','TABLE','TRIGGER') | YES |

| NULL | |

| OWNER_OBJECT_SCHEMA | varchar(64) | YES

| | NULL | |

| OWNER_OBJECT_NAME | varchar(64) | YES

| | NULL | |

| TIMER_PREPARE | bigint(20) unsigned | NO

| | NULL | |

| COUNT_REPREPARE | bigint(20) unsigned | NO

| | NULL | |

| COUNT_EXECUTE | bigint(20) unsigned | NO

| | NULL | |

| SUM_TIMER_EXECUTE | bigint(20) unsigned | NO

| | NULL | |

| MIN_TIMER_EXECUTE | bigint(20) unsigned | NO

| | NULL | |

| AVG_TIMER_EXECUTE | bigint(20) unsigned | NO

| | NULL | |

| MAX_TIMER_EXECUTE | bigint(20) unsigned | NO

| | NULL | |

| SUM_LOCK_TIME | bigint(20) unsigned | NO

| | NULL | |

| SUM_ERRORS | bigint(20) unsigned | NO

| | NULL | |

| SUM_WARNINGS | bigint(20) unsigned | NO

| | NULL | |

| SUM_ROWS_AFFECTED | bigint(20) unsigned | NO

| | NULL | |

| SUM_ROWS_SENT | bigint(20) unsigned | NO

| | NULL | |

| SUM_ROWS_EXAMINED | bigint(20) unsigned | NO

| | NULL | |

| SUM_CREATED_TMP_DISK_TABLES | bigint(20) unsigned | NO

| | NULL | |

| SUM_CREATED_TMP_TABLES | bigint(20) unsigned | NO

| | NULL | |

| SUM_SELECT_FULL_JOIN | bigint(20) unsigned | NO

| | NULL | |

| SUM_SELECT_FULL_RANGE_JOIN | bigint(20) unsigned | NO

| | NULL | |

| SUM_SELECT_RANGE | bigint(20) unsigned | NO

| | NULL | |

| SUM_SELECT_RANGE_CHECK | bigint(20) unsigned | NO

| | NULL | |

| SUM_SELECT_SCAN | bigint(20) unsigned | NO

| | NULL | |

| SUM_SORT_MERGE_PASSES | bigint(20) unsigned | NO

| | NULL | |

| SUM_SORT_RANGE | bigint(20) unsigned | NO

| | NULL | |

| SUM_SORT_ROWS | bigint(20) unsigned | NO

| | NULL | |

| SUM_SORT_SCAN | bigint(20) unsigned | NO

| | NULL | |

| SUM_NO_INDEX_USED | bigint(20) unsigned | NO

| | NULL | |

| SUM_NO_GOOD_INDEX_USED | bigint(20) unsigned | NO

| | NULL | |

+-----------------------------+--+-----

-+-----+---------+-------+

1.1.1.2.9.2.1.55 Performance Schema
replication_applier_configuration Table

The replication_applier_configuration table, along with many other new Performance Schema tables, was

added in MariaDB 10.5.2.

The Performance Schema replication_applier_configuration table contains configuration settings affecting replica

MariaDB starting with 10.5.2

443/4161

transactions.

It contains the following fields.

Field Type Null Description

CHANNEL_NAME char(64) NO Replication channel name.

DESIRED_DELAY int(11) NO Target number of seconds the replica should be delayed to the master.

1.1.1.2.9.2.1.56 Performance Schema
replication_applier_status Table

The replication_applier_status table, along with many other new Performance Schema tables, was added in

MariaDB 10.5.2.

The Performance Schema replication_applier_status table contains information about the general transaction execution

status on the replica.

It contains the following fields.

Field Type Null Description

CHANNEL_NAME char(64) NO The replication channel name.

SERVICE_STATE enum('ON','OFF') NO

Shows ON when the replication channel's applier

threads are active or idle, OFF means that the applier

threads are not active.

REMAINING_DELAY int(10) unsigned YES
Seconds the replica needs to wait to reach the desired

delay from master.

COUNT_TRANSACTIONS_RETRIES
bigint(20)

unsigned
NO

The number of retries that were made because the

replication SQL thread failed to apply a transaction.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.57 Performance Schema
replication_applier_status_by_coordinator Table

The replication_applier_status_by_coordinator table was added in MariaDB 10.5.2.

The Performance Schema replication_applier_status_by_coordinator table displays the status of the coordinator thread

used in multi-threaded replicas to manage multiple worker threads.

It contains the following fields.

Column Type Null Description

CHANNEL_NAME varchar(256) NO Replication channel name.

THREAD_ID
bigint(20)

unsigned
YES The SQL/coordinator thread ID.

SERVICE_STATE enum('ON','OFF') NO
ON (thread exists and is active or idle) or OFF (thread no

longer exists).

LAST_ERROR_NUMBER int(11) NO
Last error number that caused the SQL/coordinator thread to

stop.

LAST_ERROR_MESSAGE varchar(1024) NO
Last error message that caused the SQL/coordinator thread

to stop.

LAST_ERROR_TIMESTAMP timestamp NO
Timestamp that shows when the most recent SQL/coordinator

error occured.

LAST_SEEN_TRANSACTION char(57) NO The transaction the worker has last seen.

LAST_TRANS_RETRY_COUNT int(11) NO Total number of retries attempted by last transaction.

MariaDB starting with 10.5.2

444/4161

1.1.1.2.9.2.1.58 Performance Schema
replication_applier_status_by_worker Table

The replication_applier_status_by_worker table was added in MariaDB 10.6.0.

The Performance Schema replication_applier_status_by_worker table displays replica worker thread specific information.

It contains the following fields.

Column Description

CHANNEL_NAME Name of replication channel through which the transaction is received.

THREAD_ID

Thread_Id as displayed in the performance_schema.threads table for thread with name

'thread/sql/rpl_parallel_thread'. THREAD_ID will be NULL when worker threads are

stopped due to error/force stop.

SERVICE_STATE Whether or not the thread is running.

LAST_SEEN_TRANSACTION Last GTID executed by worker

LAST_ERROR_NUMBER Last Error that occurred on a particular worker.

LAST_ERROR_MESSAGE Last error specific message.

LAST_ERROR_TIMESTAMP Time stamp of last error.

WORKER_IDLE_TIME
Total idle time in seconds that the worker thread has spent waiting for work from SQL

thread.

LAST_TRANS_RETRY_COUNT Total number of retries attempted by last transaction.

MariaDB starting with 10.6.0

1.1.1.2.9.2.1.59 Performance Schema
replication_connection_configuration Table

The replication_connection_configuration table was added in MariaDB 10.6.0.

The Performance Schema replication_connection_configuration table displays replica's configuration settings used for

connecting to the primary.

It contains the following fields.

Column Type Null Description

CHANNEL_NAME varchar(256) NO The replication channel used.

HOST char(60) NO
The host name of the source that the replica is

connected to.

PORT int(11) NO The port used to connect to the source.

USER char(32) NO
The user name of the replication user account used

to connect to the source.

USING_GTID

enum('NO',

'CURRENT_POS',

'SLAVE_POS')

NO Whether replication is using GTIDs or not.

SSL_ALLOWED
enum('YES', 'NO',

'IGNORED')
NO Whether SSL is allowed for the replica connection.

SSL_CA_FILE varchar(512) NO
Path to the file that contains one or more certificates

for trusted Certificate Authorities (CA) to use for TLS.

MariaDB starting with 10.5.2

445/4161

SSL_CA_PATH varchar(512) NO

Path to a directory that contains one or more PEM

files that contain X509 certificates for a trusted

Certificate Authority (CA) to use for TLS.

SSL_CERTIFICATE varchar(512) NO
Path to the certificate used to authenticate the

master.

SSL_CIPHER varchar(512) NO Which cipher is used for encription.

SSL_KEY varchar(512) NO Path to the private key used for TLS.

SSL_VERIFY_SERVER_CERTIFICATE enum('YES','NO') NO
Whether the server certificate is verified as part of the

SSL connection.

SSL_CRL_FILE varchar(255) NO
Path to the PEM file containing one or more revoked

X.509 certificates.

SSL_CRL_PATH varchar(255) NO
PATH to a folder containing PEM files containing one

or more revoked X.509 certificates.

CONNECTION_RETRY_INTERVAL int(11) NO The number of seconds between connect retries.

CONNECTION_RETRY_COUNT
bigint(20)

unsigned
NO

The number of times the replica can attempt to

reconnect to the source in the event of a lost

connection.

HEARTBEAT_INTERVAL
double(10,3)

unsigned
NO

Number of seconds after which a heartbeat will be

sent.

IGNORE_SERVER_IDS longtext NO Binary log events from servers (ids) to ignore.

REPL_DO_DOMAIN_IDS longtext NO Only apply binary logs from these domain ids.

REPL_IGNORE_DOMAIN_IDS longtext NO Binary log events from domains to ignore.

1.1.1.2.9.2.1.60 Performance Schema
rwlock_instances Table
The rwlock_instances table lists all read write lock (rwlock) instances that the Performance Schema sees while the

server is executing. A read write is a mechanism for ensuring threads can either share access to common resources, or

have exclusive access.

The performance_schema_max_rwlock_instances system variable specifies the maximum number of instrumented rwlock

objects.

The rwlock_instances table contains the following columns:

Column Description

NAME Instrument name associated with the read write lock

OBJECT_INSTANCE_BEGIN Address in memory of the instrumented lock

WRITE_LOCKED_BY_THREAD_ID THREAD_ID of the locking thread if locked in write (exclusive) mode, otherwise NULL .

READ_LOCKED_BY_COUNT Count of current read locks held

1.1.1.2.9.2.1.61 Performance Schema
session_account_connect_attrs Table

Description
The session_account_connect_attrs table shows connection attributes for the current session.

Applications can pass key/value connection attributes to the server when a connection is made. The session_connect_attrs

and session_account_connect_attrs tables provide access to this information, for all sessions and the current session

respectively.

The C API functions mysql_options() and mysql_optionsv() are used for passing connection attributes to the server.

446/4161

https://mariadb.com/kb/en/mysql_options/
https://mariadb.com/kb/en/mysql_optionsv/

session_account_connect_attrs contains the following columns:

Column Description

PROCESSLIST_ID Session connection identifier.

ATTR_NAME Attribute name.

ATTR_VALUE Attribute value.

ORDINAL_POSITION Order in which attribute was added to the connection attributes.

Example

SELECT * FROM performance_schema.session_account_connect_attrs;

+----------------+-----------------+------------------+------------------+

| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |

+----------------+-----------------+------------------+------------------+

| 45 | _os | debian-linux-gnu | 0 |

| 45 | _client_name | libmysql | 1 |

| 45 | _pid | 7711 | 2 |

| 45 | _client_version | 10.0.5 | 3 |

| 45 | _platform | x86_64 | 4 |

| 45 | program_name | mysql | 5 |

+----------------+-----------------+------------------+------------------+

1.1.1.2.9.2.1.62 Performance Schema
session_connect_attrs Table

Contents
1. Description

2. Example

3. Using Other Connectors

1. JDBC

2. Node.js

3. R2DBC

Description
session_connect_attrs is a Performance Schema table that shows connection attributes for all sessions. The

Performance Schema needs to be enabled for the table to be populated.

Applications can pass key/value connection attributes to the server when a connection is made. The

session_connect_attrs and session_account_connect_attrs tables provide access to this information, for all sessions

and the current session respectively.

The C API functions mysql_options() and mysql_optionsv() are used for passing connection attributes to the server.

session_connect_attrs contains the following columns:

Column Description

PROCESSLIST_ID Session connection identifier.

ATTR_NAME Attribute name.

ATTR_VALUE Attribute value.

ORDINAL_POSITION Order in which attribute was added to the connection attributes.

Example
Returning the current connection's attributes:

447/4161

https://mariadb.com/kb/en/mysql_options/
https://mariadb.com/kb/en/mysql_optionsv/

SELECT * FROM performance_schema.session_connect_attrs WHERE processlist_id=CONNECTION_ID();

+----------------+-----------------+------------------+------------------+

| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |

+----------------+-----------------+------------------+------------------+

| 45 | _os | debian-linux-gnu | 0 |

| 45 | _client_name | libmysql | 1 |

| 45 | _pid | 7711 | 2 |

| 45 | _client_version | 10.0.5 | 3 |

| 45 | _platform | x86_64 | 4 |

| 45 | program_name | mysql | 5 |

+----------------+-----------------+------------------+------------------+

Using Other Connectors

JDBC

Connection attributes values are set using the option connectionAttributes .

Example using connection string jdbc:mariadb://localhost/?

connectionAttributes=test:test1,test2:test2Val,test3

SELECT * FROM performance_schema.session_connect_attrs WHERE processlist_id=17;

+----------------+-----------------+---------------------+------------------+

| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |

+----------------+-----------------+---------------------+------------------+

| 17 | _client_name | MariaDB Connector/J | 0 |

| 17 | _client_version | 3.1.3 | 1 |

| 17 | _server_host | localhost | 2 |

| 17 | _os | Windows 11 | 3 |

| 17 | _thread | 1 | 4 |

| 17 | _java_vendor | Oracle Corporation | 5 |

| 17 | _java_version | 19.0.2 | 6 |

| 17 | test | test1 | 7 |

| 17 | test2 | test2Val | 8 |

| 17 | test3 | NULL | 9 |

+----------------+-----------------+---------------------+------------------+

Node.js

Connection attributes values are set using the option connectAttributes

Example using connection

 const conn = await mariadb.createConnection({

 host: 'localhost',

 user: 'root',

 connectAttributes: { test: 'test1', test2: 'test2Val', test3: 'f' }

 });

SELECT * FROM performance_schema.session_connect_attrs WHERE processlist_id=30;

+----------------+-----------------+------------------------+------------------+

| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |

+----------------+-----------------+------------------------+------------------+

| 30 | _client_name | MariaDB connector/Node | 0 |

| 30 | _client_version | 3.1.1 | 1 |

| 30 | _server_host | ::1 | 2 |

| 30 | _os | win32 | 3 |

| 30 | _client_host | NOSTROMO | 4 |

| 30 | _node_version | 18.15.0 | 5 |

| 30 | test | test1 | 6 |

| 30 | test2 | test2Val | 7 |

| 30 | test3 | f | 8 |

+----------------+-----------------+------------------------+------------------+

R2DBC

Connection attributes values are set using the option connectionAttributes .

448/4161

https://mariadb.com/kb/en/about-mariadb-connector-j/#infrequently-used-parameters
https://mariadb.com/kb/en/nodejs-connection-options/#other-options
https://github.com/mariadb-corporation/mariadb-connector-r2dbc#connection-options

Example using connection string jdbc:mariadb://localhost/?

connectionAttributes=test:test1,test2:test2Val,test3

 TreeMap<String, String> connectionAttributes = new TreeMap<>();

 connectionAttributes.put("entry1", "val1");

 connectionAttributes.put("entry2", "val2");

 MariadbConnectionConfiguration conf = MariadbConnectionConfiguration.builder()

 .host("localhost")

 .port(3306)

 .username("root")

 .connectionAttributes(connectionAttributes)

 .database("test")

 .build();

 MariadbConnectionFactory connFactory = new MariadbConnectionFactory(conf);

 MariadbConnection connection = connFactory.create().block();

SELECT * FROM performance_schema.session_connect_attrs WHERE processlist_id=34;

+----------------+-----------------+--------------------+------------------+

| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |

+----------------+-----------------+--------------------+------------------+

| 34 | _client_name | mariadb | 0 |

| 34 | _client_version | 1.1.4 | 1 |

| 34 | _server_host | localhost | 2 |

| 34 | _os | Windows 11 | 3 |

| 34 | _thread | 49 | 4 |

| 34 | _java_vendor | Oracle Corporation | 5 |

| 34 | _java_version | 19.0.2 | 6 |

| 34 | entry1 | val1 | 7 |

| 34 | entry2 | val2 | 8 |

+----------------+-----------------+--------------------+------------------+

1.1.1.2.9.2.1.63 Performance Schema
session_status Table

The session_status table was added in MariaDB 10.5.2.

The session_status table contains a list of status variables for the current session. The table only stores status variable

statistics for threads which are instrumented, and does not collect statistics for Com_xxx variables.

The table contains the following columns:

Column Description

VARIABLE_NAME The session status variable name.

VARIABLE_VALUE The session status variable value.

It is not possible to empty this table with a TRUNCATE TABLE statement.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.64 Performance Schema
setup_actors Table
The setup_actors table contains information for determining whether monitoring should be enabled for new client

connection threads.

The default size is 100 rows, which can be changed by modifying the performance_schema_setup_actors_size system

variable at server startup.

If a row in the table matches a new foreground thread's client and host, the matching INSTRUMENTED column in the threads

table is set to either YES or NO , which allows selective application of instrumenting by host, by user, or combination

thereof.

Column Description

449/4161

HOST Host name, either a literal, or the % wildcard representing any host.

USER User name, either a literal or the % wildcard representing any name.

ROLE Unused

Initially, any user and host is matched:

SELECT * FROM performance_schema.setup_actors;

+------+------+------+

| HOST | USER | ROLE |

+------+------+------+

| % | % | % |

+------+------+------+

1.1.1.2.9.2.1.65 Performance Schema
setup_consumers Table
Lists the types of consumers for which event information is available.

The setup_consumers table contains the following columns:

Column Description

NAME Consumer name

ENABLED
YES or NO for whether or not the consumer is enabled. You can modify this column to ensure that event

information is added, or is not added.

The table can be modified directly, or the server started with the option enabled, for example:

performance-schema-consumer-events-waits-history=ON

Example

SELECT * FROM performance_schema.setup_consumers;

+--------------------------------+---------+

| NAME | ENABLED |

+--------------------------------+---------+

| events_stages_current | NO |

| events_stages_history | NO |

| events_stages_history_long | NO |

| events_statements_current | YES |

| events_statements_history | NO |

| events_statements_history_long | NO |

| events_waits_current | NO |

| events_waits_history | NO |

| events_waits_history_long | NO |

| global_instrumentation | YES |

| thread_instrumentation | YES |

| statements_digest | YES |

+--------------------------------+---------+

1.1.1.2.9.2.1.66 Performance Schema
setup_instruments Table
The setup_instruments table contains a list of instrumented object classes for which it is possible to collect events.

There is one row for each instrument in the source code. When an instrument is enabled and executed, instances are

created which are then stored in the cond_instances, file_instances, mutex_instances, rwlock_instances or socket_instance

tables.

It contains the following columns:

450/4161

Column Description

NAME Instrument name

ENABLED Whether or not the instrument is enabled. It can be disabled, and the instrument will produce no events.

TIMED
Whether or not the instrument is timed. It can be set, but if disabled, events produced by the instrument will

have NULL values for the corresponding TIMER_START , TIMER_END , and TIMER_WAIT values.

Example
From MariaDB 10.5.7, default settings with the Performance Schema enabled:

SELECT * FROM setup_instruments ORDER BY name;

+--+---------+-------+

| NAME | ENABLED | TIMED |

+--+---------+-------+

| idle | YES | YES |

| memory/csv/blobroot | NO | NO |

| memory/csv/row | NO | NO |

| memory/csv/tina_set | NO | NO |

| memory/csv/TINA_SHARE | NO | NO |

| memory/csv/Transparent_file | NO | NO |

| memory/innodb/adaptive hash index | NO | NO |

| memory/innodb/btr0btr | NO | NO |

| memory/innodb/btr0buf | NO | NO |

| memory/innodb/btr0bulk | NO | NO |

| memory/innodb/btr0cur | NO | NO |

| memory/innodb/btr0pcur | NO | NO |

| memory/innodb/btr0sea | NO | NO |

| memory/innodb/buf0buf | NO | NO |

| memory/innodb/buf0dblwr | NO | NO |

| memory/innodb/buf0dump | NO | NO |

| memory/innodb/buf_buf_pool | NO | NO |

| memory/innodb/dict0dict | NO | NO |

| memory/innodb/dict0mem | NO | NO |

| memory/innodb/dict0stats | NO | NO |

| memory/innodb/dict_stats_bg_recalc_pool_t | NO | NO |

| memory/innodb/dict_stats_index_map_t | NO | NO |

| memory/innodb/dict_stats_n_diff_on_level | NO | NO |

| memory/innodb/eval0eval | NO | NO |

| memory/innodb/fil0crypt | NO | NO |

| memory/innodb/fil0fil | NO | NO |

| memory/innodb/fsp0file | NO | NO |

| memory/innodb/fts0ast | NO | NO |

| memory/innodb/fts0blex | NO | NO |

| memory/innodb/fts0config | NO | NO |

| memory/innodb/fts0file | NO | NO |

| memory/innodb/fts0fts | NO | NO |

| memory/innodb/fts0opt | NO | NO |

| memory/innodb/fts0pars | NO | NO |

| memory/innodb/fts0que | NO | NO |

| memory/innodb/fts0sql | NO | NO |

| memory/innodb/fts0tlex | NO | NO |

| memory/innodb/gis0sea | NO | NO |

| memory/innodb/handler0alter | NO | NO |

| memory/innodb/hash0hash | NO | NO |

| memory/innodb/ha_innodb | NO | NO |

| memory/innodb/i_s | NO | NO |

| memory/innodb/lexyy | NO | NO |

| memory/innodb/lock0lock | NO | NO |

| memory/innodb/mem0mem | NO | NO |

| memory/innodb/os0event | NO | NO |

| memory/innodb/os0file | NO | NO |

| memory/innodb/other | NO | NO |

| memory/innodb/pars0lex | NO | NO |

| memory/innodb/rem0rec | NO | NO |

| memory/innodb/row0ftsort | NO | NO |

| memory/innodb/row0import | NO | NO |

| memory/innodb/row0log | NO | NO |

| memory/innodb/row0merge | NO | NO |

| memory/innodb/row0mysql | NO | NO |

| memory/innodb/row0sel | NO | NO |

| memory/innodb/row_log_buf | NO | NO |451/4161

| memory/innodb/row_log_buf | NO | NO |

| memory/innodb/row_merge_sort | NO | NO |

| memory/innodb/srv0start | NO | NO |

| memory/innodb/std | NO | NO |

| memory/innodb/sync0arr | NO | NO |

| memory/innodb/sync0debug | NO | NO |

| memory/innodb/sync0rw | NO | NO |

| memory/innodb/sync0start | NO | NO |

| memory/innodb/sync0types | NO | NO |

| memory/innodb/trx0i_s | NO | NO |

| memory/innodb/trx0roll | NO | NO |

| memory/innodb/trx0rseg | NO | NO |

| memory/innodb/trx0seg | NO | NO |

| memory/innodb/trx0trx | NO | NO |

| memory/innodb/trx0undo | NO | NO |

| memory/innodb/ut0list | NO | NO |

| memory/innodb/ut0mem | NO | NO |

| memory/innodb/ut0new | NO | NO |

| memory/innodb/ut0pool | NO | NO |

| memory/innodb/ut0rbt | NO | NO |

| memory/innodb/ut0wqueue | NO | NO |

| memory/innodb/xtrabackup | NO | NO |

| memory/memory/HP_INFO | NO | NO |

| memory/memory/HP_KEYDEF | NO | NO |

| memory/memory/HP_PTRS | NO | NO |

| memory/memory/HP_SHARE | NO | NO |

| memory/myisam/filecopy | NO | NO |

| memory/myisam/FTB | NO | NO |

| memory/myisam/FTPARSER_PARAM | NO | NO |

| memory/myisam/FT_INFO | NO | NO |

| memory/myisam/ft_memroot | NO | NO |

| memory/myisam/ft_stopwords | NO | NO |

| memory/myisam/keycache_thread_var | NO | NO |

| memory/myisam/MI_DECODE_TREE | NO | NO |

| memory/myisam/MI_INFO | NO | NO |

| memory/myisam/MI_INFO::bulk_insert | NO | NO |

| memory/myisam/MI_INFO::ft1_to_ft2 | NO | NO |

| memory/myisam/MI_SORT_PARAM | NO | NO |

| memory/myisam/MI_SORT_PARAM::wordroot | NO | NO |

| memory/myisam/MYISAM_SHARE | NO | NO |

| memory/myisam/MYISAM_SHARE::decode_tables | NO | NO |

| memory/myisam/preload_buffer | NO | NO |

| memory/myisam/record_buffer | NO | NO |

| memory/myisam/SORT_FT_BUF | NO | NO |

| memory/myisam/SORT_INFO::buffer | NO | NO |

| memory/myisam/SORT_KEY_BLOCKS | NO | NO |

| memory/myisam/stPageList::pages | NO | NO |

| memory/myisammrg/children | NO | NO |

| memory/myisammrg/MYRG_INFO | NO | NO |

| memory/partition/ha_partition::file | NO | NO |

| memory/partition/ha_partition::part_ids | NO | NO |

| memory/partition/Partition_admin | NO | NO |

| memory/partition/Partition_share | NO | NO |

| memory/partition/partition_sort_buffer | NO | NO |

| memory/performance_schema/accounts | YES | NO |

| memory/performance_schema/cond_class | YES | NO |

| memory/performance_schema/cond_instances | YES | NO |

| memory/performance_schema/events_stages_history | YES | NO |

| memory/performance_schema/events_stages_history_long | YES | NO |

| memory/performance_schema/events_stages_summary_by_account_by_event_name | YES | NO |

| memory/performance_schema/events_stages_summary_by_host_by_event_name | YES | NO |

| memory/performance_schema/events_stages_summary_by_thread_by_event_name | YES | NO |

| memory/performance_schema/events_stages_summary_by_user_by_event_name | YES | NO |

| memory/performance_schema/events_stages_summary_global_by_event_name | YES | NO |

| memory/performance_schema/events_statements_current | YES | NO |

| memory/performance_schema/events_statements_current.sqltext | YES | NO |

| memory/performance_schema/events_statements_current.tokens | YES | NO |

| memory/performance_schema/events_statements_history | YES | NO |

| memory/performance_schema/events_statements_history.sqltext | YES | NO |

| memory/performance_schema/events_statements_history.tokens | YES | NO |

| memory/performance_schema/events_statements_history_long | YES | NO |

| memory/performance_schema/events_statements_history_long.sqltext | YES | NO |

| memory/performance_schema/events_statements_history_long.tokens | YES | NO |

| memory/performance_schema/events_statements_summary_by_account_by_event_name | YES | NO |

| memory/performance_schema/events_statements_summary_by_digest | YES | NO |

452/4161

| memory/performance_schema/events_statements_summary_by_digest.tokens | YES | NO |

| memory/performance_schema/events_statements_summary_by_host_by_event_name | YES | NO |

| memory/performance_schema/events_statements_summary_by_program | YES | NO |

| memory/performance_schema/events_statements_summary_by_thread_by_event_name | YES | NO |

| memory/performance_schema/events_statements_summary_by_user_by_event_name | YES | NO |

| memory/performance_schema/events_statements_summary_global_by_event_name | YES | NO |

| memory/performance_schema/events_transactions_history | YES | NO |

| memory/performance_schema/events_transactions_history_long | YES | NO |

| memory/performance_schema/events_transactions_summary_by_account_by_event_name | YES | NO |

| memory/performance_schema/events_transactions_summary_by_host_by_event_name | YES | NO |

| memory/performance_schema/events_transactions_summary_by_thread_by_event_name | YES | NO |

| memory/performance_schema/events_transactions_summary_by_user_by_event_name | YES | NO |

| memory/performance_schema/events_waits_history | YES | NO |

| memory/performance_schema/events_waits_history_long | YES | NO |

| memory/performance_schema/events_waits_summary_by_account_by_event_name | YES | NO |

| memory/performance_schema/events_waits_summary_by_host_by_event_name | YES | NO |

| memory/performance_schema/events_waits_summary_by_thread_by_event_name | YES | NO |

| memory/performance_schema/events_waits_summary_by_user_by_event_name | YES | NO |

| memory/performance_schema/file_class | YES | NO |

| memory/performance_schema/file_handle | YES | NO |

| memory/performance_schema/file_instances | YES | NO |

| memory/performance_schema/hosts | YES | NO |

| memory/performance_schema/memory_class | YES | NO |

| memory/performance_schema/memory_summary_by_account_by_event_name | YES | NO |

| memory/performance_schema/memory_summary_by_host_by_event_name | YES | NO |

| memory/performance_schema/memory_summary_by_thread_by_event_name | YES | NO |

| memory/performance_schema/memory_summary_by_user_by_event_name | YES | NO |

| memory/performance_schema/memory_summary_global_by_event_name | YES | NO |

| memory/performance_schema/metadata_locks | YES | NO |

| memory/performance_schema/mutex_class | YES | NO |

| memory/performance_schema/mutex_instances | YES | NO |

| memory/performance_schema/prepared_statements_instances | YES | NO |

| memory/performance_schema/rwlock_class | YES | NO |

| memory/performance_schema/rwlock_instances | YES | NO |

| memory/performance_schema/scalable_buffer | YES | NO |

| memory/performance_schema/session_connect_attrs | YES | NO |

| memory/performance_schema/setup_actors | YES | NO |

| memory/performance_schema/setup_objects | YES | NO |

| memory/performance_schema/socket_class | YES | NO |

| memory/performance_schema/socket_instances | YES | NO |

| memory/performance_schema/stage_class | YES | NO |

| memory/performance_schema/statement_class | YES | NO |

| memory/performance_schema/table_handles | YES | NO |

| memory/performance_schema/table_io_waits_summary_by_index_usage | YES | NO |

| memory/performance_schema/table_lock_waits_summary_by_table | YES | NO |

| memory/performance_schema/table_shares | YES | NO |

| memory/performance_schema/threads | YES | NO |

| memory/performance_schema/thread_class | YES | NO |

| memory/performance_schema/users | YES | NO |

| memory/sql/acl_cache | NO | NO |

| memory/sql/binlog_cache_mngr | NO | NO |

| memory/sql/binlog_pos | NO | NO |

| memory/sql/binlog_statement_buffer | NO | NO |

| memory/sql/binlog_ver_1_event | NO | NO |

| memory/sql/bison_stack | NO | NO |

| memory/sql/Blob_mem_storage::storage | NO | NO |

| memory/sql/DATE_TIME_FORMAT | NO | NO |

| memory/sql/dboptions_hash | NO | NO |

| memory/sql/DDL_LOG_MEMORY_ENTRY | NO | NO |

| memory/sql/display_table_locks | NO | NO |

| memory/sql/errmsgs | NO | NO |

| memory/sql/Event_basic::mem_root | NO | NO |

| memory/sql/Event_queue_element_for_exec::names | NO | NO |

| memory/sql/Event_scheduler::scheduler_param | NO | NO |

| memory/sql/Filesort_info::merge | NO | NO |

| memory/sql/Filesort_info::record_pointers | NO | NO |

| memory/sql/frm::string | NO | NO |

| memory/sql/gdl | NO | NO |

| memory/sql/Gis_read_stream::err_msg | NO | NO |

| memory/sql/global_system_variables | NO | NO |

| memory/sql/handler::errmsgs | NO | NO |

| memory/sql/handlerton | NO | NO |

| memory/sql/hash_index_key_buffer | NO | NO |

| memory/sql/host_cache::hostname | NO | NO |

| memory/sql/ignored_db | NO | NO |
453/4161

| memory/sql/JOIN_CACHE | NO | NO |

| memory/sql/load_env_plugins | NO | NO |

| memory/sql/Locked_tables_list::m_locked_tables_root | NO | NO |

| memory/sql/MDL_context::acquire_locks | NO | NO |

| memory/sql/MPVIO_EXT::auth_info | NO | NO |

| memory/sql/MYSQL_BIN_LOG::basename | NO | NO |

| memory/sql/MYSQL_BIN_LOG::index | NO | NO |

| memory/sql/MYSQL_BIN_LOG::recover | NO | NO |

| memory/sql/MYSQL_LOCK | NO | NO |

| memory/sql/MYSQL_LOG::name | NO | NO |

| memory/sql/mysql_plugin | NO | NO |

| memory/sql/mysql_plugin_dl | NO | NO |

| memory/sql/MYSQL_RELAY_LOG::basename | NO | NO |

| memory/sql/MYSQL_RELAY_LOG::index | NO | NO |

| memory/sql/my_str_malloc | NO | NO |

| memory/sql/NAMED_ILINK::name | NO | NO |

| memory/sql/native_functions | NO | NO |

| memory/sql/plugin_bookmark | NO | NO |

| memory/sql/plugin_int_mem_root | NO | NO |

| memory/sql/plugin_mem_root | NO | NO |

| memory/sql/Prepared_statement::main_mem_root | NO | NO |

| memory/sql/Prepared_statement_map | NO | NO |

| memory/sql/PROFILE | NO | NO |

| memory/sql/Query_cache | NO | NO |

| memory/sql/Queue::queue_item | NO | NO |

| memory/sql/QUICK_RANGE_SELECT::alloc | NO | NO |

| memory/sql/QUICK_RANGE_SELECT::mrr_buf_desc | NO | NO |

| memory/sql/Relay_log_info::group_relay_log_name | NO | NO |

| memory/sql/root | NO | NO |

| memory/sql/Row_data_memory::memory | NO | NO |

| memory/sql/rpl_filter memory | NO | NO |

| memory/sql/Rpl_info_file::buffer | NO | NO |

| memory/sql/servers_cache | NO | NO |

| memory/sql/SLAVE_INFO | NO | NO |

| memory/sql/Sort_param::tmp_buffer | NO | NO |

| memory/sql/sp_head::call_mem_root | NO | NO |

| memory/sql/sp_head::execute_mem_root | NO | NO |

| memory/sql/sp_head::main_mem_root | NO | NO |

| memory/sql/sql_acl_mem | NO | NO |

| memory/sql/sql_acl_memex | NO | NO |

| memory/sql/String::value | NO | NO |

| memory/sql/ST_SCHEMA_TABLE | NO | NO |

| memory/sql/Sys_var_charptr::value | NO | NO |

| memory/sql/TABLE | NO | NO |

| memory/sql/table_mapping::m_mem_root | NO | NO |

| memory/sql/TABLE_RULE_ENT | NO | NO |

| memory/sql/TABLE_SHARE::mem_root | NO | NO |

| memory/sql/Table_triggers_list | NO | NO |

| memory/sql/Table_trigger_dispatcher::m_mem_root | NO | NO |

| memory/sql/TC_LOG_MMAP::pages | NO | NO |

| memory/sql/THD::db | NO | NO |

| memory/sql/THD::handler_tables_hash | NO | NO |

| memory/sql/thd::main_mem_root | NO | NO |

| memory/sql/THD::sp_cache | NO | NO |

| memory/sql/THD::transactions::mem_root | NO | NO |

| memory/sql/THD::variables | NO | NO |

| memory/sql/tz_storage | NO | NO |

| memory/sql/udf_mem | NO | NO |

| memory/sql/Unique::merge_buffer | NO | NO |

| memory/sql/Unique::sort_buffer | NO | NO |

| memory/sql/user_conn | NO | NO |

| memory/sql/User_level_lock | NO | NO |

| memory/sql/user_var_entry | NO | NO |

| memory/sql/user_var_entry::value | NO | NO |

| memory/sql/XID | NO | NO |

| stage/aria/Waiting for a resource | NO | NO |

| stage/innodb/alter table (end) | YES | YES |

| stage/innodb/alter table (insert) | YES | YES |

| stage/innodb/alter table (log apply index) | YES | YES |

| stage/innodb/alter table (log apply table) | YES | YES |

| stage/innodb/alter table (merge sort) | YES | YES |

| stage/innodb/alter table (read PK and internal sort) | YES | YES |

| stage/innodb/buffer pool load | YES | YES |

| stage/mysys/Waiting for table level lock | NO | NO |

| stage/sql/After apply log event | NO | NO |
454/4161

| stage/sql/After apply log event | NO | NO |

| stage/sql/After create | NO | NO |

| stage/sql/After opening tables | NO | NO |

| stage/sql/After table lock | NO | NO |

| stage/sql/Allocating local table | NO | NO |

| stage/sql/altering table | NO | NO |

| stage/sql/Apply log event | NO | NO |

| stage/sql/Changing master | NO | NO |

| stage/sql/Checking master version | NO | NO |

| stage/sql/checking permissions | NO | NO |

| stage/sql/checking privileges on cached query | NO | NO |

| stage/sql/Checking query cache for query | NO | NO |

| stage/sql/closing tables | NO | NO |

| stage/sql/Commit | NO | NO |

| stage/sql/Commit implicit | NO | NO |

| stage/sql/Committing alter table to storage engine | NO | NO |

| stage/sql/Connecting to master | NO | NO |

| stage/sql/Converting HEAP to Aria | NO | NO |

| stage/sql/copy to tmp table | YES | YES |

| stage/sql/Copying to group table | NO | NO |

| stage/sql/Copying to tmp table | NO | NO |

| stage/sql/Creating delayed handler | NO | NO |

| stage/sql/Creating sort index | NO | NO |

| stage/sql/creating table | NO | NO |

| stage/sql/Creating tmp table | NO | NO |

| stage/sql/Deleting from main table | NO | NO |

| stage/sql/Deleting from reference tables | NO | NO |

| stage/sql/Discard_or_import_tablespace | NO | NO |

| stage/sql/Enabling keys | NO | NO |

| stage/sql/End of update loop | NO | NO |

| stage/sql/Executing | NO | NO |

| stage/sql/Execution of init_command | NO | NO |

| stage/sql/Explaining | NO | NO |

| stage/sql/Filling schema table | NO | NO |

| stage/sql/Finding key cache | NO | NO |

| stage/sql/Finished reading one binlog; switching to next binlog | NO | NO |

| stage/sql/Flushing relay log and master info repository. | NO | NO |

| stage/sql/Flushing relay-log info file. | NO | NO |

| stage/sql/Freeing items | NO | NO |

| stage/sql/Fulltext initialization | NO | NO |

| stage/sql/Got handler lock | NO | NO |

| stage/sql/Got old table | NO | NO |

| stage/sql/init | NO | NO |

| stage/sql/init for update | NO | NO |

| stage/sql/Insert | NO | NO |

| stage/sql/Invalidating query cache entries (table list) | NO | NO |

| stage/sql/Invalidating query cache entries (table) | NO | NO |

| stage/sql/Killing slave | NO | NO |

| stage/sql/Logging slow query | NO | NO |

| stage/sql/Making temporary file (append) before replaying LOAD DATA INFILE | NO | NO |

| stage/sql/Making temporary file (create) before replaying LOAD DATA INFILE | NO | NO |

| stage/sql/Manage keys | NO | NO |

| stage/sql/Master has sent all binlog to slave; waiting for more updates | NO | NO |

| stage/sql/Opening tables | NO | NO |

| stage/sql/Optimizing | NO | NO |

| stage/sql/Preparing | NO | NO |

| stage/sql/preparing for alter table | NO | NO |

| stage/sql/Processing binlog checkpoint notification | NO | NO |

| stage/sql/Processing requests | NO | NO |

| stage/sql/Purging old relay logs | NO | NO |

| stage/sql/Query end | NO | NO |

| stage/sql/Queueing master event to the relay log | NO | NO |

| stage/sql/Reading event from the relay log | NO | NO |

| stage/sql/Reading semi-sync ACK from slave | NO | NO |

| stage/sql/Recreating table | NO | NO |

| stage/sql/Registering slave on master | NO | NO |

| stage/sql/Removing duplicates | NO | NO |

| stage/sql/Removing tmp table | NO | NO |

| stage/sql/Rename | NO | NO |

| stage/sql/Rename result table | NO | NO |

| stage/sql/Requesting binlog dump | NO | NO |

| stage/sql/Reschedule | NO | NO |

| stage/sql/Reset for next command | NO | NO |

| stage/sql/Rollback | NO | NO |

| stage/sql/Rollback_implicit | NO | NO |

| stage/sql/Searching rows for update | NO | NO |
455/4161

| stage/sql/Searching rows for update | NO | NO |

| stage/sql/Sending binlog event to slave | NO | NO |

| stage/sql/Sending cached result to client | NO | NO |

| stage/sql/Sending data | NO | NO |

| stage/sql/setup | NO | NO |

| stage/sql/Show explain | NO | NO |

| stage/sql/Slave has read all relay log; waiting for more updates | NO | NO |

| stage/sql/Sorting | NO | NO |

| stage/sql/Sorting for group | NO | NO |

| stage/sql/Sorting for order | NO | NO |

| stage/sql/Sorting result | NO | NO |

| stage/sql/starting | NO | NO |

| stage/sql/Starting cleanup | NO | NO |

| stage/sql/Statistics | NO | NO |

| stage/sql/Stopping binlog background thread | NO | NO |

| stage/sql/Storing result in query cache | NO | NO |

| stage/sql/Storing row into queue | NO | NO |

| stage/sql/System lock | NO | NO |

| stage/sql/table lock | NO | NO |

| stage/sql/Unlocking tables | NO | NO |

| stage/sql/Update | NO | NO |

| stage/sql/Updating | NO | NO |

| stage/sql/Updating main table | NO | NO |

| stage/sql/Updating reference tables | NO | NO |

| stage/sql/Upgrading lock | NO | NO |

| stage/sql/User lock | NO | NO |

| stage/sql/User sleep | NO | NO |

| stage/sql/Verifying table | NO | NO |

| stage/sql/Waiting for background binlog tasks | NO | NO |

| stage/sql/Waiting for backup lock | NO | NO |

| stage/sql/Waiting for delay_list | NO | NO |

| stage/sql/Waiting for event metadata lock | NO | NO |

| stage/sql/Waiting for GTID to be written to binary log | NO | NO |

| stage/sql/Waiting for handler insert | NO | NO |

| stage/sql/Waiting for handler lock | NO | NO |

| stage/sql/Waiting for handler open | NO | NO |

| stage/sql/Waiting for INSERT | NO | NO |

| stage/sql/Waiting for master to send event | NO | NO |

| stage/sql/Waiting for master update | NO | NO |

| stage/sql/Waiting for next activation | NO | NO |

| stage/sql/Waiting for other master connection to process the same GTID | NO | NO |

| stage/sql/Waiting for parallel replication deadlock handling to complete | NO | NO |

| stage/sql/Waiting for prior transaction to commit | NO | NO |

| stage/sql/Waiting for prior transaction to start commit | NO | NO |

| stage/sql/Waiting for query cache lock | NO | NO |

| stage/sql/Waiting for requests | NO | NO |

| stage/sql/Waiting for room in worker thread event queue | NO | NO |

| stage/sql/Waiting for schema metadata lock | NO | NO |

| stage/sql/Waiting for semi-sync ACK from slave | NO | NO |

| stage/sql/Waiting for semi-sync slave connection | NO | NO |

| stage/sql/Waiting for slave mutex on exit | NO | NO |

| stage/sql/Waiting for slave thread to start | NO | NO |

| stage/sql/Waiting for stored function metadata lock | NO | NO |

| stage/sql/Waiting for stored package body metadata lock | NO | NO |

| stage/sql/Waiting for stored procedure metadata lock | NO | NO |

| stage/sql/Waiting for table flush | NO | NO |

| stage/sql/Waiting for table metadata lock | NO | NO |

| stage/sql/Waiting for the next event in relay log | NO | NO |

| stage/sql/Waiting for the scheduler to stop | NO | NO |

| stage/sql/Waiting for the slave SQL thread to advance position | NO | NO |

| stage/sql/Waiting for the slave SQL thread to free enough relay log space | NO | NO |

| stage/sql/Waiting for trigger metadata lock | NO | NO |

| stage/sql/Waiting for work from SQL thread | NO | NO |

| stage/sql/Waiting in MASTER_GTID_WAIT() | NO | NO |

| stage/sql/Waiting in MASTER_GTID_WAIT() (primary waiter) | NO | NO |

| stage/sql/Waiting on empty queue | NO | NO |

| stage/sql/Waiting to finalize termination | NO | NO |

| stage/sql/Waiting until MASTER_DELAY seconds after master executed event | NO | NO |

| stage/sql/Writing to binlog | NO | NO |

| statement/abstract/new_packet | YES | YES |

| statement/abstract/Query | YES | YES |

| statement/abstract/relay_log | YES | YES |

| statement/com/Binlog Dump | YES | YES |

| statement/com/Bulk_execute | YES | YES |

| statement/com/Change user | YES | YES |

| statement/com/Close stmt | YES | YES |
456/4161

| statement/com/Close stmt | YES | YES |

| statement/com/Com_multi | YES | YES |

| statement/com/Connect | YES | YES |

| statement/com/Connect Out | YES | YES |

| statement/com/Create DB | YES | YES |

| statement/com/Daemon | YES | YES |

| statement/com/Debug | YES | YES |

| statement/com/Delayed insert | YES | YES |

| statement/com/Drop DB | YES | YES |

| statement/com/Error | YES | YES |

| statement/com/Execute | YES | YES |

| statement/com/Fetch | YES | YES |

| statement/com/Field List | YES | YES |

| statement/com/Init DB | YES | YES |

| statement/com/Kill | YES | YES |

| statement/com/Long Data | YES | YES |

| statement/com/Ping | YES | YES |

| statement/com/Prepare | YES | YES |

| statement/com/Processlist | YES | YES |

| statement/com/Quit | YES | YES |

| statement/com/Refresh | YES | YES |

| statement/com/Register Slave | YES | YES |

| statement/com/Reset connection | YES | YES |

| statement/com/Reset stmt | YES | YES |

| statement/com/Set option | YES | YES |

| statement/com/Shutdown | YES | YES |

| statement/com/Slave_IO | YES | YES |

| statement/com/Slave_SQL | YES | YES |

| statement/com/Slave_worker | YES | YES |

| statement/com/Sleep | YES | YES |

| statement/com/Statistics | YES | YES |

| statement/com/Table Dump | YES | YES |

| statement/com/Time | YES | YES |

| statement/com/Unimpl get tid | YES | YES |

| statement/scheduler/event | YES | YES |

| statement/sp/agg_cfetch | YES | YES |

| statement/sp/cclose | YES | YES |

| statement/sp/cfetch | YES | YES |

| statement/sp/copen | YES | YES |

| statement/sp/cpop | YES | YES |

| statement/sp/cpush | YES | YES |

| statement/sp/cursor_copy_struct | YES | YES |

| statement/sp/error | YES | YES |

| statement/sp/freturn | YES | YES |

| statement/sp/hpop | YES | YES |

| statement/sp/hpush_jump | YES | YES |

| statement/sp/hreturn | YES | YES |

| statement/sp/jump | YES | YES |

| statement/sp/jump_if_not | YES | YES |

| statement/sp/preturn | YES | YES |

| statement/sp/set | YES | YES |

| statement/sp/set_case_expr | YES | YES |

| statement/sp/set_trigger_field | YES | YES |

| statement/sp/stmt | YES | YES |

| statement/sql/ | YES | YES |

| statement/sql/alter_db | YES | YES |

| statement/sql/alter_db_upgrade | YES | YES |

| statement/sql/alter_event | YES | YES |

| statement/sql/alter_function | YES | YES |

| statement/sql/alter_procedure | YES | YES |

| statement/sql/alter_sequence | YES | YES |

| statement/sql/alter_server | YES | YES |

| statement/sql/alter_table | YES | YES |

| statement/sql/alter_tablespace | YES | YES |

| statement/sql/alter_user | YES | YES |

| statement/sql/analyze | YES | YES |

| statement/sql/assign_to_keycache | YES | YES |

| statement/sql/backup | YES | YES |

| statement/sql/backup_lock | YES | YES |

| statement/sql/begin | YES | YES |

| statement/sql/binlog | YES | YES |

| statement/sql/call_procedure | YES | YES |

| statement/sql/change_db | YES | YES |

| statement/sql/change_master | YES | YES |

| statement/sql/check | YES | YES |

| statement/sql/checksum | YES | YES |457/4161

| statement/sql/checksum | YES | YES |

| statement/sql/commit | YES | YES |

| statement/sql/compound_sql | YES | YES |

| statement/sql/create_db | YES | YES |

| statement/sql/create_event | YES | YES |

| statement/sql/create_function | YES | YES |

| statement/sql/create_index | YES | YES |

| statement/sql/create_package | YES | YES |

| statement/sql/create_package_body | YES | YES |

| statement/sql/create_procedure | YES | YES |

| statement/sql/create_role | YES | YES |

| statement/sql/create_sequence | YES | YES |

| statement/sql/create_server | YES | YES |

| statement/sql/create_table | YES | YES |

| statement/sql/create_trigger | YES | YES |

| statement/sql/create_udf | YES | YES |

| statement/sql/create_user | YES | YES |

| statement/sql/create_view | YES | YES |

| statement/sql/dealloc_sql | YES | YES |

| statement/sql/delete | YES | YES |

| statement/sql/delete_multi | YES | YES |

| statement/sql/do | YES | YES |

| statement/sql/drop_db | YES | YES |

| statement/sql/drop_event | YES | YES |

| statement/sql/drop_function | YES | YES |

| statement/sql/drop_index | YES | YES |

| statement/sql/drop_package | YES | YES |

| statement/sql/drop_package_body | YES | YES |

| statement/sql/drop_procedure | YES | YES |

| statement/sql/drop_role | YES | YES |

| statement/sql/drop_sequence | YES | YES |

| statement/sql/drop_server | YES | YES |

| statement/sql/drop_table | YES | YES |

| statement/sql/drop_trigger | YES | YES |

| statement/sql/drop_user | YES | YES |

| statement/sql/drop_view | YES | YES |

| statement/sql/empty_query | YES | YES |

| statement/sql/error | YES | YES |

| statement/sql/execute_immediate | YES | YES |

| statement/sql/execute_sql | YES | YES |

| statement/sql/flush | YES | YES |

| statement/sql/get_diagnostics | YES | YES |

| statement/sql/grant | YES | YES |

| statement/sql/grant_role | YES | YES |

| statement/sql/ha_close | YES | YES |

| statement/sql/ha_open | YES | YES |

| statement/sql/ha_read | YES | YES |

| statement/sql/help | YES | YES |

| statement/sql/insert | YES | YES |

| statement/sql/insert_select | YES | YES |

| statement/sql/install_plugin | YES | YES |

| statement/sql/kill | YES | YES |

| statement/sql/load | YES | YES |

| statement/sql/lock_tables | YES | YES |

| statement/sql/optimize | YES | YES |

| statement/sql/preload_keys | YES | YES |

| statement/sql/prepare_sql | YES | YES |

| statement/sql/purge | YES | YES |

| statement/sql/purge_before_date | YES | YES |

| statement/sql/release_savepoint | YES | YES |

| statement/sql/rename_table | YES | YES |

| statement/sql/rename_user | YES | YES |

| statement/sql/repair | YES | YES |

| statement/sql/replace | YES | YES |

| statement/sql/replace_select | YES | YES |

| statement/sql/reset | YES | YES |

| statement/sql/resignal | YES | YES |

| statement/sql/revoke | YES | YES |

| statement/sql/revoke_all | YES | YES |

| statement/sql/revoke_role | YES | YES |

| statement/sql/rollback | YES | YES |

| statement/sql/rollback_to_savepoint | YES | YES |

| statement/sql/savepoint | YES | YES |

| statement/sql/select | YES | YES |

| statement/sql/set_option | YES | YES |

458/4161

| statement/sql/show_authors | YES | YES |

| statement/sql/show_binlogs | YES | YES |

| statement/sql/show_binlog_events | YES | YES |

| statement/sql/show_binlog_status | YES | YES |

| statement/sql/show_charsets | YES | YES |

| statement/sql/show_collations | YES | YES |

| statement/sql/show_contributors | YES | YES |

| statement/sql/show_create_db | YES | YES |

| statement/sql/show_create_event | YES | YES |

| statement/sql/show_create_func | YES | YES |

| statement/sql/show_create_package | YES | YES |

| statement/sql/show_create_package_body | YES | YES |

| statement/sql/show_create_proc | YES | YES |

| statement/sql/show_create_table | YES | YES |

| statement/sql/show_create_trigger | YES | YES |

| statement/sql/show_create_user | YES | YES |

| statement/sql/show_databases | YES | YES |

| statement/sql/show_engine_logs | YES | YES |

| statement/sql/show_engine_mutex | YES | YES |

| statement/sql/show_engine_status | YES | YES |

| statement/sql/show_errors | YES | YES |

| statement/sql/show_events | YES | YES |

| statement/sql/show_explain | YES | YES |

| statement/sql/show_fields | YES | YES |

| statement/sql/show_function_status | YES | YES |

| statement/sql/show_generic | YES | YES |

| statement/sql/show_grants | YES | YES |

| statement/sql/show_keys | YES | YES |

| statement/sql/show_open_tables | YES | YES |

| statement/sql/show_package_body_status | YES | YES |

| statement/sql/show_package_status | YES | YES |

| statement/sql/show_plugins | YES | YES |

| statement/sql/show_privileges | YES | YES |

| statement/sql/show_procedure_status | YES | YES |

| statement/sql/show_processlist | YES | YES |

| statement/sql/show_profile | YES | YES |

| statement/sql/show_profiles | YES | YES |

| statement/sql/show_relaylog_events | YES | YES |

| statement/sql/show_slave_hosts | YES | YES |

| statement/sql/show_slave_status | YES | YES |

| statement/sql/show_status | YES | YES |

| statement/sql/show_storage_engines | YES | YES |

| statement/sql/show_tables | YES | YES |

| statement/sql/show_table_status | YES | YES |

| statement/sql/show_triggers | YES | YES |

| statement/sql/show_variables | YES | YES |

| statement/sql/show_warnings | YES | YES |

| statement/sql/shutdown | YES | YES |

| statement/sql/signal | YES | YES |

| statement/sql/start_all_slaves | YES | YES |

| statement/sql/start_slave | YES | YES |

| statement/sql/stop_all_slaves | YES | YES |

| statement/sql/stop_slave | YES | YES |

| statement/sql/truncate | YES | YES |

| statement/sql/uninstall_plugin | YES | YES |

| statement/sql/unlock_tables | YES | YES |

| statement/sql/update | YES | YES |

| statement/sql/update_multi | YES | YES |

| statement/sql/xa_commit | YES | YES |

| statement/sql/xa_end | YES | YES |

| statement/sql/xa_prepare | YES | YES |

| statement/sql/xa_recover | YES | YES |

| statement/sql/xa_rollback | YES | YES |

| statement/sql/xa_start | YES | YES |

| transaction | NO | NO |

| wait/io/file/aria/control | YES | YES |

| wait/io/file/aria/MAD | YES | YES |

| wait/io/file/aria/MAI | YES | YES |

| wait/io/file/aria/translog | YES | YES |

| wait/io/file/csv/data | YES | YES |

| wait/io/file/csv/metadata | YES | YES |

| wait/io/file/csv/update | YES | YES |

| wait/io/file/innodb/innodb_data_file | YES | YES |

| wait/io/file/innodb/innodb_log_file | YES | YES |

| wait/io/file/innodb/innodb_temp_file | YES | YES |
459/4161

| wait/io/file/myisam/data_tmp | YES | YES |

| wait/io/file/myisam/dfile | YES | YES |

| wait/io/file/myisam/kfile | YES | YES |

| wait/io/file/myisam/log | YES | YES |

| wait/io/file/myisammrg/MRG | YES | YES |

| wait/io/file/mysys/charset | YES | YES |

| wait/io/file/mysys/cnf | YES | YES |

| wait/io/file/partition/ha_partition::parfile | YES | YES |

| wait/io/file/sql/binlog | YES | YES |

| wait/io/file/sql/binlog_cache | YES | YES |

| wait/io/file/sql/binlog_index | YES | YES |

| wait/io/file/sql/binlog_index_cache | YES | YES |

| wait/io/file/sql/binlog_state | YES | YES |

| wait/io/file/sql/casetest | YES | YES |

| wait/io/file/sql/dbopt | YES | YES |

| wait/io/file/sql/des_key_file | YES | YES |

| wait/io/file/sql/ERRMSG | YES | YES |

| wait/io/file/sql/file_parser | YES | YES |

| wait/io/file/sql/FRM | YES | YES |

| wait/io/file/sql/global_ddl_log | YES | YES |

| wait/io/file/sql/init | YES | YES |

| wait/io/file/sql/io_cache | YES | YES |

| wait/io/file/sql/load | YES | YES |

| wait/io/file/sql/LOAD_FILE | YES | YES |

| wait/io/file/sql/log_event_data | YES | YES |

| wait/io/file/sql/log_event_info | YES | YES |

| wait/io/file/sql/map | YES | YES |

| wait/io/file/sql/master_info | YES | YES |

| wait/io/file/sql/misc | YES | YES |

| wait/io/file/sql/partition_ddl_log | YES | YES |

| wait/io/file/sql/pid | YES | YES |

| wait/io/file/sql/query_log | YES | YES |

| wait/io/file/sql/relaylog | YES | YES |

| wait/io/file/sql/relaylog_cache | YES | YES |

| wait/io/file/sql/relaylog_index | YES | YES |

| wait/io/file/sql/relaylog_index_cache | YES | YES |

| wait/io/file/sql/relay_log_info | YES | YES |

| wait/io/file/sql/select_to_file | YES | YES |

| wait/io/file/sql/send_file | YES | YES |

| wait/io/file/sql/slow_log | YES | YES |

| wait/io/file/sql/tclog | YES | YES |

| wait/io/file/sql/trigger | YES | YES |

| wait/io/file/sql/trigger_name | YES | YES |

| wait/io/file/sql/wsrep_gra_log | YES | YES |

| wait/io/socket/sql/client_connection | NO | NO |

| wait/io/socket/sql/server_tcpip_socket | NO | NO |

| wait/io/socket/sql/server_unix_socket | NO | NO |

| wait/io/table/sql/handler | YES | YES |

| wait/lock/metadata/sql/mdl | NO | NO |

| wait/lock/table/sql/handler | YES | YES |

| wait/synch/cond/aria/BITMAP::bitmap_cond | NO | NO |

| wait/synch/cond/aria/COND_soft_sync | NO | NO |

| wait/synch/cond/aria/SERVICE_THREAD_CONTROL::COND_control | NO | NO |

| wait/synch/cond/aria/SHARE::key_del_cond | NO | NO |

| wait/synch/cond/aria/SORT_INFO::cond | NO | NO |

| wait/synch/cond/aria/TRANSLOG_BUFFER::prev_sent_to_disk_cond | NO | NO |

| wait/synch/cond/aria/TRANSLOG_BUFFER::waiting_filling_buffer | NO | NO |

| wait/synch/cond/aria/TRANSLOG_DESCRIPTOR::log_flush_cond | NO | NO |

| wait/synch/cond/aria/TRANSLOG_DESCRIPTOR::new_goal_cond | NO | NO |

| wait/synch/cond/innodb/commit_cond | NO | NO |

| wait/synch/cond/myisam/MI_SORT_INFO::cond | NO | NO |

| wait/synch/cond/mysys/COND_alarm | NO | NO |

| wait/synch/cond/mysys/COND_timer | NO | NO |

| wait/synch/cond/mysys/IO_CACHE_SHARE::cond | NO | NO |

| wait/synch/cond/mysys/IO_CACHE_SHARE::cond_writer | NO | NO |

| wait/synch/cond/mysys/my_thread_var::suspend | NO | NO |

| wait/synch/cond/mysys/THR_COND_threads | NO | NO |

| wait/synch/cond/mysys/WT_RESOURCE::cond | NO | NO |

| wait/synch/cond/sql/Ack_receiver::cond | NO | NO |

| wait/synch/cond/sql/COND_binlog_send | NO | NO |

| wait/synch/cond/sql/COND_flush_thread_cache | NO | NO |

| wait/synch/cond/sql/COND_group_commit_orderer | NO | NO |

| wait/synch/cond/sql/COND_gtid_ignore_duplicates | NO | NO |

| wait/synch/cond/sql/COND_manager | NO | NO |

| wait/synch/cond/sql/COND_parallel_entry | NO | NO |
460/4161

| wait/synch/cond/sql/COND_parallel_entry | NO | NO |

| wait/synch/cond/sql/COND_prepare_ordered | NO | NO |

| wait/synch/cond/sql/COND_queue_state | NO | NO |

| wait/synch/cond/sql/COND_rpl_thread | NO | NO |

| wait/synch/cond/sql/COND_rpl_thread_pool | NO | NO |

| wait/synch/cond/sql/COND_rpl_thread_queue | NO | NO |

| wait/synch/cond/sql/COND_rpl_thread_stop | NO | NO |

| wait/synch/cond/sql/COND_server_started | NO | NO |

| wait/synch/cond/sql/COND_slave_background | NO | NO |

| wait/synch/cond/sql/COND_start_thread | NO | NO |

| wait/synch/cond/sql/COND_thread_cache | NO | NO |

| wait/synch/cond/sql/COND_wait_gtid | NO | NO |

| wait/synch/cond/sql/COND_wsrep_donor_monitor | NO | NO |

| wait/synch/cond/sql/COND_wsrep_gtid_wait_upto | NO | NO |

| wait/synch/cond/sql/COND_wsrep_joiner_monitor | NO | NO |

| wait/synch/cond/sql/COND_wsrep_ready | NO | NO |

| wait/synch/cond/sql/COND_wsrep_replaying | NO | NO |

| wait/synch/cond/sql/COND_wsrep_sst | NO | NO |

| wait/synch/cond/sql/COND_wsrep_sst_init | NO | NO |

| wait/synch/cond/sql/COND_wsrep_wsrep_slave_threads | NO | NO |

| wait/synch/cond/sql/Delayed_insert::cond | NO | NO |

| wait/synch/cond/sql/Delayed_insert::cond_client | NO | NO |

| wait/synch/cond/sql/Event_scheduler::COND_state | NO | NO |

| wait/synch/cond/sql/Item_func_sleep::cond | NO | NO |

| wait/synch/cond/sql/Master_info::data_cond | NO | NO |

| wait/synch/cond/sql/Master_info::sleep_cond | NO | NO |

| wait/synch/cond/sql/Master_info::start_cond | NO | NO |

| wait/synch/cond/sql/Master_info::stop_cond | NO | NO |

| wait/synch/cond/sql/MDL_context::COND_wait_status | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_binlog_background_thread | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_binlog_background_thread_end | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_bin_log_updated | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_queue_busy | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_relay_log_updated | NO | NO |

| wait/synch/cond/sql/MYSQL_BIN_LOG::COND_xid_list | NO | NO |

| wait/synch/cond/sql/MYSQL_RELAY_LOG::COND_bin_log_updated | NO | NO |

| wait/synch/cond/sql/MYSQL_RELAY_LOG::COND_queue_busy | NO | NO |

| wait/synch/cond/sql/MYSQL_RELAY_LOG::COND_relay_log_updated | NO | NO |

| wait/synch/cond/sql/PAGE::cond | NO | NO |

| wait/synch/cond/sql/Query_cache::COND_cache_status_changed | NO | NO |

| wait/synch/cond/sql/Relay_log_info::data_cond | NO | NO |

| wait/synch/cond/sql/Relay_log_info::log_space_cond | NO | NO |

| wait/synch/cond/sql/Relay_log_info::start_cond | NO | NO |

| wait/synch/cond/sql/Relay_log_info::stop_cond | NO | NO |

| wait/synch/cond/sql/Rpl_group_info::sleep_cond | NO | NO |

| wait/synch/cond/sql/show_explain | NO | NO |

| wait/synch/cond/sql/TABLE_SHARE::cond | NO | NO |

| wait/synch/cond/sql/TABLE_SHARE::COND_rotation | NO | NO |

| wait/synch/cond/sql/TABLE_SHARE::tdc.COND_release | NO | NO |

| wait/synch/cond/sql/TC_LOG_MMAP::COND_active | NO | NO |

| wait/synch/cond/sql/TC_LOG_MMAP::COND_pool | NO | NO |

| wait/synch/cond/sql/TC_LOG_MMAP::COND_queue_busy | NO | NO |

| wait/synch/cond/sql/THD::COND_wakeup_ready | NO | NO |

| wait/synch/cond/sql/THD::COND_wsrep_thd | NO | NO |

| wait/synch/cond/sql/User_level_lock::cond | NO | NO |

| wait/synch/cond/sql/wait_for_commit::COND_wait_commit | NO | NO |

| wait/synch/cond/sql/wsrep_sst_thread | NO | NO |

| wait/synch/mutex/aria/LOCK_soft_sync | NO | NO |

| wait/synch/mutex/aria/LOCK_trn_list | NO | NO |

| wait/synch/mutex/aria/PAGECACHE::cache_lock | NO | NO |

| wait/synch/mutex/aria/SERVICE_THREAD_CONTROL::LOCK_control | NO | NO |

| wait/synch/mutex/aria/SHARE::bitmap::bitmap_lock | NO | NO |

| wait/synch/mutex/aria/SHARE::close_lock | NO | NO |

| wait/synch/mutex/aria/SHARE::intern_lock | NO | NO |

| wait/synch/mutex/aria/SHARE::key_del_lock | NO | NO |

| wait/synch/mutex/aria/SORT_INFO::mutex | NO | NO |

| wait/synch/mutex/aria/THR_LOCK_maria | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_BUFFER::mutex | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::dirty_buffer_mask_lock | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::file_header_lock | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::log_flush_lock | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::purger_lock | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::sent_to_disk_lock | NO | NO |

| wait/synch/mutex/aria/TRANSLOG_DESCRIPTOR::unfinished_files_lock | NO | NO |

| wait/synch/mutex/aria/TRN::state_lock | NO | NO |

| wait/synch/mutex/csv/tina | NO | NO |
461/4161

| wait/synch/mutex/csv/tina | NO | NO |

| wait/synch/mutex/csv/TINA_SHARE::mutex | NO | NO |

| wait/synch/mutex/innodb/buf_dblwr_mutex | NO | NO |

| wait/synch/mutex/innodb/buf_pool_mutex | NO | NO |

| wait/synch/mutex/innodb/commit_cond_mutex | NO | NO |

| wait/synch/mutex/innodb/dict_foreign_err_mutex | NO | NO |

| wait/synch/mutex/innodb/dict_sys_mutex | NO | NO |

| wait/synch/mutex/innodb/fil_system_mutex | NO | NO |

| wait/synch/mutex/innodb/flush_list_mutex | NO | NO |

| wait/synch/mutex/innodb/fts_delete_mutex | NO | NO |

| wait/synch/mutex/innodb/fts_doc_id_mutex | NO | NO |

| wait/synch/mutex/innodb/ibuf_bitmap_mutex | NO | NO |

| wait/synch/mutex/innodb/ibuf_mutex | NO | NO |

| wait/synch/mutex/innodb/ibuf_pessimistic_insert_mutex | NO | NO |

| wait/synch/mutex/innodb/lock_mutex | NO | NO |

| wait/synch/mutex/innodb/lock_wait_mutex | NO | NO |

| wait/synch/mutex/innodb/log_flush_order_mutex | NO | NO |

| wait/synch/mutex/innodb/log_sys_mutex | NO | NO |

| wait/synch/mutex/innodb/noredo_rseg_mutex | NO | NO |

| wait/synch/mutex/innodb/page_zip_stat_per_index_mutex | NO | NO |

| wait/synch/mutex/innodb/pending_checkpoint_mutex | NO | NO |

| wait/synch/mutex/innodb/purge_sys_pq_mutex | NO | NO |

| wait/synch/mutex/innodb/recalc_pool_mutex | NO | NO |

| wait/synch/mutex/innodb/recv_sys_mutex | NO | NO |

| wait/synch/mutex/innodb/redo_rseg_mutex | NO | NO |

| wait/synch/mutex/innodb/rtr_active_mutex | NO | NO |

| wait/synch/mutex/innodb/rtr_match_mutex | NO | NO |

| wait/synch/mutex/innodb/rtr_path_mutex | NO | NO |

| wait/synch/mutex/innodb/rw_lock_list_mutex | NO | NO |

| wait/synch/mutex/innodb/srv_innodb_monitor_mutex | NO | NO |

| wait/synch/mutex/innodb/srv_misc_tmpfile_mutex | NO | NO |

| wait/synch/mutex/innodb/srv_monitor_file_mutex | NO | NO |

| wait/synch/mutex/innodb/srv_threads_mutex | NO | NO |

| wait/synch/mutex/innodb/trx_mutex | NO | NO |

| wait/synch/mutex/innodb/trx_pool_manager_mutex | NO | NO |

| wait/synch/mutex/innodb/trx_pool_mutex | NO | NO |

| wait/synch/mutex/innodb/trx_sys_mutex | NO | NO |

| wait/synch/mutex/myisam/MI_CHECK::print_msg | NO | NO |

| wait/synch/mutex/myisam/MI_SORT_INFO::mutex | NO | NO |

| wait/synch/mutex/myisam/MYISAM_SHARE::intern_lock | NO | NO |

| wait/synch/mutex/myisammrg/MYRG_INFO::mutex | NO | NO |

| wait/synch/mutex/mysys/BITMAP::mutex | NO | NO |

| wait/synch/mutex/mysys/IO_CACHE::append_buffer_lock | NO | NO |

| wait/synch/mutex/mysys/IO_CACHE::SHARE_mutex | NO | NO |

| wait/synch/mutex/mysys/KEY_CACHE::cache_lock | NO | NO |

| wait/synch/mutex/mysys/LOCK_alarm | NO | NO |

| wait/synch/mutex/mysys/LOCK_timer | NO | NO |

| wait/synch/mutex/mysys/LOCK_uuid_generator | NO | NO |

| wait/synch/mutex/mysys/my_thread_var::mutex | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK::mutex | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_charset | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_heap | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_lock | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_malloc | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_myisam | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_myisam_mmap | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_net | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_open | NO | NO |

| wait/synch/mutex/mysys/THR_LOCK_threads | NO | NO |

| wait/synch/mutex/mysys/TMPDIR_mutex | NO | NO |

| wait/synch/mutex/partition/Partition_share::auto_inc_mutex | NO | NO |

| wait/synch/mutex/sql/Ack_receiver::mutex | NO | NO |

| wait/synch/mutex/sql/Cversion_lock | NO | NO |

| wait/synch/mutex/sql/Delayed_insert::mutex | NO | NO |

| wait/synch/mutex/sql/Event_scheduler::LOCK_scheduler_state | NO | NO |

| wait/synch/mutex/sql/gtid_waiting::LOCK_gtid_waiting | NO | NO |

| wait/synch/mutex/sql/hash_filo::lock | NO | NO |

| wait/synch/mutex/sql/HA_DATA_PARTITION::LOCK_auto_inc | NO | NO |

| wait/synch/mutex/sql/LOCK_active_mi | NO | NO |

| wait/synch/mutex/sql/LOCK_after_binlog_sync | NO | NO |

| wait/synch/mutex/sql/LOCK_audit_mask | NO | NO |

| wait/synch/mutex/sql/LOCK_binlog | NO | NO |

| wait/synch/mutex/sql/LOCK_binlog_state | NO | NO |

| wait/synch/mutex/sql/LOCK_commit_ordered | NO | NO |

| wait/synch/mutex/sql/LOCK_crypt | NO | NO |

| wait/synch/mutex/sql/LOCK_delayed_create | NO | NO |
462/4161

| wait/synch/mutex/sql/LOCK_delayed_create | NO | NO |

| wait/synch/mutex/sql/LOCK_delayed_insert | NO | NO |

| wait/synch/mutex/sql/LOCK_delayed_status | NO | NO |

| wait/synch/mutex/sql/LOCK_des_key_file | NO | NO |

| wait/synch/mutex/sql/LOCK_error_log | NO | NO |

| wait/synch/mutex/sql/LOCK_error_messages | NO | NO |

| wait/synch/mutex/sql/LOCK_event_queue | NO | NO |

| wait/synch/mutex/sql/LOCK_gdl | NO | NO |

| wait/synch/mutex/sql/LOCK_global_index_stats | NO | NO |

| wait/synch/mutex/sql/LOCK_global_system_variables | NO | NO |

| wait/synch/mutex/sql/LOCK_global_table_stats | NO | NO |

| wait/synch/mutex/sql/LOCK_global_user_client_stats | NO | NO |

| wait/synch/mutex/sql/LOCK_item_func_sleep | NO | NO |

| wait/synch/mutex/sql/LOCK_load_client_plugin | NO | NO |

| wait/synch/mutex/sql/LOCK_manager | NO | NO |

| wait/synch/mutex/sql/LOCK_parallel_entry | NO | NO |

| wait/synch/mutex/sql/LOCK_plugin | NO | NO |

| wait/synch/mutex/sql/LOCK_prepared_stmt_count | NO | NO |

| wait/synch/mutex/sql/LOCK_prepare_ordered | NO | NO |

| wait/synch/mutex/sql/LOCK_rpl_semi_sync_master_enabled | NO | NO |

| wait/synch/mutex/sql/LOCK_rpl_status | NO | NO |

| wait/synch/mutex/sql/LOCK_rpl_thread | NO | NO |

| wait/synch/mutex/sql/LOCK_rpl_thread_pool | NO | NO |

| wait/synch/mutex/sql/LOCK_server_started | NO | NO |

| wait/synch/mutex/sql/LOCK_slave_background | NO | NO |

| wait/synch/mutex/sql/LOCK_slave_state | NO | NO |

| wait/synch/mutex/sql/LOCK_start_thread | NO | NO |

| wait/synch/mutex/sql/LOCK_stats | NO | NO |

| wait/synch/mutex/sql/LOCK_status | NO | NO |

| wait/synch/mutex/sql/LOCK_system_variables_hash | NO | NO |

| wait/synch/mutex/sql/LOCK_table_cache | NO | NO |

| wait/synch/mutex/sql/LOCK_thread_cache | NO | NO |

| wait/synch/mutex/sql/LOCK_thread_id | NO | NO |

| wait/synch/mutex/sql/LOCK_unused_shares | NO | NO |

| wait/synch/mutex/sql/LOCK_user_conn | NO | NO |

| wait/synch/mutex/sql/LOCK_uuid_short_generator | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_cluster_config | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_config_state | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_desync | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_donor_monitor | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_group_commit | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_gtid_wait_upto | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_joiner_monitor | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_ready | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_replaying | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_slave_threads | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_SR_pool | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_SR_store | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_sst | NO | NO |

| wait/synch/mutex/sql/LOCK_wsrep_sst_init | NO | NO |

| wait/synch/mutex/sql/LOG::LOCK_log | NO | NO |

| wait/synch/mutex/sql/Master_info::data_lock | NO | NO |

| wait/synch/mutex/sql/Master_info::run_lock | NO | NO |

| wait/synch/mutex/sql/Master_info::sleep_lock | NO | NO |

| wait/synch/mutex/sql/Master_info::start_stop_lock | NO | NO |

| wait/synch/mutex/sql/MDL_wait::LOCK_wait_status | NO | NO |

| wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_binlog_background_thread | NO | NO |

| wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_binlog_end_pos | NO | NO |

| wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_index | NO | NO |

| wait/synch/mutex/sql/MYSQL_BIN_LOG::LOCK_xid_list | NO | NO |

| wait/synch/mutex/sql/MYSQL_RELAY_LOG::LOCK_binlog_end_pos | NO | NO |

| wait/synch/mutex/sql/MYSQL_RELAY_LOG::LOCK_index | NO | NO |

| wait/synch/mutex/sql/PAGE::lock | NO | NO |

| wait/synch/mutex/sql/Query_cache::structure_guard_mutex | NO | NO |

| wait/synch/mutex/sql/Relay_log_info::data_lock | NO | NO |

| wait/synch/mutex/sql/Relay_log_info::log_space_lock | NO | NO |

| wait/synch/mutex/sql/Relay_log_info::run_lock | NO | NO |

| wait/synch/mutex/sql/Rpl_group_info::sleep_lock | NO | NO |

| wait/synch/mutex/sql/Slave_reporting_capability::err_lock | NO | NO |

| wait/synch/mutex/sql/TABLE_SHARE::LOCK_ha_data | NO | NO |

| wait/synch/mutex/sql/TABLE_SHARE::LOCK_rotation | NO | NO |

| wait/synch/mutex/sql/TABLE_SHARE::LOCK_share | NO | NO |

| wait/synch/mutex/sql/TABLE_SHARE::tdc.LOCK_table_share | NO | NO |

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_active | NO | NO |

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_pending_checkpoint | NO | NO |

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_pool | NO | NO |463/4161

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_pool | NO | NO |

| wait/synch/mutex/sql/TC_LOG_MMAP::LOCK_sync | NO | NO |

| wait/synch/mutex/sql/THD::LOCK_thd_data | NO | NO |

| wait/synch/mutex/sql/THD::LOCK_thd_kill | NO | NO |

| wait/synch/mutex/sql/THD::LOCK_wakeup_ready | NO | NO |

| wait/synch/mutex/sql/tz_LOCK | NO | NO |

| wait/synch/mutex/sql/wait_for_commit::LOCK_wait_commit | NO | NO |

| wait/synch/mutex/sql/wsrep_sst_thread | NO | NO |

| wait/synch/rwlock/aria/KEYINFO::root_lock | NO | NO |

| wait/synch/rwlock/aria/SHARE::mmap_lock | NO | NO |

| wait/synch/rwlock/aria/TRANSLOG_DESCRIPTOR::open_files_lock | NO | NO |

| wait/synch/rwlock/myisam/MYISAM_SHARE::key_root_lock | NO | NO |

| wait/synch/rwlock/myisam/MYISAM_SHARE::mmap_lock | NO | NO |

| wait/synch/rwlock/mysys/SAFE_HASH::mutex | NO | NO |

| wait/synch/rwlock/proxy_proto/rwlock | NO | NO |

| wait/synch/rwlock/sql/CRYPTO_dynlock_value::lock | NO | NO |

| wait/synch/rwlock/sql/LOCK_all_status_vars | NO | NO |

| wait/synch/rwlock/sql/LOCK_dboptions | NO | NO |

| wait/synch/rwlock/sql/LOCK_grant | NO | NO |

| wait/synch/rwlock/sql/LOCK_SEQUENCE | NO | NO |

| wait/synch/rwlock/sql/LOCK_ssl_refresh | NO | NO |

| wait/synch/rwlock/sql/LOCK_system_variables_hash | NO | NO |

| wait/synch/rwlock/sql/LOCK_sys_init_connect | NO | NO |

| wait/synch/rwlock/sql/LOCK_sys_init_slave | NO | NO |

| wait/synch/rwlock/sql/LOGGER::LOCK_logger | NO | NO |

| wait/synch/rwlock/sql/MDL_context::LOCK_waiting_for | NO | NO |

| wait/synch/rwlock/sql/MDL_lock::rwlock | NO | NO |

| wait/synch/rwlock/sql/Query_cache_query::lock | NO | NO |

| wait/synch/rwlock/sql/TABLE_SHARE::LOCK_stat_serial | NO | NO |

| wait/synch/rwlock/sql/THD_list::lock | NO | NO |

| wait/synch/rwlock/sql/THR_LOCK_servers | NO | NO |

| wait/synch/rwlock/sql/THR_LOCK_udf | NO | NO |

| wait/synch/rwlock/sql/Vers_field_stats::lock | NO | NO |

| wait/synch/sxlock/innodb/btr_search_latch | NO | NO |

| wait/synch/sxlock/innodb/dict_operation_lock | NO | NO |

| wait/synch/sxlock/innodb/fil_space_latch | NO | NO |

| wait/synch/sxlock/innodb/fts_cache_init_rw_lock | NO | NO |

| wait/synch/sxlock/innodb/fts_cache_rw_lock | NO | NO |

| wait/synch/sxlock/innodb/index_online_log | NO | NO |

| wait/synch/sxlock/innodb/index_tree_rw_lock | NO | NO |

| wait/synch/sxlock/innodb/trx_i_s_cache_lock | NO | NO |

| wait/synch/sxlock/innodb/trx_purge_latch | NO | NO |

+--+---------+-------+

996 rows in set (0.005 sec)

1.1.1.2.9.2.1.67 Performance Schema
setup_objects Table

Description
The setup_objects table determines whether objects are monitored by the performance schema or not. By default limited

to 100 rows, this can be changed by setting the performance_schema_setup_objects_size system variable when the server

starts.

It contains the following columns:

Column Description

OBJECT_TYPE Type of object to instrument, currently only . Currently, only TABLE' , for base table.

OBJECT_SCHEMA Schema containing the object, either the literal or % for any schema.

OBJECT_NAME Name of the instrumented object, either the literal or % for any object.

ENABLED
Whether the object's events are instrumented or not. Can be disabled, in which case monitoring is not

enabled for those objects.

TIMED Whether the object's events are timed or not. Can be modified.

464/4161

When the Performance Schema looks for matches in the setup_objects , there may be more than one row matching, with

different ENABLED and TIMED values. It looks for the most specific matches first, that is, it will first look for the specific

database and table name combination, then the specific database, only then falling back to a wildcard for both.

Rows can be added or removed from the table, while for existing rows, only the TIMED and ENABLED columns can be

updated. By default, all tables except those in the performance_schema , information_schema and mysql databases

are instrumented.

1.1.1.2.9.2.1.68 Performance Schema
setup_timers Table

Description
The setup_timers table shows the currently selected event timers.

It contains the following columns:

Column Description

NAME Type of instrument the timer is used for.

TIMER_NAME Timer applying to the instrument type. Can be modified.

The TIMER_NAME value can be changed to choose a different timer, and can be any non-NULL value in the

performance_timers.TIMER_NAME column.

If you modify the table, monitoring is immediately affected, and currently monitored events would use a combination of old

and new timers, which is probably undesirable. It is best to reset the Performance Schema statistics if you make changes to

this table.

Example

SELECT * FROM setup_timers;

+-----------+-------------+

| NAME | TIMER_NAME |

+-----------+-------------+

| idle | MICROSECOND |

| wait | CYCLE |

| stage | NANOSECOND |

| statement | NANOSECOND |

+-----------+-------------+

1.1.1.2.9.2.1.69 Performance Schema
socket_instances Table
The socket_instances table lists active server connections, with each record being a Unix socket file or TCP/IP

connection.

The socket_instances table contains the following columns:

Column Description

EVENT_NAME
NAME from the setup_instruments table, and the name of the wait/io/socket/*

instrument that produced the event.

OBJECT_INSTANCE_BEGIN Memory address of the object.

THREAD_ID
Thread identifier that the server assigns to each socket.

SOCKET_ID The socket's internal file handle.

IP
Client IP address. Blank for Unix socket file, otherwise an IPv4 or IPv6 address. Together

with the PORT identifies the connection.

PORT TCP/IP port number, from 0 to 65535. Together with the IP identifies the connection.

465/4161

STATE Socket status, either IDLE if waiting to receive a request from a client, or ACTIVE

1.1.1.2.9.2.1.70 Performance Schema
socket_summary_by_event_name Table
It aggregates timer and byte count statistics for all socket I/O operations by socket instrument.

Column Description

EVENT_NAME Socket instrument.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ Number of all read operations, including RECV , RECVFROM , and RECVMSG .

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

SUM_NUMBER_OF_BYTES_READ Bytes read by read operations.

COUNT_WRITE Number of all write operations, including SEND , SENDTO , and SENDMSG .

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

SUM_NUMBER_OF_BYTES_WRITE Bytes written by write operations.

COUNT_MISC
Number of all miscellaneous operations not counted above, including CONNECT ,

LISTEN , ACCEPT , CLOSE , and SHUTDOWN .

SUM_TIMER_MISC Total wait time of all miscellaneous operations that are timed.

MIN_TIMER_MISC Minimum wait time of all miscellaneous operations that are timed.

AVG_TIMER_MISC Average wait time of all miscellaneous operations that are timed.

MAX_TIMER_MISC Maximum wait time of all miscellaneous operations that are timed.

You can TRUNCATE the table, which will reset all counters to zero.

Example

466/4161

SELECT * FROM socket_summary_by_event_name\G

*************************** 1. row ***************************

 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 COUNT_READ: 0

 SUM_TIMER_READ: 0

 MIN_TIMER_READ: 0

 AVG_TIMER_READ: 0

 MAX_TIMER_READ: 0

 SUM_NUMBER_OF_BYTES_READ: 0

 COUNT_WRITE: 0

 SUM_TIMER_WRITE: 0

 MIN_TIMER_WRITE: 0

 AVG_TIMER_WRITE: 0

 MAX_TIMER_WRITE: 0

SUM_NUMBER_OF_BYTES_WRITE: 0

 COUNT_MISC: 0

 SUM_TIMER_MISC: 0

 MIN_TIMER_MISC: 0

 AVG_TIMER_MISC: 0

 MAX_TIMER_MISC: 0

*************************** 2. row ***************************

 EVENT_NAME: wait/io/socket/sql/server_unix_socket

 COUNT_STAR: 0

 SUM_TIMER_WAIT: 0

 MIN_TIMER_WAIT: 0

 AVG_TIMER_WAIT: 0

 MAX_TIMER_WAIT: 0

 COUNT_READ: 0

 SUM_TIMER_READ: 0

 MIN_TIMER_READ: 0

 AVG_TIMER_READ: 0

 MAX_TIMER_READ: 0

 SUM_NUMBER_OF_BYTES_READ: 0

 COUNT_WRITE: 0

 SUM_TIMER_WRITE: 0

 MIN_TIMER_WRITE: 0

 AVG_TIMER_WRITE: 0

 MAX_TIMER_WRITE: 0

SUM_NUMBER_OF_BYTES_WRITE: 0

 COUNT_MISC: 0

 SUM_TIMER_MISC: 0

 MIN_TIMER_MISC: 0

 AVG_TIMER_MISC: 0

 MAX_TIMER_MISC: 0

...

1.1.1.2.9.2.1.71 Performance Schema
socket_summary_by_instance Table
It aggregates timer and byte count statistics for all socket I/O operations by socket instance.

Column Description

EVENT_NAME Socket instrument.

OBJECT_INSTANCE_BEGIN Address in memory.

COUNT_STAR Number of summarized events

SUM_TIMER_WAIT
Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

467/4161

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ Number of all read operations, including RECV , RECVFROM , and RECVMSG .

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

SUM_NUMBER_OF_BYTES_READ Bytes read by read operations.

COUNT_WRITE Number of all write operations, including SEND , SENDTO , and SENDMSG .

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

SUM_NUMBER_OF_BYTES_WRITE Bytes written by write operations.

COUNT_MISC
Number of all miscellaneous operations not counted above, including CONNECT ,

LISTEN , ACCEPT , CLOSE , and SHUTDOWN .

SUM_TIMER_MISC Total wait time of all miscellaneous operations that are timed.

MIN_TIMER_MISC Minimum wait time of all miscellaneous operations that are timed.

AVG_TIMER_MISC Average wait time of all miscellaneous operations that are timed.

MAX_TIMER_MISC Maximum wait time of all miscellaneous operations that are timed.

The corresponding row in the table is deleted when a connection terminates.

You can TRUNCATE the table, which will reset all counters to zero.

1.1.1.2.9.2.1.72 Performance Schema
status_by_account Table

The status_by_account table was added in MariaDB 10.5.2.

The status_by_account table contains status variable information by user/host account. The table does not collect

statistics for Com_xxx variables.

The table contains the following columns:

Column Description

USER User for which the status variable is reported.

HOST Host for which the status variable is reported.

VARIABLE_NAME Status variable name.

VARIABLE_VALUE Aggregated status variable value

If TRUNCATE TABLE is run, will aggregate the status from terminated sessions to user and host status, then reset the

account status.

If FLUSH STATUS is run, session status from all active sessions are added to the global status variables, the status of all

active sessions are reset, and values aggregated from disconnected sessions are reset.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.73 Performance Schema
status_by_host Table

468/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/flush-status

The status_by_host table was added in MariaDB 10.5.2.

The status_by_host table contains status variable information by host. The table does not collect statistics for Com_xxx

variables.

The table contains the following columns:

Column Description

HOST Host for which the status variable is reported.

VARIABLE_NAME Status variable name.

VARIABLE_VALUE Aggregated status variable value

If TRUNCATE TABLE is run, will reset the aggregated host status from terminated sessions.

If FLUSH STATUS is run, session status from all active sessions are added to the global status variables, the status of all

active sessions are reset, and values aggregated from disconnected sessions are reset.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.74 Performance Schema
status_by_thread Table

The session_status table was added in MariaDB 10.5.2.

The status_by_thread table contains status variable information about active foreground threads. The table does not

collect statistics for Com_xxx variables.

The table contains the following columns:

Column Description

THREAD_ID The thread identifier of the session in which the status variable is defined.

VARIABLE_NAME Status variable name.

VARIABLE_VALUE Aggregated status variable value.

If TRUNCATE TABLE is run, will aggregate the status for all threads to the global status and account status, then reset the

thread status. If account statistics are not collected but host and user status are, the session status is added to host and

user status.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.75 Performance Schema
status_by_user Table

The status_by_account table was added in MariaDB 10.5.2.

The status_by_account table contains status variable information by user. The table does not collect statistics for

Com_xxx variables.

The table contains the following columns:

Column Description

USER User for which the status variable is reported.

VARIABLE_NAME Status variable name.

VARIABLE_VALUE Aggregated status variable value

If TRUNCATE TABLE is run, will reset the aggregated user status from terminated sessions.

If FLUSH STATUS is run, session status from all active sessions are added to the global status variables, the status of all

active sessions are reset, and values aggregated from disconnected sessions are reset.

MariaDB starting with 10.5.2

469/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/flush-status
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/flush-status

1.1.1.2.9.2.1.76 Performance Schema
table_handles Table

The table_handles table was added in MariaDB 10.5.2.

The table_handles table contains table lock information. It uses the wait/lock/table/sql/handler instrument,

which is enabled by default.

Information includes which table handles are open, which sessions are holding the locks, and how they are locked.

The table is read-only, and TRUNCATE TABLE cannot be performed on the table.

The maximum number of opened table objects is determined by the performance_schema_max_table_handles system

variable.

The table contains the following columns:

Column Description

OBJECT_TYPE The table opened by a table handle.

OBJECT_SCHEMA The schema that contains the object.

OBJECT_NAME The name of the instrumented object.

OBJECT_INSTANCE_BEGIN The table handle address in memory.

OWNER_THREAD_ID The thread owning the table handle.

OWNER_EVENT_ID The event which caused the table handle to be opened.

INTERNAL_LOCK The table lock used at the SQL level.

EXTERNAL_LOCK The table lock used at the storage engine level.

MariaDB starting with 10.5.2

1.1.1.2.9.2.1.77 Performance Schema
table_io_waits_summary_by_index_usage
Table
The table_io_waits_summary_by_index_usage table records table I/O waits by index.

Column Description

OBJECT_TYPE TABLE in the case of all indexes.

OBJECT_SCHEMA Schema name.

OBJECT_NAME Table name.

INDEX_NAME
Index name, or PRIMARY for the primary index, NULL for no index (inserts are counted in this

case).

COUNT_STAR Number of summarized events and the sum of the x_READ and x_WRITE columns.

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ Number of all read operations, and the sum of the equivalent x_FETCH columns.

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

470/4161

COUNT_WRITE
Number of all write operations, and the sum of the equivalent x_INSERT , x_UPDATE and

x_DELETE columns.

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

COUNT_FETCH Number of all fetch operations.

SUM_TIMER_FETCH Total wait time of all fetch operations that are timed.

MIN_TIMER_FETCH Minimum wait time of all fetch operations that are timed.

AVG_TIMER_FETCH Average wait time of all fetch operations that are timed.

MAX_TIMER_FETCH Maximum wait time of all fetch operations that are timed.

COUNT_INSERT Number of all insert operations.

SUM_TIMER_INSERT Total wait time of all insert operations that are timed.

MIN_TIMER_INSERT Minimum wait time of all insert operations that are timed.

AVG_TIMER_INSERT Average wait time of all insert operations that are timed.

MAX_TIMER_INSERT Maximum wait time of all insert operations that are timed.

COUNT_UPDATE Number of all update operations.

SUM_TIMER_UPDATE Total wait time of all update operations that are timed.

MIN_TIMER_UPDATE Minimum wait time of all update operations that are timed.

AVG_TIMER_UPDATE Average wait time of all update operations that are timed.

MAX_TIMER_UPDATE Maximum wait time of all update operations that are timed.

COUNT_DELETE Number of all delete operations.

SUM_TIMER_DELETE Total wait time of all delete operations that are timed.

MIN_TIMER_DELETE Minimum wait time of all delete operations that are timed.

AVG_TIMER_DELETE Average wait time of all delete operations that are timed.

MAX_TIMER_DELETE Maximum wait time of all delete operations that are timed.

You can TRUNCATE the table, which will reset all counters to zero. The table is also truncated if the

table_io_waits_summary_by_table table is truncated.

If a table's index structure is changed, index statistics recorded in this table may also be reset.

1.1.1.2.9.2.1.78 Performance Schema
table_io_waits_summary_by_table Table
The table_io_waits_summary_by_table table records table I/O waits by table.

Column Description

OBJECT_TYPE Since this table records waits by table, always set to TABLE .

OBJECT_SCHEMA Schema name.

OBJECT_NAME Table name.

COUNT_STAR Number of summarized events and the sum of the x_READ and x_WRITE columns.

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

471/4161

COUNT_READ Number of all read operations, and the sum of the equivalent x_FETCH columns.

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

COUNT_WRITE
Number of all write operations, and the sum of the equivalent x_INSERT , x_UPDATE and

x_DELETE columns.

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

COUNT_FETCH Number of all fetch operations.

SUM_TIMER_FETCH Total wait time of all fetch operations that are timed.

MIN_TIMER_FETCH Minimum wait time of all fetch operations that are timed.

AVG_TIMER_FETCH Average wait time of all fetch operations that are timed.

MAX_TIMER_FETCH Maximum wait time of all fetch operations that are timed.

COUNT_INSERT Number of all insert operations.

SUM_TIMER_INSERT Total wait time of all insert operations that are timed.

MIN_TIMER_INSERT Minimum wait time of all insert operations that are timed.

AVG_TIMER_INSERT Average wait time of all insert operations that are timed.

MAX_TIMER_INSERT Maximum wait time of all insert operations that are timed.

COUNT_UPDATE Number of all update operations.

SUM_TIMER_UPDATE Total wait time of all update operations that are timed.

MIN_TIMER_UPDATE Minimum wait time of all update operations that are timed.

AVG_TIMER_UPDATE Average wait time of all update operations that are timed.

MAX_TIMER_UPDATE Maximum wait time of all update operations that are timed.

COUNT_DELETE Number of all delete operations.

SUM_TIMER_DELETE Total wait time of all delete operations that are timed.

MIN_TIMER_DELETE Minimum wait time of all delete operations that are timed.

AVG_TIMER_DELETE Average wait time of all delete operations that are timed.

MAX_TIMER_DELETE Maximum wait time of all delete operations that are timed.

You can TRUNCATE the table, which will reset all counters to zero. Truncating this table will also truncate the

table_io_waits_summary_by_index_usage table.

1.1.1.2.9.2.1.79 Performance Schema
table_lock_waits_summary_by_table Table
The table_lock_waits_summary_by_table table records table lock waits by table.

Column Description

OBJECT_TYPE Since this table records waits by table, always set to TABLE .

OBJECT_SCHEMA Schema name.

472/4161

OBJECT_NAME Table name.

COUNT_STAR
Number of summarized events and the sum of the x_READ and x_WRITE

columns.

SUM_TIMER_WAIT Total wait time of the summarized events that are timed.

MIN_TIMER_WAIT Minimum wait time of the summarized events that are timed.

AVG_TIMER_WAIT Average wait time of the summarized events that are timed.

MAX_TIMER_WAIT Maximum wait time of the summarized events that are timed.

COUNT_READ

Number of all read operations, and the sum of the equivalent

x_READ_NORMAL , x_READ_WITH_SHARED_LOCKS ,

x_READ_HIGH_PRIORITY and x_READ_NO_INSERT columns.

SUM_TIMER_READ Total wait time of all read operations that are timed.

MIN_TIMER_READ Minimum wait time of all read operations that are timed.

AVG_TIMER_READ Average wait time of all read operations that are timed.

MAX_TIMER_READ Maximum wait time of all read operations that are timed.

COUNT_WRITE

Number of all write operations, and the sum of the equivalent

x_WRITE_ALLOW_WRITE , x_WRITE_CONCURRENT_INSERT ,

x_WRITE_DELAYED , x_WRITE_LOW_PRIORITY and x_WRITE_NORMAL

columns.

SUM_TIMER_WRITE Total wait time of all write operations that are timed.

MIN_TIMER_WRITE Minimum wait time of all write operations that are timed.

AVG_TIMER_WRITE Average wait time of all write operations that are timed.

MAX_TIMER_WRITE Maximum wait time of all write operations that are timed.

COUNT_READ_NORMAL Number of all internal read normal locks.

SUM_TIMER_READ_NORMAL Total wait time of all internal read normal locks that are timed.

MIN_TIMER_READ_NORMAL Minimum wait time of all internal read normal locks that are timed.

AVG_TIMER_READ_NORMAL Average wait time of all internal read normal locks that are timed.

MAX_TIMER_READ_NORMAL Maximum wait time of all internal read normal locks that are timed.

COUNT_READ_WITH_SHARED_LOCKS Number of all internal read with shared locks.

SUM_TIMER_READ_WITH_SHARED_LOCKS Total wait time of all internal read with shared locks that are timed.

MIN_TIMER_READ_WITH_SHARED_LOCKS Minimum wait time of all internal read with shared locks that are timed.

AVG_TIMER_READ_WITH_SHARED_LOCKS Average wait time of all internal read with shared locks that are timed.

MAX_TIMER_READ_WITH_SHARED_LOCKS Maximum wait time of all internal read with shared locks that are timed.

COUNT_READ_HIGH_PRIORITY Number of all internal read high priority locks.

SUM_TIMER_READ_HIGH_PRIORITY Total wait time of all internal read high priority locks that are timed.

MIN_TIMER_READ_HIGH_PRIORITY Minimum wait time of all internal read high priority locks that are timed.

AVG_TIMER_READ_HIGH_PRIORITY Average wait time of all internal read high priority locks that are timed.

MAX_TIMER_READ_HIGH_PRIORITY Maximum wait time of all internal read high priority locks that are timed.

COUNT_READ_NO_INSERT Number of all internal read no insert locks.

SUM_TIMER_READ_NO_INSERT Total wait time of all internal read no insert locks that are timed.

MIN_TIMER_READ_NO_INSERT Minimum wait time of all internal read no insert locks that are timed.

AVG_TIMER_READ_NO_INSERT Average wait time of all internal read no insert locks that are timed.

MAX_TIMER_READ_NO_INSERT Maximum wait time of all internal read no insert locks that are timed.

COUNT_READ_EXTERNAL Number of all external read locks.

473/4161

SUM_TIMER_READ_EXTERNAL Total wait time of all external read locks that are timed.

MIN_TIMER_READ_EXTERNAL Minimum wait time of all external read locks that are timed.

AVG_TIMER_READ_EXTERNAL Average wait time of all external read locks that are timed.

MAX_TIMER_READ_EXTERNAL Maximum wait time of all external read locks that are timed.

COUNT_WRITE_ALLOW_WRITE Number of all internal read normal locks.

SUM_TIMER_WRITE_ALLOW_WRITE Total wait time of all internal write allow write locks that are timed.

MIN_TIMER_WRITE_ALLOW_WRITE Minimum wait time of all internal write allow write locks that are timed.

AVG_TIMER_WRITE_ALLOW_WRITE Average wait time of all internal write allow write locks that are timed.

MAX_TIMER_WRITE_ALLOW_WRITE Maximum wait time of all internal write allow write locks that are timed.

COUNT_WRITE_CONCURRENT_INSERT Number of all internal concurrent insert write locks.

SUM_TIMER_WRITE_CONCURRENT_INSERT Total wait time of all internal concurrent insert write locks that are timed.

MIN_TIMER_WRITE_CONCURRENT_INSERT Minimum wait time of all internal concurrent insert write locks that are timed.

AVG_TIMER_WRITE_CONCURRENT_INSERT Average wait time of all internal concurrent insert write locks that are timed.

MAX_TIMER_WRITE_CONCURRENT_INSERT Maximum wait time of all internal concurrent insert write locks that are timed.

COUNT_WRITE_DELAYED Number of all internal write delayed locks.

SUM_TIMER_WRITE_DELAYED Total wait time of all internal write delayed locks that are timed.

MIN_TIMER_WRITE_DELAYED Minimum wait time of all internal write delayed locks that are timed.

AVG_TIMER_WRITE_DELAYED Average wait time of all internal write delayed locks that are timed.

MAX_TIMER_WRITE_DELAYED Maximum wait time of all internal write delayed locks that are timed.

COUNT_WRITE_LOW_PRIORITY Number of all internal write low priority locks.

SUM_TIMER_WRITE_LOW_PRIORITY Total wait time of all internal write low priority locks that are timed.

MIN_TIMER_WRITE_LOW_PRIORITY Minimum wait time of all internal write low priority locks that are timed.

AVG_TIMER_WRITE_LOW_PRIORITY Average wait time of all internal write low priority locks that are timed.

MAX_TIMER_WRITE_LOW_PRIORITY Maximum wait time of all internal write low priority locks that are timed.

COUNT_WRITE_NORMAL Number of all internal write normal locks.

SUM_TIMER_WRITE_NORMAL Total wait time of all internal write normal locks that are timed.

MIN_TIMER_WRITE_NORMAL Minimum wait time of all internal write normal locks that are timed.

AVG_TIMER_WRITE_NORMAL Average wait time of all internal write normal locks that are timed.

MAX_TIMER_WRITE_NORMAL Maximum wait time of all internal write normal locks that are timed.

COUNT_WRITE_EXTERNAL Number of all external write locks.

SUM_TIMER_WRITE_EXTERNAL Total wait time of all external write locks that are timed.

MIN_TIMER_WRITE_EXTERNAL Minimum wait time of all external write locks that are timed.

AVG_TIMER_WRITE_EXTERNAL Average wait time of all external write locks that are timed.

MAX_TIMER_WRITE_EXTERNAL Maximum wait time of all external write locks that are timed.

You can TRUNCATE the table, which will reset all counters to zero.

1.1.1.2.9.2.1.80 Performance Schema threads
Table
Each server thread is represented as a row in the threads table.

The threads table contains the following columns:

Column Description

474/4161

THREAD_ID A unique thread identifier.

NAME

Name associated with the server's thread instrumentation code, for example

thread/sql/main for the server's main() function, and thread/sql/one_connection

for a user connection.

TYPE
FOREGROUND or BACKGROUND , depending on the thread type. User connection threads are

FOREGROUND , internal server threads are BACKGROUND .

PROCESSLIST_ID

The PROCESSLIST.ID value for threads displayed in the

INFORMATION_SCHEMA.PROCESSLIST table, or 0 for background threads. Also corresponds

with the CONNECTION_ID() return value for the thread.

PROCESSLIST_USER Foreground thread user, or NULL for a background thread.

PROCESSLIST_HOST Foreground thread host, or NULL for a background thread.

PROCESSLIST_DB Thread's default database, or NULL if none exists.

PROCESSLIST_COMMAND
Type of command executed by the thread. These correspond to the the COM_xxx client/server

protocol commands, and the Com_xxx status variables. See Thread Command Values.

PROCESSLIST_TIME Time in seconds the thread has been in its current state.

PROCESSLIST_STATE Action, event or state indicating what the thread is doing.

PROCESSLIST_INFO

Statement being executed by the thread, or NULL if a statement is not being executed. If a

statement results in calling other statements, such as for a stored procedure, the innermost

statement from the stored procedure is shown here.

PARENT_THREAD_ID
THREAD_ID of the parent thread, if any. Subthreads can for example be spawned as a result

of INSERT DELAYED statements.

ROLE Unused.

INSTRUMENTED

YES or NO for Whether the thread is instrumented or not. For foreground threads, the initial

value is determined by whether there's a user/host match in the setup_actors table. Subthreads

are again matched, while for background threads, this will be set to YES by default. To monitor

events that the thread executes, INSTRUMENTED must be YES and the

thread_instrumentation consumer in the setup_consumers table must also be YES .

HISTORY

YES or NO for Whether to log historical events for the thread. For foreground threads, the

initial value is determined by whether there's a user/host match in the setup_actors table.

Subthreads are again matched, while for background threads, this will be set to YES by

default. To monitor events that the thread executes, INSTRUMENTED must be YES and the

thread_instrumentation consumer in the setup_consumers table must also be YES . Added in

MariaDB 10.5.

CONNECTION_TYPE
The protocol used to establish the connection. One of TCP/IP , SSL/TLS , Socket , Named

Pipe , Shared Memory , or NULL for background threads. Added in MariaDB 10.5.

THREAD_OS_ID
The thread or task identifier as defined by the underlying operating system, if there is one.

Added in MariaDB 10.5

Example

475/4161

SELECT * FROM performance_schema.threads\G;

*************************** 1. row ***************************

 THREAD_ID: 1

 NAME: thread/sql/main

 TYPE: BACKGROUND

 PROCESSLIST_ID: NULL

 PROCESSLIST_USER: NULL

 PROCESSLIST_HOST: NULL

 PROCESSLIST_DB: NULL

PROCESSLIST_COMMAND: NULL

 PROCESSLIST_TIME: 215859

 PROCESSLIST_STATE: Table lock

 PROCESSLIST_INFO: INTERNAL DDL LOG RECOVER IN PROGRESS

 PARENT_THREAD_ID: NULL

 ROLE: NULL

 INSTRUMENTED: YES

...

*************************** 21. row ***************************

 THREAD_ID: 64

 NAME: thread/sql/one_connection

 TYPE: FOREGROUND

 PROCESSLIST_ID: 44

 PROCESSLIST_USER: root

 PROCESSLIST_HOST: localhost

 PROCESSLIST_DB: NULL

PROCESSLIST_COMMAND: Query

 PROCESSLIST_TIME: 0

 PROCESSLIST_STATE: Sending data

 PROCESSLIST_INFO: SELECT * FROM performance_schema.threads

 PARENT_THREAD_ID: NULL

 ROLE: NULL

 INSTRUMENTED: YES

1.1.1.2.9.2.1.81 Performance Schema
user_variables_by_thread Table

The user_variables_by_thread table was added in MariaDB 10.5.2.

The user_variables_by_thread table contains information about user-defined variables and the threads that defined

them.

TRUNCATE TABLE cannot be performed on the table.

The table contains the following columns:

Column Description

THREAD_ID The thread identifier of the session in which the variable is defined.

VARIABLE_NAME The variable name, without the leading @ character.

VARIABLE_VALUE The variable value

Example

SET @var = 0;

SELECT * FROM user_variables_by_thread;

+-----------+---------------+----------------+

| THREAD_ID | VARIABLE_NAME | VARIABLE_VALUE |

+-----------+---------------+----------------+

| 11 | var | 0 |

+-----------+---------------+----------------+

MariaDB starting with 10.5.2

476/4161

1.1.1.2.9.2.1.82 Performance Schema users
Table

Description
Each user that connects to the server is stored as a row in the users table, along with current and total connections.

The table size is determined at startup by the value of the performance_schema_users_size system variable. If this is set to

0 , user statistics will be disabled.

Column Description

USER The connection's client user name for the connection, or NULL if an internal thread.

CURRENT_CONNECTIONS Current connections for the user.

TOTAL_CONNECTIONS Total connections for the user.

Example

SELECT * FROM performance_schema.users;

+------------------+---------------------+-------------------+

| USER | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |

+------------------+---------------------+-------------------+

| debian-sys-maint | 0 | 35 |

| NULL | 20 | 23 |

| root | 1 | 2 |

+------------------+---------------------+-------------------+

1.1.1.2.9.2.2 Performance Schema Overview
Contents
1. Introduction

2. Activating the Performance Schema

3. Enabling the Performance Schema

4. Listing Performance Schema Variables

5. Column Comments

The Performance Schema is a feature for monitoring server performance.

Introduction
It is implemented as a storage engine, and so will appear in the list of storage engines available.

SHOW ENGINES;

+--------------------+---------+----------------------------------+--------------+------+------------+

| Engine | Support | Comment | Transactions | XA | Savepoints |

+--------------------+---------+----------------------------------+--------------+------+------------+

| ... | | | | | |

| PERFORMANCE_SCHEMA | YES | Performance Schema | NO | NO | NO |

| ... | | | | | |

+--------------------+---------+----------------------------------+--------------+------+------------+

However, performance_schema is not a regular storage engine for storing data, it's a mechanism for implementing the

Performance Schema feature.

The storage engine contains a database called performance_schema , which in turn consists of a number of tables that

can be queried with regular SQL statements, returning specific performance information.

USE performance_schema

477/4161

SHOW TABLES;

+--+

| Tables_in_performance_schema |

+--+

| accounts |

...

| users |

+--+

80 rows in set (0.00 sec)

See List of Performance Schema Tables for a full list and links to detailed descriptions of each table. From MariaDB 10.5,

there are 80 Performance Schema tables, while until MariaDB 10.4, there are 52.

Activating the Performance Schema
The performance schema is disabled by default for performance reasons. You can check its current status by looking at the

value of the performance_schema system variable.

SHOW VARIABLES LIKE 'performance_schema';

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| performance_schema | ON |

+--------------------+-------+

The performance schema cannot be activated at runtime - it must be set when the server starts by adding the following line

in your my.cnf configuration file.

performance_schema=ON

Until MariaDB 10.4, all memory used by the Performance Schema is allocated at startup. From MariaDB 10.5, some

memory is allocated dynamically, depending on load, number of connections, number of tables open etc.

Enabling the Performance Schema
You need to set up all consumers (starting collection of data) and instrumentations (what to collect):

UPDATE performance_schema.setup_consumers SET ENABLED = 'YES';

UPDATE performance_schema.setup_instruments SET ENABLED = 'YES', TIMED = 'YES';

You can decide what to enable/disable with WHERE NAME like "%what_to_enable" ; You can disable instrumentations

by setting ENABLED to "NO" .

You can also do this in your my.cnf file. The following enables all instrumentation of all stages (computation units) in

MariaDB:

[mysqld]

performance_schema=ON

performance-schema-instrument='stage/%=ON'

performance-schema-consumer-events-stages-current=ON

performance-schema-consumer-events-stages-history=ON

performance-schema-consumer-events-stages-history-long=ON

Listing Performance Schema Variables

SHOW VARIABLES LIKE "perf%";

+--+-------+

| Variable_name | Value |

+--+-------+

| performance_schema | ON |

...

| performance_schema_users_size | 100 |

+--+-------+

478/4161

See Performance Schema System Variables for a full list of available system variables.

Note that the "consumer" events are not shown on this list, as they are only available as options, not as system variables,

and they can only be enabled at startup.

Column Comments

From MariaDB 10.7.1 , comments have been added to table columns in the Performance Schema. These can be

viewed with, for example:

SELECT column_name, column_comment FROM information_schema.columns

 WHERE table_schema='performance_schema' AND table_name='file_instances';

...

*************************** 2. row ***************************

 column_name: EVENT_NAME

column_comment: Instrument name associated with the file.

*************************** 3. row ***************************

 column_name: OPEN_COUNT

column_comment: Open handles on the file. A value of greater than zero means

 that the file is currently open.

...

MariaDB starting with 10.7.1

1.1.1.2.9.2.3 Performance Schema Status
Variables

Contents
1. Performance_schema_accounts_lost

2. Performance_schema_cond_classes_lost

3. Performance_schema_cond_instances_lost

4. Performance_schema_digest_lost

5. Performance_schema_file_classes_lost

6. Performance_schema_file_handles_lost

7. Performance_schema_file_instances_lost

8. Performance_schema_hosts_lost

9. Performance_schema_index_stat_lost

10. Performance_schema_locker_lost

11. Performance_schema_memory_classes_lost

12. Performance_schema_metadata_lock_lost

13. Performance_schema_mutex_classes_lost

14. Performance_schema_mutex_instances_lost

15. Performance_schema_nested_statement_lost

16. Performance_schema_prepared_statements_lost

17. Performance_schema_program_lost

18. Performance_schema_rwlock_classes_lost

19. Performance_schema_rwlock_instances_lost

20. Performance_schema_session_connect_attrs_lost

21. Performance_schema_socket_classes_lost

22. Performance_schema_socket_instances_lost

23. Performance_schema_stage_classes_lost

24. Performance_schema_statement_classes_lost

25. Performance_schema_table_handles_lost

26. Performance_schema_table_instances_lost

27. Performance_schema_table_lock_stat_lost

28. Performance_schema_thread_classes_lost

29. Performance_schema_thread_instances_lost

30. Performance_schema_users_lost

This page documents status variables related to the Performance Schema. See Server Status Variables for a complete list

of status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Performance_schema_accounts_lost

Description: Number of times a row could not be added to the performance schema accounts table due to it being

full. The global value can be flushed by FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

479/4161

https://mariadb.com/kb/en/mariadb-1071-release-notes/
https://mariadb.com/kb/en/mariadb-1071-release-notes/

Performance_schema_cond_classes_lost

Description: Number of condition instruments that could not be loaded.

Scope: Global, Session

Data Type: numeric

Performance_schema_cond_instances_lost

Description: Number of instances a condition object could not be created. The global value can be flushed by

FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_digest_lost

Description: The global value can be flushed by FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_file_classes_lost

Description: Number of file instruments that could not be loaded.

Scope: Global, Session

Data Type: numeric

Performance_schema_file_handles_lost

Description: Number of instances a file object could not be opened. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_file_instances_lost

Description: Number of instances a file object could not be created. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_hosts_lost

Description: Number of times a row could not be added to the performance schema hosts table due to it being full.

The global value can be flushed by FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_index_stat_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_locker_lost

Description: Number of events not recorded, due to either being recursive, or having a deeper nested events stack

than the implementation limit. The global value can be flushed by FLUSH STATUS.

480/4161

Scope: Global, Session

Data Type: numeric

Performance_schema_memory_classes_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_metadata_lock_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_mutex_classes_lost

Description: Number of mutual exclusion instruments that could not be loaded.

Scope: Global, Session

Data Type: numeric

Performance_schema_mutex_instances_lost

Description: Number of instances a mutual exclusion object could not be created. The global value can be flushed by

FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_nested_statement_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_prepared_statements_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_program_lost

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_rwlock_classes_lost

Description: Number of read/write lock instruments that could not be loaded.

Scope: Global, Session

Data Type: numeric

481/4161

Performance_schema_rwlock_instances_lost

Description: Number of instances a read/write lock object could not be created. The global value can be flushed by

FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_session_connect_attrs_lost

Description: Number of connections for which connection attribute truncation has occurred. The global value can be

flushed by FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_socket_classes_lost

Description:

Scope: Global, Session

Data Type: numeric

Performance_schema_socket_instances_lost

Description: Number of instances a socket object could not be created. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_stage_classes_lost

Description: Number of stage event instruments that could not be loaded. The global value can be flushed by

FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_statement_classes_lost

Description: Number of statement instruments that could not be loaded. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_table_handles_lost

Description: Number of instances a table object could not be opened. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_table_instances_lost

Description: Number of instances a table object could not be created. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_table_lock_stat_lost

482/4161

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Performance_schema_thread_classes_lost

Description: Number of thread instruments that could not be loaded.

Scope: Global, Session

Data Type: numeric

Performance_schema_thread_instances_lost

Description: Number of instances thread object could not be created. The global value can be flushed by FLUSH

STATUS.

Scope: Global, Session

Data Type: numeric

Performance_schema_users_lost

Description: Number of times a row could not be added to the performance schema users table due to it being full.

The global value can be flushed by FLUSH STATUS.

Scope: Global, Session

Data Type: numeric

1.1.1.2.9.2.4 Performance Schema System
Variables

Contents
1. performance_schema

2. performance_schema_accounts_size

3. performance_schema_digests_size

4. performance_schema_events_stages_history_long_size

5. performance_schema_events_stages_history_size

6. performance_schema_events_statements_history_long_size

7. performance_schema_events_statements_history_size

8. performance_schema_events_transactions_history_long_size

9. performance_schema_events_transactions_history_size

10. performance_schema_events_waits_history_long_size

11. performance_schema_events_waits_history_size

12. performance_schema_hosts_size

13. performance_schema_max_cond_classes

14. performance_schema_max_cond_instances

15. performance_schema_max_digest_length

16. performance_schema_max_file_classes

17. performance_schema_max_file_handles

18. performance_schema_max_file_instances

19. performance_schema_max_index_stat

20. performance_schema_max_memory_classes

21. performance_schema_max_metadata_locks

22. performance_schema_max_mutex_classes

23. performance_schema_max_mutex_instances

24. performance_schema_max_prepared_statement_instances

25. performance_schema_max_program_instances

26. performance_schema_max_rwlock_classes

27. performance_schema_max_rwlock_instances

28. performance_schema_max_socket_classes

29. performance_schema_max_socket_instances

30. performance_schema_max_sql_text_length

31. performance_schema_max_stage_classes

32. performance_schema_max_statement_classes

33. performance_schema_max_statement_stack

34. performance_schema_max_table_handles

35. performance_schema_max_table_instances

36. performance_schema_max_table_lock_stat

37. performance_schema_max_thread_classes

38. performance_schema_max_thread_instances

39. performance_schema_session_connect_attrs_size

40. performance_schema_setup_actors_size

41. performance_schema_setup_objects_size

42. performance_schema_users_size

483/4161

The following variables are used with MariaDB's Performance Schema. See Performance Schema Options for Performance

Schema options that are not system variables. See Server System Variables for a complete list of system variables and

instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

performance_schema

Description: If set to 1 (0 is default), enables the Performance Schema

Commandline: --performance-schema=#

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

performance_schema_accounts_size

Description: Maximum number of rows in the performance_schema.accounts table. If set to 0, the Performance

Schema will not store statistics in the accounts table. Use -1 (the default) for automated sizing.

Commandline: --performance-schema-accounts-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_digests_size

Description: Maximum number of rows that can be stored in the events_statements_summary_by_digest table. 0

for disabling, -1 (the default) for automated sizing.

Commandline: --performance-schema-digests-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_events_stages_history_long_size

Description: Number of rows in the events_stages_history_long table. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-events-stages-history-long-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_events_stages_history_size

Description: Number of rows per thread in the events_stages_history table. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-events-stages-history-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1024

performance_schema_events_statements_history_long_size
484/4161

Description: Number of rows in the events_statements_history_long table. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-events-statements-history-long-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_events_statements_history_size

Description: Number of rows per thread in the events_statements_history table. 0 for disabling, -1 (the default)

for automated sizing.

Commandline: --performance-schema-events-statements-history-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1024

performance_schema_events_transactions_history_long_size

Description: Number of rows in events_transactions_history_long table. Use 0 to disable, -1 for automated

sizing.

Commandline: --performance-schema-events-transactions-history-long-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_events_transactions_history_size

Description:Number of rows per thread in events_transactions_history. Use 0 to disable, -1 for automated sizing.

Commandline: --performance-schema-events-transactions-history-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1024

Introduced: MariaDB 10.5.2

performance_schema_events_waits_history_long_size

Description: Number of rows contained in the events_waits_history_long table. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-events-waits-history-long-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_events_waits_history_size

Description: Number of rows per thread contained in the events_waits_history table. 0 for disabling, -1 (the

default) for automated sizing.

Commandline: --performance-schema-events-waits-history-size=#

Scope: Global
485/4161

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1024

performance_schema_hosts_size

Description: Number of rows stored in the hosts table. If set to zero, no connection statistics are kept for the hosts

table. -1 (the default) for automated sizing.

Commandline: --performance-schema-hosts-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_cond_classes

Description: Specifies the maximum number of condition instruments.

Commandline: --performance-schema-max-cond-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 90 (>= MariaDB 10.5.1), 80 (<= MariaDB 10.5.0)

Range: 0 to 256

performance_schema_max_cond_instances

Description: Specifies the maximum number of instrumented condition objects. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-cond-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_digest_length

Description: Maximum length considered for digest text, when stored in performance_schema tables.

Commandline: --performance-schema-max-digest-length=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1024

Range: 0 to 1048576

performance_schema_max_file_classes

Description: Specifies the maximum number of file instruments.

Commandline: --performance-schema-max-file-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 80 (>= MariaDB 10.5.2), 50 (<= MariaDB 10.5.1)

Range: 0 to 256

performance_schema_max_file_handles

486/4161

Description: Specifies the maximum number of opened file objects. Should always be higher than open_files_limit.

Commandline: --performance-schema-max-file-handles=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 32768

Range: -1 to 32768

performance_schema_max_file_instances

Description: Specifies the maximum number of instrumented file objects. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-file-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_index_stat

Description: Maximum number of index statistics for instrumented tables. Use 0 to disable, -1 for automated scaling.

Commandline: --performance-schema-max-index-stat=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_max_memory_classes

Description: Maximum number of memory pool instruments.

Commandline: --performance-schema-max-memory-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 320

Range: 0 to 1024

Introduced: MariaDB 10.5.2

performance_schema_max_metadata_locks

Description: Maximum number of Performance Schema metadata locks. Use 0 to disable, -1 for automated scaling.

Commandline: --performance-schema-max-metadata-locks=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 104857600

Introduced: MariaDB 10.5.2

performance_schema_max_mutex_classes

Description: Specifies the maximum number of mutex instruments.

Commandline: --performance-schema-max-mutex-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 210 (>= MariaDB 10.5.2), 200 (<= MariaDB 10.5.1)

487/4161

Range: 0 to 256

performance_schema_max_mutex_instances

Description: Specifies the maximum number of instrumented mutex instances. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-mutex-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 104857600

performance_schema_max_prepared_statement_instances

Description: Maximum number of instrumented prepared statements. Use 0 to disable, -1 for automated scaling.

Commandline: --performance-schema-max-prepared-statement-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_max_program_instances

Description: Maximum number of instrumented programs. Use 0 to disable, -1 for automated scaling.

Commandline: --performance-schema-max-program-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_max_rwlock_classes

Description: Specifies the maximum number of rwlock instruments.

Commandline: --performance-schema-max-rwlock-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 50 (>= MariaDB 10.5.2), 40 (<= MariaDB 10.5.1)

Range: 0 to 256

performance_schema_max_rwlock_instances

Description: Specifies the maximum number of instrumented rwlock objects. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-rwlock-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 104857600

performance_schema_max_socket_classes

Description: Specifies the maximum number of socket instruments.
488/4161

Commandline: --performance-schema-max-socket-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 0 to 256

performance_schema_max_socket_instances

Description: Specifies the maximum number of instrumented socket objects. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-socket-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_sql_text_length

Description: Maximum length of displayed sql text.

Commandline: --performance-schema-max-sql-text-length=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1024

Range: 0 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_max_stage_classes

Description: Specifies the maximum number of stage instruments.

Commandline: --performance-schema-max-stage-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 160

Range: 0 to 256

performance_schema_max_statement_classes

Description: Specifies the maximum number of statement instruments. Automatically calculated at server build

based on the number of available statements. Should be left as either autosized or disabled, as changing to any

positive value has no benefit and will most likely allocate unnecessary memory. Setting to zero disables all statement

instrumentation, and no memory will be allocated for this purpose.

Commandline: --performance-schema-max-statement-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: Autosized (see description)

Range: 0 to 256

performance_schema_max_statement_stack

Description: Number of rows per thread in EVENTS_STATEMENTS_CURRENT.

Commandline: --performance-schema-max-statement-stack=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

489/4161

Range: 1 to 256

Introduced: MariaDB 10.5.2

performance_schema_max_table_handles

Description: Specifies the maximum number of opened table objects. 0 for disabling, -1 (the default) for

automated sizing. See also the Performance Schema table_handles table.

Commandline: --performance-schema-max-table-handles=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_table_instances

Description: Specifies the maximum number of instrumented table objects. 0 for disabling, -1 (the default) for

automated sizing.

Commandline: --performance-schema-max-table-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_max_table_lock_stat

Description: Maximum number of lock statistics for instrumented tables. Use 0 to disable, -1 for automated scaling.

Commandline: --performance-schema-max-table-lock-stat=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

Introduced: MariaDB 10.5.2

performance_schema_max_thread_classes

Description: Specifies the maximum number of thread instruments.

Commandline: --performance-schema-max-thread-classes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 50

Range: 0 to 256

performance_schema_max_thread_instances

Description: Specifies how many of the running server threads (see max_connections and max_delayed_threads)

can be instrumented. Should be greater than the sum of max_connections and max_delayed_threads. 0 for

disabling, -1 (the default) for automated sizing.

Commandline: --performance-schema-max-thread-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

490/4161

performance_schema_session_connect_attrs_size

Description: Per thread preallocated memory for holding connection attribute strings. Incremented if the strings are

larger than the reserved space. 0 for disabling, -1 (the default) for automated sizing.

Commandline: --performance-schema-session-connect-attrs-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

performance_schema_setup_actors_size

Description: The maximum number of rows to store in the performance schema setup_actors table. -1 (from

MariaDB 10.5.2) denotes automated sizing.

Commandline: --performance-schema-setup-actors-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1 (>= MariaDB 10.5.2), 100 (<= MariaDB 10.5.1)

Range: -1 to 1024 (>= MariaDB 10.5.2), 0 to 1024 (<= MariaDB 10.5.1)

performance_schema_setup_objects_size

Description: The maximum number of rows that can be stored in the performance schema setup_objects table. -1

(from MariaDB 10.5.2) denotes automated sizing.

Commandline: --performance-schema-setup-objects-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1 (>= MariaDB 10.5.2), 100 (<= MariaDB 10.5.1)

Range: -1 to 1048576 (>= MariaDB 10.5.2), 0 to 1048576 (<= MariaDB 10.5.1)

performance_schema_users_size

Description: Number of rows in the performance_schema.users table. If set to 0, the Performance Schema will not

store connection statistics in the users table. -1 (the default) for automated sizing.

Commandline: --performance-schema-users-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -1

Range: -1 to 1048576

1.1.1.2.9.2.5 Performance Schema Digests
The Performance Schema digest is a normalized form of a statement, with the specific data values removed. It allows

statistics to be gathered for similar kinds of statements.

For example:

SELECT * FROM customer WHERE age < 20

SELECT * FROM customer WHERE age < 30

With the data values removed, both of these statements normalize to:

SELECT * FROM customer WHERE age < ?

which is the digest text. The digest text is then MD5 hashed, resulting in a digest. For example:

491/4161

DIGEST_TEXT: SELECT * FROM `performance_schema` . `users`

DIGEST: 0f70cec4015f2a346df4ac0e9475d9f1

By contrast, the following two statements would not have the same digest as, while the data values are the same, they call

upon different tables.

SELECT * FROM customer1 WHERE age < 20

SELECT * FROM customer2 WHERE age < 20

The digest text is limited to 1024 bytes. Queries exceeding this limit are truncated with '...', meaning that long queries that

would otherwise have different digests may share the same digest.

Digest information is used in a number of performance scheme tables. These include

events_statements_current

events_statements_history

events_statements_history_long

events_statements_summary_by_digest (a summary table by schema and digest)

1.1.1.2.9.2.6 PERFORMANCE_SCHEMA
Storage Engine
If you run SHOW ENGINES, you'll see the following storage engine listed.

SHOW ENGINES\G

...

 Engine: PERFORMANCE_SCHEMA

 Support: YES

 Comment: Performance Schema

Transactions: NO

 XA: NO

 Savepoints: NO

...

The PERFORMANCE_SCHEMA is not a regular storage engine for storing data, it's a mechanism for implementing the

Performance Schema feature.

The SHOW ENGINE PERFORMANCE_SCHEMA STATUS statement is also available, which shows how much memory is

used by the tables and internal buffers.

See Performance Schema for more details.

1.1.1.2.9.3 The mysql Database Tables
MariaDB comes pre-installed with a system database called mysql containing many important tables storing, in particular,

grant and privilege information. Before MariaDB 10.4, system tables used the MyISAM storage engine. From MariaDB 10.4,

they use Aria.

mysql.column_stats Table

Column stats for engine-independent statistics.

mysql.columns_priv Table

Column-level privileges

mysql.db Table

Database-level access and privileges.

mysql.event Table

Information about MariaDB events.

mysql.func Table

User-defined function information

mysql.general_log Table

Contents of the general query log if written to table

492/4161

mysql.global_priv Table

Global privileges.

mysql.gtid_slave_pos Table

For replicas to keep track of the GTID.

mysql.help_category Table

Help categories.

mysql.help_keyword Table

Help keywords.

mysql.help_relation Table

HELP command relations

mysql.help_topic Table

Help topics.

mysql.index_stats Table

Index stats for engine-independent statistics.

mysql.innodb_index_stats

Data related to particular persistent index statistics, multiple rows for each index.

mysql.innodb_table_stats

Data related to persistent indexes, one row per table.

mysql.password_reuse_check_history Table

Contains old passwords for purposes of preventing password reuse.

mysql.plugin Table

Plugins loaded with INSTALL SONAME, INSTALL PLUGIN or the mariadb-plugin utility.

mysql.proc Table

Information about stored routines.

mysql.procs_priv Table

Stored procedure and stored function privileges

mysql.proxies_priv Table

Proxy privileges.

mysql.roles_mapping Table

MariaDB roles information.

mysql.servers Table

MariaDB servers.

mysql.slow_log Table

Contents of the slow query log if written to table.

mysql.tables_priv Table

Table-level privileges

mysql.table_stats Table

Table stats for engine-independent statistics.

mysql.time_zone Table

Time zone table in the mysql database.

mysql.time_zone_leap_second Table

Time zone leap second.

2

2

1

1

493/4161

https://mariadb.com/kb/en/mysql-help_category-table/
https://mariadb.com/kb/en/mysql-help_keyword-table/
https://mariadb.com/kb/en/mysql-help_relation-table/
https://mariadb.com/kb/en/mysql-help_topic-table/
https://mariadb.com/kb/en/mysql-proxies_priv-table/
https://mariadb.com/kb/en/mysql-servers-table/
https://mariadb.com/kb/en/mysql-time_zone-table/
https://mariadb.com/kb/en/mysql-time_zone_leap_second-table/

mysql.time_zone_name Table

Time zone name.

mysql.time_zone_transition Table

Time zone transition table.

mysql.time_zone_transition_type Table

Time zone transition type table.

mysql.transaction_registry Table

Used for transaction-precise versioning.

mysql.user Table

User access and global privileges.

Obsolete mysql Database Tables

Tables no longer present in the mysql system database.

Spider mysql Database Tables

System tables related to the Spider storage engine.

There are 2 related questions .

6

1.1.1.2.9.3.1 mysql.column_stats Table
The mysql.column_stats table is one of three tables storing data used for Engine-independent table statistics. The

others are mysql.table_stats and mysql.index_stats.

Note that statistics for blob and text columns are not collected. If explicitly specified, a warning is returned.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.column_stats table contains the following fields:

Field Type Null Key Default Description

db_name varchar(64) NO PRI NULL Database the table is in.

table_name varchar(64) NO PRI NULL Table name.

column_name varchar(64) NO PRI NULL Name of the column.

min_value varchar(255) YES NULL Minimum value in the table (in text form).

max_value varchar(255) YES NULL Maximum value in the table (in text form).

nulls_ratio decimal(12,4) YES NULL

Fraction of NULL values (0- no NULL s, 0.5

- half values are NULL s, 1 - all values are

NULL s).

avg_length decimal(12,4) YES NULL

Average length of column value, in bytes.

Counted as if one ran SELECT

AVG(LENGTH(col)) . This doesn't count

NULL bytes, assumes endspace removal

for CHAR(n) , etc.

avg_frequency decimal(12,4) YES NULL
Average number of records with the same

value

MariaDB starting with 10.4

MariaDB until 10.3

494/4161

https://mariadb.com/kb/en/mysql-time_zone_name-table/
https://mariadb.com/kb/en/mysql-time_zone_transition-table/
https://mariadb.com/kb/en/mysql-time_zone_transition_type-table/
https://mariadb.com/kb/en/mysql-transaction_registry-table/
https://mariadb.com/kb/en/mysql-user-table/
https://mariadb.com/kb/en/obsolete-mysql-database-tables/
https://mariadb.com/kb/en/the-mysql-database-tables/+questions/

hist_size tinyint(3) unsigned YES NULL

Histogram size in bytes, from 0-255, or, from

MariaDB 10.7, number of buckets if the

histogram type is JSON_HB .

hist_type

enum('SINGLE_PREC_HB',

'DOUBLE_PREC_HB') (>=

MariaDB 10.7)

enum('SINGLE_PREC_HB',

'DOUBLE_PREC_HB','JSON_HB')

(<= MariaDB 10.6)

YES NULL
Histogram type. See the histogram_type

system variable.

histogram

blob (>= MariaDB 10.7)

varbinary(255) (<=MariaDB

10.6)

YES NULL

It is possible to manually update the table. See Manual updates to statistics tables for details.

1.1.1.2.9.3.2 mysql.columns_priv Table
The mysql.columns_priv table contains information about column-level privileges. The table can be queried and

although it is possible to directly update it, it is best to use GRANT for setting privileges.

Note that the MariaDB privileges occur at many levels. A user may be granted a privilege at the column level, but may still

not have permission on a table level, for example. See privileges for a more complete view of the MariaDB privilege system.

The INFORMATION_SCHEMA.COLUMN_PRIVILEGES table derives its contents from mysql.columns_priv .

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.columns_priv table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI

Host (together with User , Db ,

Table_name and Column_name

makes up the unique identifier for this

record.

Db char(64) NO PRI

Database name (together with User ,

Host , Table_name

and Column_name makes up the

unique identifier for this record.

User char(80) NO PRI

User (together with Host , Db ,

Table_name and Column_name

makes up the unique identifier for this

record.

Table_name char(64) NO PRI

Table name (together with User , Db ,

Host and Column_name makes up

the unique identifier for this record.

Column_name char(64) NO PRI

Column name (together with User ,

Db , Table_name and Host makes

up the unique identifier for this record.

Timestamp timestamp NO CURRENT_TIMESTAMP

Column_priv

set('Select',

'Insert', 'Update',

'References')

NO
The privilege type. See Column

Privileges for details.

The Acl_column_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the mysql.columns_priv

table contains.

MariaDB starting with 10.4

MariaDB until 10.3

495/4161

https://mariadb.com/kb/en/mariadb-1014-release-notes/

1.1.1.2.9.3.3 mysql.db Table
The mysql.db table contains information about database-level privileges. The table can be queried and although it is

possible to directly update it, it is best to use GRANT for setting privileges.

Note that the MariaDB privileges occur at many levels. A user may not be granted a privilege at the database level, but may

still have permission on a table level, for example. See privileges for a more complete view of the MariaDB privilege system.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.db table contains the following fields:

Field Type Null Key Default Description Introduced

Host char(60) NO PRI

Host (together with User and Db

makes up the unique identifier for this

record. Until MariaDB 5.5, if the host

field was blank, the corresponding

record in the mysql.host table would

be examined. From MariaDB 10.0, a

blank host field is the same as the %

wildcard.

Db char(64) NO PRI

Database (together with User and

Host makes up the unique identifier

for this record.

User char(80) NO PRI

User (together with Host and Db

makes up the unique identifier for this

record.

Select_priv enum('N','Y') NO N Can perform SELECT statements.

Insert_priv enum('N','Y') NO N Can perform INSERT statements.

Update_priv enum('N','Y') NO N Can perform UPDATE statements.

Delete_priv enum('N','Y') NO N Can perform DELETE statements.

Create_priv enum('N','Y') NO N Can CREATE TABLE's.

Drop_priv enum('N','Y') NO N
Can DROP DATABASE's or DROP

TABLE's.

Grant_priv enum('N','Y') NO N
User can grant privileges they

possess.

References_priv enum('N','Y') NO N Unused

Index_priv enum('N','Y') NO N

Can create an index on a table using

the CREATE INDEX statement.

Without the INDEX privilege, user can

still create indexes when creating a

table using the CREATE TABLE

statement if the user has have the

CREATE privilege, and user can create

indexes using the ALTER TABLE

statement if they have the ALTER

privilege.

Alter_priv enum('N','Y') NO N
Can perform ALTER TABLE

statements.

Create_tmp_table_priv enum('N','Y') NO N

Can create temporary tables with the

CREATE TEMPORARY TABLE

statement.

MariaDB starting with 10.4

MariaDB until 10.3

496/4161

https://mariadb.com/kb/en/mysqlhost-table/

Lock_tables_priv enum('N','Y') NO N

Acquire explicit locks using the LOCK

TABLES statement; user also needs to

have the SELECT privilege on a table

in order to lock it.

Create_view_priv enum('N','Y') NO N
Can create a view using the

CREATE_VIEW statement.

Show_view_priv enum('N','Y') NO N

Can show the CREATE VIEW

statement to create a view using the

SHOW CREATE VIEW statement.

Create_routine_priv enum('N','Y') NO N

Can create stored programs using the

CREATE PROCEDURE and CREATE

FUNCTION statements.

Alter_routine_priv enum('N','Y') NO N

Can change the characteristics of a

stored function using the ALTER

FUNCTION statement.

Execute_priv enum('N','Y') NO N
Can execute stored procedure or

functions.

Event_priv enum('N','Y') NO N Create, drop and alter events.

Trigger_priv enum('N','Y') NO N

Can execute triggers associated with

tables the user updates, execute the

CREATE TRIGGER and DROP

TRIGGER statements.

Delete_history_priv enum('N','Y') NO N
Can delete rows created through

system versioning.

MariaDB

10.3.5

The Acl_database_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the mysql.db table

contains.

1.1.1.2.9.3.4 mysql.event Table
The mysql.event table contains information about MariaDB events. Similar information can be obtained by viewing the

INFORMATION_SCHEMA.EVENTS table, or with the SHOW EVENTS and SHOW CREATE EVENT statements.

The table is upgraded live, and there is no need to restart the server if the table has changed.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.event table contains the following fields:

Field Type Null Key Default Description

db char(64) NO PRI

name char(64) NO PRI

body longblob NO NULL

definer char(141) NO

execute_at datetime YES NULL

interval_value int(11) YES NULL

MariaDB starting with 10.4

MariaDB until 10.3

497/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/show-event

interval_field

enum('YEAR', 'QUARTER', 'MONTH',

'DAY', 'HOUR', 'MINUTE', 'WEEK',

'SECOND', 'MICROSECOND',

'YEAR_MONTH', 'DAY_HOUR',

'DAY_MINUTE', 'DAY_SECOND',

'HOUR_MINUTE', 'HOUR_SECOND',

'MINUTE_SECOND',

'DAY_MICROSECOND',

'HOUR_MICROSECOND',

'MINUTE_MICROSECOND',

'SECOND_MICROSECOND')

YES NULL

created timestamp NO CURRENT_TIMESTAMP

modified timestamp NO 0000-00-00 00:00:00

last_executed datetime YES NULL

starts datetime YES NULL

ends datetime YES NULL

status
enum('ENABLED', 'DISABLED',

'SLAVESIDE_DISABLED')
NO ENABLED

Current

status of the

event, one

of enabled,

disabled, or

disabled on

the

slaveside.

on_completion enum('DROP','PRESERVE') NO DROP

sql_mode

set('REAL_AS_FLOAT',

'PIPES_AS_CONCAT', 'ANSI_QUOTES',

'IGNORE_SPACE',

'IGNORE_BAD_TABLE_OPTIONS',

'ONLY_FULL_GROUP_BY',

'NO_UNSIGNED_SUBTRACTION',

'NO_DIR_IN_CREATE', 'POSTGRESQL',

'ORACLE', 'MSSQL', 'DB2', 'MAXDB',

'NO_KEY_OPTIONS',

'NO_TABLE_OPTIONS',

'NO_FIELD_OPTIONS', 'MYSQL323',

'MYSQL40', 'ANSI',

'NO_AUTO_VALUE_ON_ZERO',

'NO_BACKSLASH_ESCAPES',

'STRICT_TRANS_TABLES',

'STRICT_ALL_TABLES',

'NO_ZERO_IN_DATE', 'NO_ZERO_DATE',

'INVALID_DATES',

'ERROR_FOR_DIVISION_BY_ZERO',

'TRADITIONAL',

'NO_AUTO_CREATE_USER',

'HIGH_NOT_PRECEDENCE',

'NO_ENGINE_SUBSTITUTION',

'PAD_CHAR_TO_FULL_LENGTH')

NO

The

SQL_MODE

at the time

the event

was

created.

comment char(64) NO

originator int(10) unsigned NO NULL

time_zone char(64) NO SYSTEM

character_set_client char(32) YES NULL

collation_connection char(32) YES NULL

db_collation char(32) YES NULL

body_utf8 longblob YES NULL

498/4161

1.1.1.2.9.3.5 mysql.func Table
The mysql.func table stores information about user-defined functions (UDFs) created with the CREATE FUNCTION UDF

statement.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.func table contains the following fields:

Field Type Null Key Default Description

name char(64) NO PRI UDF name

ret tinyint(1) NO 0

dl char(128) NO Shared library name

type enum('function','aggregate') NO NULL

Type, either function or aggregate . Aggregate

functions are summary functions such as SUM() and

AVG().

Example

SELECT * FROM mysql.func;

+------------------------------+-----+--------------+-----------+

| name | ret | dl | type |

+------------------------------+-----+--------------+-----------+

| spider_direct_sql | 2 | ha_spider.so | function |

| spider_bg_direct_sql | 2 | ha_spider.so | aggregate |

| spider_ping_table | 2 | ha_spider.so | function |

| spider_copy_tables | 2 | ha_spider.so | function |

| spider_flush_table_mon_cache | 2 | ha_spider.so | function |

+------------------------------+-----+--------------+-----------+

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.6 mysql.general_log Table
The mysql.general_log table stores the contents of the General Query Log if general logging is active and the output is

being written to table (see Writing logs into tables).

It contains the following fields:

Field Type Null Key Default Description

event_time timestamp(6) NO CURRENT_TIMESTAMP(6) Time the query was executed.

user_host mediumtext NO NULL User and host combination.

thread_id int(11) NO NULL Thread id.

server_id int(10) unsigned NO NULL Server id.

command_type varchar(64) NO NULL Type of command.

argument mediumtext NO NULL Full query.

Example

499/4161

SELECT * FROM mysql.general_log\G

*************************** 1. row ***************************

 event_time: 2014-11-11 08:40:04.117177

 user_host: root[root] @ localhost []

 thread_id: 74

 server_id: 1

command_type: Query

 argument: SELECT * FROM test.s

*************************** 2. row ***************************

 event_time: 2014-11-11 08:40:10.501131

 user_host: root[root] @ localhost []

 thread_id: 74

 server_id: 1

command_type: Query

 argument: SELECT * FROM mysql.general_log

...

1.1.1.2.9.3.7 mysql.global_priv Table

The mysql.global_priv table was introduced in MariaDB 10.4.1 to replace the mysql.user table.

The mysql.global_priv table contains information about users that have permission to access the MariaDB server, and

their global privileges.

Note that the MariaDB privileges occur at many levels. A user may not be granted create privilege at the user level, but

may still have create permission on certain tables or databases, for example. See privileges for a more complete view of

the MariaDB privilege system.

The mysql.global_priv table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI Host (together with User makes up the unique identifier for this account).

User char(80) NO PRI User (together with Host makes up the unique identifier for this account).

Priv longtext NO Global privileges, granted to the account and other account properties

From MariaDB 10.5.2, in order to help the server understand which version a privilege record was written by, the priv

field contains a new JSON field, version_id (MDEV-21704).

Examples

MariaDB starting with 10.4.1

500/4161

https://jira.mariadb.org/browse/MDEV-21704

select * from mysql.global_priv;

+-----------+-------------+--

---+

| Host | User | Priv

|

+-----------+-------------+--

---+

| localhost | root | {"access":

18446744073709551615,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1

E3BA155E74754DA6682D04747"} |

| 127.% | msandbox |

{"access":1073740799,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1

E3BA155E74754DA6682D04747"} |

| localhost | msandbox |

{"access":1073740799,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1

E3BA155E74754DA6682D04747"} |

| localhost | msandbox_rw |

{"access":487487,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1E3BA

155E74754DA6682D04747"} |

| 127.% | msandbox_rw |

{"access":487487,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1E3BA

155E74754DA6682D04747"} |

| 127.% | msandbox_ro |

{"access":262145,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1E3BA

155E74754DA6682D04747"} |

| localhost | msandbox_ro |

{"access":262145,"plugin":"mysql_native_password","authentication_string":"*6C387FC3893DBA1E3BA

155E74754DA6682D04747"} |

| 127.% | rsandbox |

{"access":524288,"plugin":"mysql_native_password","authentication_string":"*B07EB15A2E7BD9620DA

E47B194D5B9DBA14377AD"} |

+-----------+-------------+--

---+

Readable format:

SELECT CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) FROM mysql.global_priv;

+--+

| CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) |

+--+

| root@localhost => {

 "access": 18446744073709551615,

 "plugin": "mysql_native_password",

 "authentication_string": "*6C387FC3893DBA1E3BA155E74754DA6682D04747"

} |

| msandbox@127.% => {

 "access": 1073740799,

 "plugin": "mysql_native_password",

 "authentication_string": "*6C387FC3893DBA1E3BA155E74754DA6682D04747"

} |

+--+

A particular user:

SELECT CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) FROM mysql.global_priv

 WHERE user='marijn';

+--+

| CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) |

+--+

| marijn@localhost => {

 "access": 0,

 "plugin": "mysql_native_password",

 "authentication_string": "",

 "account_locked": true,

 "password_last_changed": 1558017158

} |

+--+

From MariaDB 10.5.2:

501/4161

GRANT FILE ON *.* TO user1@localhost;

SELECT Host, User, JSON_DETAILED(Priv) FROM mysql.global_priv WHERE user='user1'\G

*************************** 1. row ***************************

 Host: localhost

 User: user1

JSON_DETAILED(Priv): {

 "access": 512,

 "plugin": "mysql_native_password",

 "authentication_string": "",

 "password_last_changed": 1581070979,

 "version_id": 100502

}

1.1.1.2.9.3.8 mysql.gtid_slave_pos Table
The mysql.gtid_slave_pos table is used in replication by replica servers to keep track of their current position (the

global transaction ID of the last transaction applied). Using the table allows the replica to maintain a consistent value for the

gtid_slave_pos system variable across server restarts. See Global Transaction ID.

You should never attempt to modify the table directly. If you do need to change the global gtid_slave_pos value, use SET

GLOBAL gtid_slave_pos = ... instead.

The table is updated with the new position as part of each transaction committed during replication. This makes it preferable

that the table is using the same storage engine as the tables otherwise being modified in the transaction, since otherwise a

multi-engine transaction is needed that can reduce performance.

Starting from MariaDB 10.3.1 , multiple versions of this table are supported, each using a different storage engine. This is

selected with the gtid_pos_auto_engines option, by giving a comma-separated list of engine names. The server will then on-

demand create an extra version of the table using the appropriate storage engine, and select the table version using the

same engine as the rest of the transaction, avoiding multi-engine transactions.

For example, when gtid_pos_auto_engines=innodb,rocksdb , tables mysql.gtid_slave_pos_InnoDB and

mysql.gtid_slave_pos_RocksDB will be created and used, if needed. If there is no match to the storage engine, the

default mysql.gtid_slave_pos table will be used; this also happens if non-transactional updates (like MyISAM) are

replicated, since there is then no active transaction at the time of the mysql.gtid_slave_pos table update.

Prior to MariaDB 10.3.1 , only the default mysql.gtid_slave_pos table is available. In these versions, the table should

preferably be using the storage engine that is used for most replicated transactions.

The default mysql.gtid_slave_pos table will be initially created using the default storage engine set for the server (which

itself defaults to InnoDB). If the application load is primarily non-transactional MyISAM or Aria tables, it can be beneficial to

change the storage engine to avoid including an InnoDB update with every operation:

ALTER TABLE mysql.gtid_slave_pos ENGINE=MyISAM;

The mysql.gtid_slave_pos table should not be changed manually in any other way. From MariaDB 10.3.1 , it is

preferable to use the gtid_pos_auto_engines server variable to get the GTID position updates to use the TokuDB or

RocksDB storage engine.

Note that for scalability reasons, the automatic creation of a new mysql.gtid_slave_posXXX table happens

asynchronously when the first transaction with the new storage engine is committed. So the very first few transactions will

update the old version of the table, until the new version is created and available.

The table mysql.gtid_slave_pos contains the following fields

Field Type Null Key Default Description

domain_id
int(10)

unsigned
NO PRI NULL Domain id (see Global Transaction ID domain ID.

sub_id
bigint(20)

unsigned
NO PRI NULL

This field enables multiple parallel transactions within same

domain_id to update this table without contention. At any instant, the

replication state corresponds to records with largest sub_id for each

domain_id .

server_id
int(10)

unsigned
NO NULL Server id.

502/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

seq_no
bigint(20)

unsigned
NO NULL

Sequence number, an integer that is monotonically increasing for each

new event group logged into the binlog.

From MariaDB 10.3.1 , some status variables are available to monitor the use of the different gtid_slave_pos table

versions:

Transactions_gtid_foreign_engine

Number of replicated transactions where the update of the gtid_slave_pos table had to choose a storage engine that did

not otherwise participate in the transaction. This can indicate that setting gtid_pos_auto_engines might be useful.

Rpl_transactions_multi_engine

Number of replicated transactions that involved changes in multiple (transactional) storage engines, before considering the

update of gtid_slave_pos . These are transactions that were already cross-engine, independent of the GTID position

update introduced by replication

Transactions_multi_engine

Number of transactions that changed data in multiple (transactional) storage engines. If this is significantly larger than

Rpl_transactions_multi_engine, it indicates that setting gtid_pos_auto_engines could reduce the need for cross-engine

transactions.

1.1.1.2.9.3.9 mysql.help_category Table
mysql.help_category is one of the four tables used by the HELP command. It is populated when the server is installed

by the fill_help_tables.sql script. The other help tables are help_relation, help_topic and help_keyword.

This table uses the Aria storage engine. Prior to MariaDB 10.4 it used the MyISAM engine.

The mysql.help_category table contains the following fields:

Field Type Null Key Default Description

help_category_id smallint(5) unsigned NO PRI NULL

name char(64) NO UNI NULL

parent_category_id smallint(5) unsigned YES NULL

url char(128) NO NULL

Example

503/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

SELECT * FROM help_category;

+------------------+---+--------------------+-----+

| help_category_id | name | parent_category_id | url |

+------------------+---+--------------------+-----+

| 1 | Geographic | 0 | |

| 2 | Polygon properties | 34 | |

| 3 | WKT | 34 | |

| 4 | Numeric Functions | 38 | |

| 5 | Plugins | 35 | |

| 6 | MBR | 34 | |

| 7 | Control flow functions | 38 | |

| 8 | Transactions | 35 | |

| 9 | Help Metadata | 35 | |

| 10 | Account Management | 35 | |

| 11 | Point properties | 34 | |

| 12 | Encryption Functions | 38 | |

| 13 | LineString properties | 34 | |

| 14 | Miscellaneous Functions | 38 | |

| 15 | Logical operators | 38 | |

| 16 | Functions and Modifiers for Use with GROUP BY | 35 | |

| 17 | Information Functions | 38 | |

| 18 | Comparison operators | 38 | |

| 19 | Bit Functions | 38 | |

| 20 | Table Maintenance | 35 | |

| 21 | User-Defined Functions | 35 | |

| 22 | Data Types | 35 | |

| 23 | Compound Statements | 35 | |

| 24 | Geometry constructors | 34 | |

| 25 | GeometryCollection properties | 1 | |

| 26 | Administration | 35 | |

| 27 | Data Manipulation | 35 | |

| 28 | Utility | 35 | |

| 29 | Language Structure | 35 | |

| 30 | Geometry relations | 34 | |

| 31 | Date and Time Functions | 38 | |

| 32 | WKB | 34 | |

| 33 | Procedures | 35 | |

| 34 | Geographic Features | 35 | |

| 35 | Contents | 0 | |

| 36 | Geometry properties | 34 | |

| 37 | String Functions | 38 | |

| 38 | Functions | 35 | |

| 39 | Data Definition | 35 | |

+------------------+---+--------------------+-----+

1.1.1.2.9.3.10 mysql.help_keyword Table
mysql.help_keyword is one of the four tables used by the HELP command. It is populated when the server is installed by

the fill_help_tables.sql script. The other help tables are help_relation, help_category and help_topic.

This table uses the Aria storage engine. Prior to MariaDB 10.4 it used the MyISAM engine.

The mysql.help_keyword table contains the following fields:

Field Type Null Key Default Description

help_keyword_id int(10) unsigned NO PRI NULL

name char(64) NO UNI NULL

Example

504/4161

SELECT * FROM help_keyword;

+-----------------+-------------------------------+

| help_keyword_id | name |

+-----------------+-------------------------------+

| 0 | JOIN |

| 1 | HOST |

| 2 | REPEAT |

| 3 | SERIALIZABLE |

| 4 | REPLACE |

| 5 | AT |

| 6 | SCHEDULE |

| 7 | RETURNS |

| 8 | STARTS |

| 9 | MASTER_SSL_CA |

| 10 | NCHAR |

| 11 | COLUMNS |

| 12 | COMPLETION |

...

1.1.1.2.9.3.11 mysql.help_relation Table
mysql.help_relation is one of the four tables used by the HELP command. It is populated when the server is installed

by the fill_help_tables.sql script. The other help tables are help_topic, help_category and help_keyword.

This table uses the Aria storage engine. Prior to MariaDB 10.4 it used the MyISAM engine.

The mysql.help_relation table contains the following fields:

Field Type Null Key Default Description

help_topic_id int(10) unsigned NO PRI NULL

help_keyword_id int(10) unsigned NO PRI NULL

Example

...

| 106 | 456 |

| 463 | 456 |

| 468 | 456 |

| 463 | 457 |

| 194 | 458 |

| 478 | 458 |

| 374 | 459 |

| 459 | 459 |

| 39 | 460 |

| 58 | 460 |

| 185 | 460 |

| 264 | 460 |

| 269 | 460 |

| 209 | 461 |

| 468 | 461 |

| 201 | 462 |

| 468 | 463 |

+---------------+-----------------+

1.1.1.2.9.3.12 mysql.help_topic Table
mysql.help_topic is one of the four tables used by the HELP command. It is populated when the server is installed by

the fill_help_tables.sql script. The other help tables are help_relation, help_category and help_keyword.

This table uses the Aria storage engine. Prior to MariaDB 10.4 it used the MyISAM engine.

The mysql.help_topic table contains the following fields:

Field Type Null Key Default Description

505/4161

help_topic_id int(10) unsigned NO PRI NULL

name char(64) NO UNI NULL

help_category_id smallint(5) unsigned NO NULL

description text NO NULL

example text NO NULL

url char(128) NO NULL

Example

SELECT * FROM help_topic\G;

...

*************************** 704. row ***************************

 help_topic_id: 692

 name: JSON_DEPTH

help_category_id: 41

 description: JSON functions were added in MariaDB 10.2.3.

Syntax

JSON_DEPTH(json_doc)

Description

Returns the maximum depth of the given JSON document, or

NULL if the argument is null. An error will occur if the

argument is an invalid JSON document.

Scalar values or empty arrays or objects have a depth of 1.

Arrays or objects that are not empty but contain only

elements or member values of depth 1 will have a depth of 2.

In other cases, the depth will be greater than 2.

Examples

SELECT JSON_DEPTH('[]'), JSON_DEPTH('true'),

JSON_DEPTH('{}');

+------------------+--------------------+------------------+

| JSON_DEPTH('[]') | JSON_DEPTH('true') |

JSON_DEPTH('{}') |

+------------------+--------------------+------------------+

| 1 | 1 | 1 |

+------------------+--------------------+------------------+

SELECT JSON_DEPTH('[1, 2, 3]'), JSON_DEPTH('[[], {},

[]]');

+-------------------------+----------------------------+

| JSON_DEPTH('[1, 2, 3]') | JSON_DEPTH('[[], {}, []]') |

+-------------------------+----------------------------+

| 2 | 2 |

+-------------------------+----------------------------+

SELECT JSON_DEPTH('[1, 2, [3, 4, 5, 6], 7]');

+---------------------------------------+

| JSON_DEPTH('[1, 2, [3, 4, 5, 6], 7]') |

+---------------------------------------+

| 3 |

+---------------------------------------+

URL: https://mariadb.com/kb/en/json_depth/

 example:

 url: https://mariadb.com/kb/en/json_depth/

1.1.1.2.9.3.13 mysql.index_stats Table
The mysql.index_stats table is one of three tables storing data used for Engine-independent table statistics. The others

are mysql.column_stats and mysql.table_stats.
506/4161

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.index_stats table contains the following fields:

Field Type Null Key Default Description

db_name varchar(64) NO PRI NULL Database the table is in.

table_name varchar(64) NO PRI NULL Table name

index_name varchar(64) NO PRI NULL Name of the index

prefix_arity
int(11)

unsigned
NO PRI NULL

Index prefix length. 1 for the first keypart, 2 for the first two,

and so on. InnoDB's extended keys are supported.

avg_frequency decimal(12,4) YES NULL

Average number of records one will find for given values of

(keypart1, keypart2, ..), provided the values will be found in

the table.

It is possible to manually update the table. See Manual updates to statistics tables for details.

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.14 mysql.innodb_index_stats
Contents
1. Example

The mysql.innodb_index_stats table stores data related to particular InnoDB Persistent Statistics, and contains

multiple rows for each index.

This table, along with the related mysql.innodb_table_stats table, can be manually updated in order to force or test differing

query optimization plans. After updating, FLUSH TABLE innodb_index_stats is required to load the changes.

mysql.innodb_index_stats is not replicated, although any ANALYZE TABLE statements on the table will be by default..

It contains the following fields:

Field Type Null Key Default Description

database_name varchar(64) NO PRI NULL Database name.

table_name varchar(64) NO PRI NULL Table, partition or subpartition name.

index_name varchar(64) NO PRI NULL Index name.

last_update timestamp NO current_timestamp() Time that this row was last updated.

stat_name varchar(64) NO PRI NULL Statistic name.

stat_value
bigint(20)

unsigned
NO NULL Estimated statistic value.

sample_size
bigint(20)

unsigned
YES NULL

Number of pages sampled for the

estimated statistic value.

stat_description varchar(1024) NO NULL Statistic description.

Example

507/4161

SELECT * FROM mysql.innodb_index_stats\G

*************************** 1. row ***************************

 database_name: mysql

 table_name: gtid_slave_pos

 index_name: PRIMARY

 last_update: 2017-08-19 20:38:34

 stat_name: n_diff_pfx01

 stat_value: 0

 sample_size: 1

stat_description: domain_id

*************************** 2. row ***************************

 database_name: mysql

 table_name: gtid_slave_pos

 index_name: PRIMARY

 last_update: 2017-08-19 20:38:34

 stat_name: n_diff_pfx02

 stat_value: 0

 sample_size: 1

stat_description: domain_id,sub_id

*************************** 3. row ***************************

 database_name: mysql

 table_name: gtid_slave_pos

 index_name: PRIMARY

 last_update: 2017-08-19 20:38:34

 stat_name: n_leaf_pages

 stat_value: 1

 sample_size: NULL

stat_description: Number of leaf pages in the index

*************************** 4. row ***************************

 database_name: mysql

 table_name: gtid_slave_pos

 index_name: PRIMARY

 last_update: 2017-08-19 20:38:34

 stat_name: size

 stat_value: 1

 sample_size: NULL

stat_description: Number of pages in the index

*************************** 5. row ***************************

 database_name: test

 table_name: ft

 index_name: FTS_DOC_ID_INDEX

 last_update: 2017-09-15 12:58:39

 stat_name: n_diff_pfx01

 stat_value: 0

 sample_size: 1

stat_description: FTS_DOC_ID

*************************** 6. row ***************************

 database_name: test

 table_name: ft

 index_name: FTS_DOC_ID_INDEX

 last_update: 2017-09-15 12:58:39

 stat_name: n_leaf_pages

 stat_value: 1

 sample_size: NULL

stat_description: Number of leaf pages in the index

...

1.1.1.2.9.3.15 mysql.innodb_table_stats
Contents
1. Example

The mysql.innodb_table_stats table stores data related to InnoDB Persistent Statistics, and contains one row per

table.

This table, along with the related mysql.innodb_index_stats table, can be manually updated in order to force or test differing

query optimization plans. After updating, FLUSH TABLE innodb_table_stats is required to load the changes.

mysql.innodb_table_stats is not replicated, although any ANALYZE TABLE statements on the table will be by default..

It contains the following fields:

508/4161

Field Type Null Key Default Description

database_name varchar(64) NO PRI NULL Database name.

table_name varchar(64) NO PRI NULL
Table, partition or

subpartition name.

last_update timestamp NO current_timestamp()
Time that this row was last

updated.

n_rows
bigint(20)

unsigned
NO NULL

Number of rows in the

table.

clustered_index_size
bigint(20)

unsigned
NO NULL

Size, in pages, of the

primary index.

sum_of_other_index_sizes
bigint(20)

unsigned
NO NULL

Size, in pages, of non-

primary indexes.

Example

SELECT * FROM mysql.innodb_table_stats\G

*************************** 1. row ***************************

 database_name: mysql

 table_name: gtid_slave_pos

 last_update: 2017-08-19 20:38:34

 n_rows: 0

 clustered_index_size: 1

sum_of_other_index_sizes: 0

*************************** 2. row ***************************

 database_name: test

 table_name: ft

 last_update: 2017-09-15 12:58:39

 n_rows: 0

 clustered_index_size: 1

sum_of_other_index_sizes: 2

...

1.1.1.2.9.3.16
mysql.password_reuse_check_history Table

The mysql.password_reuse_check_history Table is installed as part of the password_reuse_check plugin, available

from MariaDB 10.7.0 .

The mysql.password_reuse_check_history table stores old passwords, so that when a user sets a new password, it

can be checked for purposes of preventing password reuse.

It contains the following fields:

Field Type Null Key Default Description

hash binary(64) NO PRI NULL

time timestamp NO MUL current_timestamp()

MariaDB starting with 10.7.0

1.1.1.2.9.3.17 mysql.plugin Table
The mysql.plugin table can be queried to get information about installed plugins.

This table only contains information about plugins that have been installed via the following methods:

The INSTALL SONAME statement.

The INSTALL PLUGIN statement.

The mariadb-plugin utility.

This table does not contain information about:

509/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

Built-in plugins.

Plugins loaded with the --plugin-load-add option.

Plugins loaded with the --plugin-load option.

This table only contains enough information to reload the plugin when the server is restarted, which means it only contains

the plugin name and the plugin library.

This table uses the Aria storage engine.

The mysql.plugin table contains the following fields:

Field Type Null Key Default Description

name varchar(64) NO PRI Plugin name.

dl varchar(128) NO Name of the plugin library.

Example

SELECT * FROM mysql.plugin;

+---------------------------+------------------------+

| name | dl |

+---------------------------+------------------------+

| spider | ha_spider.so |

| spider_alloc_mem | ha_spider.so |

| METADATA_LOCK_INFO | metadata_lock_info.so |

| OQGRAPH | ha_oqgraph.so |

| cassandra | ha_cassandra.so |

| QUERY_RESPONSE_TIME | query_response_time.so |

| QUERY_RESPONSE_TIME_AUDIT | query_response_time.so |

| LOCALES | locales.so |

| sequence | ha_sequence.so |

+---------------------------+------------------------+

1.1.1.2.9.3.18 mysql.proc Table
The mysql.proc table contains information about stored procedures and stored functions. It contains similar information to

that stored in the INFORMATION SCHEMA.ROUTINES table.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.proc table contains the following fields:

Field Type Null Key Default Description

db char(64) NO PRI Database name.

name char(64) NO PRI Routine name.

type enum('FUNCTION','PROCEDURE','PACKAGE', 'PACKAGE BODY') NO PRI NULL

Whether stored

procedure, stored

function or, from

MariaDB 10.3.5

, a package or

package body.

specific_name char(64) NO

language enum('SQL') NO SQL Always SQL .

sql_data_access
enum('CONTAINS_SQL', 'NO_SQL', 'READS_SQL_DATA',

'MODIFIES_SQL_DATA')
NO CONTAINS_SQL

is_deterministic enum('YES','NO') NO NO

Whether the

routine is

deterministic (can

produce only one

result for a given

list of

parameters) or

not.

MariaDB starting with 10.4

MariaDB until 10.3

510/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/

security_type enum('INVOKER','DEFINER') NO DEFINER

INVOKER or

DEFINER .

Indicates which

user's privileges

apply to this

routine.

param_list blob NO NULL
List of

parameters.

returns longblob NO NULL
What the routine

returns.

body longblob NO NULL
Definition of the

routine.

definer char(141) NO

If the

security_type

is DEFINER , this

value indicates

which user

defined this

routine.

created timestamp NO CURRENT_TIMESTAMP

Date and time the

routine was

created.

modified timestamp NO 0000-00-00 00:00:00

Date and time the

routine was

modified.

sql_mode

set('REAL_AS_FLOAT', 'PIPES_AS_CONCAT', 'ANSI_QUOTES',

'IGNORE_SPACE', 'IGNORE_BAD_TABLE_OPTIONS',

'ONLY_FULL_GROUP_BY', 'NO_UNSIGNED_SUBTRACTION',

'NO_DIR_IN_CREATE', 'POSTGRESQL', 'ORACLE', 'MSSQL',

'DB2', 'MAXDB', 'NO_KEY_OPTIONS', 'NO_TABLE_OPTIONS',

'NO_FIELD_OPTIONS', 'MYSQL323', 'MYSQL40', 'ANSI',

'NO_AUTO_VALUE_ON_ZERO', 'NO_BACKSLASH_ESCAPES',

'STRICT_TRANS_TABLES', 'STRICT_ALL_TABLES',

'NO_ZERO_IN_DATE', 'NO_ZERO_DATE', 'INVALID_DATES',

'ERROR_FOR_DIVISION_BY_ZERO', 'TRADITIONAL',

'NO_AUTO_CREATE_USER', 'HIGH_NOT_PRECEDENCE',

'NO_ENGINE_SUBSTITUTION', 'PAD_CHAR_TO_FULL_LENGTH',

'EMPTY_STRING_IS_NULL', 'SIMULTANEOUS_ASSIGNMENT')

NO

The SQL_MODE

at the time the

routine was

created.

comment text NO NULL

Comment

associated with

the routine.

character_set_client char(32) YES NULL

The character set

used by the client

that created the

routine.

collation_connection char(32) YES NULL

The collation

(and character

set) used by the

connection that

created the

routine.

db_collation char(32) YES NULL

The default

collation (and

character set) for

the database, at

the time the

routine was

created.

body_utf8 longblob YES NULL
Definition of the

routine in utf8.

aggregate enum('NONE', 'GROUP') NO NONE
From MariaDB

10.3.3

Field Type Null Key Default Description

1.1.1.2.9.3.19 mysql.procs_priv Table
The mysql.procs_priv table contains information about stored procedure and stored function privileges. See CREATE

PROCEDURE and CREATE FUNCTION on creating these.

The INFORMATION_SCHEMA.ROUTINES table derives its contents from mysql.procs_priv .

In MariaDB 10.4 and later, this table uses the Aria storage engine.

MariaDB starting with 10.4

MariaDB until 10.3
511/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.procs_priv table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI

Host (together with Db ,

User , Routine_name and

Routine_type makes up

the unique identifier for this

record).

Db char(64) NO PRI

Database (together with

Host , User ,

Routine_name and

Routine_type makes up

the unique identifier for this

record).

User char(80) NO PRI

User (together with Host ,

Db , Routine_name and

Routine_type makes up

the unique identifier for this

record).

Routine_name char(64) NO PRI

Routine_name (together with

Host , Db User and

Routine_type makes up

the unique identifier for this

record).

Routine_type
enum('FUNCTION','PROCEDURE',

'PACKAGE', 'PACKAGE BODY')
NO PRI NULL

Whether the routine is a

stored procedure, stored

function, or, from MariaDB

10.3.5 , a package or

package body.

Grantor char(141) NO MUL

Proc_priv
set('Execute','Alter

Routine','Grant')
NO

The routine privilege. See

Function Privileges and

Procedure Privileges for

details.

Timestamp timestamp NO CURRENT_TIMESTAMP

The Acl_function_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the mysql.columns_priv

table contains with the FUNCTION routine type.

The Acl_procedure_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the

mysql.columns_priv table contains with the PROCEDURE routine type.

1.1.1.2.9.3.20 mysql.roles_mapping Table
The mysql.roles_mapping table contains information about mariaDB roles.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.roles_mapping table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI
Host (together with User and Role makes up the unique

identifier for this record.

MariaDB starting with 10.4

MariaDB until 10.3

512/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

User char(80) NO PRI
User (together with Host and Role makes up the unique

identifier for this record.

Role char(80) NO PRI
Role (together with Host and User makes up the unique

identifier for this record.

Admin_option enum('N','Y') NO N
Whether the role can be granted (see the CREATE ROLE

WITH ADMIN clause).

The Acl_role_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the mysql.roles_mapping

table contains.

1.1.1.2.9.3.21 mysql.servers Table
The mysql.servers table contains information about servers as used by the Spider, FEDERATED or FederatedX ,

Connect storage engines (see CREATE SERVER).

This table uses the Aria storage engine (until MariaDB 10.3, it used the MyISAM storage engine).

The mysql.servers table contains the following fields:

Field Type Null Key Default Description

Server_name char(64) NO PRI

Host char(64) NO

Db char(64) NO

Username char(80) NO

Password char(64) NO

Port int(4) NO 0

Socket char(64) NO

Wrapper char(64) NO mysql or mariadb

Owner char(64) NO

Example

SELECT * FROM mysql.servers\G

*************************** 1. row ***************************

Server_name: s

 Host: 192.168.1.106

 Db: test

 Username: Remote

 Password:

 Port: 0

 Socket:

 Wrapper: mariadb

 Owner:

1.1.1.2.9.3.22 mysql.slow_log Table
The mysql.slow_log table stores the contents of the Slow Query Log if slow logging is active and the output is being

written to table (see Writing logs into tables).

It contains the following fields:

Field Type Null Key Default Description

start_time timestamp(6) NO CURRENT_TIMESTAMP(6) Time the query began.

user_host mediumtext NO NULL User and host combination.

query_time time(6) NO NULL Total time the query took to execute.

lock_time time(6) NO NULL Total time the query was locked.

513/4161

https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/federatedx/

rows_sent int(11) NO NULL Number of rows sent.

rows_examined int(11) NO NULL Number of rows examined.

db varchar(512) NO NULL Default database.

last_insert_id int(11) NO NULL last_insert_id.

insert_id int(11) NO NULL Insert id.

server_id
int(10)

unsigned
NO NULL The server's id.

sql_text mediumtext NO NULL Full query.

thread_id
bigint(21)

unsigned
NO NULL Thread id.

rows_affected int(11) NO NULL
Number of rows affected by an UPDATE

or DELETE (from MariaDB 10.1.2)

Example

SELECT * FROM mysql.slow_log\G

...

*************************** 2. row ***************************

 start_time: 2014-11-11 07:56:28.721519

 user_host: root[root] @ localhost []

 query_time: 00:00:12.000215

 lock_time: 00:00:00.000000

 rows_sent: 1

 rows_examined: 0

 db: test

last_insert_id: 0

 insert_id: 0

 server_id: 1

 sql_text: SELECT SLEEP(12)

 thread_id: 74

...

1.1.1.2.9.3.23 mysql.tables_priv Table
The mysql.tables_priv table contains information about table-level privileges. The table can be queried and although it

is possible to directly update it, it is best to use GRANT for setting privileges.

Note that the MariaDB privileges occur at many levels. A user may be granted a privilege at the table level, but may still not

have permission on a database level, for example. See privileges for a more complete view of the MariaDB privilege

system.

The INFORMATION_SCHEMA.TABLE_PRIVILEGES table derives its contents from mysql.tables_priv .

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.tables_priv table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI

Host (together with

User , Db and

Table_name makes

up the unique

identifier for this

record.

MariaDB starting with 10.4

MariaDB until 10.3

514/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/

Db char(64) NO PRI

Database (together

with User , Host

and

Table_name makes

up the unique

identifier for this

record.

User char(80) NO PRI

User (together with

Host , Db and

Table_name makes

up the unique

identifier for this

record.

Table_name char(64) NO PRI

Table name

(together with

User , Db and

Table makes up

the unique identifier

for this record.

Grantor char(141) NO MUL

Timestamp timestamp NO CURRENT_TIMESTAMP

Table_priv

set('Select', 'Insert', 'Update',

'Delete', 'Create', 'Drop', 'Grant',

'References', 'Index', 'Alter',

'Create View', 'Show view',

'Trigger', 'Delete versioning

rows')

NO

The table privilege

type. See Table

Privileges for

details.

Column_priv
set('Select', 'Insert', 'Update',

'References')
NO

The column

privilege type. See

Column Privileges

for details.

The Acl_table_grants status variable, added in MariaDB 10.1.4 , indicates how many rows the mysql.tables_priv

table contains.

1.1.1.2.9.3.24 mysql.table_stats Table
The mysql.table_stats table is one of three tables storing data used for Engine-independent table statistics. The others

are mysql.column_stats and mysql.index_stats.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.table_stats table contains the following fields:

Field Type Null Key Default Description

db_name varchar(64) NO PRI NULL Database the table is in .

table_name varchar(64) NO PRI NULL Table name.

cardinality bigint(21) unsigned YES NULL Number of records in the table.

It is possible to manually update the table. See Manual updates to statistics tables for details.

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.25 mysql.time_zone Table
The mysql.time_zone table is one of the mysql system tables that can contain time zone information. It is usually

515/4161

https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/time-zones/

preferable for the system to handle the time zone, in which case the table will be empty (the default), but you can populate

the mysql time zone tables using the mariadb-tzinfo-to-sql utility. See Time Zones for details.

This table uses the Aria storage engine.

The mysql.time_zone table contains the following fields:

Field Type Null Key Default Description

Time_zone_id int(10) unsigned NO PRI NULL ID field, auto_increments.

Use_leap_seconds enum('Y','N') NO N Whether or not leap seconds are used.

Example

SELECT * FROM mysql.time_zone;

+--------------+------------------+

| Time_zone_id | Use_leap_seconds |

+--------------+------------------+

| 1 | N |

| 2 | N |

| 3 | N |

| 4 | N |

| 5 | N |

| 6 | N |

| 7 | N |

| 8 | N |

| 9 | N |

| 10 | N |

...

+--------------+------------------+

1.1.1.2.9.3.26 mysql.time_zone_leap_second
Table
The mysql.time_zone_leap_second table is one of the mysql system tables that can contain time zone information. It

is usually preferable for the system to handle the time zone, in which case the table will be empty (the default), but you can

populate the mysql time zone tables using the mariadb-tzinfo-to-sql utility. See Time Zones for details.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

The mysql.time_zone_leap_second table contains the following fields:

Field Type Null Key Default Description

Transition_time bigint(20) NO PRI NULL

Correction int(11) NO NULL

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.27 mysql.time_zone_name Table
The mysql.time_zone_name table is one of the mysql system tables that can contain time zone information. It is usually

preferable for the system to handle the time zone, in which case the table will be empty (the default), but you can populate

the mysql time zone tables using the mariadb-tzinfo-to-sql utility. See Time Zones for details.

This table uses the Aria storage engine.

The mysql.time_zone_name table contains the following fields:

Field Type Null Key Default Description

Name char(64) NO PRI NULL Name of the time zone.

516/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/

Time_zone_id int(10) unsigned NO PRI NULL ID field, auto_increments.

Example

SELECT * FROM mysql.time_zone_name;

+--------------------+--------------+

| Name | Time_zone_id |

+--------------------+--------------+

| Africa/Abidjan | 1 |

| Africa/Accra | 2 |

| Africa/Addis_Ababa | 3 |

| Africa/Algiers | 4 |

| Africa/Asmara | 5 |

| Africa/Asmera | 6 |

| Africa/Bamako | 7 |

| Africa/Bangui | 8 |

| Africa/Banjul | 9 |

| Africa/Bissau | 10 |

...

+--------------------+--------------+

1.1.1.2.9.3.28 mysql.time_zone_transition Table
The mysql.time_zone_transition table is one of the mysql system tables that can contain time zone information. It

is usually preferable for the system to handle the time zone, in which case the table will be empty (the default), but you can

populate the mysql time zone tables using the mariadb-tzinfo-to-sql utility. See Time Zones for details.

This table uses the Aria storage engine.

The mysql.time_zone_transition table contains the following fields:

Field Type Null Key Default Description

Time_zone_id int(10) unsigned NO PRI NULL

Transition_time bigint(20) NO PRI NULL

Transition_type_id int(10) unsigned NO NULL

Example

SELECT * FROM mysql.time_zone_transition;

+--------------+-----------------+--------------------+

| Time_zone_id | Transition_time | Transition_type_id |

+--------------+-----------------+--------------------+

| 1 | -1830383032 | 1 |

| 2 | -1640995148 | 2 |

| 2 | -1556841600 | 1 |

| 2 | -1546388400 | 2 |

| 2 | -1525305600 | 1 |

| 2 | -1514852400 | 2 |

| 2 | -1493769600 | 1 |

| 2 | -1483316400 | 2 |

| 2 | -1462233600 | 1 |

| 2 | -1451780400 | 2 |

...

+--------------+-----------------+--------------------+

1.1.1.2.9.3.29 mysql.time_zone_transition_type
Table
The mysql.time_zone_transition_type table is one of the mysql system tables that can contain time zone

information. It is usually preferable for the system to handle the time zone, in which case the table will be empty (the default),

but you can populate the mysql time zone tables using the mariadb-tzinfo-to-sql utility. See Time Zones for details.

517/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/

This table uses the Aria storage engine.

The mysql.time_zone_transition_type table contains the following fields:

Field Type Null Key Default Description

Time_zone_id int(10) unsigned NO PRI NULL

Transition_type_id int(10) unsigned NO PRI NULL

Offset int(11) NO 0

Is_DST tinyint(3) unsigned NO 0

Abbreviation char(8) NO

Example

SELECT * FROM mysql.time_zone_transition_type;

+--------------+--------------------+--------+--------+--------------+

| Time_zone_id | Transition_type_id | Offset | Is_DST | Abbreviation |

+--------------+--------------------+--------+--------+--------------+

| 1 | 0 | -968 | 0 | LMT |

| 1 | 1 | 0 | 0 | GMT |

| 2 | 0 | -52 | 0 | LMT |

| 2 | 1 | 1200 | 1 | GHST |

| 2 | 2 | 0 | 0 | GMT |

| 3 | 0 | 8836 | 0 | LMT |

| 3 | 1 | 10800 | 0 | EAT |

| 3 | 2 | 9000 | 0 | BEAT |

| 3 | 3 | 9900 | 0 | BEAUT |

| 3 | 4 | 10800 | 0 | EAT |

...

+--------------+--------------------+--------+--------+--------------+

1.1.1.2.9.3.30 mysql.transaction_registry Table
The mysql.transaction_registry table was introduced in MariaDB 10.3.4 as part of system-versioned tables. It is

used for transaction-precise versioning, and contains the following fields:

Field Type Null Key Default Description

transaction_id bigint(20) unsigned NO Primary NULL

commit_id bigint(20) unsigned NO Unique NULL

begin_timestamp timestamp(6) NO Multiple
0000-00-00

00:00:00.000000

Timestamp when the

transaction began

(BEGIN statement),

however see MDEV-

16024 .

commit timestamp(6) NO Multiple
0000-00-00

00:00:00.000000

Timestamp when the

transaction was

committed.

isolation_level

enum('READ-UNCOMMITTED','READ-

COMMITTED','REPEATABLE-

READ','SERIALIZABLE')

NO NULL
Transaction isolation

level.

1.1.1.2.9.3.31 mysql.user Table

In MariaDB 10.4 and later, the mysql.global_priv table has replaced the mysql.user table, and mysql.user should

be considered obsolete. It is now a view into mysql.global_priv created for compatibility with older applications

and monitoring scripts. New tools are supposed to use INFORMATION_SCHEMA tables. From MariaDB 10.4.13, the

dedicated mariadb.sys user is created as the definer of the view. Previously, root was the definer, which resulted

in privilege problems when this username was changed (MDEV-19650).

MariaDB starting with 10.4

518/4161

https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://jira.mariadb.org/browse/MDEV-16024
https://jira.mariadb.org/browse/MDEV-19650

The mysql.user table contains information about users that have permission to access the MariaDB server, and their

global privileges. The table can be queried and although it is possible to directly update it, it is best to use GRANT and

CREATE USER for adding users and privileges.

Note that the MariaDB privileges occur at many levels. A user may not be granted create privilege at the user level, but

may still have create permission on certain tables or databases, for example. See privileges for a more complete view of

the MariaDB privilege system.

The mysql.user table contains the following fields:

Field Type Null Key Default Description

Host char(60) NO PRI
Host (together with User makes up the unique

identifier for this account.

User char(80) NO PRI
User (together with Host makes up the unique

identifier for this account.

Password

longtext (>=

MariaDB 10.4.1),

char(41) (<=

MariaDB 10.4.0)

NO
Hashed password, generated by the

PASSWORD() function.

Select_priv enum('N','Y') NO N Can perform SELECT statements.

Insert_priv enum('N','Y') NO N Can perform INSERT statements.

Update_priv enum('N','Y') NO N Can perform UPDATE statements.

Delete_priv enum('N','Y') NO N Can perform DELETE statements.

Create_priv enum('N','Y') NO N
Can CREATE DATABASE's or CREATE

TABLE's.

Drop_priv enum('N','Y') NO N Can DROP DATABASE's or DROP TABLE's.

Reload_priv enum('N','Y') NO N
Can execute FLUSH statements or equivalent

mariadb-admin commands.

Shutdown_priv enum('N','Y') NO N
Can shut down the server with SHUTDOWN or

mariadb-admin shutdown.

Process_priv enum('N','Y') NO N

Can show information about active processes,

via SHOW PROCESSLIST or mariadb-admin

processlist.

File_priv enum('N','Y') NO N

Read and write files on the server, using

statements like LOAD DATA INFILE or functions

like LOAD_FILE(). Also needed to create

CONNECT outward tables. MariaDB server must

have permission to access those files.

Grant_priv enum('N','Y') NO N User can grant privileges they possess.

References_priv enum('N','Y') NO N Unused

Index_priv enum('N','Y') NO N

Can create an index on a table using the

CREATE INDEX statement. Without the INDEX

privilege, user can still create indexes when

creating a table using the CREATE TABLE

statement if the user has have the CREATE

privilege, and user can create indexes using the

ALTER TABLE statement if they have the

ALTER privilege.

Alter_priv enum('N','Y') NO N Can perform ALTER TABLE statements.

Show_db_priv enum('N','Y') NO N

Can list all databases using the SHOW

DATABASES statement. Without the SHOW

DATABASES privilege, user can still issue the

SHOW DATABASES statement, but it will only list

databases containing tables on which they have

privileges.

519/4161

Super_priv enum('N','Y') NO N

Can execute superuser statements: CHANGE

MASTER TO, KILL (users who do not have this

privilege can only KILL their own threads),

PURGE LOGS , SET global system variables,

or the mariadb-admin debug command. Also,

this permission allows the user to write data

even if the read_only startup option is set, enable

or disable logging, enable or disable replication

on slaves, specify a DEFINER for statements

that support that clause, connect once after

reaching the MAX_CONNECTIONS . If a statement

has been specified for the init-connect mysqld

option, that command will not be executed when

a user with SUPER privileges connects to the

server.

Create_tmp_table_priv enum('N','Y') NO N
Can create temporary tables with the CREATE

TEMPORARY TABLE statement.

Lock_tables_priv enum('N','Y') NO N

Acquire explicit locks using the LOCK TABLES

statement; user also needs to have the SELECT

privilege on a table in order to lock it.

Execute_priv enum('N','Y') NO N Can execute stored procedure or functions.

Repl_slave_priv enum('N','Y') NO N

Accounts used by slave servers on the master

need this privilege. This is needed to get the

updates made on the master.

Repl_client_priv enum('N','Y') NO N
Can execute SHOW MASTER STATUS and

SHOW SLAVE STATUS statements.

Create_view_priv enum('N','Y') NO N
Can create a view using the CREATE_VIEW

statement.

Show_view_priv enum('N','Y') NO N

Can show the CREATE VIEW statement to

create a view using the SHOW CREATE VIEW

statement.

Create_routine_priv enum('N','Y') NO N

Can create stored programs using the CREATE

PROCEDURE and CREATE FUNCTION

statements.

Alter_routine_priv enum('N','Y') NO N
Can change the characteristics of a stored

function using the ALTER FUNCTION statement.

Create_user_priv enum('N','Y') NO N

Can create a user using the CREATE USER

statement, or implicitly create a user with the

GRANT statement.

Event_priv enum('N','Y') NO N Create, drop and alter events.

Trigger_priv enum('N','Y') NO N

Can execute triggers associated with tables the

user updates, execute the CREATE TRIGGER

and DROP TRIGGER statements.

Create_tablespace_priv enum('N','Y') NO N

Delete_history_priv enum('N','Y') NO N
Can delete rows created through system

versioning.

ssl_type

enum('',

'ANY', 'X509',

'SPECIFIED')

NO TLS type - see TLS options.

ssl_cipher blob NO NULL TLS cipher - see TLS options.

x509_issuer blob NO NULL X509 cipher - see TLS options.

x509_subject blob NO NULL SSL subject - see TLS options.

max_questions
int(11)

unsigned
NO 0

Number of queries the user can perform per

hour. Zero is unlimited. See per-account

resource limits.

520/4161

https://mariadb.com/kb/en/sql-commands-purge-logs/

max_updates
int(11)

unsigned
NO 0

Number of updates the user can perform per

hour. Zero is unlimited. See per-account

resource limits.

max_connections
int(11)

unsigned
NO 0

Number of connections the account can start per

hour. Zero is unlimited. See per-account

resource limits.

max_user_connections int(11) NO 0

Number of simultaneous connections the

account can have. Zero is unlimited. See per-

account resource limits.

plugin char(64) NO
Authentication plugin used on connection. If

empty, uses the default.

authentication_string text NO NULL
Authentication string for the authentication

plugin.

password_expired enum('N','Y') NO N
MySQL-compatibility option, not implemented in

MariaDB.

is_role enum('N','Y') NO N Whether the user is a role.

default_role char(80) NO N
Role which will be enabled on user login

automatically.

max_statement_time decimal(12,6) NO 0.000000
If non-zero, how long queries can run before

being killed automatically.

Field Type Null Key Default Description

The Acl_roles status variable indicates how many rows the mysql.user table contains where is_role='Y' .

The Acl_users status variable, indicates how many rows the mysql.user table contains where is_role='N' .

Authentication Plugin

When the plugin column is empty, MariaDB defaults to authenticating accounts with either the

mysql_native_password or the mysql_old_password plugins. It decides which based on the hash used in the value for

the Password column. When there's no password set or when the 4.1 password hash is used, (which is 41 characters

long), MariaDB uses the mysql_native_password plugin. The mysql_old_password plugin is used with pre-4.1

password hashes, (which are 16 characters long).

MariaDB also supports the use of alternative authentication plugins. When the plugin column is not empty for the given

account, MariaDB uses it to authenticate connection attempts. The specific plugin then uses the value of either the

Password column or the authentication_string column to authenticate the user.

A specific authentication plugin can be used for an account by providing the IDENTIFIED VIA authentication_plugin

clause with the CREATE USER, ALTER USER, or GRANT statements.

For example, the following statement would create an account that authenticates with the PAM authentication plugin:

CREATE USER foo2@test IDENTIFIED VIA pam;

If the specific authentication plugin uses the authentication_string column, then this value for the account can be

specified after a USING or AS keyword. For example, the PAM authentication plugin accepts a service name that would go

into the authentication_string column for the account:

CREATE USER foo2@test IDENTIFIED VIA pam USING 'mariadb';

1.1.1.2.9.3.32 Spider mysql Database Tables
The Spider storage engine installs the following system tables in the mysql database.

mysql.spider_link_failed_log Table

The mysql.spider_link_failed_log table.

521/4161

mysql.spider_link_mon_servers Table

The mysql.spider_link_mon_servers table.

mysql.spider_tables Table

The mysql.spider_tables table.

mysql.spider_table_crd Table

The mysql.spider_table_crd table.

mysql.spider_table_position_for_recovery Table

The mysql.spider_table_position_for_recovery table.

mysql.spider_table_sts Table

The mysql.spider_table_sts table.

mysql.spider_xa Table

The mysql.spider_xa table.

mysql.spider_xa_failed_log Table

The mysql.spider_xa_failed_log table.

mysql.spider_xa_member Table

The mysql.spider_xa_member table.

1.1.1.2.9.3.32.1 mysql.spider_link_failed_log
Table
The mysql.spider_link_failed_log table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

db_name char(64) NO

table_name char(199) NO

link_id char(64) NO

failed_time timestamp NO current_timestamp()

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.32.2 mysql.spider_link_mon_servers
Table
The mysql.spider_link_mon_servers table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

MariaDB starting with 10.4

MariaDB until 10.3

522/4161

db_name char(64) NO PRI

table_name char(199) NO PRI

link_id char(64) NO PRI

sid int(10) unsigned NO PRI 0

server char(64) YES NULL

scheme char(64) YES NULL

host char(64) YES NULL

port char(5) YES NULL

socket text YES NULL

username char(64) YES NULL

password char(64) YES NULL

ssl_ca text YES NULL

ssl_capath text YES NULL

ssl_cert text YES NULL

ssl_cipher char(64) YES NULL

ssl_key text YES NULL

ssl_verify_server_cert tinyint(4) NO 0

default_file text YES NULL

default_group char(64) YES NULL

dsn char(64) YES NULL

filedsn text YES NULL

driver char(64) YES NULL

1.1.1.2.9.3.32.3 mysql.spider_tables Table
The mysql.spider_tables table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

db_name char(64) NO PRI

table_name char(199) NO PRI

link_id int(11) NO PRI 0

priority bigint(20) NO MUL 0

server char(64) YES NULL

scheme char(64) YES NULL

host char(64) YES NULL

port char(5) YES NULL

socket text YES NULL

username char(64) YES NULL

password char(64) YES NULL

MariaDB starting with 10.4

MariaDB until 10.3

523/4161

ssl_ca text YES NULL

ssl_capath text YES NULL

ssl_cert text YES NULL

ssl_cipher char(64) YES NULL

ssl_key text YES NULL

ssl_verify_server_cert tinyint(4) NO 0

monitoring_binlog_pos_at_failing tinyint(4) NO 0

default_file text YES NULL

default_group char(64) YES NULL

dsn char(64) YES NULL

filedsn text YES NULL

driver char(64) YES NULL

tgt_db_name char(64) YES NULL

tgt_table_name char(64) YES NULL

link_status tinyint(4) NO 1

block_status tinyint(4) NO 0

static_link_id char(64) YES NULL

1.1.1.2.9.3.32.4 mysql.spider_table_crd Table
The mysql.spider_table_crd table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

db_name char(64) NO PRI

table_name char(199) NO PRI

key_seq int(10) unsigned NO PRI 0

cardinality bigint(20) NO 0

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.32.5
mysql.spider_table_position_for_recovery Table
The mysql.spider_table_position_for_recovery table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

MariaDB starting with 10.4

MariaDB until 10.3

524/4161

db_name char(64) NO PRI

table_name char(199) NO PRI

failed_link_id int(11) NO PRI 0

source_link_id int(11) NO PRI 0

file text YES NULL

position text YES NULL

gtid text YES NULL

1.1.1.2.9.3.32.6 mysql.spider_table_sts Table
The mysql.spider_table_sts table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

db_name char(64) NO PRI

table_name char(199) NO PRI

data_file_length bigint(20) unsigned NO 0

max_data_file_length bigint(20) unsigned NO 0

index_file_length bigint(20) unsigned NO 0

records bigint(20) unsigned NO 0

mean_rec_length bigint(20) unsigned NO 0

check_time datetime NO 0000-00-00 00:00:00

create_time datetime NO 0000-00-00 00:00:00

update_time datetime NO 0000-00-00 00:00:00

checksum bigint(20) unsigned YES NULL

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.32.7 mysql.spider_xa Table
The mysql.spider_xa table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

format_id int(11) NO PRI 0

gtrid_length int(11) NO PRI 0

bqual_length int(11) NO 0

data binary(128) NO PRI

MariaDB starting with 10.4

MariaDB until 10.3

525/4161

status char(8) NO MUL

1.1.1.2.9.3.32.8 mysql.spider_xa_failed_log
Table
The mysql.spider_xa_failed_log table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

format_id int(11) NO 0

gtrid_length int(11) NO 0

bqual_length int(11) NO 0

data binary(128) NO MUL

scheme char(64) NO

host char(64) NO

port char(5) NO

socket text NO NULL

username char(64) NO

password char(64) NO

ssl_ca text YES NULL

ssl_capath text YES NULL

ssl_cert text YES NULL

ssl_cipher char(64) YES NULL

ssl_key text YES NULL

ssl_verify_server_cert tinyint(4) NO 0

default_file text YES NULL

default_group char(64) YES NULL

dsn char(64) YES NULL

filedsn text YES NULL

driver char(64) YES NULL

thread_id int(11) YES NULL

status char(8) NO

failed_time timestamp NO current_timestamp()

MariaDB starting with 10.4

MariaDB until 10.3

1.1.1.2.9.3.32.9 mysql.spider_xa_member Table
The mysql.spider_xa_member table is installed by the Spider storage engine.

In MariaDB 10.4 and later, this table uses the Aria storage engine.

MariaDB starting with 10.4

MariaDB until 10.3
526/4161

In MariaDB 10.3 and before, this table uses the MyISAM storage engine.

It contains the following fields:

Field Type Null Key Default Description

format_id int(11) NO 0

gtrid_length int(11) NO 0

bqual_length int(11) NO 0

data binary(128) NO MUL

scheme char(64) NO

host char(64) NO

port char(5) NO

socket text NO NULL

username char(64) NO

password char(64) NO

ssl_ca text YES NULL

ssl_capath text YES NULL

ssl_cert text YES NULL

ssl_cipher char(64) YES NULL

ssl_key text YES NULL

ssl_verify_server_cert tinyint(4) NO 0

default_file text YES NULL

default_group char(64) YES NULL

dsn char(64) YES NULL

filedsn text YES NULL

driver char(64) YES NULL

MariaDB until 10.3

1.1.1.2.9.4 Sys Schema

The sys_schema is a collection of views, functions and procedures to help administrators get insight into database

usage.

This article is currently incomplete.

Sys Schema sys_config Table

Configuration options for the Sys Schema.

Sys Schema Stored Functions

Stored functions available in the Sys Schema.

Sys Schema Stored Procedures

Stored procedures available in the Sys Schema.

Sys Schema Views

Views available in the Sys Schema.

MariaDB starting with 10.6.0

4

1.1.1.2.9.4.1 Sys Schema sys_config Table
MariaDB starting with 10.6.0

527/4161

The Sys Schema sys_config table was added in MariaDB 10.6.0. The sys_config table is also backported to MariaDB-

10.5-enterprise .

The sys.sys_config table holds configuration options for the Sys Schema.

This is a persistent table (using the Aria storage engine), with the configuration persisting across upgrades (new options are

added with INSERT IGNORE.

The table also has two related triggers, which maintain the user that INSERTs or UPDATEs the configuration -

sys_config_insert_set_user and sys_config_update_set_user respectively.

Its structure is as follows:

+----------+--------------+------+-----+-------------------+-----------------------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+-------------------+-----------------------------+

| variable | varchar(128) | NO | PRI | NULL | |

| value | varchar(128) | YES | | NULL | |

| set_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |

| set_by | varchar(128) | YES | | NULL | |

+----------+--------------+------+-----+-------------------+-----------------------------+

Note, when functions check for configuration options, they first check whether a similar named user variable exists with a

value, and if this is not set then pull the configuration option from this table in to that named user variable. This is done for

performance reasons (to not continually SELECT from the table), however this comes with the side effect that once inited,

the values last with the session, somewhat like how session variables are inited from global variables. If the values within

this table are changed, they will not take effect until the user logs in again.

Options Included

Variable
Default

Value
Description

statement_truncate_len 64
Sets the size to truncate statements to, for the format_statement

function.

statement_performance_analyzer.limit 100

The maximum number of rows to include for the views that does not

have a built-in limit (e.g. the 95th percentile view). If not set the limit is

100.

statement_performance_analyzer.view NULL

Used together with the 'custom' view. If the value contains a space, it is

considered a query, otherwise it must be an existing view querying the

performance_schema.events_statements_summary_by_digest table.

diagnostics.allow_i_s_tables OFF
Specifies whether it is allowed to do table scan queries on

information_schema.TABLES for the diagnostics procedure.

diagnostics.include_raw OFF
Set to 'ON' to include the raw data (e.g. the original output of "SELECT *

FROM sys.metrics") for the diagnostics procedure.

ps_thread_trx_info.max_length 65535
Sets the maximum output length for JSON object output by the

ps_thread_trx_info() function.

Notes

Some early versions of sys_config were stored in InnoDB format.

MariaDB starting with 10.6.0

1.1.1.2.9.4.2 Sys Schema Stored Functions
The following stored functions are available in the Sys Schema.

extract_schema_from_file_name

Returns the schema (database) name.

extract_table_from_file_name

Returns the table name from the provided path.

528/4161

https://mariadb.com/docs/server/whats-new/prior-series/mariadb-enterprise-server-10-5/

format_bytes

Returns a string consisting of a value and the units in a human-readable format.

format_path

Returns a modified path, replacing subpaths matching the values of various system variables.

format_statement

Returns a reduced length string.

format_time

Given a time in picoseconds, returns a human-readable time and unit.

list_add

Takes a list to be be modified and a value to be added to the list, returning the resulting value.

list_drop

Takes a list to be be modified and a value to be dropped, returning the resulting value.

ps_is_account_enabled

Whether or not Performance Schema instrumentation for a given account is enabled.

ps_is_consumer_enabled

Whether or not Performance Schema instrumentation for a given consumer is enabled.

ps_is_instrument_default_enabled

Whether or not a Performance Schema instrument is enabled by default.

ps_is_instrument_default_timed

Whether or not a Performance Schema instrument is timed by default.

ps_is_thread_instrumented

Whether or not instrumentation for a given connection_id is enabled.

ps_thread_account

Returns the account associated with the given thread_id.

ps_thread_id

Returns the thread_id associated with the given connection_id.

ps_thread_stack

Returns statements, stages, events within the Performance Schema for a given thread_id.

ps_thread_trx_info

Returns a JSON object with information about the thread specified by the given thread_id.

quote_identifier

Returns quoted, properly escaped identifier.

sys_get_config

Returns a configuration option value from the sys_config table.

version_major

Returns the MariaDB Server major release version.

version_minor

Returns the MariaDB Server minor release version.

version_patch

MariaDB Server patch release version.

1.1.1.2.9.4.2.1 extract_schema_from_file_name
529/4161

Syntax

sys.extract_schema_from_file_name(path)

Description
extract_schema_from_file_name is a stored function available with the Sys Schema.

Given a file path, it returns the schema (database) name. The file name is assumed to be within the schema directory, and

therefore the function will not return the expected result with partitions, or when tables are defined using the

DATA_DIRECTORY table option.

The function does not examine anything on disk. The return value, a VARCHAR(64), is determined solely from the provided

path.

Examples

SELECT sys.extract_schema_from_file_name('/usr/local/mysql/data/db/t1.ibd');

+--+

| sys.extract_schema_from_file_name('/usr/local/mysql/data/db/t1.ibd') |

+--+

| db |

+--+

1.1.1.2.9.4.2.2 extract_table_from_file_name

Syntax

sys.extract_table_from_file_name(path)

Description
extract_table_from_file_name is a stored function available with the Sys Schema.

Given a file path, it returns the table name.

The function does not examine anything on disk. The return value, a VARCHAR(64), is determined solely from the provided

path.

Examples

SELECT sys.extract_table_from_file_name('/usr/local/mysql/data/db/t1.ibd');

+---+

| sys.extract_table_from_file_name('/usr/local/mysql/data/db/t1.ibd') |

+---+

| t1 |

+---+

1.1.1.2.9.4.2.3 format_bytes

Syntax

sys.format_bytes(double)

Description
530/4161

format_bytes is a stored function available with the Sys Schema.

Given a byte count, returns a string consisting of a value and the units in a human-readable format. The units will be in

bytes, KiB (kibibytes), MiB (mebibytes), GiB (gibibytes), TiB (tebibytes), or PiB (pebibytes).

The binary prefixes (kibi, mebi, gibi, tebi and pebi) were created in December 1998 by the International Electrotechnical

Commission to avoid possible ambiguity, as the widely-used prefixes kilo, mega, giga, tera and peta can be used to refer to

both the power-of-10 decimal system multipliers and the power-of-two binary system multipliers.

Examples

SELECT sys.format_bytes(1000),sys.format_bytes(1024);

+------------------------+------------------------+

| sys.format_bytes(1000) | sys.format_bytes(1024) |

+------------------------+------------------------+

| 1000 bytes | 1.00 KiB |

+------------------------+------------------------+

SELECT sys.format_bytes(1000000),sys.format_bytes(1048576);

+---------------------------+---------------------------+

| sys.format_bytes(1000000) | sys.format_bytes(1048576) |

+---------------------------+---------------------------+

| 976.56 KiB | 1.00 MiB |

+---------------------------+---------------------------+

SELECT sys.format_bytes(1000000000),sys.format_bytes(1073741874);

+------------------------------+------------------------------+

| sys.format_bytes(1000000000) | sys.format_bytes(1073741874) |

+------------------------------+------------------------------+

| 953.67 MiB | 1.00 GiB |

+------------------------------+------------------------------+

SELECT sys.format_bytes(1000000000000),sys.format_bytes(1099511627776);

+---------------------------------+---------------------------------+

| sys.format_bytes(1000000000000) | sys.format_bytes(1099511627776) |

+---------------------------------+---------------------------------+

| 931.32 GiB | 1.00 TiB |

+---------------------------------+---------------------------------+

SELECT sys.format_bytes(1000000000000000),sys.format_bytes(1125899906842624);

+------------------------------------+------------------------------------+

| sys.format_bytes(1000000000000000) | sys.format_bytes(1125899906842624) |

+------------------------------------+------------------------------------+

| 909.49 TiB | 1.00 PiB |

+------------------------------------+------------------------------------+

1.1.1.2.9.4.2.4 format_path

Syntax

sys.format_path(path)

Description
format_path is a stored function available with the Sys Schema that, given a path, returns a modified path after replacing

subpaths matching the values of various system variables with the variable name.

The system variables that are matched are, in order:

datadir

tmpdir

slave_load_tmpdir

innodb_data_home_dir

innodb_log_group_home_dir

innodb_undo_directory

basedir

531/4161

Examples

SELECT @@tmpdir;

+------------------------------------+

| @@tmpdir |

+------------------------------------+

| /home/ian/sandboxes/msb_10_8_2/tmp |

+------------------------------------+

SELECT sys.format_path('/home/ian/sandboxes/msb_10_8_2/tmp/testdb.ibd');

+--+

| sys.format_path('/home/ian/sandboxes/msb_10_8_2/tmp/testdb.ibd') |

+--+

| @@tmpdir/testdb.ibd |

+--+

1.1.1.2.9.4.2.5 format_statement

Syntax

sys.format_statement(statement)

Description
Returns a reduced length string. The length is specified by the statement_truncate_len configuration option (default 64), and

the removed part of the string (if any) is replaced with an ellipsis (three dots).

The function is intended for use in formatting lengthy SQL statements to a fixed length.

Examples
Default truncation length 64:

SELECT sys.format_statement(

 'SELECT field1, field2, field3, field4, field5, field6 FROM table1'

) AS formatted_statement;

+---+

| formatted_statement |

+---+

| SELECT field1, field2, field3, ... d4, field5, field6 FROM table1 |

+---+

Reducing the truncation length to 48:

SET @sys.statement_truncate_len = 48;

SELECT sys.format_statement(

 'SELECT field1, field2, field3, field4, field5, field6 FROM table1'

) AS formatted_statement;

+---+

| formatted_statement |

+---+

| SELECT field1, field2, ... d5, field6 FROM table1 |

+---+

1.1.1.2.9.4.2.6 format_time

Syntax

532/4161

sys.format_time(picoseconds)

Description
format_time is a stored function available with the Sys Schema. Given a time in picoseconds, returns a human-readable

time value and unit indicator. Unit can be:

ps - picoseconds

ns - nanoseconds

us - microseconds

ms - milliseconds

s - seconds

m - minutes

h - hours

d - days

w - weeks

This function is very similar to the FORMAT_PICO_TIME function introduced in MariaDB 11.0.2, but with the following

differences:

Represents minutes as m rather than min .

Represent weeks.

Examples

SELECT

 sys.format_time(43) AS ps,

 sys.format_time(4321) AS ns,

 sys.format_time(43211234) AS us,

 sys.format_time(432112344321) AS ms,

 sys.format_time(43211234432123) AS s,

 sys.format_time(432112344321234) AS m,

 sys.format_time(4321123443212345) AS h,

 sys.format_time(432112344321234545) AS d,

 sys.format_time(43211234432123444543) AS w;

+-------+---------+----------+-----------+---------+--------+--------+--------+---------+

| ps | ns | us | ms | s | m | h | d | w |

+-------+---------+----------+-----------+---------+--------+--------+--------+---------+

| 43 ps | 4.32 ns | 43.21 us | 432.11 ms | 43.21 s | 7.20 m | 1.20 h | 5.00 d | 71.45 w |

+-------+---------+----------+-----------+---------+--------+--------+--------+---------+

1.1.1.2.9.4.2.7 list_add

Syntax

sys.list_add(list,value)

Description
list_add is a stored function available with the Sys Schema.

It takes a list to be be modified and a value to be added to the list, returning the resulting value. This can be used, for

example, to add a value to a system variable taking a comma-delimited list of options, such as sql_mode.

The related function list_drop can be used to drop a value from a list.

Examples

533/4161

SELECT @@sql_mode;

+---+

| @@sql_mode |

+---+

| STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---+

SET @@sql_mode = sys.list_add(@@sql_mode, 'NO_ZERO_DATE');

SELECT @@sql_mode;

+---+

| @@sql_mode |

+---+

| STRICT_TRANS_TABLES,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---+

1.1.1.2.9.4.2.8 list_drop

Syntax

sys.list_drop(list,value)

Description
list_drop is a stored function available with the Sys Schema.

It takes a list to be be modified and a value to be dropped from the list, returning the resulting value. This can be used, for

example, to remove a value from a system variable taking a comma-delimited list of options, such as sql_mode.

The related function list_add can be used to add a value to a list.

Examples

SELECT @@sql_mode;

+---+

| @@sql_mode |

+---+

| STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---+

SET @@sql_mode = sys.list_drop(@@sql_mode, 'NO_ENGINE_SUBSTITUTION');

SELECT @@sql_mode;

+---+

| @@sql_mode |

+---+

| STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER |

+---+

1.1.1.2.9.4.2.9 ps_is_account_enabled

Syntax

sys.ps_is_account_enabled(host,user)

534/4161

Description
ps_is_account_enabled is a stored function available with the Sys Schema.

It takes host and user arguments, and returns an ENUM('YES','NO') depending on whether Performance Schema

instrumentation for the given account is enabled.

Examples

SELECT sys.ps_is_account_enabled('localhost', 'root');

+--+

| sys.ps_is_account_enabled('localhost', 'root') |

+--+

| YES |

+--+

1.1.1.2.9.4.2.10 ps_is_consumer_enabled

Syntax

sys.ps_is_consumer_enabled(consumer)

Description
ps_is_consumer_enabled is a stored function available with the Sys Schema.

It returns an ENUM('YES','NO') depending on whether Performance Schema instrumentation for the given consumer is

enabled, and NULL if not given a valid consumer name.

Examples

SELECT sys.ps_is_consumer_enabled('global_instrumentation');

+--+

| sys.ps_is_consumer_enabled('global_instrumentation') |

+--+

| YES |

+--+

SELECT sys.ps_is_consumer_enabled('events_stages_current');

+---+

| sys.ps_is_consumer_enabled('events_stages_current') |

+---+

| NO |

+---+

SELECT sys.ps_is_consumer_enabled('nonexistent_consumer');

+--+

| sys.ps_is_consumer_enabled('nonexistent_consumer') |

+--+

| NULL |

+--+

1.1.1.2.9.4.2.11
ps_is_instrument_default_enabled

Syntax

535/4161

sys.ps_is_instrument_default_enabled(instrument)

Description
ps_is_instrument_default_enabled is a stored function available with the Sys Schema.

It returns YES if the given Performance Schema instrument is enabled by default, and NO if it is not, does not exist, or is a

NULL value.

Examples

SELECT sys.ps_is_instrument_default_enabled('statement/sql/select');

+--+

| sys.ps_is_instrument_default_enabled('statement/sql/select') |

+--+

| YES |

+--+

SELECT sys.ps_is_instrument_default_enabled('memory/sql/udf_mem');

+--+

| sys.ps_is_instrument_default_enabled('memory/sql/udf_mem') |

+--+

| NO |

+--+

SELECT sys.ps_is_instrument_default_enabled('memory/sql/nonexistent');

+--+

| sys.ps_is_instrument_default_enabled('memory/sql/nonexistent') |

+--+

| NO |

+--+

SELECT sys.ps_is_instrument_default_enabled(NULL);

+--+

| sys.ps_is_instrument_default_enabled(NULL) |

+--+

| NO |

+--+

1.1.1.2.9.4.2.12 ps_is_instrument_default_timed

Syntax

sys.ps_is_instrument_default_timed(instrument)

Description
ps_is_instrument_default_timed is a stored function available with the Sys Schema.

It returns YES if the given Performance Schema instrument is timed by default, and NO if it is not, does not exist, or is a

NULL value.

Examples

536/4161

SELECT sys.ps_is_instrument_default_timed('statement/sql/select');

+--+

| sys.ps_is_instrument_default_timed('statement/sql/select') |

+--+

| YES |

+--+

SELECT sys.ps_is_instrument_default_timed('memory/sql/udf_mem');

+--+

| sys.ps_is_instrument_default_timed('memory/sql/udf_mem') |

+--+

| NO |

+--+

SELECT sys.ps_is_instrument_default_timed('memory/sql/nonexistent');

+---+

| sys.ps_is_instrument_default_timed('memory/sql/udf_memsds') |

+---+

| NO |

+---+

SELECT sys.ps_is_instrument_default_timed(NULL);

+--+

| sys.ps_is_instrument_default_timed(NULL) |

+--+

| NO |

+--+

1.1.1.2.9.4.2.13 ps_is_thread_instrumented

Syntax

sys.ps_is_thread_instrumented(connection_id)

Description
ps_is_thread_instrumented is a stored function available with the Sys Schema that returns whether or not

Performance Schema instrumentation for the given connection_id is enabled.

YES - instrumentation is enabled

NO - instrumentation is not enabled

UNKNOWN - the connection ID is unknown

NULL - NULL value

Examples

537/4161

SELECT sys.ps_is_thread_instrumented(CONNECTION_ID());

+--+

| sys.ps_is_thread_instrumented(CONNECTION_ID()) |

+--+

| YES |

+--+

SELECT sys.ps_is_thread_instrumented(2042);

+-------------------------------------+

| sys.ps_is_thread_instrumented(2042) |

+-------------------------------------+

| UNKNOWN |

+-------------------------------------+

SELECT sys.ps_is_thread_instrumented(NULL);

+-------------------------------------+

| sys.ps_is_thread_instrumented(NULL) |

+-------------------------------------+

| NULL |

+-------------------------------------+

1.1.1.2.9.4.2.14 ps_thread_account

Syntax

sys.ps_thread_account(thread_id)

Description
ps_thread_account is a stored function available with the Sys Schema that returns the account (username@hostname)

associated with the given thread_id.

Returns NULL if the thread_id is not found.

Examples

SELECT sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID()));

+--+

| sys.ps_thread_account(sys.ps_thread_id(CONNECTION_ID())) |

+--+

| msandbox@localhost |

+--+

SELECT sys.ps_thread_account(sys.ps_thread_id(2042));

+---+

| sys.ps_thread_account(sys.ps_thread_id(2042)) |

+---+

| NULL |

+---+

SELECT sys.ps_thread_account(sys.ps_thread_id(NULL));

+---+

| sys.ps_thread_account(sys.ps_thread_id(NULL)) |

+---+

| msandbox@localhost |

+---+

1.1.1.2.9.4.2.15 ps_thread_id

Syntax

538/4161

sys.ps_thread_id(connection_id)

Description
ps_thread_id is a stored function available with the Sys Schema that returns the thread_id associated with the given

connection_id. If the connection_id is NULL, returns the thread_id for the current connection.

Examples

SELECT * FROM performance_schema.threads\G

*************************** 13. row ***************************

 THREAD_ID: 13

 NAME: thread/sql/one_connection

 TYPE: FOREGROUND

 PROCESSLIST_ID: 3

 PROCESSLIST_USER: msandbox

 PROCESSLIST_HOST: localhost

 PROCESSLIST_DB: test

PROCESSLIST_COMMAND: Query

 PROCESSLIST_TIME: 0

 PROCESSLIST_STATE: Sending data

 PROCESSLIST_INFO: SELECT * FROM performance_schema.threads

 PARENT_THREAD_ID: 1

 ROLE: NULL

 INSTRUMENTED: YES

 HISTORY: YES

 CONNECTION_TYPE: Socket

 THREAD_OS_ID: 24379

SELECT sys.ps_thread_id(3);

+---------------------+

| sys.ps_thread_id(3) |

+---------------------+

| 13 |

+---------------------+

SELECT sys.ps_thread_id(NULL);

+------------------------+

| sys.ps_thread_id(NULL) |

+------------------------+

| 13 |

+------------------------+

1.1.1.2.9.4.2.16 ps_thread_stack

Syntax

sys.ps_thread_stack(thread_id, verbose)

Description
ps_thread_stack is a stored function available with the Sys Schema that, for a given thread_id, returns all statements,

stages, and events within the Performance Schema, as a JSON formatted stack.

The boolean verbose argument specifies whether or not to include file:lineno information in the events.

Examples

539/4161

SELECT sys.ps_thread_stack(13, FALSE) AS thread_stack\G

*************************** 1. row ***************************

thread_stack: {"rankdir": "LR","nodesep": "0.10",

 "stack_created": "2022-03-28 16:01:06",

 "mysql_version": "10.8.2-MariaDB",

 "mysql_user": "msandbox@localhost",

 "events": []}

1.1.1.2.9.4.2.17 ps_thread_trx_info

Syntax

sys.ps_thread_trx_info(thread_id)

Contents
1. Syntax

2. Description

3. Examples

Description
ps_thread_trx_info is a stored function available with the Sys Schema.

It returns a JSON object with information about the thread specified by the given thread_id. This information includes:

the current transaction

executed statements (derived from the Performance Schema events_transactions_current Table and the

Performance Schema events_statements_history Table (full data will only returned if the consumers for those tables

are enabled).

The maximum length of the returned JSON object is determined by the value of the ps_thread_trx_info.max_length

sys_config option (by default 65535). If the returned value exceeds this length, a JSON object error is returned.

Examples

1.1.1.2.9.4.2.18 quote_identifier

Syntax

sys.quote_identifier(str)

Description
quote_identifier is a stored function available with the Sys Schema.

It quotes a string to produce a result that can be used as an identifier in an SQL statement. The string is returned enclosed

by backticks (" ` ") and with each instance of backtick (" ` ") doubled. If the argument is NULL , the return value is the word

" NULL " without enclosing backticks.

Examples

540/4161

SELECT sys.quote_identifier("Identifier with spaces");

+--+

| sys.quote_identifier("Identifier with spaces") |

+--+

| `Identifier with spaces` |

+--+

SELECT sys.quote_identifier("Identifier` containing `backticks");

+---+

| sys.quote_identifier("Identifier` containing `backticks") |

+---+

| `Identifier`` containing ``backticks` |

+---+

1.1.1.2.9.4.2.19 sys_get_config

Syntax

sys.sys_get_config(name,default)

Contents
1. Syntax

2. Description

3. Examples

Description
sys_get_config is a stored function available with the Sys Schema.

The function returns a configuration option value from the sys_config table. It takes two arguments; name, a configuration

option name, and default, which is returned if the given option does not exist in the table.

Both arguments are VARCHAR(128) and can be NULL. Returns NULL if name is NULL, or if the given option is not found

and default is NULL.

Examples

SELECT sys.sys_get_config('ps_thread_trx_info.max_length',NULL);

+--+

| sys.sys_get_config('ps_thread_trx_info.max_length',NULL) |

+--+

| 65535 |

+--+

1.1.1.2.9.4.2.20 version_major

Syntax

sys.version_major()

Description
version_major is a stored function available with the Sys Schema.

It returns the MariaDB Server major release version.

Examples

541/4161

SELECT VERSION(),

 sys.version_major() AS major,

 sys.version_minor() AS minor,

 sys.version_patch() AS patch;

+----------------+-------+-------+-------+

| VERSION() | major | minor | patch |

+----------------+-------+-------+-------+

| 10.8.2-MariaDB | 10 | 8 | 2 |

+----------------+-------+-------+-------+

1.1.1.2.9.4.2.21 version_minor

Syntax

sys.version_minor()

Description
version_minor is a stored function available with the Sys Schema.

It returns the MariaDB Server minor release version.

Examples

SELECT VERSION(),

 sys.version_major() AS major,

 sys.version_minor() AS minor,

 sys.version_patch() AS patch;

+----------------+-------+-------+-------+

| VERSION() | major | minor | patch |

+----------------+-------+-------+-------+

| 10.8.2-MariaDB | 10 | 8 | 2 |

+----------------+-------+-------+-------+

1.1.1.2.9.4.2.22 version_patch

Syntax

sys.version_patch()

Description
version_patch is a stored function available with the Sys Schema.

It returns the MariaDB Server patch release version.

Examples

SELECT VERSION(),

 sys.version_major() AS major,

 sys.version_minor() AS minor,

 sys.version_patch() AS patch;

+----------------+-------+-------+-------+

| VERSION() | major | minor | patch |

+----------------+-------+-------+-------+

| 10.8.2-MariaDB | 10 | 8 | 2 |

+----------------+-------+-------+-------+

542/4161

1.1.1.2.9.4.3 Sys Schema Stored Procedures

This article is currently incomplete.

The following stored procedures are available in the Sys Schema.

create_synonym_db

Takes a source db and create a synonym db with views that point to all of t...

optimizer_switch Helper Functions

Syntax optimizer_switch_on() optimizer_switch_off() optimizer_switch_choice...

ps_trace_thread

Dumps all Performance Schema data for an instrumented thread to a .dot formatted graph file.

ps_truncate_all_tables

Resets all aggregated instrumentation.

statement_performance_analyzer

Returns a report on running statements.

table_exists

Given a database and table name, returns the table type.

1.1.1.2.9.4.3.1 create_synonym_db

Syntax

create_synonym_db(db_name,synonym)

db_name (VARCHAR(64))

synonym (VARCHAR(64))

Description
create_synonym_db is a stored procedure available with the Sys Schema.

Takes a source database name db_name and synonym name and creates a synonym database with views that point to all

of the tables within the source database. Useful for example for creating a synonym for the performance_schema or

information_schema databases.

Returns an error if the source database doesn't exist, or the synonym already exists.

Example

543/4161

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sys |

| test |

+--------------------+

CALL sys.create_synonym_db('performance_schema', 'perf');

+---+

| summary |

+---+

| Created 81 views in the `perf` database |

+---+

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| perf |

| performance_schema |

| sys |

| test |

+--------------------+

SHOW FULL TABLES FROM perf;

+--+------------+

| Tables_in_perf | Table_type |

+--+------------+

| accounts | VIEW |

| cond_instances | VIEW |

| events_stages_current | VIEW |

| events_stages_history | VIEW |

| events_stages_history_long | VIEW |

...

1.1.1.2.9.4.3.2 optimizer_switch Helper
Functions

Syntax

optimizer_switch_on()

optimizer_switch_off()

optimizer_switch_choice("on" | "off")

Contents
1. Syntax

2. Description

3. Example

4. Notes

Description
The above procedures can be used to check which optimizer_switch options are on or off . The result set is sorted

according to optimizer_switch option name.

Example

544/4161

select @@optimizer_switch\G

*************************** 1. row ***************************

index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,

index_merge_sort_intersection=off,engine_condition_pushdown=off,index_condition_pushdown=on,

derived_merge=on,derived_with_keys=on,firstmatch=on,loosescan=on,materialization=on,

in_to_exists=on,semijoin=on,partial_match_rowid_merge=on,partial_match_table_scan=on,

subquery_cache=on,mrr=off,mrr_cost_based=off,mrr_sort_keys=off,outer_join_with_cache=on,

semijoin_with_cache=on,join_cache_incremental=on,join_cache_hashed=on,join_cache_bka=on,

optimize_join_buffer_size=on,table_elimination=on,extended_keys=on,exists_to_in=on,

orderby_uses_equalities=on,condition_pushdown_for_derived=on,split_materialized=on,

condition_pushdown_for_subquery=on,rowid_filter=on,condition_pushdown_from_having=on,

not_null_range_scan=off

call sys.optimizer_switch_on();

+---------------------------------+------+

| option | opt |

+---------------------------------+------+

| condition_pushdown_for_derived | on |

| condition_pushdown_for_subquery | on |

| condition_pushdown_from_having | on |

| derived_merge | on |

| derived_with_keys | on |

| exists_to_in | on |

| extended_keys | on |

| firstmatch | on |

| index_condition_pushdown | on |

| index_merge | on |

| index_merge_intersection | on |

| index_merge_sort_union | on |

| index_merge_union | on |

| in_to_exists | on |

| join_cache_bka | on |

| join_cache_hashed | on |

| join_cache_incremental | on |

| loosescan | on |

| materialization | on |

| optimize_join_buffer_size | on |

| orderby_uses_equalities | on |

| outer_join_with_cache | on |

| partial_match_rowid_merge | on |

| partial_match_table_scan | on |

| rowid_filter | on |

| semijoin | on |

| semijoin_with_cache | on |

| split_materialized | on |

| subquery_cache | on |

| table_elimination | on |

+---------------------------------+------+

call sys.optimizer_switch_off();

+-------------------------------+------+

| option | opt |

+-------------------------------+------+

| engine_condition_pushdown | off |

| index_merge_sort_intersection | off |

| mrr | off |

| mrr_cost_based | off |

| mrr_sort_keys | off |

| not_null_range_scan | off |

+-------------------------------+------+

Notes
sys.optimizer_switch_on() is a shortcut for sys.optimizer_switch_choice("on") ;

sys.optimizer_switch_off() is a shortcut for sys.optimizer_switch_choice("off") ;

1.1.1.2.9.4.3.3 ps_trace_thread

545/4161

Syntax

ps_trace_thread(thread_id, outfile, max_runtime, interval, start_fresh, auto_setup, debug)

Description
ps_trace_thread is a stored procedure available with the Sys Schema.

Parameters:

thread_id INT: The thread to trace.

outfile VARCHAR(255): Name of the .dot file to be create.

max_runtime DECIMAL(20,2): Maximum time in seconds to collect data. Fractional seconds can be used, and NULL

results in data being collected for the default sixty seconds.

interval DECIMAL(20,2): Time in seconds to sleep between data collection. Fractional seconds can be used, and

NULL results in the sleep being the default one second.

start_fresh BOOLEAN: Whether to reset all Performance Schema data before tracing.

auto_setup BOOLEAN: Whether to disable all other threads, enable all instruments and consumers, and reset the

settings at the end of the run.

debug BOOLEAN: Whether to include file:lineno information in the graph.

Dumps all Performance Schema data for an instrumented thread to a .dot formatted graph file (for use with the DOT graph

description language). All returned result sets should be used for a complete graph.

Session binary logging is disabled during execution, by adjusting the sql_log_bin session value (note the permissions

required).

Examples

CALL sys.ps_trace_thread(25, CONCAT('/tmp/stack-', REPLACE(NOW(), ' ', '-'), '.dot'),

 NULL, NULL, TRUE, TRUE, TRUE);

--------------------+

| summary |

+--------------------+

| Disabled 0 threads |

+--------------------+

+---+

| Info |

+---+

| Data collection starting for THREAD_ID = 25 |

+---+

+---+

| Info |

+---+

| Stack trace written to /tmp/stack-2023-04-05-19:06:29.dot |

+---+

+---+

| Convert to PDF |

+---+

| dot -Tpdf -o /tmp/stack_25.pdf /tmp/stack-2023-04-05-19:06:29.dot |

+---+

+---+

| Convert to PNG |

+---+

| dot -Tpng -o /tmp/stack_25.png /tmp/stack-2023-04-05-19:06:29.dot |

+---+

1.1.1.2.9.4.3.4 ps_truncate_all_tables

546/4161

https://en.wikipedia.org/wiki/DOT_%2528graph_description_language%2529

Syntax

ps_truncate_all_tables(bool display)

Description
ps_truncate_all_tables is a stored procedure available with the Sys Schema.

The procedure resets all aggregated instrumentation as a snapshot, producing a result set indicating the number of

truncated tables. The boolean parameter display specifies whether to display each TRUNCATE TABLE statement before

execution.

Examples

CALL sys.ps_truncate_all_tables(false);

+---------------------+

| summary |

+---------------------+

| Truncated 44 tables |

+---------------------+

CALL sys.ps_truncate_all_tables(true);

+--+

| status |

+--+

| Running: TRUNCATE TABLE performance_schema.events_stages_history |

+--+

...

+--+

| status |

+--+

| Running: TRUNCATE TABLE performance_schema.table_lock_waits_summary_by_table |

+--+

+---------------------+

| summary |

+---------------------+

| Truncated 44 tables |

+---------------------+

1.1.1.2.9.4.3.5
statement_performance_analyzer

Syntax

statement_performance_analyzer(in_action,in_table, in_views)

in_action ENUM('snapshot', 'overall', 'delta', 'create_tmp',

 'create_table', 'save', 'cleanup')

in_table VARCHAR(129)

in_views SET ('with_runtimes_in_95th_percentile', 'analysis',

 'with_errors_or_warnings', 'with_full_table_scans',

 'with_sorting', 'with_temp_tables', 'custom')

Description
statement_performance_analyzer is a stored procedure available with the Sys Schema which returns a report on

running statements.
547/4161

The following options from the sys_config table impact the output:

statement_performance_analyzer.limit - maximum number of rows (default 100) returned for views that have no built-

in limit.

statement_performance_analyzer.view - custom query/view to be used (default NULL). If the

statement_performance_analyzer.limit configuration option is greater than 0, there can't be a LIMIT clause in the

query/view definition

If the debug option is set (default OFF), the procedure will also produce debugging output.

1.1.1.2.9.4.3.6 table_exists

Syntax

table_exists(in_db_name,in_table_name, out_table_type)

in_db_name VARCHAR(64)

in_table_name VARCHAR(64)

out_table_type ENUM('', 'BASE TABLE', 'VIEW', 'TEMPORARY')

Description
table_exists is a stored procedure available with the Sys Schema.

Given a database in_db_name and table name in_table_name, returns the table type in the OUT parameter out_table_type.

The return value is an ENUM field containing one of:

'' - the table does not exist

'BASE TABLE' - a regular table

'VIEW' - a view

'TEMPORARY' - a temporary table

Examples

CALL sys.table_exists('mysql', 'time_zone', @table_type); SELECT @table_type;

+-------------+

| @table_type |

+-------------+

| BASE TABLE |

+-------------+

CALL sys.table_exists('mysql', 'user', @table_type); SELECT @table_type;

+-------------+

| @table_type |

+-------------+

| VIEW |

+-------------+

1.1.1.2.9.4.4 Sys Schema Views
privileges_by_table_by_level

Shows granted privileges broken down by table on which they allow access an...

1.1.1.2.9.4.4.1 privileges_by_table_by_level

This Sys Schema view was introduced in MariaDB 11.4.0.

Description

MariaDB starting with 11.4

548/4161

Shows granted privileges broken down by table on which they allow access and level on which they were granted.

For example, if a user x has SELECT privilege granted ON db.* , this view will list all tables in the db schema with the

user x having SELECT privilege on them. This is different from INFORMATION_SCHEMA.TABLE_PRIVILEGES, which

only lists privileges granted on the table level.

Column Description

TABLE_SCHEMA

TABLE_NAME

GRANTEE

PRIVILEGE

LEVEL

1.1.1.2.9.5 mariadb_schema
Contents
1. History

mariadb_schema is a data type qualifier that allows one to create MariaDB native date types in an SQL_MODE that has

conflicting data type translations.

mariadb_schema was introduced in MariaDB 10.3.24 , MariaDB 10.4.14 and MariaDB 10.5.5.

For example, in SQL_MODE=ORACLE, if one creates a table with the DATE type, it will actually create a DATETIME

column to match what an Oracle user is expecting. To be able to create a MariaDB DATE in Oracle mode one would have to

use mariadb_schema :

CREATE TABLE t1 (d mariadb_schema.DATE);

mariadb_schema is also shown if one creates a table with DATE in MariaDB native mode and then does a SHOW

CREATE TABLE in ORACLE mode:

SET sql_mode=DEFAULT;

CREATE OR REPLACE TABLE t1 (

 d DATE

);

SET SQL_mode=ORACLE;

SHOW CREATE TABLE t1;

+-------+--+

| Table | Create Table |

+-------+--+

| t1 | CREATE TABLE "t1" (

 "d" mariadb_schema.date DEFAULT NULL

) |

+-------+--+

When the server sees the mariadb_schema qualifier, it disables sql_mode-specific data type translation and interprets the

data type literally, so for example mariadb_schema.DATE is interpreted as the traditional MariaDB DATE data type, no

matter what the current sql_mode is.

The mariadb_schema prefix is displayed only when the data type name would be ambiguous otherwise. The prefix is

displayed together with MariaDB DATE when SHOW CREATE TABLE is executed in SQL_MODE=ORACLE. The prefix is

not displayed when SHOW CREATE TABLE is executed in SQL_MODE=DEFAULT, or when a non-ambiguous data type is

displayed.

Note, the mariadb_schema prefix can be used with any data type, including non-ambiguous ones:

549/4161

https://mariadb.com/kb/en/mariadb-10324-release-notes/

CREATE OR REPLACE TABLE t1 (a mariadb_schema.INT);

SHOW CREATE TABLE t1;

+-------+--+

| Table | Create Table |

+-------+--+

| t1 | CREATE TABLE "t1" (

 "a" int(11) DEFAULT NULL

) |

+-------+--+

Currently the mariadb_schema prefix is only used in the following case:

For a MariaDB native DATE type when running SHOW CREATE TABLE in Oracle mode.

History
When running with SQL_MODE=ORACLE, MariaDB server translates the data type DATE to DATETIME , for better Oracle

compatibility:

SET SQL_mode=ORACLE;

CREATE OR REPLACE TABLE t1 (

 d DATE

);

SHOW CREATE TABLE t1;

+-------+---+

| Table | Create Table |

+-------+---+

| t1 | CREATE TABLE "t1" (

 "d" datetime DEFAULT NULL

) |

+-------+---+

Notice, DATE was translated to DATETIME .

This translation may cause some ambiguity. Suppose a user creates a table with a column of the traditional MariaDB DATE

data type using the default sql_mode, but then switches to SQL_MODE=ORACLE and runs a SHOW CREATE TABLE

statement:

SET sql_mode=DEFAULT;

CREATE OR REPLACE TABLE t1 (

 d DATE

);

SET SQL_mode=ORACLE;

SHOW CREATE TABLE t1;

Before mariadb_schema was introduced, the above script displayed:

CREATE TABLE "t1" (

 "d" date DEFAULT NULL

);

which had two problems:

It was confusing for the reader: its not clear if it is the traditional MariaDB DATE , or is it Oracle-alike date (which is

actually DATETIME);

It broke replication and caused data type mismatch on the master and on the slave (see MDEV-19632).

To address this problem, starting from the mentioned versions, MariaDB uses the idea of qualified data types:

550/4161

https://jira.mariadb.org/browse/MDEV-19632

SET sql_mode=DEFAULT;

CREATE OR REPLACE TABLE t1 (

 d DATE

);

SET SQL_mode=ORACLE;

SHOW CREATE TABLE t1;

+-------+--+

| Table | Create Table |

+-------+--+

| t1 | CREATE TABLE "t1" (

 "d" mariadb_schema.date DEFAULT NULL

) |

+-------+--+

1.1.1.2.9.6 Writing Logs Into Tables
By default, all logs are disabled or written into files. The general query log and the slow query log can also be written to

special tables in the mysql database. During the startup, entries will always be written into files.

Note that EXPLAIN output will only be recorded if the slow query log is written to a file and not to a table.

To write logs into tables, the log_output server system variable is used. Allowed values are FILE , TABLE and NONE . It is

possible to specify multiple values, separated with commas, to write the logs into both tables and files. NONE disables

logging and has precedence over the other values.

So, to write logs into tables, one of the following settings can be used:

SET GLOBAL log_output = 'TABLE';

SET GLOBAL log_output = 'FILE,TABLE';

The general log will be written into the general_log table, and the slow query log will be written into the slow_log table. Only

a limited set of operations are supported for those special tables. For example, direct DML statements (like INSERT) on

those tables will fail with an error similar to the following:

ERROR 1556 (HY000): You can't use locks with log tables.

To flush data to the tables, use FLUSH TABLES instead of FLUSH LOGS.

To empty the contents of the log tables, TRUNCATE TABLE can be used.

The log tables use the CSV storage engine by default. This allows an external program to read the files if needed: normal

CSV files are stored in the mysql subdirectory, in the data dir. However that engine is slow because it does not support

indexes, so you can convert the tables to MyISAM (but not other storage engines). To do so, first temporarily disable

logging:

SET GLOBAL general_log = 'OFF';

ALTER TABLE mysql.general_log ENGINE = MyISAM;

ALTER TABLE mysql.slow_log ENGINE = MyISAM;

SET GLOBAL general_log = @old_log_state;

CHECK TABLE and CHECKSUM TABLE are supported.

CREATE TABLE is supported. ALTER TABLE, RENAME TABLE and DROP TABLE are supported when logging is

disabled, but log tables cannot be partitioned.

The contents of the log tables is not logged in the binary log thus cannot be replicated.

1.1.1.2.10 BINLOG

Syntax

BINLOG 'str'

Description
551/4161

BINLOG is an internal-use statement. It is generated by the mariadb-binlog program as the printable representation of

certain events in binary log files. The 'str' value is a base 64-encoded string that the server decodes to determine the

data change indicated by the corresponding event. This statement requires the SUPER privilege (<= MariaDB 10.5.1) or the

BINLOG REPLAY privilege (>= MariaDB 10.5.2).

1.1.1.2.11 PURGE BINARY LOGS

Syntax

PURGE { BINARY | MASTER } LOGS

 { TO 'log_name' | BEFORE datetime_expr }

Description
The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the specified log file

name or date. BINARY and MASTER are synonyms. Deleted log files also are removed from the list recorded in the index

file, so that the given log file becomes the first in the list.

The datetime expression is in the format 'YYYY-MM-DD hh:mm:ss'.

If a replica is active but has yet to read from a binary log file you attempt to delete, the statement will fail with an error.

However, if the replica is not connected and has yet to read from a log file you delete, the file will be deleted, but the

replica will be unable to continue replicating once it connects again.

This statement has no effect if the server was not started with the --log-bin option to enable binary logging.

To list the binary log files on the server, use SHOW BINARY LOGS. To see which files they are reading, use SHOW SLAVE

STATUS (or SHOW REPLICA STATUS from MariaDB 10.5.1). You can only delete the files that are older than the oldest

file that is used by the slaves.

To delete all binary log files, use RESET MASTER. To move to a new log file (for example if you want to remove the current

log file), use FLUSH LOGS before you execute PURGE LOGS .

If the expire_logs_days server system variable is not set to 0, the server automatically deletes binary log files after the given

number of days. From MariaDB 10.6, the binlog_expire_logs_seconds variable allows more precise control over binlog

deletion, and takes precedence if both are non-zero.

Requires the SUPER privilege or, from MariaDB 10.5.2, the BINLOG ADMIN privilege, to run.

Examples

PURGE BINARY LOGS TO 'mariadb-bin.000063';

PURGE BINARY LOGS BEFORE '2013-04-21';

PURGE BINARY LOGS BEFORE '2013-04-22 09:55:22';

1.1.1.2.12 CACHE INDEX

Syntax

CACHE INDEX

 tbl_index_list [, tbl_index_list] ...

 IN key_cache_name

tbl_index_list:

 tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

552/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/super

Description
The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM tables.

A default key cache exists and cannot be destroyed. To create more key caches, the key_buffer_size server system

variable.

The associations between tables indexes and key caches are lost on server restart. To recreate them automatically, it is

necessary to configure caches in a configuration file and include some CACHE INDEX (and optionally LOAD INDEX)

statements in the init file.

Examples
The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named hot_cache:

CACHE INDEX t1, t2, t3 IN hot_cache;

+---------+--------------------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+--------------------+----------+----------+

| test.t1 | assign_to_keycache | status | OK |

| test.t2 | assign_to_keycache | status | OK |

| test.t3 | assign_to_keycache | status | OK |

+---------+--------------------+----------+----------+

Implementation (for MyISAM)
Normally CACHE INDEX should not take a long time to execute. Internally it's implemented the following way:

Find the right key cache (under LOCK_global_system_variables)

Open the table with a TL_READ_NO_INSERT lock.

Flush the original key cache for the given file (under key cache lock)

Flush the new key cache for the given file (safety)

Move the file to the new key cache (under file share lock)

The only possible long operations are getting the locks for the table and flushing the original key cache, if there were many

key blocks for the file in it.

We plan to also add CACHE INDEX for Aria tables if there is a need for this.

1.1.1.2.13 DESCRIBE

Syntax

{DESCRIBE | DESC} tbl_name [col_name | wild]

Contents
1. Syntax

2. Description

Description
DESCRIBE provides information about the columns in a table. It is a shortcut for SHOW COLUMNS FROM . These statements

also display information for views.

col_name can be a column name, or a string containing the SQL " % " and " _ " wildcard characters to obtain output only

for the columns with names matching the string. There is no need to enclose the string within quotes unless it contains

spaces or other special characters.

553/4161

DESCRIBE city;

+------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------+----------------+

| Id | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | YES | | NULL | |

| Country | char(3) | NO | UNI | | |

| District | char(20) | YES | MUL | | |

| Population | int(11) | YES | | NULL | |

+------------+----------+------+-----+---------+----------------+

The description for SHOW COLUMNS provides more information about the output columns.

1.1.1.2.14 EXECUTE Statement

Syntax

EXECUTE stmt_name

 [USING expression[, expression] ...]

Contents
1. Syntax

2. Description

3. Example

EXECUTE with expression as parameters was introduced in MariaDB 10.2.3 . Before that one could only use

variables (@var_name) as parameters.

Description
After preparing a statement with PREPARE , you execute it with an EXECUTE statement that refers to the prepared

statement name. If the prepared statement contains any parameter markers, you must supply a USING clause that lists

user variables containing the values to be bound to the parameters. Parameter values can be supplied only by user

variables, and the USING clause must name exactly as many variables as the number of parameter markers in the

statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting the variables to

different values before each execution.

If the specified statement has not been PREPAREd, an error similar to the following is produced:

ERROR 1243 (HY000): Unknown prepared statement handler (stmt_name) given to EXECUTE

Example
See example in PREPARE.

MariaDB starting with 10.2.3

1.1.1.2.15 HELP Command

Syntax

HELP search_string

Description
The HELP command can be used in any MariaDB client, such as the mariadb command-line client, to get basic syntax help

554/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

and a short description for most commands and functions.

If you provide an argument to the HELP command, the mariadb client uses it as a search string to access server-side help.

The proper operation of this command requires that the help tables in the mysql database be initialized with help topic

information.

If there is no match for the search string, the search fails. Use HELP contents to see a list of the help categories:

HELP contents

You asked for help about help category: "Contents"

For more information, type 'help <item>', where <item> is one of the following

categories:

 Account Management

 Administration

 Compound Statements

 Data Definition

 Data Manipulation

 Data Types

 Functions

 Functions and Modifiers for Use with GROUP BY

 Geographic Features

 Help Metadata

 Language Structure

 Plugins

 Procedures

 Sequences

 Table Maintenance

 Transactions

 User-Defined Functions

 Utility

If a search string matches multiple items, MariaDB shows a list of matching topics:

HELP drop

Many help items for your request exist.

To make a more specific request, please type 'help <item>',

where <item> is one of the following

topics:

 ALTER TABLE

 DROP DATABASE

 DROP EVENT

 DROP FUNCTION

 DROP FUNCTION UDF

 DROP INDEX

 DROP PACKAGE

 DROP PACKAGE BODY

 DROP PROCEDURE

 DROP ROLE

 DROP SEQUENCE

 DROP SERVER

 DROP TABLE

 DROP TRIGGER

 DROP USER

 DROP VIEW

Then you can enter a topic as the search string to see the help entry for that topic.

The help is provided with the MariaDB server and makes use of four help tables found in the mysql database:

help_relation, help_topic, help_category and help_keyword. These tables are populated by the mariadb-install-db or

fill_help_table.sql scripts.

1.1.1.2.16 KILL [CONNECTION | QUERY]

Syntax

KILL [HARD | SOFT] { {CONNECTION|QUERY} thread_id | QUERY ID query_id | USER user_name }

555/4161

Contents
1. Syntax

2. Description

Description
Each connection to mysqld runs in a separate thread. You can see which threads are running with the SHOW PROCESSLIST

statement and kill a thread with the KILL thread_id statement. KILL allows the optional CONNECTION or QUERY

modifier:

KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with the given

thread or query id.

KILL QUERY terminates the statement that the connection thread_id is currently executing, but leaves the

connection itself intact.

KILL QUERY ID terminates the query by query_id, leaving the connection intact.

If a connection is terminated that has an active transaction, the transaction will be rolled back. If only a query is killed, the

current transaction will stay active. See also idle_transaction_timeout.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, or, from MariaDB 10.5.2, the

CONNECTION ADMIN privilege, you can kill all threads and statements. Otherwise, you can see and kill only your own

threads and statements.

Killing queries that repair or create indexes on MyISAM and Aria tables may result in corrupted tables. Use the SOFT

option to avoid this!

The HARD option (default) kills a command as soon as possible. If you use SOFT , then critical operations that may leave a

table in an inconsistent state will not be interrupted. Such operations include REPAIR and INDEX creation for MyISAM and

Aria tables (REPAIR TABLE, OPTIMIZE TABLE).

KILL ... USER username will kill all connections/queries for a given user. USER can be specified one of the following

ways:

username (Kill without regard to hostname)

username@hostname

CURRENT_USER or CURRENT_USER()

If you specify a thread id and that thread does not exist, you get the following error:

ERROR 1094 (HY000): Unknown thread id: <thread_id>

If you specify a query id that doesn't exist, you get the following error:

ERROR 1957 (HY000): Unknown query id: <query_id>

However, if you specify a user name, no error is issued for non-connected (or even non-existing) users. To check if the

connection/query has been killed, you can use the ROW_COUNT() function.

A client whose connection is killed receives the following error:

ERROR 1317 (70100): Query execution was interrupted

To obtain a list of existing sessions, use the SHOW PROCESSLIST statement or query the Information Schema

PROCESSLIST table.

Note: You cannot use KILL with the Embedded MariaDB Server library because the embedded server merely runs inside

the threads of the host application. It does not create any connection threads of its own.

Note: You can also use mariadb-admin kill thread_id [,thread_id...] to kill connections. To get a list of running

queries, use mariadb-admin processlist . See mariadb-admin.

Percona Toolkit contains a program, pt-kill that can be used to automatically kill connections that match certain criteria.

For example, it can be used to terminate idle connections, or connections that have been busy for more than 60 seconds.

1.1.1.2.17 LOAD INDEX

556/4161

http://www.percona.com/doc/percona-toolkit/
http://www.percona.com/doc/percona-toolkit/pt-kill.html

Syntax

LOAD INDEX INTO CACHE

 tbl_index_list [, tbl_index_list] ...

tbl_index_list:

 tbl_name

 [[INDEX|KEY] (index_name[, index_name] ...)]

 [IGNORE LEAVES]

Description
The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been assigned by an

explicit CACHE INDEX statement, or into the default key cache otherwise. LOAD INDEX INTO CACHE is used only for

MyISAM or Aria tables.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

1.1.1.2.18 RESET

Syntax

RESET reset_option [, reset_option] ...

Description
The RESET statement is used to clear the state of various server operations. You must have the RELOAD privilege to

execute RESET .

RESET acts as a stronger version of the FLUSH statement.

The different RESET options are:

Option Description

SLAVE

["connection_name"]

[ALL]

Deletes all relay logs from the slave and reset the replication position in the master binary log.

MASTER

Deletes all old binary logs, makes the binary index file (--log-bin-index) empty and creates a new

binary log file. This is useful when you want to reset the master to an initial state. If you want to just

delete old, not used binary logs, you should use the PURGE BINARY LOGS command.

QUERY CACHE Removes all queries from the query cache. See also FLUSH QUERY CACHE.

1.1.1.2.19 SHUTDOWN
Contents
1. Syntax

2. Description

3. WAIT FOR ALL REPLICAS / SLAVES

4. Required Permissions

5. Shutdown for Upgrades

6. Example

7. Other Ways to Stop mariadbd

Syntax

SHUTDOWN [WAIT FOR ALL { SLAVES | REPLICAS }]

557/4161

https://mariadb.com/kb/en/sql-commands-purge-logs/

Description
The SHUTDOWN command shuts the server down.

WAIT FOR ALL REPLICAS / SLAVES

The WAIT FOR ALL SLAVES option was first added in MariaDB 10.4.4. WAIT FOR ALL REPLICAS has been a

synonym since MariaDB 10.5.1.

When a primary server is shutdown and it goes through the normal shutdown process, the primary kills client threads in

random order. By default, the primary also considers its binary log dump threads to be regular client threads. As a

consequence, the binary log dump threads can be killed while client threads still exist, and this means that data can be

written on the primary during a normal shutdown that won't be replicated. This is true even if semi-synchronous replication is

being used.

In MariaDB 10.4 and later, this problem can be solved by shutting down the server with the SHUTDOWN command and by

providing the WAIT FOR ALL REPLICAS / WAIT FOR ALL SLAVES option to the command. For example:

SHUTDOWN WAIT FOR ALL REPLICAS;

When the WAIT FOR ALL REPLICAS option is provided, the server only kills its binary log dump threads after all client

threads have been killed, and it only completes the shutdown after the last binary log has been sent to all connected

replicas.

See Replication Threads: Binary Log Dump Threads and the Shutdown Process for more information.

Required Permissions
One must have a SHUTDOWN privilege (see GRANT) to use this command. It is the same privilege one needs to use the

mariadb-admin shutdown command.

Shutdown for Upgrades
If you are doing a shutdown to migrate to another major version of MariaDB, please ensure that the innodb_fast_shutdown

variable is not 2 (fast crash shutdown). The default of this variable is 1.

Example
The following example shows how to create an event which turns off the server at a certain time:

CREATE EVENT `test`.`shutd`

 ON SCHEDULE

 EVERY 1 DAY

 STARTS '2014-01-01 20:00:00'

 COMMENT 'Shutdown Maria when the office is closed'

DO BEGIN

 SHUTDOWN;

END;

Other Ways to Stop mariadbd
You can use the mariadb-admin shutdown command to take down mariadbd cleanly.

You can also use the system kill command on Unix with signal SIGTERM (15)

kill -SIGTERM pid-of-mariadbd-process

You can find the process number of the server process in the file that ends with .pid in your data directory.

The above is identical to mariadb-admin shutdown .

On windows you should use:

MariaDB starting with 10.4.4

558/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/upgrading-between-major-mariadb-version

NET STOP MariaDB

1.1.1.2.20 USE [DATABASE]

Syntax

USE db_name

From MariaDB 11.3, one can also use

USE DATABASE db_name;

Description
The 'USE db_name' statement tells MariaDB to use the db_name database as the default (current) database for

subsequent statements. The database remains the default until the end of the session or another USE statement is issued:

USE db1;

SELECT COUNT(*) FROM mytable; # selects from db1.mytable

USE db2;

SELECT COUNT(*) FROM mytable; # selects from db2.mytable

The DATABASE() function (SCHEMA() is a synonym) returns the default database.

Another way to set the default database is specifying its name at mariadb command line client startup.

One cannot use USE DATABASE to a database one has no privileges to. The reason is that a user with no privileges to a

database should not be able to know if a database exists or not.

1.1.1.3 Data Definition
SQL Commands for defining data, such as ALTER, CREATE, DROP, RENAME etc.

CREATE

Articles on the various CREATE statements.

ALTER

The various ALTER statements in MariaDB.

DROP

Articles on various DROP commands.

Atomic DDL

Making DDL Atomic/Crash-safe.

CONSTRAINT

Define a CHECK or FOREIGN KEY constraint.

MERGE

Allows you to access a collection of identical MyISAM tables as one.

RENAME TABLE

Change a table's name.

TRUNCATE TABLE

DROP and re-CREATE a table.

There are 3 related questions .

1

559/4161

https://mariadb.com/kb/en/data-definition/+questions/

1.1.1.3.1 CREATE
Articles on the various CREATE statements.

CREATE DATABASE

Create a database.

CREATE TABLE

Creates a new table.

CREATE VIEW

Create or replace a view.

CREATE USER

Create new MariaDB accounts.

CREATE TRIGGER

Create a new trigger.

CREATE EVENT

Create and schedule a new event.

CREATE FUNCTION

Creates a stored function.

CREATE FUNCTION UDF

Create a user-defined function.

CREATE INDEX

Create an index on one or more columns.

CREATE LOGFILE GROUP

The CREATE LOGFILE GROUP statement is not supported by MariaDB. It was orig...

CREATE PACKAGE

Create a stored package.

CREATE PACKAGE BODY

Creates the package body for a stored package.

CREATE PROCEDURE

Creates a stored procedure.

CREATE ROLE

Add new roles.

CREATE SEQUENCE

Creates a sequence that generates new values when called with NEXT VALUE FOR.

CREATE SERVER

Define a server.

CREATE TABLESPACE

CREATE TABLESPACE is not available in MariaDB.

Silent Column Changes

MariaDB silently changes column specifications in certain situations.

Generated (Virtual and Persistent/Stored) Columns

Generated (virtual and persistent/stored) columns.

Invisible Columns

Invisible columns are hidden in certain contexts.

5

10

2

8

3

3

1

3

1

7

27

560/4161

There are 1 related questions .

1.1.1.3.1.1 CREATE DATABASE

Syntax

CREATE [OR REPLACE] {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

 [create_specification] ...

create_specification:

 [DEFAULT] CHARACTER SET [=] charset_name

 | [DEFAULT] COLLATE [=] collation_name

 | COMMENT [=] 'comment'

Contents
1. Syntax

2. Description

1. OR REPLACE

2. IF NOT EXISTS

3. COMMENT

3. Examples

Description
CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE privilege for the

database. CREATE SCHEMA is a synonym for CREATE DATABASE .

For valid identifiers to use as database names, see Identifier Names.

OR REPLACE

If the optional OR REPLACE clause is used, it acts as a shortcut for:

DROP DATABASE IF EXISTS db_name;

CREATE DATABASE db_name ...;

IF NOT EXISTS

When the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the specified database

already exists.

COMMENT

From MariaDB 10.5.0, it is possible to add a comment of a maximum of 1024 bytes. If the comment length exceeds

this length, a error/warning code 4144 is thrown. The database comment is also added to the db.opt file, as well as to

the information_schema.schemata table.

Examples

MariaDB starting with 10.5.0

561/4161

https://mariadb.com/kb/en/create/+questions/

CREATE DATABASE db1;

Query OK, 1 row affected (0.18 sec)

CREATE DATABASE db1;

ERROR 1007 (HY000): Can't create database 'db1'; database exists

CREATE OR REPLACE DATABASE db1;

Query OK, 2 rows affected (0.00 sec)

CREATE DATABASE IF NOT EXISTS db1;

Query OK, 1 row affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1007 | Can't create database 'db1'; database exists |

+-------+------+--+

Setting the character sets and collation. See Setting Character Sets and Collations for more details.

CREATE DATABASE czech_slovak_names

 CHARACTER SET = 'keybcs2'

 COLLATE = 'keybcs2_bin';

Comments, from MariaDB 10.5.0:

CREATE DATABASE presentations COMMENT 'Presentations for conferences';

1.1.1.3.1.2 CREATE EVENT

Syntax

CREATE [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 EVENT

 [IF NOT EXISTS]

 event_name

 ON SCHEDULE schedule

 [ON COMPLETION [NOT] PRESERVE]

 [ENABLE | DISABLE | DISABLE ON SLAVE]

 [COMMENT 'comment']

 DO sql_statement;

schedule:

 AT timestamp [+ INTERVAL interval] ...

 | EVERY interval

 [STARTS timestamp [+ INTERVAL interval] ...]

 [ENDS timestamp [+ INTERVAL interval] ...]

interval:

 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |

 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |

 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

562/4161

Contents
1. Syntax

2. Description

1. OR REPLACE

2. IF NOT EXISTS

3. ON SCHEDULE

4. AT

5. ON COMPLETION [NOT] PRESERVE

6. ENABLE/DISABLE/DISABLE ON SLAVE

7. COMMENT

3. Examples

Description
This statement creates and schedules a new event. It requires the EVENT privilege for the schema in which the event is to

be created.

The minimum requirements for a valid CREATE EVENT statement are as follows:

The keywords CREATE EVENT plus an event name, which uniquely identifies the event in the current schema. (Prior

to MySQL 5.1.12, the event name needed to be unique only among events created by the same user on a given

database.)

An ON SCHEDULE clause, which determines when and how often the event executes.

A DO clause, which contains the SQL statement to be executed by an event.

Here is an example of a minimal CREATE EVENT statement:

CREATE EVENT myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

The previous statement creates an event named myevent. This event executes once 4 one hour following its creation 4 by

running an SQL statement that increments the value of the myschema.mytable table's mycol column by 1.

The event_name must be a valid MariaDB identifier with a maximum length of 64 characters. It may be delimited using back

ticks, and may be qualified with the name of a database schema. An event is associated with both a MariaDB user (the

definer) and a schema, and its name must be unique among names of events within that schema. In general, the rules

governing event names are the same as those for names of stored routines. See Identifier Names.

If no schema is indicated as part of event_name, the default (current) schema is assumed.

For valid identifiers to use as event names, see Identifier Names.

OR REPLACE

The OR REPLACE clause was included in MariaDB 10.1.4 . If used and the event already exists, instead of an error being

returned, the existing event will be dropped and replaced by the newly defined event.

IF NOT EXISTS

If the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the event already exists. Cannot

be used together with OR REPLACE.

ON SCHEDULE

The ON SCHEDULE clause can be used to specify when the event must be triggered.

AT

If you want to execute the event only once (one time event), you can use the AT keyword, followed by a timestamp. If you

use CURRENT_TIMESTAMP , the event acts as soon as it is created. As a convenience, you can add one or more intervals to

that timestamp. You can also specify a timestamp in the past, so that the event is stored but not triggered, until you modify it

via ALTER EVENT.

The following example shows how to create an event that will be triggered tomorrow at a certain time:

563/4161

https://mariadb.com/kb/en/mariadb-1014-release-notes/

CREATE EVENT example

ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 DAY + INTERVAL 3 HOUR

DO something;

You can also specify that an event must be triggered at a regular interval (recurring event). In such cases, use the EVERY

clause followed by the interval.

If an event is recurring, you can specify when the first execution must happen via the STARTS clause and a maximum time

for the last execution via the ENDS clause. STARTS and ENDS clauses are followed by a timestamp and, optionally, one or

more intervals. The ENDS clause can specify a timestamp in the past, so that the event is stored but not executed until you

modify it via ALTER EVENT.

In the following example, next month a recurring event will be triggered hourly for a week:

CREATE EVENT example

ON SCHEDULE EVERY 1 HOUR

STARTS CURRENT_TIMESTAMP + INTERVAL 1 MONTH

ENDS CURRENT_TIMESTAMP + INTERVAL 1 MONTH + INTERVAL 1 WEEK

DO some_task;

Intervals consist of a quantity and a time unit. The time units are the same used for other staments and time functions,

except that you can't use microseconds for events. For simple time units, like HOUR or MINUTE , the quantity is an integer

number, for example '10 MINUTE'. For composite time units, like HOUR_MINUTE or HOUR_SECOND , the quantity must be a

string with all involved simple values and their separators, for example '2:30' or '2:30:30'.

ON COMPLETION [NOT] PRESERVE

The ON COMPLETION clause can be used to specify if the event must be deleted after its last execution (that is, after its AT

or ENDS timestamp is past). By default, events are dropped when they are expired. To explicitly state that this is the desired

behaviour, you can use ON COMPLETION NOT PRESERVE . Instead, if you want the event to be preserved, you can use ON

COMPLETION PRESERVE .

In you specify ON COMPLETION NOT PRESERVE , and you specify a timestamp in the past for AT or ENDS clause, the event

will be immediatly dropped. In such cases, you will get a Note 1558: "Event execution time is in the past and ON

COMPLETION NOT PRESERVE is set. The event was dropped immediately after creation".

ENABLE/DISABLE/DISABLE ON SLAVE

Events are ENABLE d by default. If you want to stop MariaDB from executing an event, you may specify DISABLE . When it

is ready to be activated, you may enable it using ALTER EVENT . Another option is DISABLE ON SLAVE , which indicates

that an event was created on a master and has been replicated to the slave, which is prevented from executing the event. If

DISABLE ON SLAVE is specifically set, the event will be disabled everywhere. It will not be executed on the mater or the

slaves.

COMMENT

The COMMENT clause may be used to set a comment for the event. Maximum length for comments is 64 characters. The

comment is a string, so it must be quoted. To see events comments, you can query the INFORMATION_SCHEMA.EVENTS

table (the column is named EVENT_COMMENT).

Examples
Minimal CREATE EVENT statement:

CREATE EVENT myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

An event that will be triggered tomorrow at a certain time:

CREATE EVENT example

ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 DAY + INTERVAL 3 HOUR

DO something;

564/4161

Next month a recurring event will be triggered hourly for a week:

CREATE EVENT example

ON SCHEDULE EVERY 1 HOUR

STARTS CURRENT_TIMESTAMP + INTERVAL 1 MONTH

ENDS CURRENT_TIMESTAMP + INTERVAL 1 MONTH + INTERVAL 1 WEEK

DO some_task;

OR REPLACE and IF NOT EXISTS:

CREATE EVENT myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

ERROR 1537 (HY000): Event 'myevent' already exists

CREATE OR REPLACE EVENT myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;;

Query OK, 0 rows affected (0.00 sec)

CREATE EVENT IF NOT EXISTS myevent

 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

 DO

 UPDATE myschema.mytable SET mycol = mycol + 1;

Query OK, 0 rows affected, 1 warning (0.00 sec)

 SHOW WARNINGS;

+-------+------+--------------------------------+

| Level | Code | Message |

+-------+------+--------------------------------+

| Note | 1537 | Event 'myevent' already exists |

+-------+------+--------------------------------+

1.1.1.3.1.3 CREATE FUNCTION

Syntax

CREATE [OR REPLACE]

 [DEFINER = {user | CURRENT_USER | role | CURRENT_ROLE }]

 [AGGREGATE] FUNCTION [IF NOT EXISTS] func_name ([func_parameter[,...]])

 RETURNS type

 [characteristic ...]

 RETURN func_body

func_parameter:

 [IN | OUT | INOUT | IN OUT] param_name type

type:

 Any valid MariaDB data type

characteristic:

 LANGUAGE SQL

 | [NOT] DETERMINISTIC

 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

func_body:

 Valid SQL procedure statement

565/4161

Contents
1. Syntax

2. Description

1. IN | OUT | INOUT | IN OUT

2. AGGREGATE

3. RETURNS

4. LANGUAGE SQL

5. OR REPLACE

6. IF NOT EXISTS

7. [NOT] DETERMINISTIC

8. MODIFIES SQL DATA

9. READS SQL DATA

10. CONTAINS SQL

11. NO SQL

12. Oracle Mode

3. Security

4. Character sets and collations

5. Examples

Description
Use the CREATE FUNCTION statement to create a new stored function. You must have the CREATE ROUTINE database

privilege to use CREATE FUNCTION . A function takes any number of arguments and returns a value from the function body.

The function body can be any valid SQL expression as you would use, for example, in any select expression. If you have the

appropriate privileges, you can call the function exactly as you would any built-in function. See Security below for details on

privileges.

You can also use a variant of the CREATE FUNCTION statement to install a user-defined function (UDF) defined by a

plugin. See CREATE FUNCTION (UDF) for details.

You can use a SELECT statement for the function body by enclosing it in parentheses, exactly as you would to use a

subselect for any other expression. The SELECT statement must return a single value. If more than one column is returned

when the function is called, error 1241 results. If more than one row is returned when the function is called, error 1242

results. Use a LIMIT clause to ensure only one row is returned.

You can also replace the RETURN clause with a BEGIN...END compound statement. The compound statement must

contain a RETURN statement. When the function is called, the RETURN statement immediately returns its result, and any

statements after RETURN are effectively ignored.

By default, a function is associated with the current database. To associate the function explicitly with a given database,

specify the fully-qualified name as db_name.func_name when you create it. If the function name is the same as the name

of a built-in function, you must use the fully qualified name when you call it.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an empty parameter list

of () should be used. Parameter names are not case sensitive.

Each parameter can be declared to use any valid data type, except that the COLLATE attribute cannot be used.

For valid identifiers to use as function names, see Identifier Names.

IN | OUT | INOUT | IN OUT

The function parameter qualifiers for IN , OUT , INOUT , and IN OUT were added in a 10.8.0 preview release. Prior

to 10.8.0 quantifiers were supported only in procedures.

OUT , INOUT and its equivalent IN OUT , are only valid if called from SET and not SELECT . These quantifiers are

especially useful for creating functions with more than one return value. This allows functions to be more complex and

nested.

MariaDB starting with 10.8.0

566/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/

DELIMITER $$

CREATE FUNCTION add_func3(IN a INT, IN b INT, OUT c INT) RETURNS INT

BEGIN

 SET c = 100;

 RETURN a + b;

END;

$$

DELIMITER ;

SET @a = 2;

SET @b = 3;

SET @c = 0;

SET @res= add_func3(@a, @b, @c);

SELECT add_func3(@a, @b, @c);

ERROR 4186 (HY000): OUT or INOUT argument 3 for function add_func3 is not allowed here

DELIMITER $$

CREATE FUNCTION add_func4(IN a INT, IN b INT, d INT) RETURNS INT

BEGIN

 DECLARE c, res INT;

 SET res = add_func3(a, b, c) + d;

 if (c > 99) then

 return 3;

 else

 return res;

 end if;

END;

$$

DELIMITER ;

SELECT add_func4(1,2,3);

+------------------+

| add_func4(1,2,3) |

+------------------+

| 3 |

+------------------+

AGGREGATE

It is possible to create stored aggregate functions as well. See Stored Aggregate Functions for details.

RETURNS

The RETURNS clause specifies the return type of the function. NULL values are permitted with all return types.

What happens if the RETURN clause returns a value of a different type? It depends on the SQL_MODE in effect at the

moment of the function creation.

If the SQL_MODE is strict (STRICT_ALL_TABLES or STRICT_TRANS_TABLES flags are specified), a 1366 error will be

produced.

Otherwise, the value is coerced to the proper type. For example, if a function specifies an ENUM or SET value in the

RETURNS clause, but the RETURN clause returns an integer, the value returned from the function is the string for the

corresponding ENUM member of set of SET members.

MariaDB stores the SQL_MODE system variable setting that is in effect at the time a routine is created, and always

executes the routine with this setting in force, regardless of the server SQL mode in effect when the routine is invoked.

LANGUAGE SQL

LANGUAGE SQL is a standard SQL clause, and it can be used in MariaDB for portability. However that clause has no

meaning, because SQL is the only supported language for stored functions.

A function is deterministic if it can produce only one result for a given list of parameters. If the result may be affected by

stored data, server variables, random numbers or any value that is not explicitly passed, then the function is not

deterministic. Also, a function is non-deterministic if it uses non-deterministic functions like NOW() or

CURRENT_TIMESTAMP(). The optimizer may choose a faster execution plan if it known that the function is deterministic.

In such cases, you should declare the routine using the DETERMINISTIC keyword. If you want to explicitly state that the

function is not deterministic (which is the default) you can use the NOT DETERMINISTIC keywords.

567/4161

If you declare a non-deterministic function as DETERMINISTIC , you may get incorrect results. If you declare a deterministic

function as NOT DETERMINISTIC , in some cases the queries will be slower.

OR REPLACE

If the optional OR REPLACE clause is used, it acts as a shortcut for:

DROP FUNCTION IF EXISTS function_name;

CREATE FUNCTION function_name ...;

with the exception that any existing privileges for the function are not dropped.

IF NOT EXISTS

If the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the function already exists. Cannot

be used together with OR REPLACE.

[NOT] DETERMINISTIC

The [NOT] DETERMINISTIC clause also affects binary logging, because the STATEMENT format can not be used to store

or replicate non-deterministic statements.

CONTAINS SQL , NO SQL , READS SQL DATA , and MODIFIES SQL DATA are informative clauses that tell the server what

the function does. MariaDB does not check in any way whether the specified clause is correct. If none of these clauses are

specified, CONTAINS SQL is used by default.

MODIFIES SQL DATA

MODIFIES SQL DATA means that the function contains statements that may modify data stored in databases. This happens

if the function contains statements like DELETE, UPDATE, INSERT, REPLACE or DDL.

READS SQL DATA

READS SQL DATA means that the function reads data stored in databases, but does not modify any data. This happens if

SELECT statements are used, but there no write operations are executed.

CONTAINS SQL

CONTAINS SQL means that the function contains at least one SQL statement, but it does not read or write any data stored

in a database. Examples include SET or DO.

NO SQL

NO SQL means nothing, because MariaDB does not currently support any language other than SQL.

Oracle Mode

A subset of Oracle's PL/SQL language is supported in addition to the traditional SQL/PSM-based MariaDB syntax. See

Oracle mode for details on changes when running Oracle mode.

Security
You must have the EXECUTE privilege on a function to call it. MariaDB automatically grants the EXECUTE and ALTER

ROUTINE privileges to the account that called CREATE FUNCTION , even if the DEFINER clause was used.

Each function has an account associated as the definer. By default, the definer is the account that created the function. Use

the DEFINER clause to specify a different account as the definer. You must have the SUPER privilege, or, from MariaDB

10.5.2, the SET USER privilege, to use the DEFINER clause. See Account Names for details on specifying accounts.

The SQL SECURITY clause specifies what privileges are used when a function is called. If SQL SECURITY is INVOKER ,

the function body will be evaluated using the privileges of the user calling the function. If SQL SECURITY is DEFINER , the

function body is always evaluated using the privileges of the definer account. DEFINER is the default.

This allows you to create functions that grant limited access to certain data. For example, say you have a table that stores

some employee information, and that you've granted SELECT privileges only on certain columns to the user account

roger .

568/4161

CREATE TABLE employees (name TINYTEXT, dept TINYTEXT, salary INT);

GRANT SELECT (name, dept) ON employees TO roger;

To allow the user the get the maximum salary for a department, define a function and grant the EXECUTE privilege:

CREATE FUNCTION max_salary (dept TINYTEXT) RETURNS INT RETURN

 (SELECT MAX(salary) FROM employees WHERE employees.dept = dept);

GRANT EXECUTE ON FUNCTION max_salary TO roger;

Since SQL SECURITY defaults to DEFINER , whenever the user roger calls this function, the subselect will execute with

your privileges. As long as you have privileges to select the salary of each employee, the caller of the function will be able to

get the maximum salary for each department without being able to see individual salaries.

Character sets and collations
Function return types can be declared to use any valid character set and collation. If used, the COLLATE attribute needs to

be preceded by a CHARACTER SET attribute.

If the character set and collation are not specifically set in the statement, the database defaults at the time of creation will be

used. If the database defaults change at a later stage, the stored function character set/collation will not be changed at the

same time; the stored function needs to be dropped and recreated to ensure the same character set/collation as the

database is used.

Examples
The following example function takes a parameter, performs an operation using an SQL function, and returns the result.

CREATE FUNCTION hello (s CHAR(20))

 RETURNS CHAR(50) DETERMINISTIC

 RETURN CONCAT('Hello, ',s,'!');

SELECT hello('world');

+----------------+

| hello('world') |

+----------------+

| Hello, world! |

+----------------+

You can use a compound statement in a function to manipulate data with statements like INSERT and UPDATE . The

following example creates a counter function that uses a temporary table to store the current value. Because the compound

statement contains statements terminated with semicolons, you have to first change the statement delimiter with the

DELIMITER statement to allow the semicolon to be used in the function body. See Delimiters in the mariadb client for more.

CREATE TEMPORARY TABLE counter (c INT);

INSERT INTO counter VALUES (0);

DELIMITER //

CREATE FUNCTION counter () RETURNS INT

 BEGIN

 UPDATE counter SET c = c + 1;

 RETURN (SELECT c FROM counter LIMIT 1);

 END //

DELIMITER ;

Character set and collation:

CREATE FUNCTION hello2 (s CHAR(20))

 RETURNS CHAR(50) CHARACTER SET 'utf8' COLLATE 'utf8_bin' DETERMINISTIC

 RETURN CONCAT('Hello, ',s,'!');

1.1.1.3.1.4 CREATE FUNCTION UDF

Syntax
569/4161

CREATE [OR REPLACE] [AGGREGATE] FUNCTION [IF NOT EXISTS] function_name

 RETURNS {STRING|INTEGER|REAL|DECIMAL}

 SONAME shared_library_name

Contents
1. Syntax

2. Description

1. RETURNS

2. shared_library_name

3. AGGREGATE

4. OR REPLACE

5. IF NOT EXISTS

6. Upgrading a UDF

7. Examples

Description
A user-defined function (UDF) is a way to extend MariaDB with a new function that works like a native (built-in) MariaDB

function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function.

To create a function, you must have the INSERT privilege for the mysql database. This is necessary because CREATE

FUNCTION adds a row to the mysql.func system table that records the function's name, type, and shared library name. If you

do not have this table, you should run the mariadb-upgrade command to create it.

UDFs need to be written in C, C++ or another language that uses C calling conventions, MariaDB needs to have been

dynamically compiled, and your operating system must support dynamic loading.

For an example, see sql/udf_example.cc in the source tree. For a collection of existing UDFs see

http://www.mysqludf.org/ .

Statements making use of user-defined functions are not safe for replication.

For creating a stored function as opposed to a user-defined function, see CREATE FUNCTION.

For valid identifiers to use as function names, see Identifier Names.

RETURNS

The RETURNS clause indicates the type of the function's return value, and can be one of STRING, INTEGER, REAL or

DECIMAL. DECIMAL functions currently return string values and should be written like STRING functions.

shared_library_name

shared_library_name is the basename of the shared object file that contains the code that implements the function. The

file must be located in the plugin directory. This directory is given by the value of the plugin_dir system variable. Note that

before MariaDB/MySQL 5.1, the shared object could be located in any directory that was searched by your system's

dynamic linker.

AGGREGATE

Aggregate functions are summary functions such as SUM() and AVG().

Aggregate UDF functions can be used as window functions.

OR REPLACE

The OR REPLACE clause was added in MariaDB 10.1.3

If the optional OR REPLACE clause is used, it acts as a shortcut for:

DROP FUNCTION IF EXISTS function_name;

CREATE FUNCTION name ...;

MariaDB starting with 10.4

MariaDB starting with 10.1.3

570/4161

http://www.mysqludf.org/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/string
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/real
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

IF NOT EXISTS

The IF NOT EXISTS clause was added in MariaDB 10.1.3

When the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the specified function already

exists. Cannot be used together with OR REPLACE.

Upgrading a UDF

To upgrade the UDF's shared library, first run a DROP FUNCTION statement, then upgrade the shared library and finally

run the CREATE FUNCTION statement. If you upgrade without following this process, you may crash the server.

Examples

CREATE FUNCTION jsoncontains_path RETURNS integer SONAME 'ha_connect.so';

Query OK, 0 rows affected (0.00 sec)

OR REPLACE and IF NOT EXISTS:

CREATE FUNCTION jsoncontains_path RETURNS integer SONAME 'ha_connect.so';

ERROR 1125 (HY000): Function 'jsoncontains_path' already exists

CREATE OR REPLACE FUNCTION jsoncontains_path RETURNS integer SONAME 'ha_connect.so';

Query OK, 0 rows affected (0.00 sec)

CREATE FUNCTION IF NOT EXISTS jsoncontains_path RETURNS integer SONAME 'ha_connect.so';

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+---+

| Level | Code | Message |

+-------+------+---+

| Note | 1125 | Function 'jsoncontains_path' already exists |

+-------+------+---+

MariaDB starting with 10.1.3

1.1.1.3.1.5 CREATE INDEX

Syntax

571/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

CREATE [OR REPLACE] [UNIQUE|FULLTEXT|SPATIAL] INDEX

 [IF NOT EXISTS] index_name

 [index_type]

 ON tbl_name (index_col_name,...)

 [WAIT n | NOWAIT]

 [index_option]

 [algorithm_option | lock_option] ...

index_col_name:

 col_name [(length)] [ASC | DESC]

index_type:

 USING {BTREE | HASH | RTREE}

index_option:

 [KEY_BLOCK_SIZE [=] value

 | index_type

 | WITH PARSER parser_name

 | COMMENT 'string'

 | CLUSTERING={YES| NO}]

 [IGNORED | NOT IGNORED]

algorithm_option:

 ALGORITHM [=] {DEFAULT|INPLACE|COPY|NOCOPY|INSTANT}

lock_option:

 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

Contents
1. Syntax

2. Description

3. Privileges

4. Online DDL

5. CREATE OR REPLACE INDEX

6. CREATE INDEX IF NOT EXISTS

7. Index Definitions

8. WAIT/NOWAIT

9. ALGORITHM

10. LOCK

11. Progress Reporting

12. WITHOUT OVERLAPS

13. Examples

Description
The CREATE INDEX statement is used to add indexes to a table. Indexes can be created at the same as the table, with the

[[|create-table|CREATE TABLE]] statement. In some cases, such as for InnoDB primary keys, doing so during creation is

preferable, as adding a primary key will involve rebuilding the table.

The statement is mapped to an ALTER TABLE statement to create indexes. See ALTER TABLE. CREATE INDEX cannot

be used to create a PRIMARY KEY; use ALTER TABLE instead.

If another connection is using the table, a metadata lock is active, and this statement will wait until the lock is released. This

is also true for non-transactional tables.

Another shortcut, DROP INDEX, allows the removal of an index.

For valid identifiers to use as index names, see Identifier Names.

Note that KEY_BLOCK_SIZE is currently ignored in CREATE INDEX, although it is included in the output of SHOW

CREATE TABLE.

Privileges
Executing the CREATE INDEX statement requires the INDEX privilege for the table or the database.

Online DDL
572/4161

Online DDL is supported with the ALGORITHM and LOCK clauses.

See InnoDB Online DDL Overview for more information on online DDL with InnoDB.

CREATE OR REPLACE INDEX
If the OR REPLACE clause is used and if the index already exists, then instead of returning an error, the server will drop the

existing index and replace it with the newly defined index.

CREATE INDEX IF NOT EXISTS
If the IF NOT EXISTS clause is used, then the index will only be created if an index with the same name does not already

exist. If the index already exists, then a warning will be triggered by default.

Index Definitions
See CREATE TABLE: Index Definitions for information about index definitions.

WAIT/NOWAIT
Set the lock wait timeout. See WAIT and NOWAIT.

ALGORITHM
See ALTER TABLE: ALGORITHM for more information.

LOCK
See ALTER TABLE: LOCK for more information.

Progress Reporting
MariaDB provides progress reporting for CREATE INDEX statement for clients that support the new progress reporting

protocol. For example, if you were using the mariadb client, then the progress report might look like this::

CREATE INDEX i ON tab (num);

Stage: 1 of 2 'copy to tmp table' 46% of stage

The progress report is also shown in the output of the SHOW PROCESSLIST statement and in the contents of the

information_schema.PROCESSLIST table.

See Progress Reporting for more information.

WITHOUT OVERLAPS

The WITHOUT OVERLAPS clause allows one to constrain a primary or unique index such that application-time periods

cannot overlap.

Examples
Creating a unique index:

CREATE UNIQUE INDEX HomePhone ON Employees(Home_Phone);

OR REPLACE and IF NOT EXISTS:

MariaDB starting with 10.5.3

573/4161

CREATE INDEX xi ON xx5 (x);

Query OK, 0 rows affected (0.03 sec)

CREATE INDEX xi ON xx5 (x);

ERROR 1061 (42000): Duplicate key name 'xi'

CREATE OR REPLACE INDEX xi ON xx5 (x);

Query OK, 0 rows affected (0.03 sec)

CREATE INDEX IF NOT EXISTS xi ON xx5 (x);

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+-------------------------+

| Level | Code | Message |

+-------+------+-------------------------+

| Note | 1061 | Duplicate key name 'xi' |

+-------+------+-------------------------+

From MariaDB 10.5.3, creating a unique index for an application-time period table with a WITHOUT OVERLAPS constraint:

CREATE UNIQUE INDEX u ON rooms (room_number, p WITHOUT OVERLAPS);

1.1.1.3.1.6 CREATE LOGFILE GROUP

The CREATE LOGFILE GROUP statement is not supported by MariaDB. It was originally inherited from MySQL NDB

Cluster. See MDEV-19295 for more information.

1.1.1.3.1.7 CREATE PACKAGE
The CREATE PACKAGE statement can be used when Oracle SQL_MODE is set, or in any mode from MariaDB 11.4.

In Oracle mode, the PL/SQL dialect is used, while if Oracle mode is not set (the default), SQL/PSM is used.

Syntax (Oracle mode)

574/4161

https://jira.mariadb.org/browse/MDEV-19295

CREATE

 [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 PACKAGE [IF NOT EXISTS]

 [db_name .] package_name

 [package_characteristic ...]

{ AS | IS }

 [package_specification_element ...]

END [package_name]

package_characteristic:

 COMMENT 'string'

 | SQL SECURITY { DEFINER | INVOKER }

package_specification_element:

 FUNCTION_SYM package_specification_function ;

 | PROCEDURE_SYM package_specification_procedure ;

package_specification_function:

 func_name [(func_param [, func_param]...)]

 RETURN type

 [package_routine_characteristic...]

package_specification_procedure:

 proc_name [(proc_param [, proc_param]...)]

 [package_routine_characteristic...]

func_param:

 param_name [IN | OUT | INOUT | IN OUT] type

proc_param:

 param_name [IN | OUT | INOUT | IN OUT] type

type:

 Any valid MariaDB explicit or anchored data type

package_routine_characteristic:

 COMMENT 'string'

 | LANGUAGE SQL

 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

Syntax (non-Oracle mode)

575/4161

CREATE

 [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 PACKAGE [IF NOT EXISTS]

 [db_name .] package_name

 [package_characteristic ...]

 [package_specification_element ...]

END

package_characteristic:

 COMMENT 'string'

 | SQL SECURITY { DEFINER | INVOKER }

package_specification_element:

 FUNCTION_SYM package_specification_function ;

 | PROCEDURE_SYM package_specification_procedure ;

package_specification_function:

 func_name [(func_param [, func_param]...)]

 RETURNS type

 [package_routine_characteristic...]

package_specification_procedure:

 proc_name [(proc_param [, proc_param]...)]

 [package_routine_characteristic...]

func_param:

 param_name [IN | OUT | INOUT | IN OUT] type

proc_param:

 param_name [IN | OUT | INOUT | IN OUT] type

type:

 Any valid MariaDB explicit or anchored data type

package_routine_characteristic:

 COMMENT 'string'

 | LANGUAGE SQL

 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

Contents
1. Syntax (Oracle mode)

2. Syntax (non-Oracle mode)

3. Description

4. Function parameter quantifiers IN | OUT | INOUT | IN OUT

5. Examples

Description
The CREATE PACKAGE statement can be used when Oracle SQL_MODE is set, or in any mode from MariaDB 11.4.

CREATE PACKAGE creates the specification for a stored package (a collection of logically related stored objects). A stored

package specification declares public routines (procedures and functions) of the package, but does not implement these

routines.

A package whose specification was created by the CREATE PACKAGE statement, should later be implemented using the

CREATE PACKAGE BODY statement.

Function parameter quantifiers IN | OUT | INOUT | IN
OUT

The function parameter quantifiers for IN , OUT , INOUT , and IN OUT where added in a 10.8.0 preview release.

Prior to 10.8.0 quantifiers were supported only in procedures.

MariaDB starting with 10.8.0

576/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/

OUT , INOUT and its equivalent IN OUT , are only valid if called from SET and not SELECT . These quantifiers are

especially useful for creating functions and procedures with more than one return value. This allows functions and

procedures to be more complex and nested.

Examples
Oracle mode:

SET sql_mode=ORACLE;

DELIMITER $$

CREATE OR REPLACE PACKAGE employee_tools AS

 FUNCTION getSalary(eid INT) RETURN DECIMAL(10,2);

 PROCEDURE raiseSalary(eid INT, amount DECIMAL(10,2));

 PROCEDURE raiseSalaryStd(eid INT);

 PROCEDURE hire(ename TEXT, esalary DECIMAL(10,2));

END;

$$

DELIMITER ;

From MariaDB 11.4, non-Oracle mode:

SET sql_mode='';

DELIMITER $$

CREATE OR REPLACE PACKAGE pkg

 PROCEDURE p1();

 FUNCTION f1() RETURNS INT;

END;

$$

DELIMITER ;

1.1.1.3.1.8 CREATE PACKAGE BODY
The CREATE PACKAGE BODY statement can be used when Oracle SQL_MODE is set, or in any mode from MariaDB 11.4.

In Oracle mode, the PL/SQL dialect is used, while in non-Oracle mode, SQL/PSM is used.

Syntax (Oracle mode)

CREATE [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 PACKAGE BODY

 [IF NOT EXISTS]

 [db_name .] package_name

 [package_characteristic...]

{ AS | IS }

 package_implementation_declare_section

 package_implementation_executable_section

END [package_name]

package_implementation_declare_section:

 package_implementation_item_declaration

 [package_implementation_item_declaration...]

 [package_implementation_routine_definition...]

 | package_implementation_routine_definition

 [package_implementation_routine_definition...]

package_implementation_item_declaration:

 variable_declaration ;

variable_declaration:

 variable_name[,...] type [:= expr]

package_implementation_routine_definition:
577/4161

package_implementation_routine_definition:

 FUNCTION package_specification_function

 [package_implementation_function_body] ;

 | PROCEDURE package_specification_procedure

 [package_implementation_procedure_body] ;

package_implementation_function_body:

 { AS | IS } package_routine_body [func_name]

package_implementation_procedure_body:

 { AS | IS } package_routine_body [proc_name]

package_routine_body:

 [package_routine_declarations]

 BEGIN

 statements [EXCEPTION exception_handlers]

 END

package_routine_declarations:

 package_routine_declaration ';' [package_routine_declaration ';']...

package_routine_declaration:

 variable_declaration

 | condition_name CONDITION FOR condition_value

 | user_exception_name EXCEPTION

 | CURSOR_SYM cursor_name

 [(cursor_formal_parameters)]

 IS select_statement

 ;

package_implementation_executable_section:

 END

 | BEGIN

 statement ; [statement ;]...

 [EXCEPTION exception_handlers]

 END

exception_handlers:

 exception_handler [exception_handler...]

exception_handler:

 WHEN_SYM condition_value [, condition_value]...

 THEN_SYM statement ; [statement ;]...

condition_value:

 condition_name

 | user_exception_name

 | SQLWARNING

 | SQLEXCEPTION

 | NOT FOUND

 | OTHERS_SYM

 | SQLSTATE [VALUE] sqlstate_value

 | mariadb_error_code

Contents
1. Syntax (Oracle mode)

2. Description

3. Examples

Description
The CREATE PACKAGE BODY statement can be used when Oracle SQL_MODE is set, or in any mode from MariaDB 11.4.

The CREATE PACKAGE BODY statement creates the package body for a stored package. The package specification must be

previously created using the CREATE PACKAGE statement.

A package body provides implementations of the package public routines and can optionally have:

package-wide private variables
578/4161

package private routines

forward declarations for private routines

an executable initialization section

Examples
Oracle mode:

SET sql_mode=ORACLE;

DELIMITER $$

CREATE OR REPLACE PACKAGE employee_tools AS

 FUNCTION getSalary(eid INT) RETURN DECIMAL(10,2);

 PROCEDURE raiseSalary(eid INT, amount DECIMAL(10,2));

 PROCEDURE raiseSalaryStd(eid INT);

 PROCEDURE hire(ename TEXT, esalary DECIMAL(10,2));

END;

$$

CREATE PACKAGE BODY employee_tools AS

 -- package body variables

 stdRaiseAmount DECIMAL(10,2):=500;

 -- private routines

 PROCEDURE log (eid INT, ecmnt TEXT) AS

 BEGIN

 INSERT INTO employee_log (id, cmnt) VALUES (eid, ecmnt);

 END;

 -- public routines

 PROCEDURE hire(ename TEXT, esalary DECIMAL(10,2)) AS

 eid INT;

 BEGIN

 INSERT INTO employee (name, salary) VALUES (ename, esalary);

 eid:= last_insert_id();

 log(eid, 'hire ' || ename);

 END;

 FUNCTION getSalary(eid INT) RETURN DECIMAL(10,2) AS

 nSalary DECIMAL(10,2);

 BEGIN

 SELECT salary INTO nSalary FROM employee WHERE id=eid;

 log(eid, 'getSalary id=' || eid || ' salary=' || nSalary);

 RETURN nSalary;

 END;

 PROCEDURE raiseSalary(eid INT, amount DECIMAL(10,2)) AS

 BEGIN

 UPDATE employee SET salary=salary+amount WHERE id=eid;

 log(eid, 'raiseSalary id=' || eid || ' amount=' || amount);

 END;

 PROCEDURE raiseSalaryStd(eid INT) AS

 BEGIN

 raiseSalary(eid, stdRaiseAmount);

 log(eid, 'raiseSalaryStd id=' || eid);

 END;

BEGIN

 -- This code is executed when the current session

 -- accesses any of the package routines for the first time

 log(0, 'Session ' || connection_id() || ' ' || current_user || ' started');

END;

$$

DELIMITER ;

Non-Oracle mode, from MariaDB 11.4:

579/4161

DELIMITER $$

CREATE OR REPLACE PACKAGE pkg

 PROCEDURE p1();

 FUNCTION f1() RETURNS INT;

END;

$$

DELIMITER ;

DELIMITER $$

CREATE OR REPLACE PACKAGE BODY pkg

 -- variable declarations

 DECLARE a INT DEFAULT 11;

 DECLARE b INT DEFAULT 10;

 -- routine declarations

 PROCEDURE p1()

 BEGIN

 SELECT CURRENT_USER;

 END;

 FUNCTION f1() RETURNS INT

 BEGIN

 RETURN a;

 END;

 -- package initialization section

 SET a=a-b;

END;

$$

DELIMITER ;

1.1.1.3.1.9 CREATE PROCEDURE

Syntax

CREATE

 [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 PROCEDURE [IF NOT EXISTS] sp_name ([proc_parameter[,...]])

 [characteristic ...] routine_body

proc_parameter:

 [IN | OUT | INOUT] param_name type

type:

 Any valid MariaDB data type

characteristic:

 LANGUAGE SQL

 | [NOT] DETERMINISTIC

 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

routine_body:

 Valid SQL procedure statement

580/4161

Contents
1. Syntax

2. Description

1. Things to be Aware of With CREATE OR REPLACE

3. CREATE PROCEDURE IF NOT EXISTS

1. IN/OUT/INOUT

2. DETERMINISTIC/NOT DETERMINISTIC

3. CONTAINS SQL/NO SQL/READS SQL DATA/MODIFIES SQL DATA

4. Invoking stored procedure from within programs

5. OR REPLACE

6. sql_mode

7. Character Sets and Collations

8. Oracle Mode

4. Examples

Description
Creates a stored procedure. By default, a routine is associated with the default database. To associate the routine explicitly

with a given database, specify the name as db_name.sp_name when you create it.

When the routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). The causes

the routine to have the given default database while it executes. USE statements within stored routines are disallowed.

When a stored procedure has been created, you invoke it by using the CALL statement (see CALL).

To execute the CREATE PROCEDURE statement, it is necessary to have the CREATE ROUTINE privilege. By default,

MariaDB automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine creator. See also Stored

Routine Privileges.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access privileges at

routine execution time, as described here. Requires the SUPER privilege, or, from MariaDB 10.5.2, the SET USER

privilege.

If the routine name is the same as the name of a built-in SQL function, you must use a space between the name and the

following parenthesis when defining the routine, or a syntax error occurs. This is also true when you invoke the routine later.

For this reason, we suggest that it is better to avoid re-using the names of existing SQL functions for your own stored

routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always allowable to have spaces

after a routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an empty parameter list

of () should be used. Parameter names are not case sensitive.

Each parameter can be declared to use any valid data type, except that the COLLATE attribute cannot be used.

For valid identifiers to use as procedure names, see Identifier Names.

Things to be Aware of With CREATE OR REPLACE

One can't use OR REPLACE together with IF EXISTS .

CREATE PROCEDURE IF NOT EXISTS
If the IF NOT EXISTS clause is used, then the procedure will only be created if a procedure with the same name does not

already exist. If the procedure already exists, then a warning will be triggered by default.

IN/OUT/INOUT

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT or INOUT

before the parameter name.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the modification is not visible

to the caller when the procedure returns. An OUT parameter passes a value from the procedure back to the caller. Its initial

value is NULL within the procedure, and its value is visible to the caller when the procedure returns. An INOUT parameter is

initialized by the caller, can be modified by the procedure, and any change made by the procedure is visible to the caller

when the procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes the procedure so

581/4161

that you can obtain its value when the procedure returns. If you are calling the procedure from within another stored

procedure or function, you can also pass a routine parameter or local routine variable as an IN or INOUT parameter.

DETERMINISTIC/NOT DETERMINISTIC

DETERMINISTIC and NOT DETERMINISTIC apply only to functions. Specifying DETERMINISTC or NON-DETERMINISTIC

in procedures has no effect. The default value is NOT DETERMINISTIC . Functions are DETERMINISTIC when they always

return the same value for the same input. For example, a truncate or substring function. Any function involving data,

therefore, is always NOT DETERMINISTIC .

CONTAINS SQL/NO SQL/READS SQL DATA/MODIFIES SQL DATA

CONTAINS SQL , NO SQL , READS SQL DATA , and MODIFIES SQL DATA are informative clauses that tell the server what

the function does. MariaDB does not check in any way whether the specified clause is correct. If none of these clauses are

specified, CONTAINS SQL is used by default.

MODIFIES SQL DATA means that the function contains statements that may modify data stored in databases. This happens

if the function contains statements like DELETE, UPDATE, INSERT, REPLACE or DDL.

READS SQL DATA means that the function reads data stored in databases, but does not modify any data. This happens if

SELECT statements are used, but there no write operations are executed.

CONTAINS SQL means that the function contains at least one SQL statement, but it does not read or write any data stored

in a database. Examples include SET or DO.

NO SQL means nothing, because MariaDB does not currently support any language other than SQL.

The routine_body consists of a valid SQL procedure statement. This can be a simple statement such as SELECT or

INSERT, or it can be a compound statement written using BEGIN and END. Compound statements can contain

declarations, loops, and other control structure statements. See Programmatic and Compound Statements for syntax

details.

MariaDB allows routines to contain DDL statements, such as CREATE and DROP. MariaDB also allows stored procedures

(but not stored functions) to contain SQL transaction statements such as COMMIT .

For additional information about statements that are not allowed in stored routines, see Stored Routine Limitations.

Invoking stored procedure from within programs

For information about invoking stored procedures from within programs written in a language that has a MariaDB/MySQL

interface, see CALL.

OR REPLACE

If the optional OR REPLACE clause is used, it acts as a shortcut for:

DROP PROCEDURE IF EXISTS name;

CREATE PROCEDURE name ...;

with the exception that any existing privileges for the procedure are not dropped.

sql_mode

MariaDB stores the sql_mode system variable setting that is in effect at the time a routine is created, and always executes

the routine with this setting in force, regardless of the server SQL mode in effect when the routine is invoked.

Character Sets and Collations

Procedure parameters can be declared with any character set/collation. If the character set and collation are not specifically

set, the database defaults at the time of creation will be used. If the database defaults change at a later stage, the stored

procedure character set/collation will not be changed at the same time; the stored procedure needs to be dropped and

recreated to ensure the same character set/collation as the database is used.

Oracle Mode

A subset of Oracle's PL/SQL language is supported in addition to the traditional SQL/PSM-based MariaDB syntax. See

582/4161

Oracle mode for details on changes when running Oracle mode.

Examples
The following example shows a simple stored procedure that uses an OUT parameter. It uses the DELIMITER command to

set a new delimiter for the duration of the process 4 see Delimiters in the mariadb client.

DELIMITER //

CREATE PROCEDURE simpleproc (OUT param1 INT)

 BEGIN

 SELECT COUNT(*) INTO param1 FROM t;

 END;

//

DELIMITER ;

CALL simpleproc(@a);

SELECT @a;

+------+

| @a |

+------+

| 1 |

+------+

Character set and collation:

DELIMITER //

CREATE PROCEDURE simpleproc2 (

 OUT param1 CHAR(10) CHARACTER SET 'utf8' COLLATE 'utf8_bin'

)

 BEGIN

 SELECT CONCAT('a'),f1 INTO param1 FROM t;

 END;

//

DELIMITER ;

CREATE OR REPLACE:

DELIMITER //

CREATE PROCEDURE simpleproc2 (

 OUT param1 CHAR(10) CHARACTER SET 'utf8' COLLATE 'utf8_bin'

)

 BEGIN

 SELECT CONCAT('a'),f1 INTO param1 FROM t;

 END;

//

ERROR 1304 (42000): PROCEDURE simpleproc2 already exists

DELIMITER ;

DELIMITER //

CREATE OR REPLACE PROCEDURE simpleproc2 (

 OUT param1 CHAR(10) CHARACTER SET 'utf8' COLLATE 'utf8_bin'

)

 BEGIN

 SELECT CONCAT('a'),f1 INTO param1 FROM t;

 END;

//

ERROR 1304 (42000): PROCEDURE simpleproc2 already exists

DELIMITER ;

Query OK, 0 rows affected (0.03 sec)

583/4161

1.1.1.1.8 CREATE ROLE

1.1.6.2 CREATE SEQUENCE

1.1.1.3.1.12 CREATE SERVER

Syntax

CREATE [OR REPLACE] SERVER [IF NOT EXISTS] server_name

 FOREIGN DATA WRAPPER wrapper_name

 OPTIONS (option [, option] ...)

option:

 { HOST character-literal

 | DATABASE character-literal

 | USER character-literal

 | PASSWORD character-literal

 | SOCKET character-literal

 | OWNER character-literal

 | PORT numeric-literal }

Contents
1. Syntax

2. Description

1. OR REPLACE

2. IF NOT EXISTS

3. Examples

Description
This statement creates the definition of a server for use with the Spider, Connect, FEDERATED or FederatedX storage

engine. The CREATE SERVER statement creates a new row within the servers table within the mysql database. This

statement requires the SUPER privilege or, from MariaDB 10.5.2, the FEDERATED ADMIN privilege.

The server_name should be a unique reference to the server. Server definitions are global within the scope of the server, it

is not possible to qualify the server definition to a specific database. server_name has a maximum length of 64 characters

(names longer than 64 characters are silently truncated), and is case insensitive. You may specify the name as a quoted

string.

The wrapper_name may be quoted with single quotes. Supported values are:

mysql

mariadb (in MariaDB 10.3 and later)

For each option you must specify either a character literal or numeric literal. Character literals are UTF-8, support a

maximum length of 64 characters and default to a blank (empty) string. String literals are silently truncated to 64 characters.

Numeric literals must be a number between 0 and 9999, default value is 0.

Note: The OWNER option is currently not applied, and has no effect on the ownership or operation of the server connection

that is created.

The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used with the CREATE

TABLE statement when creating a Spider, Connect, FederatedX or FEDERATED table. The options that you specify will

be used to populate the columns in the mysql.servers table. The table columns are Server_name, Host, Db, Username,

Password, Port and Socket.

DROP SERVER removes a previously created server definition.

CREATE SERVER is not written to the binary log, irrespective of the binary log format being used and therefore will not

replicate. From MariaDB 10.1.13 , Galera replicates the CREATE SERVER, ALTER SERVER and DROP SERVER

statements.

For valid identifiers to use as server names, see Identifier Names.

OR REPLACE

If the optional OR REPLACE clause is used, it acts as a shortcut for:

584/4161

https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/mariadb-10113-release-notes/

DROP SERVER IF EXISTS name;

CREATE SERVER server_name ...;

IF NOT EXISTS

If the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the server already exists. Cannot

be used together with OR REPLACE.

Examples

CREATE SERVER s

FOREIGN DATA WRAPPER mariadb

OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

OR REPLACE and IF NOT EXISTS:

CREATE SERVER s

FOREIGN DATA WRAPPER mariadb

OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

ERROR 1476 (HY000): The foreign server, s, you are trying to create already exists

CREATE OR REPLACE SERVER s

FOREIGN DATA WRAPPER mariadb

OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

Query OK, 0 rows affected (0.00 sec)

CREATE SERVER IF NOT EXISTS s

FOREIGN DATA WRAPPER mariadb

OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1476 | The foreign server, s, you are trying to create already exists |

+-------+------+--+

1.1.1.2.1.6 CREATE TABLE

1.1.1.3.1.14 CREATE TABLESPACE

The CREATE TABLESPACE statement is not supported by MariaDB. It was originally inherited from MySQL NDB

Cluster. In MySQL 5.7 and later, the statement is also supported for InnoDB. However, MariaDB has chosen not to

include that specific feature. See MDEV-19294 for more information.

1.1.1.3.1.15 CREATE TRIGGER

Syntax

CREATE [OR REPLACE]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 TRIGGER [IF NOT EXISTS] trigger_name trigger_time trigger_event

 ON tbl_name FOR EACH ROW

 [{ FOLLOWS | PRECEDES } other_trigger_name]

 trigger_stmt;

585/4161

https://jira.mariadb.org/browse/MDEV-19294

Contents
1. Syntax

2. Description

1. OR REPLACE

2. DEFINER

3. IF NOT EXISTS

4. trigger_time

5. trigger_event

1. FOLLOWS/PRECEDES other_trigger_name

6. Atomic DDL

3. Examples

Description
This statement creates a new trigger. A trigger is a named database object that is associated with a table, and that activates

when a particular event occurs for the table. The trigger becomes associated with the table named tbl_name , which must

refer to a permanent table. You cannot associate a trigger with a TEMPORARY table or a view.

CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger.

You can have multiple triggers for the same trigger_time and trigger_event .

For valid identifiers to use as trigger names, see Identifier Names.

OR REPLACE

If used and the trigger already exists, instead of an error being returned, the existing trigger will be dropped and replaced by

the newly defined trigger.

DEFINER

The DEFINER clause determines the security context to be used when checking access privileges at trigger activation time.

Usage requires the SUPER privilege, or, from MariaDB 10.5.2, the SET USER privilege.

IF NOT EXISTS

If the IF NOT EXISTS clause is used, the trigger will only be created if a trigger of the same name does not exist. If the

trigger already exists, by default a warning will be returned.

trigger_time

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates before or after

each row to be modified.

trigger_event

trigger_event indicates the kind of statement that activates the trigger. The trigger_event can be one of the

following:

INSERT : The trigger is activated whenever a new row is inserted into the table; for example, through INSERT, LOAD

DATA, and REPLACE statements.

UPDATE : The trigger is activated whenever a row is modified; for example, through UPDATE statements.

DELETE : The trigger is activated whenever a row is deleted from the table; for example, through DELETE and

REPLACE statements. However, DROP TABLE and TRUNCATE statements on the table do not activate this trigger,

because they do not use DELETE . Dropping a partition does not activate DELETE triggers, either.

FOLLOWS/PRECEDES other_trigger_name

The FOLLOWS other_trigger_name and PRECEDES other_trigger_name options were added in MariaDB 10.2.3 as

part of supporting multiple triggers per action time. This is the same syntax used by MySQL 5.7, although MySQL 5.7 does

not have multi-trigger support.

FOLLOWS adds the new trigger after another trigger while PRECEDES adds the new trigger before another trigger. If neither

option is used, the new trigger is added last for the given action and time.

FOLLOWS and PRECEDES are not stored in the trigger definition. However the trigger order is guaranteed to not change

586/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

over time. mariadb-dump and other backup methods will not change trigger order. You can verify the trigger order from the

ACTION_ORDER column in INFORMATION_SCHEMA.TRIGGERS table.

SELECT trigger_name, action_order FROM information_schema.triggers

 WHERE event_object_table='t1';

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL and CREATE TRIGGER is atomic.

Examples

CREATE DEFINER=`root`@`localhost` TRIGGER increment_animal

 AFTER INSERT ON animals FOR EACH ROW

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

OR REPLACE and IF NOT EXISTS

CREATE DEFINER=`root`@`localhost` TRIGGER increment_animal

 AFTER INSERT ON animals FOR EACH ROW

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

ERROR 1359 (HY000): Trigger already exists

CREATE OR REPLACE DEFINER=`root`@`localhost` TRIGGER increment_animal

 AFTER INSERT ON animals FOR EACH ROW

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

Query OK, 0 rows affected (0.12 sec)

CREATE DEFINER=`root`@`localhost` TRIGGER IF NOT EXISTS increment_animal

 AFTER INSERT ON animals FOR EACH ROW

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+------------------------+

| Level | Code | Message |

+-------+------+------------------------+

| Note | 1359 | Trigger already exists |

+-------+------+------------------------+

1 row in set (0.00 sec)

MariaDB starting with 10.6.1

1.1.1.1.1 CREATE USER

1.1.1.3.1.17 CREATE VIEW

Syntax

CREATE

 [OR REPLACE]

 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]

 [DEFINER = { user | CURRENT_USER | role | CURRENT_ROLE }]

 [SQL SECURITY { DEFINER | INVOKER }]

 VIEW [IF NOT EXISTS] view_name [(column_list)]

 AS select_statement

 [WITH [CASCADED | LOCAL] CHECK OPTION]

587/4161

Contents
1. Syntax

2. Description

1. WITH CHECK OPTION

2. IF NOT EXISTS

3. Atomic DDL

3. Examples

Description
The CREATE VIEW statement creates a new view, or replaces an existing one if the OR REPLACE clause is given. If the

view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW. If the view does exist, CREATE OR

REPLACE VIEW is the same as ALTER VIEW.

The select_statement is a SELECT statement that provides the definition of the view. (When you select from the view, you

select in effect using the SELECT statement.) select_statement can select from base tables or other views.

The view definition is "frozen" at creation time, so changes to the underlying tables afterwards do not affect the view

definition. For example, if a view is defined as SELECT * on a table, new columns added to the table later do not become

part of the view. A SHOW CREATE VIEW shows that such queries are rewritten and column names are included in the

view definition.

The view definition must be a query that does not return errors at view creation times. However, the base tables used by the

views might be altered later and the query may not be valid anymore. In this case, querying the view will result in an error.

CHECK TABLE helps in finding this kind of problems.

The ALGORITHM clause affects how MariaDB processes the view. The DEFINER and SQL SECURITY clauses specify the

security context to be used when checking access privileges at view invocation time. The WITH CHECK OPTION clause

can be given to constrain inserts or updates to rows in tables referenced by the view. These clauses are described later in

this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for each column

selected by the SELECT statement. For columns used elsewhere in the SELECT statement you must have the SELECT

privilege. If the OR REPLACE clause is present, you must also have the DROP privilege for the view.

A view belongs to a database. By default, a new view is created in the default database. To create the view explicitly in a

given database, specify the name as db_name.view_name when you create it.

CREATE VIEW test.v AS SELECT * FROM t;

Base tables and views share the same namespace within a database, so a database cannot contain a base table and a

view that have the same name.

Views must have unique column names with no duplicates, just like base tables. By default, the names of the columns

retrieved by the SELECT statement are used for the view column names. To define explicit names for the view columns, the

optional column_list clause can be given as a list of comma-separated identifiers. The number of names in column_list must

be the same as the number of columns retrieved by the SELECT statement.

Prior to MySQL 5.1.29, When you modify an existing view, the current view definition is backed up and saved. It is stored

in that table's database directory, in a subdirectory named arc. The backup file for a view v is named v.frm-00001. If you

alter the view again, the next backup is named v.frm-00002. The three latest view backup definitions are stored. Backed

up view definitions are not preserved by mysqldump, or any other such programs, but you can retain them using a file

copy operation. However, they are not needed for anything but to provide you with a backup of your previous view

definition. It is safe to remove these backup definitions, but only while mysqld is not running. If you delete the arc

subdirectory or its files while mysqld is running, you will receive an error the next time you try to alter the view:

MariaDB [test]> ALTER VIEW v AS SELECT * FROM t;

ERROR 6 (HY000): Error on delete of '.\test\arc/v.frm-0004' (Errcode: 2)

Columns retrieved by the SELECT statement can be simple references to table columns. They can also be expressions that

use functions, constant values, operators, and so forth.

Unqualified table or view names in the SELECT statement are interpreted with respect to the default database. A view can

refer to tables or views in other databases by qualifying the table or view name with the proper database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It can use joins,

UNION, and subqueries. The SELECT need not even refer to any tables. The following example defines a view that selects

two columns from another table, as well as an expression calculated from those columns:

MySQL until 5.1.28

588/4161

CREATE TABLE t (qty INT, price INT);

INSERT INTO t VALUES(3, 50);

CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;

SELECT * FROM v;

+------+-------+-------+

| qty | price | value |

+------+-------+-------+

| 3 | 50 | 150 |

+------+-------+-------+

A view definition is subject to the following restrictions:

The SELECT statement cannot contain a subquery in the FROM clause.

The SELECT statement cannot refer to system or user variables.

Within a stored program, the definition cannot refer to program parameters or local variables.

The SELECT statement cannot refer to prepared statement parameters.

Any table or view referred to in the definition must exist. However, after a view has been created, it is possible to drop

a table or view that the definition refers to. In this case, use of the view results in an error. To check a view definition

for problems of this kind, use the CHECK TABLE statement.

The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

Any tables named in the view definition must exist at definition time.

You cannot associate a trigger with a view.

For valid identifiers to use as view names, see Identifier Names.

ORDER BY is allowed in a view definition, but it is ignored if you select from a view using a statement that has its own

ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement that references the

view, but the effect is undefined. For example, if a view definition includes a LIMIT clause, and you select from the view

using a statement that has its own LIMIT clause, it is undefined which limit applies. This same principle applies to options

such as ALL, DISTINCT, or SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR

UPDATE, and LOCK IN SHARE MODE.

The PROCEDURE clause cannot be used in a view definition, and it cannot be used if a view is referenced in the FROM

clause.

If you create a view and then change the query processing environment by changing system variables, that may affect the

results that you get from the view:

CREATE VIEW v (mycol) AS SELECT 'abc';

SET sql_mode = '';

SELECT "mycol" FROM v;

+-------+

| mycol |

+-------+

| mycol |

+-------+

SET sql_mode = 'ANSI_QUOTES';

SELECT "mycol" FROM v;

+-------+

| mycol |

+-------+

| abc |

+-------+

The DEFINER and SQL SECURITY clauses determine which MariaDB account to use when checking access privileges for

the view when a statement is executed that references the view. They were added in MySQL 5.1.2. The legal SQL

SECURITY characteristic values are DEFINER and INVOKER. These indicate that the required privileges must be held by

the user who defined or invoked the view, respectively. The default SQL SECURITY value is DEFINER.

If a user value is given for the DEFINER clause, it should be a MariaDB account in 'user_name'@'host_name' format (the

same format used in the GRANT statement). The user_name and host_name values both are required. The definer can also

be given as CURRENT_USER or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE

VIEW statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

589/4161

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

If you do not have the SUPER privilege, or, from MariaDB 10.5.2, the SET USER privilege, the only legal user value is

your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other

account.

If you have the SUPER privilege, or, from MariaDB 10.5.2, the SET USER privilege, you can specify any syntactically

legal account name. If the account does not actually exist, a warning is generated.

If the SQL SECURITY value is DEFINER but the definer account does not exist when the view is referenced, an error

occurs.

Within a view definition, CURRENT_USER returns the view's DEFINER value by default. For views defined with the SQL

SECURITY INVOKER characteristic, CURRENT_USER returns the account for the view's invoker. For information about

user auditing within views, see http://dev.mysql.com/doc/refman/5.1/en/account-activity-auditing.html .

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER returns the

routine's DEFINER value. This also affects a view defined within such a program, if the view definition contains a DEFINER

value of CURRENT_USER.

View privileges are checked like this:

At view definition time, the view creator must have the privileges needed to use the top-level objects accessed by the

view. For example, if the view definition refers to table columns, the creator must have privileges for the columns, as

described previously. If the definition refers to a stored function, only the privileges needed to invoke the function can

be checked. The privileges required when the function runs can be checked only as it executes: For different

invocations of the function, different execution paths within the function might be taken.

When a view is referenced, privileges for objects accessed by the view are checked against the privileges held by the

view creator or invoker, depending on whether the SQL SECURITY characteristic is DEFINER or INVOKER,

respectively.

If reference to a view causes execution of a stored function, privilege checking for statements executed within the

function depend on whether the function is defined with a SQL SECURITY characteristic of DEFINER or INVOKER. If

the security characteristic is DEFINER, the function runs with the privileges of its creator. If the characteristic is

INVOKER, the function runs with the privileges determined by the view's SQL SECURITY characteristic.

Example: A view might depend on a stored function, and that function might invoke other stored routines. For example, the

following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then

 CALL p1();

ELSE

 CALL p2();

END IF;

The privileges required for executing statements within f() need to be checked when f() executes. This might mean that

privileges are needed for p1() or p2(), depending on the execution path within f(). Those privileges must be checked at

runtime, and the user who must possess the privileges is determined by the SQL SECURITY values of the view v and the

function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL, views are handled

using the rules for SQL SECURITY INVOKER.

If you invoke a view that was created before MySQL 5.1.2, it is treated as though it was created with a SQL SECURITY

DEFINER clause and with a DEFINER value that is the same as your account. However, because the actual definer is

unknown, MySQL issues a warning. To make the warning go away, it is sufficient to re-create the view so that the view

definition includes a DEFINER clause.

The optional ALGORITHM clause is an extension to standard SQL. It affects how MariaDB processes the view.

ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm is UNDEFINED if no

ALGORITHM clause is present. See View Algorithms for more information.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the

contents of the underlying table. For a view to be updatable, there must be a one-to-one relationship between the rows in

the view and the rows in the underlying table. There are also certain other constructs that make a view non-updatable. See

Inserting and Updating with Views.

WITH CHECK OPTION

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to rows except those

for which the WHERE clause in the select_statement is true.

590/4161

http://dev.mysql.com/doc/refman/5.1/en/account-activity-auditing.html

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine the scope of

check testing when the view is defined in terms of another view. The LOCAL keyword restricts the CHECK OPTION only to

the view being defined. CASCADED causes the checks for underlying views to be evaluated as well. When neither keyword

is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see Inserting and Updating with Views.

IF NOT EXISTS

The IF NOT EXISTS clause was added in MariaDB 10.1.3

When the IF NOT EXISTS clause is used, MariaDB will return a warning instead of an error if the specified view already

exists. Cannot be used together with the OR REPLACE clause.

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL and CREATE VIEW is atomic.

Examples

CREATE TABLE t (a INT, b INT) ENGINE = InnoDB;

INSERT INTO t VALUES (1,1), (2,2), (3,3);

CREATE VIEW v AS SELECT a, a*2 AS a2 FROM t;

SELECT * FROM v;

+------+------+

| a | a2 |

+------+------+

| 1 | 2 |

| 2 | 4 |

| 3 | 6 |

+------+------+

OR REPLACE and IF NOT EXISTS:

CREATE VIEW v AS SELECT a, a*2 AS a2 FROM t;

ERROR 1050 (42S01): Table 'v' already exists

CREATE OR REPLACE VIEW v AS SELECT a, a*2 AS a2 FROM t;

Query OK, 0 rows affected (0.04 sec)

CREATE VIEW IF NOT EXISTS v AS SELECT a, a*2 AS a2 FROM t;

Query OK, 0 rows affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+-------+------+--------------------------+

| Level | Code | Message |

+-------+------+--------------------------+

| Note | 1050 | Table 'v' already exists |

+-------+------+--------------------------+

MariaDB starting with 10.1.3

MariaDB starting with 10.6.1

1.1.1.3.1.18 Silent Column Changes
When a CREATE TABLE or ALTER TABLE command is issued, MariaDB will silently change a column specification in the

following cases:

PRIMARY KEY columns are always NOT NULL.

Any trailing spaces from SET and ENUM values are discarded.

TIMESTAMP columns are always NOT NULL, and display sizes are discarded

A row-size limit of 65535 bytes applies

If strict SQL mode is not enabled (it is enabled by default from MariaDB 10.2), a VARCHAR column longer than
591/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

65535 become TEXT, and a VARBINARY columns longer than 65535 becomes a BLOB. If strict mode is enabled the

silent changes will not be made, and an error will occur.

If a USING clause specifies an index that's not permitted by the storage engine, the engine will instead use another

available index type that can be applied without affecting results.

If the CHARACTER SET binary attribute is specified, the column is created as the matching binary data type. A TEXT

becomes a BLOB, CHAR a BINARY and VARCHAR a VARBINARY. ENUMs and SETs are created as defined.

To ease imports from other RDBMSs, MariaDB will also silently map the following data types:

Other Vendor Type MariaDB Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Currently, all MySQL types are supported in MariaDB.

For type mapping between Cassandra and MariaDB, see Cassandra storage engine .

Example
Silent changes in action:

592/4161

https://mariadb.com/kb/en/cassandra-storage-engine/#datatypes

CREATE TABLE SilenceIsGolden

 (

 f1 TEXT CHARACTER SET binary,

 f2 VARCHAR(15) CHARACTER SET binary,

 f3 CHAR CHARACTER SET binary,

 f4 ENUM('x','y','z') CHARACTER SET binary,

 f5 VARCHAR (65536),

 f6 VARBINARY (65536),

 f7 INT1

);

Query OK, 0 rows affected, 2 warnings (0.31 sec)

SHOW WARNINGS;

+-------+------+---+

| Level | Code | Message |

+-------+------+---+

| Note | 1246 | Converting column 'f5' from VARCHAR to TEXT |

| Note | 1246 | Converting column 'f6' from VARBINARY to BLOB |

+-------+------+---+

DESCRIBE SilenceIsGolden;

+-------+-------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------------+------+-----+---------+-------+

| f1 | blob | YES | | NULL | |

| f2 | varbinary(15) | YES | | NULL | |

| f3 | binary(1) | YES | | NULL | |

| f4 | enum('x','y','z') | YES | | NULL | |

| f5 | mediumtext | YES | | NULL | |

| f6 | mediumblob | YES | | NULL | |

| f7 | tinyint(4) | YES | | NULL | |

+-------+-------------------+------+-----+---------+-------+

1.1.1.3.1.19 Generated (Virtual and
Persistent/Stored) Columns

Syntax

<type> [GENERATED ALWAYS] AS (<expression>)

[VIRTUAL | PERSISTENT | STORED] [UNIQUE] [UNIQUE KEY] [COMMENT <text>]

Contents
1. Syntax

2. Description

3. Supported Features

1. Storage Engine Support

2. Data Type Support

3. Index Support

4. Statement Support

5. Expression Support

6. Making Stored Values Consistent

7. MySQL Compatibility Support

4. Implementation Differences

1. Implementation Differences Compared to Microsoft SQL Server

5. Development History

6. Examples

MariaDB's generated columns syntax is designed to be similar to the syntax for Microsoft SQL Server's computed columns

 and Oracle Database's virtual columns . In MariaDB 10.2 and later, the syntax is also compatible with the syntax for

MySQL's generated columns .

Description
A generated column is a column in a table that cannot explicitly be set to a specific value in a DML query. Instead, its value

593/4161

https://docs.microsoft.com/en-us/sql/relational-databases/tables/specify-computed-columns-in-a-table?view=sql-server-2017
https://oracle-base.com/articles/11g/virtual-columns-11gr1
https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html

is automatically generated based on an expression. This expression might generate the value based on the values of other

columns in the table, or it might generate the value by calling built-in functions or user-defined functions (UDFs).

There are two types of generated columns:

PERSISTENT (a.k.a. STORED): This type's value is actually stored in the table.

VIRTUAL : This type's value is not stored at all. Instead, the value is generated dynamically when the table is queried.

This type is the default.

Generated columns are also sometimes called computed columns or virtual columns.

Supported Features

Storage Engine Support

Generated columns can only be used with storage engines which support them. If you try to use a storage engine

that does not support them, then you will see an error similar to the following:

ERROR 1910 (HY000): TokuDB storage engine does not support computed columns

InnoDB, Aria, MyISAM and CONNECT support generated columns.

A column in a MERGE table can be built on a PERSISTENT generated column.

However, a column in a MERGE table can not be defined as a VIRTUAL and PERSISTENT generated

column.

Data Type Support

All data types are supported when defining generated columns.

Using the ZEROFILL column option is supported when defining generated columns.

Using the AUTO_INCREMENT column option is not supported when defining generated columns. Until MariaDB

10.2.25 , it was supported, but this support was removed, because it would not work correctly. See MDEV-11117 .

Index Support

Using a generated column as a table's primary key is not supported. See MDEV-5590 for more information. If you

try to use one as a primary key, then you will see an error similar to the following:

ERROR 1903 (HY000): Primary key cannot be defined upon a computed column

Using PERSISTENT generated columns as part of a foreign key is supported.

Referencing PERSISTENT generated columns as part of a foreign key is also supported.

However, using the ON UPDATE CASCADE , ON UPDATE SET NULL , or ON DELETE SET NULL clauses is not

supported. If you try to use an unsupported clause, then you will see an error similar to the following:

ERROR 1905 (HY000): Cannot define foreign key with ON UPDATE SET NULL clause on a computed

column

Defining indexes on both VIRTUAL and PERSISTENT generated columns is supported.

If an index is defined on a generated column, then the optimizer considers using it in the same way as indexes

based on "real" columns.

Statement Support

Generated columns are used in DML queries just as if they were "real" columns.

However, VIRTUAL and PERSISTENT generated columns differ in how their data is stored.

Values for PERSISTENT generated columns are generated whenever a DML queries inserts or updates

the row with the special DEFAULT value. This generates the columns value, and it is stored in the table

like the other "real" columns. This value can be read by other DML queries just like the other "real"

columns.

Values for VIRTUAL generated columns are not stored in the table. Instead, the value is generated

dynamically whenever the column is queried. If other columns in a row are queried, but the VIRTUAL

generated column is not one of the queried columns, then the column's value is not generated.

594/4161

https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://jira.mariadb.org/browse/MDEV-11117
https://jira.mariadb.org/browse/MDEV-5590

The SELECT statement supports generated columns.

Generated columns can be referenced in the INSERT, UPDATE, and DELETE statements.

However, VIRTUAL or PERSISTENT generated columns cannot be explicitly set to any other values than

NULL or DEFAULT. If a generated column is explicitly set to any other value, then the outcome depends on

whether strict mode is enabled in sql_mode. If it is not enabled, then a warning will be raised and the default

generated value will be used instead. If it is enabled, then an error will be raised instead.

The CREATE TABLE statement has limited support for generated columns.

It supports defining generated columns in a new table.

It supports using generated columns to partition tables.

It does not support using the versioning clauses with generated columns.

The ALTER TABLE statement has limited support for generated columns.

It supports the MODIFY and CHANGE clauses for PERSISTENT generated columns.

It does not support the MODIFY clause for VIRTUAL generated columns if ALGORITHM is not set to COPY .

See MDEV-15476 for more information.

It does not support the CHANGE clause for VIRTUAL generated columns if ALGORITHM is not set to COPY .

See MDEV-17035 for more information.

It does not support altering a table if ALGORITHM is not set to COPY if the table has a VIRTUAL generated

column that is indexed. See MDEV-14046 for more information.

It does not support adding a VIRTUAL generated column with the ADD clause if the same statement is also

adding other columns if ALGORITHM is not set to COPY . See MDEV-17468 for more information.

It also does not support altering an existing column into a VIRTUAL generated column.

It supports using generated columns to partition tables.

It does not support using the versioning clauses with generated columns.

The SHOW CREATE TABLE statement supports generated columns.

The DESCRIBE statement can be used to check whether a table has generated columns.

You can tell which columns are generated by looking for the ones where the Extra column is set to either

VIRTUAL or PERSISTENT . For example:

DESCRIBE table1;

+-------+-------------+------+-----+---------+------------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+------------+

| a | int(11) | NO | | NULL | |

| b | varchar(32) | YES | | NULL | |

| c | int(11) | YES | | NULL | VIRTUAL |

| d | varchar(5) | YES | | NULL | PERSISTENT |

+-------+-------------+------+-----+---------+------------+

Generated columns can be properly referenced in the NEW and OLD rows in triggers.

Stored procedures support generated columns.

The HANDLER statement supports generated columns.

Expression Support

Most legal, deterministic expressions which can be calculated are supported in expressions for generated columns.

Most built-in functions are supported in expressions for generated columns.

However, some built-in functions can't be supported for technical reasons. For example, If you try to use an

unsupported function in an expression, an error is generated similar to the following:

ERROR 1901 (HY000): Function or expression 'dayname()' cannot be used in the GENERATED ALWAYS AS

clause of `v`

Subqueries are not supported in expressions for generated columns because the underlying data can change.

Using anything that depends on data outside the row is not supported in expressions for generated columns.

Stored functions are not supported in expressions for generated columns. See MDEV-17587 for more information.

Non-deterministic built-in functions are supported in expressions for not indexed VIRTUAL generated columns.

Non-deterministic built-in functions are not supported in expressions for PERSISTENT or indexed VIRTUAL

generated columns.

User-defined functions (UDFs) are supported in expressions for generated columns.
595/4161

https://jira.mariadb.org/browse/MDEV-15476
https://jira.mariadb.org/browse/MDEV-17035
https://jira.mariadb.org/browse/MDEV-14046
https://jira.mariadb.org/browse/MDEV-17468
https://jira.mariadb.org/browse/MDEV-17587

However, MariaDB can't check whether a UDF is deterministic, so it is up to the user to be sure that they do not

use non-deterministic UDFs with VIRTUAL generated columns.

Defining a generated column based on other generated columns defined before it in the table definition is supported.

For example:

CREATE TABLE t1 (a int as (1), b int as (a));

However, defining a generated column based on other generated columns defined after in the table definition is not

supported in expressions for generation columns because generated columns are calculated in the order they are

defined.

Using an expression that exceeds 255 characters in length is supported in expressions for generated columns. The

new limit for the entire table definition, including all expressions for generated columns, is 65,535 bytes.

Using constant expressions is supported in expressions for generated columns. For example:

CREATE TABLE t1 (a int as (1));

Making Stored Values Consistent

When a generated column is PERSISTENT or indexed, the value of the expression needs to be consistent regardless of the

SQL Mode flags in the current session. If it is not, then the table will be seen as corrupted when the value that should

actually be returned by the computed expression and the value that was previously stored and/or indexed using a different

sql_mode setting disagree.

There are currently two affected classes of inconsistencies: character padding and unsigned subtraction:

For a VARCHAR or TEXT generated column the length of the value returned can vary depending on the

PAD_CHAR_TO_FULL_LENGTH sql_mode flag. To make the value consistent, create the generated column using

an RTRIM() or RPAD() function. Alternately, create the generated column as a CHAR column so that its data is

always fully padded.

If a SIGNED generated column is based on the subtraction of an UNSIGNED value, the resulting value can vary

depending on how large the value is and the NO_UNSIGNED_SUBTRACTION sql_mode flag. To make the value

consistent, use CAST() to ensure that each UNSIGNED operand is SIGNED before the subtraction.

Beginning in MariaDB 10.5, there is a fatal error generated when trying to create a generated column whose value can

change depending on the SQL Mode when its data is PERSISTENT or indexed.

For an existing generated column that has a potentially inconsistent value, a warning about a bad expression is

generated the first time it is used (if warnings are enabled).

Beginning in MariaDB 10.4.8, MariaDB 10.3.18 , and MariaDB 10.2.27 a potentially inconsistent generated column

outputs a warning when created or first used (without restricting their creation).

Here is an example of two tables that would be rejected in MariaDB 10.5 and warned about in the other listed versions:

CREATE TABLE bad_pad (

 txt CHAR(5),

 -- CHAR -> VARCHAR or CHAR -> TEXT can't be persistent or indexed:

 vtxt VARCHAR(5) AS (txt) PERSISTENT

);

CREATE TABLE bad_sub (

 num1 BIGINT UNSIGNED,

 num2 BIGINT UNSIGNED,

 -- The resulting value can vary for some large values

 vnum BIGINT AS (num1 - num2) VIRTUAL,

 KEY(vnum)

);

The warnings for the above tables look like this:

MariaDB starting with 10.5

596/4161

https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10227-release-notes/

Warning (Code 1901): Function or expression '`txt`' cannot be used in the GENERATED ALWAYS AS

clause of `vtxt`

Warning (Code 1105): Expression depends on the @@sql_mode value PAD_CHAR_TO_FULL_LENGTH

Warning (Code 1901): Function or expression '`num1` - `num2`' cannot be used in the GENERATED

ALWAYS AS clause of `vnum`

Warning (Code 1105): Expression depends on the @@sql_mode value NO_UNSIGNED_SUBTRACTION

To work around the issue, force the padding or type to make the generated column's expression return a consistent value.

For example:

CREATE TABLE good_pad (

 txt CHAR(5),

 -- Using RTRIM() or RPAD() makes the value consistent:

 vtxt VARCHAR(5) AS (RTRIM(txt)) PERSISTENT,

 -- When not persistent or indexed, it is OK for the value to vary by mode:

 vtxt2 VARCHAR(5) AS (txt) VIRTUAL,

 -- CHAR -> CHAR is always OK:

 txt2 CHAR(5) AS (txt) PERSISTENT

);

CREATE TABLE good_sub (

 num1 BIGINT UNSIGNED,

 num2 BIGINT UNSIGNED,

 -- The indexed value will always be consistent in this expression:

 vnum BIGINT AS (CAST(num1 AS SIGNED) - CAST(num2 AS SIGNED)) VIRTUAL,

 KEY(vnum)

);

MySQL Compatibility Support

The STORED keyword is supported as an alias for the PERSISTENT keyword.

Tables created with MySQL 5.7 or later that contain MySQL's generated columns can be imported into MariaDB

without a dump and restore.

Implementation Differences
Generated columns are subject to various constraints in other DBMSs that are not present in MariaDB's implementation.

Generated columns may also be called computed columns or virtual columns in different implementations. The various

details for a specific implementation can be found in the documentation for each specific DBMS.

Implementation Differences Compared to Microsoft SQL Server

MariaDB's generated columns implementation does not enforce the following restrictions that are present in Microsoft SQL

Server's computed columns implementation:

MariaDB allows server variables in generated column expressions, including those that change dynamically, such as

warning_count.

MariaDB allows the CONVERT_TZ() function to be called with a named time zone as an argument, even though

time zone names and time offsets are configurable.

MariaDB allows the CAST() function to be used with non-unicode character sets, even though character sets are

configurable and differ between binaries/versions.

MariaDB allows FLOAT expressions to be used in generated columns. Microsoft SQL Server considers these

expressions to be "imprecise" due to potential cross-platform differences in floating-point implementations and

precision.

Microsoft SQL Server requires the ARITHABORT mode to be set, so that division by zero returns an error, and not

a NULL.

Microsoft SQL Server requires QUOTED_IDENTIFIER to be set in sql_mode. In MariaDB, if data is inserted without

ANSI_QUOTES set in sql_mode, then it will be processed and stored differently in a generated column that contains

quoted identifiers.

Microsoft SQL Server enforces the above restrictions by doing one of the following things:

Refusing to create computed columns.

Refusing to allow updates to a table containing them.

Refusing to use an index over such a column if it can not be guaranteed that the expression is fully deterministic.

In MariaDB, as long as the sql_mode, language, and other settings that were in effect during the CREATE TABLE remain
597/4161

https://dev.mysql.com/doc/refman/5.7/en/create-table-generated-columns.html
https://docs.microsoft.com/en-us/sql/relational-databases/tables/specify-computed-columns-in-a-table?view=sql-server-2017
https://mariadb.com/kb/en/time-zones/
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-arithabort-transact-sql?view=sql-server-2017

unchanged, the generated column expression will always be evaluated the same. If any of these things change, then please

be aware that the generated column expression might not be evaluated the same way as it previously was.

If you try to update a virtual column, you will get an error if the default strict mode is enabled in sql_mode, or a warning

otherwise.

Development History
Generated columns was originally developed by Andrey Zhakov. It was then modified by Sanja Byelkin and Igor Babaev at

Monty Program for inclusion in MariaDB. Monty did the work on MariaDB 10.2 to lift a some of the old limitations.

Examples
Here is an example table that uses both VIRTUAL and PERSISTENT virtual columns:

USE TEST;

CREATE TABLE table1 (

 a INT NOT NULL,

 b VARCHAR(32),

 c INT AS (a mod 10) VIRTUAL,

 d VARCHAR(5) AS (left(b,5)) PERSISTENT);

If you describe the table, you can easily see which columns are virtual by looking in the "Extra" column:

DESCRIBE table1;

+-------+-------------+------+-----+---------+------------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+------------+

| a | int(11) | NO | | NULL | |

| b | varchar(32) | YES | | NULL | |

| c | int(11) | YES | | NULL | VIRTUAL |

| d | varchar(5) | YES | | NULL | PERSISTENT |

+-------+-------------+------+-----+---------+------------+

To find out what function(s) generate the value of the virtual column you can use SHOW CREATE TABLE :

SHOW CREATE TABLE table1;

| table1 | CREATE TABLE `table1` (

 `a` int(11) NOT NULL,

 `b` varchar(32) DEFAULT NULL,

 `c` int(11) AS (a mod 10) VIRTUAL,

 `d` varchar(5) AS (left(b,5)) PERSISTENT

) ENGINE=MyISAM DEFAULT CHARSET=latin1 |

If you try to insert non-default values into a virtual column, you will receive a warning and what you tried to insert will be

ignored and the derived value inserted instead:

598/4161

WARNINGS;

Show warnings enabled.

INSERT INTO table1 VALUES (1, 'some text',default,default);

Query OK, 1 row affected (0.00 sec)

INSERT INTO table1 VALUES (2, 'more text',5,default);

Query OK, 1 row affected, 1 warning (0.00 sec)

Warning (Code 1645): The value specified for computed column 'c' in table 'table1' has been ignored.

INSERT INTO table1 VALUES (123, 'even more text',default,'something');

Query OK, 1 row affected, 2 warnings (0.00 sec)

Warning (Code 1645): The value specified for computed column 'd' in table 'table1' has been ignored.

Warning (Code 1265): Data truncated for column 'd' at row 1

SELECT * FROM table1;

+-----+----------------+------+-------+

| a | b | c | d |

+-----+----------------+------+-------+

| 1 | some text | 1 | some |

| 2 | more text | 2 | more |

| 123 | even more text | 3 | even |

+-----+----------------+------+-------+

3 rows in set (0.00 sec)

If the ZEROFILL clause is specified, it should be placed directly after the type definition, before the AS (<expression>) :

CREATE TABLE table2 (a INT, b INT ZEROFILL AS (a*2) VIRTUAL);

INSERT INTO table2 (a) VALUES (1);

SELECT * FROM table2;

+------+------------+

| a | b |

+------+------------+

| 1 | 0000000002 |

+------+------------+

1 row in set (0.00 sec)

You can also use virtual columns to implement a "poor man's partial index". See example at the end of Unique Index.

1.1.1.3.1.20 Invisible Columns
Invisible columns (sometimes also called hidden columns) are hidden in certain contexts.

Columns can be given an INVISIBLE attribute in a CREATE TABLE or ALTER TABLE statement. These columns will then

not be listed in the results of a SELECT * statement, nor do they need to be assigned a value in an INSERT statement,

unless INSERT explicitly mentions them by name.

Since SELECT * does not return the invisible columns, new tables or views created in this manner will have no trace of the

invisible columns. If specifically referenced in the SELECT statement, the columns will be brought into the view/new table,

but the INVISIBLE attribute will not.

Invisible columns can be declared as NOT NULL , but then require a DEFAULT value.

It is not possible for all columns in a table to be invisible.

Examples

599/4161

CREATE TABLE t (x INT INVISIBLE);

ERROR 1113 (42000): A table must have at least 1 column

CREATE TABLE t (x INT, y INT INVISIBLE, z INT INVISIBLE NOT NULL);

ERROR 4106 (HY000): Invisible column `z` must have a default value

CREATE TABLE t (x INT, y INT INVISIBLE, z INT INVISIBLE NOT NULL DEFAULT 4);

INSERT INTO t VALUES (1),(2);

INSERT INTO t (x,y) VALUES (3,33);

SELECT * FROM t;

+------+

| x |

+------+

| 1 |

| 2 |

| 3 |

+------+

SELECT x,y,z FROM t;

+------+------+---+

| x | y | z |

+------+------+---+

| 1 | NULL | 4 |

| 2 | NULL | 4 |

| 3 | 33 | 4 |

+------+------+---+

DESC t;

+-------+---------+------+-----+---------+-----------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-----------+

| x | int(11) | YES | | NULL | |

| y | int(11) | YES | | NULL | INVISIBLE |

| z | int(11) | NO | | 4 | INVISIBLE |

+-------+---------+------+-----+---------+-----------+

ALTER TABLE t MODIFY x INT INVISIBLE, MODIFY y INT, MODIFY z INT NOT NULL DEFAULT 4;

DESC t;

+-------+---------+------+-----+---------+-----------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-----------+

| x | int(11) | YES | | NULL | INVISIBLE |

| y | int(11) | YES | | NULL | |

| z | int(11) | NO | | 4 | |

+-------+---------+------+-----+---------+-----------+

Creating a view from a table with hidden columns:

CREATE VIEW v1 AS SELECT * FROM t;

DESC v1;

+-------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-------+

| y | int(11) | YES | | NULL | |

| z | int(11) | NO | | 4 | |

+-------+---------+------+-----+---------+-------+

CREATE VIEW v2 AS SELECT x,y,z FROM t;

DESC v2;

+-------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-------+

| x | int(11) | YES | | NULL | |

| y | int(11) | YES | | NULL | |

| z | int(11) | NO | | 4 | |

+-------+---------+------+-----+---------+-------+

600/4161

Adding a Surrogate Primary Key:

create table t1 (x bigint unsigned not null, y varchar(16), z text);

insert into t1 values (123, 'qq11', 'ipsum');

insert into t1 values (123, 'qq22', 'lorem');

alter table t1 add pkid serial primary key invisible first;

insert into t1 values (123, 'qq33', 'amet');

select * from t1;

+-----+------+-------+

| x | y | z |

+-----+------+-------+

| 123 | qq11 | ipsum |

| 123 | qq22 | lorem |

| 123 | qq33 | amet |

+-----+------+-------+

select pkid, z from t1;

+------+-------+

| pkid | z |

+------+-------+

| 1 | ipsum |

| 2 | lorem |

| 3 | amet |

+------+-------+

1.1.1.2.1.1 ALTER

1.1.1.2.1.1.1 ALTER TABLE

1.1.1.2.1.1.2 ALTER DATABASE

1.1.1.2.1.1.3 ALTER EVENT

1.1.1.2.1.1.4 ALTER FUNCTION

1.1.1.2.1.1.5 ALTER LOGFILE GROUP

1.1.1.2.1.1.6 ALTER PROCEDURE

1.1.6.4 ALTER SEQUENCE

1.1.1.2.1.1.8 ALTER SERVER

1.1.1.2.1.1.9 ALTER TABLESPACE

1.1.1.1.2 ALTER USER

1.1.1.2.1.1.11 ALTER VIEW

1.1.1.3.3 DROP
Articles on various DROP commands.

601/4161

DROP DATABASE

Drop all tables and delete database.

DROP EVENT

Removes an existing event.

DROP FUNCTION

Drop a stored function.

DROP FUNCTION UDF

Drop a user-defined function.

DROP INDEX

Drops an index from a table.

DROP LOGFILE GROUP

The DROP LOGFILE GROUP statement is not supported by MariaDB. It was origin...

DROP PACKAGE

Drops a stored package entirely.

DROP PACKAGE BODY

Drops a package body (i.e the implementation) previously created using the CREATE PACKAGE BODY.

DROP PROCEDURE

Drop stored procedure.

DROP ROLE

Drop a role.

DROP SEQUENCE

Deleting a SEQUENCE.

DROP SERVER

Dropping a server definition.

DROP TABLE

Removes definition and data from one or more tables.

DROP TABLESPACE

DROP TABLESPACE is not available in MariaDB.

DROP TRIGGER

Drops a trigger.

DROP USER

Remove one or more MariaDB accounts.

DROP VIEW

Removes one or more views.

There are 1 related questions .

1

1

1.1.1.3.3.1 DROP DATABASE

Syntax

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

602/4161

https://mariadb.com/kb/en/drop/+questions/

Contents
1. Syntax

2. Description

1. IF EXISTS

2. Atomic DDL

3. Examples

Description
DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this statement! To use

DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a synonym for DROP DATABASE .

Important: When a database is dropped, user privileges on the database are not automatically dropped. See GRANT.

IF EXISTS

Use IF EXISTS to prevent an error from occurring for databases that do not exist. A NOTE is generated for each non-

existent database when using IF EXISTS . See SHOW WARNINGS.

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL.

DROP DATABASE is implemented as

loop over all tables

 DROP TABLE table

Each individual DROP TABLE is atomic while DROP DATABASE as a whole is crash-safe.

Examples

DROP DATABASE bufg;

Query OK, 0 rows affected (0.39 sec)

DROP DATABASE bufg;

ERROR 1008 (HY000): Can't drop database 'bufg'; database doesn't exist

 \W

Show warnings enabled.

DROP DATABASE IF EXISTS bufg;

Query OK, 0 rows affected, 1 warning (0.00 sec)

Note (Code 1008): Can't drop database 'bufg'; database doesn't exist

MariaDB starting with 10.6.1

1.1.1.3.3.2 DROP EVENT

Syntax

DROP EVENT [IF EXISTS] event_name

Description
This statement drops the event named event_name . The event immediately ceases being active, and is deleted

completely from the server.

If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name' results. You can override

this and cause the statement to generate a NOTE for non-existent events instead by using IF EXISTS . See SHOW

WARNINGS .

603/4161

This statement requires the EVENT privilege. In MySQL 5.1.11 and earlier, an event could be dropped only by its definer, or

by a user having the SUPER privilege.

Examples

DROP EVENT myevent3;

Using the IF EXISTS clause:

DROP EVENT IF EXISTS myevent3;

Query OK, 0 rows affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+-------+------+-------------------------------+

| Level | Code | Message |

+-------+------+-------------------------------+

| Note | 1305 | Event myevent3 does not exist |

+-------+------+-------------------------------+

1.1.1.3.3.3 DROP FUNCTION

Syntax

DROP FUNCTION [IF EXISTS] f_name

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
The DROP FUNCTION statement is used to drop a stored function or a user-defined function (UDF). That is, the specified

routine is removed from the server, along with all privileges specific to the function. You must have the ALTER ROUTINE

privilege for the routine in order to drop it. If the automatic_sp_privileges server system variable is set, both the ALTER

ROUTINE and EXECUTE privileges are granted automatically to the routine creator - see Stored Routine Privileges.

IF EXISTS

The IF EXISTS clause is a MySQL/MariaDB extension. It prevents an error from occurring if the function does not exist. A

NOTE is produced that can be viewed with SHOW WARNINGS.

For dropping a user-defined functions (UDF), see DROP FUNCTION UDF.

Examples

604/4161

DROP FUNCTION hello;

Query OK, 0 rows affected (0.042 sec)

DROP FUNCTION hello;

ERROR 1305 (42000): FUNCTION test.hello does not exist

DROP FUNCTION IF EXISTS hello;

Query OK, 0 rows affected, 1 warning (0.000 sec)

SHOW WARNINGS;

+-------+------+------------------------------------+

| Level | Code | Message |

+-------+------+------------------------------------+

| Note | 1305 | FUNCTION test.hello does not exist |

+-------+------+------------------------------------+

1.1.1.3.3.4 DROP FUNCTION UDF

Syntax

DROP FUNCTION [IF EXISTS] function_name

Contents
1. Syntax

2. Description

1. Upgrading a UDF

3. Examples

Description
This statement drops the user-defined function (UDF) named function_name .

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP FUNCTION

removes the row from the mysql.func system table that records the function's name, type and shared library name.

For dropping a stored function, see DROP FUNCTION.

Upgrading a UDF

To upgrade the UDF's shared library, first run a DROP FUNCTION statement, then upgrade the shared library and finally

run the CREATE FUNCTION statement. If you upgrade without following this process, you may crash the server.

Examples

DROP FUNCTION jsoncontains_path;

IF EXISTS:

DROP FUNCTION jsoncontains_path;

ERROR 1305 (42000): FUNCTION test.jsoncontains_path does not exist

DROP FUNCTION IF EXISTS jsoncontains_path;

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1305 | FUNCTION test.jsoncontains_path does not exist |

+-------+------+--+

605/4161

1.1.1.3.3.5 DROP INDEX

Syntax

DROP INDEX [IF EXISTS] index_name ON tbl_name

 [WAIT n |NOWAIT]

Contents
1. Syntax

2. Description

3. Privileges

4. Online DDL

5. DROP INDEX IF EXISTS ...

6. WAIT/NOWAIT

7. Progress Reporting

Description
DROP INDEX drops the index named index_name from the table tbl_name . This statement is mapped to an ALTER

TABLE statement to drop the index.

If another connection is using the table, a metadata lock is active, and this statement will wait until the lock is released. This

is also true for non-transactional tables.

See ALTER TABLE.

Another shortcut, CREATE INDEX, allows the creation of an index.

To remove the primary key, `PRIMARY` must be specified as index_name. Note that the quotes are necessary, because

PRIMARY is a keyword.

Privileges
Executing the DROP INDEX statement requires the INDEX privilege for the table or the database.

Online DDL
Online DDL is used by default with InnoDB, when the drop index operation supports it.

See InnoDB Online DDL Overview for more information on online DDL with InnoDB.

DROP INDEX IF EXISTS ...
If the IF EXISTS clause is used, then MariaDB will return a warning instead of an error if the index does not exist.

WAIT/NOWAIT
Sets the lock wait timeout. See WAIT and NOWAIT.

Progress Reporting
MariaDB provides progress reporting for DROP INDEX statement for clients that support the new progress reporting

protocol. For example, if you were using the mariadb client, then the progress report might look like this::

1.1.1.3.3.6 DROP LOGFILE GROUP

The DROP LOGFILE GROUP statement is not supported by MariaDB. It was originally inherited from MySQL NDB

Cluster. See MDEV-19295 for more information.

606/4161

https://jira.mariadb.org/browse/MDEV-19295

1.1.1.3.3.7 DROP PACKAGE

Oracle-style packages were introduced in MariaDB 10.3.5 .

Syntax

DROP PACKAGE [IF EXISTS] [db_name .] package_name

Contents
1. Syntax

2. Description

Description
The DROP PACKAGE statement can be used when Oracle SQL_MODE is set.

The DROP PACKAGE statement drops a stored package entirely:

Drops the package specification (earlier created using the CREATE PACKAGE statement).

Drops the package implementation, if the implementation was already created using the CREATE PACKAGE BODY

statement.

MariaDB starting with 10.3.5

1.1.1.3.3.8 DROP PACKAGE BODY

Oracle-style packages were introduced in MariaDB 10.3.5 .

Syntax

DROP PACKAGE BODY [IF EXISTS] [db_name .] package_name

Contents
1. Syntax

2. Description

Description
The DROP PACKAGE BODY statement can be used when Oracle SQL_MODE is set.

The DROP PACKAGE BODY statement drops the package body (i.e the implementation), previously created using the

CREATE PACKAGE BODY statement.

Note, DROP PACKAGE BODY drops only the package implementation, but does not drop the package specification. Use

DROP PACKAGE to drop the package entirely (i.e. both implementation and specification).

MariaDB starting with 10.3.5

1.1.1.3.3.9 DROP PROCEDURE

Syntax

DROP PROCEDURE [IF EXISTS] sp_name

Contents
1. Syntax

2. Description

3. Examples

607/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

Description
This statement is used to drop a stored procedure. That is, the specified routine is removed from the server along with all

privileges specific to the procedure. You must have the ALTER ROUTINE privilege for the routine. If the

automatic_sp_privileges server system variable is set, that privilege and EXECUTE are granted automatically to the

routine creator - see Stored Routine Privileges.

The IF EXISTS clause is a MySQL/MariaDB extension. It prevents an error from occurring if the procedure or function

does not exist. A NOTE is produced that can be viewed with SHOW WARNINGS .

While this statement takes effect immediately, threads which are executing a procedure can continue execution.

Examples

DROP PROCEDURE simpleproc;

IF EXISTS:

DROP PROCEDURE simpleproc;

ERROR 1305 (42000): PROCEDURE test.simpleproc does not exist

DROP PROCEDURE IF EXISTS simpleproc;

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1305 | PROCEDURE test.simpleproc does not exist |

+-------+------+--+

1.1.1.1.9 DROP ROLE

1.1.6.5 DROP SEQUENCE

1.1.1.3.3.12 DROP SERVER

Syntax

DROP SERVER [IF EXISTS] server_name

Contents
1. Syntax

2. Description

1. IF EXISTS

3. Examples

Description
Drops the server definition for the server named server_name. The corresponding row within the mysql.servers table will be

deleted. This statement requires the SUPER privilege or, from MariaDB 10.5.2, the FEDERATED ADMIN privilege.

Dropping a server for a table does not affect any FederatedX , FEDERATED , Connect or Spider tables that used this

connection information when they were created.

DROP SERVER is not written to the binary log, irrespective of the binary log format being used. From MariaDB 10.1.13 ,

Galera replicates the CREATE SERVER, ALTER SERVER and DROP SERVER statements.

IF EXISTS

If the IF EXISTS clause is used, MariaDB will not return an error if the server does not exist. Unlike all other statements,

608/4161

https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/mariadb-10113-release-notes/

DROP SERVER IF EXISTS does not issue a note if the server does not exist. See MDEV-9400 .

Examples

DROP SERVER s;

IF EXISTS:

DROP SERVER s;

ERROR 1477 (HY000): The foreign server name you are trying to reference

 does not exist. Data source error: s

DROP SERVER IF EXISTS s;

Query OK, 0 rows affected (0.00 sec)

1.1.1.2.1.8 DROP TABLE

1.1.1.3.3.14 DROP TABLESPACE

The DROP TABLESPACE statement is not supported by MariaDB. It was originally inherited from MySQL NDB Cluster.

In MySQL 5.7 and later, the statement is also supported for InnoDB. However, MariaDB has chosen not to include that

specific feature. See MDEV-19294 for more information.

1.1.1.3.3.15 DROP TRIGGER

Syntax

DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

Contents
1. Syntax

2. Description

1. Atomic DDL

3. Examples

Description
This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the trigger is dropped

from the default schema. Its use requires the TRIGGER privilege for the table associated with the trigger.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated for a non-existent

trigger when using IF EXISTS . See SHOW WARNINGS.

Note: Triggers for a table are also dropped if you drop the table.

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL and DROP TRIGGER is atomic.

Examples

DROP TRIGGER test.example_trigger;

Using the IF EXISTS clause:

MariaDB starting with 10.6.1

609/4161

https://jira.mariadb.org/browse/MDEV-9400
https://jira.mariadb.org/browse/MDEV-19294

DROP TRIGGER IF EXISTS test.example_trigger;

Query OK, 0 rows affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+-------+------+------------------------+

| Level | Code | Message |

+-------+------+------------------------+

| Note | 1360 | Trigger does not exist |

+-------+------+------------------------+

1.1.1.1.3 DROP USER

1.1.1.3.3.17 DROP VIEW

Syntax

DROP VIEW [IF EXISTS]

 view_name [, view_name] ...

 [RESTRICT | CASCADE]

Contents
1. Syntax

2. Description

1. Atomic DDL

3. Examples

Description
DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of the views named in

the argument list do not exist, MariaDB returns an error indicating by name which non-existing views it was unable to drop,

but it also drops all of the views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause is given, a NOTE is

generated for each non-existent view. See SHOW WARNINGS.

RESTRICT and CASCADE , if given, are parsed and ignored.

It is possible to specify view names as db_name . view_name . This is useful to delete views from multiple databases with

one statement. See Identifier Qualifiers for details.

The DROP privilege is required to use DROP TABLE on non-temporary tables. For temporary tables, no privilege is

required, because such tables are only visible for the current session.

If a view references another view, it will be possible to drop the referenced view. However, the other view will reference a

view which does not exist any more. Thus, querying it will produce an error similar to the following:

ERROR 1356 (HY000): View 'db_name.view_name' references invalid table(s) or

column(s) or function(s) or definer/invoker of view lack rights to use them

This problem is reported in the output of CHECK TABLE.

Note that it is not necessary to use DROP VIEW to replace an existing view, because CREATE VIEW has an OR REPLACE

clause.

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL and DROP VIEW for a singular view is atomic. Dropping multiple views is crash-

safe.

Examples

MariaDB starting with 10.6.1

610/4161

DROP VIEW v,v2;

Given views v and v2 , but no view v3

DROP VIEW v,v2,v3;

ERROR 1051 (42S02): Unknown table 'v3'

DROP VIEW IF EXISTS v,v2,v3;

Query OK, 0 rows affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+-------+------+-------------------------+

| Level | Code | Message |

+-------+------+-------------------------+

| Note | 1051 | Unknown table 'test.v3' |

+-------+------+-------------------------+

1.1.1.3.4 Atomic DDL
From MariaDB 10.6.1, we have improved readability for DDL (Data Definition Language) operations to make most of them

atomic, and the rest crash-safe, even if the server crashes in the middle of an operation.

The design of Atomic/Crash-safe DDL (MDEV-17567) allows it to work with all storage engines.

Definitions
Atomic means that either the operation succeeds (and is logged to the binary log or is completely reversed.

Crash-safe means that in case of a crash, after the server has restarted, all tables are consistent, there are no

temporary files or tables on disk and the binary log matches the status of the server.

DDL Data definition language.

DML Data manipulation language.

'DDL recovery log' or 'DDL log' for short, is the new log file, ddl_recovery.log by default, that stores all DDL

operations in progress. This is used to recover the state of the server in case of sudden crash.

Background
Before 10.6, in case of a crash, there was a small possibility that one of the following things could happen:

There could be temporary tables starting with #sql-alter or #sql-shadow or temporary files ending with '' left.

The table in the storage engine and the table's .frm file could be out of sync.

During a multi-table rename, only some of the tables were renamed.

Which DDL Operations are Now Atomic
CREATE TABLE, except when used with CREATE OR REPLACE, which is only crash safe.

RENAME TABLE and RENAME TABLES.

CREATE VIEW

CREATE SEQUENCE

CREATE TRIGGER

DROP TRIGGER

DROP TABLE and DROP VIEW. Dropping multiple tables is only crash safe.

ALTER TABLE

ALTER SEQUENCE is not listed above as it is internally implemented as a DML.

Which DDL Operations are Now Crash Safe

DROP TABLE of Multiple Tables.

DROP TABLE over multiple tables is treated as if every DROP is a separate, atomic operation. This means that after a

crash, all fully, or partly, dropped tables will be dropped and logged to the binary log. The undropped tables will be left

untouched.

611/4161

https://jira.mariadb.org/browse/MDEV-17567

CREATE OR REPLACE TABLE

CREATE OR REPLACE TABLE foo is implemented as:

DROP TABLE IF EXISTS foo;

CREATE TABLE foo ...

This means that if there is a crash during CREATE TABLE then the original table 'foo' will be dropped even if the new table

was not created. If the table was not re-created, the binary log will contain the DROP TABLE .

DROP DATABASE

DROP DATABASE is implemented as:

loop over all tables

 DROP TABLE table

Each DROP TABLE is atomic, but in case of a crash, things will work the same way as DROP TABLE with multiple tables.

Atomic with Different Storage Engines

Atomic/Crash-safe DDL works with all storage engines that either have atomic DDLs internally or are able to re-execute

DROP or RENAME in case of failure.

This should be true for most storage engines. The ones that still need some work are:

The S3 storage engine.

The partitioning engine. Partitioning should be atomic for most cases, but there are still some known issues that need

to be tested and fixed.

The DDL Log Recovery File

The new startup option --log-ddl-recovery=path (ddl_recovery.log by default) can be used to specify the place for the

DDL log file. This is mainly useful in the case when one has a filesystem on persistent memory, as there is a lot of sync on

this file during DDL operations.

This file contains all DDL operations that are in progress.

At MariaDB server startup, the DDL log file is copied to a file with the same base name but with a -backup.log suffix.

This is mainly done to be able to find out what went wrong if recovery fails.

If the server crashes during recovery (unlikely but possible), the recovery will continue where it was before. The recovery

will retry each entry up to 3 times before giving up and proceeding with the next entry.

Conclusions

We believe that a clean separation of layers leads to an easier-to-maintain solution. The Atomic DDL implementation

in MariaDB 10.6 introduced minimal changes to the storage engine API, mainly for native ALTER TABLE.

In our InnoDB implementation, no file format changes were needed on top of the RENAME undo log that was

introduced in MariaDB 10.2.19 for a backup-safe TRUNCATE re-implementation. Correct use of sound design

principles (write-ahead logging and transactions; also file creation now follows the ARIES protocol) is sufficient. We

removed the hacks (at most one CREATE or DROP per transaction) and correctly implemented rollback and

purge triggers for the InnoDB SYS_INDEXES table.

Numerous DDL recovery bugs in InnoDB were found and fixed quickly thanks to https://rr-project.org . We are still

working on one: data files must not be deleted before the DDL transaction is committed.

Thanks to Atomic/Crash-safe DDL, the MariaDB server is now much more stable and reliable in unstable environments.

There is still ongoing work to fix the few remaining issues mentioned above to make all DDL operations Atomic. The target

for these is MariaDB 10.7.

1.1.1.3.5 CONSTRAINT
MariaDB supports the implementation of constraints at the table-level using either CREATE TABLE or ALTER TABLE

statements. A table constraint restricts the data you can add to the table. If you attempt to insert invalid data on a column,

MariaDB throws an error.

612/4161

https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://rr-project.org

Syntax

[CONSTRAINT [symbol]] constraint_expression

constraint_expression:

 | PRIMARY KEY [index_type] (index_col_name, ...) [index_option] ...

 | FOREIGN KEY [index_name] (index_col_name, ...)

 REFERENCES tbl_name (index_col_name, ...)

 [ON DELETE reference_option]

 [ON UPDATE reference_option]

 | UNIQUE [INDEX|KEY] [index_name]

 [index_type] (index_col_name, ...) [index_option] ...

 | CHECK (check_constraints)

index_type:

 USING {BTREE | HASH | RTREE}

index_col_name:

 col_name [(length)] [ASC | DESC]

index_option:

 | KEY_BLOCK_SIZE [=] value

 | index_type

 | WITH PARSER parser_name

 | COMMENT 'string'

 | CLUSTERING={YES|NO}

reference_option:

 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

Contents
1. Syntax

2. Description

1. FOREIGN KEY Constraints

2. CHECK Constraints

3. Replication

4. Auto_increment

3. Examples

Description
Constraints provide restrictions on the data you can add to a table. This allows you to enforce data integrity from MariaDB,

rather than through application logic. When a statement violates a constraint, MariaDB throws an error.

There are four types of table constraints:

Constraint Description

PRIMARY KEY Sets the column for referencing rows. Values must be unique and not null.

FOREIGN KEY Sets the column to reference the primary key on another table.

UNIQUE Requires values in column or columns only occur once in the table.

CHECK Checks whether the data meets the given condition.

The Information Schema TABLE_CONSTRAINTS Table contains information about tables that have constraints.

FOREIGN KEY Constraints

InnoDB supports foreign key constraints. The syntax for a foreign key constraint definition in InnoDB looks like this:

[CONSTRAINT [symbol]] FOREIGN KEY

 [index_name] (index_col_name, ...)

 REFERENCES tbl_name (index_col_name,...)

 [ON DELETE reference_option]

 [ON UPDATE reference_option]

reference_option:

 RESTRICT | CASCADE | SET NULL | NO ACTION

613/4161

The Information Schema REFERENTIAL_CONSTRAINTS table has more information about foreign keys.

CHECK Constraints

Constraints are enforced. Before MariaDB 10.2.1 constraint expressions were accepted in the syntax but ignored.

You can define constraints in 2 different ways:

CHECK(expression) given as part of a column definition.

CONSTRAINT [constraint_name] CHECK (expression)

Before a row is inserted or updated, all constraints are evaluated in the order they are defined. If any constraint expression

returns false, then the row will not be inserted or updated. One can use most deterministic functions in a constraint, including

UDFs.

CREATE TABLE t1 (a INT CHECK (a>2), b INT CHECK (b>2), CONSTRAINT a_greater CHECK (a>b));

If you use the second format and you don't give a name to the constraint, then the constraint will get an automatically

generated name. This is done so that you can later delete the constraint with ALTER TABLE DROP constraint_name.

One can disable all constraint expression checks by setting the check_constraint_checks variable to OFF . This is useful for

example when loading a table that violates some constraints that you want to later find and fix in SQL.

Replication

In row-based replication, only the master checks constraints, and failed statements will not be replicated. In statement-based

replication, the slaves will also check constraints. Constraints should therefore be identical, as well as deterministic, in a

replication environment.

Auto_increment

auto_increment columns are not permitted in check constraints. Before MariaDB 10.2.6 , they were permitted, but would

not work correctly. See MDEV-11117 .

Examples

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,

 price DECIMAL,

 PRIMARY KEY(category, id)) ENGINE=INNODB;

CREATE TABLE customer (id INT NOT NULL,

 PRIMARY KEY (id)) ENGINE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,

 product_category INT NOT NULL,

 product_id INT NOT NULL,

 customer_id INT NOT NULL,

 PRIMARY KEY(no),

 INDEX (product_category, product_id),

 FOREIGN KEY (product_category, product_id)

 REFERENCES product(category, id)

 ON UPDATE CASCADE ON DELETE RESTRICT,

 INDEX (customer_id),

 FOREIGN KEY (customer_id)

 REFERENCES customer(id)) ENGINE=INNODB;

The following examples will work from MariaDB 10.2.1 onwards.

Numeric constraints and comparisons:

CREATE TABLE t1 (a INT CHECK (a>2), b INT CHECK (b>2), CONSTRAINT a_greater CHECK (a>b));

INSERT INTO t1(a) VALUES (1);

ERROR 4022 (23000): CONSTRAINT `a` failed for `test`.`t1`

INSERT INTO t1(a,b) VALUES (3,4);

ERROR 4022 (23000): CONSTRAINT `a_greater` failed for `test`.`t1`

INSERT INTO t1(a,b) VALUES (4,3);

Query OK, 1 row affected (0.04 sec)

614/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://jira.mariadb.org/browse/MDEV-11117
https://mariadb.com/kb/en/mariadb-1021-release-notes/

Dropping a constraint:

ALTER TABLE t1 DROP CONSTRAINT a_greater;

Adding a constraint:

ALTER TABLE t1 ADD CONSTRAINT a_greater CHECK (a>b);

Date comparisons and character length:

CREATE TABLE t2 (name VARCHAR(30) CHECK (CHAR_LENGTH(name)>2), start_date DATE,

 end_date DATE CHECK (start_date IS NULL OR end_date IS NULL OR start_date<end_date));

INSERT INTO t2(name, start_date, end_date) VALUES('Ione', '2003-12-15', '2014-11-09');

Query OK, 1 row affected (0.04 sec)

INSERT INTO t2(name, start_date, end_date) VALUES('Io', '2003-12-15', '2014-11-09');

ERROR 4022 (23000): CONSTRAINT `name` failed for `test`.`t2`

INSERT INTO t2(name, start_date, end_date) VALUES('Ione', NULL, '2014-11-09');

Query OK, 1 row affected (0.04 sec)

INSERT INTO t2(name, start_date, end_date) VALUES('Ione', '2015-12-15', '2014-11-09');

ERROR 4022 (23000): CONSTRAINT `end_date` failed for `test`.`t2`

A misplaced parenthesis:

CREATE TABLE t3 (name VARCHAR(30) CHECK (CHAR_LENGTH(name>2)), start_date DATE,

 end_date DATE CHECK (start_date IS NULL OR end_date IS NULL OR start_date<end_date));

Query OK, 0 rows affected (0.32 sec)

INSERT INTO t3(name, start_date, end_date) VALUES('Io', '2003-12-15', '2014-11-09');

Query OK, 1 row affected, 1 warning (0.04 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1292 | Truncated incorrect DOUBLE value: 'Io' |

+---------+------+--+

Compare the definition of table t2 to table t3. CHAR_LENGTH(name)>2 is very different to CHAR_LENGTH(name>2) as the

latter mistakenly performs a numeric comparison on the name field, leading to unexpected results.

5.3.11 MERGE

1.1.1.2.1.12 RENAME TABLE

1.1.1.2.1.19 TRUNCATE TABLE

1.1.1.4 Data Manipulation
SQL commands for querying and manipulating data, such as SELECT, UPDATE, DELETE etc.

Selecting Data

Documentation on the SELECT statement and related clauses.

Inserting & Loading Data

Documentation on the INSERT statement and related clauses.

Changing & Deleting Data

Documentation on the UPDATE, REPLACE, and DELETE Statements.

There are 4 related questions .

615/4161

https://mariadb.com/kb/en/data-manipulation/+questions/

1.1.1.4.1 Selecting Data
The SELECT statement is used for retrieving data from tables, for select specific data, often based on a criteria given in the

WHERE clause.

SELECT

SQL statement used primarily for retrieving data from a MariaDB database.

Joins & Subqueries

Documentation on the JOIN, UNION, EXCEPT and INTERSECT clauses, and on subqueries.

LIMIT

Documentation of the LIMIT clause.

ORDER BY

Order the results returned from a resultset.

GROUP BY

Aggregate data in a SELECT statement with the GROUP BY clause.

Common Table Expressions

Common table expressions are temporary named result sets.

SELECT WITH ROLLUP

Adds extra rows to the resultset that represent super-aggregate summaries

SELECT INTO OUTFILE

Write the resultset to a formatted file

SELECT INTO DUMPFILE

Write a binary string into file

FOR UPDATE

Acquires a lock on the rows

LOCK IN SHARE MODE

Acquires a write lock.

Optimizer Hints

Optimizer hints There are some options available in SELECT to affect the ex...

PROCEDURE

The PROCEDURE Clause of the SELECT Statement.

HANDLER

Direct access to reading rows from the storage engine.

DUAL

Dummy table name

SELECT ... OFFSET ... FETCH

Allows one to specify an offset, a number of rows to be returned, and wheth...

There are 2 related questions .

6

1

2

2

4

1

1.1.1.4.1.1 SELECT

Syntax
616/4161

https://mariadb.com/kb/en/selecting-data/+questions/

Syntax
SELECT

 [ALL | DISTINCT | DISTINCTROW]

 [HIGH_PRIORITY]

 [STRAIGHT_JOIN]

 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]

 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

 select_expr [, select_expr ...]

 [FROM table_references

 [WHERE where_condition]

 [GROUP BY {col_name | expr | position} [ASC | DESC], ... [WITH ROLLUP]]

 [HAVING where_condition]

 [ORDER BY {col_name | expr | position} [ASC | DESC], ...]

 [LIMIT {[offset,] row_count | row_count OFFSET offset [ROWS EXAMINED rows_limit] } |

 [OFFSET start { ROW | ROWS }]

 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }]]

 procedure|[PROCEDURE procedure_name(argument_list)]

 [INTO OUTFILE 'file_name' [CHARACTER SET charset_name] [export_options] |

 INTO DUMPFILE 'file_name' | INTO var_name [, var_name]]

 [FOR UPDATE lock_option | LOCK IN SHARE MODE lock_option]

export_options:

 [{FIELDS | COLUMNS}

 [TERMINATED BY 'string']

 [[OPTIONALLY] ENCLOSED BY 'char']

 [ESCAPED BY 'char']

]

 [LINES

 [STARTING BY 'string']

 [TERMINATED BY 'string']

]

lock_option:

 [WAIT n | NOWAIT | SKIP LOCKED]

Contents
1. Syntax

2. Description

1. Select Expressions

2. DISTINCT

3. INTO

4. LIMIT

5. LOCK IN SHARE MODE/FOR UPDATE

6. OFFSET ... FETCH

7. ORDER BY

8. PARTITION

9. PROCEDURE

10. SKIP LOCKED

11. SQL_CALC_FOUND_ROWS

12. max_statement_time clause

13. WAIT/NOWAIT

3. Examples

Description
SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and subqueries.

Each select_expr expression indicates a column or data that you want to retrieve. You must have at least one select

expression. See Select Expressions below.

The FROM clause indicates the table or tables from which to retrieve rows. Use either a single table name or a JOIN

expression. See JOIN for details. If no table is involved, FROM DUAL can be specified.

Each table can also be specified as db_name . tabl_name . Each column can also be specified as

tbl_name . col_name or even db_name . tbl_name . col_name . This allows one to write queries which involve

multiple databases. See Identifier Qualifiers for syntax details.

The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected.

617/4161

where_condition is an expression that evaluates to true for each row to be selected. The statement selects all

rows if there is no WHERE clause.

In the WHERE clause, you can use any of the functions and operators that MariaDB supports, except for

aggregate (summary) functions. See Functions and Operators and Functions and Modifiers for use with

GROUP BY (aggregate).

Use the ORDER BY clause to order the results.

Use the LIMIT clause allows you to restrict the results to only a certain number of rows, optionally with an offset.

Use the GROUP BY and HAVING clauses to group rows together when they have columns or computed values in

common.

SELECT can also be used to retrieve rows computed without reference to any table.

Select Expressions

A SELECT statement must contain one or more select expressions, separated by commas. Each select expression can be

one of the following:

The name of a column.

Any expression using functions and operators.

* to select all columns from all tables in the FROM clause.

tbl_name.* to select all columns from just the table tbl_name.

When specifying a column, you can either use just the column name or qualify the column name with the name of the table

using tbl_name.col_name . The qualified form is useful if you are joining multiple tables in the FROM clause. If you do not

qualify the column names when selecting from multiple tables, MariaDB will try to find the column in each table. It is an error

if that column name exists in multiple tables.

You can quote column names using backticks. If you are qualifying column names with table names, quote each part

separately as `tbl_name`.`col_name` .

If you use any grouping functions in any of the select expressions, all rows in your results will be implicitly grouped, as if you

had used GROUP BY NULL . GROUP BY NULL being an expression behaves specially such that the entire result set is

treated as a group.

DISTINCT

A query may produce some identical rows. By default, all rows are retrieved, even when their values are the same. To

explicitly specify that you want to retrieve identical rows, use the ALL option. If you want duplicates to be removed from the

resultset, use the DISTINCT option. DISTINCTROW is a synonym for DISTINCT . See also COUNT DISTINCT and

SELECT UNIQUE in Oracle mode.

INTO

The INTO clause is used to specify that the query results should be written to a file or variable.

SELECT INTO OUTFILE - formatting and writing the result to an external file.

SELECT INTO DUMPFILE - binary-safe writing of the unformatted results to an external file.

SELECT INTO Variable - selecting and setting variables.

The reverse of SELECT INTO OUTFILE is LOAD DATA.

LIMIT

Restricts the number of returned rows. See LIMIT and LIMIT ROWS EXAMINED for details.

LOCK IN SHARE MODE/FOR UPDATE

See LOCK IN SHARE MODE and FOR UPDATE for details on the respective locking clauses.

OFFSET ... FETCH

See SELECT ... OFFSET ... FETCH.

MariaDB starting with 10.6

618/4161

ORDER BY

Order a resultset. See ORDER BY for details.

PARTITION

Specifies to the optimizer which partitions are relevant for the query. Other partitions will not be read. See Partition Pruning

and Selection for details.

PROCEDURE

Passes the whole result set to a C Procedure. See PROCEDURE and PROCEDURE ANALYSE (the only built-in procedure

not requiring the server to be recompiled).

SKIP LOCKED

The SKIP LOCKED clause was introduced in MariaDB 10.6.0.

This causes those rows that couldn't be locked (LOCK IN SHARE MODE or FOR UPDATE) to be excluded from the

result set. An explicit NOWAIT is implied here. This is only implemented on InnoDB tables and ignored otherwise.

SQL_CALC_FOUND_ROWS

When SQL_CALC_FOUND_ROWS is used, then MariaDB will calculate how many rows would have been in the result, if there

would be no LIMIT clause. The result can be found by calling the function FOUND_ROWS() in your next sql statement.

max_statement_time clause

By using max_statement_time in conjunction with SET STATEMENT, it is possible to limit the execution time of individual

queries. For example:

SET STATEMENT max_statement_time=100 FOR

 SELECT field1 FROM table_name ORDER BY field1;

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

Examples

SELECT f1,f2 FROM t1 WHERE (f3<=10) AND (f4='y');

See Getting Data from MariaDB (Beginner tutorial), or the various sub-articles, for more examples.

MariaDB starting with 10.6

1.1.1.4.1.2 Joins & Subqueries
Documentation on the JOIN, UNION, EXCEPT and INTERSECT clauses, and on subqueries.

Joins

Querying from multiple tables.

Subqueries

Queries within queries.

UNION

Combine the results from multiple SELECT statements into a single result set.

619/4161

EXCEPT

Subtraction of two result sets.

INTERSECT

Records that are present in both result sets will be included in the result of the operation.

Precedence Control in Table Operations

Controlling order of execution in SELECT, UNION, EXCEPT, and INTERSECT.

MINUS

Synonym for EXCEPT.

1

1.1.1.4.1.2.1 Joins
Articles about joins in MariaDB.

Joining Tables with JOIN Clauses

An introductory tutorial on using the JOIN clause.

More Advanced Joins

A more advanced tutorial on JOINs.

JOIN Syntax

Description MariaDB supports the following JOIN syntaxes for the table_refe...

Comma vs JOIN

A query to grab the list of phone numbers for clients who ordered in the la...

There are 1 related questions .

1

6.2.5 Joining Tables with JOIN Clauses

1.1.1.4.1.2.1.2 More Advanced Joins
Contents
1. The Employee Database

2. Working with the Employee Database

1. Filtering by Name

2. Filtering by Name, Date and Time

3. Displaying Total Work Hours per Day

This article is a follow up to the Introduction to JOINs page. If you're just getting started with JOINs, go through that page

first and then come back here.

The Employee Database
Let us begin by using an example employee database of a fairly small family business, which does not anticipate expanding

in the future.

First, we create the table that will hold all of the employees and their contact information:

CREATE TABLE `Employees` (

 `ID` TINYINT(3) UNSIGNED NOT NULL AUTO_INCREMENT,

 `First_Name` VARCHAR(25) NOT NULL,

 `Last_Name` VARCHAR(25) NOT NULL,

 `Position` VARCHAR(25) NOT NULL,

 `Home_Address` VARCHAR(50) NOT NULL,

 `Home_Phone` VARCHAR(12) NOT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=MyISAM;

620/4161

https://mariadb.com/kb/en/joins/+questions/

Next, we add a few employees to the table:

INSERT INTO `Employees` (`First_Name`, `Last_Name`, `Position`, `Home_Address`, `Home_Phone`)

 VALUES

 ('Mustapha', 'Mond', 'Chief Executive Officer', '692 Promiscuous Plaza', '326-555-3492'),

 ('Henry', 'Foster', 'Store Manager', '314 Savage Circle', '326-555-3847'),

 ('Bernard', 'Marx', 'Cashier', '1240 Ambient Avenue', '326-555-8456'),

 ('Lenina', 'Crowne', 'Cashier', '281 Bumblepuppy Boulevard', '328-555-2349'),

 ('Fanny', 'Crowne', 'Restocker', '1023 Bokanovsky Lane', '326-555-6329'),

 ('Helmholtz', 'Watson', 'Janitor', '944 Soma Court', '329-555-2478');

Now, we create a second table, containing the hours which each employee clocked in and out during the week:

CREATE TABLE `Hours` (

 `ID` TINYINT(3) UNSIGNED NOT NULL,

 `Clock_In` DATETIME NOT NULL,

 `Clock_Out` DATETIME NOT NULL

) ENGINE=MyISAM;

Finally, although it is a lot of information, we add a full week of hours for each of the employees into the second table that

we created:

INSERT INTO `Hours`

 VALUES

 ('1', '2005-08-08 07:00:42', '2005-08-08 17:01:36'),

 ('1', '2005-08-09 07:01:34', '2005-08-09 17:10:11'),

 ('1', '2005-08-10 06:59:56', '2005-08-10 17:09:29'),

 ('1', '2005-08-11 07:00:17', '2005-08-11 17:00:47'),

 ('1', '2005-08-12 07:02:29', '2005-08-12 16:59:12'),

 ('2', '2005-08-08 07:00:25', '2005-08-08 17:03:13'),

 ('2', '2005-08-09 07:00:57', '2005-08-09 17:05:09'),

 ('2', '2005-08-10 06:58:43', '2005-08-10 16:58:24'),

 ('2', '2005-08-11 07:01:58', '2005-08-11 17:00:45'),

 ('2', '2005-08-12 07:02:12', '2005-08-12 16:58:57'),

 ('3', '2005-08-08 07:00:12', '2005-08-08 17:01:32'),

 ('3', '2005-08-09 07:01:10', '2005-08-09 17:00:26'),

 ('3', '2005-08-10 06:59:53', '2005-08-10 17:02:53'),

 ('3', '2005-08-11 07:01:15', '2005-08-11 17:04:23'),

 ('3', '2005-08-12 07:00:51', '2005-08-12 16:57:52'),

 ('4', '2005-08-08 06:54:37', '2005-08-08 17:01:23'),

 ('4', '2005-08-09 06:58:23', '2005-08-09 17:00:54'),

 ('4', '2005-08-10 06:59:14', '2005-08-10 17:00:12'),

 ('4', '2005-08-11 07:00:49', '2005-08-11 17:00:34'),

 ('4', '2005-08-12 07:01:09', '2005-08-12 16:58:29'),

 ('5', '2005-08-08 07:00:04', '2005-08-08 17:01:43'),

 ('5', '2005-08-09 07:02:12', '2005-08-09 17:02:13'),

 ('5', '2005-08-10 06:59:39', '2005-08-10 17:03:37'),

 ('5', '2005-08-11 07:01:26', '2005-08-11 17:00:03'),

 ('5', '2005-08-12 07:02:15', '2005-08-12 16:59:02'),

 ('6', '2005-08-08 07:00:12', '2005-08-08 17:01:02'),

 ('6', '2005-08-09 07:03:44', '2005-08-09 17:00:00'),

 ('6', '2005-08-10 06:54:19', '2005-08-10 17:03:31'),

 ('6', '2005-08-11 07:00:05', '2005-08-11 17:02:57'),

 ('6', '2005-08-12 07:02:07', '2005-08-12 16:58:23');

Working with the Employee Database
Now that we have a cleanly structured database to work with, let us begin this tutorial by stepping up one notch from the last

tutorial and filtering our information a little.

Filtering by Name

Earlier in the week, an anonymous employee reported that Helmholtz came into work almost four minutes late; to verify this,

we will begin our investigation by filtering out employees whose first names are "Helmholtz":

621/4161

SELECT

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`

FROM `Employees`

INNER JOIN `Hours` ON `Employees`.`ID` = `Hours`.`ID`

WHERE `Employees`.`First_Name` = 'Helmholtz';

The result:

+------------+-----------+---------------------+---------------------+

| First_Name | Last_Name | Clock_In | Clock_Out |

+------------+-----------+---------------------+---------------------+

| Helmholtz | Watson | 2005-08-08 07:00:12 | 2005-08-08 17:01:02 |

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 |

| Helmholtz | Watson | 2005-08-10 06:54:19 | 2005-08-10 17:03:31 |

| Helmholtz | Watson | 2005-08-11 07:00:05 | 2005-08-11 17:02:57 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 |

+------------+-----------+---------------------+---------------------+

5 rows in set (0.00 sec)

This is obviously more information than we care to trudge through, considering we only care about when he arrived past

7:00:59 on any given day within this week; thus, we need to add a couple more conditions to our WHERE clause.

Filtering by Name, Date and Time

In the following example, we will filter out all of the times which Helmholtz clocked in that were before 7:01:00 and during the

work week that lasted from the 8th to the 12th of August:

SELECT

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`

FROM `Employees`

INNER JOIN `Hours` ON `Employees`.`ID` = `Hours`.`ID`

WHERE `Employees`.`First_Name` = 'Helmholtz'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') >= '2005-08-08'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') <= '2005-08-12'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%H:%i:%S') > '07:00:59';

The result:

+------------+-----------+---------------------+---------------------+

| First_Name | Last_Name | Clock_In | Clock_Out |

+------------+-----------+---------------------+---------------------+

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 |

+------------+-----------+---------------------+---------------------+

2 rows in set (0.00 sec)

We have now, by merely adding a few more conditions, eliminated all of the irrelevant information; Helmholtz was late to

work on the 9th and the 12th of August.

Displaying Total Work Hours per Day

Suppose you would like toâ¬=based on the information stored in both of our tables in the employee databaseâ¬=develop a

quick list of the total hours each employee has worked for each day recorded; a simple way to estimate the time each

employee worked per day is exemplified below:

622/4161

SELECT

 `Employees`.`ID`,

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`,

DATE_FORMAT(`Hours`.`Clock_Out`, '%T')-DATE_FORMAT(`Hours`.`Clock_In`, '%T') AS 'Total_Hours'

FROM `Employees` INNER JOIN `Hours` ON `Employees`.`ID` = `Hours`.`ID`;

The result (limited by 10):

+----+------------+-----------+---------------------+---------------------+-------------+

| ID | First_Name | Last_Name | Clock_In | Clock_Out | Total_Hours |

+----+------------+-----------+---------------------+---------------------+-------------+

| 1 | Mustapha | Mond | 2005-08-08 07:00:42 | 2005-08-08 17:01:36 | 10 |

| 1 | Mustapha | Mond | 2005-08-09 07:01:34 | 2005-08-09 17:10:11 | 10 |

| 1 | Mustapha | Mond | 2005-08-10 06:59:56 | 2005-08-10 17:09:29 | 11 |

| 1 | Mustapha | Mond | 2005-08-11 07:00:17 | 2005-08-11 17:00:47 | 10 |

| 1 | Mustapha | Mond | 2005-08-12 07:02:29 | 2005-08-12 16:59:12 | 9 |

| 2 | Henry | Foster | 2005-08-08 07:00:25 | 2005-08-08 17:03:13 | 10 |

| 2 | Henry | Foster | 2005-08-09 07:00:57 | 2005-08-09 17:05:09 | 10 |

| 2 | Henry | Foster | 2005-08-10 06:58:43 | 2005-08-10 16:58:24 | 10 |

| 2 | Henry | Foster | 2005-08-11 07:01:58 | 2005-08-11 17:00:45 | 10 |

| 2 | Henry | Foster | 2005-08-12 07:02:12 | 2005-08-12 16:58:57 | 9 |

+----+------------+-----------+---------------------+---------------------+-------------+

10 rows in set (0.00 sec)

1.1.1.4.1.2.1.3 JOIN Syntax

Description
MariaDB supports the following JOIN syntaxes for the table_references part of SELECT statements and multiple-table

DELETE and UPDATE statements:

623/4161

table_references:

 table_reference [, table_reference] ...

table_reference:

 table_factor

 | join_table

table_factor:

 tbl_name [PARTITION (partition_list)]

 [query_system_time_period_specification] [[AS] alias] [index_hint_list]

 | table_subquery [query_system_time_period_specification] [AS] alias

 | (table_references)

 | { ON table_reference LEFT OUTER JOIN table_reference

 ON conditional_expr }

join_table:

 table_reference [INNER | CROSS] JOIN table_factor [join_condition]

 | table_reference STRAIGHT_JOIN table_factor

 | table_reference STRAIGHT_JOIN table_factor ON conditional_expr

 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition

 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:

 ON conditional_expr

 | USING (column_list)

query_system_time_period_specification:

 FOR SYSTEM_TIME AS OF point_in_time

 | FOR SYSTEM_TIME BETWEEN point_in_time AND point_in_time

 | FOR SYSTEM_TIME FROM point_in_time TO point_in_time

 | FOR SYSTEM_TIME ALL

point_in_time:

 [TIMESTAMP] expression

 | TRANSACTION expression

index_hint_list:

 index_hint [, index_hint] ...

index_hint:

 USE {INDEX|KEY}

 [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

 | IGNORE {INDEX|KEY}

 [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

 | FORCE {INDEX|KEY}

 [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list)

index_list:

 index_name [, index_name] ...

A table reference is also known as a join expression.

Each table can also be specified as db_name . tabl_name . This allows to write queries which involve multiple databases.

See Identifier Qualifiers for syntax details.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only

table_reference , not a list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as equivalent to an inner join.

For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)

 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)

 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MariaDB, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In standard SQL, they

are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used otherwise.

624/4161

In general, parentheses can be ignored in join expressions containing only inner join operations. MariaDB also supports

nested joins (see http://dev.mysql.com/doc/refman/5.1/en/nested-join-optimization.html).

See System-versioned tables for more information about FOR SYSTEM_TIME syntax.

Index hints can be specified to affect how the MariaDB optimizer makes use of indexes. For more information, see How to

force query plans.

Examples

SELECT left_tbl.*

 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id

 WHERE right_tbl.id IS NULL;

1.1.1.4.1.2.1.4 Comma vs JOIN
A query to grab the list of phone numbers for clients who ordered in the last two weeks might be written in a couple of ways.

Here are two:

SELECT *

FROM

 clients,

 orders,

 phoneNumbers

WHERE

 clients.id = orders.clientId

 AND clients.id = phoneNumbers.clientId

 AND orderPlaced >= NOW() - INTERVAL 2 WEEK;

SELECT *

FROM

 clients

 INNER JOIN orders ON clients.id = orders.clientId

 INNER JOIN phoneNumbers ON clients.id = phoneNumbers.clientId

WHERE

 orderPlaced >= NOW() - INTERVAL 2 WEEK;

Does it make a difference? Not much as written. But you should use the second form. Why?

Readability. Once the WHERE clause contains more than two conditions, it becomes tedious to pick out the

difference between business logic (only dates in the last two weeks) and relational logic (which fields relate clients to

orders). Using the JOIN syntax with an ON clause makes the WHERE list shorter, and makes it very easy to see how

tables relate to each other.

Flexibility. Let's say we need to see all clients even if they don't have a phone number in the system. With the

second version, it's easy; just change INNER JOIN phoneNumbers to LEFT JOIN phoneNumbers . Try that with

the first version, and MySQL version 5.0.12+ will issue a syntax error because of the change in precedence between

the comma operator and the JOIN keyword. The solution is to rearrange the FROM clause or add parentheses to

override the precedence, and that quickly becomes frustrating.

Portability. The changes in 5.0.12 were made to align with SQL:2003. If your queries use standard syntax, you will

have an easier time switching to a different database should the need ever arise.

1.1.1.4.1.2.2 Subqueries
A subquery is a query nested in another query.

Scalar Subqueries

Subquery returning a single value.

Row Subqueries

Subquery returning a row.

Subqueries and ALL

Return true if the comparison returns true for each row, or the subquery returns no rows.

625/4161

http://dev.mysql.com/doc/refman/5.1/en/nested-join-optimization.html

Subqueries and ANY

Return true if the comparison returns true for at least one row returned by the subquery.

Subqueries and EXISTS

Returns true if the subquery returns any rows.

Subqueries in a FROM Clause

Subqueries are more commonly placed in a WHERE clause, but can also form part of the FROM clause.

Subquery Optimizations

Articles about subquery optimizations in MariaDB.

Subqueries and JOINs

Rewriting subqueries as JOINs, and using subqueries instead of JOINs.

Subquery Limitations

There are a number of limitations regarding subqueries.

There are 1 related questions .

1

1.1.1.4.1.2.2.1 Scalar Subqueries
A scalar subquery is a subquery that returns a single value. This is the simplest form of a subquery, and can be used in most

places a literal or single column value is valid.

The data type, length and character set and collation are all taken from the result returned by the subquery. The result of a

subquery can always be NULL, that is, no result returned. Even if the original value is defined as NOT NULL, this is

disregarded.

A subquery cannot be used where only a literal is expected, for example LOAD DATA INFILE expects a literal string

containing the file name, and LIMIT requires a literal integer.

Examples

CREATE TABLE sq1 (num TINYINT);

CREATE TABLE sq2 (num TINYINT);

INSERT INTO sq1 VALUES (1);

INSERT INTO sq2 VALUES (10* (SELECT num FROM sq1));

SELECT * FROM sq2;

+------+

| num |

+------+

| 10 |

+------+

Inserting a second row means the subquery is no longer a scalar, and this particular query is not valid:

INSERT INTO sq1 VALUES (2);

INSERT INTO sq2 VALUES (10* (SELECT num FROM sq1));

ERROR 1242 (21000): Subquery returns more than 1 row

No rows in the subquery, so the scalar is NULL:

626/4161

https://mariadb.com/kb/en/subqueries/+questions/

INSERT INTO sq2 VALUES (10* (SELECT num FROM sq3 WHERE num='3'));

SELECT * FROM sq2;

+------+

| num |

+------+

| 10 |

| NULL |

+------+

A more traditional scalar subquery, as part of a WHERE clause:

SELECT * FROM sq1 WHERE num = (SELECT MAX(num)/10 FROM sq2);

+------+

| num |

+------+

| 1 |

+------+

1.1.1.4.1.2.2.2 Row Subqueries
A row subquery is a subquery returning a single row, as opposed to a scalar subquery, which returns a single column from a

row, or a literal.

Examples

CREATE TABLE staff (name VARCHAR(10), age TINYINT);

CREATE TABLE customer (name VARCHAR(10), age TINYINT);

INSERT INTO staff VALUES ('Bilhah',37), ('Valerius',61), ('Maia',25);

INSERT INTO customer VALUES ('Thanasis',48), ('Valerius',61), ('Brion',51);

SELECT * FROM staff WHERE (name,age) = (SELECT name,age FROM customer WHERE name='Valerius');

+----------+------+

| name | age |

+----------+------+

| Valerius | 61 |

+----------+------+

Finding all rows in one table also in another:

SELECT name,age FROM staff WHERE (name,age) IN (SELECT name,age FROM customer);

+----------+------+

| name | age |

+----------+------+

| Valerius | 61 |

+----------+------+

1.1.1.4.1.2.2.3 Subqueries and ALL
Contents
1. Syntax

2. Examples

Subqueries using the ALL keyword will return true if the comparison returns true for each row returned by the subquery,

or the subquery returns no rows.

Syntax

scalar_expression comparison_operator ALL <Table subquery>

627/4161

scalar_expression may be any expression that evaluates to a single value

comparison_operator may be any one of: = , > , < , >= , <= , <> or !=

ALL returns:

NULL if the comparison operator returns NULL for at least one row returned by the Table subquery or

scalar_expression returns NULL .

FALSE if the comparison operator returns FALSE for at least one row returned by the Table subquery.

TRUE if the comparison operator returns TRUE for all rows returned by the Table subquery, or if Table subquery

returns no rows.

NOT IN is an alias for <> ALL .

Examples

CREATE TABLE sq1 (num TINYINT);

CREATE TABLE sq2 (num2 TINYINT);

INSERT INTO sq1 VALUES(100);

INSERT INTO sq2 VALUES(40),(50),(60);

SELECT * FROM sq1 WHERE num > ALL (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

Since 100 > all of 40 , 50 and 60 , the evaluation is true and the row is returned

Adding a second row to sq1, where the evaluation for that record is false:

INSERT INTO sq1 VALUES(30);

SELECT * FROM sq1 WHERE num > ALL (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

Adding a new row to sq2, causing all evaluations to be false:

INSERT INTO sq2 VALUES(120);

SELECT * FROM sq1 WHERE num > ALL (SELECT * FROM sq2);

Empty set (0.00 sec)

When the subquery returns no results, the evaluation is still true:

SELECT * FROM sq1 WHERE num > ALL (SELECT * FROM sq2 WHERE num2 > 300);

+------+

| num |

+------+

| 100 |

| 30 |

+------+

Evaluating against a NULL will cause the result to be unknown, or not true, and therefore return no rows:

INSERT INTO sq2 VALUES (NULL);

SELECT * FROM sq1 WHERE num > ALL (SELECT * FROM sq2);

628/4161

1.1.1.4.1.2.2.4 Subqueries and ANY
Contents
1. Syntax

2. Examples

Subqueries using the ANY keyword will return true if the comparison returns true for at least one row returned by the

subquery.

Syntax
The required syntax for an ANY or SOME quantified comparison is:

scalar_expression comparison_operator ANY <Table subquery>

Or:

scalar_expression comparison_operator SOME <Table subquery>

scalar_expression may be any expression that evaluates to a single value.

comparison_operator may be any one of = , > , < , >= , <= , <> or != .

ANY returns:

TRUE if the comparison operator returns TRUE for at least one row returned by the Table subquery.

FALSE if the comparison operator returns FALSE for all rows returned by the Table subquery, or Table subquery has

zero rows.

NULL if the comparison operator returns NULL for at least one row returned by the Table subquery and doesn't

returns TRUE for any of them, or if scalar_expression returns NULL .

SOME is a synmonym for ANY , and IN is a synonym for = ANY

Examples

CREATE TABLE sq1 (num TINYINT);

CREATE TABLE sq2 (num2 TINYINT);

INSERT INTO sq1 VALUES(100);

INSERT INTO sq2 VALUES(40),(50),(120);

SELECT * FROM sq1 WHERE num > ANY (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

100 is greater than two of the three values, and so the expression evaluates as true.

SOME is a synonym for ANY:

SELECT * FROM sq1 WHERE num < SOME (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

IN is a synonym for = ANY , and here there are no matches, so no results are returned:

SELECT * FROM sq1 WHERE num IN (SELECT * FROM sq2);

Empty set (0.00 sec)

629/4161

INSERT INTO sq2 VALUES(100);

Query OK, 1 row affected (0.05 sec)

SELECT * FROM sq1 WHERE num <> ANY (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

Reading this query, the results may be counter-intuitive. It may seem to read as "SELECT * FROM sq1 WHERE num does

not match any results in sq2. Since it does match 100, it could seem that the results are incorrect. However, the query

returns a result if the match does not match any of sq2. Since 100 already does not match 40 , the expression evaluates

to true immediately, regardless of the 100's matching. It may be more easily readable to use SOME in a case such as this:

SELECT * FROM sq1 WHERE num <> SOME (SELECT * FROM sq2);

+------+

| num |

+------+

| 100 |

+------+

1.1.1.4.1.2.2.5 Subqueries and EXISTS

Syntax

SELECT ... WHERE EXISTS <Table subquery>

Description
Subqueries using the EXISTS keyword will return true if the subquery returns any rows. Conversely, subqueries using

NOT EXISTS will return true only if the subquery returns no rows from the table.

EXISTS subqueries ignore the columns specified by the SELECT of the subquery, since they're not relevant. For example,

SELECT col1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

and

SELECT col1 FROM t1 WHERE EXISTS (SELECT col2 FROM t2);

produce identical results.

Examples

CREATE TABLE sq1 (num TINYINT);

CREATE TABLE sq2 (num2 TINYINT);

INSERT INTO sq1 VALUES(100);

INSERT INTO sq2 VALUES(40),(50),(60);

SELECT * FROM sq1 WHERE EXISTS (SELECT * FROM sq2 WHERE num2>50);

+------+

| num |

+------+

| 100 |

+------+

SELECT * FROM sq1 WHERE NOT EXISTS (SELECT * FROM sq2 GROUP BY num2 HAVING MIN(num2)=40);

Empty set (0.00 sec)

630/4161

1.1.1.4.1.2.2.6 Subqueries in a FROM Clause
Although subqueries are more commonly placed in a WHERE clause, they can also form part of the FROM clause. Such

subqueries are commonly called derived tables.

If a subquery is used in this way, you must also use an AS clause to name the result of the subquery.

ORACLE mode

From MariaDB 10.6.0, anonymous subqueries in a FROM clause (no AS clause) are permitted in ORACLE mode.

Examples

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

Assume that, given the data above, you want to return the average total for all students. In other words, the average of

Chun's 148 (75+73), Esben's 74 (43+31), etc.

You cannot do the following:

SELECT AVG(SUM(score)) FROM student GROUP BY name;

ERROR 1111 (HY000): Invalid use of group function

A subquery in the FROM clause is however permitted:

SELECT AVG(sq_sum) FROM (SELECT SUM(score) AS sq_sum FROM student GROUP BY name) AS t;

+-------------+

| AVG(sq_sum) |

+-------------+

| 134.0000 |

+-------------+

From MariaDB 10.6 in ORACLE mode, the following is permitted:

SELECT * FROM (SELECT 1 FROM DUAL), (SELECT 2 FROM DUAL);

MariaDB starting with 10.6.0

3.3.4.2 Subquery Optimizations

3.3.4.2.1 Subquery Optimizations Map

3.3.4.2.2 Semi-join Subquery Optimizations

3.3.4.2.3 Table Pullout Optimization

3.3.4.2.4 Non-semi-join Subquery Optimizations

3.3.4.2.5 Subquery Cache

3.3.4.2.6 Condition Pushdown Into IN subqueries

3.3.4.2.7 Conversion of Big IN Predicates Into Subqueries
631/4161

3.3.4.2.8 EXISTS-to-IN Optimization

3.3.4.2.9 Optimizing GROUP BY and DISTINCE Clauses
in Subqueries

1.1.1.4.1.2.2.8 Subqueries and JOINs
A subquery can quite often, but not in all cases, be rewritten as a JOIN.

Contents
1. Rewriting Subqueries as JOINS

2. Using Subqueries instead of JOINS

Rewriting Subqueries as JOINS
A subquery using IN can be rewritten with the DISTINCT keyword, for example:

SELECT * FROM table1 WHERE col1 IN (SELECT col1 FROM table2);

can be rewritten as:

SELECT DISTINCT table1.* FROM table1, table2 WHERE table1.col1=table2.col1;

NOT IN or NOT EXISTS queries can also be rewritten. For example, these two queries returns the same result:

SELECT * FROM table1 WHERE col1 NOT IN (SELECT col1 FROM table2);

SELECT * FROM table1 WHERE NOT EXISTS (SELECT col1 FROM table2 WHERE table1.col1=table2.col1);

and both can be rewritten as:

SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id WHERE table2.id IS NULL;

Subqueries that can be rewritten as a LEFT JOIN are sometimes more efficient.

Using Subqueries instead of JOINS
There are some scenarios, though, which call for subqueries rather than joins:

When you want duplicates, but not false duplicates. Suppose Table_1 has three rows 4 { 1 , 1 , 2 } 4 and

Table_2 has two rows 4 { 1 , 2 , 2 }. If you need to list the rows in Table_1 which are also in Table_2 , only this

subquery-based SELECT statement will give the right answer (1 , 1 , 2):

SELECT Table_1.column_1

FROM Table_1

WHERE Table_1.column_1 IN

 (SELECT Table_2.column_1

 FROM Table_2);

This SQL statement won't work:

SELECT Table_1.column_1

FROM Table_1,Table_2

WHERE Table_1.column_1 = Table_2.column_1;

because the result will be { 1 , 1 , 2 , 2 } 4 and the duplication of 2 is an error. This SQL statement won't work either:

SELECT DISTINCT Table_1.column_1

FROM Table_1,Table_2

WHERE Table_1.column_1 = Table_2.column_1;

because the result will be { 1 , 2 } 4 and the removal of the duplicated 1 is an error too.

632/4161

When the outermost statement is not a query. The SQL statement:

UPDATE Table_1 SET column_1 = (SELECT column_1 FROM Table_2);

can't be expressed using a join unless some rare SQL3 features are used.

When the join is over an expression. The SQL statement:

SELECT * FROM Table_1

WHERE column_1 + 5 =

 (SELECT MAX(column_1) FROM Table_2);

is hard to express with a join. In fact, the only way we can think of is this SQL statement:

SELECT Table_1.*

FROM Table_1,

 (SELECT MAX(column_1) AS max_column_1 FROM Table_2) AS Table_2

WHERE Table_1.column_1 + 5 = Table_2.max_column_1;

which still involves a parenthesized query, so nothing is gained from the transformation.

When you want to see the exception. For example, suppose the question is: what books are longer than Das Kapital?

These two queries are effectively almost the same:

SELECT DISTINCT Bookcolumn_1.*

FROM Books AS Bookcolumn_1 JOIN Books AS Bookcolumn_2 USING(page_count)

WHERE title = 'Das Kapital';

SELECT DISTINCT Bookcolumn_1.*

FROM Books AS Bookcolumn_1

WHERE Bookcolumn_1.page_count >

 (SELECT DISTINCT page_count

 FROM Books AS Bookcolumn_2

 WHERE title = 'Das Kapital');

The difference is between these two SQL statements is, if there are two editions of Das Kapital (with different page

counts), then the self-join example will return the books which are longer than the shortest edition of Das Kapital. That

might be the wrong answer, since the original question didn't ask for "... longer than ANY book named Das Kapital" (it

seems to contain a false assumption that there's only one edition).

1.1.1.4.1.2.2.9 Subquery Limitations
Contents
1. ORDER BY and LIMIT

2. Modifying and Selecting from the Same Table

3. Row Comparison Operations

4. Correlated Subqueries

5. Stored Functions

There are a number of limitations regarding subqueries, which are discussed below.

The following tables and data will be used in the examples that follow:

CREATE TABLE staff(name VARCHAR(10),age TINYINT);

CREATE TABLE customer(name VARCHAR(10),age TINYINT);

INSERT INTO staff VALUES

('Bilhah',37), ('Valerius',61), ('Maia',25);

INSERT INTO customer VALUES

('Thanasis',48), ('Valerius',61), ('Brion',51);

633/4161

ORDER BY and LIMIT

To use ORDER BY or limit LIMIT in subqueries both must be used.. For example:

SELECT * FROM staff WHERE name IN (SELECT name FROM customer ORDER BY name);

+----------+------+

| name | age |

+----------+------+

| Valerius | 61 |

+----------+------+

is valid, but

SELECT * FROM staff WHERE name IN (SELECT NAME FROM customer ORDER BY name LIMIT 1);

ERROR 1235 (42000): This version of MariaDB doesn't

 yet support 'LIMIT & IN/ALL/ANY/SOME subquery'

is not.

Modifying and Selecting from the Same Table

It's not possible to both modify and select from the same table in a subquery. For example:

DELETE FROM staff WHERE name = (SELECT name FROM staff WHERE age=61);

ERROR 1093 (HY000): Table 'staff' is specified twice, both

 as a target for 'DELETE' and as a separate source for data

Row Comparison Operations

There is only partial support for row comparison operations. The expression in

expr op {ALL|ANY|SOME} subquery,

must be scalar and the subquery can only return a single column.

However, because of the way IN is implemented (it is rewritten as a sequence of = comparisons and AND), the

expression in

expression [NOT] IN subquery

is permitted to be an n-tuple and the subquery can return rows of n-tuples.

For example:

SELECT * FROM staff WHERE (name,age) NOT IN (

 SELECT name,age FROM customer WHERE age >=51]

);

+--------+------+

| name | age |

+--------+------+

| Bilhah | 37 |

| Maia | 25 |

+--------+------+

is permitted, but

SELECT * FROM staff WHERE (name,age) = ALL (

 SELECT name,age FROM customer WHERE age >=51

);

ERROR 1241 (21000): Operand should contain 1 column(s)

is not.

Correlated Subqueries

Subqueries in the FROM clause cannot be correlated subqueries. They cannot be evaluated for each row of the outer query

634/4161

since they are evaluated to produce a result set during when the query is executed.

Stored Functions

A subquery can refer to a stored function which modifies data. This is an extension to the SQL standard, but can result in

indeterminate outcomes. For example, take:

SELECT ... WHERE x IN (SELECT f() ...);

where f() inserts rows. The function f() could be executed a different number of times depending on how the optimizer

chooses to handle the query.

This sort of construct is therefore not safe to use in replication that is not row-based, as there could be different results on

the master and the slave.

1.1.1.4.1.2.3 UNION
UNION is used to combine the results from multiple SELECT statements into a single result set.

Syntax

SELECT ...

UNION [ALL | DISTINCT] SELECT ...

[UNION [ALL | DISTINCT] SELECT ...]

[ORDER BY [column [, column ...]]]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

Contents
1. Syntax

2. Description

1. ALL/DISTINCT

2. ORDER BY and LIMIT

3. HIGH_PRIORITY

4. SELECT ... INTO ...

5. Parentheses

3. Examples

Description
UNION is used to combine the results from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results returned. Selected

columns listed in corresponding positions of each SELECT statement should have the same data type. (For example, the

first column selected by the first statement should have the same type as the first column selected by the other statements.)

If they don't, the type and length of the columns in the result take into account the values returned by all of the SELECTs, so

there is no need for explicit casting. Note that currently this is not the case for recursive CTEs - see MDEV-12325 .

Table names can be specified as db_name . tbl_name . This permits writing UNION s which involve multiple databases.

See Identifier Qualifiers for syntax details.

UNION queries cannot be used with aggregate functions.

EXCEPT and UNION have the same operation precedence and INTERSECT has a higher precedence, unless running in

Oracle mode, in which case all three have the same precedence.

ALL/DISTINCT

The ALL keyword causes duplicate rows to be preserved. The DISTINCT keyword (the default if the keyword is omitted)

causes duplicate rows to be removed by the results.

UNION ALL and UNION DISTINCT can both be present in a query. In this case, UNION DISTINCT will override any UNION

ALLs to its left.

Until MariaDB 10.1.1 , all UNION ALL statements required the server to create a temporary table. Since MariaDB

MariaDB starting with 10.1.1

635/4161

https://jira.mariadb.org/browse/MDEV-12325
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

10.1.1 , the server can in most cases execute UNION ALL without creating a temporary table, improving

performance (see MDEV-334).

ORDER BY and LIMIT

Individual SELECTs can contain their own ORDER BY and LIMIT clauses. In this case, the individual queries need to be

wrapped between parentheses. However, this does not affect the order of the UNION, so they only are useful to limit the

record read by one SELECT.

The UNION can have global ORDER BY and LIMIT clauses, which affect the whole resultset. If the columns retrieved by

individual SELECT statements have an alias (AS), the ORDER BY must use that alias, not the real column names.

HIGH_PRIORITY

Specifying a query as HIGH_PRIORITY will not work inside a UNION. If applied to the first SELECT, it will be ignored.

Applying to a later SELECT results in a syntax error:

ERROR 1234 (42000): Incorrect usage/placement of 'HIGH_PRIORITY'

SELECT ... INTO ...

Individual SELECTs cannot be written INTO DUMPFILE or INTO OUTFILE. If the last SELECT statement specifies INTO

DUMPFILE or INTO OUTFILE, the entire result of the UNION will be written. Placing the clause after any other SELECT will

result in a syntax error.

If the result is a single row, SELECT ... INTO @var_name can also be used.

Parentheses

From MariaDB 10.4.0, parentheses can be used to specify precedence. Before this, a syntax error would be returned.

Examples
UNION between tables having different column names:

(SELECT e_name AS name, email FROM employees)

UNION

(SELECT c_name AS name, email FROM customers);

Specifying the UNION 's global order and limiting total rows:

(SELECT name, email FROM employees)

UNION

(SELECT name, email FROM customers)

ORDER BY name LIMIT 10;

Adding a constant row:

(SELECT 'John Doe' AS name, 'john.doe@example.net' AS email)

UNION

(SELECT name, email FROM customers);

Differing types:

SELECT CAST('x' AS CHAR(1)) UNION SELECT REPEAT('y',4);

+----------------------+

| CAST('x' AS CHAR(1)) |

+----------------------+

| x |

| yyyy |

+----------------------+

MariaDB starting with 10.4.0

636/4161

https://jira.mariadb.org/browse/MDEV-334

Returning the results in order of each individual SELECT by use of a sort column:

(SELECT 1 AS sort_column, e_name AS name, email FROM employees)

UNION

(SELECT 2, c_name AS name, email FROM customers) ORDER BY sort_column;

Difference between UNION, EXCEPT and INTERSECT. INTERSECT ALL and EXCEPT ALL are available from MariaDB

10.5.0.

CREATE TABLE seqs (i INT);

INSERT INTO seqs VALUES (1),(2),(2),(3),(3),(4),(5),(6);

SELECT i FROM seqs WHERE i <= 3 UNION SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 UNION ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

| 3 |

| 3 |

| 3 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

| 3 |

+------+

637/4161

Parentheses for specifying precedence, from MariaDB 10.4.0

CREATE OR REPLACE TABLE t1 (a INT);

CREATE OR REPLACE TABLE t2 (b INT);

CREATE OR REPLACE TABLE t3 (c INT);

INSERT INTO t1 VALUES (1),(2),(3),(4);

INSERT INTO t2 VALUES (5),(6);

INSERT INTO t3 VALUES (1),(6);

((SELECT a FROM t1) UNION (SELECT b FROM t2)) INTERSECT (SELECT c FROM t3);

+------+

| a |

+------+

| 1 |

| 6 |

+------+

(SELECT a FROM t1) UNION ((SELECT b FROM t2) INTERSECT (SELECT c FROM t3));

+------+

| a |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 6 |

+------+

1.1.1.4.1.2.4 EXCEPT
The result of EXCEPT is all records of the left SELECT result set except records which are in right SELECT result set, i.e. it

is subtraction of two result sets. From MariaDB 10.6.1, MINUS is a synonym when SQL_MODE=ORACLE is set.

Syntax

SELECT ...

(INTERSECT [ALL | DISTINCT] | EXCEPT [ALL | DISTINCT] | UNION [ALL | DISTINCT])

 SELECT ...

[(INTERSECT [ALL | DISTINCT] | EXCEPT [ALL | DISTINCT] | UNION [ALL | DISTINCT])

 SELECT ...]

[ORDER BY [{col_name | expr | position} [ASC | DESC]

 [, {col_name | expr | position} [ASC | DESC] ...]]]

[LIMIT {[offset,] row_count | row_count OFFSET offset}

| OFFSET start { ROW | ROWS }

| FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }]

Contents
1. Syntax

1. Description

1. Parentheses

2. ALL/DISTINCT

2. Examples

Please note:

Brackets for explicit operation precedence are not supported; use a subquery in the FROM clause as a workaround).

Description
MariaDB has supported EXCEPT and INTERSECT in addition to UNION since MariaDB 10.3.

The queries before and after EXCEPT must be SELECT or VALUES statements.

All behavior for naming columns, ORDER BY and LIMIT is the same as for UNION . Note that the alternative SELECT ...

OFFSET ... FETCH syntax is only supported. This allows us to use the WITH TIES clause.

638/4161

EXCEPT implicitly supposes a DISTINCT operation.

The result of EXCEPT is all records of the left SELECT result except records which are in right SELECT result set, i.e. it is

subtraction of two result sets.

EXCEPT and UNION have the same operation precedence and INTERSECT has a higher precedence, unless running in

Oracle mode, in which case all three have the same precedence.

Parentheses

From MariaDB 10.4.0, parentheses can be used to specify precedence. Before this, a syntax error would be returned.

ALL/DISTINCT

EXCEPT ALL and EXCEPT DISTINCT were introduced in MariaDB 10.5.0. The ALL operator leaves duplicates intact,

while the DISTINCT operator removes duplicates. DISTINCT is the default behavior if neither operator is supplied,

and the only behavior prior to MariaDB 10.5.

Examples
Show customers which are not employees:

(SELECT e_name AS name, email FROM customers)

EXCEPT

(SELECT c_name AS name, email FROM employees);

Difference between UNION, EXCEPT and INTERSECT. INTERSECT ALL and EXCEPT ALL are available from MariaDB

10.5.0.

MariaDB starting with 10.4.0

MariaDB starting with 10.5.0

639/4161

CREATE TABLE seqs (i INT);

INSERT INTO seqs VALUES (1),(2),(2),(3),(3),(4),(5),(6);

SELECT i FROM seqs WHERE i <= 3 UNION SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 UNION ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

| 3 |

| 3 |

| 3 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

| 3 |

+------+

Parentheses for specifying precedence, from MariaDB 10.4.0

640/4161

CREATE OR REPLACE TABLE t1 (a INT);

CREATE OR REPLACE TABLE t2 (b INT);

CREATE OR REPLACE TABLE t3 (c INT);

INSERT INTO t1 VALUES (1),(2),(3),(4);

INSERT INTO t2 VALUES (5),(6);

INSERT INTO t3 VALUES (1),(6);

((SELECT a FROM t1) UNION (SELECT b FROM t2)) EXCEPT (SELECT c FROM t3);

+------+

| a |

+------+

| 2 |

| 3 |

| 4 |

| 5 |

+------+

(SELECT a FROM t1) UNION ((SELECT b FROM t2) EXCEPT (SELECT c FROM t3));

+------+

| a |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

+------+

Here is an example that makes use of the SEQUENCE storage engine and the VALUES statement, to generate a numeric

sequence and remove some arbitrary numbers from it:

(SELECT seq FROM seq_1_to_10) EXCEPT VALUES (2), (3), (4);

+-----+

| seq |

+-----+

| 1 |

| 5 |

| 6 |

| 7 |

| 8 |

| 9 |

| 10 |

+-----+

1.1.1.4.1.2.5 INTERSECT

INTERSECT was introduced in MariaDB 10.3.0 .

The result of an intersect is the intersection of right and left SELECT results, i.e. only records that are present in both result

sets will be included in the result of the operation.

Syntax

SELECT ...

(INTERSECT [ALL | DISTINCT] | EXCEPT [ALL | DISTINCT] | UNION [ALL | DISTINCT]) SELECT ...

[(INTERSECT [ALL | DISTINCT] | EXCEPT [ALL | DISTINCT] | UNION [ALL | DISTINCT]) SELECT ...]

[ORDER BY [column [, column ...]]]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

MariaDB starting with 10.3.0

641/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

Contents
1. Syntax

2. Description

1. Parentheses

2. ALL/DISTINCT

3. Examples

Description
MariaDB has supported INTERSECT (as well as EXCEPT) in addition to UNION since MariaDB 10.3.

All behavior for naming columns, ORDER BY and LIMIT is the same as for UNION.

INTERSECT implicitly supposes a DISTINCT operation.

The result of an intersect is the intersection of right and left SELECT results, i.e. only records that are present in both result

sets will be included in the result of the operation.

INTERSECT has higher precedence than UNION and EXCEPT (unless running running in Oracle mode, in which case all

three have the same precedence). If possible it will be executed linearly but if not it will be translated to a subquery in the

FROM clause:

(select a,b from t1)

union

(select c,d from t2)

intersect

(select e,f from t3)

union

(select 4,4);

will be translated to:

(select a,b from t1)

union

select c,d from

 ((select c,d from t2)

 intersect

 (select e,f from t3)) dummy_subselect

union

(select 4,4)

Parentheses

From MariaDB 10.4.0, parentheses can be used to specify precedence. Before this, a syntax error would be returned.

ALL/DISTINCT

INTERSECT ALL and INTERSECT DISTINCT were introduced in MariaDB 10.5.0. The ALL operator leaves

duplicates intact, while the DISTINCT operator removes duplicates. DISTINCT is the default behavior if neither

operator is supplied, and the only behavior prior to MariaDB 10.5.

Examples
Show customers which are employees:

(SELECT e_name AS name, email FROM employees)

INTERSECT

(SELECT c_name AS name, email FROM customers);

Difference between UNION, EXCEPT and INTERSECT. INTERSECT ALL and EXCEPT ALL are available from MariaDB

MariaDB starting with 10.4.0

MariaDB starting with 10.5.0

642/4161

10.5.0.

CREATE TABLE seqs (i INT);

INSERT INTO seqs VALUES (1),(2),(2),(3),(3),(4),(5),(6);

SELECT i FROM seqs WHERE i <= 3 UNION SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 UNION ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

| 3 |

| 3 |

| 3 |

| 3 |

| 4 |

| 5 |

| 6 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 EXCEPT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

| 2 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

+------+

SELECT i FROM seqs WHERE i <= 3 INTERSECT ALL SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 3 |

| 3 |

+------+

Parentheses for specifying precedence, from MariaDB 10.4.0

643/4161

CREATE OR REPLACE TABLE t1 (a INT);

CREATE OR REPLACE TABLE t2 (b INT);

CREATE OR REPLACE TABLE t3 (c INT);

INSERT INTO t1 VALUES (1),(2),(3),(4);

INSERT INTO t2 VALUES (5),(6);

INSERT INTO t3 VALUES (1),(6);

((SELECT a FROM t1) UNION (SELECT b FROM t2)) INTERSECT (SELECT c FROM t3);

+------+

| a |

+------+

| 1 |

| 6 |

+------+

(SELECT a FROM t1) UNION ((SELECT b FROM t2) INTERSECT (SELECT c FROM t3));

+------+

| a |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 6 |

+------+

1.1.1.4.1.2.6 Precedence Control in Table
Operations

Beginning in MariaDB 10.4, you can control the ordering of execution on table operations using parentheses.

Syntax

(expression)

[ORDER BY [column[, column...]]]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

Contents
1. Syntax

2. Description

3. Example

Description
Using parentheses in your SQL allows you to control the order of execution for SELECT statements and Table Value

Constructor, including UNION , EXCEPT , and INTERSECT operations. MariaDB executes the parenthetical expression

before the rest of the statement. You can then use ORDER BY and LIMIT clauses the further organize the result-set.

Note: In practice, the Optimizer may rearrange the exact order in which MariaDB executes different parts of the

statement. When it calculates the result-set, however, it returns values as though the parenthetical expression were

executed first.

Example

MariaDB starting with 10.4.0

644/4161

CREATE TABLE test.t1 (num INT);

INSERT INTO test.t1 VALUES (1),(2),(3);

(SELECT * FROM test.t1

 UNION

 VALUES (10))

INTERSECT

VALUES (1),(3),(10),(11);

+------+

| num |

+------+

| 1 |

| 3 |

| 10 |

+------+

((SELECT * FROM test.t1

 UNION

 VALUES (10))

 INTERSECT

 VALUES (1),(3),(10),(11))

ORDER BY 1 DESC;

+------+

| num |

+------+

| 10 |

| 3 |

| 1 |

+------+

1.1.1.4.1.2.7 MINUS

MINUS was introduced as a synonym for EXCEPT from MariaDB 10.6.1 when SQL_MODE=ORACLE is set.

CREATE TABLE seqs (i INT);

INSERT INTO seqs VALUES (1),(2),(2),(3),(3),(4),(5),(6);

SET SQL_MODE='ORACLE';

SELECT i FROM seqs WHERE i <= 3 MINUS SELECT i FROM seqs WHERE i>=3;

+------+

| i |

+------+

| 1 |

| 2 |

+------+

MariaDB starting with 10.6.1

1.1.1.4.1.3 LIMIT
Contents
1. Description

1. Multi-Table Updates

2. GROUP_CONCAT

2. Examples

Description
Use the LIMIT clause to restrict the number of returned rows. When you use a single integer n with LIMIT , the first n

rows will be returned. Use the ORDER BY clause to control which rows come first. You can also select a number of rows

after an offset using either of the following:

645/4161

LIMIT offset, row_count

LIMIT row_count OFFSET offset

When you provide an offset m with a limit n, the first m rows will be ignored, and the following n rows will be returned.

Executing an UPDATE with the LIMIT clause is not safe for replication. LIMIT 0 is an exception to this rule (see MDEV-

6170).

There is a LIMIT ROWS EXAMINED optimization which provides the means to terminate the execution of SELECT

statements which examine too many rows, and thus use too many resources. See LIMIT ROWS EXAMINED.

Multi-Table Updates

Until MariaDB 10.3.1 , it was not possible to use LIMIT (or ORDER BY) in a multi-table UPDATE statement. This

restriction was lifted in MariaDB 10.3.2 .

GROUP_CONCAT

Starting from MariaDB 10.3.3 , it is possible to use LIMIT with GROUP_CONCAT().

Examples

CREATE TABLE members (name VARCHAR(20));

INSERT INTO members VALUES('Jagdish'),('Kenny'),('Rokurou'),('Immaculada');

SELECT * FROM members;

+------------+

| name |

+------------+

| Jagdish |

| Kenny |

| Rokurou |

| Immaculada |

+------------+

Select the first two names (no ordering specified):

SELECT * FROM members LIMIT 2;

+---------+

| name |

+---------+

| Jagdish |

| Kenny |

+---------+

All the names in alphabetical order:

SELECT * FROM members ORDER BY name;

+------------+

| name |

+------------+

| Immaculada |

| Jagdish |

| Kenny |

| Rokurou |

+------------+

The first two names, ordered alphabetically:

SELECT * FROM members ORDER BY name LIMIT 2;

+------------+

| name |

+------------+

| Immaculada |

| Jagdish |

+------------+

646/4161

https://jira.mariadb.org/browse/MDEV-6170
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

The third name, ordered alphabetically (the first name would be offset zero, so the third is offset two):

SELECT * FROM members ORDER BY name LIMIT 2,1;

+-------+

| name |

+-------+

| Kenny |

+-------+

From MariaDB 10.3.2 , LIMIT can be used in a multi-table update:

CREATE TABLE warehouse (product_id INT, qty INT);

INSERT INTO warehouse VALUES (1,100),(2,100),(3,100),(4,100);

CREATE TABLE store (product_id INT, qty INT);

INSERT INTO store VALUES (1,5),(2,5),(3,5),(4,5);

UPDATE warehouse,store SET warehouse.qty = warehouse.qty-2, store.qty = store.qty+2

 WHERE (warehouse.product_id = store.product_id AND store.product_id >= 1)

 ORDER BY store.product_id DESC LIMIT 2;

SELECT * FROM warehouse;

+------------+------+

| product_id | qty |

+------------+------+

| 1 | 100 |

| 2 | 100 |

| 3 | 98 |

| 4 | 98 |

+------------+------+

SELECT * FROM store;

+------------+------+

| product_id | qty |

+------------+------+

| 1 | 5 |

| 2 | 5 |

| 3 | 7 |

| 4 | 7 |

+------------+------+

From MariaDB 10.3.3 , LIMIT can be used with GROUP_CONCAT, so, for example, given the following table:

CREATE TABLE d (dd DATE, cc INT);

INSERT INTO d VALUES ('2017-01-01',1);

INSERT INTO d VALUES ('2017-01-02',2);

INSERT INTO d VALUES ('2017-01-04',3);

the following query:

SELECT SUBSTRING_INDEX(GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC),",",1) FROM d;

+--+

| SUBSTRING_INDEX(GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC),",",1) |

+--+

| 2017-01-04:3 |

+--+

can be more simply rewritten as:

SELECT GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC LIMIT 1) FROM d;

+---+

| GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC LIMIT 1) |

+---+

| 2017-01-04:3 |

+---+

647/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

1.1.1.4.1.4 ORDER BY
Contents
1. Description

2. Examples

Description
Use the ORDER BY clause to order a resultset, such as that are returned from a SELECT statement. You can specify just a

column or use any expression with functions. If you are using the GROUP BY clause, you can use grouping functions in

ORDER BY . Ordering is done after grouping.

You can use multiple ordering expressions, separated by commas. Rows will be sorted by the first expression, then by the

second expression if they have the same value for the first, and so on.

You can use the keywords ASC and DESC after each ordering expression to force that ordering to be ascending or

descending, respectively. Ordering is ascending by default.

You can also use a single integer as the ordering expression. If you use an integer n, the results will be ordered by the nth

column in the select expression.

When string values are compared, they are compared as if by the STRCMP function. STRCMP ignores trailing whitespace

and may normalize characters and ignore case, depending on the collation in use.

Duplicated entries in the ORDER BY clause are removed.

ORDER BY can also be used to order the activities of a DELETE or UPDATE statement (usually with the LIMIT clause).

Until MariaDB 10.3.1 , it was not possible to use ORDER BY (or LIMIT) in a multi-table UPDATE statement. This

restriction was lifted in MariaDB 10.3.2 .

From MariaDB 10.5, MariaDB allows packed sort keys and values of non-sorted fields in the sort buffer. This can make

filesort temporary files much smaller when VARCHAR, CHAR or BLOBs are used, notably speeding up some ORDER

BY sorts.

Examples

MariaDB starting with 10.3.2

MariaDB starting with 10.5

648/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

CREATE TABLE seq (i INT, x VARCHAR(1));

INSERT INTO seq VALUES (1,'a'), (2,'b'), (3,'b'), (4,'f'), (5,'e');

SELECT * FROM seq ORDER BY i;

+------+------+

| i | x |

+------+------+

| 1 | a |

| 2 | b |

| 3 | b |

| 4 | f |

| 5 | e |

+------+------+

SELECT * FROM seq ORDER BY i DESC;

+------+------+

| i | x |

+------+------+

| 5 | e |

| 4 | f |

| 3 | b |

| 2 | b |

| 1 | a |

+------+------+

SELECT * FROM seq ORDER BY x,i;

+------+------+

| i | x |

+------+------+

| 1 | a |

| 2 | b |

| 3 | b |

| 5 | e |

| 4 | f |

+------+------+

ORDER BY in an UPDATE statement, in conjunction with LIMIT:

UPDATE seq SET x='z' WHERE x='b' ORDER BY i DESC LIMIT 1;

SELECT * FROM seq;

+------+------+

| i | x |

+------+------+

| 1 | a |

| 2 | b |

| 3 | z |

| 4 | f |

| 5 | e |

+------+------+

From MariaDB 10.3.2 , ORDER BY can be used in a multi-table update:

649/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/

CREATE TABLE warehouse (product_id INT, qty INT);

INSERT INTO warehouse VALUES (1,100),(2,100),(3,100),(4,100);

CREATE TABLE store (product_id INT, qty INT);

INSERT INTO store VALUES (1,5),(2,5),(3,5),(4,5);

UPDATE warehouse,store SET warehouse.qty = warehouse.qty-2, store.qty = store.qty+2

 WHERE (warehouse.product_id = store.product_id AND store.product_id >= 1)

 ORDER BY store.product_id DESC LIMIT 2;

SELECT * FROM warehouse;

+------------+------+

| product_id | qty |

+------------+------+

| 1 | 100 |

| 2 | 100 |

| 3 | 98 |

| 4 | 98 |

+------------+------+

SELECT * FROM store;

+------------+------+

| product_id | qty |

+------------+------+

| 1 | 5 |

| 2 | 5 |

| 3 | 7 |

| 4 | 7 |

+------------+------+

1.1.1.4.1.5 GROUP BY
Contents
1. WITH ROLLUP

2. GROUP BY Examples

Use the GROUP BY clause in a SELECT statement to group rows together that have the same value in one or more column,

or the same computed value using expressions with any functions and operators except grouping functions. When you use a

GROUP BY clause, you will get a single result row for each group of rows that have the same value for the expression given

in GROUP BY .

When grouping rows, grouping values are compared as if by the = operator. For string values, the = operator ignores

trailing whitespace and may normalize characters and ignore case, depending on the collation in use.

You can use any of the grouping functions in your select expression. Their values will be calculated based on all the rows

that have been grouped together for each result row. If you select a non-grouped column or a value computed from a non-

grouped column, it is undefined which row the returned value is taken from. This is not permitted if the

ONLY_FULL_GROUP_BY SQL_MODE is used.

You can use multiple expressions in the GROUP BY clause, separated by commas. Rows are grouped together if they

match on each of the expressions.

You can also use a single integer as the grouping expression. If you use an integer n, the results will be grouped by the nth

column in the select expression.

The WHERE clause is applied before the GROUP BY clause. It filters non-aggregated rows before the rows are grouped

together. To filter grouped rows based on aggregate values, use the HAVING clause. The HAVING clause takes any

expression and evaluates it as a boolean, just like the WHERE clause. You can use grouping functions in the HAVING

clause. As with the select expression, if you reference non-grouped columns in the HAVING clause, the behavior is

undefined.

By default, if a GROUP BY clause is present, the rows in the output will be sorted by the expressions used in the GROUP BY .

You can also specify ASC or DESC (ascending, descending) after those expressions, like in ORDER BY. The default is

ASC .

If you want the rows to be sorted by another field, you can add an explicit ORDER BY. If you don't want the result to be

ordered, you can add ORDER BY NULL.

WITH ROLLUP
650/4161

The WITH ROLLUP modifer adds extra rows to the resultset that represent super-aggregate summaries. For a full

description with examples, see SELECT WITH ROLLUP.

GROUP BY Examples

Consider the following table that records how many times each user has played and won a game:

CREATE TABLE plays (name VARCHAR(16), plays INT, wins INT);

INSERT INTO plays VALUES

 ("John", 20, 5),

 ("Robert", 22, 8),

 ("Wanda", 32, 8),

 ("Susan", 17, 3);

Get a list of win counts along with a count:

SELECT wins, COUNT(*) FROM plays GROUP BY wins;

+------+----------+

| wins | COUNT(*) |

+------+----------+

| 3 | 1 |

| 5 | 1 |

| 8 | 2 |

+------+----------+

3 rows in set (0.00 sec)

The GROUP BY expression can be a computed value, and can refer back to an identifer specified with AS . Get a list of win

averages along with a count:

SELECT (wins / plays) AS winavg, COUNT(*) FROM plays GROUP BY winavg;

+--------+----------+

| winavg | COUNT(*) |

+--------+----------+

| 0.1765 | 1 |

| 0.2500 | 2 |

| 0.3636 | 1 |

+--------+----------+

3 rows in set (0.00 sec)

You can use any grouping function in the select expression. For each win average as above, get a list of the average play

count taken to get that average:

SELECT (wins / plays) AS winavg, AVG(plays) FROM plays

 GROUP BY winavg;

+--------+------------+

| winavg | AVG(plays) |

+--------+------------+

| 0.1765 | 17.0000 |

| 0.2500 | 26.0000 |

| 0.3636 | 22.0000 |

+--------+------------+

3 rows in set (0.00 sec)

You can filter on aggregate information using the HAVING clause. The HAVING clause is applied after GROUP BY and

allows you to filter on aggregate data that is not available to the WHERE clause. Restrict the above example to results that

involve an average number of plays over 20:

SELECT (wins / plays) AS winavg, AVG(plays) FROM plays

 GROUP BY winavg HAVING AVG(plays) > 20;

+--------+------------+

| winavg | AVG(plays) |

+--------+------------+

| 0.2500 | 26.0000 |

| 0.3636 | 22.0000 |

+--------+------------+

2 rows in set (0.00 sec)

651/4161

1.1.1.4.1.6 Common Table Expressions
WITH

Allows reference to subqueries as temporary tables within queries.

Non-Recursive Common Table Expressions Overview

Common Table Expressions (CTEs) are essentially Temporary Named Result Sets.

Recursive Common Table Expressions Overview

A recursive CTE will repeatedly execute subsets of the data until obtaining the complete results.

There are 1 related questions .

4

1

7

1.1.1.4.1.6.1 WITH

Common Table Expressions were introduced in MariaDB 10.2.1 .

Syntax

WITH [RECURSIVE] table_reference [(columns_list)] AS (

 SELECT ...

)

[CYCLE cycle_column_list RESTRICT]

SELECT ...

Contents
1. Syntax

2. Description

1. CYCLE ... RESTRICT

3. Examples

Description

The WITH keyword signifies a Common Table Expression (CTE). It allows you to refer to a subquery expression many

times in a query, as if having a temporary table that only exists for the duration of a query.

There are two kinds of CTEs:

Non-Recursive

Recursive (signified by the RECURSIVE keyword, supported since MariaDB 10.2.2)

You can use table_reference as any normal table in the external SELECT part. You can also use WITH in subqueries,

as well as with EXPLAIN and SELECT.

Poorly-formed recursive CTEs can in theory cause infinite loops. The max_recursive_iterations system variable limits the

number of recursions.

CYCLE ... RESTRICT

The CYCLE clause enables CTE cycle detection, avoiding excessive or infinite loops, MariaDB supports a relaxed,

non-standard grammar.

The SQL Standard permits a CYCLE clause, as follows:

WITH RECURSIVE ... (

 ...

)

CYCLE <cycle column list>

SET <cycle mark column> TO <cycle mark value> DEFAULT <non-cycle mark value>

USING <path column>

where all clauses are mandatory.

MariaDB starting with 10.2.1

MariaDB starting with 10.5.2

652/4161

https://mariadb.com/kb/en/common-table-expressions/+questions/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

MariaDB does not support this, but from 10.5.2 permits a non-standard relaxed grammar, as follows:

WITH RECURSIVE ... (

 ...

)

CYCLE <cycle column list> RESTRICT

With the use of CYCLE ... RESTRICT it makes no difference whether the CTE uses UNION ALL or UNION

DISTINCT anymore. UNION ALL means "all rows, but without cycles", which is exactly what the CYCLE clause

enables. And UNION DISTINCT means all rows should be different, which, again, is what will happen 4 as

uniqueness is enforced over a subset of columns, complete rows will automatically all be different.

Examples

Below is an example with the WITH at the top level:

WITH t AS (SELECT a FROM t1 WHERE b >= 'c')

 SELECT * FROM t2, t WHERE t2.c = t.a;

The example below uses WITH in a subquery:

SELECT t1.a, t1.b FROM t1, t2

 WHERE t1.a > t2.c

 AND t2.c IN(WITH t AS (SELECT * FROM t1 WHERE t1.a < 5)

 SELECT t2.c FROM t2, t WHERE t2.c = t.a);

Below is an example of a Recursive CTE:

WITH RECURSIVE ancestors AS

 (SELECT * FROM folks

 WHERE name="Alex"

 UNION

 SELECT f.*

 FROM folks AS f, ancestors AS a

 WHERE f.id = a.father OR f.id = a.mother)

SELECT * FROM ancestors;

Take the following structure, and data,

CREATE TABLE t1 (from_ int, to_ int);

INSERT INTO t1 VALUES (1,2), (1,100), (2,3), (3,4), (4,1);

SELECT * FROM t1;

+-------+------+

| from_ | to_ |

+-------+------+

| 1 | 2 |

| 1 | 100 |

| 2 | 3 |

| 3 | 4 |

| 4 | 1 |

+-------+------+

Given the above, the following query would theoretically result in an infinite loop due to the last record in t1 (note that

max_recursive_iterations is set to 10 for the purposes of this example, to avoid the excessive number of cycles):

653/4161

SET max_recursive_iterations=10;

WITH RECURSIVE cte (depth, from_, to_) AS (

 SELECT 0,1,1 UNION DISTINCT SELECT depth+1, t1.from_, t1.to_

 FROM t1, cte WHERE t1.from_ = cte.to_

)

SELECT * FROM cte;

+-------+-------+------+

| depth | from_ | to_ |

+-------+-------+------+

| 0 | 1 | 1 |

| 1 | 1 | 2 |

| 1 | 1 | 100 |

| 2 | 2 | 3 |

| 3 | 3 | 4 |

| 4 | 4 | 1 |

| 5 | 1 | 2 |

| 5 | 1 | 100 |

| 6 | 2 | 3 |

| 7 | 3 | 4 |

| 8 | 4 | 1 |

| 9 | 1 | 2 |

| 9 | 1 | 100 |

| 10 | 2 | 3 |

+-------+-------+------+

However, the CYCLE ... RESTRICT clause (from MariaDB 10.5.2) can overcome this:

WITH RECURSIVE cte (depth, from_, to_) AS (

 SELECT 0,1,1 UNION SELECT depth+1, t1.from_, t1.to_

 FROM t1, cte WHERE t1.from_ = cte.to_

)

CYCLE from_, to_ RESTRICT

SELECT * FROM cte;

+-------+-------+------+

| depth | from_ | to_ |

+-------+-------+------+

| 0 | 1 | 1 |

| 1 | 1 | 2 |

| 1 | 1 | 100 |

| 2 | 2 | 3 |

| 3 | 3 | 4 |

| 4 | 4 | 1 |

+-------+-------+------+

1.1.1.4.1.6.2 Non-Recursive Common Table
Expressions Overview

Contents
1. Non-Recursive CTEs

1. A CTE referencing Another CTE

2. Multiple Uses of a CTE

Common Table Expressions (CTEs) are a standard SQL feature, and are essentially temporary named result sets. There

are two kinds of CTEs: Non-Recursive, which this article covers; and Recursive.

Non-Recursive CTEs
The WITH keyword signifies a CTE. It is given a name, followed by a body (the main query) as follows:

654/4161

CTEs are similar to derived tables. For example

WITH engineers AS

 (SELECT * FROM employees

 WHERE dept = 'Engineering')

SELECT * FROM engineers

WHERE ...

SELECT * FROM

 (SELECT * FROM employees

 WHERE dept = 'Engineering') AS engineers

WHERE

...

A non-recursive CTE is basically a query-local VIEW. There are several advantages and caveats to them. The syntax is

more readable than nested FROM (SELECT ...) . A CTE can refer to another and it can be referenced from multiple

places.

A CTE referencing Another CTE

Using this format makes for a more readable SQL than a nested FROM(SELECT ...) clause. Below is an example of this:

WITH engineers AS (

SELECT * FROM employees

WHERE dept IN('Development','Support')),

eu_engineers AS (SELECT * FROM engineers WHERE country IN('NL',...))

SELECT

...

FROM eu_engineers;

Multiple Uses of a CTE

This can be an 'anti-self join', for example:

WITH engineers AS (

SELECT * FROM employees

WHERE dept IN('Development','Support'))

SELECT * FROM engineers E1

WHERE NOT EXISTS

 (SELECT 1 FROM engineers E2

 WHERE E2.country=E1.country

 AND E2.name <> E1.name);

Or, for year-over-year comparisons, for example:

655/4161

WITH sales_product_year AS (

SELECT product, YEAR(ship_date) AS year,

SUM(price) AS total_amt

FROM item_sales

GROUP BY product, year)

SELECT *

FROM sales_product_year CUR,

sales_product_year PREV,

WHERE CUR.product=PREV.product

AND CUR.year=PREV.year + 1

AND CUR.total_amt > PREV.total_amt

Another use is to compare individuals against their group. Below is an example of how this might be executed:

WITH sales_product_year AS (

SELECT product,

YEAR(ship_date) AS year,

SUM(price) AS total_amt

FROM item_sales

GROUP BY product, year

)

SELECT *

FROM sales_product_year S1

WHERE

total_amt >

 (SELECT 0.1 * SUM(total_amt)

 FROM sales_product_year S2

 WHERE S2.year = S1.year)

1.1.1.4.1.6.3 Recursive Common Table
Expressions Overview

Contents
1. Syntax example

2. Computation

3. Summary so far

4. CAST to avoid truncating data

5. Examples

1. Transitive closure - determining bus destinations

2. Computing paths - determining bus routes

3. CAST to avoid data truncation

Common Table Expressions (CTEs) are a standard SQL feature, and are essentially temporary named result sets. CTEs

first appeared in the SQL standard in 1999, and the first implementations began appearing in 2007.

There are two kinds of CTEs:

Non-recursive

Recursive, which this article covers.

SQL is generally poor at recursive structures.

CTEs permit a query to reference itself. A recursive CTE will repeatedly execute subsets of the data until it obtains the

complete result set. This makes it particularly useful for handing hierarchical or tree-structured data.

max_recursive_iterations avoids infinite loops.

656/4161

Syntax example

WITH RECURSIVE signifies a recursive CTE. It is given a name, followed by a body (the main query) as follows:

Computation

Given the following structure:

First execute the anchor part of the query:

657/4161

Next, execute the recursive part of the query:

658/4161

Summary so far

with recursive R as (

 select anchor_data

 union [all]

 select recursive_part

 from R, ...

)

select ...

1. Compute anchor_data

2. Compute recursive_part to get the new data

3. if (new data is non-empty) goto 2;

CAST to avoid truncating data

As currently implemented by MariaDB and by the SQL Standard, data may be truncated if not correctly cast. It is necessary

to CAST the column to the correct width if the CTE's recursive part produces wider values for a column than the CTE's

nonrecursive part. Some other DBMS give an error in this situation, and MariaDB's behavior may change in future - see

MDEV-12325 . See the examples below.

Examples

Transitive closure - determining bus destinations

Sample data:

659/4161

https://jira.mariadb.org/browse/MDEV-12325

CREATE TABLE bus_routes (origin varchar(50), dst varchar(50));

INSERT INTO bus_routes VALUES

 ('New York', 'Boston'),

 ('Boston', 'New York'),

 ('New York', 'Washington'),

 ('Washington', 'Boston'),

 ('Washington', 'Raleigh');

Now, we want to return the bus destinations with New York as the origin:

WITH RECURSIVE bus_dst as (

 SELECT origin as dst FROM bus_routes WHERE origin='New York'

 UNION

 SELECT bus_routes.dst FROM bus_routes JOIN bus_dst ON bus_dst.dst= bus_routes.origin

)

SELECT * FROM bus_dst;

+------------+

| dst |

+------------+

| New York |

| Boston |

| Washington |

| Raleigh |

+------------+

The above example is computed as follows:

First, the anchor data is calculated:

Starting from New York

Boston and Washington are added

Next, the recursive part:

Starting from Boston and then Washington

Raleigh is added

UNION excludes nodes that are already present.

Computing paths - determining bus routes

This time, we are trying to get bus routes such as <New York -> Washington -> Raleigh=.

Using the same sample data as the previous example:

WITH RECURSIVE paths (cur_path, cur_dest) AS (

 SELECT origin, origin FROM bus_routes WHERE origin='New York'

 UNION

 SELECT CONCAT(paths.cur_path, ',', bus_routes.dst), bus_routes.dst

 FROM paths

 JOIN bus_routes

 ON paths.cur_dest = bus_routes.origin AND

 NOT FIND_IN_SET(bus_routes.dst, paths.cur_path)

)

SELECT * FROM paths;

+-----------------------------+------------+

| cur_path | cur_dest |

+-----------------------------+------------+

| New York | New York |

| New York,Boston | Boston |

| New York,Washington | Washington |

| New York,Washington,Boston | Boston |

| New York,Washington,Raleigh | Raleigh |

+-----------------------------+------------+

CAST to avoid data truncation

In the following example, data is truncated because the results are not specifically cast to a wide enough type:

660/4161

WITH RECURSIVE tbl AS (

 SELECT NULL AS col

 UNION

 SELECT "THIS NEVER SHOWS UP" AS col FROM tbl

)

SELECT col FROM tbl

+------+

| col |

+------+

| NULL |

| |

+------+

Explicitly use CAST to overcome this:

WITH RECURSIVE tbl AS (

 SELECT CAST(NULL AS CHAR(50)) AS col

 UNION SELECT "THIS NEVER SHOWS UP" AS col FROM tbl

)

SELECT * FROM tbl;

+---------------------+

| col |

+---------------------+

| NULL |

| THIS NEVER SHOWS UP |

+---------------------+

1.1.1.4.1.7 SELECT WITH ROLLUP
Contents
1. Syntax

2. Description

3. Examples

Syntax
See SELECT for the full syntax.

Description
The WITH ROLLUP modifier adds extra rows to the resultset that represent super-aggregate summaries. The super-

aggregated column is represented by a NULL value. Multiple aggregates over different columns will be added if there are

multiple GROUP BY columns.

The LIMIT clause can be used at the same time, and is applied after the WITH ROLLUP rows have been added.

WITH ROLLUP cannot be used with ORDER BY. Some sorting is still possible by using ASC or DESC clauses with the

GROUP BY column, although the super-aggregate rows will always be added last.

Examples
These examples use the following sample table

CREATE TABLE booksales (

 country VARCHAR(35), genre ENUM('fiction','non-fiction'), year YEAR, sales INT);

INSERT INTO booksales VALUES

 ('Senegal','fiction',2014,12234), ('Senegal','fiction',2015,15647),

 ('Senegal','non-fiction',2014,64980), ('Senegal','non-fiction',2015,78901),

 ('Paraguay','fiction',2014,87970), ('Paraguay','fiction',2015,76940),

 ('Paraguay','non-fiction',2014,8760), ('Paraguay','non-fiction',2015,9030);

The addition of the WITH ROLLUP modifier in this example adds an extra row that aggregates both years:

661/4161

SELECT year, SUM(sales) FROM booksales GROUP BY year;

+------+------------+

| year | SUM(sales) |

+------+------------+

| 2014 | 173944 |

| 2015 | 180518 |

+------+------------+

2 rows in set (0.08 sec)

SELECT year, SUM(sales) FROM booksales GROUP BY year WITH ROLLUP;

+------+------------+

| year | SUM(sales) |

+------+------------+

| 2014 | 173944 |

| 2015 | 180518 |

| NULL | 354462 |

+------+------------+

In the following example, each time the genre, the year or the country change, another super-aggregate row is added:

SELECT country, year, genre, SUM(sales)

 FROM booksales GROUP BY country, year, genre;

+----------+------+-------------+------------+

| country | year | genre | SUM(sales) |

+----------+------+-------------+------------+

| Paraguay | 2014 | fiction | 87970 |

| Paraguay | 2014 | non-fiction | 8760 |

| Paraguay | 2015 | fiction | 76940 |

| Paraguay | 2015 | non-fiction | 9030 |

| Senegal | 2014 | fiction | 12234 |

| Senegal | 2014 | non-fiction | 64980 |

| Senegal | 2015 | fiction | 15647 |

| Senegal | 2015 | non-fiction | 78901 |

+----------+------+-------------+------------+

SELECT country, year, genre, SUM(sales)

 FROM booksales GROUP BY country, year, genre WITH ROLLUP;

+----------+------+-------------+------------+

| country | year | genre | SUM(sales) |

+----------+------+-------------+------------+

| Paraguay | 2014 | fiction | 87970 |

| Paraguay | 2014 | non-fiction | 8760 |

| Paraguay | 2014 | NULL | 96730 |

| Paraguay | 2015 | fiction | 76940 |

| Paraguay | 2015 | non-fiction | 9030 |

| Paraguay | 2015 | NULL | 85970 |

| Paraguay | NULL | NULL | 182700 |

| Senegal | 2014 | fiction | 12234 |

| Senegal | 2014 | non-fiction | 64980 |

| Senegal | 2014 | NULL | 77214 |

| Senegal | 2015 | fiction | 15647 |

| Senegal | 2015 | non-fiction | 78901 |

| Senegal | 2015 | NULL | 94548 |

| Senegal | NULL | NULL | 171762 |

| NULL | NULL | NULL | 354462 |

+----------+------+-------------+------------+

The LIMIT clause, applied after WITH ROLLUP:

SELECT country, year, genre, SUM(sales)

 FROM booksales GROUP BY country, year, genre WITH ROLLUP LIMIT 4;

+----------+------+-------------+------------+

| country | year | genre | SUM(sales) |

+----------+------+-------------+------------+

| Paraguay | 2014 | fiction | 87970 |

| Paraguay | 2014 | non-fiction | 8760 |

| Paraguay | 2014 | NULL | 96730 |

| Paraguay | 2015 | fiction | 76940 |

+----------+------+-------------+------------+

Sorting by year descending:

662/4161

SELECT country, year, genre, SUM(sales)

 FROM booksales GROUP BY country, year DESC, genre WITH ROLLUP;

+----------+------+-------------+------------+

| country | year | genre | SUM(sales) |

+----------+------+-------------+------------+

| Paraguay | 2015 | fiction | 76940 |

| Paraguay | 2015 | non-fiction | 9030 |

| Paraguay | 2015 | NULL | 85970 |

| Paraguay | 2014 | fiction | 87970 |

| Paraguay | 2014 | non-fiction | 8760 |

| Paraguay | 2014 | NULL | 96730 |

| Paraguay | NULL | NULL | 182700 |

| Senegal | 2015 | fiction | 15647 |

| Senegal | 2015 | non-fiction | 78901 |

| Senegal | 2015 | NULL | 94548 |

| Senegal | 2014 | fiction | 12234 |

| Senegal | 2014 | non-fiction | 64980 |

| Senegal | 2014 | NULL | 77214 |

| Senegal | NULL | NULL | 171762 |

| NULL | NULL | NULL | 354462 |

+----------+------+-------------+------------+

1.1.1.4.1.8 SELECT INTO OUTFILE

Syntax

SELECT ... INTO OUTFILE 'file_name'

 [CHARACTER SET charset_name]

 [export_options]

export_options:

 [{FIELDS | COLUMNS}

 [TERMINATED BY 'string']

 [[OPTIONALLY] ENCLOSED BY 'char']

 [ESCAPED BY 'char']

]

 [LINES

 [STARTING BY 'string']

 [TERMINATED BY 'string']

]

Contents
1. Syntax

2. Description

1. Character-sets

3. Example

Description
SELECT INTO OUTFILE writes the resulting rows to a file, and allows the use of column and row terminators to specify a

particular output format. The default is to terminate fields with tabs (\t) and lines with newlines (\n).

The file must not exist. It cannot be overwritten. A user needs the FILE privilege to run this statement. Also, MariaDB needs

permission to write files in the specified location. If the secure_file_priv system variable is set to a non-empty directory

name, the file can only be written to that directory.

The LOAD DATA INFILE statement complements SELECT INTO OUTFILE .

Character-sets

The CHARACTER SET clause specifies the character set in which the results are to be written. Without the clause, no

conversion takes place (the binary character set). In this case, if there are multiple character sets, the output will contain

these too, and may not easily be able to be reloaded.

In cases where you have two servers using different character-sets, using SELECT INTO OUTFILE to transfer data from

one to the other can have unexpected results. To ensure that MariaDB correctly interprets the escape sequences, use the

663/4161

CHARACTER SET clause on both the SELECT INTO OUTFILE statement and the subsequent LOAD DATA INFILE

statement.

Example
The following example produces a file in the CSV format:

SELECT customer_id, firstname, surname from customer

 INTO OUTFILE '/exportdata/customers.txt'

 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n';

The following ANSI syntax is also supported for simple SELECT without UNION

SELECT customer_id, firstname, surname INTO OUTFILE '/exportdata/customers.txt'

 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

 LINES TERMINATED BY '\n'

 FROM customers;

If you want to use the ANSI syntax with UNION or similar construct you have to use the syntax:

SELECT * INTO OUTFILE "/tmp/skr3" FROM (SELECT * FROM t1 UNION SELECT * FROM t1);

1.1.1.4.1.9 SELECT INTO DUMPFILE
Contents
1. Syntax

2. Description

3. Example

Syntax

SELECT ... INTO DUMPFILE 'file_path'

Description
SELECT ... INTO DUMPFILE is a SELECT clause which writes the resultset into a single unformatted row, without any

separators, in a file. The results will not be returned to the client.

file_path can be an absolute path, or a relative path starting from the data directory. It can only be specified as a string

literal, not as a variable. However, the statement can be dynamically composed and executed as a prepared statement to

work around this limitation.

This statement is binary-safe and so is particularly useful for writing BLOB values to file. It can be used, for example, to copy

an image or an audio document from the database to a file.

The file must not exist. It cannot be overwritten. A user needs the FILE privilege to run this statement. Also, MariaDB needs

permission to write files in the specified location. If the secure_file_priv system variable is set to a non-empty directory

name, the file can only be written to that directory.

Since MariaDB 5.1, the character_set_filesystem system variable has controlled interpretation of file names that are given

as literal strings.

Example

SELECT _utf8'Hello world!' INTO DUMPFILE '/tmp/world';

SELECT LOAD_FILE('/tmp/world') AS world;

+--------------+

| world |

+--------------+

| Hello world! |

+--------------+

664/4161

1.1.1.4.1.10 FOR UPDATE
InnoDB supports row-level locking. Selected rows can be locked using LOCK IN SHARE MODE or FOR UPDATE. In both

cases, a lock is acquired on the rows read by the query, and it will be released when the current transaction is committed.

The FOR UPDATE clause of SELECT applies only when autocommit is set to 0 or the SELECT is enclosed in a transaction.

A lock is acquired on the rows, and other transactions are prevented from writing the rows, acquire locks, and from reading

them (unless their isolation level is READ UNCOMMITTED).

If autocommit is set to 1, the LOCK IN SHARE MODE and FOR UPDATE clauses have no effect in InnoDB. For non-

transactional storage engines like MyISAM and ARIA, a table level lock will be taken even if autocommit is set to 1.

If the isolation level is set to SERIALIZABLE, all plain SELECT statements are converted to SELECT ... LOCK IN SHARE

MODE .

Example

SELECT * FROM trans WHERE period=2001 FOR UPDATE;

1.1.1.4.1.11 LOCK IN SHARE MODE
InnoDB supports row-level locking. Selected rows can be locked using LOCK IN SHARE MODE or FOR UPDATE. In both

cases, a lock is acquired on the rows read by the query, and it will be released when the current transaction is committed.

When LOCK IN SHARE MODE is specified in a SELECT statement, MariaDB will wait until all transactions that have

modified the rows are committed. Then, a write lock is acquired. All transactions can read the rows, but if they want to modify

them, they have to wait until your transaction is committed.

If autocommit is set to 1 (the default), the LOCK IN SHARE MODE and FOR UPDATE clauses have no effect in InnoDB.

For non-transactional storage engines like MyISAM and ARIA, a table level lock will be taken even if autocommit is set to 1.

1.1.1.4.1.12 Optimizer Hints

Optimizer hints
There are some options available in SELECT to affect the execution plan. These are known as optimizer hints.

HIGH PRIORITY

HIGH_PRIORITY gives the statement a higher priority. If the table is locked, high priority SELECT s will be executed as soon

as the lock is released, even if other statements are queued. HIGH_PRIORITY applies only if the storage engine only

supports table-level locking (MyISAM , MEMORY , MERGE). See HIGH_PRIORITY and LOW_PRIORITY clauses for details.

SQL_CACHE / SQL_NO_CACHE

If the query_cache_type system variable is set to 2 or DEMAND , and the current statement is cacheable, SQL_CACHE

causes the query to be cached and SQL_NO_CACHE causes the query not to be cached. For UNION s, SQL_CACHE or

SQL_NO_CACHE should be specified for the first query. See also The Query Cache for more detail and a list of the types of

statements that aren't cacheable.

SQL_BUFFER_RESULT

SQL_BUFFER_RESULT forces the optimizer to use a temporary table to process the result. This is useful to free locks as

soon as possible.

SQL_SMALL_RESULT / SQL_BIG_RESULT

SQL_SMALL_RESULT and SQL_BIG_RESULT tell the optimizer whether the result is very big or not. Usually, GROUP BY and

DISTINCT operations are performed using a temporary table. Only if the result is very big, using a temporary table is not

convenient. The optimizer automatically knows if the result is too big, but you can force the optimizer to use a temporary

table with SQL_SMALL_RESULT , or avoid the temporary table using SQL_BIG_RESULT .

665/4161

STRAIGHT_JOIN

STRAIGHT_JOIN applies to the JOIN queries, and tells the optimizer that the tables must be read in the order they appear

in the SELECT . For const and system table this options is sometimes ignored.

SQL_CALC_FOUND_ROWS

SQL_CALC_FOUND_ROWS is only applied when using the LIMIT clause. If this option is used, MariaDB will count how many

rows would match the query, without the LIMIT clause. That number can be retrieved in the next query, using

FOUND_ROWS().

USE/FORCE/IGNORE INDEX

USE INDEX , FORCE INDEX and IGNORE INDEX constrain the query planning to a specific index.

For further information about some of these options, see How to force query plans.

1.1.1.4.1.13 PROCEDURE
The PROCEDURE clause of SELECT passes the whole result set to a Procedure which will process it. These Procedures are

not Stored Procedures, and can only be written in the C language, so it is necessary to recompile the server.

Currently, the only available procedure is ANALYSE, which examines the resultset and suggests the optimal datatypes for

each column. It is defined in the sql/sql_analyse.cc file, and can be used as an example to create more Procedures.

This clause cannot be used in a view's definition.

1.1.4.2 HANDLER

1.1.1.4.1.15 DUAL

Description
You are allowed to specify DUAL as a dummy table name in situations where no tables are referenced, such as the

following SELECT statement:

SELECT 1 + 1 FROM DUAL;

+-------+

| 1 + 1 |

+-------+

| 2 |

+-------+

DUAL is purely for the convenience of people who require that all SELECT statements should have FROM and possibly

other clauses. MariaDB ignores the clauses. MariaDB does not require FROM DUAL if no tables are referenced.

FROM DUAL could be used when you only SELECT computed values, but require a WHERE clause, perhaps to test that a

script correctly handles empty resultsets:

SELECT 1 FROM DUAL WHERE FALSE;

Empty set (0.00 sec)

1.1.1.4.1.16 SELECT ... OFFSET ... FETCH

SELECT ... OFFSET ... FETCH was introduced in MariaDB 10.6.

Syntax

MariaDB starting with 10.6.0

666/4161

OFFSET start { ROW | ROWS }

FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }

Description
The OFFSET clause allows one to return only those elements of a resultset that come after a specified offset. The FETCH

clause specifies the number of rows to return, while ONLY or WITH TIES specifies whether or not to also return any further

results that tie for last place according to the ordered resultset.

Either the singular ROW or the plural ROWS can be used after the OFFSET and FETCH clauses; the choice has no impact

on the results.

FIRST and NEXT gives the same result.

In the case of WITH TIES , an ORDER BY clause is required, otherwise an ERROR will be returned.

SELECT i FROM t1 FETCH FIRST 2 ROWS WITH TIES;

ERROR 4180 (HY000): FETCH ... WITH TIES requires ORDER BY clause to be present

Examples
Given a table with 6 rows:

CREATE OR REPLACE TABLE t1 (i INT);

INSERT INTO t1 VALUES (1),(2),(3),(4), (4), (5);

SELECT i FROM t1 ORDER BY i ASC;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

| 4 |

| 4 |

| 5 |

+------+

OFFSET 2 allows one to skip the first two results.

SELECT i FROM t1 ORDER BY i ASC OFFSET 2 ROWS;

+------+

| i |

+------+

| 3 |

| 4 |

| 4 |

| 5 |

+------+

FETCH FIRST 3 ROWS ONLY limits the results to three rows only

SELECT i FROM t1 ORDER BY i ASC OFFSET 1 ROWS FETCH FIRST 3 ROWS ONLY;

+------+

| i |

+------+

| 2 |

| 3 |

| 4 |

+------+

The same outcome can also be achieved with the LIMIT clause:

667/4161

SELECT i FROM t1 ORDER BY i ASC LIMIT 3 OFFSET 1;

+------+

| i |

+------+

| 2 |

| 3 |

| 4 |

+------+

WITH TIES ensures the tied result 4 is also returned.

SELECT i FROM t1 ORDER BY i ASC OFFSET 1 ROWS FETCH FIRST 3 ROWS WITH TIES;

+------+

| i |

+------+

| 2 |

| 3 |

| 4 |

| 4 |

+------+

1.1.1.4.2 Inserting & Loading Data
The INSERT statement is the primary SQL statement for adding data into a table in MariaDB.

INSERT

Insert rows into a table.

INSERT DELAYED

Queue row to be inserted when thread is free.

INSERT SELECT

Insert the rows returned by a SELECT into a table

LOAD Data into Tables or Index

Loading data quickly into MariaDB

Concurrent Inserts

Under some circumstances, MyISAM allows INSERTs and SELECTs to be executed concurrently.

HIGH_PRIORITY and LOW_PRIORITY

Modifying statement priority in storage engines supporting table-level locks.

IGNORE

Suppress errors while trying to violate a UNIQUE constraint.

INSERT - Default & Duplicate Values

Default and duplicate values when inserting.

INSERT IGNORE

Convert errors to warnings, permitting inserts of additional rows to continue.

INSERT ON DUPLICATE KEY UPDATE

INSERT if no duplicate key is found, otherwise UPDATE.

INSERT...RETURNING

Returns a resultset of the inserted rows.

There are 3 related questions .

2

2

2

2

1.1.1.4.2.1 INSERT
668/4161

https://mariadb.com/kb/en/inserting-loading-data/+questions/

Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)]

 SET col={expr | DEFAULT}, ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 SELECT ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

Contents
1. Syntax

2. INSERT DELAYED

3. HIGH PRIORITY and LOW PRIORITY

4. Defaults and Duplicate Values

5. INSERT IGNORE

6. INSERT ON DUPLICATE KEY UPDATE

7. Examples

8. INSERT ... RETURNING

1. Examples

The INSERT statement is used to insert new rows into an existing table. The INSERT ... VALUES and INSERT ... SET

forms of the statement insert rows based on explicitly specified values. The INSERT ... SELECT form inserts rows

selected from another table or tables. INSERT ... SELECT is discussed further in the INSERT ... SELECT article.

The table name can be specified in the form db_name . tbl_name or, if a default database is selected, in the form

tbl_name (see Identifier Qualifiers). This allows to use INSERT ... SELECT to copy rows between different databases.

The PARTITION clause can be used in both the INSERT and the SELECT part. See Partition Pruning and Selection for

details.

The RETURNING clause was introduced in MariaDB 10.5.

The columns list is optional. It specifies which values are explicitly inserted, and in which order. If this clause is not

specified, all values must be explicitly specified, in the same order they are listed in the table definition.

The list of value follow the VALUES or VALUE keyword (which are interchangeable, regardless how much values you want

to insert), and is wrapped by parenthesis. The values must be listed in the same order as the columns list. It is possible to

specify more than one list to insert more than one rows with a single statement. If many rows are inserted, this is a speed

optimization.

For one-row statements, the SET clause may be more simple, because you don't need to remember the columns order. All

values are specified in the form col = expr .

Values can also be specified in the form of a SQL expression or subquery. However, the subquery cannot access the same

table that is named in the INTO clause.

MariaDB starting with 10.5

669/4161

If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients are reading from the

table. If you use the HIGH_PRIORITY keyword, the statement has the same priority as SELECT s. This affects only storage

engines that use only table-level locking (MyISAM, MEMORY, MERGE). However, if one of these keywords is specified,

concurrent inserts cannot be used. See HIGH_PRIORITY and LOW_PRIORITY clauses for details.

INSERT DELAYED
For more details on the DELAYED option, see INSERT DELAYED.

HIGH PRIORITY and LOW PRIORITY
See HIGH_PRIORITY and LOW_PRIORITY.

Defaults and Duplicate Values
See INSERT - Default & Duplicate Values for details..

INSERT IGNORE
See INSERT IGNORE.

INSERT ON DUPLICATE KEY UPDATE
See INSERT ON DUPLICATE KEY UPDATE.

Examples
Specifying the column names:

INSERT INTO person (first_name, last_name) VALUES ('John', 'Doe');

Inserting more than 1 row at a time:

INSERT INTO tbl_name VALUES (1, "row 1"), (2, "row 2");

Using the SET clause:

INSERT INTO person SET first_name = 'John', last_name = 'Doe';

SELECTing from another table:

INSERT INTO contractor SELECT * FROM person WHERE status = 'c';

See INSERT ON DUPLICATE KEY UPDATE and INSERT IGNORE for further examples.

INSERT ... RETURNING
INSERT ... RETURNING returns a resultset of the inserted rows.

This returns the listed columns for all the rows that are inserted, or alternatively, the specified SELECT expression. Any SQL

expressions which can be calculated can be used in the select expression for the RETURNING clause, including virtual

columns and aliases, expressions which use various operators such as bitwise, logical and arithmetic operators, string

functions, date-time functions, numeric functions, control flow functions, secondary functions and stored functions. Along

with this, statements which have subqueries and prepared statements can also be used.

Examples

Simple INSERT statement

670/4161

INSERT INTO t2 VALUES (1,'Dog'),(2,'Lion'),(3,'Tiger'),(4,'Leopard')

RETURNING id2,id2+id2,id2&id2,id2||id2;

+-----+---------+---------+----------+

| id2 | id2+id2 | id2&id2 | id2||id2 |

+-----+---------+---------+----------+

| 1 | 2 | 1 | 1 |

| 2 | 4 | 2 | 1 |

| 3 | 6 | 3 | 1 |

| 4 | 8 | 4 | 1 |

+-----+---------+---------+----------+

Using stored functions in RETURNING

DELIMITER |

CREATE FUNCTION f(arg INT) RETURNS INT

 BEGIN

 RETURN (SELECT arg+arg);

 END|

DELIMITER ;

PREPARE stmt FROM "INSERT INTO t1 SET id1=1, animal1='Bear' RETURNING f(id1), UPPER(animal1)";

EXECUTE stmt;

+---------+----------------+

| f(id1) | UPPER(animal1) |

+---------+----------------+

| 2 | BEAR |

+---------+----------------+

Subqueries in the RETURNING clause that return more than one row or column cannot be used.

Aggregate functions cannot be used in the RETURNING clause. Since aggregate functions work on a set of values, and if

the purpose is to get the row count, ROW_COUNT() with SELECT can be used or it can be used in

INSERT...SELECT...RETURNING if the table in the RETURNING clause is not the same as the INSERT table.

1.1.1.4.2.2 INSERT DELAYED

Syntax

INSERT DELAYED ...

Contents
1. Syntax

2. Description

1. Limitations

Description
The DELAYED option for the INSERT statement is a MariaDB/MySQL extension to standard SQL that is very useful if you

have clients that cannot or need not wait for the INSERT to complete. This is a common situation when you use MariaDB

for logging and you also periodically run SELECT and UPDATE statements that take a long time to complete.

When a client uses INSERT DELAYED , it gets an okay from the server at once, and the row is queued to be inserted when

the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled together and written in one

block. This is much faster than performing many separate inserts.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use. There is also the

additional overhead for the server to handle a separate thread for each table for which there are delayed rows. This means

that you should use INSERT DELAYED only when you are really sure that you need it.

The queued rows are held only in memory until they are inserted into the table. This means that if you terminate mysqld

forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued rows that have not been written to disk are lost.

The number of concurrent INSERT DELAYED threads is limited by the max_delayed_threads server system variables. If
671/4161

it is set to 0, INSERT DELAYED is disabled. The session value can be equal to the global value, or 0 to disable this

statement for the current session. If this limit has been reached, the DELAYED clause will be silently ignore for subsequent

statements (no error will be produced).

Limitations

There are some limitations on the use of DELAYED :

INSERT DELAYED works only with MyISAM, MEMORY, ARCHIVE, and BLACKHOLE tables. If you execute INSERT

DELAYED with another storage engine, you will get an error like this: ERROR 1616 (HY000): DELAYED option

not supported for table 'tab_name'

For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and INSERT

statements are supported. Under these circumstances, you very seldom need to use INSERT DELAYED with

MyISAM.

INSERT DELAYED should be used only for INSERT statements that specify value lists. The server ignores DELAYED

for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE statements.

Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you cannot use

LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might generate.

DELAYED rows are not visible to SELECT statements until they actually have been inserted.

After INSERT DELAYED , ROW_COUNT() returns the number of the rows you tried to insert, not the number of the

successful writes.

DELAYED is ignored on slave replication servers, so that INSERT DELAYED is treated as a normal INSERT on

slaves. This is because DELAYED could cause the slave to have different data than the master. INSERT DELAYED

statements are not safe for replication.

Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to modify the

table structure.

INSERT DELAYED is not supported for views. If you try, you will get an error like this: ERROR 1347 (HY000):

'view_name' is not BASE TABLE

INSERT DELAYED is not supported for partitioned tables.

INSERT DELAYED is not supported within stored programs.

INSERT DELAYED does not work with triggers.

INSERT DELAYED does not work if there is a check constraint in place.

INSERT DELAYED does not work if skip-new mode is active.

1.1.1.4.2.3 INSERT SELECT

Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [(col_name,...)]

 SELECT ...

 [ON DUPLICATE KEY UPDATE col_name=expr, ...]

Contents
1. Syntax

2. Description

Description
With INSERT ... SELECT , you can quickly insert many rows into a table from one or more other tables. For example:

INSERT INTO tbl_temp2 (fld_id)

 SELECT tbl_temp1.fld_order_id

 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

tbl_name can also be specified in the form db_name . tbl_name (see Identifier Qualifiers). This allows to copy rows

between different databases.

If the new table has a primary key or UNIQUE indexes, you can use IGNORE to handle duplicate key errors during the

query. The newer values will not be inserted if an identical value already exists.

REPLACE can be used instead of INSERT to prevent duplicates on UNIQUE indexes by deleting old values. In that case,

ON DUPLICATE KEY UPDATE cannot be used.

672/4161

INSERT ... SELECT works for tables which already exist. To create a table for a given resultset, you can use CREATE

TABLE ... SELECT.

1.1.1.4.2.4 LOAD Data into Tables or Index
Loading data quickly into MariaDB

LOAD DATA INFILE

Read rows from a text file into a table.

LOAD INDEX

Loads one or more indexes from one or more MyISAM/Aria tables into a key buffer.

LOAD XML

Load XML data into a table.

LOAD_FILE

Returns file contents as a string.

There are 4 related questions .

14

1.1.1.4.2.4.1 LOAD DATA INFILE

Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

 [REPLACE | IGNORE]

 INTO TABLE tbl_name

 [CHARACTER SET charset_name]

 [{FIELDS | COLUMNS}

 [TERMINATED BY 'string']

 [[OPTIONALLY] ENCLOSED BY 'char']

 [ESCAPED BY 'char']

]

 [LINES

 [STARTING BY 'string']

 [TERMINATED BY 'string']

]

 [IGNORE number {LINES|ROWS}]

 [(col_name_or_user_var,...)]

 [SET col_name = expr,...]

Contents
1. Syntax

2. Description

1. LOAD DATA LOCAL INFILE

2. REPLACE and IGNORE

3. Character-sets

4. Preprocessing Inputs

5. Priority and Concurrency

6. Progress Reporting

7. Using mariadb-import

8. Indexing

3. Examples

Description

LOAD DATA INFILE is unsafe for statement-based replication.

Reads rows from a text file into the designated table on the database at a very high speed. The file name must be given as a

673/4161

https://mariadb.com/kb/en/load-data-into-tables-or-index/+questions/

literal string.

Files are written to disk using the SELECT INTO OUTFILE statement. You can then read the files back into a table using the

LOAD DATA INFILE statement. The FIELDS and LINES clauses are the same in both statements. These clauses are

optional, but if both are specified then the FIELDS clause must precede LINES .

Executing this statement activates INSERT triggers.

One must have the FILE privilege to be able to execute LOAD DATA INFILE. This is to ensure normal users cannot read

system files. LOAD DATA LOCAL INFILE does not have this requirement.

If the secure_file_priv system variable is set (by default it is not), the loaded file must be present in the specified directory.

Note that MariaDB's systemd unit file restricts access to /home , /root , and /run/user by default. See Configuring

access to home directories.

LOAD DATA LOCAL INFILE

When you execute the LOAD DATA INFILE statement, MariaDB Server attempts to read the input file from its own file

system. By contrast, when you execute the LOAD DATA LOCAL INFILE statement, the client attempts to read the input file

from its file system, and it sends the contents of the input file to the MariaDB Server. This allows you to load files from the

client's local file system into the database.

If you don't want to permit this operation (perhaps for security reasons), you can disable the LOAD DATA LOCAL INFILE

statement on either the server or the client.

The LOAD DATA LOCAL INFILE statement can be disabled on the server by setting the local_infile system variable

to 0 .

The LOAD DATA LOCAL INFILE statement can be disabled on the client. If you are using MariaDB Connector/C ,

this can be done by unsetting the CLIENT_LOCAL_FILES capability flag with the mysql_real_connect function or by

unsetting the MYSQL_OPT_LOCAL_INFILE option with mysql_optionsv function. If you are using a different client or

client library, then see the documentation for your specific client or client library to determine how it handles the LOAD

DATA LOCAL INFILE statement.

If the LOAD DATA LOCAL INFILE statement is disabled by either the server or the client and if the user attempts to

execute it, then the server will cause the statement to fail with the following error message:

The used command is not allowed with this MariaDB version

Note that it is not entirely accurate to say that the MariaDB version does not support the command. It would be more

accurate to say that the MariaDB configuration does not support the command. See MDEV-20500 for more information.

From MariaDB 10.5.2, the error message is more accurate:

The used command is not allowed because the MariaDB server or client

 has disabled the local infile capability

REPLACE and IGNORE

If you load data from a file into a table that already contains data and has a primary key, you may encounter issues where

the statement attempts to insert a row with a primary key that already exists. When this happens, the statement fails with

Error 1064, protecting the data already on the table. If you want MariaDB to overwrite duplicates, use the REPLACE

keyword.

The REPLACE keyword works like the REPLACE statement. Here, the statement attempts to load the data from the file. If

the row does not exist, it adds it to the table. If the row contains an existing primary key, it replaces the table data. That is, in

the event of a conflict, it assumes the file contains the desired row.

This operation can cause a degradation in load speed by a factor of 20 or more if the part that has already been loaded is

larger than the capacity of the InnoDB Buffer Pool. This happens because it causes a lot of turnaround in the buffer pool.

Use the IGNORE keyword when you want to skip any rows that contain a conflicting primary key. Here, the statement

attempts to load the data from the file. If the row does not exist, it adds it to the table. If the row contains an existing primary

key, it ignores the addition request and moves on to the next. That is, in the event of a conflict, it assumes the table contains

the desired row.

Character-sets

When the statement opens the file, it attempts to read the contents using the default character-set, as defined by the

character_set_database system variable.
674/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://mariadb.com/kb/en/mysql_real_connect/
https://mariadb.com/kb/en/mysql_optionsv/
https://jira.mariadb.org/browse/MDEV-20500

In the cases where the file was written using a character-set other than the default, you can specify the character-set to use

with the CHARACTER SET clause in the statement. It ignores character-sets specified by the SET NAMES statement and by

the character_set_client system variable. Setting the CHARACTER SET clause to a value of binary indicates "no

conversion."

The statement interprets all fields in the file as having the same character-set, regardless of the column data type. To

properly interpret file contents, you must ensure that it was written with the correct character-set. If you write a data file with

mariadb-dump -T or with the SELECT INTO OUTFILE statement with the mariadb client, be sure to use the --default-

character-set option, so that the output is written with the desired character-set.

When using mixed character sets, use the CHARACTER SET clause in both SELECT INTO OUTFILE and LOAD DATA

INFILE to ensure that MariaDB correctly interprets the escape sequences.

The character_set_filesystem system variable controls the interpretation of the filename.

It is currently not possible to load data files that use the ucs2 character set.

Preprocessing Inputs

col_name_or_user_var can be a column name, or a user variable. In the case of a variable, the SET statement can be used

to preprocess the value before loading into the table.

Priority and Concurrency

In storage engines that perform table-level locking (MyISAM, MEMORY and MERGE), using the LOW_PRIORITY keyword,

MariaDB delays insertions until no other clients are reading from the table. Alternatively, when using the MyISAM storage

engine, you can use the CONCURRENT keyword to perform concurrent insertion.

The LOW_PRIORITY and CONCURRENT keywords are mutually exclusive. They cannot be used in the same statement.

Progress Reporting

The LOAD DATA INFILE statement supports progress reporting. You may find this useful when dealing with long-running

operations. Using another client you can issue a SHOW PROCESSLIST query to check the progress of the data load.

Using mariadb-import

MariaDB ships with a separate utility for loading data from files: mariadb-import (or mysqlimport before MariaDB 10.5). It

operates by sending LOAD DATA INFILE statements to the server.

Using mariadb-import you can compress the file using the --compress option, to get better performance over slow

networks, providing both the client and server support the compressed protocol. Use the --local option to load from the

local file system.

Indexing

In cases where the storage engine supports ALTER TABLE... DISABLE KEYS statements (MyISAM and Aria), the LOAD

DATA INFILE statement automatically disables indexes during the execution.

Examples
You have a file with this content (note the the separator is ',', not tab, which is the default):

2,2

3,3

4,4

5,5

6,8

675/4161

CREATE TABLE t1 (a int, b int, c int, d int, PRIMARY KEY (a));

LOAD DATA LOCAL INFILE

 '/tmp/loaddata7.dat' INTO TABLE t1 FIELDS TERMINATED BY ',' (a,b) SET c=a+b;

SELECT * FROM t1;

+------+------+------+

| a | b | c |

+------+------+------+

| 2 | 2 | 4 |

| 3 | 3 | 6 |

| 4 | 4 | 8 |

| 5 | 5 | 10 |

| 6 | 8 | 14 |

+------+------+------+

Another example, given the following data (the separator is a tab):

1 a

2 b

The value of the first column is doubled before loading:

LOAD DATA INFILE 'ld.txt' INTO TABLE ld (@i,v) SET i=@i*2;

SELECT * FROM ld;

+------+------+

| i | v |

+------+------+

| 2 | a |

| 4 | b |

+------+------+

1.1.1.2.17 LOAD INDEX

1.1.1.4.2.4.3 LOAD XML

Syntax

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

 [REPLACE | IGNORE]

 INTO TABLE [db_name.]tbl_name

 [CHARACTER SET charset_name]

 [ROWS IDENTIFIED BY '<tagname>']

 [IGNORE number {LINES | ROWS}]

 [(column_or_user_var,...)]

 [SET col_name = expr,...]

Description
The LOAD XML statement reads data from an XML file into a table. The file_name must be given as a literal string. The

tagname in the optional ROWS IDENTIFIED BY clause must also be given as a literal string, and must be surrounded by

angle brackets (< and >).

LOAD XML acts as the complement of running the mariadb client in XML output mode (that is, starting the client with the --

xml option). To write data from a table to an XML file, use a command such as the following one from the system shell:

shell> mariadb --xml -e 'SELECT * FROM mytable' > file.xml

To read the file back into a table, use LOAD XML INFILE. By default, the <row> element is considered to be the equivalent

of a database table row; this can be changed using the ROWS IDENTIFIED BY clause.

This statement supports three different XML formats:

Column names as attributes and column values as attribute values:

676/4161

<row column1="value1" column2="value2" .../>

Column names as tags and column values as the content of these tags:

<row>

 <column1>value1</column1>

 <column2>value2</column2>

</row>

Column names are the name attributes of <field> tags, and values are the contents of these tags:

<row>

 <field name='column1'>value1</field>

 <field name='column2'>value2</field>

</row>

This is the format used by other tools, such as mariadb-dump.

All 3 formats can be used in the same XML file; the import routine automatically detects the format for each row and

interprets it correctly. Tags are matched based on the tag or attribute name and the column name.

The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:

LOW_PRIORITY or CONCURRENT

LOCAL

REPLACE or IGNORE

CHARACTER SET

(column_or_user_var,...)

SET

See LOAD DATA for more information about these clauses.

The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the XML file to be skipped.

It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.

If the LOW_PRIORITY keyword is used, insertions are delayed until no other clients are reading from the table. The

CONCURRENT keyword allows the use of concurrent inserts. These clauses cannot be specified together.

This statement activates INSERT triggers.

1.1.1.4.2.4.4 LOAD_FILE

Syntax

LOAD_FILE(file_name)

Contents
1. Syntax

2. Description

3. Examples

Description
Reads the file and returns the file contents as a string. To use this function, the file must be located on the server host, you

must specify the full path name to the file, and you must have the FILE privilege. The file must be readable by all and it must

be less than the size, in bytes, of the max_allowed_packet system variable. If the secure_file_priv system variable is set to

a non-empty directory name, the file to be loaded must be located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the function returns

NULL.

Since MariaDB 5.1, the character_set_filesystem system variable has controlled interpretation of file names that are given

as literal strings.

Statements using the LOAD_FILE() function are not safe for statement based replication. This is because the slave will

execute the LOAD_FILE() command itself. If the file doesn't exist on the slave, the function will return NULL.

677/4161

Examples

UPDATE t SET blob_col=LOAD_FILE('/tmp/picture') WHERE id=1;

1.1.1.4.2.5 Concurrent Inserts
Contents
1. Notes

The MyISAM storage engine supports concurrent inserts. This feature allows SELECT statements to be executed during

INSERT operations, reducing contention.

Whether concurrent inserts can be used or not depends on the value of the concurrent_insert server system variable:

NEVER (0) disables concurrent inserts.

AUTO (1) allows concurrent inserts only when the target table has no free blocks (no data in the middle of the table

has been deleted after the last OPTIMIZE TABLE). This is the default.

ALWAYS (2) always enables concurrent inserts, in which case new rows are added at the end of a table if the table is

being used by another thread.

If the binary log is used, CREATE TABLE ... SELECT and INSERT ... SELECT statements cannot use concurrent inserts.

These statements acquire a read lock on the table, so concurrent inserts will need to wait. This way the log can be safely

used to restore data.

Concurrent inserts are not used by replicas with the row based replication (see binary log formats).

If an INSERT statement contain the HIGH_PRIORITY clause, concurrent inserts cannot be used. INSERT ... DELAYED is

usually unneeded if concurrent inserts are enabled.

LOAD DATA INFILE uses concurrent inserts if the CONCURRENT keyword is specified and concurrent_insert is not NEVER .

This makes the statement slower (even if no other sessions access the table) but reduces contention.

LOCK TABLES allows non-conflicting concurrent inserts if a READ LOCAL lock is used. Concurrent inserts are not allowed

if the LOCAL keyword is omitted.

Notes
The decision to enable concurrent insert for a table is done when the table is opened. If you change the value of

concurrent_insert it will only affect new opened tables. If you want it to work for also for tables in use or cached, you should

do FLUSH TABLES after setting the variable.

1.1.1.4.2.6 HIGH_PRIORITY and
LOW_PRIORITY

Contents

The InnoDB storage engine uses row-level locking to ensure data integrity. However some storage engines (such as

MEMORY, MyISAM, Aria and MERGE) lock the whole table to prevent conflicts. These storage engines use two separate

queues to remember pending statements; one is for SELECTs and the other one is for write statements (INSERT, DELETE,

UPDATE). By default, the latter has a higher priority.

To give write operations a lower priority, the low_priority_updates server system variable can be set to ON . The option is

available on both the global and session levels, and it can be set at startup or via the SET statement.

When too many table locks have been set by write statements, some pending SELECTs are executed. The maximum

number of write locks that can be acquired before this happens is determined by the max_write_lock_count server system

variable, which is dynamic.

If write statements have a higher priority (default), the priority of individual write statements (INSERT, REPLACE, UPDATE,

DELETE) can be changed via the LOW_PRIORITY attribute, and the priority of a SELECT statement can be raised via the

HIGH_PRIORITY attribute. Also, LOCK TABLES supports a LOW_PRIORITY attribute for WRITE locks.

If read statements have a higher priority, the priority of an INSERT can be changed via the HIGH_PRIORITY attribute.

However, the priority of other write statements cannot be raised individually.

The use of LOW_PRIORITY or HIGH_PRIORITY for an INSERT prevents Concurrent Inserts from being used.

678/4161

1.1.1.2.1.21 IGNORE

1.1.1.4.2.8 INSERT - Default & Duplicate Values
Contents
1. Default Values

2. Duplicate Values

Default Values
If the SQL_MODE contains STRICT_TRANS_TABLES and you are inserting into a transactional table (like InnoDB), or if the

SQL_MODE contains STRICT_ALL_TABLES , all NOT NULL columns which do not have a DEFAULT value (and are not

AUTO_INCREMENT) must be explicitly referenced in INSERT statements. If not, an error like this is produced:

ERROR 1364 (HY000): Field 'col' doesn't have a default value

In all other cases, if a NOT NULL column without a DEFAULT value is not referenced, an empty value will be inserted (for

example, 0 for INTEGER columns and '' for CHAR columns). See NULL Values in MariaDB:Inserting for examples.

If a NOT NULL column having a DEFAULT value is not referenced, NULL will be inserted.

If a NULL column having a DEFAULT value is not referenced, its default value will be inserted. It is also possible to

explicitly assign the default value using the DEFAULT keyword or the DEFAULT() function.

If the DEFAULT keyword is used but the column does not have a DEFAULT value, an error like this is produced:

ERROR 1364 (HY000): Field 'col' doesn't have a default value

Duplicate Values
By default, if you try to insert a duplicate row and there is a UNIQUE index, INSERT stops and an error like this is

produced:

ERROR 1062 (23000): Duplicate entry 'dup_value' for key 'col'

To handle duplicates you can use the IGNORE clause, INSERT ON DUPLICATE KEY UPDATE or the REPLACE

statement. Note that the IGNORE and DELAYED options are ignored when you use ON DUPLICATE KEY UPDATE.

1.1.1.4.2.9 INSERT IGNORE
Contents
1. Ignoring Errors

2. Examples

Ignoring Errors
Normally INSERT stops and rolls back when it encounters an error.

By using the IGNORE keyword all errors are converted to warnings, which will not stop inserts of additional rows.

Invalid values are changed to the closest valid value and inserted, with a warning produced.

The IGNORE and DELAYED options are ignored when you use ON DUPLICATE KEY UPDATE.

Prior to MySQL and MariaDB 5.5.28 , no warnings were issued for duplicate key errors when using IGNORE . You can get

the old behavior if you set OLD_MODE to NO_DUP_KEY_WARNINGS_WITH_IGNORE .

See IGNORE for a full description of effects.

Examples

679/4161

https://mariadb.com/kb/en/mariadb-5528-release-notes/

CREATE TABLE t1 (x INT UNIQUE);

INSERT INTO t1 VALUES(1),(2);

INSERT INTO t1 VALUES(2),(3);

ERROR 1062 (23000): Duplicate entry '2' for key 'x'

SELECT * FROM t1;

+------+

| x |

+------+

| 1 |

| 2 |

+------+

INSERT IGNORE INTO t1 VALUES(2),(3);

Query OK, 1 row affected, 1 warning (0.04 sec)

SHOW WARNINGS;

+---------+------+---------------------------------+

| Level | Code | Message |

+---------+------+---------------------------------+

| Warning | 1062 | Duplicate entry '2' for key 'x' |

+---------+------+---------------------------------+

SELECT * FROM t1;

+------+

| x |

+------+

| 1 |

| 2 |

| 3 |

+------+

Converting values:

CREATE OR REPLACE TABLE t2(id INT, t VARCHAR(2) NOT NULL, n INT NOT NULL);

INSERT INTO t2(id) VALUES (1),(2);

ERROR 1364 (HY000): Field 't' doesn't have a default value

INSERT IGNORE INTO t2(id) VALUES (1),(2);

Query OK, 2 rows affected, 2 warnings (0.026 sec)

Records: 2 Duplicates: 0 Warnings: 2

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1364 | Field 't' doesn't have a default value |

| Warning | 1364 | Field 'n' doesn't have a default value |

+---------+------+--+

SELECT * FROM t2;

+------+---+---+

| id | t | n |

+------+---+---+

| 1 | | 0 |

| 2 | | 0 |

+------+---+---+

See INSERT ON DUPLICATE KEY UPDATE for further examples using that syntax.

1.1.1.4.2.10 INSERT ON DUPLICATE KEY
UPDATE

Syntax

680/4161

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)]

 SET col={expr | DEFAULT}, ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 SELECT ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...]

Contents
1. Syntax

2. Description

3. Examples

Description
INSERT ... ON DUPLICATE KEY UPDATE is a MariaDB/MySQL extension to the INSERT statement that, if it finds a

duplicate unique or primary key, will instead perform an UPDATE.

The row/s affected value is reported as 1 if a row is inserted, and 2 if a row is updated, unless the API's

CLIENT_FOUND_ROWS flag is set.

If more than one unique index is matched, only the first is updated. It is not recommended to use this statement on tables

with more than one unique index.

If the table has an AUTO_INCREMENT primary key and the statement inserts or updates a row, the LAST_INSERT_ID()

function returns its AUTO_INCREMENT value.

The VALUES() function can only be used in a ON DUPLICATE KEY UPDATE clause and has no meaning in any other

context. It returns the column values from the INSERT portion of the statement. This function is particularly useful for multi-

rows inserts.

The IGNORE and DELAYED options are ignored when you use ON DUPLICATE KEY UPDATE .

See Partition Pruning and Selection for details on the PARTITION clause.

This statement activates INSERT and UPDATE triggers. See Trigger Overview for details.

See also a similar statement, REPLACE.

Examples

CREATE TABLE ins_duplicate (id INT PRIMARY KEY, animal VARCHAR(30));

INSERT INTO ins_duplicate VALUES (1,'Aardvark'), (2,'Cheetah'), (3,'Zebra');

If there is no existing key, the statement runs as a regular INSERT:

INSERT INTO ins_duplicate VALUES (4,'Gorilla')

 ON DUPLICATE KEY UPDATE animal='Gorilla';

Query OK, 1 row affected (0.07 sec)

681/4161

SELECT * FROM ins_duplicate;

+----+----------+

| id | animal |

+----+----------+

| 1 | Aardvark |

| 2 | Cheetah |

| 3 | Zebra |

| 4 | Gorilla |

+----+----------+

A regular INSERT with a primary key value of 1 will fail, due to the existing key:

INSERT INTO ins_duplicate VALUES (1,'Antelope');

ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

However, we can use an INSERT ON DUPLICATE KEY UPDATE instead:

INSERT INTO ins_duplicate VALUES (1,'Antelope')

 ON DUPLICATE KEY UPDATE animal='Antelope';

Query OK, 2 rows affected (0.09 sec)

Note that there are two rows reported as affected, but this refers only to the UPDATE.

SELECT * FROM ins_duplicate;

+----+----------+

| id | animal |

+----+----------+

| 1 | Antelope |

| 2 | Cheetah |

| 3 | Zebra |

| 4 | Gorilla |

+----+----------+

Adding a second unique column:

ALTER TABLE ins_duplicate ADD id2 INT;

UPDATE ins_duplicate SET id2=id+10;

ALTER TABLE ins_duplicate ADD UNIQUE KEY(id2);

Where two rows match the unique keys match, only the first is updated. This can be unsafe and is not recommended unless

you are certain what you are doing.

INSERT INTO ins_duplicate VALUES (2,'Lion',13)

 ON DUPLICATE KEY UPDATE animal='Lion';

Query OK, 2 rows affected (0.004 sec)

SELECT * FROM ins_duplicate;

+----+----------+------+

| id | animal | id2 |

+----+----------+------+

| 1 | Antelope | 11 |

| 2 | Lion | 12 |

| 3 | Zebra | 13 |

| 4 | Gorilla | 14 |

+----+----------+------+

Although the third row with an id of 3 has an id2 of 13, which also matched, it was not updated.

Changing id to an auto_increment field. If a new row is added, the auto_increment is moved forward. If the row is updated, it

remains the same.

682/4161

ALTER TABLE `ins_duplicate` CHANGE `id` `id` INT(11) NOT NULL AUTO_INCREMENT;

ALTER TABLE ins_duplicate DROP id2;

SELECT Auto_increment FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME='ins_duplicate';

+----------------+

| Auto_increment |

+----------------+

| 5 |

+----------------+

INSERT INTO ins_duplicate VALUES (2,'Leopard')

 ON DUPLICATE KEY UPDATE animal='Leopard';

Query OK, 2 rows affected (0.00 sec)

SELECT Auto_increment FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME='ins_duplicate';

+----------------+

| Auto_increment |

+----------------+

| 5 |

+----------------+

INSERT INTO ins_duplicate VALUES (5,'Wild Dog')

 ON DUPLICATE KEY UPDATE animal='Wild Dog';

Query OK, 1 row affected (0.09 sec)

SELECT * FROM ins_duplicate;

+----+----------+

| id | animal |

+----+----------+

| 1 | Antelope |

| 2 | Leopard |

| 3 | Zebra |

| 4 | Gorilla |

| 5 | Wild Dog |

+----+----------+

SELECT Auto_increment FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME='ins_duplicate';

+----------------+

| Auto_increment |

+----------------+

| 6 |

+----------------+

Refering to column values from the INSERT portion of the statement:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)

 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

See the VALUES() function for more.

1.1.1.4.2.11 INSERT...RETURNING

INSERT ... RETURNING was added in MariaDB 10.5.0, and returns a resultset of the inserted rows.

Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

MariaDB starting with 10.5.0

683/4161

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)]

 SET col={expr | DEFAULT}, ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 SELECT ...

 [ON DUPLICATE KEY UPDATE

 col=expr

 [, col=expr] ...] [RETURNING select_expr

 [, select_expr ...]]

Contents
1. Syntax

2. Description

3. Examples

Description
INSERT ... RETURNING returns a resultset of the inserted rows.

This returns the listed columns for all the rows that are inserted, or alternatively, the specified SELECT expression. Any SQL

expressions which can be calculated can be used in the select expression for the RETURNING clause, including virtual

columns and aliases, expressions which use various operators such as bitwise, logical and arithmetic operators, string

functions, date-time functions, numeric functions, control flow functions, secondary functions and stored functions. Along

with this, statements which have subqueries and prepared statements can also be used.

Examples
Simple INSERT statements:

CREATE OR REPLACE TABLE t2 (id INT, animal VARCHAR(20), t TIMESTAMP);

INSERT INTO t2 (id) VALUES (2),(3) RETURNING id,t;

+------+---------------------+

| id | t |

+------+---------------------+

| 2 | 2021-04-28 00:59:32 |

| 3 | 2021-04-28 00:59:32 |

+------+---------------------+

INSERT INTO t2(id,animal) VALUES (1,'Dog'),(2,'Lion'),(3,'Tiger'),(4,'Leopard')

 RETURNING id,id+id,id&id,id||id;

+------+-------+-------+--------+

| id | id+id | id&id | id||id |

+------+-------+-------+--------+

| 1 | 2 | 1 | 1 |

| 2 | 4 | 2 | 1 |

| 3 | 6 | 3 | 1 |

| 4 | 8 | 4 | 1 |

+------+-------+-------+--------+

Using stored functions in RETURNING

684/4161

DELIMITER |

CREATE FUNCTION f(arg INT) RETURNS INT

 BEGIN

 RETURN (SELECT arg+arg);

 END|

DELIMITER ;

PREPARE stmt FROM "INSERT INTO t1 SET id1=1, animal1='Bear' RETURNING f(id1), UPPER(animal1)";

EXECUTE stmt;

+---------+----------------+

| f(id1) | UPPER(animal1) |

+---------+----------------+

| 2 | BEAR |

+---------+----------------+

Subqueries in the RETURNING clause that return more than one row or column cannot be used.

Aggregate functions cannot be used in the RETURNING clause. Since aggregate functions work on a set of values, and if

the purpose is to get the row count, ROW_COUNT() with SELECT can be used or it can be used in

INSERT...SELECT...RETURNING if the table in the RETURNING clause is not the same as the INSERT table.

1.1.1.4.3 Changing & Deleting Data
DELETE

Delete rows from one or more tables.

HIGH_PRIORITY and LOW_PRIORITY

Modifying statement priority in storage engines supporting table-level locks.

IGNORE

Suppress errors while trying to violate a UNIQUE constraint.

REPLACE

Equivalent to DELETE + INSERT, or just an INSERT if no rows are returned.

REPLACE...RETURNING

Returns a resultset of the replaced rows.

TRUNCATE TABLE

DROP and re-CREATE a table.

UPDATE

Modify rows in one or more tables.

2

1

2

1.1.1.2.1.7 DELETE

1.1.1.4.2.6 HIGH_PRIORITY and LOW_PRIORITY

1.1.1.2.1.21 IGNORE

1.1.1.2.1.15 REPLACE

1.1.1.4.3.5 REPLACE...RETURNING

REPLACE ... RETURNING was added in MariaDB 10.5.0, and returns a resultset of the replaced rows.

Syntax

MariaDB starting with 10.5.0

685/4161

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

[RETURNING select_expr

 [, select_expr ...]]

Or:

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)]

 SET col={expr | DEFAULT}, ...

[RETURNING select_expr

 [, select_expr ...]]

Or:

REPLACE [LOW_PRIORITY | DELAYED]

 [INTO] tbl_name [PARTITION (partition_list)] [(col,...)]

 SELECT ...

[RETURNING select_expr

 [, select_expr ...]]

Contents
1. Syntax

2. Description

3. Examples

Description
REPLACE ... RETURNING returns a resultset of the replaced rows.

This returns the listed columns for all the rows that are replaced, or alternatively, the specified SELECT expression. Any SQL

expressions which can be calculated can be used in the select expression for the RETURNING clause, including virtual

columns and aliases, expressions which use various operators such as bitwise, logical and arithmetic operators, string

functions, date-time functions, numeric functions, control flow functions, secondary functions and stored functions. Along

with this, statements which have subqueries and prepared statements can also be used.

Examples
Simple REPLACE statement

REPLACE INTO t2 VALUES (1,'Leopard'),(2,'Dog') RETURNING id2, id2+id2

as Total ,id2|id2, id2&&id2;

+-----+-------+---------+----------+

| id2 | Total | id2|id2 | id2&&id2 |

+-----+-------+---------+----------+

| 1 | 2 | 1 | 1 |

| 2 | 4 | 2 | 1 |

+-----+-------+---------+----------+

Using stored functions in RETURNING

686/4161

DELIMITER |

CREATE FUNCTION f(arg INT) RETURNS INT

 BEGIN

 RETURN (SELECT arg+arg);

 END|

DELIMITER ;

PREPARE stmt FROM "REPLACE INTO t2 SET id2=3, animal2='Fox' RETURNING f2(id2),

UPPER(animal2)";

EXECUTE stmt;

+---------+----------------+

| f2(id2) | UPPER(animal2) |

+---------+----------------+

| 6 | FOX |

+---------+----------------+

Subqueries in the statement

REPLACE INTO t1 SELECT * FROM t2 RETURNING (SELECT id2 FROM t2 WHERE

id2 IN (SELECT id2 FROM t2 WHERE id2=1)) AS new_id;

+--------+

| new_id |

+--------+

| 1 |

| 1 |

| 1 |

| 1 |

+--------+

Subqueries in the RETURNING clause that return more than one row or column cannot be used..

Aggregate functions cannot be used in the RETURNING clause. Since aggregate functions work on a set of values and if

the purpose is to get the row count, ROW_COUNT() with SELECT can be used, or it can be used in

REPLACE...SELECT...RETURNING if the table in the RETURNING clause is not the same as the REPLACE table.

1.1.1.2.1.19 TRUNCATE TABLE

1.1.1.2.1.20 UPDATE

1.1.1.5 Prepared Statements
In addition to using prepared statements from the libmysqld, you can also do prepared statements from any client by using

the text based prepared statement interface.

You first prepare the statement with PREPARE, execute with EXECUTE, and release it with DEALLOCATE .

PREPARE Statement

Define a prepare statement.

EXECUTE Statement

Executes a previously PREPAREd statement

DEALLOCATE / DROP PREPARE

Deallocates a prepared statement.

EXECUTE IMMEDIATE

Immediately execute a dynamic SQL statement

Out Parameters in PREPARE

Using question mark placeholders for out-parameters in the PREPARE statement

There are 1 related questions .

3

4

687/4161

https://mariadb.com/kb/en/deallocate-drop-prepared-statement/
https://mariadb.com/kb/en/prepared-statements/+questions/

1.1.1.5.1 PREPARE Statement

Syntax

PREPARE stmt_name FROM preparable_stmt

Contents
1. Syntax

2. Description

1. Oracle Mode

3. Permitted Statements

4. Example

Description
The PREPARE statement prepares a statement and assigns it a name, stmt_name , by which to refer to the statement

later. Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable (not a local

variable, an SQL expression or a subquery) that contains the text of the statement. The text must represent a single SQL

statement, not multiple statements. Within the statement, "?" characters can be used as parameter markers to indicate

where data values are to be bound to the query later when you execute it. The "?" characters should not be enclosed within

quotes, even if you intend to bind them to string values. Parameter markers can be used only where expressions should

appear, not for SQL keywords, identifiers, and so forth.

The scope of a prepared statement is the session within which it is created. Other sessions cannot see it.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new statement is prepared.

This means that if the new statement contains an error and cannot be prepared, an error is returned and no statement with

the given name exists.

Prepared statements can be PREPAREd and EXECUTEd in a stored procedure, but not in a stored function or trigger. Also,

even if the statement is PREPAREd in a procedure, it will not be deallocated when the procedure execution ends.

A prepared statement can access user-defined variables, but not local variables or procedure's parameters.

If the prepared statement contains a syntax error, PREPARE will fail. As a side effect, stored procedures can use it to check

if a statement is valid. For example:

CREATE PROCEDURE `test_stmt`(IN sql_text TEXT)

BEGIN

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 BEGIN

 SELECT CONCAT(sql_text, ' is not valid');

 END;

 SET @SQL := sql_text;

 PREPARE stmt FROM @SQL;

 DEALLOCATE PREPARE stmt;

END;

The FOUND_ROWS() and ROW_COUNT() functions, if called immediatly after EXECUTE, return the number of rows read

or affected by the prepared statements; however, if they are called after DEALLOCATE PREPARE, they provide information

about this statement. If the prepared statement produces errors or warnings, GET DIAGNOSTICS return information

about them. DEALLOCATE PREPARE shouldn't clear the diagnostics area , unless it produces an error.

A prepared statement is executed with EXECUTE and released with DEALLOCATE PREPARE .

The max_prepared_stmt_count server system variable determines the number of allowed prepared statements that can be

prepared on the server. If it is set to 0, prepared statements are not allowed. If the limit is reached, an error similar to the

following will be produced:

ERROR 1461 (42000): Can't create more than max_prepared_stmt_count statements

 (current value: 0)

Oracle Mode

In Oracle mode from MariaDB 10.3, PREPARE stmt FROM 'SELECT :1, :2' is used, instead of ? .

MariaDB starting with 10.3

688/4161

https://mariadb.com/kb/en/get-diagnostics/
https://mariadb.com/kb/en/diagnostics-area/
https://mariadb.com/kb/en/deallocate-drop-prepared-statement/

Permitted Statements

All statements can be prepared, except PREPARE, EXECUTE, and DEALLOCATE / DROP PREPARE.

Prior to this, not all statements can be prepared. Only the following SQL commands are permitted:

ALTER TABLE

ANALYZE TABLE

BINLOG

CACHE INDEX

CALL

CHANGE MASTER

CHECKSUM {TABLE | TABLES}

COMMIT

{CREATE | DROP} DATABASE

{CREATE | DROP} INDEX

{CREATE | RENAME | DROP} TABLE

{CREATE | RENAME | DROP} USER

{CREATE | DROP} VIEW

DELETE

DESCRIBE

DO

EXPLAIN

FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES | LOGS | STATUS | MASTER |

SLAVE | DES_KEY_FILE | USER_RESOURCES | QUERY CACHE | TABLE_STATISTICS | INDEX_STATISTICS |

USER_STATISTICS | CLIENT_STATISTICS}

GRANT

INSERT

INSTALL {PLUGIN | SONAME}

HANDLER READ

KILL

LOAD INDEX INTO CACHE

OPTIMIZE TABLE

REPAIR TABLE

REPLACE

RESET {MASTER | SLAVE | QUERY CACHE}

REVOKE

ROLLBACK

SELECT

SET

SET GLOBAL SQL_SLAVE_SKIP_COUNTER

SET ROLE

SET SQL_LOG_BIN

SET TRANSACTION ISOLATION LEVEL

SHOW EXPLAIN

SHOW {DATABASES | TABLES | OPEN TABLES | TABLE STATUS | COLUMNS | INDEX | TRIGGERS | EVENTS |

GRANTS | CHARACTER SET | COLLATION | ENGINES | PLUGINS [SONAME] | PRIVILEGES | PROCESSLIST |

PROFILE | PROFILES | VARIABLES | STATUS | WARNINGS | ERRORS | TABLE_STATISTICS |

INDEX_STATISTICS | USER_STATISTICS | CLIENT_STATISTICS | AUTHORS | CONTRIBUTORS}

SHOW CREATE {DATABASE | TABLE | VIEW | PROCEDURE | FUNCTION | TRIGGER | EVENT}

SHOW {FUNCTION | PROCEDURE} CODE

SHOW BINLOG EVENTS

SHOW SLAVE HOSTS

SHOW {MASTER | BINARY} LOGS

SHOW {MASTER | SLAVE | TABLES | INNODB | FUNCTION | PROCEDURE} STATUS

SLAVE {START | STOP}

TRUNCATE TABLE

SHUTDOWN

UNINSTALL {PLUGIN | SONAME}

UPDATE

Synonyms are not listed here, but can be used. For example, DESC can be used instead of DESCRIBE.

Compound statements can be prepared too.

Note that if a statement can be run in a stored routine, it will work even if it is called by a prepared statement. For example,

SIGNAL can't be directly prepared. However, it is allowed in stored routines. If the x() procedure contains SIGNAL, you can

MariaDB starting with 10.6.2

689/4161

still prepare and execute the 'CALL x();' prepared statement.

PREPARE supports most kinds of expressions as well, for example:

PREPARE stmt FROM CONCAT('SELECT * FROM ', table_name);

When PREPARE is used with a statement which is not supported, the following error is produced:

ERROR 1295 (HY000): This command is not supported in the prepared statement protocol yet

Example

create table t1 (a int,b char(10));

insert into t1 values (1,"one"),(2, "two"),(3,"three");

prepare test from "select * from t1 where a=?";

set @param=2;

execute test using @param;

+------+------+

| a | b |

+------+------+

| 2 | two |

+------+------+

set @param=3;

execute test using @param;

+------+-------+

| a | b |

+------+-------+

| 3 | three |

+------+-------+

deallocate prepare test;

Since identifiers are not permitted as prepared statements parameters, sometimes it is necessary to dynamically compose

an SQL statement. This technique is called dynamic SQL). The following example shows how to use dynamic SQL:

CREATE PROCEDURE test.stmt_test(IN tab_name VARCHAR(64))

BEGIN

 SET @sql = CONCAT('SELECT COUNT(*) FROM ', tab_name);

 PREPARE stmt FROM @sql;

 EXECUTE stmt;

 DEALLOCATE PREPARE stmt;

END;

CALL test.stmt_test('mysql.user');

+----------+

| COUNT(*) |

+----------+

| 4 |

+----------+

Use of variables in prepared statements:

690/4161

PREPARE stmt FROM 'SELECT @x;';

SET @x = 1;

EXECUTE stmt;

+------+

| @x |

+------+

| 1 |

+------+

SET @x = 0;

EXECUTE stmt;

+------+

| @x |

+------+

| 0 |

+------+

DEALLOCATE PREPARE stmt;

1.1.1.5.2 Out Parameters in PREPARE

Out parameters in PREPARE were only available in MariaDB 10.1.1

One can use question mark placeholders for out-parameters in the PREPARE statement. Only SELECT & INTO can be

used this way:

prepare test from "select id into ? from t1 where val=?";

execute test using @out, @in;

This is particularly convenient when used with compound statements:

PREPARE stmt FROM "BEGIN NOT ATOMIC

 DECLARE v_res INT;

 SELECT COUNT(*) INTO v_res FROM t1;

 SELECT 'Hello World', v_res INTO ?,?;

END"|

MariaDB 10.1.1

1.1.1.2.14 EXECUTE STATEMENT

1.1.1.5.4 DEALLOCATE / DROP PREPARE

Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

Description
To deallocate a prepared statement produced with PREPARE , use a DEALLOCATE PREPARE statement that refers to the

prepared statement name.

A prepared statement is implicitly deallocated when a new PREPARE command is issued. In that case, there is no need to

use DEALLOCATE .

Attempting to execute a prepared statement after deallocating it results in an error, as if it was not prepared at all:

ERROR 1243 (HY000): Unknown prepared statement handler (stmt_name) given to EXECUTE

691/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

If the specified statement has not been PREPAREd, an error similar to the following will be produced:

ERROR 1243 (HY000): Unknown prepared statement handler (stmt_name) given to DEALLOCATE PREPARE

Example
See example in PREPARE.

1.1.1.5.5 EXECUTE IMMEDIATE

EXECUTE IMMEDIATE was introduced in MariaDB 10.2.3 .

Syntax

EXECUTE IMMEDIATE statement

 [USING param[, param] ...]

param:

 expression | IGNORE | DEFAULT

Description
EXECUTE IMMEDIATE executes a dynamic SQL statement created on the fly, which can reduce performance overhead.

For example:

EXECUTE IMMEDIATE 'SELECT 1'

which is shorthand for:

prepare stmt from "select 1";

execute stmt;

deallocate prepare stmt;

EXECUTE IMMEDIATE supports complex expressions as prepare source and parameters:

EXECUTE IMMEDIATE CONCAT('SELECT COUNT(*) FROM ', 't1', ' WHERE a=?') USING 5+5;

Limitations: subselects and stored function calls are not supported as a prepare source.

The following examples return an error:

CREATE OR REPLACE FUNCTION f1() RETURNS VARCHAR(64) RETURN 'SELECT * FROM t1';

EXECUTE IMMEDIATE f1();

ERROR 1970 (42000): EXECUTE IMMEDIATE does not support subqueries or stored functions

EXECUTE IMMEDIATE (SELECT 'SELECT * FROM t1');

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that

 corresponds to your MariaDB server version for the right syntax to use near

 'SELECT 'SELECT * FROM t1')' at line 1

CREATE OR REPLACE FUNCTION f1() RETURNS INT RETURN 10;

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING f1();

ERROR 1970 (42000): EXECUTE..USING does not support subqueries or stored functions

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING (SELECT 10);

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that

 corresponds to your MariaDB server version for the right syntax to use near

 'SELECT 10)' at line 1

One can use a user or an SP variable as a workaround:

MariaDB starting with 10.2.3

692/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

CREATE OR REPLACE FUNCTION f1() RETURNS VARCHAR(64) RETURN 'SELECT * FROM t1';

SET @stmt=f1();

EXECUTE IMMEDIATE @stmt;

SET @stmt=(SELECT 'SELECT 1');

EXECUTE IMMEDIATE @stmt;

CREATE OR REPLACE FUNCTION f1() RETURNS INT RETURN 10;

SET @param=f1();

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING @param;

SET @param=(SELECT 10);

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING @param;

EXECUTE IMMEDIATE supports user variables and SP variables as OUT parameters

DELIMITER $$

CREATE OR REPLACE PROCEDURE p1(OUT a INT)

BEGIN

 SET a:= 10;

END;

$$

DELIMITER ;

SET @a=2;

EXECUTE IMMEDIATE 'CALL p1(?)' USING @a;

SELECT @a;

+------+

| @a |

+------+

| 10 |

+------+

Similar to PREPARE, EXECUTE IMMEDIATE is allowed in stored procedures but is not allowed in stored functions.

This example uses EXECUTE IMMEDIATE inside a stored procedure:

DELIMITER $$

CREATE OR REPLACE PROCEDURE p1()

BEGIN

 EXECUTE IMMEDIATE 'SELECT 1';

END;

$$

DELIMITER ;

CALL p1;

+---+

| 1 |

+---+

| 1 |

+---+

This script returns an error:

DELIMITER $$

CREATE FUNCTION f1() RETURNS INT

BEGIN

 EXECUTE IMMEDIATE 'DO 1';

 RETURN 1;

END;

$$

ERROR 1336 (0A000): Dynamic SQL is not allowed in stored function or trigger

EXECUTE IMMEDIATE can use DEFAULT and IGNORE indicators as bind parameters:

693/4161

CREATE OR REPLACE TABLE t1 (a INT DEFAULT 10);

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (?)' USING DEFAULT;

SELECT * FROM t1;

+------+

| a |

+------+

| 10 |

+------+

EXECUTE IMMEDIATE increments the Com_execute_immediate status variable, as well as the Com_stmt_prepare,

Com_stmt_execute and Com_stmt_close status variables.

Note, EXECUTE IMMEDIATE does not increment the Com_execute_sql status variable. Com_execute_sql is used only for

PREPARE..EXECUTE.

This session screenshot demonstrates how EXECUTE IMMEDIATE affects status variables:

SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS WHERE VARIABLE_NAME RLIKE

 ('COM_(EXECUTE|STMT_PREPARE|STMT_EXECUTE|STMT_CLOSE)');

+-----------------------+----------------+

| VARIABLE_NAME | VARIABLE_VALUE |

+-----------------------+----------------+

| COM_EXECUTE_IMMEDIATE | 0 |

| COM_EXECUTE_SQL | 0 |

| COM_STMT_CLOSE | 0 |

| COM_STMT_EXECUTE | 0 |

| COM_STMT_PREPARE | 0 |

+-----------------------+----------------+

EXECUTE IMMEDIATE 'SELECT 1';

+---+

| 1 |

+---+

| 1 |

+---+

SELECT * FROM INFORMATION_SCHEMA.SESSION_STATUS WHERE VARIABLE_NAME RLIKE

 ('COM_(EXECUTE|STMT_PREPARE|STMT_EXECUTE|STMT_CLOSE)');

+-----------------------+----------------+

| VARIABLE_NAME | VARIABLE_VALUE |

+-----------------------+----------------+

| COM_EXECUTE_IMMEDIATE | 1 |

| COM_EXECUTE_SQL | 0 |

| COM_STMT_CLOSE | 1 |

| COM_STMT_EXECUTE | 1 |

| COM_STMT_PREPARE | 1 |

+-----------------------+----------------+

1.1.1.6 Programmatic & Compound Statements
Compound statements in MariaDB can be used both inside and outside of stored programs.

Using Compound Statements Outside of Stored Programs

Compound statements are not just for stored programs.

BEGIN END

How to write compound statements.

CASE Statement

Conditional construct with multiple choices.

DECLARE CONDITION

For declaring a named error condition (SQLSTATE or error code).

DECLARE HANDLER

Construct to declare how errors are handled.

2

2

1

1

694/4161

DECLARE Variable

Declare local variables within stored programs.

FOR

FOR loops allow code to be executed a fixed number of times.

GOTO

Jump to the given label.

IF

A basic conditional construct statement.

ITERATE

Used to repeat the execution of the current loop.

Labels

Identifiers used to identify a BEGIN ... END construct.

LEAVE

Used to exit a code block.

LOOP

Used to loop within a code block without a condition.

REPEAT LOOP

Used to repeat statements until a search condition is true.

RESIGNAL

Used to send a SIGNAL again for the previous error.

RETURN

Statement to terminate execution of a stored function and return a value.

SELECT INTO

SQL statement for inserting values into variables.

SET Variable

Used to insert a value into a variable with a code block.

SIGNAL

May be used to produce a custom error message.

WHILE

Used to repeat a block of SQL statements while a search condition is true.

Cursors

Structure for traversing and processing results, sequentially.

Diagnostics

Error conditions and statement information.

1

1

4

1

1.1.1.6.1 Using Compound Statements Outside
of Stored Programs
Compound statements can also be used outside of stored programs.

695/4161

https://mariadb.com/kb/en/programmatic-compound-statements-diagnostics/

delimiter |

IF @have_innodb THEN

 CREATE TABLE IF NOT EXISTS innodb_index_stats (

 database_name VARCHAR(64) NOT NULL,

 table_name VARCHAR(64) NOT NULL,

 index_name VARCHAR(64) NOT NULL,

 last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

 stat_name VARCHAR(64) NOT NULL,

 stat_value BIGINT UNSIGNED NOT NULL,

 sample_size BIGINT UNSIGNED,

 stat_description VARCHAR(1024) NOT NULL,

 PRIMARY KEY (database_name, table_name, index_name, stat_name)

) ENGINE=INNODB DEFAULT CHARSET=utf8 COLLATE=utf8_bin STATS_PERSISTENT=0;

END IF|

Query OK, 0 rows affected, 2 warnings (0.00 sec)

Note, that using compound statements this way is subject to following limitations:

Only BEGIN, IF, CASE, LOOP, WHILE, REPEAT statements may start a compound statement outside of stored

programs.

BEGIN must use the BEGIN NOT ATOMIC syntax (otherwise it'll be confused with BEGIN that starts a transaction).

A compound statement might not start with a label.

A compound statement is parsed completely4note "2 warnings" in the above example, even if the condition was

false (InnoDB was, indeed, disabled), and the CREATE TABLE statement was not executed, it was still parsed and

the parser produced "Unknown storage engine" warning.

Inside a compound block first three limitations do not apply, one can use anything that can be used inside a stored program

4 including labels, condition handlers, variables, and so on:

BEGIN NOT ATOMIC

 DECLARE foo CONDITION FOR 1146;

 DECLARE x INT DEFAULT 0;

 DECLARE CONTINUE HANDLER FOR SET x=1;

 INSERT INTO test.t1 VALUES ("hndlr1", val, 2);

 END|

Example how to use IF :

IF (1>0) THEN BEGIN NOT ATOMIC SELECT 1; END ; END IF;;

Example of how to use WHILE loop:

DELIMITER |

BEGIN NOT ATOMIC

 DECLARE x INT DEFAULT 0;

 WHILE x <= 10 DO

 SET x = x + 1;

 SELECT x;

 END WHILE;

END|

DELIMITER ;

1.1.1.6.2 BEGIN END

Syntax

[begin_label:] BEGIN [NOT ATOMIC]

 [statement_list]

END [end_label]

Contents
1. Syntax

2. Description

696/4161

NOT ATOMIC is required when used outside of a stored procedure. Inside stored procedures or within an anonymous block,

BEGIN alone starts a new anonymous block.

Description
BEGIN ... END syntax is used for writing compound statements. A compound statement can contain multiple statements,

enclosed by the BEGIN and END keywords. statement_list represents a list of one or more statements, each terminated by

a semicolon (i.e., ;) statement delimiter. statement_list is optional, which means that the empty compound statement

(BEGIN END) is legal.

Note that END will perform a commit. If you are running in autocommit mode, every statement will be committed separately.

If you are not running in autocommit mode, you must execute a COMMIT or ROLLBACK after END to get the database

up to date.

Use of multiple statements requires that a client is able to send statement strings containing the ; statement delimiter. This is

handled in the mysql command-line client with the DELIMITER command. Changing the ; end-of-statement delimiter (for

example, to //) allows ; to be used in a program body.

A compound statement within a stored program can be labeled. end_label cannot be given unless begin_label also is

present. If both are present, they must be the same.

BEGIN ... END constructs can be nested. Each block can define its own variables, a CONDITION , a HANDLER and a

CURSOR, which don't exist in the outer blocks. The most local declarations override the outer objects which use the same

name (see example below).

The declarations order is the following:

DECLARE local variables;

DECLARE CONDITION s;

DECLARE CURSOR s;

DECLARE HANDLER s;

Note that DECLARE HANDLER contains another BEGIN ... END construct.

Here is an example of a very simple, anonymous block:

BEGIN NOT ATOMIC

SET @a=1;

CREATE TABLE test.t1(a INT);

END|

Below is an example of nested blocks in a stored procedure:

CREATE PROCEDURE t()

BEGIN

 DECLARE x TINYINT UNSIGNED DEFAULT 1;

 BEGIN

 DECLARE x CHAR(2) DEFAULT '02';

 DECLARE y TINYINT UNSIGNED DEFAULT 10;

 SELECT x, y;

 END;

 SELECT x;

END;

In this example, a TINYINT variable, x is declared in the outter block. But in the inner block x is re-declared as a CHAR

and an y variable is declared. The inner SELECT shows the "new" value of x , and the value of y . But when x is selected

in the outer block, the "old" value is returned. The final SELECT doesn't try to read y , because it doesn't exist in that

context.

1.1.1.6.3 CASE Statement

Syntax

697/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mysql-command-line_client

CASE case_value

 WHEN when_value THEN statement_list

 [WHEN when_value THEN statement_list] ...

 [ELSE statement_list]

END CASE

Or:

CASE

 WHEN search_condition THEN statement_list

 [WHEN search_condition THEN statement_list] ...

 [ELSE statement_list]

END CASE

Description
The text on this page describes the CASE statement for stored programs. See the CASE OPERATOR for details on the

CASE operator outside of stored programs.

The CASE statement for stored programs implements a complex conditional construct. If a search_condition evaluates

to true, the corresponding SQL statement list is executed. If no search condition matches, the statement list in the ELSE

clause is executed. Each statement_list consists of one or more statements.

The CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead of END . implements

a complex conditional construct. If a search_condition evaluates to true, the corresponding SQL statement list is

executed. If no search condition matches, the statement list in the ELSE clause is executed. Each statement_list

consists of one or more statements.

If no when_value or search_condition matches the value tested and the CASE statement contains no ELSE clause, a Case

not found for CASE statement error results.

Each statement_list consists of one or more statements; an empty statement_list is not allowed. To handle situations

where no value is matched by any WHEN clause, use an ELSE containing an empty BEGIN ... END block, as shown in this

example:

DELIMITER |

CREATE PROCEDURE p()

BEGIN

 DECLARE v INT DEFAULT 1;

 CASE v

 WHEN 2 THEN SELECT v;

 WHEN 3 THEN SELECT 0;

 ELSE BEGIN END;

 END CASE;

END;

|

The indentation used here in the ELSE clause is for purposes of clarity only, and is not otherwise significant. See Delimiters

in the mariadb client for more on the use of the delimiter command.

Note: The syntax of the CASE statement used inside stored programs differs slightly from that of the SQL CASE expression

described in CASE OPERATOR. The CASE statement cannot have an ELSE NULL clause, and it is terminated with END

CASE instead of END .

1.1.1.6.4 DECLARE CONDITION

Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:

 SQLSTATE [VALUE] sqlstate_value

 | mysql_error_code

698/4161

Description
The DECLARE ... CONDITION statement defines a named error condition. It specifies a condition that needs specific

handling and associates a name with that condition. Later, the name can be used in a DECLARE ... HANDLER, SIGNAL or

RESIGNAL statement (as long as the statement is located in the same BEGIN ... END block).

Conditions must be declared after local variables, but before CURSORs and HANDLERs.

A condition_value for DECLARE ... CONDITION can be an SQLSTATE value (a 5-character string literal) or a MySQL error

code (a number). You should not use SQLSTATE value '00000' or MySQL error code 0, because those indicate sucess

rather than an error condition. If you try, or if you specify an invalid SQLSTATE value, an error like this is produced:

ERROR 1407 (42000): Bad SQLSTATE: '00000'

For a list of SQLSTATE values and MariaDB error codes, see MariaDB Error Codes .

1.1.1.6.5 DECLARE HANDLER

Syntax

DECLARE handler_type HANDLER

 FOR condition_value [, condition_value] ...

 statement

handler_type:

 CONTINUE

 | EXIT

 | UNDO

condition_value:

 SQLSTATE [VALUE] sqlstate_value

 | condition_name

 | SQLWARNING

 | NOT FOUND

 | SQLEXCEPTION

 | mariadb_error_code

Description
The DECLARE ... HANDLER statement specifies handlers that each may deal with one or more conditions. If one of these

conditions occurs, the specified statement is executed. statement can be a simple statement (for example, SET var_name

= value), or it can be a compound statement written using BEGIN and END.

Handlers must be declared after local variables, a CONDITION and a CURSOR.

For a CONTINUE handler, execution of the current program continues after execution of the handler statement. For an EXIT

handler, execution terminates for the BEGIN ... END compound statement in which the handler is declared. (This is true

even if the condition occurs in an inner block.) The UNDO handler type statement is not supported.

If a condition occurs for which no handler has been declared, the default action is EXIT .

A condition_value for DECLARE ... HANDLER can be any of the following values:

An SQLSTATE value (a 5-character string literal) or a MariaDB error code (a number). You should not use SQLSTATE

value '00000' or MariaDB error code 0, because those indicate sucess rather than an error condition. For a list of

SQLSTATE values and MariaDB error codes, see MariaDB Error Codes .

A condition name previously specified with DECLARE ... CONDITION . It must be in the same stored program. See

DECLARE CONDITION.

SQLWARNING is shorthand for the class of SQLSTATE values that begin with '01'.

NOT FOUND is shorthand for the class of SQLSTATE values that begin with '02'. This is relevant only the context of

cursors and is used to control what happens when a cursor reaches the end of a data set. If no more rows are

available, a No Data condition occurs with SQLSTATE value 02000. To detect this condition, you can set up a handler

for it (or for a NOT FOUND condition). An example is shown in Cursor Overview. This condition also occurs for

SELECT ... INTO var_list statements that retrieve no rows.

SQLEXCEPTION is shorthand for the class of SQLSTATE values that do not begin with '00', '01', or '02'.

699/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

When an error raises, in some cases it could be handled by multiple HANDLER s. For example, there may be an handler for

1050 error, a separate handler for the 42S01 SQLSTATE, and another separate handler for the SQLEXCEPTION class: in

theory all occurrences of HANDLER may catch the 1050 error, but MariaDB chooses the HANDLER with the highest

precedence. Here are the precedence rules:

Handlers which refer to an error code have the highest precedence.

Handlers which refer to a SQLSTATE come next.

Handlers which refer to an error class have the lowest precedence.

In some cases, a statement could produce multiple errors. If this happens, in some cases multiple handlers could have the

highest precedence. In such cases, the choice of the handler is indeterminate.

Note that if an error occurs within a CONTINUE HANDLER block, it can be handled by another HANDLER . However, a

HANDLER which is already in the stack (that is, it has been called to handle an error and its execution didn't finish yet)

cannot handle new errors4this prevents endless loops. For example, suppose that a stored procedure contains a

CONTINUE HANDLER for SQLWARNING and another CONTINUE HANDLER for NOT FOUND . At some point, a NOT FOUND

error occurs, and the execution enters the NOT FOUND HANDLER . But within that handler, a warning occurs, and the

execution enters the SQLWARNING HANDLER . If another NOT FOUND error occurs, it cannot be handled again by the NOT

FOUND HANDLER , because its execution is not finished.

When a DECLARE HANDLER block can handle more than one error condition, it may be useful to know which errors

occurred. To do so, you can use the GET DIAGNOSTICS statement.

An error that is handled by a DECLARE HANDLER construct can be issued again using the RESIGNAL statement.

Below is an example using DECLARE HANDLER :

CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));

DELIMITER //

CREATE PROCEDURE handlerdemo ()

 BEGIN

 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;

 SET @x = 1;

 INSERT INTO test.t VALUES (1);

 SET @x = 2;

 INSERT INTO test.t VALUES (1);

 SET @x = 3;

 END;

 //

DELIMITER ;

CALL handlerdemo();

SELECT @x;

+------+

| @x |

+------+

| 3 |

+------+

1.1.1.6.6 DECLARE Variable

Syntax

DECLARE var_name [, var_name] ... [[ROW] TYPE OF]] type [DEFAULT value]

Contents
1. Syntax

2. Description

1. TYPE OF / ROW TYPE OF

3. Examples

Description
700/4161

https://mariadb.com/kb/en/get-diagnostics/

This statement is used to declare local variables within stored programs. To provide a default value for the variable, include

a DEFAULT clause. The value can be specified as an expression (even subqueries are permitted); it need not be a

constant. If the DEFAULT clause is missing, the initial value is NULL .

Local variables are treated like stored routine parameters with respect to data type and overflow checking. See CREATE

PROCEDURE.

Local variables must be declared before CONDITION s, CURSORs and HANDLER s.

Local variable names are not case sensitive.

The scope of a local variable is within the BEGIN ... END block where it is declared. The variable can be referred to in

blocks nested within the declaring block, except those blocks that declare a variable with the same name.

TYPE OF / ROW TYPE OF

TYPE OF and ROW TYPE OF anchored data types for stored routines were introduced in MariaDB 10.3.

Anchored data types allow a data type to be defined based on another object, such as a table row, rather than specifically

set in the declaration. If the anchor object changes, so will the anchored data type. This can lead to routines being easier to

maintain, so that if the data type in the table is changed, it will automatically be changed in the routine as well.

Variables declared with ROW TYPE OF will have the same features as implicit ROW variables. It is not possible to use ROW

TYPE OF variables in a LIMIT clause.

The real data type of TYPE OF and ROW TYPE OF table_name will become known at the very beginning of the stored

routine call. ALTER TABLE or DROP TABLE statements performed inside the current routine on the tables that appear in

anchors won't affect the data type of the anchored variables, even if the variable is declared after an ALTER TABLE or

DROP TABLE statement.

The real data type of a ROW TYPE OF cursor_name variable will become known when execution enters into the block

where the variable is declared. Data type instantiation will happen only once. In a cursor ROW TYPE OF variable that is

declared inside a loop, its data type will become known on the very first iteration and won't change on further loop iterations.

The tables referenced in TYPE OF and ROW TYPE OF declarations will be checked for existence at the beginning of the

stored routine call. CREATE PROCEDURE or CREATE FUNCTION will not check the referenced tables for existence.

Examples
TYPE OF and ROW TYPE OF from MariaDB 10.3:

DECLARE tmp TYPE OF t1.a; -- Get the data type from the column {{a}} in the table {{t1}}

DECLARE rec1 ROW TYPE OF t1; -- Get the row data type from the table {{t1}}

DECLARE rec2 ROW TYPE OF cur1; -- Get the row data type from the cursor {{cur1}}

MariaDB starting with 10.3

1.1.1.6.7 FOR

FOR loops were introduced in MariaDB 10.3.

Syntax
Integer range FOR loop:

[begin_label:]

FOR var_name IN [REVERSE] lower_bound .. upper_bound

DO statement_list

END FOR [end_label]

Explicit cursor FOR loop

MariaDB starting with 10.3

701/4161

[begin_label:]

FOR record_name IN cursor_name [(cursor_actual_parameter_list)]

DO statement_list

END FOR [end_label]

Explicit cursor FOR loop (Oracle mode)

[begin_label:]

FOR record_name IN cursor_name [(cursor_actual_parameter_list)]

LOOP

 statement_list

END LOOP [end_label]

Implicit cursor FOR loop

[begin_label:]

FOR record_name IN (select_statement)

DO statement_list

END FOR [end_label]

Contents
1. Syntax

2. Description

3. Examples

Description
FOR loops allow code to be executed a fixed number of times.

In an integer range FOR loop, MariaDB will compare the lower bound and upper bound values, and assign the lower bound

value to a counter. If REVERSE is not specified, and the upper bound value is greater than or equal to the counter, the

counter will be incremented and the statement will continue, after which the loop is entered again. If the upper bound value

is greater than the counter, the loop will be exited.

If REVERSE is specified, the counter is decremented, and the upper bound value needs to be less than or equal for the loop

to continue.

Examples
Intger range FOR loop:

CREATE TABLE t1 (a INT);

DELIMITER //

FOR i IN 1..3

DO

 INSERT INTO t1 VALUES (i);

END FOR;

//

DELIMITER ;

SELECT * FROM t1;

+------+

| a |

+------+

| 1 |

| 2 |

| 3 |

+------+

REVERSE integer range FOR loop:

702/4161

CREATE OR REPLACE TABLE t1 (a INT);

DELIMITER //

FOR i IN REVERSE 4..12

 DO

 INSERT INTO t1 VALUES (i);

END FOR;

//

Query OK, 9 rows affected (0.422 sec)

DELIMITER ;

SELECT * FROM t1;

+------+

| a |

+------+

| 12 |

| 11 |

| 10 |

| 9 |

| 8 |

| 7 |

| 6 |

| 5 |

| 4 |

+------+

Explicit cursor in Oracle mode:

703/4161

SET sql_mode=ORACLE;

CREATE OR REPLACE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b0');

INSERT INTO t1 VALUES (11,'b1');

INSERT INTO t1 VALUES (12,'b2');

DELIMITER //

CREATE OR REPLACE PROCEDURE p1(pa INT) AS

 CURSOR cur(va INT) IS

 SELECT a, b FROM t1 WHERE a=va;

BEGIN

 FOR rec IN cur(pa)

 LOOP

 SELECT rec.a, rec.b;

 END LOOP;

END;

//

DELIMITER ;

CALL p1(10);

+-------+-------+

| rec.a | rec.b |

+-------+-------+

| 10 | b0 |

+-------+-------+

CALL p1(11);

+-------+-------+

| rec.a | rec.b |

+-------+-------+

| 11 | b1 |

+-------+-------+

CALL p1(12);

+-------+-------+

| rec.a | rec.b |

+-------+-------+

| 12 | b2 |

+-------+-------+

CALL p1(13);

Query OK, 0 rows affected (0.000 sec)

1.1.1.6.8 GOTO

The GOTO statement was introduced in MariaDB 10.3 for Oracle compatibility.

Syntax

GOTO label

Contents
1. Syntax

2. Description

3. Example

Description
The GOTO statement causes the code to jump to the specified label, and continue operating from there. It is only accepted

when in Oracle mode.

MariaDB starting with 10.3

704/4161

Example

SET sql_mode=ORACLE;

DELIMITER //

CREATE OR REPLACE PROCEDURE p1 AS

BEGIN

 SELECT 1;

 GOTO label;

 SELECT 2;

 <<label>>

 SELECT 3;

END;

//

DELIMITER

call p1();

+---+

| 1 |

+---+

| 1 |

+---+

1 row in set (0.000 sec)

+---+

| 3 |

+---+

| 3 |

+---+

1 row in set (0.000 sec)

1.1.1.6.9 IF

Syntax

IF search_condition THEN statement_list

 [ELSEIF search_condition THEN statement_list] ...

 [ELSE statement_list]

END IF;

Description
IF implements a basic conditional construct. If the search_condition evaluates to true, the corresponding SQL

statement list is executed. If no search_condition matches, the statement list in the ELSE clause is executed. Each

statement_list consists of one or more statements.

1.1.1.6.10 ITERATE

Syntax

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means "do the loop again", and uses

the statement's label to determine which statements to repeat. The label must be in the same stored program, not in a caller

procedure.

705/4161

If you try to use ITERATE with a non-existing label, or if the label is associated to a construct which is not a loop, the

following error will be produced:

ERROR 1308 (42000): ITERATE with no matching label: <label_name>

Below is an example of how ITERATE might be used:

CREATE PROCEDURE doiterate(p1 INT)

BEGIN

 label1: LOOP

 SET p1 = p1 + 1;

 IF p1 < 10 THEN ITERATE label1; END IF;

 LEAVE label1;

 END LOOP label1;

 SET @x = p1;

END

1.1.1.6.11 Labels

Syntax

label: <construct>

[label]

Labels are MariaDB identifiers which can be used to identify a BEGIN ... END construct or a loop. They have a maximum

length of 16 characters and can be quoted with backticks (i.e.., `).

Labels have a start part and an end part. The start part must precede the portion of code it refers to, must be followed by a

colon (:) and can be on the same or different line. The end part is optional and adds nothing, but can make the code more

readable. If used, the end part must precede the construct's delimiter (;). Constructs identified by a label can be nested.

Each construct can be identified by only one label.

Labels need not be unique in the stored program they belong to. However, a label for an inner loop cannot be identical to a

label for an outer loop. In this case, the following error would be produced:

ERROR 1309 (42000): Redefining label <label_name>

LEAVE and ITERATE statements can be used to exit or repeat a portion of code identified by a label. They must be in the

same Stored Routine, Trigger or Event which contains the target label.

Below is an example using a simple label that is used to exit a LOOP:

CREATE PROCEDURE `test_sp`()

BEGIN

 `my_label`:

 LOOP

 SELECT 'looping';

 LEAVE `my_label`;

 END LOOP;

 SELECT 'out of loop';

END;

The following label is used to exit a procedure, and has an end part:

CREATE PROCEDURE `test_sp`()

`my_label`:

BEGIN

 IF @var = 1 THEN

 LEAVE `my_label`;

 END IF;

 DO something();

END `my_label`;

706/4161

1.1.1.6.12 LEAVE

Syntax

LEAVE label

This statement is used to exit the flow control construct that has the given label. The label must be in the same stored

program, not in a caller procedure. LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

In Stored Procedures, Triggers and Events, LEAVE can refer to the outmost BEGIN ... END construct; in that case, the

program exits the procedure. In Stored Functions, RETURN can be used instead.

Note that LEAVE cannot be used to exit a DECLARE HANDLER block.

If you try to LEAVE a non-existing label, or if you try to LEAVE a HANDLER block, the following error will be produced:

ERROR 1308 (42000): LEAVE with no matching label: <label_name>

The following example uses LEAVE to exit the procedure if a condition is true:

CREATE PROCEDURE proc(IN p TINYINT)

CONTAINS SQL

`whole_proc`:

BEGIN

 SELECT 1;

 IF p < 1 THEN

 LEAVE `whole_proc`;

 END IF;

 SELECT 2;

END;

CALL proc(0);

+---+

| 1 |

+---+

| 1 |

+---+

1.1.1.6.13 LOOP

Syntax

[begin_label:] LOOP

 statement_list

END LOOP [end_label]

Contents
1. Syntax

2. Description

Description
LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists of one or more

statements, each terminated by a semicolon (i.e., ;) statement delimiter. The statements within the loop are repeated until

the loop is exited; usually this is accomplished with a LEAVE statement.

A LOOP statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present,

they must be the same.

See Delimiters in the mariadb client for more on delimiter usage in the client.

1.1.1.6.14 REPEAT LOOP
707/4161

Syntax

[begin_label:] REPEAT

 statement_list

UNTIL search_condition

END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition is true. Thus, a REPEAT always enters

the loop at least once. statement_list consists of one or more statements, each terminated by a semicolon (i.e., ;)

statement delimiter.

A REPEAT statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they

must be the same.

See Delimiters in the mariadb client for more on client delimiter usage.

DELIMITER //

CREATE PROCEDURE dorepeat(p1 INT)

 BEGIN

 SET @x = 0;

 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;

 END

//

CALL dorepeat(1000)//

SELECT @x//

+------+

| @x |

+------+

| 1001 |

+------+

1.1.1.6.15 RESIGNAL

Syntax

RESIGNAL [error_condition]

 [SET error_property

 [, error_property] ...]

error_condition:

 SQLSTATE [VALUE] 'sqlstate_value'

 | condition_name

error_property:

 error_property_name = <error_property_value>

error_property_name:

 CLASS_ORIGIN

 | SUBCLASS_ORIGIN

 | MESSAGE_TEXT

 | MYSQL_ERRNO

 | CONSTRAINT_CATALOG

 | CONSTRAINT_SCHEMA

 | CONSTRAINT_NAME

 | CATALOG_NAME

 | SCHEMA_NAME

 | TABLE_NAME

 | COLUMN_NAME

 | CURSOR_NAME

708/4161

Contents
1. Syntax

2. Description

Description
The syntax of RESIGNAL and its semantics are very similar to SIGNAL. This statement can only be used within an error

HANDLER. It produces an error, like SIGNAL. RESIGNAL clauses are the same as SIGNAL, except that they all are

optional, even SQLSTATE. All the properties which are not specified in RESIGNAL , will be identical to the properties of the

error that was received by the error HANDLER. For a description of the clauses, see diagnostics area .

Note that RESIGNAL does not empty the diagnostics area: it just appends another error condition.

RESIGNAL , without any clauses, produces an error which is identical to the error that was received by HANDLER.

If used out of a HANDLER construct, RESIGNAL produces the following error:

ERROR 1645 (0K000): RESIGNAL when handler not active

In MariaDB 5.5, if a HANDLER contained a CALL to another procedure, that procedure could use RESIGNAL . Since

MariaDB 10.0, trying to do this raises the above error.

For a list of SQLSTATE values and MariaDB error codes, see MariaDB Error Codes .

The following procedure tries to query two tables which don't exist, producing a 1146 error in both cases. Those errors will

trigger the HANDLER. The first time the error will be ignored and the client will not receive it, but the second time, the error is

re-signaled, so the client will receive it.

CREATE PROCEDURE test_error()

BEGIN

 DECLARE CONTINUE HANDLER

 FOR 1146

 BEGIN

 IF @hide_errors IS FALSE THEN

 RESIGNAL;

 END IF;

 END;

 SET @hide_errors = TRUE;

 SELECT 'Next error will be ignored' AS msg;

 SELECT `c` FROM `temptab_one`;

 SELECT 'Next error won''t be ignored' AS msg;

 SET @hide_errors = FALSE;

 SELECT `c` FROM `temptab_two`;

END;

CALL test_error();

+----------------------------+

| msg |

+----------------------------+

| Next error will be ignored |

+----------------------------+

+-----------------------------+

| msg |

+-----------------------------+

| Next error won't be ignored |

+-----------------------------+

ERROR 1146 (42S02): Table 'test.temptab_two' doesn't exist

The following procedure re-signals an error, modifying only the error message to clarify the cause of the problem.

709/4161

https://mariadb.com/kb/en/diagnostics-area/
https://mariadb.com/kb/en/mariadb-error-codes/

CREATE PROCEDURE test_error()

BEGIN

 DECLARE CONTINUE HANDLER

 FOR 1146

 BEGIN

 RESIGNAL SET

 MESSAGE_TEXT = '`temptab` does not exist';

 END;

 SELECT `c` FROM `temptab`;

END;

CALL test_error();

ERROR 1146 (42S02): `temptab` does not exist

As explained above, this works on MariaDB 5.5, but produces a 1645 error since 10.0.

CREATE PROCEDURE handle_error()

BEGIN

 RESIGNAL;

END;

CREATE PROCEDURE p()

BEGIN

 DECLARE EXIT HANDLER FOR SQLEXCEPTION CALL p();

 SIGNAL SQLSTATE '45000';

END;

1.1.1.6.16 RETURN

Syntax

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the function caller. There

must be at least one RETURN statement in a stored function. If the function has multiple exit points, all exit points must have

a RETURN .

This statement is not used in stored procedures, triggers, or events. LEAVE can be used instead.

The following example shows that RETURN can return the result of a scalar subquery:

CREATE FUNCTION users_count() RETURNS BOOL

 READS SQL DATA

BEGIN

 RETURN (SELECT COUNT(DISTINCT User) FROM mysql.user);

END;

1.1.1.6.17 SELECT INTO

Syntax

SELECT col_name [, col_name] ...

 INTO var_name [, var_name] ...

 table_expr

Contents
1. Syntax

2. Description

3. Examples

Description
710/4161

SELECT ... INTO enables selected columns to be stored directly into variables. No resultset is produced. The query should

return a single row. If the query returns no rows, a warning with error code 1329 occurs (No data), and the variable values

remain unchanged. If the query returns multiple rows, error 1172 occurs (Result consisted of more than one row). If it is

possible that the statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

The INTO clause can also be specified at the end of the statement.

In the context of such statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not

only errors, but also warnings) are written to the error log, and, on Windows, to the application event log.

This statement can be used with both local variables and user-defined variables.

For the complete syntax, see SELECT.

Another way to set a variable's value is the SET statement.

SELECT ... INTO results are not stored in the query cache even if SQL_CACHE is specified.

Examples

SELECT id, data INTO @x,@y

FROM test.t1 LIMIT 1;

SELECT * from t1 where t1.a=@x and t1.b=@y

If you want to use this construct with UNION you have to use the syntax:

SELECT * INTO @x FROM (SELECT t1.a FROM t1 UNION SELECT t2.a FROM t2) dt;

1.1.1.2.7.10 SET Variable

1.1.1.6.19 SIGNAL

Syntax

SIGNAL error_condition

 [SET error_property

 [, error_property] ...]

error_condition:

 SQLSTATE [VALUE] 'sqlstate_value'

 | condition_name

error_property:

 error_property_name = <error_property_value>

error_property_name:

 CLASS_ORIGIN

 | SUBCLASS_ORIGIN

 | MESSAGE_TEXT

 | MYSQL_ERRNO

 | CONSTRAINT_CATALOG

 | CONSTRAINT_SCHEMA

 | CONSTRAINT_NAME

 | CATALOG_NAME

 | SCHEMA_NAME

 | TABLE_NAME

 | COLUMN_NAME

 | CURSOR_NAME

Contents
1. Syntax

2. Errors

3. Examples

SIGNAL empties the diagnostics area and produces a custom error. This statement can be used anywhere, but is

711/4161

https://mariadb.com/kb/en/diagnostics-area/

generally useful when used inside a stored program. When the error is produced, it can be caught by a HANDLER. If not,

the current stored program, or the current statement, will terminate with the specified error.

Sometimes an error HANDLER just needs to SIGNAL the same error it received, optionally with some changes. Usually the

RESIGNAL statement is the most convenient way to do this.

error_condition can be an SQLSTATE value or a named error condition defined via DECLARE CONDITION.

SQLSTATE must be a constant string consisting of five characters. These codes are standard to ODBC and ANSI SQL. For

customized errors, the recommended SQLSTATE is '45000'. For a list of SQLSTATE values used by MariaDB, see the

MariaDB Error Codes page. The SQLSTATE can be read via the API method mysql_sqlstate() .

To specify error properties user-defined variables and local variables can be used, as well as character set conversions (but

you can't set a collation).

The error properties, their type and their default values are explained in the diagnostics area page.

Errors
If the SQLSTATE is not valid, the following error like this will be produced:

ERROR 1407 (42000): Bad SQLSTATE: '123456'

If a property is specified more than once, an error like this will be produced:

ERROR 1641 (42000): Duplicate condition information item 'MESSAGE_TEXT'

If you specify a condition name which is not declared, an error like this will be produced:

ERROR 1319 (42000): Undefined CONDITION: cond_name

If MYSQL_ERRNO is out of range, you will get an error like this:

ERROR 1231 (42000): Variable 'MYSQL_ERRNO' can't be set to the value of '0'

Examples
Here's what happens if SIGNAL is used in the client to generate errors:

SIGNAL SQLSTATE '01000';

Query OK, 0 rows affected, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1642 | Unhandled user-defined warning condition |

+---------+------+--+

1 row in set (0.06 sec)

SIGNAL SQLSTATE '02000';

ERROR 1643 (02000): Unhandled user-defined not found condition

How to specify MYSQL_ERRNO and MESSAGE_TEXT properties:

SIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=30001, MESSAGE_TEXT='H

ello, world!';

ERROR 30001 (45000): Hello, world!

The following code shows how to use user variables, local variables and character set conversion with SIGNAL:

712/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/diagnostics-area/

CREATE PROCEDURE test_error(x INT)

BEGIN

 DECLARE errno SMALLINT UNSIGNED DEFAULT 31001;

 SET @errmsg = 'Hello, world!';

 IF x = 1 THEN

 SIGNAL SQLSTATE '45000' SET

 MYSQL_ERRNO = errno,

 MESSAGE_TEXT = @errmsg;

 ELSE

 SIGNAL SQLSTATE '45000' SET

 MYSQL_ERRNO = errno,

 MESSAGE_TEXT = _utf8'Hello, world!';

 END IF;

END;

How to use named error conditions:

CREATE PROCEDURE test_error(n INT)

BEGIN

 DECLARE `too_big` CONDITION FOR SQLSTATE '45000';

 IF n > 10 THEN

 SIGNAL `too_big`;

 END IF;

END;

In this example, we'll define a HANDLER for an error code. When the error occurs, we SIGNAL a more informative error

which makes sense for our procedure:

CREATE PROCEDURE test_error()

BEGIN

 DECLARE EXIT HANDLER

 FOR 1146

 BEGIN

 SIGNAL SQLSTATE '45000' SET

 MESSAGE_TEXT = 'Temporary tables not found; did you call init() procedure?';

 END;

 -- this will produce a 1146 error

 SELECT `c` FROM `temptab`;

END;

1.1.1.6.20 WHILE

Syntax

[begin_label:] WHILE search_condition DO

 statement_list

END WHILE [end_label]

Description
The statement list within a WHILE statement is repeated as long as the search_condition is true. statement_list

consists of one or more statements. If the loop must be executed at least once, REPEAT ... LOOP can be used instead.

A WHILE statement can be labeled. end_label cannot be given unless begin_label also is present. If both are present, they

must be the same.

Examples

713/4161

CREATE PROCEDURE dowhile()

BEGIN

 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO

 ...

 SET v1 = v1 - 1;

 END WHILE;

END

1.1.1.6.21 Cursors
A cursor is a structure that allows you to go over records sequentially, and perform processing based on the result.

Cursor Overview

Structure for traversing and processing results sequentially.

DECLARE CURSOR

Declares a cursor which can be used inside stored programs.

OPEN

Open a previously declared cursor.

FETCH

Fetch a row from a cursor.

CLOSE

Close a previously opened cursor.

There are 1 related questions .

1.1.1.6.21.1 Cursor Overview
Contents
1. Description

2. Examples

Description
A cursor is a structure that allows you to go over records sequentially, and perform processing based on the result.

MariaDB permits cursors inside stored programs, and MariaDB cursors are non-scrollable, read-only and asensitive.

Non-scrollable means that the rows can only be fetched in the order specified by the SELECT statement. Rows

cannot be skipped, you cannot jump to a specific row, and you cannot fetch rows in reverse order.

Read-only means that data cannot be updated through the cursor.

Asensitive means that the cursor points to the actual underlying data. This kind of cursor is quicker than the

alternative, an insensitive cursor, as no data is copied to a temporary table. However, changes to the data being used

by the cursor will affect the cursor data.

Cursors are created with a DECLARE CURSOR statement and opened with an OPEN statement. Rows are read with a

FETCH statement before the cursor is finally closed with a CLOSE statement.

When FETCH is issued and there are no more rows to extract, the following error is produced:

ERROR 1329 (02000): No data - zero rows fetched, selected, or processed

To avoid problems, a DECLARE HANDLER statement is generally used. The HANDLER should handler the 1329 error, or

the '02000' SQLSTATE, or the NOT FOUND error class.

Only SELECT statements are allowed for cursors, and they cannot be contained in a variable - so, they cannot be

composed dynamically. However, it is possible to SELECT from a view. Since the CREATE VIEW statement can be

executed as a prepared statement, it is possible to dynamically create the view that is queried by the cursor.

714/4161

https://mariadb.com/kb/en/programmatic-compound-statements-cursors/+questions/

From MariaDB 10.3.0 , cursors can have parameters. Cursor parameters can appear in any part of the DECLARE

CURSOR select_statement where a stored procedure variable is allowed (select list, WHERE, HAVING, LIMIT etc). See

DECLARE CURSOR and OPEN for syntax, and below for an example:

Examples

CREATE TABLE c1(i INT);

CREATE TABLE c2(i INT);

CREATE TABLE c3(i INT);

DELIMITER //

CREATE PROCEDURE p1()

BEGIN

 DECLARE done INT DEFAULT FALSE;

 DECLARE x, y INT;

 DECLARE cur1 CURSOR FOR SELECT i FROM test.c1;

 DECLARE cur2 CURSOR FOR SELECT i FROM test.c2;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;

 OPEN cur2;

 read_loop: LOOP

 FETCH cur1 INTO x;

 FETCH cur2 INTO y;

 IF done THEN

 LEAVE read_loop;

 END IF;

 IF x < y THEN

 INSERT INTO test.c3 VALUES (x);

 ELSE

 INSERT INTO test.c3 VALUES (y);

 END IF;

 END LOOP;

 CLOSE cur1;

 CLOSE cur2;

END; //

DELIMITER ;

INSERT INTO c1 VALUES(5),(50),(500);

INSERT INTO c2 VALUES(10),(20),(30);

CALL p1;

SELECT * FROM c3;

+------+

| i |

+------+

| 5 |

| 20 |

| 30 |

+------+

From MariaDB 10.3.0

715/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

DROP PROCEDURE IF EXISTS p1;

DROP TABLE IF EXISTS t1;

CREATE TABLE t1 (a INT, b VARCHAR(10));

INSERT INTO t1 VALUES (1,'old'),(2,'old'),(3,'old'),(4,'old'),(5,'old');

DELIMITER //

CREATE PROCEDURE p1(min INT,max INT)

BEGIN

 DECLARE done INT DEFAULT FALSE;

 DECLARE va INT;

 DECLARE cur CURSOR(pmin INT, pmax INT) FOR SELECT a FROM t1 WHERE a BETWEEN pmin AND pmax;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done=TRUE;

 OPEN cur(min,max);

 read_loop: LOOP

 FETCH cur INTO va;

 IF done THEN

 LEAVE read_loop;

 END IF;

 INSERT INTO t1 VALUES (va,'new');

 END LOOP;

 CLOSE cur;

END;

//

DELIMITER ;

CALL p1(2,4);

SELECT * FROM t1;

+------+------+

| a | b |

+------+------+

| 1 | old |

| 2 | old |

| 3 | old |

| 4 | old |

| 5 | old |

| 2 | new |

| 3 | new |

| 4 | new |

+------+------+

1.1.1.6.21.2 DECLARE CURSOR

Syntax
<= MariaDB 10.2

DECLARE cursor_name CURSOR FOR select_statement

From MariaDB 10.3

DECLARE cursor_name CURSOR [(cursor_formal_parameter[,...])] FOR select_statement

cursor_formal_parameter:

 name type [collate clause]

From MariaDB 10.8

DECLARE cursor_name CURSOR [(cursor_formal_parameter[,...])] FOR select_statement

cursor_formal_parameter:

 [IN] name type [collate clause]

716/4161

Contents
1. Syntax

2. Description

1. Parameters

2. IN

Description
This statement declares a cursor. Multiple cursors may be declared in a stored program, but each cursor in a given block

must have a unique name.

select_statement is not executed until the OPEN statement is executed. It is important to remember this if the query

produces an error, or calls functions which have side effects.

A SELECT associated to a cursor can use variables, but the query itself cannot be a variable, and cannot be dynamically

composed. The SELECT statement cannot have an INTO clause.

Cursors must be declared before HANDLERs, but after local variables and CONDITIONs.

Parameters

From MariaDB 10.3.0 , cursors can have parameters. This is a non-standard SQL extension. Cursor parameters can

appear in any part of the DECLARE CURSOR select_statement where a stored procedure variable is allowed (select

list, WHERE, HAVING, LIMIT etc).

IN

From MariaDB 10.8.0 preview release, the IN qualifier is supported in the cursor_format_parameter part of the

syntax.

See Cursor Overview for an example.

MariaDB starting with 10.3.0

MariaDB starting with 10.8.0

1.1.1.6.21.3 OPEN

Syntax
<= MariaDB 10.2

OPEN cursor_name

From MariaDB 10.3

OPEN cursor_name [expression[,...]];

Contents
1. Syntax

2. Description

Description
This statement opens a cursor which was previously declared with DECLARE CURSOR.

The query associated to the DECLARE CURSOR is executed when OPEN is executed. It is important to remember this if

the query produces an error, or calls functions which have side effects.

This is necessary in order to FETCH rows from a cursor.

See Cursor Overview for an example.

717/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/

1.1.1.6.21.4 FETCH

Syntax

FETCH cursor_name INTO var_name [, var_name] ...

Contents
1. Syntax

2. Description

Description
This statement fetches the next row (if a row exists) using the specified open cursor, and advances the cursor pointer.

var_name can be a local variable, but not a user-defined variable.

If no more rows are available, a No Data condition occurs with SQLSTATE value 02000 . To detect this condition, you can

set up a handler for it (or for a NOT FOUND condition).

See Cursor Overview for an example.

1.1.1.6.21.5 CLOSE

Syntax

CLOSE cursor_name

Contents
1. Syntax

2. Description

Description
This statement closes a previously opened cursor. The cursor must have been previously opened or else an error occurs.

If not closed explicitly, a cursor is closed at the end of the compound statement in which it was declared.

See Cursor Overview for an example.

1.1.1.7 Stored Routine Statements
CALL

Invokes a stored procedure.

DO

Executes expressions without returning results.

There are 1 related questions .

3

1.1.1.7.1 CALL

Syntax

CALL sp_name([parameter[,...]])

CALL sp_name[()]

718/4161

https://mariadb.com/kb/en/stored-routine-statements/+questions/

Description
The CALL statement invokes a stored procedure that was defined previously with CREATE PROCEDURE.

Stored procedure names can be specified as database_name.procedure_name . Procedure names and database names

can be quoted with backticks (). This is necessary if they are reserved words, or contain special characters. See identifier

qualifiers for details.

CALL p() and CALL p are equivalent.

If parentheses are used, any number of spaces, tab characters and newline characters are allowed between the procedure's

name and the open parenthesis.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters. If no value is

assigned to an OUT parameter, NULL is assigned (and its former value is lost). To pass such values from another stored

program you can use user-defined variables, local variables or routine's parameters; in other contexts, you can only use

user-defined variables.

CALL can also be executed as a prepared statement. Placeholders can be used for IN parameters in all versions of

MariaDB; for OUT and INOUT parameters, placeholders can be used since MariaDB 5.5.

When the procedure returns, a client program can also obtain the number of rows affected for the final statement executed

within the routine: At the SQL level, call the ROW_COUNT() function; from the C API, call the mysql_affected_rows()

function.

If the CLIENT_MULTI_RESULTS API flag is set, CALL can return any number of resultsets and the called stored procedure

can execute prepared statements. If it is not set, at most one resultset can be returned and prepared statements cannot be

used within procedures.

1.1.1.7.2 DO

Syntax

DO expr [, expr] ...

Description
DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT expr, ...,

but has the advantage that it is slightly faster when you do not care about the result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK() .

1.1.1.2.1 Table Statements

1.1.1.9 Transactions
"An SQL-transaction (transaction) is a sequence of executions of SQL-statements that is atomic with respect to recovery.

That is to say: either the execution result is completely successful, or it has no effect on any SQL-schemas or SQL-data."

4 The SQL Standard

The InnoDB storage engine supports ACID-compliant transactions.

Transaction Articles
START TRANSACTION

Basic transaction control statements.

COMMIT

Ends a transaction, making changes visible to subsequent transactions

ROLLBACK

Cancel current transaction and the changes to data

1

719/4161

SET TRANSACTION

Sets the transaction isolation level.

LOCK TABLES

Explicitly lock tables.

SAVEPOINT

SAVEPOINT for a ROLLBACK.

Metadata Locking

A lock which protects each transaction from external DDL statements.

SQL statements That Cause an Implicit Commit

List of statements which implicitly commit the current transaction

Transaction Timeouts

Timing out idle transactions

UNLOCK TABLES

Explicitly releases any table locks held by the current session.

WAIT and NOWAIT

Extended syntax so that it is possible to set lock wait timeout for certain statements.

XA Transactions

Transactions designed to allow distributed transactions.

READ COMMITTED

Each consistent read, even within the same transaction, sets and reads its own fresh snapshot.

READ UNCOMMITTED

SELECT statements are performed in a non-locking fashion, but a possible ea...

REPEATABLE READ

All consistent reads within the same transaction read the snapshot established by the first read.

SERIALIZABLE

Similar to REPEATABLE READ, with SELECT ... LOCK IN SHARE MODE if autocommit is disabled.

5

5

1

1.1.1.9.1 START TRANSACTION

Syntax

START TRANSACTION [transaction_property [, transaction_property] ...] | BEGIN [WORK]

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

SET autocommit = {0 | 1}

transaction_property:

 WITH CONSISTENT SNAPSHOT

 | READ WRITE

 | READ ONLY

720/4161

Contents
1. Syntax

2. Description

1. Access Mode

2. autocommit

3. DDL Statements

4. in_transaction

5. WITH CONSISTENT SNAPSHOT

3. Examples

Description
The START TRANSACTION or BEGIN statement begins a new transaction. COMMIT commits the current transaction,

making its changes permanent. ROLLBACK rolls back the current transaction, canceling its changes. The SET autocommit

statement disables or enables the default autocommit mode for the current session.

START TRANSACTION and SET autocommit = 1 implicitly commit the current transaction, if any.

The optional WORK keyword is supported for COMMIT and ROLLBACK , as are the CHAIN and RELEASE clauses. CHAIN

and RELEASE can be used for additional control over transaction completion. The value of the completion_type system

variable determines the default completion behavior.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the new transaction has

the same isolation level as the just-terminated transaction. The RELEASE clause causes the server to disconnect the

current client session after terminating the current transaction. Including the NO keyword suppresses CHAIN or RELEASE

completion, which can be useful if the completion_type system variable is set to cause chaining or release completion by

default.

Access Mode

The access mode specifies whether the transaction is allowed to write data or not. By default, transactions are in READ

WRITE mode (see the tx_read_only system variable). READ ONLY mode allows the storage engine to apply optimizations

that cannot be used for transactions which write data. Note that unlike the global read_only mode, READ_ONLY ADMIN

(and SUPER before MariaDB 10.11.0) privilege doesn't allow writes and DDL statements on temporary tables are not

allowed either.

It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

READ WRITE and READ ONLY can also be specified in the SET TRANSACTION statement, in which case the specified

mode is valid for all sessions, or for all subsequent transaction used by the current session.

autocommit

By default, MariaDB runs with autocommit mode enabled. This means that as soon as you execute a statement that

updates (modifies) a table, MariaDB stores the update on disk to make it permanent. To disable autocommit mode, use the

following statement:

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-safe tables (such as

those for InnoDB or NDBCLUSTER) are not made permanent immediately. You must use COMMIT to store your changes to

disk or ROLLBACK to ignore the changes.

To disable autocommit mode for a single series of statements, use the START TRANSACTION statement.

DDL Statements

DDL statements (CREATE , ALTER , DROP) and administrative statements (FLUSH , RESET , OPTIMIZE , ANALYZE ,

CHECK , REPAIR , CACHE INDEX), transaction management statements (BEGIN , START TRANSACTION) and LOAD DATA

INFILE , cause an implicit COMMIT and start a new transaction. An exception to this rule are the DDL that operate on

temporary tables: you can CREATE , ALTER and DROP them without causing any COMMIT , but those actions cannot be

rolled back. This means that if you call ROLLBACK , the temporary tables you created in the transaction will remain, while the

rest of the transaction will be rolled back.

Transactions cannot be used in Stored Functions or Triggers. In Stored Procedures and Events BEGIN is not allowed, so

you should use START TRANSACTION instead.

721/4161

https://mariadb.com/kb/en/transactions-commit-statement/

A transaction acquires a metadata lock on every table it accesses to prevent other connections from altering their structure.

The lock is released at the end of the transaction. This happens even with non-transactional storage engines (like

MEMORY or CONNECT), so it makes sense to use transactions with non-transactional tables.

in_transaction

The in_transaction system variable is a session-only, read-only variable that returns 1 inside a transaction, and 0 if not in

a transaction.

WITH CONSISTENT SNAPSHOT

The WITH CONSISTENT SNAPSHOT option starts a consistent read for storage engines such as InnoDB that can do so, the

same as if a START TRANSACTION followed by a SELECT from any InnoDB table was issued.

See Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT .

Examples

START TRANSACTION;

SELECT @A:=SUM(salary) FROM table1 WHERE type=1;

UPDATE table2 SET summary=@A WHERE type=1;

COMMIT;

1.1.1.9.2 COMMIT
The COMMIT statement ends a transaction, saving any changes to the data so that they become visible to subsequent

transactions. Also, unlocks metadata changed by current transaction. If autocommit is set to 1, an implicit commit is

performed after each statement. Otherwise, all transactions which don't end with an explicit COMMIT are implicitly

rollbacked and the changes are lost. The ROLLBACK statement can be used to do this explicitly.

The required syntax for the COMMIT statement is as follows:

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

COMMIT is the more important transaction terminator, as well as the more interesting one. The basic form of the COMMIT

statement is simply the keyword COMMIT (the keyword WORK is simply noise and can be omitted without changing the

effect).

The optional AND CHAIN clause is a convenience for initiating a new transaction as soon as the old transaction terminates.

If AND CHAIN is specified, then there is effectively nothing between the old and new transactions, although they remain

separate. The characteristics of the new transaction will be the same as the characteristics of the old one 4 that is, the new

transaction will have the same access mode, isolation level and diagnostics area size (we'll discuss all of these shortly) as

the transaction just terminated.

RELEASE tells the server to disconnect the client immediately after the current transaction.

There are NO RELEASE and AND NO CHAIN options. By default, commits do not RELEASE or CHAIN , but it's possible to

change this default behavior with the completion_type server system variable. In this case, the AND NO CHAIN and NO

RELEASE options override the server default.

1.1.1.9.3 ROLLBACK
The ROLLBACK statement rolls back (ends) a transaction, destroying any changes to SQL-data so that they never become

visible to subsequent transactions. The required syntax for the ROLLBACK statement is as follows.

ROLLBACK [WORK] [AND [NO] CHAIN]

[TO [SAVEPOINT] {<savepoint name> | <simple target specification>}]

The ROLLBACK statement will either end a transaction, destroying all data changes that happened during any of the

transaction, or it will just destroy any data changes that happened since you established a savepoint. The basic form of the

ROLLBACK statement is just the keyword ROLLBACK (the keyword WORK is simply noise and can be omitted without

changing the effect).

722/4161

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/

The optional AND CHAIN clause is a convenience for initiating a new transaction as soon as the old transaction terminates.

If AND CHAIN is specified, then there is effectively nothing between the old and new transactions, although they remain

separate. The characteristics of the new transaction will be the same as the characteristics of the old one 4 that is, the new

transaction will have the same access mode, isolation level and diagnostics area size (we'll discuss all of these shortly) as

the transaction just terminated. The AND NO CHAIN option just tells your DBMS to end the transaction 4 that is, these four

SQL statements are equivalent:

ROLLBACK;

ROLLBACK WORK;

ROLLBACK AND NO CHAIN;

ROLLBACK WORK AND NO CHAIN;

All of them end a transaction without saving any transaction characteristics. The only other options, the equivalent

statements:

ROLLBACK AND CHAIN;

ROLLBACK WORK AND CHAIN;

both tell your DBMS to end a transaction, but to save that transaction's characteristics for the next transaction.

ROLLBACK is much simpler than COMMIT : it may involve no more than a few deletions (of Cursors, locks, prepared SQL

statements and log-file entries). It's usually assumed that ROLLBACK can't fail, although such a thing is conceivable (for

example, an encompassing transaction might reject an attempt to ROLLBACK because it's lining up for a COMMIT).

ROLLBACK cancels all effects of a transaction. It does not cancel effects on objects outside the DBMS's control (for example

the values in host program variables or the settings made by some SQL/CLI function calls). But in general, it is a convenient

statement for those situations when you say "oops, this isn't working" or when you simply don't care whether your temporary

work becomes permanent or not.

Here is a moot question. If all you've been doing is SELECT s, so that there have been no data changes, should you end the

transaction with ROLLBACK or COMMIT ? It shouldn't really matter because both ROLLBACK and COMMIT do the same

transaction-terminating job. However, the popular conception is that ROLLBACK implies failure, so after a successful series

of SELECT statements the convention is to end the transaction with COMMIT rather than ROLLBACK .

MariaDB (and most other DBMSs) supports rollback of SQL-data change statements, but not of SQL-Schema statements.

This means that if you use any of CREATE , ALTER , DROP , GRANT , REVOKE , you are implicitly committing at execution

time.

INSERT INTO Table_2 VALUES(5);

DROP TABLE Table_3 CASCADE;

ROLLBACK;

The result will be that both the INSERT and the DROP will go through as separate transactions so the ROLLBACK will have

no effect.

1.1.1.9.4 SET TRANSACTION

Syntax

SET [GLOBAL | SESSION] TRANSACTION

 transaction_property [, transaction_property] ...

transaction_property:

 ISOLATION LEVEL level

 | READ WRITE

 | READ ONLY

level:

 REPEATABLE READ

 | READ COMMITTED

 | READ UNCOMMITTED

 | SERIALIZABLE

723/4161

Contents
1. Syntax

2. Description

1. Isolation Level

2. Isolation Levels

1. READ UNCOMMITTED

2. READ COMMITTED

3. REPEATABLE READ

4. SERIALIZABLE

3. Access Mode

3. Examples

Description
This statement sets the transaction isolation level or the transaction access mode globally, for the current session, or for the

next transaction:

With the GLOBAL keyword, the statement sets the default transaction level globally for all subsequent sessions.

Existing sessions are unaffected.

With the SESSION keyword, the statement sets the default transaction level for all subsequent transactions

performed within the current session.

Without any SESSION or GLOBAL keyword, the statement sets the isolation level for only the next (not started)

transaction performed within the current session. After that it reverts to using the session value.

A change to the global default isolation level requires the SUPER privilege. Any session is free to change its session

isolation level (even in the middle of a transaction), or the isolation level for its next transaction.

Isolation Level

To set the global default isolation level at server startup, use the --transaction-isolation=level option on the command line or

in an option file. Values of level for this option use dashes rather than spaces, so the allowable values are

READ_UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE. For example, to set the default

isolation level to REPEATABLE READ , use these lines in the [mariadb] section of an option file:

[mariadb]

transaction-isolation = REPEATABLE-READ

To determine the global and session transaction isolation levels at runtime, check the value of the tx_isolation system

variable (note that the variable has been renamed transaction_isolation from MariaDB 11.1.1, to match the option, and the

old name deprecated).

SELECT @@GLOBAL.tx_isolation, @@tx_isolation;

From MariaDB 11.1.1:

SELECT @@GLOBAL.transaction_isolation, @@transaction_isolation;

InnoDB supports each of the translation isolation levels described here using different locking strategies. The default level is

REPEATABLE READ . For additional information about InnoDB record-level locks and how it uses them to execute various

types of statements, see InnoDB Lock Modes, and http://dev.mysql.com/doc/refman/en/innodb-locks-set.html .

Isolation Levels

The following sections describe how MariaDB supports the different transaction levels.

READ UNCOMMITTED

SELECT statements are performed in a non-locking fashion, but a possible earlier version of a row might be used. Thus,

using this isolation level, such reads are not consistent. This is also called a "dirty read." Otherwise, this isolation level works

like READ COMMITTED .

READ COMMITTED

A somewhat Oracle-like isolation level with respect to consistent (non-locking) reads: Each consistent read, even within the

same transaction, sets and reads its own fresh snapshot. See http://dev.mysql.com/doc/refman/en/innodb-consistent-
724/4161

http://dev.mysql.com/doc/refman/en/innodb-locks-set.html

read.html .

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), InnoDB locks only index records, not the gaps

before them, and thus allows the free insertion of new records next to locked records. For UPDATE and DELETE

statements, locking depends on whether the statement uses a unique index with a unique search condition (such as WHERE

id = 100), or a range-type search condition (such as WHERE id > 100). For a unique index with a unique search

condition, InnoDB locks only the index record found, not the gap before it. For range-type searches, InnoDB locks the index

range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps

covered by the range. This is necessary because "phantom rows" must be blocked for MariaDB replication and recovery to

work.

Note: If the READ COMMITTED isolation level is used or the innodb_locks_unsafe_for_binlog system variable is enabled,

there is no InnoDB gap locking except for foreign-key constraint checking and duplicate-key checking. Also, record locks for

non-matching rows are released after MariaDB has evaluated the WHERE condition.If you use READ COMMITTED or enable

innodb_locks_unsafe_for_binlog, you must use row-based binary logging.

REPEATABLE READ

This is the default isolation level for InnoDB. For consistent reads, there is an important difference from the READ

COMMITTED isolation level: All consistent reads within the same transaction read the snapshot established by the first read.

This convention means that if you issue several plain (non-locking) SELECT statements within the same transaction, these

SELECT statements are consistent also with respect to each other. See http://dev.mysql.com/doc/refman/en/innodb-

consistent-read.html .

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE statements, locking

depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition.

For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For

other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks

to block insertions by other sessions into the gaps covered by the range.

This is the minimum isolation level for non-distributed XA transactions.

SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to SELECT ... LOCK IN

SHARE MODE if autocommit is disabled. If autocommit is enabled, the SELECT is its own transaction. It therefore is known

to be read only and can be serialized if performed as a consistent (non-locking) read and need not block for other

transactions. (This means that to force a plain SELECT to block if other transactions have modified the selected rows, you

should disable autocommit.)

Distributed XA transactions should always use this isolation level.

Access Mode

The access mode specifies whether the transaction is allowed to write data or not. By default, transactions are in READ

WRITE mode (see the tx_read_only system variable). READ ONLY mode allows the storage engine to apply optimizations

that cannot be used for transactions which write data. Note that unlike the global read_only mode, READ_ONLY ADMIN

(and SUPER before MariaDB 10.11.0) privilege doesn't allow writes and DDL statements on temporary tables are not

allowed either.

It is not permitted to specify both READ WRITE and READ ONLY in the same statement.

READ WRITE and READ ONLY can also be specified in the START TRANSACTION statement, in which case the specified

mode is only valid for one transaction.

Examples

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Attempting to set the isolation level within an existing transaction without specifying GLOBAL or SESSION .

START TRANSACTION;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

ERROR 1568 (25001): Transaction characteristics can't be changed while a transaction is in progress

725/4161

http://dev.mysql.com/doc/refman/en/innodb-consistent-read.html
http://dev.mysql.com/doc/refman/en/innodb-consistent-read.html

1.1.1.9.5 LOCK TABLES

Syntax

LOCK TABLE[S]

 tbl_name [[AS] alias] lock_type

 [, tbl_name [[AS] alias] lock_type] ...

 [WAIT n|NOWAIT]

lock_type:

 READ [LOCAL]

 | [LOW_PRIORITY] WRITE

 | WRITE CONCURRENT

UNLOCK TABLES

Contents
1. Syntax

2. Description

1. WAIT/NOWAIT

3. Limitations

Description
The lock_type can be one of:

Option Description

READ Read lock, no writes allowed

READ LOCAL Read lock, but allow concurrent inserts

WRITE Exclusive write lock. No other connections can read or write to this table

LOW_PRIORITY WRITE Exclusive write lock, but allow new read locks on the table until we get the write lock.

WRITE CONCURRENT Exclusive write lock, but allow READ LOCAL locks to the table.

MariaDB enables client sessions to acquire table locks explicitly for the purpose of cooperating with other sessions for

access to tables, or to prevent other sessions from modifying tables during periods when a session requires exclusive

access to them. A session can acquire or release locks only for itself. One session cannot acquire locks for another session

or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired for base tables or

views. To use LOCK TABLES , you must have the LOCK TABLES privilege, and the SELECT privilege for each object to be

locked. See GRANT

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and locks them

automatically. If you lock a table explicitly with LOCK TABLES , any tables used in triggers are also locked implicitly, as

described in Triggers and Implicit Locks.

UNLOCK TABLES explicitly releases any table locks held by the current session.

WAIT/NOWAIT

Set the lock wait timeout. See WAIT and NOWAIT.

Limitations
LOCK TABLES doesn't work when using Galera cluster. You may experience crashes or locks when used with

Galera.

LOCK TABLES works on XtraDB/InnoDB tables only if the innodb_table_locks system variable is set to 1 (the default)

and autocommit is set to 0 (1 is default). Please note that no error message will be returned on LOCK TABLES with

MariaDB starting with 10.3.0

726/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_table_locks = 0.

LOCK TABLES implicitly commits the active transaction, if any. Also, starting a transaction always releases all table

locks acquired with LOCK TABLES. This means that there is no way to have table locks and an active transaction at

the same time. The only exceptions are the transactions in autocommit mode. To preserve the data integrity between

transactional and non-transactional tables, the GET_LOCK() function can be used.

When using LOCK TABLES on a TEMPORARY table, it will always be locked with a WRITE lock.

While a connection holds an explicit read lock on a table, it cannot modify it. If you try, the following error will be

produced:

ERROR 1099 (HY000): Table 'tab_name' was locked with a READ lock and can't be updated

While a connection holds an explicit lock on a table, it cannot access a non-locked table. If you try, the following error

will be produced:

ERROR 1100 (HY000): Table 'tab_name' was not locked with LOCK TABLES

While a connection holds an explicit lock on a table, it cannot issue the following: INSERT DELAYED, CREATE

TABLE, CREATE TABLE ... LIKE, and DDL statements involving stored programs and views (except for triggers). If

you try, the following error will be produced:

ERROR 1192 (HY000): Can't execute the given command because you have active locked tables or an

active transaction

LOCK TABLES can not be used in stored routines - if you try, the following error will be produced on creation:

ERROR 1314 (0A000): LOCK is not allowed in stored procedures

1.1.1.9.6 SAVEPOINT

Syntax

SAVEPOINT identifier

ROLLBACK [WORK] TO [SAVEPOINT] identifier

RELEASE SAVEPOINT identifier

Contents
1. Syntax

2. Description

3. Errors

Description
InnoDB supports the SQL statements SAVEPOINT , ROLLBACK TO SAVEPOINT , RELEASE SAVEPOINT and the optional

WORK keyword for ROLLBACK .

Each savepoint must have a legal MariaDB identifier. A savepoint is a named sub-transaction.

Normally ROLLBACK undoes the changes performed by the whole transaction. When used with the TO clause, it undoes

the changes performed after the specified savepoint, and erases all subsequent savepoints. However, all locks that have

been acquired after the save point will survive. RELEASE SAVEPOINT does not rollback or commit any changes, but

removes the specified savepoint.

When the execution of a trigger or a stored function begins, it is not possible to use statements which reference a savepoint

which was defined from out of that stored program.

When a COMMIT (including implicit commits) or a ROLLBACK statement (with no TO clause) is performed, they act on the

whole transaction, and all savepoints are removed.

Errors
If COMMIT or ROLLBACK is issued and no transaction was started, no error is reported.

If SAVEPOINT is issued and no transaction was started, no error is reported but no savepoint is created. When ROLLBACK

727/4161

TO SAVEPOINT or RELEASE SAVEPOINT is called for a savepoint that does not exist, an error like this is issued:

ERROR 1305 (42000): SAVEPOINT svp_name does not exist

1.1.1.9.7 Metadata Locking
MariaDB supports metadata locking. This means that when a transaction (including XA transactions) uses a table, it locks its

metadata until the end of transaction. Non-transactional tables are also locked, as well as views and objects which are

related to locked tables/views (stored functions, triggers, etc). When a connection tries to use a DDL statement (like an

ALTER TABLE) which modifies a table that is locked, that connection is queued, and has to wait until it's unlocked. Using

savepoints and performing a partial rollback does not release metadata locks.

LOCK TABLES ... WRITE are also queued. Some wrong statements which produce an error may not need to wait for the

lock to be freed.

The metadata lock's timeout is determined by the value of the lock_wait_timeout server system variable (in seconds).

However, note that its default value is 31536000 (1 year, MariaDB <= 10.2.3), or 86400 (1 day, MariaDB >= 10.2.4). If this

timeout is exceeded, the following error is returned:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

If the metadata_lock_info plugin is installed, the Information Schema metadata_lock_info table stores information about

existing metadata locks.

From MariaDB 10.5, the Performance Schema metadata_locks table contains metadata lock information.

Example
Let's use the following MEMORY (non-transactional) table:

CREATE TABLE t (a INT) ENGINE = MEMORY;

Connection 1 starts a transaction, and INSERTs a row into t:

START TRANSACTION;

INSERT INTO t SET a=1;

t 's metadata is now locked by connection 1. Connection 2 tries to alter t , but has to wait:

ALTER TABLE t ADD COLUMN b INT;

Connection 2's prompt is blocked now.

Now connection 1 ends the transaction:

COMMIT;

...and connection 2 finally gets the output of its command:

Query OK, 1 row affected (35.23 sec)

Records: 1 Duplicates: 0 Warnings: 0

MariaDB starting with 10.5.2

1.1.1.9.8 SQL statements That Cause an
Implicit Commit
Some SQL statements cause an implicit commit. As a rule of thumb, such statements are DDL statements. The same

statements (except for SHUTDOWN) produce a 1400 error (SQLSTATE 'XAE09') if a XA transaction is in effect.

Here is the list:

728/4161

ALTER DATABASE ... UPGRADE DATA DIRECTORY NAME

ALTER EVENT

ALTER FUNCTION

ALTER PROCEDURE

ALTER SEQUENCE

ALTER SERVER

ALTER TABLE

ALTER VIEW

ANALYZE TABLE

BEGIN

CACHE INDEX

CHANGE MASTER TO

CHECK TABLE

CREATE DATABASE

CREATE EVENT

CREATE FUNCTION

CREATE INDEX

CREATE PROCEDURE

CREATE ROLE

CREATE SEQUENCE

CREATE SERVER

CREATE TABLE

CREATE TRIGGER

CREATE USER

CREATE VIEW

DROP DATABASE

DROP EVENT

DROP FUNCTION

DROP INDEX

DROP PROCEDURE

DROP ROLE

DROP SEQUENCE

DROP SERVER

DROP TABLE

DROP TRIGGER

DROP USER

DROP VIEW

FLUSH

GRANT

LOAD INDEX INTO CACHE

LOCK TABLES

OPTIMIZE TABLE

RENAME TABLE

RENAME USER

REPAIR TABLE

RESET

REVOKE

SET PASSWORD

SHUTDOWN

START SLAVE

START TRANSACTION

STOP SLAVE

TRUNCATE TABLE

SET autocommit = 1 causes an implicit commit if the value was 0.

All these statements cause an implicit commit before execution. This means that, even if the statement fails with an error,

the transaction is committed. Some of them, like CREATE TABLE ... SELECT , also cause a commit immediatly after

execution. Such statements couldn't be rollbacked in any case.

If you are not sure whether a statement has implicitly committed the current transaction, you can query the in_transaction

server system variable.

Note that when a transaction starts (not in autocommit mode), all locks acquired with LOCK TABLES are released. And

acquiring such locks always commits the current transaction. To preserve the data integrity between transactional and non-

transactional tables, the GET_LOCK() function can be used.

Exceptions
These statements do not cause an implicit commit in the following cases:

CREATE TABLE and DROP TABLE, when the TEMPORARY keyword is used.

729/4161

However, TRUNCATE TABLE causes an implicit commit even when used on a temporary table.

CREATE FUNCTION and DROP FUNCTION, when used to create a UDF (instead of a stored function). However,

CREATE INDEX and DROP INDEX cause commits even when used with temporary tables.

UNLOCK TABLES causes a commit only if a LOCK TABLES was used on non-transactional tables.

START SLAVE, STOP SLAVE, RESET SLAVE and CHANGE MASTER TO did not cause implicit commits prior to

MariaDB 10.0.

1.1.1.9.9 Transaction Timeouts
MariaDB has always had the wait_timeout and interactive_timeout settings, which close connections after a certain period

of inactivity.

However, these are by default set to a long wait period. In situations where transactions may be started, but not committed

or rolled back, more granular control and a shorter timeout may be desirable so as to avoid locks being held for too long.

MariaDB 10.3 introduced three new variables to handle this situation.

idle_transaction_timeout (all transactions)

idle_write_transaction_timeout (write transactions - called idle_readwrite_transaction_timeout until MariaDB

10.3.2)

idle_readonly_transaction_timeout (read transactions)

These accept a time in seconds to time out, by closing the connection, transactions that are idle for longer than this period.

By default all are set to zero, or no timeout.

idle_transaction_timeout affects all transactions, idle_write_transaction_timeout affects write transactions only and

idle_readonly_transaction_timeout affects read transactions only. The latter two variables work independently. However, if

either is set along with idle_transaction_timeout, the settings for idle_write_transaction_timeout or

idle_readonly_transaction_timeout will take precedence.

Examples

SET SESSION idle_transaction_timeout=2;

BEGIN;

SELECT * FROM t;

Empty set (0.000 sec)

wait 3 seconds

SELECT * FROM t;

ERROR 2006 (HY000): MySQL server has gone away

SET SESSION idle_write_transaction_timeout=2;

BEGIN;

SELECT * FROM t;

Empty set (0.000 sec)

wait 3 seconds

SELECT * FROM t;

Empty set (0.000 sec)

INSERT INTO t VALUES(1);

wait 3 seconds

SELECT * FROM t;

ERROR 2006 (HY000): MySQL server has gone away

SET SESSION idle_transaction_timeout=2, SESSION idle_readonly_transaction_timeout=10;

BEGIN;

SELECT * FROM t;

Empty set (0.000 sec)

 ## wait 3 seconds

SELECT * FROM t;

Empty set (0.000 sec)

wait 11 seconds

SELECT * FROM t;

ERROR 2006 (HY000): MySQL server has gone away

1.1.1.9.10 UNLOCK TABLES

730/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/

Syntax

UNLOCK TABLES

Contents
1. Syntax

2. Description

Description
UNLOCK TABLES explicitly releases any table locks held by the current session. See LOCK TABLES for more information.

In addition to releasing table locks acquired by the LOCK TABLES statement, the UNLOCK TABLES statement also releases

the global read lock acquired by the FLUSH TABLES WITH READ LOCK statement. The FLUSH TABLES WITH READ LOCK

statement is very useful for performing backups. See FLUSH for more information about FLUSH TABLES WITH READ

LOCK .

1.1.1.9.11 WAIT and NOWAIT
Extended syntax so that it is possible to set innodb_lock_wait_timeout and lock_wait_timeout for the following statements:

Syntax

ALTER TABLE tbl_name [WAIT n|NOWAIT] ...

CREATE ... INDEX ON tbl_name (index_col_name, ...) [WAIT n|NOWAIT] ...

DROP INDEX ... [WAIT n|NOWAIT]

DROP TABLE tbl_name [WAIT n|NOWAIT] ...

LOCK TABLE ... [WAIT n|NOWAIT]

OPTIMIZE TABLE tbl_name [WAIT n|NOWAIT]

RENAME TABLE tbl_name [WAIT n|NOWAIT] ...

SELECT ... FOR UPDATE [WAIT n|NOWAIT]

SELECT ... LOCK IN SHARE MODE [WAIT n|NOWAIT]

TRUNCATE TABLE tbl_name [WAIT n|NOWAIT]

Description
The lock wait timeout can be explicitly set in the statement by using either WAIT n (to set the wait in seconds) or NOWAIT ,

in which case the statement will immediately fail if the lock cannot be obtained. WAIT 0 is equivalent to NOWAIT .

1.1.1.9.12 XA Transactions
Contents
1. Overview

2. Internal XA vs External XA

3. Transaction Coordinator Log

4. Syntax

5. XA RECOVER

6. Examples

7. Known Issues

1. MariaDB Galera Cluster

Overview
The MariaDB XA implementation is based on the X/Open CAE document Distributed Transaction Processing: The XA

Specification. This document is published by The Open Group and available at

http://www.opengroup.org/public/pubs/catalog/c193.htm .

XA transactions are designed to allow distributed transactions, where a transaction manager (the application) controls a

transaction which involves multiple resources. Such resources are usually DBMSs, but could be resources of any type. The

whole set of required transactional operations is called a global transaction. Each subset of operations which involve a

731/4161

http://www.opengroup.org/public/pubs/catalog/c193.htm

single resource is called a local transaction. XA used a 2-phases commit (2PC). With the first commit, the transaction

manager tells each resource to prepare an effective commit, and waits for a confirm message. The changes are not still

made effective at this point. If any of the resources encountered an error, the transaction manager will rollback the global

transaction. If all resources communicate that the first commit is successful, the transaction manager can require a second

commit, which makes the changes effective.

In MariaDB, XA transactions can only be used with storage engines that support them. At least InnoDB, TokuDB ,

SPIDER and MyRocks support them. For InnoDB, until MariaDB 10.2, XA transactions can be disabled by setting the

innodb_support_xa server system variable to 0. From MariaDB 10.3, XA transactions are always supported.

Like regular transactions, XA transactions create metadata locks on accessed tables.

XA transactions require REPEATABLE READ as a minimum isolation level. However, distributed transactions should

always use SERIALIZABLE.

Trying to start more than one XA transaction at the same time produces a 1400 error (SQLSTATE 'XAE09'). The same error

is produced when attempting to start an XA transaction while a regular transaction is in effect. Trying to start a regular

transaction while an XA transaction is in effect produces a 1399 error (SQLSTATE 'XAE07').

The statements that cause an implicit COMMIT for regular transactions produce a 1400 error (SQLSTATE 'XAE09') if a XA

transaction is in effect.

Internal XA vs External XA
XA transactions are an overloaded term in MariaDB. If a storage engine is XA-capable, it can mean one or both of these:

It supports MariaDB's internal two-phase commit API. This is transparent to the user. Sometimes this is called

"internal XA", since MariaDB's internal transaction coordinator log can handle coordinating these transactions.

It supports XA transactions, with the XA START , XA PREPARE , XA COMMIT , etc. statements. Sometimes this is

called "external XA", since it requires the use of an external transaction coordinator to use this feature properly.

Transaction Coordinator Log
If you have two or more XA-capable storage engines enabled, then a transaction coordinator log must be available.

There are currently two implementations of the transaction coordinator log:

Binary log-based transaction coordinator log

Memory-mapped file-based transaction coordinator log

If the binary log is enabled on a server, then the server will use the binary log-based transaction coordinator log. Otherwise,

it will use the memory-mapped file-based transaction coordinator log.

See Transaction Coordinator Log for more information.

Syntax

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER [FORMAT=['RAW'|'SQL']]

xid: gtrid [, bqual [, formatID]]

The interface to XA transactions is a set of SQL statements starting with XA . Each statement changes a transaction's

state, determining which actions it can perform. A transaction which does not exist is in the NON-EXISTING state.

XA START (or BEGIN) starts a transaction and defines its xid (a transaction identifier). The JOIN or RESUME keywords

have no effect. The new transaction will be in ACTIVE state.

The xid can have 3 components, though only the first one is mandatory. gtrid is a quoted string representing a global

transaction identifier. bqual is a quoted string representing a local transaction identifier. formatID is an unsigned integer

indicating the format used for the first two components; if not specified, defaults to 1. MariaDB does not interpret in any way

732/4161

https://mariadb.com/kb/en/tokudb/

these components, and only uses them to identify a transaction. xid s of transactions in effect must be unique.

XA END declares that the specified ACTIVE transaction is finished and it changes its state to IDLE . SUSPEND [FOR

MIGRATE] has no effect.

XA PREPARE prepares an IDLE transaction for commit, changing its state to PREPARED . This is the first commit.

XA COMMIT definitely commits and terminates a transaction which has already been PREPARED . If the ONE PHASE clause

is specified, this statements performs a 1-phase commit on an IDLE transaction.

XA ROLLBACK rolls back and terminates an IDLE or PREPARED transaction.

XA RECOVER shows information about all PREPARED transactions.

When trying to execute an operation which is not allowed for the transaction's current state, an error is produced:

XA COMMIT 'test' ONE PHASE;

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed when global transaction is in

the ACTIVE state

XA COMMIT 'test2';

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed when global transaction is in

the NON-EXISTING state

XA RECOVER
The XA RECOVER statement shows information about all transactions which are in the PREPARED state. It does not matter

which connection created the transaction: if it has been PREPARED , it appears. But this does not mean that a connection

can commit or rollback a transaction which was started by another connection. Note that transactions using a 1-phase

commit are never in the PREPARED state, so they cannot be shown by XA RECOVER .

XA RECOVER produces four columns:

XA RECOVER;

+----------+--------------+--------------+------+

| formatID | gtrid_length | bqual_length | data |

+----------+--------------+--------------+------+

| 1 | 4 | 0 | test |

+----------+--------------+--------------+------+

You can use XA RECOVER FORMAT='SQL' to get the data in a human readable form that can be directly copy-pasted

into XA COMMIT or XA ROLLBACK . This is particularly useful for binary xid generated by some transaction

coordinators.

formatID is the formatID part of xid .

data are the gtrid and bqual parts of xid , concatenated.

gtrid_length and bqual_length are the lengths of gtrid and bqual , respectevely.

Examples
2-phases commit:

XA START 'test';

INSERT INTO t VALUES (1,2);

XA END 'test';

XA PREPARE 'test';

XA COMMIT 'test';

1-phase commit:

MariaDB starting with 10.3.3

733/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

XA START 'test';

INSERT INTO t VALUES (1,2);

XA END 'test';

XA COMMIT 'test' ONE PHASE;

Human-readable:

xa start '12\r34\t67\v78', 'abc\ndef', 3;

insert t1 values (40);

xa end '12\r34\t67\v78', 'abc\ndef', 3;

xa prepare '12\r34\t67\v78', 'abc\ndef', 3;

xa recover format='RAW';

+----------+--------------+--------------+--------------------+

| formatID | gtrid_length | bqual_length | data |

+----------+--------------+--------------+--------------------+

34 67v78abc 11 | 7 | 12

def |

+----------+--------------+--------------+--------------------+

xa recover format='SQL';

+----------+--------------+--------------+---+

| formatID | gtrid_length | bqual_length | data |

+----------+--------------+--------------+---+

| 3 | 11 | 7 | X'31320d3334093637763738',X'6162630a646566',3 |

+----------+--------------+--------------+---+

xa rollback X'31320d3334093637763738',X'6162630a646566',3;

Known Issues

MariaDB Galera Cluster

MariaDB Galera Cluster does not support XA transactions.

However, MariaDB Galera Cluster builds include a built-in plugin called wsrep . Prior to MariaDB 10.4.3, this plugin was

internally considered an XA-capable storage engine. Consequently, these MariaDB Galera Cluster builds have multiple XA-

capable storage engines by default, even if the only "real" storage engine that supports external XA transactions enabled on

these builds by default is InnoDB. Therefore, when using one these builds MariaDB would be forced to use a transaction

coordinator log by default, which could have performance implications.

See Transaction Coordinator Log Overview: MariaDB Galera Cluster for more information.

1.1.1.9.13 READ COMMITTED
READ COMMITTED is one of the transaction isolation levels. Each consistent read, even within the same transaction, sets

and reads its own fresh snapshot.

See SET TRANSACTION#Isolation Levels for details.

1.1.1.9.14 READ UNCOMMITTED
READ UNCOMMITTED is one of the transaction isolation levels. SELECT statements are performed in a non-locking fashion,

but a possible earlier version of a row might be used

See SET TRANSACTION#Isolation Levels for details.

1.1.1.9.15 REPEATABLE READ
REPEATABLE READ is one of the transaction isolation levels. All consistent reads within the same transaction read the

734/4161

snapshot established by the first read.

See SET TRANSACTION#Isolation Levels for details.

1.1.1.9.16 SERIALIZABLE
SERIALIZABLE is one of the transaction isolation levels. Similar to REPEATABLE READ, but InnoDB implicitly converts all

plain SELECT statements to SELECT ... LOCK IN SHARE MODE if autocommit is disabled.

See SET TRANSACTION#Isolation Levels for details.

1.1.1.2.15 HELP Command

1.1.1.11 Comment Syntax
There are three supported comment styles in MariaDB:

1. From a ' # ' to the end of a line:

SELECT * FROM users; # This is a comment

2. From a ' -- ' to the end of a line. The space after the two dashes is required (as in MySQL).

SELECT * FROM users; -- This is a comment

3. C style comments from an opening ' /* ' to a closing ' */ '. Comments of this form can span multiple lines:

SELECT * FROM users; /* This is a

multi-line

comment */

Nested comments are possible in some situations, but they are not supported or recommended.

Executable Comments
As an aid to portability between different databases, MariaDB supports executable comments. These special comments

allow you to embed SQL code which will not execute when run on other databases, but will execute when run on MariaDB.

MariaDB supports both MySQL's executable comment format, and a slightly modified version specific to MariaDB. This way,

if you have SQL code that works on MySQL and MariaDB, but not other databases, you can wrap it in a MySQL executable

comment, and if you have code that specifically takes advantage of features only available in MariaDB you can use the

MariaDB specific format to hide the code from MySQL.

Executable Comment Syntax

MySQL and MariaDB executable comment syntax:

/*! MySQL or MariaDB-specific code */

Code that should be executed only starting from a specific MySQL or MariaDB version:

/*!##### MySQL or MariaDB-specific code */

The numbers, represented by ' ###### ' in the syntax examples above specify the specific the minimum versions of MySQL

and MariaDB that should execute the comment. The first number is the major version, the second 2 numbers are the minor

version and the last 2 is the patch level.

For example, if you want to embed some code that should only execute on MySQL or MariaDB starting from 5.1.0, you

would do the following:

/*!50100 MySQL and MariaDB 5.1.0 (and above) code goes here. */

MariaDB-only executable comment syntax (starting from MariaDB 5.3.1):

735/4161

https://mariadb.com/kb/en/mariadb-531-release-notes/

/*M! MariaDB-specific code */

/*M!###### MariaDB-specific code */

MariaDB ignores MySQL-style executable comments that have a version number in the range 50700..99999 . This is

needed to skip features introduced in MySQL-5.7 that are not ported to MariaDB 10.x yet.

/*!50701 MariaDB-10.x ignores MySQL-5.7 specific code */

Note: comments which have a version number in the range 50700..99999 that use MariaDB-style executable comment

syntax are still executed.

/*M!50701 MariaDB-10.x does not ignore this */

Statement delimiters cannot be used within executable comments.

Examples
In MySQL all the following will return 2: In MariaDB, the last 2 queries would return 3.

SELECT 2 /* +1 */;

SELECT 1 /*! +1 */;

SELECT 1 /*!50101 +1 */;

SELECT 2 /*M! +1 */;

SELECT 2 /*M!50301 +1 */;

The following executable statement will not work due to the delimiter inside the executable portion:

/*M!100100 select 1 ; */

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to

your MariaDB server version for the right syntax to use near '' at line 1

Instead, the delimiter should be placed outside the executable portion:

/*M!100100 select 1 */;

+---+

| 1 |

+---+

| 1 |

+---+

1.2 Built-in Functions

1.1.2 SQL Language Structure
SQL language structure rules.

Identifier Names

Naming rules for identifiers.

Identifier Case-sensitivity

Whether objects are case-sensitive or not is partly determined by the under...

Binary Literals

Binary literals can be written in one of the following formats.

Boolean Literals

True and false.

Date and Time Literals

Literals regarding date and time.

2

736/4161

Hexadecimal Literals

Hexadecimal literals can be written using any of the following syntaxes

Identifier Qualifiers

How to reference an object and its context in an SQL statement.

Identifier to File Name Mapping

Some identifiers map to a file name on the filesystem. Databases each have ...

MariaDB Error Code Reference

MariaDB error codes reference list.

Numeric Literals

Numeric literals are written as a sequence of digits from 0 to 9

Reserved Words

List of reserved words in MariaDB.

SQLSTATE

A string which identifies a condition's class and subclass

String Literals

Strings are sequences of characters and are enclosed with quotes.

Table Value Constructors

Documents adding arbitrary values to the result-set.

User-Defined Variables

Variables which exist within a session.

There are 5 related questions .

2

1

3

1

7

1.1.2.1 Identifier Names
Contents
1. Unquoted

2. Quoted

3. Further Rules

4. Quote Character

5. Maximum Length

6. Multiple Identifiers

7. Examples

Databases, tables, indexes, columns, aliases, views, stored routines, triggers, events, variables, partitions, tablespaces,

savepoints, labels, users, roles, are collectively known as identifiers, and have certain rules for naming.

Identifiers may be quoted using the backtick character - ` . Quoting is optional for identifiers that don't contain special

characters, or for identifiers that are not reserved words. If the ANSI_QUOTES SQL_MODE flag is set, double quotes (")

can also be used to quote identifiers. If the MSSQL flag is set, square brackets ([and]) can be used for quoting.

Even when using reserved words as names, fully qualified names do not need to be quoted. For example, test.select

has only one possible meaning, so it is correctly parsed even without quotes.

Unquoted

The following characters are valid, and allow identifiers to be unquoted:

ASCII: [0-9,a-z,A-Z$_] (numerals 0-9, basic Latin letters, both lowercase and uppercase, dollar sign, underscore)

Extended: U+0080 .. U+FFFF

Quoted

737/4161

https://mariadb.com/kb/en/sql-language-structure/+questions/

The following characters are valid, but identifiers using them must be quoted:

ASCII: U+0001 .. U+007F (full Unicode Basic Multilingual Plane (BMP) except for U+0000)

Extended: U+0080 .. U+FFFF

Identifier quotes can themselves be used as part of an identifier, as long as they are quoted.

Further Rules

There are a number of other rules for identifiers:

Identifiers are stored as Unicode (UTF-8)

Identifiers may or may not be case-sensitive. See Indentifier Case-sensitivity.

Database, table and column names can't end with space characters

Identifier names may begin with a numeral, but can't only contain numerals unless quoted.

An identifier starting with a numeral, followed by an 'e', may be parsed as a floating point number, and needs to be

quoted.

Identifiers are not permitted to contain the ASCII NUL character (U+0000) and supplementary characters (U+10000

and higher).

Names such as 5e6, 9e are not prohibited, but it's strongly recommended not to use them, as they could lead to

ambiguity in certain contexts, being treated as a number or expression.

User variables cannot be used as part of an identifier, or as an identifier in an SQL statement.

Quote Character

The regular quote character is the backtick character - ` , but if the ANSI_QUOTES SQL_MODE option is specified, a

regular double quote - " may be used as well.

The backtick character can be used as part of an identifier. In that case the identifier needs to be quoted. The quote

character can be the backtick, but in that case, the backtick in the name must be escaped with another backtick.

Maximum Length

Databases, tables, columns, indexes, constraints, stored routines, triggers, events, views, tablespaces, servers and

log file groups have a maximum length of 64 characters.

Compound statement labels have a maximum length of 16 characters

Aliases have a maximum length of 256 characters, except for column aliases in CREATE VIEW statements, which

are checked against the maximum column length of 64 characters (not the maximum alias length of 256 characters).

Users have a maximum length of 80 characters.

Roles have a maximum length of 128 characters.

Multi-byte characters do not count extra towards towards the character limit.

Multiple Identifiers

MariaDB allows the column name to be used on its own if the reference will be unambiguous, or the table name to be used

with the column name, or all three of the database, table and column names. A period is used to separate the identifiers,

and the period can be surrounded by spaces.

Examples

Using the period to separate identifiers:

738/4161

CREATE TABLE t1 (i int);

INSERT INTO t1(i) VALUES (10);

SELECT i FROM t1;

+------+

| i |

+------+

| 10 |

+------+

SELECT t1.i FROM t1;

+------+

| i |

+------+

| 10 |

+------+

SELECT test.t1.i FROM t1;

+------+

| i |

+------+

| 10 |

+------+

The period can be separated by spaces:

SELECT test . t1 . i FROM t1;

+------+

| i |

+------+

| 10 |

+------+

Resolving ambiguity:

CREATE TABLE t2 (i int);

SELECT i FROM t1 LEFT JOIN t2 ON t1.i=t2.i;

ERROR 1052 (23000): Column 'i' in field list is ambiguous

SELECT t1.i FROM t1 LEFT JOIN t2 ON t1.i=t2.i;

+------+

| i |

+------+

| 10 |

+------+

Creating a table with characters that require quoting:

CREATE TABLE 123% (i int);

ERROR 1064 (42000): You have an error in your SQL syntax;

 check the manual that corresponds to your MariaDB server version for the right syntax

 to use near '123% (i int)' at line 1

CREATE TABLE `123%` (i int);

Query OK, 0 rows affected (0.85 sec)

CREATE TABLE `TABLE` (i int);

Query OK, 0 rows affected (0.36 sec)

Using double quotes as a quoting character:

739/4161

CREATE TABLE "SELECT" (i int);

ERROR 1064 (42000): You have an error in your SQL syntax;

 check the manual that corresponds to your MariaDB server version for the right syntax

 to use near '"SELECT" (i int)' at line 1

SET sql_mode='ANSI_QUOTES';

Query OK, 0 rows affected (0.03 sec)

CREATE TABLE "SELECT" (i int);

Query OK, 0 rows affected (0.46 sec)

Using an identifier quote as part of an identifier name:

SHOW VARIABLES LIKE 'sql_mode';

+---------------+-------------+

| Variable_name | Value |

+---------------+-------------+

| sql_mode | ANSI_QUOTES |

+---------------+-------------+

CREATE TABLE "fg`d" (i int);

Query OK, 0 rows affected (0.34 sec)

Creating the table named * (Unicode number: U+002A) requires quoting.

CREATE TABLE `*` (a INT);

Floating point ambiguity:

CREATE TABLE 8984444cce5d (x INT);

Query OK, 0 rows affected (0.38 sec)

CREATE TABLE 8981e56cce5d (x INT);

ERROR 1064 (42000): You have an error in your SQL syntax;

 check the manual that corresponds to your MariaDB server version for the right syntax

 to use near '8981e56cce5d (x INT)' at line 1

CREATE TABLE `8981e56cce5d` (x INT);

Query OK, 0 rows affected (0.39 sec)

1.1.2.2 Identifier Case-sensitivity
Whether objects are case-sensitive or not is partly determined by the underlying operating system. Unix-based systems are

case-sensitive, Windows is not, while Mac OS X is usually case-insensitive by default, but devices can be configured as

case-sensitive using Disk Utility.

Database, table, table aliases and trigger names are affected by the systems case-sensitivity, while index, column, column

aliases, stored routine and event names are never case sensitive.

Log file group name are case sensitive.

The lower_case_table_names server system variable plays a key role. It determines whether table names, aliases and

database names are compared in a case-sensitive manner. If set to 0 (the default on Unix-based systems), table names

and aliases and database names are compared in a case-sensitive manner. If set to 1 (the default on Windows), names are

stored in lowercase and not compared in a case-sensitive manner. If set to 2 (the default on Mac OS X), names are stored

as declared, but compared in lowercase.

It is thus possible to make Unix-based systems behave like Windows and ignore case-sensitivity, but the reverse is not true,

as the underlying Windows filesystem can not support this.

Even on case-insensitive systems, you are required to use the same case consistently within the same statement. The

following statement fails, as it refers to the table name in a different case.

SELECT * FROM a_table WHERE A_table.id>10;

For a full list of identifier naming rules, see Identifier Names.

Please note that lower_case_table_names is a database initialization parameter. This means that, along with

innodb_page_size, this variable must be set before running mariadb-install-db, and will not change the behavior of servers
740/4161

unless applied before the creation of core system databases.

1.1.2.3 Binary Literals
Binary literals can be written in one of the following formats: b'value' , B'value' or 0bvalue , where value is a string

composed by 0 and 1 digits.

Binary literals are interpreted as binary strings, and are convenient to represent VARBINARY, BINARY or BIT values.

To convert a binary literal into an integer, just add 0.

Examples
Printing the value as a binary string:

SELECT 0b1000001;

+-----------+

| 0b1000001 |

+-----------+

| A |

+-----------+

Converting the same value into a number:

SELECT 0b1000001+0;

+-------------+

| 0b1000001+0 |

+-------------+

| 65 |

+-------------+

1.1.2.4 Boolean Literals
In MariaDB, FALSE is a synonym of 0 and TRUE is a synonym of 1. These constants are case insensitive, so TRUE ,

True , and true are equivalent.

These terms are not synonyms of 0 and 1 when used with the IS operator. So, for example, 10 IS TRUE returns 1, while

10 = TRUE returns 0 (because 1 != 10).

The IS operator accepts a third constant exists: UNKNOWN . It is always a synonym of NULL.

TRUE and FALSE are reserved words, while UNKNOWN is not.

1.1.2.5 Date and Time Literals
Contents
1. Standard syntaxes

2. DATE literals

3. DATETIME literals

4. TIME literals

5. 2-digit years

6. Microseconds

7. Date and time literals and the SQL_MODE

Standard syntaxes
MariaDB supports the SQL standard and ODBC syntaxes for DATE, TIME and TIMESTAMP literals.

SQL standard syntax:

DATE 'string'

TIME 'string'

TIMESTAMP 'string'

ODBC syntax:

741/4161

{d 'string'}

{t 'string'}

{ts 'string'}

The timestamp literals are treated as DATETIME literals, because in MariaDB the range of DATETIME is closer to the

TIMESTAMP range in the SQL standard.

string is a string in a proper format, as explained below.

DATE literals

A DATE string is a string in one of the following formats: 'YYYY-MM-DD' or 'YY-MM-DD' . Note that any punctuation

character can be used as delimiter. All delimiters must consist of 1 character. Different delimiters can be used in the same

string. Delimiters are optional (but if one delimiter is used, all delimiters must be used).

A DATE literal can also be an integer, in one of the following formats: YYYYMMDD or YYMMDD .

All the following DATE literals are valid, and they all represent the same value:

'19940101'

'940101'

'1994-01-01'

'94/01/01'

'1994-01/01'

'94:01!01'

19940101

940101

DATETIME literals

A DATETIME string is a string in one of the following formats: 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' . Note

that any punctuation character can be used as delimiter for the date part and for the time part. All delimiters must consist of 1

character. Different delimiters can be used in the same string. The hours, minutes and seconds parts can consist of one

character. For this reason, delimiters are mandatory for DATETIME literals.

The delimiter between the date part and the time part can be a T or any sequence of space characters (including tabs, new

lines and carriage returns).

A DATETIME literal can also be a number, in one of the following formats: YYYYMMDDHHMMSS , YYMMDDHHMMSS , YYYYMMDD

or YYMMDD . In this case, all the time subparts must consist of 2 digits.

All the following DATE literals are valid, and they all represent the same value:

'1994-01-01T12:30:03'

'1994/01/01\n\t 12+30+03'

'1994/01\\01\n\t 12+30-03'

'1994-01-01 12:30:3'

TIME literals

A TIME string is a string in one of the following formats: 'D HH:MM:SS' , 'HH:MM:SS , 'D HH:MM' , 'HH:MM' , 'D

HH' , or 'SS' . D is a value from 0 to 34 which represents days. : is the only allowed delimiter for TIME literals.

Delimiters are mandatory, with an exception: the 'HHMMSS' format is allowed. When delimiters are used, each part of the

literal can consist of one character.

A TIME literal can also be a number in one of the following formats: HHMMSS , MMSS , or SS .

The following literals are equivalent:

'09:05:00'

'9:05:0'

'9:5:0'

'090500'

- 2-digit years

742/4161

The year part in DATE and DATETIME literals is determined as follows:

70 - 99 = 1970 - 1999

00 - 69 = 2000 - 2069

Microseconds
DATETIME and TIME literals can have an optional microseconds part. For both string and numeric forms, it is expressed as

a decimal part. Up to 6 decimal digits are allowed. Examples:

'12:30:00.123456'

123000.123456

See Microseconds in MariaDB for details.

Date and time literals and the SQL_MODE
Unless the SQL_MODE NO_ZERO_DATE flag is set, some special values are allowed: the '0000-00-00' DATE , the

'00:00:00' TIME , and the 0000-00-00 00:00:00 DATETIME .

If the ALLOW_INVALID_DATES flag is set, the invalid dates (for example, 30th February) are allowed. If not, if the

NO_ZERO_DATE is set, an error is produced; otherwise, a zero-date is returned.

Unless the NO_ZERO_IN_DATE flag is set, each subpart of a date or time value (years, hours...) can be set to 0.

1.1.2.6 Hexadecimal Literals
Contents
1. Examples

1. Fun with Types

2. Differences Between MariaDB and MySQL

Hexadecimal literals can be written using any of the following syntaxes:

x' value '

X' value ' (SQL standard)

0x value (ODBC)

value is a sequence of hexadecimal digits (from 0 to 9 and from A to F). The case of the digits does not matter. With

the first two syntaxes, value must consist of an even number of digits. With the last syntax, digits can be even, and they

are treated as if they had an extra 0 at the beginning.

Normally, hexadecimal literals are interpreted as binary string, where each pair of digits represents a character. When used

in a numeric context, they are interpreted as integers. (See the example below). In no case can a hexadecimal literal be a

decimal number.

The first two syntaxes; X'value' and x' value , follow the SQL standard, and behave as a string in all contexts in

MariaDB since MariaDB 10.0.3 and MariaDB 5.5.31 (fixing MDEV-4489). The latter syntax, 0x value , is a

MySQL/MariaDB extension for hex hybrids and behaves as a string or as a number depending on context. MySQL treats all

syntaxes the same, so there may be different results in MariaDB and MySQL (see below).

Examples
Representing the a character with the three syntaxes explained above:

SELECT x'61', X'61', 0x61;

+-------+-------+------+

| x'61' | X'61' | 0x61 |

+-------+-------+------+

| a | a | a |

+-------+-------+------+

Hexadecimal literals in a numeric context:

743/4161

https://mariadb.com/kb/en/mariadb-1003-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://jira.mariadb.org/browse/MDEV-4489

SELECT 0 + 0xF, -0xF;

+---------+------+

| 0 + 0xF | -0xF |

+---------+------+

| 15 | -15 |

+---------+------+

Fun with Types

CREATE TABLE t1 (a INT, b VARCHAR(10));

INSERT INTO t1 VALUES (0x31, 0x61),(COALESCE(0x31), COALESCE(0x61));

SELECT * FROM t1;

+------+------+

| a | b |

+------+------+

| 49 | a |

| 1 | a |

+------+------+

The reason for the differing results above is that when 0x31 is inserted directly to the column, it's treated as a number, while

when 0x31 is passed to COALESCE(), it's treated as a string, because:

HEX values have a string data type by default.

COALESCE() has the same data type as the argument.

Differences Between MariaDB and MySQL

SELECT x'0a'+0;

+---------+

| x'0a'+0 |

+---------+

| 0 |

+---------+

1 row in set, 1 warning (0.00 sec)

Warning (Code 1292): Truncated incorrect DOUBLE value: '\x0A'

SELECT X'0a'+0;

+---------+

| X'0a'+0 |

+---------+

| 0 |

+---------+

1 row in set, 1 warning (0.00 sec)

Warning (Code 1292): Truncated incorrect DOUBLE value: '\x0A'

SELECT 0x0a+0;

+--------+

| 0x0a+0 |

+--------+

| 10 |

+--------+

In MySQL (up until at least MySQL 8.0.26):

744/4161

SELECT x'0a'+0;

+---------+

| x'0a'+0 |

+---------+

| 10 |

+---------+

SELECT X'0a'+0;

+---------+

| X'0a'+0 |

+---------+

| 10 |

+---------+

SELECT 0x0a+0;

+--------+

| 0x0a+0 |

+--------+

| 10 |

+--------+

1.1.2.7 Identifier Qualifiers
Contents

Qualifiers are used within SQL statements to reference data structures, such as databases, tables, or columns. For

example, typically a SELECT query contains references to some columns and at least one table.

Qualifiers can be composed by one or more identifiers, where the initial parts affect the context within which the final

identifier is interpreted:

For a database, only the database identifier needs to be specified.

For objects which are contained in a database (like tables, views, functions, etc) the database identifier can be

specified. If no database is specified, the current database is assumed (see USE and DATABASE() for more details).

If there is no default database and no database is specified, an error is issued.

For column names, the table and the database are generally obvious from the context of the statement. It is however

possible to specify the table identifier, or the database identifier plus the table identifier.

An identifier is fully-qualified if it contains all possible qualifiers, for example, the following column is fully qualified:

db_name.tbl_name.col_name .

If a qualifier is composed by more than one identifier, a dot (.) must be used as a separator. All identifiers can be quoted

individually. Extra spacing (including new lines and tabs) is allowed.

All the following examples are valid:

db_name.tbl_name.col_name

tbl_name

`db_name`.`tbl_name`.`col_name`

`db_name` . `tbl_name`

db_name. tbl_name

If a table identifier is prefixed with a dot (.), the default database is assumed. This syntax is supported for ODBC

compliance, but has no practical effect on MariaDB. These qualifiers are equivalent:

tbl_name

. tbl_name

.`tbl_name`

. `tbl_name`

For DML statements, it is possible to specify a list of the partitions using the PARTITION clause. See Partition Pruning and

Selection for details.

1.1.2.8 Identifier to File Name Mapping
Some identifiers map to a file name on the filesystem. Databases each have their own directory, while, depending on the

storage engine, table names and index names may map to a file name.

Not all characters that are allowed in table names can be used in file names. Every filesystem has its own rules of what

characters can be used in file names. To let the user create tables using all characters allowed in the SQL Standard and to

not depend on whatever particular filesystem a particular database resides, MariaDB encodes "potentially unsafe"

745/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/storage-engine

characters in the table name to derive the corresponding file name.

This is implemented using a special character set. MariaDB converts a table name to the "filename" character set to get the

file name for this table. And it converts the file name from the "filename" character set to, for example, utf8 to get the table

name for this file name.

The conversion rules are as follows: if the identifier is made up only of basic Latin numbers, letters and/or the underscore

character, the encoding matches the name (see however Identifier Case Sensitivity). Otherwise they are encoded according

to the following table:

Code Range Pattern Number Used Unused Blocks

00C0..017F [@][0..4][g..z] 5*20= 100 97 3 Latin-1 Supplement + Latin Extended-A

0370..03FF [@][5..9][g..z] 5*20= 100 88 12 Greek and Coptic

0400..052F [@][g..z][0..6] 20*7= 140 137 3 Cyrillic + Cyrillic Supplement

0530..058F [@][g..z][7..8] 20*2= 40 38 2 Armenian

2160..217F [@][g..z][9] 20*1= 20 16 4 Number Forms

0180..02AF [@][g..z][a..k] 20*11=220 203 17 Latin Extended-B + IPA Extensions

1E00..1EFF [@][g..z][l..r] 20*7= 140 136 4 Latin Extended Additional

1F00..1FFF [@][g..z][s..z] 20*8= 160 144 16 Greek Extended

.... [@][a..f][g..z] 6*20= 120 0 120 RESERVED

24B6..24E9 [@][@][a..z] 26 26 0 Enclosed Alphanumerics

FF21..FF5A [@][a..z][@] 26 26 0 Halfwidth and Fullwidth forms

Code Range values are UCS-2.

All of this encoding happens transparently at the filesystem level with one exception. Until MySQL 5.1.6, an old encoding

was used. Identifiers created in a version before MySQL 5.1.6, and which haven't been updated to the new encoding, the

server prefixes mysql50 to their name.

Examples

Find the file name for a table with a non-Latin1 name:

select cast(convert("this_is_F45?<F4" USING filename) as binary);

+--+

| cast(convert("this_is_F45?<F4" USING filename) as binary) |

+--+

| this_is_@y0@g0@h0@r0@o0@i1@g0 |

+--+

Find the table name for a file name:

select convert(_filename "this_is_@y0@g0@h0@r0@o0@i1@g0" USING utf8);

+---+

| convert(_filename "this_is_@y0@g0@h0@r0@o0@i1@g0" USING utf8) |

+---+

| this_is_F45?<F4 |

+---+

An old table created before MySQL 5.1.6, with the old encoding:

SHOW TABLES;

+--------------------+

| Tables_in_test |

+--------------------+

| #mysql50#table@1 |

+--------------------+

The prefix needs to be supplied to reference this table:

746/4161

SHOW COLUMNS FROM `table@1`;

ERROR 1146 (42S02): Table 'test.table@1' doesn't exist

SHOW COLUMNS FROM `#mysql50#table@1`;

+-------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-------+

| i | int(11) | YES | | NULL | |

+-------+---------+------+-----+---------+-------+

1.1.2.9 MariaDB Error Code Reference
MariaDB shares error codes with MySQL, as well as adding a number of new error codes specific to MariaDB.

An example of an error code is as follows:

SELECT * FROM x;

ERROR 1046 (3D000): No database selected

Contents
1. Shared MariaDB/MySQL error codes

2. MariaDB-specific error codes

There are three pieces of information returned in an error:

A numeric error code, in this case 1046 . Error codes from 1900 and up are specific to MariaDB, while error codes

from 1000 to 1800 are shared by MySQL and MariaDB.

An SQLSTATE value, consisting of five characters, in this case 3D000 . These codes are standard to ODBC and

ANSI SQL. When MariaDB cannot allocate a standard SQLSTATE code, a generic HY000 , or general error, is used.

A string describing the error, in this case No database selected .

New error codes are being continually being added as new features are added. For a definitive list, see the file

sql/share/errmsg-utf8.txt , as well as include/mysqld_error.h in the build directory, generated by the

comp_err tool. Also, the perror tool can be used to get the error message which is associated with a given error code.

Shared MariaDB/MySQL error codes

Error

Code
SQLSTATE Error Description

1000 HY000 ER_HASHCHK hashchk

1001 HY000 ER_NISAMCHK isamchk

1002 HY000 ER_NO NO

1003 HY000 ER_YES YES

1004 HY000 ER_CANT_CREATE_FILE Can't create file '%s' (errno: %d)

1005 HY000 ER_CANT_CREATE_TABLE Can't create table '%s' (errno: %d)

1006 HY000 ER_CANT_CREATE_DB Can't create database '%s' (errno: %d)

1007 HY000 ER_DB_CREATE_EXISTS Can't create database '%s'; database exists

1008 HY000 ER_DB_DROP_EXISTS Can't drop database '%s'; database doesn't exist

1009 HY000 ER_DB_DROP_DELETE Error dropping database (can't delete '%s', errno: %d)

1010 HY000 ER_DB_DROP_RMDIR Error dropping database (can't rmdir '%s', errno: %d)

1011 HY000 ER_CANT_DELETE_FILE Error on delete of '%s' (errno: %d)

1012 HY000 ER_CANT_FIND_SYSTEM_REC Can't read record in system table

1013 HY000 ER_CANT_GET_STAT Can't get status of '%s' (errno: %d)

1014 HY000 ER_CANT_GET_WD Can't get working directory (errno: %d)

1015 HY000 ER_CANT_LOCK Can't lock file (errno: %d)

747/4161

1016 HY000 ER_CANT_OPEN_FILE Can't open file: '%s' (errno: %d)

1017 HY000 ER_FILE_NOT_FOUND Can't find file: '%s' (errno: %d)

1018 HY000 ER_CANT_READ_DIR Can't read dir of '%s' (errno: %d)

1019 HY000 ER_CANT_SET_WD Can't change dir to '%s' (errno: %d)

1020 HY000 ER_CHECKREAD Record has changed since last read in table '%s'

1021 HY000 ER_DISK_FULL Disk full (%s); waiting for someone to free some space...

1022 23000 ER_DUP_KEY Can't write; duplicate key in table '%s'

1023 HY000 ER_ERROR_ON_CLOSE Error on close of '%s' (errno: %d)

1024 HY000 ER_ERROR_ON_READ Error reading file '%s' (errno: %d)

1025 HY000 ER_ERROR_ON_RENAME Error on rename of '%s' to '%s' (errno: %d)

1026 HY000 ER_ERROR_ON_WRITE Error writing file '%s' (errno: %d)

1027 HY000 ER_FILE_USED '%s' is locked against change

1028 HY000 ER_FILSORT_ABORT Sort aborted

1029 HY000 ER_FORM_NOT_FOUND View '%s' doesn't exist for '%s'

1030 HY000 ER_GET_ERRN Got error %d from storage engine

1031 HY000 ER_ILLEGAL_HA Table storage engine for '%s' doesn't have this option

1032 HY000 ER_KEY_NOT_FOUND Can't find record in '%s'

1033 HY000 ER_NOT_FORM_FILE Incorrect information in file: '%s'

1034 HY000 ER_NOT_KEYFILE Incorrect key file for table '%s'; try to repair it

1035 HY000 ER_OLD_KEYFILE Old key file for table '%s'; repair it!

1036 HY000 ER_OPEN_AS_READONLY Table '%s' is read only

1037 HY001 ER_OUTOFMEMORY
Out of memory; restart server and try again (needed %d

bytes)

1038 HY001 ER_OUT_OF_SORTMEMORY
Out of sort memory, consider increasing server sort

buffer size

1039 HY000 ER_UNEXPECTED_EOF
Unexpected EOF found when reading file '%s' (Errno:

%d)

1040 08004 ER_CON_COUNT_ERROR Too many connections

1041 HY000 ER_OUT_OF_RESOURCES

Out of memory; check if mysqld or some other process

uses all available memory; if not, you may have to use

'ulimit' to allow mysqld to use more memory or you can

add more swap space

1042 08S01 ER_BAD_HOST_ERROR Can't get hostname for your address

1043 08S01 ER_HANDSHAKE_ERROR Bad handshake

1044 42000 ER_DBACCESS_DENIED_ERROR Access denied for user '%s'@'%s' to database '%s'

1045 28000 ER_ACCESS_DENIED_ERROR Access denied for user '%s'@'%s' (using password: %s)

1046 3D000 ER_NO_DB_ERROR No database selected

1047 08S01 ER_UNKNOWN_COM_ERROR Unknown command

1048 23000 ER_BAD_NULL_ERROR Column '%s' cannot be null

1049 42000 ER_BAD_DB_ERROR Unknown database '%s'

1050 42S01 ER_TABLE_EXISTS_ERROR Table '%s' already exists

1051 42S02 ER_BAD_TABLE_ERROR Unknown table '%s'

1052 23000 ER_NON_UNIQ_ERROR Column '%s' in %s is ambiguous

1053 08S01 ER_SERVER_SHUTDOWN Server shutdown in progress

1054 42S22 ER_BAD_FIELD_ERROR Unknown column '%s' in '%s'

748/4161

1055 42000 ER_WRONG_FIELD_WITH_GROUP '%s' isn't in GROUP BY

1056 42000 ER_WRONG_GROUP_FIELD Can't group on '%s'

1057 42000 ER_WRONG_SUM_SELECT
Statement has sum functions and columns in same

statement

1058 21S01 ER_WRONG_VALUE_COUNT Column count doesn't match value count

1059 42000 ER_TOO_LONG_IDENT Identifier name '%s' is too long

1060 42S21 ER_DUP_FIELDNAME Duplicate column name '%s'

1061 42000 ER_DUP_KEYNAME Duplicate key name '%s'

1062 23000 ER_DUP_ENTRY Duplicate entry '%s' for key %d

1063 42000 ER_WRONG_FIELD_SPEC Incorrect column specifier for column '%s'

1064 42000 ER_PARSE_ERROR %s near '%s' at line %d

1065 42000 ER_EMPTY_QUERY Query was empty

1066 42000 ER_NONUNIQ_TABLE Not unique table/alias: '%s'

1067 42000 ER_INVALID_DEFAULT Invalid default value for '%s'

1068 42000 ER_MULTIPLE_PRI_KEY
Multiple primary key defined

1069 42000 ER_TOO_MANY_KEYS Too many keys specified; max %d keys allowed

1070 42000 ER_TOO_MANY_KEY_PARTS Too many key parts specified; max %d parts allowed

1071 42000 ER_TOO_LONG_KEY Specified key was too long; max key length is %d bytes

1072 42000 ER_KEY_COLUMN_DOES_NOT_EXITS Key column '%s' doesn't exist in table

1073 42000 ER_BLOB_USED_AS_KEY
BLOB column '%s' can't be used in key specification

with the used table type

1074 42000 ER_TOO_BIG_FIELDLENGTH
Column length too big for column '%s' (max = %lu); use

BLOB or TEXT instead

1075 42000 ER_WRONG_AUTO_KEY
Incorrect table definition; there can be only one auto

column and it must be defined as a key

1076 HY000 ER_READY
%s: ready for connections. Version: '%s' socket: '%s'

port: %d

1077 HY000 ER_NORMAL_SHUTDOWN %s: Normal shutdown

1078 HY000 ER_GOT_SIGNAL %s: Got signal %d. Aborting!

1079 HY000 ER_SHUTDOWN_COMPLETE %s: Shutdown complete

1080 08S01 ER_FORCING_CLOSE %s: Forcing close of thread %ld user: '%s'

1081 08S01 ER_IPSOCK_ERROR Can't create IP socket

1082 42S12 ER_NO_SUCH_INDEX
Table '%s' has no index like the one used in CREATE

INDEX; recreate the table

1083 42000 ER_WRONG_FIELD_TERMINATORS
Field separator argument is not what is expected; check

the manual

1084 42000 ER_BLOBS_AND_NO_TERMINATED
You can't use fixed rowlength with BLOBs; please use

'fields terminated by'

1085 HY000 ER_TEXTFILE_NOT_READABLE
The file '%s' must be in the database directory or be

readable by all

1086 HY000 ER_FILE_EXISTS_ERROR File '%s' already exists

1087 HY000 ER_LOAD_INF Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

1088 HY000 ER_ALTER_INF Records: %ld Duplicates: %ld

1089 HY000 ER_WRONG_SUB_KEY

Incorrect prefix key; the used key part isn't a string, the

used length is longer than the key part, or the storage

engine doesn't support unique prefix keys

749/4161

1090 42000 ER_CANT_REMOVE_ALL_FIELDS
You can't delete all columns with ALTER TABLE; use

DROP TABLE instead

1091 42000 ER_CANT_DROP_FIELD_OR_KEY Can't DROP '%s'; check that column/key exists

1092 HY000 ER_INSERT_INF Records: %ld Duplicates: %ld Warnings: %ld

1093 HY000 ER_UPDATE_TABLE_USED
You can't specify target table '%s' for update in FROM

clause

1094 HY000 ER_NO_SUCH_THREAD Unknown thread id: %lu

1095 HY000 ER_KILL_DENIED_ERROR You are not owner of thread %lu

1096 HY000 ER_NO_TABLES_USED No tables used

1097 HY000 ER_TOO_BIG_SET Too many strings for column %s and SET

1098 HY000 ER_NO_UNIQUE_LOGFILE Can't generate a unique log-filename %s.(1-999)

1099 HY000 ER_TABLE_NOT_LOCKED_FOR_WRITE
Table '%s' was locked with a READ lock and can't be

updated

Error

Code
SQLSTATE Error Description

1100 HY000 ER_TABLE_NOT_LOCKED
Table '%s' was not locked with LOCK

TABLES

1101 ER_UNUSED_17 You should never see it

1102 42000 ER_WRONG_DB_NAME Incorrect database name '%s'

1103 42000 ER_WRONG_TABLE_NAME Incorrect table name '%s'

1104 42000 ER_TOO_BIG_SELECT

The SELECT would examine more than

MAX_JOIN_SIZE rows; check your WHERE

and use SET SQL_BIG_SELECTS=1 or SET

MAX_JOIN_SIZE=# if the SELECT is okay

1105 HY000 ER_UNKNOWN_ERROR Unknown error

1106 42000 ER_UNKNOWN_PROCEDURE Unknown procedure '%s'

1107 42000 ER_WRONG_PARAMCOUNT_TO_PROCEDURE Incorrect parameter count to procedure '%s'

1108 HY000 ER_WRONG_PARAMETERS_TO_PROCEDURE Incorrect parameters to procedure '%s'

1109 42S02 ER_UNKNOWN_TABLE Unknown table '%s' in %s

1110 42000 ER_FIELD_SPECIFIED_TWICE Column '%s' specified twice

1111 HY000 ER_INVALID_GROUP_FUNC_USE Invalid use of group function

1112 42000 ER_UNSUPPORTED_EXTENSION
Table '%s' uses an extension that doesn't

exist in this MariaDB version

1113 42000 ER_TABLE_MUST_HAVE_COLUMNS A table must have at least 1 column

1114 HY000 ER_RECORD_FILE_FULL The table '%s' is full

1115 42000 ER_UNKNOWN_CHARACTER_SET Unknown character set: '%s'

1116 HY000 ER_TOO_MANY_TABLES
Too many tables; MariaDB can only use %d

tables in a join

1117 HY000 ER_TOO_MANY_FIELDS Too many columns

1118 42000 ER_TOO_BIG_ROWSIZE

Row size too large. The maximum row size

for the used table type, not counting BLOBs,

is %ld. You have to change some columns to

TEXT or BLOBs

1119 HY000 ER_STACK_OVERRUN

Thread stack overrun: Used: %ld of a %ld

stack. Use 'mysqld --thread_stack=#' to

specify a bigger stack if needed

1120 42000 ER_WRONG_OUTER_JOIN
Cross dependency found in OUTER JOIN;

examine your ON conditions

750/4161

1121 42000 ER_NULL_COLUMN_IN_INDEX

Table handler doesn't support NULL in given

index. Please change column '%s' to be NOT

NULL or use another handler

1122 HY000 ER_CANT_FIND_UDF Can't load function '%s'

1123 HY000 ER_CANT_INITIALIZE_UDF Can't initialize function '%s'; %s

1124 HY000 ER_UDF_NO_PATHS No paths allowed for shared library

1125 HY000 ER_UDF_EXISTS Function '%s' already exists

1126 HY000 ER_CANT_OPEN_LIBRARY
Can't open shared library '%s' (Errno: %d

%s)

1127 HY000 ER_CANT_FIND_DL_ENTRY Can't find symbol '%s' in library

1128 HY000 ER_FUNCTION_NOT_DEFINED Function '%s' is not defined

1129 HY000 ER_HOST_IS_BLOCKED

Host '%s' is blocked because of many

connection errors; unblock with 'mysqladmin

flush-hosts'

1130 HY000 ER_HOST_NOT_PRIVILEGED
Host '%s' is not allowed to connect to this

MariaDB server

1131 42000 ER_PASSWORD_ANONYMOUS_USER

You are using MariaDB as an anonymous

user and anonymous users are not allowed to

change passwords

1132 42000 ER_PASSWORD_NOT_ALLOWED

You must have privileges to update tables in

the mysql database to be able to change

passwords for others

1133 42000 ER_PASSWORD_NO_MATCH Can't find any matching row in the user table

1134 HY000 ER_UPDATE_INF
Rows matched: %ld Changed: %ld Warnings:

%ld

1135 HY000 ER_CANT_CREATE_THREAD

Can't create a new thread (Errno %d); if you

are not out of available memory, you can

consult the manual for a possible OS-

dependent bug

1136 21S01 ER_WRONG_VALUE_COUNT_ON_ROW
Column count doesn't match value count at

row %ld

1137 HY000 ER_CANT_REOPEN_TABLE Can't reopen table: '%s'

1138 22004 ER_INVALID_USE_OF_NULL Invalid use of NULL value

1139 42000 ER_REGEXP_ERROR Got error '%s' from regexp

1140 42000 ER_MIX_OF_GROUP_FUNC_AND_FIELDS

Mixing of GROUP columns

(MIN(),MAX(),COUNT(),...) with no GROUP

columns is illegal if there is no GROUP BY

clause

1141 42000 ER_NONEXISTING_GRANT
There is no such grant defined for user '%s'

on host '%s'

1142 42000 ER_TABLEACCESS_DENIED_ERROR
%s command denied to user '%s'@'%s' for

table '%s'

1143 42000 ER_COLUMNACCESS_DENIED_ERROR
%s command denied to user '%s'@'%s' for

column '%s' in table '%s'

1144 42000 ER_ILLEGAL_GRANT_FOR_TABLE

Illegal GRANT/REVOKE command; please

consult the manual to see which privileges

can be used

1145 42000 ER_GRANT_WRONG_HOST_OR_USER
The host or user argument to GRANT is too

long

1146 42S02 ER_NO_SUCH_TABLE Table '%s.%s' doesn't exist

1147 42000 ER_NONEXISTING_TABLE_GRANT
There is no such grant defined for user '%s'

on host '%s' on table '%s'

751/4161

1148 42000 ER_NOT_ALLOWED_COMMAND
The used command is not allowed with this

MariaDB version

1149 42000 ER_SYNTAX_ERROR

You have an error in your SQL syntax; check

the manual that corresponds to your MariaDB

server version for the right syntax to use

1150 HY000 ER_DELAYED_CANT_CHANGE_LOCK
Delayed insert thread couldn't get requested

lock for table %s

1151 HY000 ER_TOO_MANY_DELAYED_THREADS Too many delayed threads in use

1152 08S01 ER_ABORTING_CONNECTION
Aborted connection %ld to db: '%s' user: '%s'

(%s)

1153 08S01 ER_NET_PACKET_TOO_LARGE
Got a packet bigger than

'max_allowed_packet' bytes

1154 08S01 ER_NET_READ_ERROR_FROM_PIPE Got a read error from the connection pipe

1155 08S01 ER_NET_FCNTL_ERROR Got an error from fcntl()

1156 08S01 ER_NET_PACKETS_OUT_OF_ORDER Got packets out of order

1157 08S01 ER_NET_UNCOMPRESS_ERROR Couldn't uncompress communication packet

1158 08S01 ER_NET_READ_ERROR Got an error reading communication packets

1159 08S01 ER_NET_READ_INTERRUPTED Got timeout reading communication packets

1160 08S01 ER_NET_ERROR_ON_WRITE Got an error writing communication packets

1161 08S01 ER_NET_WRITE_INTERRUPTED Got timeout writing communication packets

1162 42000 ER_TOO_LONG_STRING
Result string is longer than

'max_allowed_packet' bytes

1163 42000 ER_TABLE_CANT_HANDLE_BLOB
The used table type doesn't support

BLOB/TEXT columns

1164 42000 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT
The used table type doesn't support

AUTO_INCREMENT columns

1165 HY000 ER_DELAYED_INSERT_TABLE_LOCKED
INSERT DELAYED can't be used with table

'%s' because it is locked with LOCK TABLES

1166 42000 ER_WRONG_COLUMN_NAME Incorrect column name '%s'

1167 42000 ER_WRONG_KEY_COLUMN
The used storage engine can't index column

'%s'

1168 HY000 ER_WRONG_MRG_TABLE

Unable to open underlying table which is

differently defined or of non-MyISAM type or

doesn't exist

1169 23000 ER_DUP_UNIQUE
Can't write, because of unique constraint, to

table '%s'

1170 42000 ER_BLOB_KEY_WITHOUT_LENGTH
BLOB/TEXT column '%s' used in key

specification without a key length

1171 42000 ER_PRIMARY_CANT_HAVE_NULL

All parts of a PRIMARY KEY must be NOT

NULL; if you need NULL in a key, use

UNIQUE instead

1172 42000 ER_TOO_MANY_ROWS Result consisted of more than one row

1173 42000 ER_REQUIRES_PRIMARY_KEY This table type requires a primary key

1174 HY000 ER_NO_RAID_COMPILED
This version of MariaDB is not compiled with

RAID support

1175 HY000 ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE

You are using safe update mode and you

tried to update a table without a WHERE that

uses a KEY column

1176 42000 ER_KEY_DOES_NOT_EXITS Key '%s' doesn't exist in table '%s'

1177 42000 ER_CHECK_NO_SUCH_TABLE Can't open table

752/4161

1178 42000 ER_CHECK_NOT_IMPLEMENTED
The storage engine for the table doesn't

support %s

1179 25000 ER_CANT_DO_THIS_DURING_AN_TRANSACTION
You are not allowed to execute this

command in a transaction

1180 HY000 ER_ERROR_DURING_COMMIT Got error %d during COMMIT

1181 HY000 ER_ERROR_DURING_ROLLBACK Got error %d during ROLLBACK

1182 HY000 ER_ERROR_DURING_FLUSH_LOGS Got error %d during FLUSH_LOGS

1183 HY000 ER_ERROR_DURING_CHECKPOINT Got error %d during CHECKPOINT

1184 08S01 ER_NEW_ABORTING_CONNECTION
Aborted connection %ld to db: '%s' user: '%s'

host: '%s' (%s)

1185 ER_UNUSED_10 You should never see it

1186 HY000 ER_FLUSH_MASTER_BINLOG_CLOSED Binlog closed, cannot RESET MASTER

1187 HY000 ER_INDEX_REBUILD
Failed rebuilding the index of dumped table

'%s'

1188 HY000 ER_MASTER Error from master: '%s'

1189 08S01 ER_MASTER_NET_READ Net error reading from master

1190 08S01 ER_MASTER_NET_WRITE Net error writing to master

1191 HY000 ER_FT_MATCHING_KEY_NOT_FOUND
Can't find FULLTEXT index matching the

column list

1192 HY000 ER_LOCK_OR_ACTIVE_TRANSACTION

Can't execute the given command because

you have active locked tables or an active

transaction

1193 HY000 ER_UNKNOWN_SYSTEM_VARIABLE Unknown system variable '%s'

1194 HY000 ER_CRASHED_ON_USAGE
Table '%s' is marked as crashed and should

be repaired

1195 HY000 ER_CRASHED_ON_REPAIR
Table '%s' is marked as crashed and last

(automatic?) repair failed

1196 HY000 ER_WARNING_NOT_COMPLETE_ROLLBACK
Some non-transactional changed tables

couldn't be rolled back

1197 HY000 ER_TRANS_CACHE_FULL

Multi-statement transaction required more

than 'max_binlog_cache_size' bytes of

storage; increase this mysqld variable and try

again

1198 HY000 ER_SLAVE_MUST_STOP
This operation cannot be performed with a

running slave; run STOP SLAVE first

1199 HY000 ER_SLAVE_NOT_RUNNING
This operation requires a running slave;

configure slave and do START SLAVE

Error

Code
SQLSTATE Error Description

1200 HY000 ER_BAD_SLAVE
The server is not configured as slave; fix in

config file or with CHANGE MASTER TO

1201 HY000 ER_MASTER_INFO

Could not initialize master info structure;

more error messages can be found in the

MariaDB error log

1202 HY000 ER_SLAVE_THREAD
Could not create slave thread; check

system resources

1203 42000 ER_TOO_MANY_USER_CONNECTIONS
User %s already has more than

'max_user_connections' active connections

1204 HY000 ER_SET_CONSTANTS_ONLY
You may only use constant expressions

with SET

753/4161

1205 HY000 ER_LOCK_WAIT_TIMEOUT
Lock wait timeout exceeded; try restarting

transaction

1206 HY000 ER_LOCK_TABLE_FULL
The total number of locks exceeds the lock

table size

1207 25000 ER_READ_ONLY_TRANSACTION
Update locks cannot be acquired during a

READ UNCOMMITTED transaction

1208 HY000 ER_DROP_DB_WITH_READ_LOCK
DROP DATABASE not allowed while thread

is holding global read lock

1209 HY000 ER_CREATE_DB_WITH_READ_LOCK
CREATE DATABASE not allowed while

thread is holding global read lock

1210 HY000 ER_WRONG_ARGUMENTS Incorrect arguments to %s

1211 42000 ER_NO_PERMISSION_TO_CREATE_USER
'%s'@'%s' is not allowed to create new

users

1212 HY000 ER_UNION_TABLES_IN_DIFFERENT_DIR
Incorrect table definition; all MERGE tables

must be in the same database

1213 40001 ER_LOCK_DEADLOCK
Deadlock found when trying to get lock; try

restarting transaction

1214 HY000 ER_TABLE_CANT_HANDLE_FT
The used table type doesn't support

FULLTEXT indexes

1215 HY000 ER_CANNOT_ADD_FOREIGN Cannot add foreign key constraint

1216 23000 ER_NO_REFERENCED_ROW
Cannot add or update a child row: a foreign

key constraint fails

1217 23000 ER_ROW_IS_REFERENCED
Cannot delete or update a parent row: a

foreign key constraint fails

1218 08S01 ER_CONNECT_TO_MASTER Error connecting to master: %s

1219 HY000 ER_QUERY_ON_MASTER Error running query on master: %s

1220 HY000 ER_ERROR_WHEN_EXECUTING_COMMAND Error when executing command %s: %s

1221 HY000 ER_WRONG_USAGE Incorrect usage of %s and %s

1222 21000 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT
The used SELECT statements have a

different number of columns

1223 HY000 ER_CANT_UPDATE_WITH_READLOCK
Can't execute the query because you have

a conflicting read lock

1224 HY000 ER_MIXING_NOT_ALLOWED
Mixing of transactional and non-

transactional tables is disabled

1225 HY000 ER_DUP_ARGUMENT Option '%s' used twice in statement

1226 42000 ER_USER_LIMIT_REACHED
User '%s' has exceeded the '%s' resource

(current value: %ld)

1227 42000 ER_SPECIFIC_ACCESS_DENIED_ERROR
Access denied; you need (at least one of)

the %s privilege(s) for this operation

1228 HY000 ER_LOCAL_VARIABLE
Variable '%s' is a SESSION variable and

can't be used with SET GLOBAL

1229 HY000 ER_GLOBAL_VARIABLE
Variable '%s' is a GLOBAL variable and

should be set with SET GLOBAL

1230 42000 ER_NO_DEFAULT Variable '%s' doesn't have a default value

1231 42000 ER_WRONG_VALUE_FOR_VAR
Variable '%s' can't be set to the value of

'%s'

1232 42000 ER_WRONG_TYPE_FOR_VAR Incorrect argument type to variable '%s'

1233 HY000 ER_VAR_CANT_BE_READ Variable '%s' can only be set, not read

1234 42000 ER_CANT_USE_OPTION_HERE Incorrect usage/placement of '%s'

754/4161

1235 42000 ER_NOT_SUPPORTED_YET
This version of MariaDB doesn't yet support

'%s'

1236 HY000 ER_MASTER_FATAL_ERROR_READING_BINLOG
Got fatal error %d from master when

reading data from binary log: '%s'

1237 HY000 ER_SLAVE_IGNORED_TABLE
Slave SQL thread ignored the query

because of replicate-*-table rules

1238 HY000 ER_INCORRECT_GLOBAL_LOCAL_VAR Variable '%s' is a %s variable

1239 42000 ER_WRONG_FK_DEF Incorrect foreign key definition for '%s': %s

1240 HY000 ER_KEY_REF_DO_NOT_MATCH_TABLE_REF
Key reference and table reference don't

match

1241 21000 ER_OPERAND_COLUMNS Operand should contain %d column(s)

1242 21000 ER_SUBQUERY_NO_1_ROW Subquery returns more than 1 row

1243 HY000 ER_UNKNOWN_STMT_HANDLER
Unknown prepared statement handler

(%.*s) given to %s

1244 HY000 ER_CORRUPT_HELP_DB
Help database is corrupt or does not exist

1245 HY000 ER_CYCLIC_REFERENCE Cyclic reference on subqueries

1246 HY000 ER_AUTO_CONVERT Converting column '%s' from %s to %s

1247 42S22 ER_ILLEGAL_REFERENCE Reference '%s' not supported (%s)

1248 42000 ER_DERIVED_MUST_HAVE_ALIAS Every derived table must have its own alias

1249 01000 ER_SELECT_REDUCED Select %u was reduced during optimization

1250 42000 ER_TABLENAME_NOT_ALLOWED_HERE
Table '%s' from one of the SELECTs cannot

be used in %s

1251 08004 ER_NOT_SUPPORTED_AUTH_MODE

Client does not support authentication

protocol requested by server; consider

upgrading MariaDB client

1252 42000 ER_SPATIAL_CANT_HAVE_NULL
All parts of a SPATIAL index must be NOT

NULL

1253 42000 ER_COLLATION_CHARSET_MISMATCH
COLLATION '%s' is not valid for

CHARACTER SET '%s'

1254 HY000 ER_SLAVE_WAS_RUNNING Slave is already running

1255 HY000 ER_SLAVE_WAS_NOT_RUNNING Slave already has been stopped

1256 HY000 ER_TOO_BIG_FOR_UNCOMPRESS

Uncompressed data size too large; the

maximum size is %d (probably, length of

uncompressed data was corrupted)

1257 HY000 ER_ZLIB_Z_MEM_ERROR ZLIB: Not enough memory

1258 HY000 ER_ZLIB_Z_BUF_ERROR

ZLIB: Not enough room in the output buffer

(probably, length of uncompressed data

was corrupted)

1259 HY000 ER_ZLIB_Z_DATA_ERROR ZLIB: Input data corrupted

1260 HY000 ER_CUT_VALUE_GROUP_CONCAT Row %u was cut by GROUP_CONCAT()

1261 01000 ER_WARN_TOO_FEW_RECORDS
Row %ld doesn't contain data for all

columns

1262 01000 ER_WARN_TOO_MANY_RECORDS
Row %ld was truncated; it contained more

data than there were input columns

1263 22004 ER_WARN_NULL_TO_NOTNULL
Column set to default value; NULL supplied

to NOT NULL column '%s' at row %ld

1264 22003 ER_WARN_DATA_OUT_OF_RANGE
Out of range value for column '%s' at row

%ld

1265 01000 WARN_DATA_TRUNCATED Data truncated for column '%s' at row %ld

755/4161

1266 HY000 ER_WARN_USING_OTHER_HANDLER Using storage engine %s for table '%s'

1267 HY000 ER_CANT_AGGREGATE_2COLLATIONS
Illegal mix of collations (%s,%s) and

(%s,%s) for operation '%s'

1268 HY000 ER_DROP_USER
Cannot drop one or more of the requested

users

1269 HY000 ER_REVOKE_GRANTS
Can't revoke all privileges for one or more of

the requested users

1270 HY000 ER_CANT_AGGREGATE_3COLLATIONS
Illegal mix of collations (%s,%s), (%s,%s),

(%s,%s) for operation '%s'

1271 HY000 ER_CANT_AGGREGATE_NCOLLATIONS Illegal mix of collations for operation '%s'

1272 HY000 ER_VARIABLE_IS_NOT_STRUCT
Variable '%s' is not a variable component

(can't be used as XXXX.variable_name)

1273 HY000 ER_UNKNOWN_COLLATION Unknown collation: '%s'

1274 HY000 ER_SLAVE_IGNORED_SSL_PARAMS

SSL parameters in CHANGE MASTER are

ignored because this MariaDB slave was

compiled without SSL support; they can be

used later if MariaDB slave with SSL is

started

1275 HY000 ER_SERVER_IS_IN_SECURE_AUTH_MODE

Server is running in --secure-auth mode,

but '%s'@'%s' has a password in the old

format; please change the password to the

new format

1276 HY000 ER_WARN_FIELD_RESOLVED

Field or reference '%s%s%s%s%s' of

SELECT #%d was resolved in SELECT

#%d

1277 HY000 ER_BAD_SLAVE_UNTIL_COND
Incorrect parameter or combination of

parameters for START SLAVE UNTIL

1278 HY000 ER_MISSING_SKIP_SLAVE

It is recommended to use --skip-slave-start

when doing step-by-step replication with

START SLAVE UNTIL; otherwise, you will

get problems if you get an unexpected

slave's mysqld restart

1279 HY000 ER_UNTIL_COND_IGNORED
SQL thread is not to be started so UNTIL

options are ignored

1280 42000 ER_WRONG_NAME_FOR_INDEX Incorrect index name '%s'

1281 42000 ER_WRONG_NAME_FOR_CATALOG Incorrect catalog name '%s'

1282 HY000 ER_WARN_QC_RESIZE
Query cache failed to set size %lu; new

query cache size is %lu

1283 HY000 ER_BAD_FT_COLUMN
Column '%s' cannot be part of FULLTEXT

index

1284 HY000 ER_UNKNOWN_KEY_CACHE Unknown key cache '%s'

1285 HY000 ER_WARN_HOSTNAME_WONT_WORK

MariaDB is started in --skip-name-resolve

mode; you must restart it without this switch

for this grant to work

1286 42000 ER_UNKNOWN_STORAGE_ENGINE Unknown storage engine '%s'

1287 HY000 ER_WARN_DEPRECATED_SYNTAX
'%s' is deprecated and will be removed in a

future release. Please use %s instead

1288 HY000 ER_NON_UPDATABLE_TABLE
The target table %s of the %s is not

updatable

1289 HY000 ER_FEATURE_DISABLED
The '%s' feature is disabled; you need

MariaDB built with '%s' to have it working

756/4161

1290 HY000 ER_OPTION_PREVENTS_STATEMENT
The MariaDB server is running with the %s

option so it cannot execute this statement

1291 HY000 ER_DUPLICATED_VALUE_IN_TYPE
Column '%s' has duplicated value '%s' in

%s

1292 22007 ER_TRUNCATED_WRONG_VALUE Truncated incorrect %s value: '%s'

1293 HY000 ER_TOO_MUCH_AUTO_TIMESTAMP_COLS

Incorrect table definition; there can be only

one TIMESTAMP column with

CURRENT_TIMESTAMP in DEFAULT or

ON UPDATE clause

1294 HY000 ER_INVALID_ON_UPDATE Invalid ON UPDATE clause for '%s' column

1295 HY000 ER_UNSUPPORTED_PS
This command is not supported in the

prepared statement protocol yet

1296 HY000 ER_GET_ERRMSG Got error %d '%s' from %s

1297 HY000 ER_GET_TEMPORARY_ERRMSG Got temporary error %d '%s' from %s

1298 HY000 ER_UNKNOWN_TIME_ZONE Unknown or incorrect time zone: '%s'

1299 HY000 ER_WARN_INVALID_TIMESTAMP
Invalid TIMESTAMP value in column '%s' at

row %ld

Error

Code
SQLSTATE Error Description

1300 HY000 ER_INVALID_CHARACTER_STRING Invalid %s character string: '%s'

1301 HY000 ER_WARN_ALLOWED_PACKET_OVERFLOWED
Result of %s() was larger than

max_allowed_packet (%ld) - truncated

1302 HY000 ER_CONFLICTING_DECLARATIONS Conflicting declarations: '%s%s' and '%s%s'

1303 2F003 ER_SP_NO_RECURSIVE_CREATE
Can't create a %s from within another stored

routine

1304 42000 ER_SP_ALREADY_EXISTS %s %s already exists

1305 42000 ER_SP_DOES_NOT_EXIST %s %s does not exist

1306 HY000 ER_SP_DROP_FAILED Failed to DROP %s %s

1307 HY000 ER_SP_STORE_FAILED Failed to CREATE %s %s

1308 42000 ER_SP_LILABEL_MISMATCH %s with no matching label: %s

1309 42000 ER_SP_LABEL_REDEFINE Redefining label %s

1310 42000 ER_SP_LABEL_MISMATCH End-label %s without match

1311 01000 ER_SP_UNINIT_VAR Referring to uninitialized variable %s

1312 0A000 ER_SP_BADSELECT
PROCEDURE %s can't return a result set in

the given context

1313 42000 ER_SP_BADRETURN RETURN is only allowed in a FUNCTION

1314 0A000 ER_SP_BADSTATEMENT %s is not allowed in stored procedures

1315 42000 ER_UPDATE_LOG_DEPRECATED_IGNORED

The update log is deprecated and replaced by

the binary log; SET SQL_LOG_UPDATE has

been ignored. This option will be removed in

MariaDB 5.6 .

1316 42000 ER_UPDATE_LOG_DEPRECATED_TRANSLATED

The update log is deprecated and replaced by

the binary log; SET SQL_LOG_UPDATE has

been translated to SET SQL_LOG_BIN. This

option will be removed in MariaDB 5.6 .

1317 70100 ER_QUERY_INTERRUPTED Query execution was interrupted

1318 42000 ER_SP_WRONG_NO_OF_ARGS
Incorrect number of arguments for %s %s;

expected %u, got %u

1319 42000 ER_SP_COND_MISMATCH Undefined CONDITION: %s

757/4161

https://mariadb.com/kb/en/what-is-mariadb-56/
https://mariadb.com/kb/en/what-is-mariadb-56/

1320 42000 ER_SP_NORETURN No RETURN found in FUNCTION %s

1321 2F005 ER_SP_NORETURNEND FUNCTION %s ended without RETURN

1322 42000 ER_SP_BAD_CURSOR_QUERY Cursor statement must be a SELECT

1323 42000 ER_SP_BAD_CURSOR_SELECT Cursor SELECT must not have INTO

1324 42000 ER_SP_CURSOR_MISMATCH Undefined CURSOR: %s

1325 24000 ER_SP_CURSOR_ALREADY_OPEN Cursor is already open

1326 24000 ER_SP_CURSOR_NOT_OPEN Cursor is not open

1327 42000 ER_SP_UNDECLARED_VAR Undeclared variable: %s

1328 HY000 ER_SP_WRONG_NO_OF_FETCH_ARGS Incorrect number of FETCH variables

1329 02000 ER_SP_FETCH_NO_DATA
No data - zero rows fetched, selected, or

processed

1330 42000 ER_SP_DUP_PARAM Duplicate parameter: %s

1331 42000 ER_SP_DUP_VAR Duplicate variable: %s

1332 42000 ER_SP_DUP_COND Duplicate condition: %s

1333 42000 ER_SP_DUP_CURS Duplicate cursor: %s

1334 HY000 ER_SP_CANT_ALTER Failed to ALTER %s %s

1335 0A000 ER_SP_SUBSELECT_NYI Subquery value not supported

1336 0A000 ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG %s is not allowed in stored function or trigger

1337 42000 ER_SP_VARCOND_AFTER_CURSHNDLR
Variable or condition declaration after cursor

or handler declaration

1338 42000 ER_SP_CURSOR_AFTER_HANDLER Cursor declaration after handler declaration

1339 20000 ER_SP_CASE_NOT_FOUND Case not found for CASE statement

1340 HY000 ER_FPARSER_TOO_BIG_FILE Configuration file '%s' is too big

1341 HY000 ER_FPARSER_BAD_HEADER Malformed file type header in file '%s'

1342 HY000 ER_FPARSER_EOF_IN_COMMENT
Unexpected end of file while parsing

comment '%s'

1343 HY000 ER_FPARSER_ERROR_IN_PARAMETER Error while parsing parameter '%s' (line: '%s')

1344 HY000 ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER
Unexpected end of file while skipping

unknown parameter '%s'

1345 HY000 ER_VIEW_NO_EXPLAIN
EXPLAIN/SHOW can not be issued; lacking

privileges for underlying table

1346 HY000 ER_FRM_UNKNOWN_TYPE File '%s' has unknown type '%s' in its header

1347 HY000 ER_WRONG_OBJECT '%s.%s' is not %s

1348 HY000 ER_NONUPDATEABLE_COLUMN Column '%s' is not updatable

1349 HY000 ER_VIEW_SELECT_DERIVED
View's SELECT contains a subquery in the

FROM clause

1350 HY000 ER_VIEW_SELECT_CLAUSE View's SELECT contains a '%s' clause

1351 HY000 ER_VIEW_SELECT_VARIABLE
View's SELECT contains a variable or

parameter

1352 HY000 ER_VIEW_SELECT_TMPTABLE
View's SELECT refers to a temporary table

'%s'

1353 HY000 ER_VIEW_WRONG_LIST View's SELECT and view's field list have

different column counts

1354 HY000 ER_WARN_VIEW_MERGE
View merge algorithm can't be used here for

now (assumed undefined algorithm)

758/4161

1355 HY000 ER_WARN_VIEW_WITHOUT_KEY
View being updated does not have complete

key of underlying table in it

1356 HY000 ER_VIEW_INVALID

View '%s.%s' references invalid table(s) or

column(s) or function(s) or definer/invoker of

view lack rights to use them

1357 HY000 ER_SP_NO_DROP_SP
Can't drop or alter a %s from within another

stored routine

1358 HY000 ER_SP_GOTO_IN_HNDLR
GOTO is not allowed in a stored procedure

handler

1359 HY000 ER_TRG_ALREADY_EXISTS Trigger already exists

1360 HY000 ER_TRG_DOES_NOT_EXIST Trigger does not exist

1361 HY000 ER_TRG_ON_VIEW_OR_TEMP_TABLE Trigger's '%s' is view or temporary table

1362 HY000 ER_TRG_CANT_CHANGE_ROW
Updating of %s row is not allowed in

%strigger

1363 HY000 ER_TRG_NO_SUCH_ROW_IN_TRG There is no %s row in %s trigger

1364 HY000 ER_NO_DEFAULT_FOR_FIELD Field '%s' doesn't have a default value

1365 22012 ER_DIVISION_BY_ZER Division by 0

1366 HY000 ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
Incorrect %s value: '%s' for column '%s' at

row %ld

1367 22007 ER_ILLEGAL_VALUE_FOR_TYPE Illegal %s '%s' value found during parsing

1368 HY000 ER_VIEW_NONUPD_CHECK
CHECK OPTION on non-updatable view

'%s.%s'

1369 HY000 ER_VIEW_CHECK_FAILED CHECK OPTION failed '%s.%s'

1370 42000 ER_PROCACCESS_DENIED_ERROR
%s command denied to user '%s'@'%s' for

routine '%s'

1371 HY000 ER_RELAY_LOG_FAIL Failed purging old relay logs: %s

1372 HY000 ER_PASSWD_LENGTH
Password hash should be a %d-digit

hexadecimal number

1373 HY000 ER_UNKNOWN_TARGET_BINLOG Target log not found in binlog index

1374 HY000 ER_IO_ERR_LOG_INDEX_READ I/O error reading log index file

1375 HY000 ER_BINLOG_PURGE_PROHIBITED
Server configuration does not permit binlog

purge

1376 HY000 ER_FSEEK_FAIL Failed on fseek()

1377 HY000 ER_BINLOG_PURGE_FATAL_ERR Fatal error during log purge

1378 HY000 ER_LOG_IN_USE A purgeable log is in use, will not purge

1379 HY000 ER_LOG_PURGE_UNKNOWN_ERR Unknown error during log purge

1380 HY000 ER_RELAY_LOG_INIT Failed initializing relay log position: %s

1381 HY000 ER_NO_BINARY_LOGGING You are not using binary logging

1382 HY000 ER_RESERVED_SYNTAX
The '%s' syntax is reserved for purposes

internal to the MariaDB server

1383 HY000 ER_WSAS_FAILED WSAStartup Failed

1384 HY000 ER_DIFF_GROUPS_PROC
Can't handle procedures with different groups

yet

1385 HY000 ER_NO_GROUP_FOR_PROC Select must have a group with this procedure

1386 HY000 ER_ORDER_WITH_PROC Can't use ORDER clause with this procedure

1387 HY000 ER_LOGGING_PROHIBIT_CHANGING_OF
Binary logging and replication forbid changing

the global server %s

1388 HY000 ER_NO_FILE_MAPPING Can't map file: %s, errno: %d

759/4161

1389 HY000 ER_WRONG_MAGIC Wrong magic in %s

1390 HY000 ER_PS_MANY_PARAM
Prepared statement contains too many

placeholders

1391 HY000 ER_KEY_PART_0 Key part '%s' length cannot be 0

1392 HY000 ER_VIEW_CHECKSUM View text checksum failed

1393 HY000 ER_VIEW_MULTIUPDATE
Can not modify more than one base table

through a join view '%s.%s'

1394 HY000 ER_VIEW_NO_INSERT_FIELD_LIST
Can not insert into join view '%s.%s' without

fields list

1395 HY000 ER_VIEW_DELETE_MERGE_VIEW Can not delete from join view '%s.%s'

1396 HY000 ER_CANNOT_USER Operation %s failed for %s

1397 XAE04 ER_XAER_NOTA XAER_NOTA: Unknown XID

1398 XAE05 ER_XAER_INVAL
XAER_INVAL: Invalid arguments (or

unsupported command)

1399 XAE07 ER_XAER_RMFAIL

XAER_RMFAIL: The command cannot be

executed when global transaction is in the %s

state

Error

Code
SQLSTATE Error Description

1400 XAE09 ER_XAER_OUTSIDE
XAER_OUTSIDE: Some work is done

outside global transaction

1401 XAE03 ER_XAER_RMERR

XAER_RMERR: Fatal error occurred in

the transaction branch - check your

data for consistency

1402 XA100 ER_XA_RBROLLBACK
XA_RBROLLBACK: Transaction

branch was rolled back

1403 42000 ER_NONEXISTING_PROC_GRANT
There is no such grant defined for user

'%s' on host '%s' on routine '%s'

1404 HY000 ER_PROC_AUTO_GRANT_FAIL
Failed to grant EXECUTE and ALTER

ROUTINE privileges

1405 HY000 ER_PROC_AUTO_REVOKE_FAIL
Failed to revoke all privileges to

dropped routine

1406 22001 ER_DATA_TOO_LONG
Data too long for column '%s' at row

%ld

1407 42000 ER_SP_BAD_SQLSTATE Bad SQLSTATE: '%s'

1408 HY000 ER_STARTUP
%s: ready for connections. Version:

'%s' socket: '%s' port: %d %s

1409 HY000 ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR
Can't load value from file with fixed size

rows to variable

1410 42000 ER_CANT_CREATE_USER_WITH_GRANT
You are not allowed to create a user

with GRANT

1411 HY000 ER_WRONG_VALUE_FOR_TYPE Incorrect %s value: '%s' for function %s

1412 HY000 ER_TABLE_DEF_CHANGED
Table definition has changed, please

retry transaction

1413 42000 ER_SP_DUP_HANDLER
Duplicate handler declared in the same

block

1414 42000 ER_SP_NOT_VAR_ARG

OUT or INOUT argument %d for

routine %s is not a variable or NEW

pseudo-variable in BEFORE trigger

760/4161

1415 0A000 ER_SP_NO_RETSET
Not allowed to return a result set from

a %s

1416 22003 ER_CANT_CREATE_GEOMETRY_OBJECT
Cannot get geometry object from data

you send to the GEOMETRY field

1417 HY000 ER_FAILED_ROUTINE_BREAK_BINLOG

A routine failed and has neither NO

SQL nor READS SQL DATA in its

declaration and binary logging is

enabled; if non-transactional tables

were updated, the binary log will miss

their changes

1418 HY000 ER_BINLOG_UNSAFE_ROUTINE

This function has none of

DETERMINISTIC, NO SQL, or READS

SQL DATA in its declaration and binary

logging is enabled (you *might* want to

use the less safe

log_bin_trust_function_creators

variable)

1419 HY000 ER_BINLOG_CREATE_ROUTINE_NEED_SUPER

You do not have the SUPER privilege

and binary logging is enabled (you

might want to use the less safe

log_bin_trust_function_creators

variable)

1420 HY000 ER_EXEC_STMT_WITH_OPEN_CURSOR

You can't execute a prepared

statement which has an open cursor

associated with it. Reset the statement

to re-execute it.

1421 HY000 ER_STMT_HAS_NO_OPEN_CURSOR
The statement (%lu) has no open

cursor.

1422 HY000 ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG
Explicit or implicit commit is not allowed

in stored function or trigger.

1423 HY000 ER_NO_DEFAULT_FOR_VIEW_FIELD
Field of view '%s.%s' underlying table

doesn't have a default value

1424 HY000 ER_SP_NO_RECURSION
Recursive stored functions and triggers

are not allowed.

1425 42000 ER_TOO_BIG_SCALE
Too big scale %d specified for column

'%s'. Maximum is %lu.

1426 42000 ER_TOO_BIG_PRECISION
Too big precision %d specified for

column '%s'. Maximum is %lu.

1427 42000 ER_M_BIGGER_THAN_D

For float(M,D, double(M,D or

decimal(M,D, M must be >= D (column

'%s').

1428 HY000 ER_WRONG_LOCK_OF_SYSTEM_TABLE

You can't combine write-locking of

system tables with other tables or lock

types

1429 HY000 ER_CONNECT_TO_FOREIGN_DATA_SOURCE
Unable to connect to foreign data

source: %s

1430 HY000 ER_QUERY_ON_FOREIGN_DATA_SOURCE

There was a problem processing the

query on the foreign data source. Data

source error: %s

1431 HY000 ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST

The foreign data source you are trying

to reference does not exist. Data

source error: %s

1432 HY000 ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE

Can't create federated table. The data

source connection string '%s' is not in

the correct format

761/4161

1433 HY000 ER_FOREIGN_DATA_STRING_INVALID
The data source connection string '%s'

is not in the correct format

1434 HY000 ER_CANT_CREATE_FEDERATED_TABLE
Can't create federated table. Foreign

data src error: %s

1435 HY000 ER_TRG_IN_WRONG_SCHEMA Trigger in wrong schema

1436 HY000 ER_STACK_OVERRUN_NEED_MORE

Thread stack overrun: %ld bytes used

of a %ld byte stack, and %ld bytes

needed. Use 'mysqld --thread_stack=#'

to specify a bigger stack.

1437 42000 ER_TOO_LONG_BODY Routine body for '%s' is too long

1438 HY000 ER_WARN_CANT_DROP_DEFAULT_KEYCACHE Cannot drop default keycache

1439 42000 ER_TOO_BIG_DISPLAYWIDTH
Display width out of range for column

'%s' (max = %lu)

1440 XAE08 ER_XAER_DUPID XAER_DUPID: The XID already exists

1441 22008 ER_DATETIME_FUNCTION_OVERFLOW Datetime function: %s field overflow

1442 HY000 ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG

Can't update table '%s' in stored

function/trigger because it is already

used by statement which invoked this

stored function/trigger.

1443 HY000 ER_VIEW_PREVENT_UPDATE
The definition of table '%s' prevents

operation %s on table '%s'.

1444 HY000 ER_PS_NO_RECURSION

The prepared statement contains a

stored routine call that refers to that

same statement. It's not allowed to

execute a prepared statement in such

a recursive manner

1445 HY000 ER_SP_CANT_SET_AUTOCOMMIT
Not allowed to set autocommit from a

stored function or trigger

1446 HY000 ER_MALFORMED_DEFINER Definer is not fully qualified

1447 HY000 ER_VIEW_FRM_NO_USER

View '%s'.'%s' has no definer

information (old table format). Current

user is used as definer. Please

recreate the view!

1448 HY000 ER_VIEW_OTHER_USER
You need the SUPER privilege for

creation view with '%s'@'%s' definer

1449 HY000 ER_NO_SUCH_USER The user specified as a definer

('%s'@'%s') does not exist

1450 HY000 ER_FORBID_SCHEMA_CHANGE
Changing schema from '%s' to '%s' is

not allowed.

1451 23000 ER_ROW_IS_REFERENCED_2
Cannot delete or update a parent row:

a foreign key constraint fails (%s)

1452 23000 ER_NO_REFERENCED_ROW_2
Cannot add or update a child row: a

foreign key constraint fails (%s)

1453 42000 ER_SP_BAD_VAR_SHADOW
Variable '%s' must be quoted with `...`,

or renamed

1454 HY000 ER_TRG_NO_DEFINER

No definer attribute for trigger '%s'.'%s'.

The trigger will be activated under the

authorization of the invoker, which may

have insufficient privileges. Please

recreate the trigger.

1455 HY000 ER_OLD_FILE_FORMAT
'%s' has an old format, you should re-

create the '%s' object(s)

762/4161

1456 HY000 ER_SP_RECURSION_LIMIT

Recursive limit %d (as set by the

max_sp_recursion_depth variable) was

exceeded for routine %s

1457 HY000 ER_SP_PROC_TABLE_CORRUPT

Failed to load routine %s. The table

mysql.proc is missing, corrupt, or

contains bad data (internal code %d)

1458 42000 ER_SP_WRONG_NAME Incorrect routine name '%s'

1459 HY000 ER_TABLE_NEEDS_UPGRADE

Table upgrade required. Please do

"REPAIR TABLE `%s`" or dump/reload

to fix it!

1460 42000 ER_SP_NO_AGGREGATE
AGGREGATE is not supported for

stored functions

1461 42000 ER_MAX_PREPARED_STMT_COUNT_REACHED

Can't create more than

max_prepared_stmt_count statements

(current value: %lu)

1462 HY000 ER_VIEW_RECURSIVE `%s`.`%s` contains view recursion

1463 42000 ER_NON_GROUPING_FIELD_USED
Non-grouping field '%s' is used in %s

clause

1464 HY000 ER_TABLE_CANT_HANDLE_SPKEYS
The used table type doesn't support

SPATIAL indexes

1465 HY000 ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA
Triggers can not be created on system

tables

1466 HY000 ER_REMOVED_SPACES
Leading spaces are removed from

name '%s'

1467 HY000 ER_AUTOINC_READ_FAILED
Failed to read auto-increment value

from storage engine

1468 HY000 ER_USERNAME user name

1469 HY000 ER_HOSTNAME host name

1470 HY000 ER_WRONG_STRING_LENGTH
String '%s' is too long for %s (should be

no longer than %d)

1471 HY000 ER_NON_INSERTABLE_TABLE
The target table %s of the %s is not

insertable-into

1472 HY000 ER_ADMIN_WRONG_MRG_TABLE
Table '%s' is differently defined or of

non-MyISAM type or doesn't exist

1473 HY000 ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT Too high level of nesting for select

1474 HY000 ER_NAME_BECOMES_EMPTY Name '%s' has become ''

1475 HY000 ER_AMBIGUOUS_FIELD_TERM

First character of the FIELDS

TERMINATED string is ambiguous;

please use non-optional and non-empty

FIELDS ENCLOSED BY

1476 HY000 ER_FOREIGN_SERVER_EXISTS
The foreign server, %s, you are trying

to create already exists.

1477 HY000 ER_FOREIGN_SERVER_DOESNT_EXIST

The foreign server name you are trying

to reference does not exist. Data

source error: %s

1478 HY000 ER_ILLEGAL_HA_CREATE_OPTION
Table storage engine '%s' does not

support the create option '%s'

1479 HY000 ER_PARTITION_REQUIRES_VALUES_ERROR

Syntax error: %s PARTITIONING

requires definition of VALUES %s for

each partition

1480 HY000 ER_PARTITION_WRONG_VALUES_ERROR
Only %s PARTITIONING can use

VALUES %s in partition definition

763/4161

1481 HY000 ER_PARTITION_MAXVALUE_ERROR
MAXVALUE can only be used in last

partition definition

1482 HY000 ER_PARTITION_SUBPARTITION_ERROR
Subpartitions can only be hash

partitions and by key

1483 HY000 ER_PARTITION_SUBPART_MIX_ERROR
Must define subpartitions on all

partitions if on one partition

1484 HY000 ER_PARTITION_WRONG_NO_PART_ERROR
Wrong number of partitions defined,

mismatch with previous setting

1485 HY000 ER_PARTITION_WRONG_NO_SUBPART_ERROR
Wrong number of subpartitions defined,

mismatch with previous setting

1486 HY000 ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR
Constant/Random expression in

(sub)partitioning function is not allowed

1486 HY000 ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR

Constant, random or timezone-

dependent expressions in

(sub)partitioning function are not

allowed

1487 HY000 ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR
Expression in RANGE/LIST VALUES

must be constant

1488 HY000 ER_FIELD_NOT_FOUND_PART_ERROR
Field in list of fields for partition

function not found in table

1489 HY000 ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR
List of fields is only allowed in KEY

partitions

1490 HY000 ER_INCONSISTENT_PARTITION_INFO_ERROR

The partition info in the frm file is not

consistent with what can be written into

the frm file

1491 HY000 ER_PARTITION_FUNC_NOT_ALLOWED_ERROR The %s function returns the wrong type

1492 HY000 ER_PARTITIONS_MUST_BE_DEFINED_ERROR
For %s partitions each partition must

be defined

1493 HY000 ER_RANGE_NOT_INCREASING_ERROR
VALUES LESS THAN value must be

strictly increasing for each partition

1494 HY000 ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR
VALUES value must be of same type

as partition function

1495 HY000 ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR
Multiple definition of same constant in

list partitioning

1496 HY000 ER_PARTITION_ENTRY_ERROR
Partitioning can not be used stand-

alone in query

1497 HY000 ER_MIX_HANDLER_ERROR
The mix of handlers in the partitions is

not allowed in this version of MariaDB

1498 HY000 ER_PARTITION_NOT_DEFINED_ERROR
For the partitioned engine it is

necessary to define all %s

1499 HY000 ER_TOO_MANY_PARTITIONS_ERROR
Too many partitions (including

subpartitions) were defined

Error

Code
SQLSTATE Error Description

1500 HY000 ER_SUBPARTITION_ERROR

It is only possible to mix RANGE/LIST

partitioning with HASH/KEY partitioning

for subpartitioning

1501 HY000 ER_CANT_CREATE_HANDLER_FILE Failed to create specific handler file

1502 HY000 ER_BLOB_FIELD_IN_PART_FUNC_ERROR
A BLOB field is not allowed in partition

function

1503 HY000 ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF
A %s must include all columns in the

table's partitioning function

764/4161

1504 HY000 ER_NO_PARTS_ERROR
Number of %s = 0 is not an allowed

value

1505 HY000 ER_PARTITION_MGMT_ON_NONPARTITIONED
Partition management on a not

partitioned table is not possible

1506 HY000 ER_FOREIGN_KEY_ON_PARTITIONED
Foreign key clause is not yet supported

in conjunction with partitioning

1507 HY000 ER_DROP_PARTITION_NON_EXISTENT Error in list of partitions to %s

1508 HY000 ER_DROP_LAST_PARTITION
Cannot remove all partitions, use

DROP TABLE instead

1509 HY000 ER_COALESCE_ONLY_ON_HASH_PARTITION
COALESCE PARTITION can only be

used on HASH/KEY partitions

1510 HY000 ER_REORG_HASH_ONLY_ON_SAME_N

REORGANIZE PARTITION can only be

used to reorganize partitions not to

change their numbers

1511 HY000 ER_REORG_NO_PARAM_ERROR

REORGANIZE PARTITION without

parameters can only be used on auto-

partitioned tables using HASH

PARTITIONs

1512 HY000 ER_ONLY_ON_RANGE_LIST_PARTITION
%s PARTITION can only be used on

RANGE/LIST partitions

1513 HY000 ER_ADD_PARTITION_SUBPART_ERROR
Trying to Add partition(s) with wrong

number of subpartitions

1514 HY000 ER_ADD_PARTITION_NO_NEW_PARTITION At least one partition must be added

1515 HY000 ER_COALESCE_PARTITION_NO_PARTITION At least one partition must be coalesced

1516 HY000 ER_REORG_PARTITION_NOT_EXIST
More partitions to reorganize than there

are partitions

1517 HY000 ER_SAME_NAME_PARTITION Duplicate partition name %s

1518 HY000 ER_NO_BINLOG_ERROR
It is not allowed to shut off binlog on this

command

1519 HY000 ER_CONSECUTIVE_REORG_PARTITIONS
When reorganizing a set of partitions

they must be in consecutive order

1520 HY000 ER_REORG_OUTSIDE_RANGE

Reorganize of range partitions cannot

change total ranges except for last

partition where it can extend the range

1521 HY000 ER_PARTITION_FUNCTION_FAILURE
Partition function not supported in this

version for this handler

1522 HY000 ER_PART_STATE_ERROR
Partition state cannot be defined from

CREATE/ALTER TABLE

1523 HY000 ER_LIMITED_PART_RANGE
The %s handler only supports 32 bit

integers in VALUES

1524 HY000 ER_PLUGIN_IS_NOT_LOADED Plugin '%s' is not loaded

1525 HY000 ER_WRONG_VALUE Incorrect %s value: '%s'

1526 HY000 ER_NO_PARTITION_FOR_GIVEN_VALUE Table has no partition for value %s

1527 HY000 ER_FILEGROUP_OPTION_ONLY_ONCE
It is not allowed to specify %s more

than once

1528 HY000 ER_CREATE_FILEGROUP_FAILED Failed to create %s

1529 HY000 ER_DROP_FILEGROUP_FAILED Failed to drop %s

1530 HY000 ER_TABLESPACE_AUTO_EXTEND_ERROR
The handler doesn't support autoextend

of tablespaces

765/4161

1531 HY000 ER_WRONG_SIZE_NUMBER

A size parameter was incorrectly

specified, either number or on the form

10M

1532 HY000 ER_SIZE_OVERFLOW_ERROR

The size number was correct but we

don't allow the digit part to be more

than 2 billion

1533 HY000 ER_ALTER_FILEGROUP_FAILED Failed to alter: %s

1534 HY000 ER_BINLOG_ROW_LOGGING_FAILED
Writing one row to the row-based binary

log failed

1535 HY000 ER_BINLOG_ROW_WRONG_TABLE_DEF
Table definition on master and slave

does not match: %s

1536 HY000 ER_BINLOG_ROW_RBR_TO_SBR

Slave running with --log-slave-updates

must use row-based binary logging to

be able to replicate row-based binary

log events

1537 HY000 ER_EVENT_ALREADY_EXISTS Event '%s' already exists

1538 HY000 ER_EVENT_STORE_FAILED
Failed to store event %s. Error code %d

from storage engine.

1539 HY000 ER_EVENT_DOES_NOT_EXIST Unknown event '%s'

1540 HY000 ER_EVENT_CANT_ALTER Failed to alter event '%s'

1541 HY000 ER_EVENT_DROP_FAILED Failed to drop %s

1542 HY000 ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG
INTERVAL is either not positive or too

big

1543 HY000 ER_EVENT_ENDS_BEFORE_STARTS
ENDS is either invalid or before

STARTS

1544 HY000 ER_EVENT_EXEC_TIME_IN_THE_PAST
Event execution time is in the past.

Event has been disabled

1545 HY000 ER_EVENT_OPEN_TABLE_FAILED Failed to open mysql.event

1546 HY000 ER_EVENT_NEITHER_M_EXPR_NOR_M_AT No datetime expression provided

1547 HY000 ER_COL_COUNT_DOESNT_MATCH_CORRUPTED

Column count of mysql.%s is wrong.

Expected %d, found %d. The table is

probably corrupted

1548 HY000 ER_CANNOT_LOAD_FROM_TABLE
Cannot load from mysql.%s. The table

is probably corrupted

1549 HY000 ER_EVENT_CANNOT_DELETE
Failed to delete the event from

mysql.event

1550 HY000 ER_EVENT_COMPILE_ERROR Error during compilation of event's body

1551 HY000 ER_EVENT_SAME_NAME Same old and new event name

1552 HY000 ER_EVENT_DATA_TOO_LONG Data for column '%s' too long

1553 HY000 ER_DROP_INDEX_FK
Cannot drop index '%s': needed in a

foreign key constraint

1554 HY000 ER_WARN_DEPRECATED_SYNTAX_WITH_VER

The syntax '%s' is deprecated and will

be removed in MariaDB %s. Please use

%s instead

1555 HY000 ER_CANT_WRITE_LOCK_LOG_TABLE
You can't write-lock a log table. Only

read access is possible

1556 HY000 ER_CANT_LOCK_LOG_TABLE You can't use locks with log tables.

1557 23000 ER_FOREIGN_DUPLICATE_KEY

Upholding foreign key constraints for

table '%s', entry '%s', key %d would

lead to a duplicate entry

766/4161

1558 HY000 ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE

Column count of mysql.%s is wrong.

Expected %d, found %d. Created with

MariaDB %d, now running %d. Please

use mysql_upgrade to fix this error.

1559 HY000 ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR

Cannot switch out of the row-based

binary log format when the session has

open temporary tables

1560 HY000
ER_STORED_FUNCTION_

PREVENTS_SWITCH_BINLOG_FORMAT

Cannot change the binary logging

format inside a stored function or trigger

1561 ER_UNUSED_13 You should never see it

1562 HY000 ER_PARTITION_NO_TEMPORARY
Cannot create temporary table with

partitions

1563 HY000 ER_PARTITION_CONST_DOMAIN_ERROR
Partition constant is out of partition

function domain

1564 HY000 ER_PARTITION_FUNCTION_IS_NOT_ALLOWED This partition function is not allowed

1565 HY000 ER_DDL_LOG_ERROR Error in DDL log

1566 HY000 ER_NULL_IN_VALUES_LESS_THAN
Not allowed to use NULL value in

VALUES LESS THAN

1567 HY000 ER_WRONG_PARTITION_NAME Incorrect partition name

1568 25001 ER_CANT_CHANGE_TX_ISOLATION

Transaction isolation level can't be

changed while a transaction is in

progress

1569 HY000 ER_DUP_ENTRY_AUTOINCREMENT_CASE

ALTER TABLE causes auto_increment

resequencing, resulting in duplicate

entry '%s' for key '%s'

1570 HY000 ER_EVENT_MODIFY_QUEUE_ERROR Internal scheduler error %d

1571 HY000 ER_EVENT_SET_VAR_ERROR
Error during starting/stopping of the

scheduler. Error code %u

1572 HY000 ER_PARTITION_MERGE_ERROR
Engine cannot be used in partitioned

tables

1573 HY000 ER_CANT_ACTIVATE_LOG Cannot activate '%s' log

1574 HY000 ER_RBR_NOT_AVAILABLE
The server was not built with row-based

replication

1575 HY000 ER_BASE64_DECODE_ERROR Decoding of base64 string failed

1576 HY000 ER_EVENT_RECURSION_FORBIDDEN
Recursion of EVENT DDL statements is

forbidden when body is present

1577 HY000 ER_EVENTS_DB_ERROR

Cannot proceed because system tables

used by Event Scheduler were found

damaged at server start

1578 HY000 ER_ONLY_INTEGERS_ALLOWED Only integers allowed as number here

1579 HY000 ER_UNSUPORTED_LOG_ENGINE
This storage engine cannot be used for

log tables"

1580 HY000 ER_BAD_LOG_STATEMENT
You cannot '%s' a log table if logging is

enabled

1581 HY000 ER_CANT_RENAME_LOG_TABLE

Cannot rename '%s'. When logging

enabled, rename to/from log table must

rename two tables: the log table to an

archive table and another table back to

'%s'

1582 42000 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT
Incorrect parameter count in the call to

native function '%s'

767/4161

1583 42000 ER_WRONG_PARAMETERS_TO_NATIVE_FCT
Incorrect parameters in the call to

native function '%s'

1584 42000 ER_WRONG_PARAMETERS_TO_STORED_FCT
Incorrect parameters in the call to

stored function '%s'

1585 HY000 ER_NATIVE_FCT_NAME_COLLISION
This function '%s' has the same name

as a native function

1586 23000 ER_DUP_ENTRY_WITH_KEY_NAME Duplicate entry '%s' for key '%s'

1587 HY000 ER_BINLOG_PURGE_EMFILE
Too many files opened, please execute

the command again

1588 HY000 ER_EVENT_CANNOT_CREATE_IN_THE_PAST

Event execution time is in the past and

ON COMPLETION NOT PRESERVE is

set. The event was dropped

immediately after creation.

1589 HY000 ER_EVENT_CANNOT_ALTER_IN_THE_PAST

Event execution time is in the past and

ON COMPLETION NOT PRESERVE is

set. The event was dropped

immediately after creation.

1590 HY000 ER_SLAVE_INCIDENT
The incident %s occured on the master.

Message: %s

1591 HY000 ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT
Table has no partition for some existing

values

1592 HY000 ER_BINLOG_UNSAFE_STATEMENT

Unsafe statement written to the binary

log using statement format since

BINLOG_FORMAT = STATEMENT. %s

1593 HY000 ER_SLAVE_FATAL_ERROR Fatal error: %s

1594 HY000 ER_SLAVE_RELAY_LOG_READ_FAILURE Relay log read failure: %s

1595 HY000 ER_SLAVE_RELAY_LOG_WRITE_FAILURE Relay log write failure: %s

1596 HY000 ER_SLAVE_CREATE_EVENT_FAILURE Failed to create %s

1597 HY000 ER_SLAVE_MASTER_COM_FAILURE Master command %s failed: %s

1598 HY000 ER_BINLOG_LOGGING_IMPOSSIBLE
Binary logging not possible. Message:

%s

1599 HY000 ER_VIEW_NO_CREATION_CTX View `%s`.`%s` has no creation context

Error

Code
SQLSTATE Error Description

1600 HY000 ER_VIEW_INVALID_CREATION_CTX Creation context of view `%s`.`%s' is invalid

1601 HY000 ER_SR_INVALID_CREATION_CTX Creation context of stored routine `%s`.`%s` is invalid

1602 HY000 ER_TRG_CORRUPTED_FILE Corrupted TRG file for table `%s`.`%s`

1603 HY000 ER_TRG_NO_CREATION_CTX Triggers for table `%s`.`%s` have no creation context

1604 HY000 ER_TRG_INVALID_CREATION_CTX Trigger creation context of table `%s`.`%s` is invalid

1605 HY000 ER_EVENT_INVALID_CREATION_CTX Creation context of event `%s`.`%s` is invalid

1606 HY000 ER_TRG_CANT_OPEN_TABLE Cannot open table for trigger `%s`.`%s`

1607 HY000 ER_CANT_CREATE_SROUTINE Cannot create stored routine `%s`. Check warnings

1608 ER_UNUSED_11 You should never see it

1609 HY000
ER_NO_FORMAT_DESCRIPTION_EVENT

_BEFORE_BINLOG_STATEMENT

The BINLOG statement of type `%s` was not

preceded by a format description BINLOG statement.

1610 HY000 ER_SLAVE_CORRUPT_EVENT Corrupted replication event was detected

1611 HY000 ER_LOAD_DATA_INVALID_COLUMN Invalid column reference (%s) in LOAD DATA

1612 HY000 ER_LOG_PURGE_NO_FILE Being purged log %s was not found

1613 XA106 ER_XA_RBTIMEOUT
XA_RBTIMEOUT: Transaction branch was rolled

back: took too long

768/4161

1614 XA102 ER_XA_RBDEADLOCK
XA_RBDEADLOCK: Transaction branch was rolled

back: deadlock was detected

1615 HY000 ER_NEED_REPREPARE Prepared statement needs to be re-prepared

1616 HY000 ER_DELAYED_NOT_SUPPORTED DELAYED option not supported for table '%s'

1617 HY000 WARN_NO_MASTER_INF The master info structure does not exist

1618 HY000 WARN_OPTION_IGNORED <%s> option ignored

1619 HY000 WARN_PLUGIN_DELETE_BUILTIN Built-in plugins cannot be deleted

1620 HY000 WARN_PLUGIN_BUSY Plugin is busy and will be uninstalled on shutdown

1621 HY000 ER_VARIABLE_IS_READONLY
%s variable '%s' is read-only. Use SET %s to assign

the value

1622 HY000 ER_WARN_ENGINE_TRANSACTION_ROLLBACK

Storage engine %s does not support rollback for this

statement. Transaction rolled back and must be

restarted

1623 HY000 ER_SLAVE_HEARTBEAT_FAILURE Unexpected master's heartbeat data: %s

1624 HY000 ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE

The requested value for the heartbeat period is either

negative or exceeds the maximum allowed (%s

seconds).

1625 ER_UNUSED_14 You should never see it

1626 HY000 ER_CONFLICT_FN_PARSE_ERROR Error in parsing conflict function. Message: %s

1627 HY000 ER_EXCEPTIONS_WRITE_ERROR Write to exceptions table failed. Message: %s"

1628 HY000 ER_TOO_LONG_TABLE_COMMENT Comment for table '%s' is too long (max = %lu)

1629 HY000 ER_TOO_LONG_FIELD_COMMENT Comment for field '%s' is too long (max = %lu)

1630 42000 ER_FUNC_INEXISTENT_NAME_COLLISION

FUNCTION %s does not exist. Check the 'Function

Name Parsing and Resolution' section in the

Reference Manual

1631 HY000 ER_DATABASE_NAME Database

1632 HY000 ER_TABLE_NAME Table

1633 HY000 ER_PARTITION_NAME Partition

1634 HY000 ER_SUBPARTITION_NAME Subpartition

1635 HY000 ER_TEMPORARY_NAME Temporary

1636 HY000 ER_RENAMED_NAME Renamed

1637 HY000 ER_TOO_MANY_CONCURRENT_TRXS Too many active concurrent transactions

1638 HY000 WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED
Non-ASCII separator arguments are not fully

supported

1639 HY000 ER_DEBUG_SYNC_TIMEOUT debug sync point wait timed out

1640 HY000 ER_DEBUG_SYNC_HIT_LIMIT debug sync point hit limit reached

1641 42000 ER_DUP_SIGNAL_SET Duplicate condition information item '%s'

1642 01000 ER_SIGNAL_WARN Unhandled user-defined warning condition

1643 02000 ER_SIGNAL_NOT_FOUND Unhandled user-defined not found condition

1644 HY000 ER_SIGNAL_EXCEPTION Unhandled user-defined exception condition

1645 0K000 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER RESIGNAL when handler not active

1646 HY000 ER_SIGNAL_BAD_CONDITION_TYPE
SIGNAL/RESIGNAL can only use a CONDITION

defined with SQLSTATE

1647 HY000 WARN_COND_ITEM_TRUNCATED Data truncated for condition item '%s'

1648 HY000 ER_COND_ITEM_TOO_LONG Data too long for condition item '%s'

1649 HY000 ER_UNKNOWN_LOCALE Unknown locale: '%s'

1650 HY000 ER_SLAVE_IGNORE_SERVER_IDS
The requested server id %d clashes with the slave

startup option --replicate-same-server-id

1651 HY000 ER_QUERY_CACHE_DISABLED
Query cache is disabled; restart the server with

query_cache_type=1 to enable it

769/4161

1652 HY000 ER_SAME_NAME_PARTITION_FIELD Duplicate partition field name '%s'

1653 HY000 ER_PARTITION_COLUMN_LIST_ERROR Inconsistency in usage of column lists for partitioning

1654 HY000 ER_WRONG_TYPE_COLUMN_VALUE_ERROR Partition column values of incorrect type

1655 HY000 ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR Too many fields in '%s'

1656 HY000 ER_MAXVALUE_IN_VALUES_IN Cannot use MAXVALUE as value in VALUES IN

1657 HY000 ER_TOO_MANY_VALUES_ERROR
Cannot have more than one value for this type of %s

partitioning

1658 HY000 ER_ROW_SINGLE_PARTITION_FIELD_ERROR
Row expressions in VALUES IN only allowed for

multi-field column partitioning

1659 HY000 ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD
Field '%s' is of a not allowed type for this type of

partitioning

1660 HY000 ER_PARTITION_FIELDS_TOO_LONG The total length of the partitioning fields is too large

1661 HY000 ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE

Cannot execute statement: impossible to write to

binary log since both row-incapable engines and

statement-incapable engines are involved.

1662 HY000 ER_BINLOG_ROW_MODE_AND_STMT_ENGINE

Cannot execute statement: impossible to write to

binary log since BINLOG_FORMAT = ROW and at

least one table uses a storage engine limited to

statement-based logging.

1663 HY000 ER_BINLOG_UNSAFE_AND_STMT_ENGINE

Cannot execute statement: impossible to write to

binary log since statement is unsafe, storage engine

is limited to statement-based logging, and

BINLOG_FORMAT = MIXED. %s

1664 HY000 ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE

Cannot execute statement: impossible to write to

binary log since statement is in row format and at

least one table uses a storage engine limited to

statement-based logging.

1665 HY000 ER_BINLOG_STMT_MODE_AND_ROW_ENGINE

Cannot execute statement: impossible to write to

binary log since BINLOG_FORMAT = STATEMENT

and at least one table uses a storage engine limited to

row-based logging.%s

1666 HY000 ER_BINLOG_ROW_INJECTION_AND_STMT_MODE

Cannot execute statement: impossible to write to

binary log since statement is in row format and

BINLOG_FORMAT = STATEMENT.

1667 HY000
ER_BINLOG_MULTIPLE_ENGINES

_AND_SELF_LOGGING_ENGINE

Cannot execute statement: impossible to write to

binary log since more than one engine is involved and

at least one engine is self-logging.

1668 HY000 ER_BINLOG_UNSAFE_LIMIT

The statement is unsafe because it uses a LIMIT

clause. This is unsafe because the set of rows

included cannot be predicted.

1669 HY000 ER_BINLOG_UNSAFE_INSERT_DELAYED

The statement is unsafe because it uses INSERT

DELAYED. This is unsafe because the times when

rows are inserted cannot be predicted.

1670 HY000 ER_BINLOG_UNSAFE_SYSTEM_TABLE

The statement is unsafe because it uses the general

log, slow query log, or performance_schema table(s).

This is unsafe because system tables may differ on

slaves.

1671 HY000 ER_BINLOG_UNSAFE_AUTOINC_COLUMNS

Statement is unsafe because it invokes a trigger or a

stored function that inserts into an

AUTO_INCREMENT column. Inserted values cannot

be logged correctly.

1672 HY000 ER_BINLOG_UNSAFE_UDF
Statement is unsafe because it uses a UDF which

may not return the same value on the slave.

1673 HY000 ER_BINLOG_UNSAFE_SYSTEM_VARIABLE
Statement is unsafe because it uses a system

variable that may have a different value on the slave.

1674 HY000 ER_BINLOG_UNSAFE_SYSTEM_FUNCTION
Statement is unsafe because it uses a system

function that may return a different value on the slave.

770/4161

1675 HY000 ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS

Statement is unsafe because it accesses a non-

transactional table after accessing a transactional

table within the same transaction.

1676 HY000 ER_MESSAGE_AND_STATEMENT %s Statement: %s

1677 HY000 ER_SLAVE_CONVERSION_FAILED Column %d of table '%s.%s' cannot be converted

from type '%s' to type '%s'

1678 HY000 ER_SLAVE_CANT_CREATE_CONVERSION Can't create conversion table for table '%s.%s'

1679 HY000
ER_INSIDE_TRANSACTION

_PREVENTS_SWITCH_BINLOG_FORMAT

Cannot modify @@session.binlog_format inside a

transaction

1680 HY000 ER_PATH_LENGTH The path specified for %s is too long.

1681 HY000 ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT
'%s' is deprecated and will be removed in a future

release.

1682 HY000 ER_WRONG_NATIVE_TABLE_STRUCTURE Native table '%s'.'%s' has the wrong structure

1683 HY000 ER_WRONG_PERFSCHEMA_USAGE Invalid performance_schema usage.

1684 HY000 ER_WARN_I_S_SKIPPED_TABLE
Table '%s'.'%s' was skipped since its definition is

being modified by concurrent DDL statement

1685 HY000
ER_INSIDE_TRANSACTION

_PREVENTS_SWITCH_BINLOG_DIRECT

Cannot modify

@@session.binlog_direct_non_transactional_updates

inside a transaction

1686 HY000
ER_STORED_FUNCTION_PREVENTS

_SWITCH_BINLOG_DIRECT

Cannot change the binlog direct flag inside a stored

function or trigger

1687 42000 ER_SPATIAL_MUST_HAVE_GEOM_COL
A SPATIAL index may only contain a geometrical type

column

1688 HY000 ER_TOO_LONG_INDEX_COMMENT Comment for index '%s' is too long (max = %lu)

1689 HY000 ER_LOCK_ABORTED
Wait on a lock was aborted due to a pending

exclusive lock

1690 22003 ER_DATA_OUT_OF_RANGE %s value is out of range in '%s'

1691 HY000 ER_WRONG_SPVAR_TYPE_IN_LIMIT
A variable of a non-integer based type in LIMIT

clause

1692 HY000
ER_BINLOG_UNSAFE_MULTIPLE_ENGINES

_AND_SELF_LOGGING_ENGINE

Mixing self-logging and non-self-logging engines in a

statement is unsafe.

1693 HY000 ER_BINLOG_UNSAFE_MIXED_STATEMENT

Statement accesses nontransactional table as well as

transactional or temporary table, and writes to any of

them.

1694 HY000
ER_INSIDE_TRANSACTION_

PREVENTS_SWITCH_SQL_LOG_BIN

Cannot modify @@session.sql_log_bin inside a

transaction

1695 HY000
ER_STORED_FUNCTION_

PREVENTS_SWITCH_SQL_LOG_BIN

Cannot change the sql_log_bin inside a stored

function or trigger

1696 HY000 ER_FAILED_READ_FROM_PAR_FILE Failed to read from the .par file

1697 HY000 ER_VALUES_IS_NOT_INT_TYPE_ERROR VALUES value for partition '%s' must have type INT

1698 28000 ER_ACCESS_DENIED_NO_PASSWORD_ERROR Access denied for user '%s'@'%s'

1699 HY000 ER_SET_PASSWORD_AUTH_PLUGIN
SET PASSWORD has no significance for users

authenticating via plugins

Error

Code
SQLSTATE Error Description

1700 HY000 ER_GRANT_PLUGIN_USER_EXISTS
GRANT with IDENTIFIED WITH is illegal

because the user %-.*s already exists

1701 42000 ER_TRUNCATE_ILLEGAL_FK
Cannot truncate a table referenced in a foreign

key constraint (%s)

1702 HY000 ER_PLUGIN_IS_PERMANENT
Plugin '%s' is force_plus_permanent and can not

be unloaded

1703 HY000 ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN

The requested value for the heartbeat period is

less than 1 millisecond. The value is reset to 0,

meaning that heartbeating will effectively be

disabled.

771/4161

1704 HY000 ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX

The requested value for the heartbeat period

exceeds the value of slave_net_timeout seconds.

A sensible value for the period should be less

than the timeout.

1705 HY000 ER_STMT_CACHE_FULL

Multi-row statements required more than

'max_binlog_stmt_cache_size' bytes of storage;

increase this mysqld variable and try again

1706 HY000 ER_MULTI_UPDATE_KEY_CONFLICT
Primary key/partition key update is not allowed

since the table is updated both as '%s' and '%s'.

1707 HY000 ER_TABLE_NEEDS_REBUILD
Table rebuild required. Please do "ALTER TABLE

`%s` FORCE" or dump/reload to fix it!

1708 HY000 WARN_OPTION_BELOW_LIMIT
The value of '%s' should be no less than the

value of '%s'

1709 HY000 ER_INDEX_COLUMN_TOO_LONG
Index column size too large. The maximum

column size is %lu bytes.

1710 HY000 ER_ERROR_IN_TRIGGER_BODY Trigger '%s' has an error in its body: '%s'

1711 HY000 ER_ERROR_IN_UNKNOWN_TRIGGER_BODY Unknown trigger has an error in its body: '%s'

1712 HY000 ER_INDEX_CORRUPT Index %s is corrupted

1713 HY000 ER_UNDO_RECORD_TOO_BIG Undo log record is too big.

1714 HY000 ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT

INSERT IGNORE... SELECT is unsafe because

the order in which rows are retrieved by the

SELECT determines which (if any) rows are

ignored. This order cannot be predicted and may

differ on master and the slave.

1715 HY000 ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE

INSERT... SELECT... ON DUPLICATE KEY

UPDATE is unsafe because the order in which

rows are retrieved by the SELECT determines

which (if any) rows are updated. This order

cannot be predicted and may differ on master and

the slave.

1716 HY000 ER_BINLOG_UNSAFE_REPLACE_SELECT

REPLACE... SELECT is unsafe because the

order in which rows are retrieved by the SELECT

determines which (if any) rows are replaced. This

order cannot be predicted and may differ on

master and the slave.

1717 HY000 ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT

CREATE... IGNORE SELECT is unsafe because

the order in which rows are retrieved by the

SELECT determines which (if any) rows are

ignored. This order cannot be predicted and may

differ on master and the slave.

1718 HY000 ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT

CREATE... REPLACE SELECT is unsafe

because the order in which rows are retrieved by

the SELECT determines which (if any) rows are

replaced. This order cannot be predicted and

may differ on master and the slave.

1719 HY000 ER_BINLOG_UNSAFE_UPDATE_IGNORE

UPDATE IGNORE is unsafe because the order

in which rows are updated determines which (if

any) rows are ignored. This order cannot be

predicted and may differ on master and the slave.

1720 ER_UNUSED_15 You should never see it

1721 ER_UNUSED_16 You should never see it

1722 HY000 ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT

Statements writing to a table with an auto-

increment column after selecting from another

table are unsafe because the order in which rows

are retrieved determines what (if any) rows will be

written. This order cannot be predicted and may

differ on master and the slave.

1723 HY000 ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC

CREATE TABLE... SELECT... on a table with an

auto-increment column is unsafe because the

order in which rows are retrieved by the SELECT

determines which (if any) rows are inserted. This

order cannot be predicted and may differ on

master and the slave.

1724 HY000 ER_BINLOG_UNSAFE_INSERT_TWO_KEYS
INSERT... ON DUPLICATE KEY UPDATE on a

table with more than one UNIQUE KEY is unsafe

1725 HY000 ER_TABLE_IN_FK_CHECK Table is being used in foreign key check.

1726 HY000 ER_UNSUPPORTED_ENGINE
Storage engine '%s' does not support system

tables. [%s.%s]

1727 HY000 ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST
INSERT into autoincrement field which is not the

first part in the composed primary key is unsafe.

1728 HY000 ER_CANNOT_LOAD_FROM_TABLE_V2
Cannot load from %s.%s. The table is probably

corrupted

772/4161

1729 HY000 ER_MASTER_DELAY_VALUE_OUT_OF_RANGE
The requested value %s for the master delay

exceeds the maximum %u

1730 HY000 ER_ONLY_FD_AND_RBR_EVENTS_ALLOWED_IN_BINLOG_STATEMENT

Only Format_description_log_event and row

events are allowed in BINLOG statements (but

%s was provided

1731 HY000 ER_PARTITION_EXCHANGE_DIFFERENT_OPTION
Non matching attribute '%s' between partition

and table

1732 HY000 ER_PARTITION_EXCHANGE_PART_TABLE
Table to exchange with partition is partitioned:

'%s'

1733 HY000 ER_PARTITION_EXCHANGE_TEMP_TABLE
Table to exchange with partition is temporary:

'%s'

1734 HY000 ER_PARTITION_INSTEAD_OF_SUBPARTITION
Subpartitioned table, use subpartition instead of

partition

1735 HY000 ER_UNKNOWN_PARTITION Unknown partition '%s' in table '%s'

1736 HY000 ER_TABLES_DIFFERENT_METADATA Tables have different definitions

1737 HY000 ER_ROW_DOES_NOT_MATCH_PARTITION Found a row that does not match the partition

1738 HY000 ER_BINLOG_CACHE_SIZE_GREATER_THAN_MAX

Option binlog_cache_size (%lu) is greater than

max_binlog_cache_size (%lu); setting

binlog_cache_size equal to

max_binlog_cache_size.

1739 HY000 ER_WARN_INDEX_NOT_APPLICABLE
Cannot use %s access on index '%s' due to type

or collation conversion on field '%s'

1740 HY000 ER_PARTITION_EXCHANGE_FOREIGN_KEY
Table to exchange with partition has foreign key

references: '%s'

1741 HY000 ER_NO_SUCH_KEY_VALUE Key value '%s' was not found in table '%s.%s'

1742 HY000 ER_RPL_INFO_DATA_TOO_LONG Data for column '%s' too long

1743 HY000 ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE
Replication event checksum verification failed

while reading from network.

1744 HY000 ER_BINLOG_READ_EVENT_CHECKSUM_FAILURE
Replication event checksum verification failed

while reading from a log file.

1745 HY000 ER_BINLOG_STMT_CACHE_SIZE_GREATER_THAN_MAX

Option binlog_stmt_cache_size (%lu) is greater

than max_binlog_stmt_cache_size (%lu); setting

binlog_stmt_cache_size equal to

max_binlog_stmt_cache_size.

1746 HY000 ER_CANT_UPDATE_TABLE_IN_CREATE_TABLE_SELECT
Can't update table '%s' while '%s' is being

created.

1747 HY000 ER_PARTITION_CLAUSE_ON_NONPARTITIONED PARTITION () clause on non partitioned table

1748 HY000 ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET Found a row not matching the given partition set

1749 HY000 ER_NO_SUCH_PARTITION_UNUSED partition '%s' doesn't exist

1750 HY000 ER_CHANGE_RPL_INFO_REPOSITORY_FAILURE
Failure while changing the type of replication

repository: %s.

1751 HY000 ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_CREATED_TEMP_TABLE
The creation of some temporary tables could not

be rolled back.

1752 HY000 ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_DROPPED_TEMP_TABLE
Some temporary tables were dropped, but these

operations could not be rolled back.

1753 HY000 ER_MTS_FEATURE_IS_NOT_SUPPORTED
%s is not supported in multi-threaded slave

mode. %s

1754 HY000 ER_MTS_UPDATED_DBS_GREATER_MAX

The number of modified databases exceeds the

maximum %d; the database names will not be

included in the replication event metadata.

1755 HY000 ER_MTS_CANT_PARALLEL

Cannot execute the current event group in the

parallel mode. Encountered event %s, relay-log

name %s, position %s which prevents execution

of this event group in parallel mode. Reason: %s.

1756 HY000 ER_MTS_INCONSISTENT_DATA %s

1757 HY000 ER_FULLTEXT_NOT_SUPPORTED_WITH_PARTITIONING
FULLTEXT index is not supported for partitioned

tables.

1758 35000 ER_DA_INVALID_CONDITION_NUMBER Invalid condition number

1759 HY000 ER_INSECURE_PLAIN_TEXT
Sending passwords in plain text without SSL/TLS

is extremely insecure.

1760 HY000 ER_INSECURE_CHANGE_MASTER

Storing MySQL user name or password

information in the master info repository is not

secure and is therefore not recommended.

Please consider using the USER and

PASSWORD connection options for START

SLAVE; see the 'START SLAVE Syntax' in the

MySQL Manual for more information.

773/4161

1761 23000 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO

Foreign key constraint for table '%s', record '%s'

would lead to a duplicate entry in table '%s', key

'%s'

1762 23000 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO
Foreign key constraint for table '%s', record '%s'

would lead to a duplicate entry in a child table

1763 HY000 ER_SQLTHREAD_WITH_SECURE_SLAVE

Setting authentication options is not possible

when only the Slave SQL Thread is being

started.

1764 HY000 ER_TABLE_HAS_NO_FT
The table does not have FULLTEXT index to

support this query

1765 HY000 ER_VARIABLE_NOT_SETTABLE_IN_SF_OR_TRIGGER
The system variable %s cannot be set in stored

functions or triggers.

1766 HY000 ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION
The system variable %s cannot be set when

there is an ongoing transaction.

1767 HY000 ER_GTID_NEXT_IS_NOT_IN_GTID_NEXT_LIST

The system variable @@SESSION.GTID_NEXT

has the value %s, which is not listed in

@@SESSION.GTID_NEXT_LIST.

1768 HY000 ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION_WHEN_GTID_NEXT_LIST_IS_NULL
The system variable @@SESSION.GTID_NEXT

cannot change inside a transaction.

1769 HY000 ER_SET_STATEMENT_CANNOT_INVOKE_FUNCTION
The statement 'SET %s' cannot invoke a stored

function.

1770 HY000 ER_GTID_NEXT_CANT_BE_AUTOMATIC_IF_GTID_NEXT_LIST_IS_NON_NULL

The system variable @@SESSION.GTID_NEXT

cannot be 'AUTOMATIC' when

@@SESSION.GTID_NEXT_LIST is non-NULL.

1771 HY000 ER_SKIPPING_LOGGED_TRANSACTION
Skipping transaction %s because it has already

been executed and logged.

1772 HY000 ER_MALFORMED_GTID_SET_SPECIFICATION Malformed GTID set specification '%s'.

1773 HY000 ER_MALFORMED_GTID_SET_ENCODING Malformed GTID set encoding.

1774 HY000 ER_MALFORMED_GTID_SPECIFICATION Malformed GTID specification '%s'.

1775 HY000 ER_GNO_EXHAUSTED

Impossible to generate Global Transaction

Identifier: the integer component reached the

maximal value. Restart the server with a new

server_uuid.

1776 HY000 ER_BAD_SLAVE_AUTO_POSITION

Parameters MASTER_LOG_FILE,

MASTER_LOG_POS, RELAY_LOG_FILE and

RELAY_LOG_POS cannot be set when

MASTER_AUTO_POSITION is active.

1777 HY000 ER_AUTO_POSITION_REQUIRES_GTID_MODE_ON

CHANGE MASTER TO

MASTER_AUTO_POSITION = 1 can only be

executed when @@GLOBAL.GTID_MODE =

ON.

1778 HY000 ER_CANT_DO_IMPLICIT_COMMIT_IN_TRX_WHEN_GTID_NEXT_IS_SET

Cannot execute statements with implicit commit

inside a transaction when

@@SESSION.GTID_NEXT != AUTOMATIC.

1779 HY000 ER_GTID_MODE_2_OR_3_REQUIRES_DISABLE_GTID_UNSAFE_STATEMENTS_ON

GTID_MODE = ON or GTID_MODE =

UPGRADE_STEP_2 requires

DISABLE_GTID_UNSAFE_STATEMENTS = 1.

1779 HY000 ER_GTID_MODE_2_OR_3_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON

@@GLOBAL.GTID_MODE = ON or

UPGRADE_STEP_2 requires

@@GLOBAL.ENFORCE_GTID_CONSISTENCY

= 1.

1780 HY000 ER_GTID_MODE_REQUIRES_BINLOG

@@GLOBAL.GTID_MODE = ON or

UPGRADE_STEP_1 or UPGRADE_STEP_2

requires --log-bin and --log-slave-updates.

1781 HY000 ER_CANT_SET_GTID_NEXT_TO_GTID_WHEN_GTID_MODE_IS_OFF

@@SESSION.GTID_NEXT cannot be set to

UUID:NUMBER when

@@GLOBAL.GTID_MODE = OFF.

1782 HY000 ER_CANT_SET_GTID_NEXT_TO_ANONYMOUS_WHEN_GTID_MODE_IS_ON

@@SESSION.GTID_NEXT cannot be set to

ANONYMOUS when @@GLOBAL.GTID_MODE

= ON.

1783 HY000 ER_CANT_SET_GTID_NEXT_LIST_TO_NON_NULL_WHEN_GTID_MODE_IS_OFF

@@SESSION.GTID_NEXT_LIST cannot be set

to a non-NULL value when

@@GLOBAL.GTID_MODE = OFF.

1784 HY000 ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF

Found a Gtid_log_event or

Previous_gtids_log_event when

@@GLOBAL.GTID_MODE = OFF.

1785 HY000 ER_GTID_UNSAFE_NON_TRANSACTIONAL_TABLE

When

@@GLOBAL.ENFORCE_GTID_CONSISTENCY

= 1, updates to non-transactional tables can only

be done in either autocommitted statements or

single-statement transactions, and never in the

same statement as updates to transactional

tables.

774/4161

1786 HY000 ER_GTID_UNSAFE_CREATE_SELECT

CREATE TABLE ... SELECT is forbidden when

@@GLOBAL.ENFORCE_GTID_CONSISTENCY

= 1.

1787 HY000 ER_GTID_UNSAFE_CREATE_DROP_TEMPORARY_TABLE_IN_TRANSACTION

When

@@GLOBAL.ENFORCE_GTID_CONSISTENCY

= 1, the statements CREATE TEMPORARY

TABLE and DROP TEMPORARY TABLE can be

executed in a non-transactional context only, and

require that AUTOCOMMIT = 1.

1788 HY000 ER_GTID_MODE_CAN_ONLY_CHANGE_ONE_STEP_AT_A_TIME

The value of @@GLOBAL.GTID_MODE can

only change one step at a time: OFF <->

UPGRADE_STEP_1 <-> UPGRADE_STEP_2 <-

> ON. Also note that this value must be stepped

up or down simultaneously on all servers; see the

Manual for instructions.

1789 HY000 ER_MASTER_HAS_PURGED_REQUIRED_GTIDS

The slave is connecting using CHANGE

MASTER TO MASTER_AUTO_POSITION = 1,

but the master has purged binary logs containing

GTIDs that the slave requires.

1790 HY000 ER_CANT_SET_GTID_NEXT_WHEN_OWNING_GTID

@@SESSION.GTID_NEXT cannot be changed

by a client that owns a GTID. The client owns

%s. Ownership is released on COMMIT or

ROLLBACK.

1791 HY000 ER_UNKNOWN_EXPLAIN_FORMAT Unknown EXPLAIN format name: '%s'

1792 25006 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION
Cannot execute statement in a READ ONLY

transaction.

1793 HY000 ER_TOO_LONG_TABLE_PARTITION_COMMENT
Comment for table partition '%s' is too long (max

= %lu

1794 HY000 ER_SLAVE_CONFIGURATION

Slave is not configured or failed to initialize

properly. You must at least set --server-id to

enable either a master or a slave. Additional error

messages can be found in the MySQL error log.

1795 HY000 ER_INNODB_FT_LIMIT
InnoDB presently supports one FULLTEXT index

creation at a time

1796 HY000 ER_INNODB_NO_FT_TEMP_TABLE
Cannot create FULLTEXT index on temporary

InnoDB table

1797 HY000 ER_INNODB_FT_WRONG_DOCID_COLUMN
Column '%s' is of wrong type for an InnoDB

FULLTEXT index

1798 HY000 ER_INNODB_FT_WRONG_DOCID_INDEX
Index '%s' is of wrong type for an InnoDB

FULLTEXT index

1799 HY000 ER_INNODB_ONLINE_LOG_TOO_BIG

Creating index '%s' required more than

'innodb_online_alter_log_max_size' bytes of

modification log. Please try again.

Error

Code
SQLSTATE Error Description

1800 HY000 ER_UNKNOWN_ALTER_ALGORITHM Unknown ALGORITHM '%s'

1801 HY000 ER_UNKNOWN_ALTER_LOCK Unknown LOCK type '%s'

1802 HY000 ER_MTS_CHANGE_MASTER_CANT_RUN_WITH_GAPS

CHANGE MASTER cannot be

executed when the slave was

stopped with an error or killed in

MTS mode. Consider using

RESET SLAVE or START

SLAVE UNTIL.

1803 HY000 ER_MTS_RECOVERY_FAILURE

Cannot recover after SLAVE

errored out in parallel execution

mode. Additional error messages

can be found in the MySQL error

log.

1804 HY000 ER_MTS_RESET_WORKERS

Cannot clean up worker info

tables. Additional error

messages can be found in the

MySQL error log.

1805 HY000 ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2

Column count of %s.%s is

wrong. Expected %d, found %d.

The table is probably corrupted

775/4161

1806 HY000 ER_SLAVE_SILENT_RETRY_TRANSACTION
Slave must silently retry current

transaction

1807 HY000 ER_DISCARD_FK_CHECKS_RUNNING

There is a foreign key check

running on table '%s'. Cannot

discard the table.

1808 HY000 ER_TABLE_SCHEMA_MISMATCH Schema mismatch (%s

1809 HY000 ER_TABLE_IN_SYSTEM_TABLESPACE Table '%s' in system tablespace

1810 HY000 ER_IO_READ_ERROR IO Read error: (%lu, %s) %s

1811 HY000 ER_IO_WRITE_ERROR IO Write error: (%lu, %s) %s

1812 HY000 ER_TABLESPACE_MISSING
Tablespace is missing for table

'%s'

1813 HY000 ER_TABLESPACE_EXISTS

Tablespace for table '%s' exists.

Please DISCARD the tablespace

before IMPORT.

1814 HY000 ER_TABLESPACE_DISCARDED
Tablespace has been discarded

for table '%s'

1815 HY000 ER_INTERNAL_ERROR Internal error: %s

1816 HY000 ER_INNODB_IMPORT_ERROR

ALTER TABLE '%s' IMPORT

TABLESPACE failed with error

%lu : '%s'

1817 HY000 ER_INNODB_INDEX_CORRUPT Index corrupt: %s

1818 HY000 ER_INVALID_YEAR_COLUMN_LENGTH

YEAR(%lu) column type is

deprecated. Creating YEAR(4)

column instead.

1819 HY000 ER_NOT_VALID_PASSWORD
Your password does not satisfy

the current policy requirements

1820 HY000 ER_MUST_CHANGE_PASSWORD
You must SET PASSWORD

before executing this statement

1821 HY000 ER_FK_NO_INDEX_CHILD

Failed to add the foreign key

constaint. Missing index for

constraint '%s' in the foreign

table '%s'

1822 HY000 ER_FK_NO_INDEX_PARENT

Failed to add the foreign key

constaint. Missing index for

constraint '%s' in the referenced

table '%s'

1823 HY000 ER_FK_FAIL_ADD_SYSTEM
Failed to add the foreign key

constraint '%s' to system tables

1824 HY000 ER_FK_CANNOT_OPEN_PARENT
Failed to open the referenced

table '%s'

1825 HY000 ER_FK_INCORRECT_OPTION

Failed to add the foreign key

constraint on table '%s'. Incorrect

options in FOREIGN KEY

constraint '%s'

1826 HY000 ER_FK_DUP_NAME
Duplicate foreign key constraint

name '%s'

1827 HY000 ER_PASSWORD_FORMAT

The password hash doesn't have

the expected format. Check if the

correct password algorithm is

being used with the

PASSWORD() function.

1828 HY000 ER_FK_COLUMN_CANNOT_DROP

Cannot drop column '%s':

needed in a foreign key

constraint '%s'

776/4161

1829 HY000 ER_FK_COLUMN_CANNOT_DROP_CHILD

Cannot drop column '%s':

needed in a foreign key

constraint '%s' of table '%s'

1830 HY000 ER_FK_COLUMN_NOT_NULL

Column '%s' cannot be NOT

NULL: needed in a foreign key

constraint '%s' SET NULL

1831 HY000 ER_DUP_INDEX

Duplicate index '%s' defined on

the table '%s.%s'. This is

deprecated and will be

disallowed in a future release.

1832 HY000 ER_FK_COLUMN_CANNOT_CHANGE

Cannot change column '%s':

used in a foreign key constraint

'%s'

1833 HY000 ER_FK_COLUMN_CANNOT_CHANGE_CHILD

Cannot change column '%s':

used in a foreign key constraint

'%s' of table '%s'

1834 HY000 ER_FK_CANNOT_DELETE_PARENT

Cannot delete rows from table

which is parent in a foreign key

constraint '%s' of table '%s'

1835 HY000 ER_MALFORMED_PACKET
Malformed communication

packet.

1836 HY000 ER_READ_ONLY_MODE Running in read-only mode

1837 HY000 ER_GTID_NEXT_TYPE_UNDEFINED_GROUP

When

@@SESSION.GTID_NEXT is

set to a GTID, you must explicitly

set it to a different value after a

COMMIT or ROLLBACK. Please

check GTID_NEXT variable

manual page for detailed

explanation. Current

@@SESSION.GTID_NEXT is

'%s'.

1838 HY000 ER_VARIABLE_NOT_SETTABLE_IN_SP
The system variable %s cannot

be set in stored procedures.

1839 HY000 ER_CANT_SET_GTID_PURGED_WHEN_GTID_MODE_IS_OFF

@@GLOBAL.GTID_PURGED

can only be set when

@@GLOBAL.GTID_MODE =

ON.

1840 HY000 ER_CANT_SET_GTID_PURGED_WHEN_GTID_EXECUTED_IS_NOT_EMPTY

@@GLOBAL.GTID_PURGED

can only be set when

@@GLOBAL.GTID_EXECUTED

is empty.

1841 HY000 ER_CANT_SET_GTID_PURGED_WHEN_OWNED_GTIDS_IS_NOT_EMPTY

@@GLOBAL.GTID_PURGED

can only be set when there are

no ongoing transactions (not

even in other clients).

1842 HY000 ER_GTID_PURGED_WAS_CHANGED
@@GLOBAL.GTID_PURGED

was changed from '%s' to '%s'.

1843 HY000 ER_GTID_EXECUTED_WAS_CHANGED
@@GLOBAL.GTID_EXECUTED

was changed from '%s' to '%s'.

1844 HY000 ER_BINLOG_STMT_MODE_AND_NO_REPL_TABLES

Cannot execute statement:

impossible to write to binary log

since BINLOG_FORMAT =

STATEMENT, and both

replicated and non replicated

tables are written to.

777/4161

1845 0A000 ER_ALTER_OPERATION_NOT_SUPPORTED
%s is not supported for this

operation. Try %s.

1846 0A000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON
%s is not supported. Reason:

%s. Try %s.

1847 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY COPY algorithm requires a lock

1848 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION

Partition specific operations do

not yet support

LOCK/ALGORITHM

1849 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME
Columns participating in a

foreign key are renamed

1850 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE
Cannot change column type

INPLACE

1851 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK
Adding foreign keys needs

foreign_key_checks=OFF

1852 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE

Creating unique indexes with

IGNORE requires COPY

algorithm to remove duplicate

rows

1853 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK

Dropping a primary key is not

allowed without also adding a

new primary key

1854 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC
Adding an auto-increment

column requires a lock

1855 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS

Cannot replace hidden

FTS_DOC_ID with a user-visible

one

1856 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS
Cannot drop or rename

FTS_DOC_ID

1857 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS
Fulltext index creation requires a

lock

1858 HY000 ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE

sql_slave_skip_counter can not

be set when the server is

running with

@@GLOBAL.GTID_MODE =

ON. Instead, for each transaction

that you want to skip, generate

an empty transaction with the

same GTID as the transaction

1859 23000 ER_DUP_UNKNOWN_IN_INDEX Duplicate entry for key '%s'

1860 HY000 ER_IDENT_CAUSES_TOO_LONG_PATH

Long database name and

identifier for object resulted in

path length exceeding %d

characters. Path: '%s'.

1861 HY000 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL

cannot silently convert NULL

values, as required in this

SQL_MODE

1862 HY000 ER_MUST_CHANGE_PASSWORD_LOGIN

Your password has expired. To

log in you must change it using a

client that supports expired

passwords.

1863 HY000 ER_ROW_IN_WRONG_PARTITION
Found a row in wrong partition

%s

778/4161

1864 HY000 ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX

Cannot schedule event %s,

relay-log name %s, position %s

to Worker thread because its

size %lu exceeds %lu of

slave_pending_jobs_size_max.

1865 HY000 ER_INNODB_NO_FT_USES_PARSER

Cannot CREATE FULLTEXT

INDEX WITH PARSER on

InnoDB table

1866 HY000 ER_BINLOG_LOGICAL_CORRUPTION The binary log file '%s' is

logically corrupted: %s

1867 HY000 ER_WARN_PURGE_LOG_IN_USE

file %s was not purged because

it was being read by %d

thread(s), purged only %d out of

%d files.

1868 HY000 ER_WARN_PURGE_LOG_IS_ACTIVE
file %s was not purged because

it is the active log file.

1869 HY000 ER_AUTO_INCREMENT_CONFLICT

Auto-increment value in

UPDATE conflicts with internally

generated values

1870 HY000 WARN_ON_BLOCKHOLE_IN_RBR

Row events are not logged for

%s statements that modify

BLACKHOLE tables in row

format. Table(s): '%s'

1871 HY000 ER_SLAVE_MI_INIT_REPOSITORY
Slave failed to initialize master

info structure from the repository

1872 HY000 ER_SLAVE_RLI_INIT_REPOSITORY
Slave failed to initialize relay log

info structure from the repository

1873 28000 ER_ACCESS_DENIED_CHANGE_USER_ERROR

Access denied trying to change

to user '%s'@'%s' (using

password: %s). Disconnecting.

1874 HY000 ER_INNODB_READ_ONLY InnoDB is in read only mode.

1875 HY000 ER_STOP_SLAVE_SQL_THREAD_TIMEOUT

STOP SLAVE command

execution is incomplete: Slave

SQL thread got the stop signal,

thread is busy, SQL thread will

stop once the current task is

complete.

1876 HY000 ER_STOP_SLAVE_IO_THREAD_TIMEOUT

STOP SLAVE command

execution is incomplete: Slave

IO thread got the stop signal,

thread is busy, IO thread will

stop once the current task is

complete.

1877 HY000 ER_TABLE_CORRUPT

Operation cannot be performed.

The table '%s.%s' is missing,

corrupt or contains bad data.

1878 HY000 ER_TEMP_FILE_WRITE_FAILURE Temporary file write failure.

1879 HY000 ER_INNODB_FT_AUX_NOT_HEX_ID

Upgrade index name failed,

please use create index(alter

table) algorithm copy to rebuild

index.

1880 ER_LAST_MYSQL_ERROR_MESSAGE "

MariaDB-specific error codes

Error

Code
SQLSTATE Error Description

779/4161

1900 ER_UNUSED_18 "

1901 ER_GENERATED_COLUMN_FUNCTION_IS_NOT_ALLOWED
Function or expression '%s' cannot be used in

the %s clause of %`s

1902 ER_UNUSED_19 "

1903 ER_PRIMARY_KEY_BASED_ON_GENERATED_COLUMN
Primary key cannot be defined upon a generated

column

1904 ER_KEY_BASED_ON_GENERATED_VIRTUAL_COLUMN
Key/Index cannot be defined on a virtual

generated column

1905 ER_WRONG_FK_OPTION_FOR_GENERATED_COLUMN
Cannot define foreign key with %s clause on a

generated column

1906 ER_WARNING_NON_DEFAULT_VALUE_FOR_GENERATED_COLUMN
The value specified for generated column '%s' in

table '%s' has been ignored

1907 ER_UNSUPPORTED_ACTION_ON_GENERATED_COLUMN This is not yet supported for generated columns

1908 ER_UNUSED_20 "

1909 ER_UNUSED_21 "

1910 ER_UNSUPPORTED_ENGINE_FOR_GENERATED_COLUMNS
%s storage engine does not support generated

columns

1911 ER_UNKNOWN_OPTION Unknown option '%-.64s'

1912 ER_BAD_OPTION_VALUE Incorrect value '%-.64s' for option '%-.64s'

1913 ER_UNUSED_6 You should never see it

1914 ER_UNUSED_7 You should never see it

1915 ER_UNUSED_8 You should never see it

1916 ER_DATA_OVERFLOW 22003
Got overflow when converting '%-.128s' to %-

.32s. Value truncated.

1917 ER_DATA_TRUNCATED 22003
Truncated value '%-.128s' when converting to %-

.32s

1918 ER_BAD_DATA 22007
Encountered illegal value '%-.128s' when

converting to %-.32s

1919 ER_DYN_COL_WRONG_FORMAT
Encountered illegal format of dynamic column

string

1920 ER_DYN_COL_IMPLEMENTATION_LIMIT Dynamic column implementation limit reached

1921 ER_DYN_COL_DATA 22007
Illegal value used as argument of dynamic

column function

1922 ER_DYN_COL_WRONG_CHARSET
Dynamic column contains unknown character

set

1923 ER_ILLEGAL_SUBQUERY_OPTIMIZER_SWITCHES

At least one of the 'in_to_exists' or

'materialization' optimizer_switch flags must be

'on'.

1924 ER_QUERY_CACHE_IS_DISABLED

Query cache is disabled (resize or similar

command in progress); repeat this command

later

1925 ER_QUERY_CACHE_IS_GLOBALY_DISABLED
Query cache is globally disabled and you can't

enable it only for this session

1926 ER_VIEW_ORDERBY_IGNORED

View '%-.192s'.'%-.192s' ORDER BY clause

ignored because there is other ORDER BY

clause already.

1927 70100 ER_CONNECTION_KILLED Connection was killed

1928 ER_UNUSED_11 You should never see it

1929 ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SKIP_REPLICATION
Cannot modify @@session.skip_replication

inside a transaction

1930 ER_STORED_FUNCTION_PREVENTS_SWITCH_SKIP_REPLICATION
Cannot modify @@session.skip_replication

inside a stored function or trigger

1931 ER_QUERY_EXCEEDED_ROWS_EXAMINED_LIMIT

Query execution was interrupted. The query

examined at least %llu rows, which exceeds

LIMIT ROWS EXAMINED (%llu). The query

result may be incomplete.

1932 ER_NO_SUCH_TABLE_IN_ENGINE 42S02 Table '%-.192s.%-.192s' doesn't exist in engine

1933 ER_TARGET_NOT_EXPLAINABLE Target is not running an EXPLAINable command

1934 ER_CONNECTION_ALREADY_EXISTS
Connection '%.*s' conflicts with existing

connection '%.*s'

1935 ER_MASTER_LOG_PREFIX Master '%.*s':

1936 ER_CANT_START_STOP_SLAVE Can't %s SLAVE '%.*s'

1937 ER_SLAVE_STARTED SLAVE '%.*s' started

1938 ER_SLAVE_STOPPED SLAVE '%.*s' stopped

780/4161

1939 ER_SQL_DISCOVER_ERROR
Engine %s failed to discover table %`-.192s.%`-

.192s with '%s'

1940 ER_FAILED_GTID_STATE_INIT Failed initializing replication GTID state

1941 ER_INCORRECT_GTID_STATE Could not parse GTID list

1942 ER_CANNOT_UPDATE_GTID_STATE Could not update replication slave gtid state

1943 ER_DUPLICATE_GTID_DOMAIN
GTID %u-%u-%llu and %u-%u-%llu conflict

(duplicate domain id %u)

1944 ER_GTID_OPEN_TABLE_FAILED Failed to open %s.%s

1945 ER_GTID_POSITION_NOT_FOUND_IN_BINLOG
Connecting slave requested to start from GTID

%u-%u-%llu, which is not in the master's binlog

1946 ER_CANNOT_LOAD_SLAVE_GTID_STATE
Failed to load replication slave GTID position

from table %s.%s

1947 ER_MASTER_GTID_POS_CONFLICTS_WITH_BINLOG

Specified GTID %u-%u-%llu conflicts with the

binary log which contains a more recent GTID

%u-%u-%llu. If

MASTER_GTID_POS=CURRENT_POS is

used, the binlog position will override the new

value of @@gtid_slave_pos.

1948 ER_MASTER_GTID_POS_MISSING_DOMAIN

Specified value for @@gtid_slave_pos contains

no value for replication domain %u. This

conflicts with the binary log which contains GTID

%u-%u-%llu. If

MASTER_GTID_POS=CURRENT_POS is

used, the binlog position will override the new

value of @@gtid_slave_pos.

1949 ER_UNTIL_REQUIRES_USING_GTID
START SLAVE UNTIL master_gtid_pos requires

that slave is using GTID

1950 ER_GTID_STRICT_OUT_OF_ORDER

An attempt was made to binlog GTID %u-%u-

%llu which would create an out-of-order

sequence number with existing GTID %u-%u-

%llu, and gtid strict mode is enabled.

1951 ER_GTID_START_FROM_BINLOG_HOLE

The binlog on the master is missing the GTID

%u-%u-%llu requested by the slave (even

though a subsequent sequence number does

exist), and GTID strict mode is enabled

1952 ER_SLAVE_UNEXPECTED_MASTER_SWITCH

Unexpected GTID received from master after

reconnect. This normally indicates that the

master server was replaced without restarting

the slave threads. %s

1953 ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_GTID_DOMAIN_ID_SEQ_NO
Cannot modify @@session.gtid_domain_id or

@@session.gtid_seq_no inside a transaction

1954 ER_STORED_FUNCTION_PREVENTS_SWITCH_GTID_DOMAIN_ID_SEQ_NO

Cannot modify @@session.gtid_domain_id or

@@session.gtid_seq_no inside a stored

function or trigger

1955 ER_GTID_POSITION_NOT_FOUND_IN_BINLOG2

Connecting slave requested to start from GTID

%u-%u-%llu, which is not in the master's binlog.

Since the master's binlog contains GTIDs with

higher sequence numbers, it probably means

that the slave has diverged due to executing

extra errorneous transactions

1956 ER_BINLOG_MUST_BE_EMPTY

This operation is not allowed if any GTID has

been logged to the binary log. Run RESET

MASTER first to erase the log

1957 ER_NO_SUCH_QUERY Unknown query id: %lld

1958 ER_BAD_BASE64_DATA Bad base64 data as position %u

1959 ER_INVALID_ROLE Invalid role specification %`s.

1960 ER_INVALID_CURRENT_USER The current user is invalid.

1961 ER_CANNOT_GRANT_ROLE Cannot grant role '%s' to: %s.

1962 ER_CANNOT_REVOKE_ROLE Cannot revoke role '%s' from: %s.

1963 ER_CHANGE_SLAVE_PARALLEL_THREADS_ACTIVE
Cannot change @@slave_parallel_threads while

another change is in progress

1964 ER_PRIOR_COMMIT_FAILED
Commit failed due to failure of an earlier commit

on which this one depends

1965 ER_IT_IS_A_VIEW '%-.192s' is a view

1966 ER_SLAVE_SKIP_NOT_IN_GTID

When using GTID, @@sql_slave_skip_counter

can not be used. Instead, setting

@@gtid_slave_pos explicitly can be used to

skip to after a given GTID position.

1967 ER_TABLE_DEFINITION_TOO_BIG The definition for table %`s is too big

1968 ER_PLUGIN_INSTALLED Plugin '%-.192s' already installed

781/4161

1969 ER_STATEMENT_TIMEOUT
Query execution was interrupted

(max_statement_time exceeded)

1970 ER_SUBQUERIES_NOT_SUPPORTED
%s does not support subqueries or stored

functions.

1971 ER_SET_STATEMENT_NOT_SUPPORTED
The system variable %.200s cannot be set in

SET STATEMENT.

1972 ER_UNUSED_9 You should never see it

1973 ER_USER_CREATE_EXISTS
Can't create user '%-.64s'@'%-.64s'; it already

exists

1974 ER_USER_DROP_EXISTS
Can't drop user '%-.64s'@'%-.64s'; it doesn't

exist

1975 ER_ROLE_CREATE_EXISTS Can't create role '%-.64s'; it already exists

1976 ER_ROLE_DROP_EXISTS Can't drop role '%-.64s'; it doesn't exist

1977 ER_CANNOT_CONVERT_CHARACTER Cannot convert '%s' character 0x%-.64s to '%s'

1978 ER_INVALID_DEFAULT_VALUE_FOR_FIELD
Incorrect default value '%-.128s' for column

'%.192s'

1979 ER_KILL_QUERY_DENIED_ERROR You are not owner of query %lu

1980 ER_NO_EIS_FOR_FIELD
Engine-independent statistics are not collected

for column '%s'

1981 ER_WARN_AGGFUNC_DEPENDENCE
Aggregate function '%-.192s)' of SELECT #%d

belongs to SELECT #%d

1982 WARN_INNODB_PARTITION_OPTION_IGNORED <%-.64s> option ignored for InnoDB partition

Error

Code
SQLSTATE Error Description

3000 ER_FILE_CORRUPT File %s is corrupted

3001 ER_ERROR_ON_MASTER

Query partially completed on the master (error

on master: %d) and was aborted. There is a

chance that your master is inconsistent at this

point. If you are sure that your master is ok, run

this query manually on the slave and then

restart the slave with SET GLOBAL

SQL_SLAVE_SKIP_COUNTER=1; START

SLAVE;. Query:'%s'"

3002 ER_INCONSISTENT_ERROR

Query caused different errors on master and

slave. Error on master: message (format)='%s'

error code=%d; Error on slave:actual

message='%s', error code=%d. Default

database:'%s'. Query:'%s'

3003 ER_STORAGE_ENGINE_NOT_LOADED Storage engine for table '%s'.'%s' is not loaded.

3004 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0Z002
GET STACKED DIAGNOSTICS when handler

not active

3005 ER_WARN_LEGACY_SYNTAX_CONVERTED
%s is no longer supported. The statement was

converted to %s.

3006 ER_BINLOG_UNSAFE_FULLTEXT_PLUGIN

Statement is unsafe because it uses a fulltext

parser plugin which may not return the same

value on the slave.

3007 ER_CANNOT_DISCARD_TEMPORARY_TABLE
Cannot DISCARD/IMPORT tablespace

associated with temporary table

3008 ER_FK_DEPTH_EXCEEDED
Foreign key cascade delete/update exceeds

max depth of %d.

3009 ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE_V2

Column count of %s.%s is wrong. Expected

%d, found %d. Created with MariaDB %d, now

running %d. Please use mysql_upgrade to fix

this error.

3010 ER_WARN_TRIGGER_DOESNT_HAVE_CREATED
Trigger %s.%s.%s does not have CREATED

attribute.

3011 ER_REFERENCED_TRG_DOES_NOT_EXIST_MYSQL
Referenced trigger '%s' for the given action time

and event type does not exist.

3012 ER_EXPLAIN_NOT_SUPPORTED

EXPLAIN FOR CONNECTION command is

supported only for

SELECT/UPDATE/INSERT/DELETE/REPLACE

782/4161

3013 ER_INVALID_FIELD_SIZE Invalid size for column '%-.192s'.

3014 ER_MISSING_HA_CREATE_OPTION
Table storage engine '%-.64s' found required

create option missing

3015 ER_ENGINE_OUT_OF_MEMORY Out of memory in storage engine '%-.64s'.

3016 ER_PASSWORD_EXPIRE_ANONYMOUS_USER
The password for anonymous user cannot be

expired.

3017 ER_SLAVE_SQL_THREAD_MUST_STOP

This operation cannot be performed with a

running slave sql thread; run STOP SLAVE

SQL_THREAD first

3018 ER_NO_FT_MATERIALIZED_SUBQUERY
Cannot create FULLTEXT index on

materialized subquery

3019 ER_INNODB_UNDO_LOG_FULL Undo Log error: %s

3020 ER_INVALID_ARGUMENT_FOR_LOGARITHM Invalid argument for logarithm

3021 ER_SLAVE_CHANNEL_IO_THREAD_MUST_STOP

This operation cannot be performed with a

running slave io thread; run STOP SLAVE

IO_THREAD FOR CHANNEL '%s' first.

3022 ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO

This operation may not be safe when the slave

has temporary tables. The tables will be kept

open until the server restarts or until the tables

are deleted by any replicated DROP statement.

Suggest to wait until slave_open_temp_tables =

0.

3023 ER_WARN_ONLY_MASTER_LOG_FILE_NO_POS

CHANGE MASTER TO with a

MASTER_LOG_FILE clause but no

MASTER_LOG_POS clause may not be safe.

The old position value may not be valid for the

new binary log file.

3024 ER_QUERY_TIMEOUT
Query execution was interrupted, maximum

statement execution time exceeded

3025 ER_NON_RO_SELECT_DISABLE_TIMER
Select is not a read only statement, disabling

timer

3026 ER_DUP_LIST_ENTRY Duplicate entry '%-.192s'.

3027 ER_SQL_MODE_NO_EFFECT

'%s' mode no longer has any effect. Use

STRICT_ALL_TABLES or

STRICT_TRANS_TABLES instead.

3028 ER_AGGREGATE_ORDER_FOR_UNION
Expression #%u of ORDER BY contains

aggregate function and applies to a UNION

3029 ER_AGGREGATE_ORDER_NON_AGG_QUERY

Expression #%u of ORDER BY contains

aggregate function and applies to the result of a

non-aggregated query

3030 ER_SLAVE_WORKER_STOPPED_PREVIOUS_THD_ERROR

Slave worker has stopped after at least one

previous worker encountered an error when

slave-preserve-commit-order was enabled. To

preserve commit order, the last transaction

executed by this thread has not been

committed. When restarting the slave after

fixing any failed threads, you should fix this

worker as well.

3031 ER_DONT_SUPPORT_SLAVE_PRESERVE_COMMIT_ORDER
slave_preserve_commit_order is not supported

%s.

3032 ER_SERVER_OFFLINE_MODE The server is currently in offline mode

3033 ER_GIS_DIFFERENT_SRIDS

Binary geometry function %s given two

geometries of different srids: %u and %u, which

should have been identical.

3034 ER_GIS_UNSUPPORTED_ARGUMENT
Calling geometry function %s with unsupported

types of arguments.

3035 ER_GIS_UNKNOWN_ERROR Unknown GIS error occurred in function %s.

3036 ER_GIS_UNKNOWN_EXCEPTION Unknown exception caught in GIS function %s.

3037 ER_GIS_INVALID_DATA Invalid GIS data provided to function %s.

783/4161

3038 ER_BOOST_GEOMETRY_EMPTY_INPUT_EXCEPTION The geometry has no data in function %s.

3039 ER_BOOST_GEOMETRY_CENTROID_EXCEPTION
Unable to calculate centroid because geometry

is empty in function %s.

3040 ER_BOOST_GEOMETRY_OVERLAY_INVALID_INPUT_EXCEPTION
Geometry overlay calculation error: geometry

data is invalid in function %s.

3041 ER_BOOST_GEOMETRY_TURN_INFO_EXCEPTION
Geometry turn info calculation error: geometry

data is invalid in function %s.

3042 ER_BOOST_GEOMETRY_SELF_INTERSECTION_POINT_EXCEPTION
Analysis procedures of intersection points

interrupted unexpectedly in function %s.

3043 ER_BOOST_GEOMETRY_UNKNOWN_EXCEPTION Unknown exception thrown in function %s.

3044 ER_STD_BAD_ALLOC_ERROR
Memory allocation error: %-.256s in function

%s.

3045 ER_STD_DOMAIN_ERROR Domain error: %-.256s in function %s.

3046 ER_STD_LENGTH_ERROR Length error: %-.256s in function %s.

3047 ER_STD_INVALID_ARGUMENT Invalid argument error: %-.256s in function %s.

3048 ER_STD_OUT_OF_RANGE_ERROR Out of range error: %-.256s in function %s.

3049 ER_STD_OVERFLOW_ERROR Overflow error error: %-.256s in function %s.

3050 ER_STD_RANGE_ERROR Range error: %-.256s in function %s.

3051 ER_STD_UNDERFLOW_ERROR Underflow error: %-.256s in function %s.

3052 ER_STD_LOGIC_ERROR Logic error: %-.256s in function %s.

3053 ER_STD_RUNTIME_ERROR Runtime error: %-.256s in function %s.

3054 ER_STD_UNKNOWN_EXCEPTION Unknown exception: %-.384s in function %s.

3055 ER_GIS_DATA_WRONG_ENDIANESS Geometry byte string must be little endian.

3056 ER_CHANGE_MASTER_PASSWORD_LENGTH
The password provided for the replication user

exceeds the maximum length of 32 characters

3057 42000 ER_USER_LOCK_WRONG_NAME Incorrect user-level lock name '%-.192s'.

3058 ER_USER_LOCK_DEADLOCK

Deadlock found when trying to get user-level

lock; try rolling back transaction/releasing locks

and restarting lock acquisition.

3059 ER_REPLACE_INACCESSIBLE_ROWS
REPLACE cannot be executed as it requires

deleting rows that are not in the view

3060 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_GIS
Do not support online operation on table with

GIS index

Error

Code
SQLSTATE Error Description

4000 0A000 ER_COMMULTI_BADCONTEXT
COM_MULTI can't return a result set in

the given context

4001 ER_BAD_COMMAND_IN_MULTI
Command '%s' is not allowed for

COM_MULTI

4002 ER_WITH_COL_WRONG_LIST
WITH column list and SELECT field list

have different column counts

4003 ER_TOO_MANY_DEFINITIONS_IN_WITH_CLAUSE Too many WITH elements in WITH clause

4004 ER_DUP_QUERY_NAME
Duplicate query name %`-.64s in WITH

clause

4005 ER_RECURSIVE_WITHOUT_ANCHORS
No anchors for recursive WITH element

'%s'

4006 ER_UNACCEPTABLE_MUTUAL_RECURSION
Unacceptable mutual recursion with

anchored table '%s'

4007 ER_REF_TO_RECURSIVE_WITH_TABLE_IN_DERIVED
Reference to recursive WITH table '%s' in

materialized derived

4008 ER_NOT_STANDARD_COMPLIANT_RECURSIVE

Restrictions imposed on recursive

definitions are violated for table

'%s'"R_WRONG_WINDOW_SPEC_NAME

784/4161

4009 ER_WRONG_WINDOW_SPEC_NAME
Window specification with name '%s' is not

defined

4010 ER_DUP_WINDOW_NAME
Multiple window specifications with the

same name '%s'

4011 ER_PARTITION_LIST_IN_REFERENCING_WINDOW_SPEC
Window specification referencing another

one '%s' cannot contain partition list

4012 ER_ORDER_LIST_IN_REFERENCING_WINDOW_SPEC
Referenced window specification '%s'

already contains order list

4013 ER_WINDOW_FRAME_IN_REFERENCED_WINDOW_SPEC
Referenced window specification '%s'

cannot contain window frame

4014 ER_BAD_COMBINATION_OF_WINDOW_FRAME_BOUND_SPECS
Unacceptable combination of window

frame bound specifications

4015 ER_WRONG_PLACEMENT_OF_WINDOW_FUNCTION
Window function is allowed only in

SELECT list and ORDER BY clause

4016 ER_WINDOW_FUNCTION_IN_WINDOW_SPEC
Window function is not allowed in window

specification

4017 ER_NOT_ALLOWED_WINDOW_FRAME Window frame is not allowed with '%s'

4018 ER_NO_ORDER_LIST_IN_WINDOW_SPEC
No order list in window specification for

'%s'

4019 ER_RANGE_FRAME_NEEDS_SIMPLE_ORDERBY
RANGE-type frame requires ORDER BY

clause with single sort key

4020 ER_WRONG_TYPE_FOR_ROWS_FRAME Integer is required for ROWS-type frame

4021 ER_WRONG_TYPE_FOR_RANGE_FRAME
Numeric datatype is required for RANGE-

type frame

4022 ER_FRAME_EXCLUSION_NOT_SUPPORTED Frame exclusion is not supported yet

4023 ER_WINDOW_FUNCTION_DONT_HAVE_FRAME
This window function may not have a

window frame

4024 ER_INVALID_NTILE_ARGUMENT Argument of NTILE must be greater than 0

4025 23000 ER_CONSTRAINT_FAILED
CONSTRAINT %`s failed for %`-.192s.%`-

.192s

4026 ER_EXPRESSION_IS_TOO_BIG Expression in the %s clause is too big

4027 ER_ERROR_EVALUATING_EXPRESSION
Got an error evaluating stored expression

%s

4028 ER_CALCULATING_DEFAULT_VALUE
Got an error when calculating default

value for %`s

4029 ER_EXPRESSION_REFERS_TO_UNINIT_FIELD
Expression for field %`-.64s is referring to

uninitialized field %`s

4030 ER_PARTITION_DEFAULT_ERROR Only one DEFAULT partition allowed

4031 ER_REFERENCED_TRG_DOES_NOT_EXIST
Referenced trigger '%s' for the given

action time and event type does not exist

4032 ER_INVALID_DEFAULT_PARAM
Default/ignore value is not supported for

such parameter usage

4033 ER_BINLOG_NON_SUPPORTED_BULK
Only row based replication supported for

bulk operations

4034 ER_BINLOG_UNCOMPRESS_ERROR Uncompress the compressed binlog failed

4035 ER_JSON_BAD_CHR
Broken JSON string in argument %d to

function '%s' at position %d

4036 ER_JSON_NOT_JSON_CHR
Character disallowed in JSON in argument

%d to function '%s' at position %d

4037 ER_JSON_EOS
Unexpected end of JSON text in argument

%d to function '%s'

4038 ER_JSON_SYNTAX
Syntax error in JSON text in argument %d

to function '%s' at position %d

785/4161

4039 ER_JSON_ESCAPING

Incorrect escaping in JSON text in

argument %d to function '%s' at position

%d

4040 ER_JSON_DEPTH

Limit of %d on JSON nested strucures

depth is reached in argument %d to

function '%s' at position %d

4041 ER_JSON_PATH_EOS
Unexpected end of JSON path in argument

%d to function '%s'

4042 ER_JSON_PATH_SYNTAX
Syntax error in JSON path in argument %d

to function '%s' at position %d

4043 ER_JSON_PATH_DEPTH

Limit of %d on JSON path depth is

reached in argument %d to function '%s' at

position %d

4044 ER_JSON_PATH_NO_WILDCARD
Wildcards in JSON path not allowed in

argument %d to function '%s'

4045 ER_JSON_PATH_ARRAY
JSON path should end with an array

identifier in argument %d to function '%s'

4046 ER_JSON_ONE_OR_ALL
Argument 2 to function '%s' must be "one"

or "all".

4047 ER_UNSUPPORT_COMPRESSED_TEMPORARY_TABLE

CREATE TEMPORARY TABLE is not

allowed with

ROW_FORMAT=COMPRESSED or

KEY_BLOCK_SIZE.

4048 ER_GEOJSON_INCORRECT
Incorrect GeoJSON format specified for

st_geomfromgeojson function.

4049 ER_GEOJSON_TOO_FEW_POINTS
Incorrect GeoJSON format - too few points

for linestring specified.

4050 ER_GEOJSON_NOT_CLOSED
Incorrect GeoJSON format - polygon not

closed.

4051 ER_JSON_PATH_EMPTY
Path expression '$' is not allowed in

argument %d to function '%s'.

4052 ER_SLAVE_SAME_ID

A slave with the same

server_uuid/server_id as this slave has

connected to the master

4053 ER_FLASHBACK_NOT_SUPPORTED Flashback does not support %s %s

4054 ER_KEYS_OUT_OF_ORDER Keys are out order during bulk load

4055 ER_OVERLAPPING_KEYS Bulk load rows overlap existing rows

4056 ER_REQUIRE_ROW_BINLOG_FORMAT
Can't execute updates on master with

binlog_format != ROW.

4057 ER_ISOLATION_MODE_NOT_SUPPORTED

MyRocks supports only READ

COMMITTED and REPEATABLE READ

isolation levels. Please change from

current isolation level %s

4058 ER_ON_DUPLICATE_DISABLED

When unique checking is disabled in

MyRocks, INSERT,UPDATE,LOAD

statements with clauses that update or

replace the key (i.e. INSERT ON

DUPLICATE KEY UPDATE, REPLACE)

are not allowed. Query: %s

4059 ER_UPDATES_WITH_CONSISTENT_SNAPSHOT

Can't execute updates when you started a

transaction with START TRANSACTION

WITH CONSISTENT [ROCKSDB]

SNAPSHOT.

4060 ER_ROLLBACK_ONLY

This transaction was rolled back and

cannot be committed. Only supported

operation is to roll it back, so all pending

changes will be discarded. Please restart

another transaction.

786/4161

4061 ER_ROLLBACK_TO_SAVEPOINT

MyRocks currently does not support

ROLLBACK TO SAVEPOINT if modifying

rows.

4062 ER_ISOLATION_LEVEL_WITH_CONSISTENT_SNAPSHOT

Only REPEATABLE READ isolation level

is supported for START TRANSACTION

WITH CONSISTENT SNAPSHOT in

RocksDB Storage Engine.

4063 ER_UNSUPPORTED_COLLATION
Unsupported collation on string indexed

column %s.%s Use binary collation (%s).

4064 ER_METADATA_INCONSISTENCY

Table '%s' does not exist, but metadata

information exists inside MyRocks. This is

a sign of data inconsistency. Please check

if '%s.frm' exists, and try to restore it if it

does not exist.

4065 ER_CF_DIFFERENT

Column family ('%s') flag (%d) is different

from an existing flag (%d). Assign a new

CF flag, or do not change existing CF flag.

4066 ER_RDB_TTL_DURATION_FORMAT
TTL duration (%s) in MyRocks must be an

unsigned non-null 64-bit integer.

4067 ER_RDB_STATUS_GENERAL
Status error %d received from RocksDB:

%s

4068 ER_RDB_STATUS_MSG
%s, Status error %d received from

RocksDB: %s

4069 ER_RDB_TTL_UNSUPPORTED
TTL support is currently disabled when

table has a hidden PK.

4070 ER_RDB_TTL_COL_FORMAT

TTL column (%s) in MyRocks must be an

unsigned non-null 64-bit integer, exist

inside the table, and have an

accompanying ttl duration.

4071 ER_PER_INDEX_CF_DEPRECATED
The per-index column family option has

been deprecated

4072 ER_KEY_CREATE_DURING_ALTER
MyRocks failed creating new key

definitions during alter.

4073 ER_SK_POPULATE_DURING_ALTER
MyRocks failed populating secondary key

during alter.

4074 ER_SUM_FUNC_WITH_WINDOW_FUNC_AS_ARG
Window functions can not be used as

arguments to group functions.

4075 ER_NET_OK_PACKET_TOO_LARGE OK packet too large

4076 ER_GEOJSON_EMPTY_COORDINATES
Incorrect GeoJSON format - empty

'coordinates' array.

4077 ER_MYROCKS_CANT_NOPAD_COLLATION
MyRocks doesn't currently support

collations with \"No pad\" attribute.

4078 ER_ILLEGAL_PARAMETER_DATA_TYPES2_FOR_OPERATION
Illegal parameter data types %s and %s

for operation '%s'

4079 ER_ILLEGAL_PARAMETER_DATA_TYPE_FOR_OPERATION
Illegal parameter data type %s for

operation '%s'

4080 ER_WRONG_PARAMCOUNT_TO_CURSOR
Incorrect parameter count to cursor '%-

.192s'

4081 ER_UNKNOWN_STRUCTURED_VARIABLE
Unknown structured system variable or

ROW routine variable '%-.*s'

4082 ER_ROW_VARIABLE_DOES_NOT_HAVE_FIELD
Row variable '%-.192s' does not have a

field '%-.192s'

4083 ER_END_IDENTIFIER_DOES_NOT_MATCH
END identifier '%-.192s' does not match

'%-.192s'

4084 ER_SEQUENCE_RUN_OUT Sequence '%-.64s.%-.64s' has run out

4085 ER_SEQUENCE_INVALID_DATA
Sequence '%-.64s.%-.64s' values are

conflicting

787/4161

4086 ER_SEQUENCE_INVALID_TABLE_STRUCTURE
Sequence '%-.64s.%-.64s' table structure

is invalid (%s)

4087 ER_SEQUENCE_ACCESS_ERROR Sequence '%-.64s.%-.64s' access error

4088 ER_SEQUENCE_BINLOG_FORMAT
Sequences requires binlog_format mixed

or row

4089 ER_NOT_SEQUENCE '%-.64s.%-.64s' is not a SEQUENCE

4090 ER_NOT_SEQUENCE2 '%-.192s' is not a SEQUENCE

4091 ER_UNKNOWN_SEQUENCES Unknown SEQUENCE: '%-.300s'

4092 ER_UNKNOWN_VIEW Unknown VIEW: '%-.300s'

4093 ER_WRONG_INSERT_INTO_SEQUENCE

Wrong INSERT into a SEQUENCE. One

can only do single table INSERT into a

sequence object (like with mysqldump).

you want to change the SEQUENCE, use

ALTER SEQUENCE instead.

4094 ER_SP_STACK_TRACE At line %u in %s

4095 ER_PACKAGE_ROUTINE_IN_SPEC_NOT_DEFINED_IN_BODY

Subroutine '%-.192s' is declared in the

package specification but is not defined in

the package body

4096 ER_PACKAGE_ROUTINE_FORWARD_DECLARATION_NOT_DEFINED
Subroutine '%-.192s' has a forward

declaration but is not defined

4097 ER_COMPRESSED_COLUMN_USED_AS_KEY
Compressed column '%-.192s' can't be

used in key specification

4098 ER_UNKNOWN_COMPRESSION_METHOD Unknown compression method: %s

4099 ER_WRONG_NUMBER_OF_VALUES_IN_TVC
The used table value constructor has a

different number of values

4100 ER_FIELD_REFERENCE_IN_TVC
Field reference '%-.192s' can't be used in

table value constructor

4101 ER_WRONG_TYPE_FOR_PERCENTILE_FUNC
Numeric datatype is required for %s

function

4102 ER_ARGUMENT_NOT_CONSTANT
Argument to the %s function is not a

constant for a partition

4103 ER_ARGUMENT_OUT_OF_RANGE
Argument to the %s function does not

belong to the range [0,1]

4104 ER_WRONG_TYPE_OF_ARGUMENT
%s function only accepts arguments that

can be converted to numerical types

4105 ER_NOT_AGGREGATE_FUNCTION

Aggregate specific instruction (FETCH

GROUP NEXT ROW) used in a wrong

context

4106 ER_INVALID_AGGREGATE_FUNCTION

Aggregate specific instruction(FETCH

GROUP NEXT ROW) missing from the

aggregate function

4107 ER_INVALID_VALUE_TO_LIMIT Limit only accepts integer values

4108 ER_INVISIBLE_NOT_NULL_WITHOUT_DEFAULT
Invisible column %`s must have a default

value

4109 ER_UPDATE_INFO_WITH_SYSTEM_VERSIONING
Rows matched: %ld Changed: %ld

Inserted: %ld Warnings: %ld

4110 ER_VERS_FIELD_WRONG_TYPE
%`s must be of type %s for system-

versioned table %`s

4111 ER_VERS_ENGINE_UNSUPPORTED
Transaction-precise system versioning for

%`s is not supported

4112 ER_UNUSED_23 You should never see it

4113 ER_PARTITION_WRONG_TYPE
Wrong partitioning type, expected type:

%`s

4114 WARN_VERS_PART_FULL

Versioned table %`s.%`s: last HISTORY

partition (%`s) is out of %s, need more

HISTORY partitions

788/4161

4115 WARN_VERS_PARAMETERS Maybe missing parameters: %s

4116 ER_VERS_DROP_PARTITION_INTERVAL
Can only drop oldest partitions when

rotating by INTERVAL

4117 ER_UNUSED_25 You should never see it

4118 WARN_VERS_PART_NON_HISTORICAL Partition %`s contains non-historical data

4119 ER_VERS_ALTER_NOT_ALLOWED

Not allowed for system-versioned

%`s.%`s. Change

@@system_versioning_alter_history to

proceed with ALTER.

4120 ER_VERS_ALTER_ENGINE_PROHIBITED

Not allowed for system-versioned

%`s.%`s. Change to/from native system

versioning engine is not supported.

4121 ER_VERS_RANGE_PROHIBITED
SYSTEM_TIME range selector is not

allowed

4122 ER_CONFLICTING_FOR_SYSTEM_TIME
Conflicting FOR SYSTEM_TIME clauses

in WITH RECURSIVE

4123 ER_VERS_TABLE_MUST_HAVE_COLUMNS
Table %`s must have at least one

versioned column

4124 ER_VERS_NOT_VERSIONED Table %`s is not system-versioned

4125 ER_MISSING Wrong parameters for %`s: missing '%s'

4126 ER_VERS_PERIOD_COLUMNS
PERIOD FOR SYSTEM_TIME must use

columns %`s and %`s

4127 ER_PART_WRONG_VALUE
Wrong parameters for partitioned %`s:

wrong value for '%s'

4128 ER_VERS_WRONG_PARTS

Wrong partitions for %`s: must have at

least one HISTORY and exactly one last

CURRENT

4129 ER_VERS_NO_TRX_ID
TRX_ID %llu not found in

`mysql.transaction_registry`

4130 ER_VERS_ALTER_SYSTEM_FIELD
Can not change system versioning field

%`s

4131 ER_DROP_VERSIONING_SYSTEM_TIME_PARTITION

Can not DROP SYSTEM VERSIONING

for table %`s partitioned BY

SYSTEM_TIME

4132 ER_VERS_DB_NOT_SUPPORTED
System-versioned tables in the %`s

database are not supported

4133 ER_VERS_TRT_IS_DISABLED Transaction registry is disabled

4134 ER_VERS_DUPLICATE_ROW_START_END Duplicate ROW %s column %`s

4135 ER_VERS_ALREADY_VERSIONED Table %`s is already system-versioned

4136 ER_UNUSED_24 You should never see it

4137 ER_VERS_NOT_SUPPORTED
System-versioned tables do not support

%s

4138 ER_VERS_TRX_PART_HISTORIC_ROW_NOT_SUPPORTED

Transaction-precise system-versioned

tables do not support partitioning by ROW

START or ROW END

4139 ER_INDEX_FILE_FULL The index file for table '%-.192s' is full

4140 ER_UPDATED_COLUMN_ONLY_ONCE

The column %`s.%`s cannot be changed

more than once in a single UPDATE

statement

4141 ER_EMPTY_ROW_IN_TVC
Row with no elements is not allowed in

table value constructor in this context

4142 ER_VERS_QUERY_IN_PARTITION
SYSTEM_TIME partitions in table %`s

does not support historical query

4143 ER_KEY_DOESNT_SUPPORT
%s index %`s does not support this

operation

789/4161

4144 ER_ALTER_OPERATION_TABLE_OPTIONS_NEED_REBUILD
Changing table options requires the table

to be rebuilt

4145 ER_BACKUP_LOCK_IS_ACTIVE
Can't execute the command as you have a

BACKUP STAGE active

4146 ER_BACKUP_NOT_RUNNING
You must start backup with \"BACKUP

STAGE START\"

4147 ER_BACKUP_WRONG_STAGE
Backup stage '%s' is same or before

current backup stage '%s'

4148 ER_BACKUP_STAGE_FAILED Backup stage '%s' failed

4149 ER_BACKUP_UNKNOWN_STAGE

Unknown backup stage: '%s'. Stage

should be one of START, FLUSH,

BLOCK_DDL, BLOCK_COMMIT or END

4150 ER_USER_IS_BLOCKED

User is blocked because of too many

credential errors; unblock with 'FLUSH

PRIVILEGES'

4151 ER_ACCOUNT_HAS_BEEN_LOCKED Access denied, this account is locked

4152 ER_PERIOD_TEMPORARY_NOT_ALLOWED
Application-time period table cannot be

temporary

4153 ER_PERIOD_TYPES_MISMATCH
Fields of PERIOD FOR %`s have different

types

4154 ER_MORE_THAN_ONE_PERIOD
Cannot specify more than one application-

time period

4155 ER_PERIOD_FIELD_WRONG_ATTRIBUTES Period field %`s cannot be %s

4156 ER_PERIOD_NOT_FOUND Period %`s is not found in table

4157 ER_PERIOD_COLUMNS_UPDATED
Column %`s used in period %`s specified

in update SET list

4158 ER_PERIOD_CONSTRAINT_DROP
Can't DROP CONSTRAINT `%s`. Use

DROP PERIOD `%s` for this

4159
42000

S1009
ER_TOO_LONG_KEYPART

Specified key part was too long; max key

part length is %u bytes

4160 ER_TOO_LONG_DATABASE_COMMENT
Comment for database '%-.64s' is too long

(max = %u)

4161 ER_UNKNOWN_DATA_TYPE Unknown data type: '%-.64s'

4162 ER_UNKNOWN_OPERATOR Operator does not exists: '%-.128s'

4163 ER_WARN_HISTORY_ROW_START_TIME
Table `%s.%s` history row start '%s' is

later than row end '%s'

4164 ER_PART_STARTS_BEYOND_INTERVAL

%`s: STARTS is later than query time, first

history partition may exceed INTERVAL

value

4165 ER_GALERA_REPLICATION_NOT_SUPPORTED

DDL-statement is forbidden as table

storage engine does not support Galera

replication

4166 HY000 ER_LOAD_INFILE_CAPABILITY_DISABLED

The used command is not allowed

because the MariaDB server or client has

disabled the local infile capability

4167 ER_NO_SECURE_TRANSPORTS_CONFIGURED

No secure transports are configured,

unable to set --

require_secure_transport=ON

4168 ER_SLAVE_IGNORED_SHARED_TABLE
Slave SQL thread ignored the '%s'

because table is shared

4169 ER_NO_AUTOINCREMENT_WITH_UNIQUE
AUTO_INCREMENT column %`s cannot

be used in the UNIQUE index %`s

4170 ER_KEY_CONTAINS_PERIOD_FIELDS
Key %`s cannot explicitly include column

%`s

4171 ER_KEY_CANT_HAVE_WITHOUT_OVERLAPS
Key %`s cannot have WITHOUT

OVERLAPS

790/4161

4172 ER_NOT_ALLOWED_IN_THIS_CONTEXT '%-.128s' is not allowed in this context

4173 ER_DATA_WAS_COMMITED_UNDER_ROLLBACK

Engine %s does not support rollback.

Changes where commited during rollback

call

4174 ER_PK_INDEX_CANT_BE_IGNORED
A primary key cannot be marked as

IGNORE

4175 ER_BINLOG_UNSAFE_SKIP_LOCKED
SKIP LOCKED makes this statement

unsafe

4176 ER_JSON_TABLE_ERROR_ON_FIELD
Field '%s' can't be set for JSON_TABLE

'%s'.

4177 ER_JSON_TABLE_ALIAS_REQUIRED Every table function must have an alias.

4178 ER_JSON_TABLE_SCALAR_EXPECTED
Can't store an array or an object in the

scalar column '%s' of JSON_TABLE '%s'.

4179 ER_JSON_TABLE_MULTIPLE_MATCHES
Can't store multiple matches of the path in

the column '%s' of JSON_TABLE '%s'.

4180 ER_WITH_TIES_NEEDS_ORDER
FETCH ... WITH TIES requires ORDER

BY clause to be present

4181 ER_REMOVED_ORPHAN_TRIGGER
Dropped orphan trigger '%-.64s', originally

created for table: '%-.192s'

4182 ER_STORAGE_ENGINE_DISABLED Storage engine %s is disabled

1.1.2.10 Numeric Literals
Numeric literals are written as a sequence of digits from 0 to 9 . Initial zeros are ignored. A sign can always precede the

digits, but it is optional for positive numbers. In decimal numbers, the integer part and the decimal part are divided with a dot

(.).

If the integer part is zero, it can be omitted, but the literal must begin with a dot.

The notation with exponent can be used. The exponent is preceded by an E or e character. The exponent can be

preceded by a sign and must be an integer. A number N with an exponent part X , is calculated as N * POW(10, X) .

In some cases, adding zeroes at the end of a decimal number can increment the precision of the expression where the

number is used. For example, PI() by default returns a number with 6 decimal digits. But the PI()+0.0000000000

expression (with 10 zeroes) returns a number with 10 decimal digits.

Hexadecimal literals are interpreted as numbers when used in numeric contexts.

Examples

10

+10

-10

All these literals are equivalent:

0.1

.1

+0.1

+.1

With exponents:

0.2E3 -- 0.2 * POW(10, 3) = 200

.2e3

.2e+2

1.1e-10 -- 0.00000000011

-1.1e10 -- -11000000000

791/4161

1.1.2.11 Reserved Words
Contents
1. Reserved Words

2. Exceptions

3. Oracle Mode

4. Function Names

The following is a list of all reserved words in MariaDB.

Reserved words cannot be used as Identifiers, unless they are quoted.

The definitive list of reserved words for each version can be found by examining the sql/lex.h and sql/sql_yacc.yy

files.

Reserved Words

Keyword Notes

ACCESSIBLE

ADD

ALL

ALTER

ANALYZE

AND

AS

ASC

ASENSITIVE

BEFORE

BETWEEN

BIGINT

BINARY

BLOB

BOTH

BY

CALL

CASCADE

CASE

CHANGE

CHAR

CHARACTER

CHECK

COLLATE

COLUMN

CONDITION

CONSTRAINT

CONTINUE

CONVERT

CREATE

CROSS

792/4161

CURRENT_DATE

CURRENT_ROLE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATABASE

DATABASES

DAY_HOUR

DAY_MICROSECOND

DAY_MINUTE

DAY_SECOND

DEC

DECIMAL

DECLARE

DEFAULT

DELAYED

DELETE

DELETE_DOMAIN_ID

DESC

DESCRIBE

DETERMINISTIC

DISTINCT

DISTINCTROW

DIV

DO_DOMAIN_IDS

DOUBLE

DROP

DUAL

EACH

ELSE

ELSEIF

ENCLOSED

ESCAPED

EXCEPT Added in MariaDB 10.3.0

EXISTS

EXIT

EXPLAIN

FALSE

FETCH

FLOAT

FLOAT4

FLOAT8

793/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

FOR

FORCE

FOREIGN

FROM

FULLTEXT

GENERAL

GRANT

GROUP

HAVING

HIGH_PRIORITY

HOUR_MICROSECOND

HOUR_MINUTE

HOUR_SECOND

IF

IGNORE

IGNORE_DOMAIN_IDS

IGNORE_SERVER_IDS

IN

INDEX

INFILE

INNER

INOUT

INSENSITIVE

INSERT

INT

INT1

INT2

INT3

INT4

INT8

INTEGER

INTERSECT Added in MariaDB 10.3.0

INTERVAL

INTO

IS

ITERATE

JOIN

KEY

KEYS

KILL

LEADING

LEAVE

LEFT

794/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

LIKE

LIMIT

LINEAR

LINES

LOAD

LOCALTIME

LOCALTIMESTAMP

LOCK

LONG

LONGBLOB

LONGTEXT

LOOP

LOW_PRIORITY

MASTER_HEARTBEAT_PERIOD

MASTER_SSL_VERIFY_SERVER_CERT

MATCH

MAXVALUE

MEDIUMBLOB

MEDIUMINT

MEDIUMTEXT

MIDDLEINT

MINUTE_MICROSECOND

MINUTE_SECOND

MOD

MODIFIES

NATURAL

NOT

NO_WRITE_TO_BINLOG

NULL

NUMERIC

OFFSET Added in MariaDB 10.6.0

ON

OPTIMIZE

OPTION

OPTIONALLY

OR

ORDER

OUT

OUTER

OUTFILE

OVER

PAGE_CHECKSUM

PARSE_VCOL_EXPR

795/4161

PARTITION

PRECISION

PRIMARY

PROCEDURE

PURGE

RANGE

READ

READS

READ_WRITE

REAL

RECURSIVE

REF_SYSTEM_ID

REFERENCES

REGEXP

RELEASE

RENAME

REPEAT

REPLACE

REQUIRE

RESIGNAL

RESTRICT

RETURN

RETURNING

REVOKE

RIGHT

RLIKE

ROW_NUMBER From MariaDB 10.7

ROWS

SCHEMA

SCHEMAS

SECOND_MICROSECOND

SELECT

SENSITIVE

SEPARATOR

SET

SHOW

SIGNAL

SLOW

SMALLINT

SPATIAL

SPECIFIC

SQL

SQLEXCEPTION

796/4161

SQLSTATE

SQLWARNING

SQL_BIG_RESULT

SQL_CALC_FOUND_ROWS

SQL_SMALL_RESULT

SSL

STARTING

STATS_AUTO_RECALC

STATS_PERSISTENT

STATS_SAMPLE_PAGES

STRAIGHT_JOIN

TABLE

TERMINATED

THEN

TINYBLOB

TINYINT

TINYTEXT

TO

TRAILING

TRIGGER

TRUE

UNDO

UNION

UNIQUE

UNLOCK

UNSIGNED

UPDATE

USAGE

USE

USING

UTC_DATE

UTC_TIME

UTC_TIMESTAMP

VALUES

VARBINARY

VARCHAR

VARCHARACTER

VARYING

WHEN

WHERE

WHILE

WINDOW Only disallowed for table aliases.

WITH

797/4161

WRITE

XOR

YEAR_MONTH

ZEROFILL

Exceptions
Some keywords are exceptions for historical reasons, and are permitted as unquoted identifiers. These include:

Keyword

ACTION

BIT

DATE

ENUM

NO

TEXT

TIME

TIMESTAMP

Oracle Mode
In Oracle mode, from MariaDB 10.3, there are a number of extra reserved words:

Keyword Notes

BODY

ELSIF

GOTO

HISTORY <= MariaDB 10.3.6 only

MINUS From MariaDB 10.6.1

OTHERS

PACKAGE

PERIOD <= MariaDB 10.3.6 only

RAISE

ROWNUM From MariaDB 10.6.1

ROWTYPE

SYSDATE From MariaDB 10.6.1

SYSTEM
<= MariaDB 10.3.6 only. Note however that SYSTEM sometimes needs to be quoted to avoid

confusion with System-versioned tables.

SYSTEM_TIME <= MariaDB 10.3.6 only

VERSIONING <= MariaDB 10.3.6 only

WITHOUT <= MariaDB 10.3.6 only

Function Names
If the IGNORE_SPACE SQL_MODE flag is set, function names become reserved words.

6.4.1.1.2.1.3 SQLSTATE

798/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

1.1.2.13 String Literals
Strings are sequences of characters and are enclosed with quotes.

The syntax is:

[_charset_name]'string' [COLLATE collation_name]

For example:

'The MariaDB Foundation'

_utf8 'Foundation' COLLATE utf8_unicode_ci;

Strings can either be enclosed in single quotes or in double quotes (the same character must be used to both open and

close the string).

The ANSI SQL-standard does not permit double quotes for enclosing strings, and although MariaDB does by default, if the

MariaDB server has enabled the ANSI_QUOTES_SQL SQL_MODE, double quotes will be treated as being used for

identifiers instead of strings.

Strings that are next to each other are automatically concatenated. For example:

'The ' 'MariaDB ' 'Foundation'

and

'The MariaDB Foundation'

are equivalent.

The \ (backslash character) is used to escape characters (unless the SQL_MODE hasn't been set to

NO_BACKSLASH_ESCAPES). For example:

'MariaDB's new features'

is not a valid string because of the single quote in the middle of the string, which is treated as if it closes the string, but is

actually meant as part of the string, an apostrophe. The backslash character helps in situations like this:

'MariaDB\'s new features'

is now a valid string, and if displayed, will appear without the backslash.

SELECT 'MariaDB\'s new features';

+------------------------+

| MariaDB's new features |

+------------------------+

| MariaDB's new features |

+------------------------+

Another way to escape the quoting character is repeating it twice:

SELECT 'I''m here', """Double""";

+----------+----------+

| I'm here | "Double" |

+----------+----------+

| I'm here | "Double" |

+----------+----------+

Escape Sequences
There are other escape sequences also. Here is a full list:

Escape sequence Character

\0 ASCII NUL (0x00).

799/4161

\' Single quote (<'=).

\" Double quote (<"=).

\b Backspace.

\n Newline, or linefeed,.

\r Carriage return.

\t Tab.

\Z ASCII 26 (Control+Z). See note following the table.

\\ Backslash (<\=).

\% <%= character. See note following the table.

_ A <_= character. See note following the table.

Escaping the % and _ characters can be necessary when using the LIKE operator, which treats them as special

characters.

The ASCII 26 character (\Z) needs to be escaped when included in a batch file which needs to be executed in Windows.

The reason is that ASCII 26, in Windows, is the end of file (EOF).

Backslash (\), if not used as an escape character, must always be escaped. When followed by a character that is not in

the above table, backslashes will simply be ignored.

1.1.2.14 Table Value Constructors

Table Value Constructors were introduced in MariaDB 10.3.3

Syntax

VALUES (row_value[, row_value...]), (...)...

Description

Contents
1. Syntax

2. Description

3. Examples

In Unions, Views, and sub-queries, a Table Value Constructor (TVC) allows you to inject arbitrary values into the result-set.

The given values must have the same number of columns as the result-set, otherwise it returns Error 1222.

Examples
Using TVC's with UNION operations:

MariaDB starting with 10.3.3

800/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

CREATE TABLE test.t1 (val1 INT, val2 INT);

INSERT INTO test.t1 VALUES(5, 8), (3, 4), (1, 2);

SELECT * FROM test.t1

UNION

VALUES (70, 90), (100, 110);

+------+------+

| val1 | val2 |

+------+------+

| 5 | 8 |

| 3 | 4 |

| 1 | 2 |

| 70 | 90 |

| 100 | 110 |

+------+------+

Using TVC's with a CREATE VIEW statement:

CREATE VIEW v1 AS VALUES (7, 9), (9, 10);

SELECT * FROM v1;

+---+----+

| 7 | 9 |

+---+----+

| 7 | 9 |

| 9 | 10 |

+---+----+

Using TVC with an ORDER BY clause:

SELECT * FROM test.t1

UNION

VALUES (10, 20), (30, 40), (50, 60), (70, 80)

ORDER BY val1 DESC;

Using TVC with LIMIT clause:

SELECT * FROM test.t1

UNION

VALUES (10, 20), (30, 40), (50, 60), (70, 80)

LIMIT 2 OFFSET 4;

+------+------+

| val1 | val2 |

+------+------+

| 30 | 40 |

| 50 | 60 |

+------+------+

1.1.2.15 User-Defined Variables
Contents
1. Information Schema

2. Flushing User-Defined Variables

User-defined variables are variables which can be created by the user and exist in the session. This means that no one can

access user-defined variables that have been set by another user, and when the session is closed these variables expire.

However, these variables can be shared between several queries and stored programs.

User-defined variables names must be preceded by a single at character (@). While it is safe to use a reserved word as a

user-variable name, the only allowed characters are ASCII letters, digits, dollar sign ($), underscore (_) and dot (.). If

other characters are used, the name can be quoted in one of the following ways:

@`var_name`

@'var_name'

@"var_name"

801/4161

These characters can be escaped as usual.

User-variables names are case insensitive, though they were case sensitive in MySQL 4.1 and older versions.

User-defined variables cannot be declared. They can be read even if no value has been set yet; in that case, they are NULL.

To set a value for a user-defined variable you can use:

SET statement;

:= operator within a SQL statement;

SELECT ... INTO.

Since user-defined variables type cannot be declared, the only way to force their type is using CAST() or CONVERT():

SET @str = CAST(123 AS CHAR(5));

If a variable has not been used yet, its value is NULL:

SELECT @x IS NULL;

+------------+

| @x IS NULL |

+------------+

| 1 |

+------------+

It is unsafe to read a user-defined variable and set its value in the same statement (unless the command is SET), because

the order of these actions is undefined.

User-defined variables can be used in most MariaDB's statements and clauses which accept an SQL expression. However

there are some exceptions, like the LIMIT clause.

They must be used to PREPARE a prepared statement:

@sql = 'DELETE FROM my_table WHERE c>1;';

PREPARE stmt FROM @sql;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

Another common use is to include a counter in a query:

SET @var = 0;

SELECT a, b, c, (@var:=@var+1) AS counter FROM my_table;

Information Schema
User-defined variables can be viewed in the Information Schema USER_VARIABLES Table (as part of the User Variables

plugin) from MariaDB 10.2.

Flushing User-Defined Variables
User-defined variables are reset and the Information Schema table emptied with the FLUSH USER_VARIABLES statement.

SET @str = CAST(123 AS CHAR(5));

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

+---------------+----------------+---------------+--------------------+

| VARIABLE_NAME | VARIABLE_VALUE | VARIABLE_TYPE | CHARACTER_SET_NAME |

+---------------+----------------+---------------+--------------------+

| str | 123 | VARCHAR | utf8mb3 |

+---------------+----------------+---------------+--------------------+

FLUSH USER_VARIABLES;

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

Empty set (0.000 sec)

1.1.3 Geographic & Geometric Features
802/4161

MariaDB supports spatial extensions that enable the creation, storage and analysis of geographic features. These can be

used in the Aria, MyISAM, InnoDB/XtraDB and ARCHIVE engines in MariaDB.

Partitioned tables do not support geometric types.

GIS Resources

Resources for those interested in GIS

GIS features in 5.3.3

Basic information about the existing spatial features can be found in the G...

Geometry Types

Supported geometry types.

Geometry Hierarchy

The base Geometry class has subclasses for Point, Curve, Surface and GeometryCollection

Geometry Constructors

Geometry constructors

Geometry Properties

Geometry properties

Geometry Relations

Geometry relations

LineString Properties

LineString properties

MBR (Minimum Bounding Rectangle)

Point Properties

Point properties

Polygon Properties

Polygon properties

WKB

Well-Known Binary format for geometric data

WKT

Well-Known Text geometry representation

MySQL/MariaDB Spatial Support Matrix

Table comparing when different spatial features were introduced into MySQL and MariaDB

SPATIAL INDEX

An index type used for geometric columns.

MariaDB Plans - GIS

Old GIS plans

The maria/5.3-gis tree on Launchpad.

Note: This page is obsolete. The information is old, outdated, or otherwise...

GeoJSON

GeoJSON functions

There are 5 related questions .

3

5

1

16

1.1.3.1 GIS Resources
803/4161

https://mariadb.com/kb/en/mariadb-plans-gis/
https://mariadb.com/kb/en/the-maria53-gis-tree-on-launchpad/
https://mariadb.com/kb/en/geographic-geometric-features/+questions/

Here are a few resources for those interested in GIS in MariaDB.

OGC Simple Feature Access - the Open Geospatial Consortium's OpenGIS Simple Features Specifications For

SQL.

Geo/Spatial Search with MySQL - a presentation by Alexander Rubin, from the MySQL Conference in 2006.

There are currently no differences between GIS in stable versions of MariaDB and GIS in MySQL. There are, however,

some extensions and enhancements being worked on. See "MariaDB Plans - GIS " for more information.

1.1.3.2 GIS features in 5.3.3
Basic information about the existing spatial features can be found in the Geographic Features section of the Knowlegebase.

The Spatial Extensions page of the MySQL manual also applies to MariaDB.

The MariaDB 5.3.3 release , contains code improving the spatial functionality in MariaDB.

MySQL operates on spatial data based on the OpenGIS standards, particularly the OpenGIS SFS (Simple feature access,

SQL option).

Initial support was based on version 05-134 of the standard. MariaDB implements a subset of the 'SQL with Geometry

Types' environment proposed by the OGC. And the SQL environment was extended with a set of geometry types.

MariaDB supports spatial extensions to operate on spatial features. These features are available for Aria, MyISAM, InnoDB,

NDB, and ARCHIVE tables.

For spatial columns, Aria and MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines

support non-SPATIAL indexes.

The most recent changes in the code are aimed at meeting the OpenGIS requirements. One thing missed in previous

versions is that the functions which check spatial relations didn't consider the actual shape of an object, instead they operate

only on their bounding rectangles. These legacy functions have been left as they are and new, properly-working functions

are named with an ' ST_ ' prefix, in accordance with the latest OpenGIS requirements. Also, operations over geometry

features were added.

The list of new functions:

Spatial operators. They produce new geometries.

Name Description

ST_UNION(A, B) union of A and B

ST_INTERSECTION(A, B) intersection of A and B

ST_SYMDIFFERENCE(A, B) symdifference, notintersecting parts of A and B

ST_BUFFER(A, radius) returns the shape of the area that lies in 'radius' distance from the shape A.

Predicates, return boolean result of the relationship

Name Description

ST_INTERSECTS(A, B) if A and B have an intersection

ST_CROSSES(A, B) if A and B cross

ST_EQUALS(A, B) if A and B are equal

ST_WITHIN(A, B) if A lies within B

ST_CONTAINS(A,B) if B lies within A

ST_DISJOINT(A,B) if A and B have no intersection

ST_TOUCHES(A,B) if A touches B

1.1.3.3 Geometry Types

804/4161

http://www.opengeospatial.org/standards/sfs
http://www.scribd.com/doc/2569355/Geo-Distance-Search-with-MySQL
https://mariadb.com/kb/en/mariadb-plans-gis/
http://dev.mysql.com/doc/refman/5.6/en/spatial-extensions.html
https://mariadb.com/kb/en/mariadb-533-release-notes/
http://www.opengeospatial.org/standards/sfs
https://mariadb.com/kb/en/spatial-indexes/

Contents
1. Description

2. Examples

1. POINT

2. LINESTRING

3. POLYGON

4. MULTIPOINT

5. MULTILINESTRING

6. MULTIPOLYGON

7. GEOMETRYCOLLECTION

8. GEOMETRY

Description
MariaDB provides a standard way of creating spatial columns for geometry types, for example, with CREATE TABLE or

ALTER TABLE. Currently, spatial columns are supported for MyISAM, InnoDB and ARCHIVE tables. See also SPATIAL

INDEX .

The basic geometry type is GEOMETRY . But the type can be more specific. The following types are supported:

Geometry Types

POINT

LINESTRING

POLYGON

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

GEOMETRYCOLLECTION

GEOMETRY

Examples

Note: For clarity, only one type is listed per table in the examples below, but a table row can contain multiple types. For example:

CREATE TABLE object (shapeA POLYGON, shapeB LINESTRING);

POINT

CREATE TABLE gis_point (g POINT);

SHOW FIELDS FROM gis_point;

INSERT INTO gis_point VALUES

 (PointFromText('POINT(10 10)')),

 (PointFromText('POINT(20 10)')),

 (PointFromText('POINT(20 20)')),

 (PointFromWKB(AsWKB(PointFromText('POINT(10 20)'))));

LINESTRING

CREATE TABLE gis_line (g LINESTRING);

SHOW FIELDS FROM gis_line;

INSERT INTO gis_line VALUES

 (LineFromText('LINESTRING(0 0,0 10,10 0)')),

 (LineStringFromText('LINESTRING(10 10,20 10,20 20,10 20,10 10)')),

 (LineStringFromWKB(AsWKB(LineString(Point(10, 10), Point(40, 10)))));

POLYGON

805/4161

https://mariadb.com/kb/en/spatial/

CREATE TABLE gis_polygon (g POLYGON);

SHOW FIELDS FROM gis_polygon;

INSERT INTO gis_polygon VALUES

 (PolygonFromText('POLYGON((10 10,20 10,20 20,10 20,10 10))')),

 (PolyFromText('POLYGON((0 0,50 0,50 50,0 50,0 0), (10 10,20 10,20 20,10 20,10 10))')),

 (PolyFromWKB(AsWKB(Polygon(LineString(Point(0, 0), Point(30, 0), Point(30, 30), Point(0,

0))))));

MULTIPOINT

CREATE TABLE gis_multi_point (g MULTIPOINT);

SHOW FIELDS FROM gis_multi_point;

INSERT INTO gis_multi_point VALUES

 (MultiPointFromText('MULTIPOINT(0 0,10 10,10 20,20 20)')),

 (MPointFromText('MULTIPOINT(1 1,11 11,11 21,21 21)')),

 (MPointFromWKB(AsWKB(MultiPoint(Point(3, 6), Point(4, 10)))));

MULTILINESTRING

CREATE TABLE gis_multi_line (g MULTILINESTRING);

SHOW FIELDS FROM gis_multi_line;

INSERT INTO gis_multi_line VALUES

 (MultiLineStringFromText('MULTILINESTRING((10 48,10 21,10 0),(16 0,16 23,16 48))')),

 (MLineFromText('MULTILINESTRING((10 48,10 21,10 0))')),

 (MLineFromWKB(AsWKB(MultiLineString(LineString(Point(1, 2), Point(3, 5)),

LineString(Point(2, 5), Point(5, 8), Point(21, 7))))));

MULTIPOLYGON

CREATE TABLE gis_multi_polygon (g MULTIPOLYGON);

SHOW FIELDS FROM gis_multi_polygon;

INSERT INTO gis_multi_polygon VALUES

 (MultiPolygonFromText('MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48

6,52 18)),((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromText('MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48 6,52 18)),

((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromWKB(AsWKB(MultiPolygon(Polygon(LineString(Point(0, 3), Point(3, 3), Point(3, 0),

Point(0, 3)))))));

GEOMETRYCOLLECTION

CREATE TABLE gis_geometrycollection (g GEOMETRYCOLLECTION);

SHOW FIELDS FROM gis_geometrycollection;

INSERT INTO gis_geometrycollection VALUES

 (GeomCollFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(0 0,10 10))')),

 (GeometryFromWKB(AsWKB(GeometryCollection(Point(44, 6), LineString(Point(3, 6), Point(7,

9)))))),

 (GeomFromText('GeometryCollection()')),

 (GeomFromText('GeometryCollection EMPTY'));

GEOMETRY

CREATE TABLE gis_geometry (g GEOMETRY);

SHOW FIELDS FROM gis_geometry;

INSERT into gis_geometry SELECT * FROM gis_point;

INSERT into gis_geometry SELECT * FROM gis_line;

INSERT into gis_geometry SELECT * FROM gis_polygon;

INSERT into gis_geometry SELECT * FROM gis_multi_point;

INSERT into gis_geometry SELECT * FROM gis_multi_line;

INSERT into gis_geometry SELECT * FROM gis_multi_polygon;

INSERT into gis_geometry SELECT * FROM gis_geometrycollection;

806/4161

1.1.3.4 Geometry Hierarchy

Description
Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are restricted to zero-, one-,

and two-dimensional geometric objects that exist in two-dimensional coordinate space. All instantiable geometry classes are

defined so that valid instances of a geometry class are topologically closed (that is, all defined geometries include their

boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

Point represents zero-dimensional objects.

Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line and LinearRing.

Surface is designed for two-dimensional objects and has subclass Polygon.

GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named MultiPoint,

MultiLineString, and MultiPolygon for modeling geometries corresponding to collections of Points, LineStrings, and

Polygons, respectively. MultiCurve and MultiSurface are introduced as abstract superclasses that generalize the

collection interfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-instantiable classes. They define a common

set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and MultiPolygon are instantiable classes.

1.2.9.3.1 Geometry Constructors

1.2.9.3.2 Geometry Properties

1.2.9.3.3 Geometry Relations

1.2.9.3.4 LineString Properties

1.2.9.3.5 MBR (Minimum Bounding Rectangle)

1.2.9.3.6 Point Properties

1.2.9.3.7 Polygon Properties

1.2.9.3.8 WKB

1.2.9.3.9 WKT

1.1.3.14 MySQL/MariaDB Spatial Support Matrix
This table shows when different spatial features were introduced into MySQL and MariaDB.

My MySQL

MDB MariaDB

x This feature is supported.

MBR This feature is present, but operates on the Minimum Bounding Rectangle instead of the actual shape.

d This feature is present, but has been deprecated and will be removed in a future version.

* This feature is present, but may not work the way you expect.

- This feature is not supported.

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

807/4161

InnoDB Spatial Indexes - - - - x x - - - x

MyISAM Spatial Indexes x x x x x x x x x x

Aria Spatial Indexes - - - - - - x x x x

Area x x x x x d x x x x

AsBinary x x x x x d x x x x

AsText x x x x x d x x x x

AsWKB x x x x x d x x x x

AsWKT x x x x x d x x x x

Boundary - - - - - - - - x x

Buffer - - x x x d x x x x

Centroid - x x x x d x x x x

Contains MBR MBR MBR MBR MBR d MBR MBR MBR MBR

ConvexHull - - - - x d - - x x

Crosses MBR x x x x d MBR MBR MBR MBR

Dimension x x x x x d x x x x

Disjoint MBR MBR MBR MBR MBR d MBR MBR MBR MBR

Distance MBR - - x x d - - - -

EndPoint x x x x x d x x x x

Envelope x x x x x d x x x x

Equals MBR MBR MBR MBR MBR d MBR MBR MBR MBR

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

ExteriorRing x x x x x d x x x x

GeomCollFromText x x x x x d x x x x

GeomCollFromWKB x x x x x d x x x x

GeometryCollection x x x x x x x x x x

GeometryCollectionFromText x x x x x d x x x x

GeometryCollectionFromWKB x x x x x d x x x x

GeometryFromText x x x x x d x x x x

GeometryFromWKB x x x x x d x x x x

GeometryN x x x x x d x x x x

GeometryType x x x x x d x x x x

GeomFromText x x x x x d x x x x

GeomFromWKB x x x x x d x x x x

GLength x x x x x d x x x x

InteriorRingN x x x x x d x x x x

Intersects MBR MBR MBR MBR MBR d MBR MBR MBR MBR

IsClosed x x x x x d x x x x

IsEmpty - * * * * d x x x x

IsRing - - - - - - - - x x

IsSimple - * * x x d - x x x

LineFromText x x x x x d x x x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

808/4161

LineFromWKB x x x x x d x x x x

LineString x x x x x x x x x x

LineStringFromText x x x x x d x x x x

LineStringFromWKB x x x x x d x x x x

MBRContains MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBRCoveredBy - - - MBR MBR MBR - - - -

MBRDisjoint MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBREqual MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBREquals - - - MBR MBR MBR - - - MBR

MBRIntersects MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBROverlaps MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBRTouches MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MBRWithin MBR MBR MBR MBR MBR MBR MBR MBR MBR MBR

MLineFromText x x x x x d x x x x

MLineFromWKB x x x x x d x x x x

MPointFromText x x x x x d x x x x

MPointFromWKB x x x x x d x x x x

MPolyFromText x x x x x d x x x x

MPolyFromWKB x x x x x d x x x x

MultiLineString x x x x x x x x x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

MultiLineStringFromText x x x x x d x x x x

MultiLineStringFromWKB x x x x x d x x x x

MultiPoint x x x x x x x x x x

MultiPointFromText x x x x x d x x x x

MultiPointFromWKB x x x x x d x x x x

MultiPolygon x x x x x x x x x x

MultiPolygonFromText x x x x x d x x x x

MultiPolygonFromWKB x x x x x d x x x x

NumGeometries x x x x x d x x x x

NumInteriorRings x x x x x d x x x x

NumPoints x x x x x d x x x x

Overlaps MBR MBR MBR MBR MBR d MBR MBR MBR MBR

Point x x x x x x x x x x

PointFromText x x x x x d x x x x

PointFromWKB x x x x x d x x x x

PointOnSurface - - - - - - - - x x

PointN x x x x x d x x x x

PolyFromText x x x x x d x x x x

PolyFromWKB x x x x x d x x x x

Polygon x x x x x x x x x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

809/4161

PolygonFromText x x x x x d x x x x

PolygonFromWKB x x x x x d x x x x

SRID x x x x x d x x x x

ST_Area - - x x x x - x x x

ST_AsBinary - - x x x x - x x x

ST_AsGeoJSON - - - x x x - - - x

ST_AsText - - x x x x - x x x

ST_AsWKB - - x x x x - x x x

ST_AsWKT - - x x x x - x x x

ST_Boundary - - - - - - - - x x

ST_Buffer - - x x x x - x x x

ST_Buffer_Strategy - - - x x x - - - -

ST_Centroid - - x x x x - x x x

ST_Contains - - x x x x - x x x

ST_ConvexHull - - - - x x - - x x

ST_Crosses - - x x x x - x x x

ST_Difference - - x x x x - x x x

ST_Dimension - - x x x x - x x x

ST_Disjoint - - x x x x - x x x

ST_Distance - - x x x x - x x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

ST_Distance_Sphere - - - - - x - - - -

ST_EndPoint - - x x x x - x x x

ST_Envelope - - x x x x - x x x

ST_Equals - - x x x x - x x x

ST_ExteriorRing - - x x x x - x x x

ST_GeoHash - - - - x x - - - -

ST_GeomCollFromText - - x x x x - x x x

ST_GeomCollFromWKB - - x x x x - x x x

ST_GeometryCollectionFromText - - x x x x - x x x

ST_GeometryCollectionFromWKB - - x x x x - x x x

ST_GeometryFromText - - x x x x - x x x

ST_GeometryFromWKB - - x x x x - x x x

ST_GeometryN - - x x x x - x x x

ST_GeometryType - - x x x x - x x x

ST_GeomFromGeoJSON - - - - x x - - - x

ST_GeomFromText - - x x x x - x x x

ST_GeomFromWKB - - x x x x - x x x

ST_InteriorRingN - - x x x x - x x x

ST_Intersection - - x x x x - x x x

ST_Intersects - - x x x x - x x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

810/4161

ST_IsClosed - - x x x x - x x x

ST_IsEmpty - - x x x x - x x x

ST_IsRing - - - - - - - - x x

ST_IsSimple - - x x x x - x x x

ST_IsValid - - - - - x - - - -

ST_LatFromGeoHash - - - - x x - - - -

ST_Length - - - - - x - x x x

ST_LineFromText - - x x x x - x x x

ST_LineFromWKB - - x x x x - x x x

ST_LineStringFromText - - x x x x - x x x

ST_LineStringFromWKB - - x x x x - x x x

ST_LongFromGeoHash - - - - x x - - - -

ST_NumGeometries - - x x x x - x x x

ST_NumInteriorRings - - x x x x - x x x

ST_NumPoints - - x x x x - x x x

ST_Overlaps - - x x x x - x x x

ST_PointFromGeoHash - - - - x x - - - -

ST_PointFromText - - x x x x - x x x

ST_PointFromWKB - - x x x x - x x x

ST_PointOnSurface - - - - - - - - x x

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

ST_PointN - - x x x x - x x x

ST_PolyFromText - - x x x x - x x x

ST_PolyFromWKB - - x x x x - x x x

ST_PolygonFromText - - x x x x - x x x

ST_PolygonFromWKB - - x x x x - x x x

ST_Relate - - - - - - - - x x

ST_Simplify - - - - - x - - - -

ST_SRID - - x x x x - x x x

ST_StartPoint - - x x x x - x x x

ST_SymDifference - - x x x x - x x x

ST_Touches - - x x x x - x x x

ST_Union - - x x x x - x x x

ST_Validate - - - - - x - - - -

ST_Within - - x x x x - x x x

ST_X - - x x x x - x x x

ST_Y - - x x x x - x x x

StartPoint x x x x x d x x x x

Touches MBR x x x x d MBR MBR MBR MBR

Within MBR MBR MBR MBR MBR d MBR MBR MBR MBR

X x x x x x d x x x x

Y x x x x x d x x x x

811/4161

My

5.4.2

My

5.5

My

5.6.1

My

5.7.4

My

5.7.5

My

5.7.6

MDB

5.1

MDB

5.3.3

MDB

10.1.2

MDB

10.2

1.1.3.15 SPATIAL INDEX
Contents
1. Description

1. Data-at-Rest Encyption

Description
On MyISAM, Aria and InnoDB tables, MariaDB can create spatial indexes (an R-tree index) using syntax similar to that for

creating regular indexes, but extended with the SPATIAL keyword. Currently, columns in spatial indexes must be declared

NOT NULL .

Spatial indexes can be created when the table is created, or added after the fact like so:

with CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

with ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

with CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support non-spatial indexing of spatial columns, the

engine creates a B-tree index. A B-tree index on spatial values is useful for exact-value lookups, but not for range

scans.

For more information on indexing spatial columns, see CREATE INDEX.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

with ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

with DROP INDEX:

DROP INDEX sp_index ON geom;

Data-at-Rest Encyption

Before MariaDB 10.4.3, InnoDB's spatial indexes could not be encrypted. If an InnoDB table was encrypted and if it

contained spatial indexes, then those indexes would be unencrypted.

In MariaDB 10.4.3 and later, if innodb_checksum_algorithm is set to full_crc32 or strict_full_crc32 , and if the

table does not use ROW_FORMAT=COMPRESSED , then InnoDB spatial indexes will be encrypted if the table is encrypted.

See MDEV-12026 for more information.

1.1.3.16 GeoJSON
GeoJSON is a format for encoding various geographic data structures.

ST_AsGeoJSON

Returns the given geometry as a GeoJSON element.

ST_GeomFromGeoJSON

Given a GeoJSON input, returns a geometry object

812/4161

https://jira.mariadb.org/browse/MDEV-12026

1.1.3.16.1 ST_AsGeoJSON

Syntax

ST_AsGeoJSON(g[, max_decimals[, options]])

Description
Returns the given geometry g as a GeoJSON element. The optional max_decimals limits the maximum number of decimals

displayed.

The optional options flag can be set to 1 to add a bounding box to the output.

Examples

SELECT ST_AsGeoJSON(ST_GeomFromText('POINT(5.3 7.2)'));

+---+

| ST_AsGeoJSON(ST_GeomFromText('POINT(5.3 7.2)')) |

+---+

| {"type": "Point", "coordinates": [5.3, 7.2]} |

+---+

1.1.3.16.2 ST_GeomFromGeoJSON

ST_GeomFromGeoJSON was added in MariaDB 10.2.4

Syntax

ST_GeomFromGeoJSON(g[, option])

Description
Given a GeoJSON input g, returns a geometry object. The option specifies what to do if g contains geometries with

coordinate dimensions higher than 2.

Option Description

1 Return an error (the default)

2 - 4 The document is accepted, but the coordinates for higher coordinate dimensions are stripped off.

Note that this function did not work correctly before MariaDB 10.2.8 - see MDEV-12180 .

Examples

SET @j = '{ "type": "Point", "coordinates": [5.3, 15.0]}';

SELECT ST_AsText(ST_GeomFromGeoJSON(@j));

+-----------------------------------+

| ST_AsText(ST_GeomFromGeoJSON(@j)) |

+-----------------------------------+

| POINT(5.3 15) |

+-----------------------------------+

MariaDB starting with 10.2.4

1.1.4 NoSQL
813/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://jira.mariadb.org/browse/MDEV-12180

MariaDB supports a lot of commands and interfaces that are closer to NoSQL than to SQL.

CONNECT

The CONNECT storage engine enables MariaDB to access external local or remote data.

HANDLER

Direct access to reading rows from the storage engine.

HandlerSocket

A NoSQL plugin giving you direct access to InnoDB and SPIDER.

Dynamic Columns

Dynamic columns allow one to store different sets of columns for each row in a table

Dynamic Columns from MariaDB 10

Improvements to Dynamic Columns from MariaDB 10.

Dynamic Column API

Client-side API for reading and writing Dynamic Columns blobs

Dynamic Columns API

MariaDB 10.0 API for reading and writing dynamic-columns blobs

JSON Functions

Built-in functions related to JSON.

LOAD_FILE

Returns file contents as a string.

Cassandra Storage Engine

A storage engine interface to Cassandra.

There are 1 related questions .

18

1

5.3.7 CONNECT

1.1.4.2 HANDLER
The HANDLER statements give you direct access to reading rows from the storage engine. This is much faster than normal

access through SELECT as there is less parsing involved and no optimizer involved.

You can use prepared statements for HANDLER READ , which should give you a speed comparable to HandlerSocket. Also

see Yoshinori Matsunobu's blog post Using MySQL as a NoSQL - A story for exceeding 750,000 qps on a commodity server

.

HANDLER Commands

Direct access to table storage engine interfaces for key lookups and key or table scans.

HANDLER for MEMORY Tables

Using HANDLER commands efficiently with MEMORY/HEAP tables

1.1.4.2.1 HANDLER Commands

Syntax

814/4161

https://mariadb.com/kb/en/dynamic-columns-api/
https://mariadb.com/kb/en/cassandra/
https://mariadb.com/kb/en/nosql/+questions/
http://yoshinorimatsunobu.blogspot.com/2010/10/using-mysql-as-nosql-story-for.html

HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name READ { FIRST | NEXT }

 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

Contents
1. Syntax

2. Description

3. Key Lookup

4. Key Scans

5. Table Scans

6. Limitations

1. Finding 'Old Rows'

2. Invisible Columns

3. System-Versioned Tables

4. Other Limitations

7. Error Codes

Description
The HANDLER statement provides direct access to table storage engine interfaces for key lookups and key or table scans. It

is available for at least Aria, Memory, MyISAM and InnoDB tables (and should work with most 'normal' storage engines, but

not with system tables, MERGE or views).

HANDLER ... OPEN opens a table, allowing it to be accessible to subsequent HANDLER ... READ statements. The table

can either be opened using an alias (which must then be used by HANDLER ... READ , or a table name.

The table object is only closed when HANDLER ... CLOSE is called by the session, and is not shared by other sessions.

Prepared statements work with HANDLER READ , which gives a much higher performance (50% speedup) as there is no

parsing and all data is transformed in binary (without conversions to text, as with the normal protocol).

The HANDLER command does not work with partitioned tables.

Key Lookup
A key lookup is started with:

HANDLER tbl_name READ index_name { = | >= | <= | < } (value,value) [LIMIT...]

The values stands for the value of each of the key columns. For most key types (except for HASH keys in MEMORY

storage engine) you can use a prefix subset of it's columns.

If you are using LIMIT, then in case of >= or > then there is an implicit NEXT implied, while if you are using <= or < then

there is an implicit PREV implied.

After the initial read, you can use

HANDLER tbl_name READ index_name NEXT [LIMIT ...]

or

HANDLER tbl_name READ index_name PREV [LIMIT ...]

to scan the rows in key order.

Note that the row order is not defined for keys with duplicated values and will vary from engine to engine.

Key Scans
You can scan a table in key order by doing:

HANDLER tbl_name READ index_name FIRST [LIMIT ...]

HANDLER tbl_name READ index_name NEXT [LIMIT ...]

815/4161

or, if the handler supports backwards key scans (most do):

HANDLER tbl_name READ index_name LAST [LIMIT ...]

HANDLER tbl_name READ index_name PREV [LIMIT ...]

Table Scans
You can scan a table in row order by doing:

HANDLER tbl_name READ FIRST [LIMIT ...]

HANDLER tbl_name READ NEXT [LIMIT ...]

Limitations
As this is a direct interface to the storage engine, some limitations may apply for what you can do and what happens if the

table changes. Here follows some of the common limitations:

Finding 'Old Rows'

HANDLER READ is not transaction safe, consistent or atomic. It's ok for the storage engine to returns rows that existed

when you started the scan but that were later deleted. This can happen as the storage engine may cache rows as part of the

scan from a previous read.

You may also find rows committed since the scan originally started.

Invisible Columns

HANDLER ... READ also reads the data of invisible-columns.

System-Versioned Tables

HANDLER ... READ reads everything from system-versioned tables, and so includes row_start and row_end fields, as

well as all rows that have since been deleted or changed, including when history partitions are used.

Other Limitations

If you do an ALTER TABLE, all your HANDLERs for that table are automatically closed.

If you do an ALTER TABLE for a table that is used by some other connection with HANDLER, the ALTER TABLE will

wait for the HANDLER to be closed.

For HASH keys, you must use all key parts when searching for a row.

For HASH keys, you can't do a key scan of all values. You can only find all rows with the same key value.

While each HANDLER READ command is atomic, if you do a scan in many steps, then some engines may give you

error 1020 if the table changed between the commands. Please refer to the specific engine handler page if this

happens.

Error Codes
Error 1031 (ER_ILLEGAL_HA) Table storage engine for 't1' doesn't have this option

If you get this for HANDLER OPEN it means the storage engine doesn't support HANDLER calls.

If you get this for HANDLER READ it means you are trying to use an incomplete HASH key.

Error 1020 (ER_CHECKREAD) Record has changed since last read in table '...'

This means that the table changed between two reads and the handler can't handle this case for the given

scan.

1.1.4.2.2 HANDLER for MEMORY Tables
This article explains how to use HANDLER commands efficiently with MEMORY/HEAP tables.

If you want to scan a table for over different key values, not just search for exact key values, you should create your keys

with 'USING BTREE':

CREATE TABLE t1 (a INT, b INT, KEY(a), KEY b USING BTREE (b)) engine=memory;

816/4161

https://mariadb.com/kb/en/handler-handler/

In the above table, a is a HASH key that only supports exact matches (=) while b is a BTREE key that you can use to

scan the table in key order, starting from start or from a given key value.

The limitations for HANDLER READ with Memory|HEAP tables are:

Limitations for HASH keys
You must use all key parts when searching for a row.

You can't do a key scan of all values. You can only find all rows with the same key value.

READ NEXT gives error 1031 if the tables changed since last read.

Limitations for BTREE keys
READ NEXT gives error 1031 if the tables changed since last read. This limitation can be lifted in the future.

Limitations for table scans
READ NEXT gives error 1031 if the table was truncated since last READ call.

1.1.4.3 HandlerSocket
HandlerSocket gives you direct access to InnoDB and SPIDER. It is included in MariaDB as a ready-to use plugin.

HandlerSocket is a NoSQL plugin for MariaDB. It works as a daemon inside the mysqld process, accepting TCP connections,

and executing requests from clients. HandlerSocket does not support SQL queries. Instead, it supports simple CRUD

operations on tables.

HandlerSocket can be much faster than mysqld/libmysql in some cases because it has lower CPU, disk, and network

overhead:

1. To lower CPU usage it does not parse SQL.

2. Next, it batch-processes requests where possible, which further reduces CPU usage and lowers disk usage.

3. Lastly, the client/server protocol is very compact compared to mysql/libmysql, which reduces network usage.

HandlerSocket Installation

Installing the HandlerSocket plugin.

HandlerSocket Configuration Options

HandlerSocket configuration options.

HandlerSocket Client Libraries

Available HandlerSocket Client Libraries

Testing HandlerSocket in a Source Distribution

Testing HandlerSocket in a source distribution.

HandlerSocket External Resources

HandlerSocket external resources and documentation

2

2

1

1.1.4.3.1 HandlerSocket Installation
After MariaDB is installed, use the INSTALL PLUGIN command (as the root user) to install the HandlerSocket plugin. This

command only needs to be run once, like so:

INSTALL PLUGIN handlersocket SONAME 'handlersocket.so';

After installing the plugin, SHOW PROCESSLIST you first need to configure some settings. All HandlerSocket configuration

options are placed in the [mysqld] section of your my.cnf file.

At least the handlersocket_address, handlersocket_port and handlersocket_port_wr options need to be set. For example:

handlersocket_address="127.0.0.1"

handlersocket_port="9998"

handlersocket_port_wr="9999"

817/4161

After updating the configuration options, restart MariaDB.

On the client side, to make use of the plugin you will need to install the appropriate client library (i.e. libhsclient for C++

applications and perl-Net-HandlerSocket for perl applications).

1.1.4.3.2 HandlerSocket Configuration Options
Contents
1. handlersocket_accept_balance

2. handlersocket_address

3. handlersocket_backlog

4. handlersocket_epoll

5. handlersocket_plain_secret

6. handlersocket_plain_secret_wr

7. handlersocket_port

8. handlersocket_port_wr

9. handlersocket_rcvbuf

10. handlersocket_readsize

11. handlersocket_sndbuf

12. handlersocket_threads

13. handlersocket_threads_wr

14. handlersocket_timeout

15. handlersocket_verbose

16. handlersocket_wrlock_timeout

The HandlerSocket plugin has the following options.

See also the Full list of MariaDB options, system and status variables.

Add the options to the [mysqld] section of your my.cnf file.

handlersocket_accept_balance

Description: When set to a value other than zero (' 0 '), handlersocket will try to balance accepted connections

among threads. Default is 0 but if you use persistent connections (for example if you use client-side connection

pooling) then a non-zero value is recommended.

Commandline: --handlersocket-accept-balance="value"

Scope: Global

Dynamic: No

Type: number

Range: 0 to 10000

Default Value: 0

handlersocket_address

Description: Specify the IP address to bind to.

Commandline: --handlersocket-address="value"

Scope: Global

Dynamic: No

Type: IP Address

Default Value: Empty, previously 0.0.0.0

handlersocket_backlog

Description: Specify the listen backlog length.

Commandline: --handlersocket-backlog="value"

Scope: Global

Dynamic: No

Type: number

Range: 5 to 1000000

Default Value: 32768

818/4161

handlersocket_epoll

Description: Specify whether to use epoll for I/O multiplexing.

Commandline: --handlersocket-epoll="value"

Scope: Global

Dynamic: No

Type: number

Valid values:

Min: 0

Max: 1

Default Value: 1

handlersocket_plain_secret

Description: When set, enables plain-text authentication for the listener for read requests, with the value of the option

specifying the secret authentication key.

Commandline: --handlersocket-plain-secret="value"

Dynamic: No

Type: string

Default Value: Empty

handlersocket_plain_secret_wr

Description: When set, enables plain-text authentication for the listener for write requests, with the value of the

option specifying the secret authentication key.

Commandline: --handlersocket-plain-secret-wr="value"

Dynamic: No

Type: string

Default Value: Empty

handlersocket_port

Description: Specify the port to bind to for reads. An empty value disables the listener.

Commandline: --handlersocket-port="value"

Scope: Global

Dynamic: No

Type: number

Default Value: Empty, previously 9998

handlersocket_port_wr

Description: Specify the port to bind to for writes. An empty value disables the listener.

Commandline: --handlersocket-port-wr="value"

Scope: Global

Dynamic: No

Type: number

Default Value: Empty, previously 9999

handlersocket_rcvbuf

Description: Specify the maximum socket receive buffer (in bytes). If '0' then the system default is used.

Commandline: --handlersocket-rcvbuf="value"

Scope: Global

Dynamic: No

Type: number

Range: 0 to 1677216

Default Value: 0

819/4161

handlersocket_readsize

Description: Specify the minimum length of the request buffer. Larger values consume available memory but can

make handlersocket faster for large requests.

Commandline: --handlersocket-readsize="value"

Scope: Global

Dynamic: No

Type: number

Range: 0 to 1677216

Default Value: 0 (possibly 4096)

handlersocket_sndbuf

Description: Specify the maximum socket send buffer (in bytes). If '0' then the system default is used.

Commandline: --handlersocket-sndbuf="value"

Scope: Global

Dynamic: No

Type: number

Range: 0 to 1677216

Default Value: 0

handlersocket_threads

Description: Specify the number of worker threads for reads. Recommended value = ((# CPU cores) * 2).

Commandline: --handlersocket-threads="value"

Scope: Global

Dynamic: No

Type: number

Range: 1 to 3000

Default Value: 16

handlersocket_threads_wr

Description: Specify the number of worker threads for writes. Recommended value = 1.

Commandline: --handlersocket-threads-wr="value"

Scope: Global

Dynamic: No

Type: number

Range: 1 to 3000

Default Value: 1

handlersocket_timeout

Description: Specify the socket timeout in seconds.

Commandline: --handlersocket-timeout="value"

Scope: Global

Dynamic: No

Type: number

Range: 30 to 3600

Default Value: 300

handlersocket_verbose

Description: Specify the logging verbosity.

Commandline: --handlersocket-verbose="value"

Scope: Global

Dynamic: No

Type: number

820/4161

Valid values:

Min: 0

Max: 10000

Default Value: 10

handlersocket_wrlock_timeout

Description: The write lock timeout in seconds. When acting on write requests, handlersocket locks an advisory lock

named 'handlersocket_wr' and this option sets the timeout for it.

Commandline: --handlersocket-wrlock-timeout="value"

Scope: Global

Dynamic: No

Type: number

Range: 0 to 3600

1.1.4.3.3 HandlerSocket Client Libraries
In order to make use of the HandlerSocket plugin in your applications, you will need to use the appropriate client library. The

following client libraries are available:

C++

libhsclient (included with the HandlerSocket plugin source)

Perl

perl-Net-HandlerSocket (included with the HandlerSocket plugin source)

PHP

Net_HandlerSocket

HSPHP

php-ext-handlersocketi

Java

hs4j

handlersocketforjava

Python

python-handler-socket

pyhandlersocket

Ruby

ruby-handlersocket

handlersocket

JavaScript

node-handlersocket

Scala

hs2client

Haskell

HandlerSocket-Haskell-Client

1.1.4.3.4 Testing HandlerSocket in a Source
Distribution

Contents
1. MariaDB 5.5

2. MariaDB 5.3

MariaDB 5.5
In MariaDB 5.5, which is built using cmake , Makefile.PL is not generated automatically. If you want to run the perl tests,

you will need to create it manually from Makefile.PL.in . It is fairly easy to do by replacing LIB and INC values with the

correct ones. Also, libhsclient.so is not built by default; libhsclient.a can be found in plugin/handler_socket

folder.

MariaDB 5.3
821/4161

https://github.com/openpear/Net_HandlerSocket
http://github.com/tz-lom/HSPHP
https://github.com/kjdev/php-ext-handlersocketi
http://code.google.com/p/hs4j/
http://code.google.com/p/handlersocketforjava/
http://pypi.python.org/pypi/python-handler-socket
https://code.launchpad.net/~songofacandy/+junk/pyhandlersocket
https://github.com/winebarrel/ruby-handlersocket
https://github.com/miyucy/handlersocket
https://github.com/fujohnwang/hs2client

If you want to test or use handlersocket with a source installation of MariaDB 5.3, here is one way to do this:

1. Compile with one of the build scripts that has the -max option, like BUILD/compile-pentium64-max or

BUILD/compile-pentium64-debug-max

2. Start mysqld with the test framework

cd mysql-test

LD_LIBRARY_PATH=../plugin/handler_socket/libhsclient/.libs \

MTR_VERSION=1 perl mysql-test-run.pl --start-and-exit 1st \

--mysqld=--plugin-dir=../plugin/handler_socket/handlersocket/.libs \

--mysqld=--loose-handlersocket_port=9998 \

--mysqld=--loose-handlersocket_port_wr=9999 \

--master_port=9306 --mysqld=--innodb

3. This will end with:

Servers started, exiting

4. Load handlersocket

client/mysql -uroot --protocol=tcp --port=9306 \

-e 'INSTALL PLUGIN handlersocket soname "handlersocket.so"'

5. Configure and compile the handlersocket perl module

cd plugin/handler_socket/perl-Net-HandlerSocket

perl Makefile.PL

make

6. If you would like to install the handlersocket perl module permanently, you should do:

make install

If you do this, you don't have to set PERL5LIB below.

7. Run the handlersocket test suite

cd plugin/handler_socket/regtest/test_01_lib

MYHOST=127.0.0.1 MYPORT=9306 LD_LIBRARY_PATH=../../libhsclient/.libs/ \

PERL5LIB=../common:../../perl-Net-HandlerSocket/lib:../../perl-Net-

HandlerSocket/blib/arch/auto/Net/HandlerSocket/ ./run.sh

1.1.4.3.5 HandlerSocket External Resources
Some resources and documentation about HandlerSocket.

The home of HandlerSocket is here .

The story of handlersocket can be found here .

Comparison of HANDLER and HandlerSocket can be found here .

HandlerSocket plugin for MySQL presentation by Akira Higuchi of DeNA - June 29 2010 - DeNA Technology

Seminar

HandlerSocket plugin for MySQL presentation by Akira Higuchi of DeNA - June 29 2011 - in Japanese

1.1.4.4 Dynamic Columns

822/4161

https://github.com/DeNA/HandlerSocket-Plugin-for-MySQL
http://yoshinorimatsunobu.blogspot.com/2010/10/using-mysql-as-nosql-story-for.html
http://varokism.blogspot.com/2010/12/using-mysql-as-nosql-story-for_27.html
http://www.slideshare.net/akirahiguchi/handlersocket-20100629en-5698215
http://www.slideshare.net/akirahiguchi/handlersocket-plugin-for-mysql-4664154

Contents
1. Dynamic Columns Basics

2. Dynamic Columns Reference

1. Dynamic Columns Functions

1. COLUMN_CREATE

2. COLUMN_ADD

3. COLUMN_GET

4. COLUMN_DELETE

5. COLUMN_EXISTS

6. COLUMN_LIST

7. COLUMN_CHECK

8. COLUMN_JSON

2. Nesting Dynamic Columns

3. Datatypes

1. A Note About Lengths

4. MariaDB 5.3 vs MariaDB 10.0

5. Client-side API

6. Limitations

Dynamic columns allow one to store different sets of columns for each row in a table. It works by storing a set of columns in

a blob and having a small set of functions to manipulate it.

Dynamic columns should be used when it is not possible to use regular columns.

A typical use case is when one needs to store items that may have many different attributes (like size, color, weight, etc),

and the set of possible attributes is very large and/or unknown in advance. In that case, attributes can be put into dynamic

columns.

Dynamic Columns Basics

The table should have a blob column which will be used as storage for dynamic columns:

create table assets (

 item_name varchar(32) primary key, -- A common attribute for all items

 dynamic_cols blob -- Dynamic columns will be stored here

);

Once created, one can access dynamic columns via dynamic column functions:

Insert a row with two dynamic columns: color=blue, size=XL

INSERT INTO assets VALUES

 ('MariaDB T-shirt', COLUMN_CREATE('color', 'blue', 'size', 'XL'));

Insert another row with dynamic columns: color=black, price=500

INSERT INTO assets VALUES

 ('Thinkpad Laptop', COLUMN_CREATE('color', 'black', 'price', 500));

Select dynamic column 'color' for all items:

SELECT item_name, COLUMN_GET(dynamic_cols, 'color' as char)

 AS color FROM assets;

+-----------------+-------+

| item_name | color |

+-----------------+-------+

| MariaDB T-shirt | blue |

| Thinkpad Laptop | black |

+-----------------+-------+

It is possible to add and remove dynamic columns from a row:

823/4161

-- Remove a column:

UPDATE assets SET dynamic_cols=COLUMN_DELETE(dynamic_cols, "price")

WHERE COLUMN_GET(dynamic_cols, 'color' as char)='black';

-- Add a column:

UPDATE assets SET dynamic_cols=COLUMN_ADD(dynamic_cols, 'warranty', '3 years')

WHERE item_name='Thinkpad Laptop';

You can also list all columns, or get them together with their values in JSON format:

SELECT item_name, column_list(dynamic_cols) FROM assets;

+-----------------+---------------------------+

| item_name | column_list(dynamic_cols) |

+-----------------+---------------------------+

| MariaDB T-shirt | `size`,`color` |

| Thinkpad Laptop | `color`,`warranty` |

+-----------------+---------------------------+

SELECT item_name, COLUMN_JSON(dynamic_cols) FROM assets;

+-----------------+--+

| item_name | COLUMN_JSON(dynamic_cols) |

+-----------------+--+

| MariaDB T-shirt | {"size":"XL","color":"blue"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

Dynamic Columns Reference
The rest of this page is a complete reference of dynamic columns in MariaDB

Dynamic Columns Functions

COLUMN_CREATE

COLUMN_CREATE(column_nr, value [as type], [column_nr, value

 [as type]]...);

COLUMN_CREATE(column_name, value [as type], [column_name, value

 [as type]]...);

Return a dynamic columns blob that stores the specified columns with values.

The return value is suitable for

storing in a table

further modification with other dynamic columns functions

The as type part allows one to specify the value type. In most cases, this is redundant because MariaDB will be able

to deduce the type of the value. Explicit type specification may be needed when the type of the value is not apparent.

For example, a literal '2012-12-01' has a CHAR type by default, one will need to specify '2012-12-01' AS DATE

to have it stored as a date. See the Datatypes section for further details. Note also MDEV-597 .

Typical usage:

-- MariaDB 5.3+:

INSERT INTO tbl SET dyncol_blob=COLUMN_CREATE(1 /*column id*/, "value");

-- MariaDB 10.0.1+:

INSERT INTO tbl SET dyncol_blob=COLUMN_CREATE("column_name", "value");

COLUMN_ADD

COLUMN_ADD(dyncol_blob, column_nr, value [as type],

 [column_nr, value [as type]]...);

COLUMN_ADD(dyncol_blob, column_name, value [as type],

 [column_name, value [as type]]...);

Adds or updates dynamic columns.

824/4161

https://jira.mariadb.org/browse/MDEV-597

dyncol_blob must be either a valid dynamic columns blob (for example, COLUMN_CREATE returns such

blob), or an empty string.

column_name specifies the name of the column to be added. If dyncol_blob already has a column with this

name, it will be overwritten.

value specifies the new value for the column. Passing a NULL value will cause the column to be deleted.

as type is optional. See #datatypes section for a discussion about types.

The return value is a dynamic column blob after the modifications.

Typical usage:

-- MariaDB 5.3+:

UPDATE tbl SET dyncol_blob=COLUMN_ADD(dyncol_blob, 1 /*column id*/, "value")

 WHERE id=1;

-- MariaDB 10.0.1+:

UPDATE t1 SET dyncol_blob=COLUMN_ADD(dyncol_blob, "column_name", "value")

 WHERE id=1;

Note: COLUMN_ADD() is a regular function (just like CONCAT()), hence, in order to update the value in the table you

have to use the UPDATE ... SET dynamic_col=COLUMN_ADD(dynamic_col,

) pattern.

COLUMN_GET

COLUMN_GET(dyncol_blob, column_nr as type);

COLUMN_GET(dyncol_blob, column_name as type);

Get the value of a dynamic column by its name. If no column with the given name exists, NULL will be returned.

column_name as type requires that one specify the datatype of the dynamic column they are reading.

This may seem counter-intuitive: why would one need to specify which datatype they're retrieving? Can't the dynamic

columns system figure the datatype from the data being stored?

The answer is: SQL is a statically-typed language. The SQL interpreter needs to know the datatypes of all expressions

before the query is run (for example, when one is using prepared statements and runs "select COLUMN_GET(...)" ,

the prepared statement API requires the server to inform the client about the datatype of the column being read before

the query is executed and the server can see what datatype the column actually has).

See the Datatypes section for more information about datatypes.

COLUMN_DELETE

COLUMN_DELETE(dyncol_blob, column_nr, column_nr...);

COLUMN_DELETE(dyncol_blob, column_name, column_name...);

Delete a dynamic column with the specified name. Multiple names can be given.

The return value is a dynamic column blob after the modification.

COLUMN_EXISTS

COLUMN_EXISTS(dyncol_blob, column_nr);

COLUMN_EXISTS(dyncol_blob, column_name);

Check if a column with name column_name exists in dyncol_blob . If yes, return 1 , otherwise return 0 .

COLUMN_LIST

COLUMN_LIST(dyncol_blob);

Return a comma-separated list of column names. The names are quoted with backticks.

825/4161

SELECT column_list(column_create('col1','val1','col2','val2'));

+---+

| column_list(column_create('col1','val1','col2','val2')) |

+---+

| `col1`,`col2` |

+---+

COLUMN_CHECK

COLUMN_CHECK(dyncol_blob);

Check if dyncol_blob is a valid packed dynamic columns blob. Return value of 1 means the blob is valid, return

value of 0 means it is not.

Rationale: Normally, one works with valid dynamic column blobs. Functions like COLUMN_CREATE , COLUMN_ADD ,

COLUMN_DELETE always return valid dynamic column blobs. However, if a dynamic column blob is accidentally

truncated, or transcoded from one character set to another, it will be corrupted. This function can be used to check if a

value in a blob field is a valid dynamic column blob.

Note: It is possible that a truncation cut a Dynamic Column "clearly" so that COLUMN_CHECK will not notice the

corruption, but in any case of truncation a warning is issued during value storing.

COLUMN_JSON

COLUMN_JSON(dyncol_blob);

Return a JSON representation of data in dyncol_blob .

Example:

SELECT item_name, COLUMN_JSON(dynamic_cols) FROM assets;

+-----------------+--+

| item_name | COLUMN_JSON(dynamic_cols) |

+-----------------+--+

| MariaDB T-shirt | {"size":"XL","color":"blue"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

Limitation: COLUMN_JSON will decode nested dynamic columns at a nesting level of not more than 10 levels deep.

Dynamic columns that are nested deeper than 10 levels will be shown as BINARY string, without encoding.

Nesting Dynamic Columns

It is possible to use nested dynamic columns by putting one dynamic column blob inside another. The COLUMN_JSON

function will display nested columns.

SET @tmp= column_create('parent_column',

 column_create('child_column', 12345));

Query OK, 0 rows affected (0.00 sec)

SELECT column_json(@tmp);

+--+

| column_json(@tmp) |

+--+

| {"parent_column":{"child_column":12345}} |

+--+

SELECT column_get(column_get(@tmp, 'parent_column' AS char),

 'child_column' AS int);

+--+

| column_get(column_get(@tmp, 'parent_column' as char), 'child_column' as int) |

+--+

| 12345 |

+--+

If you are trying to get a nested dynamic column as a string use 'as BINARY' as the last argument of COLUMN_GET

(otherwise problems with character set conversion and illegal symbols are possible):
826/4161

select column_json(column_get(

 column_create('test1',

 column_create('key1','value1','key2','value2','key3','value3')),

 'test1' as BINARY));

Datatypes

In SQL, one needs to define the type of each column in a table. Dynamic columns do not provide any way to declare a type

in advance ("whenever there is a column 'weight', it should be integer" is not possible). However, each particular dynamic

column value is stored together with its datatype.

The set of possible datatypes is mostly the same as that used by the SQL CAST and CONVERT functions. However, note

that there are currently some differences - see MDEV-597 .

type
dynamic column internal

type
description

BINARY[(N)] DYN_COL_STRING (variable length string with binary charset)

CHAR[(N)] DYN_COL_STRING (variable length string with charset)

DATE DYN_COL_DATE (date - 3 bytes)

DATETIME[(D)] DYN_COL_DATETIME (date and time (with microseconds) - 9 bytes)

DECIMAL[(M[,D])] DYN_COL_DECIMAL
(variable length binary decimal representation with MariaDB

limitation)

DOUBLE[(M,D)] DYN_COL_DOUBLE (64 bit double-precision floating point)

INTEGER DYN_COL_INT (variable length, up to 64 bit signed integer)

SIGNED [INTEGER] DYN_COL_INT (variable length, up to 64 bit signed integer)

TIME[(D)] DYN_COL_TIME (time (with microseconds, may be negative) - 6 bytes)

UNSIGNED

[INTEGER]
DYN_COL_UINT (variable length, up to 64bit unsigned integer)

A Note About Lengths

If you're running queries like

SELECT COLUMN_GET(blob, 'colname' as CHAR) ...

without specifying a maximum length (i.e. using #as CHAR#, not as CHAR(n)), MariaDB will report the maximum length of

the resultset column to be 53,6870,911 (bytes or characters?) for MariaDB 5.3-10.0.0 and 16,777,216 for MariaDB

10.0.1 +. This may cause excessive memory usage in some client libraries, because they try to pre-allocate a buffer of

maximum resultset width. If you suspect you're hitting this problem, use CHAR(n) whenever you're using COLUMN_GET in

the select list.

MariaDB 5.3 vs MariaDB 10.0

The dynamic columns feature was introduced into MariaDB in two steps:

1. MariaDB 5.3 was the first version to support dynamic columns. Only numbers could be used as column names in this

version.

2. In MariaDB 10.0.1 , column names can be either numbers or strings. Also, the COLUMN_JSON and COLUMN_CHECK

functions were added.

See also Dynamic Columns in MariaDB 10.

Client-side API

It is also possible to create or parse dynamic columns blobs on the client side. libmysql client library now includes an API

for writing/reading dynamic column blobs. See dynamic-columns-api for details.

Limitations

827/4161

https://jira.mariadb.org/browse/MDEV-597
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/dynamic-columns-api/

Description Limit

Max number of columns 65535

Max total length of packed dynamic column max_allowed_packet (1G)

1.1.4.5 Dynamic Columns from MariaDB 10
Contents
1. Column Name Support

2. Changes in Behavior

3. New Functions

1. COLUMN_CHECK

2. COLUMN_JSON

4. Other Changes

5. Interface with Cassandra

MariaDB 10.0.1 introduced the following improvements to the dynamic columns feature.

Column Name Support
It is possible to refer to column by names. Names can be used everywhere where in MariaDB 5.3 one could use only

strings:

Create a dynamic column blob:

COLUMN_CREATE('int_col', 123 as int, 'double_col', 3.14 as double, 'string_col', 'text-

data' as char);

Set a column value:

COLUMN_ADD(dyncol_blob, 'intcol', 1234);

Get a column value:

COLUMN_GET(dynstr, 'column1' as char(10));

Check whether a column exists

COLUMN_EXISTS(dyncol_blob, 'column_name');

Changes in Behavior
Column list output now includes quoting:

select column_list(column_create(1, 22, 2, 23));

+--+

| column_list(column_create(1, 22, 2, 23)) |

+--+

| `1`,`2` |

+--+

select column_list(column_create('column1', 22, 'column2', 23));

+--+

| column_list(column_create('column1', 22, 'column2', 23)) |

+--+

| `column1`,`column2` |

+--+

Column name interpretation has been changed so that the string now is not converted to a number. So some "magic"

tricks will not work any more, for example, "1test" and "1" now become different column names:

MariaDB starting with 10.0.1

828/4161

https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/

select column_list(column_add(column_create('1a', 22), '1b', 23));

+--+

| column_list(column_add(column_create('1a', 22), '1b', 23)) |

+--+

| `1a`,`1b` |

+--+

Old behavior:

select column_list(column_add(column_create('1a', 22), '1b', 23));

+--+

| column_list(column_add(column_create('1a', 22), '1b', 23)) |

+--+

| 1 |

+--+

New Functions
The following new functions have been added to dynamic columns in MariaDB 10

COLUMN_CHECK

COLUMN_CHECK is used to check a column's integrity. When it encounters an error it does not return illegal format errors

but returns false instead. It also checks integrity more thoroughly and finds errors in the dynamic column internal structures

which might not be found by other functions.

select column_check(column_create('column1', 22));

+--+

| column_check(column_create('column1', 22)) |

+--+

| 1 |

+--+

select column_check('abracadabra');

+-----------------------------+

| column_check('abracadabra') |

+-----------------------------+

| 0 |

+-----------------------------+

COLUMN_JSON

COLUMN_JSON converts all dynamic column record content to a JSON object.

select column_json(column_create('column1', 1, 'column2', "two"));

+--+

| column_json(column_create('column1', 1, 'column2', "two")) |

+--+

| {"column1":1,"column2":"two"} |

+--+

Other Changes
All API functions has prefix mariadb_dyncol_ (old prefix dynamic_column_ is depricated

API changed to be able to work with the new format (*_named functions).

Removed 'delete' function because deleting could be done by adding NULL value.

'Time' and 'datetime' in the new format are stored without microseconds if they are 0.

New function added to API (except that two which are representing SQL level functions):

'Unpack' the dynamic columns content to an arrays of values and names.

3 functions to get any column value as string, integer (long long) or floating point (double).

New type of "dynamic column" row added on the API level (in SQL level output it is a string but if you use dynamic

column functions to construct object it will be added as dynamic column value) which allow to add dynamic columns

inside dynamic columns. JSON function represent such recursive constructions correctly but limit depth of

representation as current implementation limit (internally depth of dynamic columns embedding is not limited).

829/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/column-json

Interface with Cassandra

CassandraSE is no longer actively being developed and has been removed in MariaDB 10.6. See MDEV-23024 .

Some internal changes were added to dynamic columns to allow them to serve as an interface to Apache Cassandra

dynamic columns. The Cassandra engine may pack all columns which were not mentioned in the MariaDB interface table

definition and even bring changes in the dynamic column contents back to the cassandra columns family (the table analog in

cassandra).

1.1.4.6 Dynamic Column API
This page describes the client-side API for reading and writing Dynamic Columns blobs.

Normally, you should use Dynamic column functions which are run inside the MariaDB server and allow one to access

Dynamic Columns content without any client-side libraries.

If you need to read/write dynamic column blobs on the client for some reason, this API enables that.

Contents
1. Where to get it

2. Data structures

1. DYNAMIC_COLUMN

2. DYNAMIC_COLUMN_VALUE

3. enum_dyncol_func_result

3. Function reference

1. mariadb_dyncol_create_many

2. mariadb_dyncol_update_many

3. mariadb_dyncol_exists

4. mariadb_dyncol_column_count

5. mariadb_dyncol_list

6. mariadb_dyncol_get

7. mariadb_dyncol_unpack

8. mariadb_dyncol_has_names

9. mariadb_dyncol_check

10. mariadb_dyncol_json

11. mariadb_dyncol_val_TYPE

12. mariadb_dyncol_prepare_decimal

13. mariadb_dyncol_value_init

14. mariadb_dyncol_column_cmp_named

Where to get it
The API is a part of libmysql C client library. In order to use it, you need to include this header file

#include <mysql/ma_dyncol.h>

and link against libmysql .

Data structures

DYNAMIC_COLUMN

DYNAMIC_COLUMN represents a packed dynamic column blob. It is essentially a string-with-length and is defined as follows:

830/4161

https://jira.mariadb.org/browse/MDEV-23024
https://mariadb.com/kb/en/cassandra-storage-engine/

/* A generic-purpose arbitrary-length string defined in MySQL Client API */

typedef struct st_dynamic_string

{

 char *str;

 size_t length,max_length,alloc_increment;

} DYNAMIC_STRING;

...

typedef DYNAMIC_STRING DYNAMIC_COLUMN;

DYNAMIC_COLUMN_VALUE

Dynamic columns blob stores {name, value} pairs. DYNAMIC_COLUMN_VALUE structure is used to represent the value in

accessible form.

struct st_dynamic_column_value

{

 DYNAMIC_COLUMN_TYPE type;

 union

 {

 long long long_value;

 unsigned long long ulong_value;

 double double_value;

 struct {

 MYSQL_LEX_STRING value;

 CHARSET_INFO *charset;

 } string;

 struct {

 decimal_digit_t buffer[DECIMAL_BUFF_LENGTH];

 decimal_t value;

 } decimal;

 MYSQL_TIME time_value;

 } x;

};

typedef struct st_dynamic_column_value DYNAMIC_COLUMN_VALUE;

Every value has a type, which is determined by the type member.

type structure field

DYN_COL_NULL -

DYN_COL_INT value.x.long_value

DYN_COL_UINT value.x.ulong_value

DYN_COL_DOUBLE value.x.double_value

DYN_COL_STRING value.x.string.value , value.x.string.charset

DYN_COL_DECIMAL value.x.decimal.value

DYN_COL_DATETIME value.x.time_value

DYN_COL_DATE value.x.time_value

DYN_COL_TIME value.x.time_value

DYN_COL_DYNCOL value.x.string.value

Notes

Values with type DYN_COL_NULL do not ever occur in dynamic columns blobs.

Type DYN_COL_DYNCOL means that the value is a packed dynamic blob. This is how nested dynamic columns are

done.

Before storing a value to value.x.decimal.value , one must call mariadb_dyncol_prepare_decimal() to

initialize the space for storage.

enum_dyncol_func_result

enum enum_dyncol_func_result is used as return value.

831/4161

value name meaning

0 ER_DYNCOL_OK OK

0 ER_DYNCOL_NO (the same as ER_DYNCOL_OK but for functions which return a YES/NO)

1 ER_DYNCOL_YES YES response or success

2 ER_DYNCOL_TRUNCATED Operation succeeded but the data was truncated

-1 ER_DYNCOL_FORMAT Wrong format of the encoded string

-2 ER_DYNCOL_LIMIT A limit of implementation reached

-3 ER_DYNCOL_RESOURCE Out of resources

-4 ER_DYNCOL_DATA Incorrect input data

-5 ER_DYNCOL_UNKNOWN_CHARSET Unknown character set

Result codes that are less than zero represent error conditions.

Function reference
Functions come in pairs:

xxx() operates on the old (pre-MariaDB-10.0.1) dynamic column blob format where columns were identified by

numbers.

xxx_named() can operate on both old or new data format. If it modifies the blob, it will convert it to the new data

format.

You should use xxx_named() functions, unless you need to keep the data compatible with MariaDB versions before

10.0.1.

mariadb_dyncol_create_many

Create a packed dynamic blob from arrays of values and names.

enum enum_dyncol_func_result

mariadb_dyncol_create_many(DYNAMIC_COLUMN *str,

 uint column_count,

 uint *column_numbers,

 DYNAMIC_COLUMN_VALUE *values,

 my_bool new_string);

enum enum_dyncol_func_result

mariadb_dyncol_create_many_named(DYNAMIC_COLUMN *str,

 uint column_count,

 MYSQL_LEX_STRING *column_keys,

 DYNAMIC_COLUMN_VALUE *values,

 my_bool new_string);

where

str OUT Packed dynamic blob will be put here

column_count IN Number of columns

column_numbers IN Column numbers array (old format)

column_keys IN Column names array (new format)

values IN Column values array

new_string IN If TRUE then the str will be reinitialized (not freed) before usage

mariadb_dyncol_update_many

Add or update columns in a dynamic columns blob. To delete a column, update its value to a "non-value" of type

DYN_COL_NULL

832/4161

enum enum_dyncol_func_result

mariadb_dyncol_update_many(DYNAMIC_COLUMN *str,

 uint column_count,

 uint *column_numbers,

 DYNAMIC_COLUMN_VALUE *values);

enum enum_dyncol_func_result

mariadb_dyncol_update_many_named(DYNAMIC_COLUMN *str,

 uint column_count,

 MYSQL_LEX_STRING *column_keys,

 DYNAMIC_COLUMN_VALUE *values);

str IN/OUT Dynamic columns blob to be modified.

column_count IN Number of columns in following arrays

column_numbers IN Column numbers array (old format)

column_keys IN Column names array (new format)

values IN Column values array

mariadb_dyncol_exists

Check if column with given name exists in the blob

enum enum_dyncol_func_result

mariadb_dyncol_exists(DYNAMIC_COLUMN *str, uint column_number);

enum enum_dyncol_func_result

mariadb_dyncol_exists_named(DYNAMIC_COLUMN *str, MYSQL_LEX_STRING *column_key);

str IN Packed dynamic columns string.

column_number IN Column number (old format)

column_key IN Column name (new format)

The function returns YES/NO or Error code

mariadb_dyncol_column_count

Get number of columns in a dynamic column blob

enum enum_dyncol_func_result

mariadb_dyncol_column_count(DYNAMIC_COLUMN *str, uint *column_count);

str IN Packed dynamic columns string.

column_count OUT Number of not NULL columns in the dynamic columns string

mariadb_dyncol_list

List columns in a dynamic column blob.

enum enum_dyncol_func_result

mariadb_dyncol_list(DYNAMIC_COLUMN *str, uint *column_count, uint **column_numbers);

enum enum_dyncol_func_result

mariadb_dyncol_list_named(DYNAMIC_COLUMN *str, uint *column_count,

 MYSQL_LEX_STRING **column_keys);

str IN Packed dynamic columns string.

column_count OUT Number of columns in following arrays

column_numbers OUT Column numbers array (old format). Caller should free this array.

column_keys OUT Column names array (new format). Caller should free this array.

833/4161

mariadb_dyncol_get

Get a value of one column

enum enum_dyncol_func_result

mariadb_dyncol_get(DYNAMIC_COLUMN *org, uint column_number,

 DYNAMIC_COLUMN_VALUE *value);

enum enum_dyncol_func_result

mariadb_dyncol_get_named(DYNAMIC_COLUMN *str, MYSQL_LEX_STRING *column_key,

 DYNAMIC_COLUMN_VALUE *value);

str IN Packed dynamic columns string.

column_number IN Column numbers array (old format)

column_key IN Column names array (new format)

value OUT Value of the column

If the column is not found NULL returned as a value of the column.

mariadb_dyncol_unpack

Get value of all columns

enum enum_dyncol_func_result

mariadb_dyncol_unpack(DYNAMIC_COLUMN *str,

 uint *column_count,

 MYSQL_LEX_STRING **column_keys,

 DYNAMIC_COLUMN_VALUE **values);

str IN Packed dynamic columns string to unpack.

column_count OUT Number of columns in following arrays

column_keys OUT Column names array (should be free by caller)

values OUT Values of the columns array (should be free by caller)

mariadb_dyncol_has_names

Check whether the dynamic columns blob uses new data format (the one where columns are identified by names)

my_bool mariadb_dyncol_has_names(DYNAMIC_COLUMN *str);

str IN Packed dynamic columns string.

mariadb_dyncol_check

Check whether dynamic column blob has correct data format.

enum enum_dyncol_func_result

mariadb_dyncol_check(DYNAMIC_COLUMN *str);

str IN Packed dynamic columns string.

mariadb_dyncol_json

Get contents od a dynamic columns blob in a JSON form

enum enum_dyncol_func_result

mariadb_dyncol_json(DYNAMIC_COLUMN *str, DYNAMIC_STRING *json);

str IN
Packed dynamic columns string.

834/4161

json OUT JSON representation

mariadb_dyncol_val_TYPE

Get dynamic column value as one of the base types

enum enum_dyncol_func_result

mariadb_dyncol_val_str(DYNAMIC_STRING *str, DYNAMIC_COLUMN_VALUE *val,

 CHARSET_INFO *cs, my_bool quote);

enum enum_dyncol_func_result

mariadb_dyncol_val_long(longlong *ll, DYNAMIC_COLUMN_VALUE *val);

enum enum_dyncol_func_result

mariadb_dyncol_val_double(double *dbl, DYNAMIC_COLUMN_VALUE *val);

str or ll or dbl OUT value of the column

val IN Value

mariadb_dyncol_prepare_decimal

Initialize DYNAMIC_COLUMN_VALUE before value of value.x.decimal.value can be set

void mariadb_dyncol_prepare_decimal(DYNAMIC_COLUMN_VALUE *value);

value OUT Value of the column

This function links value.x.decimal.value to value.x.decimal.buffer .

mariadb_dyncol_value_init

Initialize a DYNAMIC_COLUMN_VALUE structure to a safe default.

#define mariadb_dyncol_value_init(V) (V)->type= DYN_COL_NULL

mariadb_dyncol_column_cmp_named

Compare two column names (currently, column names are compared with memcmp())

int mariadb_dyncol_column_cmp_named(const MYSQL_LEX_STRING *s1,

 const MYSQL_LEX_STRING *s2);

1.1.4.7 Dynamic Columns from MariaDB 10
Contents
1. Column Name Support

2. Changes in Behavior

3. New Functions

1. COLUMN_CHECK

2. COLUMN_JSON

4. Other Changes

5. Interface with Cassandra

MariaDB 10.0.1 introduced the following improvements to the dynamic columns feature.

Column Name Support
It is possible to refer to column by names. Names can be used everywhere where in MariaDB 5.3 one could use only

strings:

MariaDB starting with 10.0.1

835/4161

https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/

Create a dynamic column blob:

COLUMN_CREATE('int_col', 123 as int, 'double_col', 3.14 as double, 'string_col', 'text-

data' as char);

Set a column value:

COLUMN_ADD(dyncol_blob, 'intcol', 1234);

Get a column value:

COLUMN_GET(dynstr, 'column1' as char(10));

Check whether a column exists

COLUMN_EXISTS(dyncol_blob, 'column_name');

Changes in Behavior
Column list output now includes quoting:

select column_list(column_create(1, 22, 2, 23));

+--+

| column_list(column_create(1, 22, 2, 23)) |

+--+

| `1`,`2` |

+--+

select column_list(column_create('column1', 22, 'column2', 23));

+--+

| column_list(column_create('column1', 22, 'column2', 23)) |

+--+

| `column1`,`column2` |

+--+

Column name interpretation has been changed so that the string now is not converted to a number. So some "magic"

tricks will not work any more, for example, "1test" and "1" now become different column names:

select column_list(column_add(column_create('1a', 22), '1b', 23));

+--+

| column_list(column_add(column_create('1a', 22), '1b', 23)) |

+--+

| `1a`,`1b` |

+--+

Old behavior:

select column_list(column_add(column_create('1a', 22), '1b', 23));

+--+

| column_list(column_add(column_create('1a', 22), '1b', 23)) |

+--+

| 1 |

+--+

New Functions
The following new functions have been added to dynamic columns in MariaDB 10

COLUMN_CHECK

COLUMN_CHECK is used to check a column's integrity. When it encounters an error it does not return illegal format errors

but returns false instead. It also checks integrity more thoroughly and finds errors in the dynamic column internal structures

which might not be found by other functions.

836/4161

select column_check(column_create('column1', 22));

+--+

| column_check(column_create('column1', 22)) |

+--+

| 1 |

+--+

select column_check('abracadabra');

+-----------------------------+

| column_check('abracadabra') |

+-----------------------------+

| 0 |

+-----------------------------+

COLUMN_JSON

COLUMN_JSON converts all dynamic column record content to a JSON object.

select column_json(column_create('column1', 1, 'column2', "two"));

+--+

| column_json(column_create('column1', 1, 'column2', "two")) |

+--+

| {"column1":1,"column2":"two"} |

+--+

Other Changes
All API functions has prefix mariadb_dyncol_ (old prefix dynamic_column_ is depricated

API changed to be able to work with the new format (*_named functions).

Removed 'delete' function because deleting could be done by adding NULL value.

'Time' and 'datetime' in the new format are stored without microseconds if they are 0.

New function added to API (except that two which are representing SQL level functions):

'Unpack' the dynamic columns content to an arrays of values and names.

3 functions to get any column value as string, integer (long long) or floating point (double).

New type of "dynamic column" row added on the API level (in SQL level output it is a string but if you use dynamic

column functions to construct object it will be added as dynamic column value) which allow to add dynamic columns

inside dynamic columns. JSON function represent such recursive constructions correctly but limit depth of

representation as current implementation limit (internally depth of dynamic columns embedding is not limited).

Interface with Cassandra

CassandraSE is no longer actively being developed and has been removed in MariaDB 10.6. See MDEV-23024 .

Some internal changes were added to dynamic columns to allow them to serve as an interface to Apache Cassandra

dynamic columns. The Cassandra engine may pack all columns which were not mentioned in the MariaDB interface table

definition and even bring changes in the dynamic column contents back to the cassandra columns family (the table analog in

cassandra).

1.2.9.4 JSON Functions

1.1.1.4.2.4.4 LOAD_FILE

1.1.5 Operators
Operators can be used for comparing values or for assigning values. There are several operators and they may be used in

different SQL statements and clauses. Some can be used somewhat on their own, not within an SQL statement clause.

For comparing values4string or numeric4you can use symbols such as the equal-sign (i.e., =) or the exclamation point

and the equal-sign together (i.e., !=). You might use these in WHERE clauses or within a flow-control statement or function

(e.g., IF()). You can also use basic regular expressions with the LIKE operator.

For assigning values, you can also use the equal-sign or other arithmetic symbols (e.g. plus-sign). You might do this with the

SET statement or in a SET clause in an UPDATE statement.

837/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/column-json
https://jira.mariadb.org/browse/MDEV-23024
https://mariadb.com/kb/en/cassandra-storage-engine/

Arithmetic Operators

Addition Operator (+)

Addition.

DIV

Integer division.

Division Operator (/)

Division.

MOD

Modulo operation. Remainder of N divided by M.

Modulo Operator (%)

Modulo operator. Returns the remainder of N divided by M.

Multiplication Operator (*)

Multiplication.

Subtraction Operator (-)

Subtraction and unary minus.

Assignment Operators

Assignment Operator (:=)

Assignment operator for assigning a value.

Assignment Operator (=)

The equal sign as an assignment operator.

Bit Functions and Operators

Operator Precedence

Precedence of SQL operators

&

Bitwise AND

<<

Left shift

>>

Shift right

BIT_COUNT

Returns the number of set bits

^

Bitwise XOR

|

Bitwise OR

~

Bitwise NOT

Parentheses

Parentheses modify the precedence of other operators in an expression

TRUE FALSE

TRUE and FALSE evaluate to 1 and 0

2

838/4161

Comparison Operators

!=

Not equal operator.

<

Less than operator.

<=

Less than or equal operator.

<=>

NULL-safe equal operator.

=

Equal operator.

>

Greater than operator.

>=

Greater than or equal operator.

BETWEEN AND

True if expression between two values.

COALESCE

Returns the first non-NULL parameter

GREATEST

Returns the largest argument.

IN

True if expression equals any of the values in the list.

INTERVAL

Index of the argument that is less than the first argument

IS

Tests whether a boolean is TRUE, FALSE, or UNKNOWN.

IS NOT

Tests whether a boolean value is not TRUE, FALSE, or UNKNOWN

IS NOT NULL

Tests whether a value is not NULL

IS NULL

Tests whether a value is NULL

ISNULL

Checks if an expression is NULL

LEAST

Returns the smallest argument.

NOT BETWEEN

Same as NOT (expr BETWEEN min AND max)

NOT IN

Same as NOT (expr IN (value,...))

Logical Operators

2

1

1

1

839/4161

!

Logical NOT.

&&

Logical AND.

XOR

Logical XOR.

||

Logical OR.

Other Operators Articles

Operator Precedence

Precedence of SQL operators

There are 3 related questions .

1.1.5.1 Arithmetic Operators
Arithmetic operators for addition, subtraction, multiplication, division and the modulo operator

Addition Operator (+)

Addition.

DIV

Integer division.

Division Operator (/)

Division.

MOD

Modulo operation. Remainder of N divided by M.

Modulo Operator (%)

Modulo operator. Returns the remainder of N divided by M.

Multiplication Operator (*)

Multiplication.

Subtraction Operator (-)

Subtraction and unary minus.

2

1.1.5.1.1 Addition Operator (+)

Syntax

+

Contents
1. Syntax

2. Description

3. Examples

Description
Addition.

840/4161

https://mariadb.com/kb/en/operators/+questions/

If both operands are integers, the result is calculated with BIGINT precision. If either integer is unsigned, the result is also

an unsigned integer.

For real or string operands, the operand with the highest precision determines the result precision.

Examples

SELECT 3+5;

+-----+

| 3+5 |

+-----+

| 8 |

+-----+

1.2.5.6 DIV

1.1.5.1.3 Division Operator (/)

Syntax

/

Contents
1. Syntax

2. Description

3. Examples

Description
Division operator. Dividing by zero will return NULL. By default, returns four digits after the decimal. This is determined by

the server system variable div_precision_increment which by default is four. It can be set from 0 to 30.

Dividing by zero returns NULL . If the ERROR_ON_DIVISION_BY_ZERO SQL_MODE is used (the default since MariaDB

10.2.4), a division by zero also produces a warning.

Examples

SELECT 4/5;

+--------+

| 4/5 |

+--------+

| 0.8000 |

+--------+

SELECT 300/(2-2);

+-----------+

| 300/(2-2) |

+-----------+

| NULL |

+-----------+

SELECT 300/7;

+---------+

| 300/7 |

+---------+

| 42.8571 |

+---------+

Changing div_precision_increment for the session from the default of four to six:

841/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/

SET div_precision_increment = 6;

SELECT 300/7;

+-----------+

| 300/7 |

+-----------+

| 42.857143 |

+-----------+

SELECT 300/7;

+-----------+

| 300/7 |

+-----------+

| 42.857143 |

+-----------+

1.2.5.28 MOD

1.1.5.1.5 Modulo Operator (%)

Syntax

N % M

Description
Modulo operator. Returns the remainder of N divided by M . See also MOD.

Examples

SELECT 1042 % 50;

+-----------+

| 1042 % 50 |

+-----------+

| 42 |

+-----------+

1.1.5.1.6 Multiplication Operator (*)

Syntax

*

Contents
1. Syntax

2. Description

3. Examples

Description
Multiplication operator.

Examples

842/4161

SELECT 7*6;

+-----+

| 7*6 |

+-----+

| 42 |

+-----+

SELECT 1234567890*9876543210;

+-----------------------+

| 1234567890*9876543210 |

+-----------------------+

| -6253480962446024716 |

+-----------------------+

SELECT 18014398509481984*18014398509481984.0;

+---------------------------------------+

| 18014398509481984*18014398509481984.0 |

+---------------------------------------+

| 324518553658426726783156020576256.0 |

+---------------------------------------+

SELECT 18014398509481984*18014398509481984;

+-------------------------------------+

| 18014398509481984*18014398509481984 |

+-------------------------------------+

| 0 |

+-------------------------------------+

1.1.5.1.7 Subtraction Operator (-)

Syntax

-

Description
Subtraction. The operator is also used as the unary minus for changing sign.

If both operands are integers, the result is calculated with BIGINT precision. If either integer is unsigned, the result is also

an unsigned integer, unless the NO_UNSIGNED_SUBTRACTION SQL_MODE is enabled, in which case the result is

always signed.

For real or string operands, the operand with the highest precision determines the result precision.

Examples

843/4161

SELECT 96-9;

+------+

| 96-9 |

+------+

| 87 |

+------+

SELECT 15-17;

+-------+

| 15-17 |

+-------+

| -2 |

+-------+

SELECT 3.66 + 1.333;

+--------------+

| 3.66 + 1.333 |

+--------------+

| 4.993 |

+--------------+

Unary minus:

 SELECT - (3+5);

+---------+

| - (3+5) |

+---------+

| -8 |

+---------+

1.1.5.2 Assignment Operators
Operators for assigning a value

Assignment Operator (:=)

Assignment operator for assigning a value.

Assignment Operator (=)

The equal sign as an assignment operator.

1.1.5.2.1 Assignment Operator (:=)

Syntax

var_name := expr

Description
Assignment operator for assigning a value. The value on the right is assigned to the variable on left.

Unlike the = operator, := can always be used to assign a value to a variable.

This operator works with both user-defined variables and local variables.

When assigning the same value to several variables, LAST_VALUE() can be useful.

Examples

844/4161

 SELECT @x := 10;

+----------+

| @x := 10 |

+----------+

| 10 |

+----------+

SELECT @x, @y := @x;

+------+----------+

| @x | @y := @x |

+------+----------+

| 10 | 10 |

+------+----------+

1.1.5.2.2 Assignment Operator (=)

Syntax

identifier = expr

Contents
1. Syntax

2. Description

3. Examples

Description
The equal sign is used as both an assignment operator in certain contexts, and as a comparison operator. When used as

assignment operator, the value on the right is assigned to the variable (or column, in some contexts) on the left.

Since its use can be ambiguous, unlike the := assignment operator, the = assignment operator cannot be used in all

contexts, and is only valid as part of a SET statement, or the SET clause of an UPDATE statement

This operator works with both user-defined variables and local variables.

Examples

UPDATE table_name SET x = 2 WHERE x > 100;

SET @x = 1, @y := 2;

1.2.8.1 Bit Functions and Operators

1.1.5.4 Comparison Operators
The comparison operators include: !=, <, <=, <=>, >=, >, etc...

!=

Not equal operator.

<

Less than operator.

<=

Less than or equal operator.

<=>

NULL-safe equal operator.2

845/4161

=

Equal operator.

>

Greater than operator.

>=

Greater than or equal operator.

BETWEEN AND

True if expression between two values.

COALESCE

Returns the first non-NULL parameter

GREATEST

Returns the largest argument.

IN

True if expression equals any of the values in the list.

INTERVAL

Index of the argument that is less than the first argument

IS

Tests whether a boolean is TRUE, FALSE, or UNKNOWN.

IS NOT

Tests whether a boolean value is not TRUE, FALSE, or UNKNOWN

IS NOT NULL

Tests whether a value is not NULL

IS NULL

Tests whether a value is NULL

ISNULL

Checks if an expression is NULL

LEAST

Returns the smallest argument.

NOT BETWEEN

Same as NOT (expr BETWEEN min AND max)

NOT IN

Same as NOT (expr IN (value,...))

1

1

1

1.1.5.4.1 Not Equal Operator: !=

Syntax

<>, !=

Contents
1. Syntax

2. Description

3. Examples

Description
846/4161

Not equal operator. Evaluates both SQL expressions and returns 1 if they are not equal and 0 if they are equal, or NULL if

either expression is NULL. If the expressions return different data types, (for instance, a number and a string), performs type

conversion.

When used in row comparisons these two queries return the same results:

SELECT (t1.a, t1.b) != (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a != t2.x) OR (t1.b != t2.y)

FROM t1 INNER JOIN t2;

Examples

SELECT '.01' <> '0.01';

+-----------------+

| '.01' <> '0.01' |

+-----------------+

| 1 |

+-----------------+

SELECT .01 <> '0.01';

+---------------+

| .01 <> '0.01' |

+---------------+

| 0 |

+---------------+

SELECT 'zapp' <> 'zappp';

+-------------------+

| 'zapp' <> 'zappp' |

+-------------------+

| 1 |

+-------------------+

1.1.5.4.2 <

Syntax

<

Contents
1. Syntax

2. Description

3. Examples

Description
Less than operator. Evaluates both SQL expressions and returns 1 if the left value is less than the right value and 0 if it is

not, or NULL if either expression is NULL. If the expressions return different data types, (for instance, a number and a

string), performs type conversion.

When used in row comparisons these two queries return the same results:

SELECT (t1.a, t1.b) < (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a < t2.x) OR ((t1.a = t2.x) AND (t1.b < t2.y))

FROM t1 INNER JOIN t2;

Examples

847/4161

SELECT 2 < 2;

+-------+

| 2 < 2 |

+-------+

| 0 |

+-------+

Type conversion:

SELECT 3<'4';

+-------+

| 3<'4' |

+-------+

| 1 |

+-------+

Case insensitivity - see Character Sets and Collations:

SELECT 'a'<'A';

+---------+

| 'a'<'A' |

+---------+

| 0 |

+---------+

1.1.5.4.3 <=

Syntax

<=

Contents
1. Syntax

2. Description

3. Examples

Description
Less than or equal operator. Evaluates both SQL expressions and returns 1 if the left value is less than or equal to the right

value and 0 if it is not, or NULL if either expression is NULL. If the expressions return different data types, (for instance, a

number and a string), performs type conversion.

When used in row comparisons these two queries return the same results:

SELECT (t1.a, t1.b) <= (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a < t2.x) OR ((t1.a = t2.x) AND (t1.b <= t2.y))

FROM t1 INNER JOIN t2;

Examples

SELECT 0.1 <= 2;

+----------+

| 0.1 <= 2 |

+----------+

| 1 |

+----------+

848/4161

SELECT 'a'<='A';

+----------+

| 'a'<='A' |

+----------+

| 1 |

+----------+

1.1.5.4.4 <=>

Syntax

<=>

Description
NULL-safe equal operator. It performs an equality comparison like the = operator, but returns 1 rather than NULL if both

operands are NULL, and 0 rather than NULL if one operand is NULL.

a <=> b is equivalent to a = b OR (a IS NULL AND b IS NULL) .

When used in row comparisons these two queries return the same results:

SELECT (t1.a, t1.b) <=> (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a <=> t2.x) AND (t1.b <=> t2.y)

FROM t1 INNER JOIN t2;

See also NULL Values in MariaDB.

Examples

SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;

+---------+---------------+------------+

| 1 <=> 1 | NULL <=> NULL | 1 <=> NULL |

+---------+---------------+------------+

| 1 | 1 | 0 |

+---------+---------------+------------+

SELECT 1 = 1, NULL = NULL, 1 = NULL;

+-------+-------------+----------+

| 1 = 1 | NULL = NULL | 1 = NULL |

+-------+-------------+----------+

| 1 | NULL | NULL |

+-------+-------------+----------+

1.1.5.4.5 =

Syntax

left_expr = right_expr

Contents
1. Syntax

2. Description

3. Examples

Description
849/4161

Equal operator. Evaluates both SQL expressions and returns 1 if they are equal, 0 if they are not equal, or NULL if either

expression is NULL. If the expressions return different data types (for example, a number and a string), a type conversion is

performed.

When used in row comparisons these two queries are synonymous and return the same results:

SELECT (t1.a, t1.b) = (t2.x, t2.y) FROM t1 INNER JOIN t2;

SELECT (t1.a = t2.x) AND (t1.b = t2.y) FROM t1 INNER JOIN t2;

To perform a NULL-safe comparison, use the <=> operator.

= can also be used as an assignment operator.

Examples

SELECT 1 = 0;

+-------+

| 1 = 0 |

+-------+

| 0 |

+-------+

SELECT '0' = 0;

+---------+

| '0' = 0 |

+---------+

| 1 |

+---------+

SELECT '0.0' = 0;

+-----------+

| '0.0' = 0 |

+-----------+

| 1 |

+-----------+

SELECT '0.01' = 0;

+------------+

| '0.01' = 0 |

+------------+

| 0 |

+------------+

SELECT '.01' = 0.01;

+--------------+

| '.01' = 0.01 |

+--------------+

| 1 |

+--------------+

SELECT (5 * 2) = CONCAT('1', '0');

+----------------------------+

| (5 * 2) = CONCAT('1', '0') |

+----------------------------+

| 1 |

+----------------------------+

SELECT 1 = NULL;

+----------+

| 1 = NULL |

+----------+

| NULL |

+----------+

SELECT NULL = NULL;

+-------------+

| NULL = NULL |

+-------------+

| NULL |

+-------------+

850/4161

1.1.5.4.6 >

Syntax

>

Contents
1. Syntax

2. Description

3. Examples

Description
Greater than operator. Evaluates both SQL expressions and returns 1 if the left value is greater than the right value and 0 if

it is not, or NULL if either expression is NULL. If the expressions return different data types, (for instance, a number and a

string), performs type conversion.

When used in row comparisons these two queries return the same results:

SELECT (t1.a, t1.b) > (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a > t2.x) OR ((t1.a = t2.x) AND (t1.b > t2.y))

FROM t1 INNER JOIN t2;

Examples

SELECT 2 > 2;

+-------+

| 2 > 2 |

+-------+

| 0 |

+-------+

SELECT 'b' > 'a';

+-----------+

| 'b' > 'a' |

+-----------+

| 1 |

+-----------+

1.1.5.4.7 >=

Syntax

>=

Contents
1. Syntax

2. Description

3. Examples

Description
Greater than or equal operator. Evaluates both SQL expressions and returns 1 if the left value is greater than or equal to the

right value and 0 if it is not, or NULL if either expression is NULL. If the expressions return different data types, (for

instance, a number and a string), performs type conversion.

When used in row comparisons these two queries return the same results:

851/4161

SELECT (t1.a, t1.b) >= (t2.x, t2.y)

FROM t1 INNER JOIN t2;

SELECT (t1.a > t2.x) OR ((t1.a = t2.x) AND (t1.b >= t2.y))

FROM t1 INNER JOIN t2;

Examples

SELECT 2 >= 2;

+--------+

| 2 >= 2 |

+--------+

| 1 |

+--------+

SELECT 'A' >= 'a';

+------------+

| 'A' >= 'a' |

+------------+

| 1 |

+------------+

1.1.5.4.8 BETWEEN AND

Syntax

expr BETWEEN min AND max

Contents
1. Syntax

2. Description

3. Examples

Description
If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1, otherwise it returns 0. This

is equivalent to the expression (min <= expr AND expr <= max) if all the arguments are of the same type. Otherwise type

conversion takes place according to the rules described at Type Conversion, but applied to all the three arguments.

Examples

SELECT 1 BETWEEN 2 AND 3;

+-------------------+

| 1 BETWEEN 2 AND 3 |

+-------------------+

| 0 |

+-------------------+

SELECT 'b' BETWEEN 'a' AND 'c';

+-------------------------+

| 'b' BETWEEN 'a' AND 'c' |

+-------------------------+

| 1 |

+-------------------------+

852/4161

SELECT 2 BETWEEN 2 AND '3';

+---------------------+

| 2 BETWEEN 2 AND '3' |

+---------------------+

| 1 |

+---------------------+

SELECT 2 BETWEEN 2 AND 'x-3';

+-----------------------+

| 2 BETWEEN 2 AND 'x-3' |

+-----------------------+

| 0 |

+-----------------------+

1 row in set, 1 warning (0.00 sec)

Warning (Code 1292): Truncated incorrect DOUBLE value: 'x-3'

NULL:

SELECT 1 BETWEEN 1 AND NULL;

+----------------------+

| 1 BETWEEN 1 AND NULL |

+----------------------+

| NULL |

+----------------------+

DATE, DATETIME and TIMESTAMP examples. Omitting the time component compares against 00:00 , so later times on

the same date are not returned:

CREATE TABLE `x` (

 a date ,

 b datetime,

 c timestamp

)

INSERT INTO x VALUES

 ('2018-11-11', '2018-11-11 05:15', '2018-11-11 05:15'),

 ('2018-11-12', '2018-11-12 05:15', '2018-11-12 05:15');

SELECT * FROM x WHERE a BETWEEN '2018-11-11' AND '2018-11-12';

+------------+---------------------+---------------------+

| a | b | c |

+------------+---------------------+---------------------+

| 2018-11-11 | 2018-11-11 05:15:00 | 2018-11-11 05:15:00 |

| 2018-11-12 | 2018-11-12 05:15:00 | 2018-11-12 05:15:00 |

+------------+---------------------+---------------------+

SELECT * FROM x WHERE b BETWEEN '2018-11-11' AND '2018-11-12';

+------------+---------------------+---------------------+

| a | b | c |

+------------+---------------------+---------------------+

| 2018-11-11 | 2018-11-11 05:15:00 | 2018-11-11 05:15:00 |

+------------+---------------------+---------------------+

SELECT * FROM x WHERE c BETWEEN '2018-11-11' AND '2018-11-12';

+------------+---------------------+---------------------+

| a | b | c |

+------------+---------------------+---------------------+

| 2018-11-11 | 2018-11-11 05:15:00 | 2018-11-11 05:15:00 |

+------------+---------------------+---------------------+

1.1.5.4.9 COALESCE

Syntax

853/4161

COALESCE(value,...)

Description
Returns the first non-NULL value in the list, or NULL if there are no non-NULL values. At least one parameter must be

passed.

The function is useful when substituting a default value for null values when displaying data.

See also NULL Values in MariaDB.

Examples

SELECT COALESCE(NULL,1);

+------------------+

| COALESCE(NULL,1) |

+------------------+

| 1 |

+------------------+

SELECT COALESCE(NULL,NULL,NULL);

+--------------------------+

| COALESCE(NULL,NULL,NULL) |

+--------------------------+

| NULL |

+--------------------------+

When two arguments are given, COALESCE() is the same as IFNULL():

SET @a=NULL, @b=1;

SELECT COALESCE(@a, @b), IFNULL(@a, @b);

+------------------+----------------+

| COALESCE(@a, @b) | IFNULL(@a, @b) |

+------------------+----------------+

| 1 | 1 |

+------------------+----------------+

Hex type confusion:

CREATE TABLE t1 (a INT, b VARCHAR(10));

INSERT INTO t1 VALUES (0x31, 0x61),(COALESCE(0x31), COALESCE(0x61));

SELECT * FROM t1;

+------+------+

| a | b |

+------+------+

| 49 | a |

| 1 | a |

+------+------+

The reason for the differing results above is that when 0x31 is inserted directly to the column, it's treated as a number (see

Hexadecimal Literals), while when 0x31 is passed to COALESCE(), it's treated as a string, because:

HEX values have a string data type by default.

COALESCE() has the same data type as the argument.

Substituting zero for NULL (in this case when the aggregate function returns NULL after finding no rows):

854/4161

SELECT SUM(score) FROM student;

+------------+

| SUM(score) |

+------------+

| NULL |

+------------+

SELECT COALESCE(SUM(score),0) FROM student;

+------------------------+

| COALESCE(SUM(score),0) |

+------------------------+

| 0 |

+------------------------+

1.1.5.4.10 GREATEST

Syntax

GREATEST(value1,value2,...)

Description
With two or more arguments, returns the largest (maximum-valued) argument. The arguments are compared using the

same rules as for LEAST().

Examples

SELECT GREATEST(2,0);

+---------------+

| GREATEST(2,0) |

+---------------+

| 2 |

+---------------+

SELECT GREATEST(34.0,3.0,5.0,767.0);

+------------------------------+

| GREATEST(34.0,3.0,5.0,767.0) |

+------------------------------+

| 767.0 |

+------------------------------+

SELECT GREATEST('B','A','C');

+-----------------------+

| GREATEST('B','A','C') |

+-----------------------+

| C |

+-----------------------+

1.1.5.4.11 IN

Syntax

expr IN (value,...)

Description

855/4161

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants, they are evaluated

according to the type of expr and sorted. The search for the item then is done using a binary search. This means IN is

very quick if the IN value list consists entirely of constants. Otherwise, type conversion takes place according to the rules

described at Type Conversion, but applied to all the arguments.

If expr is NULL, IN always returns NULL. If at least one of the values in the list is NULL, and one of the comparisons is

true, the result is 1. If at least one of the values in the list is NULL and none of the comparisons is true, the result is NULL.

Examples

SELECT 2 IN (0,3,5,7);

+----------------+

| 2 IN (0,3,5,7) |

+----------------+

| 0 |

+----------------+

SELECT 'wefwf' IN ('wee','wefwf','weg');

+----------------------------------+

| 'wefwf' IN ('wee','wefwf','weg') |

+----------------------------------+

| 1 |

+----------------------------------+

Type conversion:

SELECT 1 IN ('1', '2', '3');

+----------------------+

| 1 IN ('1', '2', '3') |

+----------------------+

| 1 |

+----------------------+

SELECT NULL IN (1, 2, 3);

+-------------------+

| NULL IN (1, 2, 3) |

+-------------------+

| NULL |

+-------------------+

SELECT 1 IN (1, 2, NULL);

+-------------------+

| 1 IN (1, 2, NULL) |

+-------------------+

| 1 |

+-------------------+

SELECT 5 IN (1, 2, NULL);

+-------------------+

| 5 IN (1, 2, NULL) |

+-------------------+

| NULL |

+-------------------+

1.1.5.4.12 INTERVAL

Syntax

INTERVAL(N,N1,N2,N3,...)

Description

856/4161

Returns the index of the last argument that is less than the first argument or is NULL.

Returns 0 if N < N1, 1 if N < N2, 2 if N < N3 and so on or -1 if N is NULL. All arguments are treated as integers. It is

required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a fast binary search is used.

Examples

SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);

+--------------------------------------+

| INTERVAL(23, 1, 15, 17, 30, 44, 200) |

+--------------------------------------+

| 3 |

+--------------------------------------+

SELECT INTERVAL(10, 1, 10, 100, 1000);

+--------------------------------+

| INTERVAL(10, 1, 10, 100, 1000) |

+--------------------------------+

| 2 |

+--------------------------------+

SELECT INTERVAL(22, 23, 30, 44, 200);

+-------------------------------+

| INTERVAL(22, 23, 30, 44, 200) |

+-------------------------------+

| 0 |

+-------------------------------+

SELECT INTERVAL(10, 2, NULL);

+-----------------------+

| INTERVAL(10, 2, NULL) |

+-----------------------+

| 2 |

+-----------------------+

1.1.5.4.13 IS

Syntax

IS boolean_value

Description
Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

There is an important difference between using IS TRUE or comparing a value with TRUE using = . When using = , only 1

equals to TRUE. But when using IS TRUE, all values which are logically true (like a number > 1) return TRUE.

Examples

SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;

+-----------+------------+-----------------+

| 1 IS TRUE | 0 IS FALSE | NULL IS UNKNOWN |

+-----------+------------+-----------------+

| 1 | 1 | 1 |

+-----------+------------+-----------------+

Difference between = and IS TRUE :

857/4161

SELECT 2 = TRUE, 2 IS TRUE;

+----------+-----------+

| 2 = TRUE | 2 IS TRUE |

+----------+-----------+

| 0 | 1 |

+----------+-----------+

1.1.5.4.14 IS NOT

Syntax

IS NOT boolean_value

Description
Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

Examples

SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;

+------------------+------------------+---------------------+

| 1 IS NOT UNKNOWN | 0 IS NOT UNKNOWN | NULL IS NOT UNKNOWN |

+------------------+------------------+---------------------+

| 1 | 1 | 0 |

+------------------+------------------+---------------------+

SELECT NULL IS NOT TRUE, NULL IS NOT FALSE;

+------------------+-------------------+

| NULL IS NOT TRUE | NULL IS NOT FALSE |

+------------------+-------------------+

| 1 | 1 |

+------------------+-------------------+

1.1.5.4.15 IS NOT NULL

Syntax

IS NOT NULL

Description
Tests whether a value is not NULL. See also NULL Values in MariaDB.

Examples

SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;

+---------------+---------------+------------------+

| 1 IS NOT NULL | 0 IS NOT NULL | NULL IS NOT NULL |

+---------------+---------------+------------------+

| 1 | 1 | 0 |

+---------------+---------------+------------------+

1.1.5.4.16 IS NULL
858/4161

Syntax

IS NULL

Description
Tests whether a value is NULL. See also NULL Values in MariaDB.

Examples

SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;

+-----------+-----------+--------------+

| 1 IS NULL | 0 IS NULL | NULL IS NULL |

+-----------+-----------+--------------+

| 0 | 0 | 1 |

+-----------+-----------+--------------+

Compatibility
Some ODBC applications use the syntax auto_increment_field IS NOT NULL to find the latest row that was inserted

with an autogenerated key value. If your applications need this, you can set the sql_auto_is_null variable to 1.

SET @@sql_auto_is_null=1;

CREATE TABLE t1 (auto_increment_column INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

INSERT INTO t1 VALUES (NULL);

SELECT * FROM t1 WHERE auto_increment_column IS NULL;

+-----------------------+

| auto_increment_column |

+-----------------------+

| 1 |

+-----------------------+

1.1.5.4.17 ISNULL

Syntax

ISNULL(expr)

Description
If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

See also NULL Values in MariaDB.

Examples

859/4161

SELECT ISNULL(1+1);

+-------------+

| ISNULL(1+1) |

+-------------+

| 0 |

+-------------+

SELECT ISNULL(1/0);

+-------------+

| ISNULL(1/0) |

+-------------+

| 1 |

+-------------+

1.1.5.4.18 LEAST

Syntax

LEAST(value1,value2,...)

Description
With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are compared using the

following rules:

If the return value is used in an INTEGER context or all arguments are integer-valued, they are compared as integers.

If the return value is used in a REAL context or all arguments are real-valued, they are compared as reals.

If any argument is a case-sensitive string, the arguments are compared as case-sensitive strings.

In all other cases, the arguments are compared as case-insensitive strings.

LEAST() returns NULL if any argument is NULL.

Examples

SELECT LEAST(2,0);

+------------+

| LEAST(2,0) |

+------------+

| 0 |

+------------+

SELECT LEAST(34.0,3.0,5.0,767.0);

+---------------------------+

| LEAST(34.0,3.0,5.0,767.0) |

+---------------------------+

| 3.0 |

+---------------------------+

SELECT LEAST('B','A','C');

+--------------------+

| LEAST('B','A','C') |

+--------------------+

| A |

+--------------------+

1.1.5.4.19 NOT BETWEEN

Syntax

860/4161

expr NOT BETWEEN min AND max

Description
This is the same as NOT (expr BETWEEN min AND max).

Note that the meaning of the alternative form NOT expr BETWEEN min AND max is affected by the

HIGH_NOT_PRECEDENCE SQL_MODE flag.

Examples

SELECT 1 NOT BETWEEN 2 AND 3;

+-----------------------+

| 1 NOT BETWEEN 2 AND 3 |

+-----------------------+

| 1 |

+-----------------------+

SELECT 'b' NOT BETWEEN 'a' AND 'c';

+-----------------------------+

| 'b' NOT BETWEEN 'a' AND 'c' |

+-----------------------------+

| 0 |

+-----------------------------+

NULL:

SELECT 1 NOT BETWEEN 1 AND NULL;

+--------------------------+

| 1 NOT BETWEEN 1 AND NULL |

+--------------------------+

| NULL |

+--------------------------+

1.1.5.4.20 NOT IN

Syntax

expr NOT IN (value,...)

Description
This is the same as NOT (expr IN (value,...)).

Examples

SELECT 2 NOT IN (0,3,5,7);

+--------------------+

| 2 NOT IN (0,3,5,7) |

+--------------------+

| 1 |

+--------------------+

861/4161

SELECT 'wefwf' NOT IN ('wee','wefwf','weg');

+--------------------------------------+

| 'wefwf' NOT IN ('wee','wefwf','weg') |

+--------------------------------------+

| 0 |

+--------------------------------------+

SELECT 1 NOT IN ('1', '2', '3');

+--------------------------+

| 1 NOT IN ('1', '2', '3') |

+--------------------------+

| 0 |

+--------------------------+

NULL:

SELECT NULL NOT IN (1, 2, 3);

+-----------------------+

| NULL NOT IN (1, 2, 3) |

+-----------------------+

| NULL |

+-----------------------+

SELECT 1 NOT IN (1, 2, NULL);

+-----------------------+

| 1 NOT IN (1, 2, NULL) |

+-----------------------+

| 0 |

+-----------------------+

SELECT 5 NOT IN (1, 2, NULL);

+-----------------------+

| 5 NOT IN (1, 2, NULL) |

+-----------------------+

| NULL |

+-----------------------+

1.1.5.5 Logical Operators
NOT, AND, Exclusive OR and OR

!

Logical NOT.

&&

Logical AND.

XOR

Logical XOR.

||

Logical OR.

1.1.5.5.1 !

Syntax

NOT, !

862/4161

Contents
1. Syntax

2. Description

3. Examples

Description
Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero, and NOT NULL returns NULL.

By default, the ! operator has a higher precedence. If the HIGH_NOT_PRECEDENCE SQL_MODE flag is set, NOT and !

have the same precedence.

Examples

SELECT NOT 10;

+--------+

| NOT 10 |

+--------+

| 0 |

+--------+

SELECT NOT 0;

+-------+

| NOT 0 |

+-------+

| 1 |

+-------+

SELECT NOT NULL;

+----------+

| NOT NULL |

+----------+

| NULL |

+----------+

SELECT ! (1+1);

+---------+

| ! (1+1) |

+---------+

| 0 |

+---------+

SELECT ! 1+1;

+-------+

| ! 1+1 |

+-------+

| 1 |

+-------+

1.1.5.5.2 &&

Syntax

AND, &&

Contents
1. Syntax

2. Description

3. Examples

Description
Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if one or more operands are 0, otherwise NULL

is returned.

863/4161

For this operator, short-circuit evaluation can be used.

Examples

SELECT 1 && 1;

+--------+

| 1 && 1 |

+--------+

| 1 |

+--------+

SELECT 1 && 0;

+--------+

| 1 && 0 |

+--------+

| 0 |

+--------+

SELECT 1 && NULL;

+-----------+

| 1 && NULL |

+-----------+

| NULL |

+-----------+

SELECT 0 && NULL;

+-----------+

| 0 && NULL |

+-----------+

| 0 |

+-----------+

SELECT NULL && 0;

+-----------+

| NULL && 0 |

+-----------+

| 0 |

+-----------+

1.1.5.5.3 XOR

Syntax

XOR

Contents
1. Syntax

2. Description

3. Examples

Description
XOR stands for eXclusive OR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd

number of operands is non-zero, otherwise 0 is returned.

Examples

864/4161

SELECT 1 XOR 1;

+---------+

| 1 XOR 1 |

+---------+

| 0 |

+---------+

SELECT 1 XOR 0;

+---------+

| 1 XOR 0 |

+---------+

| 1 |

+---------+

SELECT 1 XOR NULL;

+------------+

| 1 XOR NULL |

+------------+

| NULL |

+------------+

In the following example, the right 1 XOR 1 is evaluated first, and returns 0 . Then, 1 XOR 0 is evaluated, and 1 is

returned.

SELECT 1 XOR 1 XOR 1;

+---------------+

| 1 XOR 1 XOR 1 |

+---------------+

| 1 |

+---------------+

1.1.5.5.4 ||

Syntax

OR, ||

Contents
1. Syntax

2. Description

1. Oracle Mode

3. Examples

Description
Logical OR. When both operands are non-NULL, the result is 1 if any operand is non-zero, and 0 otherwise. With a NULL

operand, the result is 1 if the other operand is non-zero, and NULL otherwise. If both operands are NULL, the result is

NULL.

For this operator, short-circuit evaluation can be used.

Note that, if the PIPES_AS_CONCAT SQL_MODE is set, || is used as a string concatenation operator. This means that a

|| b is the same as CONCAT(a,b) . See CONCAT() for details.

Oracle Mode

In Oracle mode from MariaDB 10.3, || ignores NULL.

Examples

MariaDB starting with 10.3

865/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/null

SELECT 1 || 1;

+--------+

| 1 || 1 |

+--------+

| 1 |

+--------+

SELECT 1 || 0;

+--------+

| 1 || 0 |

+--------+

| 1 |

+--------+

SELECT 0 || 0;

+--------+

| 0 || 0 |

+--------+

| 0 |

+--------+

SELECT 0 || NULL;

+-----------+

| 0 || NULL |

+-----------+

| NULL |

+-----------+

SELECT 1 || NULL;

+-----------+

| 1 || NULL |

+-----------+

| 1 |

+-----------+

In Oracle mode, from MariaDB 10.3:

SELECT 0 || NULL;

+-----------+

| 0 || NULL |

+-----------+

| 0 |

+-----------+

1.1.5.6 Operator Precedence
The precedence is the order in which the SQL operators are evaluated.

The following list shows the SQL operator precedence. Operators that appear first in the list have a higher precedence.

Operators which are listed together have the same precedence.

INTERVAL

BINARY , COLLATE

!

- (unary minus), [[bitwise-not|]] (unary bit inversion)

|| (string concatenation)

^

* , / , DIV , % , MOD

- , +

<< , >>

&

|

= (comparison), <=> , >= , > , <= , < , <> , != , IS , LIKE , REGEXP , IN

BETWEEN , CASE , WHEN , THEN , ELSE , END

NOT

&& , AND

XOR

|| (logical or), OR

866/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/bitwise-and

= (assignment), :=

Functions precedence is always higher than operators precedence.

In this page CASE refers to the CASE operator, not to the CASE statement .

If the HIGH_NOT_PRECEDENCE SQL_MODE is set, NOT has the same precedence as ! .

The || operator's precedence, as well as its meaning, depends on the PIPES_AS_CONCAT SQL_MODE flag: if it is on,

|| can be used to concatenate strings (like the CONCAT() function) and has a higher precedence.

The = operator's precedence depends on the context - it is higher when = is used as a comparison operator.

Parenthesis can be used to modify the operators precedence in an expression.

Short-circuit evaluation
The AND , OR , && and || operators support short-circuit evaluation. This means that, in some cases, the expression on

the right of those operators is not evaluated, because its result cannot affect the result. In the following cases, short-circuit

evaluation is used and x() is not evaluated:

FALSE AND x()

FALSE && x()

TRUE OR x()

TRUE || x()

NULL BETWEEN x() AND x()

Note however that the short-circuit evaluation does not apply to NULL AND x() . Also, BETWEEN 's right operands are not

evaluated if the left operand is NULL , but in all other cases all the operands are evaluated.

This is a speed optimization. Also, since functions can have side-effects, this behavior can be used to choose whether

execute them or not using a concise syntax:

SELECT some_function() OR log_error();

1.1.6 Sequences

This section is about sequence objects. For details about the storage engine, see Sequence Storage Engine.

A sequence is an object that generates a sequence of numeric values, as specified by the CREATE SEQUENCE statement.

Sequences are an alternative to AUTO_INCREMENT when you want more control over how sequence numbers are

generated.

Since a SEQUENCE caches values, it can sometimes be faster. Also, you can access the last value generated by all used

sequences; it's not subjected to limitations of LAST_INSERT_ID().

See also Sequence Storage Engine.

Sequence Overview

Object that generates a sequence of numeric values.

CREATE SEQUENCE

Creates a sequence that generates new values when called with NEXT VALUE FOR.

SHOW CREATE SEQUENCE

Shows the CREATE SEQUENCE statement that creates the sequence.

ALTER SEQUENCE

Change options for a SEQUENCE.

DROP SEQUENCE

Deleting a SEQUENCE.

SEQUENCE Functions

Functions that can be used on SEQUENCEs.

7

867/4161

https://mariadb.com/kb/en/parenthesis/

SHOW TABLES

List of non-temporary tables, views or sequences.

1.1.6.1 Sequence Overview

This page is about sequence objects. For details about the storage engine, see Sequence Storage Engine.

Introduction
A sequence is an object that generates a sequence of numeric values, as specified by the CREATE SEQUENCE statement.

CREATE SEQUENCE will create a sequence that generates new values when called with NEXT VALUE FOR

sequence_name. It's an alternative to AUTO INCREMENT when one wants to have more control of how the numbers are

generated. As the SEQUENCE caches values (up to the CACHE value in the CREATE SEQUENCE statement, by default

1000) it can in some cases be much faster than AUTO INCREMENT. Another benefit is that one can access the last value

generated by all used sequences, which solves one of the limitations with LAST_INSERT_ID().

Creating a Sequence
The CREATE SEQUENCE statement is used to create a sequence. Here is an example of a sequence starting at 100,

incrementing by 10 each time:

CREATE SEQUENCE s START WITH 100 INCREMENT BY 10;

The CREATE SEQUENCE statement, along with defaults, can be viewd with the SHOW CREATE SEQUENCE

STATEMENT, for example:

SHOW CREATE SEQUENCE s\G

*************************** 1. row ***************************

 Table: s

Create Table: CREATE SEQUENCE `s` start with 100 minvalue 1 maxvalue 9223372036854775806

 increment by 10 cache 1000 nocycle ENGINE=InnoDB

Using Sequence Objects
To get the next value from a sequence, use

NEXT VALUE FOR sequence_name

or

NEXTVAL(sequence_name)

or in Oracle mode (SQL_MODE=ORACLE)

sequence_name.nextval

For retrieving the last value used by the current connection from a sequence use:

PREVIOUS VALUE FOR sequence_name

or

LASTVAL(sequence_name)

or in Oracle mode (SQL_MODE=ORACLE)

sequence_name.currval

868/4161

For example:

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 100 |

+------------+

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 110 |

+------------+

SELECT LASTVAL(s);

+------------+

| LASTVAL(s) |

+------------+

| 110 |

+------------+

Using Sequences in DEFAULT

Sequences can be used in DEFAULT:

create sequence s1;

create table t1 (a int primary key default (next value for s1), b int);

insert into t1 (b) values (1),(2);

select * from t1;

+---+------+

| a | b |

+---+------+

| 1 | 1 |

| 2 | 2 |

+---+------+

Changing a Sequence
The ALTER SEQUENCE statement is used for changing sequences. For example, to restart the sequence at another value:

ALTER SEQUENCE s RESTART 50;

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 50 |

+------------+

The SETVAL function can also be used to set the next value to be returned for a SEQUENCE, for example:

SELECT SETVAL(s, 100);

+----------------+

| SETVAL(s, 100) |

+----------------+

| 100 |

+----------------+

SETVAL can only be used to increase the sequence value. Attempting to set a lower value will fail, returning NULL:

SELECT SETVAL(s, 50);

+---------------+

| SETVAL(s, 50) |

+---------------+

| NULL |

+---------------+

869/4161

Dropping a Sequence
The DROP SEQUENCE statement is used to drop a sequence, for example:

DROP SEQUENCE s;

Replication
If one wants to use Sequences in a master-master setup or with Galera one should use INCREMENT=0 . This will tell the

Sequence to use auto_increment_increment and auto_increment_offset to generate unique values for each server.

Standards Compliance
MariaDB supports both ANSI SQL and Oracle syntax for sequences.

However as SEQUENCE is implemented as a special kind of table, it uses the same namespace as tables. The benefits are

that sequences show up in SHOW TABLES, and one can also create a sequence with CREATE TABLE and drop it with

DROP TABLE. One can SELECT from it as from any other table. This ensures that all old tools that work with tables should

work with sequences.

Since sequence objects act as regular tables in many contexts, they will be affected by LOCK TABLES. This is not the case

in other DBMS, such as Oracle, where LOCK TABLE does not affect sequences.

Notes
One of the goals with the Sequence implementation is that all old tools, such as mariadb-dump (previously mysqldump),

should work unchanged, while still keeping the normal usage of sequence standard compatibly.

To make this possible, sequence is currently implemented as a table with a few exclusive properties.

The special properties for sequence tables are:

A sequence table has always one row.

When one creates a sequence, either with CREATE TABLE or CREATE SEQUENCE, one row will be inserted.

If one tries to insert into a sequence table, the single row will be updated. This allows mariadb-dump to work but also

gives the additional benefit that one can change all properties of a sequence with a single insert. New applications

should of course also use ALTER SEQUENCE .

UPDATE or DELETE can't be performed on Sequence objects.

Doing a select on the sequence shows the current state of the sequence, except the values that are reserved in the

cache. The next_value column shows the next value not reserved by the cache.

FLUSH TABLES will close the sequence and the next sequence number generated will be according to what's stored

in the Sequence object. In effect, this will discard the cached values.

A number of normal table operations work on Sequence tables. See next section.

Table Operations that Work with Sequences
SHOW CREATE TABLE sequence_name. This shows the table structure that is behind the SEQUENCE including the

field names that can be used with SELECT or even CREATE TABLE.

CREATE TABLE sequence-structure ... SEQUENCE=1

ALTER TABLE sequence RENAME TO sequence2

RENAME TABLE sequence_name TO new_sequence_name

DROP TABLE sequence_name. This is allowed mainly to get old tools like mariadb-dump to work with sequence

tables.

SHOW TABLES

Implementation
Internally, sequence tables are created as a normal table without rollback (the InnoDB, Aria and MySAM engines support

this), wrapped by a sequence engine object. This allowed us to create sequences with almost no performance impact for

normal tables. (The cost is one 'if' per insert if the binary log is enabled).

Underlying Table Structure
The following example shows the table structure of sequences and how it can be used as a table. (Output of results are

870/4161

slightly edited to make them easier to read)

create sequence t1;

show create sequence t1\G

*************************** 1. row ***************************

 CREATE SEQUENCE `t1` start with 1 minvalue 1 maxvalue 9223372036854775806

 increment by 1 cache 1000 nocycle ENGINE=InnoDB

show create table t1\G

*************************** 1. row ***************************

Create Table: CREATE TABLE `t1` (

 `next_not_cached_value` bigint(21) NOT NULL,

 `minimum_value` bigint(21) NOT NULL,

 `maximum_value` bigint(21) NOT NULL,

 `start_value` bigint(21) NOT NULL COMMENT 'start value when sequences is created or value if

RESTART is used',

 `increment` bigint(21) NOT NULL COMMENT 'increment value',

 `cache_size` bigint(21) unsigned NOT NULL,

 `cycle_option` tinyint(1) unsigned NOT NULL COMMENT '0 if no cycles are allowed, 1 if the

sequence should begin a new cycle when maximum_value is passed',

 `cycle_count` bigint(21) NOT NULL COMMENT 'How many cycles have been done'

) ENGINE=InnoDB SEQUENCE=1

select * from t1\G

next_not_cached_value: 1

 minimum_value: 1

 maximum_value: 9223372036854775806

 start_value: 1

 increment: 1

 cache_size: 1000

 cycle_option: 0

 cycle_count: 0

The cycle_count column is incremented every time the sequence wraps around.

Credits
Thanks to Jianwe Zhao from Aliyun for his work on SEQUENCE in AliSQL, which gave ideas and inspiration for this

work.

Thanks to Peter Gulutzan,who helped test and gave useful comments about the implementation.

1.1.6.2 CREATE SEQUENCE

Syntax

CREATE [OR REPLACE] [TEMPORARY] SEQUENCE [IF NOT EXISTS] sequence_name

[INCREMENT [BY | =] increment]

[MINVALUE [=] minvalue | NO MINVALUE | NOMINVALUE]

[MAXVALUE [=] maxvalue | NO MAXVALUE | NOMAXVALUE]

[START [WITH | =] start]

[CACHE [=] cache | NOCACHE] [CYCLE | NOCYCLE]

[table_options]

Contents
1. Syntax

2. Description

1. Arguments to Create

2. Constraints on Create Arguments

3. Atomic DDL

3. Examples

The options for CREATE SEQUENCE can be given in any order, optionally followed by table_options .

table_options can be any of the normal table options in CREATE TABLE but the most usable ones are ENGINE=... and

COMMENT= .
871/4161

NOMAXVALUE and NOMINVALUE are there to allow one to create SEQUENCEs using the Oracle syntax.

Description
CREATE SEQUENCE will create a sequence that generates new values when called with NEXT VALUE FOR

sequence_name . It's an alternative to AUTO INCREMENT when one wants to have more control of how the numbers are

generated. As the SEQUENCE caches values (up to CACHE) it can in some cases be much faster than AUTO

INCREMENT. Another benefit is that one can access the last value generated by all used sequences, which solves one of

the limitations with LAST_INSERT_ID().

CREATE SEQUENCE requires the CREATE privilege.

DROP SEQUENCE can be used to drop a sequence, and ALTER SEQUENCE to change it.

Arguments to Create

The following options may be used:

Option Default value Description

INCREMENT 1

Increment to use for values. May be negative. Setting an increment of 0 causes

the sequence to use the value of the auto_increment_increment system variable

at the time of creation, which is always a positive number. (see MDEV-16035).

MINVALUE

1 if INCREMENT > 0

and -

9223372036854775807

if INCREMENT < 0

Minimum value for the sequence

MAXVALUE

9223372036854775806

if INCREMENT > 0 and

-1 if INCREMENT < 0

Max value for sequence

START

MINVALUE if

INCREMENT > 0 and

MAX_VALUE if

INCREMENT< 0

First value that the sequence will generate

CACHE 1000

 Number of values that should be cached. 0 if no CACHE. The underlying table

will be updated first time a new sequence number is generated and each time the

cache runs out.

If CYCLE is used then the sequence should start again from MINVALUE after it has run out of values. Default value is

NOCYCLE .

Constraints on Create Arguments

To be able to create a legal sequence, the following must hold:

MAXVALUE >= start

MAXVALUE > MINVALUE

START >= MINVALUE

MAXVALUE <= 9223372036854775806 (LONGLONG_MAX-1)

MINVALUE >= -9223372036854775807 (LONGLONG_MIN+1)

Note that sequences can't generate the maximum/minimum 64 bit number because of the constraint of MINVALUE and

MAXVALUE .

Atomic DDL

MariaDB 10.6.1 supports Atomic DDL and CREATE SEQUENCE is atomic.

Examples

MariaDB starting with 10.6.1

872/4161

https://jira.mariadb.org/browse/MDEV-16035

CREATE SEQUENCE s START WITH 100 INCREMENT BY 10;

CREATE SEQUENCE s2 START WITH -100 INCREMENT BY -10;

The following statement fails, as the increment conflicts with the defaults

CREATE SEQUENCE s3 START WITH -100 INCREMENT BY 10;

ERROR 4082 (HY000): Sequence 'test.s3' values are conflicting

The sequence can be created by specifying workable minimum and maximum values:

CREATE SEQUENCE s3 START WITH -100 INCREMENT BY 10 MINVALUE=-100 MAXVALUE=1000;

1.1.1.2.8.18 SHOW CREATE SEQUENCE

1.1.6.4 ALTER SEQUENCE

Syntax

ALTER SEQUENCE [IF EXISTS] sequence_name

[INCREMENT [BY | =] increment]

[MINVALUE [=] minvalue | NO MINVALUE | NOMINVALUE]

[MAXVALUE [=] maxvalue | NO MAXVALUE | NOMAXVALUE]

[START [WITH | =] start] [CACHE [=] cache] [[NO] CYCLE]

[RESTART [[WITH | =] restart]

Contents
1. Syntax

2. Description

1. Arguments to ALTER SEQUENCE

2. INSERT

3. Notes

ALTER SEQUENCE allows one to change any values for a SEQUENCE created with CREATE SEQUENCE.

The options for ALTER SEQUENCE can be given in any order.

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not specifically set in the

ALTER SEQUENCE command retain their prior settings.

ALTER SEQUENCE requires the ALTER privilege.

Arguments to ALTER SEQUENCE

The following options may be used:

Option Default value Description

INCREMENT 1 Increment to use for values. May be negative.

MINVALUE

1 if INCREMENT > 0 and -

9223372036854775807 if

INCREMENT < 0

Minimum value for the sequence.

MAXVALUE

9223372036854775806 if

INCREMENT > 0 and -1 if

INCREMENT < 0
Max value for sequence.

873/4161

START

MINVALUE if INCREMENT >

0 and MAX_VALUE if

INCREMENT < 0

First value that the sequence will generate.

CACHE 1000

Number of values that should be cached. 0 if no CACHE . The underlying

table will be updated first time a new sequence number is generated and

each time the cache runs out.

CYCLE 0 (= NO CYCLE)
1 if the sequence should start again from MINVALUE # after it has run out of

values.

RESTART
START if restart value

not is given
 If RESTART option is used, NEXT VALUE will return the restart value.

The optional clause RESTART [WITH restart] sets the next value for the sequence. This is equivalent to calling the

SETVAL() function with the is_used argument as 0. The specified value will be returned by the next call of nextval. Using

RESTART with no restart value is equivalent to supplying the start value that was recorded by CREATE SEQUENCE or last

set by ALTER SEQUENCE START WITH .

ALTER SEQUENCE will not allow you to change the sequence so that it's inconsistent. For example:

CREATE SEQUENCE s1;

ALTER SEQUENCE s1 MINVALUE 10;

ERROR 4061 (HY000): Sequence 'test.t1' values are conflicting

ALTER SEQUENCE s1 MINVALUE 10 RESTART 10;

ERROR 4061 (HY000): Sequence 'test.t1' values are conflicting

ALTER SEQUENCE s1 MINVALUE 10 START 10 RESTART 10;

INSERT

To allow SEQUENCE objects to be backed up by old tools, like mariadb-dump, one can use SELECT to read the current

state of a SEQUENCE object and use an INSERT to update the SEQUENCE object. INSERT is only allowed if all fields are

specified:

CREATE SEQUENCE s1;

INSERT INTO s1 VALUES(1000,10,2000,1005,1,1000,0,0);

SELECT * FROM s1;

+------------+-----------+-----------+-------+-----------+-------+-------+-------+

| next_value | min_value | max_value | start | increment | cache | cycle | round |

+------------+-----------+-----------+-------+-----------+-------+-------+-------+

| 1000 | 10 | 2000 | 1005 | 1 | 1000 | 0 | 0 |

+------------+-----------+-----------+-------+-----------+-------+-------+-------+

SHOW CREATE SEQUENCE s1;

+-------+--

--------------------------+

| Table | Create Table

|

+-------+--

--------------------------+

| s1 | CREATE SEQUENCE `s1` start with 1005 minvalue 10 maxvalue 2000 increment by 1 cache

1000 nocycle ENGINE=Aria |

+-------+--

--------------------------+

Notes

ALTER SEQUENCE will instantly affect all future SEQUENCE operations. This is in contrast to some other databases where

the changes requested by ALTER SEQUENCE will not be seen until the sequence cache has run out.

ALTER SEQUENCE will take a full table lock of the sequence object during its (brief) operation. This ensures that ALTER

SEQUENCE is replicated correctly. If you only want to set the next sequence value to a higher value than current, then you

should use SETVAL() instead, as this is not blocking.

If you want to change storage engine, sequence comment or rename the sequence, you can use ALTER TABLE for this.

874/4161

1.1.6.5 DROP SEQUENCE

Syntax

DROP [TEMPORARY] SEQUENCE [IF EXISTS] [/*COMMENT TO SAVE*/]

 sequence_name [, sequence_name] ...

Contents
1. Syntax

2. Description

3. Notes

Description
DROP SEQUENCE removes one or more sequences created with CREATE SEQUENCE. You must have the DROP privilege

for each sequence. MariaDB returns an error indicating by name which non-existing tables it was unable to drop, but it also

drops all of the tables in the list that do exist.

Important: When a table is dropped, user privileges on the table are not automatically dropped. See GRANT.

If another connection is using the sequence, a metadata lock is active, and this statement will wait until the lock is released.

This is also true for non-transactional tables.

For each referenced sequence, DROP SEQUENCE drops a temporary sequence with that name, if it exists. If it does not

exist, and the TEMPORARY keyword is not used, it drops a non-temporary sequence with the same name, if it exists. The

TEMPORARY keyword ensures that a non-temporary sequence will not accidentally be dropped.

Use IF EXISTS to prevent an error from occurring for sequences that do not exist. A NOTE is generated for each non-

existent sequence when using IF EXISTS . See SHOW WARNINGS.

DROP SEQUENCE requires the DROP privilege.

Notes
DROP SEQUENCE only removes sequences, not tables. However, DROP TABLE can remove both sequences and tables.

1.1.6.6 SEQUENCE Functions
Functions that can be used on SEQUENCEs

LASTVAL

Synonym for PREVIOUS VALUE for sequence_name.

NEXT VALUE for sequence_name

Generate next value for a SEQUENCE. Same as NEXTVAL().

NEXTVAL

Synonym for NEXT VALUE for sequence_name.

PREVIOUS VALUE FOR sequence_name

Get last value generated from a SEQUENCE. Same as LASTVAL().

SETVAL

Set the next value to be returned from a SEQUENCE.

1.1.6.6.1 LASTVAL
LASTVAL is a synonym for PREVIOUS VALUE for sequence_name.

1.1.6.6.2 NEXT VALUE for sequence_name
875/4161

Syntax

NEXT VALUE FOR sequence

or

NEXTVAL(sequence_name)

or in Oracle mode (SQL_MODE=ORACLE)

sequence_name.nextval

Contents
1. Syntax

2. Description

NEXT VALUE FOR is ANSI SQL syntax while NEXTVAL() is PostgreSQL syntax.

Description
Generate next value for a SEQUENCE .

You can greatly speed up NEXT VALUE by creating the sequence with the CACHE option. If not, every NEXT VALUE

usage will cause changes in the stored SEQUENCE table.

When using NEXT VALUE the value will be reserved at once and will not be reused, except if the SEQUENCE was

created with CYCLE . This means that when you are using SEQUENCE s you have to expect gaps in the generated

sequence numbers.

If one updates the SEQUENCE with SETVAL() or ALTER SEQUENCE ... RESTART, NEXT VALUE FOR will notice

this and start from the next requested value.

FLUSH TABLES will close the sequence and the next sequence number generated will be according to what's stored

in the SEQUENCE object. In effect, this will discard the cached values.

A server restart (or closing the current connection) also causes a drop of all cached values. The cached sequence

numbers are reserved only for the current connection.

NEXT VALUE requires the INSERT privilege.

You can also use NEXT VALUE FOR sequence for column DEFAULT .

1.1.6.6.3 NEXTVAL
NEXTVAL is a synonym for NEXT VALUE for sequence_name.

1.1.6.6.4 PREVIOUS VALUE FOR
sequence_name

Syntax

PREVIOUS VALUE FOR sequence_name

or

LASTVAL(sequence_name)

or in Oracle mode (SQL_MODE=ORACLE)

sequence_name.currval

876/4161

Contents
1. Syntax

2. Description

3. Example

PREVIOUS VALUE FOR is IBM DB2 syntax while LASTVAL() is PostgreSQL syntax.

Description
Get last value in the current connection generated from a sequence.

If the sequence has not yet been used by the connection, PREVIOUS VALUE FOR returns NULL (the same thing

applies with a new connection which doesn't see a last value for an existing sequence).

If a SEQUENCE has been dropped and re-created then it's treated as a new SEQUENCE and PREVIOUS VALUE FOR

will return NULL .

FLUSH TABLES has no effect on PREVIOUS VALUE FOR .

Previous values for all used sequences are stored per connection until connection ends.

PREVIOUS VALUE FOR requires the SELECT privilege.

Example

CREATE SEQUENCE s START WITH 100 INCREMENT BY 10;

SELECT PREVIOUS VALUE FOR s;

+----------------------+

| PREVIOUS VALUE FOR s |

+----------------------+

| NULL |

+----------------------+

The function works for sequences only, if the table is used an error is generated

SELECT PREVIOUS VALUE FOR t;

ERROR 4089 (42S02): 'test.t' is not a SEQUENCE

Call the NEXT VALUE FOR s:

SELECT NEXT VALUE FOR s;

+------------------+

| NEXT VALUE FOR s |

+------------------+

| 100 |

+------------------+

SELECT PREVIOUS VALUE FOR s;

+----------------------+

| PREVIOUS VALUE FOR s |

+----------------------+

| 100 |

+----------------------+

Now try to start the new connection and check that the last value is still NULL, before updating the value in the new

connection after the output of the new connection gets current value (110 in the example below). Note that first connection

cannot see this change and the result of last value still remains the same (100 in the example above).

877/4161

$.mysql -uroot test -e"SELECT PREVIOUS VALUE FOR s; SELECT NEXT VALUE FOR s; SELECT PREVIOUS

VALUE FOR s;"

+----------------------+

| PREVIOUS VALUE FOR s |

+----------------------+

| NULL |

+----------------------+

+------------------+

| NEXT VALUE FOR s |

+------------------+

| 110 |

+------------------+

+----------------------+

| PREVIOUS VALUE FOR s |

+----------------------+

| 110 |

+----------------------+

1.1.6.6.5 SETVAL

Syntax

SETVAL(sequence_name, next_value, [is_used, [round]])

Contents
1. Syntax

2. Description

3. Examples

Description
Set the next value to be returned for a SEQUENCE .

This function is compatible with PostgreSQL syntax, extended with the round argument.

If the is_used argument is not given or is 1 or true , then the next used value will one after the given value. If is_used

is 0 or false then the next generated value will be the given value.

If round is used then it will set the round value (or the internal cycle count, starting at zero) for the sequence. If round is

not used, it's assumed to be 0.

next_value must be an integer literal.

For SEQUENCE tables defined with CYCLE (see CREATE SEQUENCE) one should use both next_value and round to

define the next value. In this case the current sequence value is defined to be round , next_value .

The result returned by SETVAL() is next_value or NULL if the given next_value and round is smaller than the

current value.

SETVAL() will not set the SEQUENCE value to a something that is less than its current value. This is needed to ensure that

SETVAL() is replication safe. If you want to set the SEQUENCE to a smaller number use ALTER SEQUENCE.

If CYCLE is used, first round and then next_value are compared to see if the value is bigger than the current value.

Internally, in the MariaDB server, SETVAL() is used to inform slaves that a SEQUENCE has changed value. The slave may

get SETVAL() statements out of order, but this is ok as only the biggest one will have an effect.

SETVAL requires the INSERT privilege.

Examples

SELECT setval(foo, 42); -- Next nextval will return 43

SELECT setval(foo, 42, true); -- Same as above

SELECT setval(foo, 42, false); -- Next nextval will return 42

SETVAL setting higher and lower values on a sequence with an increment of 10:
878/4161

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 50 |

+------------+

SELECT SETVAL(s, 100);

+----------------+

| SETVAL(s, 100) |

+----------------+

| 100 |

+----------------+

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 110 |

+------------+

SELECT SETVAL(s, 50);

+---------------+

| SETVAL(s, 50) |

+---------------+

| NULL |

+---------------+

SELECT NEXTVAL(s);

+------------+

| NEXTVAL(s) |

+------------+

| 120 |

+------------+

Example demonstrating round :

CREATE OR REPLACE SEQUENCE s1

 START WITH 1

 MINVALUE 1

 MAXVALUE 99

 INCREMENT BY 1

 CACHE 20

 CYCLE;

SELECT SETVAL(s1, 99, 1, 0);

+----------------------+

| SETVAL(s1, 99, 1, 0) |

+----------------------+

| 99 |

+----------------------+

SELECT NEXTVAL(s1);

+-------------+

| NEXTVAL(s1) |

+-------------+

| 1 |

+-------------+

The following statement returns NULL, as the given next_value and round is smaller than the current value.

879/4161

SELECT SETVAL(s1, 99, 1, 0);

+----------------------+

| SETVAL(s1, 99, 1, 0) |

+----------------------+

| NULL |

+----------------------+

SELECT NEXTVAL(s1);

+-------------+

| NEXTVAL(s1) |

+-------------+

| 2 |

+-------------+

Increasing the round from zero to 1 will allow next_value to be returned.

SELECT SETVAL(s1, 99, 1, 1);

+----------------------+

| SETVAL(s1, 99, 1, 1) |

+----------------------+

| 99 |

+----------------------+

SELECT NEXTVAL(s1);

+-------------+

| NEXTVAL(s1) |

+-------------+

| 1 |

+-------------+

1.1.1.2.8.53 SHOW TABLES

1.1.7 Temporal Tables
MariaDB supports temporal data tables in the form of system-versioned tables (allowing you to query and operate on historic

data), application-time periods (allow you to query and operate on a temporal range of data), and bitemporal tables (which

combine both system-versioning and application-time periods).

System-Versioned Tables

System-versioned tables record the history of all changes to table data.

Application-Time Periods

Application-time period tables, defined by a range between two temporal columns.

Bitemporal Tables

Bitemporal tables use versioning both at the system and application-time period levels.

24

2

1.1.7.1 System-Versioned Tables

880/4161

Contents
1. System-Versioned Tables

1. Creating a System-Versioned Table

2. Adding or Removing System Versioning To/From a Table

3. Inserting Data

4. Querying Historical Data

1. SELECT

2. Views and Subqueries

3. Use in Replication and Binary Logs

5. Transaction-Precise History in InnoDB

6. Storing the History Separately

1. Default Partitions

2. Automatically Creating Partitions

7. Removing Old History

8. Excluding Columns From Versioning

2. System Variables

1. system_versioning_alter_history

2. system_versioning_asof

3. system_versioning_innodb_algorithm_simple

4. system_versioning_insert_history

3. Limitations

MariaDB supports temporal data tables in the form of system-versioning tables (allowing you to query and operate on

historic data, discussed below), application-time periods (allow you to query and operate on a temporal range of data), and

bitemporal tables (which combine both system-versioning and application-time periods).

System-Versioned Tables
System-versioned tables store the history of all changes, not only data which is currently valid. This allows data analysis for

any point in time, auditing of changes and comparison of data from different points in time. Typical uses cases are:

Forensic analysis & legal requirements to store data for N years.

Data analytics (retrospective, trends etc.), e.g. to get your staff information as of one year ago.

Point-in-time recovery - recover a table state as of particular point in time.

System-versioned tables were first introduced in the SQL:2011 standard.

Creating a System-Versioned Table

The CREATE TABLE syntax has been extended to permit creating a system-versioned table. To be system-versioned,

according to SQL:2011, a table must have two generated columns, a period, and a special table option clause:

CREATE TABLE t(

 x INT,

 start_timestamp TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

 end_timestamp TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

 PERIOD FOR SYSTEM_TIME(start_timestamp, end_timestamp)

) WITH SYSTEM VERSIONING;

In MariaDB one can also use a simplified syntax:

CREATE TABLE t (

 x INT

) WITH SYSTEM VERSIONING;

In the latter case no extra columns will be created and they won't clutter the output of, say, SELECT * FROM t . The

versioning information will still be stored, and it can be accessed via the pseudo-columns ROW_START and ROW_END :

SELECT x, ROW_START, ROW_END FROM t;

Adding or Removing System Versioning To/From a Table

An existing table can be altered to enable system versioning for it.

881/4161

CREATE TABLE t(

 x INT

);

ALTER TABLE t ADD SYSTEM VERSIONING;

SHOW CREATE TABLE t\G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE `t` (

 `x` int(11) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 WITH SYSTEM VERSIONING

Similarly, system versioning can be removed from a table:

ALTER TABLE t DROP SYSTEM VERSIONING;

SHOW CREATE TABLE t\G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE `t` (

 `x` int(11) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1

One can also add system versioning with all columns created explicitly:

ALTER TABLE t ADD COLUMN ts TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

 ADD COLUMN te TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

 ADD PERIOD FOR SYSTEM_TIME(ts, te),

 ADD SYSTEM VERSIONING;

SHOW CREATE TABLE t\G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE `t` (

 `x` int(11) DEFAULT NULL,

 `ts` timestamp(6) GENERATED ALWAYS AS ROW START,

 `te` timestamp(6) GENERATED ALWAYS AS ROW END,

 PERIOD FOR SYSTEM_TIME (`ts`, `te`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 WITH SYSTEM VERSIONING

Inserting Data

When data is inserted into a system-versioned table, it is given a row_start value of the current timestamp, and a row_end

value of FROM_UNIXTIME(2147483647.999999). The current timestamp can be adjusted by setting the timestamp system

variable, for example:

882/4161

SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2022-10-24 23:09:38 |

+---------------------+

INSERT INTO t VALUES(1);

SET @@timestamp = UNIX_TIMESTAMP('2033-10-24');

INSERT INTO t VALUES(2);

SET @@timestamp = default;

INSERT INTO t VALUES(3);

SELECT a,row_start,row_end FROM t;

+------+----------------------------+----------------------------+

| a | row_start | row_end |

+------+----------------------------+----------------------------+

| 1 | 2022-10-24 23:09:38.951347 | 2038-01-19 05:14:07.999999 |

| 2 | 2033-10-24 00:00:00.000000 | 2038-01-19 05:14:07.999999 |

| 3 | 2022-10-24 23:09:38.961857 | 2038-01-19 05:14:07.999999 |

+------+----------------------------+----------------------------+

Querying Historical Data

SELECT

To query the historical data one uses the clause FOR SYSTEM_TIME directly after the table name (before the table alias, if

any). SQL:2011 provides three syntactic extensions:

AS OF is used to see the table as it was at a specific point in time in the past:

SELECT * FROM t FOR SYSTEM_TIME AS OF TIMESTAMP'2016-10-09 08:07:06';

BETWEEN start AND end will show all rows that were visible at any point between two specified points in time. It

works inclusively, a row visible exactly at start or exactly at end will be shown too.

SELECT * FROM t FOR SYSTEM_TIME BETWEEN (NOW() - INTERVAL 1 YEAR) AND NOW();

FROM start TO end will also show all rows that were visible at any point between two specified points in time,

including start, but excluding end.

SELECT * FROM t FOR SYSTEM_TIME FROM '2016-01-01 00:00:00' TO '2017-01-01 00:00:00';

Additionally MariaDB implements a non-standard extension:

ALL will show all rows, historical and current.

SELECT * FROM t FOR SYSTEM_TIME ALL;

If the FOR SYSTEM_TIME clause is not used, the table will show the current data. This is usually the same as if one had

specified FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP , unless one has adjusted the row_start value (until MariaDB

10.11, only possible by setting the secure_timestamp variable). For example:

883/4161

CREATE OR REPLACE TABLE t (a int) WITH SYSTEM VERSIONING;

SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2022-10-24 23:43:37 |

+---------------------+

INSERT INTO t VALUES (1);

SET @@timestamp = UNIX_TIMESTAMP('2033-03-03');

INSERT INTO t VALUES (2);

DELETE FROM t;

SET @@timestamp = default;

SELECT a, row_start, row_end FROM t FOR SYSTEM_TIME ALL;

+------+----------------------------+----------------------------+

| a | row_start | row_end |

+------+----------------------------+----------------------------+

| 1 | 2022-10-24 23:43:37.192725 | 2033-03-03 00:00:00.000000 |

| 2 | 2033-03-03 00:00:00.000000 | 2033-03-03 00:00:00.000000 |

+------+----------------------------+----------------------------+

2 rows in set (0.000 sec)

SELECT a, row_start, row_end FROM t FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP;

+------+----------------------------+----------------------------+

| a | row_start | row_end |

+------+----------------------------+----------------------------+

| 1 | 2022-10-24 23:43:37.192725 | 2033-03-03 00:00:00.000000 |

+------+----------------------------+----------------------------+

1 row in set (0.000 sec)

SELECT a, row_start, row_end FROM t;

Empty set (0.001 sec)

Views and Subqueries

When a system-versioned tables is used in a view or in a subquery in the from clause, FOR SYSTEM_TIME can be used

directly in the view or subquery body, or (non-standard) applied to the whole view when it's being used in a SELECT :

CREATE VIEW v1 AS SELECT * FROM t FOR SYSTEM_TIME AS OF TIMESTAMP'2016-10-09 08:07:06';

Or

CREATE VIEW v1 AS SELECT * FROM t;

SELECT * FROM v1 FOR SYSTEM_TIME AS OF TIMESTAMP'2016-10-09 08:07:06';

Use in Replication and Binary Logs

Tables that use system-versioning implicitly add the row_end column to the Primary Key. While this is generally not an

issue for most use cases, it can lead to problems when re-applying write statements from the binary log or in replication

environments, where a primary retries an SQL statement on the replica.

Specifically, these writes include a value on the row_end column containing the timestamp from when the write was initially

made. The re-occurrence of the Primary Key with the old system-versioning columns raises an error due to the duplication.

To mitigate this with MariaDB Replication, set the secure_timestamp system variable to YES on the replica. When set, the

replica uses its own system clock when applying to the row log, meaning that the primary can retry as many times as

needed without causing a conflict. The retries generate new historical rows with new values for the row_start and

row_end columns.

Transaction-Precise History in InnoDB
884/4161

A point in time when a row was inserted or deleted does not necessarily mean that a change became visible at the same

moment. With transactional tables, a row might have been inserted in a long transaction, and became visible hours after it

was inserted.

For some applications 4 for example, when doing data analytics on one-year-old data 4 this distinction does not matter

much. For others 4 forensic analysis 4 it might be crucial.

MariaDB supports transaction-precise history (only for the InnoDB storage engine) that allows seeing the data exactly as it

would've been seen by a new connection doing a SELECT at the specified point in time 4 rows inserted before that point,

but committed after will not be shown.

To use transaction-precise history, InnoDB needs to remember not timestamps, but transaction identifier per row. This is

done by creating generated columns as BIGINT UNSIGNED , not TIMESTAMP(6) :

CREATE TABLE t(

 x INT,

 start_trxid BIGINT UNSIGNED GENERATED ALWAYS AS ROW START,

 end_trxid BIGINT UNSIGNED GENERATED ALWAYS AS ROW END,

 PERIOD FOR SYSTEM_TIME(start_trxid, end_trxid)

) WITH SYSTEM VERSIONING;

These columns must be specified explicitly, but they can be made INVISIBLE to avoid cluttering SELECT * output.

When one uses transaction-precise history, one can optionally use transaction identifiers in the FOR SYSTEM_TIME clause:

SELECT * FROM t FOR SYSTEM_TIME AS OF TRANSACTION 12345;

This will show the data, exactly as it was seen by the transaction with the identifier 12345.

Storing the History Separately

When the history is stored together with the current data, it increases the size of the table, so current data queries 4 table

scans and index searches 4 will take more time, because they will need to skip over historical data. If most queries on that

table use only current data, it might make sense to store the history separately, to reduce the overhead from versioning.

This is done by partitioning the table by SYSTEM_TIME . Because of the partition pruning optimization, all current data

queries will only access one partition, the one that stores current data.

This example shows how to create such a partitioned table:

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME (

 PARTITION p_hist HISTORY,

 PARTITION p_cur CURRENT

);

In this example all history will be stored in the partition p_hist while all current data will be in the partition p_cur . The

table must have exactly one current partition and at least one historical partition.

Partitioning by SYSTEM_TIME also supports automatic partition rotation. One can rotate historical partitions by time or by

size. This example shows how to rotate partitions by size:

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME LIMIT 100000 (

 PARTITION p0 HISTORY,

 PARTITION p1 HISTORY,

 PARTITION pcur CURRENT

);

MariaDB will start writing history rows into partition p0 , and when it reaches a size of 100000 rows, MariaDB will switch to

partition p1 . There are only two historical partitions, so when p1 overflows, MariaDB will issue a warning, but will continue

writing into it.

Similarly, one can rotate partitions by time:

885/4161

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME INTERVAL 1 WEEK (

 PARTITION p0 HISTORY,

 PARTITION p1 HISTORY,

 PARTITION p2 HISTORY,

 PARTITION pcur CURRENT

);

This means that the history for the first week after the table was created will be stored in p0 . The history for the second

week 4 in p1 , and all later history will go into p2 . One can see the exact rotation time for each partition in the

INFORMATION_SCHEMA.PARTITIONS table.

It is possible to combine partitioning by SYSTEM_TIME and subpartitions:

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME

 SUBPARTITION BY KEY (x)

 SUBPARTITIONS 4 (

 PARTITION ph HISTORY,

 PARTITION pc CURRENT

);

Default Partitions

Since partitioning by current and historical data is such a typical usecase, from MariaDB 10.5, it is possible to use a

simplified statement to do so. For example, instead of

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME (

 PARTITION p0 HISTORY,

 PARTITION pn CURRENT

);

you can use

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME;

You can also specify the number of partitions, which is useful if you want to rotate history by time, for example:

CREATE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME

 INTERVAL 1 MONTH

 PARTITIONS 12;

Specifying the number of partitions without specifying a rotation condition will result in a warning:

CREATE OR REPLACE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME PARTITIONS 12;

Query OK, 0 rows affected, 1 warning (0.518 sec)

Warning (Code 4115): Maybe missing parameters: no rotation condition for multiple HISTORY

partitions.

while specifying only 1 partition will result in an error:

CREATE OR REPLACE TABLE t (x INT) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME PARTITIONS 1;

ERROR 4128 (HY000): Wrong partitions for `t`: must have at least one HISTORY and exactly

one last CURRENT

Automatically Creating Partitions

From MariaDB 10.9.1, the AUTO keyword can be used to automatically create history partitions.

MariaDB starting with 10.5.0

MariaDB starting with 10.9.1

886/4161

For example

CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;

CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME INTERVAL 1 MONTH

 STARTS '2021-01-01 00:00:00' AUTO PARTITIONS 12;

CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME LIMIT 1000 AUTO;

Or with explicit partitions:

CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO

 (PARTITION p0 HISTORY, PARTITION pn CURRENT);

To disable or enable auto-creation one can use ALTER TABLE by adding or removing AUTO from the partitioning

specification:

CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING

 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;

Disables auto-creation:

ALTER TABLE t1 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR;

Enables auto-creation:

ALTER TABLE t1 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;

If the rest of the partitioning specification is identical to CREATE TABLE, no repartitioning will be done (for details see

MDEV-27328).

Removing Old History

Because it stores all the history, a system-versioned table might grow very large over time. There are many options to trim

down the space and remove the old history.

One can completely drop the versioning from the table and add it back again, this will delete all the history:

ALTER TABLE t DROP SYSTEM VERSIONING;

ALTER TABLE t ADD SYSTEM VERSIONING;

It might be a rather time-consuming operation, though, as the table will need to be rebuilt, possibly twice (depending on the

storage engine).

Another option would be to use partitioning and drop some of historical partitions:

ALTER TABLE t DROP PARTITION p0;

Note, that one cannot drop a current partition or the only historical partition.

And the third option; one can use a variant of the DELETE statement to prune the history:

DELETE HISTORY FROM t;

or only old history up to a specific point in time:

DELETE HISTORY FROM t BEFORE SYSTEM_TIME '2016-10-09 08:07:06';

or to a specific transaction (with BEFORE SYSTEM_TIME TRANSACTION xxx).

To protect the integrity of the history, this statement requires a special DELETE HISTORY privilege.

Currently, using the DELETE HISTORY statement with a BEFORE SYSTEM_TIME greater than the ROW_END of the

active records (as a TIMESTAMP, this has a maximum value of '2038-01-19 03:14:07' UTC) will result in the historical

records being dropped, and the active records being deleted and moved to history. See MDEV-25468 .

887/4161

https://jira.mariadb.org/browse/MDEV-27328
https://mariadb.com/kb/en/coordinated-universal-time/
https://jira.mariadb.org/browse/MDEV-25468

Prior to MariaDB 10.4.5, the TRUNCATE TABLE statement drops all historical records from a system-versioned-table.

From MariaDB 10.4.5, historic data is protected from TRUNCATE statements, as per the SQL standard, and an Error 4137

is instead raised:

TRUNCATE t;

ERROR 4137 (HY000): System-versioned tables do not support TRUNCATE TABLE

Excluding Columns From Versioning

Another MariaDB extension allows one to version only a subset of columns in a table. This is useful, for example, if you

have a table with user information that should be versioned, but one column is, let's say, a login counter that is incremented

often and is not interesting to version. Such a column can be excluded from versioning by declaring it WITHOUT

VERSIONING

CREATE TABLE t (

 x INT,

 y INT WITHOUT SYSTEM VERSIONING

) WITH SYSTEM VERSIONING;

A column can also be declared WITH VERSIONING , that will automatically make the table versioned. The statement below

is equivalent to the one above:

CREATE TABLE t (

 x INT WITH SYSTEM VERSIONING,

 y INT

);

System Variables
There are a number of system variables related to system-versioned tables:

system_versioning_alter_history

Description: SQL:2011 does not allow ALTER TABLE on system-versioned tables. When this variable is set to

ERROR , an attempt to alter a system-versioned table will result in an error. When this variable is set to KEEP , ALTER

TABLE will be allowed, but the history will become incorrect 4 querying historical data will show the new table

structure. This mode is still useful, for example, when adding new columns to a table. Note that if historical data

contains or would contain nulls, attempting to ALTER these columns to be NOT NULL will return an error (or warning

if strict_mode is not set).

Commandline: --system-versioning-alter-history=value

Scope: Global, Session

Dynamic: Yes

Type: Enum

Default Value: ERROR

Valid Values: ERROR , KEEP

system_versioning_asof

Description: If set to a specific timestamp value, an implicit FOR SYSTEM_TIME AS OF clause will be applied to all

queries. This is useful if one wants to do many queries for history at the specific point in time. Set it to 'DEFAULT' to

restore the default behavior. Has no effect on DML, so queries such as INSERT .. SELECT and REPLACE .. SELECT

need to state AS OF explicitly.

Note: You need to use quotes around the name 'DEFAULT' when setting the session value, unquoted literal DEFAULT will

restore the current global value instead.

Commandline: None

Scope: Global, Session

Dynamic: Yes

Type: Varchar

Default Value: DEFAULT

888/4161

system_versioning_innodb_algorithm_simple

Description: Never fully implemented and removed in the following release.

Commandline: --system-versioning-innodb-algorithm-simple[={0|1}]

Scope: Global, Session

Dynamic: Yes

Type: Boolean

Default Value: ON

Introduced: MariaDB 10.3.4

Removed: MariaDB 10.3.5

system_versioning_insert_history

Description: Allows direct inserts into ROW_START and ROW_END columns if secure_timestamp allows changing

timestamp.

Commandline: --system-versioning-insert-history[={0|1}]

Scope: Global, Session

Dynamic: Yes

Type: Boolean

Default Value: OFF

Introduced: MariaDB 10.11.0

Limitations
Versioning clauses can not be applied to generated (virtual and persistent) columns.

Before MariaDB 10.11, mariadb-dump did not read historical rows from versioned tables, and so historical data would

not be backed up. Also, a restore of the timestamps would not be possible as they cannot be defined by an insert/a

user. From MariaDB 10.11, use the -H or --dump-history options to include the history.

1.1.7.2 Application-Time Periods
Contents
1. Creating Tables with Time Periods

2. Adding and Removing Time Periods

3. Deletion by Portion

4. Updating by Portion

5. WITHOUT OVERLAPS

6. Information Schema

7. Further Examples

Support for application-time period-versioning was added in MariaDB 10.4.3.

Extending system-versioned tables, MariaDB 10.4 supports application-time period tables. Time periods are defined by a

range between two temporal columns. The columns must be of the same temporal data type, i.e. DATE, TIMESTAMP or

DATETIME (TIME and YEAR are not supported), and of the same width.

Using time periods implicitly defines the two columns as NOT NULL . It also adds a constraint to check whether the first

value is less than the second value. The constraint is invisible to SHOW CREATE TABLE statements. The name of this

constraint is prefixed by the time period name, to avoid conflict with other constraints.

Creating Tables with Time Periods

To create a table with a time period, use a CREATE TABLE statement with the PERIOD table option.

CREATE TABLE t1(

 name VARCHAR(50),

 date_1 DATE,

 date_2 DATE,

 PERIOD FOR date_period(date_1, date_2));

MariaDB starting with 10.4.3

889/4161

https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

This creates a table with a time_period period and populates the table with some basic temporal values.

Examples are available in the MariaDB Server source code, at mysql-test/suite/period/r/create.result .

Adding and Removing Time Periods

The ALTER TABLE statement now supports syntax for adding and removing time periods from a table. To add a period, use

the ADD PERIOD clause.

For example:

CREATE OR REPLACE TABLE rooms (

 room_number INT,

 guest_name VARCHAR(255),

 checkin DATE,

 checkout DATE

);

ALTER TABLE rooms ADD PERIOD FOR p(checkin,checkout);

To remove a period, use the DROP PERIOD clause:

ALTER TABLE rooms DROP PERIOD FOR p;

Both ADD PERIOD and DROP PERIOD clauses include an option to handle whether the period already exists:

ALTER TABLE rooms ADD PERIOD IF NOT EXISTS FOR p(checkin,checkout);

ALTER TABLE rooms DROP PERIOD IF EXISTS FOR p;

Deletion by Portion

You can also remove rows that fall within certain time periods.

When MariaDB executes a DELETE FOR PORTION statement, it removes the row:

When the row period falls completely within the delete period, it removes the row.

When the row period overlaps the delete period, it shrinks the row, removing the overlap from the first or second row

period value.

When the delete period falls completely within the row period, it splits the row into two rows. The first row runs from

the starting row period to the starting delete period. The second runs from the ending delete period to the ending row

period.

To test this, first populate the table with some data to operate on:

CREATE TABLE t1(

 name VARCHAR(50),

 date_1 DATE,

 date_2 DATE,

 PERIOD FOR date_period(date_1, date_2));

INSERT INTO t1 (name, date_1, date_2) VALUES

 ('a', '1999-01-01', '2000-01-01'),

 ('b', '1999-01-01', '2018-12-12'),

 ('c', '1999-01-01', '2017-01-01'),

 ('d', '2017-01-01', '2019-01-01');

SELECT * FROM t1;

+------+------------+------------+

| name | date_1 | date_2 |

+------+------------+------------+

| a | 1999-01-01 | 2000-01-01 |

| b | 1999-01-01 | 2018-12-12 |

| c | 1999-01-01 | 2017-01-01 |

| d | 2017-01-01 | 2019-01-01 |

+------+------------+------------+

Then, run the DELETE FOR PORTION statement:

890/4161

DELETE FROM t1

FOR PORTION OF date_period

 FROM '2001-01-01' TO '2018-01-01';

Query OK, 3 rows affected (0.028 sec)

SELECT * FROM t1 ORDER BY name;

+------+------------+------------+

| name | date_1 | date_2 |

+------+------------+------------+

| a | 1999-01-01 | 2000-01-01 |

| b | 1999-01-01 | 2001-01-01 |

| b | 2018-01-01 | 2018-12-12 |

| c | 1999-01-01 | 2001-01-01 |

| d | 2018-01-01 | 2019-01-01 |

+------+------------+------------+

Here:

a is unchanged, as the range falls entirely out of the specified portion to be deleted.

b , with values ranging from 1999 to 2018, is split into two rows, 1999 to 2000 and 2018-01 to 2018-12 (i.e. one

extra row has been inserted).

c , with values ranging from 1999 to 2017, where only the upper value falls within the portion to be deleted, has been

shrunk to 1999 to 2001.

d , with values ranging from 2017 to 2019, where only the lower value falls within the portion to be deleted, has been

shrunk to 2018 to 2019.

The DELETE FOR PORTION statement has the following restrictions

The FROM...TO clause must be constant

Multi-delete is not supported

If there are DELETE or INSERT triggers, it works as follows: any matched row is deleted, and then one or two rows

are inserted. If the record is deleted completely, nothing is inserted.

Updating by Portion

The UPDATE syntax now supports UPDATE FOR PORTION , which modifies rows based on their occurrence in a range:

To test it, first populate the table with some data:

TRUNCATE t1;

INSERT INTO t1 (name, date_1, date_2) VALUES

 ('a', '1999-01-01', '2000-01-01'),

 ('b', '1999-01-01', '2018-12-12'),

 ('c', '1999-01-01', '2017-01-01'),

 ('d', '2017-01-01', '2019-01-01');

SELECT * FROM t1;

+------+------------+------------+

| name | date_1 | date_2 |

+------+------------+------------+

| a | 1999-01-01 | 2000-01-01 |

| b | 1999-01-01 | 2018-12-12 |

| c | 1999-01-01 | 2017-01-01 |

| d | 2017-01-01 | 2019-01-01 |

+------+------------+------------+

Then run the update:

891/4161

UPDATE t1 FOR PORTION OF date_period

 FROM '2000-01-01' TO '2018-01-01'

SET name = CONCAT(name,'_original');

SELECT * FROM t1 ORDER BY name;

+------------+------------+------------+

| name | date_1 | date_2 |

+------------+------------+------------+

| a | 1999-01-01 | 2000-01-01 |

| b | 1999-01-01 | 2000-01-01 |

| b | 2018-01-01 | 2018-12-12 |

| b_original | 2000-01-01 | 2018-01-01 |

| c | 1999-01-01 | 2000-01-01 |

| c_original | 2000-01-01 | 2017-01-01 |

| d | 2018-01-01 | 2019-01-01 |

| d_original | 2017-01-01 | 2018-01-01 |

+------------+------------+------------+

a is unchanged, as the range falls entirely out of the specified portion to be updated.

For b , with years ranging from 1999 to 2018, two extra rows are inserted, with ranges 1999-01 to 2000-01 and

2018-01 to 2018-12. The original row's period has been shrunk to years 2000 and 2018, and the name field has got

"_original" appended.

c , with values ranging from 1999 to 2017, where only the upper value falls within the portion to be updated, has

been shrunk to 1999 to 2001.

d , with values ranging from 2017 to 2019, where only the lower value falls within the portion to be updated, has been

shrunk to 2018 to 2019.

Original rows affected by the update have "_original" appended to the name.

The UPDATE FOR PORTION statement has the following limitations:

The operation cannot modify the two temporal columns used by the time period

The operation cannot reference period values in the SET expression

FROM...TO expressions must be constant

WITHOUT OVERLAPS

MariaDB 10.5 introduced a new clause, WITHOUT OVERLAPS , which allows one to create an index specifying that

application time periods should not overlap.

An index constrained by WITHOUT OVERLAPS is required to be either a primary key or a unique index.

Take the following example, an application time period table for a booking system:

CREATE OR REPLACE TABLE rooms (

 room_number INT,

 guest_name VARCHAR(255),

 checkin DATE,

 checkout DATE,

 PERIOD FOR p(checkin,checkout)

);

INSERT INTO rooms VALUES

 (1, 'Regina', '2020-10-01', '2020-10-03'),

 (2, 'Cochise', '2020-10-02', '2020-10-05'),

 (1, 'Nowell', '2020-10-03', '2020-10-07'),

 (2, 'Eusebius', '2020-10-04', '2020-10-06');

Our system is not intended to permit overlapping bookings, so the fourth record above should not have been inserted. Using

WITHOUT OVERLAPS in a unique index (in this case based on a combination of room number and the application time

period) allows us to specify this constraint in the table definition.

MariaDB starting with 10.5.3

892/4161

CREATE OR REPLACE TABLE rooms (

 room_number INT,

 guest_name VARCHAR(255),

 checkin DATE,

 checkout DATE,

 PERIOD FOR p(checkin,checkout),

 UNIQUE (room_number, p WITHOUT OVERLAPS)

);

INSERT INTO rooms VALUES

 (1, 'Regina', '2020-10-01', '2020-10-03'),

 (2, 'Cochise', '2020-10-02', '2020-10-05'),

 (1, 'Nowell', '2020-10-03', '2020-10-07'),

 (2, 'Eusebius', '2020-10-04', '2020-10-06');

ERROR 1062 (23000): Duplicate entry '2-2020-10-06-2020-10-04' for key 'room_number'

Information Schema

From MariaDB 11.4, the Information Schema contains the following support for application time period tables.

INFORMATION_SCHEMA.PERIODS view.

INFORMATION_SCHEMA.KEY_PERIOD_USAGE view.

Additional columns IS_SYSTEM_TIME_PERIOD_START and IS_SYSTEM_TIME_PERIOD_END in the

INFORMATION_SCHEMA.COLUMNS view.

Further Examples

The implicit change from NULL to NOT NULL:

CREATE TABLE `t2` (

 `id` int(11) DEFAULT NULL,

 `d1` datetime DEFAULT NULL,

 `d2` datetime DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

ALTER TABLE t2 ADD PERIOD FOR p(d1,d2);

SHOW CREATE TABLE t2\G

*************************** 1. row ***************************

 Table: t2

Create Table: CREATE TABLE `t2` (

* //a// is *unchanged*, as the range falls entirely out of the specified portion to be updated.

* For //b//, with years ranging from 1999 to 2018, two extra rows are *inserted*, with ranges 1999-01 to 2000-01 and 2018-01 to 2018-12. The original row's period has been *shrunk* to years 2000 and 2018, and the _name_ field has got "_original" appended.

* //c//, with values ranging from 1999 to 2017, where only the upper value falls within the portion to be updated, has been *shrunk* to 1999 to 2001.

* //d//, with values ranging from 2017 to 2019, where only the lower value falls within the portion to be updated, has been *shrunk* to 2018 to 2019.

* Original rows affected by the update have "_original" appended to the ##name## field.

 `id` int(11) DEFAULT NULL,

 `d1` datetime NOT NULL,

 `d2` datetime NOT NULL,

 PERIOD FOR `p` (`d1`, `d2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Due to this constraint, trying to add a time period where null data already exists will fail.

CREATE OR REPLACE TABLE `t2` (

 `id` int(11) DEFAULT NULL,

 `d1` datetime DEFAULT NULL,

 `d2` datetime DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO t2(id) VALUES(1);

ALTER TABLE t2 ADD PERIOD FOR p(d1,d2);

ERROR 1265 (01000): Data truncated for column 'd1' at row 1

1.1.7.3 Bitemporal Tables
MariaDB starting with 10.4.3 893/4161

Bitemporal tables are tables that use versioning both at the system and application-time period levels.

Contents
1. Using Bitemporal Tables

Using Bitemporal Tables
To create a bitemporal table, use:

CREATE TABLE test.t3 (

 date_1 DATE,

 date_2 DATE,

 row_start TIMESTAMP(6) AS ROW START INVISIBLE,

 row_end TIMESTAMP(6) AS ROW END INVISIBLE,

 PERIOD FOR application_time(date_1, date_2),

 PERIOD FOR system_time(row_start, row_end))

WITH SYSTEM VERSIONING;

Note that, while system_time here is also a time period, it cannot be used in DELETE FOR PORTION or UPDATE FOR

PORTION statements.

DELETE FROM test.t3

FOR PORTION OF system_time

 FROM '2000-01-01' TO '2018-01-01';

ERROR 42000: You have an error in your SQL syntax; check the manual that corresponds

 to your MariaDB server version for the right syntax to use near

 'of system_time from '2000-01-01' to '2018-01-01'' at line 1

MariaDB starting with 10.4.3

1.2 Built-in Functions
Functions and procedures in MariaDB

Function and Operator Reference

A complete list of MariaDB functions and operators in alphabetical order.

String Functions

Built-In functions for the handling of strings and columns containing string values.

Date & Time Functions

Built-In functions for the handling of dates and times.

Aggregate Functions

Aggregate functions used with GROUP BY clauses.

Numeric Functions

Numeric and arithmetic related functions in MariaDB.

Control Flow Functions

Built-In functions for assessing data to determine what results to return.

Pseudo Columns

MariaDB has pseudo columns that can be used for different purposes.

Secondary Functions

Bit Functions and Operators

Operators for comparison and setting of values, and related functions.

Encryption, Hashing and Compression Functions

Functions used for encryption, hashing and compression.

894/4161

Information Functions

Functions which return information on the server, the user, or a given query.

Miscellaneous Functions

Functions for very singular and specific needs.

Special Functions

Dynamic Columns Functions

Functions for storing key/value pairs of data within a column.

Galera Functions

Built-in functions related to Galera.

Geographic Functions

Geographic, as well as geometric functions.

JSON Functions

Built-in functions related to JSON.

SEQUENCE Functions

Functions that can be used on SEQUENCEs.

Spider Functions

User-defined functions available with the Spider storage engine.

Window Functions

Window functions for performing calculations on a set of rows related to the current row.

There are 11 related questions .

1.2.1 Function and Operator Reference
Name Description Added

+ Addition operator

/ Division operator

* Multiplication operator

%
Modulo operator. Returns the

remainder of N divided by M

- Subtraction operator

!= Not equals

< Less than

<= Less than or equal

<=> NULL-safe equal

= Equal

> Greater than

>= Greater than or equal

& Bitwise AND

<< Shift left

>> Shift right

^ Bitwise XOR

! Logical NOT

&& Logical AND

895/4161

https://mariadb.com/kb/en/built-in-functions/+questions/

XOR Logical XOR

|| Logical OR

| Bitwise OR

:= Assignment operator

=
Assignment and comparison

operator

~ Bitwise NOT

ABS Returns an absolute value

ACOS Returns an arc cosine

ADD_MONTHS Add months to a date

ADDDATE
Add days or another interval to a

date

ADDTIME Adds a time to a time or datetime

AES_DECRYPT
Decryption data encrypted with

AES_ENCRYPT

AES_ENCRYPT
Encrypts a string with the AES

algorithm

AREA Synonym for ST_AREA

AsBinary Synonym for ST_AsBinary

ASCII
Numeric ASCII value of leftmost

character

ASIN Returns the arc sine

AsText Synonym for ST_AsText

AsWKB Synonym for ST_AsBinary

AsWKT Synonym for ST_AsText

ATAN Returns the arc tangent

ATAN2
Returns the arc tangent of two

variables

AVG Returns the average value

BENCHMARK Executes an expression repeatedly

BETWEEN AND
True if expression between two

values

BIN Returns binary value

BINARY OPERATOR Casts to a binary string

BINLOG_GTID_POS
Returns a string representation of

the corresponding GTID position

BIT_AND Bitwise AND

BIT_COUNT Returns the number of set bits

BIT_LENGTH Returns the length of a string in bits

BIT_OR Bitwise OR

BIT_XOR Bitwise XOR

BOUNDARY Synonym for ST_BOUNDARY

BUFFER Synonym for ST_BUFFER

CASE

Returns the result where

value=compare_value or for the first

condition that is true

CAST
Casts a value of one type to another

type

CEIL Synonym for CEILING()

896/4161

CEILING
Returns the smallest integer not less

than X

CENTROID Synonym for ST_CENTROID

CHAR Function
Returns string based on the integer

values for the individual characters

CHARACTER_LENGTH Synonym for CHAR_LENGTH()

CHAR_LENGTH Length of the string in characters

CHARSET Returns the character set

CHR

Returns a string consisting of the

character given by the code values

of the integer

COALESCE
Returns the first non-NULL

parameter

COERCIBILITY
Returns the collation coercibility

value

COLLATION Collation of the string argument

COLUMN_ADD Adds or updates dynamic columns

COLUMN_CHECK
Checks if a dynamic column blob is

valid

COLUMN_CREATE Returns a dynamic columns blob

COLUMN_DELETE Deletes a dynamic column

COLUMN_EXISTS Checks is a column exists

COLUMN_GET
Gets a dynamic column value by

name

COLUMN_JSON
Returns a JSON representation of

dynamic column blob data

COLUMN_LIST Returns comma-separated list

COMPRESS Returns a binary, compressed string

CONCAT Returns concatenated string

CONCAT_WS Concatenate with separator

CONNECTION_ID Connection thread ID

CONTAINS
Whether one geometry contains

another

CONVERT
Convert a value from one type to

another type

CONV
Converts numbers between different

number bases

CONVERT_TZ
Converts a datetime from on time

zone to another

CONVEXHULL Synonym for ST_CONVEXHULL

COS Returns the cosine

COT Returns the cotangent

COUNT Returns count of non-null values

COUNT DISTINCT
Returns count of number of different

non-NULL values

CRC32
Computes a cyclic redundancy

check value

CRC32C
Computes a cyclic redundancy

check value
MariaDB 10.8

CROSSES
Whether two geometries spatially

cross

897/4161

CUME_DIST

Window function that returns the

cumulative distribution of a given

row

CURDATE Returns the current date

CURRENT_DATE Synonym for CURDATE()

CURRENT_ROLE Current role name

CURRENT_TIME Synonym for CURTIME()

CURRENT_TIMESTAMP Synonym for NOW()

CURRENT_USER
Username/host that authenicated

the current client

CURTIME Returns the current time

DATABASE Current default database

DATE FUNCTION
Extracts the date portion of a

datetime

DATEDIFF
Difference in days between two

date/time values

DATE_ADD Date arithmetic - addition

DATE_FORMAT
Formats the date value according to

the format string

DATE_SUB Date arithmetic - subtraction

DAY Synonym for DAYOFMONTH()

DAYNAME Return the name of the weekday

DAYOFMONTH Returns the day of the month

DAYOFWEEK Returns the day of the week index

DAYOFYEAR Returns the day of the year

DECODE
Decrypts a string encoded with

ENCODE()

DECODE_HISTOGRAM

Returns comma separated numerics

corresponding to a probability

distribution represented by a

histogram

DEFAULT Returns column default

DEGREES Converts from radians to degrees

DENSE_RANK

Rank of a given row with identical

values receiving the same result, no

skipping

DES_DECRYPT
Decrypts a string encrypted with

DES_ENCRYPT()

DES_ENCRYPT
Encrypts a string using the Triple-

DES algorithm

DIMENSION Synonym for ST_DIMENSION

DISJOINT
Whether the two elements do not

intersect

DIV Integer division

ELT
Returns the N'th element from a set

of strings

ENCODE Encrypts a string

ENCRYPT Encrypts a string with Unix crypt()

ENDPOINT Synonym for ST_ENDPOINT

ENVELOPE Synonym for ST_ENVELOPE

EQUALS
Indicates whether two geometries

are spatially equal

898/4161

EXP
e raised to the power of the

argument

EXPORT_SET
Returns an on string for every bit

set, an off string for every bit not set

ExteriorRing Synonym for ST_ExteriorRing

EXTRACT Extracts a portion of the date

EXTRACTVALUE
Returns the text of the first text node

matched by the XPath expression

FIELD
Returns the index position of a string

in a list

FIND_IN_SET
Returns the position of a string in a

set of strings

FLOOR
Largest integer value not greater

than the argument

FORMAT Formats a number

FORMAT_PICO_TIME

Given a time in picoseconds, returns

a human-readable time value and

unit indicator

MariaDB 11.0.2

FOUND_ROWS
Number of (potentially) returned

rows

FROM_BASE64

Given a base-64 encoded string,

returns the decoded result as a

binary string

FROM_DAYS Returns a date given a day

FROM_UNIXTIME
Returns a datetime from a Unix

timestamp

GeomCollFromText
Synonym for

ST_GeomCollFromText

GeomCollFromWKB
Synonym for

ST_GeomCollFromWKB

GeometryCollectionFromText
Synonym for

ST_GeomCollFromText

GeometryCollectionFromWKB
Synonym for

ST_GeomCollFromWKB

GeometryFromText Synonym for ST_GeomFromText

GeometryFromWKB Synonym for ST_GeomFromWKB

GeomFromText Synonym for ST_GeomFromText

GeomFromWKB Synonym for ST_GeomFromWKB

GeometryN Synonym for ST_GeometryN

GEOMETRYCOLLECTION
Constructs a WKB

GeometryCollection

GeometryType Synonym for ST_GeometryType

GET_FORMAT Returns a format string

GET_LOCK Obtain LOCK

GLENGTH Length of a LineString value

GREATEST Returns the largest argument

GROUP_CONCAT
Returns string with concatenated

values from a group

HEX Returns hexadecimal value

HOUR Returns the hour

IF
If expr1 is TRUE, returns expr2;

otherwise returns expr3

899/4161

IFNULL
Check whether an expression is

NULL

IN
True if expression equals any of the

values in the list

INTERVAL
Index of the argument that is less

than the first argument

INET6_ATON

Given an IPv6 or IPv4 network

address, returns a VARBINARY

numeric value

INET6_NTOA

Given an IPv6 or IPv4 network

address, returns the address as a

nonbinary string

INET_ATON
Returns numeric value of IPv4

address

INET_NTOA
Returns dotted-quad representation

of IPv4 address

INSERT Function
Replaces a part of a string with

another string

INSTR
Returns the position of a string

withing a string

InteriorRingN Synonym for ST_InteriorRingN

INTERSECTS
Indicates whether two geometries

spatially intersect

IS
Tests whether a boolean is TRUE,

FALSE, or UNKNOWN

IsClosed Synonym for ST_IsClosed

IsEmpty Synonym for ST_IsEmpty

IS_FREE_LOCK Checks whether lock is free to use

IS_IPV4
Whether or not an expression is a

valid IPv4 address

IS_IPV4_COMPAT
Whether or not an IPv6 address is

IPv4-compatible

IS_IPV4_MAPPED
Whether an IPv6 address is a valid

IPv4-mapped address

IS_IPV6
Whether or not an expression is a

valid IPv6 address

IS NOT
Tests whether a boolean value is

not TRUE, FALSE, or UNKNOWN

IS NOT NULL Tests whether a value is not NULL

IS NULL Tests whether a value is NULL

ISNULL Checks if an expression is NULL

IsRing Synonym for ST_IsRing

IsSimple Synonym for ST_IsSimple

IS_USED_LOCK Check if lock is in use

JSON_ARRAY
Returns a JSON array containing

the listed values

JSON_ARRAY_INTERSECT MariaDB 11.2.0

JSON_ARRAY_APPEND

Appends values to the end of the

given arrays within a JSON

document

JSON_ARRAY_INSERT
Inserts a value into a JSON

document

JSON_COMPACT

Removes all unnecessary spaces

so the json document is as short as

possible

900/4161

JSON_CONTAINS

Whether a value is found in a given

JSON document or at a specified

path within the document

JSON_CONTAINS_PATH

Indicates whether the given JSON

document contains data at the

specified path or paths

JSON_DEPTH
Maximum depth of a JSON

document

JSON_DETAILED
Represents JSON in the most

understandable way emphasizing

nested structures

JSON_EQUALS
Check for equality between JSON

objects.

JSON_EXISTS
Determines whether a specified

JSON value exists in the given data

JSON_EXTRACT
Extracts data from a JSON

document.

JSON_INSERT Inserts data into a JSON document

JSON_KEYS

Returns keys from top-level value of

a JSON object or top-level keys

from the path

JSON_LENGTH

Returns the length of a JSON

document, or the length of a value

within the document

JSON_LOOSE
Adds spaces to a JSON document

to make it look more readable

JSON_MERGE Merges the given JSON documents

JSON_MERGE_PATCH
RFC 7396-compliant merge of the

given JSON documents

JSON_MERGE_PRESERVE
Synonym for

JSON_MERGE_PATCH.

JSON_NORMALIZE

Recursively sorts keys and removes

spaces, allowing comparison of json

documents for equality

JSON_OBJECT
Returns a JSON object containing

the given key/value pairs

JSON_OBJECT_FILTER_KEYS MariaDB 11.2.0

JSON_OBJECT_TO_ARRAY MariaDB 11.2.0

JSON_OBJECTAGG
Returns a JSON object containing

key-value pairs

JSON_OVERLAPS
Compares two json documents for

overlaps

JSON_PRETTY Alias for json_detailed

MariaDB 10.10.3, MariaDB 10.9.5,

MariaDB 10.8.7 , MariaDB 10.7.8 ,

MariaDB 10.6.12, MariaDB 10.5.19 and

MariaDB 10.4.28

JSON_QUERY
Given a JSON document, returns an

object or array specified by the path

JSON_QUOTE Quotes a string as a JSON value

JSON_REMOVE
Removes data from a JSON

document

JSON_REPLACE
Replaces existing values in a JSON

document

JSON_SCHEMA_VALID Validates a JSON schema MariaDB 11.1.0

JSON_SEARCH
Returns the path to the given string

within a JSON document

901/4161

https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/

JSON_SET
Updates or inserts data into a JSON

document

JSON_TABLE
Returns a representation of a JSON

document as a relational table

JSON_TYPE Returns the type of a JSON value

JSON_UNQUOTE
Unquotes a JSON value, returning a

string

JSON_VALID
Whether a value is a valid JSON

document or not

JSON_VALUE
Given a JSON document, returns

the specified scalar

KDF Key derivation function MariaDB 11.3.0

LAST_DAY Returns the last day of the month

LAST_INSERT_ID Last inserted autoinc value

LAST_VALUE Returns the last value in a list

LASTVAL
Get last value generated from a

sequence

LCASE Synonym for [LOWER()

LEAST Returns the smallest argument

LEFT
Returns the leftmost characters from

a string

LENGTH Length of the string in bytes

LIKE
Whether expression matches a

pattern

LineFromText Synonym for ST_LineFromText

LineFromWKB Synonym for ST_LineFromWKB

LINESTRING

Constructs a WKB LineString value

from a number of WKB Point

arguments

LineStringFromText Synonym for ST_LineFromText

LineStringFromWKB Synonym for ST_LineFromWKB

LN Returns natural logarithm

LOAD_FILE Returns file contents as a string

LOCALTIME Synonym for NOW()

LOCALTIMESTAMP Synonym for NOW()

LOCATE
Returns the position of a substring in

a string

LOG Returns the natural logarithm

LOG10 Returns the base-10 logarithm

LOG2 Returns the base-2 logarithm

LOWER
Returns a string with all characters

changed to lowercase

LPAD
Returns the string left-padded with

another string to a given length

LTRIM
Returns the string with leading

space characters removed

MAKE_SET
Make a set of strings that matches a

bitmask

MAKEDATE Returns a date given a year and day

MAKETIME Returns a time

MASTER_GTID_WAIT
Wait until slave reaches the GTID

position

902/4161

MASTER_POS_WAIT
Blocks until the slave has applied all

specified updates

MATCH AGAINST
Perform a fulltext search on a

fulltext index

MAX Returns the maximum value

MBRContains
Indicates one Minimum Bounding

Rectangle contains another

MBRDisjoint

Indicates whether the Minimum

Bounding Rectangles of two

geometries are disjoint

MBREqual

Whether the Minimum Bounding

Rectangles of two geometries are

the same.

MBRIntersects

Indicates whether the Minimum

Bounding Rectangles of the two

geometries intersect

MBROverlaps

Whether the Minimum Bounding

Rectangles of two geometries

overlap

MBRTouches
Whether the Minimum Bounding

Rectangles of two geometries touch.

MBRWithin

Indicates whether one Minimum

Bounding Rectangle is within

another

MD5 MD5 checksum

MEDIAN
Window function that returns the

median value of a range of values

MICROSECOND
Returns microseconds from a date

or datetime

MID
Synonym for

SUBSTRING(str,pos,len)

MIN Returns the minimum value

MINUTE Returns a minute from 0 to 59

MLineFromText

Constructs MULTILINESTRING

using its WKT representation and

SRID

MLineFromWKB Constructs a MULTILINESTRING

MOD
Modulo operation. Remainder of N

divided by M

MONTH Returns a month from 1 to 12

MONTHNAME Returns the full name of the month

MPointFromText
Constructs a MULTIPOINT value

using its WKT and SRID

MPointFromWKB

Constructs a MULTIPOINT value

using its WKB representation and

SRID

MPolyFromText
Constructs a MULTIPOLYGON

value

MPolyFromWKB

Constructs a MULTIPOLYGON

value using its WKB representation

and SRID

MultiLineStringFromText Synonym for MLineFromText

MultiLineStringFromWKB A synonym for MLineFromWKB

MULTIPOINT Constructs a WKB MultiPoint value

MultiPointFromText Synonym for MPointFromText

MultiPointFromWKB Synonym for MPointFromWKB

903/4161

MULTIPOLYGON Constructs a WKB MultiPolygon

MultiPolygonFromText Synonym for MPolyFromText

MultiPolygonFromWKB Synonym for MPolyFromWKB

MULTILINESTRING Constructs a MultiLineString value

NAME_CONST Returns the given value

NATURAL_SORT_KEY
Sorting that is more more similar to

natural human sorting

NOT LIKE
Same as NOT(expr LIKE pat

[ESCAPE 'escape_char'])

NOT REGEXP Same as NOT (expr REGEXP pat)

NULLIF Returns NULL if expr1 = expr2

NEXTVAL Generate next value for sequence

NOT BETWEEN
Same as NOT (expr BETWEEN min

AND max)

NOT IN Same as NOT (expr IN (value,...))

NOW Returns the current date and time

NTILE
Returns an integer indicating which

group a given row falls into

NumGeometries Synonym for ST_NumGeometries

NumInteriorRings Synonym for NumInteriorRings

NumPoints Synonym for ST_NumPoints

OCT Returns octal value

OCTET_LENGTH Synonym for LENGTH()

OLD_PASSWORD
Pre MySQL 4.1 password

implementation

ORD Return ASCII or character code

OVERLAPS
Indicates whether two elements

spatially overlap

PASSWORD Calculates a password string

PERCENT_RANK
Window function that returns the

relative percent rank of a given row

PERCENTILE_CONT

Returns a value which corresponds

to the given fraction in the sort

order.

PERCENTILE_DISC

Returns the first value in the set

whose ordered position is the same

or more than the specified fraction.

PERIOD_ADD Add months to a period

PERIOD_DIFF
Number of months between two

periods

PI Returns the value of Ã (pi)

POINT Constructs a WKB Point

PointFromText Synonym for ST_PointFromText

PointFromWKB Synonym for PointFromWKB

PointN Synonym for PointN

PointOnSurface Synonym for ST_PointOnSurface

POLYGON

Constructs a WKB Polygon value

from a number of WKB LineString

arguments

PolyFromText Synonym for ST_PolyFromText

PolyFromWKB Synonym for ST_PolyFromWKB

904/4161

PolygonFromText Synonym for ST_PolyFromText

PolygonFromWKB Synonym for ST_PolyFromWKB

POSITION
Returns the position of a substring in

a string

POW Returns X raised to the power of Y

POWER Synonym for POW()

QUARTER Returns year quarter from 1 to 4

QUOTE
Returns quoted, properly escaped

string

RADIANS Converts from degrees to radians

RAND Random floating-point value

RANK
Rank of a given row with identical

values receiving the same result

REGEXP Performs pattern matching

REGEXP_INSTR
Position of the first appearance of a

regex

REGEXP_REPLACE
Replaces all occurrences of a

pattern

REGEXP_SUBSTR Returns the matching part of a string

RELEASE_LOCK
Releases lock obtained with

GET_LOCK()

REPEAT Function
Returns a string repeated a number

of times

REPLACE Function Replace occurrences of a string

REVERSE Reverses the order of a string

RIGHT
Returns the rightmost N characters

from a string

RLIKE Synonym for REGEXP()

RPAD
Returns the string right-padded with

another string to a given length

ROUND Rounds a number

ROW_COUNT
Number of rows affected by

previous statement

ROW_NUMBER

Row number of a given row with

identical values receiving a different

result

RTRIM
Returns the string with trailing space

characters removed

SCHEMA Synonym for DATABASE()

SECOND Returns the second of a time

SEC_TO_TIME Converts a second to a time

SETVAL
Set the next value to be returned by

a sequence

SESSION_USER Synonym for USER()

SHA Synonym for SHA1()

SHA1 Calculates an SHA-1 checksum

SHA2 Calculates an SHA-2 checksum

SIGN Returns 1, 0 or -1

SIN Returns the sine

SLEEP
Pauses for the given number of

seconds

905/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/sha

SOUNDEX
Returns a string based on how the

string sounds

SOUNDS LIKE
SOUNDEX(expr1) =

SOUNDEX(expr2)

SPACE Returns a string of space characters

SPIDER_BG_DIRECT_SQL Background SQL execution

SPIDER_COPY_TABLES Copy table data

SPIDER_DIRECT_SQL Execute SQL on the remote server

SPIDER_FLUSH_TABLE_MON_CACHE
Refreshing Spider monitoring server

information

SQRT Square root

SRID Synonym for ST_SRID

ST_AREA Area of a Polygon

ST_AsBinary
Converts a value to its WKB

representation

ST_AsText
Converts a value to its WKT-

Definition

ST_AsWKB Synonym for ST_AsBinary

ST_ASWKT Synonym for ST_ASTEXT()

ST_BOUNDARY
Returns a geometry that is the

closure of a combinatorial boundary

ST_BUFFER
A new geometry with a buffer added

to the original geometry

ST_CENTROID

The mathematical centroid

(geometric center) for a

MultiPolygon

ST_CONTAINS
Whether one geometry is contained

by another

ST_CONVEXHULL

The minimum convex geometry

enclosing all geometries within the

set

ST_CROSSES
Whether two geometries spatially

cross

ST_DIFFERENCE Point set difference

ST_DIMENSION
Inherent dimension of a geometry

value

ST_DISJOINT
Whether one geometry is spatially

disjoint from another

ST_DISTANCE
The distance between two

geometries

ST_DISTANCE_SPHERE
The spherical distance between two

geometries

ST_ENDPOINT Returns the endpoint of a LineString

ST_ENVELOPE
Returns the Minimum Bounding

Rectangle for a geometry value

ST_EQUALS
Whether two geometries are

spatoially equal

ST_ExteriorRing
Returns the exterior ring of a

Polygon as a LineString

ST_GeomCollFromText
Constructs a

GEOMETRYCOLLECTION value

ST_GeomCollFromWKB

Constructs a

GEOMETRYCOLLECTION value

from a WKB

906/4161

ST_GeometryCollectionFromText
Synonym for

ST_GeomCollFromText

ST_GeometryCollectionFromWKB
Synonym for

ST_GeomCollFromWKB

ST_GeometryFromText Synonym for ST_GeomFromText

ST_GeometryFromWKB Synonym for ST_GeomFromWKB

ST_GEOMETRYN
Returns the N-th geometry in a

GeometryCollection

ST_GEOMETRYTYPE

Returns name of the geometry type

of which a given geometry instance

is a member

ST_GeomFromText
Constructs a geometry value using

its WKT and SRID

ST_GeomFromWKB
Constructs a geometry value using

its WKB representation and SRID

ST_InteriorRingN
Returns the N-th interior ring for a

Polygon

ST_INTERSECTION
The intersection, or shared portion,

of two geometries

ST_INTERSECTS
Whether two geometries spatially

intersect

ST_ISCLOSED

Returns true if a given

LINESTRING's start and end points

are the same

ST_ISEMPTY Indicated validity of geometry value

ST_IsRing

Returns true if a given LINESTRING

is both ST_IsClosed and

ST_IsSimple

ST_IsSimple
Returns true if the given Geometry

has no anomalous geometric points

ST_LENGTH Length of a LineString value

ST_LineFromText Creates a linestring value

ST_LineFromWKB
Constructs a LINESTRING using its

WKB and SRID

ST_LineStringFromText Synonym for ST_LineFromText

ST_LineStringFromWKB Synonym for ST_LineFromWKB

ST_NUMGEOMETRIES
Number of geometries in a

GeometryCollection

ST_NumInteriorRings
Number of interior rings in a

Polygon

ST_NUMPOINTS
Returns the number of Point objects

in a LineString

ST_OVERLAPS Whether two geometries overlap

ST_PointFromText Constructs a POINT value

ST_PointFromWKB
Constructs POINT using its WKB

and SRID

ST_POINTN
Returns the N-th Point in the

LineString

ST_POINTONSURFACE
Returns a POINT guaranteed to

intersect a surface

ST_PolyFromText Constructs a POLYGON value

ST_PolyFromWKB
Constructs POLYGON value using

its WKB representation and SRID

ST_PolygonFromText Synonym for ST_PolyFromText

ST_PolygonFromWKB Synonym for ST_PolyFromWKB

907/4161

ST_RELATE
Returns true if two geometries are

related

ST_SRID
Returns a Spatial Reference System

ID

ST_STARTPOINT
Returns the start point of a

LineString

ST_SYMDIFFERENCE
Portions of two geometries that don't

intersect

ST_TOUCHES
Whether one geometry g1 spatially

touches another

ST_UNION Union of two geometries

ST_WITHIN
Whether one geometry is within

another

ST_X X-coordinate value for a point

ST_Y Y-coordinate for a point

STARTPOINT Synonym for ST_StartPoint

STD Population standard deviation

STDDEV Population standard deviation

STDDEV_POP
Returns the population standard

deviation

STDDEV_SAMP Standard deviation

STR_TO_DATE Converts a string to date

STRCMP Compares two strings in sort order

SUBDATE
Subtract a date unit or number of

days

SUBSTR
Returns a substring from string

starting at a given position

SUBSTRING
Returns a substring from string

starting at a given position

SUBSTRING_INDEX

Returns the substring from string

before count occurrences of a

delimiter

SUBTIME Subtracts a time from a date/time

SUM Sum total

SYS.EXTRACT_SCHEMA_FROM_FILE_NAME
Given a file path, returns the

schema (database) name
MariaDB 10.6

SYS.EXTRACT_TABLE_FROM_FILE_NAME
Given a file path, returns the table

name
MariaDB 10.6

SYS.FORMAT_BYTES

Returns a string consisting of a

value and the units in a human-

readable format

MariaDB 10.6

SYS.FORMAT_PATH

Returns a modified path after

replacing subpaths matching the

values of various system variables

with the variable name

MariaDB 10.6

SYS.FORMAT_STATEMENT Returns a reduced length string MariaDB 10.6

SYS.FORMAT_TIME
Returns a human-readable time

value and unit indicator
MariaDB 10.6

SYS.LIST_ADD Adds a value to a given list MariaDB 10.6

SYS.LIST_DROP Drops a value from a given list MariaDB 10.6

SYS.PS_IS_ACCOUNT_ENABLED

Whether Performance Schema

instrumentation for the given

account is enabled

MariaDB 10.6

908/4161

SYS.PS_IS_CONSUMER_ENABLED

Whether Performance Schema

instrumentation for the given

consumer is enabled

MariaDB 10.6

SYS.PS_IS_INSTRUMENT_DEFAULT_ENABLED

Whether a given Performance

Schema instrument is enabled by

default

MariaDB 10.6

SYS.PS_IS_INSTRUMENT_DEFAULT_TIMED

Returns whether a given

Performance Schema instrument is

timed by default

MariaDB 10.6

SYS.PS_IS_THREAD_INSTRUMENTED

Returns whether or not Performance

Schema instrumentation for the

given connection_id is enabled

MariaDB 10.6

SYS.PS_THREAD_ACCOUNT

Returns the account

(username@hostname) associated

with the given thread_id

MariaDB 10.6

SYS.PS_THREAD_ID
Returns the thread_id associated

with the given connection_id
MariaDB 10.6

SYS.PS_THREAD_STACK

Returns all statements, stages, and

events within the Performance

Schema for a given thread_id

MariaDB 10.6

SYS.PS_THREAD_TRX_INFO

Returns a JSON object with

information about the thread

specified by the given thread_id

MariaDB 10.6

SYS.QUOTE_IDENTIFIER

Quotes a string to produce a result

that can be used as an identifier in

an SQL statement

MariaDB 10.6

SYS.SYS_GET_CONFIG
Returns a configuration option value

from the sys_config table
MariaDB 10.6

SYS.VERSION_MAJOR
Returns the MariaDB Server major

release version
MariaDB 10.6

SYS.VERSION_MINOR
Returns the MariaDB Server minor

release version
MariaDB 10.6

SYS.VERSION_PATCH
Returns the MariaDB Server patch

release version
MariaDB 10.6

SYS_GUID
Generates a globally unique

identifier

SYSDATE Returns the current date and time

SYSTEM_USER Synonym for USER()

TAN Returns the tangent

TIME function Extracts the time

TIMEDIFF
Returns the difference between two

date/times

TIMESTAMP FUNCTION
Return the datetime, or add a time

to a date/time

TIMESTAMPADD Add interval to a date or datetime

TIMESTAMPDIFF Difference between two datetimes

TIME_FORMAT
Formats the time value according to

the format string

TIME_TO_SEC
Returns the time argument,

converted to seconds

TO_BASE64
Converts a string to its base-64

encoded form

TO_CHAR Converts a date/time type to a char

TO_DAYS Number of days since year 0

TO_SECONDS Number of seconds since year 0

TOUCHES
Whether two geometries spatially

touch

909/4161

TRIM
Returns a string with all given

prefixes or suffixes removed

TRUNCATE Truncates X to D decimal places

UCASE Synonym for UPPER]]()

UNHEX

Interprets pairs of hex digits as a

number and converts to the

character represented by the

number

UNCOMPRESS
Uncompresses string compressed

with COMPRESS()

UNCOMPRESSED_LENGTH

Returns length of a string before

being compressed with

COMPRESS()

UNIX_TIMESTAMP Returns a Unix timestamp

UPDATEXML Replace XML

UPPER Changes string to uppercase

USER Current user/host

UTC_DATE Returns the current UTC date

UTC_TIME Returns the current UTC time

UTC_TIMESTAMP
Returns the current UTC date and

time

UUID
Returns a Universal Unique

Identifier

UUID_SHORT Return short universal identifier

VALUES or VALUE
Refer to columns in INSERT ... ON

DUPLICATE KEY UPDATE

VAR_POP Population standard variance

VAR_SAMP Returns the sample variance

VARIANCE Population standard variance

VERSION MariaDB server version

WEEK Returns the week number

WEEKDAY Returns the weekday index

WEEKOFYEAR

Returns the calendar week of the

date as a number in the range from

1 to 53

WEIGHT_STRING Weight of the input string

WITHIN
Indicate whether a geographic

element is spacially within another

WSREP_LAST_SEEN_GTID

Returns the Global Transaction ID of

the most recent write transaction

observed by the client.

WSREP_LAST_WRITTEN_GTID

Returns the Global Transaction ID of

the most recent write transaction

performed by the client.

WSREP_SYNC_WAIT_UPTO_GTID

Blocks the client until the transaction

specified by the given Global

Transaction ID is applied and

committed by the node

X Synonym for ST_X

Y Synonym for ST_Y

YEAR Returns the year for the given date

YEARWEEK Returns year and week for a date

910/4161

1.2.2 String Functions
Functions dealing with strings, such as CHAR, CONVERT, CONCAT, PAD, REGEXP, TRIM, etc.

Regular Expressions Functions

Functions for dealing with regular expressions

Dynamic Columns Functions

Functions for storing key/value pairs of data within a column.

ASCII

Numeric ASCII value of leftmost character.

BIN

Returns binary value.

BINARY Operator

Casts to a binary string.

BIT_LENGTH

Returns the length of a string in bits.

CAST

Casts a value of one type to another type.

CHAR Function

Returns string based on the integer values for the individual characters.

CHARACTER_LENGTH

Synonym for CHAR_LENGTH().

CHAR_LENGTH

Length of the string in characters.

CHR

Returns string based on integer values of the individual characters.

CONCAT

Returns concatenated string.

CONCAT_WS

Concatenate with separator.

CONVERT

Convert a value from one type to another type.

ELT

Returns the N'th element from a set of strings.

EXPORT_SET

Returns an on string for every bit set, an off string for every bit not set.

EXTRACTVALUE

Returns the text of the first text node matched by the XPath expression.

FIELD

Returns the index position of a string in a list.

FIND_IN_SET

Returns the position of a string in a set of strings.

FORMAT

Formats a number.

3

1

2

3

911/4161

FROM_BASE64

Given a base-64 encoded string, returns the decoded result as a binary string.

HEX

Returns hexadecimal value.

INSERT Function

Replaces a part of a string with another string.

INSTR

Returns the position of a string within a string.

LCASE

Synonym for LOWER().

LEFT

Returns the leftmost characters from a string.

LENGTH

Length of the string in bytes.

LENGTHB

Length of the given string, in bytes.

LIKE

Whether expression matches a pattern.

LOAD_FILE

Returns file contents as a string.

LOCATE

Returns the position of a substring in a string.

LOWER

Returns a string with all characters changed to lowercase.

LPAD

Returns the string left-padded with another string to a given length.

LTRIM

Returns the string with leading space characters removed.

MAKE_SET

Make a set of strings that matches a bitmask.

MATCH AGAINST

Perform a fulltext search on a fulltext index.

Full-Text Index Stopwords

Default list of full-text stopwords used by MATCH...AGAINST.

MID

Synonym for SUBSTRING(str,pos,len).

NATURAL_SORT_KEY

Sorting that is closer to natural human sorting.

NOT LIKE

Same as NOT(expr LIKE pat [ESCAPE 'escape_char']).

NOT REGEXP

Same as NOT (expr REGEXP pat).

2

4

912/4161

OCTET_LENGTH

Returns the length of the given string, in bytes.

ORD

Return ASCII or character code.

POSITION

Returns the position of a substring in a string.

QUOTE

Returns quoted, properly escaped string.

REPEAT Function

Returns a string repeated a number of times.

REPLACE Function

Replace occurrences of a string.

REVERSE

Reverses the order of a string.

RIGHT

Returns the rightmost N characters from a string.

RPAD

Returns the string right-padded with another string to a given length.

RTRIM

Returns the string with trailing space characters removed.

SFORMAT

Given a string and a formatting specification, returns a formatted string.

SOUNDEX

Returns a string based on how the string sounds.

SOUNDS LIKE

SOUNDEX(expr1) = SOUNDEX(expr2).

SPACE

Returns a string of space characters.

STRCMP

Compares two strings in sort order.

SUBSTR

Returns a substring from string starting at a given position.

SUBSTRING

Returns a substring from string starting at a given position.

SUBSTRING_INDEX

Returns the substring from string before count occurrences of a delimiter.

TO_BASE64

Converts a string to its base-64 encoded form.

TO_CHAR

Converts a date/time/timestamp type expression to a string.

TRIM

Returns a string with all given prefixes or suffixes removed.

913/4161

TRIM_ORACLE

Synonym for the Oracle mode version of TRIM().

UCASE

Synonym for UPPER().

UNCOMPRESS

Uncompresses string compressed with COMPRESS().

UNCOMPRESSED_LENGTH

Returns length of a string before being compressed with COMPRESS().

UNHEX

Interprets pairs of hex digits as numbers and converts to the character represented by the number.

UPDATEXML

Replace XML.

UPPER

Changes string to uppercase.

WEIGHT_STRING

Weight of the input string.

Type Conversion

When implicit type conversion takes place.

There are 3 related questions .

1.2.2.1 Regular Expressions Functions
MariaDB includes a number of functions for dealing with regular expressions.

Regular Expressions Overview

Regular Expressions allow MariaDB to perform complex pattern matching on a string.

PCRE - Perl Compatible Regular Expressions

PCRE (Perl Compatible Regular Expressions) for enhanced regular expressions.

NOT REGEXP

Same as NOT (expr REGEXP pat).

REGEXP

Performs pattern matching

REGEXP_INSTR

Position of the first appearance of a regex.

REGEXP_REPLACE

Replaces all occurrences of a pattern.

REGEXP_SUBSTR

Returns the matching part of a string.

RLIKE

Synonym for REGEXP

There are 1 related questions .

1

1

2

914/4161

https://mariadb.com/kb/en/string-functions/+questions/
https://mariadb.com/kb/en/regular-expressions-functions/+questions/

1.2.2.1.1 Regular Expressions Overview
Contents
1. Special Characters

1. ^

2. $

3. .

4. *

5. +

6. ?

7. ()

8. {}

9. []

1. ^

2. Word boundaries

3. Character Classes

4. Character Names

10. Combining

11. Escaping

Regular Expressions allow MariaDB to perform complex pattern matching on a string. In many cases, the simple pattern

matching provided by LIKE is sufficient. LIKE performs two kinds of matches:

_ - the underscore, matching a single character

% - the percentage sign, matching any number of characters.

In other cases you may need more control over the returned matches, and will need to use regular expressions.

Until MariaDB 10.0.5 , MariaDB used the POSIX 1003.2 compliant regular expression library. The current PCRE library is

mostly backwards compatible with what is described below - see the PCRE Regular Expressions article for the

enhancements made in 10.0.5.

Regular expression matches are performed with the REGEXP function. RLIKE is a synonym for REGEXP .

Comparisons are performed on the byte value, so characters that are treated as equivalent by a collation, but do not

have the same byte-value, such as accented characters, could evaluate as unequal.

Without any special characters, a regular expression match is true if the characters match. The match is case-insensitive,

except in the case of BINARY strings.

SELECT 'Maria' REGEXP 'Maria';

+------------------------+

| 'Maria' REGEXP 'Maria' |

+------------------------+

| 1 |

+------------------------+

SELECT 'Maria' REGEXP 'maria';

+------------------------+

| 'Maria' REGEXP 'maria' |

+------------------------+

| 1 |

+------------------------+

SELECT BINARY 'Maria' REGEXP 'maria';

+-------------------------------+

| BINARY 'Maria' REGEXP 'maria' |

+-------------------------------+

| 0 |

+-------------------------------+

Note that the word being matched must match the whole pattern:

915/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/

SELECT 'Maria' REGEXP 'Mari';

+-----------------------+

| 'Maria' REGEXP 'Mari' |

+-----------------------+

| 1 |

+-----------------------+

SELECT 'Mari' REGEXP 'Maria';

+-----------------------+

| 'Mari' REGEXP 'Maria' |

+-----------------------+

| 0 |

+-----------------------+

The first returns true because the pattern "Mari" exists in the expression "Maria". When the order is reversed, the result is

false, as the pattern "Maria" does not exist in the expression "Mari"

A match can be performed against more than one word with the | character. For example:

SELECT 'Maria' REGEXP 'Monty|Maria';

+------------------------------+

| 'Maria' REGEXP 'Monty|Maria' |

+------------------------------+

| 1 |

+------------------------------+

Special Characters
The above examples introduce the syntax, but are not very useful on their own. It's the special characters that give regular

expressions their power.

^

^ matches the beginning of a string (inside square brackets it can also mean NOT - see below):

SELECT 'Maria' REGEXP '^Ma';

+----------------------+

| 'Maria' REGEXP '^Ma' |

+----------------------+

| 1 |

+----------------------+

$

$ matches the end of a string:

SELECT 'Maria' REGEXP 'ia$';

+----------------------+

| 'Maria' REGEXP 'ia$' |

+----------------------+

| 1 |

+----------------------+

.

. matches any single character:

916/4161

SELECT 'Maria' REGEXP 'Ma.ia';

+------------------------+

| 'Maria' REGEXP 'Ma.ia' |

+------------------------+

| 1 |

+------------------------+

SELECT 'Maria' REGEXP 'Ma..ia';

+-------------------------+

| 'Maria' REGEXP 'Ma..ia' |

+-------------------------+

| 0 |

+-------------------------+

*

x* matches zero or more of a character x . In the examples below, it's the r character.

SELECT 'Maria' REGEXP 'Mar*ia';

+-------------------------+

| 'Maria' REGEXP 'Mar*ia' |

+-------------------------+

| 1 |

+-------------------------+

SELECT 'Maia' REGEXP 'Mar*ia';

+------------------------+

| 'Maia' REGEXP 'Mar*ia' |

+------------------------+

| 1 |

+------------------------+

SELECT 'Marrria' REGEXP 'Mar*ia';

+---------------------------+

| 'Marrria' REGEXP 'Mar*ia' |

+---------------------------+

| 1 |

+---------------------------+

+

x+ matches one or more of a character x . In the examples below, it's the r character.

SELECT 'Maria' REGEXP 'Mar+ia';

+-------------------------+

| 'Maria' REGEXP 'Mar+ia' |

+-------------------------+

| 1 |

+-------------------------+

SELECT 'Maia' REGEXP 'Mar+ia';

+------------------------+

| 'Maia' REGEXP 'Mar+ia' |

+------------------------+

| 0 |

+------------------------+

SELECT 'Marrria' REGEXP 'Mar+ia';

+---------------------------+

| 'Marrria' REGEXP 'Mar+ia' |

+---------------------------+

| 1 |

+---------------------------+

?

x? matches zero or one of a character x . In the examples below, it's the r character.

917/4161

SELECT 'Maria' REGEXP 'Mar?ia';

+-------------------------+

| 'Maria' REGEXP 'Mar?ia' |

+-------------------------+

| 1 |

+-------------------------+

SELECT 'Maia' REGEXP 'Mar?ia';

+------------------------+

| 'Maia' REGEXP 'Mar?ia' |

+------------------------+

| 1 |

+------------------------+

SELECT 'Marrria' REGEXP 'Mar?ia';

+---------------------------+

| 'Marrria' REGEXP 'Mar?ia' |

+---------------------------+

| 0 |

+---------------------------+

()

(xyz) - combine a sequence, for example (xyz)+ or (xyz)*

SELECT 'Maria' REGEXP '(ari)+';

+-------------------------+

| 'Maria' REGEXP '(ari)+' |

+-------------------------+

| 1 |

+-------------------------+

{}

x{n} and x{m,n} This notation is used to match many instances of the x . In the case of x{n} the match must be

exactly that many times. In the case of x{m,n} , the match can occur from m to n times. For example, to match zero or

one instance of the string ari (which is identical to (ari)?), the following can be used:

SELECT 'Maria' REGEXP '(ari){0,1}';

+-----------------------------+

| 'Maria' REGEXP '(ari){0,1}' |

+-----------------------------+

| 1 |

+-----------------------------+

[]

[xy] groups characters for matching purposes. For example, to match either the p or the r character:

SELECT 'Maria' REGEXP 'Ma[pr]ia';

+---------------------------+

| 'Maria' REGEXP 'Ma[pr]ia' |

+---------------------------+

| 1 |

+---------------------------+

The square brackets also permit a range match, for example, to match any character from a-z, [a-z] is used. Numeric

ranges are also permitted.

SELECT 'Maria' REGEXP 'Ma[a-z]ia';

+----------------------------+

| 'Maria' REGEXP 'Ma[a-z]ia' |

+----------------------------+

| 1 |

+----------------------------+

The following does not match, as r falls outside of the range a-p .

918/4161

SELECT 'Maria' REGEXP 'Ma[a-p]ia';

+----------------------------+

| 'Maria' REGEXP 'Ma[a-p]ia' |

+----------------------------+

| 0 |

+----------------------------+

^

The ^ character means does NOT match, for example:

SELECT 'Maria' REGEXP 'Ma[^p]ia';

+---------------------------+

| 'Maria' REGEXP 'Ma[^p]ia' |

+---------------------------+

| 1 |

+---------------------------+

SELECT 'Maria' REGEXP 'Ma[^r]ia';

+---------------------------+

| 'Maria' REGEXP 'Ma[^r]ia' |

+---------------------------+

| 0 |

+---------------------------+

The [and] characters on their own can be literally matched inside a [] block, without escaping, as long as they

immediately match the opening bracket:

SELECT '[Maria' REGEXP '[[]';

+-----------------------+

| '[Maria' REGEXP '[[]' |

+-----------------------+

| 1 |

+-----------------------+

SELECT '[Maria' REGEXP '[]]';

+-----------------------+

| '[Maria' REGEXP '[]]' |

+-----------------------+

| 0 |

+-----------------------+

SELECT ']Maria' REGEXP '[]]';

+-----------------------+

| ']Maria' REGEXP '[]]' |

+-----------------------+

| 1 |

+-----------------------+

SELECT ']Maria' REGEXP '[]a]';

+------------------------+

| ']Maria' REGEXP '[]a]' |

+------------------------+

| 1 |

+------------------------+

Incorrect order, so no match:

SELECT ']Maria' REGEXP '[a]]';

+------------------------+

| ']Maria' REGEXP '[a]]' |

+------------------------+

| 0 |

+------------------------+

The - character can also be matched in the same way:

919/4161

SELECT '-Maria' REGEXP '[1-10]';

+--------------------------+

| '-Maria' REGEXP '[1-10]' |

+--------------------------+

| 0 |

+--------------------------+

SELECT '-Maria' REGEXP '[-1-10]';

+---------------------------+

| '-Maria' REGEXP '[-1-10]' |

+---------------------------+

| 1 |

+---------------------------+

Word boundaries

The :<: and :>: patterns match the beginning and the end of a word respectively. For example:

SELECT 'How do I upgrade MariaDB?' REGEXP '[[:<:]]MariaDB[[:>:]]';

+--+

| 'How do I upgrade MariaDB?' REGEXP '[[:<:]]MariaDB[[:>:]]' |

+--+

| 1 |

+--+

SELECT 'How do I upgrade MariaDB?' REGEXP '[[:<:]]Maria[[:>:]]';

+--+

| 'How do I upgrade MariaDB?' REGEXP '[[:<:]]Maria[[:>:]]' |

+--+

| 0 |

+--+

Character Classes

There are a number of shortcuts to match particular preset character classes. These are matched with the

[:character_class:] pattern (inside a [] set). The following character classes exist:

Character Class Description

alnum Alphanumeric

alpha Alphabetic

blank Whitespace

cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase alphabetic

print Graphic or space characters

punct Punctuation

space Space, tab, newline, and carriage return

upper Uppercase alphabetic

xdigit Hexadecimal digit

For example:

SELECT 'Maria' REGEXP 'Mar[[:alnum:]]*';

+--------------------------------+

| 'Maria' REGEXP 'Mar[:alnum:]*' |

+--------------------------------+

| 1 |

+--------------------------------+

Remember that matches are by default case-insensitive, unless a binary string is used, so the following example,

specifically looking for an uppercase, counter-intuitively matches a lowercase character:
920/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/%253C%253A
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/%253E%253A

SELECT 'Mari' REGEXP 'Mar[[:upper:]]+';

+---------------------------------+

| 'Mari' REGEXP 'Mar[[:upper:]]+' |

+---------------------------------+

| 1 |

+---------------------------------+

SELECT BINARY 'Mari' REGEXP 'Mar[[:upper:]]+';

+--+

| BINARY 'Mari' REGEXP 'Mar[[:upper:]]+' |

+--+

| 0 |

+--+

Character Names

There are also number of shortcuts to match particular preset character names. These are matched with the

[.character.] pattern (inside a [] set). The following character classes exist:

Name Character

NUL 0

SOH 001

STX 002

ETX 003

EOT 004

ENQ 005

ACK 006

BEL 007

alert 007

BS 010

backspace '\b'

HT 011

tab '\t'

LF 012

newline '\n'

VT 013

vertical-tab '\v'

FF 014

form-feed '\f'

CR 015

carriage-return '\r'

SO 016

SI 017

DLE 020

DC1 021

DC2 022

DC3 023

DC4 024

NAK 025

SYN 026

921/4161

ETB 027

CAN 030

EM 031

SUB 032

ESC 033

IS4 034

FS 034

IS3 035

GS 035

IS2 036

RS 036

IS1 037

US 037

space ' '

exclamation-mark '!'

quotation-mark '"'

number-sign '#'

dollar-sign '$'

percent-sign '%'

ampersand '&'

apostrophe '\''

left-parenthesis '('

right-parenthesis ')'

asterisk '*'

plus-sign '+'

comma ','

hyphen '-'

hyphen-minus '-'

period '.'

full-stop '.'

slash '/'

solidus '/'

zero '0'

one '1'

two '2'

three '3'

four '4'

five '5'

six '6'

seven '7'

eight '8'

nine '9'

colon ':'

922/4161

semicolon ';'

less-than-sign '<'

equals-sign '='

greater-than-sign '>'

question-mark '?'

commercial-at '@'

left-square-bracket '['

backslash
'

'

reverse-solidus
'

'

right-square-bracket ']'

circumflex '^'

circumflex-accent '^'

underscore '_'

low-line '_'

grave-accent '`'

left-brace '{'

left-curly-bracket '{'

vertical-line '|'

right-brace '}'

right-curly-bracket '}'

tilde ''

DEL 177

For example:

SELECT '|' REGEXP '[[.vertical-line.]]';

+----------------------------------+

| '|' REGEXP '[[.vertical-line.]]' |

+----------------------------------+

| 1 |

+----------------------------------+

Combining

The true power of regular expressions is unleashed when the above is combined, to form more complex examples. Regular

expression's reputation for complexity stems from the seeming complexity of multiple combined regular expressions, when

in reality, it's simply a matter of understanding the characters and how they apply:

The first example fails to match, as while the Ma matches, either i or r only matches once before the ia characters at

the end.

SELECT 'Maria' REGEXP 'Ma[ir]{2}ia';

+------------------------------+

| 'Maria' REGEXP 'Ma[ir]{2}ia' |

+------------------------------+

| 0 |

+------------------------------+

This example matches, as either i or r match exactly twice after the Ma , in this case one r and one i .

923/4161

SELECT 'Maria' REGEXP 'Ma[ir]{2}';

+----------------------------+

| 'Maria' REGEXP 'Ma[ir]{2}' |

+----------------------------+

| 1 |

+----------------------------+

Escaping

With the large number of special characters, care needs to be taken to properly escape characters. Two backslash

characters,

(one for the MariaDB parser, one for the regex library), are required to properly escape a character. For example:

To match the literal (Ma :

SELECT '(Maria)' REGEXP '(Ma';

ERROR 1139 (42000): Got error 'parentheses not balanced' from regexp

SELECT '(Maria)' REGEXP '\(Ma';

ERROR 1139 (42000): Got error 'parentheses not balanced' from regexp

SELECT '(Maria)' REGEXP '\\(Ma';

+--------------------------+

| '(Maria)' REGEXP '\\(Ma' |

+--------------------------+

| 1 |

+--------------------------+

To match r+ : The first two examples are incorrect, as they match r one or more times, not r+ :

SELECT 'Mar+ia' REGEXP 'r+';

+----------------------+

| 'Mar+ia' REGEXP 'r+' |

+----------------------+

| 1 |

+----------------------+

SELECT 'Maria' REGEXP 'r+';

+---------------------+

| 'Maria' REGEXP 'r+' |

+---------------------+

| 1 |

+---------------------+

SELECT 'Maria' REGEXP 'r\\+';

+-----------------------+

| 'Maria' REGEXP 'r\\+' |

+-----------------------+

| 0 |

+-----------------------+

SELECT 'Maria' REGEXP 'r+';

+---------------------+

| 'Maria' REGEXP 'r+' |

+---------------------+

| 1 |

+---------------------+

1.2.2.1.2 Perl Compatible Regular Expressions
(PCRE) Documentation

924/4161

Contents
1. PCRE Versions

2. PCRE Enhancements

3. New Regular Expression Functions

4. PCRE Syntax

1. Special Characters

2. Character Classes

3. Generic Character Types

4. Unicode Character Properties

1. General Category Properties For \p and \P

2. Special Category Properties For \p and \P

3. Script Names For \p and \P

5. Extended Unicode Grapheme Sequence

6. Simple Assertions

7. Option Setting

8. Multiline Matching

9. Newline Conventions

10. Newline Sequences

11. Comments

12. Quoting

13. Resetting the Match Start

14. Non-Capturing Groups

15. Non-Greedy Quantifiers

16. Atomic Groups

17. Possessive quantifiers

18. Absolute and Relative Numeric Backreferences

19. Named Subpatterns and Backreferences

20. Positive and Negative Look-Ahead and Look-Behind Assertions

21. Subroutine Reference and Recursive Patterns

22. Defining Subpatterns For Use By Reference

23. Conditional Subpatterns

1. Conditions With Subpattern References

2. Other Kinds of Conditions

24. Matching Zero Bytes (0x00)

25. Other PCRE Features

26. default_regex_flags Examples

PCRE Versions

PCRE Version Introduced Maturity

PCRE2 10.34 MariaDB 10.5.1 Stable

PCRE 8.43 MariaDB 10.1.39 Stable

PCRE 8.42 MariaDB 10.2.15 , MariaDB 10.1.33 , MariaDB 10.0.35 Stable

PCRE 8.41 MariaDB 10.2.8 , MariaDB 10.1.26 , MariaDB 10.0.32 Stable

PCRE 8.40 MariaDB 10.2.5 , MariaDB 10.1.22 , MariaDB 10.0.30 Stable

PCRE 8.39 MariaDB 10.1.15 , MariaDB 10.0.26 Stable

PCRE 8.38
MariaDB 10.1.10 , MariaDB 10.0.23 Stable

PCRE 8.37 MariaDB 10.1.5 , MariaDB 10.0.18 Stable

PCRE 8.36 MariaDB 10.1.2 , MariaDB 10.0.15 Stable

PCRE 8.35 MariaDB 10.1.0 , MariaDB 10.0.12 Stable

PCRE 8.34 MariaDB 10.0.8 Stable

PCRE Enhancements
MariaDB 10.0.5 switched to the PCRE library, which significantly improved the power of the REGEXP/RLIKE operator.

The switch to PCRE added a number of features, including recursive patterns, named capture, look-ahead and look-behind

assertions, non-capturing groups, non-greedy quantifiers, Unicode character properties, extended syntax for characters and

character classes, multi-line matching, and many other.

925/4161

http://www.pcre.org/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-10035-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10032-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://mariadb.com/kb/en/mariadb-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/

Additionally, MariaDB 10.0.5 introduced three new functions that work with regular expressions: REGEXP_REPLACE(),

REGEXP_INSTR() and REGEXP_SUBSTR().

Also, REGEXP/RLIKE, and the new functions, now work correctly with all multi-byte character sets supported by MariaDB,

including East-Asian character sets (big5, gb2313, gbk, eucjp, eucjpms, cp932, ujis, euckr), and Unicode character sets

(utf8, utf8mb4, ucs2, utf16, utf16le, utf32). In earlier versions of MariaDB (and all MySQL versions) REGEXP/RLIKE works

correctly only with 8-bit character sets.

New Regular Expression Functions
REGEXP_REPLACE(subject, pattern, replace) - Replaces all occurrences of a pattern.

REGEXP_INSTR(subject, pattern) - Position of the first appearance of a regex .

REGEXP_SUBSTR(subject,pattern) - Returns the matching part of a string.

See the individual articles for more details and examples.

PCRE Syntax
In most cases PCRE is backward compatible with the old POSIX 1003.2 compliant regexp library (see Regular Expressions

Overview), so you won't need to change your applications that use SQL queries with the REGEXP/RLIKE predicate.

MariaDB 10.0.11 introduced the default_regex_flags variable to address the remaining compatibilities between PCRE and

the old regex library.

This section briefly describes the most important extended PCRE features. For more details please refer to the

documentation on the PCRE site , or to the documentation which is bundled in the /pcre/doc/html/ directory of a MariaDB

sources distribution. The pages pcresyntax.html and pcrepattern.html should be a good start. Regular-Expressions.Info is

another good resource to learn about PCRE and regular expressions generally.

Special Characters

PCRE supports the following escape sequences to match special characters:

Sequence Description

\a 0x07 (BEL)

\cx "control-x", where x is any ASCII character

\e 0x1B (escape)

\f 0x0C (form feed)

\n 0x0A (newline)

\r 0x0D (carriage return)

\t 0x09 (TAB)

\ddd character with octal code ddd

\xhh character with hex code hh

\x{hhh..} character with hex code hhh..

Note, the backslash characters (here, and in all examples in the sections below) must be escaped with another backslash,

unless you're using the SQL_MODE NO_BACKSLASH_ESCAPES .

This example tests if a character has hex code 0x61:

SELECT 'a' RLIKE '\\x{61}';

-> 1

Character Classes

PCRE supports the standard POSIX character classes such as alnum , alpha , blank , cntrl , digit , graph ,

lower , print , punct , space , upper , xdigit , with the following additional classes:

Class Description

ascii any ASCII character (0x00..0x7F)

926/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
http://www.pcre.org/
http://www.regular-expressions.info/tutorial.html

word any "word" character (a letter, a digit, or an underscore)

This example checks if the string consists of ASCII characters only:

SELECT 'abc' RLIKE '^[[:ascii:]]+$';

-> 1

Generic Character Types

Generic character types complement the POSIX character classes and serve to simplify writing patterns:

Class Description

\d a decimal digit (same as [:digit:])

\D a character that is not a decimal digit

\h a horizontal white space character

\H a character that is not a horizontal white space character

\N a character that is not a new line

\R a newline sequence

\s a white space character

\S a character that is not a white space character

\v a vertical white space character

\V a character that is not a vertical white space character

\w a "word" character (same as [:word:])

\W a "non-word" character

This example checks if the string consists of "word" characters only:

SELECT 'abc' RLIKE '^\\w+$';

-> 1

Unicode Character Properties

\p{xx} is a character with the xx property, and \P{xx} is a character without the xx property.

The property names represented by xx above are limited to the Unicode script names, the general category properties,

and "Any", which matches any character (including newline). Those that are not part of an identified script are lumped

together as "Common".

General Category Properties For \p and \P

Property Description

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lower case letter

Lm Modifier letter

Lo Other letter

Lt Title case letter

927/4161

Lu Upper case letter

L& Ll, Lu, or Lt

M Mark

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator

This example checks if the string consists only of characters with property N (number):

SELECT '1¼d' RLIKE '^\\p{N}+$';

-> 1

Special Category Properties For \p and \P

Property Description

Xan Alphanumeric: union of properties L and N

Xps POSIX space: property Z or tab, NL, VT, FF, CR

Xsp Perl space: property Z or tab, NL, FF, CR

Xuc A character than can be represented by a Universal Character Name

Xwd Perl word: property Xan or underscore

The property Xuc matches any character that can be represented by a Universal Character Name (in C++ and other

programming languages). These include $, @ , ` , and all characters with Unicode code points greater than U+00A0 ,

excluding the surrogates U+D800 .. U+DFFF .

Script Names For \p and \P

Arabic, Armenian, Avestan, Balinese, Bamum, Batak, Bengali, Bopomofo, Brahmi, Braille, Buginese, Buhid,

928/4161

Canadian_Aboriginal, Carian, Chakma, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret,

Devanagari, Egyptian_Hieroglyphs, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul,

Hanunoo, Hebrew, Hiragana, Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscriptional_Parthian, Javanese, Kaithi,

Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lisu, Lycian, Lydian, Malayalam,

Mandaic, Meetei_Mayek, Meroitic_Cursive, Meroitic_Hieroglyphs, Miao, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham,

Old_Italic, Old_Persian, Old_South_Arabian, Old_Turkic, Ol_Chiki, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic,

Samaritan, Saurashtra, Sharada, Shavian, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa,

Tai_Le, Tai_Tham, Tai_Viet, Takri, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai, Yi.

This example checks if the string consists only of Greek characters:

SELECT '£§«' RLIKE '^\\p{Greek}+$';

-> 1

Extended Unicode Grapheme Sequence

The \X escape sequence matches a character sequence that makes an "extended grapheme cluster", i.e. a composite

character that consists of multiple Unicode code points.

One of the examples of a composite character can be a letter followed by non-spacing accent marks. This example

demonstrates that U+0045 LATIN CAPITAL LETTER E followed by U+0302 COMBINING CIRCUMFLEX ACCENT followed

by U+0323 COMBINING DOT BELOW together form an extended grapheme cluster:

SELECT _ucs2 0x004503020323 RLIKE '^\\X$';

-> 1

See the PCRE documentation for the other types of extended grapheme clusters.

Simple Assertions

An assertion specifies a certain condition that must match at a particular point, but without consuming characters from the

subject string. In addition to the standard POSIX simple assertions ^ (that matches at the beginning of a line) and $ (that

matches at the end of a line), PCRE supports a number of other assertions:

Assertion Description

\b matches at a word boundary

\B matches when not at a word boundary

\A matches at the start of the subject

\Z matches at the end of the subject, also matches before a newline at the end of the subject

\z matches only at the end of the subject

\G matches at the first matching position in the subject

This example cuts a word that consists only of 3 characters from a string:

SELECT REGEXP_SUBSTR('---abcd---xyz---', '\\b\\w{3}\\b');

-> xyz

Notice that the two \b assertions checked the word boundaries but did not get into the matching pattern.

The \b assertions work well in the beginning and the end of the subject string:

SELECT REGEXP_SUBSTR('xyz', '\\b\\w{3}\\b');

-> xyz

By default, the ^ and $ assertions have the same meaning with \A , \Z , and \z . However, the meanings of ^ and $

can change in multiline mode (see below). By contrast, the meanings of \A , \Z , and \z are always the same; they are

independent of the multiline mode.

Option Setting

A number of options that control the default match behavior can be changed within the pattern by a sequence of option

letters enclosed between (? and) .

929/4161

http://www.pcre.org

Option Description

(?i) case insensitive match

(?m) multiline mode

(?s) dotall mode (dot matches newline characters)

(?x) extended (ignore white space)

(?U) ungreedy (lazy) match

(?J) allow named subpatterns with duplicate names

(?X) extra PCRE functionality (e.g. force error on unknown escaped character)

(?-...) unset option(s)

For example, (?im) sets case insensitive multiline matching.

A hyphen followed by the option letters unset the options. For example, (?-im) means case sensitive single line match.

A combined setting and unsetting is also possible, e.g. (?im-sx) .

If an option is set outside of subpattern parentheses, the option applies to the remainder of the pattern that follows the

option. If an option is set inside a subpattern, it applies to the part of this subpattern that follows the option.

In this example the pattern (?i)m((?-i)aria)db matches the words MariaDB , Mariadb , mariadb , but not

MARIADB :

SELECT 'MariaDB' RLIKE '(?i)m((?-i)aria)db';

-> 1

SELECT 'mariaDB' RLIKE '(?i)m((?-i)aria)db';

-> 1

SELECT 'Mariadb' RLIKE '(?i)m((?-i)aria)db';

-> 1

SELECT 'MARIADB' RLIKE '(?i)m((?-i)aria)db';

-> 0

This example demonstrates that the (?x) option makes the regexp engine ignore all white spaces in the pattern (other

than in a class).

SELECT 'ab' RLIKE '(?x)a b';

-> 1

Note, putting spaces into a pattern in combination with the (?x) option can be useful to split different logical parts of a

complex pattern, to make it more readable.

Multiline Matching

Multiline matching changes the meaning of ^ and $ from "the beginning of the subject string" and "the end of the subject

string" to "the beginning of any line in the subject string" and "the end of any line in the subject string" respectively.

This example checks if the subject string contains two consequent lines that fully consist of digits:

SELECT 'abc\n123\n456\nxyz\n' RLIKE '(?m)^\\d+\\R\\d+$';

-> 1

Notice the (?m) option in the beginning of the pattern, which switches to the multiline matching mode.

Newline Conventions

PCRE supports five line break conventions:

CR (\r) - a single carriage return character

LF (\n) - a single linefeed character

CRLF (\r\n) - a carriage return followed by a linefeed

any of the previous three

930/4161

any Unicode newline sequence

By default, the newline convention is set to any Unicode newline sequence, which includes:

Sequence Description

LF (U+000A, carriage return)

CR (U+000D, carriage return)

CRLF (a carriage return followed by a linefeed)

VT (U+000B, vertical tab)

FF (U+000C, form feed)

NEL (U+0085, next line)

LS (U+2028, line separator)

PS (U+2029, paragraph separator)

The newline convention can be set by starting a pattern with one of the following sequences:

Sequence Description

(*CR) carriage return

(*LF) linefeed

(*CRLF) carriage return followed by linefeed

(*ANYCRLF) any of the previous three

(*ANY) all Unicode newline sequences

The newline conversion affects the ^ and $ assertions, the interpretation of the dot metacharacter, and the behavior of

\N .

Note, the new line convention does not affect the meaning of \R .

This example demonstrates that the dot metacharacter matches \n , because it is not a newline sequence anymore:

SELECT 'a\nb' RLIKE '(*CR)a.b';

-> 1

Newline Sequences

By default, the escape sequence \R matches any Unicode newline sequences.

The meaning of \R can be set by starting a pattern with one of the following sequences:

Sequence Description

(*BSR_ANYCRLF) any of CR, LF or CRLF

(*BSR_UNICODE) any Unicode newline sequence

Comments

It's possible to include comments inside a pattern. Comments do not participate in the pattern matching. Comments start at

the (? # sequence and continue up to the next closing parenthesis:

SELECT 'ab12' RLIKE 'ab(?#expect digits)12';

-> 1

Quoting

POSIX uses the backslash to remove a special meaning from a character. PCRE introduces a syntax to remove special

meaning from a sequence of characters. The characters inside \Q ... \E are treated literally, without their special

meaning.

This example checks if the string matches a dollar sign followed by a parenthesized name (a variable reference in some

languages):

931/4161

SELECT '$(abc)' RLIKE '^\\Q$(\\E\\w+\\Q)\\E$';

-> 1

Note that the leftmost dollar sign and the parentheses are used literally, while the rightmost dollar sign is still used to match

the end of the string.

Resetting the Match Start

The escape sequence \K causes any previously matched characters to be excluded from the final matched sequence. For

example, the pattern: (foo)\Kbar matches foobar , but reports that it has matched bar . This feature is similar to a

look-behind assertion. However, in this case, the part of the subject before the real match does not have to be of fixed

length:

SELECT REGEXP_SUBSTR('aaa123', '[a-z]*\\K[0-9]*');

-> 123

Non-Capturing Groups

The question mark and the colon after the opening parenthesis create a non-capturing group: (?:...) .

This example removes an optional article from a word, for example for better sorting of the results.

SELECT REGEXP_REPLACE('The King','(?:the|an|a)[^a-z]([a-z]+)','\\1');

-> King

Note that the articles are listed inside the left parentheses using the alternation operator | but they do not produce a

captured subpattern, so the word followed by the article is referenced by '

1' in the third argument to the function. Using non-capturing groups can be useful to save numbers on the sup-patterns

that won't be used in the third argument of REGEXP_REPLACE(), as well as for performance purposes.

Non-Greedy Quantifiers

By default, the repetition quantifiers ? , * , + and {n,m} are "greedy", that is, they try to match as much as possible.

Adding a question mark after a repetition quantifier makes it "non-greedy", so the pattern matches the minimum number of

times possible.

This example cuts C comments from a line:

SELECT REGEXP_REPLACE('/* Comment1 */ i+= 1; /* Comment2 */', '/[*].*?[*]/','');

-> i+= 1;

The pattern without the non-greedy flag to the quantifier /[*].*[*]/ would match the entire string between the leftmost

/* and the rightmost */ .

Atomic Groups

A sequence inside (?> ...) makes an atomic group. Backtracking inside an atomic group is prevented once it has

matched; however, backtracking past to the previous items works normally.

Consider the pattern \d+foo applied to the subject string 123bar . Once the engine scans 123 and fails on the letter b ,

it would normally backtrack to 2 and try to match again, then fail and backtrack to 1 and try to match and fail again, and

finally fail the entire pattern. In case of an atomic group (?>\d+)foo with the same subject string 123bar , the engine

gives up immediately after the first failure to match foo . An atomic group with a quantifier can match all or nothing.

Atomic groups produce faster false results (i.e. in case when a long subject string does not match the pattern), because the

regexp engine saves performance on backtracking. However, don't hurry to put everything into atomic groups. This example

demonstrates the difference between atomic and non-atomic match:

932/4161

SELECT 'abcc' RLIKE 'a(?>bc|b)c' AS atomic1;

-> 1

SELECT 'abc' RLIKE 'a(?>bc|b)c' AS atomic2;

-> 0

SELECT 'abcc' RLIKE 'a(bc|b)c' AS non_atomic1;

-> 1

SELECT 'abc' RLIKE 'a(bc|b)c' AS non_atomic2;

-> 1

The non-atomic pattern matches both abbc and abc , while the atomic pattern matches abbc only.

The atomic group (?>bc|b) in the above example can be "translated" as "if there is bc , then don't try to match as b ".

So b can match only if bc is not found.

Atomic groups are not capturing. To make an atomic group capturing, put it into parentheses:

SELECT REGEXP_REPLACE('abcc','a((?>bc|b))c','\\1');

-> bc

Possessive quantifiers

An atomic group which ends with a quantifier can be rewritten using a so called "possessive quantifier" syntax by putting an

additional + sign following the quantifier.

The pattern (?>\d+)foo from the previous section's example can be rewritten as \d++foo .

Absolute and Relative Numeric Backreferences

Backreferences match the same text as previously matched by a capturing group. Backreferences can be written using:

a backslash followed by a digit

the \g escape sequence followed by a positive or negative number

the \g escape sequence followed by a positive or negative number enclosed in braces

The following backreferences are identical and refer to the first capturing group:

\1

\g1

\g{1}

This example demonstrates a pattern that matches "sense and sensibility" and "response and responsibility", but not "sense

and responsibility":

SELECT 'sense and sensibility' RLIKE '(sens|respons)e and \\1ibility';

-> 1

This example removes doubled words that can unintentionally creep in when you edit a text in a text editor:

SELECT REGEXP_REPLACE('using using the the regexp regexp',

 '\\b(\\w+)\\s+\\1\\b','\\1');

-> using the regexp

Note that all double words were removed, in the beginning, in the middle and in the end of the subject string.

A negative number in a \g sequence means a relative reference. Relative references can be helpful in long patterns, and

also in patterns that are created by joining fragments together that contain references within themselves. The sequence

\g{-1} is a reference to the most recently started capturing subpattern before \g .

In this example \g{-1} is equivalent to \2 :

SELECT 'abc123def123' RLIKE '(abc(123)def)\\g{-1}';

-> 1

SELECT 'abc123def123' RLIKE '(abc(123)def)\\2';

-> 1

933/4161

Named Subpatterns and Backreferences

Using numeric backreferences for capturing groups can be hard to track in a complicated regular expression. Also, the

numbers can change if an expression is modified. To overcome these difficulties, PCRE supports named subpatterns.

A subpattern can be named in one of three ways: (?<name> ...) or (?'name' ...) as in Perl, or (?P<name> ...) as in

Python. References to capturing subpatterns from other parts of the pattern, can be made by name as well as by number.

Backreferences to a named subpattern can be written using the .NET syntax \k{name} , the Perl syntax \k<name> or

\k'name' or \g{name} , or the Python syntax (?P=name) .

This example tests if the string is a correct HTML tag:

SELECT 'Up' RLIKE '<(?<tag>[a-z][a-z0-9]*)[^>]*>[^<]*</(?P=tag)>';

-> 1

Positive and Negative Look-Ahead and Look-Behind Assertions

Look-ahead and look-behind assertions serve to specify the context for the searched regular expression pattern. Note that

the assertions only check the context, they do not capture anything themselves!

This example finds the letter which is not followed by another letter (negative look-ahead):

SELECT REGEXP_SUBSTR('ab1','[a-z](?![a-z])');

-> b

This example finds the letter which is followed by a digit (positive look-ahead):

SELECT REGEXP_SUBSTR('ab1','[a-z](?=[0-9])');

-> b

This example finds the letter which does not follow a digit character (negative look-behind):

SELECT REGEXP_SUBSTR('1ab','(?<![0-9])[a-z]');

-> b

This example finds the letter which follows another letter character (positive look-behind):

SELECT REGEXP_SUBSTR('1ab','(?<=[a-z])[a-z]');

-> b

Note that look-behind assertions can only be of fixed length; you cannot have repetition operators or alternations with

different lengths:

SELECT 'aaa' RLIKE '(?<=(a|bc))a';

ERROR 1139 (42000): Got error 'lookbehind assertion is not fixed length at offset 10' from regexp

Subroutine Reference and Recursive Patterns

PCRE supports a special syntax to recourse the entire pattern or its individual subpatterns:

Syntax Description

(?R) Recourse the entire pattern

(?n) call subpattern by absolute number

(?+n) call subpattern by relative number

(?-n) call subpattern by relative number

(?&name) call subpattern by name (Perl)

(?P>name) call subpattern by name (Python)

\g<name> call subpattern by name (Oniguruma)

\g'name' call subpattern by name (Oniguruma)

934/4161

\g<n> call subpattern by absolute number (Oniguruma)

\g'n' call subpattern by absolute number (Oniguruma)

\g<+n> call subpattern by relative number

\g<-n> call subpattern by relative number

\g'+n' call subpattern by relative number

\g'-n' call subpattern by relative number

This example checks for a correct additive arithmetic expression consisting of numbers, unary plus and minus, binary plus

and minus, and parentheses:

SELECT '1+2-3+(+(4-1)+(-2)+(+1))' RLIKE '^(([+-]?(\\d+|[(](?1)[)]))(([+-](?1))*))$';

-> 1

The recursion is done using (?1) to call for the first parenthesized subpattern, which includes everything except the

leading ^ and the trailing $.

The regular expression in the above example implements the following BNF grammar:

1. <expression> ::= <term> [(<sign> <term>)...]

2. <term> ::= [<sign>] <primary>

3. <primary> ::= <number> | <left paren> <expression> <right paren>

4. <sign> ::= <plus sign> | <minus sign>

Defining Subpatterns For Use By Reference

Use the (?(DEFINE) ...) syntax to define subpatterns that can be referenced from elsewhere.

This example defines a subpattern with the name letters that matches one or more letters, which is further reused two

times:

SELECT 'abc123xyz' RLIKE '^(?(DEFINE)(?<letters>[a-z]+))(?&letters)[0-9]+(?&letters)$';

-> 1

The above example can also be rewritten to define the digit part as a subpattern as well:

SELECT 'abc123xyz' RLIKE

 '^(?(DEFINE)(?<letters>[a-z]+)(?<digits>[0-9]+))(?&letters)(?&digits)(?&letters)$';

-> 1

Conditional Subpatterns

There are two forms of conditional subpatterns:

(?(condition)yes-pattern)

(?(condition)yes-pattern|no-pattern)

The yes-pattern is used if the condition is satisfied, otherwise the no-pattern (if any) is used.

Conditions With Subpattern References

If a condition consists of a number, it makes a condition with a subpattern reference. Such a condition is true if a capturing

subpattern corresponding to the number has previously matched.

This example finds an optionally parenthesized number in a string:

SELECT REGEXP_SUBSTR('a(123)b', '([(])?[0-9]+(?(1)[)])');

-> (123)

The ([(])? part makes a capturing subpattern that matches an optional opening parenthesis; the [0-9]+ part matches a

number, and the (?(1)[)]) part matches a closing parenthesis, but only if the opening parenthesis has been previously

found.

Other Kinds of Conditions
935/4161

The other possible condition kinds are: recursion references and assertions. See the PCRE documentation for details.

Matching Zero Bytes (0x00)

PCRE correctly works with zero bytes in the subject strings:

SELECT 'a\0b' RLIKE '^a.b$';

-> 1

Zero bytes, however, are not supported literally in the pattern strings and should be escaped using the \xhh or \x{hh}

syntax:

SELECT 'a\0b' RLIKE '^a\\x{00}b$';

-> 1

Other PCRE Features

PCRE provides other extended features that were not covered in this document, such as duplicate subpattern numbers,

backtracking control, breaking utf-8 sequences into individual bytes, setting the match limit, setting the recursion limit,

optimization control, recursion conditions, assertion conditions and more types of extended grapheme clusters. Please refer

to the PCRE documentation for details.

Enhanced regex was implemented as a GSoC 2013 project by Sudheera Palihakkara.

default_regex_flags Examples

The default_regex_flags variable was introduced to address the remaining incompatibilities between PCRE and the old

regex library. Here are some examples of its usage:

The default behaviour (multiline match is off)

SELECT 'a\nb\nc' RLIKE '^b$';

+---------------------------+

| '(?m)a\nb\nc' RLIKE '^b$' |

+---------------------------+

| 0 |

+---------------------------+

Enabling the multiline option using the PCRE option syntax:

SELECT 'a\nb\nc' RLIKE '(?m)^b$';

+---------------------------+

| 'a\nb\nc' RLIKE '(?m)^b$' |

+---------------------------+

| 1 |

+---------------------------+

Enabling the miltiline option using default_regex_flags

SET default_regex_flags='MULTILINE';

SELECT 'a\nb\nc' RLIKE '^b$';

+-----------------------+

| 'a\nb\nc' RLIKE '^b$' |

+-----------------------+

| 1 |

+-----------------------+

1.2.2.1.3 NOT REGEXP

Syntax

expr NOT REGEXP pat, expr NOT RLIKE pat

936/4161

http://www.pcre.org
http://www.pcre.org

Description
This is the same as NOT (expr REGEXP pat).

1.2.2.1.4 REGEXP

Syntax

expr REGEXP pat, expr RLIKE pat

Description
Performs a pattern match of a string expression expr against a pattern pat . The pattern can be an extended regular

expression. See Regular Expressions Overview for details on the syntax for regular expressions (see also PCRE Regular

Expressions).

Returns 1 if expr matches pat or 0 if it doesn't match. If either expr or pat are NULL, the result is NULL.

The negative form NOT REGEXP also exists, as an alias for NOT (string REGEXP pattern) . RLIKE and NOT RLIKE

are synonyms for REGEXP and NOT REGEXP, originally provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or table column.

Note: Because MariaDB uses the C escape syntax in strings (for example, "\n" to represent the newline character), you

must double any "\" that you use in your REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

MariaDB 10.0.5 moved to the PCRE regex library - see PCRE Regular Expressions for enhancements to REGEXP

introduced in MariaDB 10.0.5 .

The default_regex_flags variable addresses the remaining compatibilities between PCRE and the old regex library.

Examples

937/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/

SELECT 'Monty!' REGEXP 'm%y%%';

+-------------------------+

| 'Monty!' REGEXP 'm%y%%' |

+-------------------------+

| 0 |

+-------------------------+

SELECT 'Monty!' REGEXP '.*';

+----------------------+

| 'Monty!' REGEXP '.*' |

+----------------------+

| 1 |

+----------------------+

SELECT 'new*\n*line' REGEXP 'new*.*line';

+---------------------------------------+

| 'new*\n*line' REGEXP 'new*.*line' |

+---------------------------------------+

| 1 |

+---------------------------------------+

SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';

+----------------+-----------------------+

| 'a' REGEXP 'A' | 'a' REGEXP BINARY 'A' |

+----------------+-----------------------+

| 1 | 0 |

+----------------+-----------------------+

SELECT 'a' REGEXP '^[a-d]';

+---------------------+

| 'a' REGEXP '^[a-d]' |

+---------------------+

| 1 |

+---------------------+

default_regex_flags examples

MariaDB 10.0.11 introduced the default_regex_flags variable to address the remaining compatibilities between PCRE and

the old regex library.

The default behaviour (multiline match is off)

SELECT 'a\nb\nc' RLIKE '^b$';

+---------------------------+

| '(?m)a\nb\nc' RLIKE '^b$' |

+---------------------------+

| 0 |

+---------------------------+

Enabling the multiline option using the PCRE option syntax:

SELECT 'a\nb\nc' RLIKE '(?m)^b$';

+---------------------------+

| 'a\nb\nc' RLIKE '(?m)^b$' |

+---------------------------+

| 1 |

+---------------------------+

Enabling the multiline option using default_regex_flags

SET default_regex_flags='MULTILINE';

SELECT 'a\nb\nc' RLIKE '^b$';

+-----------------------+

| 'a\nb\nc' RLIKE '^b$' |

+-----------------------+

| 1 |

+-----------------------+

938/4161

https://mariadb.com/kb/en/mariadb-10011-release-notes/

1.2.2.1.5 REGEXP_INSTR

Syntax

REGEXP_INSTR(subject, pattern)

Returns the position of the first occurrence of the regular expression pattern in the string subject , or 0 if pattern was

not found.

The positions start with 1 and are measured in characters (i.e. not in bytes), which is important for multi-byte character sets.

You can cast a multi-byte character set to BINARY to get offsets in bytes.

The function follows the case sensitivity rules of the effective collation. Matching is performed case insensitively for case

insensitive collations, and case sensitively for case sensitive collations and for binary data.

The collation case sensitivity can be overwritten using the (?i) and (?-i) PCRE flags.

MariaDB uses the PCRE regular expression library for enhanced regular expression performance, and REGEXP_INSTR

was introduced as part of this enhancement.

Examples

SELECT REGEXP_INSTR('abc','b');

-> 2

SELECT REGEXP_INSTR('abc','x');

-> 0

SELECT REGEXP_INSTR('BJÖRN','N');

-> 5

Casting a multi-byte character set as BINARY to get offsets in bytes:

SELECT REGEXP_INSTR(BINARY 'BJÖRN','N') AS cast_utf8_to_binary;

-> 6

Case sensitivity:

SELECT REGEXP_INSTR('ABC','b');

-> 2

SELECT REGEXP_INSTR('ABC' COLLATE utf8_bin,'b');

-> 0

SELECT REGEXP_INSTR(BINARY'ABC','b');

-> 0

SELECT REGEXP_INSTR('ABC','(?-i)b');

-> 0

SELECT REGEXP_INSTR('ABC' COLLATE utf8_bin,'(?i)b');

-> 2

1.2.2.1.6 REGEXP_REPLACE

Syntax

REGEXP_REPLACE(subject, pattern, replace)

Description

939/4161

REGEXP_REPLACE returns the string subject with all occurrences of the regular expression pattern replaced by the

string replace . If no occurrences are found, then subject is returned as is.

The replace string can have backreferences to the subexpressions in the form \N, where N is a number from 1 to 9.

The function follows the case sensitivity rules of the effective collation. Matching is performed case insensitively for case

insensitive collations, and case sensitively for case sensitive collations and for binary data.

The collation case sensitivity can be overwritten using the (?i) and (?-i) PCRE flags.

MariaDB uses the PCRE regular expression library for enhanced regular expression performance, and REGEXP_REPLACE

was introduced as part of this enhancement.

The default_regex_flags variable addresses the remaining compatibilities between PCRE and the old regex library.

Examples

SELECT REGEXP_REPLACE('ab12cd','[0-9]','') AS remove_digits;

-> abcd

SELECT REGEXP_REPLACE('<html><head><title>title</title><body>body</body></htm>', '<.+?>',' ')

AS strip_html;

-> title body

Backreferences to the subexpressions in the form \N , where N is a number from 1 to 9:

SELECT REGEXP_REPLACE('James Bond','^(.*) (.*)$','\\2, \\1') AS reorder_name;

-> Bond, James

Case insensitive and case sensitive matches:

SELECT REGEXP_REPLACE('ABC','b','-') AS case_insensitive;

-> A-C

SELECT REGEXP_REPLACE('ABC' COLLATE utf8_bin,'b','-') AS case_sensitive;

-> ABC

SELECT REGEXP_REPLACE(BINARY 'ABC','b','-') AS binary_data;

-> ABC

Overwriting the collation case sensitivity using the (?i) and (?-i) PCRE flags.

SELECT REGEXP_REPLACE('ABC','(?-i)b','-') AS force_case_sensitive;

-> ABC

SELECT REGEXP_REPLACE(BINARY 'ABC','(?i)b','-') AS force_case_insensitive;

-> A-C

1.2.2.1.7 REGEXP_SUBSTR

Syntax

REGEXP_SUBSTR(subject,pattern)

Description
Returns the part of the string subject that matches the regular expression pattern , or an empty string if pattern was

not found.

The function follows the case sensitivity rules of the effective collation. Matching is performed case insensitively for case

insensitive collations, and case sensitively for case sensitive collations and for binary data.

The collation case sensitivity can be overwritten using the (?i) and (?-i) PCRE flags.

MariaDB uses the PCRE regular expression library for enhanced regular expression performance, and REGEXP_SUBSTR

940/4161

was introduced as part of this enhancement.

The default_regex_flags variable addresses the remaining compatibilities between PCRE and the old regex library.

Examples

SELECT REGEXP_SUBSTR('ab12cd','[0-9]+');

-> 12

SELECT REGEXP_SUBSTR(

 'See https://mariadb.org/en/foundation/ for details',

 'https?://[^/]*');

-> https://mariadb.org

SELECT REGEXP_SUBSTR('ABC','b');

-> B

SELECT REGEXP_SUBSTR('ABC' COLLATE utf8_bin,'b');

->

SELECT REGEXP_SUBSTR(BINARY'ABC','b');

->

SELECT REGEXP_SUBSTR('ABC','(?i)b');

-> B

SELECT REGEXP_SUBSTR('ABC' COLLATE utf8_bin,'(?+i)b');

-> B

1.2.2.1.8 RLIKE

Syntax

expr REGEXP pat, expr RLIKE pat

Description
RLIKE is a synonym for REGEXP.

1.2.2.2 Dynamic Columns Functions
Dynamic columns is a feature that allows one to store different sets of columns for each row in a table. It works by storing a

set of columns in a blob and having a small set of functions to manipulate it.

COLUMN_ADD

Adds or updates dynamic columns.

COLUMN_CHECK

Checks if a dynamic column blob is valid

COLUMN_CREATE

Returns a dynamic columns blob.

COLUMN_DELETE

Deletes a dynamic column.

COLUMN_EXISTS

Checks is a column exists.

COLUMN_GET

Gets a dynamic column value by name.

1

941/4161

COLUMN_JSON

Returns a JSON representation of dynamic column blob data

COLUMN_LIST

Returns comma-separated list of columns names.

4

1.2.2.2.1 COLUMN_ADD

Syntax

COLUMN_ADD(dyncol_blob, column_nr, value [as type], [column_nr, value [as type]]...);

COLUMN_ADD(dyncol_blob, column_name, value [as type], [column_name, value [as type]]...);

Description
Adds or updates dynamic columns.

dyncol_blob must be either a valid dynamic columns blob (for example, COLUMN_CREATE returns such blob), or an

empty string.

column_name specifies the name of the column to be added. If dyncol_blob already has a column with this

name, it will be overwritten.

value specifies the new value for the column. Passing a NULL value will cause the column to be deleted.

as type is optional. See #datatypes section for a discussion about types.

The return value is a dynamic column blob after the modifications.

Examples

UPDATE t1 SET dyncol_blob=COLUMN_ADD(dyncol_blob, "column_name", "value") WHERE id=1;

Note: COLUMN_ADD() is a regular function (just like CONCAT()), hence, in order to update the value in the table you have

to use the UPDATE ... SET dynamic_col=COLUMN_ADD(dynamic_col,

....) pattern.

1.2.2.2.2 COLUMN_CHECK

Syntax

COLUMN_CHECK(dyncol_blob);

Description
Check if dyncol_blob is a valid packed dynamic columns blob. Return value of 1 means the blob is valid, return value of

0 means it is not.

Rationale: Normally, one works with valid dynamic column blobs. Functions like COLUMN_CREATE, COLUMN_ADD,

COLUMN_DELETE always return valid dynamic column blobs. However, if a dynamic column blob is accidentally truncated,

or transcoded from one character set to another, it will be corrupted. This function can be used to check if a value in a blob

field is a valid dynamic column blob.

1.2.2.2.3 COLUMN_CREATE

Syntax

942/4161

COLUMN_CREATE(column_nr, value [as type], [column_nr, value [as type]]...);

COLUMN_CREATE(column_name, value [as type], [column_name, value [as type]]...);

Description
Returns a dynamic columns blob that stores the specified columns with values.

The return value is suitable for

storing in a table

further modification with other dynamic columns functions

The as type part allows one to specify the value type. In most cases, this is redundant because MariaDB will be able to

deduce the type of the value. Explicit type specification may be needed when the type of the value is not apparent. For

example, a literal '2012-12-01' has a CHAR type by default, one will need to specify '2012-12-01' AS DATE to have it

stored as a date. See Dynamic Columns:Datatypes for further details.

Examples

INSERT INTO tbl SET dyncol_blob=COLUMN_CREATE("column_name", "value");

1.2.2.2.4 COLUMN_DELETE

Syntax

COLUMN_DELETE(dyncol_blob, column_nr, column_nr...);

COLUMN_DELETE(dyncol_blob, column_name, column_name...);

Description
Deletes a dynamic column with the specified name. Multiple names can be given. The return value is a dynamic column blob

after the modification.

1.2.2.2.5 COLUMN_EXISTS

Syntax

COLUMN_EXISTS(dyncol_blob, column_nr);

COLUMN_EXISTS(dyncol_blob, column_name);

Description
Checks if a column with name column_name exists in dyncol_blob . If yes, return 1 , otherwise return 0 . See dynamic

columns for more information.

1.2.2.2.6 COLUMN_GET

Syntax

COLUMN_GET(dyncol_blob, column_nr as type);

COLUMN_GET(dyncol_blob, column_name as type);

Description
943/4161

Gets the value of a dynamic column by its name. If no column with the given name exists, NULL will be returned.

column_name as type requires that one specify the datatype of the dynamic column they are reading.

This may seem counter-intuitive: why would one need to specify which datatype they're retrieving? Can't the dynamic

columns system figure the datatype from the data being stored?

The answer is: SQL is a statically-typed language. The SQL interpreter needs to know the datatypes of all expressions

before the query is run (for example, when one is using prepared statements and runs "select COLUMN_GET(...)" , the

prepared statement API requires the server to inform the client about the datatype of the column being read before the

query is executed and the server can see what datatype the column actually has).

Lengths

If you're running queries like:

SELECT COLUMN_GET(blob, 'colname' as CHAR) ...

without specifying a maximum length (i.e. using as CHAR , not as CHAR(n)), MariaDB will report the maximum length of

the resultset column to be 16,777,216. This may cause excessive memory usage in some client libraries, because they try

to pre-allocate a buffer of maximum resultset width. To avoid this problem, use CHAR(n) whenever you're using

COLUMN_GET in the select list.

See Dynamic Columns:Datatypes for more information about datatypes.

1.2.2.2.7 COLUMN_JSON

Syntax

COLUMN_JSON(dyncol_blob)

Description
Returns a JSON representation of data in dyncol_blob . Can also be used to display nested columns. See dynamic

columns for more information.

Example

select item_name, COLUMN_JSON(dynamic_cols) from assets;

+-----------------+--+

| item_name | COLUMN_JSON(dynamic_cols) |

+-----------------+--+

| MariaDB T-shirt | {"size":"XL","color":"blue"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

Limitation: COLUMN_JSON will decode nested dynamic columns at a nesting level of not more than 10 levels deep. Dynamic

columns that are nested deeper than 10 levels will be shown as BINARY string, without encoding.

1.2.2.2.8 COLUMN_LIST

Syntax

COLUMN_LIST(dyncol_blob);

Description
Returns a comma-separated list of column names. The names are quoted with backticks.

944/4161

See dynamic columns for more information.

1.2.2.3 ASCII

Syntax

ASCII(str)

Description
Returns the numeric ASCII value of the leftmost character of the string argument. Returns 0 if the given string is empty and

NULL if it is NULL .

ASCII() works for 8-bit characters.

Examples

SELECT ASCII(9);

+----------+

| ASCII(9) |

+----------+

| 57 |

+----------+

SELECT ASCII('9');

+------------+

| ASCII('9') |

+------------+

| 57 |

+------------+

SELECT ASCII('abc');

+--------------+

| ASCII('abc') |

+--------------+

| 97 |

+--------------+

1.2.2.4 BIN

Syntax

BIN(N)

Description
Returns a string representation of the binary value of the given longlong (that is, BIGINT) number. This is equivalent to

CONV(N,10,2) . The argument should be positive. If it is a FLOAT , it will be truncated. Returns NULL if the argument is

NULL .

Examples

SELECT BIN(12);

+---------+

| BIN(12) |

+---------+

| 1100 |

+---------+

945/4161

1.2.2.5 BINARY Operator

This page describes the BINARY operator. For details about the data type, see Binary Data Type.

Syntax

BINARY

Description
The BINARY operator casts the string following it to a binary string. This is an easy way to force a column comparison to be

done byte by byte rather than character by character. This causes the comparison to be case sensitive even if the column

isn't defined as BINARY or BLOB .

BINARY also causes trailing spaces to be significant.

Examples

SELECT 'a' = 'A';

+-----------+

| 'a' = 'A' |

+-----------+

| 1 |

+-----------+

SELECT BINARY 'a' = 'A';

+------------------+

| BINARY 'a' = 'A' |

+------------------+

| 0 |

+------------------+

SELECT 'a' = 'a ';

+------------+

| 'a' = 'a ' |

+------------+

| 1 |

+------------+

SELECT BINARY 'a' = 'a ';

+-------------------+

| BINARY 'a' = 'a ' |

+-------------------+

| 0 |

+-------------------+

1.2.2.6 BIT_LENGTH

Syntax

BIT_LENGTH(str)

Contents
1. Syntax

2. Description

3. Examples

4. Compatibility

Description
946/4161

Returns the length of the given string argument in bits. If the argument is not a string, it will be converted to string. If the

argument is NULL , it returns NULL .

Examples

SELECT BIT_LENGTH('text');

+--------------------+

| BIT_LENGTH('text') |

+--------------------+

| 32 |

+--------------------+

SELECT BIT_LENGTH('');

+----------------+

| BIT_LENGTH('') |

+----------------+

| 0 |

+----------------+

Compatibility
PostgreSQL and Sybase support BIT_LENGTH().

1.2.2.7 CAST

Syntax

CAST(expr AS type)

Contents
1. Syntax

2. Description

3. Examples

Description
The CAST() function takes a value of one type and produces a value of another type, similar to the CONVERT() function.

The type can be one of the following values:

BINARY

CHAR

DATE

DATETIME

DECIMAL[(M[,D])]

DOUBLE

FLOAT (from MariaDB 10.4.5)

INTEGER

Short for SIGNED INTEGER

SIGNED [INTEGER]

UNSIGNED [INTEGER]

TIME

VARCHAR (in Oracle mode, from MariaDB 10.3)

The main difference between CAST and CONVERT() is that CONVERT(expr,type) is ODBC syntax while CAST(expr as

type) and CONVERT(... USING ...) are SQL92 syntax.

In MariaDB 10.4 and later, you can use the CAST() function with the INTERVAL keyword.

Until MariaDB 5.5.31 , X'HHHH' , the standard SQL syntax for binary string literals, erroneously worked in the same way

as 0xHHHH . In 5.5.31 it was intentionally changed to behave as a string in all contexts (and never as a number).

This introduced an incompatibility with previous versions of MariaDB, and all versions of MySQL (see the example below).

947/4161

https://mariadb.com/kb/en/mariadb-5531-release-notes/

Examples
Simple casts:

SELECT CAST("abc" AS BINARY);

SELECT CAST("1" AS UNSIGNED INTEGER);

SELECT CAST(123 AS CHAR CHARACTER SET utf8)

Note that when one casts to CHAR without specifying the character set, the collation_connection character set collation will

be used. When used with CHAR CHARACTER SET , the default collation for that character set will be used.

SELECT COLLATION(CAST(123 AS CHAR));

+------------------------------+

| COLLATION(CAST(123 AS CHAR)) |

+------------------------------+

| latin1_swedish_ci |

+------------------------------+

SELECT COLLATION(CAST(123 AS CHAR CHARACTER SET utf8));

+---+

| COLLATION(CAST(123 AS CHAR CHARACTER SET utf8)) |

+---+

| utf8_general_ci |

+---+

If you also want to change the collation, you have to use the COLLATE operator:

SELECT COLLATION(CAST(123 AS CHAR CHARACTER SET utf8)

 COLLATE utf8_unicode_ci);

+---+

| COLLATION(CAST(123 AS CHAR CHARACTER SET utf8) COLLATE utf8_unicode_ci) |

+---+

| utf8_unicode_ci |

+---+

Using CAST() to order an ENUM field as a CHAR rather than the internal numerical value:

CREATE TABLE enum_list (enum_field enum('c','a','b'));

INSERT INTO enum_list (enum_field)

VALUES('c'),('a'),('c'),('b');

SELECT * FROM enum_list

ORDER BY enum_field;

+------------+

| enum_field |

+------------+

| c |

| c |

| a |

| b |

+------------+

SELECT * FROM enum_list

ORDER BY CAST(enum_field AS CHAR);

+------------+

| enum_field |

+------------+

| a |

| b |

| c |

| c |

+------------+

From MariaDB 5.5.31 , the following will trigger warnings, since x'aa' and 'X'aa' no longer behave as a number.

Previously, and in all versions of MySQL, no warnings are triggered since they did erroneously behave as a number:

948/4161

https://mariadb.com/kb/en/mariadb-5531-release-notes/

SELECT CAST(0xAA AS UNSIGNED), CAST(x'aa' AS UNSIGNED), CAST(X'aa' AS UNSIGNED);

+------------------------+-------------------------+-------------------------+

| CAST(0xAA AS UNSIGNED) | CAST(x'aa' AS UNSIGNED) | CAST(X'aa' AS UNSIGNED) |

+------------------------+-------------------------+-------------------------+

| 170 | 0 | 0 |

+------------------------+-------------------------+-------------------------+

1 row in set, 2 warnings (0.00 sec)

Warning (Code 1292): Truncated incorrect INTEGER value: '\xAA'

Warning (Code 1292): Truncated incorrect INTEGER value: '\xAA'

Casting to intervals:

SELECT CAST(2019-01-04 INTERVAL AS DAY_SECOND(2)) AS "Cast";

+-------------+

| Cast |

+-------------+

| 00:20:17.00 |

+-------------+

1.2.2.8 CHAR Function

Syntax

CHAR(N,... [USING charset_name])

Description
CHAR() interprets each argument as an INT and returns a string consisting of the characters given by the code values of

those integers. NULL values are skipped. By default, CHAR() returns a binary string. To produce a string in a given

character set, use the optional USING clause:

SELECT CHARSET(CHAR(0x65)), CHARSET(CHAR(0x65 USING utf8));

+---------------------+--------------------------------+

| CHARSET(CHAR(0x65)) | CHARSET(CHAR(0x65 USING utf8)) |

+---------------------+--------------------------------+

| binary | utf8 |

+---------------------+--------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if strict SQL mode is

enabled, the result from CHAR() becomes NULL .

Examples

SELECT CHAR(77,97,114,'105',97,'68',66);

+----------------------------------+

| CHAR(77,97,114,'105',97,'68',66) |

+----------------------------------+

| MariaDB |

+----------------------------------+

SELECT CHAR(77,77.3,'77.3');

+----------------------+

| CHAR(77,77.3,'77.3') |

+----------------------+

| MMM |

+----------------------+

1 row in set, 1 warning (0.00 sec)

Warning (Code 1292): Truncated incorrect INTEGER value: '77.3'

949/4161

1.2.2.9 CHAR_LENGTH

Syntax

CHAR_LENGTH(str)

CHARACTER_LENGTH(str)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the length of the given string argument, measured in characters. A multi-byte character counts as a single

character. This means that for a string containing five two-byte characters, LENGTH() (or OCTET_LENGTH() in Oracle

mode) returns 10, whereas CHAR_LENGTH() returns 5. If the argument is NULL , it returns NULL .

If the argument is not a string value, it is converted into a string.

It is synonymous with the CHARACTER_LENGTH() function.

Examples

SELECT CHAR_LENGTH('MariaDB');

+------------------------+

| CHAR_LENGTH('MariaDB') |

+------------------------+

| 7 |

+------------------------+

When Oracle mode from MariaDB 10.3 is not set:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 2 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

In Oracle mode from MariaDB 10.3:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 1 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

1.2.2.10 CHARACTER_LENGTH

Syntax

CHARACTER_LENGTH(str)

Description
CHARACTER_LENGTH() is a synonym for CHAR_LENGTH() .

950/4161

1.2.2.11 CHR

Syntax

CHR(N)

Description
CHR() interprets each argument N as an integer and returns a VARCHAR(1) string consisting of the character given by the

code values of the integer. The character set and collation of the string are set according to the values of the

character_set_database and collation_database system variables.

CHR() is similar to the CHAR() function, but only accepts a single argument.

CHR() is available in all sql_modes.

Examples

SELECT CHR(67);

+---------+

| CHR(67) |

+---------+

| C |

+---------+

SELECT CHR('67');

+-----------+

| CHR('67') |

+-----------+

| C |

+-----------+

SELECT CHR('C');

+----------+

| CHR('C') |

+----------+

| |

+----------+

1 row in set, 1 warning (0.000 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1292 | Truncated incorrect INTEGER value: 'C' |

+---------+------+--+

1.2.2.12 CONCAT

Syntax

CONCAT(str1,str2,...)

Contents
1. Syntax

2. Description

1. Oracle Mode

3. Examples

Description

951/4161

Returns the string that results from concatenating the arguments. May have one or more arguments. If all arguments are

non-binary strings, the result is a non-binary string. If the arguments include any binary strings, the result is a binary string. A

numeric argument is converted to its equivalent binary string form; if you want to avoid that, you can use an explicit type

cast, as in this example:

SELECT CONCAT(CAST(int_col AS CHAR), char_col);

CONCAT() returns NULL if any argument is NULL .

A NULL parameter hides all information contained in other parameters from the result. Sometimes this is not desirable; to

avoid this, you can:

Use the CONCAT_WS() function with an empty separator, because that function is NULL -safe.

Use IFNULL() to turn NULLs into empty strings.

Oracle Mode

In Oracle mode, CONCAT ignores NULL.

Examples

SELECT CONCAT('Ma', 'ria', 'DB');

+---------------------------+

| CONCAT('Ma', 'ria', 'DB') |

+---------------------------+

| MariaDB |

+---------------------------+

SELECT CONCAT('Ma', 'ria', NULL, 'DB');

+---------------------------------+

| CONCAT('Ma', 'ria', NULL, 'DB') |

+---------------------------------+

| NULL |

+---------------------------------+

SELECT CONCAT(42.0);

+--------------+

| CONCAT(42.0) |

+--------------+

| 42.0 |

+--------------+

Using IFNULL() to handle NULLs:

SELECT CONCAT('The value of @v is: ', IFNULL(@v, ''));

+--+

| CONCAT('The value of @v is: ', IFNULL(@v, '')) |

+--+

| The value of @v is: |

+--+

In Oracle mode, from MariaDB 10.3:

SELECT CONCAT('Ma', 'ria', NULL, 'DB');

+---------------------------------+

| CONCAT('Ma', 'ria', NULL, 'DB') |

+---------------------------------+

| MariaDB |

+---------------------------------+

1.2.2.13 CONCAT_WS

Syntax

952/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/null

CONCAT_WS(separator,str1,str2,...)

Description
CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT() . The first argument is the

separator for the rest of the arguments. The separator is added between the strings to be concatenated. The separator can

be a string, as can the rest of the arguments.

If the separator is NULL , the result is NULL ; all other NULL values are skipped. This makes CONCAT_WS() suitable when

you want to concatenate some values and avoid losing all information if one of them is NULL .

Examples

SELECT CONCAT_WS(',','First name','Second name','Last Name');

+---+

| CONCAT_WS(',','First name','Second name','Last Name') |

+---+

| First name,Second name,Last Name |

+---+

SELECT CONCAT_WS('-','Floor',NULL,'Room');

+------------------------------------+

| CONCAT_WS('-','Floor',NULL,'Room') |

+------------------------------------+

| Floor-Room |

+------------------------------------+

In some cases, remember to include a space in the separator string:

SET @a = 'gnu', @b = 'penguin', @c = 'sea lion';

Query OK, 0 rows affected (0.00 sec)

SELECT CONCAT_WS(', ', @a, @b, @c);

+-----------------------------+

| CONCAT_WS(', ', @a, @b, @c) |

+-----------------------------+

| gnu, penguin, sea lion |

+-----------------------------+

Using CONCAT_WS() to handle NULL s:

SET @a = 'a', @b = NULL, @c = 'c';

SELECT CONCAT_WS('', @a, @b, @c);

+---------------------------+

| CONCAT_WS('', @a, @b, @c) |

+---------------------------+

| ac |

+---------------------------+

1.2.2.14 CONVERT

Syntax

CONVERT(expr,type), CONVERT(expr USING transcoding_name)

Contents
1. Syntax

2. Description

3. Examples

953/4161

Description
The CONVERT() and CAST() functions take a value of one type and produce a value of another type.

The type can be one of the following values:

BINARY

CHAR

DATE

DATETIME

DECIMAL[(M[,D])]

DOUBLE

FLOAT (from MariaDB 10.4.5)

INTEGER

Short for SIGNED INTEGER

SIGNED [INTEGER]

UNSIGNED [INTEGER]

TIME

VARCHAR (in Oracle mode, from MariaDB 10.3)

Note that in MariaDB, INT and INTEGER are the same thing.

BINARY produces a string with the BINARY data type. If the optional length is given, BINARY(N) causes the cast to use no

more than N bytes of the argument. Values shorter than the given number in bytes are padded with 0x00 bytes to make

them equal the length value.

CHAR(N) causes the cast to use no more than the number of characters given in the argument.

The main difference between the CAST() and CONVERT() is that CONVERT(expr,type) is ODBC syntax while CAST(expr

as type) and CONVERT(... USING ...) are SQL92 syntax.

CONVERT() with USING is used to convert data between different character sets. In MariaDB, transcoding names are the

same as the corresponding character set names. For example, this statement converts the string 'abc' in the default

character set to the corresponding string in the utf8 character set:

SELECT CONVERT('abc' USING utf8);

Examples

SELECT enum_col FROM tbl_name

ORDER BY CAST(enum_col AS CHAR);

Converting a BINARY to string to permit the LOWER function to work:

SET @x = 'AardVark';

SET @x = BINARY 'AardVark';

SELECT LOWER(@x), LOWER(CONVERT (@x USING latin1));

+-----------+----------------------------------+

| LOWER(@x) | LOWER(CONVERT (@x USING latin1)) |

+-----------+----------------------------------+

| AardVark | aardvark |

+-----------+----------------------------------+

1.2.2.15 ELT

Syntax

ELT(N, str1[, str2, str3,...])

Description

954/4161

Takes a numeric argument and a series of string arguments. Returns the string that corresponds to the given numeric

position. For instance, it returns str1 if N is 1, str2 if N is 2, and so on. If the numeric argument is a FLOAT , MariaDB

rounds it to the nearest INTEGER . If the numeric argument is less than 1, greater than the total number of arguments, or

not a number, ELT() returns NULL . It must have at least two arguments.

It is complementary to the FIELD() function.

Examples

SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');

+------------------------------------+

| ELT(1, 'ej', 'Heja', 'hej', 'foo') |

+------------------------------------+

| ej |

+------------------------------------+

SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');

+------------------------------------+

| ELT(4, 'ej', 'Heja', 'hej', 'foo') |

+------------------------------------+

| foo |

+------------------------------------+

1.2.2.16 EXPORT_SET

Syntax

EXPORT_SET(bits, on, off[, separator[, number_of_bits]])

Description
Takes a minimum of three arguments. Returns a string where each bit in the given bits argument is returned, with the

string values given for on and off .

Bits are examined from right to left, (from low-order to high-order bits). Strings are added to the result from left to right,

separated by a separator string (defaults as ' , '). You can optionally limit the number of bits the EXPORT_SET() function

examines using the number_of_bits option.

If any of the arguments are set as NULL , the function returns NULL .

Examples

SELECT EXPORT_SET(5,'Y','N',',',4);

+-----------------------------+

| EXPORT_SET(5,'Y','N',',',4) |

+-----------------------------+

| Y,N,Y,N |

+-----------------------------+

SELECT EXPORT_SET(6,'1','0',',',10);

+------------------------------+

| EXPORT_SET(6,'1','0',',',10) |

+------------------------------+

| 0,1,1,0,0,0,0,0,0,0 |

+------------------------------+

1.2.2.17 EXTRACTVALUE

Syntax
955/4161

EXTRACTVALUE(xml_frag, xpath_expr)

Contents
1. Syntax

2. Description

1. Invalid Arguments

2. Explicit text() Expressions

3. Count Matches

4. Matches

3. Examples

Description
The EXTRACTVALUE() function takes two string arguments: a fragment of XML markup and an XPath expression, (also

known as a locator). It returns the text (That is, CDDATA), of the first text node which is a child of the element or elements

matching the XPath expression.

In cases where a valid XPath expression does not match any text nodes in a valid XML fragment, (including the implicit

/text() expression), the EXTRACTVALUE() function returns an empty string.

Invalid Arguments

When either the XML fragment or the XPath expression is NULL , the EXTRACTVALUE() function returns NULL . When the

XML fragment is invalid, it raises a warning Code 1525:

Warning (Code 1525): Incorrect XML value: 'parse error at line 1 pos 11: unexpected END-OF-

INPUT'

When the XPath value is invalid, it generates an Error 1105:

ERROR 1105 (HY000): XPATH syntax error: ')'

Explicit text() Expressions

This function is the equivalent of performing a match using the XPath expression after appending /text() . In other words:

SELECT

 EXTRACTVALUE('<cases><case>example</case></cases>', '/cases/case')

 AS 'Base Example',

 EXTRACTVALUE('<cases><case>example</case></cases>', '/cases/case/text()')

 AS 'text() Example';

+--------------+----------------+

| Base Example | text() Example |

+--------------+----------------+

| example | example |

+--------------+----------------+

Count Matches

When EXTRACTVALUE() returns multiple matches, it returns the content of the first child text node of each matching

element, in the matched order, as a single, space-delimited string.

By design, the EXTRACTVALUE() function makes no distinction between a match on an empty element and no match at all.

If you need to determine whether no matching element was found in the XML fragment or if an element was found that

contained no child text nodes, use the XPath count() function.

For instance, when looking for a value that exists, but contains no child text nodes, you would get a count of the number of

matching instances:

956/4161

SELECT

 EXTRACTVALUE('<cases><case/></cases>', '/cases/case')

 AS 'Empty Example',

 EXTRACTVALUE('<cases><case/></cases>', 'count(/cases/case)')

 AS 'count() Example';

+---------------+-----------------+

| Empty Example | count() Example |

+---------------+-----------------+

| | 1 |

+---------------+-----------------+

Alternatively, when looking for a value that doesn't exist, count() returns 0.

SELECT

 EXTRACTVALUE('<cases><case/></cases>', '/cases/person')

 AS 'No Match Example',

 EXTRACTVALUE('<cases><case/></cases>', 'count(/cases/person)')

 AS 'count() Example';

+------------------+-----------------+

| No Match Example | count() Example |

+------------------+-----------------+

| | 0|

+------------------+-----------------+

Matches

Important: The EXTRACTVALUE() function only returns CDDATA. It does not return tags that the element might contain or

the text that these child elements contain.

SELECT

 EXTRACTVALUE('<cases><case>Person<email>x@example.com</email></case></cases>', '/cases')

 AS Case;

+--------+

| Case |

+--------+

| Person |

+--------+

Note, in the above example, while the XPath expression matches to the parent <case> instance, it does not return the

contained <email> tag or its content.

Examples

SELECT

 ExtractValue('<a>cccddd', '/a') AS val1,

 ExtractValue('<a>cccddd', '/a/b') AS val2,

 ExtractValue('<a>cccddd', '//b') AS val3,

 ExtractValue('<a>cccddd', '/b') AS val4,

 ExtractValue('<a>cccdddeee', '//b') AS val5;

+------+------+------+------+---------+

| val1 | val2 | val3 | val4 | val5 |

+------+------+------+------+---------+

| ccc | ddd | ddd | | ddd eee |

+------+------+------+------+---------+

1.2.2.18 FIELD

Syntax

FIELD(pattern, str1[,str2,...])

Description
957/4161

Returns the index position of the string or number matching the given pattern. Returns 0 in the event that none of the

arguments match the pattern. Raises an Error 1582 if not given at least two arguments.

When all arguments given to the FIELD() function are strings, they are treated as case-insensitive. When all the

arguments are numbers, they are treated as numbers. Otherwise, they are treated as doubles.

If the given pattern occurs more than once, the FIELD() function only returns the index of the first instance. If the given

pattern is NULL , the function returns 0 , as a NULL pattern always fails to match.

This function is complementary to the ELT() function.

Examples

SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo')

 AS 'Field Results';

+---------------+

| Field Results |

+---------------+

| 2 |

+---------------+

SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo')

 AS 'Field Results';

+---------------+

| Field Results |

+---------------+

| 0 |

+---------------+

SELECT FIELD(1, 2, 3, 4, 5, 1) AS 'Field Results';

+---------------+

| Field Results |

+---------------+

| 5 |

+---------------+

SELECT FIELD(NULL, 2, 3) AS 'Field Results';

+---------------+

| Field Results |

+---------------+

| 0 |

+---------------+

SELECT FIELD('fail') AS 'Field Results';

Error 1582 (42000): Incorrect parameter count in call

to native function 'field'

1.2.2.19 FIND_IN_SET

Syntax

FIND_IN_SET(pattern, strlist)

Description
Returns the index position where the given pattern occurs in a string list. The first argument is the pattern you want to search

for. The second argument is a string containing comma-separated variables. If the second argument is of the SET data-

type, the function is optimized to use bit arithmetic.

If the pattern does not occur in the string list or if the string list is an empty string, the function returns 0 . If either argument

is NULL , the function returns NULL . The function does not return the correct result if the pattern contains a comma (" , ")

character.

Examples
958/4161

SELECT FIND_IN_SET('b','a,b,c,d') AS "Found Results";

+---------------+

| Found Results |

+---------------+

| 2 |

+---------------+

1.2.2.20 FORMAT

Syntax

FORMAT(num, decimal_position[, locale])

Description
Formats the given number for display as a string, adding separators to appropriate position and rounding the results to the

given decimal position. For instance, it would format 15233.345 to 15,233.35 .

If the given decimal position is 0 , it rounds to return no decimal point or fractional part. You can optionally specify a locale

 value to format numbers to the pattern appropriate for the given region.

Examples

SELECT FORMAT(1234567890.09876543210, 4) AS 'Format';

+--------------------+

| Format |

+--------------------+

| 1,234,567,890.0988 |

+--------------------+

SELECT FORMAT(1234567.89, 4) AS 'Format';

+----------------+

| Format |

+----------------+

| 1,234,567.8900 |

+----------------+

SELECT FORMAT(1234567.89, 0) AS 'Format';

+-----------+

| Format |

+-----------+

| 1,234,568 |

+-----------+

SELECT FORMAT(123456789,2,'rm_CH') AS 'Format';

+----------------+

| Format |

+----------------+

| 123'456'789,00 |

+----------------+

1.2.2.21 FROM_BASE64

Syntax

FROM_BASE64(str)

Description

959/4161

https://mariadb.com/kb/en/server-locale/

Decodes the given base-64 encode string, returning the result as a binary string. Returns NULL if the given string is NULL

or if it's invalid.

It is the reverse of the TO_BASE64 function.

There are numerous methods to base-64 encode a string. MariaDB uses the following:

It encodes alphabet value 64 as ' + '.

It encodes alphabet value 63 as ' / '.

It codes output in groups of four printable characters. Each three byte of data encoded uses four characters. If the

final group is incomplete, it pads the difference with the ' = ' character.

It divides long output, adding a new line very 76 characters.

In decoding, it recognizes and ignores newlines, carriage returns, tabs and space whitespace characters.

SELECT TO_BASE64('Maria') AS 'Input';

+-----------+

| Input |

+-----------+

| TWFyaWE= |

+-----------+

SELECT FROM_BASE64('TWFyaWE=') AS 'Output';

+--------+

| Output |

+--------+

| Maria |

+--------+

1.2.2.22 HEX

Syntax

HEX(N_or_S)

Description
If N_or_S is a number, returns a string representation of the hexadecimal value of N , where N is a longlong (BIGINT)

number. This is equivalent to CONV(N,10,16) .

If N_or_S is a string, returns a hexadecimal string representation of N_or_S where each byte of each character in

N_or_S is converted to two hexadecimal digits. If N_or_S is NULL, returns NULL. The inverse of this operation is

performed by the UNHEX() function.

HEX() with an INET6 argument returns a hexadecimal representation of the underlying 16-byte binary string.

Examples

MariaDB starting with 10.5.0

960/4161

SELECT HEX(255);

+----------+

| HEX(255) |

+----------+

| FF |

+----------+

SELECT 0x4D617269614442;

+------------------+

| 0x4D617269614442 |

+------------------+

| MariaDB |

+------------------+

SELECT HEX('MariaDB');

+----------------+

| HEX('MariaDB') |

+----------------+

| 4D617269614442 |

+----------------+

From MariaDB 10.5.0:

SELECT HEX(CAST('2001:db8::ff00:42:8329' AS INET6));

+--+

| HEX(CAST('2001:db8::ff00:42:8329' AS INET6)) |

+--+

| 20010DB8000000000000FF0000428329 |

+--+

1.2.2.23 INSTR

Syntax

INSTR(str,substr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the position of the first occurrence of substring substr in string str. This is the same as the two-argument form of

LOCATE(), except that the order of the arguments is reversed.

INSTR() performs a case-insensitive search.

If any argument is NULL , returns NULL .

Examples

961/4161

SELECT INSTR('foobarbar', 'bar');

+---------------------------+

| INSTR('foobarbar', 'bar') |

+---------------------------+

| 4 |

+---------------------------+

SELECT INSTR('My', 'Maria');

+----------------------+

| INSTR('My', 'Maria') |

+----------------------+

| 0 |

+----------------------+

1.2.2.24 LCASE

Syntax

LCASE(str)

Description
LCASE() is a synonym for LOWER().

1.2.2.25 LEFT

Syntax

LEFT(str,len)

Description
Returns the leftmost len characters from the string str , or NULL if any argument is NULL.

Examples

SELECT LEFT('MariaDB', 5);

+--------------------+

| LEFT('MariaDB', 5) |

+--------------------+

| Maria |

+--------------------+

1.2.2.26 INSERT Function

Syntax

INSERT(str,pos,len,newstr)

Description
Returns the string str , with the substring beginning at position pos and len characters long replaced by the string

newstr . Returns the original string if pos is not within the length of the string. Replaces the rest of the string from position

962/4161

pos if len is not within the length of the rest of the string. Returns NULL if any argument is NULL.

Examples

SELECT INSERT('Quadratic', 3, 4, 'What');

+-----------------------------------+

| INSERT('Quadratic', 3, 4, 'What') |

+-----------------------------------+

| QuWhattic |

+-----------------------------------+

SELECT INSERT('Quadratic', -1, 4, 'What');

+------------------------------------+

| INSERT('Quadratic', -1, 4, 'What') |

+------------------------------------+

| Quadratic |

+------------------------------------+

SELECT INSERT('Quadratic', 3, 100, 'What');

+-------------------------------------+

| INSERT('Quadratic', 3, 100, 'What') |

+-------------------------------------+

| QuWhat |

+-------------------------------------+

1.2.2.27 LENGTH

Syntax

LENGTH(str)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the length of the string str .

In the default mode, when Oracle mode from MariaDB 10.3 is not set, the length is measured in bytes. In this case, a multi-

byte character counts as multiple bytes. This means that for a string containing five two-byte characters, LENGTH() returns

10, whereas CHAR_LENGTH() returns 5.

When running Oracle mode from MariaDB 10.3, the length is measured in characters, and LENGTH is a synonym for

CHAR_LENGTH().

If str is not a string value, it is converted into a string. If str is NULL , the function returns NULL .

Examples

SELECT LENGTH('MariaDB');

+-------------------+

| LENGTH('MariaDB') |

+-------------------+

| 7 |

+-------------------+

When Oracle mode from MariaDB 10.3 is not set:

963/4161

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 2 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

In Oracle mode from MariaDB 10.3:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 1 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

1.2.2.28 LENGTHB

Introduced in MariaDB 10.3.1 as part of the Oracle compatibility enhancements.

Syntax

LENGTHB(str)

Description
LENGTHB() returns the length of the given string, in bytes. When Oracle mode is not set, this is a synonym for LENGTH.

A multi-byte character counts as multiple bytes. This means that for a string containing five two-byte characters,

LENGTHB() returns 10, whereas CHAR_LENGTH() returns 5.

If str is not a string value, it is converted into a string. If str is NULL , the function returns NULL .

Examples
When Oracle mode from MariaDB 10.3 is not set:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 2 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

In Oracle mode from MariaDB 10.3:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 1 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

MariaDB starting with 10.3.1

1.2.2.29 LIKE

Syntax

964/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

expr LIKE pat [ESCAPE 'escape_char']

expr NOT LIKE pat [ESCAPE 'escape_char']

Contents
1. Syntax

2. Description

3. Examples

4. Optimizing LIKE

Description
Tests whether expr matches the pattern pat. Returns either 1 (TRUE) or 0 (FALSE). Both expr and pat may be any valid

expression and are evaluated to strings. Patterns may use the following wildcard characters:

% matches any number of characters, including zero.

_ matches any single character.

Use NOT LIKE to test if a string does not match a pattern. This is equivalent to using the NOT operator on the entire LIKE

expression.

If either the expression or the pattern is NULL , the result is NULL .

LIKE performs case-insensitive substring matches if the collation for the expression and pattern is case-insensitive. For

case-sensitive matches, declare either argument to use a binary collation using COLLATE , or coerce either of them to a

BINARY string using CAST . Use SHOW COLLATION to get a list of available collations. Collations ending in _bin are

case-sensitive.

Numeric arguments are coerced to binary strings.

The _ wildcard matches a single character, not byte. It will only match a multi-byte character if it is valid in the expression's

character set. For example, _ will match _utf8"¬" , but it will not match _latin1"¬" because the Euro sign is not a

valid latin1 character. If necessary, use CONVERT to use the expression in a different character set.

If you need to match the characters _ or % , you must escape them. By default, you can prefix the wildcard characters the

backslash character \ to escape them. The backslash is used both to encode special characters like newlines when a

string is parsed as well as to escape wildcards in a pattern after parsing. Thus, to match an actual backslash, you

sometimes need to double-escape it as "\ \ \ \" .

To avoid difficulties with the backslash character, you can change the wildcard escape character using ESCAPE in a LIKE

expression. The argument to ESCAPE must be a single-character string.

Examples
Select the days that begin with "T":

CREATE TABLE t1 (d VARCHAR(16));

INSERT INTO t1 VALUES

 ("Monday"), ("Tuesday"), ("Wednesday"),

 ("Thursday"), ("Friday"), ("Saturday"), ("Sunday");

SELECT * FROM t1 WHERE d LIKE "T%";

SELECT * FROM t1 WHERE d LIKE "T%";

+----------+

| d |

+----------+

| Tuesday |

| Thursday |

+----------+

Select the days that contain the substring "es":

SELECT * FROM t1 WHERE d LIKE "%es%";

965/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/collate

SELECT * FROM t1 WHERE d LIKE "%es%";

+-----------+

| d |

+-----------+

| Tuesday |

| Wednesday |

+-----------+

Select the six-character day names:

SELECT * FROM t1 WHERE d like "___day";

SELECT * FROM t1 WHERE d like "___day";

+---------+

| d |

+---------+

| Monday |

| Friday |

| Sunday |

+---------+

With the default collations, LIKE is case-insensitive:

SELECT * FROM t1 where d like "t%";

SELECT * FROM t1 where d like "t%";

+----------+

| d |

+----------+

| Tuesday |

| Thursday |

+----------+

Use COLLATE to specify a binary collation, forcing case-sensitive matches:

SELECT * FROM t1 WHERE d like "t%" COLLATE latin1_bin;

SELECT * FROM t1 WHERE d like "t%" COLLATE latin1_bin;

Empty set (0.00 sec)

You can include functions and operators in the expression to match. Select dates based on their day name:

CREATE TABLE t2 (d DATETIME);

INSERT INTO t2 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT * FROM t2 WHERE DAYNAME(d) LIKE "T%";

SELECT * FROM t2 WHERE DAYNAME(d) LIKE "T%";

+------------------+

| d |

+------------------+

| 2007-01-30 21:31 |

| 2011-04-21 12:34 |

| 2004-10-07 11:19 |

+------------------+

3 rows in set, 7 warnings (0.00 sec)

Optimizing LIKE
966/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/collate

MariaDB can use indexes for LIKE on string columns in the case where the LIKE doesn't start with % or _ .

Starting from MariaDB 10.0, one can set the optimizer_use_condition_selectivity variable to 5. If this is done, then the

optimizer will read optimizer_selectivity_sampling_limit rows to calculate the selectivity of the LIKE expression before

starting to calculate the query plan. This can help speed up some LIKE queries by providing the optimizer with more

information about your data.

1.1.1.4.2.4.4 LOAD_FILE

1.2.2.31 LOCATE

Syntax

LOCATE(substr,str), LOCATE(substr,str,pos)

Description
The first syntax returns the position of the first occurrence of substring substr in string str . The second syntax returns

the position of the first occurrence of substring substr in string str , starting at position pos . Returns 0 if substr is not

in str .

LOCATE() performs a case-insensitive search.

If any argument is NULL , returns NULL.

INSTR() is the same as the two-argument form of LOCATE() , except that the order of the arguments is reversed.

Examples

SELECT LOCATE('bar', 'foobarbar');

+----------------------------+

| LOCATE('bar', 'foobarbar') |

+----------------------------+

| 4 |

+----------------------------+

SELECT LOCATE('My', 'Maria');

+-----------------------+

| LOCATE('My', 'Maria') |

+-----------------------+

| 0 |

+-----------------------+

SELECT LOCATE('bar', 'foobarbar', 5);

+-------------------------------+

| LOCATE('bar', 'foobarbar', 5) |

+-------------------------------+

| 7 |

+-------------------------------+

1.2.2.32 LOWER

Syntax

LOWER(str)

LCASE(str)

967/4161

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the string str with all characters changed to lowercase according to the current character set mapping. The

default is latin1 (cp1252 West European).

LCASE is a synonym for LOWER

Examples

 SELECT LOWER('QUADRATICALLY');

+------------------------+

| LOWER('QUADRATICALLY') |

+------------------------+

| quadratically |

+------------------------+

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY , VARBINARY , BLOB). To perform

lettercase conversion, CONVERT the string to a non-binary string:

SET @str = BINARY 'North Carolina';

SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));

+----------------+-----------------------------------+

| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |

+----------------+-----------------------------------+

| North Carolina | north carolina |

+----------------+-----------------------------------+

1.2.2.33 LPAD

Syntax

LPAD(str, len [,padstr])

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the string str , left-padded with the string padstr to a length of len characters. If str is longer than len , the

return value is shortened to len characters. If padstr is omitted, the LPAD function pads spaces.

Prior to MariaDB 10.3.1 , the padstr parameter was mandatory.

Returns NULL if given a NULL argument. If the result is empty (zero length), returns either an empty string or, from MariaDB

10.3.6 with SQL_MODE=Oracle, NULL.

The Oracle mode version of the function can be accessed outside of Oracle mode by using LPAD_ORACLE as the function

name.

Examples

968/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

SELECT LPAD('hello',10,'.');

+----------------------+

| LPAD('hello',10,'.') |

+----------------------+

|hello |

+----------------------+

SELECT LPAD('hello',2,'.');

+---------------------+

| LPAD('hello',2,'.') |

+---------------------+

| he |

+---------------------+

From MariaDB 10.3.1 , with the pad string defaulting to space.

SELECT LPAD('hello',10);

+------------------+

| LPAD('hello',10) |

+------------------+

| hello |

+------------------+

Oracle mode version from MariaDB 10.3.6 :

SELECT LPAD('',0),LPAD_ORACLE('',0);

+------------+-------------------+

| LPAD('',0) | LPAD_ORACLE('',0) |

+------------+-------------------+

| | NULL |

+------------+-------------------+

1.2.2.34 LTRIM

Syntax

LTRIM(str)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the string str with leading space characters removed.

Returns NULL if given a NULL argument. If the result is empty, returns either an empty string, or, from MariaDB 10.3.6

with SQL_MODE=Oracle, NULL.

The Oracle mode version of the function can be accessed outside of Oracle mode by using LTRIM_ORACLE as the function

name.

Examples

SELECT QUOTE(LTRIM(' MariaDB '));

+-------------------------------+

| QUOTE(LTRIM(' MariaDB ')) |

+-------------------------------+

| 'MariaDB ' |

+-------------------------------+

Oracle mode version from MariaDB 10.3.6 :

969/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

SELECT LTRIM(''),LTRIM_ORACLE('');

+-----------+------------------+

| LTRIM('') | LTRIM_ORACLE('') |

+-----------+------------------+

| | NULL |

+-----------+------------------+

1.2.2.35 MAKE_SET

Syntax

MAKE_SET(bits,str1,str2,...)

Description
Returns a set value (a string containing substrings separated by "," characters) consisting of the strings that have the

corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL values in str1 , str2 , ... are

not appended to the result.

Examples

SELECT MAKE_SET(1,'a','b','c');

+-------------------------+

| MAKE_SET(1,'a','b','c') |

+-------------------------+

| a |

+-------------------------+

SELECT MAKE_SET(1 | 4,'hello','nice','world');

+--+

| MAKE_SET(1 | 4,'hello','nice','world') |

+--+

| hello,world |

+--+

SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');

+---+

| MAKE_SET(1 | 4,'hello','nice',NULL,'world') |

+---+

| hello |

+---+

SELECT QUOTE(MAKE_SET(0,'a','b','c'));

+--------------------------------+

| QUOTE(MAKE_SET(0,'a','b','c')) |

+--------------------------------+

| '' |

+--------------------------------+

1.2.2.36 MATCH AGAINST

Syntax

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

Description
A special construct used to perform a fulltext search on a fulltext index.

970/4161

See Fulltext Index Overview for a full description, and Full-text Indexes for more articles on the topic.

Examples

CREATE TABLE ft_myisam(copy TEXT,FULLTEXT(copy)) ENGINE=MyISAM;

INSERT INTO ft_myisam(copy) VALUES ('Once upon a time'), ('There was a wicked witch'),

 ('Who ate everybody up');

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('wicked');

+--------------------------+

| copy |

+--------------------------+

| There was a wicked witch |

+--------------------------+

SELECT id, body, MATCH (title,body) AGAINST

 ('Security implications of running MySQL as root'

 IN NATURAL LANGUAGE MODE) AS score

 FROM articles WHERE MATCH (title,body) AGAINST

 ('Security implications of running MySQL as root'

 IN NATURAL LANGUAGE MODE);

+----+-------------------------------------+-----------------+

| id | body | score |

+----+-------------------------------------+-----------------+

| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |

| 6 | When configured properly, MySQL ... | 1.3114095926285 |

+----+-------------------------------------+-----------------+

3.3.3.3.2 Full-Text Index Stopwords

1.2.2.38 MID

Syntax

MID(str,pos,len)

Description
MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

Examples

SELECT MID('abcd',4,1);

+-----------------+

| MID('abcd',4,1) |

+-----------------+

| d |

+-----------------+

SELECT MID('abcd',2,2);

+-----------------+

| MID('abcd',2,2) |

+-----------------+

| bc |

+-----------------+

A negative starting position:

971/4161

SELECT MID('abcd',-2,4);

+------------------+

| MID('abcd',-2,4) |

+------------------+

| cd |

+------------------+

1.2.2.39 NATURAL_SORT_KEY

NATURAL_SORT_KEY was added in MariaDB 10.7.0 .

Syntax

NATURAL_SORT_KEY(str)

Contents
1. Syntax

2. Description

3. Examples

1. Strings and Numbers

2. IPs

3. Generated Columns

4. Leading Zeroes

Description
The NATURAL_SORT_KEY function is used for sorting that is closer to natural sorting. Strings are sorted in alphabetical

order, while numbers are treated in a way such that, for example, 10 is greater than 2 , whereas in other forms of sorting,

2 would be greater than 10 , just like z is greater than ya .

There are multiple natural sort implementations, differing in the way they handle leading zeroes, fractions, i18n, negatives,

decimals and so on.

MariaDB's implementation ignores leading zeroes when performing the sort.

You can use also use NATURAL_SORT_KEY with generated columns. The value is not stored permanently in the table. When

using a generated column, the virtual column must be longer than the base column to cater for embedded numbers in the

string and MDEV-24582 .

Examples

Strings and Numbers

MariaDB starting with 10.7.0

972/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://jira.mariadb.org/browse/MDEV-24582

CREATE TABLE t1 (c TEXT);

INSERT INTO t1 VALUES ('b1'),('a2'),('a11'),('a1');

SELECT c FROM t1;

+------+

| c |

+------+

| b1 |

| a2 |

| a11 |

| a1 |

+------+

SELECT c FROM t1 ORDER BY c;

+------+

| c |

+------+

| a1 |

| a11 |

| a2 |

| b1 |

+------+

Unsorted, regular sort and natural sort:

TRUNCATE t1;

INSERT INTO t1 VALUES

 ('5.5.31'),('10.7.0'),('10.2.1'),

 ('10.1.22'),('10.3.32'),('10.2.12');

SELECT c FROM t1;

+---------+

| c |

+---------+

| 5.5.31 |

| 10.7.0 |

| 10.2.1 |

| 10.1.22 |

| 10.3.32 |

| 10.2.12 |

+---------+

SELECT c FROM t1 ORDER BY c;

+---------+

| c |

+---------+

| 10.1.22 |

| 10.2.1 |

| 10.2.12 |

| 10.3.32 |

| 10.7.0 |

| 5.5.31 |

+---------+

SELECT c FROM t1 ORDER BY NATURAL_SORT_KEY(c);

+---------+

| c |

+---------+

| 5.5.31 |

| 10.1.22 |

| 10.2.1 |

| 10.2.12 |

| 10.3.32 |

| 10.7.0 |

+---------+

IPs

Sorting IPs, unsorted, regular sort and natural sort::

973/4161

TRUNCATE t1;

INSERT INTO t1 VALUES

 ('192.167.3.1'),('192.167.1.12'),('100.200.300.400'),

 ('100.50.60.70'),('100.8.9.9'),('127.0.0.1'),('0.0.0.0');

SELECT c FROM t1;

+-----------------+

| c |

+-----------------+

| 192.167.3.1 |

| 192.167.1.12 |

| 100.200.300.400 |

| 100.50.60.70 |

| 100.8.9.9 |

| 127.0.0.1 |

| 0.0.0.0 |

+-----------------+

SELECT c FROM t1 ORDER BY c;

+-----------------+

| c |

+-----------------+

| 0.0.0.0 |

| 100.200.300.400 |

| 100.50.60.70 |

| 100.8.9.9 |

| 127.0.0.1 |

| 192.167.1.12 |

| 192.167.3.1 |

+-----------------+

SELECT c FROM t1 ORDER BY NATURAL_SORT_KEY(c);

+-----------------+

| c |

+-----------------+

| 0.0.0.0 |

| 100.8.9.9 |

| 100.50.60.70 |

| 100.200.300.400 |

| 127.0.0.1 |

| 192.167.1.12 |

| 192.167.3.1 |

+-----------------+

Generated Columns

Using with a generated column:

CREATE TABLE t(c VARCHAR(3), k VARCHAR(4) AS (NATURAL_SORT_KEY(c)) INVISIBLE);

INSERT INTO t(c) VALUES ('b1'),('a2'),('a11'),('a10');

SELECT * FROM t ORDER by k;

+------+

| c |

+------+

| a2 |

| a10 |

| a11 |

| b1 |

+------+

Note that if the virtual column is not longer, results may not be as expected:

974/4161

CREATE TABLE t2(c VARCHAR(3), k VARCHAR(3) AS (NATURAL_SORT_KEY(c)) INVISIBLE);

INSERT INTO t2(c) VALUES ('b1'),('a2'),('a11'),('a10');

SELECT * FROM t2 ORDER by k;

+------+

| c |

+------+

| a2 |

| a11 |

| a10 |

| b1 |

+------+

Leading Zeroes

Ignoring leading zeroes can lead to undesirable results in certain contexts. For example:

CREATE TABLE t3 (a VARCHAR(4));

INSERT INTO t3 VALUES

 ('a1'), ('a001'), ('a10'), ('a001'), ('a10'),

 ('a01'), ('a01'), ('a01b'), ('a01b'), ('a1');

SELECT a FROM t3 ORDER BY a;

+------+

| a |

+------+

| a001 |

| a001 |

| a01 |

| a01 |

| a01b |

| a01b |

| a1 |

| a1 |

| a10 |

| a10 |

+------+

10 rows in set (0.000 sec)

SELECT a FROM t3 ORDER BY NATURAL_SORT_KEY(a);

+------+

| a |

+------+

| a1 |

| a01 |

| a01 |

| a001 |

| a001 |

| a1 |

| a01b |

| a01b |

| a10 |

| a10 |

+------+

This may not be what we were hoping for in a 'natural' sort. A workaround is to sort by both NATURAL_SORT_KEY and

regular sort.

975/4161

SELECT a FROM t3 ORDER BY NATURAL_SORT_KEY(a), a;

+------+

| a |

+------+

| a001 |

| a001 |

| a01 |

| a01 |

| a1 |

| a1 |

| a01b |

| a01b |

| a10 |

| a10 |

+------+

1.2.2.40 NOT LIKE

Syntax

expr NOT LIKE pat [ESCAPE 'escape_char']

Description
This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

1.2.2.1.3 NOT REGEXP

1.2.2.42 OCTET_LENGTH

Syntax

OCTET_LENGTH(str)

Description
OCTET_LENGTH() returns the length of the given string, in octets (bytes). This is a synonym for LENGTHB(), and, when

Oracle mode from MariaDB 10.3 is not set, a synonym for LENGTH().

A multi-byte character counts as multiple bytes. This means that for a string containing five two-byte characters,

OCTET_LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.

If str is not a string value, it is converted into a string. If str is NULL , the function returns NULL .

Examples
When Oracle mode from MariaDB 10.3 is not set:

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 2 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

In Oracle mode from MariaDB 10.3:

976/4161

SELECT CHAR_LENGTH('Ã'), LENGTH('Ã'), LENGTHB('Ã'), OCTET_LENGTH('Ã');

+-------------------+--------------+---------------+--------------------+

| CHAR_LENGTH('Ã') | LENGTH('Ã') | LENGTHB('Ã') | OCTET_LENGTH('Ã') |

+-------------------+--------------+---------------+--------------------+

| 1 | 1 | 2 | 2 |

+-------------------+--------------+---------------+--------------------+

1.2.2.43 ORD

Syntax

ORD(str)

Description
If the leftmost character of the string str is a multi-byte character, returns the code for that character, calculated from the

numeric values of its constituent bytes using this formula:

 (1st byte code)

+ (2nd byte code x 256)

+ (3rd byte code x 256 x 256) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as the ASCII() function.

Examples

SELECT ORD('2');

+----------+

| ORD('2') |

+----------+

| 50 |

+----------+

1.2.2.44 POSITION

Syntax

POSITION(substr IN str)

Description
POSITION(substr IN str) is a synonym for LOCATE(substr,str).

It's part of ODBC 3.0.

1.2.2.45 QUOTE

Syntax

QUOTE(str)

Description

977/4161

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL statement. The string is

returned enclosed by single quotes and with each instance of single quote (" ' "), backslash (" \ "), ASCII NUL , and

Control-Z preceded by a backslash. If the argument is NULL , the return value is the word " NULL " without enclosing single

quotes.

Examples

SELECT QUOTE("Don't!");

+-----------------+

| QUOTE("Don't!") |

+-----------------+

| 'Don\'t!' |

+-----------------+

SELECT QUOTE(NULL);

+-------------+

| QUOTE(NULL) |

+-------------+

| NULL |

+-------------+

1.2.2.46 REPEAT Function

Syntax

REPEAT(str,count)

Description
Returns a string consisting of the string str repeated count times. If count is less than 1, returns an empty string.

Returns NULL if str or count are NULL.

Examples

SELECT QUOTE(REPEAT('MariaDB ',4));

+------------------------------------+

| QUOTE(REPEAT('MariaDB ',4)) |

+------------------------------------+

| 'MariaDB MariaDB MariaDB MariaDB ' |

+------------------------------------+

1.2.2.47 REPLACE Function

Syntax

REPLACE(str,from_str,to_str)

Description
Returns the string str with all occurrences of the string from_str replaced by the string to_str . REPLACE() performs

a case-sensitive match when searching for from_str .

Examples

978/4161

SELECT REPLACE('www.mariadb.org', 'w', 'Ww');

+---------------------------------------+

| REPLACE('www.mariadb.org', 'w', 'Ww') |

+---------------------------------------+

| WwWwWw.mariadb.org |

+---------------------------------------+

1.2.2.48 REVERSE

Syntax

REVERSE(str)

Description
Returns the string str with the order of the characters reversed.

Examples

SELECT REVERSE('desserts');

+---------------------+

| REVERSE('desserts') |

+---------------------+

| stressed |

+---------------------+

1.2.2.49 RIGHT

Syntax

RIGHT(str,len)

Description
Returns the rightmost len characters from the string str , or NULL if any argument is NULL.

Examples

SELECT RIGHT('MariaDB', 2);

+---------------------+

| RIGHT('MariaDB', 2) |

+---------------------+

| DB |

+---------------------+

1.2.2.50 RPAD

Syntax

RPAD(str, len [, padstr])

979/4161

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the string str , right-padded with the string padstr to a length of len characters. If str is longer than len ,

the return value is shortened to len characters. If padstr is omitted, the RPAD function pads spaces.

Prior to MariaDB 10.3.1 , the padstr parameter was mandatory.

Returns NULL if given a NULL argument. If the result is empty (a length of zero), returns either an empty string, or, from

MariaDB 10.3.6 with SQL_MODE=Oracle, NULL.

The Oracle mode version of the function can be accessed outside of Oracle mode by using RPAD_ORACLE as the function

name.

Examples

SELECT RPAD('hello',10,'.');

+----------------------+

| RPAD('hello',10,'.') |

+----------------------+

| hello..... |

+----------------------+

SELECT RPAD('hello',2,'.');

+---------------------+

| RPAD('hello',2,'.') |

+---------------------+

| he |

+---------------------+

From MariaDB 10.3.1 , with the pad string defaulting to space.

SELECT RPAD('hello',30);

+--------------------------------+

| RPAD('hello',30) |

+--------------------------------+

| hello |

+--------------------------------+

Oracle mode version from MariaDB 10.3.6 :

SELECT RPAD('',0),RPAD_ORACLE('',0);

+------------+-------------------+

| RPAD('',0) | RPAD_ORACLE('',0) |

+------------+-------------------+

| | NULL |

+------------+-------------------+

1.2.2.51 RTRIM

Syntax

RTRIM(str)

Contents
1. Syntax

2. Description

3. Examples

980/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

Description
Returns the string str with trailing space characters removed.

Returns NULL if given a NULL argument. If the result is empty, returns either an empty string, or, from MariaDB 10.3.6

with SQL_MODE=Oracle, NULL.

The Oracle mode version of the function can be accessed outside of Oracle mode by using RTRIM_ORACLE as the function

name.

Examples

SELECT QUOTE(RTRIM('MariaDB '));

+-----------------------------+

| QUOTE(RTRIM('MariaDB ')) |

+-----------------------------+

| 'MariaDB' |

+-----------------------------+

Oracle mode version from MariaDB 10.3.6 :

SELECT RTRIM(''),RTRIM_ORACLE('');

+-----------+------------------+

| RTRIM('') | RTRIM_ORACLE('') |

+-----------+------------------+

| | NULL |

+-----------+------------------+

1.2.2.52 SFORMAT

SFORMAT was added in MariaDB 10.7.0 .

Description
The SFORMAT function takes an input string and a formatting specification and returns the string formatted using the rules

the user passed in the specification.

It uses the fmtlib library for Python-like (as well as Rust, C++20, etc) string formatting.

Only fmtlib 7.0.0+ is supported.

There is no native support for temporal and decimal values:

TIME_RESULT is handled as STRING_RESULT

DECIMAL_RESULT as REAL_RESULT

Examples

MariaDB starting with 10.7.0

981/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://fmt.dev/

SELECT SFORMAT("The answer is {}.", 42);

+----------------------------------+

| SFORMAT("The answer is {}.", 42) |

+----------------------------------+

| The answer is 42. |

+----------------------------------+

CREATE TABLE test_sformat(mdb_release char(6), mdev int, feature char(20));

INSERT INTO test_sformat VALUES('10.7.0', 25015, 'Python style sformat'),

 ('10.7.0', 4958, 'UUID');

SELECT * FROM test_sformat;

+-------------+-------+----------------------+

| mdb_release | mdev | feature |

+-------------+-------+----------------------+

| 10.7.0 | 25015 | Python style sformat |

| 10.7.0 | 4958 | UUID |

+-------------+-------+----------------------+

SELECT SFORMAT('MariaDB Server {} has a preview for MDEV-{} which is about {}',

 mdb_release, mdev, feature) AS 'Preview Release Examples'

 FROM test_sformat;

+--+

| Preview Release Examples |

+--+

| MariaDB Server 10.7.0 has a preview for MDEV-25015 which is about Python style sformat |

| MariaDB Server 10.7.0 has a preview for MDEV-4958 which is about UUID |

+--+

1.2.2.53 SOUNDEX

Syntax

SOUNDEX(str)

Description
Returns a soundex string from str . Two strings that sound almost the same should have identical soundex strings. A

standard soundex string is four characters long, but the SOUNDEX() function returns an arbitrarily long string. You can use

SUBSTRING() on the result to get a standard soundex string. All non-alphabetic characters in str are ignored. All

international alphabetic characters outside the A-Z range are treated as vowels.

Important: When using SOUNDEX(), you should be aware of the following details:

This function, as currently implemented, is intended to work well with strings that are in the English language only.

Strings in other languages may not produce reasonable results.

This function implements the original Soundex algorithm, not the more popular enhanced version (also described by

D. Knuth). The difference is that original version discards vowels first and duplicates second, whereas the enhanced

version discards duplicates first and vowels second.

Examples

SOUNDEX('Hello');

+------------------+

| SOUNDEX('Hello') |

+------------------+

| H400 |

+------------------+

982/4161

SELECT SOUNDEX('MariaDB');

+--------------------+

| SOUNDEX('MariaDB') |

+--------------------+

| M631 |

+--------------------+

SELECT SOUNDEX('Knowledgebase');

+--------------------------+

| SOUNDEX('Knowledgebase') |

+--------------------------+

| K543212 |

+--------------------------+

SELECT givenname, surname FROM users WHERE SOUNDEX(givenname) = SOUNDEX("robert");

+-----------+---------+

| givenname | surname |

+-----------+---------+

| Roberto | Castro |

+-----------+---------+

1.2.2.54 SOUNDS LIKE

Syntax

expr1 SOUNDS LIKE expr2

Description
This is the same as SOUNDEX(expr1) = SOUNDEX(expr2) .

Example

SELECT givenname, surname FROM users WHERE givenname SOUNDS LIKE "robert";

+-----------+---------+

| givenname | surname |

+-----------+---------+

| Roberto | Castro |

+-----------+---------+

1.2.2.55 SPACE

Syntax

SPACE(N)

Description
Returns a string consisting of N space characters. If N is NULL, returns NULL.

Examples

983/4161

SELECT QUOTE(SPACE(6));

+-----------------+

| QUOTE(SPACE(6)) |

+-----------------+

| ' ' |

+-----------------+

1.2.2.56 STRCMP

Syntax

STRCMP(expr1,expr2)

Description
STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second according to the

current sort order, and 1 if the strings are otherwise not the same. Returns NULL is either argument is NULL .

Examples

SELECT STRCMP('text', 'text2');

+-------------------------+

| STRCMP('text', 'text2') |

+-------------------------+

| -1 |

+-------------------------+

SELECT STRCMP('text2', 'text');

+-------------------------+

| STRCMP('text2', 'text') |

+-------------------------+

| 1 |

+-------------------------+

SELECT STRCMP('text', 'text');

+------------------------+

| STRCMP('text', 'text') |

+------------------------+

| 0 |

+------------------------+

1.2.2.57 SUBSTR

Description
SUBSTR() is a synonym for SUBSTRING() .

1.2.2.58 SUBSTRING

Syntax

984/4161

SUBSTRING(str,pos),

SUBSTRING(str FROM pos),

SUBSTRING(str,pos,len),

SUBSTRING(str FROM pos FOR len)

SUBSTR(str,pos),

SUBSTR(str FROM pos),

SUBSTR(str,pos,len),

SUBSTR(str FROM pos FOR len)

Contents
1. Syntax

2. Description

3. Examples

Description
The forms without a len argument return a substring from string str starting at position pos .

The forms with a len argument return a substring len characters long from string str , starting at position pos .

The forms that use FROM are standard SQL syntax.

It is also possible to use a negative value for pos . In this case, the beginning of the substring is pos characters from the

end of the string, rather than the beginning. A negative value may be used for pos in any of the forms of this function.

By default, the position of the first character in the string from which the substring is to be extracted is reckoned as 1. For

Oracle-compatibility, from MariaDB 10.3.3 , when sql_mode is set to 'oracle', position zero is treated as position 1

(although the first character is still reckoned as 1).

If any argument is NULL , returns NULL .

Examples

985/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

SELECT SUBSTRING('Knowledgebase',5);

+------------------------------+

| SUBSTRING('Knowledgebase',5) |

+------------------------------+

| ledgebase |

+------------------------------+

SELECT SUBSTRING('MariaDB' FROM 6);

+-----------------------------+

| SUBSTRING('MariaDB' FROM 6) |

+-----------------------------+

| DB |

+-----------------------------+

SELECT SUBSTRING('Knowledgebase',3,7);

+--------------------------------+

| SUBSTRING('Knowledgebase',3,7) |

+--------------------------------+

| owledge |

+--------------------------------+

SELECT SUBSTRING('Knowledgebase', -4);

+--------------------------------+

| SUBSTRING('Knowledgebase', -4) |

+--------------------------------+

| base |

+--------------------------------+

SELECT SUBSTRING('Knowledgebase', -8, 4);

+-----------------------------------+

| SUBSTRING('Knowledgebase', -8, 4) |

+-----------------------------------+

| edge |

+-----------------------------------+

SELECT SUBSTRING('Knowledgebase' FROM -8 FOR 4);

+--+

| SUBSTRING('Knowledgebase' FROM -8 FOR 4) |

+--+

| edge |

+--+

Oracle mode from MariaDB 10.3.3:

986/4161

SELECT SUBSTR('abc',0,3);

+-------------------+

| SUBSTR('abc',0,3) |

+-------------------+

| |

+-------------------+

SELECT SUBSTR('abc',1,2);

+-------------------+

| SUBSTR('abc',1,2) |

+-------------------+

| ab |

+-------------------+

SET sql_mode='oracle';

SELECT SUBSTR('abc',0,3);

+-------------------+

| SUBSTR('abc',0,3) |

+-------------------+

| abc |

+-------------------+

SELECT SUBSTR('abc',1,2);

+-------------------+

| SUBSTR('abc',1,2) |

+-------------------+

| ab |

+-------------------+

1.2.2.59 SUBSTRING_INDEX

Syntax

SUBSTRING_INDEX(str,delim,count)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the substring from string str before count occurrences of the delimiter delim . If count is positive, everything to

the left of the final delimiter (counting from the left) is returned. If count is negative, everything to the right of the final

delimiter (counting from the right) is returned. SUBSTRING_INDEX() performs a case-sensitive match when searching for

delim .

If any argument is NULL , returns NULL .

For example

SUBSTRING_INDEX('www.mariadb.org', '.', 2)

means "Return all of the characters up to the 2nd occurrence of ."

Examples

987/4161

SELECT SUBSTRING_INDEX('www.mariadb.org', '.', 2);

+--+

| SUBSTRING_INDEX('www.mariadb.org', '.', 2) |

+--+

| www.mariadb |

+--+

SELECT SUBSTRING_INDEX('www.mariadb.org', '.', -2);

+---+

| SUBSTRING_INDEX('www.mariadb.org', '.', -2) |

+---+

| mariadb.org |

+---+

1.2.2.60 TO_BASE64

Syntax

TO_BASE64(str)

Description
Converts the string argument str to its base-64 encoded form, returning the result as a character string in the connection

character set and collation.

The argument str will be converted to string first if it is not a string. A NULL argument will return a NULL result.

The reverse function, FROM_BASE64(), decodes an encoded base-64 string.

There are a numerous different methods to base-64 encode a string. The following are used by MariaDB and MySQL:

Alphabet value 64 is encoded as '+'.

Alphabet value 63 is encoded as '/'.

Encoding output is made up of groups of four printable characters, with each three bytes of data encoded using four

characters. If the final group is not complete, it is padded with '=' characters to make up a length of four.

To divide long output, a newline is added after every 76 characters.

Decoding will recognize and ignore newlines, carriage returns, tabs, and spaces.

Examples

SELECT TO_BASE64('Maria');

+--------------------+

| TO_BASE64('Maria') |

+--------------------+

| TWFyaWE= |

+--------------------+

1.2.2.61 TO_CHAR

The TO_CHAR function was introduced in MariaDB 10.6.1 to enhance Oracle compatibility.

Syntax

TO_CHAR(expr[, fmt])

MariaDB starting with 10.6.1

988/4161

Contents
1. Syntax

2. Description

3. Examples

Description
The TO_CHAR function converts an expr of type date, datetime, time or timestamp to a string. The optional fmt argument

supports YYYY/YYY/YY/RRRR/RR/MM/MON/MONTH/MI/DD/DY/HH/HH12/HH24/SS and special characters. The default

value is "YYYY-MM-DD HH24:MI:SS".

In Oracle, TO_CHAR can also be used to convert numbers to strings, but this is not supported in MariaDB and will give an

error.

Examples

SELECT TO_CHAR('1980-01-11 04:50:39', 'YYYY-MM-DD');

+--+

| TO_CHAR('1980-01-11 04:50:39', 'YYYY-MM-DD') |

+--+

| 1980-01-11 |

+--+

SELECT TO_CHAR('1980-01-11 04:50:39', 'HH24-MI-SS');

+--+

| TO_CHAR('1980-01-11 04:50:39', 'HH24-MI-SS') |

+--+

| 04-50-39 |

+--+

SELECT TO_CHAR('00-01-01 00:00:00', 'YY-MM-DD HH24:MI:SS');

+---+

| TO_CHAR('00-01-01 00:00:00', 'YY-MM-DD HH24:MI:SS') |

+---+

| 00-01-01 00:00:00 |

+---+

SELECT TO_CHAR('99-12-31 23:59:59', 'YY-MM-DD HH24:MI:SS');

+---+

| TO_CHAR('99-12-31 23:59:59', 'YY-MM-DD HH24:MI:SS') |

+---+

| 99-12-31 23:59:59 |

+---+

SELECT TO_CHAR('9999-12-31 23:59:59', 'YY-MM-DD HH24:MI:SS');

+---+

| TO_CHAR('9999-12-31 23:59:59', 'YY-MM-DD HH24:MI:SS') |

+---+

| 99-12-31 23:59:59 |

+---+

SELECT TO_CHAR('21-01-03 08:30:00', 'Y-MONTH-DY HH:MI:SS');

+---+

| TO_CHAR('21-01-03 08:30:00', 'Y-MONTH-DY HH:MI:SS') |

+---+

| 1-January -Sun 08:30:00 |

+---+

1.2.2.62 TRIM

Syntax

TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)

From MariaDB 10.3.6

989/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/

TRIM_ORACLE([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH , LEADING , or

TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are removed.

Returns NULL if given a NULL argument. If the result is empty, returns either an empty string, or, from MariaDB 10.3.6

with SQL_MODE=Oracle, NULL. SQL_MODE=Oracle is not set by default.

The Oracle mode version of the function can be accessed in any mode by using TRIM_ORACLE as the function name.

Examples

SELECT TRIM(' bar ')\G

*************************** 1. row ***************************

TRIM(' bar '): bar

SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx')\G

*************************** 1. row ***************************

TRIM(LEADING 'x' FROM 'xxxbarxxx'): barxxx

SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx')\G

*************************** 1. row ***************************

TRIM(BOTH 'x' FROM 'xxxbarxxx'): bar

SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz')\G

*************************** 1. row ***************************

TRIM(TRAILING 'xyz' FROM 'barxxyz'): barx

From MariaDB 10.3.6 , with SQL_MODE=Oracle not set:

SELECT TRIM(''),TRIM_ORACLE('');

+----------+-----------------+

| TRIM('') | TRIM_ORACLE('') |

+----------+-----------------+

| | NULL |

+----------+-----------------+

From MariaDB 10.3.6 , with SQL_MODE=Oracle set:

SELECT TRIM(''),TRIM_ORACLE('');

+----------+-----------------+

| TRIM('') | TRIM_ORACLE('') |

+----------+-----------------+

| NULL | NULL |

+----------+-----------------+

1.2.2.63 TRIM_ORACLE

TRIM_ORACLE is a synonym for the Oracle mode version of the TRIM function, and is available in all modes.

MariaDB starting with 10.3.6

1.2.2.64 UCASE

Syntax
990/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

UCASE(str)

Description
UCASE() is a synonym for UPPER() .

1.2.2.65 UNCOMPRESS

Syntax

UNCOMPRESS(string_to_uncompress)

Description
Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed value, the result is

NULL . This function requires MariaDB to have been compiled with a compression library such as zlib. Otherwise, the return

value is always NULL . The have_compress server system variable indicates whether a compression library is present.

Examples

SELECT UNCOMPRESS(COMPRESS('a string'));

+----------------------------------+

| UNCOMPRESS(COMPRESS('a string')) |

+----------------------------------+

| a string |

+----------------------------------+

SELECT UNCOMPRESS('a string');

+------------------------+

| UNCOMPRESS('a string') |

+------------------------+

| NULL |

+------------------------+

1.2.2.66 UNCOMPRESSED_LENGTH

Syntax

UNCOMPRESSED_LENGTH(compressed_string)

Description
Returns the length that the compressed string had before being compressed with COMPRESS() .

UNCOMPRESSED_LENGTH() returns NULL or an incorrect result if the string is not compressed.

Until MariaDB 10.3.1 , returns MYSQL_TYPE_LONGLONG , or bigint(10), in all cases. From MariaDB 10.3.1 , returns

MYSQL_TYPE_LONG , or int(10), when the result would fit within 32-bits.

Examples

991/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));

+---+

| UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30))) |

+---+

| 30 |

+---+

1.2.2.67 UNHEX

Syntax

UNHEX(str)

Description
Performs the inverse operation of HEX(str). That is, it interprets each pair of hexadecimal digits in the argument as a

number and converts it to the character represented by the number. The resulting characters are returned as a binary string.

If str is NULL , UNHEX() returns NULL .

Examples

SELECT HEX('MariaDB');

+----------------+

| HEX('MariaDB') |

+----------------+

| 4D617269614442 |

+----------------+

SELECT UNHEX('4D617269614442');

+-------------------------+

| UNHEX('4D617269614442') |

+-------------------------+

| MariaDB |

+-------------------------+

SELECT 0x4D617269614442;

+------------------+

| 0x4D617269614442 |

+------------------+

| MariaDB |

+------------------+

SELECT UNHEX(HEX('string'));

+----------------------+

| UNHEX(HEX('string')) |

+----------------------+

| string |

+----------------------+

SELECT HEX(UNHEX('1267'));

+--------------------+

| HEX(UNHEX('1267')) |

+--------------------+

| 1267 |

+--------------------+

1.2.2.68 UPDATEXML

Syntax

992/4161

UpdateXML(xml_target, xpath_expr, new_xml)

Description
This function replaces a single portion of a given fragment of XML markup xml_target with a new XML fragment

new_xml , and then returns the changed XML. The portion of xml_target that is replaced matches an XPath expression

xpath_expr supplied by the user. If no expression matching xpath_expr is found, or if multiple matches are found, the

function returns the original xml_target XML fragment. All three arguments should be strings.

Examples

SELECT

 UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,

 UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,

 UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,

 UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,

 UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5

 \G

*************************** 1. row ***************************

val1: <e>fff</e>

val2: <a>ccc<d></d>

val3: <a><e>fff</e><d></d>

val4: <a>ccc<e>fff</e>

val5: <a><d></d>ccc<d></d>

1 row in set (0.00 sec)

1.2.2.69 UPPER

Syntax

UPPER(str)

UCASE(str)

Description
Returns the string str with all characters changed to uppercase according to the current character set mapping. The

default is latin1 (cp1252 West European).

UCASE is a synonym.

SELECT UPPER(surname), givenname FROM users ORDER BY surname;

+----------------+------------+

| UPPER(surname) | givenname |

+----------------+------------+

| ABEL | Jacinto |

| CASTRO | Robert |

| COSTA | Phestos |

| MOSCHELLA | Hippolytos |

+----------------+------------+

UPPER() is ineffective when applied to binary strings (BINARY, VARBINARY, BLOB). The description of LOWER() shows

how to perform lettercase conversion of binary strings.

Prior to MariaDB 11.3, the query optimizer did not handle queries of the format UCASE(varchar_col)=... . An

optimizer_switch option, sargable_casefold=ON , was added in MariaDB 11.3.0 to handle this case. (MDEV-31496)

1.2.2.70 WEIGHT_STRING

Syntax
993/4161

https://jira.mariadb.org/browse/MDEV-31496

WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])

 levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...

Description
Returns a binary string representing the string's sorting and comparison value. A string with a lower result means that for

sorting purposes the string appears before a string with a higher result.

WEIGHT_STRING() is particularly useful when adding new collations, for testing purposes.

If str is a non-binary string (CHAR, VARCHAR or TEXT), WEIGHT_STRING returns the string's collation weight. If str

is a binary string (BINARY, VARBINARY or BLOB), the return value is simply the input value, since the weight for each byte

in a binary string is the byte value.

WEIGHT_STRING() returns NULL if given a NULL input.

The optional AS clause permits casting the input string to a binary or non-binary string, as well as to a particular length.

AS BINARY(N) measures the length in bytes rather than characters, and right pads with 0x00 bytes to the desired length.

AS CHAR(N) measures the length in characters, and right pads with spaces to the desired length.

N has a minimum value of 1, and if it is less than the length of the input string, the string is truncated without warning.

The optional LEVEL clause specifies that the return value should contain weights for specific collation levels. The levels

specifier can either be a single integer, a comma-separated list of integers, or a range of integers separated by a dash

(whitespace is ignored). Integers can range from 1 to a maximum of 6, dependent on the collation, and need to be listed in

ascending order.

If the LEVEL clause is no provided, a default of 1 to the maximum for the collation is assumed.

If the LEVEL is specified without using a range, an optional modifier is permitted.

ASC , the default, returns the weights without any modification.

DESC returns bitwise-inverted weights.

REVERSE returns the weights in reverse order.

Examples
The examples below use the HEX() function to represent non-printable results in hexadecimal format.

994/4161

SELECT HEX(WEIGHT_STRING('x'));

+-------------------------+

| HEX(WEIGHT_STRING('x')) |

+-------------------------+

| 0058 |

+-------------------------+

SELECT HEX(WEIGHT_STRING('x' AS BINARY(4)));

+--------------------------------------+

| HEX(WEIGHT_STRING('x' AS BINARY(4))) |

+--------------------------------------+

| 78000000 |

+--------------------------------------+

SELECT HEX(WEIGHT_STRING('x' AS CHAR(4)));

+------------------------------------+

| HEX(WEIGHT_STRING('x' AS CHAR(4))) |

+------------------------------------+

| 0058002000200020 |

+------------------------------------+

SELECT HEX(WEIGHT_STRING(0xaa22ee LEVEL 1));

+--------------------------------------+

| HEX(WEIGHT_STRING(0xaa22ee LEVEL 1)) |

+--------------------------------------+

| AA22EE |

+--------------------------------------+

SELECT HEX(WEIGHT_STRING(0xaa22ee LEVEL 1 DESC));

+---+

| HEX(WEIGHT_STRING(0xaa22ee LEVEL 1 DESC)) |

+---+

| 55DD11 |

+---+

SELECT HEX(WEIGHT_STRING(0xaa22ee LEVEL 1 REVERSE));

+--+

| HEX(WEIGHT_STRING(0xaa22ee LEVEL 1 REVERSE)) |

+--+

| EE22AA |

+--+

1.2.2.71 Type Conversion
Contents
1. Rules for Conversion on Comparison

1. Comparison Examples

2. Rules for Conversion on Dyadic Arithmetic Operations

1. Arithmetic Examples

Implicit type conversion takes place when MariaDB is using operands or different types, in order to make the operands

compatible.

It is best practice not to rely upon implicit conversion; rather use CAST to explicitly convert types.

Rules for Conversion on Comparison

If either argument is NULL, the result of the comparison is NULL unless the NULL-safe <=> equality comparison

operator is used.

If both arguments are integers, they are compared as integers.

If both arguments are strings, they are compared as strings.

If one argument is decimal and the other argument is decimal or integer, they are compared as decimals.

If one argument is decimal and the other argument is a floating point, they are compared as floating point values.

If one argument is string and the other argument is integer, they are compared as decimals. This conversion was

added in MariaDB 10.3.36 . Prior to 10.3.36, this combination was compared as floating point values, which did not

always work well for huge 64-bit integers because of a possible precision loss on conversion to double.

If a hexadecimal argument is not compared to a number, it is treated as a binary string.

If a constant is compared to a TIMESTAMP or DATETIME, the constant is converted to a timestamp, unless used as

an argument to the IN function.
995/4161

https://mariadb.com/kb/en/mariadb-10336-release-notes/

In other cases, arguments are compared as floating point, or real, numbers.

Note that if a string column is being compared with a numeric value, MariaDB will not use the index on the column, as there

are numerous alternatives that may evaluate as equal (see examples below).

Comparison Examples

Converting a string to a number:

SELECT 15+'15';

+---------+

| 15+'15' |

+---------+

| 30 |

+---------+

Converting a number to a string:

SELECT CONCAT(15,'15');

+-----------------+

| CONCAT(15,'15') |

+-----------------+

| 1515 |

+-----------------+

Floating point number errors:

SELECT '9746718491924563214' = 9746718491924563213;

+---+

| '9746718491924563214' = 9746718491924563213 |

+---+

| 1 |

+---+

Numeric equivalence with strings:

SELECT '5' = 5;

+---------+

| '5' = 5 |

+---------+

| 1 |

+---------+

SELECT ' 5' = 5;

+------------+

| ' 5' = 5 |

+------------+

| 1 |

+------------+

SELECT ' 5 ' = 5;

+--------------+

| ' 5 ' = 5 |

+--------------+

| 1 |

+--------------+

1 row in set, 1 warning (0.000 sec)

SHOW WARNINGS;

+-------+------+--+

| Level | Code | Message |

+-------+------+--+

| Note | 1292 | Truncated incorrect DOUBLE value: ' 5 ' |

+-------+------+--+

As a result of the above, MariaDB cannot use the index when comparing a string with a numeric value in the example below:

996/4161

CREATE TABLE t (a VARCHAR(10), b VARCHAR(10), INDEX idx_a (a));

INSERT INTO t VALUES

 ('1', '1'), ('2', '2'), ('3', '3'),

 ('4', '4'), ('5', '5'), ('1', '5');

EXPLAIN SELECT * FROM t WHERE a = '3' \G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t

 type: ref

possible_keys: idx_a

 key: idx_a

 key_len: 13

 ref: const

 rows: 1

 Extra: Using index condition

EXPLAIN SELECT * FROM t WHERE a = 3 \G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t

 type: ALL

possible_keys: idx_a

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 6

 Extra: Using where

Rules for Conversion on Dyadic Arithmetic Operations

Implicit type conversion also takes place on dyadic arithmetic operations (+,-,*,/). MariaDB chooses the minimum data type

that is guaranteed to fit the result and converts both arguments to the result data type.

For addition (+), subtraction (-) and multiplication (*), the result data type is chosen as follows:

If either of the arguments is an approximate number (float, double), the result is double.

If either of the arguments is a string (char, varchar, text), the result is double.

If either of the arguments is a decimal number, the result is decimal.

If either of the arguments is of a temporal type with a non-zero fractional second precision (time(N), datetime(N),

timestamp(N)), the result is decimal.

If either of the arguments is of a temporal type with a zero fractional second precision (time(0), date, datetime(0),

timestamp(0)), the result may vary between int, int unsigned, bigint or bigint unsigned, depending on the exact data

type combination.

If both arguments are integer numbers (tinyint, smallint, mediumint, bigint), the result may vary between int, int

unsigned, bigint or bigint unsigned, depending of the exact data types and their signs.

For division (/), the result data type is chosen as follows:

If either of the arguments is an approximate number (float, double), the result is double.

If either of the arguments is a string (char, varchar, text), the result is double.

Otherwise, the result is decimal.

Arithmetic Examples

Note, the above rules mean that when an argument of a temporal data type appears in addition or subtraction, it's treated as

a number by default.

SELECT TIME'10:20:30' + 1;

+--------------------+

| TIME'10:20:30' + 1 |

+--------------------+

| 102031 |

+--------------------+

In order to do temporal addition or subtraction instead, use the DATE_ADD() or DATE_SUB() functions, or an INTERVAL

expression as the second argument:

997/4161

SELECT TIME'10:20:30' + INTERVAL 1 SECOND;

+------------------------------------+

| TIME'10:20:30' + INTERVAL 1 SECOND |

+------------------------------------+

| 10:20:31 |

+------------------------------------+

SELECT "2.2" + 3;

+-----------+

| "2.2" + 3 |

+-----------+

| 5.2 |

+-----------+

SELECT 2.2 + 3;

+---------+

| 2.2 + 3 |

+---------+

| 5.2 |

+---------+

SELECT 2.2 / 3;

+---------+

| 2.2 / 3 |

+---------+

| 0.73333 |

+---------+

SELECT "2.2" / 3;

+--------------------+

| "2.2" / 3 |

+--------------------+

| 0.7333333333333334 |

+--------------------+

1.2.3 Date & Time Functions
Functions for handling date and time, e.g. TIME, DATE, DAYNAME etc.

Microseconds in MariaDB

Microseconds have been supported since MariaDB 5.3.

Date and Time Units

Date or time units

ADD_MONTHS

Adds a number of months to a date.

ADDDATE

Add days or another interval to a date.

ADDTIME

Adds a time to a time or datetime.

CONVERT_TZ

Converts a datetime from one time zone to another.

CURDATE

Returns the current date.

CURRENT_DATE

Synonym for CURDATE().

CURRENT_TIME

Synonym for CURTIME().

3

2

998/4161

CURRENT_TIMESTAMP

Synonym for NOW().

CURTIME

Returns the current time.

DATE FUNCTION

Extracts the date portion of a datetime.

DATEDIFF

Difference in days between two date/time values.

DATE_ADD

Date arithmetic - addition.

DATE_FORMAT

Formats the date value according to the format string.

DATE_SUB

Date arithmetic - subtraction.

DAY

Synonym for DAYOFMONTH().

DAYNAME

Return the name of the weekday.

DAYOFMONTH

Returns the day of the month.

DAYOFWEEK

Returns the day of the week index.

DAYOFYEAR

Returns the day of the year.

EXTRACT

Extracts a portion of the date.

FORMAT_PICO_TIME

Given a time in picoseconds, returns a human-readable time value and unit indicator.

FROM_DAYS

Returns a date given a day.

FROM_UNIXTIME

Returns a datetime from a Unix timestamp.

GET_FORMAT

Returns a format string.

HOUR

Returns the hour.

LAST_DAY

Returns the last day of the month.

LOCALTIME

Synonym for NOW().

LOCALTIMESTAMP

Synonym for NOW().

1

3

7

999/4161

MAKEDATE

Returns a date given a year and day.

MAKETIME

Returns a time.

MICROSECOND

Returns microseconds from a date or datetime.

MINUTE

Returns a minute from 0 to 59.

MONTH

Returns a month from 1 to 12.

MONTHNAME

Returns the full name of the month.

NOW

Returns the current date and time.

PERIOD_ADD

Add months to a period.

PERIOD_DIFF

Number of months between two periods.

QUARTER

Returns year quarter from 1 to 4.

SECOND

Returns the second of a time.

SEC_TO_TIME

Converts a second to a time.

STR_TO_DATE

Converts a string to date.

SUBDATE

Subtract a date unit or number of days.

SUBTIME

Subtracts a time from a date/time.

SYSDATE

Returns the current date and time.

TIME Function

Extracts the time.

TIMEDIFF

Returns the difference between two date/times.

TIMESTAMP FUNCTION

Return the datetime, or add a time to a date/time.

TIMESTAMPADD

Add interval to a date or datetime.

TIMESTAMPDIFF

Difference between two datetimes.

2

4

1000/4161

TIME_FORMAT

Formats the time value according to the format string.

TIME_TO_SEC

Returns the time argument, converted to seconds.

TO_DAYS

Number of days since year 0.

TO_SECONDS

Number of seconds since year 0.

UNIX_TIMESTAMP

Returns a Unix timestamp.

UTC_DATE

Returns the current UTC date.

UTC_TIME

Returns the current UTC time.

UTC_TIMESTAMP

Returns the current UTC date and time.

WEEK

Returns the week number.

WEEKDAY

Returns the weekday index.

WEEKOFYEAR

Returns the calendar week of the date as a number in the range from 1 to 53.

YEAR

Returns the year for the given date.

YEARWEEK

Returns year and week for a date.

There are 6 related questions .

3

1.2.3.1 Microseconds in MariaDB
Contents
1. Additional Information

2. MySQL 5.6 Microseconds

The TIME, DATETIME, and TIMESTAMP types, along with the temporal functions, CAST and dynamic columns, support

microseconds. The datetime precision of a column can be specified when creating the table with CREATE TABLE, for

example:

CREATE TABLE example(

 col_microsec DATETIME(6),

 col_millisec TIME(3)

);

Generally, the precision can be specified for any TIME , DATETIME , or TIMESTAMP column, in parentheses, after the type

name. The datetime precision specifies number of digits after the decimal dot and can be any integer number from 0 to 6. If

no precision is specified it is assumed to be 0, for backward compatibility reasons.

A datetime precision can be specified wherever a type name is used. For example:

when declaring arguments of stored routines.

1001/4161

https://mariadb.com/kb/en/date-time-functions/+questions/

when specifying a return type of a stored function.

when declaring variables.

in a CAST function:

create function example(x datetime(5)) returns time(4)

begin

 declare y timestamp(6);

 return cast(x as time(2));

end;

%f is used as the formatting option for microseconds in the STR_TO_DATE, DATE_FORMAT and FROM_UNIXTIME

functions, for example:

SELECT STR_TO_DATE('20200809 020917076','%Y%m%d %H%i%s%f');

+---+

| STR_TO_DATE('20200809 020917076','%Y%m%d %H%i%s%f') |

+---+

| 2020-08-09 02:09:17.076000 |

+---+

Additional Information
when comparing anything to a temporal value (DATETIME , TIME , DATE , or TIMESTAMP), both values are

compared as temporal values, not as strings.

The INFORMATION_SCHEMA.COLUMNS table has a new column DATETIME_PRECISION

NOW(), CURTIME(), UTC_TIMESTAMP(), UTC_TIME(), CURRENT_TIME(), CURRENT_TIMESTAMP(),

LOCALTIME() and LOCALTIMESTAMP() now accept datetime precision as an optional argument. For example:

SELECT CURTIME(4);

--> 10:11:12.3456

TIME_TO_SEC() and UNIX_TIMESTAMP() preserve microseconds of the argument. These functions will return a

decimal number if the result non-zero datetime precision and an integer otherwise (for backward compatibility).

SELECT TIME_TO_SEC('10:10:10.12345');

--> 36610.12345

Current versions of this patch fix a bug in the following optimization: in certain queries with DISTINCT MariaDB can

ignore this clause if it can prove that all result rows are unique anyway, for example, when a primary key is compared

with a constant. Sometimes this optimization was applied incorrectly, though 4 for example, when comparing a

string with a date constant. This is now fixed.

DATE_ADD() and DATE_SUB() functions can now take a TIME expression as an argument (not just DATETIME as

before).

SELECT TIME('10:10:10') + INTERVAL 100 MICROSECOND;

--> 10:10:10.000100

The event_time field in the mysql.general_log table and the start_time , query_time , and lock_time fields

in the mysql.slow_log table now store values with microsecond precision.

This patch fixed a bug when comparing a temporal value using the BETWEEN operator and one of the operands is

NULL .

The old syntax TIMESTAMP(N) , where N is the display width, is no longer supported. It was deprecated in MySQL

4.1.0 (released on 2003-04-03).

when a DATETIME value is compared to a TIME value, the latter is treated as a full datetime with a zero date part,

similar to comparing DATE to a DATETIME , or to comparing DECIMAL numbers. Earlier versions of MariaDB used to

compare only the time part of both operands in such a case.

In MariaDB, an extra column TIME_MS has been added to the INFORMATION_SCHEMA.PROCESSLIST table, as well

as to the output of SHOW FULL PROCESSLIST .

Note: When you convert a temporal value to a value with a smaller precision, it will be truncated, not rounded. This is

done to guarantee that the date part is not changed. For example:

SELECT CAST('2009-12-31 23:59:59.998877' as DATETIME(3));

-> 2009-12-31 23:59:59.998

1002/4161

MySQL 5.6 Microseconds
MySQL 5.6 introduced microseconds using a slightly different implementation to MariaDB 5.3. Since MariaDB 10.1,

MariaDB has defaulted to the MySQL format, by means of the --mysql56-temporal-format variable. The MySQL version

requires slightly more storage but has some advantages in permitting the eventual support of negative dates, and in

replication.

1.2.3.2 Date and Time Units
The INTERVAL keyword can be used to add or subtract a time interval of time to a DATETIME , DATE or TIME value.

The syntax is:

INTERVAL time_quantity time_unit

For example, the SECOND unit is used below by the DATE_ADD() function:

SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;

+---+

| '2008-12-31 23:59:59' + INTERVAL 1 SECOND |

+---+

| 2009-01-01 00:00:00 |

+---+

The following units are valid:

Unit Description

MICROSECOND Microseconds

SECOND Seconds

MINUTE Minutes

HOUR Hours

DAY Days

WEEK Weeks

MONTH Months

QUARTER Quarters

YEAR Years

SECOND_MICROSECOND Seconds.Microseconds

MINUTE_MICROSECOND Minutes.Seconds.Microseconds

MINUTE_SECOND Minutes.Seconds

HOUR_MICROSECOND Hours.Minutes.Seconds.Microseconds

HOUR_SECOND Hours.Minutes.Seconds

HOUR_MINUTE Hours.Minutes

DAY_MICROSECOND Days Hours.Minutes.Seconds.Microseconds

DAY_SECOND Days Hours.Minutes.Seconds

DAY_MINUTE Days Hours.Minutes

DAY_HOUR Days Hours

YEAR_MONTH Years-Months

The time units containing an underscore are composite; that is, they consist of multiple base time units. For base time units,

time_quantity is an integer number. For composite units, the quantity must be expressed as a string with multiple integer

numbers separated by any punctuation character.

Example of composite units:

1003/4161

INTERVAL '2:2' YEAR_MONTH

INTERVAL '1:30:30' HOUR_SECOND

INTERVAL '1!30!30' HOUR_SECOND -- same as above

Time units can be used in the following contexts:

after a + or a - operator;

with the following DATE or TIME functions: ADDDATE() , SUBDATE() , DATE_ADD() , DATE_SUB() ,

TIMESTAMPADD() , TIMESTAMPDIFF() , EXTRACT() ;

in the ON SCHEDULE clause of CREATE EVENT and ALTER EVENT .

when defining a partitioning BY SYSTEM_TIME

1.2.3.3 ADD_MONTHS

The ADD_MONTHS function was introduced in MariaDB 10.6.1 to enhance Oracle compatibility. Similar functionality

can be achieved with the DATE_ADD function.

Syntax

ADD_MONTHS(date, months)

Contents
1. Syntax

2. Description

3. Examples

Description
ADD_MONTHS adds an integer months to a given date (DATE, DATETIME or TIMESTAMP), returning the resulting date.

months can be positive or negative. If months is not a whole number, then it will be rounded to the nearest whole number

(not truncated).

The resulting day component will remain the same as that specified in date, unless the resulting month has fewer days than

the day component of the given date, in which case the day will be the last day of the resulting month.

Returns NULL if given an invalid date, or a NULL argument.

Examples

MariaDB starting with 10.6.1

1004/4161

SELECT ADD_MONTHS('2012-01-31', 2);

+-----------------------------+

| ADD_MONTHS('2012-01-31', 2) |

+-----------------------------+

| 2012-03-31 |

+-----------------------------+

SELECT ADD_MONTHS('2012-01-31', -5);

+------------------------------+

| ADD_MONTHS('2012-01-31', -5) |

+------------------------------+

| 2011-08-31 |

+------------------------------+

SELECT ADD_MONTHS('2011-01-31', 1);

+-----------------------------+

| ADD_MONTHS('2011-01-31', 1) |

+-----------------------------+

| 2011-02-28 |

+-----------------------------+

SELECT ADD_MONTHS('2012-01-31', 1);

+-----------------------------+

| ADD_MONTHS('2012-01-31', 1) |

+-----------------------------+

| 2012-02-29 |

+-----------------------------+

SELECT ADD_MONTHS('2012-01-31', 2);

+-----------------------------+

| ADD_MONTHS('2012-01-31', 2) |

+-----------------------------+

| 2012-03-31 |

+-----------------------------+

SELECT ADD_MONTHS('2012-01-31', 3);

+-----------------------------+

| ADD_MONTHS('2012-01-31', 3) |

+-----------------------------+

| 2012-04-30 |

+-----------------------------+

SELECT ADD_MONTHS('2011-01-15', 2.5);

+-------------------------------+

| ADD_MONTHS('2011-01-15', 2.5) |

+-------------------------------+

| 2011-04-15 |

+-------------------------------+

1 row in set (0.001 sec)

SELECT ADD_MONTHS('2011-01-15', 2.6);

+-------------------------------+

| ADD_MONTHS('2011-01-15', 2.6) |

+-------------------------------+

| 2011-04-15 |

+-------------------------------+

1 row in set (0.001 sec)

SELECT ADD_MONTHS('2011-01-15', 2.1);

+-------------------------------+

| ADD_MONTHS('2011-01-15', 2.1) |

+-------------------------------+

| 2011-03-15 |

+-------------------------------+

1 row in set (0.004 sec)

1.2.3.4 ADDDATE

Syntax
1005/4161

ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

Description
When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for DATE_ADD() . The related

function SUBDATE() is a synonym for DATE_SUB() . For information on the INTERVAL unit argument, see the discussion

for DATE_ADD() .

When invoked with the days form of the second argument, MariaDB treats it as an integer number of days to be added to

expr.

Examples

SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);

+---+

| DATE_ADD('2008-01-02', INTERVAL 31 DAY) |

+---+

| 2008-02-02 |

+---+

SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);

+--+

| ADDDATE('2008-01-02', INTERVAL 31 DAY) |

+--+

| 2008-02-02 |

+--+

SELECT ADDDATE('2008-01-02', 31);

+---------------------------+

| ADDDATE('2008-01-02', 31) |

+---------------------------+

| 2008-02-02 |

+---------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d, ADDDATE(d, 10) from t1;

+---------------------+---------------------+

| d | ADDDATE(d, 10) |

+---------------------+---------------------+

| 2007-01-30 21:31:07 | 2007-02-09 21:31:07 |

| 1983-10-15 06:42:51 | 1983-10-25 06:42:51 |

| 2011-04-21 12:34:56 | 2011-05-01 12:34:56 |

| 2011-10-30 06:31:41 | 2011-11-09 06:31:41 |

| 2011-01-30 14:03:25 | 2011-02-09 14:03:25 |

| 2004-10-07 11:19:34 | 2004-10-17 11:19:34 |

+---------------------+---------------------+

SELECT d, ADDDATE(d, INTERVAL 10 HOUR) from t1;

+---------------------+------------------------------+

| d | ADDDATE(d, INTERVAL 10 HOUR) |

+---------------------+------------------------------+

| 2007-01-30 21:31:07 | 2007-01-31 07:31:07 |

| 1983-10-15 06:42:51 | 1983-10-15 16:42:51 |

| 2011-04-21 12:34:56 | 2011-04-21 22:34:56 |

| 2011-10-30 06:31:41 | 2011-10-30 16:31:41 |

| 2011-01-30 14:03:25 | 2011-01-31 00:03:25 |

| 2004-10-07 11:19:34 | 2004-10-07 21:19:34 |

+---------------------+------------------------------+

1006/4161

1.2.3.5 ADDTIME

Syntax

ADDTIME(expr1,expr2)

Description
ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and expr2 is a time

expression.

Examples

SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');

+---+

| ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002') |

+---+

| 2008-01-02 01:01:01.000001 |

+---+

SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');

+---+

| ADDTIME('01:00:00.999999', '02:00:00.999998') |

+---+

| 03:00:01.999997 |

+---+

1.2.3.6 CONVERT_TZ

Syntax

CONVERT_TZ(dt,from_tz,to_tz)

Description
CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone given by to_tz and

returns the resulting value.

In order to use named time zones, such as GMT, MET or Africa/Johannesburg, the time_zone tables must be loaded (see

mysql_tzinfo_to_sql).

No conversion will take place if the value falls outside of the supported TIMESTAMP range ('1970-01-01 00:00:01' to '2038-

01-19 05:14:07' UTC) when converted from from_tz to UTC.

This function returns NULL if the arguments are invalid (or named time zones have not been loaded).

See time zones for more information.

Examples

SELECT CONVERT_TZ('2016-01-01 12:00:00','+00:00','+10:00');

+---+

| CONVERT_TZ('2016-01-01 12:00:00','+00:00','+10:00') |

+---+

| 2016-01-01 22:00:00 |

+---+

Using named time zones (with the time zone tables loaded):

1007/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/

SELECT CONVERT_TZ('2016-01-01 12:00:00','GMT','Africa/Johannesburg');

+---+

| CONVERT_TZ('2016-01-01 12:00:00','GMT','Africa/Johannesburg') |

+---+

| 2016-01-01 14:00:00 |

+---+

The value is out of the TIMESTAMP range, so no conversion takes place:

SELECT CONVERT_TZ('1969-12-31 22:00:00','+00:00','+10:00');

+---+

| CONVERT_TZ('1969-12-31 22:00:00','+00:00','+10:00') |

+---+

| 1969-12-31 22:00:00 |

+---+

1.2.3.7 CURDATE

Syntax

CURDATE()

CURRENT_DATE

CURRENT_DATE()

Description
CURDATE returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function

is used in a string or numeric context.

CURRENT_DATE and CURRENT_DATE() are synonyms.

Examples

SELECT CURDATE();

+------------+

| CURDATE() |

+------------+

| 2019-03-05 |

+------------+

In a numeric context (note this is not performing date calculations):

SELECT CURDATE() +0;

+--------------+

| CURDATE() +0 |

+--------------+

| 20190305 |

+--------------+

Data calculation:

SELECT CURDATE() - INTERVAL 5 DAY;

+----------------------------+

| CURDATE() - INTERVAL 5 DAY |

+----------------------------+

| 2019-02-28 |

+----------------------------+

1.2.3.8 CURRENT_DATE
1008/4161

Syntax

CURRENT_DATE, CURRENT_DATE()

Description
CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

1.2.3.9 CURRENT_TIME

Syntax

CURRENT_TIME

CURRENT_TIME([precision])

Description
CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME() .

1.2.3.10 CURRENT_TIMESTAMP

Syntax

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP([precision])

Description
CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW() .

1.2.3.11 CURTIME

Syntax

CURTIME([precision])

Description
Returns the current time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on whether the function is used

in a string or numeric context. The value is expressed in the current time zone .

The optional precision determines the microsecond precision. See Microseconds in MariaDB.

Examples

1009/4161

https://mariadb.com/kb/en/time-zones/

SELECT CURTIME();

+-----------+

| CURTIME() |

+-----------+

| 12:45:39 |

+-----------+

SELECT CURTIME() + 0;

+---------------+

| CURTIME() + 0 |

+---------------+

| 124545.000000 |

+---------------+

With precision:

SELECT CURTIME(2);

+-------------+

| CURTIME(2) |

+-------------+

| 09:49:08.09 |

+-------------+

1.2.3.12 DATE FUNCTION

Syntax

DATE(expr)

Description
Extracts the date part of the date or datetime expression expr. Returns NULL and throws a warning when passed an invalid

date.

Examples

SELECT DATE('2013-07-18 12:21:32');

+-----------------------------+

| DATE('2013-07-18 12:21:32') |

+-----------------------------+

| 2013-07-18 |

+-----------------------------+

1.2.3.13 DATEDIFF

Syntax

DATEDIFF(expr1,expr2)

Description
DATEDIFF() returns (expr1 3 expr2) expressed as a value in days from one date to the other. expr1 and expr2 are date or

date-and-time expressions. Only the date parts of the values are used in the calculation.

Examples

1010/4161

SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');

+--+

| DATEDIFF('2007-12-31 23:59:59','2007-12-30') |

+--+

| 1 |

+--+

SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');

+--+

| DATEDIFF('2010-11-30 23:59:59','2010-12-31') |

+--+

| -31 |

+--+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2011-05-23 10:56:05 |

+---------------------+

SELECT d, DATEDIFF(NOW(),d) FROM t1;

+---------------------+-------------------+

| d | DATEDIFF(NOW(),d) |

+---------------------+-------------------+

| 2007-01-30 21:31:07 | 1574 |

| 1983-10-15 06:42:51 | 10082 |

| 2011-04-21 12:34:56 | 32 |

| 2011-10-30 06:31:41 | -160 |

| 2011-01-30 14:03:25 | 113 |

| 2004-10-07 11:19:34 | 2419 |

+---------------------+-------------------+

1.2.3.14 DATE_ADD

Syntax

DATE_ADD(date,INTERVAL expr unit)

Contents
1. Syntax

2. Description

3. Examples

Description
Performs date arithmetic. The date argument specifies the starting date or datetime value. expr is an expression specifying

the interval value to be added to the starting date. expr is a string; it may start with a " - " for negative intervals. unit is a

keyword indicating the units in which the expression should be interpreted. See Date and Time Units for a complete list of

permitted units.

Examples

1011/4161

SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;

+---+

| '2008-12-31 23:59:59' + INTERVAL 1 SECOND |

+---+

| 2009-01-01 00:00:00 |

+---+

SELECT INTERVAL 1 DAY + '2008-12-31';

+-------------------------------+

| INTERVAL 1 DAY + '2008-12-31' |

+-------------------------------+

| 2009-01-01 |

+-------------------------------+

SELECT '2005-01-01' - INTERVAL 1 SECOND;

+----------------------------------+

| '2005-01-01' - INTERVAL 1 SECOND |

+----------------------------------+

| 2004-12-31 23:59:59 |

+----------------------------------+

SELECT DATE_ADD('2000-12-31 23:59:59', INTERVAL 1 SECOND);

+--+

| DATE_ADD('2000-12-31 23:59:59', INTERVAL 1 SECOND) |

+--+

| 2001-01-01 00:00:00 |

+--+

SELECT DATE_ADD('2010-12-31 23:59:59', INTERVAL 1 DAY);

+---+

| DATE_ADD('2010-12-31 23:59:59', INTERVAL 1 DAY) |

+---+

| 2011-01-01 23:59:59 |

+---+

SELECT DATE_ADD('2100-12-31 23:59:59', INTERVAL '1:1' MINUTE_SECOND);

+---+

| DATE_ADD('2100-12-31 23:59:59', INTERVAL '1:1' MINUTE_SECOND) |

+---+

| 2101-01-01 00:01:00 |

+---+

SELECT DATE_ADD('1900-01-01 00:00:00', INTERVAL '-1 10' DAY_HOUR);

+--+

| DATE_ADD('1900-01-01 00:00:00', INTERVAL '-1 10' DAY_HOUR) |

+--+

| 1899-12-30 14:00:00 |

+--+

SELECT DATE_ADD('1992-12-31 23:59:59.000002', INTERVAL '1.999999' SECOND_MICROSECOND);

+--+

| DATE_ADD('1992-12-31 23:59:59.000002', INTERVAL '1.999999' SECOND_MICROSECOND) |

+--+

| 1993-01-01 00:00:01.000001 |

+--+

1.2.3.15 DATE_FORMAT

Syntax

1012/4161

DATE_FORMAT(date, format[, locale])

Contents
1. Syntax

2. Description

3. Examples

Description
Formats the date value according to the format string.

The language used for the names is controlled by the value of the lc_time_names system variable. See server locale for

more on the supported locales.

The options that can be used by DATE_FORMAT(), as well as its inverse STR_TO_DATE() and the FROM_UNIXTIME()

function, are:

Option Description

%a Short weekday name in current locale (Variable lc_time_names).

%b
Short form month name in current locale. For locale en_US this is one of:

Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov or Dec.

%c Month with 1 or 2 digits.

%D Day with English suffix 'th', 'nd', 'st' or 'rd''. (1st, 2nd, 3rd...).

%d Day with 2 digits.

%e Day with 1 or 2 digits.

%f Microseconds 6 digits.

%H Hour with 2 digits between 00-23.

%h Hour with 2 digits between 01-12.

%I Hour with 2 digits between 01-12.

%i Minute with 2 digits.

%j Day of the year (001-366)

%k Hour with 1 digits between 0-23.

%l Hour with 1 digits between 1-12.

%M Full month name in current locale (Variable lc_time_names).

%m Month with 2 digits.

%p AM/PM according to current locale (Variable lc_time_names).

%r Time in 12 hour format, followed by AM/PM. Short for '%I:%i:%S %p'.

%S Seconds with 2 digits.

%s Seconds with 2 digits.

%T Time in 24 hour format. Short for '%H:%i:%S'.

%U Week number (00-53), when first day of the week is Sunday.

%u Week number (00-53), when first day of the week is Monday.

%V Week number (01-53), when first day of the week is Sunday. Used with %X.

%v Week number (01-53), when first day of the week is Monday. Used with %x.

%W Full weekday name in current locale (Variable lc_time_names).

%w Day of the week. 0 = Sunday, 6 = Saturday.

%X Year with 4 digits when first day of the week is Sunday. Used with %V.

%x Year with 4 digits when first day of the week is Monday. Used with %v.

1013/4161

https://mariadb.com/kb/en/server-locale/

%Y Year with 4 digits.

%y Year with 2 digits.

%Z Timezone abbreviation. From MariaDB 11.3.0.

%z Numeric timezone +hhmm or -hhmm presenting the hour and minute offset from UTC. From MariaDB 11.3.0.

%# For str_to_date(), skip all numbers.

%. For str_to_date(), skip all punctation characters.

%@ For str_to_date(), skip all alpha characters.

%% A literal % character.

To get a date in one of the standard formats, GET_FORMAT() can be used.

Examples

SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');

+--+

| DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y') |

+--+

| Sunday October 2009 |

+--+

SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');

+--+

| DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s') |

+--+

| 22:23:00 |

+--+

SELECT DATE_FORMAT('1900-10-04 22:23:00', '%D %y %a %d %m %b %j');

+--+

| DATE_FORMAT('1900-10-04 22:23:00', '%D %y %a %d %m %b %j') |

+--+

| 4th 00 Thu 04 10 Oct 277 |

+--+

SELECT DATE_FORMAT('1997-10-04 22:23:00', '%H %k %I %r %T %S %w');

+--+

| DATE_FORMAT('1997-10-04 22:23:00', '%H %k %I %r %T %S %w') |

+--+

| 22 22 10 10:23:00 PM 22:23:00 00 6 |

+--+

SELECT DATE_FORMAT('1999-01-01', '%X %V');

+------------------------------------+

| DATE_FORMAT('1999-01-01', '%X %V') |

+------------------------------------+

| 1998 52 |

+------------------------------------+

SELECT DATE_FORMAT('2006-06-00', '%d');

+---------------------------------+

| DATE_FORMAT('2006-06-00', '%d') |

+---------------------------------+

| 00 |

+---------------------------------+

Optionally, the locale can be explicitly specified as the third DATE_FORMAT() argument. Doing so makes the function

independent from the session settings, and the three argument version of DATE_FORMAT() can be used in virtual indexed

and persistent generated-columns:

SELECT DATE_FORMAT('2006-01-01', '%W', 'el_GR');

+--+

| DATE_FORMAT('2006-01-01', '%W', 'el_GR') |

+--+

| �ÇÃ»³»¯ |

+--+

1014/4161

From MariaDB 11.3, the timezone information:

SELECT DATE_FORMAT(NOW(), '%W %d %M %Y %H:%i:%s %Z %z');

+--+

| DATE_FORMAT(NOW(), '%W %d %M %Y %H:%i:%s %Z %z') |

+--+

| Wednesday 20 September 2023 15:00:23 SAST +0200 |

+--+

1.2.3.16 DATE_SUB

Syntax

DATE_SUB(date,INTERVAL expr unit)

Description
Performs date arithmetic. The date argument specifies the starting date or datetime value. expr is an expression specifying

the interval value to be subtracted from the starting date. expr is a string; it may start with a " - " for negative intervals. unit

is a keyword indicating the units in which the expression should be interpreted. See Date and Time Units for a complete list

of permitted units.

See also DATE_ADD() .

Examples

SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);

+---+

| DATE_SUB('1998-01-02', INTERVAL 31 DAY) |

+---+

| 1997-12-02 |

+---+

SELECT DATE_SUB('2005-01-01 00:00:00', INTERVAL '1 1:1:1' DAY_SECOND);

+--+

| DATE_SUB('2005-01-01 00:00:00', INTERVAL '1 1:1:1' DAY_SECOND) |

+--+

| 2004-12-30 22:58:59 |

+--+

1.2.3.17 DAY

Syntax

DAY(date)

Description
DAY() is a synonym for DAYOFMONTH() .

1.2.3.18 DAYNAME

Syntax

1015/4161

DAYNAME(date)

Description
Returns the name of the weekday for date. The language used for the name is controlled by the value of the lc_time_names

system variable. See server locale for more on the supported locales.

Examples

SELECT DAYNAME('2007-02-03');

+-----------------------+

| DAYNAME('2007-02-03') |

+-----------------------+

| Saturday |

+-----------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d, DAYNAME(d) FROM t1;

+---------------------+------------+

| d | DAYNAME(d) |

+---------------------+------------+

| 2007-01-30 21:31:07 | Tuesday |

| 1983-10-15 06:42:51 | Saturday |

| 2011-04-21 12:34:56 | Thursday |

| 2011-10-30 06:31:41 | Sunday |

| 2011-01-30 14:03:25 | Sunday |

| 2004-10-07 11:19:34 | Thursday |

+---------------------+------------+

Changing the locale:

SET lc_time_names = 'fr_CA';

SELECT DAYNAME('2013-04-01');

+-----------------------+

| DAYNAME('2013-04-01') |

+-----------------------+

| lundi |

+-----------------------+

1.2.3.19 DAYOFMONTH

Syntax

DAYOFMONTH(date)

Description
Returns the day of the month for date, in the range 1 to 31 , or 0 for dates such as '0000-00-00' or '2008-00-00'

which have a zero day part.

DAY() is a synonym.

1016/4161

https://mariadb.com/kb/en/server-locale/

Examples

SELECT DAYOFMONTH('2007-02-03');

+--------------------------+

| DAYOFMONTH('2007-02-03') |

+--------------------------+

| 3 |

+--------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d FROM t1 where DAYOFMONTH(d) = 30;

+---------------------+

| d |

+---------------------+

| 2007-01-30 21:31:07 |

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

+---------------------+

1.2.3.20 DAYOFWEEK

Syntax

DAYOFWEEK(date)

Description
Returns the day of the week index for the date (1 = Sunday, 2 = Monday, ..., 7 = Saturday). These index values correspond

to the ODBC standard.

This contrasts with WEEKDAY() which follows a different index numbering (0 = Monday, 1 = Tuesday, ... 6 = Sunday).

Examples

SELECT DAYOFWEEK('2007-02-03');

+-------------------------+

| DAYOFWEEK('2007-02-03') |

+-------------------------+

| 7 |

+-------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

1017/4161

SELECT d, DAYNAME(d), DAYOFWEEK(d), WEEKDAY(d) from t1;

+---------------------+------------+--------------+------------+

| d | DAYNAME(d) | DAYOFWEEK(d) | WEEKDAY(d) |

+---------------------+------------+--------------+------------+

| 2007-01-30 21:31:07 | Tuesday | 3 | 1 |

| 1983-10-15 06:42:51 | Saturday | 7 | 5 |

| 2011-04-21 12:34:56 | Thursday | 5 | 3 |

| 2011-10-30 06:31:41 | Sunday | 1 | 6 |

| 2011-01-30 14:03:25 | Sunday | 1 | 6 |

| 2004-10-07 11:19:34 | Thursday | 5 | 3 |

+---------------------+------------+--------------+------------+

1.2.3.21 DAYOFYEAR

Syntax

DAYOFYEAR(date)

Description
Returns the day of the year for date, in the range 1 to 366.

Examples

SELECT DAYOFYEAR('2018-02-16');

+-------------------------+

| DAYOFYEAR('2018-02-16') |

+-------------------------+

| 47 |

+-------------------------+

1.2.3.22 EXTRACT

Syntax

EXTRACT(unit FROM date)

Contents
1. Syntax

2. Description

3. Examples

Description
The EXTRACT() function extracts the required unit from the date. See Date and Time Units for a complete list of permitted

units.

In MariaDB 10.0.7 and MariaDB 5.5.35 , EXTRACT (HOUR FROM ...) was changed to return a value from 0 to 23,

adhering to the SQL standard. Until MariaDB 10.0.6 and MariaDB 5.5.34 , and in all versions of MySQL at least as of

MySQL 5.7, it could return a value > 23. HOUR() is not a standard function, so continues to adhere to the old behaviour

inherited from MySQL.

Examples

1018/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-1006-release-notes/
https://mariadb.com/kb/en/mariadb-5534-release-notes/

SELECT EXTRACT(YEAR FROM '2009-07-02');

+---------------------------------+

| EXTRACT(YEAR FROM '2009-07-02') |

+---------------------------------+

| 2009 |

+---------------------------------+

SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');

+--+

| EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03') |

+--+

| 200907 |

+--+

SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');

+--+

| EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03') |

+--+

| 20102 |

+--+

SELECT EXTRACT(MICROSECOND FROM '2003-01-02 10:30:00.000123');

+--+

| EXTRACT(MICROSECOND FROM '2003-01-02 10:30:00.000123') |

+--+

| 123 |

+--+

From MariaDB 10.0.7 and MariaDB 5.5.35 , EXTRACT (HOUR FROM...) returns a value from 0 to 23, as per the SQL

standard. HOUR is not a standard function, so continues to adhere to the old behaviour inherited from MySQL.

SELECT EXTRACT(HOUR FROM '26:30:00'), HOUR('26:30:00');

+-------------------------------+------------------+

| EXTRACT(HOUR FROM '26:30:00') | HOUR('26:30:00') |

+-------------------------------+------------------+

| 2 | 26 |

+-------------------------------+------------------+

1.2.3.23 FORMAT_PICO_TIME

Introduced in MariaDB 11.0.2

Syntax

FORMAT_PICO_TIME(time_val)

Contents
1. Syntax

2. Description

3. Examples

Description
Given a time in picoseconds, returns a human-readable time value and unit indicator. Resulting unit is dependent on the

length of the argument, and can be:

ps - picoseconds

ns - nanoseconds

us - microseconds

ms - milliseconds

s - seconds

min - minutes

h - hours

MariaDB starting with 11.0.2

1019/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-1102-release-notes/

d - days

With the exception of results under one nanosecond, which are not rounded and are represented as whole numbers, the

result is rounded to 2 decimal places, with a minimum of 3 significant digits.

Returns NULL if the argument is NULL.

This function is very similar to the Sys Schema FORMAT_TIME function, but with the following differences:

Represents minutes as min rather than m .

Does not represent weeks.

Examples

SELECT

 FORMAT_PICO_TIME(43) AS ps,

 FORMAT_PICO_TIME(4321) AS ns,

 FORMAT_PICO_TIME(43211234) AS us,

 FORMAT_PICO_TIME(432112344321) AS ms,

 FORMAT_PICO_TIME(43211234432123) AS s,

 FORMAT_PICO_TIME(432112344321234) AS m,

 FORMAT_PICO_TIME(4321123443212345) AS h,

 FORMAT_PICO_TIME(432112344321234545) AS d;

+--------+---------+----------+-----------+---------+----------+--------+--------+

| ps | ns | us | ms | s | m | h | d |

+--------+---------+----------+-----------+---------+----------+--------+--------+

| 43 ps | 4.32 ns | 43.21 us | 432.11 ms | 43.21 s | 7.20 min | 1.20 h | 5.00 d |

+--------+---------+----------+-----------+---------+----------+--------+--------+

1.2.3.24 FROM_DAYS

Syntax

FROM_DAYS(N)

Description
Given a day number N, returns a DATE value. The day count is based on the number of days from the start of the standard

calendar (0000-00-00).

The function is not designed for use with dates before the advent of the Gregorian calendar in October 1582. Results will

not be reliable since it doesn't account for the lost days when the calendar changed from the Julian calendar.

This is the converse of the TO_DAYS() function.

Examples

SELECT FROM_DAYS(730669);

+-------------------+

| FROM_DAYS(730669) |

+-------------------+

| 2000-07-03 |

+-------------------+

1.2.3.25 FROM_UNIXTIME

Syntax

FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

1020/4161

Contents
1. Syntax

2. Description

3. Performance Considerations

4. Examples

Description
Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS' or

YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric context. The value

is expressed in the current time zone . unix_timestamp is an internal timestamp value such as is produced by the

UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same way as listed in the entry for

the DATE_FORMAT() function.

Timestamps in MariaDB have a maximum value of 2147483647, equivalent to 2038-01-19 05:14:07. This is due to the

underlying 32-bit limitation. Using the function on a timestamp beyond this will result in NULL being returned. Use

DATETIME as a storage type if you require dates beyond this.

The options that can be used by FROM_UNIXTIME(), as well as DATE_FORMAT() and STR_TO_DATE(), are:

Option Description

%a Short weekday name in current locale (Variable lc_time_names).

%b
Short form month name in current locale. For locale en_US this is one of:

Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov or Dec.

%c Month with 1 or 2 digits.

%D Day with English suffix 'th', 'nd', 'st' or 'rd''. (1st, 2nd, 3rd...).

%d Day with 2 digits.

%e Day with 1 or 2 digits.

%f Microseconds 6 digits.

%H Hour with 2 digits between 00-23.

%h Hour with 2 digits between 01-12.

%I Hour with 2 digits between 01-12.

%i Minute with 2 digits.

%j Day of the year (001-366)

%k Hour with 1 digits between 0-23.

%l Hour with 1 digits between 1-12.

%M Full month name in current locale (Variable lc_time_names).

%m Month with 2 digits.

%p AM/PM according to current locale (Variable lc_time_names).

%r Time in 12 hour format, followed by AM/PM. Short for '%I:%i:%S %p'.

%S Seconds with 2 digits.

%s Seconds with 2 digits.

%T Time in 24 hour format. Short for '%H:%i:%S'.

%U Week number (00-53), when first day of the week is Sunday.

%u Week number (00-53), when first day of the week is Monday.

%V Week number (01-53), when first day of the week is Sunday. Used with %X.

%v Week number (01-53), when first day of the week is Monday. Used with %x.

%W Full weekday name in current locale (Variable lc_time_names).

1021/4161

https://mariadb.com/kb/en/time-zones/

%w Day of the week. 0 = Sunday, 6 = Saturday.

%X Year with 4 digits when first day of the week is Sunday. Used with %V.

%x Year with 4 digits when first day of the week is Sunday. Used with %v.

%Y Year with 4 digits.

%y Year with 2 digits.

%# For str_to_date(), skip all numbers.

%. For str_to_date(), skip all punctation characters.

%@ For str_to_date(), skip all alpha characters.

%% A literal % character.

Performance Considerations
If your session time zone is set to SYSTEM (the default), FROM_UNIXTIME() will call the OS function to convert the data

using the system time zone. At least on Linux, the corresponding function (localtime_r) uses a global mutex inside glibc

that can cause contention under high concurrent load.

Set your time zone to a named time zone to avoid this issue. See mysql time zone tables for details on how to do this.

Examples

SELECT FROM_UNIXTIME(1196440219);

+---------------------------+

| FROM_UNIXTIME(1196440219) |

+---------------------------+

| 2007-11-30 11:30:19 |

+---------------------------+

SELECT FROM_UNIXTIME(1196440219) + 0;

+-------------------------------+

| FROM_UNIXTIME(1196440219) + 0 |

+-------------------------------+

| 20071130113019.000000 |

+-------------------------------+

SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(), '%Y %D %M %h:%i:%s %x');

+---+

| FROM_UNIXTIME(UNIX_TIMESTAMP(), '%Y %D %M %h:%i:%s %x') |

+---+

| 2010 27th March 01:03:47 2010 |

+---+

1.2.3.26 GET_FORMAT

Syntax

GET_FORMAT({DATE|DATETIME|TIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Description
Returns a format string. This function is useful in combination with the DATE_FORMAT() and the STR_TO_DATE()

functions.

Possible result formats are:

Function Call Result Format

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

1022/4161

https://mariadb.com/kb/en/time-zones/#mysql-time-zone-tables

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

Examples
Obtaining the string matching to the standard European date format:

SELECT GET_FORMAT(DATE, 'EUR');

+-------------------------+

| GET_FORMAT(DATE, 'EUR') |

+-------------------------+

| %d.%m.%Y |

+-------------------------+

Using the same string to format a date:

SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));

+--+

| DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR')) |

+--+

| 03.10.2003 |

+--+

SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));

+--+

| STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA')) |

+--+

| 2003-10-31 |

+--+

1.2.3.27 HOUR

Syntax

HOUR(time)

Description
Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the range of TIME

values actually is much larger, so HOUR can return values greater than 23.

The return value is always positive, even if a negative TIME value is provided.

1023/4161

Examples

SELECT HOUR('10:05:03');

+------------------+

| HOUR('10:05:03') |

+------------------+

| 10 |

+------------------+

SELECT HOUR('272:59:59');

+-------------------+

| HOUR('272:59:59') |

+-------------------+

| 272 |

+-------------------+

Difference between EXTRACT (HOUR FROM ...) (>= MariaDB 10.0.7 and MariaDB 5.5.35) and HOUR :

SELECT EXTRACT(HOUR FROM '26:30:00'), HOUR('26:30:00');

+-------------------------------+------------------+

| EXTRACT(HOUR FROM '26:30:00') | HOUR('26:30:00') |

+-------------------------------+------------------+

| 2 | 26 |

+-------------------------------+------------------+

1.2.3.28 LAST_DAY

Syntax

LAST_DAY(date)

Description
Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if the

argument is invalid.

Examples

1024/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/

SELECT LAST_DAY('2003-02-05');

+------------------------+

| LAST_DAY('2003-02-05') |

+------------------------+

| 2003-02-28 |

+------------------------+

SELECT LAST_DAY('2004-02-05');

+------------------------+

| LAST_DAY('2004-02-05') |

+------------------------+

| 2004-02-29 |

+------------------------+

SELECT LAST_DAY('2004-01-01 01:01:01');

+---------------------------------+

| LAST_DAY('2004-01-01 01:01:01') |

+---------------------------------+

| 2004-01-31 |

+---------------------------------+

SELECT LAST_DAY('2003-03-32');

+------------------------+

| LAST_DAY('2003-03-32') |

+------------------------+

| NULL |

+------------------------+

1 row in set, 1 warning (0.00 sec)

Warning (Code 1292): Incorrect datetime value: '2003-03-32'

1.2.3.29 LOCALTIME

Syntax

LOCALTIME

LOCALTIME([precision])

Description
LOCALTIME and LOCALTIME() are synonyms for NOW() .

1.2.3.30 LOCALTIMESTAMP

Syntax

LOCALTIMESTAMP

LOCALTIMESTAMP([precision])

Description
LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW() .

1.2.3.31 MAKEDATE

Syntax

MAKEDATE(year,dayofyear)

1025/4161

Description
Returns a date, given year and day-of-year values . dayofyear must be greater than 0 or the result is NULL.

Examples

SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);

+-------------------+-------------------+

| MAKEDATE(2011,31) | MAKEDATE(2011,32) |

+-------------------+-------------------+

| 2011-01-31 | 2011-02-01 |

+-------------------+-------------------+

SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);

+--------------------+--------------------+

| MAKEDATE(2011,365) | MAKEDATE(2014,365) |

+--------------------+--------------------+

| 2011-12-31 | 2014-12-31 |

+--------------------+--------------------+

SELECT MAKEDATE(2011,0);

+------------------+

| MAKEDATE(2011,0) |

+------------------+

| NULL |

+------------------+

1.2.3.32 MAKETIME

Syntax

MAKETIME(hour,minute,second)

Description
Returns a time value calculated from the hour , minute , and second arguments.

If minute or second are out of the range 0 to 60, NULL is returned. The hour can be in the range -838 to 838, outside

of which the value is truncated with a warning.

Examples

1026/4161

SELECT MAKETIME(13,57,33);

+--------------------+

| MAKETIME(13,57,33) |

+--------------------+

| 13:57:33 |

+--------------------+

SELECT MAKETIME(-13,57,33);

+---------------------+

| MAKETIME(-13,57,33) |

+---------------------+

| -13:57:33 |

+---------------------+

SELECT MAKETIME(13,67,33);

+--------------------+

| MAKETIME(13,67,33) |

+--------------------+

| NULL |

+--------------------+

SELECT MAKETIME(-1000,57,33);

+-----------------------+

| MAKETIME(-1000,57,33) |

+-----------------------+

| -838:59:59 |

+-----------------------+

1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1292 | Truncated incorrect time value: '-1000:57:33' |

+---------+------+---+

1.2.3.33 MICROSECOND

Syntax

MICROSECOND(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the microseconds from the time or datetime expression expr as a number in the range from 0 to 999999.

If expr is a time with no microseconds, zero is returned, while if expr is a date with no time, zero with a warning is returned.

Examples

1027/4161

SELECT MICROSECOND('12:00:00.123456');

+--------------------------------+

| MICROSECOND('12:00:00.123456') |

+--------------------------------+

| 123456 |

+--------------------------------+

SELECT MICROSECOND('2009-12-31 23:59:59.000010');

+---+

| MICROSECOND('2009-12-31 23:59:59.000010') |

+---+

| 10 |

+---+

SELECT MICROSECOND('2013-08-07 12:13:14');

+------------------------------------+

| MICROSECOND('2013-08-07 12:13:14') |

+------------------------------------+

| 0 |

+------------------------------------+

SELECT MICROSECOND('2013-08-07');

+---------------------------+

| MICROSECOND('2013-08-07') |

+---------------------------+

| 0 |

+---------------------------+

1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1292 | Truncated incorrect time value: '2013-08-07' |

+---------+------+--+

1.2.3.34 MINUTE

Syntax

MINUTE(time)

Description
Returns the minute for time, in the range 0 to 59.

Examples

SELECT MINUTE('2013-08-03 11:04:03');

+-------------------------------+

| MINUTE('2013-08-03 11:04:03') |

+-------------------------------+

| 4 |

+-------------------------------+

 SELECT MINUTE ('23:12:50');

+---------------------+

| MINUTE ('23:12:50') |

+---------------------+

| 12 |

+---------------------+

1.2.3.35 MONTH
1028/4161

Syntax

MONTH(date)

Description
Returns the month for date in the range 1 to 12 for January to December, or 0 for dates such as '0000-00-00' or '2008-00-

00' that have a zero month part.

Examples

SELECT MONTH('2019-01-03');

+---------------------+

| MONTH('2019-01-03') |

+---------------------+

| 1 |

+---------------------+

SELECT MONTH('2019-00-03');

+---------------------+

| MONTH('2019-00-03') |

+---------------------+

| 0 |

+---------------------+

1.2.3.36 MONTHNAME

Syntax

MONTHNAME(date)

Description
Returns the full name of the month for date. The language used for the name is controlled by the value of the

lc_time_names system variable. See server locale for more on the supported locales.

Examples

SELECT MONTHNAME('2019-02-03');

+-------------------------+

| MONTHNAME('2019-02-03') |

+-------------------------+

| February |

+-------------------------+

Changing the locale:

SET lc_time_names = 'fr_CA';

SELECT MONTHNAME('2019-05-21');

+-------------------------+

| MONTHNAME('2019-05-21') |

+-------------------------+

| mai |

+-------------------------+

1.2.3.37 NOW
1029/4161

https://mariadb.com/kb/en/server-locale/

Syntax

NOW([precision])

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP([precision])

LOCALTIME, LOCALTIME([precision])

LOCALTIMESTAMP

LOCALTIMESTAMP([precision])

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format,

depending on whether the function is used in a string or numeric context. The value is expressed in the current time zone .

The optional precision determines the microsecond precision. See Microseconds in MariaDB.

NOW() (or its synonyms) can be used as the default value for TIMESTAMP columns as well as, since MariaDB 10.0.1 ,

DATETIME columns. Before MariaDB 10.0.1 , it was only possible for a single TIMESTAMP column per table to contain

the CURRENT_TIMESTAMP as its default.

When displayed in the INFORMATION_SCHEMA.COLUMNS table, a default CURRENT TIMESTAMP is displayed as

CURRENT_TIMESTAMP up until MariaDB 10.2.2 , and as current_timestamp() from MariaDB 10.2.3 , due to to

MariaDB 10.2 accepting expressions in the DEFAULT clause.

Changing the timestamp system variable with a SET timestamp statement affects the value returned by NOW(), but not by

SYSDATE().

Examples

SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2010-03-27 13:13:25 |

+---------------------+

SELECT NOW() + 0;

+-----------------------+

| NOW() + 0 |

+-----------------------+

| 20100327131329.000000 |

+-----------------------+

With precision:

SELECT CURRENT_TIMESTAMP(2);

+------------------------+

| CURRENT_TIMESTAMP(2) |

+------------------------+

| 2018-07-10 09:47:26.24 |

+------------------------+

Used as a default TIMESTAMP:

CREATE TABLE t (createdTS TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP);

From MariaDB 10.2.2 :

1030/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA='test'

 AND COLUMN_NAME LIKE '%ts%'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: t

 COLUMN_NAME: ts

 ORDINAL_POSITION: 1

 COLUMN_DEFAULT: current_timestamp()

...

<= MariaDB 10.2.1

SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA='test'

 AND COLUMN_NAME LIKE '%ts%'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: t

 COLUMN_NAME: createdTS

 ORDINAL_POSITION: 1

 COLUMN_DEFAULT: CURRENT_TIMESTAMP

...

1.2.3.38 PERIOD_ADD

Syntax

PERIOD_ADD(P,N)

Description
Adds N months to period P . P is in the format YYMM or YYYYMM, and is not a date value. If P contains a two-digit

year, values from 00 to 69 are converted to from 2000 to 2069, while values from 70 are converted to 1970 upwards.

Returns a value in the format YYYYMM.

Examples

SELECT PERIOD_ADD(200801,2);

+----------------------+

| PERIOD_ADD(200801,2) |

+----------------------+

| 200803 |

+----------------------+

SELECT PERIOD_ADD(6910,2);

+--------------------+

| PERIOD_ADD(6910,2) |

+--------------------+

| 206912 |

+--------------------+

SELECT PERIOD_ADD(7010,2);

+--------------------+

| PERIOD_ADD(7010,2) |

+--------------------+

| 197012 |

+--------------------+

1.2.3.39 PERIOD_DIFF
1031/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/

Syntax

PERIOD_DIFF(P1,P2)

Description
Returns the number of months between periods P1 and P2. P1 and P2 can be in the format YYMM or YYYYMM , and are not

date values.

If P1 or P2 contains a two-digit year, values from 00 to 69 are converted to from 2000 to 2069, while values from 70 are

converted to 1970 upwards.

Examples

SELECT PERIOD_DIFF(200802,200703);

+----------------------------+

| PERIOD_DIFF(200802,200703) |

+----------------------------+

| 11 |

+----------------------------+

SELECT PERIOD_DIFF(6902,6803);

+------------------------+

| PERIOD_DIFF(6902,6803) |

+------------------------+

| 11 |

+------------------------+

SELECT PERIOD_DIFF(7002,6803);

+------------------------+

| PERIOD_DIFF(7002,6803) |

+------------------------+

| -1177 |

+------------------------+

1.2.3.40 QUARTER

Syntax

QUARTER(date)

Description
Returns the quarter of the year for date , in the range 1 to 4. Returns 0 if month contains a zero value, or NULL if the given

value is not otherwise a valid date (zero values are accepted).

Examples

1032/4161

SELECT QUARTER('2008-04-01');

+-----------------------+

| QUARTER('2008-04-01') |

+-----------------------+

| 2 |

+-----------------------+

SELECT QUARTER('2019-00-01');

+-----------------------+

| QUARTER('2019-00-01') |

+-----------------------+

| 0 |

+-----------------------+

1.2.3.41 SECOND

Syntax

SECOND(time)

Description
Returns the second for a given time (which can include microseconds), in the range 0 to 59, or NULL if not given a valid

time value.

Examples

SELECT SECOND('10:05:03');

+--------------------+

| SECOND('10:05:03') |

+--------------------+

| 3 |

+--------------------+

SELECT SECOND('10:05:01.999999');

+---------------------------+

| SECOND('10:05:01.999999') |

+---------------------------+

| 1 |

+---------------------------+

1.2.3.42 SEC_TO_TIME

Syntax

SEC_TO_TIME(seconds)

Description
Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range of the result is

constrained to that of the TIME data type. A warning occurs if the argument corresponds to a value outside that range.

The time will be returned in the format hh:mm:ss , or hhmmss if used in a numeric calculation.

Examples

1033/4161

SELECT SEC_TO_TIME(12414);

+--------------------+

| SEC_TO_TIME(12414) |

+--------------------+

| 03:26:54 |

+--------------------+

SELECT SEC_TO_TIME(12414)+0;

+----------------------+

| SEC_TO_TIME(12414)+0 |

+----------------------+

| 32654 |

+----------------------+

SELECT SEC_TO_TIME(9999999);

+----------------------+

| SEC_TO_TIME(9999999) |

+----------------------+

| 838:59:59 |

+----------------------+

1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1292 | Truncated incorrect time value: '9999999' |

+---------+------+---+

1.2.3.43 STR_TO_DATE

Syntax

STR_TO_DATE(str,format)

Contents
1. Syntax

2. Description

3. Examples

Description
This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format . STR_TO_DATE()

returns a DATETIME value if the format string contains both date and time parts, or a DATE or TIME value if the string

contains only date or time parts.

The date, time, or datetime values contained in str should be given in the format indicated by format. If str contains an

illegal date, time, or datetime value, STR_TO_DATE() returns NULL . An illegal value also produces a warning.

Under specific SQL_MODE settings an error may also be generated if the str isn't a valid date:

ALLOW_INVALID_DATES

NO_ZERO_DATE

NO_ZERO_IN_DATE

The options that can be used by STR_TO_DATE(), as well as its inverse DATE_FORMAT() and the FROM_UNIXTIME()

function, are:

Option Description

%a Short weekday name in current locale (Variable lc_time_names).

%b
Short form month name in current locale. For locale en_US this is one of:

Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov or Dec.

%c Month with 1 or 2 digits.

1034/4161

%D Day with English suffix 'th', 'nd', 'st' or 'rd''. (1st, 2nd, 3rd...).

%d Day with 2 digits.

%e Day with 1 or 2 digits.

%f Microseconds 6 digits.

%H Hour with 2 digits between 00-23.

%h Hour with 2 digits between 01-12.

%I Hour with 2 digits between 01-12.

%i Minute with 2 digits.

%j Day of the year (001-366)

%k Hour with 1 digits between 0-23.

%l Hour with 1 digits between 1-12.

%M Full month name in current locale (Variable lc_time_names).

%m Month with 2 digits.

%p AM/PM according to current locale (Variable lc_time_names).

%r Time in 12 hour format, followed by AM/PM. Short for '%I:%i:%S %p'.

%S Seconds with 2 digits.

%s Seconds with 2 digits.

%T Time in 24 hour format. Short for '%H:%i:%S'.

%U Week number (00-53), when first day of the week is Sunday.

%u Week number (00-53), when first day of the week is Monday.

%V Week number (01-53), when first day of the week is Sunday. Used with %X.

%v Week number (01-53), when first day of the week is Monday. Used with %x.

%W Full weekday name in current locale (Variable lc_time_names).

%w Day of the week. 0 = Sunday, 6 = Saturday.

%X Year with 4 digits when first day of the week is Sunday. Used with %V.

%x Year with 4 digits when first day of the week is Monday. Used with %v.

%Y Year with 4 digits.

%y Year with 2 digits.

%# For str_to_date(), skip all numbers.

%. For str_to_date(), skip all punctation characters.

%@ For str_to_date(), skip all alpha characters.

%% A literal % character.

Examples

1035/4161

SELECT STR_TO_DATE('Wednesday, June 2, 2014', '%W, %M %e, %Y');

+---+

| STR_TO_DATE('Wednesday, June 2, 2014', '%W, %M %e, %Y') |

+---+

| 2014-06-02 |

+---+

SELECT STR_TO_DATE('Wednesday23423, June 2, 2014', '%W, %M %e, %Y');

+--+

| STR_TO_DATE('Wednesday23423, June 2, 2014', '%W, %M %e, %Y') |

+--+

| NULL |

+--+

1 row in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message

+---------+------+---+

| Warning | 1411 | Incorrect datetime value: 'Wednesday23423, June 2, 2014' for function str_to_date

+---------+------+---+

SELECT STR_TO_DATE('Wednesday23423, June 2, 2014', '%W%#, %M %e, %Y');

+--+

| STR_TO_DATE('Wednesday23423, June 2, 2014', '%W%#, %M %e, %Y') |

+--+

| 2014-06-02 |

+--+

1.2.3.44 SUBDATE

Syntax

SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

Description
When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB() . See Date

and Time Units for a complete list of permitted units.

The second form allows the use of an integer value for days. In such cases, it is interpreted as the number of days to be

subtracted from the date or datetime expression expr.

Examples

SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);

+---+

| DATE_SUB('2008-01-02', INTERVAL 31 DAY) |

+---+

| 2007-12-02 |

+---+

SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);

+--+

| SUBDATE('2008-01-02', INTERVAL 31 DAY) |

+--+

| 2007-12-02 |

+--+

1036/4161

SELECT SUBDATE('2008-01-02 12:00:00', 31);

+------------------------------------+

| SUBDATE('2008-01-02 12:00:00', 31) |

+------------------------------------+

| 2007-12-02 12:00:00 |

+------------------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d, SUBDATE(d, 10) from t1;

+---------------------+---------------------+

| d | SUBDATE(d, 10) |

+---------------------+---------------------+

| 2007-01-30 21:31:07 | 2007-01-20 21:31:07 |

| 1983-10-15 06:42:51 | 1983-10-05 06:42:51 |

| 2011-04-21 12:34:56 | 2011-04-11 12:34:56 |

| 2011-10-30 06:31:41 | 2011-10-20 06:31:41 |

| 2011-01-30 14:03:25 | 2011-01-20 14:03:25 |

| 2004-10-07 11:19:34 | 2004-09-27 11:19:34 |

+---------------------+---------------------+

SELECT d, SUBDATE(d, INTERVAL 10 MINUTE) from t1;

+---------------------+--------------------------------+

| d | SUBDATE(d, INTERVAL 10 MINUTE) |

+---------------------+--------------------------------+

| 2007-01-30 21:31:07 | 2007-01-30 21:21:07 |

| 1983-10-15 06:42:51 | 1983-10-15 06:32:51 |

| 2011-04-21 12:34:56 | 2011-04-21 12:24:56 |

| 2011-10-30 06:31:41 | 2011-10-30 06:21:41 |

| 2011-01-30 14:03:25 | 2011-01-30 13:53:25 |

| 2004-10-07 11:19:34 | 2004-10-07 11:09:34 |

+---------------------+--------------------------------+

1.2.3.45 SUBTIME

Syntax

SUBTIME(expr1,expr2)

Description
SUBTIME() returns expr1 - expr2 expressed as a value in the same format as expr1 . expr1 is a time or datetime

expression, and expr2 is a time expression.

Examples

1037/4161

SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');

+--+

| SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002') |

+--+

| 2007-12-30 22:58:58.999997 |

+--+

SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');

+---+

| SUBTIME('01:00:00.999999', '02:00:00.999998') |

+---+

| -00:59:59.999999 |

+---+

1.2.3.46 SYSDATE

Syntax

SYSDATE([precision])

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu format,

depending on whether the function is used in a string or numeric context.

The optional precision determines the microsecond precision. See Microseconds in MariaDB.

SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which returns a constant time

that indicates the time at which the statement began to execute. (Within a stored routine or trigger, NOW() returns the time

at which the routine or triggering statement began to execute.)

In addition, changing the timestamp system variable with a SET timestamp statement affects the value returned by

NOW() but not by SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of

SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected by SET TIMESTAMP, it

is non-deterministic and therefore unsafe for replication if statement-based binary logging is used. If that is a problem, you

can use row-based logging, or start the server with the mysqld option --sysdate-is-now to cause SYSDATE() to be an alias

for NOW(). The non-deterministic nature of SYSDATE() also means that indexes cannot be used for evaluating expressions

that refer to it, and that statements using the SYSDATE() function are unsafe for statement-based replication.

Examples
Difference between NOW() and SYSDATE():

SELECT NOW(), SLEEP(2), NOW();

+---------------------+----------+---------------------+

| NOW() | SLEEP(2) | NOW() |

+---------------------+----------+---------------------+

| 2010-03-27 13:23:40 | 0 | 2010-03-27 13:23:40 |

+---------------------+----------+---------------------+

SELECT SYSDATE(), SLEEP(2), SYSDATE();

+---------------------+----------+---------------------+

| SYSDATE() | SLEEP(2) | SYSDATE() |

+---------------------+----------+---------------------+

| 2010-03-27 13:23:52 | 0 | 2010-03-27 13:23:54 |

+---------------------+----------+---------------------+

With precision:

1038/4161

SELECT SYSDATE(4);

+--------------------------+

| SYSDATE(4) |

+--------------------------+

| 2018-07-10 10:17:13.1689 |

+--------------------------+

1.2.3.47 TIME Function

Syntax

TIME(expr)

Description
Extracts the time part of the time or datetime expression expr and returns it as a string.

Examples

SELECT TIME('2003-12-31 01:02:03');

+-----------------------------+

| TIME('2003-12-31 01:02:03') |

+-----------------------------+

| 01:02:03 |

+-----------------------------+

SELECT TIME('2003-12-31 01:02:03.000123');

+------------------------------------+

| TIME('2003-12-31 01:02:03.000123') |

+------------------------------------+

| 01:02:03.000123 |

+------------------------------------+

1.2.3.48 TIMEDIFF

Syntax

TIMEDIFF(expr1,expr2)

Description
TIMEDIFF() returns expr1 - expr2 expressed as a time value. expr1 and expr2 are time or date-and-time

expressions, but both must be of the same type.

Examples

1039/4161

SELECT TIMEDIFF('2000:01:01 00:00:00', '2000:01:01 00:00:00.000001');

+---+

| TIMEDIFF('2000:01:01 00:00:00', '2000:01:01 00:00:00.000001') |

+---+

| -00:00:00.000001 |

+---+

SELECT TIMEDIFF('2008-12-31 23:59:59.000001', '2008-12-30 01:01:01.000002');

+--+

| TIMEDIFF('2008-12-31 23:59:59.000001', '2008-12-30 01:01:01.000002') |

+--+

| 46:58:57.999999 |

+--+

1.2.3.49 TIMESTAMP FUNCTION

Syntax

TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

Description
With a single argument, this function returns the date or datetime expression expr as a datetime value. With two

arguments, it adds the time expression expr2 to the date or datetime expression expr1 and returns the result as a

datetime value.

Examples

SELECT TIMESTAMP('2003-12-31');

+-------------------------+

| TIMESTAMP('2003-12-31') |

+-------------------------+

| 2003-12-31 00:00:00 |

+-------------------------+

SELECT TIMESTAMP('2003-12-31 12:00:00','6:30:00');

+--+

| TIMESTAMP('2003-12-31 12:00:00','6:30:00') |

+--+

| 2003-12-31 18:30:00 |

+--+

1.2.3.50 TIMESTAMPADD

Syntax

TIMESTAMPADD(unit,interval,datetime_expr)

Description
Adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given by the

unit argument, which should be one of the following values: MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK,

MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For example, DAY and

SQL_TSI_DAY both are legal.

Before MariaDB 5.5, FRAC_SECOND was permitted as a synonym for MICROSECOND.

1040/4161

Examples

SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');

+-------------------------------------+

| TIMESTAMPADD(MINUTE,1,'2003-01-02') |

+-------------------------------------+

| 2003-01-02 00:01:00 |

+-------------------------------------+

SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');

+-----------------------------------+

| TIMESTAMPADD(WEEK,1,'2003-01-02') |

+-----------------------------------+

| 2003-01-09 |

+-----------------------------------+

1.2.3.51 TIMESTAMPDIFF

Syntax

TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Description
Returns datetime_expr2 - datetime_expr1 , where datetime_expr1 and datetime_expr2 are date or datetime

expressions. One expression may be a date and the other a datetime; a date value is treated as a datetime having the time

part '00:00:00' where necessary. The unit for the result (an integer) is given by the unit argument. The legal values for unit

are the same as those listed in the description of the TIMESTAMPADD() function, i.e MICROSECOND, SECOND, MINUTE,

HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

TIMESTAMPDIFF can also be used to calculate age.

Examples

SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');

+--+

| TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01') |

+--+

| 3 |

+--+

SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');

+---+

| TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01') |

+---+

| -1 |

+---+

SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');

+--+

| TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55') |

+--+

| 128885 |

+--+

Calculating age:

1041/4161

SELECT CURDATE();

+------------+

| CURDATE() |

+------------+

| 2019-05-27 |

+------------+

SELECT TIMESTAMPDIFF(YEAR, '1971-06-06', CURDATE()) AS age;

+------+

| age |

+------+

| 47 |

+------+

SELECT TIMESTAMPDIFF(YEAR, '1971-05-06', CURDATE()) AS age;

+------+

| age |

+------+

| 48 |

+------+

Age as of 2014-08-02:

SELECT name, date_of_birth, TIMESTAMPDIFF(YEAR,date_of_birth,'2014-08-02') AS age

 FROM student_details;

+---------+---------------+------+

| name | date_of_birth | age |

+---------+---------------+------+

| Chun | 1993-12-31 | 20 |

| Esben | 1946-01-01 | 68 |

| Kaolin | 1996-07-16 | 18 |

| Tatiana | 1988-04-13 | 26 |

+---------+---------------+------+

1.2.3.52 TIME_FORMAT

Syntax

TIME_FORMAT(time,format)

Description
This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours, minutes,

and seconds. Other specifiers produce a NULL value or 0.

Examples

SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');

+--+

| TIME_FORMAT('100:00:00', '%H %k %h %I %l') |

+--+

| 100 100 04 04 4 |

+--+

1.2.3.53 TIME_TO_SEC

Syntax

TIME_TO_SEC(time)

1042/4161

Description
Returns the time argument, converted to seconds.

The value returned by TIME_TO_SEC is of type DOUBLE . Before MariaDB 5.3 (and MySQL 5.6), the type was INT . The

returned value preserves microseconds of the argument. See also Microseconds in MariaDB.

Examples

SELECT TIME_TO_SEC('22:23:00');

+-------------------------+

| TIME_TO_SEC('22:23:00') |

+-------------------------+

| 80580 |

+-------------------------+

SELECT TIME_TO_SEC('00:39:38');

+-------------------------+

| TIME_TO_SEC('00:39:38') |

+-------------------------+

| 2378 |

+-------------------------+

SELECT TIME_TO_SEC('09:12:55.2355');

+------------------------------+

| TIME_TO_SEC('09:12:55.2355') |

+------------------------------+

| 33175.2355 |

+------------------------------+

1 row in set (0.000 sec)

1.2.3.54 TO_DAYS

Syntax

TO_DAYS(date)

Description
Given a date date , returns the number of days since the start of the current calendar (0000-00-00).

The function is not designed for use with dates before the advent of the Gregorian calendar in October 1582. Results will

not be reliable since it doesn't account for the lost days when the calendar changed from the Julian calendar.

This is the converse of the FROM_DAYS() function.

Examples

1043/4161

SELECT TO_DAYS('2007-10-07');

+-----------------------+

| TO_DAYS('2007-10-07') |

+-----------------------+

| 733321 |

+-----------------------+

SELECT TO_DAYS('0000-01-01');

+-----------------------+

| TO_DAYS('0000-01-01') |

+-----------------------+

| 1 |

+-----------------------+

SELECT TO_DAYS(950501);

+-----------------+

| TO_DAYS(950501) |

+-----------------+

| 728779 |

+-----------------+

1.2.3.55 TO_SECONDS

Syntax

TO_SECONDS(expr)

Description
Returns the number of seconds from year 0 till expr , or NULL if expr is not a valid date or datetime.

Examples

1044/4161

SELECT TO_SECONDS('2013-06-13');

+--------------------------+

| TO_SECONDS('2013-06-13') |

+--------------------------+

| 63538300800 |

+--------------------------+

SELECT TO_SECONDS('2013-06-13 21:45:13');

+-----------------------------------+

| TO_SECONDS('2013-06-13 21:45:13') |

+-----------------------------------+

| 63538379113 |

+-----------------------------------+

SELECT TO_SECONDS(NOW());

+-------------------+

| TO_SECONDS(NOW()) |

+-------------------+

| 63543530875 |

+-------------------+

SELECT TO_SECONDS(20130513);

+----------------------+

| TO_SECONDS(20130513) |

+----------------------+

| 63535622400 |

+----------------------+

1 row in set (0.00 sec)

SELECT TO_SECONDS(130513);

+--------------------+

| TO_SECONDS(130513) |

+--------------------+

| 63535622400 |

+--------------------+

1.2.3.56 UNIX_TIMESTAMP
Contents
1. Syntax

2. Description

1. Error Handling

2. Compatibility

3. Examples

Syntax

UNIX_TIMESTAMP()

UNIX_TIMESTAMP(date)

Description
If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned integer.

If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since '1970-01-01

00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP , or a number in the format YYMMDD or

YYYYMMDD. The server interprets date as a value in the current time zone and converts it to an internal value in UTC .

Clients can set their time zone as described in time zones .

The inverse function of UNIX_TIMESTAMP() is FROM_UNIXTIME()

UNIX_TIMESTAMP() supports microseconds.

Timestamps in MariaDB have a maximum value of 2147483647, equivalent to 2038-01-19 05:14:07. This is due to the

underlying 32-bit limitation. Using the function on a date beyond this will result in NULL being returned. Use

DATETIME as a storage type if you require dates beyond this.

1045/4161

https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/time-zones/

Error Handling

Returns NULL for wrong arguments to UNIX_TIMESTAMP() . In MySQL and MariaDB before 5.3 wrong arguments to

UNIX_TIMESTAMP() returned 0.

Compatibility

As you can see in the examples above, UNIX_TIMESTAMP(constant-date-string) returns a timestamp with 6 decimals while

MariaDB 5.2 and before returns it without decimals. This can cause a problem if you are using UNIX_TIMESTAMP() as a

partitioning function. You can fix this by using FLOOR(UNIX_TIMESTAMP(..)) or changing the date string to a date number,

like 20080101000000.

Examples

SELECT UNIX_TIMESTAMP();

+------------------+

| UNIX_TIMESTAMP() |

+------------------+

| 1269711082 |

+------------------+

SELECT UNIX_TIMESTAMP('2007-11-30 10:30:19');

+---------------------------------------+

| UNIX_TIMESTAMP('2007-11-30 10:30:19') |

+---------------------------------------+

| 1196436619.000000 |

+---------------------------------------+

SELECT UNIX_TIMESTAMP("2007-11-30 10:30:19.123456");

+--+

| unix_timestamp("2007-11-30 10:30:19.123456") |

+--+

| 1196411419.123456 |

+--+

SELECT FROM_UNIXTIME(UNIX_TIMESTAMP('2007-11-30 10:30:19'));

+--+

| FROM_UNIXTIME(UNIX_TIMESTAMP('2007-11-30 10:30:19')) |

+--+

| 2007-11-30 10:30:19.000000 |

+--+

SELECT FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP('2007-11-30 10:30:19')));

+---+

| FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP('2007-11-30 10:30:19'))) |

+---+

| 2007-11-30 10:30:19 |

+---+

1.2.3.57 UTC_DATE

Syntax

UTC_DATE, UTC_DATE()

Description
Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is

used in a string or numeric context.

Examples

1046/4161

https://mariadb.com/kb/en/coordinated-universal-time/

SELECT UTC_DATE(), UTC_DATE() + 0;

+------------+----------------+

| UTC_DATE() | UTC_DATE() + 0 |

+------------+----------------+

| 2010-03-27 | 20100327 |

+------------+----------------+

1.2.3.58 UTC_TIME

Syntax

UTC_TIME

UTC_TIME([precision])

Description
Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on whether the function

is used in a string or numeric context.

The optional precision determines the microsecond precision. See Microseconds in MariaDB.

Examples

SELECT UTC_TIME(), UTC_TIME() + 0;

+------------+----------------+

| UTC_TIME() | UTC_TIME() + 0 |

+------------+----------------+

| 17:32:34 | 173234.000000 |

+------------+----------------+

With precision:

SELECT UTC_TIME(5);

+----------------+

| UTC_TIME(5) |

+----------------+

| 07:52:50.78369 |

+----------------+

1.2.3.59 UTC_TIMESTAMP

Syntax

UTC_TIMESTAMP

UTC_TIMESTAMP([precision])

Description
Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS.uuuuuu

format, depending on whether the function is used in a string or numeric context.

The optional precision determines the microsecond precision. See Microseconds in MariaDB.

Examples

1047/4161

https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/coordinated-universal-time/

SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;

+---------------------+-----------------------+

| UTC_TIMESTAMP() | UTC_TIMESTAMP() + 0 |

+---------------------+-----------------------+

| 2010-03-27 17:33:16 | 20100327173316.000000 |

+---------------------+-----------------------+

With precision:

SELECT UTC_TIMESTAMP(4);

+--------------------------+

| UTC_TIMESTAMP(4) |

+--------------------------+

| 2018-07-10 07:51:09.1019 |

+--------------------------+

1.2.3.60 WEEK

Syntax

WEEK(date[,mode])

Description
This function returns the week number for date . The two-argument form of WEEK() allows you to specify whether the

week starts on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1 to 53. If the

mode argument is omitted, the value of the default_week_format system variable is used.

Modes

Mode 1st day of week Range Week 1 is the 1st week with

0 Sunday 0-53 a Sunday in this year

1 Monday 0-53 more than 3 days this year

2 Sunday 1-53 a Sunday in this year

3 Monday 1-53 more than 3 days this year

4 Sunday 0-53 more than 3 days this year

5 Monday 0-53 a Monday in this year

6 Sunday 1-53 more than 3 days this year

7 Monday 1-53 a Monday in this year

With the mode value of 3, which means 'more than 3 days this year', weeks are numbered according to ISO 8601:1988.

Examples

1048/4161

SELECT WEEK('2008-02-20');

+--------------------+

| WEEK('2008-02-20') |

+--------------------+

| 7 |

+--------------------+

SELECT WEEK('2008-02-20',0);

+----------------------+

| WEEK('2008-02-20',0) |

+----------------------+

| 7 |

+----------------------+

SELECT WEEK('2008-02-20',1);

+----------------------+

| WEEK('2008-02-20',1) |

+----------------------+

| 8 |

+----------------------+

SELECT WEEK('2008-12-31',0);

+----------------------+

| WEEK('2008-12-31',0) |

+----------------------+

| 52 |

+----------------------+

SELECT WEEK('2008-12-31',1);

+----------------------+

| WEEK('2008-12-31',1) |

+----------------------+

| 53 |

+----------------------+

 SELECT WEEK('2019-12-30',3);

+----------------------+

| WEEK('2019-12-30',3) |

+----------------------+

| 1 |

+----------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d, WEEK(d,0), WEEK(d,1) from t1;

+---------------------+-----------+-----------+

| d | WEEK(d,0) | WEEK(d,1) |

+---------------------+-----------+-----------+

| 2007-01-30 21:31:07 | 4 | 5 |

| 1983-10-15 06:42:51 | 41 | 41 |

| 2011-04-21 12:34:56 | 16 | 16 |

| 2011-10-30 06:31:41 | 44 | 43 |

| 2011-01-30 14:03:25 | 5 | 4 |

| 2004-10-07 11:19:34 | 40 | 41 |

+---------------------+-----------+-----------+

1.2.3.61 WEEKDAY

Syntax

1049/4161

WEEKDAY(date)

Description
Returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 = Sunday).

This contrasts with DAYOFWEEK() which follows the ODBC standard (1 = Sunday, 2 = Monday, ..., 7 = Saturday).

Examples

SELECT WEEKDAY('2008-02-03 22:23:00');

+--------------------------------+

| WEEKDAY('2008-02-03 22:23:00') |

+--------------------------------+

| 6 |

+--------------------------------+

SELECT WEEKDAY('2007-11-06');

+-----------------------+

| WEEKDAY('2007-11-06') |

+-----------------------+

| 1 |

+-----------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

SELECT d FROM t1 where WEEKDAY(d) = 6;

+---------------------+

| d |

+---------------------+

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

+---------------------+

1.2.3.62 WEEKOFYEAR

Syntax

WEEKOFYEAR(date)

Description
Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility function

that is equivalent to WEEK(date,3) .

Examples

1050/4161

SELECT WEEKOFYEAR('2008-02-20');

+--------------------------+

| WEEKOFYEAR('2008-02-20') |

+--------------------------+

| 8 |

+--------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

 select * from t1;

+---------------------+

| d |

+---------------------+

| 2007-01-30 21:31:07 |

| 1983-10-15 06:42:51 |

| 2011-04-21 12:34:56 |

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

| 2004-10-07 11:19:34 |

+---------------------+

SELECT d, WEEKOFYEAR(d), WEEK(d,3) from t1;

+---------------------+---------------+-----------+

| d | WEEKOFYEAR(d) | WEEK(d,3) |

+---------------------+---------------+-----------+

| 2007-01-30 21:31:07 | 5 | 5 |

| 1983-10-15 06:42:51 | 41 | 41 |

| 2011-04-21 12:34:56 | 16 | 16 |

| 2011-10-30 06:31:41 | 43 | 43 |

| 2011-01-30 14:03:25 | 4 | 4 |

| 2004-10-07 11:19:34 | 41 | 41 |

+---------------------+---------------+-----------+

1.2.3.63 YEAR

Syntax

YEAR(date)

Description
Returns the year for the given date, in the range 1000 to 9999, or 0 for the "zero" date.

Examples

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

1051/4161

SELECT * FROM t1;

+---------------------+

| d |

+---------------------+

| 2007-01-30 21:31:07 |

| 1983-10-15 06:42:51 |

| 2011-04-21 12:34:56 |

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

| 2004-10-07 11:19:34 |

+---------------------+

SELECT * FROM t1 WHERE YEAR(d) = 2011;

+---------------------+

| d |

+---------------------+

| 2011-04-21 12:34:56 |

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

+---------------------+

SELECT YEAR('1987-01-01');

+--------------------+

| YEAR('1987-01-01') |

+--------------------+

| 1987 |

+--------------------+

1.2.3.64 YEARWEEK

Syntax

YEARWEEK(date), YEARWEEK(date,mode)

Description
Returns year and week for a date. The mode argument works exactly like the mode argument to WEEK(). The year in the

result may be different from the year in the date argument for the first and the last week of the year.

Examples

SELECT YEARWEEK('1987-01-01');

+------------------------+

| YEARWEEK('1987-01-01') |

+------------------------+

| 198652 |

+------------------------+

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES

 ("2007-01-30 21:31:07"),

 ("1983-10-15 06:42:51"),

 ("2011-04-21 12:34:56"),

 ("2011-10-30 06:31:41"),

 ("2011-01-30 14:03:25"),

 ("2004-10-07 11:19:34");

1052/4161

SELECT * FROM t1;

+---------------------+

| d |

+---------------------+

| 2007-01-30 21:31:07 |

| 1983-10-15 06:42:51 |

| 2011-04-21 12:34:56 |

| 2011-10-30 06:31:41 |

| 2011-01-30 14:03:25 |

| 2004-10-07 11:19:34 |

+---------------------+

6 rows in set (0.02 sec)

SELECT YEARWEEK(d) FROM t1 WHERE YEAR(d) = 2011;

+-------------+

| YEARWEEK(d) |

+-------------+

| 201116 |

| 201144 |

| 201105 |

+-------------+

3 rows in set (0.03 sec)

1.2.4 Aggregate Functions
The following functions (also called aggregate functions) can be used with the GROUP BY clause:

Stored Aggregate Functions

Custom aggregate functions.

AVG

Returns the average value.

BIT_AND

Bitwise AND.

BIT_OR

Bitwise OR.

BIT_XOR

Bitwise XOR.

COUNT

Returns count of non-null values.

COUNT DISTINCT

Returns count of number of different non-NULL values.

GROUP_CONCAT

Returns string with concatenated values from a group.

JSON_ARRAYAGG

Returns a JSON array containing an element for each value in a given set of JSON or SQL values.

JSON_OBJECTAGG

Returns a JSON object containing key-value pairs.

MAX

Returns the maximum value.

MIN

Returns the minimum value.

1

3

1

1053/4161

STD

Population standard deviation.

STDDEV

Population standard deviation.

STDDEV_POP

Returns the population standard deviation.

STDDEV_SAMP

Standard deviation.

SUM

Sum total.

VARIANCE

Population standard variance.

VAR_POP

Population standard variance.

VAR_SAMP

Returns the sample variance.

1

1.2.4.1 Stored Aggregate Functions

The ability to create stored aggregate functions was added in MariaDB 10.3.3 .

Contents
1. Standard Syntax

1. Using SQL/PL

2. Examples

1. SQL/PL Example

Aggregate functions are functions that are computed over a sequence of rows and return one result for the sequence of

rows.

Creating a custom aggregate function is done using the CREATE FUNCTION statement with two main differences:

The addition of the AGGREGATE keyword, so CREATE AGGREGATE FUNCTION

The FETCH GROUP NEXT ROW instruction inside the loop

Oracle PL/SQL compatibility using SQL/PL is provided

Standard Syntax

CREATE AGGREGATE FUNCTION function_name (parameters) RETURNS return_type

BEGIN

 All types of declarations

 DECLARE CONTINUE HANDLER FOR NOT FOUND RETURN return_val;

 LOOP

 FETCH GROUP NEXT ROW; // fetches next row from table

 other instructions

 END LOOP;

END

Stored aggregate functions were a 2016 Google Summer of Code project by Varun Gupta.

Using SQL/PL

MariaDB starting with 10.3.3

1054/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/google-summer-of-code-2016/

SET sql_mode=Oracle;

DELIMITER //

CREATE AGGREGATE FUNCTION function_name (parameters) RETURN return_type

 declarations

BEGIN

 LOOP

 FETCH GROUP NEXT ROW; -- fetches next row from table

 -- other instructions

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN return_val;

END //

DELIMITER ;

Examples
First a simplified example:

CREATE TABLE marks(stud_id INT, grade_count INT);

INSERT INTO marks VALUES (1,6), (2,4), (3,7), (4,5), (5,8);

SELECT * FROM marks;

+---------+-------------+

| stud_id | grade_count |

+---------+-------------+

| 1 | 6 |

| 2 | 4 |

| 3 | 7 |

| 4 | 5 |

| 5 | 8 |

+---------+-------------+

DELIMITER //

CREATE AGGREGATE FUNCTION IF NOT EXISTS aggregate_count(x INT) RETURNS INT

BEGIN

 DECLARE count_students INT DEFAULT 0;

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 RETURN count_students;

 LOOP

 FETCH GROUP NEXT ROW;

 IF x THEN

 SET count_students = count_students+1;

 END IF;

 END LOOP;

END //

DELIMITER ;

A non-trivial example that cannot easily be rewritten using existing functions:

1055/4161

DELIMITER //

CREATE AGGREGATE FUNCTION medi_int(x INT) RETURNS DOUBLE

BEGIN

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 BEGIN

 DECLARE res DOUBLE;

 DECLARE cnt INT DEFAULT (SELECT COUNT(*) FROM tt);

 DECLARE lim INT DEFAULT (cnt-1) DIV 2;

 IF cnt % 2 = 0 THEN

 SET res = (SELECT AVG(a) FROM (SELECT a FROM tt ORDER BY a LIMIT lim,2) ttt);

 ELSE

 SET res = (SELECT a FROM tt ORDER BY a LIMIT lim,1);

 END IF;

 DROP TEMPORARY TABLE tt;

 RETURN res;

 END;

 CREATE TEMPORARY TABLE tt (a INT);

 LOOP

 FETCH GROUP NEXT ROW;

 INSERT INTO tt VALUES (x);

 END LOOP;

END //

DELIMITER ;

SQL/PL Example

This uses the same marks table as created above.

SET sql_mode=Oracle;

DELIMITER //

CREATE AGGREGATE FUNCTION aggregate_count(x INT) RETURN INT AS count_students INT DEFAULT 0;

BEGIN

 LOOP

 FETCH GROUP NEXT ROW;

 IF x THEN

 SET count_students := count_students+1;

 END IF;

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN count_students;

END aggregate_count //

DELIMITER ;

SELECT aggregate_count(stud_id) FROM marks;

1.2.4.2 AVG

Syntax

AVG([DISTINCT] expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the average value of expr. The DISTINCT option can be used to return the average of the distinct values of expr.

NULL values are ignored. It is an aggregate function, and so can be used with the GROUP BY clause.

AVG() returns NULL if there were no matching rows.

AVG() can be used as a window function.

1056/4161

Examples

CREATE TABLE sales (sales_value INT);

INSERT INTO sales VALUES(10),(20),(20),(40);

SELECT AVG(sales_value) FROM sales;

+------------------+

| AVG(sales_value) |

+------------------+

| 22.5000 |

+------------------+

SELECT AVG(DISTINCT(sales_value)) FROM sales;

+----------------------------+

| AVG(DISTINCT(sales_value)) |

+----------------------------+

| 23.3333 |

+----------------------------+

Commonly, AVG() is used with a GROUP BY clause:

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT name, AVG(score) FROM student GROUP BY name;

+---------+------------+

| name | AVG(score) |

+---------+------------+

| Chun | 74.0000 |

| Esben | 37.0000 |

| Kaolin | 72.0000 |

| Tatiana | 85.0000 |

+---------+------------+

Be careful to avoid this common mistake, not grouping correctly and returning mismatched data:

SELECT name,test,AVG(score) FROM student;

+------+------+------------+

| name | test | MIN(score) |

+------+------+------------+

| Chun | SQL | 31 |

+------+------+------------+

As a window function:

1057/4161

CREATE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT name, test, score, AVG(score) OVER (PARTITION BY test)

 AS average_by_test FROM student_test;

+---------+--------+-------+-----------------+

| name | test | score | average_by_test |

+---------+--------+-------+-----------------+

| Chun | SQL | 75 | 65.2500 |

| Chun | Tuning | 73 | 68.7500 |

| Esben | SQL | 43 | 65.2500 |

| Esben | Tuning | 31 | 68.7500 |

| Kaolin | SQL | 56 | 65.2500 |

| Kaolin | Tuning | 88 | 68.7500 |

| Tatiana | SQL | 87 | 65.2500 |

| Tatiana | Tuning | 83 | 68.7500 |

+---------+--------+-------+-----------------+

1.2.4.3 BIT_AND

Syntax

BIT_AND(expr) [over_clause]

Description
Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision. It is an aggregate

function, and so can be used with the GROUP BY clause.

If no rows match, BIT_AND will return a value with all bits set to 1. NULL values have no effect on the result unless all

results are NULL, which is treated as no match.

BIT_AND can be used as a window function with the addition of the over_clause.

Examples

CREATE TABLE vals (x INT);

INSERT INTO vals VALUES(111),(110),(100);

SELECT BIT_AND(x), BIT_OR(x), BIT_XOR(x) FROM vals;

+------------+-----------+------------+

| BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+------------+-----------+------------+

| 100 | 111 | 101 |

+------------+-----------+------------+

As an aggregate function:

1058/4161

CREATE TABLE vals2 (category VARCHAR(1), x INT);

INSERT INTO vals2 VALUES

 ('a',111),('a',110),('a',100),

 ('b','000'),('b',001),('b',011);

SELECT category, BIT_AND(x), BIT_OR(x), BIT_XOR(x)

 FROM vals GROUP BY category;

+----------+------------+-----------+------------+

| category | BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+----------+------------+-----------+------------+

| a | 100 | 111 | 101 |

| b | 0 | 11 | 10 |

+----------+------------+-----------+------------+

No match:

SELECT BIT_AND(NULL);

+----------------------+

| BIT_AND(NULL) |

+----------------------+

| 18446744073709551615 |

+----------------------+

1.2.4.4 BIT_OR

Syntax

BIT_OR(expr) [over_clause]

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the bitwise OR of all bits in expr . The calculation is performed with 64-bit (BIGINT) precision. It is an aggregate

function, and so can be used with the GROUP BY clause.

If no rows match, BIT_OR will return a value with all bits set to 0 . NULL values have no effect on the result unless all

results are NULL, which is treated as no match.

BIT_OR can be used as a window function with the addition of the over_clause.

Examples

CREATE TABLE vals (x INT);

INSERT INTO vals VALUES(111),(110),(100);

SELECT BIT_AND(x), BIT_OR(x), BIT_XOR(x) FROM vals;

+------------+-----------+------------+

| BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+------------+-----------+------------+

| 100 | 111 | 101 |

+------------+-----------+------------+

As an aggregate function:

1059/4161

CREATE TABLE vals2 (category VARCHAR(1), x INT);

INSERT INTO vals2 VALUES

 ('a',111),('a',110),('a',100),

 ('b','000'),('b',001),('b',011);

SELECT category, BIT_AND(x), BIT_OR(x), BIT_XOR(x)

 FROM vals GROUP BY category;

+----------+------------+-----------+------------+

| category | BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+----------+------------+-----------+------------+

| a | 100 | 111 | 101 |

| b | 0 | 11 | 10 |

+----------+------------+-----------+------------+

No match:

SELECT BIT_OR(NULL);

+--------------+

| BIT_OR(NULL) |

+--------------+

| 0 |

+--------------+

1.2.4.5 BIT_XOR

Syntax

BIT_XOR(expr) [over_clause]

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the bitwise XOR of all bits in expr . The calculation is performed with 64-bit (BIGINT) precision. It is an aggregate

function, and so can be used with the GROUP BY clause.

If no rows match, BIT_XOR will return a value with all bits set to 0 . NULL values have no effect on the result unless all

results are NULL, which is treated as no match.

BIT_XOR can be used as a window function with the addition of the over_clause.

Examples

CREATE TABLE vals (x INT);

INSERT INTO vals VALUES(111),(110),(100);

SELECT BIT_AND(x), BIT_OR(x), BIT_XOR(x) FROM vals;

+------------+-----------+------------+

| BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+------------+-----------+------------+

| 100 | 111 | 101 |

+------------+-----------+------------+

As an aggregate function:

1060/4161

CREATE TABLE vals2 (category VARCHAR(1), x INT);

INSERT INTO vals2 VALUES

 ('a',111),('a',110),('a',100),

 ('b','000'),('b',001),('b',011);

SELECT category, BIT_AND(x), BIT_OR(x), BIT_XOR(x)

 FROM vals GROUP BY category;

+----------+------------+-----------+------------+

| category | BIT_AND(x) | BIT_OR(x) | BIT_XOR(x) |

+----------+------------+-----------+------------+

| a | 100 | 111 | 101 |

| b | 0 | 11 | 10 |

+----------+------------+-----------+------------+

No match:

SELECT BIT_XOR(NULL);

+---------------+

| BIT_XOR(NULL) |

+---------------+

| 0 |

+---------------+

1.2.4.6 COUNT

Syntax

COUNT(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT statement. The result is a

BIGINT value. It is an aggregate function, and so can be used with the GROUP BY clause.

COUNT(*) counts the total number of rows in a table.

COUNT() returns 0 if there were no matching rows.

COUNT() can be used as a window function.

Examples

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT COUNT(*) FROM student;

+----------+

| COUNT(*) |

+----------+

| 8 |

+----------+

COUNT(DISTINCT) example:

1061/4161

SELECT COUNT(DISTINCT (name)) FROM student;

+------------------------+

| COUNT(DISTINCT (name)) |

+------------------------+

| 4 |

+------------------------+

As a window function

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, COUNT(score) OVER (PARTITION BY name)

 AS tests_written FROM student_test;

+---------+--------+-------+---------------+

| name | test | score | tests_written |

+---------+--------+-------+---------------+

| Chun | SQL | 75 | 2 |

| Chun | Tuning | 73 | 2 |

| Esben | SQL | 43 | 2 |

| Esben | Tuning | 31 | 2 |

| Kaolin | SQL | 56 | 2 |

| Kaolin | Tuning | 88 | 2 |

| Tatiana | SQL | 87 | 1 |

+---------+--------+-------+---------------+

1.2.4.7 COUNT DISTINCT

Syntax

COUNT(DISTINCT expr,[expr...])

Contents
1. Syntax

2. Description

3. Examples

Description
Returns a count of the number of different non-NULL values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

Although, from MariaDB 10.2.0 , COUNT can be used as a window function, COUNT DISTINCT cannot be.

Examples

1062/4161

https://mariadb.com/kb/en/mariadb-1020-release-notes/

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT COUNT(*) FROM student;

+----------+

| COUNT(*) |

+----------+

| 8 |

+----------+

SELECT COUNT(DISTINCT (name)) FROM student;

+------------------------+

| COUNT(DISTINCT (name)) |

+------------------------+

| 4 |

+------------------------+

1.2.4.8 GROUP_CONCAT

Syntax

GROUP_CONCAT(expr)

Contents
1. Syntax

2. Description

1. LIMIT

3. Examples

Description
This function returns a string result with the concatenated non-NULL values from a group. If any expr in GROUP_CONCAT

evaluates to NULL, that tuple is not present in the list returned by GROUP_CONCAT.

It returns NULL if all arguments are NULL, or there are no matching rows.

The maximum returned length in bytes is determined by the group_concat_max_len server system variable, which defaults

to 1M.

If group_concat_max_len <= 512, the return type is VARBINARY or VARCHAR; otherwise, the return type is BLOB or TEXT.

The choice between binary or non-binary types depends from the input.

The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]

 [ORDER BY {unsigned_integer | col_name | expr}

 [ASC | DESC] [,col_name ...]]

 [SEPARATOR str_val]

 [LIMIT {[offset,] row_count | row_count OFFSET offset}])

DISTINCT eliminates duplicate values from the output string.

ORDER BY determines the order of returned values.

SEPARATOR specifies a separator between the values. The default separator is a comma (,). It is possible to avoid using

a separator by specifying an empty string.

LIMIT

The LIMIT clause can be used with GROUP_CONCAT . This was not possible prior to MariaDB 10.3.3 .

1063/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

Examples

SELECT student_name,

 GROUP_CONCAT(test_score)

 FROM student

 GROUP BY student_name;

Get a readable list of MariaDB users from the mysql.user table:

SELECT GROUP_CONCAT(DISTINCT User ORDER BY User SEPARATOR '\n')

 FROM mysql.user;

In the former example, DISTINCT is used because the same user may occur more than once. The new line (\n) used as

a SEPARATOR makes the results easier to read.

Get a readable list of hosts from which each user can connect:

SELECT User, GROUP_CONCAT(Host ORDER BY Host SEPARATOR ', ')

 FROM mysql.user GROUP BY User ORDER BY User;

The former example shows the difference between the GROUP_CONCAT 's ORDER BY (which sorts the concatenated hosts),

and the SELECT 's ORDER BY (which sorts the rows).

From MariaDB 10.3.3 , LIMIT can be used with GROUP_CONCAT , so, for example, given the following table:

CREATE TABLE d (dd DATE, cc INT);

INSERT INTO d VALUES ('2017-01-01',1);

INSERT INTO d VALUES ('2017-01-02',2);

INSERT INTO d VALUES ('2017-01-04',3);

the following query:

SELECT SUBSTRING_INDEX(GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC),",",1) FROM d;

+--+

| SUBSTRING_INDEX(GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC),",",1) |

+--+

| 2017-01-04:3 |

+--+

can be more simply rewritten as:

SELECT GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC LIMIT 1) FROM d;

+---+

| GROUP_CONCAT(CONCAT_WS(":",dd,cc) ORDER BY cc DESC LIMIT 1) |

+---+

| 2017-01-04:3 |

+---+

NULLS:

CREATE OR REPLACE TABLE t1 (a int, b char);

INSERT INTO t1 VALUES (1, 'a'), (2, NULL);

SELECT GROUP_CONCAT(a, b) FROM t1;

+--------------------+

| GROUP_CONCAT(a, b) |

+--------------------+

| 1a |

+--------------------+

1.2.4.9 JSON_ARRAYAGG

1064/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

JSON_ARRAYAGG was added in MariaDB 10.5.0.

Syntax

JSON_ARRAYAGG(column_or_expression)

Description
JSON_ARRAYAGG returns a JSON array containing an element for each value in a given set of JSON or SQL values. It acts

on a column or an expression that evaluates to a single value.

The maximum returned length in bytes is determined by the group_concat_max_len server system variable.

Returns NULL in the case of an error, or if the result contains no rows.

JSON_ARRAYAGG cannot currently be used as a window function.

The full syntax is as follows:

JSON_ARRAYAGG([DISTINCT] expr

 [ORDER BY {unsigned_integer | col_name | expr}

 [ASC | DESC] [,col_name ...]]

 [LIMIT {[offset,] row_count | row_count OFFSET offset}])

Examples

CREATE TABLE t1 (a INT, b INT);

INSERT INTO t1 VALUES (1, 1),(2, 1), (1, 1),(2, 1), (3, 2),(2, 2),(2, 2),(2, 2);

SELECT JSON_ARRAYAGG(a), JSON_ARRAYAGG(b) FROM t1;

+-------------------+-------------------+

| JSON_ARRAYAGG(a) | JSON_ARRAYAGG(b) |

+-------------------+-------------------+

| [1,2,1,2,3,2,2,2] | [1,1,1,1,2,2,2,2] |

+-------------------+-------------------+

SELECT JSON_ARRAYAGG(a), JSON_ARRAYAGG(b) FROM t1 GROUP BY b;

+------------------+------------------+

| JSON_ARRAYAGG(a) | JSON_ARRAYAGG(b) |

+------------------+------------------+

| [1,2,1,2] | [1,1,1,1] |

| [3,2,2,2] | [2,2,2,2] |

+------------------+------------------+

MariaDB starting with 10.5.0

1.2.4.10 JSON_OBJECTAGG

JSON_OBJECTAGG was added in MariaDB 10.5.0.

Syntax

JSON_OBJECTAGG(key, value)

Description
JSON_OBJECTAGG returns a JSON object containing key-value pairs. It takes two expressions that evaluate to a single

value, or two column names, as arguments, the first used as a key, and the second as a value.

The maximum returned length in bytes is determined by the group_concat_max_len server system variable.

MariaDB starting with 10.5.0

1065/4161

Returns NULL in the case of an error, or if the result contains no rows.

JSON_OBJECTAGG cannot currently be used as a window function.

Examples

select * from t1;

+------+-------+

| a | b |

+------+-------+

| 1 | Hello |

| 1 | World |

| 2 | This |

+------+-------+

SELECT JSON_OBJECTAGG(a, b) FROM t1;

+--+

| JSON_OBJECTAGG(a, b) |

+--+

| {"1":"Hello", "1":"World", "2":"This"} |

+--+

1.2.4.11 MAX

Syntax

MAX([DISTINCT] expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the largest, or maximum, value of expr . MAX() can also take a string argument in which case it returns the

maximum string value. The DISTINCT keyword can be used to find the maximum of the distinct values of expr , however,

this produces the same result as omitting DISTINCT .

Note that SET and ENUM fields are currently compared by their string value rather than their relative position in the set, so

MAX() may produce a different highest result than ORDER BY DESC.

It is an aggregate function, and so can be used with the GROUP BY clause.

MAX() can be used as a window function.

MAX() returns NULL if there were no matching rows.

Examples

1066/4161

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT name, MAX(score) FROM student GROUP BY name;

+---------+------------+

| name | MAX(score) |

+---------+------------+

| Chun | 75 |

| Esben | 43 |

| Kaolin | 88 |

| Tatiana | 87 |

+---------+------------+

MAX string:

SELECT MAX(name) FROM student;

+-----------+

| MAX(name) |

+-----------+

| Tatiana |

+-----------+

Be careful to avoid this common mistake, not grouping correctly and returning mismatched data:

SELECT name,test,MAX(SCORE) FROM student;

+------+------+------------+

| name | test | MAX(SCORE) |

+------+------+------------+

| Chun | SQL | 88 |

+------+------+------------+

Difference between ORDER BY DESC and MAX():

CREATE TABLE student2(name CHAR(10),grade ENUM('b','c','a'));

INSERT INTO student2 VALUES('Chun','b'),('Esben','c'),('Kaolin','a');

SELECT MAX(grade) FROM student2;

+------------+

| MAX(grade) |

+------------+

| c |

+------------+

SELECT grade FROM student2 ORDER BY grade DESC LIMIT 1;

+-------+

| grade |

+-------+

| a |

+-------+

As a window function:

1067/4161

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, MAX(score)

 OVER (PARTITION BY name) AS highest_score FROM student_test;

+---------+--------+-------+---------------+

| name | test | score | highest_score |

+---------+--------+-------+---------------+

| Chun | SQL | 75 | 75 |

| Chun | Tuning | 73 | 75 |

| Esben | SQL | 43 | 43 |

| Esben | Tuning | 31 | 43 |

| Kaolin | SQL | 56 | 88 |

| Kaolin | Tuning | 88 | 88 |

| Tatiana | SQL | 87 | 87 |

+---------+--------+-------+---------------+

1.2.4.12 MIN

Syntax

MIN([DISTINCT] expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the minimum value of expr . MIN() may take a string argument, in which case it returns the minimum string

value. The DISTINCT keyword can be used to find the minimum of the distinct values of expr , however, this produces the

same result as omitting DISTINCT .

Note that SET and ENUM fields are currently compared by their string value rather than their relative position in the set, so

MIN() may produce a different lowest result than ORDER BY ASC.

It is an aggregate function, and so can be used with the GROUP BY clause.

MIN() can be used as a window function.

MIN() returns NULL if there were no matching rows.

Examples

1068/4161

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

SELECT name, MIN(score) FROM student GROUP BY name;

+---------+------------+

| name | MIN(score) |

+---------+------------+

| Chun | 73 |

| Esben | 31 |

| Kaolin | 56 |

| Tatiana | 83 |

+---------+------------+

MIN() with a string:

SELECT MIN(name) FROM student;

+-----------+

| MIN(name) |

+-----------+

| Chun |

+-----------+

Be careful to avoid this common mistake, not grouping correctly and returning mismatched data:

SELECT name,test,MIN(score) FROM student;

+------+------+------------+

| name | test | MIN(score) |

+------+------+------------+

| Chun | SQL | 31 |

+------+------+------------+

Difference between ORDER BY ASC and MIN():

CREATE TABLE student2(name CHAR(10),grade ENUM('b','c','a'));

INSERT INTO student2 VALUES('Chun','b'),('Esben','c'),('Kaolin','a');

SELECT MIN(grade) FROM student2;

+------------+

| MIN(grade) |

+------------+

| a |

+------------+

SELECT grade FROM student2 ORDER BY grade ASC LIMIT 1;

+-------+

| grade |

+-------+

| b |

+-------+

As a window function:

1069/4161

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, MIN(score)

 OVER (PARTITION BY name) AS lowest_score FROM student_test;

+---------+--------+-------+--------------+

| name | test | score | lowest_score |

+---------+--------+-------+--------------+

| Chun | SQL | 75 | 73 |

| Chun | Tuning | 73 | 73 |

| Esben | SQL | 43 | 31 |

| Esben | Tuning | 31 | 31 |

| Kaolin | SQL | 56 | 56 |

| Kaolin | Tuning | 88 | 56 |

| Tatiana | SQL | 87 | 87 |

+---------+--------+-------+--------------+

1.2.4.13 STD

Syntax

STD(expr)

Description
Returns the population standard deviation of expr . This is an extension to standard SQL. The standard SQL function

STDDEV_POP() can be used instead.

It is an aggregate function, and so can be used with the GROUP BY clause.

STD() can be used as a window function.

This function returns NULL if there were no matching rows.

Examples
As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

As a window function:

1070/4161

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, STDDEV_POP(score)

 OVER (PARTITION BY test) AS stddev_results FROM student_test;

+---------+--------+-------+----------------+

| name | test | score | stddev_results |

+---------+--------+-------+----------------+

| Chun | SQL | 75 | 16.9466 |

| Chun | Tuning | 73 | 24.1247 |

| Esben | SQL | 43 | 16.9466 |

| Esben | Tuning | 31 | 24.1247 |

| Kaolin | SQL | 56 | 16.9466 |

| Kaolin | Tuning | 88 | 24.1247 |

| Tatiana | SQL | 87 | 16.9466 |

+---------+--------+-------+----------------+

1.2.4.14 STDDEV

Syntax

STDDEV(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the population standard deviation of expr . This function is provided for compatibility with Oracle. The standard

SQL function STDDEV_POP() can be used instead.

It is an aggregate function, and so can be used with the GROUP BY clause.

STDDEV() can be used as a window function.

This function returns NULL if there were no matching rows.

Examples
As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

As a window function:

1071/4161

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, STDDEV_POP(score)

 OVER (PARTITION BY test) AS stddev_results FROM student_test;

+---------+--------+-------+----------------+

| name | test | score | stddev_results |

+---------+--------+-------+----------------+

| Chun | SQL | 75 | 16.9466 |

| Chun | Tuning | 73 | 24.1247 |

| Esben | SQL | 43 | 16.9466 |

| Esben | Tuning | 31 | 24.1247 |

| Kaolin | SQL | 56 | 16.9466 |

| Kaolin | Tuning | 88 | 24.1247 |

| Tatiana | SQL | 87 | 16.9466 |

+---------+--------+-------+----------------+

1.2.4.15 STDDEV_POP

Syntax

STDDEV_POP(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the population standard deviation of expr (the square root of VAR_POP()). You can also use STD() or

STDDEV() , which are equivalent but not standard SQL.

It is an aggregate function, and so can be used with the GROUP BY clause.

STDDEV_POP() can be used as a window function.

STDDEV_POP() returns NULL if there were no matching rows.

Examples
As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

As a window function:

1072/4161

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, STDDEV_POP(score)

 OVER (PARTITION BY test) AS stddev_results FROM student_test;

+---------+--------+-------+----------------+

| name | test | score | stddev_results |

+---------+--------+-------+----------------+

| Chun | SQL | 75 | 16.9466 |

| Chun | Tuning | 73 | 24.1247 |

| Esben | SQL | 43 | 16.9466 |

| Esben | Tuning | 31 | 24.1247 |

| Kaolin | SQL | 56 | 16.9466 |

| Kaolin | Tuning | 88 | 24.1247 |

| Tatiana | SQL | 87 | 16.9466 |

+---------+--------+-------+----------------+

1.2.4.16 STDDEV_SAMP

Syntax

STDDEV_SAMP(expr)

Description
Returns the sample standard deviation of expr (the square root of VAR_SAMP()).

It is an aggregate function, and so can be used with the GROUP BY clause.

STDDEV_SAMP() can be used as a window function.

STDDEV_SAMP() returns NULL if there were no matching rows.

1.2.4.17 SUM

Syntax

SUM([DISTINCT] expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the sum of expr . If the return set has no rows, SUM() returns NULL . The DISTINCT keyword can be used to

sum only the distinct values of expr .

SUM() can be used as a window function, although not with the DISTINCT specifier.

Examples

1073/4161

CREATE TABLE sales (sales_value INT);

INSERT INTO sales VALUES(10),(20),(20),(40);

SELECT SUM(sales_value) FROM sales;

+------------------+

| SUM(sales_value) |

+------------------+

| 90 |

+------------------+

SELECT SUM(DISTINCT(sales_value)) FROM sales;

+----------------------------+

| SUM(DISTINCT(sales_value)) |

+----------------------------+

| 70 |

+----------------------------+

Commonly, SUM is used with a GROUP BY clause:

CREATE TABLE sales (name CHAR(10), month CHAR(10), units INT);

INSERT INTO sales VALUES

 ('Chun', 'Jan', 75), ('Chun', 'Feb', 73),

 ('Esben', 'Jan', 43), ('Esben', 'Feb', 31),

 ('Kaolin', 'Jan', 56), ('Kaolin', 'Feb', 88),

 ('Tatiana', 'Jan', 87), ('Tatiana', 'Feb', 83);

SELECT name, SUM(units) FROM sales GROUP BY name;

+---------+------------+

| name | SUM(units) |

+---------+------------+

| Chun | 148 |

| Esben | 74 |

| Kaolin | 144 |

| Tatiana | 170 |

+---------+------------+

The GROUP BY clause is required when using an aggregate function along with regular column data, otherwise the result

will be a mismatch, as in the following common type of mistake:

SELECT name,SUM(units) FROM sales

;+------+------------+

| name | SUM(units) |

+------+------------+

| Chun | 536 |

+------+------------+

As a window function:

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, SUM(score) OVER (PARTITION BY name) AS total_score FROM student_test;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Chun | SQL | 75 | 148 |

| Chun | Tuning | 73 | 148 |

| Esben | SQL | 43 | 74 |

| Esben | Tuning | 31 | 74 |

| Kaolin | SQL | 56 | 144 |

| Kaolin | Tuning | 88 | 144 |

| Tatiana | SQL | 87 | 87 |

+---------+--------+-------+-------------+

1074/4161

1.2.4.18 VARIANCE

Syntax

VARIANCE(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the population standard variance of expr . This is an extension to standard SQL. The standard SQL function

VAR_POP() can be used instead.

Variance is calculated by

working out the mean for the set

for each number, subtracting the mean and squaring the result

calculate the average of the resulting differences

It is an aggregate function, and so can be used with the GROUP BY clause.

VARIANCE() can be used as a window function.

VARIANCE() returns NULL if there were no matching rows.

Examples

CREATE TABLE v(i tinyint);

INSERT INTO v VALUES(101),(99);

SELECT VARIANCE(i) FROM v;

+-------------+

| VARIANCE(i) |

+-------------+

| 1.0000 |

+-------------+

INSERT INTO v VALUES(120),(80);

SELECT VARIANCE(i) FROM v;

+-------------+

| VARIANCE(i) |

+-------------+

| 200.5000 |

+-------------+

As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

1075/4161

As a window function:

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, VAR_POP(score)

 OVER (PARTITION BY test) AS variance_results FROM student_test;

+---------+--------+-------+------------------+

| name | test | score | variance_results |

+---------+--------+-------+------------------+

| Chun | SQL | 75 | 287.1875 |

| Chun | Tuning | 73 | 582.0000 |

| Esben | SQL | 43 | 287.1875 |

| Esben | Tuning | 31 | 582.0000 |

| Kaolin | SQL | 56 | 287.1875 |

| Kaolin | Tuning | 88 | 582.0000 |

| Tatiana | SQL | 87 | 287.1875 |

+---------+--------+-------+------------------+

1.2.4.19 VAR_POP

Syntax

VAR_POP(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the population standard variance of expr . It considers rows as the whole population, not as a sample, so it has the

number of rows as the denominator. You can also use VARIANCE(), which is equivalent but is not standard SQL.

Variance is calculated by

working out the mean for the set

for each number, subtracting the mean and squaring the result

calculate the average of the resulting differences

It is an aggregate function, and so can be used with the GROUP BY clause.

VAR_POP() can be used as a window function.

VAR_POP() returns NULL if there were no matching rows.

Examples

1076/4161

CREATE TABLE v(i tinyint);

INSERT INTO v VALUES(101),(99);

SELECT VAR_POP(i) FROM v;

+------------+

| VAR_POP(i) |

+------------+

| 1.0000 |

+------------+

INSERT INTO v VALUES(120),(80);

SELECT VAR_POP(i) FROM v;

+------------+

| VAR_POP(i) |

+------------+

| 200.5000 |

+------------+

As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

As a window function:

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, VAR_POP(score)

 OVER (PARTITION BY test) AS variance_results FROM student_test;

+---------+--------+-------+------------------+

| name | test | score | variance_results |

+---------+--------+-------+------------------+

| Chun | SQL | 75 | 287.1875 |

| Esben | SQL | 43 | 287.1875 |

| Kaolin | SQL | 56 | 287.1875 |

| Tatiana | SQL | 87 | 287.1875 |

| Chun | Tuning | 73 | 582.0000 |

| Esben | Tuning | 31 | 582.0000 |

| Kaolin | Tuning | 88 | 582.0000 |

+---------+--------+-------+------------------+

1.2.4.20 VAR_SAMP

Syntax

VAR_SAMP(expr)

1077/4161

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the sample variance of expr . That is, the denominator is the number of rows minus one.

It is an aggregate function, and so can be used with the GROUP BY clause.

VAR_SAMP() can be used as a window function.

VAR_SAMP() returns NULL if there were no matching rows.

Examples
As an aggregate function:

CREATE OR REPLACE TABLE stats (category VARCHAR(2), x INT);

INSERT INTO stats VALUES

 ('a',1),('a',2),('a',3),

 ('b',11),('b',12),('b',20),('b',30),('b',60);

SELECT category, STDDEV_POP(x), STDDEV_SAMP(x), VAR_POP(x)

 FROM stats GROUP BY category;

+----------+---------------+----------------+------------+

| category | STDDEV_POP(x) | STDDEV_SAMP(x) | VAR_POP(x) |

+----------+---------------+----------------+------------+

| a | 0.8165 | 1.0000 | 0.6667 |

| b | 18.0400 | 20.1693 | 325.4400 |

+----------+---------------+----------------+------------+

As a window function:

CREATE OR REPLACE TABLE student_test (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, VAR_SAMP(score)

 OVER (PARTITION BY test) AS variance_results FROM student_test;

+---------+--------+-------+------------------+

| name | test | score | variance_results |

+---------+--------+-------+------------------+

| Chun | SQL | 75 | 382.9167 |

| Chun | Tuning | 73 | 873.0000 |

| Esben | SQL | 43 | 382.9167 |

| Esben | Tuning | 31 | 873.0000 |

| Kaolin | SQL | 56 | 382.9167 |

| Kaolin | Tuning | 88 | 873.0000 |

| Tatiana | SQL | 87 | 382.9167 |

+---------+--------+-------+------------------+

1.2.5 Numeric Functions
Functions dealing with numerals, including ABS, CEIL, DIV, EXP, PI, SIN, etc.

Addition Operator (+)

Addition.

Subtraction Operator (-)

Subtraction and unary minus.

1078/4161

Division Operator (/)

Division.

Multiplication Operator (*)

Multiplication.

Modulo Operator (%)

Modulo operator. Returns the remainder of N divided by M.

DIV

Integer division.

ABS

Returns an absolute value.

ACOS

Returns an arc cosine.

ASIN

Returns the arc sine.

ATAN

Returns the arc tangent.

ATAN2

Returns the arc tangent of two variables.

CEIL

Synonym for CEILING().

CEILING

Returns the smallest integer not less than X.

CONV

Converts numbers between different number bases.

COS

Returns the cosine.

COT

Returns the cotangent.

CRC32

Computes a cyclic redundancy check (CRC) value.

CRC32C

Computes a cyclic redundancy check (CRC) value using the Castagnoli polynomial.

DEGREES

Converts from radians to degrees.

EXP

e raised to the power of the argument.

FLOOR

Largest integer value not greater than the argument.

GREATEST

Returns the largest argument.

LEAST

Returns the smallest argument.

2

1

1079/4161

LN

Returns natural logarithm.

LOG

Returns the natural logarithm.

LOG10

Returns the base-10 logarithm.

LOG2

Returns the base-2 logarithm.

MOD

Modulo operation. Remainder of N divided by M.

OCT

Returns octal value.

PI

Returns the value of Ã (pi).

POW

Returns X raised to the power of Y.

POWER

Synonym for POW().

RADIANS

Converts from degrees to radians.

RAND

Random floating-point value.

ROUND

Rounds a number.

SIGN

Returns 1, 0 or -1.

SIN

Returns the sine.

SQRT

Square root.

TAN

Returns the tangent.

TRUNCATE

The TRUNCATE function truncates a number to a specified number of decimal places.

There are 1 related questions .

1.1.5.1.1 Addition Operator (+)

1.1.5.1.7 Subtraction Operator (-)

1.1.5.1.3 Division Operator (/)

1080/4161

https://mariadb.com/kb/en/numeric-functions/+questions/

1.1.5.1.6 Multiplication Operator (*)

1.1.5.1.5 Modulo Operator (%)

1.2.5.6 DIV

Syntax

DIV

Description
Integer division. Similar to FLOOR(), but is safe with BIGINT values. Incorrect results may occur for non-integer operands

that exceed BIGINT range.

If the ERROR_ON_DIVISION_BY_ZERO SQL_MODE is used, a division by zero produces an error. Otherwise, it returns

NULL.

The remainder of a division can be obtained using the MOD operator.

Examples

SELECT 300 DIV 7;

+-----------+

| 300 DIV 7 |

+-----------+

| 42 |

+-----------+

SELECT 300 DIV 0;

+-----------+

| 300 DIV 0 |

+-----------+

| NULL |

+-----------+

1.2.5.7 ABS

Syntax

ABS(X)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the absolute (non-negative) value of X . If X is not a number, it is converted to a numeric type.

Examples

1081/4161

SELECT ABS(42);

+---------+

| ABS(42) |

+---------+

| 42 |

+---------+

SELECT ABS(-42);

+----------+

| ABS(-42) |

+----------+

| 42 |

+----------+

SELECT ABS(DATE '1994-01-01');

+------------------------+

| ABS(DATE '1994-01-01') |

+------------------------+

| 19940101 |

+------------------------+

1.2.5.8 ACOS

Syntax

ACOS(X)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the arc cosine of X , that is, the value whose cosine is X . Returns NULL if X is not in the range -1 to 1 .

Examples

SELECT ACOS(1);

+---------+

| ACOS(1) |

+---------+

| 0 |

+---------+

SELECT ACOS(1.0001);

+--------------+

| ACOS(1.0001) |

+--------------+

| NULL |

+--------------+

SELECT ACOS(0);

+-----------------+

| ACOS(0) |

+-----------------+

| 1.5707963267949 |

+-----------------+

SELECT ACOS(0.234);

+------------------+

| ACOS(0.234) |

+------------------+

| 1.33460644244679 |

+------------------+

1082/4161

1.2.5.9 ASIN

Syntax

ASIN(X)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.

Examples

SELECT ASIN(0.2);

+--------------------+

| ASIN(0.2) |

+--------------------+

| 0.2013579207903308 |

+--------------------+

SELECT ASIN('foo');

+-------------+

| ASIN('foo') |

+-------------+

| 0 |

+-------------+

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |

+---------+------+---+

1.2.5.10 ATAN

Syntax

ATAN(X)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the arc tangent of X, that is, the value whose tangent is X.

Examples

1083/4161

SELECT ATAN(2);

+--------------------+

| ATAN(2) |

+--------------------+

| 1.1071487177940904 |

+--------------------+

SELECT ATAN(-2);

+---------------------+

| ATAN(-2) |

+---------------------+

| -1.1071487177940904 |

+---------------------+

1.2.5.11 ATAN2

Syntax

ATAN(Y,X), ATAN2(Y,X)

Description
Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X, except that the signs

of both arguments are used to determine the quadrant of the result.

Examples

SELECT ATAN(-2,2);

+---------------------+

| ATAN(-2,2) |

+---------------------+

| -0.7853981633974483 |

+---------------------+

SELECT ATAN2(PI(),0);

+--------------------+

| ATAN2(PI(),0) |

+--------------------+

| 1.5707963267948966 |

+--------------------+

1.2.5.12 CEIL

Syntax

CEIL(X)

Description
CEIL() is a synonym for CEILING().

1.2.5.13 CEILING

Syntax

1084/4161

CEILING(X)

Description
Returns the smallest integer value not less than X.

Examples

SELECT CEILING(1.23);

+---------------+

| CEILING(1.23) |

+---------------+

| 2 |

+---------------+

SELECT CEILING(-1.23);

+----------------+

| CEILING(-1.23) |

+----------------+

| -1 |

+----------------+

1.2.5.14 CONV

Syntax

CONV(N,from_base,to_base)

Description
Converts numbers between different number bases. Returns a string representation of the number N , converted from base

from_base to base to_base .

Returns NULL if any argument is NULL , or if the second or third argument are not in the allowed range.

The argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum base is 2 and the

maximum base is 36 (prior to MariaDB 11.4.0) or 62 (from MariaDB 11.4.0). If to_base is a negative number, N is

regarded as a signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

Some shortcuts for this function are also available: BIN(), OCT(), HEX(), UNHEX(). Also, MariaDB allows binary literal

values and hexadecimal literal values.

Examples

1085/4161

SELECT CONV('a',16,2);

+----------------+

| CONV('a',16,2) |

+----------------+

| 1010 |

+----------------+

SELECT CONV('6E',18,8);

+-----------------+

| CONV('6E',18,8) |

+-----------------+

| 172 |

+-----------------+

SELECT CONV(-17,10,-18);

+------------------+

| CONV(-17,10,-18) |

+------------------+

| -H |

+------------------+

SELECT CONV(12+'10'+'10'+0xa,10,10);

+------------------------------+

| CONV(12+'10'+'10'+0xa,10,10) |

+------------------------------+

| 42 |

+------------------------------+

1.2.5.15 COS

Syntax

COS(X)

Description
Returns the cosine of X, where X is given in radians.

Examples

SELECT COS(PI());

+-----------+

| COS(PI()) |

+-----------+

| -1 |

+-----------+

1.2.5.16 COT

Syntax

COT(X)

Description
Returns the cotangent of X.

Examples
1086/4161

SELECT COT(42);

+--------------------+

| COT(42) |

+--------------------+

| 0.4364167060752729 |

+--------------------+

SELECT COT(12);

+---------------------+

| COT(12) |

+---------------------+

| -1.5726734063976893 |

+---------------------+

SELECT COT(0);

ERROR 1690 (22003): DOUBLE value is out of range in 'cot(0)'

1.2.5.17 CRC32

Syntax
<= MariaDB 10.7

CRC32(expr)

From MariaDB 10.8

CRC32([par,]expr)

Description
Computes a cyclic redundancy check (CRC) value and returns a 32-bit unsigned value. The result is NULL if the argument

is NULL. The argument is expected to be a string and (if possible) is treated as one if it is not.

Uses the ISO 3309 polynomial that used by zlib and many others. MariaDB 10.8 introduced the CRC32C() function, which

uses the alternate Castagnoli polynomia.

Often, CRC is computed in pieces. To facilitate this, MariaDB 10.8.0 introduced an optional parameter:

CRC32('MariaDB')=CRC32(CRC32('Maria'),'DB').

Examples

SELECT CRC32('MariaDB');

+------------------+

| CRC32('MariaDB') |

+------------------+

| 4227209140 |

+------------------+

SELECT CRC32('mariadb');

+------------------+

| CRC32('mariadb') |

+------------------+

| 2594253378 |

+------------------+

From MariaDB 10.8.0

MariaDB starting with 10.8

1087/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/

SELECT CRC32(CRC32('Maria'),'DB');

+----------------------------+

| CRC32(CRC32('Maria'),'DB') |

+----------------------------+

| 4227209140 |

+----------------------------+

1.2.5.18 CRC32C

Introduced in MariaDB 10.8.0 to compute a cyclic redundancy check (CRC) value using the Castagnoli polynomial.

Syntax

CRC32C([par,]expr)

Description
MariaDB has always included a native unary function CRC32() that computes the CRC-32 of a string using the ISO 3309

polynomial that used by zlib and many others.

InnoDB and MyRocks use a different polynomial, which was implemented in SSE4.2 instructions that were introduced in the

Intel Nehalem microarchitecture. This is commonly called CRC-32C (Castagnoli).

The CRC32C function uses the Castagnoli polynomial.

This allows SELECT&INTO DUMPFILE to be used for the creation of files with valid checksums, such as a logically empty

InnoDB redo log file ib_logfile0 corresponding to a particular log sequence number.

The optional parameter allows the checksum to be computed in pieces:

CRC32C('MariaDB')=CRC32C(CRC32C('Maria'),'DB').

Examples

SELECT CRC32C('MariaDB');

+-------------------+

| CRC32C('MariaDB') |

+-------------------+

| 809606978 |

+-------------------+

SELECT CRC32C(CRC32C('Maria'),'DB');

+------------------------------+

| CRC32C(CRC32C('Maria'),'DB') |

+------------------------------+

| 809606978 |

+------------------------------+

MariaDB starting with 10.8

1.2.5.19 DEGREES

Syntax

DEGREES(X)

Description
Returns the argument X , converted from radians to degrees.

This is the converse of the RADIANS() function.

1088/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/

Examples

SELECT DEGREES(PI());

+---------------+

| DEGREES(PI()) |

+---------------+

| 180 |

+---------------+

SELECT DEGREES(PI() / 2);

+-------------------+

| DEGREES(PI() / 2) |

+-------------------+

| 90 |

+-------------------+

SELECT DEGREES(45);

+-----------------+

| DEGREES(45) |

+-----------------+

| 2578.3100780887 |

+-----------------+

1.2.5.20 EXP

Syntax

EXP(X)

Description
Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this function is LOG() (using

a single argument only) or LN().

If X is NULL , this function returns NULL .

Examples

1089/4161

SELECT EXP(2);

+------------------+

| EXP(2) |

+------------------+

| 7.38905609893065 |

+------------------+

SELECT EXP(-2);

+--------------------+

| EXP(-2) |

+--------------------+

| 0.1353352832366127 |

+--------------------+

SELECT EXP(0);

+--------+

| EXP(0) |

+--------+

| 1 |

+--------+

SELECT EXP(NULL);

+-----------+

| EXP(NULL) |

+-----------+

| NULL |

+-----------+

1.2.5.21 FLOOR

Syntax

FLOOR(X)

Description
Returns the largest integer value not greater than X.

Examples

SELECT FLOOR(1.23);

+-------------+

| FLOOR(1.23) |

+-------------+

| 1 |

+-------------+

SELECT FLOOR(-1.23);

+--------------+

| FLOOR(-1.23) |

+--------------+

| -2 |

+--------------+

1.1.5.4.10 GREATEST

1.1.5.4.18 LEAST

1.2.5.24 LN

1090/4161

Syntax

LN(X)

Description
Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0, or NULL , then NULL is

returned.

The inverse of this function is EXP() .

Examples

SELECT LN(2);

+-------------------+

| LN(2) |

+-------------------+

| 0.693147180559945 |

+-------------------+

SELECT LN(-2);

+--------+

| LN(-2) |

+--------+

| NULL |

+--------+

1.2.5.25 LOG

Syntax

LOG(X), LOG(B,X)

Description
If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal to 0, then NULL is

returned.

If called with two parameters, it returns the logarithm of X to the base B. If B is <= 1 or X <= 0, the function returns NULL.

If any argument is NULL , the function returns NULL .

The inverse of this function (when called with a single argument) is the EXP() function.

Examples
LOG(X):

SELECT LOG(2);

+-------------------+

| LOG(2) |

+-------------------+

| 0.693147180559945 |

+-------------------+

SELECT LOG(-2);

+---------+

| LOG(-2) |

+---------+

| NULL |

+---------+

1091/4161

LOG(B,X)

SELECT LOG(2,16);

+-----------+

| LOG(2,16) |

+-----------+

| 4 |

+-----------+

SELECT LOG(3,27);

+-----------+

| LOG(3,27) |

+-----------+

| 3 |

+-----------+

SELECT LOG(3,1);

+----------+

| LOG(3,1) |

+----------+

| 0 |

+----------+

SELECT LOG(3,0);

+----------+

| LOG(3,0) |

+----------+

| NULL |

+----------+

1.2.5.26 LOG10

Syntax

LOG10(X)

Description
Returns the base-10 logarithm of X.

Examples

SELECT LOG10(2);

+-------------------+

| LOG10(2) |

+-------------------+

| 0.301029995663981 |

+-------------------+

SELECT LOG10(100);

+------------+

| LOG10(100) |

+------------+

| 2 |

+------------+

SELECT LOG10(-100);

+-------------+

| LOG10(-100) |

+-------------+

| NULL |

+-------------+

1092/4161

1.2.5.27 LOG2

Syntax

LOG2(X)

Description
Returns the base-2 logarithm of X.

Examples

SELECT LOG2(4398046511104);

+---------------------+

| LOG2(4398046511104) |

+---------------------+

| 42 |

+---------------------+

SELECT LOG2(65536);

+-------------+

| LOG2(65536) |

+-------------+

| 16 |

+-------------+

SELECT LOG2(-100);

+------------+

| LOG2(-100) |

+------------+

| NULL |

+------------+

1.2.5.28 MOD

Syntax

MOD(N,M), N % M, N MOD M

Description
Modulo operation. Returns the remainder of N divided by M. See also Modulo Operator.

If the ERROR_ON_DIVISION_BY_ZERO SQL_MODE is used, any number modulus zero produces an error. Otherwise, it

returns NULL.

The integer part of a division can be obtained using DIV.

Examples

1093/4161

SELECT 1042 % 50;

+-----------+

| 1042 % 50 |

+-----------+

| 42 |

+-----------+

SELECT MOD(234, 10);

+--------------+

| MOD(234, 10) |

+--------------+

| 4 |

+--------------+

SELECT 253 % 7;

+---------+

| 253 % 7 |

+---------+

| 1 |

+---------+

SELECT MOD(29,9);

+-----------+

| MOD(29,9) |

+-----------+

| 2 |

+-----------+

SELECT 29 MOD 9;

+----------+

| 29 MOD 9 |

+----------+

| 2 |

+----------+

1.2.5.29 OCT

Syntax

OCT(N)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is equivalent to

CONV(N,10,8). Returns NULL if N is NULL.

Examples

1094/4161

SELECT OCT(34);

+---------+

| OCT(34) |

+---------+

| 42 |

+---------+

SELECT OCT(12);

+---------+

| OCT(12) |

+---------+

| 14 |

+---------+

1.2.5.30 PI

Syntax

PI()

Description
Returns the value of Ã (pi). The default number of decimal places displayed is six, but MariaDB uses the full double-

precision value internally.

Examples

SELECT PI();

+----------+

| PI() |

+----------+

| 3.141593 |

+----------+

SELECT PI()+0.0000000000000000000000;

+-------------------------------+

| PI()+0.0000000000000000000000 |

+-------------------------------+

| 3.1415926535897931159980 |

+-------------------------------+

1.2.5.31 POW

Syntax

POW(X,Y)

Description
Returns the value of X raised to the power of Y.

POWER() is a synonym.

Examples

1095/4161

SELECT POW(2,3);

+----------+

| POW(2,3) |

+----------+

| 8 |

+----------+

SELECT POW(2,-2);

+-----------+

| POW(2,-2) |

+-----------+

| 0.25 |

+-----------+

1.2.5.32 POWER

Syntax

POWER(X,Y)

Description
This is a synonym for POW(), which returns the value of X raised to the power of Y.

1.2.5.33 RADIANS

Syntax

RADIANS(X)

Description
Returns the argument X , converted from degrees to radians. Note that Ã radians equals 180 degrees.

This is the converse of the DEGREES() function.

Examples

1096/4161

SELECT RADIANS(45);

+-------------------+

| RADIANS(45) |

+-------------------+

| 0.785398163397448 |

+-------------------+

SELECT RADIANS(90);

+-----------------+

| RADIANS(90) |

+-----------------+

| 1.5707963267949 |

+-----------------+

SELECT RADIANS(PI());

+--------------------+

| RADIANS(PI()) |

+--------------------+

| 0.0548311355616075 |

+--------------------+

SELECT RADIANS(180);

+------------------+

| RADIANS(180) |

+------------------+

| 3.14159265358979 |

+------------------+

1.2.5.34 RAND
Contents
1. Syntax

2. Description

3. Practical uses

4. Examples

Syntax

RAND(), RAND(N)

Description
Returns a random DOUBLE precision floating point value v in the range 0 <= v < 1.0. If a constant integer argument N is

specified, it is used as the seed value, which produces a repeatable sequence of column values. In the example below, note

that the sequences of values produced by RAND(3) is the same both places where it occurs.

In a WHERE clause, RAND() is evaluated each time the WHERE is executed.

Statements using the RAND() function are not safe for statement-based replication.

Practical uses
The expression to get a random integer from a given range is the following:

FLOOR(min_value + RAND() * (max_value - min_value +1))

RAND() is often used to read random rows from a table, as follows:

SELECT * FROM my_table ORDER BY RAND() LIMIT 10;

Note, however, that this technique should never be used on a large table as it will be extremely slow. MariaDB will read all

rows in the table, generate a random value for each of them, order them, and finally will apply the LIMIT clause.

1097/4161

Examples

CREATE TABLE t (i INT);

INSERT INTO t VALUES(1),(2),(3);

SELECT i, RAND() FROM t;

+------+-------------------+

| i | RAND() |

+------+-------------------+

| 1 | 0.255651095188829 |

| 2 | 0.833920199269355 |

| 3 | 0.40264774151393 |

+------+-------------------+

SELECT i, RAND(3) FROM t;

+------+-------------------+

| i | RAND(3) |

+------+-------------------+

| 1 | 0.90576975597606 |

| 2 | 0.373079058130345 |

| 3 | 0.148086053457191 |

+------+-------------------+

SELECT i, RAND() FROM t;

+------+-------------------+

| i | RAND() |

+------+-------------------+

| 1 | 0.511478140495232 |

| 2 | 0.349447508668012 |

| 3 | 0.212803152588013 |

+------+-------------------+

Using the same seed, the same sequence will be returned:

SELECT i, RAND(3) FROM t;

+------+-------------------+

| i | RAND(3) |

+------+-------------------+

| 1 | 0.90576975597606 |

| 2 | 0.373079058130345 |

| 3 | 0.148086053457191 |

+------+-------------------+

Generating a random number from 5 to 15:

SELECT FLOOR(5 + (RAND() * 11));

1.2.5.35 ROUND

Syntax

ROUND(X), ROUND(X,D)

Description
Rounds the argument X to D decimal places. D defaults to 0 if not specified. D can be negative to cause D digits left

of the decimal point of the value X to become zero.

The rounding algorithm depends on the data type of X :

for floating point types (FLOAT, DOUBLE) the C libraries rounding function is used, so the behavior *may* differ

between operating systems

for fixed point types (DECIMAL, DEC/NUMBER/FIXED) the "round half up" rule is used, meaning that e.g. a value

ending in exactly .5 is always rounded up.

1098/4161

Examples

SELECT ROUND(-1.23);

+--------------+

| ROUND(-1.23) |

+--------------+

| -1 |

+--------------+

SELECT ROUND(-1.58);

+--------------+

| ROUND(-1.58) |

+--------------+

| -2 |

+--------------+

SELECT ROUND(1.58);

+-------------+

| ROUND(1.58) |

+-------------+

| 2 |

+-------------+

SELECT ROUND(1.298, 1);

+-----------------+

| ROUND(1.298, 1) |

+-----------------+

| 1.3 |

+-----------------+

SELECT ROUND(1.298, 0);

+-----------------+

| ROUND(1.298, 0) |

+-----------------+

| 1 |

+-----------------+

SELECT ROUND(23.298, -1);

+-------------------+

| ROUND(23.298, -1) |

+-------------------+

| 20 |

+-------------------+

1.2.5.36 SIGN

Syntax

SIGN(X)

Description
Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.

Examples

1099/4161

SELECT SIGN(-32);

+-----------+

| SIGN(-32) |

+-----------+

| -1 |

+-----------+

SELECT SIGN(0);

+---------+

| SIGN(0) |

+---------+

| 0 |

+---------+

SELECT SIGN(234);

+-----------+

| SIGN(234) |

+-----------+

| 1 |

+-----------+

1.2.5.37 SIN

Syntax

SIN(X)

Description
Returns the sine of X, where X is given in radians.

Examples

SELECT SIN(1.5707963267948966);

+-------------------------+

| SIN(1.5707963267948966) |

+-------------------------+

| 1 |

+-------------------------+

SELECT SIN(PI());

+----------------------+

| SIN(PI()) |

+----------------------+

| 1.22460635382238e-16 |

+----------------------+

SELECT ROUND(SIN(PI()));

+------------------+

| ROUND(SIN(PI())) |

+------------------+

| 0 |

+------------------+

1.2.5.38 SQRT

Syntax

SQRT(X)

1100/4161

Description
Returns the square root of X. If X is negative, NULL is returned.

Examples

SELECT SQRT(4);

+---------+

| SQRT(4) |

+---------+

| 2 |

+---------+

SELECT SQRT(20);

+------------------+

| SQRT(20) |

+------------------+

| 4.47213595499958 |

+------------------+

SELECT SQRT(-16);

+-----------+

| SQRT(-16) |

+-----------+

| NULL |

+-----------+

SELECT SQRT(1764);

+------------+

| SQRT(1764) |

+------------+

| 42 |

+------------+

1.2.5.39 TAN

Syntax

TAN(X)

Description
Returns the tangent of X, where X is given in radians.

Examples

1101/4161

SELECT TAN(0.7853981633974483);

+-------------------------+

| TAN(0.7853981633974483) |

+-------------------------+

| 0.9999999999999999 |

+-------------------------+

SELECT TAN(PI());

+-----------------------+

| TAN(PI()) |

+-----------------------+

| -1.22460635382238e-16 |

+-----------------------+

SELECT TAN(PI()+1);

+-----------------+

| TAN(PI()+1) |

+-----------------+

| 1.5574077246549 |

+-----------------+

SELECT TAN(RADIANS(PI()));

+--------------------+

| TAN(RADIANS(PI())) |

+--------------------+

| 0.0548861508080033 |

+--------------------+

1.2.5.40 TRUNCATE

This page documents the TRUNCATE function. See TRUNCATE TABLE for the DDL statement.

Syntax

TRUNCATE(X,D)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or fractional part. D can be

negative to cause D digits left of the decimal point of the value X to become zero.

Examples

1102/4161

SELECT TRUNCATE(1.223,1);

+-------------------+

| TRUNCATE(1.223,1) |

+-------------------+

| 1.2 |

+-------------------+

SELECT TRUNCATE(1.999,1);

+-------------------+

| TRUNCATE(1.999,1) |

+-------------------+

| 1.9 |

+-------------------+

SELECT TRUNCATE(1.999,0);

+-------------------+

| TRUNCATE(1.999,0) |

+-------------------+

| 1 |

+-------------------+

SELECT TRUNCATE(-1.999,1);

+--------------------+

| TRUNCATE(-1.999,1) |

+--------------------+

| -1.9 |

+--------------------+

SELECT TRUNCATE(122,-2);

+------------------+

| TRUNCATE(122,-2) |

+------------------+

| 100 |

+------------------+

SELECT TRUNCATE(10.28*100,0);

+-----------------------+

| TRUNCATE(10.28*100,0) |

+-----------------------+

| 1028 |

+-----------------------+

1.2.6 Control Flow Functions
Built-In functions for assessing data to determine what results to return.

CASE OPERATOR

Returns the result where value=compare_value or for the first condition that is true.

DECODE

Decrypts a string encoded with ENCODE(), or, in Oracle mode, matches expressions.

DECODE_ORACLE

Synonym for the Oracle mode version of DECODE().

IF Function

If expr1 is TRUE, returns expr2; otherwise it returns expr3.

IFNULL

Check whether an expression is NULL.

NULLIF

Returns NULL if expr1 = expr2.

NVL

Synonym for IFNULL.1

1103/4161

NVL2

Returns a value based on whether a specified expression is NULL or not.

There are 1 related questions .

1.2.6.1 CASE OPERATOR

Syntax

CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN

result ...] [ELSE result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...]

[ELSE result] END

Contents
1. Syntax

2. Description

3. Examples

Description
The first version returns the result where value=compare_value. The second version returns the result for the first condition

that is true. If there was no matching result value, the result after ELSE is returned, or NULL if there is no ELSE part.

There is also a CASE statement, which differs from the CASE operator described here.

Examples

SELECT CASE 1 WHEN 1 THEN 'one' WHEN 2 THEN 'two' ELSE 'more' END;

+--+

| CASE 1 WHEN 1 THEN 'one' WHEN 2 THEN 'two' ELSE 'more' END |

+--+

| one |

+--+

SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;

+--+

| CASE WHEN 1>0 THEN 'true' ELSE 'false' END |

+--+

| true |

+--+

SELECT CASE BINARY 'B' WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;

+---+

| CASE BINARY 'B' WHEN 'a' THEN 1 WHEN 'b' THEN 2 END |

+---+

| NULL |

+---+

1.2.6.2 DECODE

Syntax

DECODE(crypt_str,pass_str)

In Oracle mode from MariaDB 10.3.2 :

1104/4161

https://mariadb.com/kb/en/control-flow-functions/+questions/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

DECODE(expr, search_expr, result_expr [, search_expr2, result_expr2 ...] [default_expr])

In all modes from MariaDB 10.3.2 :

DECODE_ORACLE(expr, search_expr, result_expr [, search_expr2, result_expr2 ...] [default_expr])

Description
In the default mode, DECODE decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be a

string returned from ENCODE(). The resulting string will be the original string only if pass_str is the same.

In Oracle mode from MariaDB 10.3.2 , DECODE compares expr to the search expressions, in order. If it finds a match, the

corresponding result expression is returned. If no matches are found, the default expression is returned, or NULL if no

default is provided.

NULLs are treated as equivalent.

DECODE_ORACLE is a synonym for the Oracle-mode version of the function, and is available in all modes.

Examples
From MariaDB 10.3.2 :

SELECT DECODE_ORACLE(2+1,3*1,'found1',3*2,'found2','default');

+--+

| DECODE_ORACLE(2+1,3*1,'found1',3*2,'found2','default') |

+--+

| found1 |

+--+

SELECT DECODE_ORACLE(2+4,3*1,'found1',3*2,'found2','default');

+--+

| DECODE_ORACLE(2+4,3*1,'found1',3*2,'found2','default') |

+--+

| found2 |

+--+

SELECT DECODE_ORACLE(2+2,3*1,'found1',3*2,'found2','default');

+--+

| DECODE_ORACLE(2+2,3*1,'found1',3*2,'found2','default') |

+--+

| default |

+--+

Nulls are treated as equivalent:

SELECT DECODE_ORACLE(NULL,NULL,'Nulls are equivalent','Nulls are not equivalent');

+--+

| DECODE_ORACLE(NULL,NULL,'Nulls are equivalent','Nulls are not equivalent') |

+--+

| Nulls are equivalent |

+--+

1.2.6.3 DECODE_ORACLE

DECODE_ORACLE is a synonym for the Oracle mode version of the DECODE function, and is available in all modes.

MariaDB starting with 10.3.2

1.2.6.4 IF Function

Syntax

1105/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

IF(expr1,expr2,expr3)

Contents
1. Syntax

2. Description

3. Examples

Description
If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2 ; otherwise it returns expr3 . IF()

returns a numeric or string value, depending on the context in which it is used.

Note: There is also an IF statement which differs from the IF() function described here.

Examples

SELECT IF(1>2,2,3);

+-------------+

| IF(1>2,2,3) |

+-------------+

| 3 |

+-------------+

SELECT IF(1<2,'yes','no');

+--------------------+

| IF(1<2,'yes','no') |

+--------------------+

| yes |

+--------------------+

SELECT IF(STRCMP('test','test1'),'no','yes');

+---------------------------------------+

| IF(STRCMP('test','test1'),'no','yes') |

+---------------------------------------+

| no |

+---------------------------------------+

1.2.6.5 IFNULL

Syntax

IFNULL(expr1,expr2)

NVL(expr1,expr2)

Contents
1. Syntax

2. Description

3. Examples

Description
If expr1 is not NULL, IFNULL() returns expr1 ; otherwise it returns expr2 . IFNULL() returns a numeric or string value,

depending on the context in which it is used.

From MariaDB 10.3, NVL() is an alias for IFNULL().

Examples

1106/4161

SELECT IFNULL(1,0);

+-------------+

| IFNULL(1,0) |

+-------------+

| 1 |

+-------------+

SELECT IFNULL(NULL,10);

+-----------------+

| IFNULL(NULL,10) |

+-----------------+

| 10 |

+-----------------+

SELECT IFNULL(1/0,10);

+----------------+

| IFNULL(1/0,10) |

+----------------+

| 10.0000 |

+----------------+

SELECT IFNULL(1/0,'yes');

+-------------------+

| IFNULL(1/0,'yes') |

+-------------------+

| yes |

+-------------------+

1.2.6.6 NULLIF

Syntax

NULLIF(expr1,expr2)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN expr1 = expr2 THEN

NULL ELSE expr1 END.

Examples

SELECT NULLIF(1,1);

+-------------+

| NULLIF(1,1) |

+-------------+

| NULL |

+-------------+

SELECT NULLIF(1,2);

+-------------+

| NULLIF(1,2) |

+-------------+

| 1 |

+-------------+

1.2.6.7 NVL
MariaDB starting with 10.3

1107/4161

From MariaDB 10.3, NVL is a synonym for IFNULL.
MariaDB starting with 10.3

1.2.6.8 NVL2

The NLV2 function was introduced in MariaDB 10.3.0 .

Syntax

NVL2(expr1,expr2,expr3)

Contents
1. Syntax

2. Description

3. Examples

Description
The NVL2 function returns a value based on whether a specified expression is NULL or not. If expr1 is not NULL, then

NVL2 returns expr2. If expr1 is NULL, then NVL2 returns expr3.

Examples

SELECT NVL2(NULL,1,2);

+----------------+

| NVL2(NULL,1,2) |

+----------------+

| 2 |

+----------------+

SELECT NVL2('x',1,2);

+---------------+

| NVL2('x',1,2) |

+---------------+

| 1 |

+---------------+

MariaDB starting with 10.3

1.2.7 Pseudo Columns
MariaDB has pseudo columns that can be used for different purposes.

_rowid

_rowid is an alias for the primary key column

1.2.7.1 _rowid

Syntax
_rowid

Description
The _rowid pseudo column is mapped to the primary key in the related table. This can be used as a replacement of the

rowid pseudo column in other databases. Another usage is to simplify sql queries as one doesn't have to know the name

of the primary key.

1108/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

Examples

create table t1 (a int primary key, b varchar(80));

insert into t1 values (1,"one"),(2,"two");

select * from t1 where _rowid=1;

+---+------+

| a | b |

+---+------+

| 1 | one |

+---+------+

update t1 set b="three" where _rowid=2;

select * from t1 where _rowid>=1 and _rowid<=10;

+---+-------+

| a | b |

+---+-------+

| 1 | one |

| 2 | three |

+---+-------+

1.2.8 Secondary Functions
These are commonly used functions, but they are not primary functions.

Bit Functions and Operators

Operators for comparison and setting of values, and related functions.

Encryption, Hashing and Compression Functions

Functions used for encryption, hashing and compression.

Information Functions

Functions which return information on the server, the user, or a given query.

Miscellaneous Functions

Functions for very singular and specific needs.

1.2.8.1 Bit Functions and Operators
Operators for comparison and setting of values, and related functions. They all return a result of the BIGINT UNSIGNED type

Operator Precedence

Precedence of SQL operators

&

Bitwise AND

<<

Left shift

>>

Shift right

BIT_COUNT

Returns the number of set bits

^

Bitwise XOR

1109/4161

|

Bitwise OR

~

Bitwise NOT

Parentheses

Parentheses modify the precedence of other operators in an expression

TRUE FALSE

TRUE and FALSE evaluate to 1 and 0

1.1.5.6 Operator Precedence

1.2.8.1.2 &

Syntax

&

Description
Bitwise AND. Converts the values to binary and compares bits. Only if both the corresponding bits are 1 is the resulting bit

also 1.

See also bitwise OR.

Examples

SELECT 2&1;

+-----+

| 2&1 |

+-----+

| 0 |

+-----+

SELECT 3&1;

+-----+

| 3&1 |

+-----+

| 1 |

+-----+

SELECT 29 & 15;

+---------+

| 29 & 15 |

+---------+

| 13 |

+---------+

1.2.8.1.3 <<

Syntax

value1 << value2

Description
1110/4161

Converts a longlong (BIGINT) number (value1) to binary and shifts value2 units to the left.

Examples

SELECT 1 << 2;

+--------+

| 1 << 2 |

+--------+

| 4 |

+--------+

1.2.8.1.4 >>

Syntax

value1 >> value2

Description
Converts a longlong (BIGINT) number (value1) to binary and shifts value2 units to the right.

Examples

SELECT 4 >> 2;

+--------+

| 4 >> 2 |

+--------+

| 1 |

+--------+

1.2.8.1.5 BIT_COUNT

Syntax

BIT_COUNT(N)

Description
Returns the number of bits that are set in the argument N.

Examples

SELECT BIT_COUNT(29), BIT_COUNT(b'101010');

+---------------+----------------------+

| BIT_COUNT(29) | BIT_COUNT(b'101010') |

+---------------+----------------------+

| 4 | 3 |

+---------------+----------------------+

1.2.8.1.6 ^

Syntax
1111/4161

^

Description
Bitwise XOR. Converts the values to binary and compares bits. If one (and only one) of the corresponding bits is 1 is the

resulting bit also 1.

Examples

SELECT 1 ^ 1;

+-------+

| 1 ^ 1 |

+-------+

| 0 |

+-------+

SELECT 1 ^ 0;

+-------+

| 1 ^ 0 |

+-------+

| 1 |

+-------+

SELECT 11 ^ 3;

+--------+

| 11 ^ 3 |

+--------+

| 8 |

+--------+

1.2.8.1.7 |

Syntax

|

Description
Bitwise OR. Converts the values to binary and compares bits. If either of the corresponding bits has a value of 1, the

resulting bit is also 1.

See also bitwise AND.

Examples

SELECT 2|1;

+-----+

| 2|1 |

+-----+

| 3 |

+-----+

SELECT 29 | 15;

+---------+

| 29 | 15 |

+---------+

| 31 |

+---------+

1112/4161

1.2.8.1.8 ~

Syntax

~

Description
Bitwise NOT. Converts the value to 4 bytes binary and inverts all bits.

Examples

SELECT 3 & ~1;

+--------+

| 3 & ~1 |

+--------+

| 2 |

+--------+

SELECT 5 & ~1;

+--------+

| 5 & ~1 |

+--------+

| 4 |

+--------+

1.2.8.1.9 Parentheses
Parentheses are sometimes called precedence operators - this means that they can be used to change the other operator's

precedence in an expression. The expressions that are written between parentheses are computed before the expressions

that are written outside. Parentheses must always contain an expression (that is, they cannot be empty), and can be nested.

For example, the following expressions could return different results:

NOT a OR b

NOT (a OR b)

In the first case, NOT applies to a , so if a is FALSE or b is TRUE , the expression returns TRUE . In the second case,

NOT applies to the result of a OR b , so if at least one of a or b is TRUE , the expression is TRUE .

When the precedence of operators is not intuitive, you can use parentheses to make it immediately clear for whoever reads

the statement.

The precedence of the NOT operator can also be affected by the HIGH_NOT_PRECEDENCE SQL_MODE flag.

Other uses
Parentheses must always be used to enclose subqueries.

Parentheses can also be used in a JOIN statement between multiple tables to determine which tables must be joined first.

Also, parentheses are used to enclose the list of parameters to be passed to built-in functions, user-defined functions and

stored routines. However, when no parameter is passed to a stored procedure, parentheses are optional. For builtin

functions and user-defined functions, spaces are not allowed between the function name and the open parenthesis, unless

the IGNORE_SPACE SQL_MODE is set. For stored routines (and for functions if IGNORE_SPACE is set) spaces are allowed

before the open parenthesis, including tab characters and new line characters.

Syntax errors
If there are more open parentheses than closed parentheses, the error usually looks like this:

1113/4161

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that

corresponds to your MariaDB server version for the right syntax to use near '' a

t line 1

Note the empty string.

If there are more closed parentheses than open parentheses, the error usually looks like this:

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that

corresponds to your MariaDB server version for the right syntax to use near ')'

at line 1

Note the quoted closed parenthesis.

1.2.8.1.10 TRUE FALSE

Description
The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in any lettercase.

Examples

SELECT TRUE, true, FALSE, false;

+------+------+-------+-------+

| TRUE | TRUE | FALSE | FALSE |

+------+------+-------+-------+

| 1 | 1 | 0 | 0 |

+------+------+-------+-------+

1.2.8.2 Encryption, Hashing and Compression
Functions
Encryption, hashing and compression functions, such as ENCRYPT, DECRYPT, COMPRESS, PASSWORD etc.

AES_DECRYPT

Decryption data encrypted with AES_ENCRYPT.

AES_ENCRYPT

Encrypts a string with the AES algorithm.

COMPRESS

Returns a binary, compressed string.

DECODE

Decrypts a string encoded with ENCODE(), or, in Oracle mode, matches expressions.

DES_DECRYPT

Decrypts a string encrypted with DES_ENCRYPT().

DES_ENCRYPT

Encrypts a string using the Triple-DES algorithm.

ENCODE

Encrypts a string.

ENCRYPT

Encrypts a string with Unix crypt().

KDF

Key derivation function

3

1114/4161

MD5

MD5 checksum.

OLD_PASSWORD

Pre MySQL 4.1 password implementation.

PASSWORD

Calculates a password string.

RANDOM_BYTES

Generates a binary string of random bytes.

SHA1

Calculates an SHA-1 checksum.

SHA2

Calculates an SHA-2 checksum.

UNCOMPRESS

Uncompresses string compressed with COMPRESS().

UNCOMPRESSED_LENGTH

Returns length of a string before being compressed with COMPRESS().

There are 1 related questions .

1.2.8.2.1 AES_DECRYPT

Syntax

AES_DECRYPT(crypt_str,key_str)

From MariaDB 11.2.0

AES_ENCRYPT(crypt_str, key_str, [, iv [, mode]])

Description
This function allows decryption of data using the official AES (Advanced Encryption Standard) algorithm. For more

information, see the description of AES_ENCRYPT().

From MariaDB 11.2, the function supports an initialization vector, and control of the block encryption mode. The default

mode is specified by the block_encryption_mode system variable, which can be changed when calling the function with

a mode. mode is aes-{128,192,256}-{ecb,cbc,ctr} for example: "AES-128-cbc".

For modes that require it, the initialization_vector iv should be 16 bytes (it can be longer, but the extra bytes are

ignored). A shorter iv, where one is required, results in the function returning NULL. Calling RANDOM_BYTES(16) will

generate a random series of bytes that can be used for the iv.

Examples
From MariaDB 11.2.0:

MariaDB starting with 11.2

1115/4161

https://mariadb.com/kb/en/encryption-hashing-and-compression-functions/+questions/

SELECT HEX(AES_ENCRYPT('foo', 'bar', '0123456789abcdef', 'aes-128-ctr')) AS x;

+--------+

| x |

+--------+

| C57C4B |

+--------+

SELECT AES_DECRYPT(x'C57C4B', 'bar', '0123456789abcdef', 'aes-128-ctr');

+--+

| AES_DECRYPT(x'C57C4B', 'bar', '0123456789abcdef', 'aes-128-ctr') |

+--+

| foo |

+--+

1.2.8.2.2 AES_ENCRYPT

Syntax

AES_ENCRYPT(str,key_str)

From MariaDB 11.2.0

AES_ENCRYPT(str, key, [, iv [, mode]])

Description
AES_ENCRYPT() and AES_DECRYPT() allow encryption and decryption of data using the official AES (Advanced

Encryption Standard) algorithm, previously known as "Rijndael." Encoding with a 128-bit key length is used (from MariaDB

11.2.0, this is the default, and can be changed). 128 bits is much faster and is secure enough for most purposes.

AES_ENCRYPT() encrypts a string str using the key key_str , and returns a binary string.

AES_DECRYPT() decrypts the encrypted string and returns the original string.

The input arguments may be any length. If either argument is NULL, the result of this function is also NULL .

Because AES is a block-level algorithm, padding is used to encode uneven length strings and so the result string length

may be calculated using this formula:

16 x (trunc(string_length / 16) + 1)

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL . However, it is possible for AES_DECRYPT()

to return a non- NULL value (possibly garbage) if the input data or the key is invalid.

From MariaDB 11.2, the function supports an initialization vector, and control of the block encryption mode. The default

mode is specified by the block_encryption_mode system variable, which can be changed when calling the function with

a mode. mode is aes-{128,192,256}-{ecb,cbc,ctr} for example: "AES-128-cbc".

AES_ENCRYPT(str, key) can no longer be used in persistent virtual columns (and the like).

Examples

INSERT INTO t VALUES (AES_ENCRYPT('text',SHA2('password',512)));

From MariaDB 11.2.0:

MariaDB starting with 11.2

1116/4161

SELECT HEX(AES_ENCRYPT('foo', 'bar', '0123456789abcdef', 'aes-256-cbc')) AS x;

+----------------------------------+

| x |

+----------------------------------+

| 42A3EB91E6DFC40A900D278F99E0726E |

+----------------------------------+

1.2.8.2.3 COMPRESS

Syntax

COMPRESS(string_to_compress)

Description
Compresses a string and returns the result as a binary string. This function requires MariaDB to have been compiled with a

compression library such as zlib. Otherwise, the return value is always NULL . The compressed string can be uncompressed

with UNCOMPRESS() .

The have_compress server system variable indicates whether a compression library is present.

Examples

SELECT LENGTH(COMPRESS(REPEAT('a',1000)));

+------------------------------------+

| LENGTH(COMPRESS(REPEAT('a',1000))) |

+------------------------------------+

| 21 |

+------------------------------------+

SELECT LENGTH(COMPRESS(''));

+----------------------+

| LENGTH(COMPRESS('')) |

+----------------------+

| 0 |

+----------------------+

SELECT LENGTH(COMPRESS('a'));

+-----------------------+

| LENGTH(COMPRESS('a')) |

+-----------------------+

| 13 |

+-----------------------+

SELECT LENGTH(COMPRESS(REPEAT('a',16)));

+----------------------------------+

| LENGTH(COMPRESS(REPEAT('a',16))) |

+----------------------------------+

| 15 |

+----------------------------------+

1.2.6.2 DECODE

1.2.8.2.5 DES_DECRYPT

DES_DECRYPT has been deprecated from MariaDB 10.10.0, and will be removed in a future release.

Syntax
1117/4161

DES_DECRYPT(crypt_str[,key_str])

Description
Decrypts a string encrypted with DES_ENCRYPT() . If an error occurs, this function returns NULL .

This function works only if MariaDB has been configured with TLS support.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to determine the DES

key number that was used to encrypt the original string, and then reads the key from the DES key file to decrypt the

message. For this to work, the user must have the SUPER privilege. The key file can be specified with the --des-key-

file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the message.

If the crypt_str argument does not appear to be an encrypted string, MariaDB returns the given crypt_str.

1.2.8.2.6 DES_ENCRYPT

DES_ENCRYPT has been deprecated from MariaDB 10.10.0, and will be removed in a future release.

Syntax

DES_ENCRYPT(str[,{key_num|key_str}])

Description
Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MariaDB has been configured with TLS support.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT() , if one was given. With no

argument, the first key from the DES key file is used. With a key_num argument, the given key number (0-9) from the DES

key file is used. With a key_str argument, the given key string is used to encrypt str .

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num) . If an error occurs, DES_ENCRYPT()

returns NULL .

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order. des_key_str is the

string that is used to encrypt the message. There should be at least one space between the number and the key. The first

key is the default key that is used if you do not specify any key argument to DES_ENCRYPT() .

You can tell MariaDB to read new key values from the key file with the FLUSH DES_KEY_FILE statement. This requires the

RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the existence of encrypted column

values, without giving the end user the right to decrypt those values.

Examples

1118/4161

SELECT customer_address FROM customer_table

 WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

1.2.8.2.7 ENCODE

Syntax

ENCODE(str,pass_str)

Description

ENCODE is not considered cryptographically secure, and should not be used for password encryption.

Encrypt str using pass_str as the password. To decrypt the result, use DECODE() .

The result is a binary string of the same length as str .

The strength of the encryption is based on how good the random generator is.

It is not recommended to rely on the encryption performed by the ENCODE function. Using a salt value (changed when a

password is updated) will improve matters somewhat, but for storing passwords, consider a more cryptographically secure

function, such as SHA2().

Examples

ENCODE('not so secret text', CONCAT('random_salt','password'))

1.2.8.2.8 ENCRYPT

Syntax

ENCRYPT(str[,salt])

Description
Encrypts a string using the Unix crypt() system call, returning an encrypted binary string. The salt argument should be a

string with at least two characters or the returned result will be NULL. If no salt argument is given, a random value of

sufficient length is used.

It is not recommended to use ENCRYPT() with utf16, utf32 or ucs2 multi-byte character sets because the crypt() system call

expects a string terminated with a zero byte.

Note that the underlying crypt() system call may have some limitations, such as ignoring all but the first eight characters.

If the have_crypt system variable is set to NO (because the crypt() system call is not available), the ENCRYPT function will

always return NULL.

Examples

SELECT ENCRYPT('encrypt me');

+-----------------------+

| ENCRYPT('encrypt me') |

+-----------------------+

| 4I5BsEx0lqTDk |

+-----------------------+

1119/4161

1.2.8.2.9 KDF

KDF() is a key derivation function introduced in MariaDB 11.3.0.

Syntax

KDF(key_str, salt [, {info | iterations} [, kdf_name [, width]]])

Description
KDF is a key derivation function, similar to OpenSSL's EVP_KDF_derive(). The purpose of a KDF is to be slow, so if the

calculated value is lost/stolen, the original key_str is not achievable easily with modern GPU. KDFs are therefore an ideal

replacement for password hashes. KDFs can also pad out a password secret to the number of bits used in encryption

algorithms.

For generating good encryption keys for AES_ENCRYPT a less expensive function, but cryptographically secure function

like RANDOM_BYTES is recommended..

kdf_name is "hkdf" or "pbkdf2_hmac" (default)

width (in bits) can be any number divisible by 8, by default it's taken from @@block_encryption_mode

iterations must be positive, and is 1000 by default

Note that OpenSSL 1.0 doesn't support HKDF, so in this case NULL is returned. This OpenSSL version is still used in

SLES 12 and CentOS 7.

Examples

select hex(kdf('foo', 'bar', 'infa', 'hkdf'));

+--+

| hex(kdf('foo', 'bar', 'infa', 'hkdf')) |

+--+

| 612875F859CFB4EE0DFEFF9F2A18E836 |

+--+

MariaDB starting with 11.3

1.2.8.2.10 MD5

Syntax

MD5(str)

Description
Calculates an MD5 128-bit checksum for the string.

The return value is a 32-hex digit string, and as of MariaDB 5.5, is a nonbinary string in the connection character set and

collation, determined by the values of the character_set_connection and collation_connection system variables. Before 5.5,

the return value was a binary string.

NULL is returned if the argument was NULL.

Examples

SELECT MD5('testing');

+----------------------------------+

| MD5('testing') |

+----------------------------------+

| ae2b1fca515949e5d54fb22b8ed95575 |

+----------------------------------+

1120/4161

1.2.8.2.11 OLD_PASSWORD

Syntax

OLD_PASSWORD(str)

Contents
1. Syntax

2. Description

Description
OLD_PASSWORD() was added to MySQL when the implementation of PASSWORD() was changed to improve security.

OLD_PASSWORD() returns the value of the old (pre-MySQL 4.1) implementation of PASSWORD() as a string, and is

intended to permit you to reset passwords for any pre-4.1 clients that need to connect to a more recent MySQL server

version, or any version of MariaDB, without locking them out.

As of MariaDB 5.5, the return value is a nonbinary string in the connection character set and collation, determined by the

values of the character_set_connection and collation_connection system variables. Before 5.5, the return value was a binary

string.

The return value is 16 bytes in length, or NULL if the argument was NULL.

1.2.8.2.12 PASSWORD

Syntax

PASSWORD(str)

Contents
1. Syntax

2. Description

3. Examples

Description

The PASSWORD() function is used for hashing passwords for use in authentication by the MariaDB server. It is not

intended for use in other applications.

Calculates and returns a hashed password string from the plaintext password str. Returns an empty string (>= MariaDB

10.0.4) if the argument was NULL.

The return value is a nonbinary string in the connection character set and collation, determined by the values of the

character_set_connection and collation_connection system variables.

This is the function that is used for hashing MariaDB passwords for storage in the Password column of the user table (see

privileges), usually used with the SET PASSWORD statement. It is not intended for use in other applications.

Until MariaDB 10.3, the return value is 41-bytes in length, and the first character is always '*'. From MariaDB 10.4, the

function takes into account the authentication plugin where applicable (A CREATE USER or SET PASSWORD statement).

For example, when used in conjunction with a user authenticated by the ed25519 plugin, the statement will create a longer

hash:

1121/4161

https://mariadb.com/kb/en/mariadb-1004-release-notes/

CREATE USER edtest@localhost IDENTIFIED VIA ed25519 USING PASSWORD('secret');

CREATE USER edtest2@localhost IDENTIFIED BY 'secret';

SELECT CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) FROM mysql.global_priv

 WHERE user LIKE 'edtest%'\G

*************************** 1. row ***************************

CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)): edtest@localhost => {

...

 "plugin": "ed25519",

 "authentication_string": "ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY",

...

}

*************************** 2. row ***************************

CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)): edtest2@localhost => {

...

 "plugin": "mysql_native_password",

 "authentication_string": "*14E65567ABDB5135D0CFD9A70B3032C179A49EE7",

...

}

The behavior of this function is affected by the value of the old_passwords system variable. If this is set to 1 (0 is

default), MariaDB reverts to using the mysql_old_password authentication plugin by default for newly created users and

passwords.

Examples

SELECT PASSWORD('notagoodpwd');

+---+

| PASSWORD('notagoodpwd') |

+---+

| *3A70EE9FC6594F88CE9E959CD51C5A1C002DC937 |

+---+

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass');

1.2.8.2.13 RANDOM_BYTES

The RANDOM_BYTES function generates a binary string of random bytes. It was added in MariaDB 10.10.0.

Syntax

RANDOM_BYTES(length)

Description
Given a length from 1 to 1024, generates a binary string of length consisting of random bytes generated by the SSL library's

random number generator.

See the RAND_bytes() function documentation of your SSL library for information on the random number generator. In the

case of OpenSSL , a cryptographically secure pseudo random generator (CSPRNG) is used.

Statements containing the RANDOM_BYTES function are unsafe for statement-based replication.

An error occurs if length is outside the range 1 to 1024.

MariaDB starting with 10.10.0

1.2.8.2.14 SHA1

Syntax
1122/4161

https://www.openssl.org/docs/man1.1.1/man3/RAND_bytes.html

Syntax

SHA1(str), SHA(str)

Description
Calculates an SHA-1 160-bit checksum for the string str , as described in RFC 3174 (Secure Hash Algorithm).

The value is returned as a string of 40 hex digits, or NULL if the argument was NULL. As of MariaDB 5.5, the return value is

a nonbinary string in the connection character set and collation, determined by the values of the character_set_connection

and collation_connection system variables. Before 5.5, the return value was a binary string.

Examples

SELECT SHA1('some boring text');

+--+

| SHA1('some boring text') |

+--+

| af969fc2085b1bb6d31e517d5c456def5cdd7093 |

+--+

1.2.8.2.15 SHA2

Syntax

SHA2(str,hash_len)

Description
Given a string str , calculates an SHA-2 checksum, which is considered more cryptographically secure than its SHA-1

equivalent. The SHA-2 family includes SHA-224, SHA-256, SHA-384, and SHA-512, and the hash_len must correspond to

one of these, i.e. 224, 256, 384 or 512. 0 is equivalent to 256.

The return value is a nonbinary string in the connection character set and collation, determined by the values of the

character_set_connection and collation_connection system variables.

NULL is returned if the hash length is not valid, or the string str is NULL.

SHA2 will only work if MariaDB was has been configured with TLS support.

Examples

SELECT SHA2('Maria',224);

+--+

| SHA2('Maria',224) |

+--+

| 6cc67add32286412efcab9d0e1675a43a5c2ef3cec8879f81516ff83 |

+--+

SELECT SHA2('Maria',256);

+--+

| SHA2('Maria',256) |

+--+

| 9ff18ebe7449349f358e3af0b57cf7a032c1c6b2272cb2656ff85eb112232f16 |

+--+

SELECT SHA2('Maria',0);

+--+

| SHA2('Maria',0) |

+--+

| 9ff18ebe7449349f358e3af0b57cf7a032c1c6b2272cb2656ff85eb112232f16 |

+--+

1123/4161

1.2.2.65 UNCOMPRESS

1.2.2.66 UNCOMPRESSED_LENGTH

1.2.8.3 Information Functions
General information functions, including BENCHMARK, CHARSET, DATABASE, USER, VERSION, etc.

BENCHMARK

Executes an expression repeatedly.

BINLOG_GTID_POS

Returns a string representation of the corresponding GTID position.

CHARSET

Returns the character set.

COERCIBILITY

Returns the collation coercibility value.

COLLATION

Collation of the string argument.

CONNECTION_ID

Connection ID.

CURRENT_ROLE

Current role name.

CURRENT_USER

Username/host that authenticated the current client.

DATABASE

Current default database.

DECODE_HISTOGRAM

Returns comma separated numerics corresponding to a probability distribution.

DEFAULT

Returns column default.

FOUND_ROWS

Number of (potentially) returned rows.

LAST_INSERT_ID

Last inserted auto_increment value.

LAST_VALUE

Returns the last value in a list or set of values.

PROCEDURE ANALYSE

Suggests optimal data types for each column.

ROWNUM

Function that returns the number of accepted rows so far.

ROW_COUNT

Number of rows affected by previous statement.

SCHEMA

Synonym for DATABASE().

1

1

1

2

1124/4161

SESSION_USER

Synonym for USER().

SYSTEM_USER

Synonym for USER().

USER

Current user/host.

VERSION

MariaDB server version.

There are 1 related questions .

3

1.2.8.3.1 BENCHMARK

Syntax

BENCHMARK(count,expr)

Description
The BENCHMARK() function executes the expression expr repeatedly count times. It may be used to time how quickly

MariaDB processes the expression. The result value is always 0. The intended use is from within the mariadb client, which

reports query execution times.

Examples

SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));

+--+

| BENCHMARK(1000000,ENCODE('hello','goodbye')) |

+--+

| 0 |

+--+

1 row in set (0.21 sec)

1.2.8.3.2 BINLOG_GTID_POS

Syntax

BINLOG_GTID_POS(binlog_filename,binlog_offset)

Description
The BINLOG_GTID_POS() function takes as input an old-style binary log position in the form of a file name and a file offset.

It looks up the position in the current binlog, and returns a string representation of the corresponding GTID position. If the

position is not found in the current binlog, NULL is returned.

Examples

SELECT BINLOG_GTID_POS("master-bin.000001", 600);

1125/4161

https://mariadb.com/kb/en/information-functions/+questions/

1.2.8.3.3 CHARSET

Syntax

CHARSET(str)

Description
Returns the character set of the string argument. If str is not a string, it is considered as a binary string (so the function

returns 'binary'). This applies to NULL , too. The return value is a string in the utf8 character set.

Examples

SELECT CHARSET('abc');

+----------------+

| CHARSET('abc') |

+----------------+

| latin1 |

+----------------+

SELECT CHARSET(CONVERT('abc' USING utf8));

+------------------------------------+

| CHARSET(CONVERT('abc' USING utf8)) |

+------------------------------------+

| utf8 |

+------------------------------------+

SELECT CHARSET(USER());

+-----------------+

| CHARSET(USER()) |

+-----------------+

| utf8 |

+-----------------+

1.2.8.3.4 COERCIBILITY

Syntax

COERCIBILITY(str)

Description
Returns the collation coercibility value of the string argument. Coercibility defines what will be converted to what in case of

collation conflict, with an expression with higher coercibility being converted to the collation of an expression with lower

coercibility.

Coercibility Description Example

0 Explicit Value using a COLLATE clause

1 No collation Concatenated strings using different collations

2 Implicit A string data type column value, CAST to a string data type

3 System constant DATABASE(), USER() return value

4 Coercible Literal string

5 Numeric Numeric and temporal values

6 Ignorable NULL or derived from NULL

1126/4161

Examples

SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);

+---+

| COERCIBILITY('abc' COLLATE latin1_swedish_ci) |

+---+

| 0 |

+---+

SELECT COERCIBILITY(CAST(1 AS CHAR));

+-------------------------------+

| COERCIBILITY(CAST(1 AS CHAR)) |

+-------------------------------+

| 2 |

+-------------------------------+

SELECT COERCIBILITY(USER());

+----------------------+

| COERCIBILITY(USER()) |

+----------------------+

| 3 |

+----------------------+

SELECT COERCIBILITY('abc');

+---------------------+

| COERCIBILITY('abc') |

+---------------------+

| 4 |

+---------------------+

SELECT COERCIBILITY(1);

+-----------------+

| COERCIBILITY(1) |

+-----------------+

| 5 |

+-----------------+

SELECT COERCIBILITY(NULL);

+--------------------+

| COERCIBILITY(NULL) |

+--------------------+

| 6 |

+--------------------+

1.2.8.3.5 COLLATION

Syntax

COLLATION(str)

Contents
1. Syntax

2. Description

3. Examples

Description
Returns the collation of the string argument. If str is not a string, it is considered as a binary string (so the function returns

'binary'). This applies to NULL , too. The return value is a string in the utf8 character set.

See Character Sets and Collations.

Examples

1127/4161

SELECT COLLATION('abc');

+-------------------+

| COLLATION('abc') |

+-------------------+

| latin1_swedish_ci |

+-------------------+

SELECT COLLATION(_utf8'abc');

+-----------------------+

| COLLATION(_utf8'abc') |

+-----------------------+

| utf8_general_ci |

+-----------------------+

1.2.8.3.6 CONNECTION_ID

Syntax

CONNECTION_ID()

Description
Returns the connection ID for the connection. Every connection (including events) has an ID that is unique among the set of

currently connected clients.

Until MariaDB 10.3.1 , returns MYSQL_TYPE_LONGLONG , or bigint(10), in all cases. From MariaDB 10.3.1 , returns

MYSQL_TYPE_LONG , or int(10), when the result would fit within 32-bits.

Examples

SELECT CONNECTION_ID();

+-----------------+

| CONNECTION_ID() |

+-----------------+

| 3 |

+-----------------+

1.2.8.3.7 CURRENT_ROLE

Syntax

CURRENT_ROLE, CURRENT_ROLE()

Description
Returns the current role name. This determines your access privileges. The return value is a string in the utf8 character set.

If there is no current role, NULL is returned.

The output of SELECT CURRENT_ROLE is equivalent to the contents of the ENABLED_ROLES Information Schema table.

USER() returns the combination of user and host used to login. CURRENT_USER() returns the account used to determine

current connection's privileges.

Statements using the CURRENT_ROLE function are not safe for statement-based replication.

Examples

1128/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| NULL |

+--------------+

SET ROLE staff;

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| staff |

+--------------+

1.2.8.3.8 CURRENT_USER

Syntax

CURRENT_USER, CURRENT_USER()

Description
Returns the user name and host name combination for the MariaDB account that the server used to authenticate the current

client. This account determines your access privileges. The return value is a string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER(). CURRENT_ROLE() returns the current active role.

Statements using the CURRENT_USER function are not safe for statement-based replication.

Examples

shell> mysql --user="anonymous"

select user(),current_user();

+---------------------+----------------+

| user() | current_user() |

+---------------------+----------------+

| anonymous@localhost | @localhost |

+---------------------+----------------+

When calling CURRENT_USER() in a stored procedure, it returns the owner of the stored procedure, as defined with

DEFINER .

1.2.8.3.9 DATABASE

Syntax

DATABASE()

SCHEMA()

Description
Returns the default (current) database name as a string in the utf8 character set. If there is no default database,

DATABASE() returns NULL. Within a stored routine, the default database is the database that the routine is associated with,

which is not necessarily the same as the database that is the default in the calling context.

SCHEMA() is a synonym for DATABASE().

1129/4161

To select a default database, the USE statement can be run. Another way to set the default database is specifying its name

at mariadb command line client startup.

Examples

SELECT DATABASE();

+------------+

| DATABASE() |

+------------+

| NULL |

+------------+

USE test;

Database changed

SELECT DATABASE();

+------------+

| DATABASE() |

+------------+

| test |

+------------+

1.2.8.3.10 DECODE_HISTOGRAM

Syntax

DECODE_HISTOGRAM(hist_type,histogram)

Description
Returns a string of comma separated numeric values corresponding to a probability distribution represented by the

histogram of type hist_type (SINGLE_PREC_HB or DOUBLE_PREC_HB). The hist_type and histogram would be

commonly used from the mysql.column_stats table.

See Histogram Based Statistics for details.

Examples

1130/4161

CREATE TABLE origin (

 i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 v INT UNSIGNED NOT NULL

);

INSERT INTO origin(v) VALUES

 (1),(2),(3),(4),(5),(10),(20),

 (30),(40),(50),(60),(70),(80),

 (90),(100),(200),(400),(800);

SET histogram_size=10,histogram_type=SINGLE_PREC_HB;

ANALYZE TABLE origin PERSISTENT FOR ALL;

+-------------+---------+----------+---+

| Table | Op | Msg_type | Msg_text |

+-------------+---------+----------+---+

| test.origin | analyze | status | Engine-independent statistics collected |

| test.origin | analyze | status | OK |

+-------------+---------+----------+---+

SELECT db_name,table_name,column_name,hist_type,

 hex(histogram),decode_histogram(hist_type,histogram)

 FROM mysql.column_stats WHERE db_name='test' and table_name='origin';

+---------+------------+-------------+----------------+----------------------+---------------

--+

| db_name | table_name | column_name | hist_type | hex(histogram) |

decode_histogram(hist_type,histogram) |

+---------+------------+-------------+----------------+----------------------+---------------

--+

| test | origin | i | SINGLE_PREC_HB | 0F2D3C5A7887A5C3D2F0 |

0.059,0.118,0.059,0.118,0.118,0.059,0.118,0.118,0.059,0.118,0.059 |

| test | origin | v | SINGLE_PREC_HB | 000001060C0F161C1F7F |

0.000,0.000,0.004,0.020,0.024,0.012,0.027,0.024,0.012,0.376,0.502 |

+---------+------------+-------------+----------------+----------------------+---------------

--+

SET histogram_size=20,histogram_type=DOUBLE_PREC_HB;

ANALYZE TABLE origin PERSISTENT FOR ALL;

+-------------+---------+----------+---+

| Table | Op | Msg_type | Msg_text |

+-------------+---------+----------+---+

| test.origin | analyze | status | Engine-independent statistics collected |

| test.origin | analyze | status | OK |

+-------------+---------+----------+---+

SELECT db_name,table_name,column_name,

 hist_type,hex(histogram),decode_histogram(hist_type,histogram)

 FROM mysql.column_stats WHERE db_name='test' and table_name='origin';

+---------+------------+-------------+----------------+--------------------------------------

----+--

-+

| db_name | table_name | column_name | hist_type | hex(histogram)

| decode_histogram(hist_type,histogram) |

+---------+------------+-------------+----------------+--------------------------------------

----+--

-+

| test | origin | i | DOUBLE_PREC_HB |

0F0F2D2D3C3C5A5A78788787A5A5C3C3D2D2F0F0 |

0.05882,0.11765,0.05882,0.11765,0.11765,0.05882,0.11765,0.11765,0.05882,0.11765,0.05882 |

| test | origin | v | DOUBLE_PREC_HB |

5200F600480116067E0CB30F1B16831CB81FD67F |

0.00125,0.00250,0.00125,0.01877,0.02502,0.01253,0.02502,0.02502,0.01253,0.37546,0.50063 |

1.2.8.3.11 DEFAULT

Syntax

DEFAULT(col_name)

1131/4161

Description
Returns the default value for a table column. If the column has no default value (and is not NULLABLE - NULLABLE fields

have a NULL default), an error is returned.

For integer columns using AUTO_INCREMENT, 0 is returned.

When using DEFAULT as a value to set in an INSERT or UPDATE statement, you can use the bare keyword DEFAULT

without the parentheses and argument to refer to the column in context. You can only use DEFAULT as a bare keyword if

you are using it alone without a surrounding expression or function.

Examples
Select only non-default values for a column:

SELECT i FROM t WHERE i != DEFAULT(i);

Update values to be one greater than the default value:

UPDATE t SET i = DEFAULT(i)+1 WHERE i < 100;

When referring to the default value exactly in UPDATE or INSERT , you can omit the argument:

INSERT INTO t (i) VALUES (DEFAULT);

UPDATE t SET i = DEFAULT WHERE i < 100;

CREATE OR REPLACE TABLE t (

 i INT NOT NULL AUTO_INCREMENT,

 j INT NOT NULL,

 k INT DEFAULT 3,

 l INT NOT NULL DEFAULT 4,

 m INT,

 PRIMARY KEY (i)

);

DESC t;

+-------+---------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+----------------+

| i | int(11) | NO | PRI | NULL | auto_increment |

| j | int(11) | NO | | NULL | |

| k | int(11) | YES | | 3 | |

| l | int(11) | NO | | 4 | |

| m | int(11) | YES | | NULL | |

+-------+---------+------+-----+---------+----------------+

INSERT INTO t (j) VALUES (1);

INSERT INTO t (j,m) VALUES (2,2);

INSERT INTO t (j,l,m) VALUES (3,3,3);

SELECT * FROM t;

+---+---+------+---+------+

| i | j | k | l | m |

+---+---+------+---+------+

| 1 | 1 | 3 | 4 | NULL |

| 2 | 2 | 3 | 4 | 2 |

| 3 | 3 | 3 | 3 | 3 |

+---+---+------+---+------+

SELECT DEFAULT(i), DEFAULT(k), DEFAULT (l), DEFAULT(m) FROM t;

+------------+------------+-------------+------------+

| DEFAULT(i) | DEFAULT(k) | DEFAULT (l) | DEFAULT(m) |

+------------+------------+-------------+------------+

| 0 | 3 | 4 | NULL |

| 0 | 3 | 4 | NULL |

| 0 | 3 | 4 | NULL |

+------------+------------+-------------+------------+

SELECT DEFAULT(i), DEFAULT(k), DEFAULT (l), DEFAULT(m), DEFAULT(j) FROM t;

ERROR 1364 (HY000): Field 'j' doesn't have a default value
1132/4161

ERROR 1364 (HY000): Field 'j' doesn't have a default value

SELECT * FROM t WHERE i = DEFAULT(i);

Empty set (0.001 sec)

SELECT * FROM t WHERE j = DEFAULT(j);

ERROR 1364 (HY000): Field 'j' doesn't have a default value

SELECT * FROM t WHERE k = DEFAULT(k);

+---+---+------+---+------+

| i | j | k | l | m |

+---+---+------+---+------+

| 1 | 1 | 3 | 4 | NULL |

| 2 | 2 | 3 | 4 | 2 |

| 3 | 3 | 3 | 3 | 3 |

+---+---+------+---+------+

SELECT * FROM t WHERE l = DEFAULT(l);

+---+---+------+---+------+

| i | j | k | l | m |

+---+---+------+---+------+

| 1 | 1 | 3 | 4 | NULL |

| 2 | 2 | 3 | 4 | 2 |

+---+---+------+---+------+

SELECT * FROM t WHERE m = DEFAULT(m);

Empty set (0.001 sec)

SELECT * FROM t WHERE m <=> DEFAULT(m);

+---+---+------+---+------+

| i | j | k | l | m |

+---+---+------+---+------+

| 1 | 1 | 3 | 4 | NULL |

+---+---+------+---+------+

1.2.8.3.12 FOUND_ROWS

Syntax

FOUND_ROWS()

Description
A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to the client. In some

cases, it is desirable to know how many rows the statement would have returned without the LIMIT, but without running the

statement again. To obtain this row count, include a SQL_CALC_FOUND_ROWS option in the SELECT statement, and

then invoke FOUND_ROWS() afterwards.

You can also use FOUND_ROWS() to obtain the number of rows returned by a SELECT which does not contain a LIMIT

clause. In this case you don't need to use the SQL_CALC_FOUND_ROWS option. This can be useful for example in a

stored procedure.

Also, this function works with some other statements which return a resultset, including SHOW, DESC and HELP. For

DELETE ... RETURNING you should use ROW_COUNT(). It also works as a prepared statement, or after executing a

prepared statement.

Statements which don't return any results don't affect FOUND_ROWS() - the previous value will still be returned.

Warning: When used after a CALL statement, this function returns the number of rows selected by the last query in the

procedure, not by the whole procedure.

Statements using the FOUND_ROWS() function are not safe for statement-based replication.

Examples

1133/4161

SHOW ENGINES\G

*************************** 1. row ***************************

 Engine: CSV

 Support: YES

 Comment: Stores tables as CSV files

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 2. row ***************************

 Engine: MRG_MyISAM

 Support: YES

 Comment: Collection of identical MyISAM tables

Transactions: NO

 XA: NO

 Savepoints: NO

...

*************************** 8. row ***************************

 Engine: PERFORMANCE_SCHEMA

 Support: YES

 Comment: Performance Schema

Transactions: NO

 XA: NO

 Savepoints: NO

8 rows in set (0.000 sec)

SELECT FOUND_ROWS();

+--------------+

| FOUND_ROWS() |

+--------------+

| 8 |

+--------------+

SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name WHERE id > 100 LIMIT 10;

SELECT FOUND_ROWS();

+--------------+

| FOUND_ROWS() |

+--------------+

| 23 |

+--------------+

1.2.8.3.13 LAST_INSERT_ID

Syntax

LAST_INSERT_ID(), LAST_INSERT_ID(expr)

Contents
1. Syntax

2. Description

3. Examples

Description
LAST_INSERT_ID() (no arguments) returns the first automatically generated value successfully inserted for an

AUTO_INCREMENT column as a result of the most recently executed INSERT statement. The value of

LAST_INSERT_ID() remains unchanged if no rows are successfully inserted.

If one gives an argument to LAST_INSERT_ID(), then it will return the value of the expression and the next call to

LAST_INSERT_ID() will return the same value. The value will also be sent to the client and can be accessed by the

mysql_insert_id function.

For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value like this:

1134/4161

https://mariadb.com/kb/en/mysql_insert_id/

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 9 |

+------------------+

You can also use LAST_INSERT_ID() to delete the last inserted row:

DELETE FROM product WHERE id = LAST_INSERT_ID();

If no rows were successfully inserted, LAST_INSERT_ID() returns 0.

The value of LAST_INSERT_ID() will be consistent across all versions if all rows in the INSERT or UPDATE statement were

successful.

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that you generate an

AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID() in a multiple-row INSERT statement

that inserts rows into a table with its own AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable

in the second statement; its value for the second and later rows is not affected by the earlier row insertions. (However, if you

mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For transactional tables, if the

statement is rolled back due to an error, the value of LAST_INSERT_ID() is left undefined. For manual ROLLBACK, the

value of LAST_INSERT_ID() is not restored to that before the transaction; it remains as it was at the point of the

ROLLBACK.

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same

way as for statements executed outside the body of these kinds of objects. The effect of a stored routine or trigger upon the

value of LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the new value will be seen

by statements that follow the procedure call.

For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so

following statements will not see a changed value.

Examples

CREATE TABLE t (

 id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,

 f VARCHAR(1))

ENGINE = InnoDB;

INSERT INTO t(f) VALUES('a');

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 1 |

+------------------+

INSERT INTO t(f) VALUES('b');

INSERT INTO t(f) VALUES('c');

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 3 |

+------------------+

INSERT INTO t(f) VALUES('d'),('e');

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 4 |

+------------------+
1135/4161

+------------------+

SELECT * FROM t;

+----+------+

| id | f |

+----+------+

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

| 5 | e |

+----+------+

SELECT LAST_INSERT_ID(12);

+--------------------+

| LAST_INSERT_ID(12) |

+--------------------+

| 12 |

+--------------------+

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 12 |

+------------------+

INSERT INTO t(f) VALUES('f');

SELECT LAST_INSERT_ID();

+------------------+

| LAST_INSERT_ID() |

+------------------+

| 6 |

+------------------+

SELECT * FROM t;

+----+------+

| id | f |

+----+------+

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

| 5 | e |

| 6 | f |

+----+------+

SELECT LAST_INSERT_ID(12);

+--------------------+

| LAST_INSERT_ID(12) |

+--------------------+

| 12 |

+--------------------+

INSERT INTO t(f) VALUES('g');

SELECT * FROM t;

+----+------+

| id | f |

+----+------+

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

| 5 | e |

| 6 | f |

| 7 | g |

+----+------+

1.2.8.3.14 LAST_VALUE
1136/4161

Syntax

LAST_VALUE(expr,[expr,...])

LAST_VALUE(expr) OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Contents
1. Syntax

2. Description

3. Examples

Description
LAST_VALUE() evaluates all expressions and returns the last.

This is useful together with setting user variables to a value with @var:=expr, for example when you want to get data of rows

updated/deleted without having to do two queries against the table.

LAST_VALUE can be used as a window function.

Returns NULL if no last value exists.

Examples

CREATE TABLE t1 (a int, b int);

INSERT INTO t1 VALUES(1,10),(2,20);

DELETE FROM t1 WHERE a=1 AND last_value(@a:=a,@b:=b,1);

SELECT @a,@b;

+------+------+

| @a | @b |

+------+------+

| 1 | 10 |

+------+------+

As a window function:

1137/4161

CREATE TABLE t1 (

 pk int primary key,

 a int,

 b int,

 c char(10),

 d decimal(10, 3),

 e real

);

INSERT INTO t1 VALUES

(1, 0, 1, 'one', 0.1, 0.001),

(2, 0, 2, 'two', 0.2, 0.002),

(3, 0, 3, 'three', 0.3, 0.003),

(4, 1, 2, 'three', 0.4, 0.004),

(5, 1, 1, 'two', 0.5, 0.005),

(6, 1, 1, 'one', 0.6, 0.006),

(7, 2, NULL, 'n_one', 0.5, 0.007),

(8, 2, 1, 'n_two', NULL, 0.008),

(9, 2, 2, NULL, 0.7, 0.009),

(10, 2, 0, 'n_four', 0.8, 0.010),

(11, 2, 10, NULL, 0.9, NULL);

SELECT pk, FIRST_VALUE(pk) OVER (ORDER BY pk) AS first_asc,

 LAST_VALUE(pk) OVER (ORDER BY pk) AS last_asc,

 FIRST_VALUE(pk) OVER (ORDER BY pk DESC) AS first_desc,

 LAST_VALUE(pk) OVER (ORDER BY pk DESC) AS last_desc

FROM t1

ORDER BY pk DESC;

+----+-----------+----------+------------+-----------+

| pk | first_asc | last_asc | first_desc | last_desc |

+----+-----------+----------+------------+-----------+

| 11 | 1 | 11 | 11 | 11 |

| 10 | 1 | 10 | 11 | 10 |

| 9 | 1 | 9 | 11 | 9 |

| 8 | 1 | 8 | 11 | 8 |

| 7 | 1 | 7 | 11 | 7 |

| 6 | 1 | 6 | 11 | 6 |

| 5 | 1 | 5 | 11 | 5 |

| 4 | 1 | 4 | 11 | 4 |

| 3 | 1 | 3 | 11 | 3 |

| 2 | 1 | 2 | 11 | 2 |

| 1 | 1 | 1 | 11 | 1 |

+----+-----------+----------+------------+-----------+

1138/4161

CREATE OR REPLACE TABLE t1 (i int);

INSERT INTO t1 VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10);

SELECT i,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN CURRENT ROW and 1 FOLLOWING) AS f_1f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN CURRENT ROW and 1 FOLLOWING) AS l_1f,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS f_1p1f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS l_1p1f,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) AS f_2p1p,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) AS l_2p1p,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) AS f_1f2f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) AS l_1f2f

FROM t1;

+------+------+------+--------+--------+--------+--------+--------+--------+

| i | f_1f | l_1f | f_1p1f | l_1p1f | f_2p1p | l_2p1p | f_1f2f | l_1f2f |

+------+------+------+--------+--------+--------+--------+--------+--------+

| 1 | 1 | 2 | 1 | 2 | NULL | NULL | 2 | 3 |

| 2 | 2 | 3 | 1 | 3 | 1 | 1 | 3 | 4 |

| 3 | 3 | 4 | 2 | 4 | 1 | 2 | 4 | 5 |

| 4 | 4 | 5 | 3 | 5 | 2 | 3 | 5 | 6 |

| 5 | 5 | 6 | 4 | 6 | 3 | 4 | 6 | 7 |

| 6 | 6 | 7 | 5 | 7 | 4 | 5 | 7 | 8 |

| 7 | 7 | 8 | 6 | 8 | 5 | 6 | 8 | 9 |

| 8 | 8 | 9 | 7 | 9 | 6 | 7 | 9 | 10 |

| 9 | 9 | 10 | 8 | 10 | 7 | 8 | 10 | 10 |

| 10 | 10 | 10 | 9 | 10 | 8 | 9 | NULL | NULL |

+------+------+------+--------+--------+--------+--------+--------+--------+

1.2.8.3.15 PROCEDURE ANALYSE

Syntax

analyse([max_elements[,max_memory]])

Description
This procedure is defined in the sql/sql_analyse.cc file. It examines the result from a query and returns an analysis of the

results that suggests optimal data types for each column. To obtain this analysis, append PROCEDURE ANALYSE to the

end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data type for the columns.

This can be helpful for checking your existing tables, or after importing new data. You may need to try different settings for

the arguments so that PROCEDURE ANALYSE() does not suggest the ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

max_elements (default 256) is the maximum number of distinct values that analyse notices per column. This is used

by analyse to check whether the optimal data type should be of type ENUM; if there are more than max_elements

distinct values, then ENUM is not a suggested type.

max_memory (default 8192) is the maximum amount of memory that analyse should allocate per column while trying

to find all distinct values.

1.2.8.3.16 ROWNUM

From MariaDB 10.6.1, the ROWNUM() function is supported.

MariaDB starting with 10.6.1

1139/4161

Contents
1. Syntax

2. Description

3. Examples

4. Optimizations

5. Other Changes Related to ROWNUM

6. Other Considerations

Syntax

ROWNUM()

In Oracle mode one can just use ROWNUM , without the parentheses.

Description
ROWNUM() returns the current number of accepted rows in the current context. It main purpose is to emulate the ROWNUM

pseudo column in Oracle . For MariaDB native applications, we recommend the usage of LIMIT, as it is easier to use and

gives more predictable results than the usage of ROWNUM() .

The main difference between using LIMIT and ROWNUM() to limit the rows in the result is that LIMIT works on the result

set while ROWNUM works on the number of accepted rows (before any ORDER or GROUP BY clauses).

The following queries will return the same results:

SELECT * from t1 LIMIT 10;

SELECT * from t1 WHERE ROWNUM() <= 10;

While the following may return different results based on in which orders the rows are found:

SELECT * from t1 ORDER BY a LIMIT 10;

SELECT * from t1 ORDER BY a WHERE ROWNUM() <= 10;

The recommended way to use ROWNUM to limit the number of returned rows and get predictable results is to have the query

in a subquery and test for ROWNUM() in the outer query:

SELECT * FROM (select * from t1 ORDER BY a) WHERE ROWNUM() <= 10;

ROWNUM() can be used in the following contexts:

SELECT

INSERT

UPDATE

DELETE

LOAD DATA INFILE

Used in other contexts, ROWNUM() will return 0.

Examples

INSERT INTO t1 VALUES (1,ROWNUM()),(2,ROWNUM()),(3,ROWNUM());

INSERT INTO t1 VALUES (1),(2) returning a, ROWNUM();

UPDATE t1 SET row_num_column=ROWNUM();

DELETE FROM t1 WHERE a < 10 AND ROWNUM() < 2;

LOAD DATA INFILE 'filename' into table t1 fields terminated by ','

 lines terminated by "\r\n" (a,b) set c=ROWNUM();

Optimizations
1140/4161

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/ROWNUM-Pseudocolumn.html#GUID-2E40EC12-3FCF-4A4F-B5F2-6BC669021726

In many cases where ROWNUM() is used, MariaDB will use the same optimizations it uses with LIMIT.

LIMIT optimization is possible when using ROWNUM in the following manner:

When one is in a top level WHERE clause comparing ROWNUM() with a numerical constant using any of the following

expressions:

ROWNUM() < number

ROWNUM() <= number

ROWNUM() = 1 ROWNUM() can be also be the right argument to the comparison function.

In the above cases, LIMIT optimization can be done in the following cases:

For the current sub query when the ROWNUM comparison is done on the top level:

SELECT * from t1 WHERE ROWNUM() <= 2 AND t1.a > 0

For an inner sub query, when the upper level has only a ROWNUM() comparison in the WHERE clause:

SELECT * from (select * from t1) as t WHERE ROWNUM() <= 2

Other Changes Related to ROWNUM
When ROWNUM() is used anywhere in a query, the optimization to ignore ORDER BY in subqueries are disabled.

This was done to get the following common Oracle query to work as expected:

 select * from (select * from t1 order by a desc) as t where rownum() <= 2;

By default MariaDB ignores any ORDER BY in subqueries both because the SQL standard defines results sets in

subqueries to be un-ordered and because of performance reasons (especially when using views in subqueries). See MDEV-

3926 "Wrong result with GROUP BY ... WITH ROLLUP" for a discussion of this topic.

Other Considerations
While MariaDB tries to emulate Oracle's usage of ROWNUM() as closely as possible, there are cases where the result is

different:

When the optimizer finds rows in a different order (because of different storage methods or optimization). This may

also happen in Oracle if one adds or deletes an index, in which case the rows may be found in a different order.

Note that usage of ROWNUM() in functions or stored procedures will use their own context, not the caller's context.

1.2.8.3.17 ROW_COUNT

Syntax

ROW_COUNT()

Description
ROW_COUNT() returns the number of rows updated, inserted or deleted by the preceding statement. This is the same as

the row count that the mariadb client displays and the value from the mysql_affected_rows() C API function.

Generally:

For statements which return a result set (such as SELECT, SHOW, DESC or HELP), returns -1, even when the result

set is empty. This is also true for administrative statements, such as OPTIMIZE.

For DML statements other than SELECT and for ALTER TABLE, returns the number of affected rows.

For DDL statements (including TRUNCATE) and for other statements which don't return any result set (such as USE,

DO, SIGNAL or DEALLOCATE PREPARE), returns 0.

For UPDATE, affected rows is by default the number of rows that were actually changed. If the CLIENT_FOUND_ROWS

flag to mysql_real_connect() is specified when connecting to mysqld, affected rows is instead the number of rows

matched by the WHERE clause.

1141/4161

https://jira.mariadb.org/browse/MDEV-3926
https://mariadb.com/kb/en/mysql_affected_rows/
https://mariadb.com/kb/en/deallocate-drop-prepared-statement/
https://mariadb.com/kb/en/mysql_real_connect/

For REPLACE, deleted rows are also counted. So, if REPLACE deletes a row and adds a new row, ROW_COUNT() returns

2.

For INSERT ... ON DUPLICATE KEY, updated rows are counted twice. So, if INSERT adds a new rows and modifies

another row, ROW_COUNT() returns 3.

ROW_COUNT() does not take into account rows that are not directly deleted/updated by the last statement. This means that

rows deleted by foreign keys or triggers are not counted.

Warning: You can use ROW_COUNT() with prepared statements, but you need to call it after EXECUTE, not after

DEALLOCATE PREPARE , because the row count for allocate prepare is always 0.

Warning: When used after a CALL statement, this function returns the number of rows affected by the last statement in the

procedure, not by the whole procedure.

Warning: After INSERT DELAYED, ROW_COUNT() returns the number of the rows you tried to insert, not the number of

the successful writes.

This information can also be found in the diagnostics area .

Statements using the ROW_COUNT() function are not safe for statement-based replication.

Examples

CREATE TABLE t (A INT);

INSERT INTO t VALUES(1),(2),(3);

SELECT ROW_COUNT();

+-------------+

| ROW_COUNT() |

+-------------+

| 3 |

+-------------+

DELETE FROM t WHERE A IN(1,2);

SELECT ROW_COUNT();

+-------------+

| ROW_COUNT() |

+-------------+

| 2 |

+-------------+

Example with prepared statements:

SET @q = 'INSERT INTO t VALUES(1),(2),(3);';

PREPARE stmt FROM @q;

EXECUTE stmt;

Query OK, 3 rows affected (0.39 sec)

Records: 3 Duplicates: 0 Warnings: 0

SELECT ROW_COUNT();

+-------------+

| ROW_COUNT() |

+-------------+

| 3 |

+-------------+

1.2.8.3.18 SCHEMA

Syntax

SCHEMA()

1142/4161

https://mariadb.com/kb/en/deallocate-drop-prepared-statement/
https://mariadb.com/kb/en/diagnostics-area/

Description
This function is a synonym for DATABASE().

1.2.8.3.19 SESSION_USER

Syntax

SESSION_USER()

Description
SESSION_USER() is a synonym for USER().

1.2.8.3.20 SYSTEM_USER

Syntax

SYSTEM_USER()

Description
SYSTEM_USER() is a synonym for USER().

1.2.8.3.21 USER

Syntax

USER()

Description
Returns the current MariaDB user name and host name, given when authenticating to MariaDB, as a string in the utf8

character set.

Note that the value of USER() may differ from the value of CURRENT_USER(), which is the user used to authenticate the

current client. CURRENT_ROLE() returns the current active role.

SYSTEM_USER() and SESSION_USER are synonyms for USER() .

Statements using the USER() function or one of its synonyms are not safe for statement level replication.

Examples

shell> mysql --user="anonymous"

SELECT USER(),CURRENT_USER();

+---------------------+----------------+

| USER() | CURRENT_USER() |

+---------------------+----------------+

| anonymous@localhost | @localhost |

+---------------------+----------------+

To select only the IP address, use SUBSTRING_INDEX(),

1143/4161

SELECT SUBSTRING_INDEX(USER(), '@', -1);

+----------------------------------+

| SUBSTRING_INDEX(USER(), '@', -1) |

+----------------------------------+

| 192.168.0.101 |

+----------------------------------+

1.2.8.3.22 VERSION

Syntax

VERSION()

Description
Returns a string that indicates the MariaDB server version. The string uses the utf8 character set.

Examples

SELECT VERSION();

+----------------+

| VERSION() |

+----------------+

| 10.4.7-MariaDB |

+----------------+

The VERSION() string may have one or more of the following suffixes:

Suffix Description

-embedded The server is an embedded server (libmariadbd).

-log General logging, slow logging or binary (replication) logging is enabled.

-debug The server is compiled for debugging.

-valgrind The server is compiled to be instrumented with valgrind.

Changing the Version String
Some old legacy code may break because they are parsing the VERSION string and expecting a MySQL string or a simple

version string like Joomla til API17, see MDEV-7780 .

One can fool these applications by setting the version string from the command line or the my.cnf files with --version=....

1.2.8.4 Miscellaneous Functions
Miscellaneous functions include DEFAULT, GET_LOCK, SLEEP, UUID, etc.

GET_LOCK

Obtain LOCK.

INET6_ATON

Given an IPv6 or IPv4 network address, returns a VARBINARY numeric value.

INET6_NTOA

Given an IPv6 or IPv4 network address, returns the address as a nonbinary string.

INET_ATON

Returns numeric value of IPv4 address.

1144/4161

https://jira.mariadb.org/browse/MDEV-7780

INET_NTOA

Returns dotted-quad representation of IPv4 address.

IS_FREE_LOCK

Checks whether lock is free to use.

IS_IPV4

Whether or not an expression is a valid IPv4 address.

IS_IPV4_COMPAT

Whether or not an IPv6 address is IPv4-compatible.

IS_IPV4_MAPPED

Whether an IPv6 address is a valid IPv4-mapped address.

IS_IPV6

Whether or not an expression is a valid IPv6 address.

IS_USED_LOCK

Check if lock is in use.

MASTER_GTID_WAIT

Wait until slave reaches the GTID position.

MASTER_POS_WAIT

Blocks until the replica has applied all specified updates.

NAME_CONST

Returns the given value.

RELEASE_ALL_LOCKS

Releases all named locks held by the current session.

RELEASE_LOCK

Releases lock obtained with GET_LOCK().

SLEEP

Pauses for the given number of seconds.

SYS_GUID

Returns a globally unique identifier (GUID).

UUID

Returns a Universal Unique Identifier.

UUID_SHORT

Return short universal identifier.

VALUES / VALUE

Refer to columns in INSERT ... ON DUPLICATE KEY UPDATE.

There are 1 related questions .

2

3

4

1.2.8.4.1 GET_LOCK

Syntax

GET_LOCK(str,timeout)

1145/4161

https://mariadb.com/kb/en/miscellaneous-functions/+questions/

Contents
1. Syntax

2. Description

3. Examples

Description
Tries to obtain a lock with a name given by the string str , using a timeout of timeout seconds. Returns 1 if the lock

was obtained successfully, 0 if the attempt timed out (for example, because another client has previously locked the

name), or NULL if an error occurred (such as running out of memory or the thread was killed with mariadb-admin kill).

A lock is released with RELEASE_LOCK(), when the connection terminates (either normally or abnormally). A connection

can hold multiple locks at the same time, so a lock that is no longer needed needs to be explicitly released.

The IS_FREE_LOCK function returns whether a specified lock a free or not, and the IS_USED_LOCK whether the function

is in use or not.

Locks obtained with GET_LOCK() do not interact with transactions. That is, committing a transaction does not release any

such locks obtained during the transaction.

It is also possible to recursively set the same lock. If a lock with the same name is set n times, it needs to be released n

times as well.

str is case insensitive for GET_LOCK() and related functions. If str is an empty string or NULL , GET_LOCK() returns

NULL and does nothing. timeout supports microseconds.

If the metadata_lock_info plugin is installed, locks acquired with this function are visible in the Information Schema

METADATA_LOCK_INFO table.

This function can be used to implement application locks or to simulate record locks. Names are locked on a server-wide

basis. If a name has been locked by one client, GET_LOCK() blocks any request by another client for a lock with the same

name. This allows clients that agree on a given lock name to use the name to perform cooperative advisory locking. But be

aware that it also allows a client that is not among the set of cooperating clients to lock a name, either inadvertently or

deliberately, and thus prevent any of the cooperating clients from locking that name. One way to reduce the likelihood of this

is to use lock names that are database-specific or application-specific. For example, use lock names of the form

db_name.str or app_name.str .

Statements using the GET_LOCK function are not safe for statement-based replication.

The patch to permit multiple locks was contributed by Konstantin "Kostja" Osipov (MDEV-3917).

Examples

SELECT GET_LOCK('lock1',10);

+----------------------+

| GET_LOCK('lock1',10) |

+----------------------+

| 1 |

+----------------------+

SELECT IS_FREE_LOCK('lock1'), IS_USED_LOCK('lock1');

+-----------------------+-----------------------+

| IS_FREE_LOCK('lock1') | IS_USED_LOCK('lock1') |

+-----------------------+-----------------------+

| 0 | 46 |

+-----------------------+-----------------------+

SELECT IS_FREE_LOCK('lock2'), IS_USED_LOCK('lock2');

+-----------------------+-----------------------+

| IS_FREE_LOCK('lock2') | IS_USED_LOCK('lock2') |

+-----------------------+-----------------------+

| 1 | NULL |

+-----------------------+-----------------------+

Multiple locks can be held:

1146/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-admin_kill
http://kostja-osipov.livejournal.com/46410.html
https://jira.mariadb.org/browse/MDEV-3917

SELECT GET_LOCK('lock2',10);

+----------------------+

| GET_LOCK('lock2',10) |

+----------------------+

| 1 |

+----------------------+

SELECT IS_FREE_LOCK('lock1'), IS_FREE_LOCK('lock2');

+-----------------------+-----------------------+

| IS_FREE_LOCK('lock1') | IS_FREE_LOCK('lock2') |

+-----------------------+-----------------------+

| 0 | 0 |

+-----------------------+-----------------------+

SELECT RELEASE_LOCK('lock1'), RELEASE_LOCK('lock2');

+-----------------------+-----------------------+

| RELEASE_LOCK('lock1') | RELEASE_LOCK('lock2') |

+-----------------------+-----------------------+

| 1 | 1 |

+-----------------------+-----------------------+

It is possible to hold the same lock recursively. This example is viewed using the metadata_lock_info plugin:

SELECT GET_LOCK('lock3',10);

+----------------------+

| GET_LOCK('lock3',10) |

+----------------------+

| 1 |

+----------------------+

SELECT GET_LOCK('lock3',10);

+----------------------+

| GET_LOCK('lock3',10) |

+----------------------+

| 1 |

+----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

+-----------+---------------------+---------------+-----------+--------------+------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+---------------------+---------------+-----------+--------------+------------+

| 46 | MDL_SHARED_NO_WRITE | NULL | User lock | lock3 | |

+-----------+---------------------+---------------+-----------+--------------+------------+

SELECT RELEASE_LOCK('lock3');

+-----------------------+

| RELEASE_LOCK('lock3') |

+-----------------------+

| 1 |

+-----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

+-----------+---------------------+---------------+-----------+--------------+------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+---------------------+---------------+-----------+--------------+------------+

| 46 | MDL_SHARED_NO_WRITE | NULL | User lock | lock3 | |

+-----------+---------------------+---------------+-----------+--------------+------------+

SELECT RELEASE_LOCK('lock3');

+-----------------------+

| RELEASE_LOCK('lock3') |

+-----------------------+

| 1 |

+-----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

Empty set (0.000 sec)

Timeout example: Connection 1:

1147/4161

SELECT GET_LOCK('lock4',10);

+----------------------+

| GET_LOCK('lock4',10) |

+----------------------+

| 1 |

+----------------------+

Connection 2:

SELECT GET_LOCK('lock4',10);

After 10 seconds...

+----------------------+

| GET_LOCK('lock4',10) |

+----------------------+

| 0 |

+----------------------+

Deadlocks are automatically detected and resolved. Connection 1:

SELECT GET_LOCK('lock5',10);

+----------------------+

| GET_LOCK('lock5',10) |

+----------------------+

| 1 |

+----------------------+

Connection 2:

SELECT GET_LOCK('lock6',10);

+----------------------+

| GET_LOCK('lock6',10) |

+----------------------+

| 1 |

+----------------------+

Connection 1:

SELECT GET_LOCK('lock6',10);

+----------------------+

| GET_LOCK('lock6',10) |

+----------------------+

| 0 |

+----------------------+

Connection 2:

SELECT GET_LOCK('lock5',10);

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

1.2.8.4.2 INET6_ATON

Syntax

INET6_ATON(expr)

Description
Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the numeric value of the address.

No trailing zone ID's or traling network masks are permitted. For IPv4 addresses, or IPv6 addresses with IPv4 address

1148/4161

parts, no classful addresses or trailing port numbers are permitted and octal numbers are not supported.

The returned binary string will be VARBINARY(16) or VARBINARY(4) for IPv6 and IPv4 addresses respectively.

Returns NULL if the argument is not understood.

From MariaDB 10.5.0, INET6_ATON can take INET6 as an argument.

Examples

SELECT HEX(INET6_ATON('10.0.1.1'));

+-----------------------------+

| HEX(INET6_ATON('10.0.1.1')) |

+-----------------------------+

| 0A000101 |

+-----------------------------+

SELECT HEX(INET6_ATON('48f3::d432:1431:ba23:846f'));

+--+

| HEX(INET6_ATON('48f3::d432:1431:ba23:846f')) |

+--+

| 48F3000000000000D4321431BA23846F |

+--+

MariaDB starting with 10.5.0

1.2.8.4.3 INET6_NTOA
Contents
1. Syntax

2. Description

3. Examples

Syntax

INET6_NTOA(expr)

Description
Given an IPv6 or IPv4 network address as a numeric binary string, returns the address as a nonbinary string in the

connection character set.

The return string is lowercase, and is platform independent, since it does not use functions specific to the operating system.

It has a maximum length of 39 characters.

Returns NULL if the argument is not understood.

Examples

SELECT INET6_NTOA(UNHEX('0A000101'));

+-------------------------------+

| INET6_NTOA(UNHEX('0A000101')) |

+-------------------------------+

| 10.0.1.1 |

+-------------------------------+

SELECT INET6_NTOA(UNHEX('48F3000000000000D4321431BA23846F'));

+---+

| INET6_NTOA(UNHEX('48F3000000000000D4321431BA23846F')) |

+---+

| 48f3::d432:1431:ba23:846f |

+---+

1149/4161

1.2.8.4.4 INET_ATON

Syntax

INET_ATON(expr)

Description
Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that represents the numeric

value of the address. Addresses may be 4- or 8-byte addresses.

Returns NULL if the argument is not understood.

Examples

SELECT INET_ATON('192.168.1.1');

+--------------------------+

| INET_ATON('192.168.1.1') |

+--------------------------+

| 3232235777 |

+--------------------------+

This is calculated as follows: 192 x 256 + 168 x 256 + 1 x 256 + 13 2

1.2.8.4.5 INET_NTOA

Syntax

INET_NTOA(expr)

Description
Given a numeric IPv4 network address in network byte order (4 or 8 byte), returns the dotted-quad representation of the

address as a string.

Examples

SELECT INET_NTOA(3232235777);

+-----------------------+

| INET_NTOA(3232235777) |

+-----------------------+

| 192.168.1.1 |

+-----------------------+

192.168.1.1 corresponds to 3232235777 since 192 x 256 + 168 x 256 + 1 x 256 + 1 = 32322357773 2

1.2.8.4.6 IS_FREE_LOCK

Syntax

IS_FREE_LOCK(str)

1150/4161

Contents
1. Syntax

2. Description

Description
Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no one is using the

lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect argument, like an empty string or NULL).

str is case insensitive.

If the metadata_lock_info plugin is installed, the Information Schema metadata_lock_info table contains information about

locks of this kind (as well as metadata locks).

Statements using the IS_FREE_LOCK function are not safe for statement-based replication.

1.2.8.4.7 IS_IPV4

Syntax

IS_IPV4(expr)

Description
If the expression is a valid IPv4 address, returns 1, otherwise returns 0.

IS_IPV4() is stricter than INET_ATON(), but as strict as INET6_ATON(), in determining the validity of an IPv4 address. This

implies that if IS_IPV4 returns 1, the same expression will always return a non-NULL result when passed to INET_ATON(),

but that the reverse may not apply.

Examples

SELECT IS_IPV4('1110.0.1.1');

+-----------------------+

| IS_IPV4('1110.0.1.1') |

+-----------------------+

| 0 |

+-----------------------+

SELECT IS_IPV4('48f3::d432:1431:ba23:846f');

+--------------------------------------+

| IS_IPV4('48f3::d432:1431:ba23:846f') |

+--------------------------------------+

| 0 |

+--------------------------------------+

1.2.8.4.8 IS_IPV4_COMPAT

Syntax

IS_IPV4_COMPAT(expr)

Description
Returns 1 if a given numeric binary string IPv6 address, such as returned by INET6_ATON(), is IPv4-compatible, otherwise

returns 0.

From MariaDB 10.5.0, when the argument is not INET6, automatic implicit CAST to INET6 is applied. As a

consequence, IS_IPV4_COMPAT now understands arguments in both text representation and binary(16)

MariaDB starting with 10.5.0

1151/4161

representation. Before MariaDB 10.5.0, the function understood only binary(16) representation.

Examples

SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.1.1'));

+--+

| IS_IPV4_COMPAT(INET6_ATON('::10.0.1.1')) |

+--+

| 1 |

+--+

SELECT IS_IPV4_COMPAT(INET6_ATON('::48f3::d432:1431:ba23:846f'));

+---+

| IS_IPV4_COMPAT(INET6_ATON('::48f3::d432:1431:ba23:846f')) |

+---+

| 0 |

+---+

1.2.8.4.9 IS_IPV4_MAPPED

Syntax

IS_IPV4_MAPPED(expr)

Description
Returns 1 if a given a numeric binary string IPv6 address, such as returned by INET6_ATON(), is a valid IPv4-mapped

address, otherwise returns 0.

From MariaDB 10.5.0, when the argument is not INET6, automatic implicit CAST to INET6 is applied. As a

consequence, IS_IPV4_MAPPED now understands arguments in both text representation and binary(16)

representation. Before MariaDB 10.5.0, the function understood only binary(16) representation.

Examples

SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.1.1'));

+--+

| IS_IPV4_MAPPED(INET6_ATON('::10.0.1.1')) |

+--+

| 0 |

+--+

SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.1.1'));

+---+

| IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.1.1')) |

+---+

| 1 |

+---+

MariaDB starting with 10.5.0

1.2.8.4.10 IS_IPV6

Syntax

IS_IPV6(expr)

1152/4161

Description
Returns 1 if the expression is a valid IPv6 address specified as a string, otherwise returns 0. Does not consider IPv4

addresses to be valid IPv6 addresses.

Examples

 SELECT IS_IPV6('48f3::d432:1431:ba23:846f');

+--------------------------------------+

| IS_IPV6('48f3::d432:1431:ba23:846f') |

+--------------------------------------+

| 1 |

+--------------------------------------+

1 row in set (0.02 sec)

SELECT IS_IPV6('10.0.1.1');

+---------------------+

| IS_IPV6('10.0.1.1') |

+---------------------+

| 0 |

+---------------------+

1.2.8.4.11 IS_USED_LOCK

Syntax

IS_USED_LOCK(str)

Contents
1. Syntax

2. Description

Description
Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of the client that

holds the lock. Otherwise, it returns NULL . str is case insensitive.

If the metadata_lock_info plugin is installed, the Information Schema metadata_lock_info table contains information about

locks of this kind (as well as metadata locks).

Statements using the IS_USED_LOCK function are not safe for statement-based replication.

1.2.8.4.12 MASTER_GTID_WAIT

Syntax

MASTER_GTID_WAIT(gtid-list[, timeout)

Description
This function takes a string containing a comma-separated list of global transaction id's (similar to the value of, for example,

gtid_binlog_pos). It waits until the value of gtid_slave_pos has the same or higher seq_no within all replication domains

specified in the gtid-list; in other words, it waits until the slave has reached the specified GTID position.

An optional second argument gives a timeout in seconds. If the timeout expires before the specified GTID position is

reached, then the function returns -1. Passing NULL or a negative number for the timeout means no timeout, and the

function will wait indefinitely.

If the wait completes without a timeout, 0 is returned. Passing NULL for the gtid-list makes the function return NULL

immediately, without waiting.

1153/4161

The gtid-list may be the empty string, in which case MASTER_GTID_WAIT() returns immediately. If the gtid-list contains

fewer domains than gtid_slave_pos, then only those domains are waited upon. If gtid-list contains a domain that is not

present in @@gtid_slave_pos, then MASTER_GTID_WAIT() will wait until an event containing such domain_id arrives on

the slave (or until timed out or killed).

MASTER_GTID_WAIT() can be useful to ensure that a slave has caught up to a master. Simply take the value of

gtid_binlog_pos on the master, and use it in a MASTER_GTID_WAIT() call on the slave; when the call completes, the slave

will have caught up with that master position.

MASTER_GTID_WAIT() can also be used in client applications together with the last_gtid session variable. This is useful in

a read-scaleout replication setup, where the application writes to a single master but divides the reads out to a number of

slaves to distribute the load. In such a setup, there is a risk that an application could first do an update on the master, and

then a bit later do a read on a slave, and if the slave is not fast enough, the data read from the slave might not include the

update just made, possibly confusing the application and/or the end-user. One way to avoid this is to request the value of

last_gtid on the master just after the update. Then before doing the read on the slave, do a MASTER_GTID_WAIT() on the

value obtained from the master; this will ensure that the read is not performed until the slave has replicated sufficiently far

for the update to have become visible.

Note that MASTER_GTID_WAIT() can be used even if the slave is configured not to use GTID for connections (CHANGE

MASTER TO master_use_gtid=no). This is because from MariaDB 10, GTIDs are always logged on the master server, and

always recorded on the slave servers.

Differences to MASTER_POS_WAIT()
MASTER_GTID_WAIT() is global; it waits for any master connection to reach the specified GTID position.

MASTER_POS_WAIT() works only against a specific connection. This also means that while MASTER_POS_WAIT()

aborts if its master connection is terminated with STOP SLAVE or due to an error, MASTER_GTID_WAIT() continues

to wait while slaves are stopped.

MASTER_GTID_WAIT() can take its timeout as a floating-point value, so a timeout in fractional seconds is

supported, eg. MASTER_GTID_WAIT("0-1-100", 0.5). (The minimum wait is one microsecond, 0.000001 seconds).

MASTER_GTID_WAIT() allows one to specify a timeout of zero in order to do a non-blocking check to see if the

slaves have progressed to a specific GTID position (MASTER_POS_WAIT() takes a zero timeout as meaning an

infinite wait). To do an infinite MASTER_GTID_WAIT(), specify a negative timeout, or omit the timeout argument.

MASTER_GTID_WAIT() does not return the number of events executed since the wait started, nor does it return

NULL if a slave thread is stopped. It always returns either 0 for successful wait completed, or -1 for timeout reached

(or NULL if the specified gtid-pos is NULL).

Since MASTER_GTID_WAIT() looks only at the seq_no part of the GTIDs, not the server_id, care is needed if a slave

becomes diverged from another server so that two different GTIDs with the same seq_no (in the same domain) arrive at the

same server. This situation is in any case best avoided; setting gtid_strict_mode is recommended, as this will prevent any

such out-of-order sequence numbers from ever being replicated on a slave.

1.2.8.4.13 MASTER_POS_WAIT

Syntax

MASTER_POS_WAIT(log_name,log_pos[,timeout,["connection_name"]])

Description
This function is useful in replication for controlling primary/replica synchronization. It blocks until the replica has read and

applied all updates up to the specified position (log_name,log_pos) in the primary log. The return value is the number of

log events the replica had to wait for to advance to the specified position. The function returns NULL if the replica SQL

thread is not started, the replica's primary information is not initialized, the arguments are incorrect, or an error occurs. It

returns -1 if the timeout has been exceeded. If the replica SQL thread stops while MASTER_POS_WAIT() is waiting, the

function returns NULL. If the replica is past the specified position, the function returns immediately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have elapsed. timeout

must be greater than 0; a zero or negative timeout means no timeout .

The connection_name is used when you are using multi-source-replication. If you don't specify it, it's set to the value of

the default_master_connection system variable.

Statements using the MASTER_POS_WAIT() function are not safe for statement-based replication.

1154/4161

1.2.8.4.14 NAME_CONST

Syntax

NAME_CONST(name,value)

Description
Returns the given value. When used to produce a result set column, NAME_CONST() causes the column to have the given

name. The arguments should be constants.

This function is used internally when replicating stored procedures. It makes little sense to use it explicitly in SQL

statements, and it was not supposed to be used like that.

SELECT NAME_CONST('myname', 14);

+--------+

| myname |

+--------+

| 14 |

+--------+

1.2.8.4.15 RELEASE_ALL_LOCKS

RELEASE_ALL_LOCKS was added in MariaDB 10.5.2.

Syntax

RELEASE_ALL_LOCKS()

Contents
1. Syntax

2. Description

3. Examples

Description
Releases all named locks held by the current session. Returns the number of locks released, or 0 if none were held.

Statements using the RELEASE_ALL_LOCKS function are not safe for statement-based replication.

Examples

MariaDB until 10.5.2

1155/4161

SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 0 |

+---------------------+

SELECT GET_LOCK('lock1',10);

+----------------------+

| GET_LOCK('lock1',10) |

+----------------------+

| 1 |

+----------------------+

SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 1 |

+---------------------+

1.2.8.4.16 RELEASE_LOCK

Syntax

RELEASE_LOCK(str)

Contents
1. Syntax

2. Description

3. Examples

Description
Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock was released, 0 if

the lock was not established by this thread (in which case the lock is not released), and NULL if the named lock did not

exist. The lock does not exist if it was never obtained by a call to GET_LOCK() or if it has previously been released.

str is case insensitive. If str is an empty string or NULL , RELEASE_LOCK() returns NULL and does nothing.

Statements using the RELEASE_LOCK function are not safe for statement-based replication.

The DO statement is convenient to use with RELEASE_LOCK() .

Examples
Connection1:

SELECT GET_LOCK('lock1',10);

+----------------------+

| GET_LOCK('lock1',10) |

+----------------------+

| 1 |

+----------------------+

Connection 2:

SELECT GET_LOCK('lock2',10);

+----------------------+

| GET_LOCK('lock2',10) |

+----------------------+

| 1 |

+----------------------+

1156/4161

Connection 1:

SELECT RELEASE_LOCK('lock1'), RELEASE_LOCK('lock2'), RELEASE_LOCK('lock3');

+-----------------------+-----------------------+-----------------------+

| RELEASE_LOCK('lock1') | RELEASE_LOCK('lock2') | RELEASE_LOCK('lock3') |

+-----------------------+-----------------------+-----------------------+

| 1 | 0 | NULL |

+-----------------------+-----------------------+-----------------------+

It is possible to hold the same lock recursively. This example is viewed using the metadata_lock_info plugin:

SELECT GET_LOCK('lock3',10);

+----------------------+

| GET_LOCK('lock3',10) |

+----------------------+

| 1 |

+----------------------+

SELECT GET_LOCK('lock3',10);

+----------------------+

| GET_LOCK('lock3',10) |

+----------------------+

| 1 |

+----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

+-----------+---------------------+---------------+-----------+--------------+------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+---------------------+---------------+-----------+--------------+------------+

| 46 | MDL_SHARED_NO_WRITE | NULL | User lock | lock3 | |

+-----------+---------------------+---------------+-----------+--------------+------------+

SELECT RELEASE_LOCK('lock3');

+-----------------------+

| RELEASE_LOCK('lock3') |

+-----------------------+

| 1 |

+-----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

+-----------+---------------------+---------------+-----------+--------------+------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA | TABLE_NAME |

+-----------+---------------------+---------------+-----------+--------------+------------+

| 46 | MDL_SHARED_NO_WRITE | NULL | User lock | lock3 | |

+-----------+---------------------+---------------+-----------+--------------+------------+

SELECT RELEASE_LOCK('lock3');

+-----------------------+

| RELEASE_LOCK('lock3') |

+-----------------------+

| 1 |

+-----------------------+

SELECT * FROM INFORMATION_SCHEMA.METADATA_LOCK_INFO;

Empty set (0.000 sec)

1.2.8.4.17 SLEEP

Syntax

SLEEP(duration)

Description
Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0 . If SLEEP() is interrupted, it

returns 1 . The duration may have a fractional part given in microseconds.

1157/4161

Statements using the SLEEP() function are not safe for statement-based replication.

Example

SELECT SLEEP(5.5);

+------------+

| SLEEP(5.5) |

+------------+

| 0 |

+------------+

1 row in set (5.50 sec)

1.2.8.4.18 SYS_GUID

The SYS_GUID function was introduced in MariaDB 10.6.1 to enhance Oracle compatibility. Similar functionality can

be achieved with the UUID function.

Syntax

SYS_GUID()

Description
Returns a 16-byte globally unique identifier (GUID), similar to the UUID function, but without the - character.

Example

SELECT SYS_GUID();

+----------------------------------+

| SYS_GUID() |

+----------------------------------+

| 2C574E45BA2811EBB265F859713E4BE4 |

+----------------------------------+

MariaDB starting with 10.6.1

1.2.8.4.19 UUID

Syntax

UUID()

Contents
1. Syntax

2. Description

3. Examples

Description
Returns a Universally Unique Identifier (UUID).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are expected to generate

two different values, even if these calls are performed on two separate computers that are not connected to each other.

UUID() results are intended to be unique, but cannot always be relied upon to be unpredictable and unguessable.

1158/4161

A UUID is a 128-bit number represented by a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-dddd-

eeeeeeeeeeee format:

The first three numbers are generated from a timestamp.

The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity (for example, due

to daylight saving time).

The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is substituted if the

latter is not available (for example, because the host computer has no Ethernet card, or we do not know how to find

the hardware address of an interface on your operating system). In this case, spatial uniqueness cannot be

guaranteed. Nevertheless, a collision should have very low probability.

Currently, the MAC address of an interface is taken into account only on FreeBSD and Linux. On other operating systems,

MariaDB uses a randomly generated 48-bit number.

Statements using the UUID() function are not safe for statement-based replication.

The function generates a UUIDv1 and the results are generated according to the "DCE 1.1:Remote Procedure Call"

(Appendix A) CAE (Common Applications Environment) Specifications published by The Open Group in October 1997

(Document Number C706).

Examples

SELECT UUID();

+--------------------------------------+

| UUID() |

+--------------------------------------+

| cd41294a-afb0-11df-bc9b-00241dd75637 |

+--------------------------------------+

1.2.8.4.20 UUID_SHORT

Syntax

UUID_SHORT()

Contents
1. Syntax

2. Description

3. Examples

Description
Returns a "short" universally unique identifier as a 64-bit unsigned integer (rather than a string-form 128-bit identifier as

returned by the UUID() function).

The value of UUID_SHORT() is guaranteed to be unique if the following conditions hold:

The server_id of the current host is unique among your set of master and slave servers

server_id is between 0 and 255

You don't set back your system time for your server between mysqld restarts

You do not invoke UUID_SHORT() on average more than 16 million times per second between mysqld restarts

The UUID_SHORT() return value is constructed this way:

 (server_id & 255) << 56

+ (server_startup_time_in_seconds << 24)

+ incremented_variable++;

Statements using the UUID_SHORT() function are not safe for statement-based replication.

Examples

1159/4161

http://www.opengroup.org/public/pubs/catalog/c706.htm

SELECT UUID_SHORT();

+-------------------+

| UUID_SHORT() |

+-------------------+

| 21517162376069120 |

+-------------------+

create table t1 (a bigint unsigned default(uuid_short()) primary key);

insert into t1 values(),();

select * from t1;

+-------------------+

| a |

+-------------------+

| 98113699159474176 |

| 98113699159474177 |

+-------------------+

1.2.8.4.21 VALUES / VALUE

Syntax

VALUE(col_name)

VALUES(col_name)

Description
In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name) function in the UPDATE

clause to refer to column values from the INSERT portion of the statement. In other words, VALUES(col_name) in the

UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict occurred. This function

is especially useful in multiple-row inserts.

The VALUES() function is meaningful only in INSERT ... ON DUPLICATE KEY UPDATE statements and returns NULL

otherwise.

In MariaDB 10.3.3 this function was renamed to VALUE() , because it's incompatible with the standard Table Value

Constructors syntax, implemented in MariaDB 10.3.3 .

The VALUES() function can still be used even from MariaDB 10.3.3 , but only in INSERT ... ON DUPLICATE KEY

UPDATE statements; it's a syntax error otherwise.

Examples

INSERT INTO t (a,b,c) VALUES (1,2,3),(4,5,6)

 ON DUPLICATE KEY UPDATE c=VALUE(a)+VALUE(b);

INSERT INTO t (a,b,c) VALUES (1,2,3),(4,5,6)

 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

MariaDB starting with 10.3.3

MariaDB until 10.3.2

MariaDB starting with 10.3.3

MariaDB until 10.3.2

1160/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

1.2.9 Special Functions
There are many commonly used built-in functions. These are lesser used function for specific needs.

Dynamic Columns Functions

Functions for storing key/value pairs of data within a column.

Galera Functions

Built-in functions related to Galera.

Geographic Functions

Geographic, as well as geometric functions.

JSON Functions

Built-in functions related to JSON.

SEQUENCE Functions

Functions that can be used on SEQUENCEs.

Spider Functions

User-defined functions available with the Spider storage engine.

Window Functions

Window functions for performing calculations on a set of rows related to the current row.

1.2.2.2 Dynamic Columns Functions

1.2.9.2 Galera Functions
The following functions are for use with Galera.

WSREP_LAST_SEEN_GTID

Returns the Global Transaction ID of the most recent write transaction observed by the client.

WSREP_LAST_WRITTEN_GTID

Returns the Global Transaction ID of the most recent write transaction performed by the client.

WSREP_SYNC_WAIT_UPTO_GTID

Blocks the client until the transaction specified by the given GTID is applied and committed.

1.2.9.2.1 WSREP_LAST_SEEN_GTID

WSREP_LAST_SEEN_GTID was added as part of Galera 4 in MariaDB 10.4.2.

Syntax

WSREP_LAST_SEEN_GTID()

Description
Returns the Global Transaction ID of the most recent write transaction observed by the client.

The result can be useful to determine the transaction to provide to WSREP_SYNC_WAIT_UPTO_GTID for waiting and

unblocking purposes.

MariaDB starting with 10.4.2

1.2.9.2.2 WSREP_LAST_WRITTEN_GTID
MariaDB starting with 10.4.2

1161/4161

WSREP_LAST_WRITTEN_GTID was added as part of Galera 4 in MariaDB 10.4.2.

Syntax

WSREP_LAST_WRITTEN_GTID()

Description
Returns the Global Transaction ID of the most recent write transaction performed by the client.

MariaDB starting with 10.4.2

1.2.9.2.3 WSREP_SYNC_WAIT_UPTO_GTID

WSREP_SYNC_WAIT_UPTO_GTID was added as part of Galera 4 in MariaDB 10.4.2.

Syntax

WSREP_SYNC_WAIT_UPTO_GTID(gtid[,timeout])

Description
Blocks the client until the transaction specified by the given Global Transaction ID is applied and committed by the node.

The optional timeout argument can be used to specify a block timeout in seconds. If not provided, the timeout will be

indefinite.

Returns the node that applied and committed the Global Transaction ID, ER_LOCAL_WAIT_TIMEOUT if the function is timed

out before this, or ER_WRONG_ARGUMENTS if the function is given an invalid GTID.

The result from WSREP_LAST_SEEN_GTID can be useful to determine the transaction to provide to

WSREP_SYNC_WAIT_UPTO_GTID for waiting and unblocking purposes.

MariaDB starting with 10.4.2

1.2.9.3 Geographic Functions
Geographic and geometry functions. See Geographic Features for a full discussion of MariaDB's spatial extensions.

Geometry Constructors

Geometry constructors

Geometry Properties

Geometry properties

Geometry Relations

Geometry relations

LineString Properties

LineString properties

MBR (Minimum Bounding Rectangle)

Point Properties

Point properties

Polygon Properties

Polygon properties

1162/4161

WKB

Well-Known Binary format for geometric data

WKT

Well-Known Text geometry representation

There are 2 related questions .

1.2.9.3.1 Geometry Constructors
Geometry constructors

BUFFER

Synonym for ST_BUFFER.

CONVEXHULL

Synonym for ST_CONVEXHULL.

GEOMETRYCOLLECTION

Constructs a WKB GeometryCollection.

LINESTRING

Constructs a WKB LineString value from a number of WKB Point arguments.

MULTILINESTRING

Constructs a MultiLineString value.

MULTIPOINT

Constructs a WKB MultiPoint value.

MULTIPOLYGON

Constructs a WKB MultiPolygon.

POINT

Constructs a WKB Point.

PointOnSurface

Synonym for ST_PointOnSurface.

POLYGON

Constructs a WKB Polygon value from a number of WKB LineString arguments.

ST_BUFFER

A new geometry with a buffer added to the original geometry.

ST_CONVEXHULL

The minimum convex geometry enclosing all geometries within the set.

ST_INTERSECTION

The intersection, or shared portion, of two geometries.

ST_POINTONSURFACE

Returns a POINT guaranteed to intersect a surface.

ST_SYMDIFFERENCE

Portions of two geometries that don't intersect.

ST_UNION

Union of two geometries.

2

1163/4161

https://mariadb.com/kb/en/geographic-functions/+questions/

1.2.9.3.1.1 BUFFER
A synonym for ST_BUFFER.

1.2.9.3.1.2 CONVEXHULL
A synonym for ST_CONVEXHULL.

1.2.9.3.1.3 GEOMETRYCOLLECTION

Syntax

GeometryCollection(g1,g2,...)

Description
Constructs a WKB GeometryCollection. If any argument is not a well-formed WKB representation of a geometry, the return

value is NULL .

Examples

CREATE TABLE gis_geometrycollection (g GEOMETRYCOLLECTION);

SHOW FIELDS FROM gis_geometrycollection;

INSERT INTO gis_geometrycollection VALUES

 (GeomCollFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(0 0,10 10))')),

 (GeometryFromWKB(AsWKB(GeometryCollection(Point(44, 6), LineString(Point(3, 6), Point(7, 9)))))),

 (GeomFromText('GeometryCollection()')),

 (GeomFromText('GeometryCollection EMPTY'));

1.2.9.3.1.4 LINESTRING

Syntax

LineString(pt1,pt2,...)

Description
Constructs a WKB LineString value from a number of WKB Point arguments. If any argument is not a WKB Point, the return

value is NULL . If the number of Point arguments is less than two, the return value is NULL .

Examples

1164/4161

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT AsText(EndPoint(GeomFromText(@ls)));

+-------------------------------------+

| AsText(EndPoint(GeomFromText(@ls))) |

+-------------------------------------+

| POINT(3 3) |

+-------------------------------------+

CREATE TABLE gis_line (g LINESTRING);

INSERT INTO gis_line VALUES

 (LineFromText('LINESTRING(0 0,0 10,10 0)')),

 (LineStringFromText('LINESTRING(10 10,20 10,20 20,10 20,10 10)')),

 (LineStringFromWKB(AsWKB(LineString(Point(10, 10), Point(40, 10)))));

1.2.9.3.1.5 MULTILINESTRING

Syntax

MultiLineString(ls1,ls2,...)

Description
Constructs a WKB MultiLineString value using WKB LineString arguments. If any argument is not a WKB LineString, the

return value is NULL .

Example

CREATE TABLE gis_multi_line (g MULTILINESTRING);

INSERT INTO gis_multi_line VALUES

 (MultiLineStringFromText('MULTILINESTRING((10 48,10 21,10 0),(16 0,16 23,16 48))')),

 (MLineFromText('MULTILINESTRING((10 48,10 21,10 0))')),

 (MLineFromWKB(AsWKB(MultiLineString(LineString(Point(1, 2),

 Point(3, 5)), LineString(Point(2, 5),Point(5, 8),Point(21, 7))))));

1.2.9.3.1.6 MULTIPOINT

Syntax

MultiPoint(pt1,pt2,...)

Description
Constructs a WKB MultiPoint value using WKB Point arguments. If any argument is not a WKB Point, the return value is

NULL .

Examples

SET @g = ST_GEOMFROMTEXT('MultiPoint(1 1, 2 2, 5 3, 7 2, 9 3, 8 4, 6 6, 6 9, 4 9, 1 5)');

CREATE TABLE gis_multi_point (g MULTIPOINT);

INSERT INTO gis_multi_point VALUES

 (MultiPointFromText('MULTIPOINT(0 0,10 10,10 20,20 20)')),

 (MPointFromText('MULTIPOINT(1 1,11 11,11 21,21 21)')),

 (MPointFromWKB(AsWKB(MultiPoint(Point(3, 6), Point(4, 10)))));

1165/4161

1.2.9.3.1.7 MULTIPOLYGON

Syntax

MultiPolygon(poly1,poly2,...)

Description
Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments. If any argument is not a WKB Polygon, the

return value is NULL .

Example

CREATE TABLE gis_multi_polygon (g MULTIPOLYGON);

INSERT INTO gis_multi_polygon VALUES

 (MultiPolygonFromText('MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48

6,52 18)),

 ((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromText('MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48 6,52 18)),

 ((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromWKB(AsWKB(MultiPolygon(Polygon(LineString(

 Point(0, 3), Point(3, 3), Point(3, 0), Point(0, 3)))))));

1.2.9.3.1.8 POINT

Syntax

Point(x,y)

Description
Constructs a WKB Point using the given coordinates.

Examples

SET @g = ST_GEOMFROMTEXT('Point(1 1)');

CREATE TABLE gis_point (g POINT);

INSERT INTO gis_point VALUES

 (PointFromText('POINT(10 10)')),

 (PointFromText('POINT(20 10)')),

 (PointFromText('POINT(20 20)')),

 (PointFromWKB(AsWKB(PointFromText('POINT(10 20)'))));

1.2.9.3.1.9 PointOnSurface
A synonym for ST_PointOnSurface.

1.2.9.3.1.10 POLYGON

Syntax

Polygon(ls1,ls2,...)

1166/4161

Description
Constructs a WKB Polygon value from a number of WKB LineString arguments. If any argument does not represent the

WKB of a LinearRing (that is, not a closed and simple LineString) the return value is NULL .

Note that according to the OpenGIS standard, a POLYGON should have exactly one ExteriorRing and all other rings should

lie within that ExteriorRing and thus be the InteriorRings. Practically, however, some systems, including MariaDB's, permit

polygons to have several 'ExteriorRings'. In the case of there being multiple, non-overlapping exterior rings

ST_NUMINTERIORRINGS() will return 1.

Examples

SET @g = ST_GEOMFROMTEXT('POLYGON((1 1,1 5,4 9,6 9,9 3,7 2,1 1))');

CREATE TABLE gis_polygon (g POLYGON);

INSERT INTO gis_polygon VALUES

 (PolygonFromText('POLYGON((10 10,20 10,20 20,10 20,10 10))')),

 (PolyFromText('POLYGON((0 0,50 0,50 50,0 50,0 0), (10 10,20 10,20 20,10 20,10 10))')),

 (PolyFromWKB(AsWKB(Polygon(LineString(Point(0, 0), Point(30, 0), Point(30, 30), Point(0, 0))))));

Non-overlapping 'polygon':

SELECT ST_NumInteriorRings(ST_PolyFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),

 (-1 -1,-5 -1,-5 -5,-1 -5,-1 -1))')) AS NumInteriorRings;

+------------------+

| NumInteriorRings |

+------------------+

| 1 |

+------------------+

1.2.9.3.1.11 ST_BUFFER

Syntax

ST_BUFFER(g1,r)

BUFFER(g1,r)

Description
Returns a geometry that represents all points whose distance from geometry g1 is less than or equal to distance, or radius,

r .

Uses for this function could include creating for example a new geometry representing a buffer zone around an island.

BUFFER() is a synonym.

Examples
Determining whether a point is within a buffer zone:

1167/4161

SET @g1 = ST_GEOMFROMTEXT('POLYGON((10 10, 10 20, 20 20, 20 10, 10 10))');

SET @g2 = ST_GEOMFROMTEXT('POINT(8 8)');

SELECT ST_WITHIN(@g2,ST_BUFFER(@g1,5));

+---------------------------------+

| ST_WITHIN(@g2,ST_BUFFER(@g1,5)) |

+---------------------------------+

| 1 |

+---------------------------------+

SELECT ST_WITHIN(@g2,ST_BUFFER(@g1,1));

+---------------------------------+

| ST_WITHIN(@g2,ST_BUFFER(@g1,1)) |

+---------------------------------+

| 0 |

+---------------------------------+

1.2.9.3.1.12 ST_CONVEXHULL

ST_ConvexHull() was introduced in MariaDB 10.1.2

Syntax

ST_ConvexHull(g)

ConvexHull(g)

Description
Given a geometry, returns a geometry that is the minimum convex geometry enclosing all geometries within the set. Returns

NULL if the geometry value is NULL or an empty value.

ST_ConvexHull() and ConvexHull() are synonyms.

Examples
The ConvexHull of a single point is simply the single point:

SET @g = ST_GEOMFROMTEXT('Point(0 0)');

SELECT ST_ASTEXT(ST_CONVEXHULL(@g));

+------------------------------+

| ST_ASTEXT(ST_CONVEXHULL(@g)) |

+------------------------------+

| POINT(0 0) |

+------------------------------+

SET @g = ST_GEOMFROMTEXT('MultiPoint(0 0, 1 2, 2 3)');

SELECT ST_ASTEXT(ST_CONVEXHULL(@g));

+------------------------------+

| ST_ASTEXT(ST_CONVEXHULL(@g)) |

+------------------------------+

| POLYGON((0 0,1 2,2 3,0 0)) |

+------------------------------+

MariaDB starting with 10.1.2

1168/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

SET @g = ST_GEOMFROMTEXT('MultiPoint(1 1, 2 2, 5 3, 7 2, 9 3, 8 4, 6 6, 6 9, 4 9, 1 5)');

SELECT ST_ASTEXT(ST_CONVEXHULL(@g));

+--+

| ST_ASTEXT(ST_CONVEXHULL(@g)) |

+--+

| POLYGON((1 1,1 5,4 9,6 9,9 3,7 2,1 1)) |

+--+

1.2.9.3.1.13 ST_INTERSECTION

Syntax

ST_INTERSECTION(g1,g2)

Description
Returns a geometry that is the intersection, or shared portion, of geometry g1 and geometry g2 .

Examples

SET @g1 = ST_GEOMFROMTEXT('POINT(2 1)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(2 1, 0 2)');

SELECT ASTEXT(ST_INTERSECTION(@g1,@g2));

+----------------------------------+

| ASTEXT(ST_INTERSECTION(@g1,@g2)) |

+----------------------------------+

| POINT(2 1) |

+----------------------------------+

1.2.9.3.1.14 ST_POINTONSURFACE

ST_POINTONSURFACE() was introduced in MariaDB 10.1.2

Syntax

ST_PointOnSurface(g)

PointOnSurface(g)

Description
Given a geometry, returns a POINT guaranteed to intersect a surface. However, see MDEV-7514 .

ST_PointOnSurface() and PointOnSurface() are synonyms.

MariaDB starting with 10.1.2

1.2.9.3.1.15 ST_SYMDIFFERENCE

Syntax

ST_SYMDIFFERENCE(g1,g2)

1169/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-7514

Description
Returns a geometry that represents the portions of geometry g1 and geometry g2 that don't intersect.

Examples

SET @g1 = ST_GEOMFROMTEXT('LINESTRING(10 20, 10 40)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(10 15, 10 25)');

SELECT ASTEXT(ST_SYMDIFFERENCE(@g1,@g2));

+--+

| ASTEXT(ST_SYMDIFFERENCE(@g1,@g2)) |

+--+

| MULTILINESTRING((10 15,10 20),(10 25,10 40)) |

+--+

SET @g2 = ST_GeomFromText('LINESTRING(10 20, 10 41)');

SELECT ASTEXT(ST_SYMDIFFERENCE(@g1,@g2));

+-----------------------------------+

| ASTEXT(ST_SYMDIFFERENCE(@g1,@g2)) |

+-----------------------------------+

| LINESTRING(10 40,10 41) |

+-----------------------------------+

1.2.9.3.1.16 ST_UNION

Syntax

ST_UNION(g1,g2)

Description
Returns a geometry that is the union of the geometry g1 and geometry g2 .

Examples

SET @g1 = GEOMFROMTEXT('POINT (0 2)');

SET @g2 = GEOMFROMTEXT('POINT (2 0)');

SELECT ASTEXT(ST_UNION(@g1,@g2));

+---------------------------+

| ASTEXT(ST_UNION(@g1,@g2)) |

+---------------------------+

| MULTIPOINT(2 0,0 2) |

+---------------------------+

SET @g1 = GEOMFROMTEXT('POLYGON((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GEOMFROMTEXT('POLYGON((2 2,4 2,4 4,2 4,2 2))');

SELECT ASTEXT(ST_UNION(@g1,@g2));

+--+

| ASTEXT(ST_UNION(@g1,@g2)) |

+--+

| POLYGON((0 0,0 3,2 3,2 4,4 4,4 2,3 2,3 0,0 0)) |

+--+

1170/4161

1.2.9.3.2 Geometry Properties
Geometry properties

BOUNDARY

Synonym for ST_BOUNDARY.

DIMENSION

Synonym for ST_DIMENSION.

ENVELOPE

Synonym for ST_ENVELOPE.

GeometryN

Synonym for ST_GeometryN.

GeometryType

Synonym for ST_GeometryType.

IsClosed

Synonym for ST_IsClosed.

IsEmpty

Synonym for ST_IsEmpty.

IsRing

Synonym for ST_IsRing.

IsSimple

Synonym for ST_IsSimple.

NumGeometries

Synonym for ST_NumGeometries.

SRID

Synonym for ST_SRID.

ST_BOUNDARY

Returns a geometry that is the closure of a combinatorial boundary.

ST_DIMENSION

Inherent dimension of a geometry value.

ST_ENVELOPE

Returns the Minimum Bounding Rectangle for a geometry value.

ST_GEOMETRYN

Returns the N-th geometry in a GeometryCollection.

ST_GEOMETRYTYPE

Returns name of the geometry type of which a given geometry instance is a member.

ST_ISCLOSED

Returns true if a given LINESTRING's start and end points are the same.

ST_ISEMPTY

Indicated validity of geometry value.

ST_IsRing

Returns true if a given LINESTRING is both ST_IsClosed and ST_IsSimple.

ST_IsSimple

Returns true if the given Geometry has no anomalous geometric points.

2

1171/4161

ST_NUMGEOMETRIES

Number of geometries in a GeometryCollection.

ST_RELATE

Returns true if two geometries are related

ST_SRID

Returns a Spatial Reference System ID.

1.2.9.3.2.1 BOUNDARY
A synonym for ST_BOUNDARY.

1.2.9.3.2.2 DIMENSION
A synonym for ST_DIMENSION.

1.2.9.3.2.3 ENVELOPE
A synonym for ST_ENVELOPE.

1.2.9.3.2.4 GeometryN
A synonym for ST_GeometryN.

1.2.9.3.2.5 GeometryType
A synonym for ST_GeometryType.

1.2.9.3.2.6 IsClosed
A synonym for ST_IsClosed.

1.2.9.3.2.7 IsEmpty
A synonym for ST_IsEmpty.

1.2.9.3.2.8 IsRing
A synonym for ST_IsRing.

1.2.9.3.2.9 IsSimple
A synonym for ST_IsSImple.

1.2.9.3.2.10 NumGeometries
A synonym for ST_NumGeometries.

1.2.9.3.2.11 SRID
A synonym for ST_SRID.

1.2.9.3.2.12 ST_BOUNDARY
MariaDB starting with 10.1.2 1172/4161

The ST_BOUNDARY function was introduced in MariaDB 10.1.2

Syntax

ST_BOUNDARY(g)

BOUNDARY(g)

Description
Returns a geometry that is the closure of the combinatorial boundary of the geometry value g .

BOUNDARY() is a synonym.

Examples

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(3 3,0 0, -3 3)')));

+--+

| ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(3 3,0 0, -3 3)'))) |

+--+

| MULTIPOINT(3 3,-3 3) |

+--+

SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((3 3,0 0, -3 3, 3 3))')));

+--+

| ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((3 3,0 0, -3 3, 3 3))'))) |

+--+

| LINESTRING(3 3,0 0,-3 3,3 3) |

+--+

MariaDB starting with 10.1.2

1.2.9.3.2.13 ST_DIMENSION

Syntax

ST_Dimension(g)

Dimension(g)

Description
Returns the inherent dimension of the geometry value g . The result can be

Dimension Definition

 -1 empty geometry

 0 geometry with no length or area

 1 geometry with no area but nonzero length

 2 geometry with nonzero area

ST_Dimension() and Dimension() are synonyms.

Examples

1173/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));

+--+

| Dimension(GeomFromText('LineString(1 1,2 2)')) |

+--+

| 1 |

+--+

1.2.9.3.2.14 ST_ENVELOPE

Syntax

ST_ENVELOPE(g)

ENVELOPE(g)

Description
Returns the Minimum Bounding Rectangle (MBR) for the geometry value g . The result is returned as a Polygon value.

The polygon is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

ST_ENVELOPE() and ENVELOPE() are synonyms.

Examples

SELECT AsText(ST_ENVELOPE(GeomFromText('LineString(1 1,4 4)')));

+--+

| AsText(ST_ENVELOPE(GeomFromText('LineString(1 1,4 4)'))) |

+--+

| POLYGON((1 1,4 1,4 4,1 4,1 1)) |

+--+

1.2.9.3.2.15 ST_GEOMETRYN

Syntax

ST_GeometryN(gc,N)

GeometryN(gc,N)

Description
Returns the N-th geometry in the GeometryCollection gc . Geometries are numbered beginning with 1.

ST_GeometryN() and GeometryN() are synonyms.

Example

SET @gc = 'GeometryCollection(Point(1 1),LineString(12 14, 9 11))';

SELECT AsText(GeometryN(GeomFromText(@gc),1));

+--+

| AsText(GeometryN(GeomFromText(@gc),1)) |

+--+

| POINT(1 1) |

+--+

1174/4161

1.2.9.3.2.16 ST_GEOMETRYTYPE

Syntax

ST_GeometryType(g)

GeometryType(g)

Description
Returns as a string the name of the geometry type of which the geometry instance g is a member. The name corresponds

to one of the instantiable Geometry subclasses.

ST_GeometryType() and GeometryType() are synonyms.

Examples

SELECT GeometryType(GeomFromText('POINT(1 1)'));

+--+

| GeometryType(GeomFromText('POINT(1 1)')) |

+--+

| POINT |

+--+

1.2.9.3.2.17 ST_ISCLOSED

Syntax

ST_IsClosed(g)

IsClosed(g)

Description
Returns 1 if a given LINESTRING's start and end points are the same, or 0 if they are not the same. Before MariaDB 10.1.5

, returns NULL if not given a LINESTRING. After MariaDB 10.1.5 , returns -1.

ST_IsClosed() and IsClosed() are synonyms.

Examples

SET @ls = 'LineString(0 0, 0 4, 4 4, 0 0)';

SELECT ST_ISCLOSED(GEOMFROMTEXT(@ls));

+--------------------------------+

| ST_ISCLOSED(GEOMFROMTEXT(@ls)) |

+--------------------------------+

| 1 |

+--------------------------------+

SET @ls = 'LineString(0 0, 0 4, 4 4, 0 1)';

SELECT ST_ISCLOSED(GEOMFROMTEXT(@ls));

+--------------------------------+

| ST_ISCLOSED(GEOMFROMTEXT(@ls)) |

+--------------------------------+

| 0 |

+--------------------------------+

1.2.9.3.2.18 ST_ISEMPTY
1175/4161

https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/

Syntax

ST_IsEmpty(g)

IsEmpty(g)

Description
IsEmpty is a function defined by the OpenGIS specification, but is not fully implemented by MariaDB or MySQL.

Since MariaDB and MySQL do not support GIS EMPTY values such as POINT EMPTY, as implemented it simply returns 1

if the geometry value g is invalid, 0 if it is valid, and NULL if the argument is NULL .

ST_IsEmpty() and IsEmpty() are synonyms.

1.2.9.3.2.19 ST_IsRing

The ST_IsRing function was introduced in MariaDB 10.1.2

Syntax

ST_IsRing(g)

IsRing(g)

Description
Returns true if a given LINESTRING is a ring, that is, both ST_IsClosed and ST_IsSimple. A simple curve does not pass

through the same point more than once. However, see MDEV-7510 .

St_IsRing() and IsRing() are synonyms.

MariaDB starting with 10.1.2

1.2.9.3.2.20 ST_IsSimple

Syntax

ST_IsSimple(g)

IsSimple(g)

Description
Returns true if the given Geometry has no anomalous geometric points, false if it does, or NULL if given a NULL value.

ST_IsSimple() and IsSimple() are synonyms.

Examples
A POINT is always simple.

SET @g = 'Point(1 2)';

SELECT ST_ISSIMPLE(GEOMFROMTEXT(@g));

+-------------------------------+

| ST_ISSIMPLE(GEOMFROMTEXT(@g)) |

+-------------------------------+

| 1 |

+-------------------------------+

1176/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-7510

1.2.9.3.2.21 ST_NUMGEOMETRIES

Syntax

ST_NumGeometries(gc)

NumGeometries(gc)

Description
Returns the number of geometries in the GeometryCollection gc .

ST_NumGeometries() and NumGeometries() are synonyms.

Example

SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';

SELECT NUMGEOMETRIES(GeomFromText(@gc));

+----------------------------------+

| NUMGEOMETRIES(GeomFromText(@gc)) |

+----------------------------------+

| 2 |

+----------------------------------+

1.2.9.3.2.22 ST_RELATE

The ST_RELATE() function was introduced in MariaDB 10.1.2

Syntax

ST_Relate(g1, g2, i)

Description
Returns true if Geometry g1 is spatially related to Geometry g2 by testing for intersections between the interior, boundary

and exterior of the two geometries as specified by the values in intersection matrix pattern i .

MariaDB starting with 10.1.2

1.2.9.3.2.23 ST_SRID

Syntax

ST_SRID(g)

SRID(g)

Description
Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MariaDB, the SRID value is just an integer associated with the geometry value. All calculations are done assuming

Euclidean (planar) geometry.

ST_SRID() and SRID() are synonyms.

1177/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

Examples

SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));

+---+

| SRID(GeomFromText('LineString(1 1,2 2)',101)) |

+---+

| 101 |

+---+

1.2.9.3.3 Geometry Relations
Geometry relations

CONTAINS

Whether one geometry contains another.

CROSSES

Whether two geometries spatially cross

DISJOINT

Whether the two elements do not intersect.

EQUALS

Indicates whether two geometries are spatially equal.

INTERSECTS

Indicates whether two geometries spatially intersect.

OVERLAPS

Indicates whether two elements spatially overlap.

ST_CONTAINS

Whether one geometry is contained by another.

ST_CROSSES

Whether two geometries spatially cross.

ST_DIFFERENCE

Point set difference.

ST_DISJOINT

Whether one geometry is spatially disjoint from another.

ST_DISTANCE

The distance between two geometries.

ST_DISTANCE_SPHERE

Spherical distance between two geometries (point or multipoint) on a sphere.

ST_EQUALS

Whether two geometries are spatoially equal.

ST_INTERSECTS

Whether two geometries spatially intersect.

ST_LENGTH

Length of a LineString value.

ST_OVERLAPS

Whether two geometries overlap.

1178/4161

ST_TOUCHES

Whether one geometry g1 spatially touches another.

ST_WITHIN

Whether one geometry is within another.

TOUCHES

Whether two geometries spatially touch.

WITHIN

Indicate whether a geographic element is spacially within another.

1.2.9.3.3.1 CONTAINS

Syntax

Contains(g1,g2)

Description
Returns 1 or 0 to indicate whether a geometry g1 completely contains geometry g2 . CONTAINS() is based on the

original MySQL implementation and uses object bounding rectangles, while ST_CONTAINS() uses object shapes.

This tests the opposite relationship to Within().

1.2.9.3.3.2 CROSSES

Syntax

Crosses(g1,g2)

Description
Returns 1 if g1 spatially crosses g2 . Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a Point or a

MultiPoint. Otherwise, returns 0 .

The term spatially crosses denotes a spatial relation between two given geometries that has the following properties:

The two geometries intersect

Their intersection results in a geometry that has a dimension that is one less than the maximum dimension of the two

given geometries

Their intersection is not equal to either of the two given geometries

CROSSES() is based on the original MySQL implementation, and uses object bounding rectangles, while ST_CROSSES()

uses object shapes.

1.2.9.3.3.3 DISJOINT

Syntax

Disjoint(g1,g2)

Description
Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2 .

DISJOINT() tests the opposite relationship to INTERSECTS().
1179/4161

DISJOINT() is based on the original MySQL implementation and uses object bounding rectangles, while ST_DISJOINT()

uses object shapes.

1.2.9.3.3.4 EQUALS

Syntax

Equals(g1,g2)

From MariaDB 10.2.3 :

MBREQUALS(g1,g2)

Description
Returns 1 or 0 to indicate whether g1 is spatially equal to g2 .

EQUALS() is based on the original MySQL implementation and uses object bounding rectangles, while ST_EQUALS() uses

object shapes.

From MariaDB 10.2.3 , MBREQUALS is a synonym for Equals .

1.2.9.3.3.5 INTERSECTS

Syntax

INTERSECTS(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 spatially intersects geometry g2 .

INTERSECTS() is based on the original MySQL implementation and uses object bounding rectangles, while

ST_INTERSECTS() uses object shapes.

INTERSECTS() tests the opposite relationship to DISJOINT().

1.2.9.3.3.6 OVERLAPS

Syntax

OVERLAPS(g1,g2)

Description
Returns 1 or 0 to indicate whether g1 spatially overlaps g2 . The term spatially overlaps is used if two geometries

intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.

OVERLAPS() is based on the original MySQL implementation and uses object bounding rectangles, while ST_OVERLAPS()

uses object shapes.

1.2.9.3.3.7 ST_CONTAINS

Syntax

1180/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

ST_CONTAINS(g1,g2)

Description
Returns 1 or 0 to indicate whether a geometry g1 completely contains geometry g2 .

ST_CONTAINS() uses object shapes, while CONTAINS(), based on the original MySQL implementation, uses object

bounding rectangles.

ST_CONTAINS tests the opposite relationship to ST_WITHIN().

Examples

SET @g1 = ST_GEOMFROMTEXT('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))');

SET @g2 = ST_GEOMFROMTEXT('POINT(174 149)');

SELECT ST_CONTAINS(@g1,@g2);

+----------------------+

| ST_CONTAINS(@g1,@g2) |

+----------------------+

| 1 |

+----------------------+

SET @g2 = ST_GEOMFROMTEXT('POINT(175 151)');

SELECT ST_CONTAINS(@g1,@g2);

+----------------------+

| ST_CONTAINS(@g1,@g2) |

+----------------------+

| 0 |

+----------------------+

1.2.9.3.3.8 ST_CROSSES

Syntax

ST_CROSSES(g1,g2)

Description
Returns 1 if geometry g1 spatially crosses geometry g2 . Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2

is a Point or a MultiPoint. Otherwise, returns 0 .

The term spatially crosses denotes a spatial relation between two given geometries that has the following properties:

The two geometries intersect

Their intersection results in a geometry that has a dimension that is one less than the maximum dimension of the two

given geometries

Their intersection is not equal to either of the two given geometries

ST_CROSSES() uses object shapes, while CROSSES(), based on the original MySQL implementation, uses object

bounding rectangles.

Examples

1181/4161

SET @g1 = ST_GEOMFROMTEXT('LINESTRING(174 149, 176 151)');

SET @g2 = ST_GEOMFROMTEXT('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))');

SELECT ST_CROSSES(@g1,@g2);

+---------------------+

| ST_CROSSES(@g1,@g2) |

+---------------------+

| 1 |

+---------------------+

SET @g1 = ST_GEOMFROMTEXT('LINESTRING(176 149, 176 151)');

SELECT ST_CROSSES(@g1,@g2);

+---------------------+

| ST_CROSSES(@g1,@g2) |

+---------------------+

| 0 |

+---------------------+

1.2.9.3.3.9 ST_DIFFERENCE

Syntax

ST_DIFFERENCE(g1,g2)

Description
Returns a geometry representing the point set difference of the given geometry values.

Example

SET @g1 = POINT(10,10), @g2 = POINT(20,20);

SELECT ST_AsText(ST_Difference(@g1, @g2));

+------------------------------------+

| ST_AsText(ST_Difference(@g1, @g2)) |

+------------------------------------+

| POINT(10 10) |

+------------------------------------+

1.2.9.3.3.10 ST_DISJOINT

Syntax

ST_DISJOINT(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 is spatially disjoint from (does not intersect with) geometry g2 .

ST_DISJOINT() uses object shapes, while DISJOINT(), based on the original MySQL implementation, uses object bounding

rectangles.

ST_DISJOINT() tests the opposite relationship to ST_INTERSECTS().

Examples

1182/4161

SET @g1 = ST_GEOMFROMTEXT('POINT(0 0)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(2 0, 0 2)');

SELECT ST_DISJOINT(@g1,@g2);

+----------------------+

| ST_DISJOINT(@g1,@g2) |

+----------------------+

| 1 |

+----------------------+

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(0 0, 0 2)');

SELECT ST_DISJOINT(@g1,@g2);

+----------------------+

| ST_DISJOINT(@g1,@g2) |

+----------------------+

| 0 |

+----------------------+

1.2.9.3.3.11 ST_DISTANCE

Syntax

ST_DISTANCE(g1,g2)

Description
Returns the distance between two geometries, or null if not given valid inputs.

Example

SELECT ST_Distance(POINT(1,2),POINT(2,2));

+------------------------------------+

| ST_Distance(POINT(1,2),POINT(2,2)) |

+------------------------------------+

| 1 |

+------------------------------------+

1.2.9.3.3.12 ST_DISTANCE_SPHERE

ST_DISTANCE_SPHERE was introduced in MariaDB 10.2.38 , MariaDB 10.3.29 , MariaDB 10.4.19 and MariaDB

10.5.10.

Syntax

ST_DISTANCE_SPHERE(g1,g2,[r])

Description
Returns the spherical distance between two geometries (point or multipoint) on a sphere with the optional radius r (default is

the Earth radius if r is not specified), or NULL if not given valid inputs.

Example

MariaDB starting with 10.2.38

1183/4161

https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/

set @zenica = ST_GeomFromText('POINT(17.907743 44.203438)');

set @sarajevo = ST_GeomFromText('POINT(18.413076 43.856258)');

SELECT ST_Distance_Sphere(@zenica, @sarajevo);

55878.59337591705

1.2.9.3.3.13 ST_EQUALS

Syntax

ST_EQUALS(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 is spatially equal to geometry g2 .

ST_EQUALS() uses object shapes, while EQUALS(), based on the original MySQL implementation, uses object bounding

rectangles.

Examples

SET @g1 = ST_GEOMFROMTEXT('LINESTRING(174 149, 176 151)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(176 151, 174 149)');

SELECT ST_EQUALS(@g1,@g2);

+--------------------+

| ST_EQUALS(@g1,@g2) |

+--------------------+

| 1 |

+--------------------+

SET @g1 = ST_GEOMFROMTEXT('POINT(0 2)');

SET @g1 = ST_GEOMFROMTEXT('POINT(2 0)');

SELECT ST_EQUALS(@g1,@g2);

+--------------------+

| ST_EQUALS(@g1,@g2) |

+--------------------+

| 0 |

+--------------------+

1.2.9.3.3.14 ST_INTERSECTS

Syntax

ST_INTERSECTS(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 spatially intersects geometry g2 .

ST_INTERSECTS() uses object shapes, while INTERSECTS(), based on the original MySQL implementation, uses object

bounding rectangles.

ST_INTERSECTS() tests the opposite relationship to ST_DISJOINT().

1184/4161

Examples

SET @g1 = ST_GEOMFROMTEXT('POINT(0 0)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(0 0, 0 2)');

SELECT ST_INTERSECTS(@g1,@g2);

+------------------------+

| ST_INTERSECTS(@g1,@g2) |

+------------------------+

| 1 |

+------------------------+

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(2 0, 0 2)');

SELECT ST_INTERSECTS(@g1,@g2);

+------------------------+

| ST_INTERSECTS(@g1,@g2) |

+------------------------+

| 0 |

+------------------------+

1.2.9.3.3.15 ST_LENGTH

Syntax

ST_LENGTH(ls)

Description
Returns as a double-precision number the length of the LineString value ls in its associated spatial reference.

Examples

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT ST_LENGTH(ST_GeomFromText(@ls));

+---------------------------------+

| ST_LENGTH(ST_GeomFromText(@ls)) |

+---------------------------------+

| 2.82842712474619 |

+---------------------------------+

1.2.9.3.3.16 ST_OVERLAPS

Syntax

ST_OVERLAPS(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 spatially overlaps geometry g2 .

The term spatially overlaps is used if two geometries intersect and their intersection results in a geometry of the same

dimension but not equal to either of the given geometries.

ST_OVERLAPS() uses object shapes, while OVERLAPS(), based on the original MySQL implementation, uses object

1185/4161

bounding rectangles.

1.2.9.3.3.17 ST_TOUCHES

Syntax

ST_TOUCHES(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 spatially touches geometry g2 . Two geometries spatially touch if the

interiors of the geometries do not intersect, but the boundary of one of the geometries intersects either the boundary or the

interior of the other.

ST_TOUCHES() uses object shapes, while TOUCHES(), based on the original MySQL implementation, uses object

bounding rectangles.

Examples

SET @g1 = ST_GEOMFROMTEXT('POINT(2 0)');

SET @g2 = ST_GEOMFROMTEXT('LINESTRING(2 0, 0 2)');

SELECT ST_TOUCHES(@g1,@g2);

+---------------------+

| ST_TOUCHES(@g1,@g2) |

+---------------------+

| 1 |

+---------------------+

SET @g1 = ST_GEOMFROMTEXT('POINT(2 1)');

SELECT ST_TOUCHES(@g1,@g2);

+---------------------+

| ST_TOUCHES(@g1,@g2) |

+---------------------+

| 0 |

+---------------------+

1.2.9.3.3.18 ST_WITHIN

Syntax

ST_WITHIN(g1,g2)

Description
Returns 1 or 0 to indicate whether geometry g1 is spatially within geometry g2 .

This tests the opposite relationship as ST_CONTAINS() .

ST_WITHIN() uses object shapes, while WITHIN(), based on the original MySQL implementation, uses object bounding

rectangles.

Examples

1186/4161

SET @g1 = ST_GEOMFROMTEXT('POINT(174 149)');

SET @g2 = ST_GEOMFROMTEXT('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))');

SELECT ST_WITHIN(@g1,@g2);

+--------------------+

| ST_WITHIN(@g1,@g2) |

+--------------------+

| 1 |

+--------------------+

SET @g1 = ST_GEOMFROMTEXT('POINT(176 151)');

SELECT ST_WITHIN(@g1,@g2);

+--------------------+

| ST_WITHIN(@g1,@g2) |

+--------------------+

| 0 |

+--------------------+

1.2.9.3.3.19 TOUCHES

Syntax

Touches(g1,g2)

Description
Returns 1 or 0 to indicate whether g1 spatially touches g2 . Two geometries spatially touch if the interiors of the

geometries do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the

other.

TOUCHES() is based on the original MySQL implementation and uses object bounding rectangles, while ST_TOUCHES()

uses object shapes.

1.2.9.3.3.20 WITHIN

Syntax

Within(g1,g2)

Description
Returns 1 or 0 to indicate whether g1 is spatially within g2 . This tests the opposite relationship as Contains() .

WITHIN() is based on the original MySQL implementation, and uses object bounding rectangles, while ST_WITHIN() uses

object shapes.

Examples

1187/4161

SET @g1 = GEOMFROMTEXT('POINT(174 149)');

SET @g2 = GEOMFROMTEXT('POINT(176 151)');

SET @g3 = GEOMFROMTEXT('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))');

SELECT within(@g1,@g3);

+-----------------+

| within(@g1,@g3) |

+-----------------+

| 1 |

+-----------------+

SELECT within(@g2,@g3);

+-----------------+

| within(@g2,@g3) |

+-----------------+

| 0 |

+-----------------+

1.2.9.3.4 LineString Properties
LineString properties

ENDPOINT

Synonym for ST_ENDPOINT.

GLENGTH

Length of a LineString value.

NumPoints

Synonym for ST_NumPoints.

PointN

Synonym for PointN.

STARTPOINT

Synonym for ST_StartPoint.

ST_ENDPOINT

Returns the endpoint of a LineString.

ST_NUMPOINTS

Returns the number of Point objects in a LineString.

ST_POINTN

Returns the N-th Point in the LineString.

ST_STARTPOINT

Returns the start point of a LineString

1.2.9.3.4.1 ENDPOINT
A synonym for ST_ENDPOINT.

1.2.9.3.4.2 GLENGTH

Syntax

GLength(ls)

Description
1188/4161

Returns as a double-precision number the length of the LineString value ls in its associated spatial reference.

Examples

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT GLength(GeomFromText(@ls));

+----------------------------+

| GLength(GeomFromText(@ls)) |

+----------------------------+

| 2.82842712474619 |

+----------------------------+

1.2.9.3.4.3 NumPoints
A synonym for ST_NumPoints.

1.2.9.3.4.4 PointN
A synonym for ST_PointN.

1.2.9.3.4.5 STARTPOINT
A synonym for ST_STARTPOINT.

1.2.9.3.4.6 ST_ENDPOINT

Syntax

ST_EndPoint(ls)

EndPoint(ls)

Description
Returns the Point that is the endpoint of the LineString value ls .

ST_EndPoint() and EndPoint() are synonyms.

Examples

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT AsText(EndPoint(GeomFromText(@ls)));

+-------------------------------------+

| AsText(EndPoint(GeomFromText(@ls))) |

+-------------------------------------+

| POINT(3 3) |

+-------------------------------------+

1.2.9.3.4.7 ST_NUMPOINTS

Syntax

ST_NumPoints(ls)

NumPoints(ls)

1189/4161

Description
Returns the number of Point objects in the LineString value ls .

ST_NumPoints() and NumPoints() are synonyms.

Examples

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT NumPoints(GeomFromText(@ls));

+------------------------------+

| NumPoints(GeomFromText(@ls)) |

+------------------------------+

| 3 |

+------------------------------+

1.2.9.3.4.8 ST_POINTN

Syntax

ST_PointN(ls,N)

PointN(ls,N)

Description
Returns the N-th Point in the LineString value ls . Points are numbered beginning with 1 .

ST_PointN() and PointN() are synonyms.

Examples

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT AsText(PointN(GeomFromText(@ls),2));

+-------------------------------------+

| AsText(PointN(GeomFromText(@ls),2)) |

+-------------------------------------+

| POINT(2 2) |

+-------------------------------------+

1.2.9.3.4.9 ST_STARTPOINT

Syntax

ST_StartPoint(ls)

StartPoint(ls)

Description
Returns the Point that is the start point of the LineString value ls .

ST_StartPoint() and StartPoint() are synonyms.

Examples

1190/4161

SET @ls = 'LineString(1 1,2 2,3 3)';

SELECT AsText(StartPoint(GeomFromText(@ls)));

+---------------------------------------+

| AsText(StartPoint(GeomFromText(@ls))) |

+---------------------------------------+

| POINT(1 1) |

+---------------------------------------+

1.2.9.3.5 MBR (Minimum Bounding Rectangle)
MBR Definition

Minimum Bounding Rectangle.

MBRContains

Indicates one Minimum Bounding Rectangle contains another.

MBRDisjoint

Indicates whether the Minimum Bounding Rectangles of two geometries are disjoint.

MBREqual

Whether the Minimum Bounding Rectangles of two geometries are the same.

MBRIntersects

Indicates whether the Minimum Bounding Rectangles of the two geometries intersect.

MBROverlaps

Whether the Minimum Bounding Rectangles of two geometries overlap.

MBRTouches

Whether the Minimum Bounding Rectangles of two geometries touch.

MBRWithin

Indicates whether one Minimum Bounding Rectangle is within another

1.2.9.3.5.1 MBR Definition

Description
The MBR (Minimum Bounding Rectangle), or Envelope is the bounding geometry, formed by the minimum and maximum

(X,Y) coordinates:

Examples

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

1.2.9.3.5.2 MBRContains

Syntax

MBRContains(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 contains the Minimum Bounding Rectangle of

g2. This tests the opposite relationship as MBRWithin().
1191/4161

Examples

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Point(1 1)');

SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);

+----------------------+----------------------+

| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |

+----------------------+----------------------+

| 1 | 0 |

+----------------------+----------------------+

1.2.9.3.5.3 MBRDisjoint

Syntax

MBRDisjoint(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are disjoint. Two

geometries are disjoint if they do not intersect, that is touch or overlap.

Examples

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((4 4,4 7,7 7,7 4,4 4))');

SELECTmbrdisjoint(@g1,@g2);

+----------------------+

| mbrdisjoint(@g1,@g2) |

+----------------------+

| 1 |

+----------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbrdisjoint(@g1,@g2);

+----------------------+

| mbrdisjoint(@g1,@g2) |

+----------------------+

| 0 |

+----------------------+

1.2.9.3.5.4 MBREqual

Syntax

MBREqual(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are the same.

Examples

1192/4161

SET @g1=GEOMFROMTEXT('LINESTRING(0 0, 1 2)');

SET @g2=GEOMFROMTEXT('POLYGON((0 0, 0 2, 1 2, 1 0, 0 0))');

SELECT MbrEqual(@g1,@g2);

+-------------------+

| MbrEqual(@g1,@g2) |

+-------------------+

| 1 |

+-------------------+

SET @g1=GEOMFROMTEXT('LINESTRING(0 0, 1 3)');

SET @g2=GEOMFROMTEXT('POLYGON((0 0, 0 2, 1 4, 1 0, 0 0))');

SELECT MbrEqual(@g1,@g2);

+-------------------+

| MbrEqual(@g1,@g2) |

+-------------------+

| 0 |

+-------------------+

1.2.9.3.5.5 MBRIntersects

Syntax

MBRIntersects(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 intersect.

Examples

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbrintersects(@g1,@g2);

+------------------------+

| mbrintersects(@g1,@g2) |

+------------------------+

| 1 |

+------------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((4 4,4 7,7 7,7 4,4 4))');

SELECT mbrintersects(@g1,@g2);

+------------------------+

| mbrintersects(@g1,@g2) |

+------------------------+

| 0 |

+------------------------+

1.2.9.3.5.6 MBROverlaps

Syntax

MBROverlaps(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 overlap. The term

spatially overlaps is used if two geometries intersect and their intersection results in a geometry of the same dimension but

not equal to either of the given geometries.

1193/4161

Examples

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((4 4,4 7,7 7,7 4,4 4))');

SELECT mbroverlaps(@g1,@g2);

+----------------------+

| mbroverlaps(@g1,@g2) |

+----------------------+

| 0 |

+----------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbroverlaps(@g1,@g2);

+----------------------+

| mbroverlaps(@g1,@g2) |

+----------------------+

| 0 |

+----------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 4,4 4,4 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbroverlaps(@g1,@g2);

+----------------------+

| mbroverlaps(@g1,@g2) |

+----------------------+

| 1 |

+----------------------+

1.2.9.3.5.7 MBRTouches

Syntax

MBRTouches(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 touch. Two

geometries spatially touch if the interiors of the geometries do not intersect, but the boundary of one of the geometries

intersects either the boundary or the interior of the other.

Examples

1194/4161

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((4 4,4 7,7 7,7 4,4 4))');

SELECT mbrtouches(@g1,@g2);

+---------------------+

| mbrtouches(@g1,@g2) |

+---------------------+

| 0 |

+---------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbrtouches(@g1,@g2);

+---------------------+

| mbrtouches(@g1,@g2) |

+---------------------+

| 1 |

+---------------------+

SET @g1 = GeomFromText('Polygon((0 0,0 4,4 4,4 0,0 0))');

SET @g2 = GeomFromText('Polygon((3 3,3 6,6 6,6 3,3 3))');

SELECT mbrtouches(@g1,@g2);

+---------------------+

| mbrtouches(@g1,@g2) |

+---------------------+

| 0 |

+---------------------+

1.2.9.3.5.8 MBRWithin

Syntax

MBRWithin(g1,g2)

Description
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 is within the Minimum Bounding Rectangle of g2.

This tests the opposite relationship as MBRContains().

Examples

SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');

SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');

SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);

+--------------------+--------------------+

| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |

+--------------------+--------------------+

| 1 | 0 |

+--------------------+--------------------+

1.2.9.3.6 Point Properties
Point properties

ST_X

X-coordinate value for a point.

ST_Y

Y-coordinate for a point.

X

Synonym for ST_X.

1

1

1195/4161

Y

Synonym for ST_Y.

1.2.9.3.6.1 ST_X

Syntax

ST_X(p)

X(p)

Description
Returns the X-coordinate value for the point p as a double-precision number.

ST_X() and X() are synonyms.

Examples

SET @pt = 'Point(56.7 53.34)';

SELECT X(GeomFromText(@pt));

+----------------------+

| X(GeomFromText(@pt)) |

+----------------------+

| 56.7 |

+----------------------+

1.2.9.3.6.2 ST_Y

Syntax

ST_Y(p)

Y(p)

Description
Returns the Y-coordinate value for the point p as a double-precision number.

ST_Y() and Y() are synonyms.

Examples

SET @pt = 'Point(56.7 53.34)';

SELECT Y(GeomFromText(@pt));

+----------------------+

| Y(GeomFromText(@pt)) |

+----------------------+

| 53.34 |

+----------------------+

1.2.9.3.6.3 X
A synonym for ST_X.

1196/4161

1.2.9.3.6.4 Y
A synonym for ST_Y.

1.2.9.3.7 Polygon Properties
Polygon properties

AREA

Synonym for ST_AREA.

CENTROID

Synonym for ST_CENTROID.

ExteriorRing

Synonym for ST_ExteriorRing.

InteriorRingN

Synonym for ST_InteriorRingN.

NumInteriorRings

Synonym for NumInteriorRings.

ST_AREA

Area of a Polygon.

ST_CENTROID

The mathematical centroid (geometric center) for a MultiPolygon.

ST_ExteriorRing

Returns the exterior ring of a Polygon as a LineString.

ST_InteriorRingN

Returns the N-th interior ring for a Polygon.

ST_NumInteriorRings

Number of interior rings in a Polygon.

1.2.9.3.7.1 AREA
A synonym for ST_AREA.

1.2.9.3.7.2 CENTROID
A synonym for ST_CENTROID.

1.2.9.3.7.3 ExteriorRing
A synonym for ST_ExteriorRing.

1.2.9.3.7.4 InteriorRingN
A synonym for ST_InteriorRingN.

1.2.9.3.7.5 NumInteriorRings
A synonym for ST_NumInteriorRings.

1197/4161

1.2.9.3.7.6 ST_AREA

Syntax

ST_Area(poly)

Area(poly)

Description
Returns as a double-precision number the area of the Polygon value poly , as measured in its spatial reference system.

ST_Area() and Area() are synonyms.

Examples

SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';

SELECT Area(GeomFromText(@poly));

+---------------------------+

| Area(GeomFromText(@poly)) |

+---------------------------+

| 4 |

+---------------------------+

1.2.9.3.7.7 ST_CENTROID

Syntax

ST_Centroid(mpoly)

Centroid(mpoly)

Description
Returns a point reflecting the mathematical centroid (geometric center) for the MultiPolygon mpoly. The resulting point will

not necessarily be on the MultiPolygon.

ST_Centroid() and Centroid() are synonyms.

Examples

SET @poly = ST_GeomFromText('POLYGON((0 0,20 0,20 20,0 20,0 0))');

SELECT ST_AsText(ST_Centroid(@poly)) AS center;

+--------------+

| center |

+--------------+

| POINT(10 10) |

+--------------+

1.2.9.3.7.8 ST_ExteriorRing

Syntax

ST_ExteriorRing(poly)

ExteriorRing(poly)

1198/4161

Description
Returns the exterior ring of the Polygon value poly as a LineString.

ST_ExteriorRing() and ExteriorRing() are synonyms.

Examples

SET @poly = 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

SELECT AsText(ExteriorRing(GeomFromText(@poly)));

+---+

| AsText(ExteriorRing(GeomFromText(@poly))) |

+---+

| LINESTRING(0 0,0 3,3 3,3 0,0 0) |

+---+

1.2.9.3.7.9 ST_InteriorRingN

Syntax

ST_InteriorRingN(poly,N)

InteriorRingN(poly,N)

Description
Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered beginning with 1.

ST_InteriorRingN() and InteriorRingN() are synonyms.

Examples

SET @poly = 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

SELECT AsText(InteriorRingN(GeomFromText(@poly),1));

+--+

| AsText(InteriorRingN(GeomFromText(@poly),1)) |

+--+

| LINESTRING(1 1,1 2,2 2,2 1,1 1) |

+--+

1.2.9.3.7.10 ST_NumInteriorRings

Syntax

ST_NumInteriorRings(poly)

NumInteriorRings(poly)

Description
Returns an integer containing the number of interior rings in the Polygon value poly .

Note that according the the OpenGIS standard, a POLYGON should have exactly one ExteriorRing and all other rings

should lie within that ExteriorRing and thus be the InteriorRings. Practically, however, some systems, including MariaDB's,

permit polygons to have several 'ExteriorRings'. In the case of there being multiple, non-overlapping exterior rings

ST_NumInteriorRings() will return 1 .

1199/4161

ST_NumInteriorRings() and NumInteriorRings() are synonyms.

Examples

SET @poly = 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

SELECT NumInteriorRings(GeomFromText(@poly));

+---------------------------------------+

| NumInteriorRings(GeomFromText(@poly)) |

+---------------------------------------+

| 1 |

+---------------------------------------+

Non-overlapping 'polygon':

SELECT ST_NumInteriorRings(ST_PolyFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),

 (-1 -1,-5 -1,-5 -5,-1 -5,-1 -1))')) AS NumInteriorRings;

+------------------+

| NumInteriorRings |

+------------------+

| 1 |

+------------------+

1.2.9.3.8 WKB
WKB stands for Well-Known Binary, a standard representation for geometric values.

Well-Known Binary (WKB) Format

Well-Known Binary format for representing geometric data.

AsBinary

Synonym for ST_AsBinary.

AsWKB

Synonym for ST_AsBinary.

MLineFromWKB

Constructs a MULTILINESTRING.

MPointFromWKB

Constructs a MULTIPOINT value using its WKB representation and SRID.

MPolyFromWKB

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

GeomCollFromWKB

Synonym for ST_GeomCollFromWKB.

GeometryCollectionFromWKB

Synonym for ST_GeomCollFromWKB.

GeometryFromWKB

Synonym for ST_GeomFromWKB.

GeomFromWKB

Synonym for ST_GeomFromWKB.

LineFromWKB

Synonym for ST_LineFromWKB.

LineStringFromWKB

Synonym for ST_LineFromWKB.

1200/4161

MultiLineStringFromWKB

A synonym for MLineFromWKB.

MultiPointFromWKB

Synonym for MPointFromWKB.

MultiPolygonFromWKB

Synonym for MPolyFromWKB.

PointFromWKB

Synonym for PointFromWKB.

PolyFromWKB

Synonym for ST_PolyFromWKB.

PolygonFromWKB

Synonym for ST_PolyFromWKB.

ST_AsBinary

Converts a value to its WKB representation.

ST_AsWKB

Synonym for ST_AsBinary.

ST_GeomCollFromWKB

Constructs a GEOMETRYCOLLECTION value from a WKB.

ST_GeometryCollectionFromWKB

Synonym for ST_GeomCollFromWKB.

ST_GeometryFromWKB

Synonym for ST_GeomFromWKB.

ST_GeomFromWKB

Constructs a geometry value using its WKB representation and SRID.

ST_LineFromWKB

Constructs a LINESTRING using its WKB and SRID.

ST_LineStringFromWKB

Synonym for ST_LineFromWKB.

ST_PointFromWKB

Constructs POINT using its WKB and SRID.

ST_PolyFromWKB

Constructs POLYGON value using its WKB representation and SRID.

ST_PolygonFromWKB

Synonym for ST_PolyFromWKB.

1.2.9.3.8.1 Well-Known Binary (WKB) Format
WKB stands for Well-Known Binary, a format for representing geographical and geometrical data.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers.

The first byte indicates the byte order. 00 for big endian, or 01 for little endian.

The next 4 bytes indicate the geometry type. Values from 1 to 7 indicate whether the type is Point, LineString,

Polygon, MultiPoint, MultiLineString, MultiPolygon, or GeometryCollection respectively.

The 8-byte floats represent the co-ordinates.

Take the following example, a sequence of 21 bytes each represented by two hex digits:

1201/4161

000000000140000000000000004010000000000000

It's big endian

000000000140000000000000004010000000000000

It's a POINT

000000000140000000000000004010000000000000

The X co-ordinate is 2.0

000000000140000000000000004010000000000000

The Y-co-ordinate is 4.0

000000000140000000000000004010000000000000

1.2.9.3.8.2 AsBinary
A synonym for ST_AsBinary().

1.2.9.3.8.3 AsWKB
A synonym for ST_AsBinary().

1.2.9.3.8.4 MLineFromWKB

Syntax

MLineFromWKB(wkb[,srid])

MultiLineStringFromWKB(wkb[,srid])

Description
Constructs a MULTILINESTRING value using its WKB representation and SRID.

MLineFromWKB() and MultiLineStringFromWKB() are synonyms.

Examples

SET @g = ST_AsBinary(MLineFromText('MULTILINESTRING((10 48,10 21,10 0),(16 0,16 23,16 48))'));

SELECT ST_AsText(MLineFromWKB(@g));

+--+

| ST_AsText(MLineFromWKB(@g)) |

+--+

| MULTILINESTRING((10 48,10 21,10 0),(16 0,16 23,16 48)) |

+--+

1.2.9.3.8.5 MPointFromWKB

Syntax

MPointFromWKB(wkb[,srid])

MultiPointFromWKB(wkb[,srid])

Description
Constructs a MULTIPOINT value using its WKB representation and SRID.

MPointFromWKB() and MultiPointFromWKB() are synonyms.

1202/4161

Examples

SET @g = ST_AsBinary(MPointFromText('MultiPoint(1 1, 2 2, 5 3, 7 2, 9 3, 8 4, 6 6, 6 9, 4 9, 1 5)'

SELECT ST_AsText(MPointFromWKB(@g));

+---+

| ST_AsText(MPointFromWKB(@g)) |

+---+

| MULTIPOINT(1 1,2 2,5 3,7 2,9 3,8 4,6 6,6 9,4 9,1 5) |

+---+

1.2.9.3.8.6 MPolyFromWKB

Syntax

MPolyFromWKB(wkb[,srid])

MultiPolygonFromWKB(wkb[,srid])

Description
Constructs a MULTIPOLYGON value using its WKB representation and SRID.

MPolyFromWKB() and MultiPolygonFromWKB() are synonyms.

Examples

SET @g = ST_AsBinary(MPointFromText('MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66

23,73 9,48 6,52 18)),((59 18,67 18,67 13,59 13,59 18)))'));

SELECT ST_AsText(MPolyFromWKB(@g))\G

*************************** 1. row ***************************

ST_AsText(MPolyFromWKB(@g)): MULTIPOLYGON(((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48

6,52 18)),((59 18,67 18,67 13,59 13,59 18)))

1.2.9.3.8.7 GeomCollFromWKB
A synonym for ST_GeomCollFromWKB.

1.2.9.3.8.8 GeometryCollectionFromWKB
A synonym for ST_GeomCollFromWKB.

1.2.9.3.8.9 GeometryFromWKB
A synonym for ST_GeomFromWKB.

1.2.9.3.8.10 GeomFromWKB
A synonym for ST_GeomFromWKB.

1.2.9.3.8.11 LineFromWKB
A synonym for ST_LineFromWKB.

1203/4161

1.2.9.3.8.12 LineStringFromWKB
A synonym for ST_LineFromWKB.

1.2.9.3.8.13 MultiLineStringFromWKB
A synonym for MLineFromWKB().

1.2.9.3.8.14 MultiPointFromWKB
A synonym for MPointFromWKB.

1.2.9.3.8.15 MultiPolygonFromWKB
Synonym for MPolyFromWKB.

1.2.9.3.8.16 PointFromWKB
A synonym for ST_PointFromWKB.

1.2.9.3.8.17 PolyFromWKB
A synonym for ST_PolyFromWKB.

1.2.9.3.8.18 PolygonFromWKB
A synonym for ST_PolyFromWKB.

1.2.9.3.8.19 ST_AsBinary

Syntax

ST_AsBinary(g)

AsBinary(g)

ST_AsWKB(g)

AsWKB(g)

Description
Converts a value in internal geometry format to its WKB representation and returns the binary result.

ST_AsBinary() , AsBinary() , ST_AsWKB() and AsWKB() are synonyms,

Examples

SET @poly = ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))');

SELECT ST_AsBinary(@poly);

SELECT ST_AsText(ST_GeomFromWKB(ST_AsWKB(@poly)));

+--+

| ST_AsText(ST_GeomFromWKB(ST_AsWKB(@poly))) |

+--+

| POLYGON((0 0,0 1,1 1,1 0,0 0)) |

+--+

1204/4161

1.2.9.3.8.20 ST_AsWKB
A synonym for ST_AsBinary().

1.2.9.3.8.21 ST_GeomCollFromWKB

Syntax

ST_GeomCollFromWKB(wkb[,srid])

ST_GeometryCollectionFromWKB(wkb[,srid])

GeomCollFromWKB(wkb[,srid])

GeometryCollectionFromWKB(wkb[,srid])

Description
Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.

ST_GeomCollFromWKB() , ST_GeometryCollectionFromWKB() , GeomCollFromWKB() and

GeometryCollectionFromWKB() are synonyms.

Examples

SET @g = ST_AsBinary(ST_GeomFromText('GEOMETRYCOLLECTION(

 POLYGON((5 5,10 5,10 10,5 5)),POINT(10 10))'));

SELECT ST_AsText(ST_GeomCollFromWKB(@g));

+--+

| ST_AsText(ST_GeomCollFromWKB(@g)) |

+--+

| GEOMETRYCOLLECTION(POLYGON((5 5,10 5,10 10,5 5)),POINT(10 10)) |

+--+

1.2.9.3.8.22 ST_GeometryCollectionFromWKB
A synonym for ST_GeomCollFromWKB.

1.2.9.3.8.23 ST_GeometryFromWKB
A synonym for ST_GeomFromWKB.

1.2.9.3.8.24 ST_GeomFromWKB

Syntax

ST_GeomFromWKB(wkb[,srid])

ST_GeometryFromWKB(wkb[,srid])

GeomFromWKB(wkb[,srid])

GeometryFromWKB(wkb[,srid])

Description
Constructs a geometry value of any type using its WKB representation and SRID.

ST_GeomFromWKB() , ST_GeometryFromWKB() , GeomFromWKB() and GeometryFromWKB() are synonyms.

Examples
1205/4161

SET @g = ST_AsBinary(ST_LineFromText('LINESTRING(0 4, 4 6)'));

SELECT ST_AsText(ST_GeomFromWKB(@g));

+-------------------------------+

| ST_AsText(ST_GeomFromWKB(@g)) |

+-------------------------------+

| LINESTRING(0 4,4 6) |

+-------------------------------+

1.2.9.3.8.25 ST_LineFromWKB

Syntax

ST_LineFromWKB(wkb[,srid])

LineFromWKB(wkb[,srid])

ST_LineStringFromWKB(wkb[,srid])

LineStringFromWKB(wkb[,srid])

Description
Constructs a LINESTRING value using its WKB representation and SRID.

ST_LineFromWKB() , LineFromWKB() , ST_LineStringFromWKB() , and LineStringFromWKB() are synonyms.

Examples

SET @g = ST_AsBinary(ST_LineFromText('LineString(0 4,4 6)'));

SELECT ST_AsText(ST_LineFromWKB(@g)) AS l;

+---------------------+

| l |

+---------------------+

| LINESTRING(0 4,4 6) |

+---------------------+

1.2.9.3.8.26 ST_LineStringFromWKB
A synonym for ST_LineFromWKB.

1.2.9.3.8.27 ST_PointFromWKB

Syntax

ST_PointFromWKB(wkb[,srid])

PointFromWKB(wkb[,srid])

Description
Constructs a POINT value using its WKB representation and SRID.

ST_PointFromWKB() and PointFromWKB() are synonyms.

Examples

1206/4161

SET @g = ST_AsBinary(ST_PointFromText('POINT(0 4)'));

SELECT ST_AsText(ST_PointFromWKB(@g)) AS p;

+------------+

| p |

+------------+

| POINT(0 4) |

+------------+

1.2.9.3.8.28 ST_PolyFromWKB

Syntax

ST_PolyFromWKB(wkb[,srid])

ST_PolygonFromWKB(wkb[,srid])

PolyFromWKB(wkb[,srid])

PolygonFromWKB(wkb[,srid])

Description
Constructs a POLYGON value using its WKB representation and SRID.

ST_PolyFromWKB() , ST_PolygonFromWKB() , PolyFromWKB() and PolygonFromWKB() are synonyms.

Examples

SET @g = ST_AsBinary(ST_PolyFromText('POLYGON((1 1,1 5,4 9,6 9,9 3,7 2,1 1))'));

SELECT ST_AsText(ST_PolyFromWKB(@g)) AS p;

+--+

| p |

+--+

| POLYGON((1 1,1 5,4 9,6 9,9 3,7 2,1 1)) |

+--+

1.2.9.3.8.29 ST_PolygonFromWKB
A synonym for ST_PolyFromWKB.

1.2.9.3.9 WKT
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in ASCII form. This section

has articles on WKT in MariaDB.

WKT Definition

Well-Known Text for exchanging geometry data in ASCII form.

AsText

Synonym for ST_AsText.

AsWKT

Synonym for ST_AsText.

GeomCollFromText

Synonym for ST_GeomCollFromText.

GeometryCollectionFromText

Synonym for ST_GeomCollFromText.

1207/4161

GeometryFromText

Synonym for ST_GeomFromText.

GeomFromText

Synonym for ST_GeomFromText.

LineFromText

Synonym for ST_LineFromText.

LineStringFromText

Synonym for ST_LineFromText.

MLineFromText

Constructs MULTILINESTRING using its WKT representation and SRID.

MPointFromText

Constructs a MULTIPOINT value using its WKT and SRID.

MPolyFromText

Constructs a MULTIPOLYGON value.

MultiLineStringFromText

Synonym for MLineFromText.

MultiPointFromText

Synonym for MPointFromText.

MultiPolygonFromText

Synonym for MPolyFromText.

PointFromText

Synonym for ST_PointFromText.

PolyFromText

Synonym for ST_PolyFromText.

PolygonFromText

Synonym for ST_PolyFromText.

ST_AsText

Converts a value to its WKT-Definition.

ST_ASWKT

Synonym for ST_ASTEXT().

ST_GeomCollFromText

Constructs a GEOMETRYCOLLECTION value.

ST_GeometryCollectionFromText

Synonym for ST_GeomCollFromText.

ST_GeometryFromText

Synonym for ST_GeomFromText.

ST_GeomFromText

Constructs a geometry value using its WKT and SRID.

ST_LineFromText

Creates a linestring value.

ST_LineStringFromText

Synonym for ST_LineFromText.

1208/4161

ST_PointFromText

Constructs a POINT value.

ST_PolyFromText

Constructs a POLYGON value.

ST_PolygonFromText

Synonym for ST_PolyFromText.

1.2.9.3.9.1 WKT Definition

Description
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in ASCII form. Examples

of the basic geometry types include:

Geometry Types

POINT

LINESTRING

POLYGON

MULTIPOINT

MULTILINESTRING

MULTIPOLYGON

GEOMETRYCOLLECTION

GEOMETRY

1.2.9.3.9.2 AsText
A synonym for ST_AsText().

1.2.9.3.9.3 AsWKT
A synonym for ST_AsText().

1.2.9.3.9.4 GeomCollFromText
A synonym for ST_GeomCollFromText.

1.2.9.3.9.5 GeometryCollectionFromText
A synonym for ST_GeomCollFromText.

1.2.9.3.9.6 GeometryFromText
A synonym for ST_GeomFromText.

1.2.9.3.9.7 GeomFromText
A synonym for ST_GeomFromText.

1.2.9.3.9.8 LineFromText
A synonym for ST_LineFromText.

1209/4161

1.2.9.3.9.9 LineStringFromText
A synonym for ST_LineFromText.

1.2.9.3.9.10 MLineFromText

Syntax

MLineFromText(wkt[,srid])

MultiLineStringFromText(wkt[,srid])

Description
Constructs a MULTILINESTRING value using its WKT representation and SRID.

MLineFromText() and MultiLineStringFromText() are synonyms.

Examples

CREATE TABLE gis_multi_line (g MULTILINESTRING);

SHOW FIELDS FROM gis_multi_line;

INSERT INTO gis_multi_line VALUES

 (MultiLineStringFromText('MULTILINESTRING((10 48,10 21,10 0),(16 0,16 23,16 48))')),

 (MLineFromText('MULTILINESTRING((10 48,10 21,10 0))')),

 (MLineFromWKB(AsWKB(MultiLineString(

 LineString(Point(1, 2), Point(3, 5)),

 LineString(Point(2, 5), Point(5, 8), Point(21, 7))))));

1.2.9.3.9.11 MPointFromText

Syntax

MPointFromText(wkt[,srid])

MultiPointFromText(wkt[,srid])

Description
Constructs a MULTIPOINT value using its WKT representation and SRID.

MPointFromText() and MultiPointFromText() are synonyms.

Examples

CREATE TABLE gis_multi_point (g MULTIPOINT);

SHOW FIELDS FROM gis_multi_point;

INSERT INTO gis_multi_point VALUES

 (MultiPointFromText('MULTIPOINT(0 0,10 10,10 20,20 20)')),

 (MPointFromText('MULTIPOINT(1 1,11 11,11 21,21 21)')),

 (MPointFromWKB(AsWKB(MultiPoint(Point(3, 6), Point(4, 10)))));

1.2.9.3.9.12 MPolyFromText

Syntax

1210/4161

MPolyFromText(wkt[,srid])

MultiPolygonFromText(wkt[,srid])

Description
Constructs a MULTIPOLYGON value using its WKT representation and SRID.

MPolyFromText() and MultiPolygonFromText() are synonyms.

Examples

CREATE TABLE gis_multi_polygon (g MULTIPOLYGON);

SHOW FIELDS FROM gis_multi_polygon;

INSERT INTO gis_multi_polygon VALUES

 (MultiPolygonFromText('MULTIPOLYGON(

 ((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48 6,52 18)),

 ((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromText('MULTIPOLYGON(

 ((28 26,28 0,84 0,84 42,28 26),(52 18,66 23,73 9,48 6,52 18)),

 ((59 18,67 18,67 13,59 13,59 18)))')),

 (MPolyFromWKB(AsWKB(MultiPolygon(Polygon(

 LineString(Point(0, 3), Point(3, 3), Point(3, 0), Point(0, 3)))))));

1.2.9.3.9.13 MultiLineStringFromText
A synonym for MLineFromText.

1.2.9.3.9.14 MultiPointFromText
A synonym for MPointFromText.

1.2.9.3.9.15 MultiPolygonFromText
A synonym for MPolyFromText.

1.2.9.3.9.16 PointFromText
A synonym for ST_PointFromText.

1.2.9.3.9.17 PolyFromText
A synonym for ST_PolyFromText.

1.2.9.3.9.18 PolygonFromText
A synonym for ST_PolyFromText.

1.2.9.3.9.19 ST_AsText

Syntax

ST_AsText(g)

AsText(g)

ST_AsWKT(g)

AsWKT(g)

1211/4161

Description
Converts a value in internal geometry format to its WKT representation and returns the string result.

ST_AsText() , AsText() , ST_AsWKT() and AsWKT() are all synonyms.

Examples

SET @g = 'LineString(1 1,4 4,6 6)';

SELECT ST_AsText(ST_GeomFromText(@g));

+--------------------------------+

| ST_AsText(ST_GeomFromText(@g)) |

+--------------------------------+

| LINESTRING(1 1,4 4,6 6) |

+--------------------------------+

1.2.9.3.9.20 ST_ASWKT
A synonym for ST_ASTEXT().

1.2.9.3.9.21 ST_GeomCollFromText

Syntax

ST_GeomCollFromText(wkt[,srid])

ST_GeometryCollectionFromText(wkt[,srid])

GeomCollFromText(wkt[,srid])

GeometryCollectionFromText(wkt[,srid])

Description
Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.

ST_GeomCollFromText() , ST_GeometryCollectionFromText() , GeomCollFromText() and

GeometryCollectionFromText() are all synonyms.

Example

CREATE TABLE gis_geometrycollection (g GEOMETRYCOLLECTION);

SHOW FIELDS FROM gis_geometrycollection;

INSERT INTO gis_geometrycollection VALUES

 (GeomCollFromText('GEOMETRYCOLLECTION(POINT(0 0), LINESTRING(0 0,10 10))')),

 (GeometryFromWKB(AsWKB(GeometryCollection(Point(44, 6), LineString(Point(3, 6), Point(7, 9)))))),

 (GeomFromText('GeometryCollection()')),

 (GeomFromText('GeometryCollection EMPTY'));

1.2.9.3.9.22 ST_GeometryCollectionFromText
A synonym for ST_GeomCollFromText.

1.2.9.3.9.23 ST_GeometryFromText
A synonym for ST_GeomFromText.

1212/4161

1.2.9.3.9.24 ST_GeomFromText

Syntax

ST_GeomFromText(wkt[,srid])

ST_GeometryFromText(wkt[,srid])

GeomFromText(wkt[,srid])

GeometryFromText(wkt[,srid])

Description
Constructs a geometry value of any type using its WKT representation and SRID.

GeomFromText() , GeometryFromText() , ST_GeomFromText() and ST_GeometryFromText() are all synonyms.

Example

SET @g = ST_GEOMFROMTEXT('POLYGON((1 1,1 5,4 9,6 9,9 3,7 2,1 1))');

1.2.9.3.9.25 ST_LineFromText

Syntax

ST_LineFromText(wkt[,srid])

ST_LineStringFromText(wkt[,srid])

LineFromText(wkt[,srid])

LineStringFromText(wkt[,srid])

Description
Constructs a LINESTRING value using its WKT representation and SRID.

ST_LineFromText() , ST_LineStringFromText() , ST_LineFromText() and ST_LineStringFromText() are all

synonyms.

Examples

CREATE TABLE gis_line (g LINESTRING);

SHOW FIELDS FROM gis_line;

INSERT INTO gis_line VALUES

 (LineFromText('LINESTRING(0 0,0 10,10 0)')),

 (LineStringFromText('LINESTRING(10 10,20 10,20 20,10 20,10 10)')),

 (LineStringFromWKB(AsWKB(LineString(Point(10, 10), Point(40, 10)))));

1.2.9.3.9.26 ST_LineStringFromText
A synonym for ST_LineFromText.

1.2.9.3.9.27 ST_PointFromText

Syntax

1213/4161

ST_PointFromText(wkt[,srid])

PointFromText(wkt[,srid])

Description
Constructs a POINT value using its WKT representation and SRID.

ST_PointFromText() and PointFromText() are synonyms.

Examples

CREATE TABLE gis_point (g POINT);

SHOW FIELDS FROM gis_point;

INSERT INTO gis_point VALUES

 (PointFromText('POINT(10 10)')),

 (PointFromText('POINT(20 10)')),

 (PointFromText('POINT(20 20)')),

 (PointFromWKB(AsWKB(PointFromText('POINT(10 20)'))));

1.2.9.3.9.28 ST_PolyFromText

Syntax

ST_PolyFromText(wkt[,srid])

ST_PolygonFromText(wkt[,srid])

PolyFromText(wkt[,srid])

PolygonFromText(wkt[,srid])

Description
Constructs a POLYGON value using its WKT representation and SRID.

ST_PolyFromText() , ST_PolygonFromText() , PolyFromText() and ST_PolygonFromText() are all synonyms.

Examples

CREATE TABLE gis_polygon (g POLYGON);

INSERT INTO gis_polygon VALUES

 (PolygonFromText('POLYGON((10 10,20 10,20 20,10 20,10 10))')),

 (PolyFromText('POLYGON((0 0,50 0,50 50,0 50,0 0), (10 10,20 10,20 20,10 20,10 10))'));

1.2.9.3.9.29 ST_PolygonFromText
A synonym for ST_PolyFromText.

1.2.9.4 JSON Functions
Functions relating to JSON, such as JSON_VALUE, JSON_ARRAY etc.

Differences between JSON_QUERY and JSON_VALUE

Comparison between and examples with JSON_QUERY and JSON_VALUE.

JSONPath Expressions

MariaDB JSONPath description and definition.

JSON_ARRAY

Returns a JSON array containing the listed values.

3

1214/4161

JSON_ARRAYAGG

Returns a JSON array containing an element for each value in a given set of JSON or SQL values.

JSON_ARRAY_APPEND

Appends values to the end of the given arrays within a JSON document.

JSON_ARRAY_INSERT

Inserts a value into a JSON document.

JSON_ARRAY_INTERSECT

Finds intersection between two arrays.

JSON_COMPACT

Removes all unnecessary spaces so the json document is as short as possible.

JSON_CONTAINS

Whether a value is found in a given JSON document or at a specified path within the document.

JSON_CONTAINS_PATH

Indicates whether the given JSON document contains data at the specified path or paths.

JSON_DEPTH

Maximum depth of a JSON document.

JSON_DETAILED

Represents JSON in the most understandable way emphasizing nested structures.

JSON_EQUALS

Checks if there is equality between two json objects.

JSON_EXISTS

Determines whether a specified JSON value exists in the given data.

JSON_EXTRACT

Extracts data from a JSON document.

JSON_INSERT

Inserts data into a JSON document.

JSON_KEYS

Returns keys from top-level value of a JSON object or top-level keys from the path.

JSON_LENGTH

Returns the length of a JSON document, or the length of a value within the document.

JSON_LOOSE

Adds spaces to a JSON document to make it look more readable.

JSON_MERGE

Merges the given JSON documents.

JSON_MERGE_PATCH

RFC 7396-compliant merge of the given JSON documents.

JSON_MERGE_PRESERVE

Synonym for JSON_MERGE.

JSON_NORMALIZE

Recursively sorts keys and removes spaces, allowing comparison of json documents for equality.

JSON_OBJECT

Returns a JSON object containing the given key/value pairs.

3

1

1

3

8

2

2

3

5

1

1215/4161

JSON_OBJECT_FILTER_KEYS

Returns keys from the object that are present in the array.

JSON_OBJECT_TO_ARRAY

Converts JSON objects to JSON array where each item represents each key-value pair from object.

JSON_OBJECTAGG

Returns a JSON object containing key-value pairs.

JSON_OVERLAPS

Returns true if two json documents have at least one key-value pair or array element in common.

JSON_PRETTY

Alias for JSON_DETAILED.

JSON_QUERY

Given a JSON document, returns an object or array specified by the path.

JSON_QUOTE

Quotes a string as a JSON value.

JSON_REMOVE

Removes data from a JSON document.

JSON_REPLACE

Replaces existing values in a JSON document.

JSON_SCHEMA_VALID

JSON schema validation.

JSON_SEARCH

Returns the path to the given string within a JSON document.

JSON_SET

Updates or inserts data into a JSON document.

JSON_TABLE

Given data from a JSON document, returns a representation of it as a relational table.

JSON_TYPE

Returns the type of a JSON value.

JSON_UNQUOTE

Unquotes a JSON value, returning a string.

JSON_VALID

Whether a value is a valid JSON document or not.

JSON_VALUE

Given a JSON document, returns the specified scalar.

There are 6 related questions .

1

1

2

5

2

6

5

3

3

1.2.9.4.1 Differences between JSON_QUERY
and JSON_VALUE
The primary difference between the two functions is that JSON_QUERY returns an object or an array, while JSON_VALUE

returns a scalar.

Take the following JSON document as an example

1216/4161

https://mariadb.com/kb/en/json-functions/+questions/

SET @json='{ "x": [0,1], "y": "[0,1]", "z": "Monty" }';

Note that data member "x" is an array, and data members "y" and "z" are strings. The following examples demonstrate the

differences between the two functions.

SELECT JSON_QUERY(@json,'$'), JSON_VALUE(@json,'$');

+--+-----------------------+

| JSON_QUERY(@json,'$') | JSON_VALUE(@json,'$') |

+--+-----------------------+

| { "x": [0,1], "y": "[0,1]", "z": "Monty" } | NULL |

+--+-----------------------+

SELECT JSON_QUERY(@json,'$.x'), JSON_VALUE(@json,'$.x');

+-------------------------+-------------------------+

| JSON_QUERY(@json,'$.x') | JSON_VALUE(@json,'$.x') |

+-------------------------+-------------------------+

| [0,1] | NULL |

+-------------------------+-------------------------+

SELECT JSON_QUERY(@json,'$.y'), JSON_VALUE(@json,'$.y');

+-------------------------+-------------------------+

| JSON_QUERY(@json,'$.y') | JSON_VALUE(@json,'$.y') |

+-------------------------+-------------------------+

| NULL | [0,1] |

+-------------------------+-------------------------+

SELECT JSON_QUERY(@json,'$.z'), JSON_VALUE(@json,'$.z');

+-------------------------+-------------------------+

| JSON_QUERY(@json,'$.z') | JSON_VALUE(@json,'$.z') |

+-------------------------+-------------------------+

| NULL | Monty |

+-------------------------+-------------------------+

SELECT JSON_QUERY(@json,'$.x[0]'), JSON_VALUE(@json,'$.x[0]');

+----------------------------+----------------------------+

| JSON_QUERY(@json,'$.x[0]') | JSON_VALUE(@json,'$.x[0]') |

+----------------------------+----------------------------+

| NULL | 0 |

+----------------------------+----------------------------+

1.2.9.4.2 JSONPath Expressions
Contents
1. JSON Path Syntax

1. Object Member Selector

2. Array Element Selector

3. Wildcard

2. Compatibility

A number of JSON functions accept JSON Path expressions. MariaDB defines this path as follows:

JSON Path Syntax

path : ['lax'] '$' [step]*

The path starts with an optional path mode. At the moment, MariaDB supports only the "lax" mode, which is also the mode

that is used when it is not explicitly specified.

The $ symbol represents the context item. The search always starts from the context item; because of that, the path

always starts with $.

Then, it is followed by zero or more steps, which select element(s) in the JSON document. A step may be one of the

following:

Object member selector

Array element selector

Wildcard selector

1217/4161

Object Member Selector

To select member(s) in a JSON object, one can use one of the following:

.memberName selects the value of the member with name memberName.

."memberName" - the same as above but allows one to select a member with a name that's not a valid identifier

(that is, has space, dot, and/or other characters)

.* - selects the values of all members of the object.

If the current item is an array (instead of an object), nothing will be selected.

Array Element Selector

To select elements of an array, one can use one of the following:

[N] selects element number N in the array. The elements are counted from zero.

[*] selects all elements in the array.

If the current item is an object (instead of an array), nothing will be selected.

Starting from MariaDB server 10.9, JSON path also supports negative index in array, 'last' keyword and range notation ('to'

keyword) for accessing array elements. Negative index starts from -1.

[-N] selects n th element from end.

[last-N] selects n th element from the last element.

[M to N] selects range of elements starting from index M to N.

Example:

SET @json='{

 "A": [0,

 [1, 2, 3],

 [4, 5, 6],

 "seven",

 0.8,

 true,

 false,

 "eleven",

 [12, [13, 14], {"key1":"value1"},[15]],

 true],

 "B": {"C": 1},

 "D": 2

 }';

SELECT JSON_EXTRACT(@json, '$.A[-8][1]');

+--+

| JSON_EXTRACT(@json, '$.A[-8][1]') |

+--+

| 5 |

+--+

SELECT JSON_EXTRACT(@json, '$.A[last-7][1]');

+---+

| SELECT JSON_EXTRACT(@json, '$.A[last-7][1]'); |

+---+

| 5 |

+---+

SET @json= '[

 [1, {"key1": "value1"}, 3],

 [false, 5, 6],

 [7, 8, [9, {"key2": 2}, 11]],

 [15, 1.34, [14], ["string1", [16, {"key1":[1,2,3,[4,5,6]]}, 18]]],

 [19, 20],

 21, 22

]';

SELECT JSON_EXTRACT(@json, '$[0 to 3][2]');

+---+

| JSON_EXTRACT(@json, '$[0 to 3][2]') |

+---+

| [3, 6, [9, {"key2": 2}, 11], [14]] |

+---+

1218/4161

This will produce output for first index of eighth from last element of a two dimensional array.

Note: In range notation, when M > N (when M,N are greater than or equal to 0) or (size of array - M or size of array - N

when M, N are less than 0), then it is treated as an impossible range and NULL is returned.

SET @json= '[1, 2, 3, 4, 5]';

SELECT JSON_EXTRACT(@json, '$[4 to 2]');

+-----------------------------------+

| JSON_EXTRACT(@json, '$[4 to 2]') |

+-----------------------------------+

| NULL |

+-----------------------------------+

Wildcard

The wildcard step, ** , recursively selects all child elements of the current element. Both array elements and object

members are selected.

The wildcard step must not be the last step in the JSONPath expression. It must be followed by an array or object member

selector step.

For example:

select json_extract(@json_doc, '$**.price');

will select all object members in the document that are named price , while

select json_extract(@json_doc, '$**[2]');

will select the second element in each of the arrays present in the document.

Compatibility
MariaDB's JSONPath syntax supports a subset of JSON Path's definition in the SQL Standard. The most notable things not

supported are the strict mode and filters.

MariaDB's JSONPath is close to MySQL's JSONPath. The wildcard step (**) is a non-standard extension that has the

same meaning as in MySQL. The difference between MariaDB and MySQL's JSONPath is: MySQL doesn't allow one to

specify the mode explicitly (but uses lax mode implicitly).

1.2.9.4.3 JSON_ARRAY

Syntax

JSON_ARRAY([value[, value2] ...])

Description
Returns a JSON array containing the listed values. The list can be empty.

Example

SELECT Json_Array(56, 3.1416, 'My name is "Foo"', NULL);

+--+

| Json_Array(56, 3.1416, 'My name is "Foo"', NULL) |

+--+

| [56, 3.1416, "My name is \"Foo\"", null] |

+--+

1.2.9.4.4 JSON_ARRAYAGG
1219/4161

https://mariadb.com/kb/en/json_arrayagg/%20

1.2.9.4.5 JSON_ARRAY_APPEND

Syntax

JSON_ARRAY_APPEND(json_doc, path, value[, path, value] ...)

Description
Appends values to the end of the specified arrays within a JSON document, returning the result, or NULL if any of the

arguments are NULL.

Evaluation is performed from left to right, with the resulting document from the previous pair becoming the new value

against which the next pair is evaluated.

If the json_doc is not a valid JSON document, or if any of the paths are not valid, or contain a * or ** wildcard, an error

is returned.

Examples

SET @json = '[1, 2, [3, 4]]';

SELECT JSON_ARRAY_APPEND(@json, '$[0]', 5)

+-------------------------------------+

| JSON_ARRAY_APPEND(@json, '$[0]', 5) |

+-------------------------------------+

| [[1, 5], 2, [3, 4]] |

+-------------------------------------+

SELECT JSON_ARRAY_APPEND(@json, '$[1]', 6);

+-------------------------------------+

| JSON_ARRAY_APPEND(@json, '$[1]', 6) |

+-------------------------------------+

| [1, [2, 6], [3, 4]] |

+-------------------------------------+

SELECT JSON_ARRAY_APPEND(@json, '$[1]', 6, '$[2]', 7);

+--+

| JSON_ARRAY_APPEND(@json, '$[1]', 6, '$[2]', 7) |

+--+

| [1, [2, 6], [3, 4, 7]] |

+--+

SELECT JSON_ARRAY_APPEND(@json, '$', 5);

+----------------------------------+

| JSON_ARRAY_APPEND(@json, '$', 5) |

+----------------------------------+

| [1, 2, [3, 4], 5] |

+----------------------------------+

SET @json = '{"A": 1, "B": [2], "C": [3, 4]}';

SELECT JSON_ARRAY_APPEND(@json, '$.B', 5);

+------------------------------------+

| JSON_ARRAY_APPEND(@json, '$.B', 5) |

+------------------------------------+

| {"A": 1, "B": [2, 5], "C": [3, 4]} |

+------------------------------------+

1.2.9.4.6 JSON_ARRAY_INSERT

Syntax

JSON_ARRAY_INSERT(json_doc, path, value[, path, value] ...)

1220/4161

Description
Inserts a value into a JSON document, returning the modified document, or NULL if any of the arguments are NULL.

Evaluation is performed from left to right, with the resulting document from the previous pair becoming the new value

against which the next pair is evaluated.

If the json_doc is not a valid JSON document, or if any of the paths are not valid, or contain a * or ** wildcard, an error

is returned.

Examples

SET @json = '[1, 2, [3, 4]]';

SELECT JSON_ARRAY_INSERT(@json, '$[0]', 5);

+-------------------------------------+

| JSON_ARRAY_INSERT(@json, '$[0]', 5) |

+-------------------------------------+

| [5, 1, 2, [3, 4]] |

+-------------------------------------+

SELECT JSON_ARRAY_INSERT(@json, '$[1]', 6);

+-------------------------------------+

| JSON_ARRAY_INSERT(@json, '$[1]', 6) |

+-------------------------------------+

| [1, 6, 2, [3, 4]] |

+-------------------------------------+

SELECT JSON_ARRAY_INSERT(@json, '$[1]', 6, '$[2]', 7);

+--+

| JSON_ARRAY_INSERT(@json, '$[1]', 6, '$[2]', 7) |

+--+

| [1, 6, 7, 2, [3, 4]] |

+--+

1.2.9.4.7 JSON_ARRAY_INTERSECT

JSON_ARRAY_INTERSECT was added in MariaDB 11.2.0.

Syntax

JSON_ARRAY_INTERSECT(arr1, arr2)

Description
Finds intersection between two json arrays and returns an array of items found in both array.

Examples

SET @json1= '[1,2,3]';

SET @json2= '[1,2,4]';

SELECT json_array_intersect(@json1, @json2);

+--------------------------------------+

| json_array_intersect(@json1, @json2) |

+--------------------------------------+

| [1, 2] |

+--------------------------------------+

MariaDB starting with 11.2.0

1221/4161

https://mariadb.com/kb/en/mariadb-1120-release-notes/

1.2.9.4.8 JSON_COMPACT

Syntax

JSON_COMPACT(json_doc)

Contents
1. Syntax

2. Description

3. Example

Description
Removes all unnecessary spaces so the json document is as short as possible.

Example

SET @j = '{ "A": 1, "B": [2, 3]}';

SELECT JSON_COMPACT(@j), @j;

+-------------------+------------------------+

| JSON_COMPACT(@j) | @j |

+-------------------+------------------------+

| {"A":1,"B":[2,3]} | { "A": 1, "B": [2, 3]} |

+-------------------+------------------------+

1.2.9.4.9 JSON_CONTAINS

Syntax

JSON_CONTAINS(json_doc, val[, path])

Description
Returns whether or not the specified value is found in the given JSON document or, optionally, at the specified path within

the document. Returns 1 if it does, 0 if not and NULL if any of the arguments are null. An error occurs if the document or

path is not valid, or contains the * or ** wildcards.

Examples

1222/4161

SET @json = '{"A": 0, "B": {"C": 1}, "D": 2}';

SELECT JSON_CONTAINS(@json, '2', '$.A');

+----------------------------------+

| JSON_CONTAINS(@json, '2', '$.A') |

+----------------------------------+

| 0 |

+----------------------------------+

SELECT JSON_CONTAINS(@json, '2', '$.D');

+----------------------------------+

| JSON_CONTAINS(@json, '2', '$.D') |

+----------------------------------+

| 1 |

+----------------------------------+

SELECT JSON_CONTAINS(@json, '{"C": 1}', '$.A');

+---+

| JSON_CONTAINS(@json, '{"C": 1}', '$.A') |

+---+

| 0 |

+---+

SELECT JSON_CONTAINS(@json, '{"C": 1}', '$.B');

+---+

| JSON_CONTAINS(@json, '{"C": 1}', '$.B') |

+---+

| 1 |

+---+

1.2.9.4.10 JSON_CONTAINS_PATH

Syntax

JSON_CONTAINS_PATH(json_doc, return_arg, path[, path] ...)

Description
Indicates whether the given JSON document contains data at the specified path or paths. Returns 1 if it does, 0 if not and

NULL if any of the arguments are null.

The return_arg can be one or all :

one - Returns 1 if at least one path exists within the JSON document.

all - Returns 1 only if all paths exist within the JSON document.

Examples

SET @json = '{"A": 1, "B": [2], "C": [3, 4]}';

SELECT JSON_CONTAINS_PATH(@json, 'one', '$.A', '$.D');

+--+

| JSON_CONTAINS_PATH(@json, 'one', '$.A', '$.D') |

+--+

| 1 |

+--+

1 row in set (0.00 sec)

SELECT JSON_CONTAINS_PATH(@json, 'all', '$.A', '$.D');

+--+

| JSON_CONTAINS_PATH(@json, 'all', '$.A', '$.D') |

+--+

| 0 |

+--+

1223/4161

1.2.9.4.11 JSON_DEPTH

Syntax

JSON_DEPTH(json_doc)

Description
Returns the maximum depth of the given JSON document, or NULL if the argument is null. An error will occur if the

argument is an invalid JSON document.

Scalar values or empty arrays or objects have a depth of 1.

Arrays or objects that are not empty but contain only elements or member values of depth 1 will have a depth of 2.

In other cases, the depth will be greater than 2.

Examples

SELECT JSON_DEPTH('[]'), JSON_DEPTH('true'), JSON_DEPTH('{}');

+------------------+--------------------+------------------+

| JSON_DEPTH('[]') | JSON_DEPTH('true') | JSON_DEPTH('{}') |

+------------------+--------------------+------------------+

| 1 | 1 | 1 |

+------------------+--------------------+------------------+

SELECT JSON_DEPTH('[1, 2, 3]'), JSON_DEPTH('[[], {}, []]');

+-------------------------+----------------------------+

| JSON_DEPTH('[1, 2, 3]') | JSON_DEPTH('[[], {}, []]') |

+-------------------------+----------------------------+

| 2 | 2 |

+-------------------------+----------------------------+

SELECT JSON_DEPTH('[1, 2, [3, 4, 5, 6], 7]');

+---------------------------------------+

| JSON_DEPTH('[1, 2, [3, 4, 5, 6], 7]') |

+---------------------------------------+

| 3 |

+---------------------------------------+

1.2.9.4.12 JSON_DETAILED

Syntax

JSON_DETAILED(json_doc[, tab_size])

JSON_PRETTY(json_doc[, tab_size])

Contents
1. Syntax

2. Description

3. Example

Description
Represents JSON in the most understandable way emphasizing nested structures.

JSON_PRETTY was added as an alias for JSON_DETAILED in MariaDB 10.10.3, MariaDB 10.9.5, MariaDB 10.8.7 ,

MariaDB 10.7.8 , MariaDB 10.6.12, MariaDB 10.5.19 and MariaDB 10.4.28.

Example

1224/4161

https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/

SET @j = '{ "A":1,"B":[2,3]}';

SELECT @j;

+--------------------+

| @j |

+--------------------+

| { "A":1,"B":[2,3]} |

+--------------------+

SELECT JSON_DETAILED(@j);

+--+

| JSON_DETAILED(@j) |

+--+

| {

 "A": 1,

 "B":

 [

 2,

 3

]

} |

+--+

1.2.9.4.13 JSON_EQUALS

JSON_EQUALS was added in MariaDB 10.7.0

Syntax

JSON_EQUALS(json1, json2)

Description
Checks if there is equality between two json objects. Returns 1 if it there is, 0 if not, or NULL if any of the arguments are

null.

Examples

SELECT JSON_EQUALS('{"a" :[1, 2, 3],"b":[4]}', '{"b":[4],"a":[1, 2, 3.0]}');

+--+

| JSON_EQUALS('{"a" :[1, 2, 3],"b":[4]}', '{"b":[4],"a":[1, 2, 3.0]}') |

+--+

| 1 |

+--+

SELECT JSON_EQUALS('{"a":[1, 2, 3]}', '{"a":[1, 2, 3.01]}');

+--+

| JSON_EQUALS('{"a":[1, 2, 3]}', '{"a":[1, 2, 3.01]}') |

+--+

| 0 |

+--+

MariaDB starting with 10.7.0

1.2.9.4.14 JSON_EXISTS

Syntax

Description

1225/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

Determines whether a specified JSON value exists in the given data. Returns 1 if found, 0 if not, or NULL if any of the

inputs were NULL.

Examples

SELECT JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2");

+--+

| JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2") |

+--+

| 1 |

+--+

SELECT JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key3");

+--+

| JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key3") |

+--+

| 0 |

+--+

SELECT JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2[1]");

+---+

| JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2[1]") |

+---+

| 1 |

+---+

SELECT JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2[10]");

+--+

| JSON_EXISTS('{"key1":"xxxx", "key2":[1, 2, 3]}', "$.key2[10]") |

+--+

| 0 |

+--+

1.2.9.4.15 JSON_EXTRACT
Contents
1. Syntax

2. Description

3. Examples

Syntax

JSON_EXTRACT(json_doc, path[, path] ...)

Description
Extracts data from a JSON document. The extracted data is selected from the parts matching the path arguments. Returns

all matched values; either as a single matched value, or, if the arguments could return multiple values, a result autowrapped

as an array in the matching order.

Returns NULL if no paths match or if any of the arguments are NULL.

An error will occur if any path argument is not a valid path, or if the json_doc argument is not a valid JSON document.

The path expression be a JSONPath expression as supported by MariaDB

Examples

1226/4161

SET @json = '[1, 2, [3, 4]]';

SELECT JSON_EXTRACT(@json, '$[1]');

+-----------------------------+

| JSON_EXTRACT(@json, '$[1]') |

+-----------------------------+

| 2 |

+-----------------------------+

SELECT JSON_EXTRACT(@json, '$[2]');

+-----------------------------+

| JSON_EXTRACT(@json, '$[2]') |

+-----------------------------+

| [3, 4] |

+-----------------------------+

SELECT JSON_EXTRACT(@json, '$[2][1]');

+--------------------------------+

| JSON_EXTRACT(@json, '$[2][1]') |

+--------------------------------+

| 4 |

+--------------------------------+

1.2.9.4.16 JSON_INSERT

Syntax

JSON_INSERT(json_doc, path, val[, path, val] ...)

Contents
1. Syntax

2. Description

3. Examples

Description
Inserts data into a JSON document, returning the resulting document or NULL if either of the json_doc or path arguments

are null.

An error will occur if the JSON document is invalid, or if any of the paths are invalid or contain a * or ** wildcard.

JSON_INSERT can only insert data while JSON_REPLACE can only update. JSON_SET can update or insert data.

Examples

SET @json = '{ "A": 0, "B": [1, 2]}';

SELECT JSON_INSERT(@json, '$.C', '[3, 4]');

+--------------------------------------+

| JSON_INSERT(@json, '$.C', '[3, 4]') |

+--------------------------------------+

| { "A": 0, "B": [1, 2], "C":"[3, 4]"} |

+--------------------------------------+

1.2.9.4.17 JSON_KEYS

Syntax

JSON_KEYS(json_doc[, path])

1227/4161

Description
Returns the keys as a JSON array from the top-level value of a JSON object or, if the optional path argument is provided,

the top-level keys from the path.

Excludes keys from nested sub-objects in the top level value. The resulting array will be empty if the selected object is

empty.

Returns NULL if any of the arguments are null, a given path does not locate an object, or if the json_doc argument is not an

object.

An error will occur if JSON document is invalid, the path is invalid or if the path contains a * or ** wildcard.

Examples

SELECT JSON_KEYS('{"A": 1, "B": {"C": 2}}');

+--------------------------------------+

| JSON_KEYS('{"A": 1, "B": {"C": 2}}') |

+--------------------------------------+

| ["A", "B"] |

+--------------------------------------+

SELECT JSON_KEYS('{"A": 1, "B": 2, "C": {"D": 3}}', '$.C');

+---+

| JSON_KEYS('{"A": 1, "B": 2, "C": {"D": 3}}', '$.C') |

+---+

| ["D"] |

+---+

1.2.9.4.18 JSON_LENGTH

Syntax

JSON_LENGTH(json_doc[, path])

Description
Returns the length of a JSON document, or, if the optional path argument is given, the length of the value within the

document specified by the path.

Returns NULL if any of the arguments argument are null or the path argument does not identify a value in the document.

An error will occur if the JSON document is invalid, the path is invalid or if the path contains a * or ** wildcard.

Length will be determined as follow:

A scalar's length is always 1.

If an array, the number of elements in the array.

If an object, the number of members in the object.

The length of nested arrays or objects are not counted.

Examples

1.2.9.4.19 JSON_LOOSE

Syntax

JSON_LOOSE(json_doc)

1228/4161

Description
Adds spaces to a JSON document to make it look more readable.

Example

SET @j = '{ "A":1,"B":[2,3]}';

SELECT JSON_LOOSE(@j), @j;

+-----------------------+--------------------+

| JSON_LOOSE(@j) | @j |

+-----------------------+--------------------+

| {"A": 1, "B": [2, 3]} | { "A":1,"B":[2,3]} |

+-----------------------+--------------------+

1.2.9.4.20 JSON_MERGE

Syntax

JSON_MERGE(json_doc, json_doc[, json_doc] ...)

Description
Merges the given JSON documents.

Returns the merged result,or NULL if any argument is NULL.

An error occurs if any of the arguments are not valid JSON documents.

JSON_MERGE has been deprecated since MariaDB 10.2.25 , MariaDB 10.3.16 and MariaDB 10.4.5.

JSON_MERGE_PATCH is an RFC 7396-compliant replacement, and JSON_MERGE_PRESERVE is a synonym.

Example

SET @json1 = '[1, 2]';

SET @json2 = '[3, 4]';

SELECT JSON_MERGE(@json1,@json2);

+---------------------------+

| JSON_MERGE(@json1,@json2) |

+---------------------------+

| [1, 2, 3, 4] |

+---------------------------+

1.2.9.4.21 JSON_MERGE_PATCH

Syntax

JSON_MERGE_PATCH(json_doc, json_doc[, json_doc] ...)

Description
Merges the given JSON documents, returning the merged result, or NULL if any argument is NULL.

JSON_MERGE_PATCH is an RFC 7396-compliant replacement for JSON_MERGE, which has been deprecated.

Unlike JSON_MERGE_PRESERVE, members with duplicate keys are not preserved.

1229/4161

https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/kb/en/mariadb-10316-release-notes/

Example

SET @json1 = '[1, 2]';

SET @json2 = '[2, 3]';

SELECT JSON_MERGE_PATCH(@json1,@json2),JSON_MERGE_PRESERVE(@json1,@json2);

+---------------------------------+------------------------------------+

| JSON_MERGE_PATCH(@json1,@json2) | JSON_MERGE_PRESERVE(@json1,@json2) |

+---------------------------------+------------------------------------+

| [2, 3] | [1, 2, 2, 3] |

+---------------------------------+------------------------------------+

1.2.9.4.22 JSON_MERGE_PRESERVE

Syntax

JSON_MERGE_PRESERVE(json_doc, json_doc[, json_doc] ...)

Description
Merges the given JSON documents, returning the merged result, or NULL if any argument is NULL.

JSON_MERGE_PRESERVE was introduced as a synonym for JSON_MERGE, which has been deprecated.

Unlike JSON_MERGE_PATCH, members with duplicate keys are preserved.

Example

SET @json1 = '[1, 2]';

SET @json2 = '[2, 3]';

SELECT JSON_MERGE_PATCH(@json1,@json2),JSON_MERGE_PRESERVE(@json1,@json2);

+---------------------------------+------------------------------------+

| JSON_MERGE_PATCH(@json1,@json2) | JSON_MERGE_PRESERVE(@json1,@json2) |

+---------------------------------+------------------------------------+

| [2, 3] | [1, 2, 2, 3] |

+---------------------------------+------------------------------------+

1.2.9.4.23 JSON_NORMALIZE

JSON_NORMALIZE was added in MariaDB 10.7.0 .

Syntax

JSON_NORMALIZE(json)

Description
Recursively sorts keys and removes spaces, allowing comparison of json documents for equality.

Examples
We may wish our application to use the database to enforce a unique constraint on the JSON contents, and we can do so

using the JSON_NORMALIZE function in combination with a unique key.

For example, if we have a table with a JSON column:

MariaDB starting with 10.7.0

1230/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

CREATE TABLE t1 (

 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT,

 val JSON,

 /* other columns here */

 PRIMARY KEY (id)

);

Add a unique constraint using JSON_NORMALIZE like this:

ALTER TABLE t1

 ADD COLUMN jnorm JSON AS (JSON_NORMALIZE(val)) VIRTUAL,

 ADD UNIQUE KEY (jnorm);

We can test this by first inserting a row as normal:

INSERT INTO t1 (val) VALUES ('{"name":"alice","color":"blue"}');

And then seeing what happens with a different string which would produce the same JSON object:

INSERT INTO t1 (val) VALUES ('{ "color": "blue", "name": "alice" }');

ERROR 1062 (23000): Duplicate entry '{"color":"blue","name":"alice"}' for key 'jnorm'

1.2.9.4.24 JSON_OBJECT

Syntax

JSON_OBJECT([key, value[, key, value] ...])

Description
Returns a JSON object containing the given key/value pairs. The key/value list can be empty.

An error will occur if there are an odd number of arguments, or any key name is NULL.

Example

SELECT JSON_OBJECT("id", 1, "name", "Monty");

+---------------------------------------+

| JSON_OBJECT("id", 1, "name", "Monty") |

+---------------------------------------+

| {"id": 1, "name": "Monty"} |

+---------------------------------------+

1.2.9.4.25 JSON_OBJECT_FILTER_KEYS

JSON_OBJECT_FILTER_KEYS was added in MariaDB 11.2.0.

Syntax

JSON_OBJECT_FILTER_KEYS(obj, array_keys)

Description
JSON_OBJECT_FILTER_KEYS returns a JSON object with keys from the object that are also present in the array as string. It

is used when one wants to get key-value pair such that the keys are common but the values may not be common.

MariaDB starting with 11.2.0

1231/4161

https://mariadb.com/kb/en/mariadb-1120-release-notes/

Example

SET @obj1= '{ "a": 1, "b": 2, "c": 3}';

SET @obj2= '{"b" : 10, "c": 20, "d": 30}';

SELECT JSON_OBJECT_FILTER_KEYS (@obj1, JSON_ARRAY_INTERSECT(JSON_KEYS(@obj1), JSON_KEYS(@obj2)));

+---+

| JSON_OBJECT_FILTER_KEYS (@obj1, JSON_ARRAY_INTERSECT(JSON_KEYS(@obj1), JSON_KEYS(@obj2))) |

+---+

| {"b": 2, "c": 3} |

+---+

1.2.9.4.26 JSON_OBJECT_TO_ARRAY

JSON_OBJECT_TO_ARRAY was added in MariaDB 11.2.0.

Syntax

JSON_OBJECT_TO_ARRAY(Obj)

Description
It is used to convert all JSON objects found in a JSON document to JSON arrays where each item in the outer array

represents a single key-value pair from the object. It is used when we want not just common keys, but also common values.

It can be used in conjunction with JSON_ARRAY_INTERSECT().

Examples

SET @obj1= '{ "a": [1, 2, 3], "b": { "key1":"val1", "key2": {"key3":"val3"} }}';

SELECT JSON_OBJECT_TO_ARRAY(@obj1);

+---+

| JSON_OBJECT_TO_ARRAY(@obj1) |

+---+

| [["a", [1, 2, 3]], ["b", {"key1": "val1", "key2": {"key3": "val3"}}]] |

+---+

MariaDB starting with 11.2.0

1.2.4.10 JSON_OBJECTAGG

1.2.9.4.28 JSON_OVERLAPS

JSON_OVERLAPS was added in MariaDB 10.9.

Syntax

JSON_OVERLAPS(json_doc1, json_doc2)

Description
JSON_OVERLAPS() compares two json documents and returns true if they have at least one common key-value pair

between two objects, array element common between two arrays, or array element common with scalar if one of the

arguments is a scalar and other is an array. If two json documents are scalars, it returns true if they have same type and

MariaDB starting with 10.9

1232/4161

https://mariadb.com/kb/en/mariadb-1120-release-notes/

value.

If none of the above conditions are satisfied then it returns false.

Examples

SELECT JSON_OVERLAPS('false', 'false');

+---------------------------------+

| JSON_OVERLAPS('false', 'false') |

+---------------------------------+

| 1 |

+---------------------------------+

SELECT JSON_OVERLAPS('true', '["abc", 1, 2, true, false]');

+--+

| JSON_OVERLAPS('true','["abc", 1, 2, true, false]') |

+--+

| 1 |

+--+

SELECT JSON_OVERLAPS('{"A": 1, "B": {"C":2}}', '{"A": 2, "B": {"C":2}}') AS is_overlap;

+---------------------+

| is_overlap |

+---------------------+

| 1 |

+---------------------+

Partial match is considered as no-match.

Examples

SELECT JSON_OVERLAPS('[1, 2, true, false, null]', '[3, 4, [1]]') AS is_overlap;

+--------------------- +

| is_overlap |

+----------------------+

| 0 |

+----------------------+

1.2.9.4.29 JSON_PRETTY
JSON_PRETTY was added as an alias for JSON_DETAILED in MariaDB 10.10.3, MariaDB 10.9.5, MariaDB 10.8.7 ,

MariaDB 10.7.8 , MariaDB 10.6.12, MariaDB 10.5.19 and MariaDB 10.4.28.

1.2.9.4.30 JSON_QUERY

Syntax

JSON_QUERY(json_doc, path)

Description
Given a JSON document, returns an object or array specified by the path. Returns NULL if not given a valid JSON

document, or if there is no match.

Examples

1233/4161

https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/

select json_query('{"key1":{"a":1, "b":[1,2]}}', '$.key1');

+---+

| json_query('{"key1":{"a":1, "b":[1,2]}}', '$.key1') |

+---+

| {"a":1, "b":[1,2]} |

+---+

select json_query('{"key1":123, "key1": [1,2,3]}', '$.key1');

+---+

| json_query('{"key1":123, "key1": [1,2,3]}', '$.key1') |

+---+

| [1,2,3] |

+---+

1.2.9.4.31 JSON_QUOTE

Syntax

JSON_QUOTE(json_value)

Description
Quotes a string as a JSON value, usually for producing valid JSON string literals for inclusion in JSON documents. Wraps

the string with double quote characters and escapes interior quotes and other special characters, returning a utf8mb4 string.

Returns NULL if the argument is NULL.

Examples

SELECT JSON_QUOTE('A'), JSON_QUOTE("B"), JSON_QUOTE('"C"');

+-----------------+-----------------+-------------------+

| JSON_QUOTE('A') | JSON_QUOTE("B") | JSON_QUOTE('"C"') |

+-----------------+-----------------+-------------------+

| "A" | "B" | "\"C\"" |

+-----------------+-----------------+-------------------+

1.2.9.4.32 JSON_REMOVE

Syntax

JSON_REMOVE(json_doc, path[, path] ...)

Contents
1. Syntax

2. Description

3. Examples

Description
Removes data from a JSON document returning the result, or NULL if any of the arguments are null. If the element does not

exist in the document, no changes are made.

The function returns NULL and throws a warning if the JSON document is invalid, the path is invalid, contains a range, or

contains a * or ** wildcard.

Path arguments are evaluated from left to right, with the result from the earlier evaluation being used as the value for the

next.

1234/4161

Examples

SELECT JSON_REMOVE('{"A": 1, "B": 2, "C": {"D": 3}}', '$.C');

+---+

| JSON_REMOVE('{"A": 1, "B": 2, "C": {"D": 3}}', '$.C') |

+---+

| {"A": 1, "B": 2} |

+---+

SELECT JSON_REMOVE('["A", "B", ["C", "D"], "E"]', '$[1]');

+--+

| JSON_REMOVE('["A", "B", ["C", "D"], "E"]', '$[1]') |

+--+

| ["A", ["C", "D"], "E"] |

+--+

1.2.9.4.33 JSON_REPLACE

Syntax

JSON_REPLACE(json_doc, path, val[, path, val] ...)

Contents
1. Syntax

2. Description

3. Examples

Description
Replaces existing values in a JSON document, returning the result, or NULL if any of the arguments are NULL.

An error will occur if the JSON document is invalid, the path is invalid or if the path contains a * or ** wildcard.

Paths and values are evaluated from left to right, with the result from the earlier evaluation being used as the value for the

next.

JSON_REPLACE can only update data, while JSON_INSERT can only insert. JSON_SET can update or insert data.

Examples

SELECT JSON_REPLACE('{ "A": 1, "B": [2, 3]}', '$.B[1]', 4);

+---+

| JSON_REPLACE('{ "A": 1, "B": [2, 3]}', '$.B[1]', 4) |

+---+

| { "A": 1, "B": [2, 4]} |

+---+

1.2.9.4.34 JSON_SCHEMA_VALID

JSON_SCHEMA_VALID was introduced in MariaDB 11.1.

Syntax

JSON_SCHEMA_VALID(schema, json);

MariaDB starting with 11.1

1235/4161

Contents
1. Syntax

Description

Examples

Description
JSON_SCHEMA_VALID allows MariaDB to support JSON schema validation. If a given json is valid against a schema it

returns true. When JSON does not validate against the schema, it does not return a message about which keyword it failed

against and only returns false.

The function supports JSON Schema Draft 2020 with a few exceptions:

External resources are not supported

Hyper schema keywords are not supported

Formats like date, email etc are treated as annotations.

Examples
To create validation rules for json field

1236/4161

https://json-schema.org/draft/2020-12/release-notes.html

CREATE TABLE obj_table(val_obj JSON CHECK(JSON_SCHEMA_VALID('{

 "type":"object",

 "properties": {

 "number1":{

 "type":"number",

 "maximum":5,

 "const":4

 },

 "string1":{

 "type":"string",

 "maxLength":5,

 "minLength":3

 },

 "object1":{

 "type":"object",

 "properties":{

 "key1": {"type":"string"},

 "key2":{"type":"array"},

 "key3":{"type":"number", "minimum":3}

 },

 "dependentRequired": { "key1":["key3"] }

 }

 },

 "required":["number1","object1"]

 }', val_obj)));

INSERT INTO obj_table VALUES(

 '{"number1":4, "string1":"abcd",

 "object1":{"key1":"val1", "key2":[1,2,3, "string1"], "key3":4}}'

);

INSERT INTO obj_table VALUES(

 '{"number1":3, "string1":"abcd",

 "object1":{"key1":"val1", "key2":[1,2,3, "string1"], "key3":4}}'

);

ERROR 4025 (23000): CONSTRAINT `obj_table.val_obj` failed for `test`.`obj_table`

SELECT * FROM obj_table;

+--+

| val_obj |

+--+

| {"number1":4, "string1":"abcd", "object1":{"key1":"val1", "key2":[1,2,3, "string1"], "key3":4}}

+--+

SET @schema= '{

 "properties" : {

 "number1":{ "maximum":10 },

 "string1" : { "maxLength": 3}

 }

}';

SELECT JSON_SCHEMA_VALID(@schema, '{ "number1":25, "string1":"ab" }');

+--+

| JSON_SCHEMA_VALID(@schema, '{ "number1":25, "string1":"ab" }') |

+--+

| 0 |

+--+

SELECT JSON_SCHEMA_VALID(@schema, '{ "number1":10, "string1":"ab" }');

+--+

| JSON_SCHEMA_VALID(@schema, '{ "number1":10, "string1":"ab" }') |

+--+

| 1 |

+--+

1.2.9.4.35 JSON_SEARCH

Syntax

1237/4161

JSON_SEARCH(json_doc, return_arg, search_str[, escape_char[, path] ...])

Description
Returns the path to the given string within a JSON document, or NULL if any of json_doc, search_str or a path argument is

NULL; if the search string is not found, or if no path exists within the document.

A warning will occur if the JSON document is not valid, any of the path arguments are not valid, if return_arg is neither one

nor all, or if the escape character is not a constant. NULL will be returned.

return_arg can be one of two values:

'one : Terminates after finding the first match, so will return one path string. If there is more than one match, it is

undefined which is considered first.

all : Returns all matching path strings, without duplicates. Multiple strings are autowrapped as an array. The order

is undefined.

Examples

SET @json = '["A", [{"B": "1"}], {"C":"AB"}, {"D":"BC"}]';

SELECT JSON_SEARCH(@json, 'one', 'AB');

+---------------------------------+

| JSON_SEARCH(@json, 'one', 'AB') |

+---------------------------------+

| "$[2].C" |

+---------------------------------+

1.2.9.4.36 JSON_SET

Syntax

JSON_SET(json_doc, path, val[, path, val] ...)

Description
Updates or inserts data into a JSON document, returning the result, or NULL if any of the arguments are NULL or the

optional path fails to find an object.

An error will occur if the JSON document is invalid, the path is invalid or if the path contains a * or wildcard.

JSON_SET can update or insert data, while JSON_REPLACE can only update, and JSON_INSERT only insert.

Examples

SELECT JSON_SET(Priv, '$.locked', 'true') FROM mysql.global_priv

1.2.9.4.37 JSON_TABLE

JSON_TABLE was added in MariaDB 10.6.0.

JSON_TABLE is a table function that converts JSON data into a relational form.

Syntax

MariaDB starting with 10.6.0

1238/4161

JSON_TABLE(json_doc,

 context_path COLUMNS (column_list)

) [AS] alias

column_list:

 column[, column][, ...]

column:

 name FOR ORDINALITY

 | name type PATH path_str [on_empty] [on_error]

 | name type EXISTS PATH path_str

 | NESTED PATH path_str COLUMNS (column_list)

on_empty:

 {NULL | DEFAULT string | ERROR} ON EMPTY

on_error:

 {NULL | DEFAULT string | ERROR} ON ERROR

Contents
1. Syntax

2. Description

1. Column Definitions

1. Path Columns

2. ORDINALITY Columns

3. EXISTS PATH Columns

4. NESTED PATHs

2. ON EMPTY and ON ERROR Clauses

3. Replication

4. Extracting a Subdocument into a Column

Description
JSON_TABLE can be used in contexts where a table reference can be used; in the FROM clause of a SELECT statement,

and in multi-table UPDATE/DELETE statements.

json_doc is the JSON document to extract data from. In the simplest case, it is a string literal containing JSON. In more

complex cases it can be an arbitrary expression returning JSON. The expression may have references to columns of other

tables. However, one can only refer to tables that precede this JSON_TABLE invocation. For RIGHT JOIN, it is assumed

that its outer side precedes the inner. All tables in outer selects are also considered preceding.

context_path is a JSON Path expression pointing to a collection of nodes in json_doc that will be used as the source

of rows.

The COLUMNS clause declares the names and types of the columns that JSON_TABLE returns, as well as how the values

of the columns are produced.

Column Definitions

The following types of columns are supported:

Path Columns

name type PATH path_str [on_empty] [on_error]

Locates the JSON node pointed to by path_str and returns its value. The path_str is evaluated using the current row

source node as the context node.

1239/4161

set @json='

[

 {"name":"Laptop", "color":"black", "price":"1000"},

 {"name":"Jeans", "color":"blue"}

]';

select * from json_table(@json, '$[*]'

 columns(

 name varchar(10) path '$.name',

 color varchar(10) path '$.color',

 price decimal(8,2) path '$.price')

) as jt;

+--------+-------+---------+

| name | color | price |

+--------+-------+---------+

| Laptop | black | 1000.00 |

| Jeans | blue | NULL |

+--------+-------+---------+

The on_empty and on_error clauses specify the actions to be performed when the value was not found or there was an

error condition. See the ON EMPTY and ON ERROR clauses section for details.

ORDINALITY Columns

name FOR ORDINALITY

Counts the rows, starting from 1.

Example:

set @json='

[

 {"name":"Laptop", "color":"black"},

 {"name":"Jeans", "color":"blue"}

]';

select * from json_table(@json, '$[*]'

 columns(

 id for ordinality,

 name varchar(10) path '$.name')

) as jt;

+------+--------+

| id | name |

+------+--------+

| 1 | Laptop |

| 2 | Jeans |

+------+--------+

EXISTS PATH Columns

name type EXISTS PATH path_str

Checks whether the node pointed to by value_path exists. The value_path is evaluated using the current row source

node as the context node.

1240/4161

set @json='

[

 {"name":"Laptop", "color":"black", "price":1000},

 {"name":"Jeans", "color":"blue"}

]';

select * from json_table(@json, '$[*]'

 columns(

 name varchar(10) path '$.name',

 has_price integer exists path '$.price')

) as jt;

+--------+-----------+

| name | has_price |

+--------+-----------+

| Laptop | 1 |

| Jeans | 0 |

+--------+-----------+

NESTED PATHs

NESTED PATH converts nested JSON structures into multiple rows.

NESTED PATH path COLUMNS (column_list)

It finds the sequence of JSON nodes pointed to by path and uses it to produce rows. For each found node, a row is

generated with column values as specified by the NESTED PATH's COLUMNS clause. If path finds no nodes, only one

row is generated with all columns having NULL values.

For example, consider a JSON document that contains an array of items, and each item, in turn, is expected to have an

array of its available sizes:

set @json='

[

 {"name":"Jeans", "sizes": [32, 34, 36]},

 {"name":"T-Shirt", "sizes":["Medium", "Large"]},

 {"name":"Cellphone"}

]';

NESTED PATH allows one to produce a separate row for each size each item has:

select * from json_table(@json, '$[*]'

 columns(

 name varchar(10) path '$.name',

 nested path '$.sizes[*]' columns (

 size varchar(32) path '$'

)

)

) as jt;

+-----------+--------+

| name | size |

+-----------+--------+

| Jeans | 32 |

| Jeans | 34 |

| Jeans | 36 |

| T-Shirt | Medium |

| T-Shirt | Large |

| Cellphone | NULL |

+-----------+--------+

NESTED PATH clauses can be nested within one another. They can also be located next to each other. In that case, the

nested path clauses will produce records one at a time. The ones that are not producing records will have all columns set to

NULL.

Example:

1241/4161

set @json='

[

 {"name":"Jeans", "sizes": [32, 34, 36], "colors":["black", "blue"]}

]';

select * from json_table(@json, '$[*]'

 columns(

 name varchar(10) path '$.name',

 nested path '$.sizes[*]' columns (

 size varchar(32) path '$'

),

 nested path '$.colors[*]' columns (

 color varchar(32) path '$'

)

)

) as jt;

+-------+------+-------+

| name | size | color |

+-------+------+-------+

| Jeans | 32 | NULL |

| Jeans | 34 | NULL |

| Jeans | 36 | NULL |

| Jeans | NULL | black |

| Jeans | NULL | blue |

+-------+------+-------+

ON EMPTY and ON ERROR Clauses

The ON EMPTY clause specifies what will be done when the element specified by the search path is missing in the JSON

document.

on_empty:

 {NULL | DEFAULT string | ERROR} ON EMPTY

When ON EMPTY clause is not present, NULL ON EMPTY is implied.

on_error:

 {NULL | DEFAULT string | ERROR} ON ERROR

The ON ERROR clause specifies what should be done if a JSON structure error occurs when trying to extract the value

pointed to by the path expression. A JSON structure error here occurs only when one attempts to convert a JSON non-

scalar (array or object) into a scalar value. When the ON ERROR clause is not present, NULL ON ERROR is implied.

Note: A datatype conversion error (e.g. attempt to store a non-integer value into an integer field, or a varchar column being

truncated) is not considered a JSON error and so will not trigger the ON ERROR behavior. It will produce warnings, in the

same way as CAST(value AS datatype) would.

Replication

In the current code, evaluation of JSON_TABLE is deterministic, that is, for a given input string JSON_TABLE will always

produce the same set of rows in the same order. However, one can think of JSON documents that one can consider

identical which will produce different output. In order to be future-proof and withstand changes like:

sorting JSON object members by name (like MySQL does)

changing the way duplicate object members are handled the function is marked as unsafe for statement-based

replication.

Extracting a Subdocument into a Column

Prior to MariaDB 10.6.9, JSON_TABLE did not allow one to extract a JSON "subdocument" into a JSON column.

MariaDB starting with 10.6.9

1242/4161

SELECT * FROM JSON_TABLE('{"foo": [1,2,3,4]}','$' columns(jscol json path '$.foo')) AS T;

+-------+

| jscol |

+-------+

| NULL |

+-------+

This is supported from MariaDB 10.6.9:

SELECT * FROM JSON_TABLE('{"foo": [1,2,3,4]}','$' columns(jscol json path '$.foo')) AS T;

+-----------+

| jscol |

+-----------+

| [1,2,3,4] |

+-----------+

1.2.9.4.38 JSON_TYPE

Syntax

JSON_TYPE(json_val)

Description
Returns the type of a JSON value (as a string), or NULL if the argument is null.

An error will occur if the argument is an invalid JSON value.

The following is a complete list of the possible return types:

Return

type
Value Example

ARRAY JSON array
[1, 2, {"key":

"value"}]

OBJECT JSON object {"key":"value"}

BOOLEAN JSON true/false literals true, false

DOUBLE A number with at least one floating point decimal. 1.2

INTEGER A number without a floating point decimal. 1

NULL
JSON null literal (this is returned as a string, not to be confused with the SQL NULL

value!)
null

STRING JSON String "a sample string"

Examples

SELECT JSON_TYPE('{"A": 1, "B": 2, "C": 3}');

+---------------------------------------+

| JSON_TYPE('{"A": 1, "B": 2, "C": 3}') |

+---------------------------------------+

| OBJECT |

+---------------------------------------+

1.2.9.4.39 JSON_UNQUOTE

Syntax
1243/4161

JSON_UNQUOTE(val)

Description
Unquotes a JSON value, returning a string, or NULL if the argument is null.

An error will occur if the given value begins and ends with double quotes and is an invalid JSON string literal.

If the given value is not a JSON string, value is passed through unmodified.

Certain character sequences have special meanings within a string. Usually, a backslash is ignored, but the escape

sequences in the table below are recognised by MariaDB, unless the SQL Mode is set to NO_BACKSLASH_ESCAPES

SQL.

Escape sequence Character

\" Double quote (")

\b Backslash

\f Formfeed

\n Newline (linefeed)

\r Carriage return

\t Tab

\\ Backslash (\)

\uXXXX UTF-8 bytes for Unicode value XXXX

Examples

SELECT JSON_UNQUOTE('"Monty"');

+-------------------------+

| JSON_UNQUOTE('"Monty"') |

+-------------------------+

| Monty |

+-------------------------+

With the default SQL Mode:

SELECT JSON_UNQUOTE('Si\bng\ting');

+-----------------------------+

| JSON_UNQUOTE('Si\bng\ting') |

+-----------------------------+

| Sng ing |

+-----------------------------+

Setting NO_BACKSLASH_ESCAPES:

SET @@sql_mode = 'NO_BACKSLASH_ESCAPES';

SELECT JSON_UNQUOTE('Si\bng\ting');

+-----------------------------+

| JSON_UNQUOTE('Si\bng\ting') |

+-----------------------------+

| Si\bng\ting |

+-----------------------------+

1.2.9.4.40 JSON_VALID

Syntax

1244/4161

JSON_VALID(value)

Contents
1. Syntax

2. Description

3. Examples

Description
Indicates whether the given value is a valid JSON document or not. Returns 1 if valid, 0 if not, and NULL if the argument

is NULL.

From MariaDB 10.4.3, the JSON_VALID function is automatically used as a CHECK constraint for the JSON data type alias

in order to ensure that a valid json document is inserted.

Examples

SELECT JSON_VALID('{"id": 1, "name": "Monty"}');

+--+

| JSON_VALID('{"id": 1, "name": "Monty"}') |

+--+

| 1 |

+--+

SELECT JSON_VALID('{"id": 1, "name": "Monty", "oddfield"}');

+--+

| JSON_VALID('{"id": 1, "name": "Monty", "oddfield"}') |

+--+

| 0 |

+--+

1.2.9.4.41 JSON_VALUE

Syntax

JSON_VALUE(json_doc, path)

Description
Given a JSON document, returns the scalar specified by the path. Returns NULL if not given a valid JSON document, or if

there is no match.

Examples

select json_value('{"key1":123}', '$.key1');

+--------------------------------------+

| json_value('{"key1":123}', '$.key1') |

+--------------------------------------+

| 123 |

+--------------------------------------+

select json_value('{"key1": [1,2,3], "key1":123}', '$.key1');

+---+

| json_value('{"key1": [1,2,3], "key1":123}', '$.key1') |

+---+

| 123 |

+---+

In the SET statement below, two escape characters are needed, as a single escape character would be applied by the SQL

parser in the SET statement, and the escaped character would not form part of the saved value.

1245/4161

SET @json = '{"key1":"60\\" Table", "key2":"1"}';

SELECT JSON_VALUE(@json,'$.key1') AS Name , json_value(@json,'$.key2') as ID;

+-----------+------+

| Name | ID |

+-----------+------+

| 60" Table | 1 |

+-----------+------+

1.1.6.6 SEQUENCE Functions

1.2.9.6 Spider Functions
The following UDFs are available with the Spider Storage Engine.

SPIDER_BG_DIRECT_SQL

Background SQL execution

SPIDER_COPY_TABLES

Copy table data

SPIDER_DIRECT_SQL

Execute SQL on the remote server

SPIDER_FLUSH_TABLE_MON_CACHE

Refreshing Spider monitoring server information

1.2.9.6.1 SPIDER_BG_DIRECT_SQL

Syntax

SPIDER_BG_DIRECT_SQL('sql', 'tmp_table_list', 'parameters')

Description
Executes the given SQL statement in the background on the remote server, as defined in the parameters listing. If the query

returns a result-set, it sttores the results in the given temporary table. When the given SQL statement executes successfully,

this function returns the number of called UDF's. It returns 0 when the given SQL statement fails.

This function is a UDF installed with the Spider storage engine.

Examples

SELECT SPIDER_BG_DIRECT_SQL('SELECT * FROM example_table', '',

 'srv "node1", port "8607"') AS "Direct Query";

+--------------+

| Direct Query |

+--------------+

| 1 |

+--------------+

Parameters

error_rw_mode

Description: Returns empty results on network error.

0 : Return error on getting network error.

1 : Return 0 records on getting network error.

1246/4161

Default Table Value: 0

DSN Parameter Name: erwm

1.2.9.6.2 SPIDER_COPY_TABLES

Syntax

SPIDER_COPY_TABLES(spider_table_name,

 source_link_id, destination_link_id_list [,parameters])

Description
A UDF installed with the Spider Storage Engine, this function copies table data from source_link_id to

destination_link_id_list . The service does not need to be stopped in order to copy.

If the Spider table is partitioned, the name must be of the format table_name#P#partition_name . The partition name can

be viewed in the mysql.spider_tables table, for example:

SELECT table_name FROM mysql.spider_tables;

+-------------+

| table_name |

+-------------+

| spt_a#P#pt1 |

| spt_a#P#pt2 |

| spt_a#P#pt3 |

+-------------+

Returns 1 if the data was copied successfully, or 0 if copying the data failed.

1.2.9.6.3 SPIDER_DIRECT_SQL

Syntax

SPIDER_DIRECT_SQL('sql', 'tmp_table_list', 'parameters')

Description
A UDF installed with the Spider Storage Engine, this function is used to execute the SQL string sql on the remote server,

as defined in parameters . If any resultsets are returned, they are stored in the tmp_table_list .

The function returns 1 if the SQL executes successfully, or 0 if it fails.

Examples

SELECT SPIDER_DIRECT_SQL('SELECT * FROM s', '', 'srv "node1", port "8607"');

+--+

| SPIDER_DIRECT_SQL('SELECT * FROM s', '', 'srv "node1", port "8607"') |

+--+

| 1 |

+--+

1.2.9.6.4
SPIDER_FLUSH_TABLE_MON_CACHE

Syntax
1247/4161

SPIDER_FLUSH_TABLE_MON_CACHE()

Description
A UDF installed with the Spider Storage Engine, this function is used for refreshing monitoring server information. It returns

a value of 1 .

Examples

SELECT SPIDER_FLUSH_TABLE_MON_CACHE();

+--------------------------------+

| SPIDER_FLUSH_TABLE_MON_CACHE() |

+--------------------------------+

| 1 |

+--------------------------------+

1.2.9.7 Window Functions
Window functions perform calculations across a set of rows related to the current row.

Window Functions Overview

Window functions perform calculations across a set of rows related to the current row.

AVG

Returns the average value.

BIT_AND

Bitwise AND.

BIT_OR

Bitwise OR.

BIT_XOR

Bitwise XOR.

COUNT

Returns count of non-null values.

CUME_DIST

Window function that returns the cumulative distribution of a given row.

DENSE_RANK

Rank of a given row with identical values receiving the same result, no skipping.

FIRST_VALUE

Returns the first result from an ordered set.

JSON_ARRAYAGG

Returns a JSON array containing an element for each value in a given set of JSON or SQL values.

JSON_OBJECTAGG

Returns a JSON object containing key-value pairs.

LAG

Accesses data from a previous row in the same result set without the need for a self-join.

LAST_VALUE

Returns the last value in a list or set of values.

LEAD

Accesses data from a following row in the same result set without the need for a self-join.

4

1

3

1

1

2

1248/4161

MAX

Returns the maximum value.

MEDIAN

Window function that returns the median value of a range of values.

MIN

Returns the minimum value.

NTH_VALUE

Returns the value evaluated at the specified row number of the window frame.

NTILE

Returns an integer indicating which group a given row falls into.

PERCENT_RANK

Window function that returns the relative percent rank of a given row.

PERCENTILE_CONT

Continuous percentile.

PERCENTILE_DISC

Discrete percentile.

RANK

Rank of a given row with identical values receiving the same result.

ROW_NUMBER

Row number of a given row with identical values receiving a different result.

STD

Population standard deviation.

STDDEV

Population standard deviation.

STDDEV_POP

Returns the population standard deviation.

STDDEV_SAMP

Standard deviation.

SUM

Sum total.

VAR_POP

Population standard variance.

VAR_SAMP

Returns the sample variance.

VARIANCE

Population standard variance.

Aggregate Functions as Window Functions

It is possible to use aggregate functions as window functions.

ColumnStore Window Functions

Summary of window function use with the ColumnStore engine

Window Frames

Some window functions operate on window frames.

1

1

3

2

1249/4161

1.2.9.7.1 Window Functions Overview
Contents
1. Introduction

1. Syntax

2. Description

2. Scope

3. Links

4. Examples

Introduction
Window functions allow calculations to be performed across a set of rows related to the current row.

Syntax

function (expression) OVER (

 [PARTITION BY expression_list]

 [ORDER BY order_list [frame_clause]])

function:

 A valid window function

expression_list:

 expression | column_name [, expr_list]

order_list:

 expression | column_name [ASC | DESC]

 [, ...]

frame_clause:

 {ROWS | RANGE} {frame_border | BETWEEN frame_border AND frame_border}

frame_border:

 | UNBOUNDED PRECEDING

 | UNBOUNDED FOLLOWING

 | CURRENT ROW

 | expr PRECEDING

 | expr FOLLOWING

Description

In some ways, window functions are similar to aggregate functions in that they perform calculations across a set of rows.

However, unlike aggregate functions, the output is not grouped into a single row.

Non-aggregate window functions include

CUME_DIST

DENSE_RANK

FIRST_VALUE

LAG

LAST_VALUE

LEAD

MEDIAN

NTH_VALUE

NTILE

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

RANK, ROW_NUMBER

Aggregate functions that can also be used as window functions include

AVG

BIT_AND

BIT_OR

BIT_XOR

COUNT

1250/4161

MAX

MIN

STD

STDDEV

STDDEV_POP

STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

Window function queries are characterised by the OVER keyword, following which the set of rows used for the calculation is

specified. By default, the set of rows used for the calculation (the "window) is the entire dataset, which can be ordered with

the ORDER BY clause. The PARTITION BY clause is used to reduce the window to a particular group within the dataset.

For example, given the following data:

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT);

INSERT INTO student VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

the following two queries return the average partitioned by test and by name respectively:

SELECT name, test, score, AVG(score) OVER (PARTITION BY test)

 AS average_by_test FROM student;

+---------+--------+-------+-----------------+

| name | test | score | average_by_test |

+---------+--------+-------+-----------------+

| Chun | SQL | 75 | 65.2500 |

| Chun | Tuning | 73 | 68.7500 |

| Esben | SQL | 43 | 65.2500 |

| Esben | Tuning | 31 | 68.7500 |

| Kaolin | SQL | 56 | 65.2500 |

| Kaolin | Tuning | 88 | 68.7500 |

| Tatiana | SQL | 87 | 65.2500 |

| Tatiana | Tuning | 83 | 68.7500 |

+---------+--------+-------+-----------------+

SELECT name, test, score, AVG(score) OVER (PARTITION BY name)

 AS average_by_name FROM student;

+---------+--------+-------+-----------------+

| name | test | score | average_by_name |

+---------+--------+-------+-----------------+

| Chun | SQL | 75 | 74.0000 |

| Chun | Tuning | 73 | 74.0000 |

| Esben | SQL | 43 | 37.0000 |

| Esben | Tuning | 31 | 37.0000 |

| Kaolin | SQL | 56 | 72.0000 |

| Kaolin | Tuning | 88 | 72.0000 |

| Tatiana | SQL | 87 | 85.0000 |

| Tatiana | Tuning | 83 | 85.0000 |

+---------+--------+-------+-----------------+

It is also possible to specify which rows to include for the window function (for example, the current row and all preceding

rows). See Window Frames for more details.

Scope
Window functions were introduced in SQL:2003, and their definition was expanded in subsequent versions of the standard.

The last expansion was in the latest version of the standard, SQL:2011.

Most database products support a subset of the standard, they implement some functions defined as late as in SQL:2011,

and at the same time leave some parts of SQL:2008 unimplemented.

MariaDB:

Supports ROWS and RANGE-type frames

1251/4161

All kinds of frame bounds are supported, including RANGE PRECEDING|FOLLOWING n frame bounds (unlike

PostgreSQL or MS SQL Server)

Does not yet support DATE[TIME] datatype and arithmetic for RANGE-type frames (MDEV-9727)

Does not support GROUPS-type frames (it seems that no popular database supports it, either)

Does not support frame exclusion (no other database seems to support it, either) (MDEV-9724)

Does not support explicit NULLS FIRST or NULLS LAST .

Does not support nested navigation in window functions (this is VALUE_OF(expr AT row_marker [,

default_value) syntax)

The following window functions are supported:

"Streamable" window functions: ROW_NUMBER, RANK, DENSE_RANK,

Window functions that can be streamed once the number of rows in partition is known: PERCENT_RANK,

CUME_DIST, NTILE

Aggregate functions that are currently supported as window functions are: COUNT, SUM, AVG, BIT_OR, BIT_AND,

BIT_XOR.

Aggregate functions with the DISTINCT specifier (e.g. COUNT(DISTINCT x)) are not supported as window

functions.

Links
MDEV-6115 is the main jira task for window functions development. Other tasks are are attached as sub-tasks

bb-10.2-mdev9543 is the feature tree for window functions. Development is ongoing, and this tree has the newest

changes.

Testcases are in mysql-test/t/win*.test

Examples
Given the following sample data:

CREATE TABLE users (

 email VARCHAR(30),

 first_name VARCHAR(30),

 last_name VARCHAR(30),

 account_type VARCHAR(30)

);

INSERT INTO users VALUES

 ('admin@boss.org', 'Admin', 'Boss', 'admin'),

 ('bob.carlsen@foo.bar', 'Bob', 'Carlsen', 'regular'),

 ('eddie.stevens@data.org', 'Eddie', 'Stevens', 'regular'),

 ('john.smith@xyz.org', 'John', 'Smith', 'regular'),

 ('root@boss.org', 'Root', 'Chief', 'admin')

First, let's order the records by email alphabetically, giving each an ascending rnum value starting with 1. This will make use

of the ROW_NUMBER window function:

SELECT row_number() OVER (ORDER BY email) AS rnum,

 email, first_name, last_name, account_type

FROM users ORDER BY email;

+------+------------------------+------------+-----------+--------------+

| rnum | email | first_name | last_name | account_type |

+------+------------------------+------------+-----------+--------------+

| 1 | admin@boss.org | Admin | Boss | admin |

| 2 | bob.carlsen@foo.bar | Bob | Carlsen | regular |

| 3 | eddie.stevens@data.org | Eddie | Stevens | regular |

| 4 | john.smith@xyz.org | John | Smith | regular |

| 5 | root@boss.org | Root | Chief | admin |

+------+------------------------+------------+-----------+--------------

We can generate separate sequences based on account type, using the PARTITION BY clause:

1252/4161

https://jira.mariadb.org/browse/MDEV-9727
https://jira.mariadb.org/browse/MDEV-9724
https://jira.mariadb.org/browse/MDEV-6115
https://github.com/MariaDB/server/commits/bb-10.2-mdev9543

SELECT row_number() OVER (PARTITION BY account_type ORDER BY email) AS rnum,

 email, first_name, last_name, account_type

FROM users ORDER BY account_type,email;

+------+------------------------+------------+-----------+--------------+

| rnum | email | first_name | last_name | account_type |

+------+------------------------+------------+-----------+--------------+

| 1 | admin@boss.org | Admin | Boss | admin |

| 2 | root@boss.org | Root | Chief | admin |

| 1 | bob.carlsen@foo.bar | Bob | Carlsen | regular |

| 2 | eddie.stevens@data.org | Eddie | Stevens | regular |

| 3 | john.smith@xyz.org | John | Smith | regular |

+------+------------------------+------------+-----------+--------------+

Given the following structure and data, we want to find the top 5 salaries from each department.

CREATE TABLE employee_salaries (dept VARCHAR(20), name VARCHAR(20), salary INT(11));

INSERT INTO employee_salaries VALUES

('Engineering', 'Dharma', 3500),

('Engineering', 'Binh', 3000),

('Engineering', 'Adalynn', 2800),

('Engineering', 'Samuel', 2500),

('Engineering', 'Cveta', 2200),

('Engineering', 'Ebele', 1800),

('Sales', 'Carbry', 500),

('Sales', 'Clytemnestra', 400),

('Sales', 'Juraj', 300),

('Sales', 'Kalpana', 300),

('Sales', 'Svantepolk', 250),

('Sales', 'Angelo', 200);

We could do this without using window functions, as follows:

select dept, name, salary

from employee_salaries as t1

where (select count(t2.salary)

 from employee_salaries as t2

 where t1.name != t2.name and

 t1.dept = t2.dept and

 t2.salary > t1.salary) < 5

order by dept, salary desc;

+-------------+--------------+--------+

| dept | name | salary |

+-------------+--------------+--------+

| Engineering | Dharma | 3500 |

| Engineering | Binh | 3000 |

| Engineering | Adalynn | 2800 |

| Engineering | Samuel | 2500 |

| Engineering | Cveta | 2200 |

| Sales | Carbry | 500 |

| Sales | Clytemnestra | 400 |

| Sales | Juraj | 300 |

| Sales | Kalpana | 300 |

| Sales | Svantepolk | 250 |

+-------------+--------------+--------+

This has a number of disadvantages:

if there is no index, the query could take a long time if the employee_salary_table is large

Adding and maintaining indexes adds overhead, and even with indexes on dept and salary, each subquery execution

adds overhead by performing a lookup through the index.

Let's try achieve the same with window functions. First, generate a rank for all employees, using the RANK function.

1253/4161

select rank() over (partition by dept order by salary desc) as ranking,

 dept, name, salary

 from employee_salaries

 order by dept, ranking;

+---------+-------------+--------------+--------+

| ranking | dept | name | salary |

+---------+-------------+--------------+--------+

| 1 | Engineering | Dharma | 3500 |

| 2 | Engineering | Binh | 3000 |

| 3 | Engineering | Adalynn | 2800 |

| 4 | Engineering | Samuel | 2500 |

| 5 | Engineering | Cveta | 2200 |

| 6 | Engineering | Ebele | 1800 |

| 1 | Sales | Carbry | 500 |

| 2 | Sales | Clytemnestra | 400 |

| 3 | Sales | Juraj | 300 |

| 3 | Sales | Kalpana | 300 |

| 5 | Sales | Svantepolk | 250 |

| 6 | Sales | Angelo | 200 |

+---------+-------------+--------------+--------+

Each department has a separate sequence of ranks due to the PARTITION BY clause. This particular sequence of values

for rank() is given by the ORDER BY clause inside the window function9s OVER clause. Finally, to get our results in a

readable format we order the data by dept and the newly generated ranking column.

Now, we need to reduce the results to find only the top 5 per department. Here is a common mistake:

select

rank() over (partition by dept order by salary desc) as ranking,

dept, name, salary

from employee_salaries

where ranking <= 5

order by dept, ranking;

ERROR 1054 (42S22): Unknown column 'ranking' in 'where clause'

Trying to filter only the first 5 values per department by putting a where clause in the statement does not work, due to the

way window functions are computed. The computation of window functions happens after all WHERE, GROUP BY and

HAVING clauses have been completed, right before ORDER BY, so the WHERE clause has no idea that the ranking column

exists. It is only present after we have filtered and grouped all the rows.

To counteract this problem, we need to wrap our query into a derived table. We can then attach a where clause to it:

select *from (select rank() over (partition by dept order by salary desc) as ranking,

 dept, name, salary

from employee_salaries) as salary_ranks

where (salary_ranks.ranking <= 5)

 order by dept, ranking;

+---------+-------------+--------------+--------+

| ranking | dept | name | salary |

+---------+-------------+--------------+--------+

| 1 | Engineering | Dharma | 3500 |

| 2 | Engineering | Binh | 3000 |

| 3 | Engineering | Adalynn | 2800 |

| 4 | Engineering | Samuel | 2500 |

| 5 | Engineering | Cveta | 2200 |

| 1 | Sales | Carbry | 500 |

| 2 | Sales | Clytemnestra | 400 |

| 3 | Sales | Juraj | 300 |

| 3 | Sales | Kalpana | 300 |

| 5 | Sales | Svantepolk | 250 |

+---------+-------------+--------------+--------+

1.2.4.2 AVG

1.2.4.3 BIT_AND

1.2.4.4 BIT_OR
1254/4161

1.2.4.5 BIT_XOR

1.2.4.6 COUNT

1.2.9.7.7 CUME_DIST
Contents
1. Syntax

2. Description

3. Examples

Syntax

CUME_DIST() OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
CUME_DIST() is a window function that returns the cumulative distribution of a given row. The following formula is used to

calculate the value:

(number of rows <= current row) / (total rows)

Examples

create table t1 (

 pk int primary key,

 a int,

 b int

);

insert into t1 values

(1 , 0, 10),

(2 , 0, 10),

(3 , 1, 10),

(4 , 1, 10),

(8 , 2, 10),

(5 , 2, 20),

(6 , 2, 20),

(7 , 2, 20),

(9 , 4, 20),

(10 , 4, 20);

select pk, a, b,

 rank() over (order by a) as rank,

 percent_rank() over (order by a) as pct_rank,

 cume_dist() over (order by a) as cume_dist

from t1;

+----+------+------+------+--------------+--------------+

| pk | a | b | rank | pct_rank | cume_dist |

+----+------+------+------+--------------+--------------+

| 1 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 |

| 2 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 |

| 3 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 |

| 4 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 |

| 5 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 6 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 7 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 8 | 2 | 10 | 5 | 0.4444444444 | 0.8000000000 |

| 9 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 |

| 10 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 |

+----+------+------+------+--------------+--------------+

1255/4161

select pk, a, b,

 percent_rank() over (order by pk) as pct_rank,

 cume_dist() over (order by pk) as cume_dist

from t1 order by pk;

+----+------+------+--------------+--------------+

| pk | a | b | pct_rank | cume_dist |

+----+------+------+--------------+--------------+

| 1 | 0 | 10 | 0.0000000000 | 0.1000000000 |

| 2 | 0 | 10 | 0.1111111111 | 0.2000000000 |

| 3 | 1 | 10 | 0.2222222222 | 0.3000000000 |

| 4 | 1 | 10 | 0.3333333333 | 0.4000000000 |

| 5 | 2 | 20 | 0.4444444444 | 0.5000000000 |

| 6 | 2 | 20 | 0.5555555556 | 0.6000000000 |

| 7 | 2 | 20 | 0.6666666667 | 0.7000000000 |

| 8 | 2 | 10 | 0.7777777778 | 0.8000000000 |

| 9 | 4 | 20 | 0.8888888889 | 0.9000000000 |

| 10 | 4 | 20 | 1.0000000000 | 1.0000000000 |

+----+------+------+--------------+--------------+

select pk, a, b,

 percent_rank() over (partition by a order by a) as pct_rank,

 cume_dist() over (partition by a order by a) as cume_dist

from t1;

+----+------+------+--------------+--------------+

| pk | a | b | pct_rank | cume_dist |

+----+------+------+--------------+--------------+

| 1 | 0 | 10 | 0.0000000000 | 1.0000000000 |

| 2 | 0 | 10 | 0.0000000000 | 1.0000000000 |

| 3 | 1 | 10 | 0.0000000000 | 1.0000000000 |

| 4 | 1 | 10 | 0.0000000000 | 1.0000000000 |

| 5 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 6 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 7 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 8 | 2 | 10 | 0.0000000000 | 1.0000000000 |

| 9 | 4 | 20 | 0.0000000000 | 1.0000000000 |

| 10 | 4 | 20 | 0.0000000000 | 1.0000000000 |

+----+------+------+--------------+--------------+

1.2.9.7.8 DENSE_RANK
Contents
1. Syntax

2. Description

3. Examples

Syntax

DENSE_RANK() OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
DENSE_RANK() is a window function that displays the number of a given row, starting at one and following the ORDER BY

sequence of the window function, with identical values receiving the same result. Unlike the RANK() function, there are no

skipped values if the preceding results are identical. It is also similar to the ROW_NUMBER() function except that in that

function, identical values will receive a different row number for each result.

Examples
The distinction between DENSE_RANK(), RANK() and ROW_NUMBER():

1256/4161

CREATE TABLE student(course VARCHAR(10), mark int, name varchar(10));

INSERT INTO student VALUES

 ('Maths', 60, 'Thulile'),

 ('Maths', 60, 'Pritha'),

 ('Maths', 70, 'Voitto'),

 ('Maths', 55, 'Chun'),

 ('Biology', 60, 'Bilal'),

 ('Biology', 70, 'Roger');

SELECT

 RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS rank,

 DENSE_RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS dense_rank,

 ROW_NUMBER() OVER (PARTITION BY course ORDER BY mark DESC) AS row_num,

 course, mark, name

FROM student ORDER BY course, mark DESC;

+------+------------+---------+---------+------+---------+

| rank | dense_rank | row_num | course | mark | name |

+------+------------+---------+---------+------+---------+

| 1 | 1 | 1 | Biology | 70 | Roger |

| 2 | 2 | 2 | Biology | 60 | Bilal |

| 1 | 1 | 1 | Maths | 70 | Voitto |

| 2 | 2 | 2 | Maths | 60 | Thulile |

| 2 | 2 | 3 | Maths | 60 | Pritha |

| 4 | 3 | 4 | Maths | 55 | Chun |

+------+------------+---------+---------+------+---------+

1.2.9.7.9 FIRST_VALUE
Contents
1. Syntax

2. Description

3. Examples

Syntax

FIRST_VALUE(expr) OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
FIRST_VALUE returns the first result from an ordered set, or NULL if no such result exists.

Examples

1257/4161

CREATE TABLE t1 (

 pk int primary key,

 a int,

 b int,

 c char(10),

 d decimal(10, 3),

 e real

);

INSERT INTO t1 VALUES

(1, 0, 1, 'one', 0.1, 0.001),

(2, 0, 2, 'two', 0.2, 0.002),

(3, 0, 3, 'three', 0.3, 0.003),

(4, 1, 2, 'three', 0.4, 0.004),

(5, 1, 1, 'two', 0.5, 0.005),

(6, 1, 1, 'one', 0.6, 0.006),

(7, 2, NULL, 'n_one', 0.5, 0.007),

(8, 2, 1, 'n_two', NULL, 0.008),

(9, 2, 2, NULL, 0.7, 0.009),

(10, 2, 0, 'n_four', 0.8, 0.010),

(11, 2, 10, NULL, 0.9, NULL);

SELECT pk, FIRST_VALUE(pk) OVER (ORDER BY pk) AS first_asc,

 LAST_VALUE(pk) OVER (ORDER BY pk) AS last_asc,

 FIRST_VALUE(pk) OVER (ORDER BY pk DESC) AS first_desc,

 LAST_VALUE(pk) OVER (ORDER BY pk DESC) AS last_desc

FROM t1

ORDER BY pk DESC;

+----+-----------+----------+------------+-----------+

| pk | first_asc | last_asc | first_desc | last_desc |

+----+-----------+----------+------------+-----------+

| 11 | 1 | 11 | 11 | 11 |

| 10 | 1 | 10 | 11 | 10 |

| 9 | 1 | 9 | 11 | 9 |

| 8 | 1 | 8 | 11 | 8 |

| 7 | 1 | 7 | 11 | 7 |

| 6 | 1 | 6 | 11 | 6 |

| 5 | 1 | 5 | 11 | 5 |

| 4 | 1 | 4 | 11 | 4 |

| 3 | 1 | 3 | 11 | 3 |

| 2 | 1 | 2 | 11 | 2 |

| 1 | 1 | 1 | 11 | 1 |

+----+-----------+----------+------------+-----------+

1258/4161

CREATE OR REPLACE TABLE t1 (i int);

INSERT INTO t1 VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10);

SELECT i,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN CURRENT ROW and 1 FOLLOWING) AS f_1f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN CURRENT ROW and 1 FOLLOWING) AS l_1f,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS f_1p1f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS l_1p1f,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) AS f_2p1p,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) AS l_2p1p,

 FIRST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) AS f_1f2f,

 LAST_VALUE(i) OVER (ORDER BY i ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) AS l_1f2f

FROM t1;

+------+------+------+--------+--------+--------+--------+--------+--------+

| i | f_1f | l_1f | f_1p1f | l_1p1f | f_2p1p | l_2p1p | f_1f2f | l_1f2f |

+------+------+------+--------+--------+--------+--------+--------+--------+

| 1 | 1 | 2 | 1 | 2 | NULL | NULL | 2 | 3 |

| 2 | 2 | 3 | 1 | 3 | 1 | 1 | 3 | 4 |

| 3 | 3 | 4 | 2 | 4 | 1 | 2 | 4 | 5 |

| 4 | 4 | 5 | 3 | 5 | 2 | 3 | 5 | 6 |

| 5 | 5 | 6 | 4 | 6 | 3 | 4 | 6 | 7 |

| 6 | 6 | 7 | 5 | 7 | 4 | 5 | 7 | 8 |

| 7 | 7 | 8 | 6 | 8 | 5 | 6 | 8 | 9 |

| 8 | 8 | 9 | 7 | 9 | 6 | 7 | 9 | 10 |

| 9 | 9 | 10 | 8 | 10 | 7 | 8 | 10 | 10 |

| 10 | 10 | 10 | 9 | 10 | 8 | 9 | NULL | NULL |

+------+------+------+--------+--------+--------+--------+--------+--------+

1.2.4.9 JSON_ARRAYAGG

1.2.4.10 JSON_OBJECTAGG

1.2.9.7.12 LAG
Contents
1. Syntax

2. Description

3. Examples

Syntax

LAG (expr[, offset]) OVER (

 [PARTITION BY partition_expression]

 < ORDER BY order_list >

)

Description
The LAG function accesses data from a previous row according to the ORDER BY clause without the need for a self-join.

The specific row is determined by the offset (default 1), which specifies the number of rows behind the current row to use.

An offset of 0 is the current row.

Examples

1259/4161

CREATE TABLE t1 (pk int primary key, a int, b int, c char(10), d decimal(10, 3), e real);

INSERT INTO t1 VALUES

 (1, 0, 1, 'one', 0.1, 0.001),

 (2, 0, 2, 'two', 0.2, 0.002),

 (3, 0, 3, 'three', 0.3, 0.003),

 (4, 1, 2, 'three', 0.4, 0.004),

 (5, 1, 1, 'two', 0.5, 0.005),

 (6, 1, 1, 'one', 0.6, 0.006),

 (7, 2, NULL, 'n_one', 0.5, 0.007),

 (8, 2, 1, 'n_two', NULL, 0.008),

 (9, 2, 2, NULL, 0.7, 0.009),

 (10, 2, 0, 'n_four', 0.8, 0.010),

 (11, 2, 10, NULL, 0.9, NULL);

SELECT pk, LAG(pk) OVER (ORDER BY pk) AS l,

 LAG(pk,1) OVER (ORDER BY pk) AS l1,

 LAG(pk,2) OVER (ORDER BY pk) AS l2,

 LAG(pk,0) OVER (ORDER BY pk) AS l0,

 LAG(pk,-1) OVER (ORDER BY pk) AS lm1,

 LAG(pk,-2) OVER (ORDER BY pk) AS lm2

FROM t1;

+----+------+------+------+------+------+------+

| pk | l | l1 | l2 | l0 | lm1 | lm2 |

+----+------+------+------+------+------+------+

| 1 | NULL | NULL | NULL | 1 | 2 | 3 |

| 2 | 1 | 1 | NULL | 2 | 3 | 4 |

| 3 | 2 | 2 | 1 | 3 | 4 | 5 |

| 4 | 3 | 3 | 2 | 4 | 5 | 6 |

| 5 | 4 | 4 | 3 | 5 | 6 | 7 |

| 6 | 5 | 5 | 4 | 6 | 7 | 8 |

| 7 | 6 | 6 | 5 | 7 | 8 | 9 |

| 8 | 7 | 7 | 6 | 8 | 9 | 10 |

| 9 | 8 | 8 | 7 | 9 | 10 | 11 |

| 10 | 9 | 9 | 8 | 10 | 11 | NULL |

| 11 | 10 | 10 | 9 | 11 | NULL | NULL |

+----+------+------+------+------+------+------+

1.2.8.3.14 LAST_VALUE

1.2.9.7.14 LEAD
Contents
1. Syntax

2. Description

3. Example

Syntax

LEAD (expr[, offset]) OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
The LEAD function accesses data from a following row in the same result set without the need for a self-join. The specific

row is determined by the offset (default 1), which specifies the number of rows ahead the current row to use. An offset of 0

is the current row.

Example

1260/4161

CREATE TABLE t1 (pk int primary key, a int, b int, c char(10), d decimal(10, 3), e real);

INSERT INTO t1 VALUES

 (1, 0, 1, 'one', 0.1, 0.001),

 (2, 0, 2, 'two', 0.2, 0.002),

 (3, 0, 3, 'three', 0.3, 0.003),

 (4, 1, 2, 'three', 0.4, 0.004),

 (5, 1, 1, 'two', 0.5, 0.005),

 (6, 1, 1, 'one', 0.6, 0.006),

 (7, 2, NULL, 'n_one', 0.5, 0.007),

 (8, 2, 1, 'n_two', NULL, 0.008),

 (9, 2, 2, NULL, 0.7, 0.009),

 (10, 2, 0, 'n_four', 0.8, 0.010),

 (11, 2, 10, NULL, 0.9, NULL);

SELECT pk, LEAD(pk) OVER (ORDER BY pk) AS l,

 LEAD(pk,1) OVER (ORDER BY pk) AS l1,

 LEAD(pk,2) OVER (ORDER BY pk) AS l2,

 LEAD(pk,0) OVER (ORDER BY pk) AS l0,

 LEAD(pk,-1) OVER (ORDER BY pk) AS lm1,

 LEAD(pk,-2) OVER (ORDER BY pk) AS lm2

FROM t1;

+----+------+------+------+------+------+------+

| pk | l | l1 | l2 | l0 | lm1 | lm2 |

+----+------+------+------+------+------+------+

| 1 | 2 | 2 | 3 | 1 | NULL | NULL |

| 2 | 3 | 3 | 4 | 2 | 1 | NULL |

| 3 | 4 | 4 | 5 | 3 | 2 | 1 |

| 4 | 5 | 5 | 6 | 4 | 3 | 2 |

| 5 | 6 | 6 | 7 | 5 | 4 | 3 |

| 6 | 7 | 7 | 8 | 6 | 5 | 4 |

| 7 | 8 | 8 | 9 | 7 | 6 | 5 |

| 8 | 9 | 9 | 10 | 8 | 7 | 6 |

| 9 | 10 | 10 | 11 | 9 | 8 | 7 |

| 10 | 11 | 11 | NULL | 10 | 9 | 8 |

| 11 | NULL | NULL | NULL | 11 | 10 | 9 |

+----+------+------+------+------+------+------+

1.2.4.11 MAX

1.2.9.7.16 MEDIAN
Contents
1. Syntax

2. Description

3. Examples

Syntax

MEDIAN(median expression) OVER (

 [PARTITION BY partition_expression]

)

Description
MEDIAN() is a window function that returns the median value of a range of values.

It is a specific case of PERCENTILE_CONT, with an argument of 0.5 and the ORDER BY column the one in MEDIAN 's

argument.

MEDIAN(<median-arg>) OVER ([PARTITION BY partition_expression])

Is equivalent to:

1261/4161

PERCENTILE_CONT(0.5) WITHIN

 GROUP (ORDER BY <median-arg>) OVER ([PARTITION BY partition_expression])

Examples

CREATE TABLE book_rating (name CHAR(30), star_rating TINYINT);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 5);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 3);

INSERT INTO book_rating VALUES ('Lady of the Flies', 1);

INSERT INTO book_rating VALUES ('Lady of the Flies', 2);

INSERT INTO book_rating VALUES ('Lady of the Flies', 5);

SELECT name, median(star_rating) OVER (PARTITION BY name) FROM book_rating;

+-----------------------+--+

| name | median(star_rating) OVER (PARTITION BY name) |

+-----------------------+--+

| Lord of the Ladybirds | 4.0000000000 |

| Lord of the Ladybirds | 4.0000000000 |

| Lady of the Flies | 2.0000000000 |

| Lady of the Flies | 2.0000000000 |

| Lady of the Flies | 2.0000000000 |

+-----------------------+--+

1.2.4.12 MIN

1.2.9.7.18 NTH_VALUE

Syntax

NTH_VALUE (expr[, num_row]) OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Contents
1. Syntax

2. Description

Description
The NTH_VALUE function returns the value evaluated at row number num_row of the window frame, starting from 1, or

NULL if the row does not exist.

1.2.9.7.19 NTILE
Contents
1. Syntax

2. Description

3. Examples

Syntax

NTILE (expr) OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

1262/4161

Description
NTILE() is a window function that returns an integer indicating which group a given row falls into. The number of groups is

specified in the argument (expr), starting at one. Ordered rows in the partition are divided into the specified number of

groups with as equal a size as possible.

Examples

create table t1 (

 pk int primary key,

 a int,

 b int

);

insert into t1 values

 (11 , 0, 10),

 (12 , 0, 10),

 (13 , 1, 10),

 (14 , 1, 10),

 (18 , 2, 10),

 (15 , 2, 20),

 (16 , 2, 20),

 (17 , 2, 20),

 (19 , 4, 20),

 (20 , 4, 20);

select pk, a, b,

 ntile(1) over (order by pk)

 from t1;

+----+------+------+-----------------------------+

| pk | a | b | ntile(1) over (order by pk) |

+----+------+------+-----------------------------+

| 11 | 0 | 10 | 1 |

| 12 | 0 | 10 | 1 |

| 13 | 1 | 10 | 1 |

| 14 | 1 | 10 | 1 |

| 15 | 2 | 20 | 1 |

| 16 | 2 | 20 | 1 |

| 17 | 2 | 20 | 1 |

| 18 | 2 | 10 | 1 |

| 19 | 4 | 20 | 1 |

| 20 | 4 | 20 | 1 |

+----+------+------+-----------------------------+

select pk, a, b,

 ntile(4) over (order by pk)

 from t1;

+----+------+------+-----------------------------+

| pk | a | b | ntile(4) over (order by pk) |

+----+------+------+-----------------------------+

| 11 | 0 | 10 | 1 |

| 12 | 0 | 10 | 1 |

| 13 | 1 | 10 | 1 |

| 14 | 1 | 10 | 2 |

| 15 | 2 | 20 | 2 |

| 16 | 2 | 20 | 2 |

| 17 | 2 | 20 | 3 |

| 18 | 2 | 10 | 3 |

| 19 | 4 | 20 | 4 |

| 20 | 4 | 20 | 4 |

+----+------+------+-----------------------------+

1.2.9.7.20 PERCENT_RANK
Contents
1. Syntax

2. Description

3. Examples

1263/4161

Syntax

PERCENT_RANK() OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
PERCENT_RANK() is a window function that returns the relative percent rank of a given row. The following formula is used

to calculate the percent rank:

(rank - 1) / (number of rows in the window or partition - 1)

Examples

create table t1 (

 pk int primary key,

 a int,

 b int

);

insert into t1 values

(1 , 0, 10),

(2 , 0, 10),

(3 , 1, 10),

(4 , 1, 10),

(8 , 2, 10),

(5 , 2, 20),

(6 , 2, 20),

(7 , 2, 20),

(9 , 4, 20),

(10 , 4, 20);

select pk, a, b,

 rank() over (order by a) as rank,

 percent_rank() over (order by a) as pct_rank,

 cume_dist() over (order by a) as cume_dist

from t1;

+----+------+------+------+--------------+--------------+

| pk | a | b | rank | pct_rank | cume_dist |

+----+------+------+------+--------------+--------------+

| 1 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 |

| 2 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 |

| 3 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 |

| 4 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 |

| 5 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 6 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 7 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 |

| 8 | 2 | 10 | 5 | 0.4444444444 | 0.8000000000 |

| 9 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 |

| 10 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 |

+----+------+------+------+--------------+--------------+

select pk, a, b,

 percent_rank() over (order by pk) as pct_rank,

 cume_dist() over (order by pk) as cume_dist

from t1 order by pk;

+----+------+------+--------------+--------------+

| pk | a | b | pct_rank | cume_dist |

+----+------+------+--------------+--------------+

| 1 | 0 | 10 | 0.0000000000 | 0.1000000000 |

| 2 | 0 | 10 | 0.1111111111 | 0.2000000000 |

| 3 | 1 | 10 | 0.2222222222 | 0.3000000000 |

| 4 | 1 | 10 | 0.3333333333 | 0.4000000000 |

| 5 | 2 | 20 | 0.4444444444 | 0.5000000000 |

| 6 | 2 | 20 | 0.5555555556 | 0.6000000000 |

| 7 | 2 | 20 | 0.6666666667 | 0.7000000000 |

| 8 | 2 | 10 | 0.7777777778 | 0.8000000000 | 1264/4161

| 8 | 2 | 10 | 0.7777777778 | 0.8000000000 |

| 9 | 4 | 20 | 0.8888888889 | 0.9000000000 |

| 10 | 4 | 20 | 1.0000000000 | 1.0000000000 |

+----+------+------+--------------+--------------+

select pk, a, b,

 percent_rank() over (partition by a order by a) as pct_rank,

 cume_dist() over (partition by a order by a) as cume_dist

from t1;

+----+------+------+--------------+--------------+

| pk | a | b | pct_rank | cume_dist |

+----+------+------+--------------+--------------+

| 1 | 0 | 10 | 0.0000000000 | 1.0000000000 |

| 2 | 0 | 10 | 0.0000000000 | 1.0000000000 |

| 3 | 1 | 10 | 0.0000000000 | 1.0000000000 |

| 4 | 1 | 10 | 0.0000000000 | 1.0000000000 |

| 5 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 6 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 7 | 2 | 20 | 0.0000000000 | 1.0000000000 |

| 8 | 2 | 10 | 0.0000000000 | 1.0000000000 |

| 9 | 4 | 20 | 0.0000000000 | 1.0000000000 |

| 10 | 4 | 20 | 0.0000000000 | 1.0000000000 |

+----+------+------+--------------+--------------+

1.2.9.7.21 PERCENTILE_CONT

The PERCENTILE_CONT() window function was first introduced with in MariaDB 10.3.3 .

Contents
1. Syntax

2. Description

3. Examples

Syntax

Description
PERCENTILE_CONT() (standing for continuous percentile) is a window function which returns a value which corresponds to

the given fraction in the sort order. If required, it will interpolate between adjacent input items.

Essentially, the following process is followed to find the value to return:

Get the number of rows in the partition, denoted by N

RN = p*(N-1), where p denotes the argument to the PERCENTILE_CONT function

calculate the FRN(floor row number) and CRN(column row number for the group(FRN= floor(RN) and CRN =

ceil(RN))

look up rows FRN and CRN

If (CRN = FRN = RN) then the result is (value of expression from row at RN)

Otherwise the result is

(CRN - RN) * (value of expression for row at FRN) +

(RN - FRN) * (value of expression for row at CRN)

The MEDIAN function is a specific case of PERCENTILE_CONT , equivalent to PERCENTILE_CONT(0.5) .

Examples

MariaDB starting with 10.3.3

1265/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

CREATE TABLE book_rating (name CHAR(30), star_rating TINYINT);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 5);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 3);

INSERT INTO book_rating VALUES ('Lady of the Flies', 1);

INSERT INTO book_rating VALUES ('Lady of the Flies', 2);

INSERT INTO book_rating VALUES ('Lady of the Flies', 5);

SELECT name, PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc

 FROM book_rating;

+-----------------------+--------------+

| name | pc |

+-----------------------+--------------+

| Lord of the Ladybirds | 4.0000000000 |

| Lord of the Ladybirds | 4.0000000000 |

| Lady of the Flies | 2.0000000000 |

| Lady of the Flies | 2.0000000000 |

| Lady of the Flies | 2.0000000000 |

+-----------------------+--------------+

SELECT name, PERCENTILE_CONT(1) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc

 FROM book_rating;

+-----------------------+--------------+

| name | pc |

+-----------------------+--------------+

| Lord of the Ladybirds | 5.0000000000 |

| Lord of the Ladybirds | 5.0000000000 |

| Lady of the Flies | 5.0000000000 |

| Lady of the Flies | 5.0000000000 |

| Lady of the Flies | 5.0000000000 |

+-----------------------+--------------+

SELECT name, PERCENTILE_CONT(0) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc

 FROM book_rating;

+-----------------------+--------------+

| name | pc |

+-----------------------+--------------+

| Lord of the Ladybirds | 3.0000000000 |

| Lord of the Ladybirds | 3.0000000000 |

| Lady of the Flies | 1.0000000000 |

| Lady of the Flies | 1.0000000000 |

| Lady of the Flies | 1.0000000000 |

+-----------------------+--------------+

SELECT name, PERCENTILE_CONT(0.6) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc

 FROM book_rating;

+-----------------------+--------------+

| name | pc |

+-----------------------+--------------+

| Lord of the Ladybirds | 4.2000000000 |

| Lord of the Ladybirds | 4.2000000000 |

| Lady of the Flies | 2.6000000000 |

| Lady of the Flies | 2.6000000000 |

| Lady of the Flies | 2.6000000000 |

+-----------------------+--------------+

1.2.9.7.22 PERCENTILE_DISC

The PERCENTILE_DISC() window function was first introduced with in MariaDB 10.3.3 .

Syntax

MariaDB starting with 10.3.3

1266/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Contents
1. Syntax

2. Description

3. Examples

Description
PERCENTILE_DISC() (standing for discrete percentile) is a window function which returns the first value in the set whose

ordered position is the same or more than the specified fraction.

Essentially, the following process is followed to find the value to return:

Get the number of rows in the partition.

Walk through the partition, in order, until finding the the first row with CUME_DIST() >= function_argument.

Examples

1267/4161

CREATE TABLE book_rating (name CHAR(30), star_rating TINYINT);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 5);

INSERT INTO book_rating VALUES ('Lord of the Ladybirds', 3);

INSERT INTO book_rating VALUES ('Lady of the Flies', 1);

INSERT INTO book_rating VALUES ('Lady of the Flies', 2);

INSERT INTO book_rating VALUES ('Lady of the Flies', 5);

SELECT name, PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc FROM book_rating;

+-----------------------+------+

| name | pc |

+-----------------------+------+

| Lord of the Ladybirds | 3 |

| Lord of the Ladybirds | 3 |

| Lady of the Flies | 2 |

| Lady of the Flies | 2 |

| Lady of the Flies | 2 |

+-----------------------+------+

5 rows in set (0.000 sec)

SELECT name, PERCENTILE_DISC(0) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc FROM book_rating;

+-----------------------+------+

| name | pc |

+-----------------------+------+

| Lord of the Ladybirds | 3 |

| Lord of the Ladybirds | 3 |

| Lady of the Flies | 1 |

| Lady of the Flies | 1 |

| Lady of the Flies | 1 |

+-----------------------+------+

5 rows in set (0.000 sec)

SELECT name, PERCENTILE_DISC(1) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc FROM book_rating;

+-----------------------+------+

| name | pc |

+-----------------------+------+

| Lord of the Ladybirds | 5 |

| Lord of the Ladybirds | 5 |

| Lady of the Flies | 5 |

| Lady of the Flies | 5 |

| Lady of the Flies | 5 |

+-----------------------+------+

5 rows in set (0.000 sec)

SELECT name, PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY star_rating)

 OVER (PARTITION BY name) AS pc FROM book_rating;

+-----------------------+------+

| name | pc |

+-----------------------+------+

| Lord of the Ladybirds | 5 |

| Lord of the Ladybirds | 5 |

| Lady of the Flies | 2 |

| Lady of the Flies | 2 |

| Lady of the Flies | 2 |

+-----------------------+------

1.2.9.7.23 RANK
Contents
1. Syntax

2. Description

3. Examples

Syntax

1268/4161

RANK() OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
RANK() is a window function that displays the number of a given row, starting at one and following the ORDER BY

sequence of the window function, with identical values receiving the same result. It is similar to the ROW_NUMBER()

function except that in that function, identical values will receive a different row number for each result.

Examples
The distinction between DENSE_RANK(), RANK() and ROW_NUMBER():

CREATE TABLE student(course VARCHAR(10), mark int, name varchar(10));

INSERT INTO student VALUES

 ('Maths', 60, 'Thulile'),

 ('Maths', 60, 'Pritha'),

 ('Maths', 70, 'Voitto'),

 ('Maths', 55, 'Chun'),

 ('Biology', 60, 'Bilal'),

 ('Biology', 70, 'Roger');

SELECT

 RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS rank,

 DENSE_RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS dense_rank,

 ROW_NUMBER() OVER (PARTITION BY course ORDER BY mark DESC) AS row_num,

 course, mark, name

FROM student ORDER BY course, mark DESC;

+------+------------+---------+---------+------+---------+

| rank | dense_rank | row_num | course | mark | name |

+------+------------+---------+---------+------+---------+

| 1 | 1 | 1 | Biology | 70 | Roger |

| 2 | 2 | 2 | Biology | 60 | Bilal |

| 1 | 1 | 1 | Maths | 70 | Voitto |

| 2 | 2 | 2 | Maths | 60 | Thulile |

| 2 | 2 | 3 | Maths | 60 | Pritha |

| 4 | 3 | 4 | Maths | 55 | Chun |

+------+------------+---------+---------+------+---------+

1.2.9.7.24 ROW_NUMBER
Contents
1. Syntax

2. Description

3. Examples

Syntax

ROW_NUMBER() OVER (

 [PARTITION BY partition_expression]

 [ORDER BY order_list]

)

Description
ROW_NUMBER() is a window function that displays the number of a given row, starting at one and following the ORDER

BY sequence of the window function, with identical values receiving different row numbers. It is similar to the RANK() and

DENSE_RANK() functions except that in that function, identical values will receive the same rank for each result.

1269/4161

Examples
The distinction between DENSE_RANK(), RANK() and ROW_NUMBER():

CREATE TABLE student(course VARCHAR(10), mark int, name varchar(10));

INSERT INTO student VALUES

 ('Maths', 60, 'Thulile'),

 ('Maths', 60, 'Pritha'),

 ('Maths', 70, 'Voitto'),

 ('Maths', 55, 'Chun'),

 ('Biology', 60, 'Bilal'),

 ('Biology', 70, 'Roger');

SELECT

 RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS rank,

 DENSE_RANK() OVER (PARTITION BY course ORDER BY mark DESC) AS dense_rank,

 ROW_NUMBER() OVER (PARTITION BY course ORDER BY mark DESC) AS row_num,

 course, mark, name

FROM student ORDER BY course, mark DESC;

+------+------------+---------+---------+------+---------+

| rank | dense_rank | row_num | course | mark | name |

+------+------------+---------+---------+------+---------+

| 1 | 1 | 1 | Biology | 70 | Roger |

| 2 | 2 | 2 | Biology | 60 | Bilal |

| 1 | 1 | 1 | Maths | 70 | Voitto |

| 2 | 2 | 2 | Maths | 60 | Thulile |

| 2 | 2 | 3 | Maths | 60 | Pritha |

| 4 | 3 | 4 | Maths | 55 | Chun |

+------+------------+---------+---------+------+---------+

1.2.4.13 STD

1.2.4.14 STDDEV

1.2.4.15 STDDEV_POP

1.2.4.16 STDDEV_SAMP

1.2.4.17 SUM

1.2.4.18 VARIANCE

1.2.4.19 VAR_POP

1.2.4.20 VAR_SAMP

1.2.9.7.33 Aggregate Functions as Window
Functions
It is possible to use aggregate functions as window functions. An aggregate function used as a window function must have

the OVER clause. For example, here's COUNT() used as a window function:

select COUNT(*) over (order by column) from table;

MariaDB currently allows these aggregate functions to be used as window functions:

AVG

BIT_AND

BIT_OR

1270/4161

BIT_XOR

COUNT

MAX

MIN

STD

STDDEV

STDDEV_POP

STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

1.2.9.7.34 ColumnStore Window Functions

Introduction
MariaDB ColumnStore provides support for window functions broadly following the SQL 2003 specification. A window

function allows for calculations relating to a window of data surrounding the current row in a result set. This capability

provides for simplified queries in support of common business questions such as cumulative totals, rolling averages, and top

10 lists.

Aggregate functions are utilized for window functions however differ in behavior from a group by query because the rows

remain ungrouped. This provides support for cumulative sums and rolling averages, for example.

Two key concepts for window functions are Partition and Frame:

A Partition is a group of rows, or window, that have the same value for a specific column, for example a Partition can

be created over a time period such as a quarter or lookup values.

The Frame for each row is a subset of the row's Partition. The frame typically is dynamic allowing for a sliding frame

of rows within the Partition. The Frame determines the range of rows for the windowing function. A Frame could be

defined as the last X rows and next Y rows all the way up to the entire Partition.

Window functions are applied after joins, group by, and having clauses are calculated.

Syntax
A window function is applied in the select clause using the following syntax:

function_name ([expression [, expression ...]]) OVER (window_definition)

where window_definition is defined as:

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC] [NULLS { FIRST | LAST }] [, ...]]

[frame_clause]

PARTITION BY:

Divides the window result set into groups based on one or more expressions.

An expression may be a constant, column, and non window function expressions.

A query is not limited to a single partition by clause. Different partition clauses can be used across different window

function applications.

The partition by columns do not need to be in the select list but do need to be available from the query result set.

If there is no PARTITION BY clause, all rows of the result set define the group.

ORDER BY

Defines the ordering of values within the partition.

Can be ordered by multiple keys which may be a constant, column or non window function expression.

The order by columns do not need to be in the select list but need to be available from the query result set.

Use of a select column alias from the query is not supported.

ASC (default) and DESC options allow for ordering ascending or descending.

NULLS FIRST and NULL_LAST options specify whether null values come first or last in the ordering sequence.

NULLS_FIRST is the default for ASC order, and NULLS_LAST is the default for DESC order.

and the optional frame_clause is defined as:

1271/4161

{ RANGE | ROWS } frame_start

{ RANGE | ROWS } BETWEEN frame_start AND frame_end

and the optional frame_start and frame_end are defined as (value being a numeric expression):

UNBOUNDED PRECEDING

value PRECEDING

CURRENT ROW

value FOLLOWING

UNBOUNDED FOLLOWING

RANGE/ROWS:

Defines the windowing clause for calculating the set of rows that the function applies to for calculating a given rows

window function result.

Requires an ORDER BY clause to define the row order for the window.

ROWS specify the window in physical units, i.e. result set rows and must be a constant or expression evaluating to a

positive numeric value.

RANGE specifies the window as a logical offset. If the the expression evaluates to a numeric value then the ORDER

BY expression must be a numeric or DATE type. If the expression evaluates to an interval value then the ORDER BY

expression must be a DATE data type.

UNBOUNDED PRECEDING indicates the window starts at the first row of the partition.

UNBOUNDED FOLLOWING indicates the window ends at the last row of the partition.

CURRENT ROW specifies the window start or ends at the current row or value.

If omitted, the default is ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

Supported Functions
Function Description

AVG() The average of all input values.

COUNT() Number of input rows.

CUME_DIST()
Calculates the cumulative distribution, or relative rank, of the current row to other rows in the

same partition. Number of peer or preceding rows / number of rows in partition.

DENSE_RANK() Ranks items in a group leaving no gaps in ranking sequence when there are ties.

FIRST_VALUE()
The value evaluated at the row that is the first row of the window frame (counting from 1); null if

no such row.

LAG()

The value evaluated at the row that is offset rows before the current row within the partition; if

there is no such row, instead return default. Both offset and default are evaluated with respect to

the current row. If omitted, offset defaults to 1 and default to null. LAG provides access to more

than one row of a table at the same time without a self-join. Given a series of rows returned from

a query and a position of the cursor, LAG provides access to a row at a given physical offset prior

to that position.

LAST_VALUE()
The value evaluated at the row that is the last row of the window frame (counting from 1); null if

no such row.

LEAD()

Provides access to a row at a given physical offset beyond that position. Returns value evaluated

at the row that is offset rows after the current row within the partition; if there is no such row,

instead return default. Both offset and default are evaluated with respect to the current row. If

omitted, offset defaults to 1 and default to null.

MAX() Maximum value of expression across all input values.

MEDIAN()

An inverse distribution function that assumes a continuous distribution model. It takes a numeric

or datetime value and returns the middle value or an interpolated value that would be the middle

value once the values are sorted. Nulls are ignored in the calculation.

MIN() Minimum value of expression across all input values.

NTH_VALUE()
The value evaluated at the row that is the nth row of the window frame (counting from 1); null if no

such row.

NTILE()

Divides an ordered data set into a number of buckets indicated by expr and assigns the

appropriate bucket number to each row. The buckets are numbered 1 through expr. The expr

value must resolve to a positive constant for each partition. Integer ranging from 1 to the

argument value, dividing the partition as equally as possible.

1272/4161

PERCENT_RANK() relative rank of the current row: (rank - 1) / (total rows - 1).

PERCENTILE_CONT()

An inverse distribution function that assumes a continuous distribution model. It takes a

percentile value and a sort specification, and returns an interpolated value that would fall into that

percentile value with respect to the sort specification. Nulls are ignored in the calculation.

PERCENTILE_DISC()

An inverse distribution function that assumes a discrete distribution model. It takes a percentile

value and a sort specification and returns an element from the set. Nulls are ignored in the

calculation.

RANK() rank of the current row with gaps; same as row_number of its first peer.

ROW_NUMBER() number of the current row within its partition, counting from 1

STDDEV()

STDDEV_POP()

Computes the population standard deviation and returns the square root of the population

variance.

STDDEV_SAMP()
Computes the cumulative sample standard deviation and returns the square root of the sample

variance.

SUM() Sum of expression across all input values.

VARIANCE()

VAR_POP()
Population variance of the input values (square of the population standard deviation).

VAR_SAMP() Sample variance of the input values (square of the sample standard deviation).

Examples

Example Schema
The examples are all based on the following simplified sales opportunity table:

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11)

) engine=columnstore;

Some example values are (thanks to https://www.mockaroo.com for sample data generation):

id accountName name owner amount closeDate stageName

1 Browseblab Multi-lateral executive function Bob 26444.86 2016-10-20 Negotiating

2 Mita Organic demand-driven benchmark Maria 477878.41 2016-11-28 ClosedWon

3 Miboo De-engineered hybrid groupware Olivier 80181.78 2017-01-05 ClosedWon

4 Youbridge Enterprise-wide bottom-line Graphic Interface Chris 946245.29 2016-07-02 ClosedWon

5 Skyba Reverse-engineered fresh-thinking standardization Maria 696241.82 2017-02-17 Negotiating

6 Eayo Fundamental well-modulated artificial intelligence Bob 765605.52 2016-08-27 Prospecting

7 Yotz Extended secondary infrastructure Chris 319624.20 2017-01-06 ClosedLost

8 Oloo Configurable web-enabled data-warehouse Chris 321016.26 2017-03-08 ClosedLost

9 Kaymbo Multi-lateral web-enabled definition Bob 690881.01 2017-01-02 Developing

10 Rhyloo Public-key coherent infrastructure Chris 965477.74 2016-11-07 Prospecting

The schema, sample data, and queries are available as an attachment to this article.

Cumulative Sum and Running Max Example
Window functions can be used to achieve cumulative / running calculations on a detail report. In this case a won opportunity

report for a 7 day period adds columns to show the accumulated won amount as well as the current highest opportunity

amount in preceding rows.

1273/4161

https://www.mockaroo.com

select owner,

accountName,

CloseDate,

amount,

sum(amount) over (order by CloseDate rows between unbounded preceding and current row) cumeWon,

max(amount) over (order by CloseDate rows between unbounded preceding and current row) runningM

ax

from opportunities

where stageName='ClosedWon'

and closeDate >= '2016-10-02' and closeDate <= '2016-10-09'

order by CloseDate;

with example results:

owner accountName CloseDate amount cumeWon runningMax

Bill Babbleopia 2016-10-02 437636.47 437636.47 437636.47

Bill Thoughtworks 2016-10-04 146086.51 583722.98 437636.47

Olivier Devpulse 2016-10-05 834235.93 1417958.91 834235.93

Chris Linkbridge 2016-10-07 539977.45 2458738.65 834235.93

Olivier Trupe 2016-10-07 500802.29 1918761.20 834235.93

Bill Latz 2016-10-08 857254.87 3315993.52 857254.87

Chris Avamm 2016-10-09 699566.86 4015560.38 857254.87

Partitioned Cumulative Sum and Running Max Example
The above example can be partitioned, so that the window functions are over a particular field grouping such as owner and

accumulate within that grouping. This is achieved by adding the syntax "partition by <columns>" in the window function

clause.

select owner,

accountName,

CloseDate,

amount,

sum(amount) over (partition by owner order by CloseDate rows between unbounded preceding and cu

rrent row) cumeWon,

max(amount) over (partition by owner order by CloseDate rows between unbounded preceding and cu

rrent row) runningMax

from opportunities

where stageName='ClosedWon'

and closeDate >= '2016-10-02' and closeDate <= '2016-10-09'

order by owner, CloseDate;

with example results:

owner accountName CloseDate amount cumeWon runningMax

Bill Babbleopia 2016-10-02 437636.47 437636.47 437636.47

Bill Thoughtworks 2016-10-04 146086.51 583722.98 437636.47

Bill Latz 2016-10-08 857254.87 1440977.85 857254.87

Chris Linkbridge 2016-10-07 539977.45 539977.45 539977.45

Chris Avamm 2016-10-09 699566.86 1239544.31 699566.86

Olivier Devpulse 2016-10-05 834235.93 834235.93 834235.93

Olivier Trupe 2016-10-07 500802.29 1335038.22 834235.93

Ranking / Top Results
The rank window function allows for ranking or assigning a numeric order value based on the window function definition.

Using the Rank() function will result in the same value for ties / equal values and the next rank value skipped. The

Dense_Rank() function behaves similarly except the next consecutive number is used after a tie rather than skipped. The

Row_Number() function will provide a unique ordering value. The example query shows the Rank() function being applied to

1274/4161

rank sales reps by the number of opportunities for Q4 2016.

select owner,

wonCount,

rank() over (order by wonCount desc) rank

from (

 select owner,

 count(*) wonCount

 from opportunities

 where stageName='ClosedWon'

 and closeDate >= '2016-10-01' and closeDate < '2016-12-31'

 group by owner

) t

order by rank;

with example results (note the query is technically incorrect by using closeDate < '2016-12-31' however this creates a tie

scenario for illustrative purposes):

owner wonCount rank

Bill 19 1

Chris 15 2

Maria 14 3

Bob 14 3

Olivier 10 5

If the dense_rank function is used the rank values would be 1,2,3,3,4 and for the row_number function the values would be

1,2,3,4,5.

First and Last Values
The first_value and last_value functions allow determining the first and last values of a given range. Combined with a group

by this allows summarizing opening and closing values. The example shows a more complex case where detailed

information is presented for first and last opportunity by quarter.

select a.year,

a.quarter,

f.accountName firstAccountName,

f.owner firstOwner,

f.amount firstAmount,

l.accountName lastAccountName,

l.owner lastOwner,

l.amount lastAmount

from (

 select year,

 quarter,

 min(firstId) firstId,

 min(lastId) lastId

 from (

 select year(closeDate) year,

 quarter(closeDate) quarter,

 first_value(id) over (partition by year(closeDate), quarter(closeDate) order by closeDate r

ows between unbounded preceding and current row) firstId,

 last_value(id) over (partition by year(closeDate), quarter(closeDate) order by closeDate ro

ws between current row and unbounded following) lastId

 from opportunities where stageName='ClosedWon'

) t

 group by year, quarter order by year,quarter

) a

join opportunities f on a.firstId = f.id

join opportunities l on a.lastId = l.id

order by year, quarter;

with example results:

year quarter firstAccountName firstOwner firstAmount lastAccountName lastOwner lastAmount

2016 3 Skidoo Bill 523295.07 Skipstorm Bill 151420.86

2016 4 Skimia Chris 961513.59 Avamm Maria 112493.65

1275/4161

2017 1 Yombu Bob 536875.51 Skaboo Chris 270273.08

Prior and Next Example
Sometimes it useful to understand the previous and next values in the context of a given row. The lag and lead window

functions provide this capability. By default the offset is one providing the prior or next value but can also be provided to get

a larger offset. The example query is a report of opportunities by account name showing the opportunity amount, and the

prior and next opportunity amount for that account by close date.

select accountName,

closeDate,

amount currentOppAmount,

lag(amount) over (partition by accountName order by closeDate) priorAmount, lead(amount) over (

partition by accountName order by closeDate) nextAmount

from opportunities

order by accountName, closeDate

limit 9;

with example results:

accountName closeDate currentOppAmount priorAmount nextAmount

Abata 2016-09-10 645098.45 NULL 161086.82

Abata 2016-10-14 161086.82 645098.45 350235.75

Abata 2016-12-18 350235.75 161086.82 878595.89

Abata 2016-12-31 878595.89 350235.75 922322.39

Abata 2017-01-21 922322.39 878595.89 NULL

Abatz 2016-10-19 795424.15 NULL NULL

Agimba 2016-07-09 288974.84 NULL 914461.49

Agimba 2016-09-07 914461.49 288974.84 176645.52

Agimba 2016-09-20 176645.52 914461.49 NULL

Quartiles Example
The NTile window function allows for breaking up a data set into portions assigned a numeric value to each portion of the

range. NTile(4) breaks the data up into quartiles (4 sets). The example query produces a report of all opportunities

summarizing the quartile boundaries of amount values.

select t.quartile,

min(t.amount) min,

max(t.amount) max

from (

 select amount,

 ntile(4) over (order by amount asc) quartile

 from opportunities

 where closeDate >= '2016-10-01' and closeDate <= '2016-12-31'

) t

group by quartile

order by quartile;

With example results:

quartile min max

1 6337.15 287634.01

2 288796.14 539977.45

3 540070.04 748727.51

4 753670.77 998864.47

Percentile Example

1276/4161

The percentile functions have a slightly different syntax from other window functions as can be seen in the example below.

These functions can be only applied against numeric values. The argument to the function is the percentile to evaluate.

Following 'within group' is the sort expression which indicates the sort column and optionally order. Finally after 'over' is an

optional partition by clause, for no partition clause use 'over ()'. The example below utilizes the value 0.5 to calculate the

median opportunity amount in the rows. The values differ sometimes because percentile_cont will return the average of the

2 middle rows for an even data set while percentile_desc returns the first encountered in the sort.

select owner,

accountName,

CloseDate,

amount,

percentile_cont(0.5) within group (order by amount) over (partition by owner) pct_cont,

percentile_disc(0.5) within group (order by amount) over (partition by owner) pct_disc

from opportunities

where stageName='ClosedWon'

and closeDate >= '2016-10-02' and closeDate <= '2016-10-09'

order by owner, CloseDate;

With example results:

owner accountName CloseDate amount pct_cont pct_disc

Bill Babbleopia 2016-10-02 437636.47 437636.4700000000 437636.47

Bill Thoughtworks 2016-10-04 146086.51 437636.4700000000 437636.47

Bill Latz 2016-10-08 857254.87 437636.4700000000 437636.47

Chris Linkbridge 2016-10-07 539977.45 619772.1550000000 539977.45

Chris Avamm 2016-10-09 699566.86 619772.1550000000 539977.45

Olivier Devpulse 2016-10-05 834235.93 667519.1100000000 500802.29

Olivier Trupe 2016-10-07 500802.29 667519.1100000000 500802.29

1.2.9.7.35 Window Frames

Syntax

frame_clause:

 {ROWS | RANGE} {frame_border | BETWEEN frame_border AND frame_border}

frame_border:

 | UNBOUNDED PRECEDING

 | UNBOUNDED FOLLOWING

 | CURRENT ROW

 | expr PRECEDING

 | expr FOLLOWING

Description
A basic overview of window functions is described in Window Functions Overview. Window frames expand this functionality

by allowing the function to include a specified a number of rows around the current row.

These include:

All rows before the current row (UNBOUNDED PRECEDING), for example RANGE BETWEEN UNBOUNDED PRECEDING

AND CURRENT ROW

All rows after the current row (UNBOUNDED FOLLOWING), for example RANGE BETWEEN CURRENT ROW AND

UNBOUNDED FOLLOWING

A set number of rows before the current row (expr PRECEDING) for example RANGE BETWEEN 6 PRECEDING AND

CURRENT ROW

A set number of rows after the current row (expr PRECEDING AND expr FOLLOWING) for example RANGE BETWEEN

CURRENT ROW AND 2 FOLLOWING

A specified number of rows both before and after the current row, for example RANGE BETWEEN 6 PRECEDING AND

3 FOLLOWING

The following functions operate on window frames:

1277/4161

AVG

BIT_AND

BIT_OR

BIT_XOR

COUNT

LEAD

MAX

MIN

NTILE

STD

STDDEV

STDDEV_POP

STDDEV_SAMP

SUM

VAR_POP

VAR_SAMP

VARIANCE

Window frames are determined by the frame_clause in the window function request.

Take the following example:

CREATE TABLE `student_test` (

 name char(10),

 test char(10),

 score tinyint(4)

);

INSERT INTO student_test VALUES

 ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73),

 ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31),

 ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88),

 ('Tatiana', 'SQL', 87);

SELECT name, test, score, SUM(score)

 OVER () AS total_score

 FROM student_test;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Chun | SQL | 75 | 453 |

| Chun | Tuning | 73 | 453 |

| Esben | SQL | 43 | 453 |

| Esben | Tuning | 31 | 453 |

| Kaolin | SQL | 56 | 453 |

| Kaolin | Tuning | 88 | 453 |

| Tatiana | SQL | 87 | 453 |

+---------+--------+-------+-------------+

By not specifying an OVER clause, the SUM function is run over the entire dataset. However, if we specify an ORDER BY

condition based on score (and order the entire result in the same way for clarity), the following result is returned:

SELECT name, test, score, SUM(score)

 OVER (ORDER BY score) AS total_score

 FROM student_test ORDER BY score;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Esben | Tuning | 31 | 31 |

| Esben | SQL | 43 | 74 |

| Kaolin | SQL | 56 | 130 |

| Chun | Tuning | 73 | 203 |

| Chun | SQL | 75 | 278 |

| Tatiana | SQL | 87 | 365 |

| Kaolin | Tuning | 88 | 453 |

+---------+--------+-------+-------------+

The total_score column represents a running total of the current row, and all previous rows. The window frame in this

example expands as the function proceeds.

The above query makes use of the default to define the window frame. It could be written explicitly as follows:

1278/4161

SELECT name, test, score, SUM(score)

 OVER (ORDER BY score RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS total_score

 FROM student_test ORDER BY score;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Esben | Tuning | 31 | 31 |

| Esben | SQL | 43 | 74 |

| Kaolin | SQL | 56 | 130 |

| Chun | Tuning | 73 | 203 |

| Chun | SQL | 75 | 278 |

| Tatiana | SQL | 87 | 365 |

| Kaolin | Tuning | 88 | 453 |

+---------+--------+-------+-------------+

Let's look at some alternatives:

Firstly, applying the window function to the current row and all following rows can be done with the use of UNBOUNDED

FOLLOWING:

SELECT name, test, score, SUM(score)

 OVER (ORDER BY score RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS total_score

 FROM student_test ORDER BY score;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Esben | Tuning | 31 | 453 |

| Esben | SQL | 43 | 422 |

| Kaolin | SQL | 56 | 379 |

| Chun | Tuning | 73 | 323 |

| Chun | SQL | 75 | 250 |

| Tatiana | SQL | 87 | 175 |

| Kaolin | Tuning | 88 | 88 |

+---------+--------+-------+-------------+

It's possible to specify a number of rows, rather than the entire unbounded following or preceding set. The following example

takes the current row, as well as the previous row:

SELECT name, test, score, SUM(score)

 OVER (ORDER BY score ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS total_score

 FROM student_test ORDER BY score;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Esben | Tuning | 31 | 31 |

| Esben | SQL | 43 | 74 |

| Kaolin | SQL | 56 | 99 |

| Chun | Tuning | 73 | 129 |

| Chun | SQL | 75 | 148 |

| Tatiana | SQL | 87 | 162 |

| Kaolin | Tuning | 88 | 175 |

+---------+--------+-------+-------------+

The current row and the following row:

SELECT name, test, score, SUM(score)

 OVER (ORDER BY score ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS total_score

 FROM student_test ORDER BY score;

+---------+--------+-------+-------------+

| name | test | score | total_score |

+---------+--------+-------+-------------+

| Esben | Tuning | 31 | 74 |

| Esben | SQL | 43 | 130 |

| Kaolin | SQL | 56 | 172 |

| Chun | Tuning | 73 | 204 |

| Chun | SQL | 75 | 235 |

| Tatiana | SQL | 87 | 250 |

| Kaolin | Tuning | 88 | 175 |

+---------+--------+-------+-------------+

1279/4161

1.3 Clients & Utilities
mariadb Client

The mariadb command-line client.

Aria Clients and Utilities

Clients and utilities for working with Aria tables

Backup, Restore and Import Clients

Clients for taking backups or importing/restoring data

Graphical and Enhanced Clients

Incomplete list of graphical clients

MyISAM Clients and Utilities

Clients and utilities for working with MyISAM tables

dbdeployer

Installing and testing multiple MariaDB versions in isolation.

dbForge Studio for MySQL/MariaDB

IDE for the development, management, and administration of MariaDB & MySQL databases.

EXPLAIN Analyzer

The EXPLAIN Analyzer is no longer active. The EXPLAIN Analyzer was an onlin...

EXPLAIN Analyzer API

The online EXPLAIN Analyzer tool has an open API to allow client applicatio...

innochecksum

Tool for printing checksums for InnoDB files.

msql2mysql

Description Initially, the MySQL C API was developed to be very similar to ...

my_print_defaults

Displays the options from option groups of option files

mariadb-binlog

mariadb-binlog utility for processing binary log files.

mariadb-stress-test

Perl script that performs stress-testing of the MariaDB server

mariadb-test

Testing utility

perror

Display descriptions for system or storage engine error codes

replace Utility

The replace utility program changes strings in place infiles or on the standard input

resolveip

Resolves IP addresses to host names and vice versa

resolve_stack_dump

Resolve numeric stack strace dump into symbols

xtstat

Used to monitor all internal activity of PBXT

7

2

1280/4161

https://mariadb.com/kb/en/dbforge-studio-for-mysqlmariadb/

mariadb-access

Tool for checking access privileges.

mariadb-admin

Admin tool for monitoring, creating/dropping databases, stopping MariaDB etc.

mariadb-check

Tool for checking, repairing, analyzing and optimizing tables.

mariadb-conv

Character set conversion utility for MariaDB.

mariadb-convert-table-format

Convert tables to use a particular storage engine by default.

mariadb-dumpslow

Display data from the slow query log.

mariadb-embedded

mariadb client statically linked to libmariadbd, the embedded server.

mariadb-find-rows

Read files containing SQL statements and extract statements that match a pattern.

mariadb-fix-extensions

Converts the extensions for MyISAM (or ISAM) table files to their canonical forms.

mariadb-install-db

Tool for creating the system tables in the mysql database.

mariadb-plugin

Tool for enabling or disabling plugins.

mariadb-report

Creates a friendly report of important MariaDB status values.

mariadb-secure-installation

Improve the security of a MariaDB installation.

mariadb-setpermission

Helps add users or databases or change passwords in MariaDB.

mariadb-show

Shows database structure.

mariadb-slap

Tool for load-testing MariaDB.

mariadb-tzinfo-to-sql

Load time zones into the time zone tables.

mariadb-upgrade

Update to the latest MariaDB Server version.

mariadb-waitpid

Terminate processes.

Legacy Clients and Utilities

Removed, deprecated or unmaintained MariaDB clients and utilities.

There are 8 related questions .

1281/4161

https://mariadb.com/kb/en/clients-utilities/+questions/

1.3.1 mariadb Client
The mariadb command-line client.

Previously, the client was called mysql which, from MariaDB 10.5, is still a symlink.

mariadb Command-Line Client

mariadb is a simple SQL shell with GNU readline capabilities.

Delimiters

How to change the delimiter for the mariadb client.

mysql Command-line Client

Symlink or old name for mariadb, the command-line client.

There are 4 related questions .

7

1.3.2 mariadb Command-Line Client
mariadb is a simple SQL shell (with GNU readline capabilities).

From MariaDB 10.4.6, mariadb is a symlink to mysql , the command-line client.

From MariaDB 10.5.2, mariadb is the name of the command-line client, with mysql a symlink .

Contents
1. About the mariadb Command-Line Client

2. Using mariadb

1. Options

1. -?, --help

2. -I, --help

3. --abort-source-on-error

4. --auto-rehash

5. -A, --no-auto-rehash

6. --auto-vertical-output

7. -B, --batch

8. --binary-mode

9. --character-sets-dir=name

10. --column-names

11. --column-type-info

12. -c, --comments

13. -C, --compress

14. --connect-expired-password

15. --connect-timeout=num

16. -D, --database=name

17. -# [options], --debug[=options]

18. --debug-check

19. -T, --debug-info

20. --default-auth=plugin

21. --default-character-set=name

22. --defaults-extra-file=file

23. --defaults-file=file

24. --defaults-group-suffix=suffix

25. --delimiter=name

26. --enable-cleartext-plugin

27. -e, --execute=name

28. -f, --force

29. -h, --host=name

30. -H, --html

31. -U, --i-am-a-dummy

32. -i, --ignore-spaces

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1282/4161

https://mariadb.com/kb/en/mariadb-client/+questions/

33. --init-command=str

34. --line-numbers

35. --local-infile

36. --max-allowed-packet=num

37. --max-join-size=num

38. -G, --named-commands

39. --net-buffer-length=num

40. -b, --no-beep

41. --no-defaults

42. -o, --one-database

43. --pager[=name]

44. -p, --password[=name]

45. --plugin-dir=name

46. -P, --port=num

47. --print-defaults

48. --progress-reports

49. --prompt=name

50. --protocol=name

51. -q, --quick

52. -r, --raw

53. --reconnect

54. -U, --safe-updates

55. --secure-auth

56. --select-limit=num

57. --server-arg=name

58. --shared-memory-base-name=name

59. --show-warnings

60. --sigint-ignore

61. -s, --silent

62. --skip-auto-rehash

63. -N, --skip-column-names

64. --skip-comments

65. -L, --skip-line-numbers

66. --skip-progress-reports

67. --skip-reconnect

68. -S, --socket=name

69. --ssl

70. --ssl-ca=name

71. --ssl-capath=name

72. --ssl-cert=name

73. --ssl-cipher=name

74. --ssl-crl=name

75. --ssl-crlpath=name

76. --ssl-key=name

77. --ssl-verify-server-cert

78. -t, --table

79. --tee=name

80. --tls-version=name

81. --tls-fp=name

82. --tls-fplist=name

83. -n, --unbuffered

84. -u, --user=name

85. -v, --verbose

86. -V, --version

87. -E, --vertical

88. -w, --wait

89. -X, --xml

2. Option Files

1. Option Groups

3. How to Specify Which Protocol to Use When Connecting to the Server

1. Linux/Unix

2. Windows

4. How to Test Which Protocol is Used

5. mariadb Commands

6. The mysql_history File

7. prompt Command

8. mariadb Tips

1. Displaying Query Results Vertically 1283/4161

1. Displaying Query Results Vertically

2. Using the --safe-updates Option

3. Disabling mariadb Auto-Reconnect

About the mariadb Command-Line Client
mariadb supports interactive and non-interactive use. When used interactively, query results are presented in an ASCII-

table format. When used non-interactively (for example, as a filter), the result is presented in tab-separated format. The

output format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This forces mariadb to

retrieve results from the server a row at a time rather than retrieving the entire result set and buffering it in memory before

displaying it. This is done by returning the result set using the mysql_use_result() C API function in the client/server

library rather than mysql_store_result() .

Using mariadb is very easy. Invoke it from the prompt of your command interpreter as follows:

mariadb db_name

Or:

mariadb --user=user_name --password=your_password db_name

Then type an SQL statement, end it with <;=, \g, or \G and press Enter.

Typing Control-C causes mariadb to attempt to kill the current statement. If this cannot be done, or Control-C is typed again

before the statement is killed, mariadb exits.

You can execute SQL statements in a script file (batch file) like this:

mariadb db_name < script.sql > output.tab

Using mariadb
The command to use mariadb and the general syntax is:

mariadb <options>

Options

mariadb supports the following options:

-?, --help

Display help and exit.

-I, --help

Synonym for -?

--abort-source-on-error

Abort 'source filename' operations in case of errors.

--auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column name completion. Use

--disable-auto-rehash , --no-auto-rehash or skip-auto-rehash to disable rehashing. That causes mariadb to

start faster, but you must issue the rehash command if you want to use name completion. To complete a name, enter the

first part and press Tab. If the name is unambiguous, mariadb completes it. Otherwise, you can press Tab again to see the

possible names that begin with what you have typed so far. Completion does not occur if there is no default database.

-A, --no-auto-rehash

No automatic rehashing. One has to use 'rehash' to get table and field completion. This gives a quicker start of mariadb and

1284/4161

disables rehashing on reconnect.

--auto-vertical-output

Automatically switch to vertical output mode if the result is wider than the terminal width.

-B, --batch

Print results using tab as the column separator, with each row on a new line. With this option, mariadb does not use the

history file. Batch mode results in nontabular output format and escaping of special characters. Escaping may be disabled

by using raw mode; see the description for the --raw option. (Enables --silent .)

--binary-mode

By default, ASCII '\0' is disallowed and '\r\n' is translated to '\n'. This switch turns off both features, and also turns off parsing

of all client commands except \C and DELIMITER, in non-interactive mode (for input piped to mariadb or loaded using the

'source' command). This is necessary when processing output from mariadb-binlog that may contain blobs.

--character-sets-dir=name

Directory for character set files.

--column-names

Write column names in results. (Defaults to on; use --skip-column-names to disable.)

--column-type-info

Display column type information.

-c, --comments

Preserve comments. Send comments to the server. The default is --skip-comments (discard comments), enable with --

comments .

-C, --compress

Compress all information sent between the client and the server if both support compression.

--connect-expired-password

Notify the server that this client is prepared to handle expired password sandbox mode even if --batch was specified.

From MariaDB 10.4.3.

--connect-timeout=num

Number of seconds before connection timeout. Defaults to zero.

-D, --database=name

Database to use.

-# [options], --debug[=options]

On debugging builds, write a debugging log. A typical debug_options string is d:t:o,file_name . The default is

d:t:o,/tmp/mysql.trace .

--debug-check

Check memory and open file usage at exit.

-T, --debug-info

Print some debug info at exit.

1285/4161

--default-auth=plugin

Default authentication client-side plugin to use.

--default-character-set=name

Set the default character set. A common issue that can occur when the operating system uses utf8 or another multibyte

character set is that output from the mariadb client is formatted incorrectly, due to the fact that the MariaDB client uses the

latin1 character set by default. You can usually fix such issues by using this option to force the client to use the system

character set instead. If set to auto the character set is taken from the client environment (LC_CTYPE on Unix).

--defaults-extra-file=file

Read this file after the global files are read. Must be given as the first option.

--defaults-file=file

Only read default options from the given file. Must be given as the first option.

--defaults-group-suffix=suffix

In addition to the given groups, also read groups with this suffix.

--delimiter=name

Delimiter to be used. The default is the semicolon character (<;=).

--enable-cleartext-plugin

Obsolete option. Exists only for MySQL compatibility. From MariaDB 10.3.36 .

-e, --execute=name

Execute statement and quit. Disables --force and history file. The default output format is like that produced with --

batch .

-f, --force

Continue even if we get an SQL error. Sets --abort-source-on-error to 0.

-h, --host=name

Connect to host.

-H, --html

Produce HTML output.

-U, --i-am-a-dummy

Synonym for option --safe-updates , -U .

-i, --ignore-spaces

Ignore space after function names. Allows one to have spaces (including tab characters and new line characters) between

function name and '('. The drawback is that this causes built in functions to become reserved words.

--init-command=str

SQL Command to execute when connecting to the MariaDB server. Will automatically be re-executed when reconnecting.

--line-numbers

Write line numbers for errors. (Defaults to on; use --skip-line-numbers to disable.)

1286/4161

https://mariadb.com/kb/en/mariadb-10336-release-notes/

--local-infile

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables LOCAL. The option may be

given as --local-infile=0 or --local-infile=1 to explicitly disable or enable LOCAL. Enabling LOCAL has no effect

if the server does not also support it.

--max-allowed-packet=num

The maximum packet length to send to or receive from server. The default is 16MB, the maximum 1GB.

--max-join-size=num

Automatic limit for rows in a join when using --safe-updates . Default is 1000000.

-G, --named-commands

Enable named commands. Named commands mean mariadb's internal commands (see below) . When enabled, the named

commands can be used from any line of the query, otherwise only from the first line, before an enter. Long-format

commands are allowed, not just short-format commands. For example, quit and \q are both recognized. Disable with -

-disable-named-commands . This option is disabled by default.

--net-buffer-length=num

The buffer size for TCP/IP and socket communication. Default is 16KB.

-b, --no-beep

Turn off beep on error.

--no-defaults

Don't read default options from any option file. Must be given as the first option.

-o, --one-database

Ignore statements except those those that occur while the default database is the one named on the command line. This

filtering is limited, and based only on USE statements. This is useful for skipping updates to other databases in the binary

log.

--pager[=name]

Pager to use to display results (Unix only). If you don't supply an option, the default pager is taken from your ENV variable

PAGER. Valid pagers are less, more, cat [> filename], etc. See interactive help (\h) also. This option does not work in batch

mode. Disable with --disable-pager . This option is disabled by default.

-p, --password[=name]

Password to use when connecting to server. If you use the short option form (-p), you cannot have a space between the

option and the password. If you omit the password value following the --password or -p option on the command line,

mariadb prompts for one. Specifying a password on the command line should be considered insecure. You can use an

option file to avoid giving the password on the command line.

--plugin-dir=name

Directory for client-side plugins.

-P, --port=num

Port number to use for connection or 0 for default to, in order of preference, my.cnf, $MYSQL_TCP_PORT, /etc/services,

built-in default (3306).

--print-defaults

Print the program argument list and exit. Must be given as the first option.

1287/4161

--progress-reports

Get progress reports for long running commands (such as ALTER TABLE). (Defaults to on; use --skip-progress-

reports to disable.)

--prompt=name

Set the mariadb prompt to this value. See prompt command for options.

--protocol=name

The protocol to use for connection (tcp, socket, pipe, memory).

-q, --quick

Don't cache result, print it row by row. This may slow down the server if the output is suspended. Doesn't use history file.

-r, --raw

For tabular output, the <boxing= around columns enables one column value to be distinguished from another. For nontabular

output (such as is produced in batch mode or when the --batch or --silent option is given), special characters are

escaped in the output so they can be identified easily. Newline, tab, NUL, and backslash are written as \n , \t , \0 , and

. The --raw option disables this character escaping.

--reconnect

Reconnect if the connection is lost. This option is enabled by default. Disable with --disable-reconnect or skip-

reconnect .

-U, --safe-updates

Allow only those UPDATE and DELETE statements that specify which rows to modify by using key values. If you have set

this option in an option file, you can override it by using --safe-updates on the command line. See using the --safe-

updates option for more.

--secure-auth

Refuse client connecting to server if it uses old (pre-MySQL4.1.1) protocol. Defaults to false.

--select-limit=num

Automatic limit for SELECT when using --safe-updates. Default 1000.

--server-arg=name

Send embedded server this as a parameter.

--shared-memory-base-name=name

Shared-memory name to use for Windows connections using shared memory to a local server (started with the --shared-

memory option). Case-sensitive.

--show-warnings

Show warnings after every statement. Applies to interactive and batch mode.

--sigint-ignore

Ignore SIGINT signals (usually CTRL-C).

-s, --silent

Be more silent. This option can be given multiple times to produce less and less output. This option results in nontabular

output format and escaping of special characters. Escaping may be disabled by using raw mode; see the description for the

--raw option.

1288/4161

--skip-auto-rehash

Disable automatic rehashing. See --auto-rehash .

-N, --skip-column-names

Don't write column names in results. See --column-names .

--skip-comments

Discard comments. Set by default, see --comments to enable.

-L , --skip-line-numbers

Don't write line number for errors. See --line-numbers .

--skip-progress-reports

Disables getting progress reports for long running commands. See --progress-reports .

--skip-reconnect

Don't reconnect if the connection is lost. See --reconnect .

-S, --socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS options are set. The --ssl

option does not enable verifying the server certificate by default. In order to verify the server certificate, the user must

specify the --ssl-verify-server-cert option. Set by default from MariaDB 10.10.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate Authorities (CAs) to use

for TLS. This option requires that you use the absolute path, not a relative path. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option implies the --ssl option.

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one X509 certificate for a trusted

Certificate Authority (CA) to use for TLS. This option requires that you use the absolute path, not a relative path. The

directory specified by this option needs to be run through the openssl rehash command. See Secure Connections

Overview: Certificate Authorities (CAs) for more information. This option is only supported if the client was built with

OpenSSL or yaSSL. If the client was built with GnuTLS or Schannel, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are used on which platforms. This

option implies the --ssl option.

--ssl-cert=name

Defines a path to the X509 certificate file to use for TLS. This option requires that you use the absolute path, not a relative

path. This option implies the --ssl option.

--ssl-cipher=name

List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for TLS. This option requires

that you use the absolute path, not a relative path. See Secure Connections Overview: Certificate Revocation Lists (CRLs)

for more information. This option is only supported if the client was built with OpenSSL or Schannel. If the client was built

with yaSSL or GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used by MariaDB for more
1289/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

information about which libraries are used on which platforms.

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one revoked X509 certificate to

use for TLS. This option requires that you use the absolute path, not a relative path. The directory specified by this option

needs to be run through the openssl rehash command. See Secure Connections Overview: Certificate Revocation

Lists (CRLs) for more information. This option is only supported if the client was built with OpenSSL. If the client was built

with yaSSL, GnuTLS, or Schannel, then this option is not supported. See TLS and Cryptography Libraries Used by MariaDB

for more information about which libraries are used on which platforms.

--ssl-key=name

Defines a path to a private key file to use for TLS. This option requires that you use the absolute path, not a relative path.

This option implies the --ssl option.

--ssl-verify-server-cert

Enables server certificate verification. Prior to MariaDB 11.3, this option is disabled by default, otherwise enabled. Use --

disable-ssl or --disable-ssl-verify-server-cert to revert to the pre-11.3 behavior.

-t, --table

Display output in table format. This is the default for interactive use, but can be used to produce table output in batch mode.

--tee=name

Append everything into outfile. See interactive help (\h) also. Does not work in batch mode. Disable with --disable-tee .

This option is disabled by default.

--tls-version=name

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol version will only be enabled if it is

present in this list. All other TLS protocol versions will not be permitted. See Secure Connections Overview: TLS Protocol

Versions for more information. This option was added in MariaDB 10.4.6.

--tls-fp=name

Server certificate fingerprint (implies --ssl). Added in MariaDB 11.3.0.

--tls-fplist=name

File with accepted server certificate fingerprints, one per line (implies --ssl). Added in MariaDB 11.3.0.

-n, --unbuffered

Flush buffer after each query.

-u , --user=name

User for login if not current user.

-v, --verbose

Write more. (-v -v -v gives the table output format).

-V, --version

Output version information and exit.

-E, --vertical

Print the output of a query (rows) vertically. Use the \G delimiter to apply to a particular statement if this option is not

enabled.

1290/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

-w, --wait

If the connection cannot be established, wait and retry instead of aborting.

-X , --xml

Produce XML output. See the mariadb-dump --xml option for more.

Option Files

In addition to reading options from the command-line, mariadb can also read options from option files. If an unknown

option is provided to mariadb in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

mariadb is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing of option

files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more information.

Option Groups

mariadb reads options from the following option groups from option files:

Group Description

[mysql] Options read by mysql , which includes both MariaDB Server and MySQL Server.

[mariadb-

client]
Options read by mariadb . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

How to Specify Which Protocol to Use When Connecting
to the Server
You can force which protocol to be used to connect to the mariadbd server by giving the protocol option one of the

following values: tcp , socket , pipe or memory .

If protocol is not specified, before MariaDB 10.6.1, command line connection properties that do not force protocol are

ignored.

From MariaDB 10.6.1, a connection property specified via the command line (e.g. --port=3306) will force its type. The

protocol that matches the respective connection property is used, e.g. a TCP/IP connection is created when --port is

specified.

If multiple or no connection properties are specified via the command-line, then the following happens:

Linux/Unix

If hostname is not specified or hostname is localhost , then Unix sockets are used.

In other cases (hostname is given and it's not localhost) then a TCP/IP connection through the port option is

1291/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

used.

Note that localhost is a special value. Using 127.0.0.1 is not the same thing. The latter will connect to the mariadbd

server through TCP/IP.

Windows

If shared-memory-base-name is specified and hostname is not specified or hostname is localhost , then the

connection will happen through shared memory.

If shared-memory-base-name is not specified and hostname is not specified or hostname is localhost , then

the connection will happen through windows named pipes.

Named pipes will also be used if the libmysql / libmariadb client library detects that the client doesn't support

TCP/IP.

In other cases then a TCP/IP connection through the port option is used.

How to Test Which Protocol is Used
The status command shows you information about which protocol is used:

shell> mariadb test

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 10

Server version: 10.2.2-MariaDB-valgrind-max-debug Source distribution

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [test]> status;

mysql Ver 15.1 Distrib 10.0.25-MariaDB, for Linux (x86_64) using readline 5.2

Connection id: 10

Current database: test

Current user: monty@localhost

...

Connection: Localhost via UNIX socket

...

UNIX socket: /tmp/mysql-dbug.sock

mariadb Commands
There are also a number of commands that can be run inside the client. Note that all text commands must be first on line and

end with ';'

Command Description

? , \? Synonym for `help'.

clear , \c Clear the current input statement.

connect , \r Reconnect to the server. Optional arguments are db and host.

delimiter , \d Set statement delimiter.

edit , \e Edit command with $EDITOR.

ego , \G Send command to mariadb server, display result vertically.

exit , \q Exit mariadb. Same as quit.

go , \g Send command to mariadb server.

help , \h Display this help.

nopager , \n Disable pager, print to stdout.

notee , \t Don't write into outfile.

pager , \P Set PAGER [to_pager]. Print the query results via PAGER.

1292/4161

print , \p Print current command.

prompt , \R Change your mariadb prompt. See prompt command for options.

quit , \q Quit mariadb.

rehash , \# Rebuild completion hash.

source , \. Execute an SQL script file. Takes a file name as an argument.

status , \s Get status information from the server.

system , \! Execute a system shell command. Only works in Unix-like systems.

tee , \T Set outfile [to_outfile]. Append everything into given outfile.

use , \u Use another database. Takes database name as argument.

charset , \C Switch to another charset. Might be needed for processing binlog with multi-byte charsets.

warnings , \W Show warnings after every statement.

nowarning , \w Don't show warnings after every statement.

The mysql_history File
On Unix, the mariadb client writes a record of executed statements to a history file. By default, this file is named

.mysql_history and is created in your home directory. To specify a different file, set the value of the MYSQL_HISTFILE

environment variable.

The .mysql_history file should be protected with a restrictive access mode because sensitive information might be written to

it, such as the text of SQL statements that contain passwords.

If you do not want to maintain a history file, first remove .mysql_history if it exists, and then use either of the following

techniques:

Set the MYSQL_HISTFILE variable to /dev/null. To cause this setting to take effect each time you log in, put the

setting in one of your shell's startup files.

Create .mysql_history as a symbolic link to /dev/null:

shell> ln -s /dev/null $HOME/.mysql_history

You need do this only once.

prompt Command
The prompt command reconfigures the default prompt \N [\d]> . The string for defining the prompt can contain the

following special sequences.

Option Description

\c A counter that increments for each statement you issue.

\D The full current date.

\d The default database.

\h The server host.

\l The current delimiter.

\m Minutes of the current time.

\n A newline character.

\O The current month in three-letter format (Jan, Feb, ...).

\o The current month in numeric format.

\P am/pm.

\p The current TCP/IP port or socket file.

\R The current time, in 24-hour military time (0323).

1293/4161

\r The current time, standard 12-hour time (1312).

\S Semicolon.

\s Seconds of the current time.

\t A tab character.

\U Your full user_name@host_name account name.

\u Your user name.

\v The server version.

\w The current day of the week in three-letter format (Mon, Tue, ...).

\Y The current year, four digits.

\y The current year, two digits.

_ A space.

\ A space (a space follows the backslash).

\' Single quote.

\" Double quote.

\ \ A literal <\= backslash character.

\x x, for any <x= not listed above.

mariadb Tips
This section describes some techniques that can help you use mariadb more effectively.

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal table format.

Queries can be displayed vertically by terminating the query with \G instead of a semicolon. For example, longer text values

that include newlines often are much easier to read with vertical output:

mariadb> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G

*************************** 1. row ***************************

 msg_nro: 3068

 date: 2000-03-01 23:29:50

time_zone: +0200

mail_from: Monty

 reply: monty@no.spam.com

 mail_to: "Thimble Smith" <tim@no.spam.com>

 sbj: UTF-8

 txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar

Thimble> with UTF-8 or Unicode? Otherwise, I´ll put this on my

Thimble> TODO list and see what happens.

Yes, please do that.

Regards,

Monty

 file: inbox-jani-1

 hash: 190402944

1 row in set (0.09 sec)

Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy , which has the same effect). It is helpful

for cases when you might have issued a DELETE FROM tbl_name statement but forgotten the WHERE clause. Normally,

such a statement deletes all rows from the table. With --safe-updates , you can delete rows only by specifying the key

values that identify them. This helps prevent accidents.

When you use the --safe-updates option, mariadb issues the following statement when it connects to the MariaDB

server:

1294/4161

SET sql_safe_updates=1, sql_select_limit=1000, sql_max_join_size=1000000;

The SET statement has the following effects:

You are not allowed to execute an UPDATE or DELETE statement unless you specify a key constraint in the WHERE

clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT clause.

The server aborts multiple-table SELECT statements that probably need to examine more than 1,000,000 row

combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --select_limit and --

max_join_size options:

mariadb --safe-updates --select_limit=500 --max_join_size=10000

Disabling mariadb Auto-Reconnect

If the mariadb client loses its connection to the server while sending a statement, it immediately and automatically tries to

reconnect once to the server and send the statement again. However, even if mariadb succeeds in reconnecting, your first

connection has ended and all your previous session objects and settings are lost: temporary tables, the autocommit mode,

and user-defined and session variables. Also, any current transaction rolls back. This behavior may be dangerous for you,

as in the following example where the server was shut down and restarted between the first and second statements without

you knowing it:

mariadb> SET @a=1;

Query OK, 0 rows affected (0.05 sec)

mariadb> INSERT INTO t VALUES(@a);

ERROR 2006: MySQL server has gone away

No connection. Trying to reconnect...

Connection id: 1

Current database: test

Query OK, 1 row affected (1.30 sec)

mariadb> SELECT * FROM t;

+------+

| a |

+------+

| NULL |

+------+

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is important to have

mariadb terminate with an error if the connection has been lost, you can start the mariadb client with the --skip-

reconnect option.

1.3.3 Delimiters
The default delimiter in the mariadb client is the semicolon.

When creating stored programs from the command-line, it is likely you will need to differentiate between the regular

delimiter and a delimiter inside a BEGIN END block. To understand better, consider the following example:

CREATE FUNCTION FortyTwo() RETURNS TINYINT DETERMINISTIC

BEGIN

 DECLARE x TINYINT;

 SET x = 42;

 RETURN x;

END;

If you enter the above line by line, the mariadb client will treat the first semicolon, at the end of the DECLARE x TINYINT

line, as the end of the statement. Since that's only a partial definition, it will throw a syntax error, as follows:

1295/4161

CREATE FUNCTION FortyTwo() RETURNS TINYINT DETERMINISTIC

BEGIN

DECLARE x TINYINT;

ERROR 1064 (42000): You have an error in your SQL syntax;

check the manual that corresponds to your MariaDB server version

 for the right syntax to use near '' at line 3

The solution is to specify a distinct delimiter for the duration of the process, using the DELIMITER command. The delimiter

can be any set of characters you choose, but it needs to be a distinctive set of characters that won't cause further confusion.

// is a common choice, and used throughout the Knowledge Base.

Here's how the function could be successfully entered from the mariadb client with the new delimiter.

DELIMITER //

CREATE FUNCTION FortyTwo() RETURNS TINYINT DETERMINISTIC

BEGIN

 DECLARE x TINYINT;

 SET x = 42;

 RETURN x;

END

//

DELIMITER ;

At the end, the delimiter is restored to the default semicolon. The \g and \G delimiters can always be used, even when a

custom delimiter is specified.

1.3.4 mysql Command-line Client
mysql is a simple SQL shell (with GNU readline capabilities).

From MariaDB 10.4.6, mariadb is a symlink to mysql .

From MariaDB 10.5.2, mariadb is the name of the script, with mysql a symlink .

See mariadb for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.5 Aria Clients and Utilities
Clients and utilities for working with the Aria storage engine

aria_chk

Used for checking, repairing, optimizing and sorting Aria tables.

aria_pack

Tool for compressing Aria tables.

aria_read_log

Tool for displaying and applying log records from an Aria transaction log.

aria_s3_copy

Copies an Aria table to and from S3.

There are 4 related questions .

1

1.3.5.1 aria_chk

1296/4161

https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/aria-clients-and-utilities/+questions/

Contents
1. Options and Variables

1. Global Options

2. Main Arguments

3. Check Options (--check is the Default Action for aria_chk):

4. Recover (Repair) Options (When Using '--recover' or '--safe-recover'):

5. Other Options

6. Variables

2. Usage

aria_chk is used to check, repair, optimize, sort and get information about Aria tables.

With the MariaDB server you can use CHECK TABLE, REPAIR TABLE and OPTIMIZE TABLE to do similar things.

Note: aria_chk should not be used when MariaDB is running. MariaDB assumes that no one is changing the tables

it's using!

Usage:

aria_chk [OPTIONS] aria_tables[.MAI]

Aria table information is stored in 2 files: the .MAI file contains base table information and the index and the .MAD file

contains the data. aria_chk takes one or more .MAI files as arguments.

The following groups are read from the my.cnf files:

[maria_chk]

[aria_chk]

Options and Variables

Global Options

The following options to handle option files may be given as the first argument:

Option Description

-- print-defaults Print the program argument list and exit.

-- no-defaults Don't read default options from any option file.

-- defaults-file=# Only read default options from the given file #.

-- defaults-extra-file=# Read this file after the global files are read.

Main Arguments

Option Description

- # , -

- debug=...
Output debug log. Often this is 'd:t:o,filename'.

-H , -- HELP Display this help and exit.

-? , -- help Display this help and exit.

-

- datadir=path
Path for control file (and logs if --logdir not used).

-- ignore-

control-file
Don't open the control file. Only use this if you are sure the tables are not used by another program

-

- logdir=path
Path for log files.

-- require-

control-file
Abort if we can't find/read the maria_log_control file

1297/4161

-s , -- silent Only print errors. One can use two -s to make aria_chk very silent.

-t , -

- tmpdir=path

Path for temporary files. Multiple paths can be specified, separated by colon (:) on Unix or semicolon

(;) on Windows. They will be used in a round-robin fashion.

-v , -

- verbose

Print more information. This can be used with --description and --check . Use many -v for more

verbosity.

-V , -

- version
Print version and exit.

-w , -- wait Wait if table is locked.

Check Options (--check is the Default Action for aria_chk):

Option Description

-c , -- check Check table for errors.

-e , -

- extend-

check

Check the table VERY throughly. Only use this in extreme cases as aria_chk should normally be able to

find out if the table is ok even without this switch.

-F , -- fast Check only tables that haven't been closed properly.

-C , -

- check-only-

changed

Check only tables that have changed since last check.

-f , -- force Restart with ' -r ' if there are any errors in the table. States will be updated as with ' --update-state '.

-i , -

- information
Print statistics information about table that is checked.

-m , -

- medium-

check
Faster than extend-check, and finds 99.99% of all errors. Should be good enough for most cases.

-U , -

- update-

state

Mark tables as crashed if any errors were found and clean if check didn't find any errors but table was

marked as 'not clean' before. This allows one to get rid of warnings like 'table not properly closed'. If

table was updated, update also the timestamp for when the check was made. This option is on by

default! Use --skip-update-state to disable.

-T , -- read-

only
Don't mark table as checked.

Recover (Repair) Options (When Using '--recover' or '--safe-recover'):

Option Description

-B , -- backup Make a backup of the .MAD file as 'filename-time.BAK'.

-- correct-

checksum
Correct checksum information for table.

-D , -- data-

file-length= #
Max length of data file (when recreating data file when it's full).

-e , -- extend-

check
Try to recover every possible row from the data file Normally this will also find a lot of garbage rows;

Don't use this option if you are not totally desperate.

-f , -- force Overwrite old temporary files.

-k , -- keys-

used= #

Tell MARIA to update only some specific keys. # is a bit mask of which keys to use. This can be used

to get faster inserts.

-- max-record-

length= #
Skip rows bigger than this if aria_chk can't allocate memory to hold it.

-r , -

- recover
Can fix almost anything except unique keys that aren't unique.

1298/4161

-n , -- sort-

recover
Forces recovering with sorting even if the temporary file would be very big.

-p , -

- parallel-

recover

Uses the same technique as '-r' and '-n', but creates all the keys in parallel, in different threads.

-o , -- safe-

recover

Uses old recovery method; Slower than '-r' but can handle a couple of cases where '-r' reports that it

can't fix the data file.

-

- transaction-

log

Log repair command to transaction log. This is needed if one wants to use the maria_read_log to

repeat the repair.

-- character-

sets-dir=... Directory where character sets are.

-- set-

collation=name
Change the collation used by the index.

-q , -- quick

Faster repair by not modifying the data file. One can give a second ' -q ' to force aria_chk to modify

the original datafile in case of duplicate keys. NOTE: Tables where the data file is currupted can't be

fixed with this option.

-u , -- unpack Unpack file packed with aria_pack.

Other Options

Option Description

-a , -- analyze
Analyze distribution of keys. Will make some joins in MariaDB faster. You can check the

calculated distribution by using ' --description --verbose table_name '.

-

- stats_method=name

Specifies how index statistics collection code should treat NULLs. Possible values of name are

"nulls_unequal" (default for 4.1/5.0), "nulls_equal" (emulate 4.0), and "nulls_ignored".

-d , -- description Prints some information about table.

-A , -- set-auto-

increment[=value]

Force auto_increment to start at this or higher value If no value is given, then sets the next

auto_increment value to the highest used value for the auto key + 1.

-S , -- sort-index Sort index blocks. This speeds up 'read-next' in applications.

-R , -- sort-

records= #

Sort records according to an index. This makes your data much more localized and may speed

up things (It may be VERY slow to do a sort the first time!).

-b , -- block-

search= #
Find a record, a block at given offset belongs to.

-z , -- zerofill

Remove transaction id's from the data and index files and fills empty space in the data and index

files with zeroes. Zerofilling makes it possible to move the table from one system to another

without the server having to do an automatic zerofill. It also allows one to compress the tables

better if one want to archive them.

-- zerofill-keep-

lsn
Like --zerofill but does not zero out LSN of data/index pages.

Variables

Option Description

page_buffer_size Size of page buffer. Used by --safe-repair

read_buffer_size Read buffer size for sequential reads during scanning

write_buffer_size Write buffer size for sequential writes during repair of fixed size or dynamic size rows

sort_buffer_size Size of sort buffer. Used by --recover

sort_key_blocks Internal buffer for sorting keys; Don't touch :)

1299/4161

Usage
One main usage of aria_chk is when you want to do a fast check of all Aria tables in your system. This is faster than

doing it in MariaDB as you can allocate all free memory to the buffers.

Assuming you have a bit more than 2G free memory.

The following commands, run in the MariaDB data directory, check all your tables and repairs only those that have an error:

aria_chk --check --sort_order --force --sort_buffer_size=1G */*.MAI

If you want to optimize all your tables: (The --zerofill is used here to fill up empty space with \0 which can speed up

compressed backups).

aria_chk --analyze --sort-index --page_buffer_size=1G --zerofill */*.MAI

In case you have a serious problem and have to use --safe-recover :

aria_chk --safe-recover --zerofill --page_buffer_size=2G */*.MAI

1.3.5.2 aria_pack
Contents
1. Options

2. Unpacking

3. Example

aria_pack is a tool for compressing Aria tables. The resulting table are read-only, and usually about 40% to 70% smaller.

aria_pack is run as follows

aria_pack [options] file_name [file_name2...]

The file name is the .MAI index file. The extension can be omitted, although keeping it permits wildcards, such as

aria_pack *.MAI

to compress all the files.

aria_pack compresses each column separately, and, when the resulting data is read, only the individual rows and columns

required need to be decompressed, allowing for quicker reading.

Once a table has been packed, use aria_chk -rq (the quick and recover options) to rebuild its indexes.

Options
The following variables can be set while passed as commandline options to aria_pack, or set in the [ariapack] section in

your my.cnf file.

Option Description

-b, --backup Make a backup of the table as table_name.OLD.

--character-sets-dir=name Directory where character sets are.

-h, --datadir Path for control file (and logs if --logdir not used). From MariaDB 10.5.3

-#, --debug[=name] Output debug log. Often this is 'd:t:o,filename'.

-?, --help Display help and exit.

-f, --force Force packing of table even if it gets bigger or if tempfile exists.

--ignore-control-file Ignore the control file. From MariaDB 10.5.3.

-j, --join=name Join all given tables into 'new_table_name'. All tables MUST have identical layouts.

--require-control-file Abort if cannot find control file. From MariaDB 10.5.3.

1300/4161

-s, --silent Only write output when an error occurs.

-t, --test Don't pack table, only test packing it.

-T, --tmpdir=name Use temporary directory to store temporary table.

-v, --verbose Write info about progress and packing result. Use many -v for more verbosity!

-V, --version Output version information and exit.

-w, --wait Wait and retry if table is in use.

Unpacking
To unpack a table compressed with aria_pack, use the aria_chk -u option.

Example

> aria_pack /my/data/test/posts

Compressing /my/data/test/posts.MAD: (1690 records)

- Calculating statistics

- Compressing file

37.71%

> aria_chk -rq --ignore-control-file /my/data/test/posts

- check record delete-chain

- recovering (with keycache) Aria-table '/my/data/test/posts'

Data records: 1690

State updated

1.3.5.3 aria_read_log
aria_read_log is a tool for displaying and applying log records from an Aria transaction log.

Note: Aria is compiled without -DIDENTICAL_PAGES_AFTER_RECOVERY which means that the table files are not byte-

to-byte identical to files created during normal execution. This should be ok, except for test scripts that try to compare files

before and after recovery.

Usage:

aria_read_log OPTIONS

You need to use one of -d or -a .

Options
The following variables can be set while passed as commandline options to aria_read_log, or set in the [aria_read_log]

section in your my.cnf file.

Option Description

-a, --apply
Apply log to tables: modifies tables! you should make a backup first! Displays a lot of information

if not run with --silent.

--character-sets-

dir=name
Directory where character sets are.

-c, --check if --display-only, check if record is fully readable (for debugging).

-?, --help Display help and exit.

-d, --display-only Display brief info read from records' header.

-e, --end-lsn=# Stop applying at this lsn. If end-lsn is used, UNDO:s will not be applied

-h, --aria-log-dir-

path=name
Path to the directory where to store transactional log

1301/4161

-P, --page-buffer-

size=#
The size of the buffer used for index blocks for Aria tables.

-l, --print-log-control-

file
Print the content of the aria_log_control_file. From MariaDB 10.4.1.

-o, --start-from-lsn=# Start reading log from this lsn.

-C, --start-from-

checkpoint
Start applying from last checkpoint.

-s, --silent Print less information during apply/undo phase.

-T, --tables-to-

redo=name

List of comma-separated tables that we should apply REDO on. Use this if you only want to

recover some tables.

-t, --tmpdir=name Path for temporary files. Multiple paths can be specified, separated by colon (:)

--translog-buffer-

size=#
The size of the buffer used for transaction log for Aria tables.

-u, --undo
Apply UNDO records to tables. (disable with --disable-undo) (Defaults to on; use --skip-undo to

disable.)

-v, --verbose Print more information during apply/undo phase.

-V, --version Print version and exit.

5.3.16.4 aria_s3_copy

1.3.6 Backup, Restore and Import Clients
Clients for taking backups or importing/restoring data

Mariabackup

Physical backups, supports Data-at-Rest and InnoDB compression.

mariadb-dump

Dump a database or a collection of databases in a portable format.

mariadb-hotcopy

Fast backup program on local machine. Deprecated.

mariadb-import

Loads tables from text files in various formats.

Backup/Restore + Data Export/Import via dbForge Studio

The fastest and easiest way to perform these operations with MariaDB databases.

There are 5 related questions .

2.3.4 Mariabackup

1.3.6.2 mariadb-dump

From MariaDB 10.4.6, mariadb-dump is a symlink to mysqldump , the backup tool.

From MariaDB 10.5.2, mariadb-dump is the name of the tool, with mysqldump a symlink .

From MariaDB 11.0.1, mysqldump (the symlink) is deprecated and removed from the mariadb Docker Official

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

MariaDB starting with 11.0.1

1302/4161

https://mariadb.com/kb/en/backup-restore-and-import-clients-backuprestore-data-exportimport-via-dbfor/
https://mariadb.com/kb/en/backup-restore-and-import-clients/+questions/

Image.

The mariadb-dump client (originally called mysqldump)is a backup program originally written by Igor Romanenko. It can

be used to dump a database or a collection of databases for backup or transfer to another database server (not necessarily

MariaDB or MySQL). The dump typically contains SQL statements to create the table, populate it, or both. However,

mariadb-dump can also be used to generate files in CSV, other delimited text, or XML format.

If you are doing a backup on the server and your tables all are MyISAM tables, consider using mariadb-hotcopy instead

because it can accomplish faster backups and faster restores.

mariadb-dump dumps triggers along with tables, as these are part of the table definition. However, stored procedures,

views, and events are not, and need extra parameters to be recreated explicitly (for example, --routines and --

events). Procedures and functions are however also part of the system tables (for example mysql.proc).

mariadb-dump supports the enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT .

Performance
mariadb-dump doesn't usually consume much CPU resources on modern hardware as by default it uses a single thread.

This method is good for a heavily loaded server.

Disk input/outputs per second (IOPS), can however increase for multiple reasons. When you back-up on the same device as

the database, this produces unnecessary random IOPS. The dump is done sequentially, on a per table basis, causing a full-

table scan and many buffer page misses on tables that are not fully cached in memory.

It's recommended that you back-up from a network location to remove disk IOPS on the database server, but it is vital to use

a separate network card to keep network bandwidth available for regular traffic.

Although mariadb-dump will by default preserve your resources for regular spindle disks and low-core hardware, this doesn't

mean that concurrent dumps cannot benefit from hardware architecture like SAN, flash storage, low write workload. The

back-up time would benefit from a tool such as MyDumper.

Usage
There are four general ways to invoke mariadb-dump :

shell> mariadb-dump [options] db_name [tbl_name ...]

shell> mariadb-dump [options] --databases db_name ...

shell> mariadb-dump [options] --all-databases

shell> mariadb-dump [options] --system=[option_list]

If you do not name any tables following db_name or if you use the --databases or --all-databases option, entire

databases are dumped.

mariadb-dump does not dump the INFORMATION_SCHEMA (or PERFORMANCE_SCHEMA, if enabled) database by

default. MariaDB dumps the INFORMATION_SCHEMA if you name it explicitly on the command line, although currently you

must also use the --skip-lock-tables option.

To see a list of the options your version of mariadb-dump supports, execute mariadb-dump --help .

Row by Row vs. Buffering

mariadb-dump can retrieve and dump table contents row by row, or it can retrieve the entire content from a table and

buffer it in memory before dumping it. Buffering in memory can be a problem if you are dumping large tables. To dump

tables row by row, use the --quick option (or --opt , which enables --quick). The --opt option (and hence --

quick) is enabled by default, so to enable memory buffering, use --skip-quick .

mariadb-dump and the mysql.transaction_registry_table

mariadb-dump includes logic to cater for the mysql.transaction_registry table. mysqldump from an earlier MariaDB

release cannot be used on MariaDB 10.3 and beyond.

mariadb-dump and Old Versions of MySQL

If you are using a recent version of mariadb-dump to generate a dump to be reloaded into a very old MySQL server, you

should not use the --opt or --extended-insert option. Use --skip-opt instead.

1303/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/functions
https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/#mariadb-dump

Options

mariadb-dump supports the following options:

Option Description

--all Deprecated. Use --create-options instead.

-A , --all-databases Dump all the databases. This will be same as --databases with all databases selected.

-Y , --all-tablespaces Dump all the tablespaces.

-y , --no-tablespaces Do not dump any tablespace information.

--add-drop-database
Add a DROP DATABASE before each create. Typically used in conjunction with the --all-databases or --databases

option because no CREATE DATABASE statements are written unless one of those options is specified.

--add-drop-table Add a DROP TABLE before each create.

--add-drop-trigger Add a DROP TRIGGER statement before each CREATE TRIGGER. From MariaDB 10.2.6 .

--add-locks
Add locks around INSERT statements, which results in faster inserts when the dump file is reloaded. Use --skip-add-

locks to disable.

--allow-keywords Allow creation of column names that are keywords. This works by prefixing each column name with the table name.

--apply-slave-

statements
Adds STOP SLAVE prior to CHANGE MASTER and START SLAVE to bottom of dump.

--as-of Dump system versioned table as of specified timestamp. From MariaDB 10.7.0 .

--character-sets-

dir=name
Directory for character set files.

-i , --comments
Write additional information in the dump file such as program version, server version, and host. Disable with --skip-

comments .

--compact

Give less verbose output (useful for debugging). Disables structure comments and header/footer constructs. Enables the --

skip-add-drop-table , --skip-add-locks , --skip-comments , --skip-disable-keys , and --skip-set-charset

options.

--compatible=name

Change the dump to be compatible with a given mode. By default tables are dumped in a format optimized for MariaDB and

MySQL. Legal modes are: ansi , mysql323 , mysql40 , postgresql , oracle , mssql , db2 , maxdb ,

no_key_options , no_table_options , and no_field_options . One can use several modes separated by commas.

This option does not guarantee compatibility with other servers. It only enables those SQL mode values that are currently

available for making dump output more compatible. For example, --compatible=oracle does not map data types to

Oracle types or use Oracle comment syntax.

-c , --complete-insert Use complete INSERT statements that include column names.

-C , --compress Use compression in server/client protocol. Both client and server must support compression for this to work.

--copy-s3-tables
By default S3 tables are ignored. With this option set, the result file will contain a CREATE statement for a similar Aria table,

followed by the table data and ending with an ALTER TABLE xxx ENGINE=S3 . From MariaDB 10.5.0.

-a , --create-options
Include all MariaDB and/or MySQL specific create options in CREATE TABLE statements. Use --skip-create-options

to disable.

-B , --databases

Dump several databases. Normally, mariadb-dump treats the first name argument on the command line as a database

name and following names as table names. With this option, it treats all name arguments as database names. CREATE

DATABASE and USE statements are included in the output before each new database.

-#, --debug[=#]
If using a debug version of MariaDB, write a debugging log. A typical debug_options string is ´d:t:o,file_name´. The default

value is ´d:t:o,/tmp/mysqldump.trace´. If using a non-debug version, mariadb-dump will catch this and exit.

--debug-check Check memory and open file usage at exit.

--debug-info Print some debug info at exit.

--default-auth=name Default authentication client-side plugin to use.

--default-character-

set=name
Set the default character set to name. If no character set is specified mariadb-dump uses utf8mb4.

--defaults-extra-

file=name
Read the file name after the global files are read. Must be given as the first argument.

--defaults-file=name Only read default options from the given file name. Must be given as the first argument.

--defaults-group-

suffix=str

Also read groups with a suffix of str. For example, since mariadb-dump normally reads the [client] and [mariadb-dump] (or

[mysqldump]) groups, --defaults-group-suffix=x would cause it to also read the groups [mariadb-dump_x] (or [mysqldump_x])

and [client_x].

--delayed-insert Insert rows with INSERT DELAYED instead of INSERT.

--delete-master-logs
On a primary replication server, delete the binary logs by sending a PURGE BINARY LOGS statement to the server after

performing the dump operation. This option automatically enables --master-data=2 .

-K , --disable-keys

'/*!40000 ALTER TABLE tb_name DISABLE KEYS */; and '/*!40000 ALTER TABLE tb_name ENABLE KEYS */; will

be put in the output. This makes loading the dump file faster because the indexes are created after all rows are inserted. This

option is effective only for non-unique indexes of MyISAM tables. Disable with --skip-disable-keys .

--dump-date

If the --comments option and this option are given, mariadb-dump produces a comment at the end of the dump of the

following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the data are otherwise

identical. --dump-date and --skip-dump-date control whether the date is added to the comment. The default is --

dump-date (include the date in the comment). --skip-dump-date suppresses date printing.

1304/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/sql-commands-purge-logs/

-H , --dump-history
Dump tables with history. From MariaDB 10.11.0. Until this option, mariadb-dump could not read historical rows from

versioned tables, and so historical data would not be backed up.

--dump-slave[=value]

Used for producing a dump file from a replica server that can be used to set up another replica server with the same primary.

Causes the binary log position and filename of the primary to be appended to the dumped data output. Setting the value to

1 (the default) will print it as a CHANGE MASTER command in the dumped data output; if set to 2 , that command will be

prefixed with a comment symbol. This option will turn --lock-all-tables on, unless --single-transaction is

specified too (in which case a global read lock is only taken a short time at the beginning of the dump - don't forget to read

about --single-transaction below). In all cases any action on logs will happen at the exact moment of the dump. Option

automatically turns --lock-tables off. Using this option causes mariadb-dump to stop the replica SQL thread before

beginning the dump, and restart it again after completion.

-E, --events Include Event Scheduler events for the dumped databases in the output.

-e , --extended-insert
Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller dump file and speeds up inserts

when the file is reloaded. Defaults to on; use --skip-extended-insert to disable.

--fields-terminated-

by=name

Fields in the output file are terminated by the given string. Used with the --tab option and has the same meaning as the

corresponding FIELDS clause for LOAD DATA INFILE.

--fields-enclosed-

by=name

Fields in the output file are enclosed by the given character. Used with the --tab option and has the same meaning as the

corresponding FIELDS clause for LOAD DATA INFILE.

--fields-optionally-

enclosed-by=name

Fields in the output file are optionally enclosed by the given character. Used with the --tab option and has the same

meaning as the corresponding FIELDS clause for LOAD DATA INFILE.

--fields-escaped-

by=name

Fields in the output file are escaped by the given character. Used with the --tab option and has the same meaning as the

corresponding FIELDS clause for LOAD DATA INFILE.

--first-slave Removed in MariaDB 5.5. Use --lock-all-tables instead.

-F , --flush-logs

Flush the MariaDB server log files before starting the dump. This option requires the RELOAD privilege. If you use this option

in combination with the --databases= or --all-databases option, the logs are flushed for each database dumped. The

exception is when using --lock-all-tables or --master-data : In this case, the logs are flushed only once,

corresponding to the moment all tables are locked. If you want your dump and the log flush to happen at the same exact

moment, you should use --flush-logs together with either --lock-all-tables or --master-data .

--flush-privileges

Send a FLUSH PRIVILEGES statement to the server after dumping the mysql database. This option should be used any time

the dump contains the mysql database and any other database that depends on the data in the mysql database for proper

restoration.

-f , --force

Continue even if an SQL error occurs during a table dump.

One use for this option is to cause mariadb-dump to continue executing even when it encounters a view that has become

invalid because the definition refers to a table that has been dropped. Without --force in this example, mariadb-dump

exits with an error message. With --force , mariadb-dump prints the error message, but it also writes an SQL comment

containing the view definition to the dump output and continues executing.

--gtid

Used together with --master-data and --dump-slave to more conveniently set up a new GTID replica. It causes those

options to output SQL statements that configure the replica to use the global transaction ID to connect to the primary instead

of old-style filename/offset positions. The old-style positions are still included in comments when --gtid is used; likewise

the GTID position is included in comments even if --gtid is not used.

-? , --help Display a help message and exit.

--hex-blob
Dump binary strings in hexadecimal format (for example, ´abc´ becomes 0x616263). The affected data types are

BINARY, VARBINARY, the BLOB types, and BIT.

-h name , --host=name Connect to and dump data from the MariaDB or MySQL server on the given host. The default host is localhost .

--ignore-database=name
Do not dump the specified database. To specify more than one database to ignore, use the directive multiple times, once for

each database. Only takes effect when used together with --all-databases or -A . Added in MariaDB 10.3.7 .

--ignore-table=name
Do not dump the specified table. To specify more than one table to ignore, use the directive multiple times, once for each

table. Each table must be specified with both database and table names, e.g., --ignore-table=database.table . This

option also can be used to ignore views.

--ignore-table-

data=name

Do not dump the specified table data (only the structure). To specify more than one table to ignore, use the directive multiple

times, once for each table. Each table must be specified with both database and table names. From MariaDB 10.1.46 ,

MariaDB 10.2.33 , MariaDB 10.3.24 , MariaDB 10.4.14 and MariaDB 10.5.3. See also --no-data .

--include-master-host-

port

Add the MASTER_HOST and MASTER_PORT options for the CHANGE MASTER TO statement when using the --dump-

slave option for a replica dump.

--insert-ignore Insert rows with INSERT IGNORE instead of INSERT .

--lines-terminated-

by=name

Lines in the output file are terminated by the given string. This option is used with the --tab option and has the same

meaning as the corresponding LINES clause for LOAD DATA INFILE.

-x , --lock-all-tables

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of the whole dump by

executing FLUSH TABLES WITH READ LOCK. This option automatically turns off --single-transaction and --lock-

tables .

-l , --lock-tables

For each dumped database, lock all tables to be dumped before dumping them. The tables are locked with READ LOCAL to

allow concurrent inserts in the case of MyISAM tables. For transactional tables such as InnoDB, --single-transaction is

a much better option than --lock-tables because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee that the tables in the

dump file are logically consistent between databases. Tables in different databases may be dumped in completely different

states. Use --skip-lock-tables to disable.

--log-error=name Log warnings and errors by appending them to the named file. The default is to do no logging.

--log-queries
When restoring the dump, the server will, if logging is turned on, log the queries to the general and slow query log. Defaults

to on; use --skip-log-queries to disable. Added in MariaDB 10.1.1 .

1305/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

--master-data[=#]

Causes the binary log position and filename to be appended to the output, useful for dumping a primary replication server to

produce a dump file that can be used to set up another server as a replica of the primary. These are the primary server

coordinates from which the replica should start replicating after you load the dump file into the replica. If the option is set to 1

(the default), will print it as a CHANGE MASTER command; if set to 2, that command will be prefixed with a comment

symbol. This --master-data option will turn --lock-all-tables on, unless --single-transaction is specified too.

Before MariaDB 5.3 this would take a global read lock for a short time at the beginning of the dump - see Enhancements for

START TRANSACTION WITH CONSISTENT SNAPSHOT and the --single-transaction option below). In all cases,

any action on logs will happen at the exact moment of the dump. This option automatically turns --lock-tables off.

In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a replica by dumping an existing replica of the primary. To do this, use the following procedure on

the existing replica:

1. Stop the replica's SQL thread and get its current status:

mariadb> STOP SLAVE SQL_THREAD;

mariadb> SHOW SLAVE STATUS;

2. From the output of the SHOW SLAVE STATUS statement, the binary log coordinates of the primary server from which the

new replica should start replicating are the values of the Relay_Master_Log_File and Exec_Master_Log_Pos fields. Denote

those values as file_name and file_pos.

2. Dump the replica server:

shell> mariadb-dump --master-data=2 --all-databases > dumpfile

3. Restart the replica:

mariadb> START SLAVE;

4. On the new replica, load the dump file:

shell> mariadb < dumpfile

5. On the new replica, set the replication coordinates to those of the primary server obtained earlier:

mariadb> CHANGE MASTER TO MASTER_LOG_FILE = ´file_name´, MASTER_LOG_POS = file_pos;

The CHANGE MASTER TO statement might also need other parameters, such as MASTER_HOST to point the replica to the

correct primary server host. Add any such parameters as necessary.

--max-allowed-packet=# The maximum packet length to send to or receive from server. The maximum is 1GB.

--max-statement-time=# Sets the maximum time any statement can run before being timed out by the server. (Default value is 0 (no limit))

--net-buffer-length=#

The initial buffer size for client/server TCP/IP and socket communication. This can be used to limit the size of rows in the

dump. When creating multiple-row INSERT statements (as with the --extended-insert or --opt option), mariadb-

dump creates rows up to net_buffer_length length.

--no-autocommit Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT statements.

-n , --no-create-db
This option suppresses the CREATE DATABASE ... IF EXISTS statement that normally is output for each dumped database

if --all-databases or --databases is given.

-t , --no-create-info Do not write CREATE TABLE statements which re-create each dumped table.

-d , --no-data

Do not write any table row information (that is, do not dump table contents). This is useful if you want to dump only the

CREATE TABLE statement for the table (for example, to create an empty copy of the table by loading the dump file). See

also --ignore-table-data .

--no-data-med

Do not dump rows for engines that manage external data (i.e. MRG_MyISAM, MRG_ISAM, CONNECT, OQGRAPH, Spider,

VP, Federated). This option is enabled by default. If you want to dump data for these engines, then you would need to set -

-no-data-med=0 .

--no-defaults Don't read default options from any option file. Must be given as the first argument.

-N , --no-set-names Suppress the SET NAMES statement. This has the same effect as --skip-set-charset .

--opt

This option is shorthand. It is the same as specifying --add-drop-table , --add-locks , --create-options , --

quick , --extended-insert , --lock-tables , --set-charset , and --disable-keys . Enabled by default, disable

with --skip-opt . It should give you a fast dump operation and produce a dump file that can be reloaded into a MariaDB

server quickly.

The --opt option is enabled by default. Use --skip-opt to disable it. See the discussion at the beginning of this section

for information about selectively enabling or disabling a subset of the options affected by --opt .

--order-by-primary
Sorts each table's rows by primary key, or first unique key, if such a key exists. This is useful when dumping a MyISAM table

to be loaded into an InnoDB table, but will make the dump itself take considerably longer.

--order-by-size

Dump each table according to their size, smallest first. Useful when using --single-transaction on tables which get

truncated/altered often. The assumption here is that smaller tables get truncated more often, and by dumping those first, this

reduces the chance that a --single-transaction dump will fail with with 'Table definition has changed, please retry

transaction'. From MariaDB 10.9.1.

-j , --parallel= #

Number of dump table jobs executed in parallel (only for use with the --tab option). Initial testing indicates that

performance can be increased (dump time decreased) up to 4 times on smaller size dumps, when the database fits into

memory. There is a point at which disk becomes the bottleneck, after which adding more parallel jobs does not bring better

performance. From MariaDB 11.4.1.

-p[passwd] , --

password[=passwd

The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space

between the option and the password. If you omit the password value following the --password or -p option on the

command line, mariadb-dump prompts for one.

Specifying a password on the command line should be considered insecure. You can use an option file to avoid giving the

password on the command line.

-W , --pipe
On Windows, connect to the server via a named pipe. This option applies only if the server supports named-pipe

connections.

--plugin-dir Directory for client-side plugins.

1306/4161

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/create-tablle

-P num , --port=num The TCP/IP port number to use for the connection.

--print-defaults Print the program argument list and exit. Must be given as the first argument.

--protocol=name
The connection protocol to use for connecting to the server (TCP, SOCKET, PIPE, MEMORY). It is useful when the other

connection parameters normally would cause a protocol to be used other than the one you want.

-q , --quick

This option is useful for dumping large tables. It forces mariadb-dump to retrieve rows for a table from the server a row at a

time and to then dump the results directly to stdout rather than retrieving the entire row set and buffering it in memory before

writing it out. Defaults to on, use --skip-quick to disable.

-Q , --quote-names

Quote identifiers (such as database, table, and column names) within backtick (`) characters. If the ANSI_QUOTES SQL

mode is enabled, identifiers are quoted within (") characters. This option is enabled by default. It can be disabled with --

skip-quote-names , but this option should be given after any option such as --compatible that may enable --quote-

names .

--replace Use REPLACE INTO statements instead of INSERT INTO statements.

-r , --result-file=name

Direct output to a given file. This option should be used on Windows to prevent newline "\n" characters from being

converted to "\r\n" carriage return/newline sequences. The result file is created and its previous contents overwritten,

even if an error occurs while generating the dump.

-R , --routines

Include stored routines (procedures and functions) for the dumped databases in the output. Use of this option requires the

SELECT privilege for the mysql.proc table. The output generated using --routines contains CREATE PROCEDURE and

CREATE FUNCTION statements to re-create the routines. However, these statements do not include attributes such as the

routine creation and modification timestamps. This means that when the routines are reloaded, they will be created with the

timestamps equal to the reload time.

If you require routines to be re-created with their original timestamp attributes, do not use --routines . Instead, dump and

reload the contents of the mysql.proc table directly, using a MariaDB account which has appropriate privileges for the mysql

database.

set-charset
Add 'SET NAMES default_character_set' to the output in order to set the character set. Enabled by default; suppress

with --skip-set-charset .

-O, --set-

variable=name

Change the value of a variable. Please note that this option is deprecated; you can set variables directly with --variable-

name=value .

--shared-memory-base-

name

Shared-memory name to use for Windows connections using shared memory to a local server (started with the --shared-

memory option). Case-sensitive. Defaults to MYSQL .

--single-transaction

This option sends a START TRANSACTION SQL statement to the server before dumping data. It is useful only with

transactional tables such as InnoDB, because then it dumps the consistent state of the database at the time when BEGIN

was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent state. The single-

transaction feature depends not only on the engine being transactional and capable of REPEATABLE-READ, but also on

START TRANSACTION WITH CONSISTENT SNAPSHOT. The dump is not guaranteed to be consistent for other storage

engines. For example, any TokuDB , MyISAM or MEMORY tables dumped while using this option may still change state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table contents and binary log

coordinates), no other connection should use the following statements: ALTER TABLE, CREATE TABLE, DROP TABLE,

RENAME TABLE, or TRUNCATE TABLE. A consistent read is not isolated from those statements, so use of them on a table

to be dumped can cause the SELECT (performed by mariadb-dump to retrieve the table contents) to obtain incorrect

contents or fail.

The --single-transaction option and the --lock-tables option are mutually exclusive because LOCK TABLES

causes any pending transactions to be committed implicitly. So this option automatically turns off --lock-tables

To dump large tables, you should combine the --single-transaction option with --quick .

--skip-add-locks Disable the --add-locks option.

--skip-comments Disable the --comments option.

--skip-disable-keys Disable the --disable-keys option.

--skip-extended-insert Disable the --extended-insert option.

--skip-opt
Disable the --opt option (disables --add-drop-table , --add-locks , --create-options , --quick , --extended-

insert , --lock-tables , --set-charset , and --disable-keys).

--skip-quick Disable the --quick option.

--skip-quote-name Disable the --quote-names option.

--skip-set-charset Disable the --set-charset option.

--skip-triggers Disable the --triggers option.

--skip-tz-utc Disable the --tz-utc option.

-S name , --socket=name For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS options are set. Starting with

MariaDB 10.2, the --ssl option will not enable verifying the server certificate by default. In order to verify the server

certificate, the user must specify the --ssl-verify-server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate Authorities (CAs) to use

for TLS. This option requires that you use the absolute path, not a relative path. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option implies the --ssl option.

1307/4161

https://mariadb.com/kb/en/tokudb/

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one X509 certificate for a trusted

Certificate Authority (CA) to use for TLS. This option requires that you use the absolute path, not a relative path. The

directory specified by this option needs to be run through the openssl rehash command. See Secure Connections

Overview: Certificate Authorities (CAs) for more information. This option is only supported if the client was built with

OpenSSL or yaSSL. If the client was built with GnuTLS or Schannel, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are used on which platforms. This option

implies the --ssl option.

--ssl-cert=name
Defines a path to the X509 certificate file to use for TLS. This option requires that you use the absolute path, not a relative

path. This option implies the --ssl option.

--ssl-cipher=name List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for TLS. This option requires

that you use the absolute path, not a relative path. See Secure Connections Overview: Certificate Revocation Lists (CRLs)

for more information. This option is only supported if the client was built with OpenSSL or Schannel. If the client was built

with yaSSL or GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used by MariaDB for more

information about which libraries are used on which platforms.

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one revoked X509 certificate to

use for TLS. This option requires that you use the absolute path, not a relative path. The directory specified by this option

needs to be run through the openssl rehash command. See Secure Connections Overview: Certificate Revocation

Lists (CRLs) for more information. This option is only supported if the client was built with OpenSSL. If the client was built

with yaSSL, GnuTLS, or Schannel, then this option is not supported. See TLS and Cryptography Libraries Used by MariaDB

for more information about which libraries are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the absolute path, not a relative path.

This option implies the --ssl option.

--ssl-verify-server-

cert
Enables server certificate verification. This option is disabled by default.

--

system=option[,option]]

Dump the database's system tables in a logical form. With this option, the mysql database tables are dumped as CREATE

USER, CREATE SERVER and other forms of logical portable SQL statements. The option values here are from the set of

all , users , plugins , udfs , servers , stats , timezones . From MariaDB 10.2.37 , MariaDB 10.3.28 ,

MariaDB 10.4.18 and MariaDB 10.5.9.

-T , --tab=name

Produce tab-separated text-format data files. With this option, for each dumped table mariadb-dump will create a

tbl_name.sql file containing the CREATE TABLE statement that creates the table, and a tbl_name.txt file containing

the table's data. The option value is the directory in which to write the files.

Note: This option can only be used when mariadb-dump/ is run on the same machine as the mysqld server. You must have

the FILE privilege, and the server must have permission to write files in the directory that you specify.

By default, the .txt data files are formatted using tab characters between column values and a newline at the end of each

line. The format can be specified explicitly using the --fields-xxx and --lines-terminated-by options.

Column values are converted to the character set specified by the --default-character-set option.

--tables
This option overrides the --databases (-B) option. mariadb-dump regards all name arguments following the option as

table names.

--tls-version=name

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol version will only be enabled if it is

present in this list. All other TLS protocol versions will not be permitted. See Secure Connections Overview: TLS Protocol

Versions for more information. This option was added in MariaDB 10.4.6.

--triggers Include triggers for each dumped table in the output. This option is enabled by default; disable it with --skip-triggers .

--tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time zones. mariadb-

dump sets its connection time zone to UTC and adds SET TIME_ZONE=´+00:00´ to the dump file. Without this option,

TIMESTAMP columns are dumped and reloaded in the time zones local to the source and destination servers, which can

cause the values to change if the servers are in different time zones. --tz-utc also protects against changes due to

daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc .

-u name , --user=name The MariaDB user name to use when connecting to the server.

-v , --verbose Verbose mode. Print more information about what the program is doing during various stages.

-V , --version Output version information and exit.

-w cond , --where=cond

Dump only rows selected by the given WHERE condition cond. Quotes around the condition are mandatory if it contains

spaces or other characters that are special to your command interpreter.

Examples:

--where="user=´jimf´"

-w"userid>1"

-w"userid<1"

-X , --xml Dump a database as well formed XML.

Group Options

Some mariadb-dump options are shorthand for groups of other options:

Use of --opt is the same as specifying --add-drop-table , --add-locks , --create-options , --disable-

keys , --extended-insert , --lock-tables , --quick , and --set-charset . All of the options that --opt

stands for also are on by default because --opt is on by default.

Use of --compact is the same as specifying --skip-add-drop-table , --skip-add-locks , --skip-

comments , --skip-disable-keys , and --skip-set-charset options.

To reverse the effect of a group option, uses its --skip-xxx form (--skip-opt or --skip-compact). It is also possible

to select only part of the effect of a group option by following it with options that enable or disable specific features. Here are
1308/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/

some examples:

To select the effect of --opt except for some features, use the --skip option for each feature. To disable

extended inserts and memory buffering, use --opt --skip-extended-insert --skip-quick . (Actually, --

skip-extended-insert --skip-quick is sufficient because --opt is on by default.)

To reverse --opt for all features except index disabling and table locking, use --skip-opt --disable-keys --

lock-tables .

When you selectively enable or disable the effect of a group option, order is important because options are processed first

to last. For example, --disable-keys --lock-tables --skip-opt would not have the intended effect; it is the same

as --skip-opt by itself.

Special Characters in Option Values

Some options, like --lines-terminated-by , accept a string. The string can be quoted, if necessary. For example, on

Unix systems this is the option to enclose fields within double quotes:

--fields-enclosed-by='"'

An alternative to specify the hexadecimal value of a character. For example, the following syntax works on any platform:

--fields-enclosed-by=0x22

Option Files

In addition to reading options from the command-line, mariadb-dump can also read options from option files. If an

unknown option is provided to mariadb-dump in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

mariadb-dump is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing of

option files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more

information.

Option Groups

mariadb-dump reads options from the following option groups from option files:

Group Description

[mysqldump] Options read by mariadb-dump, which includes both MariaDB Server and MySQL Server.

[mariadb-

dump]
Options read by mariadb-dump. Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

NULL, ´NULL´, and Empty Values in XML

For a column named column_name , the NULL value, an empty string, and the string value ´NULL´ are distinguished from

1309/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

one another in the output generated by this option as follows.

Value XML Representation

NULL (unknown value) <field name="column_name" xsi:nil="true" />

´´ (empty string) <field name="column_name"></field>

´NULL´ (string value) <field name="column_name">NULL</field>

The output from the mariadb client when run using the --xml option also follows the preceding rules.

XML output from mariadb-dump includes the XML namespace, as shown here :

shell> mariadb-dump --xml -u root world City

<?xml version="1.0"?>

<mariadb-dump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<database name="world">

<table_structure name="City">

<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />

<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />

<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />

<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />

<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />

<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"

Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />

<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"

Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"

Index_length="43008" Data_free="0" Auto_increment="4080"

Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"

Collation="latin1_swedish_ci" Create_options="" Comment="" />

</table_structure>

<table_data name="City">

<row>

<field name="ID">1</field>

<field name="Name">Kabul</field>

<field name="CountryCode">AFG</field>

<field name="District">Kabol</field>

<field name="Population">1780000</field>

</row>

...

<row>

<field name="ID">4079</field>

<field name="Name">Rafah</field>

<field name="CountryCode">PSE</field>

<field name="District">Rafah</field>

<field name="Population">92020</field>

</row>

</table_data>

</database>

</mariadb-dump>

Restoring

To restore a backup created with mariadb-dump, use the mariadb client to import the dump, for example:

mariadb db_name < backup-file.sql

Variables
You can also set the following variables (--variable-name=value) and boolean options {FALSE|TRUE} by using:

Name Default Values

all TRUE

all-databases FALSE

all-tablespaces FALSE

no-tablespaces FALSE

1310/4161

add-drop-database FALSE

add-drop-table TRUE

add-drop-trigger FALSE

add-locks TRUE

allow-keywords FALSE

apply-slave-statements FALSE

as-of (No default value)

character-sets-dir (No default value)

comments TRUE

compatible (No default value)

compact FALSE

complete-insert FALSE

compress FALSE

copy-s3-tables FALSE

create-options TRUE

databases FALSE

debug-check FALSE

debug-info FALSE

default-character-set utf8mb4

delayed-insert FALSE

delete-master-logs FALSE

disable-keys TRUE

events FALSE

extended-insert TRUE

fields-terminated-by (No default value)

fields-enclosed-by (No default value)

fields-optionally-enclosed-by (No default value)

fields-escaped-by (No default value)

flush-logs FALSE

flush-privileges FALSE

force FALSE

hex-blob FALSE

host (No default value)

include-master-host-port FALSE

insert-ignore FALSE

lines-terminated-by (No default value)

lock-all-tables FALSE

lock-tables TRUE

log-error (No default value)

log-queries TRUE

master-data 0

max_allowed_packet 16777216

1311/4161

net-buffer-length 1046528

no-autocommit FALSE

no-create-db FALSE

no-create-info FALSE

no-data FALSE

no-data-med TRUE

order-by-primary FALSE

port 0

quick TRUE

quote-names TRUE

replace FALSE

routines FALSE

set-charset TRUE

single-transaction FALSE

dump-date TRUE

socket No default value)

ssl FALSE

ssl-ca (No default value)

ssl-capath (No default value)

ssl-cert (No default value)

ssl-cipher (No default value)

ssl-key (No default value)

ssl-verify-server-cert FALSE

system (No default value)

tab (No default value)

triggers TRUE

tz-utc TRUE

user (No default value)

verbose FALSE

where (No default value)

plugin-dir (No default value)

default-auth (No default value)

Examples
A common use of mariadb-dump is for making a backup of an entire database:

shell> mariadb-dump db_name > backup-file.sql

You can load the dump file back into the server like this:

shell> mariadb db_name < backup-file.sql

Or like this:

1312/4161

shell> mariadb -e "source /path-to-backup/backup-file.sql" db_name

mariadb-dump is also very useful for populating databases by copying data from one MariaDB server to another:

shell> mariadb-dump --opt db_name | mariadb --host=remote_host -C db_name

It is possible to dump several databases with one command:

shell> mariadb-dump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mariadb-dump --all-databases > all_databases.sql

For InnoDB tables, mariadb-dump provides a way of making an online backup:

shell> mariadb-dump --all-databases --single-transaction all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the beginning of the

dump. As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If long updating

statements are running when the FLUSH statement is issued, the MariaDB server may get stalled until those statements

finish. After that, the dump becomes lock free and does not disturb reads and writes on the tables. If the update statements

that the MariaDB server receives are short (in terms of execution time), the initial lock period should not be noticeable, even

with many updates.

For point-in-time recovery (also known as <roll-forward,= when you need to restore an old backup and replay the changes

that happened since that backup), it is often useful to rotate the binary log or at least know the binary log coordinates to

which the dump corresponds:

shell> mariadb-dump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mariadb-dump --all-databases --flush-logs --master-data=2 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which provides a convenient

way to make an online backup suitable for use prior to point-in-time recovery if tables are stored using the InnoDB storage

engine.

1.3.6.3 mariadb-hotcopy

mariadb-hotcopy is deprecated and may be removed in a future release.

From MariaDB 10.4.6, mariadb-hotcopy is a symlink to mysqlhotcopy , the deprecated backup script.

From MariaDB 10.5.2, mariadb-hotcopy is the name of the script, with mysqlhotcopy a symlink .

mariadb-hotcopy is a Perl script that was originally written (as mysqlhotcopy) and contributed by Tim Bunce. It uses

FLUSH TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup of the

database or single tables, but it can be run only on the same machine where the database directories are located.

mariadb-hotcopy > works only for backing up MyISAM and ARCHIVE tables. It runs on Unix and NetWare.

To use mariadb-hotcopy , you must have read access to the files for the tables that you are backing up, the SELECT

privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the LOCK TABLES privilege

(to be able to lock the tables).

shell> mariadb-hotcopy db_name [/path/to/new_directory]

shell> mariadb-hotcopy db_name_1 ... db_name_n /path/to/new_directory

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1313/4161

Back up tables in the given database that match a regular expression:

shell> mariadb-hotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (< ~ =):

shell> mariadb-hotcopy db_name./~regex/

mariadb-hotcopy supports the following options, which can be specified on the command line or in the [mariadb-

hotcopy] and [client] option file groups.

Option Description

--help , -? Display a help message and exit.

--addtodest Do not rename target directory (if it exists); merely add files to it.

--allowold Do not abort if a target exists; rename it by adding an _old suffix.

--checkpoint=db_name.tbl_name
Insert checkpoint entries into the specified database db_name and table

tbl_name .

--chroot=path
Base directory of the chroot jail in which mysqld operates. The path value should

match that of the --chroot option given to mysqld.

--debug Enable debug output.

--dryrun , -n Report actions without performing them.

--flushlog Flush logs after all tables are locked.

--host=host_name , -h host_name

The host name of the local host to use for making a TCP/IP connection to the

local server. By default, the connection is made to localhost using a Unix socket

file.

--keepold Do not delete previous (renamed) target when done.

--method=command The method for copying files (cp or scp). The default is cp.

--noindices

Do not include full index files for MyISAM tables in the backup. This makes the

backup smaller and faster. The indexes for reloaded tables can be reconstructed

later with myisamchk -rq.

--old-server
Connect to old MySQL-server (before v5.5) which doesn't have FLUSH TABLES

WITH READ LOCK fully implemented.

--password=password , -

ppassword

The password to use when connecting to the server. The password value is not

optional for this option, unlike for other MariaDB programs.

Specifying a password on the command line should be considered insecure.

You can use an option file to avoid giving the password on the command line.

--port=port_num , -P port_num The TCP/IP port number to use when connecting to the local server.

--quiet , -q Be silent except for errors.

--

record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table

tbl_name.

--regexp=expr Copy all databases with names that match the given regular expression.

--resetmaster Reset the binary log after locking all the tables.

--resetslave Reset the master.info file after locking all the tables.

--socket=path , -S path The Unix socket file to use for connections to localhost.

--suffix=str The suffix to use for names of copied databases.

--tmpdir=path The temporary directory. The default is /tmp.

--user=username , -u username The MariaDB username to use when connecting to the server.

Use perldoc for additional mariadb-hotcopy documentation, including information about the structure of the tables

needed for the --checkpoint and --record_log_pos options:

1314/4161

shell> perldoc mariadb-hotcopy

1.3.6.4 mariadb-import

From MariaDB 10.4.6, mariadb-import is a symlink to mysqlimport , the old name of tool for loading tables from

text files in various formats.

From MariaDB 10.5.2, mariadb-import is the name of the script, with mysqlimport a symlink .

mariadb-import loads tables from text files in various formats. The base name of the text file must be the name of the

table that should be used. If one uses sockets to connect to the MariaDB server, the server will open and read the text file

directly. In other cases the client will open the text file. The SQL command LOAD DATA INFILE is used to import the rows.

Using mariadb-import
The command to use mariadb-import and the general syntax is:

mariadb-import [OPTIONS] database textfile1 [textfile2 ...]

Options

mariadb-import supports the following options:

variable Description

--character-sets-

dir=name
Directory for character set files.

-c cols , --

columns=cols

Use only these columns to import the data to. Give the column names in a comma separated list.

This is same as giving columns to LOAD DATA INFILE.

-C , --compress Use compression in server/client protocol.

-# [options] , -

-debug[=options]
Output debug log. Often this is d:t:o,filename . The default is d:t:o .

--debug-check Check memory and open file usage at exit.

--debug-info Print some debug info at exit.

--default-

auth=plugin
Default authentication client-side plugin to use.

--default-

character-

set=name

Set the default character set.

--defaults-extra-

file=name Read this file after the global files are read. Must be given as the first option.

--defaults-

file=name
Only read default options from the given file name Must be given as the first option.

--defaults-group-

suffix=name
In addition to the given groups, also read groups with this suffix.

-d , --delete First delete all rows from table.

--fields-

terminated-

by=name

Fields in the input file are terminated by the given string.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1315/4161

--fields-

enclosed-by=name
Fields in the import file are enclosed by the given character.

--fields-

optionally-

enclosed-by=name

Fields in the input file are optionally enclosed by the given character.

--fields-escaped-

by=name
Fields in the input file are escaped by the given character.

-f , --force Continue even if we get an SQL error.

-? , --help Displays this help and exits.

-h name , --

host=name
Connect to host.

-i , --ignore If duplicate unique key was found, keep old row.

k , --ignore-

foreign-keys

Disable foreign key checks while importing the data. From MariaDB 10.3.16 , MariaDB 10.2.25

 and MariaDB 10.1.41 .

--ignore-lines=n Ignore first n lines of data infile.

--lines-

terminated-

by=name

Lines in the input file are terminated by the given string.

-L , --local Read all files through the client.

-l , --lock-

tables
Lock all tables for write (this disables threads).

--low-priority Use LOW_PRIORITY when updating the table.

--no-defaults Don't read default options from any option file. Must be given as the first option.

-j , --

parallel=num

Number of LOAD DATA jobs executed in parallel. From MariaDB 11.4.1. --use-threads is a

synonym.

-p[passwd] , --

password[=passwd]

Password to use when connecting to server. If password is not given it's asked from the terminal.

Specifying a password on the command line should be considered insecure. You can use an

option file to avoid giving the password on the command line.

--pipe , -W
On Windows, connect to the server via a named pipe. This option applies only if the server

supports named-pipe connections.

--plugin-dir Directory for client-side plugins.

-P num , --

port=num

Port number to use for connection or 0 for default to, in order of preference, my.cnf, the

MYSQL_TCP_PORT environment variable, /etc/services, built-in default (3306).

--print-defaults Print the program argument list and exit. Must be given as the first option.

--protocol=name The protocol to use for connection (tcp, socket, pipe, memory).

-r , --replace If duplicate unique key was found, replace old row.

--shared-memory-

base-name

Shared-memory name to use for Windows connections using shared memory to a local server

(started with the --shared-memory option). Case-sensitive.

-s , --silent Silent mode. Produce output only when errors occur.

-S , --

socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named

pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS options

are set. Starting with MariaDB 10.2, the --ssl option will not enable verifying the server

certificate by default. In order to verify the server certificate, the user must specify the --ssl-

verify-server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted

Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute path,

not a relative path. See Secure Connections Overview: Certificate Authorities (CAs) for more

information. This option implies the --ssl option.

1316/4161

https://mariadb.com/kb/en/mariadb-10316-release-notes/
https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/

--ssl-

capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option requires that

you use the absolute path, not a relative path. The directory specified by this option needs to be

run through the openssl rehash command. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option is only supported if the client was

built with OpenSSL or yaSSL. If the client was built with GnuTLS or Schannel, then this option is

not supported. See TLS and Cryptography Libraries Used by MariaDB for more information about

which libraries are used on which platforms. This option implies the --ssl option.

--ssl-cert=name
Defines a path to the X509 certificate file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-

cipher=name
List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for

TLS. This option requires that you use the absolute path, not a relative path. See Secure

Connections Overview: Certificate Revocation Lists (CRLs) for more information. This option is

only supported if the client was built with OpenSSL or Schannel. If the client was built with yaSSL

or GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used by

MariaDB for more information about which libraries are used on which platforms.

--ssl-

crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

revoked X509 certificate to use for TLS. This option requires that you use the absolute path, not a

relative path. The directory specified by this option needs to be run through the openssl

rehash command. See Secure Connections Overview: Certificate Revocation Lists (CRLs)

for more information. This option is only supported if the client was built with OpenSSL. If the

client was built with yaSSL, GnuTLS, or Schannel, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the absolute

path, not a relative path. This option implies the --ssl option.

--ssl-verify-

server-cert
Enables server certificate verification. This option is disabled by default.

--tls-

version=name

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol version will

only be enabled if it is present in this list. All other TLS protocol versions will not be permitted. See

Secure Connections Overview: TLS Protocol Versions for more information. This option was

added in MariaDB 10.4.6.

--use-

threads=num

Load files in parallel. The argument is the number of threads to use for loading data. From

MariaDB 11.4.1, a synonym for -j , --parallel=num .

-u name , --

user=name
User for login if not current user.

-v , --verbose Print info about the various stages.

-V , --version Output version information and exit.

Option Files

In addition to reading options from the command-line, mariadb-import can also read options from option files. If an

unknown option is provided to mariadb-import in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

In MariaDB 10.2 and later, mariadb-import is linked with MariaDB Connector/C . Therefore, it may be helpful to see

Configuring MariaDB Connector/C with Option Files for more information on how MariaDB Connector/C handles option

1317/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://mariadb.com/kb/en/configuring-mariadb-connectorc-with-option-files/

files.

Option Groups

mariadb-import reads options from the following option groups from option files:

Group Description

[mysqlimport] Options read by mysqlimport , which includes both MariaDB Server and MySQL Server.

[mariadb-

import]
Options read by mysqlimport . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Default Values

Variables (-- variable-name=value) and boolean options {FALSE | TRUE} Value (after reading options)

character-sets-dir (No default value)

default-character-set latin1

columns (No default value)

compress FALSE

debug-check FALSE

debug-info FALSE

delete FALSE

fields-terminated-by (No default value)

fields-enclosed-by (No default value)

fields-optionally-enclosed-by (No default value)

fields-escaped-by (No default value)

force FALSE

host (No default value)

ignore FALSE

ignore-lines 0

lines-terminated-by (No default value)

local FALSE

lock-tables FALSE

low-priority FALSE

port 3306

replace FALSE

silent FALSE

socket /var/run/mysqld/mysqld.sock

ssl FALSE

ssl-ca (No default value)

ssl-capath (No default value)

1318/4161

ssl-cert (No default value)

ssl-cipher (No default value)

ssl-key (No default value)

ssl-verify-server-cert FALSE

use-threads 0

user (No default value)

verbose FALSE

1.3.7 Graphical and Enhanced Clients
This list is incomplete - most MySQL tools will work with MariaDB. See also a list of projects that officially work with MariaDB

.

dbForge Studio for MariaDB

Universal GUI Tool for Management & Administration, Development for MariaDB and MySQL

dbForge Edge

dbForge Edge is a versatile software solution designed to meet the needs of...

DBeaver

Free convenient cross-platform and cross-database Java GUI client

ERBuilder Data Modeler

A data modeling tool for multiple databases platforms including MariaDB, MySQL, and more ...

SQLyog: Community Edition

SQLyog Community Edition

HeidiSQL

Windows GUI client for MariaDB and MySQL.

Navicat

Graphical front-end for MariaDB

Querious

Mac OS X tool for database administration

TablePlus

A modern, native GUI client for multiple databases

Database Workbench

Database development environment for multiple database systems including MySQL and MariaDB

Luna Modeler

Luna Modeler is a database design tool for MariaDB. Draw ER diagrams, visua...

SQL Diagnostic Manager & SQLyog

Graphical MariaDB manager and monitor

mycli

Command line interface with auto-completion and syntax highlighting

ocelotgui

Linux client for MySQL and MariaDB

phpMyAdmin

Web-based MariaDB administration tool

Sequel Pro

Database management tool running on Mac

2

1

1

1

1

1319/4161

https://mariadb.com/kb/en/works-with-mariadb/
https://mariadb.com/kb/en/dbforge-studio-for-mariadb-universal-gui-tool-for-management-administration/
https://mariadb.com/kb/en/dbforge-edge/
https://mariadb.com/kb/en/graphical-and-enhanced-clients-dbeaver/
https://mariadb.com/kb/en/erbuilder-data-modeler/
https://mariadb.com/kb/en/sqlyog-community-edition/
https://mariadb.com/kb/en/heidisql/
https://mariadb.com/kb/en/navicat/
https://mariadb.com/kb/en/querious/
https://mariadb.com/kb/en/tableplus/
https://mariadb.com/kb/en/database-workbench/
https://mariadb.com/kb/en/luna-modeler/
https://mariadb.com/kb/en/cost-effective-agentless-mariadb-database-performance-management/
https://mariadb.com/kb/en/mycli/
https://mariadb.com/kb/en/ocelotgui/
https://mariadb.com/kb/en/phpmyadmin/
https://mariadb.com/kb/en/graphical-and-enhanced-clients-sequel-pro/

SQLTool Pro Database Editor

Android SQL client

dbForge Data Compare

A tool for MariaDB & MySQL data comparison and synchronization of data betw...

dbForge Data Generator

A tool for generation of large volumes of meaningful test table data.

dbForge Documenter for MariaDB and MySQL

dbForge Documenter is a useful tool for MariaDB and MySQL database for the ...

dbForge Fusion: MySQL & MariaDB Plugin for VS

Visual Studio plugin designed to simplify database development and management.

dbForge Query Builder for MySQL & MariaDB

A tool for visual query creation without code typing.

dbForge Schema Compare for MariaDB & MySQL

A tool for comparison and synchronization of DDL differences between database objects.

DbSchema

Mariadb Diagram Designer & Admin GUI Tool

Improved SQL Document Parser Performance in Updated dbForge Tools for MySQL
and MariaDB

Devart has upgraded dbForge Tools for MySQL and MariaDB with improved SQL d...

OmniDB

Browser-based IDE for MariaDB Administration

TOAD Edge

Windows GUI for MySQL. SQL Syntax Check. Freeware (Basic Features) & Payware (Extended Features).

TOAD for MySQL

Windows GUI for MySQL. Compatible with MariaDB. Freeware. SQL syntax check.

SQLPro Studio

SQLPro Studio is a fully native database client for macOS and iOS.

SB Data Generator

A tool to generate and populate selected tables or entire databases with realistic test data.

Beekeeper Studio

Open source and free GUI with a focus on usability. Mac, Linux, and Windows

LibreOffice Base

An open source RDBMS front-end tool to create and manage various databases

Valentina Studio

Free, advanced MariaDB GUI native on macOS, Windows & Linux, with advanced commercial version

DbVisualizer

Cross-platform universal database tool supporting MariaDB, PostgreSQL, MySQL and more

KS DB Merge Tools for MySQL and MariaDB

Windows GUI to compare and synchronize MySQL and MariaDB schema and data, freemium

There are 5 related questions .

2

1

8

1320/4161

https://mariadb.com/kb/en/sqltool-pro-database-editor/
https://mariadb.com/kb/en/dbforge-data-compare/
https://mariadb.com/kb/en/dbforge-data-generator/
https://mariadb.com/kb/en/dbforge-documenter-for-mariadb-and-mysql/
https://mariadb.com/kb/en/dbforge-fusion-mysql-mariadb-plugin-for-vs/
https://mariadb.com/kb/en/dbforge-query-builder-for-mysql-mariadb/
https://mariadb.com/kb/en/dbforge-schema-compare-for-mariadb-mysql/
https://mariadb.com/kb/en/dbschema/
https://mariadb.com/kb/en/graphical-and-enhanced-clients-improved-sql-document-parser-performance-in-/
https://mariadb.com/kb/en/graphical-and-enhanced-clients-omnidb/
https://mariadb.com/kb/en/toad-edge/
https://mariadb.com/kb/en/toad-for-mysql-80/
https://mariadb.com/kb/en/sqlpro-studio/
https://mariadb.com/kb/en/sb-data-generator/
https://mariadb.com/kb/en/beekeeper-studio/
https://mariadb.com/kb/en/libreoffice-base/
https://mariadb.com/kb/en/valentina-studio/
https://mariadb.com/kb/en/dbvisualizer/
https://mariadb.com/kb/en/ks-db-merge-tools-for-mysql-and-mariadb/
https://mariadb.com/kb/en/graphical-and-enhanced-clients/+questions/

1.3.8 MyISAM Clients and Utilities
Clients and utilities for working with the MyISAM storage engine

myisamchk

Utility for checking, repairing and optimizing MyISAM tables.

Memory and Disk Use With myisamchk

myisamchk's performance can be dramatically enhanced for larger tables

myisamchk Table Information

myisamchk can be used to obtain information about MyISAM tables

myisamlog

Process the MyISAM log

myisampack

Tool for compressing MyISAM tables

myisam_ftdump

A tool for displaying information on MyISAM FULLTEXT indexes.

MyISAM Database Management using GUI Client

A multi-featured GUI client for MyISAM tables and databases

1.3.8.1 myisamchk
Contents
1. General Options

2. Checking Tables

3. Repairing Tables

4. Other Actions

5. Examples

myisamchk is a commandline tool for checking, repairing and optimizing non-partitioned MyISAM tables.

myisamchk is run from the commandline as follows:

myisamchk [OPTIONS] tables[.MYI]

The full list of options are listed below. One or more MyISAM tables can be specified. MyISAM tables have an associated

.MYI index file, and the table name can either be specified with or without the .MYI extension. Referencing it with the

extension allows you to use wildcards, so it's possible to run myisamchk on all the MyISAM tables in the database with

*.MYI .

The path to the files must also be specified if they're not in the current directory.

myisamchk should not be run while anyone is accessing any of the affected tables. It is also best to make a backup

before running.

With no options, myisamchk simply checks your table as the default operation.

The following options can be set while passed as commandline options to myisamchk, or set with a [myisamchk] section in

your my.cnf file.

General Options

Option Description

-H, --HELP Display help and exit. Options are presented in a single list.

-?, --help Display help and exit. Options are grouped by type of operation.

1321/4161

https://mariadb.com/kb/en/myisam-database-management-using-gui-client/

-

debug=options,

-# options

Write a debugging log. A typical debug_options string is ´d:t:o,file_name´. The default is

´d:t:o,/tmp/myisamchk.trace´. (Available in debug builds only)

-t path, --

tmpdir=path

Path for temporary files. Multiple paths can be specified, separated by colon (:) on Unix and semicolon (;)

on Windows. They will be used in a round-robin fashion. If not set, the TMPDIR environment variable is

used.

-s, --silent Only print errors. One can use two -s (-ss) to make myisamchk very silent.

-v, --verbose Print more information. This can be used with --description and --check. Use many -v for more verbosity.

-V, --version Print version and exit.

-w, --wait If table is locked, wait instead of returning an error.

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-

file=filename

Only read default options from the given file filename, which can be the full path, or the path relative to

the current directory.

--defaults-

extra-

file=filename

Read the file filename, which can be the full path, or the path relative to the current directory, after the

global files are read.

--defaults-

group-suffix=str

Also read groups with a suffix of str. For example, --defaults-group-suffix=x would read the

groups [myisamchk] and [myisamchk_x]

The following variables can also be set by using --var_name=value, for example --ft_min_word_len=5

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 1044480

key_cache_block_size 1024

myisam_block_size 1024

myisam_sort_buffer_size 134216704

myisam_sort_key_blocks 16

read_buffer_size 262136

sort_buffer_size 134216704

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

Checking Tables
If no option is provided, myisamchk will perform a check table. It is possible to check MyISAM tables without shutting down

or restricting access to the server by using CHECK TABLE instead.

The following check options are available:

Option Description

-c, --check
Check table for errors. This is the default operation if you specify no option that selects an operation type

explicitly.

-e, --

extend-

check

Check the table VERY throughly. Only use this in extreme cases as it may be slow, and myisamchk should

normally be able to find out if the table has errors even without this switch. Increasing the key_buffer_size can

help speed the process up.

1322/4161

-F, --fast Check only tables that haven't been closed properly.

-C, --

check-

only-

changed

Check only tables that have changed since last check.

-f, --force Restart with '-r' (recover) if there are any errors in the table. States will be updated as with '--update-state'.

-i, --

information
Print statistics information about the table that is checked.

-m, --

medium-

check

Faster than extend-check, but only finds 99.99% of all errors. Should be good enough for most cases.

-U --

update-

state

Mark tables as crashed if you find any errors. This should be used to get the full benefit of the --check-only-

changed option, but you shouldn´t use this option if the mysqld server is using the table and you are running

it with external locking disabled.

-T, --read-

only

Don't mark table as checked. This is useful if you use myisamchk to check a table that is in use by some

other application that does not use locking, such as mysqld when run with external locking disabled.

Repairing Tables
It is also possible to repair MyISAM tables by using REPAIR TABLE.

The following repair options are available, and are applicable when using '-r' or '-o':

Option Description

-B, --backup Make a backup of the .MYD file as 'filename-time.BAK'.

--correct-checksum Correct the checksum information for table.

-D len, --data-file-

length=#
Max length of data file (when recreating data file when it's full).

-e, --extend-check
Try to recover every possible row from the data file. Normally this will also find a lot of garbage rows;

Don't use this option if you are not totally desperate.

-f, --force

Overwrite old temporary files. Add another --force to avoid 'myisam_sort_buffer_size is too small'

errors. In this case we will attempt to do the repair with the given myisam_sort_buffer_size and

dynamically allocate as many management buffers as needed.

-k val, --keys-

used=#

Specify which keys to update. The value is a bit mask of which keys to use. Each binary bit

corresponds to a table index, with the first index being bit 0. 0 disables all index updates, useful for

faster inserts. Deactivated indexes can be reactivated by using myisamchk -r.

--create-missing-

keys

Create missing keys. This assumes that the data file is correct and that the number of rows stored in

the index file is correct. Enables --quick

--max-record-

length=#
Skip rows larger than this if myisamchk can't allocate memory to hold them.

-r, --recover
Can fix almost anything except unique keys that aren't unique (a rare occurrence). Usually this is the

best option to try first. Increase myisam_sort_buffer_size for better performance.

-n, --sort-recover Forces recovering with sorting even if the temporary file would be very large.

-p, --parallel-

recover
Uses the same technique as '-r' and '-n', but creates all the keys in parallel, in different threads.

-o, --safe-recover
Uses old recovery method; Slower than '-r' but uses less disk space and can handle a couple of

cases where '-r' reports that it can't fix the data file. Increase key_buffer_size for better performance.

--character-sets-

dir=directory_name
Directory where the character sets are installed.

--set-

collation=name
Change the collation (and by implication, the character set) used by the index.

-q, --quick

Faster repair by not modifying the data file. One can give a second '-q' to force myisamchk to modify

the original datafile in case of duplicate keys. NOTE: Tables where the data file is corrupted can't be

fixed with this option.

1323/4161

-u, --unpack Unpack file packed with myisampack.

Other Actions

Option Description

-a, --analyze

Analyze distribution of keys. Will make some joins faster as the join optimizer can better choose the

order in which to join the tables and which indexes to use. You can check the calculated distribution

by using '--description --verbose table_name' or SHOW INDEX FROM table_name.

--

stats_method=name

Specifies how index statistics collection code should treat NULLs. Possible values of name are

"nulls_unequal" (default), "nulls_equal" (emulate MySQL 4.0 behavior), and "nulls_ignored".

-d, --description
Print some descriptive information about the table. Specifying the --verbose option once or twice

produces additional information.

-A [value], --set-

auto-

increment[=value]

Force auto_increment to start at this or higher value. If no value is given, then sets the next

auto_increment value to the highest used value for the auto key + 1.

-S, --sort-index
Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use

indexes faster.

-R index_num, --

sort-records=#

Sort records according to the given index (as specified by the index number). This makes your data

much more localized and may speed up range-based SELECTs and ORDER BYs using this index.

It may be VERY slow to do a sort the first time! To see the index numbers, SHOW INDEX displays

table indexes in the same order that myisamchk sees them. The first index is 1.

-b offset, --block-

search=offset
Find the record to which a block at the given offset belongs.

For more, see Memory and Disk Use With myisamchk.

Examples
Check all the MyISAM tables in the current directory:

myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the directory:

myisamchk /path/to/database_dir/*.MYI

Check all tables in all databases by specifying a wildcard with the path to the MariaDB data directory:

myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables:

myisamchk --silent --fast /path/to/datadir/*/*.MYI

Check all MyISAM tables and repair any that are corrupted:

myisamchk --silent --force --fast --update-state \

 --key_buffer_size=64M --sort_buffer_size=64M \

 --read_buffer_size=1M --write_buffer_size=1M \

 /path/to/datadir/*/*.MYI

1.3.8.2 Memory and Disk Use With myisamchk
myisamchk's performance can be dramatically enhanced for larger tables by making sure that its memory-related variables

are set to an optimum level.

By default, myisamchk will use very little memory (about 3MB is allocated), but can temporarily use a lot of disk space. If

disk space is a limitation when repairing, the --safe-recover option should be used instead of --recover. However, if TMPDIR

1324/4161

points to a memory file system, an out of memory error can easily be caused, as myisamchk places temporary files in

TMPDIR. The --tmpdir=path option should be used in this case to specify a directory on disk.

myisamchk has the following requirements for disk space:

When repairing, space for twice the size of the data file, available in the same directory as the original file. This is for

the original file as well as a copy. This space is not required if the --quick option is used, in which case only the index

file is re-created.

Disk space in the temporary directory (TMPDIR or the tmpdir=path option) is needed for sorting if the --recover or --

sort-recover options are used when not using --safe-recover). The space required will be approximately (largest_key

+ row_pointer_length) * number_of_rows * 2. To get information about the length of the keys as well as the row

pointer length, use myisamchk -dv table_name.

Space for a new index file to replace the existing one. The old index is first truncated, so unless the old index file is

not present or is smaller for some reason, no significant extra space will be needed.

There are a number of system variables that are useful to adjust when running myisamchk. They will increase memory

usage, and since some are per-session variables, you don't want to increase the general value, but you can either pass an

increased value to myisamchk as a commandline option, or with a [myisamchk] section in your my.cnf file.

sort_buffer_size. By default this is 4M, but it's very useful to increase to make myisamchk sorting much faster. Since

the server won't be running when you run myisamchk, you can increase substantially. 16M is usually a minimum, but

values such as 256M are not uncommon if memory is available.

key_buffer_size (which particularly helps with the --extend-check and --safe-recover options.

read_buffer_size

write_buffer_size

For example, if you have more than 512MB available to allocate to the process, the following settings could be used:

myisamchk

 --myisam_sort_buffer_size=256M

 --key_buffer_size=512M

 --read_buffer_size=64M

 --write_buffer_size=64M

...

1.3.8.3 myisamchk Table Information
Contents
1. -dvv output

2. -eiv output

3. Examples

myisamchk can be used to obtain information about MyISAM tables, particularly with the -d, -e, -i and -v options.

Common options for gathering information include:

myisamchk -d

myisamchk -dv

myisamchk -dvv

myisamchk -ei

myisamchk -eiv

The -d option returns a short description of the table and its keys. Running the option while the table is being updated, and

with external locking disabled, may result in an error, but no damage will be done to the table. Each extra v adds more

output. -e checks the table thoroughly (but slowly), and the -i options adds statistical information,

-dvv output
The following table describes the output from the running myisamchk with the -dvv option:

Heading Description

MyISAM file Name and path of the MyISAM index file (without the extension)

Record

format
Storage format. One of packed (dynamic), fixed or compressed.

Chararacter

set
Default character set for the table.

1325/4161

File-version Always 1.

Creation time Time the data file was created

Recover time Most recent time the file was reconstructed.

Status Table status. One or more of analyzed, changed, crashed, open, optimized keys and sorted index pages.

Auto

increment

key

Index number of the table's auto-increment column. Not shown if no auto-increment column exists.

Last value Most recently generated auto-increment value. Not shown if no auto-increment column exists.

Data records Number of records in the table.

Deleted

blocks
Number of deleted blocks that are still reserving space. Use OPTIMIZE TABLE to defragment.

Datafile parts
For dynamic tables, the number of data blocks. If the table is optimized, this will match the number of data

records.

Deleted data Number of bytes of unreclaimed deleted data, Use OPTIMIZE TABLE to reclaim the space.

Datafile

pointer
Size in bytes of the data file pointer. The size of the data file pointer, in bytes.

Keyfile

pointer
Size in bytes of the index file pointer.

Max datafile

length
Maximum length, in bytes, that the data file could become.

Max keyfile

length
Maximum length, in bytes, that the index file could become.

Recordlength Space, in bytes, that each row takes.

table

description
Description of all indexes in the table, followed by all columns

Key Index number, starting with one. If not shown, the index is part of a multiple-column index.

Start Where the index part starts in the row.

Len

Length of the index or index part. The length of a multiple-column index is the sum of the component

lengths. Indexes of string columns will be shorter than the full column length if only a string prefix is

indexed.

Index Whether an index value is unique or not. Either multip. or unique.

Type Data type of the index of index part.

Rec/key
Record of the number of rows per value for the index or index part. Used by the optimizer to calculate

query plans. Can be updated with myisamchk-a. If not present, defaults to 30.

Root Root index block address.

Blocksize Index block size, in bytes.

Field
Column number, starting with one. The first line will contain the position and number of bytes used to store

NULL flags, if any (see Nullpos and Nullbit, below).

Start Column's byte position within the table row.

Length Column length, in bytes.

Nullpos Byte containing the flag for NULL values. Empty if column cannot be NULL.

Nullbit Bit containing the flag for NULL values. Empty if column cannot be NULL.

Type Data type - see the table below for a list of possible values.

Huff tree Only present for packed tables, contains the Huffman tree number associated with the column.

Bits Only present for packed tables, contains the number of bits used in the Huffman tree.

Data type Description

constant All rows contain the same value.

1326/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/auto-increment

no endspace No endspace is stored.

no endspace, not_always No endspace is stored, and endspace compression is not always performed for all values.

no endspace, no empty No endspace is stored, no empty values are stored.

table-lookup Column was converted to an ENUM.

zerofill(N) Most significant N bytes of the value are not stored, as they are always zero.

no zeros Zeros are not stored.

always zero Zero values are stored with one bit.

-eiv output
The following table describes the output from the running myisamchk with the -eiv option:

Heading Description

Data records Number of records in the table.

Deleted blocks Number of deleted blocks that are still reserving space. Use OPTIMIZE TABLE to defragment.

Key Index number, starting with one.

Keyblocks

used
Percentage of the keyblocks that are used. Percentages will be higher for optimized tables.

Packed Percentage space saved from packing key values with a common suffix.

Max levels Depth of the b-tree index for the key. Larger tables and longer key values result in higher values.

Records Number of records in the table.

M.recordlength Average row length. For fixed rows, will be the actual length of each row.

Packed Percentage saving from stripping spaces from the end of strings.

Recordspace

used
Percentage of the data file used.

Empty space Percentage of the data file unused.

Blocks/Record
Average number of blocks per record. Values higher than one indicate fragmentation. Use OPTIMIZE

TABLE to defragment.

Recordblocks Number of used blocks. Will match the number of rows for fixed or optimized tables.

Deleteblocks Number of deleted blocks

Recorddata Used bytes in the data file.

Deleted data Unused bytes in the data file.

Lost space Total bytes lost, such as when a row is updated to a shorter length.

Linkdata Sum of the bytes used for pointers linking disconnected blocks. Each is four to seven bytes in size.

Examples

1327/4161

myisamchk -d /var/lib/mysql/test/posts

MyISAM file: /var/lib/mysql/test/posts

Record format: Compressed

Character set: utf8mb4_unicode_ci (224)

Data records: 1680 Deleted blocks: 0

Recordlength: 2758

Using only keys '0' of 5 possibly keys

table description:

Key Start Len Index Type

1 1 8 unique ulonglong

2 2265 80 multip. varchar prefix

 63 80 varchar

 17 5 binary

 1 8 ulonglong

3 1231 8 multip. ulonglong

4 9 8 multip. ulonglong

5 387 764 multip. ? prefix

1328/4161

myisamchk -dvv /var/lib/mysql/test/posts

MyISAM file: /var/lib/mysql/test/posts

Record format: Compressed

Character set: utf8mb4_unicode_ci (224)

File-version: 1

Creation time: 2015-08-10 16:26:54

Recover time: 2015-08-10 16:26:54

Status: checked,analyzed,optimized keys

Auto increment key: 1 Last value: 1811

Checksum: 2299272165

Data records: 1680 Deleted blocks: 0

Datafile parts: 1680 Deleted data: 0

Datafile pointer (bytes): 6 Keyfile pointer (bytes): 6

Datafile length: 4298092 Keyfile length: 156672

Max datafile length: 281474976710654 Max keyfile length: 288230376151710719

Recordlength: 2758

Using only keys '0' of 5 possibly keys

table description:

Key Start Len Index Type Rec/key Root Blocksize

1 1 8 unique ulonglong 1 1024

2 2265 80 multip. varchar prefix 336 1024

 63 80 varchar 187

 17 5 binary 1

 1 8 ulonglong 1

3 1231 8 multip. ulonglong 10 1024

4 9 8 multip. ulonglong 840 1024

5 387 764 multip. ? prefix 1 4096

Field Start Length Nullpos Nullbit Type Huff tree Bits

1 1 8 zerofill(6) 1 9

2 9 8 zerofill(7) 1 9

3 17 5 1 9

4 22 5 1 9

5 27 12 blob 2 9

6 39 10 blob 3 9

7 49 4 always zero 1 9

8 53 10 blob 1 9

9 63 81 varchar 4 9

10 144 81 varchar 5 5

11 225 81 varchar 5 5

12 306 81 varchar 1 9

13 387 802 varchar 6 9

14 1189 10 blob 1 9

15 1199 10 blob 7 9

16 1209 5 1 9

17 1214 5 1 9

18 1219 12 blob 1 9

19 1231 8 no zeros, zerofill(6) 1 9

20 1239 1022 varchar 7 9

21 2261 4 always zero 1 9

22 2265 81 varchar 8 8

23 2346 402 varchar 2 9

24 2748 8 no zeros, zerofill(7) 1 9

1329/4161

myisamchk -eiv /var/lib/mysql/test/posts

Checking MyISAM file: /var/lib/mysql/test/posts

Data records: 1680 Deleted blocks: 0

- check file-size

- check record delete-chain

No recordlinks

- check key delete-chain

block_size 1024:

block_size 2048:

block_size 3072:

block_size 4096:

- check index reference

- check data record references index: 1

Key: 1: Keyblocks used: 92% Packed: 0% Max levels: 2

- check data record references index: 2

Key: 2: Keyblocks used: 93% Packed: 90% Max levels: 2

- check data record references index: 3

Key: 3: Keyblocks used: 92% Packed: 0% Max levels: 2

- check data record references index: 4

Key: 4: Keyblocks used: 92% Packed: 0% Max levels: 2

- check data record references index: 5

Key: 5: Keyblocks used: 88% Packed: 97% Max levels: 2

Total: Keyblocks used: 91% Packed: 91%

- check records and index references

Records: 1680 M.recordlength: 4102 Packed: 0%

Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00

Record blocks: 1680 Delete blocks: 0

Record data: 6892064 Deleted data: 0

Lost space: 1284 Linkdata: 6264

User time 0.11, System time 0.00

Maximum resident set size 3036, Integral resident set size 0

Non-physical pagefaults 925, Physical pagefaults 0, Swaps 0

Blocks in 0 out 0, Messages in 0 out 0, Signals 0

Voluntary context switches 0, Involuntary context switches 74

1.3.8.4 myisamlog
myisamlog processes and returns the contents of a MyISAM log file.

Invoke myisamlog like this:

shell> myisamlog [options] [log_file [tbl_name] ...]

shell> isamlog [options] [log_file [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes are done and

errors are only counted. The default log file name is myisam.log for myisamlog and isam.log for isamlog if no

log_file argument is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

Option Description

-? , -I Display a help message and exit.

-c N Execute only N commands.

-f N Specify the maximum number of open files.

-i Display extra information before exiting.

-o offset Specify the starting offset.

-p N Remove N components from path.

-r Perform a recovery operation.

-R record_pos_file

record_pos
Specify record position file and record position.

1330/4161

-u Displays update operations.

-v
Verbose mode. Print more output about what the program does. This option can be given

multiple times (-vv, -vvv) to produce more and more output.

-w write_file Specify the write file.

-V Display version information.

1.3.8.5 myisampack
Contents
1. Options

2. Uncompressing

3. Examples

myisampack is a tool for compressing MyISAM tables. The resulting tables are read-only, and usually about 40% to 70%

smaller. It is run as follows:

myisampack [options] file_name [file_name2...]

The file_name is the .MYI index file. The extension can be omitted, although keeping it permits wildcards, such as:

myisampack *.MYI

...to compress all the files.

myisampack compresses each column separately, and, when the resulting data is read, only the individual rows and

columns required need to be decompressed, allowing for quicker reading.

Once a table has been packed, use myisamchk -rq (the quick and recover options) to rebuild its indexes.

myisampack does not support partitioned tables.

Do not run myisampack if the tables could be updated during the operation, and skip_external_locking has been set.

Options
The following variables can be set while passed as commandline options to myisampack , or set with a [myisampack]

section in your my.cnf file.

Option Description

-b , --backup Make a backup of the table as table_name.OLD .

--character-sets-dir=name Directory where character sets are.

-# , --debug[=name] Output debug log. Often this is 'd:t:o,filename' .

-f , --force Force packing of table even if it gets bigger or if tempfile exists.

-j , --join=name Join all given tables into 'new_table_name' . All tables must have identical layouts.

-? , --help Display help and exit.

-s , --silent Only write output when an error occurs

-T , --tmpdir=name Use temporary directory to store temporary table.

-t , --test Don't pack table, only test packing it.

-v , --verbose Write info about progress and packing result. Use multiple -v flags for more verbosity.

-V , --version Output version information and exit.

-w , --wait Wait and retry if table is in use.

Uncompressing
1331/4161

To uncompress a table compressed with myisampack , use the myisamchk -u option.

Examples

> myisampack /var/lib/mysql/test/posts

Compressing /var/lib/mysql/test/posts.MYD: (1680 records)

- Calculating statistics

- Compressing file

37.71%

> myisamchk -rq /var/lib/mysql/test/posts

- check record delete-chain

- recovering (with sort) MyISAM-table '/var/lib/mysql/test/posts'

Data records: 1680

- Fixing index 1

- Fixing index 2

1.3.8.6 myisam_ftdump
myisam_ftdump is a utility for displaying information about MyISAM FULLTEXT indexes. It will scan and dump the entire

index, and can be a lengthy process.

If the server is running, make sure you run a FLUSH TABLES statement first.

Usage

myisam_ftdump <table_name> <index_num>

The table_name can be specified with or without the .MYI index extension.

The index number refers to the number of the index when the table was defined, starting at zero. For example, take the

following table definition:

CREATE TABLE IF NOT EXISTS `employees_example` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `first_name` varchar(30) NOT NULL,

 `last_name` varchar(40) NOT NULL,

 `position` varchar(25) NOT NULL,

 `home_address` varchar(50) NOT NULL,

 `home_phone` varchar(12) NOT NULL,

 `employee_code` varchar(25) NOT NULL,

 `bio` text NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `employee_code` (`employee_code`),

 FULLTEXT (`bio`)

) ENGINE=MyISAM;

The fulltext index will be 2 . The primary key is index 0 , and the unique key index 1 .

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence as follows:

myisam_ftdump -c mytexttable 1 | sort -r

Options

Option Description

-h, --help Display help and exit.

-?, --help Synonym for -h.

-c, --count Calculate per-word stats (counts and global weights).

-d, --dump Dump index (incl. data offsets and word weights).

-l, --length Report length distribution.

1332/4161

-s, --stats Report global stats.

-v, --verbose Be verbose.

1.3.9 dbdeployer
dbdeployer is a tool for installing multiple versions of MariaDB and/or MySQL in isolation from each other. It is primarily

used for easily testing different server versions. It is written in Go, and is a replacement for MySQL Sandbox .

Visit https://www.dbdeployer.com for details on how to install and use it.

1.3.10 EXPLAIN Analyzer

The EXPLAIN Analyzer is no longer active.

The EXPLAIN Analyzer was an online tool for analyzing and optionally sharing the output of both EXPLAIN and EXPLAIN

EXTENDED .

Using the Analyzer
Using the analyzer is very simple.

1. In the mariadb client, run EXPLAIN on a query and copy the output. For example:

EXPLAIN SELECT * FROM t1 INNER JOIN t2 INNER JOIN t3 WHERE t1.a=t2.a AND t2.a=t3.a;

+------+-------------+-------+------+---------------+------+---------+------+------+---------

---+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|

+------+-------------+-------+------+---------------+------+---------+------+------+---------

---+

| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 3 |

|

| 1 | SIMPLE | t2 | ALL | NULL | NULL | NULL | NULL | 3 | Using

where; Using join buffer (flat, BNL join) |

| 1 | SIMPLE | t3 | ALL | NULL | NULL | NULL | NULL | 3 | Using

where; Using join buffer (incremental, BNL join) |

+------+-------------+-------+------+---------------+------+---------+------+------+---------

---+

3 rows in set (0.00 sec)

2. Paste the output into the EXPLAIN Analyzer input box and click the "Analyze Explain" button.

3. The formatted EXPLAIN will be shown. You can now click on various part to get more information about them.

Some Notes:

As you can see in the example above, you don't need to chop off the query line or the command prompt.

To save the EXPLAIN, so you can share it, or just for future reference, click the "Save Explain for analysis and

sharing" button and then click the "Analyze Explain" button. You will be given a link which leads to your saved

EXPLAIN . For example, the above explain can be viewed here: https://mariadb.org/explain_analyzer/analyze/

Some of the elements in the formatted EXPLAIN are clickable. Clicking on them will show pop-up help related to that

element.

Clients which integrate with the Explain Analyzer
The Analyzer has an API that client programs can use to send EXPLAINs. If you are a client application developer, see the

EXPLAIN Analyzer API page for details.

The following clients have support for the EXPLAIN Analyzer built in:

HeidiSQL

HeidiSQL has a button when viewing a query that sends the query to the explain analyzer.
1333/4161

https://mariadb.com/kb/en/mysql-sandbox/
https://www.dbdeployer.com
https://mariadb.org/explain_analyzer/analyze/
https://mariadb.org/explain_analyzer/analyze/
https://mariadb.org/explain_analyzer/analyze/
https://www.heidisql.com/

1.3.11 EXPLAIN Analyzer API
The online EXPLAIN Analyzer tool has an open API to allow client applications to send it EXPLAINs.

Sending EXPLAINs to the EXPLAIN Analyzer
To send an EXPLAIN to the EXPLAIN Analyzer, simply POST or GET to the following address:

mariadb.org/explain_analyzer/api/1/?raw_explain=EXPLAIN&client=CLIENT

Replace "EXPLAIN" with the output of the EXPLAIN command and "CLIENT" with the name of your client.

Client Banner
If you like, you can have a banner promoting your client appear at the bottom of the page. Once you've added support for

the EXPLAIN Analyzer to your client application, just send a logo, the name of your client, and what you want the name and

logo to link to to bryan AT montyprogram DOT com

1.3.12 innochecksum
Contents
1. Usage

2. Description

3. Options

4. Examples

innochecksum is a tool for printing checksums for InnoDB files.

Usage

innochecksum [options] file_name

Description
It reads an InnoDB tablespace file, calculates the checksum for each page, compares the calculated checksum to the stored

checksum, and reports mismatches, which indicate damaged pages. It was originally developed to speed up verifying the

integrity of tablespace files after power outages but can also be used after file copies. Because checksum mismatches will

cause InnoDB to deliberately shut down a running server, it can be preferable to use innochecksum rather than waiting for a

server in production usage to encounter the damaged pages.

Multiple filenames can be specified by a wildcard on non-Windows systems only.

innochecksum works with compressed pages, and also includes options to analyze leaf pages to estimate how fragmented

an index is and how much benefit can be gained from defragmentation.

innochecksum cannot be used on tablespace files that the server already has open. For such files, you should use

CHECK TABLE to check tables within the tablespace. If checksum mismatches are found, you would normally restore

the tablespace from backup or start the server and attempt to use mariadb-dump to make a backup of the tables within

the tablespace.

Options
innochecksum supports the following options. For options that refer to page numbers, the numbers are zero-based.

Option Description

-a, --allow-

mismatches=#

Maximum checksum mismatch allowed before innochecksum terminates. Defaults to 0, which terminates

on the first mismatch.

-c, --count Print a count of the number of pages in the file.

1334/4161

-e num, --end-

page=#
End at this page number (0-based).

-?, --help Displays help and exits.

-I, --info Synonym for --help.

-f, --leaf
Examine leaf index pages. Until MariaDB 10.2.4 , the short code was -l , but this was changed to

avoid confusion with the --log option.

-l fn, --log=fn Log output to the specified filename fn .

-m num, --

merge=#
Leaf page count if merge given number of consecutive pages.

-n, --no-check Ignore the checksum verification. Until MariaDB 10.6, must be used with the --write option.

-p num, --

page=#
Check only this page number (0-based).

-D, --page-

type-

dump=name

Dump the page type info for each page in a tablespace.

-S, --page-

type-summary
Display a count of each page type in a tablespace

-i, --per-page-

details
Print out per-page detail information.

-u, --skip-

corrupt
Skip corrupt pages.

-s num, --

start-page=#
Start at this page number (0-based).

-C, --strict-

check=name

Specify the strict checksum algorithm. One of: crc32 , innodb , none . If not specified, validates against

innodb , crc32 and none . full_crc32 is not supported. See also innodb_checksum_algorithm.

Removed in MariaDB 10.6.0

-v, --verbose Verbose mode; print a progress indicator every five seconds.

-V, --version Displays version information and exits.

-w, --

write=name

Rewrite the checksum algorithm. One of crc32, innodb, none. An exclusive lock is obtained during use.

Use in conjunction with the -no-check option to rewrite an invalid checksum. Removed in MariaDB

10.6.0

Examples
Rewriting a crc32 checksum to replace an invalid checksum:

innochecksum --no-check --write crc32 tablename.ibd

A count of each page type:

1335/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/

innochecksum --page-type-summary data/mysql/gtid_slave_pos.ibd

File::data/mysql/gtid_slave_pos.ibd

================PAGE TYPE SUMMARY==============

#PAGE_COUNT PAGE_TYPE

===

 1 Index page

 0 Undo log page

 1 Inode page

 0 Insert buffer free list page

 2 Freshly allocated page

 1 Insert buffer bitmap

 0 System page

 0 Transaction system page

 1 File Space Header

 0 Extent descriptor page

 0 BLOB page

 0 Compressed BLOB page

 0 Page compressed page

 0 Page compressed encrypted page

 0 Other type of page

===

Additional information:

Undo page type: 0 insert, 0 update, 0 other

Undo page state: 0 active, 0 cached, 0 to_free, 0 to_purge, 0 prepared, 0 other

index_id #pages #leaf_pages #recs_per_page #bytes_per_page

24 1 1 0 0

index_id page_data_bytes_histgram(empty,...,oversized)

24 1 0 0 0 0 0 0 0 0 0 0 0

1.3.13 msql2mysql

Description
Initially, the MySQL C API was developed to be very similar to that of the mSQL database system.

Because of this, mSQL programs often can be converted relatively easily for use with MySQL by changing the names of

their C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equivalents.

Warning: msql2mysql converts the input file in place, so make a copy of the original before converting it.

Example

shell> cp client-prog.c client-prog.c.orig

shell> msql2mysql client-prog.c

client-prog.c converted

After conversion, examine client-prog.c and make any necessary post-conversion revisions.

msql2mysql uses the replace utility to make the function name substitutions.

1.3.14 my_print_defaults
my_print_defaults displays the options from option groups of option files. It is useful to see which options a particular

tool will use.

Output is one option per line, displayed in the form in which they would be specified on the command line.

Usage
1336/4161

my_print_defaults [OPTIONS] [groups]

Options

Option Description

-c , --config-

file=name

Deprecated, please use --defaults-file instead. Name of config file to read; if no extension is

given, default extension (e.g., .ini or .cnf) will be added.

-# , --debug[=#]
In debug versions, write a debugging log. A typical debug_options string is d:t:o,file_name .

The default is d:t:o,/tmp/my_print_defaults.trace .

-c, --defaults-

file=name

Like --config-file, except: if first option, then read this file only, do not read global or per-user

config files; should be the first option. Removed in MariaDB 10.8.0 .

-e , --defaults-

extra-file=name

Read this file after the global config file and before the config file in the users home directory;

should be the first option. Removed in MariaDB 10.8.0 .

-g , --defaults-

group-suffix=name
In addition to the given groups, read also groups with this suffix. Removed in MariaDB 10.8.0 .

-e , --extra-

file=name
Deprecated. Synonym for --defaults-extra-file.

--mariadbd Read the same set of groups that the mariadbd binary does. From MariaDB 10.11.3.

--mysqld Read the same set of groups that the mysqld binary does.

-n , --no-defaults Return an empty string (useful for scripts).

? , --help Display this help message and exit.

-v , --verbose Increase the output level.

-V , --version Output version information and exit.

Examples

my_print_defaults --defaults-file=example.cnf client client-server mysql

mariadb-check reads from the [mariadb-check] and [client] sections, so the following would display the mariadb-check

options.

my_print_defaults mariadb-check client

1.3.15 mysqladmin
mysqladmin is an administration program for the mysqld daemon.

From MariaDB 10.4.6, mariadb-admin is a symlink to mysqladmin .

From MariaDB 10.5.2, mariadb-admin is the name of the script, with mysqladmin a symlink .

See mariadb-admin for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.16 mariadb-binlog

From MariaDB 10.4.6, mariadb-binlog is a symlink to mysqlbinlog .

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2 1337/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/

From MariaDB 10.5.2, mariadb-binlog is the name of the tool, with mysqlbinlog a symlink .

mariadb-binlog is a utility included with MariaDB for processing binary log and relay log files.

The MariaDB server's binary log is a set of files containing "events" which represent modifications to the contents of a

MariaDB database. These events are written in a binary (i.e. non-human-readable) format. The mariadb-binlog utility is used

to view these events in plain text.

Using mariadb-binlog

Viewing the binary log with mariadb-binlog.

mariadb-binlog Options

Options supported by mariadb-binlog.

Annotate_rows_log_event

Annotate_rows events accompany row events and describe the query which caused the row event.

mysqlbinlog

Symlink or old name for mariadb-binlog.

There are 3 related questions .

MariaDB starting with 10.5.2

1

1.3.16.1 Using mariadb-binlog

From MariaDB 10.4.6, mariadb-binlog is a symlink to mysqlbinlog .

From MariaDB 10.5.2, mariadb-binlog is the name of the tool, with mysqlbinlog a symlink .

The MariaDB server's binary log is a set of files containing "events" which represent modifications to the contents of a

MariaDB database. These events are written in a binary (i.e. non-human-readable) format. The mariadb-binlog utility is used

to view these events in plain text.

Run mariadb-binlog from a command-line like this:

shell> mariadb-binlog [options] log_file ...

See mariadb-binlog Options for details on the available options.

As an example, here is how you could display the contents of a binary log file named "mariadb-bin.000152":

shell> mariadb-binlog mariadb-bin.000152

The logging format is determined by the value of the binlog_format system variable. If you are using statement-based

logging, the output includes the SQL statement, the ID of the server the statement was executed on, a timestamp, and how

much time the statement took to execute. If you are using row-based logging the output of an event will not include an SQL

statement but will instead output how individual rows were changed.

The output from mariadb-binlog can be used as input to the mariadb client to redo the statements contained in a binary log.

This is useful for recovering after a server crash. Here is an example:

shell> mariadb-binlog binlog-filenames | mysql -u root -p

If you would like to view and possibly edit the file before applying it to your database, use the '-r' flag to redirect the output to

a file:

shell> mariadb-binlog -r filename binlog-filenames

You can then open the file and view it and delete any statements you don't want executed (such as an accidental DROP

DATABASE). Once you are satisfied with the contents you can execute it with:

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1338/4161

https://mariadb.com/kb/en/mariadb-binlog/+questions/

shell> mariadb -u root -p < filename

Be careful to process multiple log files in a single connection, especially if one or more of them have any CREATE

TEMPORARY TABLE ... statements. Temporary tables are dropped when the mariadb client terminates, so if you are

processing multiple log files one at a time (i.e. multiple connections) and one log file creates a temporary table and then a

subsequent log file refers to the table you will get an 'unknown table' error.

To execute multiple logfiles using a single connection, list them all on the mariadb-binlog command line:

shell> mariadb-binlog mariadb-bin.000001 mariadb-bin.000002 | mariadb -u root -p

If you need to manually edit the binlogs before executing them, combine them all into a single file before processing. Here is

an example:

shell> mariadb-binlog mariadb-bin.000001 > /tmp/mariadb-bin.sql

shell> mariadb-binlog mariadb-bin.000002 >> /tmp/mariadb-bin.sql

shell> # make any edits

shell> mysql -u root -p -e "source /tmp/mariadb-bin.sql"

1.3.16.2 mariadb-binlog Options

From MariaDB 10.4.6, mariadb-binlog is a symlink to mysqlbinlog .

From MariaDB 10.5.2, mariadb-binlog is the name of the tool, with mysqlbinlog a symlink .

Contents
1. Options

2. Option Files

1. Option Groups

mariadb-binlog is a utility included with MariaDB for processing binary log and relay log files.

Options
The following options are supported by mariadb-binlog. They can be specified on the command line or in option files:

Option default value Description Introduced

-? , --help Display a help statement.

--base64-output=name

(>= MariaDB 10.6.1,

MariaDB 10.5.11)

auto

Determine when the output statements should be base64-encoded BINLOG

statements. Options (case-insensitive) include auto , unspec , never and

decode-rows . never neither prints base64 encodings nor verbose event data,

and will exit on error if a row-based event is found. This option is useful for binlogs

that are entirely statement based. decode-rows decodes row events into

commented SQL statements if the --verbose option is also given. It can

enhance the debugging experience with large binary log files, as the raw data will

be omitted. Unlike never, mariadb-binlog will not exit with an error if a row event is

found. auto (synonymous with unspec) outputs base64 encoded entries for row-

based and format description events; it should be used when ROW-format events

are processed for re-executing on the MariaDB server. This behavior is presumed,

such that auto is the default value when no option specification is provided. The

other option values are intended only for debugging or testing purposes because

they may produce output that does not include all events in executable form.

--base64-

output[=name] (<=

MariaDB 10.6.0, MariaDB

10.5.10)

(No default Value)

Determine when the output statements should be base64-encoded BINLOG

statements. Options (case-insensitive) include auto , unspec , always

(deprecated), never and decode-rows . never disables it and works only for

binlogs without row-based events; decode-rows decodes row events into

commented SQL statements if the --verbose option is also given; Unlike never,

mariadb-binlog does not exit with an error if a row event is found auto or

unspec , the default, prints base64 only when necessary (i.e., for row-based

events and format description events), and is the only safe behavior if you intend

to use the output of mariadb-binlog to re-execute binary log file contents. The other

option values are intended only for debugging or testing purposes because they

may produce output that does not include all events in executable form.; always

prints base64 whenever possible, and is for debugging only and should not be

used in a production system. If this option is not given, the default is auto ; if it is

given with no argument, always is used.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1339/4161

--binlog-row-event-

max-size=val
4294967040 (4GB)

The maximum size in bytes of a row-based binary log event. Should be a multiple

of 256. Minimum 256, maximum 18446744073709547520.

--character-sets-

dir=name
(No default value) Directory where the character sets are.

-d , --database=name (No default value)

Output entries from the binary log (local log only) that occur while name has been

selected as the default database by USE. Only one database can be specified.

The effects depend on whether the statement-based or row-based logging format

is in use. For statement-based logging, the server will only log statements where

the default database is name. The default database is set with the USE statement.

For row-based logging, the server will log any updates to any tables in the named

database, irrespective of the current database. Ignored in --raw mode.

-# [options] , --

debug[=options]

d:t:o,/tmp/mariadb-

binlog.trace

In a debug build, write a debugging log. A typical debug options string is

d:t:o,file_name .

--debug-check FALSE Print some debug info at exit..

--debug-info FALSE Print some debug info and memory and CPU info at exit.

--default-auth=name Default authentication client-side plugin to use.

--defaults-extra-

file=name

Read the file name, which can be the full path, or the path relative to the current

directory, after the global files are read.

--defaults-file=name

Only read default options from the given file

name

, which can be the full path, or the path relative to the current directory.

--defaults-group-

suffix=str

Also read groups with a suffix of str. For example, since mariadb-binlog normally

reads the [client] and [mysqlbinlog] groups, --defaults-group-suffix=x would

cause it to also read the groups [mysqlbinlog_x] and [client_x].

-D , --disable-log-

bin
FALSE

Disable binary log. This is useful, if you enabled --to-last-log and are

sending the output to the same MariaDB server. This way you could avoid an

endless loop. You would also like to use it when restoring after a crash to avoid

duplication of the statements you already have. NOTE: you will need a SUPER

privilege to use this option.

--do-domain-ids=name (No default value)

A list of positive integers, separated by commas, that form a whitelist of domain

ids. Any log event with a GTID that originates from a domain id specified in this list

is displayed. Cannot be used with --ignore-domain-ids . When used with --

ignore-server-ids or --do-server-ids , the result is the intersection

between the two datasets

MariaDB

10.9.0

--do-server-ids=name
(No default value)

A list of positive integers, separated by commas, that form a whitelist of server ids.

Any log event originating from a server id specified in this list is displayed. Cannot

be used with --ignore-server-ids . When used with --ignore-domain-ids

or do-domain-ids , the result is the intersection between the two datasets. Alias

for --server-id .

MariaDB

10.9.0

-B , --flashback FALSE Support flashback mode.

-F , --force-if-open TRUE
Force if binlog was not closed properly. Defaults to ON; use --skip-force-if-

open to disable.

-f , --force-read FALSE

If mariadb-binlog reads a binary log event that it does not recognize, it prints a

warning, ignores the event, and continues. Without this option, mariadb-binlog

stops if it reads such an event.

--gtid-strict-mode TRUE

Process binlog according to gtid-strict-mode specification. The start, stop positions

are verified to satisfy start < stop comparison condition. Sequence numbers of any

gtid domain must comprise monotically growing sequence, Defaults to on; use --

skip-gtid-strict-mode to disable.

MariaDB

10.8.0

-H , --hexdump FALSE Augment output with hexadecimal and ASCII event dump.

-h , --host=name (No default value) Get the binlog from the MariaDB server on the given host.

--ignore-domain-

ids=name
(No default value)

A list of positive integers, separated by commas, that form a blacklist of domain

ids. Any log event with a GTID that originates from a domain id specified in this list

is hidden. Cannot be used with --do-domain-ids . When used with --ignore-

server-ids or --do-server-ids , the result is the intersection between the two

datasets.

MariaDB

10.9.0

--ignore-server-

ids=name
(No default value)

A list of positive integers, separated by commas, that form a blacklist of server ids.

Any log event originating from a server id specified in this list is hidden. Cannot be

used with --do-server-ids . When used with --ignore-domain-ids or --

do-domain-ids , the result is the intersection between the two datasets.

MariaDB

10.9.0

-l path , --local-

load=path
(No default value)

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

The temporary files are not automatically removed.

--no-defaults Don't read default options from any option file

-o value , --

offset=value
0 Skip the first value entries in the log.

--open_files_limit=# 64 Reserve file descriptors for usage by mariadb-binlog.

-p[passwd] , --

password[=passwd]
(No default value)

Password to connect to the remote server. The password can be omitted allow it

be entered from the prompt, or an option file can be used to avoid the security risk

of passing a password on the commandline.

--plugin-

dir=dir_name ,
Directory for client-side plugins.

-P num , --port=num 0
Port number to use for connection or 0 for default to, in order of preference,

my.cnf, $MYSQL_TCP_PORT, /etc/services, built-in default (3306).

1340/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/

--position=# 4 Removed in MariaDB 5.5. Use --start-position instead.

--print-defaults Print the program argument list from all option files and exit.

--print-row-count TRUE
Print row counts for each row events. (Defaults to on; use --skip-print-row-

count to disable.)
MariaDB 10.3

--print-row-event-

positions
TRUE

Print row event positions. Defaults to on; use --skip-print-row-event-

positions to disable.)
MariaDB 10.3

print-table-metadata Print metadata stored in Table_map_log_event.
MariaDB

10.5.0

--protocol=name (No default value) The protocol of the connection (tcp,socket,pipe,memory).

--raw
Requires -R. Output raw binlog data instead of SQL statements. Output files

named after server logs.

-R , --read-from-

remote-server
FALSE

Read binary logs from a remote MariaDB server rather than reading a local log

file. Any connection parameter options are ignored unless this option is given as

well. These options are --host , --password , --port , --protocol , --

socket , and --user . This option requires that the remote server be running. It

works only for binary log files on the remote server, not relay log files.

-r name , --result-

file=name
(No default value) Direct output to a given file. With --raw this is a prefix for the file names.

--rewrite-db=name (No default value)

Updates to a database with a different name than the original. Example:

rewrite-db='from->to'

For events that are binlogged as statements, rewriting the database constitutes

changing a statement's default database from db1 to db2 .

There is no statement analysis or rewrite of any kind, that is, if one specifies

" db1.tbl " in the statement explicitly, that occurrence won't be changed to

" db2.tbl ".

Row-based events are rewritten correctly to use the new database name.

Filtering (e.g. with --database=name) happens before the database rewrites

have been performed.

If you use this option on the command line and " > " has a special meaning to your

command interpreter, quote the value (e.g. --rewrite-db="oldname-

>newname").

--server-id=idnum 0
Extract only binlog entries created by the server having the given id. From

MariaDB 10.9.0, alias for --do-server-ids.

--set-

charset=character_set
(No default value)

Add ' SET NAMES character_set ' to the output to specify the character set to be

used for processing log files.

--shared-memory-base-

name=name
MYSQL

Shared-memory name to use for Windows connections using shared memory to a

local server (started with the --shared-memory option). Case-sensitive.

-s , --short-form FALSE

Just show regular queries: no extra info and no row-based events. This is for

testing only, and should not be used in production systems. If you want to

suppress base64-output, consider using --base64-output=never instead.

--skip-annotate-row-

events

Skip all Annotate_rows events in the mariadb-binlog output (by default, mariadb-

binlog prints Annotate_rows events, if the binary log does contain them).

-S , --socket=name (No default value)
For connections to localhost, the Unix socket file to use, or, on Windows, the name

of the named pipe to use.

--ssl FALSE

Enables TLS. TLS is also enabled even without setting this option when certain

other TLS options are set. Starting with MariaDB 10.2, the --ssl option will not

enable verifying the server certificate by default. In order to verify the server

certificate, the user must specify the --ssl-verify-server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for

trusted Certificate Authorities (CAs) to use for TLS. This option requires that you

use the absolute path, not a relative path. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option implies the --ssl

option.

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each

contain one X509 certificate for a trusted Certificate Authority (CA) to use for TLS.

This option requires that you use the absolute path, not a relative path. The

directory specified by this option needs to be run through the openssl rehash

 command. See Secure Connections Overview: Certificate Authorities (CAs)

for more information. This option is only supported if the client was built with

OpenSSL or yaSSL. If the client was built with GnuTLS or Schannel, then this

option is not supported. See TLS and Cryptography Libraries Used by MariaDB for

more information about which libraries are used on which platforms. This option

implies the --ssl option.

--ssl-cert=name

Defines a path to the X509 certificate file to use for TLS. This option requires that

you use the absolute path, not a relative path. This option implies the --ssl

option.

--ssl-cipher=name
List of permitted ciphers or cipher suites to use for TLS. This option implies the --

ssl option.

1341/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509

certificates to use for TLS. This option requires that you use the absolute path, not

a relative path. See Secure Connections Overview: Certificate Revocation Lists

(CRLs) for more information. This option is only supported if the client was built

with OpenSSL or Schannel. If the client was built with yaSSL or GnuTLS, then this

option is not supported. See TLS and Cryptography Libraries Used by MariaDB for

more information about which libraries are used on which platforms.

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each

contain one revoked X509 certificate to use for TLS. This option requires that you

use the absolute path, not a relative path. The directory specified by this option

needs to be run through the openssl rehash command. See Secure

Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This option is only supported if the client was built with OpenSSL. If the client was

built with yaSSL, GnuTLS, or Schannel, then this option is not supported. See TLS

and Cryptography Libraries Used by MariaDB for more information about which

libraries are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you

use the absolute path, not a relative path. This option implies the --ssl option.

--ssl-verify-server-

cert
FALSE Enables server certificate verification. This option is disabled by default.

--start-

datetime=datetime
(No default value)

Start reading the binlog at first event having a datetime equal to or later than the

argument; the argument must be a date and time in the local time zone, in any

format accepted by the MariaDB server for DATETIME and TIMESTAMP types,

for example: 2014-12-25 11:25:56 (you should probably use quotes for your shell

to set it properly). This option is useful for point-in-time recovery.

-j pos , --start-

position=pos
4

Start reading the binlog at this position. Type can either be a positive integer or,

from MariaDB 10.8.0 , a GTID list. When using a positive integer, the value only

applies to the first binlog passed on the command line. In GTID mode, multiple

GTIDs can be passed as a comma separated list, where each must have a unique

domain id. The list represents the gtid binlog state that the client (another "replica"

server) is aware of. Therefore, each GTID is exclusive; only events after a given

sequence number will be printed to allow users to receive events after their current

state.

--stop-datetime=name (No default value)

Stop reading the binlog at first event having a datetime equal or posterior to the

argument; the argument must be a date and time in the local time zone, in any

format accepted by the MariaDB server for DATETIME and TIMESTAMP types,

for example: 2014-12-25 11:25:56 (you should probably use quotes for your shell

to set it properly). Ignored in --raw mode.

--stop-never

Wait for more data from the server (and thus requires -R or --read-from-

remote-server) instead of stopping at the end of the last log. Implies --to-

last-log .

--stop-never-slave-

server-id
The slave server_id used for --read-from-remote-server --stop-never .

--stop-position=pos 18446744073709551615

Stop reading the binlog at this position. Type can either be a positive integer or,

from MariaDB 10.8, a GTID list. When using a positive integer, the value only

applies to the last binlog passed on the command line. In GTID mode, multiple

GTIDs can be passed as a comma separated list, where each must have a unique

domain id. Each GTID is inclusive; only events up to the given sequence numbers

are printed. Ignored in --raw mode.

-T , --table List entries for just this table (affects only row events).

--tls-version=name TLSv1.1,TLSv1.2,TLSv1.3

This option accepts a comma-separated list of TLS protocol versions. A TLS

protocol version will only be enabled if it is present in this list. All other TLS

protocol versions will not be permitted. See Secure Connections Overview: TLS

Protocol Versions for more information.

MariaDB

10.4.6

-t , --to-last-log FALSE

Requires -R or --read-from-remote-server . Will not stop at the end of the

requested binlog but rather continue printing until the end of the last binlog of the

MariaDB server. If you send the output to the same MariaDB server, that may lead

to an endless loop.

-u , --user=username (No default value) Connect to the remote server as username.

-v , --verbose
Reconstruct SQL statements out of row events. -v -v adds comments on column

data types

-V , --version Print version and exit.

--verify-binlog-

checksum
Verify binlog event checksums when reading a binlog file.

Option Files
In addition to reading options from the command-line, mariadb-binlog can also read options from option files. If an

unknown option is provided to mariadb-binlog in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

1342/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/mariadb-1080-release-notes/

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

In MariaDB 10.2 and later, mariadb-binlog is linked with MariaDB Connector/C . However, MariaDB Connector/C does

not yet handle the parsing of option files for this client. That is still performed by the server option file parsing code. See

MDEV-19035 for more information.

Option Groups

mariadb-binlog reads options from the following option groups from option files:

Group Description

[mysqlbinlog] Options read by mariadb-binlog , which includes both MariaDB Server and MySQL Server.

[mariadb-

binlog]
Options read by mariadb-binlog . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

mariadb-binlog is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing

of option files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more

information.

1.3.16.3 Annotate_rows_log_event

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Annotate_rows Example

2. Options Related to Annotate_rows_log_event

1. Master Option: --binlog-annotate-row-events

2. Slave Option: --replicate-annotate-row-events

3. mariadb-binlog Option: --skip-annotate-row-events

3. Example of mariadb-binlog Output

Annotate_rows events accompany row events and describe the query which caused the row event.

Until MariaDB 10.2.4 , the binlog event type Annotate_rows_log_event was off by default (so as not to change the

binary log format and to allow one to replicate MariaDB 5.3 to MySQL/MariaDB 5.1). You can enable this with --binlog-

annotate-row-events .

In the binary log, each Annotate_rows event precedes the corresponding Table map event or the first of the Table map

events, if there are more than one (e.g. in a case of multi-delete or insert delayed).

Annotate_rows Example

master> DROP DATABASE IF EXISTS test;

master> CREATE DATABASE test;

master> USE test;

master> CREATE TABLE t1(a int);
1343/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035
https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1024-release-notes/

master> CREATE TABLE t1(a int);

master> INSERT INTO t1 VALUES (1), (2), (3);

master> CREATE TABLE t2(a int);

master> INSERT INTO t2 VALUES (1), (2), (3);

master> CREATE TABLE t3(a int);

master> INSERT DELAYED INTO t3 VALUES (1), (2), (3);

master> DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3

 -> WHERE t1.a=t2.a AND t2.a=t3.a;

master> SHOW BINLOG EVENTS IN 'master-bin.000001';

+-------------------+------+---------------+-----------+-------------+-----------------------

--+

| Log_name | Pos | Event_type | Server_id | End_log_pos | Info

|

+-------------------+------+---------------+-----------+-------------+-----------------------

--+

| master-bin.000001 | 4 | Format_desc | 100 | 240 | Server ver:

5.5.20-MariaDB-mariadb1~oneiric-log, Binlog ver: 4 |

| master-bin.000001 | 240 | Query | 100 | 331 | DROP DATABASE IF EXISTS

test |

| master-bin.000001 | 331 | Query | 100 | 414 | CREATE DATABASE test

|

| master-bin.000001 | 414 | Query | 100 | 499 | use `test`; CREATE

TABLE t1(a int) |

| master-bin.000001 | 499 | Query | 100 | 567 | BEGIN

|

| master-bin.000001 | 567 | Annotate_rows | 100 | 621 | INSERT INTO t1 VALUES

(1), (2), (3) |

| master-bin.000001 | 621 | Table_map | 100 | 662 | table_id: 16 (test.t1)

|

| master-bin.000001 | 662 | Write_rows | 100 | 706 | table_id: 16 flags:

STMT_END_F |

| master-bin.000001 | 706 | Query | 100 | 775 | COMMIT

|

| master-bin.000001 | 775 | Query | 100 | 860 | use `test`; CREATE

TABLE t2(a int) |

| master-bin.000001 | 860 | Query | 100 | 928 | BEGIN

|

| master-bin.000001 | 928 | Annotate_rows | 100 | 982 | INSERT INTO t2 VALUES

(1), (2), (3) |

| master-bin.000001 | 982 | Table_map | 100 | 1023 | table_id: 17 (test.t2)

|

| master-bin.000001 | 1023 | Write_rows | 100 | 1067 | table_id: 17 flags:

STMT_END_F |

| master-bin.000001 | 1067 | Query | 100 | 1136 | COMMIT

|

| master-bin.000001 | 1136 | Query | 100 | 1221 | use `test`; CREATE

TABLE t3(a int) |

| master-bin.000001 | 1221 | Query | 100 | 1289 | BEGIN

|

| master-bin.000001 | 1289 | Annotate_rows | 100 | 1351 | INSERT DELAYED INTO t3

VALUES (1), (2), (3) |

| master-bin.000001 | 1351 | Table_map | 100 | 1392 | table_id: 18 (test.t3)

|

| master-bin.000001 | 1392 | Write_rows | 100 | 1426 | table_id: 18 flags:

STMT_END_F |

| master-bin.000001 | 1426 | Table_map | 100 | 1467 | table_id: 18 (test.t3)

|

| master-bin.000001 | 1467 | Write_rows | 100 | 1506 | table_id: 18 flags:

STMT_END_F |

| master-bin.000001 | 1506 | Query | 100 | 1575 | COMMIT

|

| master-bin.000001 | 1575 | Query | 100 | 1643 | BEGIN

|

| master-bin.000001 | 1643 | Annotate_rows | 100 | 1748 | DELETE t1, t2 FROM t1

INNER JOIN t2 INNER JOIN t3 WHERE t1.a=t2.a AND t2.a=t3.a |

| master-bin.000001 | 1748 | Table_map | 100 | 1789 | table_id: 16 (test.t1)

|

| master-bin.000001 | 1789 | Table_map | 100 | 1830 | table_id: 17 (test.t2)

|

| master-bin.000001 | 1830 | Delete_rows | 100 | 1874 | table_id: 16

|

| master-bin.000001 | 1874 | Delete_rows | 100 | 1918 | table_id: 17 flags:

STMT_END_F |

| master-bin.000001 | 1918 | Query | 100 | 1987 | COMMIT

| 1344/4161

|

+-------------------+------+---------------+-----------+-------------+-----------------------

--+

Options Related to Annotate_rows_log_event
The following options have been added to control the behavior of Annotate_rows_log_event :

Master Option: -- binlog-annotate-row-events

This option tells the master to write Annotate_rows events to the binary log. See binlog_annotate_row_events for a

detailed description of the variable.

Session values allow you to annotate only some selected statements:

...

SET SESSION binlog_annotate_row_events=ON;

... statements to be annotated ...

SET SESSION binlog_annotate_row_events=OFF;

... statements not to be annotated ...

Slave Option: -- replicate-annotate-row-events

This option tells the slave to reproduce Annotate_row events received from the master in its own binary log (sensible only

when used in tandem with the log-slave-updates option).

See replicate_annotate_row_events for a detailed description of the variable.

mariadb-binlog Option: -- skip-annotate-row-events

This option tells mariadb-binlog to skip all Annotate_row events in its output (by default, mariadb-binlog prints

Annotate_row events, if the binary log contains them).

Example of mariadb-binlog Output

...> mariadb-binlog.exe -vv -R --user=root --port=3306 --host=localhost master-bin.000001

/*!40019 SET @@session.max_insert_delayed_threads=0*/;

/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

DELIMITER /*!*/;

at 4

#100516 15:36:00 server id 100 end_log_pos 240 Start: binlog v 4, server v 5.1.44-

debug-log created 100516

 15:36:00 at startup

ROLLBACK/*!*/;

BINLOG '

oNjvSw9kAAAA7AAAAPAAAAAAAAQANS4xLjQ0LWRlYnVnLWxvZwAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAACg2O9LEzgNAAgAEgAEBAQEEgAA2QAEGggAAAAICAgCAAAAAAAAAAAAAAAA

AA

AA

AAAAAAAAAAA=

'/*!*/;

at 240

#100516 15:36:18 server id 100 end_log_pos 331 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

SET @@session.pseudo_thread_id=1/*!*/;

SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=1, @@session.unique_checks=1,

@@session.autocommit=1

/*!*/;

SET @@session.sql_mode=0/*!*/;

SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;

/*!\C latin1 *//*!*/;

SET

@@session.character_set_client=8,@@session.collation_connection=8,@@session.collation_server=8/

!/;

SET @@session.lc_time_names=0/*!*/;

SET @@session.collation_database=DEFAULT/*!*/;
1345/4161

SET @@session.collation_database=DEFAULT/*!*/;

DROP DATABASE IF EXISTS test

/*!*/;

at 331

#100516 15:36:18 server id 100 end_log_pos 414 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

CREATE DATABASE test

/*!*/;

at 414

#100516 15:36:18 server id 100 end_log_pos 499 Query thread_id=1 exec_time=0

error_code=0

use test/*!*/;

SET TIMESTAMP=1274009778/*!*/;

CREATE TABLE t1(a int)

/*!*/;

at 499

#100516 15:36:18 server id 100 end_log_pos 567 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

BEGIN

/*!*/;

at 567

at 621

at 662

#100516 15:36:18 server id 100 end_log_pos 621 Annotate_rows:

#Q> INSERT INTO t1 VALUES (1), (2), (3)

#100516 15:36:18 server id 100 end_log_pos 662 Table_map: `test`.`t1` mapped to number

16

#100516 15:36:18 server id 100 end_log_pos 706 Write_rows: table id 16 flags:

STMT_END_F

BINLOG '

stjvSxNkAAAAKQAAAJYCAAAAABAAAAAAAAAABHRlc3QAAnQxAAEDAAE=

stjvSxdkAAAALAAAAMICAAAQABAAAAAAAAEAAf/+AQAAAP4CAAAA/gMAAAA=

'/*!*/;

INSERT INTO test.t1

SET

@1=1 /* INT meta=0 nullable=1 is_null=0 */

INSERT INTO test.t1

SET

@1=2 /* INT meta=0 nullable=1 is_null=0 */

INSERT INTO test.t1

SET

@1=3 /* INT meta=0 nullable=1 is_null=0 */

at 706

#100516 15:36:18 server id 100 end_log_pos 775 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

COMMIT

/*!*/;

at 775

#100516 15:36:18 server id 100 end_log_pos 860 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

CREATE TABLE t2(a int)

/*!*/;

at 860

#100516 15:36:18 server id 100 end_log_pos 928 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

BEGIN

/*!*/;

at 928

at 982

at 1023

#100516 15:36:18 server id 100 end_log_pos 982 Annotate_rows:

#Q> INSERT INTO t2 VALUES (1), (2), (3)

#100516 15:36:18 server id 100 end_log_pos 1023 Table_map: `test`.`t2` mapped to number

17

#100516 15:36:18 server id 100 end_log_pos 1067 Write_rows: table id 17 flags:

STMT_END_F

BINLOG '

stjvSxNkAAAAKQAAAP8DAAAAABEAAAAAAAAABHRlc3QAAnQyAAEDAAE=

stjvSxdkAAAALAAAACsEAAAQABEAAAAAAAEAAf/+AQAAAP4CAAAA/gMAAAA=
1346/4161

stjvSxdkAAAALAAAACsEAAAQABEAAAAAAAEAAf/+AQAAAP4CAAAA/gMAAAA=

'/*!*/;

INSERT INTO test.t2

SET

@1=1 /* INT meta=0 nullable=1 is_null=0 */

INSERT INTO test.t2

SET

@1=2 /* INT meta=0 nullable=1 is_null=0 */

INSERT INTO test.t2

SET

@1=3 /* INT meta=0 nullable=1 is_null=0 */

at 1067

#100516 15:36:18 server id 100 end_log_pos 1136 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

COMMIT

/*!*/;

at 1136

#100516 15:36:18 server id 100 end_log_pos 1221 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

CREATE TABLE t3(a int)

/*!*/;

at 1221

#100516 15:36:18 server id 100 end_log_pos 1289 Query thread_id=2 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

BEGIN

/*!*/;

at 1289

at 1351

at 1392

#100516 15:36:18 server id 100 end_log_pos 1351 Annotate_rows:

#Q> INSERT DELAYED INTO t3 VALUES (1), (2), (3)

#100516 15:36:18 server id 100 end_log_pos 1392 Table_map: `test`.`t3` mapped to number

18

#100516 15:36:18 server id 100 end_log_pos 1426 Write_rows: table id 18 flags:

STMT_END_F

BINLOG '

stjvSxNkAAAAKQAAAHAFAAAAABIAAAAAAAAABHRlc3QAAnQzAAEDAAE=

stjvSxdkAAAAIgAAAJIFAAAQABIAAAAAAAEAAf/+AQAAAA==

'/*!*/;

INSERT INTO test.t3

SET

@1=1 /* INT meta=0 nullable=1 is_null=0 */

at 1426

at 1467

#100516 15:36:18 server id 100 end_log_pos 1467 Table_map: `test`.`t3` mapped to number

18

#100516 15:36:18 server id 100 end_log_pos 1506 Write_rows: table id 18 flags:

STMT_END_F

BINLOG '

stjvSxNkAAAAKQAAALsFAAAAABIAAAAAAAAABHRlc3QAAnQzAAEDAAE=

stjvSxdkAAAAJwAAAOIFAAAQABIAAAAAAAEAAf/+AgAAAP4DAAAA

'/*!*/;

INSERT INTO test.t3

SET

@1=2 /* INT meta=0 nullable=1 is_null=0 */

INSERT INTO test.t3

SET

@1=3 /* INT meta=0 nullable=1 is_null=0 */

at 1506

#100516 15:36:18 server id 100 end_log_pos 1575 Query thread_id=2 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

COMMIT

/*!*/;

at 1575

#100516 15:36:18 server id 100 end_log_pos 1643 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

BEGIN

/*!*/;

at 1643 1347/4161

at 1643

at 1748

at 1789

at 1830

at 1874

#100516 15:36:18 server id 100 end_log_pos 1748 Annotate_rows:

#Q> DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3

#Q> WHERE t1.a=t2.a AND t2.a=t3.

#100516 15:36:18 server id 100 end_log_pos 1789 Table_map: `test`.`t1` mapped to number

16

#100516 15:36:18 server id 100 end_log_pos 1830 Table_map: `test`.`t2` mapped to number

17

#100516 15:36:18 server id 100 end_log_pos 1874 Delete_rows: table id 16

#100516 15:36:18 server id 100 end_log_pos 1918 Delete_rows: table id 17 flags:

STMT_END_F

BINLOG '

stjvSxNkAAAAKQAAAP0GAAAAABAAAAAAAAAABHRlc3QAAnQxAAEDAAE=

stjvSxNkAAAAKQAAACYHAAAAABEAAAAAAAAABHRlc3QAAnQyAAEDAAE=

stjvSxlkAAAALAAAAFIHAAAAABAAAAAAAAAAAf/+AQAAAP4CAAAA/gMAAAA=

DELETE FROM test.t1

WHERE

@1=1 /* INT meta=0 nullable=1 is_null=0 */

DELETE FROM test.t1

WHERE

@1=2 /* INT meta=0 nullable=1 is_null=0 */

DELETE FROM test.t1

WHERE

@1=3 /* INT meta=0 nullable=1 is_null=0 */

stjvSxlkAAAALAAAAH4HAAAQABEAAAAAAAEAAf/+AQAAAP4CAAAA/gMAAAA=

'/*!*/;

DELETE FROM test.t2

WHERE

@1=1 /* INT meta=0 nullable=1 is_null=0 */

DELETE FROM test.t2

WHERE

@1=2 /* INT meta=0 nullable=1 is_null=0 */

DELETE FROM test.t2

WHERE

@1=3 /* INT meta=0 nullable=1 is_null=0 */

at 1918

#100516 15:36:18 server id 100 end_log_pos 1987 Query thread_id=1 exec_time=0

error_code=0

SET TIMESTAMP=1274009778/*!*/;

COMMIT

/*!*/;

DELIMITER ;

End of log file

ROLLBACK /* added by mariadb-binlog */;

/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

1.3.16.4 mysqlbinlog

From MariaDB 10.4.6, mariadb-binlog is a symlink to mysqlbinlog .

From MariaDB 10.5.2, mariadb-binlog is the name of the tool, with mysqlbinlog a symlink .

See mariadb-binlog for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.17 mariadb-stress-test

From MariaDB 10.4.6, mariadb-stress-test is a symlink to mysql-stress-test , the script for assisting with

adding users or databases or changing passwords in MariaDB.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2 1348/4161

From MariaDB 10.5.2, mysql-stress-test is the symlink, and mariadb-stress-test the binary name.

Contents
1. Syntax

2. Options

mariadb-stress-test.pl is a Perl script that performs stress-testing of the MariaDB server. It requires a version of Perl that has

been built with threads support.

Syntax

mariadb-stress-test.pl [options]

Options

Option Description

--help Display a help message and exit.

--abort-on-

error=N

Causes the program to abort if an error with severity less than or equal to N was encountered. Set

to 1 to abort on any error.

--check-tests-

file

Periodically check the file that lists the tests to be run. If it has been modified, reread the file. This

can be useful if you update the list of tests to be run during a stress test.

--cleanup Force cleanup of the working directory.

--log-error-

details
Log error details in the global error log file.

--loop-count=N In sequential test mode, the number of loops to execute before exiting.

--mysqltest=path The path name to the mysqltest program.

--server-

database=db_name
The database to use for the tests. The default is test.

--server-

host=host_name

he host name of the local host to use for making a TCP/IP connection to the local server. By

default, the connection is made to localhost using a Unix socket file.

--server-logs-

dir=path

This option is required. path is the directory where all client session logs will be stored. Usually

this is the shared directory that is associated with the server used for testing.

--server-

password=password
The password to use when connecting to the server.

--server-

port=port_num
The TCP/IP port number to use for connecting to the server. The default is 3306.

--server-

socket=file_name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named

pipe to use. The default is /tmp/mysql.sock .

--server-

user=user_name
The MariaDB user name to use when connecting to the server. The default is root.

--sleep-time=N The delay in seconds between test executions.

--stress-

basedir=path

This option is required and specified the path is the working directory for the test run. It is used as

the temporary location for result tracking during testing.

--stress-

datadir=path

The directory of data files to be used during testing. The default location is the data directory

under the location given by the --stress-suite-basedir option.

--stress-init-

file[=path]

file_name is the location of the file that contains the list of tests to be run once to initialize the

database for the testing. If missing, the default file is stress_init.txt in the test suite

directory.

MariaDB starting with 10.5.2

1349/4161

--stress-

mode=mode

This option indicates the test order in stress-test mode. The mode value is either random to

select tests in random order or seq to run tests in each thread in the order specified in the test

list file. The default mode is random .

--stress-suite-

basedir=path

This option is required and specifies the directory that has the t and r subdirectories containing the

test case and result files. This directory is also the default location of the stress-test.txt file

that contains the list of tests. (A different location can be specified with the --stress-tests-

file option.)

--stress-tests-

file[=file_name]

Use this option to run the stress tests. file_name is the location of the file that contains the list of

tests. If omitted, the default file is stress-test.txt in the stress suite directory. (See --

stress-suite-basedir .)

--

suite=suite_name

Run the named test suite. The default name is main (the regular test suite located in the mysql-

test directory).

--test-count=N The number of tests to execute before exiting.

--test-

duration=N
The duration of stress testing in seconds.

--threads=N The number of threads. The default is 1.

--verbose Verbose mode. Print more information about what the program does

1.3.18 mariadb-test
MariaDB uses mariadb-test to test functionality. It is an all-in-one test framework, doing unit, regression, and conformance

testing. The framework was inherited from MySQL, but is greatly enhanced, optimized, and extended in MariaDB.

mariadb-test Overview

Overview of mariadb-test.

mariadb-test Auxiliary Files

Besides test and result files, many other files that affect the testing process in mariadb-test

mariadb-test-run.pl Options

Run test cases.

Pausing mariadb-test-run.pl

Working while your computer is busy running mariadb-test-run.pl.

mariadb-test and mariadb-test-embedded

Runs a test case against a MariaDB server, optionally comparing the output with a result file.

New Features for mysqltest in MariaDB

MariaDB added a number of new options and commands to mysqltest.

Debugging MariaDB With a Debugger

If MariaDB is compiled for debugging, you can both use it in a debugger, an...

The Debug Sync Facility

DEBUG_SYNC synchronization points in server code

Code Coverage with dgcov

The dgcov tool helps you check the coverage for new code.

Installing MinIO for Usage With mariadb-test-run

Easiest way to access to Amazon S3 compatible storage.

1

1.3.18.1 mariadb-test Overview

1350/4161

https://mariadb.com/kb/en/mariadb-test-run-pl-options/
https://mariadb.com/kb/en/installing-minio-for-usage-with-mariadb-test-run/

Contents
1. The Basics

2. Overlays

3. Combinations

4. Sample Output

5. Plugin Support

6. mtr communication procedure

The Basics
At its core, mariadb-test is very simple. The client program mariadb-test executes a test file and compares the produced

output with the result file. If the files match, the test is passed; otherwise the test has failed. This approach can be used to

test any SQL statement, as well as other executables (with the exec command).

The complete process of testing is governed and monitored by the mariadb-test-run.pl driver script, or mtr for short (for

convenience, mtr is created as a symbolic link to mariadb-test-run.pl). The mtr script is responsible for preparing the

test environment, creating a list of all tests to run, running them, and producing the report at the end. It can run many tests

in parallel, execute tests in an order which minimizes server restarts (as they are slow), run tests in a debugger or under

valgrind or strace, and so on.

Test files are located in suites. A suite is a directory which contains test files, result files, and optional configuration files.

The mtr looks for suites in the mariadb-test/suite directory, and in the mariadb-test subdirectories of plugins and

storage engine directories. For example, the following are all valid suite paths:

mariadb-test/suite/rpl

mariadb-test/suite/handler

storage/example/mariadb-test/demo

plugin/auth_pam/mariadb-test/pam

In almost all cases, the suite directory name is the suite name. A notable historical exception is the main suite, which is

located directly in the mariadb-test directory.

Test files have a .test extension and can be placed directly in the suite directory (for example, mariadb-

test/suite/handler/interface.test) or in the t subdirectory (e.g. mariadb-test/suite/rpl/t/rpl_alter.test

or mariadb-test/t/grant.test). Similarly, result files have the .result extension and can be placed either in the

suite directory or in the r subdirectory.

A test file can include other files (with the source command). These included files can have any name and may be placed

anywhere, but customarily they have a .inc extension and are located either in the suite directory or in the inc or

include subdirectories (for example, mariadb-test/suite/handler/init.inc or mariadb-

test/include/start_slave.inc).

Other files which affect testing, while not being tests themselves, are:

disabled.def

suite.opt

other *.opt files

my.cnf

other *.cnf files

combinations

other *.combinations files

suite.pm

*.sh files

*.require files

*.rdiff files

valgrind.supp

See Auxiliary files for details on these.

Overlays

1351/4161

https://mariadb.com/kb/en/mtr-auxiliary-files/

In addition to regular suite directories, mtr supports overlays. An overlay is a directory with the same name as an existing

suite, but which is located in a storage engine or plugin directory. For example, storage/myisam/mariadb-test/rpl

could be a myisam overlay of the rpl suite in mariadb-test/suite/rpl . And plugin/daemon_example/mariadb-

test/demo could be a daemon_example overlay of the demo suite in storage/example/mariadb-test/demo . As a

special exception, an overlay of the main suite, should be called main , as in storage/pbxt/mariadb-test/main .

An overlay is like a second transparent layer in a graphics editor. It can obscure, extend, or modify the background image.

Also, one may notice that an overlay is very close to a UnionFS, but implemented in perl inside mtr.

An overlay can replace almost any file in the overlaid suite, or add new files. For example, if some overlay of the main suite

contains a include/have_innodb.inc file, then all tests that include it will see and use the overlaid version. Or, an

overlay can create a t/create.opt file (even though the main suite does not have such a file), and create.test will be

executed with the specified additional options.

But adding an overlay never affects how the original suite is executed. That is, mtr always executes the original suite as if no

overlay was present. And then, additionally, it executes a combined "union" of the overlay and the original suite. When doing

that, mtr takes care to avoid re-executing tests that are not changed in the overlay. For example, creating t/create.opt

in the overlay of the main suite will only cause create.test to be executed in the overlay. But creating suite.opt

affects all tests 4 and it will cause all tests to be re-executed with the new options.

Combinations
In certain cases it makes sense to run a specific test or a group of tests several times with different server settings. This can

be done using so-called combinations. Combinations are groups of settings that are used alternatively. A combinations file

defines these alternatives using my.cnf syntax, for example

[row]

binlog-format=row

[stmt]

binlog-format=statement

[mix]

binlog-format=mixed

And all tests where this combinations file applies will be run three times: once for the combination called "row", and --

binlog-format=row on the server command line, once for the "stmt" combination, and once for the "mix" combination.

More than one combinations file may be applicable to a given test file. In this case, mtr will run the test for all possible

combinations of the given combinations. A test that uses replication (three combinations as above) and innodb (two

combinations - innodb and xtradb), will be run six times.

Sample Output
Typical mtr output looks like this

==

TEST WORKER RESULT TIME (ms) or COMMENT

--

rpl.rpl_row_find_row_debug [skipped] Requires debug build

main-pbxt.connect [skipped] No PBXT engine

main-pbxt.mysqlbinlog_row [disabled] test expects a non-transactional engine

rpl.rpl_savepoint 'mix,xtradb' w2 [pass] 238

rpl.rpl_stm_innodb 'innodb_plugin,row' w1 [skipped] Neither MIXED nor STATEMENT binlog format

binlog.binlog_sf 'stmt' w2 [pass] 7

unit.dbug w2 [pass] 1

maria.small_blocksize w1 [pass] 23

sys_vars.autocommit_func3 'innodb_plugin' w1 [pass] 5

sys_vars.autocommit_func3 'xtradb' w1 [pass] 6

main.ipv6 w1 [pass] 131

...

Every test is printed as "suitename.testname", and a suite name may include an overlay name (like in main-pbxt). After

the test name, mtr prints combinations that were applied to this test, if any.

A similar syntax can be used on the mtr command line to specify what tests to run:

1352/4161

$./mtr innodb search for innodb test in every suite from the default list, and run all that was found.

$./mtr main.innodb run the innodb test from the main suite

$./mtr main-pbxt.innodb run the innodb test from the pbxt overlay of the main suite

$./mtr main-.innodb run the innodb test from the main suite and all its overlays.

$./mtr main.innodb,xtradb run the innodb test from the main suite, only in the xtradb combination

Plugin Support
The mtr driver has special support for MariaDB plugins.

First, on startup it copies or symlinks all dynamically-built plugins into var/plugins . This allows one to have many plugins

loaded at the same time. For example, one can load Federated and InnoDB engines together. Also, mtr creates

environment variables for every plugin with the corresponding plugin name. For example, if the InnoDB engine was built,

$HA_INNODB_SO will be set to ha_innodb.so (or ha_innodb.dll on Windows). And the test can safely use the

corresponding environment variable on all platforms to refer to a plugin file; it will always have the correct platform-

dependent extension.

Second, when combining server command-line options (which may come from many different sources) into one long list

before starting mariadbd , mtr treats --plugin-load specially. Normal server semantics is to use the latest value of any

particular option on the command line. If one starts the server with, for example, --port=2000 --port=3000 , the server

will use the last value for the port, that is 3000. To allow different .opt files to require different plugins, mtr goes through

the assembled server command line, and joins all --plugin-load options into one. Additionally it removes all empty --

plugin-load options. For example, suppose a test is affected by three .opt files which contain, respectively:

--plugin-load=$HA_INNODB_SO

--plugin-load=$AUTH_PAM_SO

--plugin-load=$HA_EXAMPLE_SO

...and, let's assume the Example engine was not built ($HA_EXAMPLE_SO is empty). Then the server will get:

--plugin-load=ha_innodb.so:auth_pam.so

instead of

--plugin-load=ha_innodb.so --plugin-load=auth_pam.so --plugin-load=

Third, to allow plugin sources to be simply copied into the plugin/ or storage/ directories, and still not affect existing

tests (even if new plugins are statically linked into the server), mtr automatically disables all optional plugins on server

startup. A plugin is optional if it can be disabled with the corresponding --skip-XXX server command-line option.

Mandatory plugins, like MyISAM or MEMORY, do not have --skip-XXX options (e.g. there is no --skip-myisam option).

This mtr behavior means that no plugin, statically or dynamically built, has any effect on the server unless it was explicitly

enabled. A convenient way to enable a given plugin XXX for specific tests is to create a have_XXX.opt file which contains

the necessary command-line options, and a have_XXX.inc file which checks whether a plugin was loaded. Then any test

that needs this plugin can source the have_XXX.inc file and have the plugin loaded automatically.

mtr communication procedure
mtr is first creating the server socket (master).

After that, workers are created using fork() .

For each worker run_worker() function is called, which is executing the following:

creates a new socket to connect to server_port obtained from the master

initiate communication with the master using START command

master sends first test from list of tests supplied by the user and immediately sends command TESTCASE to the

worker

worker gets command TESTCASE and processes test case, by calling run_testcase() function which

1353/4161

starts(/restarts if needed) the server and sends TESTRESULT (in case of restart WARNINGS command is issued to the

master in case some warnings/error logs are found)

master accepts TESTRESULT command and run mtr_report_test() function which check does the test fail and

also generates the new command TESTCASE if some new test case exist

If there is no other test case master sends BYE command which gets accepted by the worker which is properly

closing the connection.

1.3.18.2 mariadb-test Auxiliary Files
Contents
1. disabled.def file

2. suite.opt file

3. other *.opt files

4. my.cnf file

5. other *.cnf files

6. combinations file

7. other *.combinations files

8. suite.pm file

9. *.sh files

10. *.require files

11. *.rdiff files

12. valgrind.supp file

The mariadb-test framework utilizes many other files that affect the testing process, in addition to test and result files.

disabled.def file

This file can be used to disable certain tests temporarily. For example, if one test fails and you are working on that, you may

want to push the changeset that disables the test into the test suite so that other tests won't be disturbed by this failure.

The file contains test names and a comment (that should explain why the test was disabled), separated by a colon. Lines

that start with a hash sign (#) are ignored. A typical disabled.def may look like this (note that a hash sign in the middle

of a line does not start a comment):

List of disabled tests

test name : comment

rpl_redirect : Fails due to bug#49978

events_time_zone : need to fix the timing

During testing, mtr will print disabled tests like this:

...

rpl.rpl_redirect [disabled] Fails due to bug#49978

rpl.events_time_zone [disabled] need to fix the timing

...

This file should be located in the suite directory.

suite.opt file

This file lists server options that will be added to the mariadbd command line for every test of this suite. It can refer to

environment variables with the $NAME syntax. Shell meta-characters should be quoted. For example

--plugin-load=$AUTH_PAM_SO

--max-connections=40 --net_read_timeout=5

"--replicate-rewrite-db=test->rewrite"

Note that options may be put either on one line or on separate lines. It is a good idea to start an option name with the --

loose- prefix if the server may or may not recognize the option depending on the configuration. An unknown option in the

.opt file will stop the server from starting, and the test will be aborted.

This file should be located in the suite directory.

1354/4161

other *.opt files

For every test or include file somefile.test or somefile.inc , mtr will look for somefile.opt , somefile-

master.opt and somefile-slave.opt . These files have exactly the same syntax as the suite.opt above. Options

from these files will also be added to the server command line (all servers started for this test, only master, or only slave

respectively) for all affected tests, for example, for all tests that include somefile.inc directly or indirectly.

A typical usage example is include/have_blackhole.inc and include/have_blackhole.opt . The latter contains

the necessary command-line options to load the Blackhole storage engine, while the former verifies that the engine was

really loaded. Any test that needs the Blackhole engine needs only to start from source include/have_blackhole.inc;

and the engine will be automatically loaded for the test.

my.cnf file

This is not the my.cnf file that tests from this suite will use, but rather a template of it. It will be converted later to an actual

my.cnf . If a suite contains no my.cnf template, a default template, 4 include/default_my.cnf 4 will be used. Or

suite/rpl/my.cnf if the test includes master-slave.inc (it's one of the few bits of the old MySQL mysql-test-run

magic that we have not removed yet). Typically a suite template will not contain a complete server configuration, but rather

start from

!include include/default_my.cnf

and then add the necessary modifications.

The syntax of my.cnf template is the same of a normal my.cnf file, with a few extensions and assumptions. They are:

For any group with the name [mysqld.N] , where N is a number, mtr will start one mysqld process. Usually one

needs to have only [mysqld.1] group, and [mysqld.2] group for replication tests.

There can be groups with non-standard names ([foo] , [bar] , whatever), not used by mysqld . The suite.pm

files (see below) may use them somehow.

Values can refer to each other using the syntax @groupname.optionname 4 these references be expanded as

needed. For example

[mysqld.2]

master-port= @mysqld.1.port

it sets the value of the master-port in the [mysqld.2] group to the value of port in the [mysqld.1] group.

An option name may start with a hash sign # . In the resulting my.cnf it will look like a comment, but it still can be

referred to. For example:

[example]

#location = localhost:@mysqld.1.port

bar = server:@example.#location/data

There is the [ENV] group. It sets values for the environment variables. For example

[ENV]

MASTER_MYPORT = @mysqld.1.port

Also, one can refer to values of environment variables via this group:

[mysqld.1]

user = @ENV.LOGNAME

There is the [OPT] group. It allows to invoke functions and generate values. Currently it contains only one option 4

@OPT.port . Every time this option is referred to in some other group in the my.cnf template, a new unique port

number is generated. It will not match any other port number used by this test run. For example

[ENV]

SPHINXSEARCH_PORT = @OPT.port

This file should be located in the suite directory.

1355/4161

other *.cnf files

For every test file somefile.test (but for not included files) mtr will look for somefile.cnf file. If such a file exists, it will

be used as a template instead of suite my.cnf or a default include/default_my.cnf templates.

combinations file

The combinations file defines few sets of alternative configurations, and every test in this suite will be run many times -

once for every configuration. This can be used, for example, to run all replication tests in the rpl suite for all three binlog

format modes (row, statement, and mixed). A corresponding combinations file would look as following:

[row]

binlog-format=row

[stmt]

binlog-format=statement

[mix]

binlog-format=mixed

It uses my.cnf file syntax, with groups (where group names define combination names) and options. But, despite the

similarity, it is not a my.cnf template, and it cannot use the templating extentions. Instead, options from the

combinations file are added to the server command line. In this regard, combination file is closer to suite.opt file. And

just like it, combination file can use environment variables using the $NAME syntax.

Not all tests will necessarily run for all combinations. A particular test may require to be run only in one specific combination.

For example, in replication, if a test can only be run with the row binlog format, it will have --binlog-format=row in one

of the .opt files. In this case, mtr will notice that server command line already has an option that matches one of the

combinations, and will skip all other combinations for this particular test.

The combinations file should be located in the suite directory.

other *.combinations files

Just like with the *.opt files, mtr will use somefile.combinations file for any somefile.test and somefile.inc

that is used in testing. These files have exactly the same format as a suite combinations file.

This can cause many combination files affecting one test file (if a test includes two .inc files, and both of them have

corresponding .combinations files). In this case, mtr will run the test for all combinations of combinations from both files.

In MariaDB 5.5, for example, rpl_init.inc adds combinations for row/statement/mixed, and have_innodb.inc adds

combinations for innodb/xtradb. Thus any replication test that uses innodb will be run six times.

suite.pm file

This (optional) file is a perl module. It must declare a package that inherits from My::Suite .

This file must normally end with bless {} 4 that is it must return an object of that class. It can also return a string 4 in

this case all tests in the suite will be skipped, with this string being printed as a reason (for example "PBXT engine was not

compiled").

A suite class can define the following methods:

config_files()

is_default()

list_cases()

servers()

skip_combinations()

start_test()

A config_files() method returns a list of additional config files (besides my.cnf), that this suite needs to be created.

1356/4161

For every file it specifies a function that will create it, when given a My::Config object. For example:

sub config_files {(

 'config.ini' => \&write_ini,

 'new.conf' => \&do_new

)}

A servers() method returns a list of processes that needs to be started for this suite. A process is specified as a [regex,

hash] pair. The regular expression must match a section in the my.cnf template (for example, qr/mysqld\./

corresponds to all mysqld processes), the hash contains these options:

SORT
a number. Processes are started in the order of increasing SORT values (and stopped in the reverse order).

mysqld has number 300.

START
a function to start a process. It takes two arguments, My::Config::Group and My::Test . If START is

undefined a process will not be started.

WAIT
a function to wait for the process to be started. It takes My::Config::Group as an argument. Internally mtr first

invokes START for all processes, then WAIT for all started processes.

sub servers {(

 qr/^foo$/ => { SORT => 200, # start foo before mysqld

 START => \&start_foo,

 WAIT => \&wait_foo }

)}

See the sphinx suite for a working example.

A list_cases() method returns a complete list of tests for this suite. By default it will be the list of files that have .test

extension, but without the extension. This list will be filtered by mtr, subject to different mtr options (--big-test , --

start-from , etc), the suite object does not have to do it.

A start_test() method starts one test process, by default it will be mariadb-test . See the unit suite for a working

example of list_cases() and start_test() methods.

A skip_combinations() method returns a hash that maps file names (where combinations are defined) to a list of

combinations that should be skipped. As a special case, it can disable a complete file by using a string instead of a hash.

For example

sub skip_combinations {(

 'combinations' => ['mix', 'rpl'],

 'inc/many.combinations' => ['a', 'bb', 'c'],

 'windows.inc' => "Not on windows",

)}

The last line will cause all tests of this suite that include windows.inc to be skipped with the reason being "Not on

windows".

An is_default() method returns 1 if this particular suite should be run by default, when the mariadb-test-run.pl

script is run without explicitly specified test suites or test cases.

*.sh files

For every test file sometest.test mtr looks for sometest-master.sh and sometest-slave.sh . If either of these files

is found, it will be run before the test itself.

*.require files

These files are obsolete. Do not use them anymore. If you need to skip a test use the skip command instead.

*.rdiff files

1357/4161

These files also define what the test result should be. But unlike *.result files, they contain a patch that should be

applied to one result file to create a new result file. This is very useful when a result of some test in one combination differs

slightly from the result of the same test, but in another combination. Or when a result of a test in an overlay differs from the

test result in the overlayed suite.

It is quite difficult to edit .rdiff files to update them after the test file has changed. But luckily, it is never needed. When a

test fails, mtr creates a .reject file. Having it, one can create .rdiff file as easy as (for example)

diff -u main/foo.result main/foo.reject > main/foo,comb.rdiff

or

diff -u main/foo.result main/foo,comb.reject > main/foo,comb.rdiff

Some example:

diff -u main/innodb_ext_key.result main/innodb_ext_key,off.reject >

main/innodb_ext_key,off.rdiff

diff -u suite/sys_vars/r/sysvars_server_notembedded.result

suite/sys_vars/r/sysvars_server_notembedded,32bit.reject >

suite/sys_vars/r/sysvars_server_notembedded,32bit.rdiff

Note: This will also add a timestamp in the .rdiff file, so if you are submitting a patch you could remove it manually. If the

same .rdiff file is used for multiple combinations, then it would be good to omit in the header that would identify the

combination, to allow git to pack the repository better. Example:

--- testname.result

+++ testname.reject

Because a combination can be part of the .result or .rdiff file name, mtr has to look in many different places for a

test result. For example, consider a test foo.test in the combination pair aa,bb , that is run in the overlay rty of the suite

qwe, in other words, for the test that mtr prints as

qwe-rty.foo 'aa,bb' [pass]

For this test a result can be in

either .rdiff or .result file

either in the overlay " rty/ " or in the overlayed suite " qwe/ "

with or without combinations in the file name (" ,a ", " ,b ", " ,a,b ", or nothing)

which means any of the following 15 file names can be used:

1. rty/r/foo,aa,bb.result

2. rty/r/foo,aa,bb.rdiff

3. qwe/r/foo,aa,bb.result

4. qwe/r/foo,aa,bb.rdiff

5. rty/r/foo,aa.result

6. rty/r/foo,aa.rdiff

7. qwe/r/foo,aa.result

8. qwe/r/foo,aa.rdiff

9. rty/r/foo,bb.result

10. rty/r/foo,bb.rdiff

11. qwe/r/foo,bb.result

12. qwe/r/foo,bb.rdiff

13. rty/r/foo.result

14. rty/r/foo.rdiff

15. qwe/r/foo.result

They are listed, precisely, in the order of preference, and mtr will walk that list from top to bottom and the first file that is

found will be used.

If this found file is a .rdiff , mtr continues walking down the list until the first .result file is found. A .rdiff is applied

to that .result .

valgrind.supp file
1358/4161

This file defines valgrind suppressions, and it is used when mtr is started with a --valgrind option.

1.3.18.3 mariadb-test-run.pl Options
Contents
1. Syntax

1. Examples

2. Options

1. Options to Control What Engine/Variation to Run

2. Options to Control Directories to Use

3. Options to Control What Test Suites or Cases to Run

4. Options That Specify Ports

5. Options For Test Case Authoring

6. Options That Pass On Options

7. Options to Run Test On Running Server

8. Options For Debugging the Product

9. Misc Debugging Related Options

10. Misc Options

Syntax

./mariadb-test-run.pl [OPTIONS] [TESTCASE]

Where the test case can be specified as: testcase[.test] Runs the test case named 'testcase' from all suits

path-to-testcase

[suite.]testcase[,combination]

Examples

alias main.alias 'main' is the name of the suite for the 't' directory.

rpl.rpl_invoked_features,mix,xtradb_plugin

suite/rpl/t/rpl.rpl_invoked_features

Options

Options to Control What Engine/Variation to Run

Option Description

--embedded-server Use the embedded server, i.e. no mysqld daemons.

--ps-protocol Use the binary protocol between client and server.

--cursor-protocol Use the cursor protocol between client and server (implies --ps-protocol).

--view-protocol Create a view to execute all non updating queries.

--sp-protocol Create a stored procedure to execute all queries.

--compress Use the compressed protocol between client and server if both support it.

--ssl

If mariadb-test-run.pl is started with the --ssl option, it sets up a secure connection for all

test cases. In this case, if mysqld does not support TLS, mariadb-test-run.pl exits with an error

message: Couldn´t find support for SSL .

--skip-ssl Dont start server with support for TLS connections.

--vs-config
Visual Studio configuration used to create executables (default: MTR_VS_CONFIG

environment variable).

--parallel=num
How many parallel tests should be run. Default is 1 , use --parallel=auto for auto-setting

of num.

1359/4161

--defaults-file=

<config template>
Use fixed config template for all tests.

--

defaults_extra_file=

<config template>

Extra config template to add to all generated configs.

--combination=

<opt>

Extra options to pass to mysqld. The value should consist of one or more comma-separated

mysqld options. This option is similar to --mysqld but should be given two or more times.

mariadb-test-run.pl executes multiple test runs, using the options for each instance of --

combination in successive runs. If --combination is given only once, it has no effect. For

test runs specific to a given test suite, an alternative to the use of --combination is to create

a combinations file in the suite directory. The file should contain a section of options for each

test run.

--dry-run Don't run any tests, print the list of tests that were selected for execution.

Options to Control Directories to Use

Option Description

--

tmpdir=DIR

The directory where temporary files are stored (default: ./var/tmp). The environment variable

MYSQL_TMP_DIR will be set to the path for this directory, whether it has the default value or has been

set explicitly. This may be referred to in tests.

--

vardir=DIR

The directory where files generated from the test run is stored (default: ./var). Specifying a ramdisk or

tmpfs will speed up tests. The environment variable MYSQLTEST_VARDIR will be set to the path for this

directory, whether it has the default value or has been set explicitly. This may be referred to in tests.

--mem

Run testsuite in "memory" using tmpfs or ramdisk. This can decrease test times significantly, in particular

if you would otherwise be running over a remote file system. Attempts to find a suitable location using a

builtin list of standard locations for tmpfs (/dev/shm). The option can also be set using environment

variable MTR_MEM=[DIR]. If DIR is given, it is added to the beginning of the list of locations to search, so

it takes precedence over any built-in locations. Once you have run tests with --mem within a mariadb-

testdirectory, a soflink var will have been set up to the temporary directory, and this will be re-used the

next time, until the soflink is deleted. Thus, you do not have to repeat the --mem option next time.

--client-

bindir=PATH
Path to the directory where client binaries are located.

--client-

libdir=PATH
Path to the directory where client libraries are located.

Options to Control What Test Suites or Cases to Run

Option Description

--force
Normally, mariadb-test-run.pl exits if a test case fails. --force causes execution to

continue regardless of test case failure.

--with-ndbcluster-only Run only tests that include "ndb" in the filename.

--skip-ndb[cluster] Skip all tests that need cluster. Default.

--do-test=PREFIX or

REGEX

Run test cases with names prefixed with PREFIX or which fulfil the REGEX. For example,

--do-test=testa matches tests that begin with testa, --do-test=main.testa

matches tests in the main test suite that begin with testa, and --do-test=main.*testa

matches test names that contain main followed by testa with anything in between. In the

latter case, the pattern match is not anchored to the beginning of the test name, so it also

matches names such as xmainytestz.

--skip-test=PREFIX or

REGEX

Skip test cases with names prefixed with PREFIX or which fulfil the REGEX. See -do-

test for examples.

--start-from=PREFIX
Sorts the list of names of the test cases to be run, and then starts with the test prefixed

with PREFIX, where the prefix may be suite.testname or just testname.

1360/4161

--

suite[s]=NAME1,..,NAMEN

Comma separated list of suite names to run. The default, as of MariaDB 10.4.5, is:

"main-, archive-, binlog-, binlog_encryption-, csv-, compat/oracle-, encryption-, federated-,

funcs_1-, funcs_2-, gcol-, handler-, heap-, innodb-, innodb_fts-, innodb_gis-, innodb_zip-,

json-, maria-, mariabackup-, multi_source-, optimizer_unfixed_bugs-, parts-, perfschema-,

plugins-, roles-, rpl-, sys_vars-, sql_sequence-, unit-, vcol-, versioning-,period-".

--skip-rpl Skip the replication test cases.

--big-test

Allow tests marked as "big" to run. Tests can be thus marked by including the line --

source include/big_test.inc , and they will only be run if this option is given, or if the

environment variable BIG_TEST is set to 1. Repeat this option twice to run only "big" tests.

This is typically used for tests that take a very long to run, or that use many resources, so

that they are not suitable for running as part of a normal test suite run

--staging-run Run a limited number of tests (no slow tests). Used for running staging trees with valgrind.

--enable-disabled
Ignore any disabled.def file, and also run tests marked as disabled. Success or failure of

those tests will be reported the same way as other tests.

--print-testcases
Don't run the tests but print details about all the selected tests, in the order they would be

run.

--skip-test-list=FILE
Skip the tests listed in FILE. Each line in the file is an entry and should be formatted as:

<TESTNAME> : <COMMENT>

Options That Specify Ports

Option Description

--[mtr-

]port-

base=num

Base for port numbers. Ports from this number to number+9 are reserved. Should be divisible by 10; if not

it will be rounded down. May be set with environment variable MTR_PORT_BASE. If this value is set and is

not "auto", it overrides build-thread.

--[mtr-

]build-

thread=num

Specify unique number to calculate port number(s) from. Can be set in environment variable

MTR_BUILD_THREAD. Set MTR_BUILD_THREAD="auto" to automatically acquire a build thread id that

is unique to current host. The more logical --port-base is supported as an alternative.

Options For Test Case Authoring

Option Description

--record

TESTNAME
(Re)generate the result file for TESTNAME.

--check-

testcases

Check testcases for side-effects. This is done by checking system state before and after each test case; if

there is any difference, a warning to that effect will be written, but the test case will not be marked as failed

because of it. This check is enabled by default. Use --nocheck-testcases to disable.

mark-

progress
Log line number and elapsed time to <testname>.progress

Options That Pass On Options

Option Description

--mysqld=ARGS Specify additional arguments to "mysqld"

--

mysqltest=ARGS

Specify additional arguments to "mariadb-test". Use additional --mysqld-env options to set more

than one variable.

Options to Run Test On Running Server

Option Description

1361/4161

extern

option=value

Use an already running server. The option/value pair is what is needed by the mariadb client to connect

to the server. Each --extern option can only take one option/value pair as an argument, so you need

to repeat --extern for each pair needed. Example: ./mariadb-test-run.pl --extern

socket=var/tmp/mysqld.1.sock alias . Note: If a test case has an .opt file that requires the server

to be restarted with specific options, the file will not be used. The test case likely will fail as a result.

Options For Debugging the Product

In mariadb-test-run.pl there is a concept of a "debugger". A "debugger" is a tool that mariadb-test-run.pl will

execute instead of mariadbd . This tool will then start mariadbd and can control its execution as it wants. The following

"debuggers" are supported:

name Description

gdb GNU debugger

ddd GUI frontend for gdb

dbx https://en.wikipedia.org/wiki/Dbx_(debugger)

devenv Visual Studio debugger

windbg https://en.wikipedia.org/wiki/WinDbg

lldb Debugger from LLVM project

valgrind Detects memory management problems and more

strace syscall tracer

rr
"record and replay" 4 record the program execution and then replay it forward, backward, or in any other

direction

Every "debugger" from the list above supports the following set of options (replace XXX below with a debugger name)

Option Description

--XXX Start mariadbd process under a debugger

--

client-

XXX

Start mariadb-test process under a debugger

--

boot-

XXX

Before running tests mariadb-test-run executes mariadbd to bootstrap, prepare the datadir. This options

causes this bootstrapping mariadbd process to be run under a debugger.

--

manual-

XXX

Don't start anything, instead print the command that the user needs to run to start mariadbd under a

debugger. Then wait.

Every option from the above accepts an optional argument. It can be used to specify additional command line options to

pass to the tool. Or additional commands that the tool will run on startup. Or both. Commands are separated from each other

and from options with a semicolon. For example:

./mtr 1st --strace

./mtr 1st --client-rr=--chaos

./mtr 1st --manual-gdb='b mysql_parse;r'

./mtr 1st --boot-gdb='--quiet --tui;b mysql_parse;r'

Misc Debugging Related Options

Option Description

--debug Dump trace output for all servers and client programs.

--debug-

common
Same as --debug , but sets the 'd' debug flags to "query,info,error,enter,exit"

1362/4161

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/ddd/
https://en.wikipedia.org/wiki/Dbx_(debugger)
https://docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019
https://en.wikipedia.org/wiki/WinDbg
https://lldb.llvm.org/
https://www.valgrind.org/
https://strace.io/
https://rr-project.org/

--debug-

server
Use debug version of server, but without turning on tracing.

--max-

save-core

Limit the number of core files saved (to avoid filling up disks for heavily crashing server). Defaults to 5, set

to 0 for no limit. Set its default with MTR_MAX_SAVE_CORE.

--max-

save-

datadir

Limit the number of datadir saved (to avoid filling up disks for heavily crashing server). Defaults to 20, set

to 0 for no limit. Set its default with MTR_MAX_SAVE_DATDIR.

--max-

test-fail

Limit the number of test failurs before aborting the current test run. Defaults to 10, set to 0 for no limit. Set

its default with MTR_MAX_TEST_FAIL.

Misc Options

Option Description

--user=USER User for connecting to mysqld (default: root)

--comment=STR Write STR to the output within lines filled with #, as a form of banner.

--timer Show test case execution time. Use no-timer to disable.

--verbose More verbose output(use multiple times for even more)

--verbose-

restart
Write when and why servers are restarted between test cases.

--start

Only initialize and start the servers, using the startup settings for the first specified test case

Example: ./mariadb-test-run.pl --start alias & start-dirty Only start the servers

(without initialization) for the first specified test case

--start-and-

exit
Same as --start , but mariadb-test-run terminates and leaves just the server running.

--start-dirty
This is similar to --start , but will skip the database initialization phase and assume that database

files are already available. Usually this means you must have run another test first.

--user-args
In combination with start* and no test name, drops arguments to mysqld except those specified with

--mysqld (if any).

--wait-all
If --start or --start-dirty option is used, wait for all servers to exit before finishing the

process. Otherwise, it will terminate if one (of several) servers is restarted.

--fast
Do not perform controlled shutdown when servers need to be restarted or at the end of the test run.

This is equivalent to using --shutdown-timeout=0 .

--force-

restart
Always restart servers between tests.

--parallel=N Run tests in N parallel threads (default 1) Use parallel=auto for auto-setting of N.

--repeat=N Run each test N number of times.

--retry=N

If a test fails, it is retried up to a maximum of N runs (default 1). Retries are also limited by the

maximum number of failures before stopping, set with the --retry-failure option. This option

has no effect unless --force is also used; without it, test execution will terminate after the first

failure. The --retry and --retry-failure options do not affect how many times a test

repeated with --repeat may fail in total, as each repetition is considered a new test case, which

may in turn be retried if it fails.

--retry-

failure=N

When using the --retry option to retry failed tests, stop when N failures have occured (default 2).

Setting it to 0 or 1 effectively turns off retries.

--reorder
Reorder tests to get fewer server restarts. This is the default behavior. There is no guarantee that a

particular set of tests will always end up in the same order. Use -no-reorder to disable.

--help Display help text.

--testcase-

timeout=MINUTES
Max test case run time in minutes (default 15).

1363/4161

--suite-

timeout=MINUTES
Max test suite run time in minutes (default 360).

--shutdown-

timeout=SECONDS
Max number of seconds to wait for server shutdown before killing servers (default 10).

--warnings
Scan the log files for warnings and report any suspicious ones; if any are found, the test will be

marked as failed. Use --nowarnings to turn off.

--stop-

file=file

If this file is detected, mariadb-test will not start new tests until the file is removed (also

MTR_STOP_FILE environment variable).

--stop-keep-

alive=sec

Works with --stop-file , print messages every sec seconds when mariadb-test is waiting to

remove the file (for buildbot) (also MTR_STOP_KEEP_ALIVE environment variable).

--

sleep=SECONDS
Passed to mariadb-test; will be used as fixed sleep time.

--debug-sync-

timeout=NUM
Set default timeout for WAIT_FOR debug sync actions. Disable facility with NUM=0.

--gcov

Collect coverage information after the test. The result is a dgcov file per source and header file and a

last_changes.dgcov file in the vardir with the coverage for the uncommitted changes if any (or

the last commit).

--gprof Collect profiling information using the gprof profiling tool.

--experimental=

<file>

Specify a file that contains a list of test cases that should be displayed with the [exp-fail] code rather

than [fail] if they fail. For an example of a file that might be specified via this option, see mariadb-

test/collections/default.experimental.

--report-

features

First run a "test" that reports MariaDB features, displaying the output of SHOW ENGINES and

SHOW VARIABLES. This can be used to verify that binaries are built with all required features.

--timestamp Print timestamp before each test report line, showing when the test ended.

--timediff Used with --timestamp , also print time passed since the previous test started.

--max-

connections=N

Maximum number of simultaneous server connections that may be used per test. Default is 128.

Minimum is 8, maximum is 5120. Corresponds to the same option for mariadb-test.

--default-

myisam

Set default storage engine to MyISAM for non-innodb tests. This is needed after switching default

storage engine to InnoDB.

--report-times Report how much time has been spent on different phases of test execution.

--stress=ARGS Run stress test, providing options to mysql-stress-test.pl. Options are separated by comma.

xml-report=

<file>

Output jUnit xml file of the results. From MariaDB 10.1.45 , MariaDB 10.2.32 , MariaDB 10.3.23

, MariaDB 10.4.13, MariaDB 10.5.3

tail-lines=N Number of lines of the result to include in a failure report. From MariaDB 10.3.4 .

1.3.18.4 Pausing mariadb-test-run.pl
Contents
1. Keep Alive

2. The mariadb-test-run Stop File

3. Examples

Sometimes you need to work when your computer is busy running mariadb-test-run.pl. The mariadb-test-run.pl script allows

you to stop it temporarily so you can use your computer and then restart the tests when you're ready.

There are two ways to enable this:

1. Command-line: The --stop-file and --stop-keep-alive options.

2. Environment Variables: If you are calling mariadb-test-run.pl indirectly (i.e from a script or program such as buildbot)

you can set MTR_STOP_FILE and MTR_STOP_KEEP_ALIVE .

Keep Alive

If you plan on using this feature with other programs, such as buildbot, you should set the

1364/4161

https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-test-runpl-options

<code>MTR_STOP_KEEP_ALIVE</code> environment variable or the <code>--stop-keep-alive</code> command-line

option with a value in seconds. This will make the script print messages to whatever program is calling mariadb-test-run.pl

at the interval you set to prevent timeouts.

If you are calling mariadb-test-run.pl directly, you do not need to specify a timeout.

The mariadb-test-run Stop File

The stop file is a temporary file that you create on your system when you want to pause the execution of mariadb-test-run.

When enabled via the command-line or environment variable options, mariadb-test-run will periodically check for the

existence of the file and if it exists it will stop until the file is no longer present.

Examples

Command-line:

mariadb-test-run.pl --stop-file="/path/to/stop/file" --stop-keep-alive=120

Environment Variables:

export MTR_STOP_FILE="/path/to/stop/file"

export MTR_STOP_KEEP_ALIVE=120

mariadb-test-run.pl

1.3.18.5 mariadb-test and mariadb-test-
embedded

Contents
1. Options

The mariadb-test program runs a test case against a MariaDB or MySQL server and optionally compares the output with

a result file. This program reads input written in a special test language. Typically, you invoke mariadb-test via mariadb-

test-run.pl rather than invoking it directly.

mariadb-test_embedded is similar but is built with support for the libmariadbd embedded server.

Features of mariadb-test:

Can send SQL statements to the server for execution

Can execute external shell commands

Can test whether the result from an SQL statement or shell command is as expected

Can connect to one or more standalone mariadbd servers and switch between connections

Can connect to an embedded server (libmariadbd), if MariaDB is compiled with support for libmariadbd. (In this case,

the executable is named mariadb-test_embedded rather than mariadb-test.)

By default, mariadb-test reads the test case on the standard input. To run mariadb-test this way, you normally invoke it like

this:

shell> mariadb-test **[options] [db_name]** < //test_file//

You can also name the test case file with a --test-file=file_name option.

The exit value from mariadb-test is 0 for success, 1 for failure, and 62 if it skips the test case (for example, if after checking

some preconditions it decides not to run the test).

Options
mariadb-test supports the following options:

Option Description

--help , -? Display a help message and exit.

--basedir=dir , -b

dir
The base directory for tests.

1365/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-test-runpl

--character-sets-

dir=path
The directory where character sets are installed.

--compress , -C
Compress all information sent between the client and the server if both support

compression.

--connect-timeout=N

This can be used to set the MYSQL_OPT_CONNECT_TIMEOUT parameter of

mysql_options to change the number of seconds before an unsuccessful connection attempt

times out.

 --continue-on-error

Continue test even if we got an error. This is mostly useful when testing a storage engine to

see what from a test file it can execute, or to find all syntax errors in a newly created big test

file

--cursor-protocol Use cursors for prepared statements.

--database=db_name , -

D db_name
The default database to use.

--

debug[=debug_options] ,

-#[debug_options]

Write a debugging log if MariaDB is built with debugging support. The default debug_options

value is d:t:S:i:O,/tmp/mysqltest.trace on Unix and d:t:i:O,\mysqld.trace on

Windows.

--debug-check Print some debugging information when the program exits.

--debug-info Print debugging information and memory and CPU usage statistics when the program exits.

--host=host_name , -h

host_name
Connect to the server on the given host.

--logdir=dir_name The directory to use for log files.

--mark-progress Write the line number and elapsed time to test_file.progress.

--max-connect-

retries=num
The maximum number of connection attempts when connecting to server.

--max-connections=num
The maximum number of simultaneous server connections per client (that is, per test). If not

set, the maximum is 128. Minimum allowed limit is 8, maximum is 5120.

--no-defaults Do not read default options from any option files. If used, this must be the first option.

--non-blocking-api Use the non-blocking client API for communication.

--overlay-dir=name Overlay directory.

--

password[=password] , -

p[password]

The password to use when connecting to the server. If you use the short option form (-p),

you cannot have a space between the option and the password. If you omit the password

value following the --password or -p option on the command line, you are prompted for

one.

plugin-dir Directory for client-side plugins.

--port=port_num , -P

port_num

The TCP/IP port number to use for the connection, or 0 for default to, in order of preference,

my.cnf, $MYSQL_TCP_PORT, /etc/services, built-in default (3306).

--prologue=name

Include the contents of the given file before processing the contents of the test file. The

included file should have the same format as other mariadb-test test files. This option has

the same effect as putting a --source file_name command as the first line of the test file.

--protocol=name The protocol to use for connection (tcp, socket, pipe, memory).

--ps-protocol Use the prepared-statement protocol for communication.

--quiet Suppress all normal output. This is a synonym for --silent .

--record , -r

Record the output that results from running the test file into the file named by the --

result-file option, if that option is given. It is an error to use this option without also

using --result-file .

1366/4161

--result-

file=file_name , -R

file_name

This option specifies the file for test case expected results. --result-file , together with

--record , determines how mariadb-test treats the test actual and expected results for a

test case:

If the test produces no results, mariadb-test exits with an error message to that effect, unless

--result-file is given and the named file is an empty file.

Otherwise, if --result-file is not given, mariadb-test sends test results to the standard

output.

With --result-file but not --record , mariadb-test reads the expected results from the

given file and compares them with the actual results. If the results do not match, mariadb-

test writes a reject file in the same directory as the result file, outputs a diff of the two files,

and exits with an error.

With both --result-file and --record , mariadb-test updates the given file by writing

the actual test results to it.

--result-format-

version=#
Version of the result file format to use.

--server-arg=value , -

A value

Pass the argument as an argument to the embedded server. For example, --server-

arg=--tmpdir=/tmp or --server-arg=--core . Up to 64 arguments can be given.

--server-

file=file_name , -F

file_name

Read arguments for the embedded server from the given file. The file should contain one

argument per line.

--shared-memory-base-

name

Shared-memory name to use for Windows connections using shared memory to a local

server (started with the --shared-memory option). Case-sensitive.

--silent , -s Suppress all normal output.

--sleep=num , -T num

Cause all sleep commands in the test case file to sleep num seconds. This option does not

affect real_sleep commands. An option value of 0 can be used, which effectively disables

sleep commands in the test case.

--socket=path , -S

path
The socket file to use when connecting to localhost (which is the default host).

--sp-protocol

Execute DML statements within a stored procedure. For every DML statement, mariadb-test

creates and invokes a stored procedure that executes the statement rather than executing

the statement directly.

--ssl
Enable TLS for secure connection (automatically enabled with other flags). Disable with --

skip-ssl .

--ssl-ca=name CA file in PEM format (check OpenSSL docs, implies --ssl).

--ssl-capath=name CA directory (check OpenSSL docs, implies --ssl).

--ssl-cert=name X509 cert in PEM format (implies --ssl).

--ssl-cipher=name SSL cipher to use (implies --ssl).

--ssl-key=name X509 key in PEM format (implies --ssl).

--ssl-crl=name Certificate revocation list (implies --ssl).

--ssl-crlpath=name Certificate revocation list path (implies --ssl).

--ssl-verify-server-

cert

Verify server's "Common Name" in its cert against hostname used when connecting. This

option is disabled by default.

--suite-dir=name Suite directory.

--tail-lines=nn
Specify how many lines of the result to include in the output if the test fails because an SQL

statement fails. The default is 0, meaning no lines of result printed.

--test-

file=file_name , -x

file_name

Read test input from this file. The default is to read from the standard input.

1367/4161

--timer-

file=file_name , -m

file_name

If given, the number of microseconds spent running the test will be written to this file. This is

used by mariadb-test-run.pl for its reporting.

--tmpdir=dir_name , -t

dir_name
The temporary directory where socket files are created.

--user=user_name , -u

user_name
The user name to use when connecting to the server.

--verbose , -v Verbose mode. Print out more information about what the program does.

--version , -V Display version information and exit.

--view-protocol Every SELECT statement is wrapped inside a view.

--wait-longer-for-

timeouts
Wait longer for timeouts. Useful when running under valgrind.

1.3.18.6 New Features for mysqltest in MariaDB

Note that not all MariaDB-enhancements are listed on this page. See mariadb-test and mariadb-test-embedded for a

full set of options.

Startup Option --connect-timeout

--connect-timeout=N

This can be used to set the MYSQL_OPT_CONNECT_TIMEOUT parameter of mysql_options, to change the number of

seconds before an unsuccessful connection attempt times out.

Test Commands for Handling Warnings During Prepare
Statements

enable_prepare_warnings;

disable_prepare_warnings;

Normally, when running with the prepared statement protocol with warnings enabled and executing a statement that returns

a result set (like SELECT), warnings that occur during the execute phase are shown, but warnings that occur during the

prepare phase are ''not'' shown. The reason for this is that some warnings are returned both during prepare and execute; if

both copies of warnings were shown, then test cases would show different number of warnings between prepared statement

execution and normal execution (where there is no prepare phase).

The enable_prepare_warnings command changes this so that warnings from both the prepare and execute phase are

shown, regardless of whether the statement produces a result set in the execute phase. The

disable_prepare_warnings command reverts to the default behaviour.

These commands only have effect when running with the prepared statement protocol (--ps-protocol) and with warnings

enabled (enable_warnings). Furthermore, they only have effects for statements that return a result set (as for statements

without result sets, warnings from are always shown when warnings are enabled).

The replace_regex command supports paired delimiters (like in perl, etc). If the first non-space character in the

replace_regex argument is one of (, [, { , < , then the pattern should end with) ,] , } , > accordingly. The

replacement string can use its own pair of delimiters, not necessarily the same as the pattern. If the first non-space

character in the replace_regex argument is not one of the above, then it should also separate the pattern and the

replacement string and it should end the replacement string. Backslash can be used to escape the current terminating

character as usual. The examples below demonstrate valid usage of replace_regex :

--replace_regex (/some/path)</another/path>

--replace_regex !/foo/bar!foobar!

--replace_regex {pat\}tern}/replace\/ment/i

1368/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-test-runpl-options

1.3.18.7 Debugging MariaDB With a Debugger
Contents
1. Checking That MariaDB is Compiled For Debugging

2. Building MariaDB for Debugging Starting from 5.5

3. Building MariaDB 5.3 and Older

4. Debugging MariaDB From the Source Directory

1. Creating the MariaDB Database Directory

2. Running MariaDB in a Debugger

5. Debugging MariaDB Server with mariadb-test-run

1. Sample .my.cnf file to Make Debugging Easier

If you have MariaDB compiled for debugging you can both use it in a debugger, like ddd or gdb, and get comprehensive

trace files of the execution of MariaDB. The trace files allow you to both see the flow of the code and to see the differences

in execution by by comparing two trace files.

Core dumps are also much easier to investigate if they come from a debug binary.

Note that a binary compiled for debugging and tracing is about 10-20% slower than a normal binary. If you just compile a

binary for debugging (option -g with gcc) the speed difference compared to a normal binary is negligible.

Checking That MariaDB is Compiled For Debugging

Execute:

mariadbd --debug --help

If you are using MariaDB before 10.5, then you should use mysqld instead of mariadbd !

If you get an error unknown option '--debug , then MariaDB is not compiled for debugging and tracing.

Building MariaDB for Debugging Starting from 5.5

On Unix you need to pass -DCMAKE_BUILD_TYPE=Debug to cmake to compile with debug information.

Building MariaDB 5.3 and Older

Here is how you compile with debug on older versions:

Use the scripts in the BUILD directory that will compile MariaDB with most common debug options and plugins, for example:

./BUILD/compile-pentium64-debug-max

For the most common configurations there exists a fine-tuned script in the BUILD directory.

If you want to use valgrind , a very good memory instrumentation tool and memory overrun checker, you should use

./BUILD/compile-pentium64-valgrind-max

Some recommended debugging scripts for Intel/AMD are:

BUILD/compile-pentium64-debug-max

BUILD/compile-pentium64-valgrind-max

This is an example of how to compile MariaDB for debugging in your home directory with MariaDB 5.2.9 as an example:

cd ~

mkdir mariadb

cd mariadb

tar xvf mariadb-5.2.9.tar.gz

ln -s mariadb-5.2.9 current

cd current

./BUILD/compile-pentium64-debug-max

The last command will produce a debug version of sql/mysqld .

1369/4161

http://valgrind.org/
https://mariadb.com/kb/en/mariadb-529-release-notes/

Debugging MariaDB From the Source Directory

Creating the MariaDB Database Directory

The following example creates the MariaDB databases in /data .

./scripts/mariadb-install-db --srcdir=. --datadir=/data

Running MariaDB in a Debugger

The following example is using ddd , an excellent graphical debugger in Linux. If you don't have ddd installed, you can use

gdb instead.

cd sql

ddd ./mariadbd &

In ddd or gdb

run --datadir=/data --language=./share/english --gdb

You can set the options in your /.my.cnf file so as not to have to repeat them on the run line.

If you run mysqld with --debug , you will get a trace file in /tmp/mysqld.trace that shows what is happening.

Note that you can have different options in the configuration file for each MariaDB version (like having a specific language

directory).

Debugging MariaDB Server with mariadb-test-run

If you get a crash while running mariadb-test-run you can debug this in a debugger by using one of the following

options:

mariadb-test-run --gdb failing-test-name

or if you prefer the ddd debugger:

mariadb-test-run --ddd failing-test-name

Sample .my.cnf file to Make Debugging Easier

[client-server]

socket=/tmp/mysql-dbug.sock

port=3307

[mariadb]

datadir=/my/data

loose-innodb_file_per_table

server_id= 1

log-basename=master

loose-debug-mutex-deadlock-detector

max-connections=20

lc-messages=en_us

[mariadb-10.0]

lc-messages-dir=/my/maria-10.0/sql/share

[mariadb-10.1]

lc-messages-dir=/my/maria-10.1/sql/share

[mariadb-10.2]

lc-messages-dir=/my/maria-10.2/sql/share

[mariadb-10.3]

lc-messages-dir=/my/maria-10.3/sql/share

The above .my.cnf file:

1370/4161

https://mariadb.com/kb/en/creating-a-trace-file/

Uses an explicit socket for both client and server.

Assumes the server source is in /my/maria-xxx. You should change this to point to where your sources are located.

Has a unique patch for each MariaDB version so that one doesn't have to specify --lc-messages-dir or --language

even if one switches between debugging different MariaDB versions.

1.3.18.8 The Debug Sync Facility
Contents
1. Formal Syntax

2. Activation/Deactivation

3. Implementation

4. A typical synchronization pattern

5. Co-work with the DBUG facility

6. Synchronizing DEBUG_SYNC Actions

The Debug Sync Facility allows placement of synchronization points in the server code by using the DEBUG_SYNC macro:

open_tables(...)

DEBUG_SYNC(thd, "after_open_tables");

lock_tables(...)

When activated, a sync point can

Emit a signal and/or

Wait for a signal

Nomenclature Description

signal

A value of a global variable that persists until overwritten by a new signal. The global variable can also be

seen as a "signal post" or "flag mast". Then the signal is what is attached to the "signal post" or "flag

mast".

emit a signal
Assign the value (the signal) to the global variable ("set a flag") and broadcast a global condition to wake

those waiting for a signal.

wait for a

signal
Loop over waiting for the global condition until the global value matches the wait-for signal.

By default, all sync points are inactive. They do nothing (except to burn a couple of CPU cycles for checking if they are

active).

A sync point becomes active when an action is requested for it. To do so, put a line like this in the test case file:

SET DEBUG_SYNC= 'after_open_tables SIGNAL opened WAIT_FOR flushed';

This activates the sync point 'after_open_tables' . It requests it to emit the signal 'opened' and wait for another

thread to emit the signal 'flushed' when the thread's execution runs through the sync point.

For every sync point there can be one action per thread only. Every thread can request multiple actions, but only one per

sync point. In other words, a thread can activate multiple sync points.

Here is an example how to activate and use the sync points:

--connection conn1

SET DEBUG_SYNC= 'after_open_tables SIGNAL opened WAIT_FOR flushed';

send INSERT INTO t1 VALUES(1);

 --connection conn2

 SET DEBUG_SYNC= 'now WAIT_FOR opened';

 SET DEBUG_SYNC= 'after_abort_locks SIGNAL flushed';

 FLUSH TABLE t1;

When conn1 runs through the INSERT statement, it hits the sync point 'after_open_tables' . It notices that it is active

and executes its action. It emits the signal 'opened' and waits for another thread to emit the signal 'flushed' .

conn2 waits immediately at the special sync point 'now' for another thread to emit the 'opened' signal.

A signal remains in effect until it is overwritten. If conn1 signals 'opened' before conn2 reaches 'now' , conn2 will

still find the 'opened' signal. It does not wait in this case.

1371/4161

When conn2 reaches 'after_abort_locks' , it signals 'flushed' , which lets conn1 awake.

Normally the activation of a sync point is cleared when it has been executed. Sometimes it is necessary to keep the sync

point active for another execution. You can add an execute count to the action:

SET DEBUG_SYNC= 'name SIGNAL sig EXECUTE 3';

This sets the signal point's activation counter to 3. Each execution decrements the counter. After the third execution the

sync point becomes inactive.

One of the primary goals of this facility is to eliminate sleeps from the test suite. In most cases it should be possible to

rewrite test cases so that they do not need to sleep. (But this facility cannot synchronize multiple processes.) However, to

support test development, and as a last resort, sync point waiting times out. There is a default timeout, but it can be

overridden:

SET DEBUG_SYNC= 'name WAIT_FOR sig TIMEOUT 10 EXECUTE 2';

TIMEOUT 0 is special: If the signal is not present, the wait times out immediately.

When a wait timed out (even on TIMEOUT 0), a warning is generated so that it shows up in the test result.

You can throw an error message and kill the query when a synchronization point is hit a certain number of times:

SET DEBUG_SYNC= 'name HIT_LIMIT 3';

Or combine it with signal and/or wait:

SET DEBUG_SYNC= 'name SIGNAL sig EXECUTE 2 HIT_LIMIT 3';

Here the first two hits emit the signal, the third hit returns the error message and kills the query.

For cases where you are not sure that an action is taken and thus cleared in any case, you can force to clear (deactivate) a

sync point:

SET DEBUG_SYNC= 'name CLEAR';

If you want to clear all actions and clear the global signal, use:

SET DEBUG_SYNC= 'RESET';

This is the only way to reset the global signal to an empty string.

For testing of the facility itself you can execute a sync point just as if it had been hit:

SET DEBUG_SYNC= 'name TEST';

Formal Syntax

The string to "assign" to the DEBUG_SYNC variable can contain:

RESET |

<sync point name> TEST |

<sync point name> CLEAR |

<sync point name> {{SIGNAL <signal name> |

 WAIT_FOR <signal name> [TIMEOUT <seconds>]}

 [EXECUTE <count>] &| HIT_LIMIT <count>}

Here '&|' means 'and/or'. This means that one of the sections separated by '&|' must be present or both of them.

Activation/Deactivation

With a MariaDB for debug build, it can be enabled by a mysqld command line option:

 --debug-sync-timeout[=default_wait_timeout_value_in_seconds]

'default_wait_timeout_value_in_seconds' is the default timeout for the WAIT_FOR action. If set to zero, the facility

1372/4161

stays disabled.

The facility is enabled by default in the test suite, but can be disabled with:

mariadb-test-run.pl ... --debug-sync-timeout=0 ...

Likewise the default wait timeout can be set:

mariadb-test-run.pl ... --debug-sync-timeout=10 ...

The command line option influences the readable value of the debug_sync system variable.

If the facility is not compiled in, the system variable does not exist.

If --debug-sync-timeout=0 the value of the variable reads as "OFF" .

Otherwise the value reads as "ON - current signal: " followed by the current signal string, which can be

empty.

The readable variable value is the same, regardless if read as a global or session value.

Setting the debug_sync system variable requires the 'SUPER' privilege. You can never read back the string that you

assigned to the variable, unless you assign the value that the variable already has. But that would give a parse error. A

syntactically correct string is parsed into a debug sync action and stored apart from the variable value.

Implementation

Pseudo code for a sync point:

#define DEBUG_SYNC(thd, sync_point_name)

 if (unlikely(opt_debug_sync_timeout))

 debug_sync(thd, STRING_WITH_LEN(sync_point_name))

The sync point performs a binary search in a sorted array of actions for this thread.

The SET DEBUG_SYNC statement adds a requested action to the array or overwrites an existing action for the same sync

point. When it adds a new action, the array is sorted again.

A typical synchronization pattern

There are quite a few places in MariaDB and MySQL where we use a synchronization pattern like this:

mysql_mutex_lock(&mutex);

thd->enter_cond(&condition_variable, &mutex, new_message);

#if defined(ENABLE_DEBUG_SYNC)

if (!thd->killed && !end_of_wait_condition)

 DEBUG_SYNC(thd, "sync_point_name");

#endif

while (!thd->killed && !end_of_wait_condition)

 mysql_cond_wait(&condition_variable, &mutex);

thd->exit_cond(old_message);

Here are some explanations:

thd->enter_cond() is used to register the condition variable and the mutex in thd->mysys_var . This is done to allow

the thread to be interrupted (killed) from its sleep. Another thread can find the condition variable to signal and mutex to use

for synchronization in this thread's THD::mysys_var .

thd->enter_cond() requires the mutex to be acquired in advance.

thd->exit_cond() unregisters the condition variable and mutex and releases the mutex.

If you want to have a Debug Sync point with the wait, please place it behind enter_cond() . Only then you can safely

decide, if the wait will be taken. Also you will have THD::proc_info correct when the sync point emits a signal.

DEBUG_SYNC sets its own proc_info, but restores the previous one before releasing its internal mutex. As soon as another

thread sees the signal, it does also see the proc_info from before entering the sync point. In this case it will be

"new_message", which is associated with the wait that is to be synchronized.

In the example above, the wait condition is repeated before the sync point. This is done to skip the sync point, if no wait

takes place. The sync point is before the loop (not inside the loop) to have it hit once only. It is possible that the condition

variable is signaled multiple times without the wait condition to be true.
1373/4161

A bit off-topic: At some places, the loop is taken around the whole synchronization pattern:

while (!thd->killed && !end_of_wait_condition)

{

 mysql_mutex_lock(&mutex);

 thd->enter_cond(&condition_variable, &mutex, new_message);

 if (!thd->killed [&& !end_of_wait_condition])

 {

 [DEBUG_SYNC(thd, "sync_point_name");]

 mysql_cond_wait(&condition_variable, &mutex);

 }

 thd->exit_cond(old_message);

}

Note that it is important to repeat the test for thd->killed after enter_cond() . Otherwise the killing thread may kill this

thread after it tested thd->killed in the loop condition and before it registered the condition variable and mutex in

enter_cond() . In this case, the killing thread does not know that this thread is going to wait on a condition variable. It

would just set THD::killed . But if we would not test it again, we would go asleep though we are killed. If the killing thread

would kill us when we are after the second test, but still before sleeping, we hold the mutex, which is registered in

mysys_var. The killing thread would try to acquire the mutex before signaling the condition variable. Since the mutex is only

released implicitly in mysql_cond_wait() , the signaling happens at the right place. We have a safe synchronization.

Co-work with the DBUG facility

When running the MariaDB test suite with the --debug-dbug command line option, the Debug Sync Facility writes trace

messages to the DBUG trace. The following shell commands proved very useful in extracting relevant information:

egrep 'query:|debug_sync_exec:' mysql-test/var/log/mysqld.1.trace

It shows all executed SQL statements and all actions executed by synchronization points.

Sometimes it is also useful to see, which synchronization points have been run through (hit) with or without executing

actions. Then add "|debug_sync_point:" to the egrep pattern.

Synchronizing DEBUG_SYNC Actions

Tests may need additional synchronization mechanisms between DEBUG_SYNC actions, because certain combinations of

actions can result in lost signals. More specifically, once a SIGNAL action is issued, it is stored in a global variable for any

waiting threads to determine if they are depending on that signal for continuing. However, if a subsequent action overwrites

that variable before a waiting thread is able to check against it, the original signal is lost. Examples of actions which would

change the variable state are another SIGNAL or a RESET . Therefore, before issuing these commands, the test writer

should verify the previous signal has been acknowledged. The following code snippets show an example of a problematic

pattern and a potential solution.

SET DEBUG_SYNC='now SIGNAL sig';

SET DEBUG_SYNC='RESET'; # Problematic because sig can be cleared before a waiting thread can

acknowledge it

SET DEBUG_SYNC='now SIGNAL sig';

Don't issue the RESET until we have proven the waiting thread has received the signal

let $wait_condition= select count(*)=0 from information_schema.processlist where state like

"debug sync point%";

source include/wait_condition.inc;

SET DEBUG_SYNC='RESET'; # Now this is safe

1.3.18.9 Code Coverage with dgcov

1374/4161

Contents
1. Overview

2. Usage

3. Options and Variables

4. How to Prepare the Code for dgcov

5. Output

6. Examples

7. Caveats

8. References

The dgcov tool helps you check the coverage for new code. The dgcov.pl script is part of the mariadb-test framework (and

any packages that include mariadb-test).

Overview
The dgcov program runs gcov for code coverage analysis, aggregates the coverage data, and (optionally) reports coverage

only for those lines that are changed by the commit(s). Commits are specified in the git diff format.

If no commits are specified, the default is to work on all uncommitted changes, if any, otherwise on the last commit (in other

words, on git diff HEAD or git diff HEAD^).

It's recommended that a developer runs dgcov on their new code before pushing it into a MariaDB repository.

Usage

./dgcov.pl --help

./dgcov.pl [options] [<commit> [<commit>]]

Options and Variables

Short Option Long Option Description

-h --help Print help and exit

-v --verbose Show commands run.

-p --purge Delete all test coverage information, to prepare for a new coverage test.

-o --only-gcov Stop after running gcov, don't run git

-s --skip-gcov Do not run gcov, assume .gcov files are already in place

-g --generate Create .dgcov files for all source files

How to Prepare the Code for dgcov
Prior to running this tool, MariaDB should be built with

 cmake -DENABLE_GCOV=ON

and the testsuite should be run. dgcov will report the coverage for all lines modified in the specified commits.

Output
Output .dgcov files have a conventional gcov format: lines not covered are prefixed with ##### , lines without generated

code are prefixed with - , and other lines are prefixed with the number of times they were executed. See info gcov for

more information.

The patch-like coverage for commits uses gcov format (as above) for lines, changed in these commits, and no prefix at all

for lines that were not changed.

Examples
Checking the coverage for all unpushed commits:

1375/4161

https://mariadb.com/kb/en/code-coverage/

dgcov.pl @{u} HEAD

Checking the coverate for all uncommitted changes:

dgcov.pl HEAD

Checking the coverage for a specific commit 1234567:

dgcov.pl 1234567^ 1234567

mariadb-test-run can invoke dgcov automatically:

./mtr --gcov

in the latter case the coverate for the uncommitted changes (or the last commit) will be not printed to the stdout, but will be

put into var/last_changes.dgcov file.

Caveats
Note that to be able to run gcov with the mariadb-test framework you need to have gcc version 4.8 or newer.

References
dgcov was created by Kristian Nielsen and was first announced here .

dgcov was re-implemented to aggregate the data and to work for git and cmake by Sergei Golubchik.

1.3.18.10 Installing MinIO for Usage With
mariadb-test-run
When testing the S3 storage engine with the s3 test suite, mariadb-test-run needs access to Amazon S3 compatible

storage.

The easiest way to achieve this is to install MinIO , an open source S3 compatible storage.

Here is a shell script that you can use to install MinIO with the right credentials for mariadb-test-run. This should work on

most Linux systems as the binaries are statically linked. You can alternatively download MinIO binaries directly from here .

Where to install the MinIO binaries and where to store the data

install=/my/local/minio

data=/tmp/shared

Get the MinIO binaries. You can skip this test if you already have MinIO installed.

mkdir -p $install

wget https://dl.min.io/server/minio/release/linux-amd64/minio -O $install/minio

wget https://dl.min.io/client/mc/release/linux-amd64/mc -O $install/mc

chmod a+x $install/minio $install/mc

Setup MinIO for usage with mariadb-test-run

MINIO_ACCESS_KEY=minio MINIO_SECRET_KEY=minioadmin $install/minio server $data 2>&1 &

$install/mc config host add local http://127.0.0.1:9000 minio minioadmin

$install/mc mb --ignore-existing local/storage-engine

Now you can run the S3 test suite:

cd "mysql-source-dir"/mariadb-test

./mariadb-test-run --suite=s3

If there is an issue while running the test suite, you can see the files created by MinIO with:

$install/mc ls -r local/storage-engine

or

1376/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-test-run
http://kristiannielsen.livejournal.com/1885.html
https://min.io
https://min.io/download

ls $data/storage-engine

If you want to use MinIO with different credentials or you want to run the test against another S3 storage you ave to update

the update the following files:

mariadb-test/suite/s3/my.cnf

mariadb-test/suite/s3/slave.cnf

1.3.19 perror
Contents
1. Usage

2. Options

3. Examples

perror is a utility that displays descriptions for system or storage engine error codes.

See MariaDB Error Codes for a full list of MariaDB error codes, and Operating System Error Codes for a list of Linux and

Windows error codes.

Usage

perror [OPTIONS] [ERRORCODE [ERRORCODE...]]

If you need to describe a negative error code, use -- before the first error code to end the options.

Options

Option Description

-? , --help Display help and exit.

-I , --info Synonym for --help .

-s , --silent Only print the error message.

-v , --verbose Print error code and message (default). (Defaults to on; use --skip-verbose to disable.)

-V , --version Displays version information and exits.

Examples
System error code:

shell> perror 96

OS error code 96: Protocol family not supported

MariaDB/MySQL error code :

shell> perror 1005 1006

MySQL error code 1005 (ER_CANT_CREATE_TABLE): Can't create table %`s.%`s (errno: %M)

MySQL error code 1006 (ER_CANT_CREATE_DB): Can't create database '%-.192s' (errno: %M)

shell> perror --silent 1979

You are not owner of query %lu

1.3.20 replace Utility

Description
1377/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-error-codes/

Description
The replace utility program changes strings in place in files or on the standard input. Invoke replace in one of the following

ways:

shell> replace from to [from to] ... -- file_name [file_name] ...

shell> replace from to [from to] ... < file_name

" from " represents a string to look for and " to " represents its replacement. There can be one or more pairs of strings.

A from-string can contain these special characters:

Character Description

\^ Match start of line.

\$ Match end of line.

\b
Match space-character, start of line or end of line. For an end \b the next replace starts looking at the end

space-character. A \b alone in a string matches only a space-character

Use the -- option to indicate where the string-replacement list ends and the file names begin. Any file named on the

command line is modified in place, so you may want to make a copy of the original before converting it. replace prints a

message indicating which of the input files it actually modifies.

If the -- option is not given, replace reads standard input and writes to standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For example, the following

command swaps "a" and "b" in the given files, /file1 and file2:

shell> replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql.

Options
replace supports the following options.

Option Description

-? , -I Display a help message and exit.

-#debug_options Enable debugging.

-s Silent mode. Print less information about what the program does.

-v Verbose mode. Print more information about what the program does.

-V Display version information and exit.

1.3.21 resolveip
Contents
1. Usage

2. Options

3. Examples

resolveip is a utility for resolving IP addresses to host names and vice versa.

Usage

resolveip [OPTIONS] hostname or IP-address

Options

Option Description

-? , --help Display help and exit.

1378/4161

-I , --info Synonym for --help .

-s , --silent# Be more silent.

-V , --version Display version information and exit.

Examples

shell> resolveip mariadb.org

IP address of mariadb.org is 166.78.144.191

resolveip 166.78.144.191

Host name of 166.78.144.191 is mariadb.org

1.3.22 resolve_stack_dump
resolve_stack_dump is a tool that resolves numeric stack strace dumps into symbols.

Usage

resolve_stack_dump [OPTIONS] symbols-file [numeric-dump-file]

The symbols-file should include the output from: nm --numeric-sort mysqld . The numeric-dump-file should contain a

numeric stack trace from mysqld. If the numeric-dump-file is not given, the stack trace is read from stdin.

Options

Option Description

-h , --help Display this help and exit.

-V , --version Output version information and exit.

-s , --symbols-file=name Use specified symbols file.

-n , --numeric-dump-file=name Read the dump from specified file.

1.3.23 xtstat
Contents
1. Using xtstat

1. Command line options

1. Size indicators

2. Statistics

2. More Information

xtstat can be used to monitor all internal activity of PBXT .

xtstat polls the INFORMATION_SCHEMA.PBXT_STATISTICS table. The poll interval can be set using the --delay

option, and is 1 second by default.

For most statistics, xtstat will display the difference in values between the current and previous polls. For example, if

bytes written current value is 1000, and on the previous call it was 800, then xtstat will display 200. This means that 200

bytes were written to disk in the intervening period.

Using xtstat
Invoke xtstat as follows:

$ xtstat [options]

1379/4161

https://mariadb.com/kb/en/pbxt/

For example, to poll every 10 seconds:

xtstat -D10

Note that statistic counters are never reset, even if a rollback occurs. For example, if an UPDATE

statement is rolled back, xtstat will still indicate that one write statement (see stat-write below) was executed.

If MariaDB shuts down or crashes, xtstat will attempt to reconnect. xtstat can be terminated any time using the CTRL-

C key cimbination.

Before PBXT has recovered, not all statistics are available. In particular, the statistics relating to PBXT background

threads are not available (including the sweep and chkpnt statistics).

Command line options

xtstat options are as follows:

Option Description

-?, --help Prints help text.

-h, --

host=value
Connect to host.

-u, --

user=value
User for login if not current user.

-p, --

password[=value]
Password to use when connecting to server. If password is not given it's asked from the tty.

-d, --

database=value

Database to be used (pbxt or information_schema required), default is

information_schema

-P, --

port=value
Port number to use for connection.

-S, --

socket=value
Socket file to use for connection.

-D, --

delay=value
Delay in seconds between polls of the database.

--

protocol=value
Connection protocol to use: default/tcp/socket/pipe/memory

--display=value
Columns to display: use short names separated by | (the pipe character), partial match allowed.

Use --display=all to display all columns available.

Connection options will also be taken from the MySQL config file if available.

Size indicators

Values displayed by xtstat are either a time in milliseconds, a value in bytes, or a counter. If these values are too large to

be displayed then the value is rounded and a size indicator is added.

The following size indicators are used:

K : Kilobytes (1,024 bytes)

M : Megabytes (1,048,576 bytes)

G : Gigabytes (1,073,741,024 bytes)

T : Terabytes (1,099,511,627,776 bytes)

t : thousands (1,000s)

m : millions (1,000,000s)

b : billions (1,000,000,000s)

Statistics

The following is a list of the statistics displayed by xtstat . Each statistic as a two-part display name. The first part is the
1380/4161

https://mariadb.com/kb/en/pbxt/

category and the second part is the type.

You can select categories and types for display, as you require. For example --display=read will display all read activity,

--display=xact|stat will display transaction and statement activity.

Note, for diagnostics it is best to capture all statistics. The reason is because you never now where a problem might turn up,

so without certain statistics you may not be able to identify the problem.

Display name Name Description

time-curr Current Time The current time in seconds

time-msec Time Since Last Call Time passed in milliseconds since last statistics call

xact-commt Commit Count Number of transactions committed

xact-rollb Rollback Count Number of transactions rolled back

xact-waits Wait for Xact Count Number of times waited for another transaction

xact-dirty Dirty Xact Count

Number of transactions still to be cleaned up. This also includes all the currently

running transactions. Cleanup means that the Sweeper thread must still scan the

transcation and collect/mark any "garbage" left by the transaction. Garbage is,

for example, versions of rows that are no longer visiable by any transaction.

stat-read Read Statements Number of SELECT statements

stat-write Write Statements Number of UPDATE/INSERT/DELETE statements

rec-in Record Bytes Read Bytes read from the record/row files

rec-out Record Bytes Written
Bytes written to the record/row files. This data is transfered from the transaction

logs to the handle data (xtd) and the row index files (xtr).

rec-

syncs/ms
Record File Flushes

2 values separated by a '/': the number of flushes to data handle (.xtd) and row

index (.xtr) files and the time taken in milliseconds to perform the flush

operations.

rec-hits Record Cache Hits
Hits when accessing the record cache. The record cache caches the data handle

(.xtd) and row index (.xtr) files.

rec-miss Record Cache Misses Misses when accessing the record cache

rec-frees Record Cache Frees Number of record cache pages freed

rec-%use Record Cache Usage
Percentage of record cache in use. This value is displayed by xtstat as a

percentage of the total cache available, but the value returned by

PBXT_STATISTICS table is in bytes used.

ind-in Index Bytes Read Bytes read from the index files

ind-out Index Bytes Written
Bytes written to the index files. This data is transfered from the index log files

(ilog) to the index files (xti), during a consistent flush of the index.

ind-

syncs/ms
Index File Flushes

2 values separated by a '/': the number of flushes to index files and the time

taken for the flush operations in milliseconds.

ind-hits Index Cache Hits Hits when accessing the index cache

ind-miss Index Cache Misses Misses when accessing the index cache

ind-%use Index Cache Usage

Percentage of index cache used. This value is displayed by xtstat as a

percentage of the total cache available, but the value returned by

PBXT_STATISTICS table is in bytes used.

ilog-in Index Log Bytes In Bytes read from the index log files

ilog-out Index Log Bytes Out
Bytes written to the index log files. This data is transfered from the index cache

in main memory to the index log files (ilog) during a consistent flush of the index.

ilog-

syncs/ms
Index Log File Syncs

2 values separated by a '/': the number of flushes to index log files and the time

taken for the flush operations in milliseconds

xlog-in Xact Log Bytes In Bytes read from the transaction log files

xlog-out Xact Log Bytes Out

Bytes written to the transaction log files. This is data transfered from the

transaction log buffer (pbxt_transaction_buffer_size) to the transaction log files

(.xlog). This transfer occurs on commit or when the transaction log buffer is full.

xlog-syncs Xact Log File Syncs Number of flushes to transaction log files

1381/4161

xlog-msec Xact Log Sync Time The time in milliseconds to flush transaction log files

xlog-hits Xact Log Cache Hits Hits when accessing the transaction log cache

xlog-miss Xact Log Cache Misses Misses when accessing the transaction log cache

xlog-%use Xact Log Cache Usage

Percentage of transaction log cache used. This value is displayed by xtstat as a

percentage of the total cache available, but the value returned by

PBXT_STATISTICS table is in bytes used.

data-in Data Log Bytes In Bytes read from the data log files

data-out Data Log Bytes Out

Bytes written to the data log files. This data is transfered from the data log buffer

(pbxt_log_buffer_size) to the data log files (.dlog), when the buffer is full, or on

commit.

data-syncs Data Log File Syncs Number of flushes to data log files

data-msec Data Log Sync Time The time in milliseconds spent flushing data log files

to-chkpt Bytes to Checkpoint Bytes written to the transaction log since the last checkpoint

to-write Log Bytes to Write Bytes written to the transaction log, still to be written to the database

to-sweep Log Bytes to Sweep Bytes written to the transaction log, still to be read by the Sweeper thread

sweep-

waits
Sweeper Wait on Xact Attempts to cleanup a transaction

scan-index Index Scan Count Number of index scans

scan-table Table Scan Count Number of table scans

row-sel Select Row Count Number of rows selected

row-ins Insert Row Count Number of rows inserted

row-upd Update Row Count Number of rows updated

row-del Delete Row Count Number of rows deleted

More Information
Documentation on this page is based on the xtstat documentation on the PrimeBase website.

Paul McCullagh's presentation from the 2010 User's Conference has some usage examples:

http://www.primebase.org/download/pbxt-uc-2010.pdf

1.3.24 mariadb-access
mariadb-access is a tool for checking access privileges, developed by Yves Carlier.

From MariaDB 10.4.6, mariadb-access is a symlink to mysqlaccess .

From MariaDB 10.5.2, mariadb-access is the name of the tool, with mysqlaccess a symlink.

Contents
1. Usage

2. Options

3. Note

It checks the access privileges for a host name, user name, and database combination. Note that mariadb-access checks

access using only the user, db, and host tables. It does not check table, column, or routine privileges specified in the

tables_priv, columns_priv, or procs_priv tables.

Usage

mariadb-access [host [user [db]]] OPTIONS

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1382/4161

http://primebase.org/documentation/index.php#xtstat
http://www.primebase.org/download/pbxt-uc-2010.pdf

If your MariaDB distribution is installed in some non-standard location, you must change the location where mariadb-access

expects to find the mariadb client. Edit the mariadb-access script at approximately line 18. Search for a line that looks like

this: <<code> $MYSQL = ´/usr/local/bin/mariadb; # path to mariadb executable <</code>> Change the path to reflect the

location where mariadb actually is stored on your system. If you do not do this, a Broken pipe error will occur when you run

mariadb-access.

Options

Option Description

-? , --help Displayhelp and exit.

-v , --version Display version.

-u username , --

user=username
Username for logging in to the db.

-p[password] , --

password[=password]
Password to use for user. If ommitted, mariadb-access prompts for one.

-h hostname , --

host=hostname
Name or IP of the host.

-d dbname , --db=dbname Name of the database.

-U username , --

superuser=username
Connect as superuser.

-P password , --

spassword=password
Password for superuser.

-H server , --

rhost=server
Remote server to connect to.

--old_server
Connect to a very old MySQL servers (before version 3.21) that does not know how to

handle full WHERE clauses.

-b , --brief Single-line tabular report.

-t , --table Report in table-format.

--relnotes Print release-notes.

--plan Print suggestions/ideas for future releases.

--howto Some examples of how to run `mariadb-access'.

--debug=N Enter debug level N (0..3).

--copy Reload temporary grant-tables from original ones.

--preview Show differences in privileges after making changes in (temporary) grant-tables.

--commit
Copy grant-rules from temporary tables to grant-tables (the grant tables must be flushed

after, for example with mariadb-admin reload).

--rollback Undo the last changes to the grant-tables.

Note
At least the user (-u) and the database (-d) must be given, even with wildcards. If no host is provided, `localhost' is

assumed. Wildcards (*,?,%,_) are allowed for host, user and db, but be sure to escape them from your shell!! (ie type * or '*')

1.3.25 mariadb-admin

From MariaDB 10.4.6, mariadb-admin is a symlink to mysqladmin , the administration program for the mysqld

daemon.

From MariaDB 10.5.2, mariadb-admin is the name of the administration program for the mysqld daemon, with

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1383/4161

mysqladmin a symlink .

Contents
1. Using mariadb-admin

1. Options

2. Option Files

1. Option Groups

2. mariadb-admin Variables

3. The shutdown Command and the --wait-for-all-slaves Option

4. Examples

1. Other Ways To Stop mysqld (Unix)

mariadb-admin is an administration program for the mysqld daemon. It can be used to:

Monitor what the MariaDB clients are doing (processlist)

Get usage statistics and variables from the MariaDB server

Create/drop databases

Flush (reset) logs, statistics and tables

Kill running queries.

Stop the server (shutdown)

Start/stop replicas

Check if the server is alive (ping)

Using mariadb-admin
The command to use mariadb-admin and the general syntax is:

mariadb-admin [options] command [command-arg] [command [command-arg]] ...

Options

mariadb-admin supports the following options:

Option Description

--character-sets-

dir=name
Directory where the character set files are located.

-C , --compress
Compress all information sent between the client and the server if both support

compression.

--connect_timeout=val Maximum time in seconds before connection timeout. The default value is 43200 (12 hours).

-c val , --count=val Number of iterations to make. This works with -i (--sleep) only.

--

debug[=debug_options] ,

-# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name . The default is

d:t:o,/tmp/mysqladmin.trace .

--debug-check Check memory and open file usage at exit.

--debug-info Print debugging information and memory and CPU usage statistics when the program exits.

--default-auth=plugin Default authentication client-side plugin to use.

--default-character-

set=name
Set the default character set.

-f , --force
Don't ask for confirmation on drop database; with multiple commands, continue even if an

error occurs.

-? , --help Display this help and exit.

-h name , --host=name Hostname to connect to.

-l , --local

Suppress the SQL command(s) from being written to the binary log by enabling

sql_log_bin=0 for the session, or, from MariaDB 10.2.7 and MariaDB 10.1.24 , for flush

commands only, using FLUSH LOCAL rather than SET sql_log_bin=0 , so the privilege

requirement is RELOAD rather than SUPER.

1384/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/

-b , --no-beep Turn off beep on error.

-p[password] , --

password[=password]

Password to use when connecting to server. If password is not given it's asked from the

terminal.

--pipe , -W
On Windows, connect to the server via a named pipe. This option applies only if the server

supports named-pipe connections.

-P portnum , --

port=portnum

Port number to use for connection, or 0 for default to, in order of preference, my.cnf,

$MYSQL_TCP_PORT, /etc/services, built-in default (3306).

--protocol=name The protocol to use for connection (tcp, socket, pipe, memory).

-r , --relative
Show difference between current and previous values when used with -i . Currently only

works with extended-status.

-O value , --set-

variable=vaue

Change the value of a variable. Please note that this option is deprecated; you can set

variables directly with --variable-name=value .

--

shutdown_timeout=val

Maximum number of seconds to wait for server shutdown. The default value is 3600 (1

hour).

-s , --silent Silently exit if one can't connect to server.

-i delay , --

sleep=delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count

option determines the number of iterations. If --count is not given, mariadb-admin

executes commands indefinitely until interrupted.

-S name , --

socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the

named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS

options are set. The --ssl option will not enable verifying the server certificate by default.

In order to verify the server certificate, the user must specify the --ssl-verify-server-

cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted

Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute

path, not a relative path. See Secure Connections Overview: Certificate Authorities (CAs) for

more information. This option implies the --ssl option.

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each contain

one X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option

requires that you use the absolute path, not a relative path. The directory specified by this

option needs to be run through the openssl rehash command. See Secure

Connections Overview: Certificate Authorities (CAs) for more information. This option is only

supported if the client was built with OpenSSL or yaSSL. If the client was built with GnuTLS

or Schannel, then this option is not supported. See TLS and Cryptography Libraries Used by

MariaDB for more information about which libraries are used on which platforms. This option

implies the --ssl option.

--ssl-cert=name
Defines a path to the X509 certificate file to use for TLS. This option requires that you use

the absolute path, not a relative path. This option implies the --ssl option.

--ssl-cipher=name
List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl

option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to

use for TLS. This option requires that you use the absolute path, not a relative path. See

Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This option is only supported if the client was built with OpenSSL or Schannel. If the client

was built with yaSSL or GnuTLS, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are

used on which platforms.

1385/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain

one revoked X509 certificate to use for TLS. This option requires that you use the absolute

path, not a relative path. The directory specified by this option needs to be run through the

openssl rehash command. See Secure Connections Overview: Certificate

Revocation Lists (CRLs) for more information. This option is only supported if the client was

built with OpenSSL. If the client was built with yaSSL, GnuTLS, or Schannel, then this option

is not supported. See TLS and Cryptography Libraries Used by MariaDB for more

information about which libraries are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-verify-server-

cert
Enables server certificate verification. This option is disabled by default.

--tls-version=name

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol

version will only be enabled if it is present in this list. All other TLS protocol versions will not

be permitted. See Secure Connections Overview: TLS Protocol Versions for more

information.

-u , --user=name User for login if not current user.

-v , --verbose Write more information.

-V , --version Output version information and exit.

-E , --vertical Print output vertically. Is similar to ' --relative ', but prints output vertically.

-w[count] , --

wait[=count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is

given, it indicates the number of times to retry. The default is one time.

--wait-for-all-slaves
Wait for the last binlog event to be sent to all connected replicas before shutting down. This

option is off by default.

Option Files

In addition to reading options from the command-line, mariadb-admin can also read options from option files. If an

unknown option is provided to mariadb-admin in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

mariadb-admin is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing of

option files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more

information.

Option Groups

mariadb-admin reads options from the following option groups from option files:

Group Description

[mysqladmin] Options read by mysqladmin , which includes both MariaDB Server and MySQL Server.

[mariadb-

admin]
Options read by mariadb-admin . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

1386/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

mariadb-admin Variables
Variables can be set with --variable-name=value .

Variables and boolean options Value

count 0

debug-check FALSE

debug-info FALSE

force FALSE

compress FALSE

character-sets-dir (No default value)

default-character-set (No default value)

host (No default value)

no-beep FALSE

port 3306

relative FALSE

socket /var/run/mysqld/mysqld.sock

sleep 0

ssl FALSE

ssl-ca (No default value)

ssl-capath (No default value)

ssl-cert (No default value)

ssl-cipher (No default value)

ssl-key (No default value)

ssl-verify-server-cert FALSE

user (No default value)

verbose FALSE

vertical FALSE

connect_timeout 43200

shutdown_timeout 3600

mariadb-admin Commands

mariadb-admin [options] command [command-arg] [command [command-arg]] ...

Command is one or more of the following. Commands may be shortened to a unique prefix.

Command Description

create

databasename
Create a new database.

debug Instruct server to write debug information to log.

1387/4161

drop

databasename
Delete a database and all its tables.

extended-

status
Return all status variables and their values.

flush-all-

statistics
Flush all statistics tables

flush-all-

status
Flush status and statistics.

flush-

binary-log
Flush binary log.

flush-

client-

statistics

Flush client statistics.

flush-

engine-log
Flush engine log.

flush-error-

log
Flush error log.

flush-

general-log
Flush general query log.

flush-hosts Flush all cached hosts.

flush-index-

statistics
Flush index statistics.

flush-logs Flush all logs.

flush-

privileges
Reload grant tables (same as reload).

flush-relay-

log
Flush relay log.

flush-slow-

log
Flush slow query log.

flush-ssl Flush SSL certificates. Added in MariaDB 10.6.0.

flush-

status
Clear status variables.

flush-table-

statistics
Clear table statistics.

flush-

tables
Flush all tables.

flush-

threads
Flush the thread cache.

flush-user-

resources
Flush user resources.

flush-user-

statistics
Flush user statistics.

kill

id,id,...
Kill mysql threads.

password

new-password

Change old password to new-password. The new password can be passed on the commandline as the

next argument (for example, mariadb-admin password "new_password" , or can be omitted (as long

as no other command follows), in which case the user will be prompted for a password. If the password

contains special characters, it needs to be enclosed in quotation marks. In Windows, the quotes can

only be double quotes, as single quotes are assumed to be part of the password. If the server was

started with the --skip-grant-tables option, changing the password in this way will have no effect.

1388/4161

old-password

new-password
Change old password to new-password using the old pre-MySQL 4.1 format.

ping
Check if mysqld is alive. Return status is 0 if the server is running (even in the case of an error such as

access denied), 1 if it is not.

processlist
Show list of active threads in server, equivalent to SHOW PROCESSLIST. With --verbose ,

equivalent to SHOW FULL PROCESSLIST.

reload Reload grant tables.

refresh Flush all tables and close and open log files.

shutdown

Take server down by executing the SHUTDOWN command on the server. If connected to a local server

using a Unix socket file, mariadb-admin waits until the server's process ID file has been removed to

ensure that the server has stopped properly. See also the --wait-for-all-slaves option.

status Gives a short status message from the server.

start-all-

slaves
Start all replicas.

start-slave Start replication on a replica server.

stop-all-

slaves
Stop all replicas.

stop-slave Stop replication on a replica server.

variables Prints variables available.

version Returns version as well as status info from the server.

The shutdown Command and the --wait-for-all-slaves
Option
The --wait-for-all-slaves option was first added in MariaDB 10.4.4. When a primary server is shutdown and it goes

through the normal shutdown process, the primary kills client threads in random order. By default, the primary also

considers its binary log dump threads to be regular client threads. As a consequence, the binary log dump threads can be

killed while client threads still exist, and this means that data can be written on the primary during a normal shutdown that

won't be replicated. This is true even if semi-synchronous replication is being used.

In MariaDB 10.4 and later, this problem can be solved by shutting down the server with the mariadb-admin utility and by

providing the --wait-for-all-slaves option to the utility and by executing the shutdown command with the utility. For

example:

mariadb-admin --wait-for-all-slaves shutdown

When the --wait-for-all-slaves option is provided, the server only kills its binary log dump threads after all client

threads have been killed, and it only completes the shutdown after the last binary log has been sent to all connected

replicas.

See Replication Threads: Binary Log Dump Threads and the Shutdown Process for more information.

Examples
Quick check of what the server is doing:

shell> mariadb-admin status

Uptime: 8023 Threads: 1 Questions: 14 Slow queries: 0 Opens: 15 Flush tables: 1 Open tables: 8

Queries per second avg: 0.1

shell> mariadb-admin processlist

+----+-------+-----------+----+---------+------+-------+------------------+

| Id | User | Host | db | Command | Time | State | Info |

+----+-------+-----------+----+---------+------+-------+------------------+

....

+----+-------+-----------+----+---------+------+-------+------------------+

More extensive information of what is happening 'just now' changing (great for troubleshooting a slow server):

1389/4161

shell> mariadb-admin --relative --sleep=1 extended-status | grep -v " 0 "

Check the variables for a running server:

shell> mariadb-admin variables | grep datadir

| datadir | /my/data/ |

Using a shortened prefix for the version command:

shell> mariadb-admin ver

mariadb-admin from 11.1.0-preview-MariaDB, client 9.1 for linux-systemd (x86_64)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Server version 11.1.0-preview-MariaDB

Protocol version 10

Connection localhost via TCP/IP

TCP port 11100

Uptime: 3 min 21 sec

Threads: 1 Questions: 1 Slow queries: 0 Opens: 17 Open tables: 10 Queries per second avg:

0.004

Other Ways To Stop mysqld (Unix)

If you get the error:

mariadb-admin: shutdown failed; error: 'Access denied; you need (at least one of) the SHUTDOWN

privilege(s) for this operation'

It means that you didn't use mariadb-admin with a user that has the SUPER or SHUTDOWN privilege.

If you don't know the user password, you can still take the mysqld process down with a system kill command:

kill -SIGTERM pid-of-mysqld-process

The above is identical to mariadb-admin shutdown .

On windows you should use:

NET STOP MySQL

You can use the SHUTDOWN command from any client.

1.3.26 mariadb-check

From MariaDB 10.4.6, mariadb-check is a symlink to mysqlcheck , the tool for checking, repairing, analyzing and

optimizing tables.

From MariaDB 10.5.2, mariadb-check is the name of the tool, with mysqlcheck a symlink .

Contents
1. Using mariadb-check

1. Options

2. Option Files

1. Option Groups

2. Notes

1. Default Values

2. mariadb-check and auto-repair

3. mariadb-check and all-databases

4. mariadb-check and verbose

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1390/4161

mariadb-check is a maintenance tool that allows you to check, repair, analyze and optimize multiple tables from the

command line.

It is essentially a commandline interface to the CHECK TABLE, REPAIR TABLE, ANALYZE TABLE and OPTIMIZE TABLE

commands, and so, unlike myisamchk and aria_chk, requires the server to be running.

This tool does not work with partitioned tables.

Using mariadb-check

./client/mariadb-check [OPTIONS] database [tables]

OR

./client/mariadb-check [OPTIONS] --databases DB1 [DB2 DB3...]

OR

./client/mariadb-check [OPTIONS] --all-databases

mariadb-check can be used to CHECK (-c, -m, -C), REPAIR (-r), ANALYZE (-a), or OPTIMIZE (-o) tables. Some of the

options (like -e or -q) can be used at the same time. Not all options are supported by all storage engines.

The -c, -r, -a and -o options are exclusive to each other.

The option --check will be used by default, if no other options were specified. You can change the default behavior by

making a symbolic link to the binary, or copying it somewhere with another name, the alternatives are:

mysqlrepair The default option will be -r (--repair)

mysqlanalyze The default option will be -a (--analyze)

mysqloptimize The default option will be -o (--optimize)

Options

mariadb-check supports the following options:

Option Description

-A , --all-

databases
Check all the databases. This is the same as --databases with all databases selected.

-1 , --all-in-1
Instead of issuing one query for each table, use one query per database, naming all tables in the

database in a comma-separated list.

-a , --analyze Analyze given tables.

--auto-repair
If a checked table is corrupted, automatically fix it. Repairing will be done after all tables have been

checked.

--character-

sets-dir=name
Directory where character set files are installed.

-c , --check Check table for errors.

-C , --check-

only-changed
Check only tables that have changed since last check or haven't been closed properly.

-g , --check-

upgrade

Check tables for version-dependent changes. May be used with --auto-repair to correct tables

requiring version-dependent updates. Automatically enables the --fix-db-names and --fix-

table-names options. Used when upgrading

--compress Compress all information sent between the client and server if both support compression.

-B , --

databases

Check several databases. Note that normally mariadb-check treats the first argument as a database

name, and following arguments as table names. With this option, no tables are given, and all name

arguments are regarded as database names.

1391/4161

https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/

-# , --

debug[=name]
Output debug log. Often this is 'd:t:o,filename'.

--debug-check Check memory and open file usage at exit.

--debug-info Print some debug info at exit.

--default-

auth=plugin
Default authentication client-side plugin to use.

--default-

character-

set=name

Set the default character set.

-e , --extended

If you are using this option with --check , it will ensure that the table is 100 percent consistent, but

will take a long time. If you are using this option with --repair , it will force using the old, slow,

repair with keycache method, instead of the much faster repair by sorting.

-F , --fast Check only tables that haven't been closed properly.

--fix-db-names
Convert database names to the format used since MySQL 5.1. Only database names that contain

special characters are affected. Used when upgrading from an old MySQL version.

--fix-table-

names

Convert table names (including views) to the format used since MySQL 5.1. Only table names that

contain special characters are affected. Used when upgrading from an old MySQL version.

--flush
Flush each table after check. This is useful if you don't want to have the checked tables take up

space in the caches after the check.

-f , --force Continue even if we get an SQL error.

-? , --help Display this help message and exit.

-h name , --

host=name
Connect to the given host.

-m , --medium-

check

Faster than extended-check, but only finds 99.99 percent of all errors. Should be good enough for

most cases.

-o , --optimize Optimize tables.

-p , --

password[=name]

Password to use when connecting to the server. If you use the short option form (-p), you cannot

have a space between the option and the password. If you omit the password value following the --

password or -p option on the command line, mariadb-check prompts for one. Specifying a

password on the command line should be considered insecure. You can use an option file to avoid

giving the password on the command line.

-Z , --

persistent

When using ANALYZE TABLE (--analyze), uses the PERSISTENT FOR ALL option, which

forces Engine-independent Statistics for this table to be updated. Added in MariaDB 10.1.10

-W , --pipe
On Windows, connect to the server via a named pipe. This option applies only if the server supports

named-pipe connections.

--plugin-dir Directory for client-side plugins.

-P num , --

port=num

Port number to use for connection or 0 for default to, in order of preference, my.cnf,

$MYSQL_TCP_PORT, /etc/services, built-in default (3306).

--process-

tables

Perform the requested operation (check, repair, analyze, optimize) on tables. Enabled by default.

Use --skip-process-tables to disable.

--process-

views[=val]

Perform the requested operation (only CHECK VIEW or REPAIR VIEW). Possible values are NO,

YES (correct the checksum, if necessary, add the mariadb-version field),

UPGRADE_FROM_MYSQL (same as YES and toggle the algorithm MERGE<->TEMPTABLE.

--

protocol=name

The connection protocol (tcp, socket, pipe, memory) to use for connecting to the server. Useful when

other connection parameters would cause a protocol to be used other than the one you want.

-q , --quick

If you are using this option with CHECK TABLE, it prevents the check from scanning the rows to

check for wrong links. This is the fastest check. If you are using this option with REPAIR TABLE, it

will try to repair only the index tree. This is the fastest repair method for a table.

-r , --repair Can fix almost anything except unique keys that aren't unique.

1392/4161

https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/
https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/
https://mariadb.com/kb/en/mariadb-10110-release-notes/

--shared-

memory-base-

name

Shared-memory name to use for Windows connections using shared memory to a local server

(started with the --shared-memory option). Case-sensitive.

-s , --silent Print only error messages.

--skip-

database
Don't process the database (case-sensitive) specified as argument.

-S name , --

socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named

pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS options

are set. Starting with MariaDB 10.2, the --ssl option will not enable verifying the server certificate

by default. In order to verify the server certificate, the user must specify the --ssl-verify-

server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate

Authorities (CAs) to use for TLS. This option requires that you use the absolute path, not a relative

path. See Secure Connections Overview: Certificate Authorities (CAs) for more information. This

option implies the --ssl option.

--ssl-

capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one X509

certificate for a trusted Certificate Authority (CA) to use for TLS. This option requires that you use the

absolute path, not a relative path. The directory specified by this option needs to be run through the

openssl rehash command. See Secure Connections Overview: Certificate Authorities (CAs) for

more information. This option is only supported if the client was built with OpenSSL or yaSSL. If the

client was built with GnuTLS or Schannel, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms. This option implies the --ssl option.

--ssl-

cert=name

Defines a path to the X509 certificate file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-

cipher=name
List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for

TLS. This option requires that you use the absolute path, not a relative path. See Secure

Connections Overview: Certificate Revocation Lists (CRLs) for more information. This option is only

supported if the client was built with OpenSSL or Schannel. If the client was built with yaSSL or

GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used by MariaDB

for more information about which libraries are used on which platforms.

--ssl-

crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

revoked X509 certificate to use for TLS. This option requires that you use the absolute path, not a

relative path. The directory specified by this option needs to be run through the openssl rehash

command. See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more

information. This option is only supported if the client was built with OpenSSL. If the client was built

with yaSSL, GnuTLS, or Schannel, then this option is not supported. See TLS and Cryptography

Libraries Used by MariaDB for more information about which libraries are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the absolute

path, not a relative path. This option implies the --ssl option.

--ssl-verify-

server-cert
Enables server certificate verification. This option is disabled by default.

--tables
Overrides the --databases or -B option such that all name arguments following the option are

regarded as table names.

--use-frm
For repair operations on MyISAM tables, get table structure from .frm file, so the table can be

repaired even if the .MYI header is corrupted.

-u , --

user=name
User for login if not current user.

-v , --verbose
Print info about the various stages. You can give this option several times to get even more

information. See mariadb-check and verbose, below.

-V , --version Output version information and exit.

1393/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.openssl.org/docs/man1.1.1/man1/rehash.html

--write-binlog
Write ANALYZE, OPTIMIZE and REPAIR TABLE commands to the binary log. Enabled by default;

use --skip-write-binlog when commands should not be sent to replication slaves.

Option Files

In addition to reading options from the command-line, mariadb-check can also read options from option files. If an

unknown option is provided to mariadb-check in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

mariadb-check is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing of

option files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more

information.

Option Groups

mariadb-check reads options from the following option groups from option files:

Group Description

[mysqlcheck] Options read by mysqlcheck , which includes both MariaDB Server and MySQL Server.

[mariadb-

check]
Options read by mariadb-check . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Notes

Default Values

To see the default values for the options and also to see the arguments you get from configuration files you can do:

./client/mariadb-check --print-defaults

./client/mariadb-check --help

mariadb-check and auto-repair

When running mariadb-check with --auto-repair (as done by mariadb-upgrade), mariadb-check will first check all

tables and then in a separate phase repair those that failed the check.

mariadb-check and all-databases

mariadb-check --all-databases will ignore the internal log tables general_log and slow_log as these can't be checked,

repaired or optimized.

mariadb-check and verbose
1394/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

Using one --verbose option will give you more information about what mariadb-check is doing.

Using two --verbose options will also give you connection information.

If you use three --verbose options you will also get, on stdout, all ALTER, RENAME, and CHECK commands that

mariadb-check executes.

1.3.27 mariadb-conv

mariadb-conv is a character set conversion utility for MariaDB and was added in MariaDB 10.5.1.

Contents
1. Usage

2. Options

3. Examples

Usage

mariadb-conv [OPTION...] [FILE...]

Options
mariadb-conv supports the following options:

Option Description

-f, --from=name Specifies the encoding of the input.

-t, --to=name Specifies the encoding of the output.

-c, --continue Silently ignore conversion errors.

--delimiter=name Treat the specified characters as delimiters.

By default, mariadb-conv exits whenever it encounters any conversion problems, for example:

the input byte sequence is not valid in the source character set

the character cannot be converted to the target character set

The -c option makes mariadb-conv ignore such errors and use the question mark '?' to replace bytes in bad input

sequences, or unconvertable characters.

The --delimiter=... option makes mariadb-conv treat the specified characters as delimiters rather than data to

convert, so the input is treated as a combination of:

data chunks, which are converted according to the -f and -t options.

delimiters, which are not converted and are copied from the input to the output as is.

Examples
Converts the file file.latin1.txt from latin1 to utf8 .

mariadb-conv -f latin1 -t utf8 file.latin1.txt

Convert the file file.latin1.txt from latin1 to utf8 , reading the input data from stdin.

mariadb-conv -f latin1 -t utf8 < file.latin1.txt

Using mariadb-conv in a pipe:

echo test | ./mariadb-conv -f utf8 -t ucs2 >file.ucs2.txt

As a side effect, mariadb-conv can be used to list MariaDB data directories in a human readable form. Suppose you create

the following tables:

MariaDB starting with 10.5.1

1395/4161

SET NAMES utf8;

CREATE OR REPLACE TABLE t1 (a INT);

CREATE OR REPLACE TABLE ß (a INT);

CREATE OR REPLACE TABLE 456 (a INT);

CREATE OR REPLACE TABLE l[(a INT);

The above makes the server create the following files in the MariaDB data directory:

@1j.frm

@1j.ibd

@684c@5b50.frm

@684c@5b50.ibd

@g0@h0@i0.frm

@g0@h0@i0.ibd

t1.frm

t1.ibd

It's not precisely clear which file stores which table, because MariaDB uses a special table-name-to-file-name encoding.

This command on Linux (assuming an utf-8 console) can print the table list in a readable way::

ls | mariadb-conv -f filename -t utf8 --delimiter=".\n"

ß.frm

ß.ibd

l[.frm

l[.ibd

456.frm

456.ibd

t1.frm

t1.ibd

Note, the --delimiter=".\n" option is needed to make mariadb-conv treat the dot character (delimiting the encoded

table name from the file extension) and the new line character (delimiting separate lines) as delimiters rather than as the

data to convert (otherwise the conversion would fail).

Windows users can use the following command to list the data directory in the ANSI text console:

dir /b | mariadb-conv -c -f filename -t cp850 --delimiter=".\r\n"

Note:

The -t options assume a Western machine.

The -c option is needed to ignore conversion errors for Cyrillic and CJK characters.

--delimiter= additionally needs the carriage return character \r

1.3.28 mariadb-convert-table-format

From MariaDB 10.4.6, mariadb-convert-table-format is a symlink to mysql_convert_table_format , the tool

for converting the tables in a database to use a particular storage engine.

From MariaDB 10.5.2, mariadb-convert-table-format is the name of the tool, with

mysql_convert_table_format a symlink .

Usage

mariadb-convert-table-format [options] db_name

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1396/4161

Contents
1. Usage

2. Description

3. Options

Description
mariadb-convert-table-format converts the tables in a database to use a particular storage engine (MyISAM by

default).

mariadb-convert-table-format is written in Perl and requires that the DBI and DBD::mysql Perl modules be installed

Invoke mariadb-convert-table-format like this:

shell> mariadb-convert-table-format [options]db_name

The db_name argument indicates the database containing the tables to be converted.

Options
mariadb-convert-table-format supports the options described in the following list:

Option Description

-?, --help Display help and exit.

-e, --

engine=ENGINE

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this

option is not given.

-f, --force Continue even if errors occur.

-h, --

host=host_name
Connect to the MariaDB server on the given host. Default localhost.

-p, --

password=password

The password to use when connecting to the server. Note that the password value is not optional

for this option, unlike for other client programs. Specifying the password on the command-line is

generally considered insecure.

-P, --port=port_num The TCP/IP port number to use for the connection.

-S, --socket=path For connections to localhost, the Unix socket file to use.

-u, --

user=user_name
The MariaDB user name to use when connecting to the server.

-v, --verbose Verbose mode. Print more information about what the program does.

-V, --version Display version information and exit.

1.3.29 mariadb-dumpslow

From MariaDB 10.4.6, mariadb-dumpslow is a symlink to mysqldumpslow , the tool for examining the slow query

log.

From MariaDB 10.5.2, mariadb-dumpslow is the name of the tool, with mysqldumpslow a symlink .

mariadb-dumpslow is a tool to examine the slow query log.

It parses the slow query log files, printing a summary result. Normally, mariadb-dumpslow groups queries that are similar

except for the particular values of number and string data values. It <abstracts= these values to N and ´S´ when displaying

summary output. The -a and -n options can be used to modify value abstracting behavior.

Usage

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1397/4161

mariadb-dumpslow [options...] [logs...]

Options

Option Description

-a Don't abstract all numbers to N and strings to 'S'

-d , --debug Debug

-g PATTERN Grep: only consider statements that include this string

--help Display help

-h HOSTNAME Hostname of db server for *-slow.log filename (can be wildcard), default is '*', i.e. match all

-i NAME Name of server instance (if using mysql.server startup script)

-l Don't subtract lock time from total time

-n NUM Abstract numbers with at least NUM digits within names

-r Reverse the sort order (largest last instead of first)

-s ORDER

What to sort by (aa, ae, al, ar, at, a, c, e, l, r, t). at is default.

aa average rows affected

ae aggregated number of rows examined

al average lock time

ar average rows sent

at average query time

a rows affected

c count

e rows examined

l lock time

r rows sent

t query time

-t NUM Just show the top NUM queries.

-v , --verbose Verbose mode.

1.3.30 mariadb-embedded

From MariaDB 10.4.6, mariadb-embedded is a symlink to mysql_embedded , the embedded server.

From MariaDB 10.5.2, mariadb-embedded is the name of the tool, with mysql_embedded a symlink.

mariadb-embedded is a mariadb client statically linked to libmariadbd, the embedded server. Upon execution, an

embedded MariaDB server is instantiated and you can execute statements just as you would using the normal mariadb

client, using the same options.

Do not run mariadb-embedded using the same database as a running MariaDB server!

Examples

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1398/4161

sudo mariadb-embedded -e 'select user, host, password from mysql.user where user="root"'

+------+-----------+---+

| user | host | password |

+------+-----------+---+

| root | localhost | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | db1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | 127.0.0.1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | ::1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

+------+-----------+---+

Sending options with --server-arg :

sudo mariadb-embedded --server-arg='--skip-innodb'

 --server-arg='--default-storage-engine=myisam'

 --server-arg='--log-error=/tmp/mysql.err'

 -e 'select user, host, password from mysql.user where user="root"'

+------+-----------+---+

| user | host | password |

+------+-----------+---+

| root | localhost | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | db1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | 127.0.0.1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

| root | ::1 | *196BDEDE2AE4F84CA44C47D54D78478C7E2BD7B7 |

+------+-----------+---+

1.3.31 mariadb-find-rows

From MariaDB 10.4.6, mariadb-find-rows is a symlink to mysql_find_rows , the tool for reading files containing

SQL statements and extracting statements that match a given regular expression or that contain USE db_name or SET

statements.

From MariaDB 10.5.2, mariadb-find-rows is the name of the tool, with mysql_find_rows a symlink .

Contents
1. Usage

2. Options

3. Examples

mariadb-find-rows reads files containing SQL statements and extracts statements that match a given regular

expression or that contain USE db_name or SET statements. The utility was written for use with update log files (as used

prior to MySQL 5.0) and as such expects statements to be terminated with semicolon (;) characters. It may be useful with

other files that contain SQL statements as long as statements are terminated with semicolons.

Usage

mariadb-find-rows [options] [file_name ...]

Each file_name argument should be the name of file containing SQL statements. If no file names are given, mariadb-find-

rows reads the standard input.

Options
mariadb-find-rows supports the following options:

Option Description

--help , --Information Display help and exit.

--regexp=pattern Display queries that match the pattern.

--rows=N Quit after displaying N queries.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1399/4161

--skip-use-db Do not include USE db_name statements in the output.

--start_row=N Start output from this row (first row is 1).

Examples

mariadb-find-rows --regexp=problem_table --rows=20 < update.log

mariadb-find-rows --regexp=problem_table update-log.1 update-log.2

1.3.32 mariadb-fix-extensions

From MariaDB 10.4.6, mariadb-fix-extensions is a symlink to mysql_fix_extensions , the tool for converting

the extensions for MyISAM (or ISAM) table files to their canonical forms.

From MariaDB 10.5.2, mysql_fix_extensions is the symlink, and mariadb-fix-extensions the binary name.

mariadb-fix-extensions converts the extensions for MyISAM (or ISAM) table files to their canonical forms.

It looks for files with extensions matching any lettercase variant of .frm , .myd , .myi , .isd , and .ism and renames

them to have extensions of .frm , .MYD , .MYI , .ISD , and .ISM , respectively. This can be useful after transferring the

files from a system with case-insensitive file names (such as Windows) to a system with case-sensitive file names.

Invoke mariadb-fix-extensions as follows, where data_dir is the path name to the MariaDB data directory.

mariadb-fix-extensions data_dir

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.33 mariadb-install-db

From MariaDB 10.4.6, mariadb-install-db is a symlink to mysql_install_db . the tool for initializing the

MariaDB data directory and creating the system tables

From MariaDB 10.5.2, mysql_install_db is the symlink, and mariadb-install-db the binary name.

This page is for the mariadb-install-db script for Linux/Unix only

For the Windows specific tool of similar name and purpose see mysql_install_db.exe.

The Windows version shares the common theme (creating system tables), yet has a lot of functionality specific to

Windows systems, for example creating a Windows service. The Windows version does *not* share command line

parameters with the Unix shell script.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1400/4161

Contents
1. Using mariadb-install-db

1. Options

2. Option Files

1. Option Groups

2. Installing System Tables

1. Installing System Tables From a Source Tree

2. Installing System Tables From a Binary Tarball

3. User Accounts Created by Default

4. Troubleshooting Issues

1. Checking the Error Log

2. Testing With mysqld

5. Using a Server Compiled With --disable-grant-options

6. The test and test_% Databases

1. Not Creating the test Database and Anonymous User

mariadb-install-db initializes the MariaDB data directory and creates the system tables in the mysql database, if they

do not exist. MariaDB uses these tables to manage privileges, roles, and plugins. It also uses them to provide the data for

the help command in the mariadb client.

mariadb-install-db works by starting MariaDB Server's mysqld process in --bootstrap mode and sending commands

to create the system tables and their content.

Using mariadb-install-db
To invoke mariadb-install-db , use the following syntax:

$ mariadb-install-db [options]

Because the MariaDB server, mysqld , needs to access the data directory when it runs later, you should either run

mariadb-install-db from the same account that will be used for running mysqld or run it as root and use the --user

option to indicate the user name that mysqld will run as. It might be necessary to specify other options such as --

basedir or --datadir if mariadb-install-db does not use the correct locations for the installation directory or data

directory. For example:

$ scripts/mariadb-install-db --user=mysql \

 --basedir=/opt/mysql/mysql \

 --datadir=/opt/mysql/mysql/data

Options

mariadb-install-db supports the following options:

Option Description

--auth-root-

authentication-

method={normal |

socket}

If set to normal , it creates a root@localhost account that authenticates with the

mysql_native_password authentication plugin and that has no initial password set, which

can be insecure. If set to socket , it creates a root@localhost account that authenticates

with the unix_socket authentication plugin. Set to socket by default from MariaDB 10.4

(see Authentication from MariaDB 10.4), or normal by default in earlier versions. Available

since MariaDB 10.1.

--auth-root-

socket-user=USER

Used with --auth-root-authentication-method=socket . It specifies the name of the

second account to create with SUPER privileges in addition to root , as well as of the system

account allowed to access it. Defaults to the value of --user .

--basedir=path The path to the MariaDB installation directory.

--builddir=path
If using --srcdir with out-of-directory builds, you will need to set this to the location of the

build directory where built files reside.

--catalogs=

["list"]

 Initialize MariaDB for catalogs. Argument is a list, separated with space, of the catalogs to

create. The def catalog is created automatically. Added in MariaDB 11.3.

--catalog-

user=user
User when adding catalogs to running server. Added in MariaDB 11.3.

1401/4161

--catalog-

password[=password]
Password for catalog-user. Added in MariaDB 11.3.

--catalog-client-

arg=arg
Other arguments to 'mariadb' when adding new catalogs. Added in MariaDB 11.3.

--cross-bootstrap
For internal use. Used when building the MariaDB system tables on a different host than the

target.

--datadir=path , --

ldata=path
The path to the MariaDB data directory.

--debug=path Write commands to-be executed in 'path'. Added in MariaDB 11.3.

--defaults-extra-

file=name
Read this file after the global files are read. Must be given as the first option.

--defaults-

file=name
Only read default options from the given file name Must be given as the first option.

--defaults-group-

suffix=name

In addition to the given groups, read also groups with this suffix. From MariaDB 10.1.31 ,

MariaDB 10.2.13 and MariaDB 10.3.5 .

--force
Causes mariadb-install-db to run even if DNS does not work. In that case, grant table

entries that normally use host names will use IP addresses.

--no-defaults Don't read default options from any option file. Must be given as the first option.

--print-defaults Print the program argument list and exit. Must be given as the first option.

--rpm For internal use. This option is used by RPM files during the MariaDB installation process.

--skip-name-

resolve

Uses IP addresses rather than host names when creating grant table entries. This option can be

useful if your DNS does not work.

--skip-test-db Don't install the test database

--srcdir=path

For internal use. The path to the MariaDB source directory. This option uses the compiled

binaries and support files within the source tree, useful for if you don't want to install MariaDB

yet and just want to create the system tables. The directory under which mariadb-install-

db looks for support files such as the error message file and the file for populating the help

tables.

--user=user_name

The login user name to use for running mysqld . Files and directories created by mysqld will

be owned by this user. You must be root to use this option. By default, mysqld runs using

your current login name and files and directories that it creates will be owned by you.

--verbose Verbose mode. Print more information about what the program does.

--windows For internal use. This option is used for creating Windows distributions.

Option Files

In addition to reading options from the command-line, mariadb-install-db can also read options from option files. If an

unknown option is provided to mariadb-install-db in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

Option Groups

mariadb-install-db reads options from the following option groups from option files:

1402/4161

https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

Group Description

[mysql_install_db] Options read by mysqld_safe , which includes both MariaDB Server and MySQL Server.

mariadb-install-db also reads options from the following server option groups from option files:

Group Description

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[server] Options read by MariaDB Server.

[mysqld-

X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-5.5] .

[mariadb] Options read by MariaDB Server.

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server.

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[galera] Options read by a galera-capable MariaDB Server. Available on systems compiled with Galera support.

Installing System Tables

Installing System Tables From a Source Tree

If you have just compiled MariaDB from source, and if you want to use mariadb-install-db from your source tree, then

that can be done without having to actually install MariaDB. This is very useful if you want to test your changes to MariaDB

without disturbing any existing installations of MariaDB.

To do so, you would have to provide the --srcdir option. For example:

./scripts/mariadb-install-db --srcdir=. --datadir=path-to-temporary-data-dir

Installing System Tables From a Binary Tarball

If you install a binary tarball package in a non standard path, like your home directory, and if you already have a MariaDB /

MySQL package installed, then you may get conflicts with the default /etc/my.cnf . This often results in permissions

errors.

One possible solution is to use the --no-defaults option, so that it does not read any option files. For example:

./scripts/mariadb-install-db --no-defaults --basedir=. --datadir=data

Another possible solution is to use the defaults-file option, so that you can specify your own option file. For example:

./scripts/mariadb-install-db --defaults-file=~/.my.cnf

User Accounts Created by Default

In MariaDB 10.4 and later, mariadb-install-db sets --auth-root-authentication-method=socket by default.

When this is set, the default root@localhost user account is created with the ability to use two authentication

plugins:

First, it is configured to try to use the unix_socket authentication plugin. This allows the the root@localhost

user to login without a password via the local Unix socket file defined by the socket system variable, as long as

the login is attempted from a process owned by the operating system root user account.

Second, if authentication fails with the unix_socket authentication plugin, then it is configured to try to use the

mysql_native_password authentication plugin.

The definition of the default root@localhost user account is:

MariaDB starting with 10.4

1403/4161

CREATE USER 'root'@'localhost' IDENTIFIED VIA unix_socket

 OR mysql_native_password USING 'invalid';

GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION;

GRANT PROXY ON ''@'%' TO 'root'@'localhost' WITH GRANT OPTION;

Since mariadb-install-db sets --auth-root-authentication-method=socket by default, the following

additional user accounts are not created by default:

root@127.0.0.1

root@::1

root@${current_hostname}

However, an additional user account that is defined by the --auth-root-socket-user option is created. If this

option is not set, then the value defaults to the value of the --user option. On most systems, the --user option will

use the value of mysql by default, so this additional user account would be called mysql@localhost .

The definition of this mysql@localhost user account is similar to the root@localhost user account:

CREATE USER 'mysql'@'localhost' IDENTIFIED VIA unix_socket

 OR mysql_native_password USING 'invalid';

GRANT ALL PRIVILEGES ON *.* TO 'mysql'@'localhost' WITH GRANT OPTION;

An invalid password is initially set for both of these user accounts. This means that before a password can be used to

authenticate as either of these user accounts, the accounts must first be given a valid password by executing the SET

PASSWORD statement.

For example, here is an example of setting the password for the root@localhost user account immediately after

installation:

$ sudo yum install MariaDB-server

$ sudo systemctl start mariadb

$ sudo mariadb

...

MariaDB> SET PASSWORD = PASSWORD('XH4VmT3_jt');

You may notice in the above example that the mariadb command-line client is executed via sudo . This allows the

root@localhost user account to successfully authenticate via the unix_socket authentication plugin.

In MariaDB 10.3 and before, mariadb-install-db sets --auth-root-authentication-method=normal by

default. When this is set, the following default accounts are created with no password:

root@localhost

root@127.0.0.1

root@::1

root@${current_hostname}

The definition of the default root@localhost user account is:

CREATE USER 'root'@'localhost';

GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION;

GRANT PROXY ON ''@'%' TO 'root'@'localhost' WITH GRANT OPTION;

The definition of the other default root accounts is similar.

A password should be set for these user accounts immediately after installation. This can be done either by executing

the SET PASSWORD statement or by running mysql_secure_installation.

For example, here is an example of setting the password for the root@localhost user account immediately after

installation:

$ sudo yum install MariaDB-server

$ sudo systemctl start mariadb

$ mysql -u root

...

MariaDB> SET PASSWORD = PASSWORD('XH4VmT3_jt');

Since mariadb-install-db sets --auth-root-authentication-method=normal by default, the --auth-root-

socket-user option is ignored by default.

MariaDB until 10.3

1404/4161

https://linux.die.net/man/8/sudo

Troubleshooting Issues

Checking the Error Log

If mariadb-install-db fails, you should examine the error log in the data directory, which is the directory specified with

--datadir option. This should provide a clue about what went wrong.

Testing With mysqld

You can also test that this is not a general fault of MariaDB Server by trying to start the mysqld process. The -skip-grant-

tables option will tell it to ignore the system tables. Enabling the general query log can help you determine what queries are

being run on the server. For example:

mysqld --skip-grant-tables --general-log

At this point, you can use the mariadb client to connect to the mysql database and look at the system tables. For example:

$ /usr/local/mysql/bin/mysql -u root mysql

MariaDB [mysql]> show tables

Using a Server Compiled With --disable-grant-options
The following only apply in the exceptional case that you are using a mysqld server which is configured with the --

disable-grant-options option:

mariadb-install-db needs to invoke mysqld with the --bootstrap and --skip-grant-tables options. A

MariaDB configured with the --disable-grant-options option has --bootstrap and --skip-grant-tables

disabled. To handle this case, set the MYSQLD_BOOTSTRAP environment variable to the full path name of a mysqld server

that is configured without --disable-grant-options . mariadb-install-db will use that server.

The test and test_% Databases
When calling the mariadb-install-db script, a new folder called test is created in the data directory. It only has the

single db.opt file, which sets the client options default-character-set and default-collation only.

If you run mysql as an anonymous user, mysql -u''@localhost , and look for the grants and databases you are able

to work with, you will get the following:

SELECT current_user;

+--------------+

| current_user |

+--------------+

| @localhost |

+--------------+

SHOW GRANTS FOR current_user;

+--------------------------------------+

| Grants for @localhost |

+--------------------------------------+

| GRANT USAGE ON *.* TO ``@`localhost` |

+--------------------------------------+

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| test |

+--------------------+

Shown are the information_schema as well as test databases that are built in databases. But looking from SHOW

GRANTS appears to be a paradox; how can the current user see something if they don't have privileges for that?

Let's go a step further.

Now, use the root / unix user, which has all rights, in order to create a new database with the prefix test_ , something

1405/4161

like:

CREATE DATABASE test_electricity;

With the above change, a new directory will be created in the data directory.

Now login again with the anonymous user and run SHOW DATABASES:

SHOW DATABASES

+--------------------+

| Database |

+--------------------+

| information_schema |

| test |

| test_electricity |

+--------------------+

Again we are able to see the newly created database, without any rights? We have an anonymous user that has no

privileges, but still can see the test and test_electricity databases.

Where does this come from?

Login with the root / unix user to find out all privileges that the anonymous user has:

1406/4161

SELECT * FROM mysql.user WHERE user='' AND host='localhost'\G

*************************** 1. row ***************************

 Host: localhost

 User:

 Password:

 Select_priv: N

 Insert_priv: N

 Update_priv: N

 Delete_priv: N

 Create_priv: N

 Drop_priv: N

 Reload_priv: N

 Shutdown_priv: N

 Process_priv: N

 File_priv: N

 Grant_priv: N

 References_priv: N

 Index_priv: N

 Alter_priv: N

 Show_db_priv: N

 Super_priv: N

 Create_tmp_table_priv: N

 Lock_tables_priv: N

 Execute_priv: N

 Repl_slave_priv: N

 Repl_client_priv: N

 Create_view_priv: N

 Show_view_priv: N

 Create_routine_priv: N

 Alter_routine_priv: N

 Create_user_priv: N

 Event_priv: N

 Trigger_priv: N

Create_tablespace_priv: N

 Delete_history_priv: N

 ssl_type:

 ssl_cipher:

 x509_issuer:

 x509_subject:

 max_questions: 0

 max_updates: 0

 max_connections: 0

 max_user_connections: 0

 plugin:

 authentication_string:

 password_expired: N

 is_role: N

 default_role:

 max_statement_time: 0.000000

As seen above from the mysql.user table, the anonymous user doesn't have any global privileges. Still, the anonymous user

can see databases, so there must be a way so that anonymous user can see the test and test_electricity

databases.

Let's check for grants on the database level. That information can be found in the mysql.db table. Looking at the mysql.db

table, it already contains 2 rows created when the mariadb-install-db script was invoked.

The anonymous user has database privileges (without grant , alter_routine and execute) on test and test_%

databases:

1407/4161

SELECT * FROM mysql.db\G

*************************** 1. row ***************************

 Host: %

 Db: test

 User:

 Select_priv: Y

 Insert_priv: Y

 Update_priv: Y

 Delete_priv: Y

 Create_priv: Y

 Drop_priv: Y

 Grant_priv: N

 References_priv: Y

 Index_priv: Y

 Alter_priv: Y

Create_tmp_table_priv: Y

 Lock_tables_priv: Y

 Create_view_priv: Y

 Show_view_priv: Y

 Create_routine_priv: Y

 Alter_routine_priv: N

 Execute_priv: N

 Event_priv: Y

 Trigger_priv: Y

 Delete_history_priv: Y

*************************** 2. row ***************************

 Host: %

 Db: test_%

 User:

 Select_priv: Y

 Insert_priv: Y

 Update_priv: Y

 Delete_priv: Y

 Create_priv: Y

 Drop_priv: Y

 Grant_priv: N

 References_priv: Y

 Index_priv: Y

 Alter_priv: Y

Create_tmp_table_priv: Y

 Lock_tables_priv: Y

 Create_view_priv: Y

 Show_view_priv: Y

 Create_routine_priv: Y

 Alter_routine_priv: N

 Execute_priv: N

 Event_priv: Y

 Trigger_priv: Y

 Delete_history_priv: Y

The first row is reserved for explicit usage for the test database, which is automatically created with mariadb-install-

db .

Since database test_electricity satisfies the test_% pattern where test_ is a prefix, we can understand why the

user has the right to work with the newly-created database.

As long as records in mysql.db for the anonymous user exists, each new user created will have the privileges for the

test and test_% databases.

Other databases privileges are not automatically granted for the newly created user. We have to grant privileges, which

will be visible in mysql.db table.

Not Creating the test Database and Anonymous User

If you run mariadb-install-db with the --skip-test-db option, no test database will be created, which we can see

as follows:

1408/4161

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

+--------------------+

SELECT * FROM mysql.db;

Empty set (0.001 sec)

Also, no anonymous user is created (only unix / mariadb.sys / root users):

SELECT user,host FROM mysql.user;

+-------------+-----------+

| User | Host |

+-------------+-----------+

| anel | localhost |

| mariadb.sys | localhost |

| root | localhost |

+-------------+-----------+

1.3.34 mariadb-plugin

From MariaDB 10.4.6, mariadb-plugin is a symlink to mysql_plugin , the tool for enabling or disabling plugins.

From MariaDB 10.5.2, mysql_plugin is the symlink, and mariadb-plugin the binary name.

Contents
1. Usage

2. Options

mariadb-plugin is a tool for enabling or disabling plugins.

It is a commandline alternative to the INSTALL PLUGIN and UNINSTALL PLUGIN statements, and the --plugin-load

option to mysqld.

mariadb-plugin must be run while the server is offline, and works by adding or removing rows from the mysql.plugin

table.

mariadb-plugin basically has two use cases:

adding a plugin even before the first real server startup

removing a plugin that crashes the server on startup

For the install use case, adding a plugin-load-add entry to my.cnf or in a separate include option file, is probably a better

alternative. In case of a plugin loaded via a mysql.plugin crashing the server, uninstalling the plugin with the help of

mariadb-plugin can be the only viable action though.

Usage

mariadb-plugin [options] <plugin> ENABLE|DISABLE

mariadb-plugin expects to find a configuration file that indicates how to configure the plugins. The configuration file is by

default the same name as the plugin, with a .ini extension. For example:

mariadb-plugin crazyplugins ENABLE

Here, mariadb-plugin will look for a file called crazyplugins.ini

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1409/4161

crazyplugins

crazyplugin1

crazyplugin2

crazyplugin3

The first line should contain the name of the library object file, with no extension. The other lines list the names of the

components. Each value should be on a separate line, and the # character at the start of the line indicates a comment.

Options
The following options can be specified on the command line, while some can be specified in the [mysqld] group of any

option file. For options specified in a [mysqld] group, only the --basedir , --datadir , and --plugin-dir options

can be used - the rest are ignored.

Option Description

-b , --basedir=name The base directory for the server.

-d , --datadir=name The data directory for the server.

-? , --help Display help and exit.

-f , --my-print-

defaults=name
Path to my_print_defaults executable. Example: /source/temp11/extra

-m , --mysqld=name Path to mysqld executable. Example: /sbin/temp1/mysql/bin

-n , --no-defaults Do not read values from configuration file.

-p , --plugin-dir=name The plugin directory for the server.

-i , --plugin-ini=name
Read plugin information from configuration file specified instead of from <plugin-

dir>/<plugin_name>.ini .

-P , --print-defaults Show default values from configuration file.

-v , --verbose More verbose output; you can use this multiple times to get even more verbose output.

-V , --version Output version information and exit.

1.3.35 mariadb-report

From MariaDB 10.4.6, mariadb-report is a symlink to mysqlreport , the binary for showing the value of important

status variables.

From MariaDB 10.5.2, mariadb-report is the name of the binary, with mysqlreport a symlink .

Contents
1. Usage

2. mariadb-report options

mariadb-report makes a friendly report of important MariaDB status values. Actually, it makes a friendly report of nearly

every status value from SHOW STATUS. Unlike SHOW STATUS which simply dumps over 100 values to the screen in one

long list, mariadb-report interprets and formats the values and presents the basic values and many more inferred values in a

human-readable format. Numerous example reports are available in the archive of the old hackmysql.com/mysqlreport ,

archived here .

The benefit of mariadb-report is that it allows you to very quickly see a wide array of performance indicators for your

MariaDB server which would otherwise need to be calculated by hand from all the various SHOW STATUS values. For

example, the Index Read Ratio is an important value but it's not present in SHOW STATUS; it's an inferred value (the ratio

of Key_reads to Key_read_requests).

This documentation outlines all the command line options in mariadb-report, most of which control which reports are printed.

This document does not address how to interpret these reports; that topic is covered in the document Guide To

Understanding mysqlreport, archived here .

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1410/4161

http://hackmysql.com/mysqlreport
https://github.com/daniel-nichter/hackmysql.com/tree/master/mysqlreport
https://github.com/daniel-nichter/hackmysql.com/blob/master/mysqlreport/mysqlreportguide.html

Usage

mariadb-report [options]

mariadb-report options
Technically, command line options are in the form --option , but -option works too. All options can be abbreviated if the

abbreviation is unique. For example, option --host can be abbreviated to --ho but not --h because --h is

ambiguous: it could mean --host or --help .

Option Description

--all Equivalent to --dtq --dms --com 3 --sas --qcache . (Notice --tab is not invoked by --all .)

--com N

Print top N number of non-DMS Com_ status values in descending order (after DMS in Questions report). If N

is not given, default is 3. Such non-DMS Com_ values include Com_change_db, Com_show_tables,

Com_rollback, etc.

--dms

Print Data Manipulation Statements (DMS) report (under DMS in Questions report). DMS are those from the

Data Manipulation section. mariadb-report considers only SELECT, INSERT, REPLACE, UPDATE, and

DELETE. Each DMS is listed in descending order by count.

--dtq

Print Distribution of Total Queries (DTQ) report (under Total in Questions report). Queries (or Questions) can

be divided into four main areas: DMS (see --dms), Com_ (see --com), COM_QUIT (see COM_QUIT and

Questions, archived here), and Unknown. --dtq lists the number of queries in each of these areas in

descending order.

--email

ADDRESS

After printing the report to screen, email the report to ADDRESS. This option requires sendmail in /usr/sbin/,

therefore it does not work on Windows. /usr/sbin/sendmail can be a sym link to qmail, for example, or any

MTA that emulates sendmail's -t command line option and operation. The FROM: field is "mariadb-report",

SUBJECT: is "MySQL status report".

--

flush-

status

Execute a FLUSH STATUS after generating the reports. If you do not have permissions in MariaDB to do this

an error from DBD::mysql::st will be printed after the reports.

--help Output help information and exit.

--host

ADDRESS
Host address.

--

infile

FILE

Instead of getting SHOW STATUS values from MariaDB, read values from FILE. FILE is often a copy of the

output of SHOW STATUS including formatting characters (+, -). mariadb-report expects FILE to have the

format " value number " where value is only alpha and underscore characters (A-Z and _) and number is a

positive integer. Anything before, between, or after value and number is ignored. mariadb-report also needs

the following MariaDB server variables: version, table_cache, max_connections, key_buffer_size,

query_cache_size. These values can be specified in INFILE in the format "name = value" where name is one

of the aforementioned server variables and value is a positive integer with or without a trailing M and possible

periods (for version). For example, to specify an 18M key_buffer_size: key_buffer_size = 18M. Or, a 256

table_cache: table_cache = 256. The M implies Megabytes not million, so 18M means 18,874,368 not

18,000,000. If these server variables are not specified the following defaults are used (respectively) which

may cause strange values to be reported: 0.0.0, 64, 100, 8M, 0.

--no-

mycnf

Makes mariadb-report not read /.my.cnf which it does by default otherwise. --user and --password

always override values from /.my.cnf.

--

outfile

FILE

After printing the report to screen, print the report to FILE too. Internally, mariadb-report always writes the

report to a temp file first: /tmp/mysqlreport.PID on *nix, c:sqlreport.PID on Windows (PID is the

script's process ID). Then it prints the temp file to screen. Then if --outfile is specified, the temp file is

copied to OUTFILE. After --email (above), the temp file is deleted.

--

password

As of version 2.3 --password can take the password on the command line like --password FOO . Using -

-password alone without giving a password on the command line causes mariadb-report to prompt for a

password.

--port

PORT
Port number.

--

qcache
Print Query Cache report.

1411/4161

https://github.com/daniel-nichter/hackmysql.com/blob/master/mysqlreport/mysqlreportguide.html

--sas
Print report for Select_ and Sort_ status values (after Questions report). See MySQL Select and Sort Status

Variables, archived here .

--

socket

SOCKET

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.

--tab
Print Threads, Aborted, and Bytes status reports (after Created temp report). The Threads report reports on

all Threads_ status values.

--user

USERNAME
Username.

1.3.36 mariadb-secure-installation

Note that many of the reasons for the existence of this script no longer apply (and therefore the guidelines in many

online tutorials. In particular, from MariaDB 10.4, Unix socket authentication is applied by default, and there is usually

no need to create a root password. See Authentication from MariaDB 10.4.

From MariaDB 10.4.6, mariadb-secure-installation is a symlink to mysql_secure_installation, the script for

enabling you to improve the security of your MariaDB installation.

From MariaDB 10.5.2, mysql_secure_installation is the symlink, and mariadb-secure-installation the

binary name.

Contents
1. Description

1. Options

2. Option Files

1. Option Groups

3. Use With Galera Cluster

Description
mariadb-secure-installation is a shell script available on Unix systems, and enables you to improve the security of

your MariaDB installation in the following ways:

You can set a password for root accounts.

You can remove root accounts that are accessible from outside the local host.

You can remove anonymous-user accounts.

You can remove the test database, which by default can be accessed by anonymous users.

mariadb-secure-installation can be invoked without arguments:

shell> mariadb-secure-installation

The script will prompt you to determine which actions to perform.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1412/4161

https://github.com/daniel-nichter/hackmysql.com/blob/master/mysqlreport/mysqlreportguide.html

Example:

localhost:# mariadb-secure-installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB

 SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MariaDB to secure it, we'll need the current

password for the root user. If you've just installed MariaDB, and

you haven't set the root password yet, the password will be blank,

so you should just press enter here.

Enter current password for root (enter for none):

OK, successfully used password, moving on...

Setting the root password ensures that nobody can log into the MariaDB

root user without the proper authorisation.

You already have a root password set, so you can safely answer 'n'.

Change the root password? [Y/n] n

 ... skipping.

By default, a MariaDB installation has an anonymous user, allowing anyone

to log into MariaDB without having to have a user account created for

them. This is intended only for testing, and to make the installation

go a bit smoother. You should remove them before moving into a

production environment.

Remove anonymous users? [Y/n] y

 ... Success!

Normally, root should only be allowed to connect from 'localhost'. This

ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n] y

 ... Success!

By default, MariaDB comes with a database named 'test' that anyone can

access. This is also intended only for testing, and should be removed

before moving into a production environment.

Remove test database and access to it? [Y/n] y

 - Dropping test database...

 ... Success!

 - Removing privileges on test database...

 ... Success!

Reloading the privilege tables will ensure that all changes made so far

will take effect immediately.

Reload privilege tables now? [Y/n] y

 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB

installation should now be secure.

Thanks for using MariaDB!

Options

mariadb-secure-installation accepts some options:

Option Description

--basedir=dir Base directory.

1413/4161

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

Other unrecognized options will be passed on to the server.

Option Files

In addition to reading options from the command-line, mariadb-secure-installation can also read options from option

files. If an unknown option is provided to mariadb-secure-installation in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

Option Groups

mariadb-secure-installation reads options from the following option groups from option files:

Group Description

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Use With Galera Cluster

This script is not 100% safe for use with Galera Cluster as it directly manipulates the mysql.user/mysql.global_priv table,

which is not transported by Galera to the other nodes.

You should run this script on the first node in the cluster before adding more nodes.

If you want to run this after the cluster is up and running you should find alternative ways.

Anyone can vote for this to be fixed at https://jira.mariadb.org/browse/MDEV-10112 .

1.3.37 mariadb-setpermission

From MariaDB 10.4.6, mariadb-setpermission is a symlink to mysql_setpermission , the script for assisting with

adding users or databases or changing passwords in MariaDB.

From MariaDB 10.5.2, mysql_setpermission is the symlink, and mariadb-setpermission the binary name.

Contents
1. Syntax

2. Description

3. Options

4. Example

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1414/4161

https://jira.mariadb.org/browse/MDEV-10112

Syntax

mariadb-setpermission [options]

Description
mariadb-setpermission is a Perl script that was originally written and contributed by Luuk de Boer. It requires the DBI and

DBD::mysql Perl modules to be installed. mariadb-setpermission can help you add users or databases or change passwords

in MariaDB.

It interactively sets permissions in the MariaDB grant tables, but does not check permissions which have already been set in

MariaDB. So if you can't connect to MariaDB using the permission you just added, take a look at the permissions which

have already been set in MariaDB.

The account used when you connect determines which permissions you have when attempting to modify existing

permissions in the grant tables.

mariadb-setpermission also reads options from the [client] and [perl] groups in the .my.cnf file in your home directory, if the

file exists.

The following options are available:

Options

Option Description

--help Display a help message and exit.

--host=host_name Connect to the MariaDB server on the given host.

--

password=password

The password to use when connecting to the server. Note that the password value is not optional

for this option, unlike for other MariaDB programs Specifying a password on the command line

should be considered insecure. You can use an option file to avoid giving the password on the

command line.

--port=port_num The TCP/IP port number to use for the connection.

--socket=path For connections to localhost, the Unix socket file to use.

--user=user_name The MariaDB user name to use when connecting to the server.

Example

./mariadb-setpermission --user=msandbox --password=msandbox --host=127.0.0.1 --port=11200

##

Welcome to the permission setter 1.4 for MariaDB.

made by Luuk de Boer

##

What would you like to do:

 1. Set password for an existing user.

 2. Create a database + user privilege for that database

 and host combination (user can only do SELECT)

 3. Create/append user privilege for an existing database

 and host combination (user can only do SELECT)

 4. Create/append broader user privileges for an existing

 database and host combination

 (user can do SELECT,INSERT,UPDATE,DELETE)

 5. Create/append quite extended user privileges for an

 existing database and host combination (user can do

 SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,INDEX,

 LOCK TABLES,CREATE TEMPORARY TABLES)

 6. Create/append full privileges for an existing database

 and host combination (user has FULL privilege)

 7. Remove all privileges for for an existing database and

 host combination.

 (user will have all permission fields set to N)

 0. exit this program

1415/4161

1.3.38 mariadb-show

From MariaDB 10.4.6, mariadb-show is a symlink to mysqlshow , the script showing the structure of a MariaDB

database.

From MariaDB 10.5.2, mysqlshow is the symlink, and mariadb-show the binary name.

Contents
1. Using mariadb-show

1. Options

2. Option Files

1. Option Groups

2. Examples

Shows the structure of a MariaDB database (databases, tables, columns and indexes). You can also use SHOW

DATABASES, SHOW TABLES, SHOW COLUMNS, SHOW INDEX and SHOW TABLE STATUS, as well as the Information

Schema tables (TABLES, COLUMNS, STATISTICS), to get similar functionality.

Using mariadb-show

mariadb-show [OPTIONS] [database [table [column]]]

The output displays only the names of those databases, tables, or columns for which you have some privileges.

If no database is given then all matching databases are shown. If no table is given, then all matching tables in database are

shown. If no column is given, then all matching columns and column types in table are shown.

If the last argument contains a shell or SQL wildcard (*,?,% or _) then only what's matched by the wildcard is shown. If a

database name contains any underscores, those should be escaped with a backslash (some Unix shells require two) to get

a list of the proper tables or columns. <*= and <?= characters are converted into SQL <%= and <_= wildcard characters. This

might cause some confusion when you try to display the columns for a table with a <_= in the name, because in this case,

mariadb-show shows you only the table names that match the pattern. This is easily fixed by adding an extra <%= last on the

command line as a separate argument.

Options

mariadb-show supports the following options:

Option Description

-c name , --

character-sets-

dir=name

Directory for character set files.

-C , --compress Use compression in server/client protocol if both support it.

--count Show number of rows per table (may be slow for non-MyISAM tables).

-# [name] , --

debug[=name]
Output debug log. Typical is d:t:o,filename , the default is d:t:o .

--debug-check Check memory and open file usage at exit.

--debug-info Print some debug info at exit.

--default-

auth=name
Default authentication client-side plugin to use.

--default-

character-set=name
Set the default character set.

--defaults-extra-

file=name
Read the file name after the global files are read. Must be given as the first option.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1416/4161

--defaults-

file=name
Only read default options from the given file name. Must be given as the first option.

--defaults-group-

suffix=suffix
In addition to the given groups, also read groups with this suffix.

-? , --help Display help and exit.

-h name , --

host=name
Connect to the MariaDB server on the given host.

-k , --keys Show indexes for table.

--no-defaults Don't read default options from any option file. Must be given as the first option.

-p[password] , --

password[=password]

Password to use when connecting to server. If password is not given, it's solicited on the

command line. Specifying a password on the command line should be considered insecure.

You can use an option file to avoid giving the password on the command line.

-W , --pipe
On Windows, connect to the server via a named pipe. This option applies only if the server

supports named-pipe connections.

--plugin-dir=name Directory for client-side plugins.

-P num , --port=num
Port number to use for connection or 0 for default to, in order of preference, my.cnf,

$MYSQL_TCP_PORT, /etc/services, built-in default (3306).

--print-defaults Print the program argument list and exit. Must be given as the first option.

--protocol=name The protocol to use for connection (tcp, socket, pipe, memory).

--shared-memory-

base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to

a local server. The default value is MYSQL . The shared-memory name is case sensitive. The

server must be started with the --shared-memory option to enable shared-memory

connections.

-t , --show-table-

type
Show table type column, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.

-S name , --

socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the

named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS

options are set. Starting with MariaDB 10.2, the --ssl option will not enable verifying the

server certificate by default. In order to verify the server certificate, the user must specify the -

-ssl-verify-server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted

Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute path,

not a relative path. See Secure Connections Overview: Certificate Authorities (CAs) for more

information. This option implies the --ssl option.

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option requires that

you use the absolute path, not a relative path. The directory specified by this option needs to be

run through the openssl rehash command. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option is only supported if the client was

built with OpenSSL. If the client was built with yaSSL, GnuTLS, or Schannel, then this option is

not supported. See TLS and Cryptography Libraries Used by MariaDB for more information

about which libraries are used on which platforms. This option implies the --ssl option.

--ssl-cert=name
Defines a path to the X509 certificate file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-cipher=name List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the absolute

path, not a relative path. This option implies the --ssl option.

1417/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use

for TLS. This option requires that you use the absolute path, not a relative path. See Secure

Connections Overview: Certificate Revocation Lists (CRLs) for more information. This option is

only supported if the client was built with OpenSSL or Schannel. If the client was built with

yaSSL or GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used

by MariaDB for more information about which libraries are used on which platforms. This option

implies the --ssl option.

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

revoked X509 certificate to use for TLS. This option requires that you use the absolute path, not

a relative path. The directory specified by this option needs to be run through the openssl

rehash command. See Secure Connections Overview: Certificate Revocation Lists

(CRLs) for more information. This option is only supported if the client was built with OpenSSL.

If the client was built with yaSSL, GnuTLS, or Schannel, then this option is not supported. See

TLS and Cryptography Libraries Used by MariaDB for more information about which libraries

are used on which platforms. This option implies the --ssl option.

--ssl-verify-

server-cert
Enables (or disables) server certificate verification. This option is disabled by default.

-i , --status
Shows a lot of extra information about each table. See the INFORMATION_SCHEMA.TABLES

table for more details on the returned information.

--tls-version=name

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol version

will only be enabled if it is present in this list. All other TLS protocol versions will not be

permitted. See Secure Connections Overview: TLS Protocol Versions for more information. This

option was added in MariaDB 10.4.6.

-u , --user=name User for login if not current user.

-v , --verbose More verbose output; you can use this multiple times to get even more verbose output.

-V , --version Output version information and exit.

Option Files

In addition to reading options from the command-line, mariadb-show can also read options from option files. If an

unknown option is provided to mariadb-show in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

In MariaDB 10.2 and later, mariadb-show is linked with MariaDB Connector/C . However, MariaDB Connector/C does

not yet handle the parsing of option files for this client. That is still performed by the server option file parsing code. See

MDEV-19035 for more information.

Option Groups

mariadb-show reads options from the following option groups from option files:

Group Description

[mysqlshow] Options read by mysqlshow , which includes both MariaDB Server and MySQL Server.

[mariadb-

show]
Options read by mariadb-show . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

1418/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Examples
Getting a list of databases:

bin/mariadb-show

+--------------------+

| Databases |

+--------------------+

| information_schema |

| test |

+--------------------+

Getting a list of tables in the test database:

bin/mariadb-show test

Database: test

+---------+

| Tables |

+---------+

| author |

| book |

| city |

| country |

+---------+

Getting a list of columns in the test . book table:

bin/mariadb-show test book

Database: test Table: book

+-----------+-----------------------+-------------------+------+-----+---------+-------------

---+--------------------------------+---------+

| Field | Type | Collation | Null | Key | Default | Extra

| Privileges | Comment |

+-----------+-----------------------+-------------------+------+-----+---------+-------------

---+--------------------------------+---------+

| id | mediumint(8) unsigned | | NO | PRI | |

auto_increment | select,insert,update,references | |

| title | varchar(200) | latin1_swedish_ci | NO | | |

| select,insert,update,references | |

| author_id | smallint(5) unsigned | | NO | MUL | |

| select,insert,update,references | |

+-----------+-----------------------+-------------------+------+-----+---------+-------------

---+--------------------------------+---------+

1.3.39 mariadb-slap

From MariaDB 10.4.6, mariadb-slap is a symlink to mysqlslap , the tool for load-testing MariaDB.

From MariaDB 10.5.2, mysqlslap is the symlink, and mariadb-slap the binary name.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1419/4161

Contents
1. Using mariadb-slap

1. Options

2. Option Files

1. Option Groups

2. Examples

mariadb-slap is a tool for load-testing MariaDB. It allows you to emulate multiple concurrent connections, and run a set of

queries multiple times.

It returns a benchmark including the following information:

Average number of seconds to run all queries

Minimum number of seconds to run all queries

Maximum number of seconds to run all queries

Number of clients running queries

Average number of queries per client

Using mariadb-slap
The command to use mariadb-slap and the general syntax is:

mariadb-slap [options]

Options

mariadb-slap supports the following options:

Option Description

-a , --auto-

generate-sql

Generate SQL statements automatically when they are not supplied in files or via command

options.

--auto-generate-

sql-add-

autoincrement

Add an AUTO_INCREMENT column to auto-generated tables.

--auto-generate-

sql-execute-

number=num

Specify how many queries to generate automatically.

--auto-generate-

sql-guid-primary
Add GUID based primary keys to auto-generated tables.

--auto-generate-

sql-load-type=name

Specify the test load type. The allowable values are read (scan tables), write (insert into

tables), key (read primary keys), update (update primary keys), or mixed (half inserts, half

scanning selects). The default is mixed.

--auto-generate-

sql-secondary-

indexes=num

Number of secondary indexes to add to auto-generated tables. By default, none are added.

--auto-generate-

sql-unique-query-

number=num

Number of unique queries to generate for automatic tests. For example, if you run a key test

that performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique

queries, or with a value of 50 to perform 50 different selects. The default is 10.

--auto-generate-

sql-unique-write-

number=num

Number of unique queries to generate for auto-generate-sql-write-number .

--auto-generate-

sql-write-

number=num

Number of row inserts to perform for each thread. The default is 100.

--commit=num Number of statements to execute before committing. The default is 0.

-C , --compress Use compression in server/client protocol if both support it.

-c name , --

concurrency=name
Number of clients to simulate for query to run.

1420/4161

--create=name File or string containing the statement to use for creating the table.

--create-

schema=name
Schema to run tests in.

--csv[=name] Generate comma-delimited output to named file or to standard output if no file is named.

-# , --

debug[=options]

For debug builds, write a debugging log. A typical debug_options string is d:t:o,file_name .

The default is d:t:o,/tmp/mariadb-slap.trace .

--debug-check Check memory and open file usage at exit.

-T, --debug-info Print some debug info at exit.

--default-

auth=name
Default authentication client-side plugin to use.

--defaults-extra-

file=name
Read this file after the global files are read. Must be given as the first option.

--defaults-

file=name
Only read default options from the given file name Must be given as the first option.

-F name , --

delimiter=name
Delimiter to use in SQL statements supplied in file or command line.

--detach=num
Detach (close and reopen) connections after the specified number of requests. The default is 0

(connections are not detached).

-e name , --

engine=name

Comma separated list of storage engines to use for creating the table. The test is run for each

engine. You can also specify an option for an engine after a #:#, for example

memory:max_row=2300 .

-? , --help Display help and exit.

-h name , --

host=name
Connect to the MariaDB server on the given host.

--init-

command=name

SQL Command to execute when connecting to the MariaDB server. Will automatically be re-

executed when reconnecting. Added in MariaDB 5.5.34 .

-i num , --

iterations=num
Number of times to run the tests.

--no-defaults Don't read default options from any option file. Must be given as the first option.

--no-drop Do not drop any schema created during the test after the test is complete.

-x name , --number-

char-cols=name
Number of VARCHAR columns to create in table if specifying --auto-generate-sql .

-y name , --number-

int-cols=name
Number of INT columns to create in table if specifying --auto-generate-sql .

--number-of-

queries=num

Limit each client to approximately this number of queries. Query counting takes into account the

statement delimiter. For example, if you invoke as follows, mariadb-slap --delimiter=";"

--number-of-queries=10 --query="use test;insert into t values(null)" , the

#;# delimiter is recognized so that each instance of the query string counts as two queries. As a

result, 5 rows (not 10) are inserted.

--only-print Do not connect to the databases, but instead print out what would have been done.

-p[password] , --

password[=password]

Password to use when connecting to server. If password is not given it's asked from the

command line. Specifying a password on the command line should be considered insecure.

You can use an option file to avoid giving the password on the command line.

-W , --pipe
On Windows, connect to the server via a named pipe. This option applies only if the server

supports named-pipe connections.

--plugin-dir=name Directory for client-side plugins.

-P num , --port=num Port number to use for connection.

1421/4161

https://mariadb.com/kb/en/mariadb-5534-release-notes/

--post-query=name
Query to run or file containing query to execute after tests have completed. This execution is

not counted for timing purposes.

--post-system=name
system() string to execute after tests have completed. This execution is not counted for timing

purposes.

--pre-query=name
Query to run or file containing query to execute before running tests. This execution is not

counted for timing purposes.

--pre-system=name
system() string to execute before running tests. This execution is not counted for timing

purposes.

--print-defaults Print the program argument list and exit. Must be given as the first option.

--protocol=name The protocol to use for connection (tcp, socket, pipe, memory).

-q name , --

query=name
Query to run or file containing query to run.

--shared-memory-

base-name

Shared-memory name to use for Windows connections using shared memory to a local server

(started with the --shared-memory option). Case-sensitive.

-s , --silent Run program in silent mode - no output.

-S , --socket=name
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the

named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS

options are set. The --ssl option will not enable verifying the server certificate by default. In

order to verify the server certificate, the user must specify the --ssl-verify-server-cert

option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted

Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute path,

not a relative path. See Secure Connections Overview: Certificate Authorities (CAs) for more

information. This option implies the --ssl option.

--ssl-capath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option requires that

you use the absolute path, not a relative path. The directory specified by this option needs to be

run through the openssl rehash command. See Secure Connections Overview:

Certificate Authorities (CAs) for more information. This option is only supported if the client was

built with OpenSSL or yaSSL. If the client was built with GnuTLS or Schannel, then this option

is not supported. See TLS and Cryptography Libraries Used by MariaDB for more information

about which libraries are used on which platforms. This option implies the --ssl option.

--ssl-cert=name
Defines a path to the X509 certificate file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-cipher=name List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use

for TLS. This option requires that you use the absolute path, not a relative path. See Secure

Connections Overview: Certificate Revocation Lists (CRLs) for more information. This option is

only supported if the client was built with OpenSSL or Schannel. If the client was built with

yaSSL or GnuTLS, then this option is not supported. See TLS and Cryptography Libraries Used

by MariaDB for more information about which libraries are used on which platforms.

--ssl-crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain one

revoked X509 certificate to use for TLS. This option requires that you use the absolute path, not

a relative path. The directory specified by this option needs to be run through the openssl

rehash command. See Secure Connections Overview: Certificate Revocation Lists

(CRLs) for more information. This option is only supported if the client was built with OpenSSL.

If the client was built with yaSSL, GnuTLS, or Schannel, then this option is not supported. See

TLS and Cryptography Libraries Used by MariaDB for more information about which libraries

are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the absolute

path, not a relative path. This option implies the --ssl option.

--ssl-verify-

server-cert
Enables server certificate verification. This option is disabled by default.

-u , --user=name User for login if not current user.

1422/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.openssl.org/docs/man1.1.1/man1/rehash.html

-v , --verbose More verbose output; you can use this multiple times to get even more verbose output.

-V , --version Output version information and exit.

Option Files

In addition to reading options from the command-line, mariadb-slap can also read options from option files. If an

unknown option is provided to mariadb-slap in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

mariadb-slap is linked with MariaDB Connector/C . However, MariaDB Connector/C does not yet handle the parsing of

option files for this client. That is still performed by the server option file parsing code. See MDEV-19035 for more

information.

Option Groups

mariadb-slap reads options from the following option groups from option files:

Group Description

[mysqlslap] Options read by mariadb-slap , which includes both MariaDB Server and MySQL Server.

[mariadb-

slap]
Options read by mariadb-slap . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Examples
Create a table with data, and then query it with 40 simultaneous connections 100 times each.

mariadb-slap

 --delimiter=";"

 --create="CREATE TABLE t (a int);INSERT INTO t VALUES (5)"

 --query="SELECT * FROM t"

 --concurrency=40

 --iterations=100

Benchmark

 Average number of seconds to run all queries: 0.010 seconds

 Minimum number of seconds to run all queries: 0.009 seconds

 Maximum number of seconds to run all queries: 0.020 seconds

 Number of clients running queries: 40

 Average number of queries per client: 1

Using files to store the create and query SQL. Each file can contain multiple statements separated by the specified

delimiter.

1423/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035

mariadb-slap

 --create=define.sql

 --query=query.sql

 --concurrency=10

 --iterations=20

 --delimiter=";"

Benchmark

 Average number of seconds to run all queries: 0.002 seconds

 Minimum number of seconds to run all queries: 0.002 seconds

 Maximum number of seconds to run all queries: 0.004 seconds

 Number of clients running queries: 10

 Average number of queries per client: 1

1.3.40 mariadb-tzinfo-to-sql

From MariaDB 10.4.6, mariadb-tzinfo-to-sql is a symlink to mysql_tzinfo_to_sql , the tool for loading time

zones on systems that have a zoneinfo database.

From MariaDB 10.5.2, mysql_tzinfo_to_sql is the symlink, and mariadb-tzinfo-to-sql the binary name.

mariadb-tzinfo-to-sql is a utility used to load time zones on systems that have a zoneinfo database to load the time

zone tables (time_zone, time_zone_leap_second, time_zone_name, time_zone_transition and time_zone_transition_type)

into the mysql database.

Most Linux, Mac OS X, FreeBSD and Solaris systems will have a zoneinfo database - Windows does not. The database is

commonly found in the /usr/share/zoneinfo directory, or, on Solaris, the /usr/share/lib/zoneinfo directory.

Usage
mariadb-tzinfo-to-sql can be called in several ways. The output is usually passed straight to the mariadb client for

direct loading in the mysql database.

shell> mariadb-tzinfo-to-sql timezone_dir

shell> mariadb-tzinfo-to-sql timezone_file timezone_name

shell> mariadb-tzinfo-to-sql --leap timezone_file

Examples
Most commonly, the whole directory is passed:

shell>mariadb-tzinfo-to-sql /usr/share/zoneinfo | mariadb -u root mysql

Load a single time zone file, timezone_file , corresponding to the time zone called timezone_name .

shell> mariadb-tzinfo-to-sql timezone_file timezone_name | mariadb -u root mysql

A separate command for each time zone and time zone file the server needs is required.

To account for leap seconds, use:

shell> mariadb-tzinfo-to-sql --leap timezone_file | mariadb -u root mysql

After populating the time zone tables, you should usually restart the server so that the new time zone data is correctly

loaded.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.41 mariadb-upgrade
mariadb-upgrade is a tool that checks and updates your tables to the latest version.

MariaDB starting with 10.4.6 1424/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/

From MariaDB 10.4.6, mariadb-upgrade is a symlink to mysql_upgrade , the tool that checks and updates your

tables to the latest version.

From MariaDB 10.5.2, mysql_upgrade is the symlink, and mariadb-upgrade the binary name.

Starting from mysql_upgrade / mariadb-upgrade 2.0, the user running the upgrade tool must have write access to

datadir/mysql_upgrade_info , so that the tool can write the current MariaDB version into the file. mysql-upgrade

was updated in MariaDB 10.2.42 , MariaDB 10.3.33 , MariaDB 10.4.23, MariaDB 10.5.14, MariaDB 10.6.6, MariaDB

10.7.2 and newer.

Contents
1. Using mariadb-upgrade

1. Options

2. mariadb-upgrade 2.0

1. Option Files

1. Option Groups

3. Differences Between mysql_upgrade in MariaDB and MySQL

4. Speeding Up mariadb-upgrade

5. Symptoms of Not Having Run mariadb-upgrade When It Was Needed

6. Other Uses

You should run mariadb-upgrade after upgrading from one major MySQL/MariaDB release to another, such as from

MySQL 5.0 to MariaDB 10.4 or MariaDB 10.4 to MariaDB 10.5. You also have to use mariadb-upgrade after a direct

"horizontal" migration, for example from MySQL 5.5.40 to MariaDB 5.5.40 . It's also safe to run mariadb-upgrade for

minor upgrades, as if there are no incompatibilities nothing is changed.

It needs to be run as a user with write access to the data directory.

mariadb-upgrade is run after starting the new MariaDB server. Running it before you shut down the old version will not

hurt anything and will allow you to make sure it works and figure out authentication for it ahead of time.

It is recommended to make a backup of all the databases before running mariadb-upgrade .

In most cases, mariadb-upgrade should just take a few seconds. The main work of mariadb-upgrade is to:

Update the system tables in the mysql database to the latest version (normally just add new fields to a few tables).

Check that all tables are up to date (runs CHECK TABLE table_name FOR UPGRADE). For tables that are not up to

date, runs ALTER TABLE table_name FORCE on the table to update it. A table is not up to date if:

The table uses an index for which there has been a collation change (rare)

A format change in the storage engine requires an update (very rare)

Using mariadb-upgrade

mariadb-upgrade [--force] [--user=# --password=#

 --host=hostname --port=# --socket=#

 --protocol=tcp|socket|pipe|memory

 --verbose] [OTHER_OPTIONS]

mariadb-upgrade is mainly a framework to call mariadb-check. mariadb-upgrade works by doing the following

operations:

Find out path to datadir

echo "show show variables like 'datadir'" | mysql

mariadb-check --no-defaults --check-upgrade --auto-repair --databases mysql

mysql_fix_privilege_tables

mariadb-check --no-defaults --all-databases --fix-db-names --fix-table-names

mariadb-check --no-defaults --check-upgrade --all-databases --auto-repair

The connect options given to mariadb-upgrade are passed along to mariadb-check and mysql.

The mysql_fix_privilege_tables script is not actually called; it's included as part of mariadb-upgrade

If you have a problem with mariadb-upgrade try run it in very verbose mode:

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

MariaDB starting with 10.4.23

1425/4161

https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/
https://mariadb.com/kb/en/mariadb-5540-release-notes/

mariadb-upgrade --verbose --verbose other-options

mariadb-upgrade also saves the MariaDB version number in a file named mysql_upgrade_info in the data directory.

This is used to quickly check whether all tables have been checked for this release so that table-checking can be skipped.

For this reason, mariadb-upgrade needs to be run as a user with write access to the data directory. To ignore this file and

perform the check regardless, use the --force option.

Options

mariadb-upgrade supports the following options:

Option Description Version

-? , --help Display this help message and exit.

--basedir=path Old option accepted for backward compatibility but ignored.

--character-

sets-dir=path
Old option accepted for backward compatibility but ignored.

check-if-

upgrade-is-

needed

Do a quick check if upgrade is needed. Returns 0 if yes, 1 if no. 2.0

--

compress=name
Old option accepted for backward compatibility but ignored.

--datadir=name Old option accepted for backward compatibility but ignored.

-# [name] , --

debug[=name]
For debug builds, output debug log.

--debug-check Check memory and open file usage at exit.

-T , --debug-

info
Print some debug info at exit.

--default-

character-

set=name

Old option accepted for backward compatibility but ignored.

-f , --force
Force execution of mariadb-check even if mariadb-upgrade has already been executed

for the current version of MariaDB. Ignores mysql_upgrade_info .

-h , --

host=name
Connect to MariaDB on the given host.

-p , --

password[=name]

Password to use when connecting to server. If password is not given, it's solicited on the

command line (which should be considered insecure). You can use an option file to avoid

giving the password on the command line.

-P , --

port=name

Port number to use for connection or 0 for default to, in order of preference, my.cnf, the

MYSQL_TCP_PORT environment variable, /etc/services, built-in default (3306).

--

protocol=name
The protocol to use for connection (tcp, socket, pipe, memory).

--silent Print less information.

-S , --

socket=name

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the

named pipe to use.

--ssl

Enables TLS. TLS is also enabled even without setting this option when certain other TLS

options are set. Starting with MariaDB 10.2, the --ssl option will not enable verifying the

server certificate by default. In order to verify the server certificate, the user must specify

the --ssl-verify-server-cert option.

--ssl-ca=name

Defines a path to a PEM file that should contain one or more X509 certificates for trusted

Certificate Authorities (CAs) to use for TLS. This option requires that you use the absolute

path, not a relative path. See Secure Connections Overview: Certificate Authorities (CAs)

for more information. This option implies the --ssl option.

1426/4161

--ssl-

capath=name

Defines a path to a directory that contains one or more PEM files that should each contain

one X509 certificate for a trusted Certificate Authority (CA) to use for TLS. This option

requires that you use the absolute path, not a relative path. The directory specified by this

option needs to be run through the openssl rehash command. See Secure Connections

Overview: Certificate Authorities (CAs) for more information. This option is only supported

if the client was built with OpenSSL or yaSSL. If the client was built with GnuTLS or

Schannel, then this option is not supported. See TLS and Cryptography Libraries Used by

MariaDB for more information about which libraries are used on which platforms. This

option implies the --ssl option.

--ssl-

cert=name

Defines a path to the X509 certificate file to use for TLS. This option requires that you use

the absolute path, not a relative path. This option implies the --ssl option.

--ssl-

cipher=name

List of permitted ciphers or cipher suites to use for TLS. This option implies the --ssl

option.

--ssl-crl=name

Defines a path to a PEM file that should contain one or more revoked X509 certificates to

use for TLS. This option requires that you use the absolute path, not a relative path. See

Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This option is only supported if the client was built with OpenSSL or Schannel. If the client

was built with yaSSL or GnuTLS, then this option is not supported. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are

used on which platforms.

--ssl-

crlpath=name

Defines a path to a directory that contains one or more PEM files that should each contain

one revoked X509 certificate to use for TLS. This option requires that you use the absolute

path, not a relative path. The directory specified by this option needs to be run through the

openssl rehash command. See Secure Connections Overview: Certificate Revocation

Lists (CRLs) for more information. This option is only supported if the client was built with

OpenSSL. If the client was built with yaSSL, GnuTLS, or Schannel, then this option is not

supported. See TLS and Cryptography Libraries Used by MariaDB for more information

about which libraries are used on which platforms.

--ssl-key=name
Defines a path to a private key file to use for TLS. This option requires that you use the

absolute path, not a relative path. This option implies the --ssl option.

--ssl-verify-

server-cert
Enables server certificate verification. This option is disabled by default.

-t , --

tmpdir=name
Directory for temporary files.

-s , --upgrade-

system-tables

Only upgrade the system tables in the mysql database. Tables in other databases are not

checked or touched.

-u , --

user=name
User for login if not current user.

-v , --verbose

Display more output about the process, using it twice will print connection arguments;

using it 3 times will print out all CHECK, RENAME and ALTER TABLE commands used

during the check phase; using it 4 times will also write out all mariadb-check commands

used.

-V , --version Output version information and exit.

-k , --version-

check

Run this program only if its 'server version' matches the version of the server to which it's

connecting check. Note: the 'server version' of the program is the version of the MariaDB

server with which it was built/distributed. (Defaults to on; use --skip-version-check to

disable.)

--write-binlog

All commands including those run by mariadb-check are written to the binary log. Disabled

by default. Before MariaDB 10.0.6 and MariaDB 5.5.34 , this was enabled by default,

and --skip-write-binlog should be used when commands should not be sent to

replication slaves.

mariadb-upgrade 2.0
mariadb-upgrate/mysql_upgrade 2.0 was introduced in MariaDB 10.2.42 , MariaDB 10.3.33 , MariaDB 10.4.23,

MariaDB 10.5.14, MariaDB 10.6.6, MariaDB 10.7.2 .

Previously the tool first ran the upgrade process and then created the datadir/mysql_upgrade_info file. If the file could

1427/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://mariadb.com/kb/en/mariadb-1006-release-notes/
https://mariadb.com/kb/en/mariadb-5534-release-notes/
https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/

not be created because of permissions (mariadb-upgrade did not have rights to create the file), mariadb-upgrad gave

an error, but this was often ignored. One effect of not being able to create the mysql_upgrade_info file was that every

new mariadb-upgrade run would have to do a full upgrade check, which can take a while if there are a lot of tables.

mariadb-upgrade 2.0 fixes the following issues:

The datadir/mysql_upgrade_info is now created at the start of the upgrade process and locked. This ensures

that two mariadb-upgrade processes cannot be run in parallel, which can cause deadlocks (MDEV-27068). One

side-effect of this is that mariadb-upgrade has to have write access to datadir , which means it has to be run as

as the user that installed MariaDB, normally 'mysql' or 'root' .

One can use mariadb-upgrade --force --force to force the upgrade to be run, even if there was no version

change or if one doesn't have write access to datadir . Note that if this option is used, the next mariadb-upgrade

run will assume that there is a major version change and the upgrade must be done (again).

The upgrade will only be done if there is a major server version change (10.4.X -> 10.5.X). This will avoid

unnecessary upgrades.

New option added: --check-if-upgrade-is-needed . If this is used, mariadb-upgrade will return 0 if there has

been a major version change and one should run mariadb-upgrade . If not upgrade is need, 1 will be returned.

--verbose writes more information, including from which version to which version the upgrade will be done.

Better messages when there is no need to run mariadb-upgrade .

Option Files

In addition to reading options from the command-line, mariadb-upgrade can also read options from option files. If an

unknown option is provided to mariadb-upgrade in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

In MariaDB 10.2 and later, mariadb-upgrade is linked with MariaDB Connector/C . However, MariaDB Connector/C

does not yet handle the parsing of option files for this client. That is still performed by the server option file parsing code.

See MDEV-19035 for more information.

Option Groups

mariadb-upgrade reads options from the following option groups from option files:

Group Description

[mysql_upgrade] Options read by mariadb-upgrade , which includes both MariaDB Server and MySQL Server.

[mariadb-

upgrade]
Options read by mariadb-upgrade . Available starting with MariaDB 10.4.6.

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and

MySQL clients. For example, mysqldump .

[client-server]
Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Differences Between mysql_upgrade in MariaDB and
MySQL
This is as of MariaDB 5.1.50 :

MariaDB will convert long table names properly.

1428/4161

https://jira.mariadb.org/browse/MDEV-27068
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://jira.mariadb.org/browse/MDEV-19035
https://mariadb.com/kb/en/mariadb-5150-release-notes/

MariaDB will convert InnoDB tables (no need to do a dump/restore or ALTER TABLE).

MariaDB will convert old archive tables to the new 5.1 format.

"mysql_upgrade --verbose" will run "mariadb-check --verbose" so that you get more information of what is happening.

Running with 3 times --verbose will in MariaDB 10.0 print out all CHECK, RENAME and ALTER TABLE commands

executed.

The mysql.event table is upgraded live; no need to restart the server to use events if the event table has changed

(MariaDB 10.0.22 and MariaDB 10.1.9).

More descriptive output.

Speeding Up mariadb-upgrade
- If you are sure that all your tables are up to date with the current version, then you can run mariadb-upgrade ---

upgrade-system-tables , which will only fix your system tables in the mysql database to be compatible with the latest

version.

The main reason to run mariadb-upgrade on all your tables is to allow it to check that:

There has not been any change in table formats between versions.

This has not happened since MariaDB 5.1.

If some of the tables are using an index for which we have changed sort order.

This has not happened since MariaDB 5.5.

If you are 100% sure this applies to you, you can just run mariadb-upgrade with the ---upgrade-system-tables

option.

Symptoms of Not Having Run mariadb-upgrade When It
Was Needed

Errors in the error log that some system tables don't have all needed columns.

Updates or searches may not find the record they are attempting to update or search for.

CHECKSUM TABLE may report the wrong checksum for MyISAM or Aria tables.

The error message "Cannot load from mysql.proc. The table is probably corrupted."

To fix issues like this, run mariadb-upgrade , mariadb-check, CHECK TABLE and if needed REPAIR TABLE on the wrong

table.

Other Uses
mariadb-upgrade will re-create any missing tables in the mysql database. It will not touch any data in existing

tables.

1.3.42 mariadb-waitpid

From MariaDB 10.4.6, mariadb-waitpid is a symlink to mysql_waitpid , the utility for terminating processes.

From MariaDB 10.5.2, mysql_waitpid is the symlink, and mariadb-waitpid the binary name.From MariaDB

10.5.2, mysql_waitpid is the symlink, and mariadb-waitpid the binary name.

mysql_pid is a utility for terminating processes. It runs on Unix-like systems, making use of the kill() system call.

Usage

mariadb-waitpid [options] pid time

Description
mariadb-waitpid sends signal 0 to the process pid and waits up to time seconds for the process to terminate. pid and

time must be positive integers.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1429/4161

https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

Returns 0 if the process terminates in time, or does not exist, and 1 otherwise.

Signal 1 is used if the kill() system call cannot handle signal 0

Options

Option Description

-? , --help Display help and exit

-I , --help Synonym for -?

-v , --verbose Be more verbose. Give a warning, if kill can't handle signal 0

-V , --version Print version information and exit

1.3.43 Legacy Clients and Utilities
Category for removed, deprecated or unmaintained MariaDB clients and utilities.

Percona XtraBackup

Open source tool for performing hot backups of MariaDB, MySQL and Percona Server databases.

MySQL Sandbox

Installing multiple MariaDB versions in isolation.

mysqlaccess

Symlink or old name for mariadb-access.

mysqladmin

Old name or symlink for mariadb-admin.

mysqlcheck

Symlink or old name for mariadb-check.

mysqldump

Symlink or old name for mariadb-dump.

mysqldumpslow

Symlink or old name for mariadb-dumpslow.

mysqlhotcopy

Symlink or old name for mariadb-hotcopy.

mysqlimport

Symlink or old name for mariadb-import.

mysqlreport

Symlink or old name for mariadb-report.

mysqlshow

Symlink or old name for mariadb-show.

mysqlslap

Symlink or old name for mariadb-slap.

mysql_convert_table_format

Symlink or old name for mariadb-convert-table-format.

mysql_embedded

Symlink or old name for mariadb-embedded.

mysql_find_rows

Symlink or old name for mariadb-find-rows.

1

9

4

1

1430/4161

https://mariadb.com/kb/en/backing-up-and-restoring-databases-percona-xtrabackup/
https://mariadb.com/kb/en/mysql-sandbox/

mysql_fix_extensions

Symlink or old name for mariadb-fix-extensions.

mysql_install_db

Symlink or old name for mariadb-install-db.

mysql_plugin

Symlink or old name for mariadb-plugin.

mysql_secure_installation

Symlink or old name for mariadb-secure-installation.

mysql_setpermission

Symlink or old name for mariadb_setpermission.

mysql_tzinfo_to_sql

Symlink or old name for mariadb-tzinfo-to-sql.

mysql_upgrade

Symlink or old name for mariadb-upgrade.

mysql_waitpid

Symlink or old name for mariadb-waitpid.

mysql_zap

Kill processes that match a pattern.

1

8

1

1

1.3.43.1 mysqlaccess
mysqlaccess is a tool for checking access privileges, developed by Yves Carlier.

From MariaDB 10.4.6, mariadb-access is a symlink to mysqlaccess .

From MariaDB 10.5.2, mariadb-access is the name of the tool, with mysqlaccess a symlink .

Contents
See mariadb-access for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.2 mysqldump
mysqldump is used to dump a database or a collection of databases for backup or transfer to another database server.

From MariaDB 10.4.6, mariadb-dump is a symlink to mysqldump .

From MariaDB 10.5.2, mariadb-dump is the name of the command-line client, with mysqldump a symlink .

From MariaDB 11.0.1, mysqldump (the symlink) is deprecated and removed from the mariadb Docker Official

Image. Use mariadb-dump instead.

See mariadb-dump for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

MariaDB starting with 11.0.1

1.3.43.3 mysqldumpslow
1431/4161

https://mariadb.com/kb/en/mysql_zap/

mysqldumpslow is a tool to examine the slow query log.

From MariaDB 10.4.6, mariadb-dumpslow is a symlink to mysqldumpslow .

From MariaDB 10.5.2, mariadb-dumpslow is the name of the tool, with mysqldumpslow a symlink .

Contents
See mariadb-dumpslow for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.1.1.2.1.10

1.3.43.5 mysql_convert_table_format
mysql-convert-table-format converts the tables in a database to use a particular storage engine (MyISAM by default).

From MariaDB 10.4.6, mariadb-convert-table-format is a symlink to mysql_convert_table_format .

From MariaDB 10.5.2, mariadb-convert-table-format is the name of the tool, with mysql_convert_table_format a

symlink .

See mariadb-convert-table-format for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.6 mysql_embedded

From MariaDB 10.4.6, mariadb-embedded is a symlink to mysql_embedded .

From MariaDB 10.5.2, mariadb-embedded is the name of the tool, with mysql_embedded a symlink.

See mariadb-embedded for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.7 mysql_find_rows
mysql_find_rows reads files containing SQL statements and extracts statements that match a given regular expression

or that contain USE db_name or SET statements.

From MariaDB 10.4.6, mariadb-find-rows is a symlink to mysql_find_rows .

From MariaDB 10.5.2, mariadb-find-rows is the name of the binary, with mysql_find_rows a symlink .

See mariadb-find-rows for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.8 mysql_fix_extensions

From MariaDB 10.4.6, mariadb-fix-extensions is a symlink to mysql_fix_extensions .

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2 1432/4161

From MariaDB 10.5.2, mysql_fix_extensions is the symlink, and mariadb-fix-extensions the binary name.

See mariadb-fix-extensions for details.

MariaDB starting with 10.5.2

1.3.43.9 mysqlhotcopy

mysqlhotcopy is deprecated and may be removed in a future release.

mysqlhotcopy uses FLUSH TABLES, LOCK TABLES, and cp or scp to make a database backup.

From MariaDB 10.4.6, mariadb-hotcopy is a symlink to mysqlhotcopy .

From MariaDB 10.5.2, mariadb-hotcopy is the name of the script, with mysqlhotcopy a symlink .

See mariadb-hotcopy for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.10 mysqlimport
mysqlimport is used to load tables from text files in various formats

From MariaDB 10.4.6, mariadb-import is a symlink to mysqlimport .

From MariaDB 10.5.2, mariadb-import is the name of the script, with mysqlimport a symlink .

See mariadb-import for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.11 mysql_install_db
mariadb-install-db initializes the MariaDB data directory and creates the system tables in the mysql database.

From MariaDB 10.4.6, mariadb-install-db is a symlink to mysql_install_db .

From MariaDB 10.5.2, mysql_install_db is the symlink, and mariadb-install-db the binary name.

See mariadb-install-db for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.12 mysql_plugin
mysql_plugin is a tool for enabling or disabling plugins.

From MariaDB 10.4.6, mariadb-plugin is a symlink to mysql_plugin .

From MariaDB 10.5.2, mysql_plugin is the symlink, and mariadb-plugin the binary name.

See mariadb-plugin for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1433/4161

1.3.43.13 mysqlreport
mysqlreport makes a friendly report of important MariaDB status values.

From MariaDB 10.4.6, mariadb-report is a symlink to mysqlreport .

From MariaDB 10.5.2, mysqlreport is the symlink, and mariadb-report the binary name.

See mariadb-report for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.14 mysql_secure_installation

Note that many of the reasons for the existence of this script no longer apply. In particular, from MariaDB 10.4, Unix

socket authentication is applied by default, and there is usually no need to create a root password. See Authentication

from MariaDB 10.4.

From MariaDB 10.4.6, mariadb-secure-installation is a symlink to mysql_secure_installation .

From MariaDB 10.5.2, mysql_secure_installation is the symlink, and mariadb-secure-installation the binary

name.

See mariadb-secure-installation for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.15 mysql_setpermission

From MariaDB 10.4.6, mariadb-setpermission is a symlink to mysql_setpermission .

From MariaDB 10.5.2, mysql_setpermission is the symlink, and mariadb-setpermission the binary name.

See mariadb-setpermission for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.16 mysqlshow
Shows the structure of a MariaDB database (databases, tables, columns and indexes).

From MariaDB 10.4.6, mariadb-show is a symlink to mysqlshow .

From MariaDB 10.5.2, mysqlshow is the symlink, and mariadb-show the binary name.

See mariadb-show for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.17 mysqlslap
mysqlslap is a tool for load-testing MariaDB. It allows you to emulate multiple concurrent connections, and run a set of

queries multiple times.

From MariaDB 10.4.6, mariadb-slap is a symlink to mysqlslap .

MariaDB starting with 10.4.6

1434/4161

From MariaDB 10.5.2, mysqlslap is the symlink, and mariadb-slap the binary name.

See mariadb-slap for details.

MariaDB starting with 10.5.2

1.3.43.18 mysql_tzinfo_to_sql

From MariaDB 10.4.6, mariadb-tzinfo-to-sql is a symlink to mysql_tzinfo_to_sql .

From MariaDB 10.5.2, mysql_tzinfo_to_sql is the symlink, and mariadb-tzinfo-to-sql the binary name.

See mariadb-tzinfo-to-sql for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.19 mysql_upgrade
mariadb-upgrade/mysql_upgrade is a tool that checks and updates your tables to the latest version.

From MariaDB 10.4.6, mariadb-upgrade is a symlink to mysql_upgrade .

From MariaDB 10.5.2, mysql_upgrade is the symlink, and mariadb-upgrade the binary name.

See mariadb-upgrade for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1.3.43.20 mysql_waitpid
mysql_pid is a utility for terminating processes. It runs on Unix-like systems, making use of the kill() system call.

From MariaDB 10.4.6, mariadb-waitpid is a symlink to mysql_waitpid .

From MariaDB 10.5.2, mysql_waitpid is the symlink, and mariadb-waitpid the binary name.

Contents
See mariadb-waitpid for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

2 MariaDB Administration
There are many tasks that database administrators (DBAs) have to perform. This section of the MariaDB Documentation

provides information on how to do these tasks.

Getting, Installing, and Upgrading MariaDB

Getting, installing, and upgrading MariaDB Server and related software.

User & Server Security

Creating users, granting privileges, and encryption.

Backing Up and Restoring Databases

Tools and methods for backing up and restoring databases.

Server Monitoring & Logs

Monitoring MariaDB Server and enabling and using logs.

1435/4161

Partitioning Tables

Splitting huge tables into multiple table files.

MariaDB Audit Plugin

Logging user activity with the MariaDB Audit Plugin.

Variables and Modes

Server variables and SQL modes.

Copying Tables Between Different MariaDB Databases and MariaDB Servers

Copy table files.1

2.1 Getting, Installing, and Upgrading MariaDB
Where to Download MariaDB

Downloading tarballs, binaries, packages, and the source code for MariaDB.

MariaDB Binary Packages

Instructions on installing MariaDB binaries and packages.

Upgrading MariaDB

Upgrading from an earlier version, or from MySQL

Migrating to MariaDB

Migrating to MariaDB from another DBMS.

Downgrading between Major Versions of MariaDB

Downgrading MariaDB is not officially supported between major versions.

Compiling MariaDB From Source

Articles on compiling MariaDB from source

Starting and Stopping MariaDB

Articles related to starting and stopping MariaDB Server.

MariaDB Performance & Advanced Configurations

Articles of how to setup your MariaDB optimally on different systems

Troubleshooting Installation Issues

Articles relating to installation issues users might run into

Installing System Tables (mariadb-install-db)

Using mariadb-install-db to create the system tables in the 'mysql' database directory.

mysql_install_db.exe

Windows equivalent of mysql_install_db for creating the system tables etc.

Configuring MariaDB with Option Files

Configuring MariaDB with my.cnf and other option files.

MariaDB Environment Variables

List of environment variables used by MariaDB.

Puppet and MariaDB

Puppet modules that allow you to use MariaDB.

MariaDB on Amazon RDS

Getting started with MariaDB on Amazon RDS

Obsolete Installation Information

Installation-related items that are obsolete

5

4

12

1436/4161

https://mariadb.com/kb/en/puppet-and-mariadb/
https://mariadb.com/kb/en/obsolete-installation-information/

Installing MariaDB on IBM Cloud

Get MariaDB on IBM Cloud You should have an IBM Cloud account, otherwise ...

mysqld Configuration Files and Groups

Which configuration files and groups mysqld reads.

There are 65 related questions .

1

2.1.1 Where to Download MariaDB
Contents
1. The Latest Packages

2. Distributions Which Include MariaDB

3. Pre-Release Binaries

4. Getting the Source

The Latest Packages
Tarballs, binaries (Linux, Solaris, and Windows), and packages for some Linux distributions are available at

mariadb.com/downloads/ or mariadb.org/download/ (which also contains a PDF version of the MariaDB Server

documentation).

We hope that interested community package maintainers will step forward, as others already have, to build packages for

their distributions. We ask for strict adherence to your packaging system's best practices and invite you to create a bug

report if our project impedes this in any way.

Instructions how to install the packages can be found here.

Distributions Which Include MariaDB
Most distributions already include MariaDB. See Distributions Which Include MariaDB.

Pre-Release Binaries
Binaries from our Buildbot system (see also the Buildbot page), are available at http://hasky.askmonty.org/archive .

They are not suitable for use in production systems but may be of use for debugging.

Once at the above URL you will need to click on the MariaDB tree you are interested in, and then the build. The build

number corresponds to the tarbuildnum variable in Buildbot.

For example, if you were interested in the bsd9-64 build of the MariaDB 5.5 tree, revision 3497, the tarbuildnum is listed

in the "Build Properties" table of the Buildbot build report . In this case, the value is "2434".

Getting the Source
You can find all the source code at https://github.com/MariaDB/server

To retrieve the code, the Git source control software offers the path of least resistance. If you are unfamiliar with git, please

refer to the git documentation for an understanding of version control with git.

For instructions on creating a local branch of MariaDB, see the Getting the MariaDB Source Code page.

See the Generic Build Instructions page for general instructions on compiling MariaDB from the source. The source page

has links to platform and distribution-specific information, including information on how we build the release packages.

2.1.2 MariaDB Binary Packages
This section contains information on and installation instructions for MariaDB binaries and packages .

Installing MariaDB RPM Files

Information and instructions on using the RPM packages and the related repositories.

1437/4161

https://mariadb.com/kb/en/getting-installing-and-upgrading-mariadb/+questions/
https://mariadb.com/downloads/
https://mariadb.org/download/
http://mariadb.org/jira
http://buildbot.askmonty.org
https://mariadb.com/kb/en/buildbot/
http://hasky.askmonty.org/archive
http://buildbot.askmonty.org/buildbot/builders/bsd9-64/builds/337
https://github.com/MariaDB/server
https://git-scm.com/doc
https://mariadb.com/kb/en/source/
https://downloads.mariadb.org/mariadb/

Installing MariaDB .deb Files

Installing MariaDB .deb Files.

Installing MariaDB MSI Packages on Windows

MSI packages are available for both x86 (32 bit) and x64 (64 bit) processor architectures

Installing MariaDB Server PKG packages on macOS

MariaDB Server does not currently provide a .pkg installer for macOS

Installing MariaDB Binary Tarballs

Installing MariaDB binary tarballs, systemd, and glibc-2.14.

Installing MariaDB Server on macOS Using Homebrew

Installing MariaDB on macOS via the Homebrew package manager, the "missing ...

Installing MariaDB Windows ZIP Packages

Getting started with ZIP packages on Windows.

Compiling MariaDB From Source

Articles on compiling MariaDB from source

Distributions Which Include MariaDB

Distributions including MariaDB.

Running Multiple MariaDB Server Processes

Running multiple MariaDB Server processes on the same server.

Installing MariaDB Alongside MySQL

MariaDB was designed as a drop in place replacement for MySQL, but you can ...

GPG

The MariaDB project signs their MariaDB packages for Debian, Ubuntu, Fedora, CentOS, and Red Hat

MariaDB Platform Deprecation Policy

Information on MariaDB's Software Deprecation Policy and Schedule.

Automated MariaDB Deployment and Administration

Tools for automating deployment and management of MariaDB servers.

MariaDB Package Repository Setup and Usage

Executing and using a convenient shell script to set up the MariaDB Package Repository.

There are 7 related questions .

13

8

2

7

4

3

1

5

1

2.1.2.1 Installing MariaDB RPM Files
MariaDB provides RPM packages for several RPM-based Linux distributions. MariaDB also provides YUM/DNF and ZYpp

repositories for these Linux distributions. The articles here provide information and instructions on using the RPM packages

and the related repositories.

About the MariaDB RPM Files

Describes the contents of the RPM packages that come with each MariaDB release.

Installing MariaDB with yum/dnf

Installing MariaDB with yum or dnf on RHEL, CentOS, Fedora, and similar distros.

Installing MariaDB with zypper

How to install MariaDB with zypper on SLES, OpenSUSE, and other similar Linux distributions.

Installing MariaDB With the rpm Tool

Downloading and installing RPM files using the rpm command

2

23

1438/4161

https://mariadb.com/kb/en/mariadb-platform-deprecation-policy/
https://mariadb.com/kb/en/binary-packages/+questions/

Checking MariaDB RPM Package Signatures

Steps to check MariaDB RPM package signatures

Troubleshooting MariaDB Installs on Red Hat/CentOS

Issues people have encountered when installing MariaDB on Red Hat / CentOS

MariaDB for DirectAdmin Using RPMs

Using DirectAdmin when installing MariaDB with YUM

MariaDB Installation (Version 10.1.21) via RPMs on CentOS 7

Detailed steps for installing MariaDB (version 10.1.21) via RPMs on CentOS 7

Why Source RPMs (SRPMs) Aren't Packaged For Some Platforms

Explanation for why source RPM (SRPMs) aren't packaged for some platforms

Building MariaDB from a Source RPM

How to build MariaDB from a source RPM (SRPM).

There are 4 related questions .

2.1.2.1.1 About the MariaDB RPM Files
Contents
1. Available RPM Packages

1. Available RPM Packages in MariaDB 10.4

2. Available RPM Packages in MariaDB 10.2 and MariaDB 10.3

2. Installing RPM Packages

3. Actions Performed by RPM Packages

1. Users and Groups Created

Available RPM Packages
The available RPM packages depend on the specific MariaDB release series.

Available RPM Packages in MariaDB 10.4

From MariaDB 10.4, the following RPMs are available:

Package Name Description

galera-4 The WSREP provider for Galera 4.

MariaDB-backup Mariabackup

MariaDB-backup-

debuginfo
Debuginfo for Mariabackup

MariaDB-client Client tools like mariadb CLI, mariadb-dump, and others.

MariaDB-client-

debuginfo
Debuginfo for client tools like mariadb CLI, mariadb-dump , and others.

MariaDB-common Character set files and /etc/my.cnf

MariaDB-common-

debuginfo
Debuginfo for character set files and /etc/my.cnf

MariaDB-compat Old shared client libraries, may be needed by old MariaDB or MySQL clients

MariaDB-

connect-engine
The CONNECT storage engine.

MariaDB-

connect-engine-

debuginfo

Debuginfo for the CONNECT storage engine.

MariaDB starting with 10.4

1439/4161

https://mariadb.com/kb/en/rpm/+questions/

MariaDB-

cracklib-

password-check

The cracklib_password_check password validation plugin.

MariaDB-

cracklib-

password-check

Debuginfo for the cracklib_password_check password validation plugin.

MariaDB-devel Development headers and static libraries.

MariaDB-devel-

debuginfo
Debuginfo for development headers and static libraries.

MariaDB-gssapi-

server
The gssapi authentication plugin.

MariaDB-gssapi-

server-

debuginfo

Debuginfo for the gssapi authentication plugin.

MariaDB-

rocksdb-engine
The MyRocks storage engine.

MariaDB-

rocksdb-engine-

debuginfo

Debuginfo for the MyRocks storage engine.

MariaDB-server The server and server tools, like myisamchk and mariadb-hotcopy are here.

MariaDB-server-

compat

Symbolic links from old MySQL tool names to MariaDB, like mysqladmin -> mariadb-

admin or mysql -> mariadb . Good to have if you are using MySQL tool names in your

scripts.

MariaDB-server-

debuginfo
Debuginfo for the server and server tools, like myisamchk and mariadb-hotcopy are here.

MariaDB-shared Dynamic client libraries.

MariaDB-shared-

debuginfo
Debuginfo for dynamic client libraries.

MariaDB-test mysql-client-test executable, and mysql-test framework with the tests.

MariaDB-test-

debuginfo
Debuginfo for mysql-client-test executable, and mysql-test framework with the tests.

MariaDB-tokudb-

engine
The TokuDB storage engine.

MariaDB-tokudb-

engine-

debuginfo

Debuginfo for the TokuDB storage engine.

Available RPM Packages in MariaDB 10.2 and MariaDB 10.3

In MariaDB 10.2 and MariaDB 10.3, the following RPMs are available:

Package Name Description

galera The WSREP provider for Galera 3.

MariaDB-backup Mariabackup

MariaDB-backup-debuginfo Debuginfo for Mariabackup

MariaDB-client Client tools like mysql CLI, mysqldump , and others.

MariaDB-client-debuginfo Debuginfo for client tools like mysql CLI, mariadb-dump , and others.

MariaDB-common Character set files and /etc/my.cnf

MariaDB-common-debuginfo Debuginfo for character set files and /etc/my.cnf

MariaDB starting with 10.2

1440/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/tokudb/

MariaDB-compat Old shared client libraries, may be needed by old MariaDB or MySQL clients

MariaDB-connect-engine The CONNECT storage engine.

MariaDB-connect-engine-

debuginfo
Debuginfo for the CONNECT storage engine.

MariaDB-cracklib-password-

check
The cracklib_password_check password validation plugin.

MariaDB-cracklib-password-

check
Debuginfo for the cracklib_password_check password validation plugin.

MariaDB-devel Development headers and static libraries.

MariaDB-devel-debuginfo Debuginfo for development headers and static libraries.

MariaDB-gssapi-server The gssapi authentication plugin.

MariaDB-gssapi-server-

debuginfo
Debuginfo for the gssapi authentication plugin.

MariaDB-rocksdb-engine The MyRocks storage engine.

MariaDB-rocksdb-engine-

debuginfo
Debuginfo for the MyRocks storage engine.

MariaDB-server The server and server tools, like myisamchk and mariadb-hotcopy are here.

MariaDB-server-debuginfo
Debuginfo for the server and server tools, like myisamchk and mariadb-hotcopy

are here.

MariaDB-shared Dynamic client libraries.

MariaDB-shared-debuginfo Debuginfo for dynamic client libraries.

MariaDB-test mysql-client-test executable, and mysql-test framework with the tests.

MariaDB-test-debuginfo
Debuginfo for mysql-client-test executable, and mysql-test framework

with the tests.

MariaDB-tokudb-engine The TokuDB storage engine.

MariaDB-tokudb-engine-

debuginfo
Debuginfo for the TokuDB storage engine.

Installing RPM Packages
Preferably, you should install MariaDB RPM packages using the package manager of your Linux distribution, for example

yum or zypper . But you can also use the lower-level rpm tool.

Actions Performed by RPM Packages

Users and Groups Created

When the MariaDB-server RPM package is installed, it will create a user and group named mysql , if it does not already

exist.

2.1.2.1.2 Installing MariaDB with yum/dnf
On RHEL, CentOS, Fedora, and other similar Linux RPM based distributions, these provide MariaDB packages. These are

supported by those distributions. If you have a particular need for a later version than what is in the distribution, then

MariaDB provides repositories for them.

Using repositories rather than installing RPM allows for an ease of update when a new release is made. It is highly

recommended to install the relevant RPM packages from MariaDB's repository using yum or dnf . Centos 7 still uses

yum , most others use dnf , and SUSE/openSUSE use zypper .

This page walks you through the simple installation steps using dnf and yum .

1441/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/tokudb/
https://en.wikipedia.org/wiki/Yum_(software)
https://en.wikipedia.org/wiki/DNF_(software)

Contents
1. Adding the MariaDB YUM repository

1. Using the MariaDB Package Repository Setup Script

2. Using the MariaDB Repository Configuration Tool

3. Pinning the MariaDB Repository to a Specific Minor Release

2. Updating the MariaDB YUM repository to a New Major Release

1. Updating the Major Release with the MariaDB Package Repository Setup Script

2. Updating the Major Release with the MariaDB Repository Configuration Tool

3. Importing the MariaDB GPG Public Key

1. Old Key ===

4. Installing MariaDB Packages with YUM/DNF

1. Installing the Most Common Packages

2. Installing MariaDB Server

3. Installing MariaDB Galera Cluster with YUM

4. Installing MariaDB Clients and Client Libraries with YUM

5. Installing Mariabackup with YUM

6. Installing Plugins with YUM

7. Installing Debug Info Packages with YUM

1. Installing Debug Info for the Most Common Packages with YUM

2. Installing Debug Info for MariaDB Server with YUM

8. Installing Older Versions from the Repository

5. After Installation

Adding the MariaDB YUM repository
We currently have YUM/DNF repositories for the following Linux distributions, and for the versions that are in standard (not

extended) support:

Red Hat Enterprise Linux (RHEL)

CentOS

Fedora

openSUSE

SUSE

Using the MariaDB Package Repository Setup Script

If you want to install MariaDB with yum , then you can configure yum to install from MariaDB Corporation's MariaDB

Package Repository by using the MariaDB Package Repository setup script.

MariaDB Corporation provides a MariaDB Package Repository for several Linux distributions that use yum to manage

packages. This repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup. The MariaDB Package Repository setup script automatically configures

your system to install packages from the MariaDB Package Repository.

To use the script, execute the following command:

curl -sS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup | sudo bash

Note that this script also configures a repository for MariaDB MaxScale and a repository for MariaDB Tools, which

currently only contains Percona XtraBackup and its dependencies.

See MariaDB Package Repository Setup and Usage for more information.

Using the MariaDB Repository Configuration Tool

If you want to install MariaDB with yum , then you can configure yum to install from MariaDB Foundation's MariaDB

Repository by using the MariaDB Repository Configuration Tool .

The MariaDB Foundation provides a MariaDB repository for several Linux distributions that use yum to manage packages.

This repository contains software packages related to MariaDB Server, including the server itself, clients and utilities, client

libraries , plugins, and Mariabackup. The MariaDB Repository Configuration Tool can easily generate the appropriate

configuration file to add the repository for your distribution.

Once you have the appropriate repository configuration section for your distribution, add it to a file named MariaDB.repo

under /etc/yum.repos.d/ .

For example, if you wanted to use the repository to install MariaDB 10.6 on RHEL (any version), then you could use the

following yum repository configuration in /etc/yum.repos.d/MariaDB.repo :

1442/4161

https://mariadb.com/kb/en/client-libraries/
https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/percona-xtrabackup/
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/client-libraries/

[mariadb]

name = MariaDB

baseurl = https://rpm.mariadb.org/10.6/rhel/$releasever/$basearch

gpgkey= https://rpm.mariadb.org/RPM-GPG-KEY-MariaDB

gpgcheck=1

The example file above includes a gpgkey line to automatically fetch the GPG public key that is used to verify the digital

signatures of the packages in our repositories. This allows the the yum , dnf , and rpm utilities to verify the integrity of the

packages that they install.

Pinning the MariaDB Repository to a Specific Minor Release

If you wish to pin the yum repository to a specific minor release, or if you would like to do a yum downgrade to a specific

minor release, then you can create a yum repository configuration with a baseurl option set to that specific minor

release.

The MariaDB Foundation archives repositories all releases is at the following URL:

http://archive.mariadb.org/

Note this isn't configured as a highly available server. For that purpose please use the main mirrors.

For example, if you wanted to pin your repository to MariaDB 10.3.34 on CentOS 7, then you could use the following yum

repository configuration in /etc/yum.repos.d/MariaDB.repo :

[mariadb]

name = MariaDB-10.3.34

baseurl= http://archive.mariadb.org/mariadb-10.3.34/yum/centos/$releasever/$basearch

gpgkey= https://archive.mariadb.org/PublicKey

gpgcheck=1

Note that if you change an existing repository configuration, then you may need to execute the following:

sudo yum clean all

Updating the MariaDB YUM repository to a New Major
Release
MariaDB's yum repository can be updated to a new major release. How this is done depends on how you originally

configured the repository.

Updating the Major Release with the MariaDB Package Repository
Setup Script

If you configured yum to install from MariaDB Corporation's MariaDB Package Repository by using the MariaDB Package

Repository setup script, then you can update the major release that the repository uses by running the script again.

Updating the Major Release with the MariaDB Repository Configuration
Tool

If you configured yum to install from MariaDB Foundation's MariaDB Repository by using the MariaDB Repository

Configuration Tool , then you can update the major release that the repository uses by updating the yum repository

configuration file in-place. For example, if you wanted to change the repository from MariaDB 10.6 to MariaDB 10.11, and if

the repository configuration file was at /etc/yum.repos.d/MariaDB.repo , then you could execute the following:

sudo sed -i 's/10.6/10.11/' /etc/yum.repos.d/MariaDB.repo

After that, the repository should refer to MariaDB 10.11.

If the yum repository is pinned to a specific minor release, then the above sed command can result in an invalid

repository configuration. In that case, the recommended options are:

Edit the MariaDB.repo repository file manually.

Or delete the MariaDB.repo repository file, and then install the repository of the new version with the more robust

1443/4161

http://archive.mariadb.org/
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://downloads.mariadb.org/mariadb/repositories/

MariaDB Package Repository setup script.

Importing the MariaDB GPG Public Key
Before MariaDB can be installed, you also have to import the GPG public key that is used to verify the digital signatures of

the packages in our repositories. This allows the yum , dnf and rpm utilities to verify the integrity of the packages that

they install.

The id of our GPG public key is:

short form: 0xC74CD1D8

long form: 0xF1656F24C74CD1D8

full fingerprint: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

yum should prompt you to import the GPG public key the first time that you install a package from MariaDB's repository.

However, if you like, the rpm utility can be used to manually import this key instead. For example:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Once the GPG public key is imported, you are ready to install packages from the repository.

Old Key

For releases before 2023 an older SHA1 based GPG key was used.

The id of this older GPG public key was 0xcbcb082a1bb943db . The short form was 0x1BB943DB . The full key fingerprint

was:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

Installing MariaDB Packages with YUM/DNF
After the dnf / yum repository is configured, you can install MariaDB by executing the dnf or yum command. The

specific command that you would use would depend on which specific packages that you want to install.

Installing the Most Common Packages

In MariaDB 10.4 and later, to Install the most common packages, execute the following command:

sudo dnf install MariaDB-server galera-4 MariaDB-client MariaDB-shared MariaDB-backup MariaDB-common

In MariaDB 10.3 and before, to Install the most common packages, execute the following command:

sudo yum install MariaDB-server galera MariaDB-client MariaDB-shared MariaDB-backup MariaDB-common

Installing MariaDB Server

To Install MariaDB Server, execute the following command:

sudo dnf install MariaDB-server

Installing MariaDB Galera Cluster with YUM

The process to install MariaDB Galera Cluster with the MariaDB yum repository is practically the same as installing

standard MariaDB Server.

In MariaDB 10.4 and later, you also need to install the galera-4 package to obtain the Galera 4 wsrep provider library.

MariaDB starting with 10.4

MariaDB until 10.3

1444/4161

https://linux.die.net/man/8/rpm
https://www.man7.org/linux/man-pages/man8/dnf.8.html
https://www.man7.org/linux/man-pages/man8/yum.8.html

In MariaDB 10.3 and before, you also need to install the galera package to obtain the Galera 3 wsrep provider library.

In MariaDB 10.4 and later, to install MariaDB Galera Cluster, you could execute the following command:

sudo yum install MariaDB-server MariaDB-client galera-4

In MariaDB 10.3 and before, to install MariaDB Galera Cluster, you could execute the following command:

sudo yum install MariaDB-server MariaDB-client galera

If you haven't yet imported the MariaDB GPG public key, then yum will prompt you to import it after it downloads the

packages, but before it prompts you to install them.

See MariaDB Galera Cluster for more information on MariaDB Galera Cluster.

Installing MariaDB Clients and Client Libraries with YUM

In MariaDB 10.2 and later, MariaDB Connector/C has been included as the client library (staticly linked). However, the

package name for the client library has not been changed.

To Install the clients and client libraries, execute the following command:

sudo yum install MariaDB-client MariaDB-shared

If you want compile your own programs against MariaDB Connector/C , execute the following command:

sudo yum install MariaDB-devel

Installing Mariabackup with YUM

To install Mariabackup, execute the following command:

sudo yum install MariaDB-backup

Installing Plugins with YUM

Some plugins may also need to be installed.

For example, to install the cracklib_password_check password validation plugin, execute the following command:

sudo yum install MariaDB-cracklib-password-check

Installing Debug Info Packages with YUM

The MariaDB yum repository first added debuginfo packages in MariaDB 5.5.64 , MariaDB 10.1.39 , MariaDB

10.2.23 , MariaDB 10.3.14 , and MariaDB 10.4.4.

The MariaDB yum repository also contains debuginfo packages. These package may be needed when debugging a

problem .

Installing Debug Info for the Most Common Packages with YUM

To install debuginfo for the most common packages, execute the following command:

sudo yum install MariaDB-server-debuginfo MariaDB-client-debuginfo MariaDB-shared-debuginfo

MariaDB-backup-debuginfo MariaDB-common-debuginfo

All packages have their debuginfo by appending -debuginfo to the package name.

MariaDB starting with 10.4

MariaDB until 10.3

MariaDB starting with 5.5.64

1445/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://mariadb.com/kb/en/how-to-produce-a-full-stack-trace-for-mysqld/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html

Installing Debug Info for MariaDB Server with YUM

To install debuginfo for MariaDB Server, execute the following command:

sudo yum install MariaDB-server-debuginfo

Installing Older Versions from the Repository

The MariaDB yum repository contains the last few versions of MariaDB. To show what versions are available, use the

following command:

yum list --showduplicates MariaDB-server

In the output you will see the available versions. For example:

$ yum list --showduplicates MariaDB-server

Loaded plugins: fastestmirror

Loading mirror speeds from cached hostfile

 * base: centos.mirrors.ovh.net

 * extras: centos.mirrors.ovh.net

 * updates: centos.mirrors.ovh.net

Available Packages

MariaDB-server.x86_64 10.3.10-1.el7.centos mariadb

MariaDB-server.x86_64 10.3.11-1.el7.centos mariadb

MariaDB-server.x86_64 10.3.12-1.el7.centos mariadb

mariadb-server.x86_64 1:5.5.60-1.el7_5 base

The MariaDB yum repository in this example contains MariaDB 10.3.10 , MariaDB 10.3.11 , and MariaDB 10.3.12 .

The CentOS base yum repository also contains MariaDB 5.5.60 .

To install an older version of a package instead of the latest version we just need to specify the package name, a dash, and

then the version number. And we only need to specify enough of the version number for it to be unique from the other

available versions.

However, when installing an older version of a package, if yum has to install dependencies, then it will automatically

choose to install the latest versions of those packages. To ensure that all MariaDB packages are on the same version in this

scenario, it is necessary to specify them all.

The packages that the MariaDB-server package depend on are: MariaDB-client, MariaDB-shared, and MariaDB-common.

Therefore, to install MariaDB 10.3.11 from this yum repository, we would do the following:

sudo yum install MariaDB-server-10.3.11 MariaDB-client-10.3.11 MariaDB-shared-10.3.11 MariaDB-

backup-10.3.11 MariaDB-common-10.3.11

The rest of the install and setup process is as normal.

After Installation
After the installation is complete, you can start MariaDB.

If you are using MariaDB Galera Cluster, then keep in mind that the first node will have to be bootstrapped.

2.1.2.1.3 Installing MariaDB with zypper
On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM packages

from MariaDB's repository using zypper .

This page walks you through the simple installation steps using zypper .

1446/4161

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/intro.debuginfo.html
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-5560-release-notes/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://en.wikipedia.org/wiki/ZYpp

Contents
1. Adding the MariaDB ZYpp repository

1. Using the MariaDB Package Repository Setup Script

2. Using the MariaDB Repository Configuration Tool

3. Pinning the MariaDB Repository to a Specific Minor Release

2. Updating the MariaDB ZYpp repository to a New Major Release

1. Updating the Major Release with the MariaDB Package Repository Setup Script

2. Updating the Major Release with the MariaDB Repository Configuration Tool

3. Importing the MariaDB GPG Public Key

4. Installing MariaDB Packages with ZYpp

1. Installing the Most Common Packages with ZYpp

2. Installing MariaDB Server with ZYpp

3. Installing MariaDB Galera Cluster with ZYpp

4. Installing MariaDB Clients and Client Libraries with ZYpp

5. Installing Mariabackup with ZYpp

6. Installing Plugins with ZYpp

7. Installing Debug Info Packages with ZYpp

1. Installing Debug Info for the Most Common Packages with ZYpp

2. Installing Debug Info for MariaDB Server with ZYpp

3. Installing Debug Info for MariaDB Clients and Client Libraries with ZYpp

4. Installing Debug Info for Mariabackup with ZYpp

5. Installing Debug Info for Plugins with ZYpp

8. Installing Older Versions from the Repository

5. After Installation

Adding the MariaDB ZYpp repository
We currently have ZYpp repositories for the following Linux distributions:

SUSE Linux Enterprise Server (SLES) 12

SUSE Linux Enterprise Server (SLES) 15

OpenSUSE 15

OpenSUSE 42

Using the MariaDB Package Repository Setup Script

If you want to install MariaDB with zypper , then you can configure zypper to install from MariaDB Corporation's MariaDB

Package Repository by using the MariaDB Package Repository setup script.

MariaDB Corporation provides a MariaDB Package Repository for several Linux distributions that use zypper to manage

packages. This repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup. The MariaDB Package Repository setup script automatically configures

your system to install packages from the MariaDB Package Repository.

To use the script, execute the following command:

curl -sS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup | sudo bash

Note that this script also configures a repository for MariaDB MaxScale and a repository for MariaDB Tools, which

currently only contains Percona XtraBackup and its dependencies.

See MariaDB Package Repository Setup and Usage for more information.

Using the MariaDB Repository Configuration Tool

If you want to install MariaDB with zypper , then you can configure zypper to install from MariaDB Foundation's MariaDB

Repository by using the MariaDB Repository Configuration Tool .

The MariaDB Foundation provides a MariaDB repository for several Linux distributions that use zypper to manage

packages. This repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup. The MariaDB Repository Configuration Tool can easily generate the

appropriate commands to add the repository for your distribution.

For example, if you wanted to use the repository to install MariaDB 10.3 on SLES 15, then you could use the following

commands to add the MariaDB zypper repository:

1447/4161

https://mariadb.com/kb/en/client-libraries/
https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/percona-xtrabackup/
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/client-libraries/

sudo zypper addrepo --gpgcheck --refresh https://yum.mariadb.org/10.3/sles/15/x86_64 mariadb

sudo zypper --gpg-auto-import-keys refresh

Pinning the MariaDB Repository to a Specific Minor Release

If you wish to pin the zypper repository to a specific minor release, or if you would like to downgrade to a specific minor

release, then you can create a zypper repository with the URL hard-coded to that specific minor release.

The MariaDB Foundation archives repositories of old minor releases at the following URL:

http://archive.mariadb.org/

So if you can't find the repository of a specific minor release at yum.mariadb.org , then it would be a good idea to check

the archive.

For example, if you wanted to pin your repository to MariaDB 10.3.14 on SLES 15, then you could use the following

commands to add the MariaDB zypper repository:

sudo zypper removerepo mariadb

sudo zypper addrepo --gpgcheck --refresh https://yum.mariadb.org/10.3.14/sles/15/x86_64 mariadb

Updating the MariaDB ZYpp repository to a New Major
Release
MariaDB's zypper repository can be updated to a new major release. How this is done depends on how you originally

configured the repository.

Updating the Major Release with the MariaDB Package Repository
Setup Script

If you configured zypper to install from MariaDB Corporation's MariaDB Package Repository by using the MariaDB

Package Repository setup script, then you can update the major release that the repository uses by running the script again.

Updating the Major Release with the MariaDB Repository Configuration
Tool

If you configured zypper to install from MariaDB Foundation's MariaDB Repository by using the MariaDB Repository

Configuration Tool , then you can update the major release that the repository uses by removing the repository for the old

version and adding the repository for the new version.

First, you can remove the repository for the old version by executing the following command:

sudo zypper removerepo mariadb

After that, you can add the repository for the new version. For example, if you wanted to use the repository to install

MariaDB 10.3 on SLES 15, then you could use the following commands to add the MariaDB zypper repository:

sudo zypper addrepo --gpgcheck --refresh https://yum.mariadb.org/10.3/sles/15/x86_64 mariadb

sudo zypper --gpg-auto-import-keys refresh

After that, the repository should refer to MariaDB 10.3.

Importing the MariaDB GPG Public Key
Before MariaDB can be installed, you also have to import the GPG public key that is used to verify the digital signatures of

the packages in our repositories. This allows the the zypper and rpm utilities to verify the integrity of the packages that

they install.

The id of our GPG public key is 0xcbcb082a1bb943db . The short form of the id is 0x1BB943DB . The full key fingerprint is:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

The rpm utility can be used to import this key. For example:

1448/4161

http://archive.mariadb.org/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://downloads.mariadb.org/mariadb/repositories/
https://linux.die.net/man/8/rpm

sudo rpm --import https://yum.mariadb.org/RPM-GPG-KEY-MariaDB

Once the GPG public key is imported, you are ready to install packages from the repository.

Installing MariaDB Packages with ZYpp
After the zypper repository is configured, you can install MariaDB by executing the zypper command. The specific

command that you would use would depend on which specific packages that you want to install.

Installing the Most Common Packages with ZYpp

In MariaDB 10.4 and later, to Install the most common packages, execute the following command:

sudo zypper install MariaDB-server galera-4 MariaDB-client MariaDB-shared MariaDB-backup

MariaDB-common

In MariaDB 10.3 and before, to Install the most common packages, execute the following command:

sudo zypper install MariaDB-server galera MariaDB-client MariaDB-shared MariaDB-backup

MariaDB-common

Installing MariaDB Server with ZYpp

To Install MariaDB Server, execute the following command:

sudo zypper install MariaDB-server

Installing MariaDB Galera Cluster with ZYpp

The process to install MariaDB Galera Cluster with the MariaDB zypper repository is practically the same as installing

standard MariaDB Server.

In MariaDB 10.1 and later, Galera Cluster support has been included in the standard MariaDB Server packages, so you will

need to install the MariaDB-server package, as you normally would.

In MariaDB 10.4 and later, you also need to install the galera-4 package to obtain the Galera 4 wsrep provider library.

In MariaDB 10.3 and before, you also need to install the galera package to obtain the Galera 3 wsrep provider library.

In MariaDB 10.4 and later, to install MariaDB Galera Cluster, you could execute the following command:

sudo zypper install MariaDB-server MariaDB-client galera-4

In MariaDB 10.3 and before, to install MariaDB Galera Cluster, you could execute the following command:

sudo zypper install MariaDB-server MariaDB-client galera

If you haven't yet imported the MariaDB GPG public key, then zypper will prompt you to import it after it downloads the

packages, but before it prompts you to install them.

See MariaDB Galera Cluster for more information on MariaDB Galera Cluster.

Installing MariaDB Clients and Client Libraries with ZYpp

In MariaDB 10.2 and later, MariaDB Connector/C has been included as the client library. However, the package name for

MariaDB starting with 10.4

MariaDB until 10.3

MariaDB starting with 10.4

MariaDB until 10.3

1449/4161

https://en.opensuse.org/SDB:Zypper_manual_(plain)
https://mariadb.com/kb/en/about-mariadb-connector-c/

the client library has not been changed.

To Install the clients and client libraries, execute the following command:

sudo zypper install MariaDB-client MariaDB-shared

Installing Mariabackup with ZYpp

To install Mariabackup, execute the following command:

sudo zypper install MariaDB-backup

Installing Plugins with ZYpp

Some plugins may also need to be installed.

For example, to install the cracklib_password_check password validation plugin, execute the following command:

sudo zypper install MariaDB-cracklib-password-check

Installing Debug Info Packages with ZYpp

The MariaDB zypper repository first added debuginfo packages in MariaDB 5.5.64 , MariaDB 10.1.39 ,

MariaDB 10.2.23 , MariaDB 10.3.14 , and MariaDB 10.4.4.

The MariaDB zypper repository also contains debuginfo packages. These package may be needed when

debugging a problem .

Installing Debug Info for the Most Common Packages with ZYpp

To install debuginfo for the most common packages, execute the following command:

sudo zypper install MariaDB-server-debuginfo MariaDB-client-debuginfo MariaDB-shared-debuginfo

MariaDB-backup-debuginfo MariaDB-common-debuginfo

Installing Debug Info for MariaDB Server with ZYpp

To install debuginfo for MariaDB Server, execute the following command:

sudo zypper install MariaDB-server-debuginfo

Installing Debug Info for MariaDB Clients and Client Libraries with ZYpp

In MariaDB 10.2 and later, MariaDB Connector/C has been included as the client library. However, the package name for

the client library has not been changed.

To install debuginfo for the clients and client libraries, execute the following command:

sudo zypper install MariaDB-client-debuginfo MariaDB-shared-debuginfo

Installing Debug Info for Mariabackup with ZYpp

To install debuginfo for Mariabackup, execute the following command:

sudo zypper install MariaDB-backup-debuginfo

Installing Debug Info for Plugins with ZYpp

For some plugins, debuginfo may also need to be installed.

For example, to install debuginfo for the cracklib_password_check password validation plugin, execute the

following command:

MariaDB starting with 5.5.64

1450/4161

https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://mariadb.com/kb/en/how-to-produce-a-full-stack-trace-for-mysqld/
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://mariadb.com/kb/en/about-mariadb-connector-c/
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo
https://en.opensuse.org/openSUSE:Packaging_guidelines#Debuginfo

sudo zypper install MariaDB-cracklib-password-check-debuginfo

Installing Older Versions from the Repository

The MariaDB zypper repository contains the last few versions of MariaDB. To show what versions are available, use the

following command:

zypper search --details MariaDB-server

In the output you will see the available versions.

To install an older version of a package instead of the latest version we just need to specify the package name, a dash, and

then the version number. And we only need to specify enough of the version number for it to be unique from the other

available versions.

However, when installing an older version of a package, if zypper has to install dependencies, then it will automatically

choose to install the latest versions of those packages. To ensure that all MariaDB packages are on the same version in this

scenario, it is necessary to specify them all.

The packages that the MariaDB-server package depend on are: MariaDB-client, MariaDB-shared, and MariaDB-common.

Therefore, to install MariaDB 10.3.14 from this zypper repository, we would do the following:

sudo zypper install MariaDB-server-10.3.14 MariaDB-client-10.3.14 MariaDB-shared-10.3.14

MariaDB-backup-10.3.14 MariaDB-common-10.3.14

The rest of the install and setup process is as normal.

After Installation
After the installation is complete, you can start MariaDB .

If you are using MariaDB Galera Cluster, then keep in mind that the first node will have to be bootstrapped.

2.1.2.1.4 Installing MariaDB With the rpm Tool
This article describes how to download the RPM files and install them using the rpm command.

It is highly recommended to Install MariaDB with yum where possible.

Navigate to https://mariadb.org/download/ and choose the desired database version and then select the RPMs that match

your Linux distribution and architecture.

Clicking those links takes you to a local mirror. Choose the rpms link and download the desired packages. The packages

will be similar to the following:

MariaDB-client-5.2.5-99.el5.x86_64.rpm

MariaDB-debuginfo-5.2.5-99.el5.x86_64.rpm

MariaDB-devel-5.2.5-99.el5.x86_64.rpm

MariaDB-server-5.2.5-99.el5.x86_64.rpm

MariaDB-shared-5.2.5-99.el5.x86_64.rpm

MariaDB-test-5.2.5-99.el5.x86_64.rpm

For a standard server installation you will need to download at least the client, shared, and server RPM files. See About the

MariaDB RPM Files for more information about what is included in each RPM package.

After downloading the MariaDB RPM files, you might want to check their signatures. See Checking MariaDB RPM Package

Signatures for more information about checking signatures.

rpm --checksig $(find . -name '*.rpm')

Prior to installing MariaDB, be aware that it will conflict with an existing installation of MySQL. To check whether MySQL is

already installed, issue the command:

rpm -qa 'mysql*'

If necessary, you can remove found MySQL packages before installing MariaDB.

1451/4161

https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.org/download/

To install MariaDB, use the command:

rpm -ivh MariaDB-*

You should see output such as the following:

Preparing... ### [100%]

 1:MariaDB-shared ### [14%]

 2:MariaDB-client ### [29%]

 3:MariaDB-client ### [43%]

 4:MariaDB-debuginfo ### [57%]

 5:MariaDB-devel ### [71%]

 6:MariaDB-server ### [86%]

PLEASE REMEMBER TO SET A PASSWORD FOR THE MariaDB root USER !

To do so, start the server, then issue the following commands:

/usr/bin/mariadb-admin -u root password 'new-password'

/usr/bin/mariadb-admin -u root -h hostname password 'new-password'

Alternatively you can run:

/usr/bin/mysql_secure_installation

which will also give you the option of removing the test

databases and anonymous user created by default. This is

strongly recommended for production servers.

See the MySQL manual for more instructions.

Please report any problems with the /usr/bin/mysqlbug script!

The latest information about MariaDB is available at http://www.askmonty.org/.

You can find additional information about the MySQL part at:

http://dev.mysql.com

Support MariaDB development by buying support/new features from

Monty Program Ab. You can contact us about this at sales@askmonty.org.

Alternatively consider joining our community based development effort:

http://askmonty.org/wiki/index.php/MariaDB#How_can_I_participate_in_the_development_of_MariaDB

Starting MySQL....[OK]

Giving mysqld 2 seconds to start

 7:MariaDB-test ### [100%]

Be sure to follow the instructions given in the preceding output and create a password for the root user either by using

mariadb-admin or by running the /usr/bin/mysql_secure_installation script.

Installing the MariaDB RPM files installs the MySQL tools in the /usr/bin directory. You can confirm that MariaDB has

been installed by using the mariadb client program. Issuing the command mariadb should give you the MariaDB cursor.

2.1.2.1.5 Checking MariaDB RPM Package
Signatures
MariaDB RPM packages since MariaDB 5.1.55 are signed.

The key we use has an id of 1BB943DB and the key fingerprint is:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

To check the signature you first need to import the public part of the key like so:

gpg --keyserver hkp://pgp.mit.edu --recv-keys 1BB943DB

Next you need to let pgp know about the key like so:

gpg --export --armour 1BB943DB > mariadb-signing-key.asc

sudo rpm --import mariadb-signing-key.asc

1452/4161

https://mariadb.com/kb/en/mariadb-5155-release-notes/

You can check to see if the key was imported with:

rpm -qa gpg-pubkey*

Once the key is imported, you can check the signature of the MariaDB RPM files by running the something like the following

in your download directory:

rpm --checksig $(find . -name '*.rpm')

The output of the above will look something like this (make sure gpg shows up on each OK line):

me@desktop:~$ rpm --checksig $(find . -name '*.rpm')

./kvm-rpm-centos5-amd64/rpms/MariaDB-test-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/rpms/MariaDB-server-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/rpms/MariaDB-client-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/rpms/MariaDB-shared-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/rpms/MariaDB-devel-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/rpms/MariaDB-debuginfo-5.1.55-98.el5.x86_64.rpm: (sha1) dsa sha1 md5 gpg OK

./kvm-rpm-centos5-amd64/srpms/MariaDB-5.1.55-98.el5.src.rpm: (sha1) dsa sha1 md5 gpg OK

2.1.2.1.6 Troubleshooting MariaDB Installs on
Red Hat/CentOS
The following article is about different issues people have encountered when installing MariaDB on Red Hat / CentOS.

It is highly recommended to install with yum where possible.

In Red Hat / CentOS it is also possible to install a RPM or a tar ball. The RPM is the preferred version, except if you want

to install many versions of MariaDB or install MariaDB in a non standard location.

Replacing MySQL

If you removed an MySQL RPM to install MariaDB, note that the MySQL RPM on uninstall renames /etc/my.cnf to

/etc/my.cnf.rpmsave.

After installing MariaDB you should do the following to restore your configuration options:

mv /etc/my.cnf.rpmsave /etc/my.cnf

Unsupported configuration options

If you are using any of the following options in your /etc/my.cnf or other my.cnf file you should remove them. This is also true

for MySQL 5.1 or newer:

skip-bdb

2.1.2.1.7 MariaDB for DirectAdmin Using RPMs
If you are using DirectAdmin and you encounter any issues with Installing MariaDB with YUM, then the directions below may

help. The process is very straightforward.

Note: Installing with YUM is preferable to installing the MariaDB RPM packages manually, so only do this if you are

having issues such as:

Starting httpd:

 httpd:

 Syntax error on line 18 of /etc/httpd/conf/httpd.conf:

 Syntax error on line 1 of /etc/httpd/conf/extra/httpd-phpmodules.conf:

 Cannot load /usr/lib/apache/libphp5.so into server:

 libmysqlclient.so.18: cannot open shared object file: No such file or directory

Or:

1453/4161

http://downloads.askmonty.org/mariadb/

Starting httpd:

 httpd:

 Syntax error on line 18 of /etc/httpd/conf/httpd.conf:

 Syntax error on line 1 of /etc/httpd/conf/extra/httpd-phpmodules.conf:

 Cannot load /usr/lib/apache/libphp5.so into server:

 /usr/lib/apache/libphp5.so: undefined symbol: client_errors

RPM Installation
To install the RPMs, there is a quick and easy guide to Installing MariaDB with the RPM Tool. Follow the instructions there.

Necessary Edits
We do not want DirectAdmin's custombuild to remove/overwrite our MariaDB installation whenever an update is performed.

To rectify this, disable automatic MySQL installation.

Edit /usr/local/directadmin/custombuild/options.conf

Change:

mysql_inst=yes

To:

mysql_inst=no

Note: When MariaDB is installed manually (i.e. not using YUM), updates are not automatic. You will need to update the

RPMs yourself.

2.1.2.1.8 MariaDB Installation (Version 10.1.21)
via RPMs on CentOS 7
Here are the detailed steps for installing MariaDB (version 10.1.21) via RPMs on CentOS 7.

The RPM's needed for the installation are all available on the MariaDB website and are given below:

jemalloc-3.6.0-1.el7.x86_64.rpm

MariaDB-10.1.21-centos7-x86_64-client.rpm

MariaDB-10.1.21-centos7-x86_64-compat.rpm

galera-25.3.19-1.rhel7.el7.centos.x86_64.rpm

jemalloc-devel-3.6.0-1.el7.x86_64.rpm

MariaDB-10.1.21-centos7-x86_64-common.rpm

MariaDB-10.1.21-centos7-x86_64-server.rpm

Step by step installation:

1) First install all of the dependencies needed. Its easy to do this via YUM packages: yum install rsync nmap lsof perl-

DBI nc

2) rpm -ivh jemalloc-3.6.0-1.el7.x86_64.rpm

3) rpm -ivh jemalloc-devel-3.6.0-1.el7.x86_64.rpm

4) rpm -ivh MariaDB-10.1.21-centos7-x86_64-common.rpm MariaDB-10.1.21-centos7-x86_64-compat.rpm MariaDB-

10.1.21-centos7-x86_64-client.rpm galera-25.3.19-1.rhel7.el7.centos.x86_64.rpm MariaDB-10.1.21-centos7-x86_64-

server.rpm

While installing MariaDB-10.1.21-centos7-x86_64-common.rpm there might be a conflict with older MariaDB packages. we

need to remove them and install the original rpm again.

Here is the error message for dependencies:

1454/4161

rpm -ivh MariaDB-10.1.21-centos7-x86_64-common.rpm

warning: MariaDB-10.1.21-centos7-x86_64-common.rpm: Header V4 DSA/SHA1 Signature, key ID

1bb943db: NOKEY

error: Failed dependencies:

 mariadb-libs < 1:10.1.21-1.el7.centos conflicts with MariaDB-common-10.1.21-

1.el7.centos.x86_64

Solution: search for this package:

rpm -qa | grep mariadb-libs

mariadb-libs-5.5.52-1.el7.x86_64

Remove this package:

rpm -ev --nodeps mariadb-libs-5.5.52-1.el7.x86_64

Preparing packages...

mariadb-libs-1:5.5.52-1.el7.x86_64

While installing the Galera package there might be a conflict in installation for a dependency package. Here is the error

message:

[root@centos-2 /]# rpm -ivh galera-25.3.19-1.rhel7.el7.centos.x86_64.rpm

error: Failed dependencies:

 libboost_program_options.so.1.53.0()(64bit) is needed by galera-25.3.19-

1.rhel7.el7.centos.x86_64

The dependencies for Galera package is: libboost_program_options.so.1.53.0

Solution:

yum install boost-devel.x86_64

Another warning message while installing Galera package is as shown below:

warning: galera-25.3.19-1.rhel7.el7.centos.x86_64.rpm: Header V4 DSA/SHA1 Signature, key ID

1bb943db: NOKEY

The solution for this is to import the key:

#rpm --import http://yum.mariadb.org/RPM-GPG-KEY-MariaDB

After step 4, the installation will be completed. The last step will be to run mysql_secure_installation to secure the production

server by dis allowing remote login for root, creating root password and removing the test database.

5) mysql_secure_installation

2.1.2.1.9 Why Source RPMs (SRPMs) Aren't
Packaged For Some Platforms
MariaDB source RPMs (SRPMs) are not packaged on all platforms for which MariaDB RPMs are packaged.

The reason is that MariaDB's build process relies heavily on cmake for a lot of things. In this specific case, MariaDB's

build process relies on CMake CPack Package Generators to build RPMs. The specific package generator that it uses to

build RPMs is called CPackRPM .

Support for source RPMs in CPackRPM became usable with MariaDB's build system starting from around cmake 3.10

. This means that we do not produce source RPMs on platforms where the installed cmake version is older than that.

See also Building MariaDB from a Source RPM.

2.1.2.1.10 Building MariaDB from a Source RPM
For some distributions you can build MariaDB from a source RPM. (See also Why Source RPMs (SRPMs) Aren't Packaged

For Some Platforms).

1455/4161

https://cmake.org
https://gitlab.kitware.com/cmake/community/wikis/doc/cpack/PackageGenerators
https://cmake.org/cmake/help/v3.10/module/CPackRPM.html
https://cmake.org/cmake/help/v3.10/module/CPackRPM.html
https://cmake.org/cmake/help/v3.10/release/3.10.html
https://cmake.org

You can build it as follows:

using dnf

On RHEL8 you might need to start with:

 sudo dnf config-manager --set-enabled codeready-builder-beta-for-rhel-8-x86_64-rpms

Then, on all dnf distributions:

 sudo dnf install rpm-build perl-generators

 dnf download --source MariaDB

 sudo dnf builddep MariaDB-*.src.rpm

 rpmbuild --rebuild MariaDB-*.src.rpm

using yum

 sudo yum install rpm-build yum-utils

 yumdownloader --source MariaDB

 sudo yum-builddep MariaDB-*.src.rpm

 rpmbuild --rebuild MariaDB-*.src.rpm

using zypper

 sudo zypper in rpm-build

 sudo zypper si MariaDB

 sudo rpmbuild -bb /usr/src/packages/SPECS/MariaDB.spec

Or (to avoid building as root):

 sudo zypper in rpm-build

 sudo zypper si -d MariaDB

 zypper --pkg-cache-dir=`pwd` si --download-only MariaDB

 rpmbuild --rebuild mariadb/srpms/MariaDB-*.src.rpm

2.1.2.2 Installing MariaDB .deb Files

1456/4161

Contents
1. Installing MariaDB with APT

1. Adding the MariaDB APT repository

1. Using the MariaDB Package Repository Setup Script

2. Using the MariaDB Repository Configuration Tool

1. Executing add-apt-repository

2. Creating a Source List File

3. Using Ubuntu Software Center

4. Using Synaptic Package Manager

3. Pinning the MariaDB Repository to a Specific Minor Release

2. Updating the MariaDB APT repository to a New Major Release

1. Updating the Major Release with the MariaDB Package Repository Setup Script

2. Updating the Major Release with the MariaDB Repository Configuration Tool

1. Updating a Repository with add-apt-repository

2. Updating a Source List File

3. Importing the MariaDB GPG Public Key

4. Installing MariaDB Packages with APT

1. Installing the Most Common Packages with APT

2. Installing MariaDB Server with APT

3. Installing MariaDB Galera Cluster with APT

4. Installing MariaDB Clients and Client Libraries with APT

5. Installing Mariabackup with APT

6. Installing Plugins with APT

7. Installing Older Versions from the Repository

2. Installing MariaDB with dpkg

3. After Installation

4. Available DEB Packages

1. Available DEB Packages in MariaDB 10.4

2. Available DEB Packages in MariaDB 10.2 and MariaDB 10.3

5. Actions Performed by DEB Packages

1. Users and Groups Created

Installing MariaDB with APT
On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant .deb packages

from MariaDB's repository using apt , aptitude , Ubuntu Software Center , Synaptic Package Manager , or

another package manager.

This page walks you through the simple installation steps using apt .

Adding the MariaDB APT repository

We currently have APT repositories for the following Linux distributions:

Debian 10 (Buster)

Debian 11 (Bullseye)

Debian 12 (Bookworm)

Debian Unstable (Sid)

Ubuntu 18.04 LTS (Bionic)

Ubuntu 20.04 LTS (Focal)

Ubuntu 22.04 (Jammy)

Ubuntu 22.10 (Kinetic)

Ubuntu 23.04 (Lunar)

Using the MariaDB Package Repository Setup Script

If you want to install MariaDB with apt , then you can configure apt to install from MariaDB Corporation's MariaDB

Package Repository by using the MariaDB Package Repository setup script.

MariaDB Corporation provides a MariaDB Package Repository for several Linux distributions that use apt to manage

packages. This repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup. The MariaDB Package Repository setup script automatically configures

your system to install packages from the MariaDB Package Repository.

To use the script, execute the following command:

curl -sS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup | sudo bash

1457/4161

http://manpages.ubuntu.com/manpages/bionic/man8/apt.8.html
http://manpages.ubuntu.com/manpages/bionic/man8/aptitude-curses.8.html
https://help.ubuntu.com/community/UbuntuSoftwareCenter
https://help.ubuntu.com/community/SynapticHowto
https://mariadb.com/kb/en/client-libraries/

Note that this script also configures a repository for MariaDB MaxScale and a repository for MariaDB Tools, which

currently only contains Percona XtraBackup and its dependencies.

See MariaDB Package Repository Setup and Usage for more information.

Using the MariaDB Repository Configuration Tool

If you want to install MariaDB with apt , then you can configure apt to install from MariaDB Foundation's MariaDB

Repository by using the MariaDB Repository Configuration Tool .

The MariaDB Foundation provides a MariaDB repository for several Linux distributions that use apt-get to manage

packages. This repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup. The MariaDB Repository Configuration Tool can easily generate the

appropriate commands to add the repository for your distribution.

There are several ways to add the repository.

Executing add-apt-repository

One way to add an apt repository is by using the add-apt-repository command. This command will add the

repository configuration to /etc/apt/sources.list .

For example, if you wanted to use the repository to install MariaDB 10.3 on Ubuntu 18.04 LTS (Bionic), then you could use

the following commands to add the MariaDB apt repository:

sudo apt-get install software-properties-common

sudo add-apt-repository 'deb [arch=amd64,arm64,ppc64el]

http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu bionic main'

And then you would have to update the package cache by executing the following command:

sudo apt update

Creating a Source List File

Another way to add an apt repository is by creating a source list file in /etc/apt/sources.list.d/ .

For example, if you wanted to use the repository to install MariaDB 10.3 on Ubuntu 18.04 LTS (Bionic), then you could

create the MariaDB.list file in /etc/apt/sources.list.d/ with the following contents to add the MariaDB apt

repository:

MariaDB 10.3 repository list - created 2019-01-27 09:50 UTC

http://downloads.mariadb.org/mariadb/repositories/

deb [arch=amd64,arm64,ppc64el] http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu

bionic main

deb-src http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu bionic main

And then you would have to update the package cache by executing the following command:

sudo apt update

Using Ubuntu Software Center

Another way to add an apt repository is by using Ubuntu Software Center .

You can do this by going to the Software Sources window. This window can be opened either by navigating to Edit >

Software Sources or by navigating to System > Administration > Software Sources.

Once the Software Sources window is open, go to the Other Software tab, and click the Add button. At that point, you can

input the repository information provided by the MariaDB Repository Configuration Tool .

See here for more information.

Using Synaptic Package Manager

Another way to add an apt repository is by using Synaptic Package Manager .

You can do this by going to the Software Sources window. This window can be opened either by navigating to System >

Administrator > Software Sources or by navigating to Settings > Repositories.

Once the Software Sources window is open, go to the Other Software tab, and click the Add button. At that point, you can
1458/4161

https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/percona-xtrabackup/
https://mariadb.org/download/?t=repo-config
https://mariadb.com/kb/en/client-libraries/
http://manpages.ubuntu.com/manpages/bionic/man1/add-apt-repository.1.html
http://manpages.ubuntu.com/manpages/bionic/man5/sources.list.5.html
https://help.ubuntu.com/community/UbuntuSoftwareCenter
https://downloads.mariadb.org/mariadb/repositories/
https://help.ubuntu.com/community/UbuntuSoftwareCenter#Managing_software_sources
https://help.ubuntu.com/community/SynapticHowto

input the repository information provided by the MariaDB Repository Configuration Tool .

See here for more information.

Pinning the MariaDB Repository to a Specific Minor Release

If you wish to pin the apt repository to a specific minor release, or if you would like to downgrade to a specific minor

release, then you can create a apt repository with the URL hard-coded to that specific minor release.

The MariaDB Foundation archives repositories of old minor releases at the following URL:

http://archive.mariadb.org/

Archives are only of the distros and architectures supported at the time of release. For example MariaDB 10.0.38 is exists

for Ubuntu precise , trusty , xenial , wily , and yakkety obtained looking in https://archive.mariadb.org/mariadb-

10.0.38/repo/ubuntu/dists .

For example, if you wanted to pin your repository to MariaDB 10.5.9 on Ubuntu 20.04 LTS (Focal), then you would have to

first remove any existing MariaDB repository source list file from /etc/apt/sources.list.d/ . And then you could use

the following commands to add the MariaDB apt-get repository:

sudo add-apt-repository 'deb [arch=amd64,arm64,ppc64el,s390x]

http://archive.mariadb.org/mariadb-10.5.9/repo/ubuntu/ focal main main/debug'

Ensure you have the signing key installed.

Ubuntu Xenial and older will need:

sudo apt-get install -y apt-transport-https

And then you would have to update the package cache by executing the following command:

sudo apt update

Updating the MariaDB APT repository to a New Major Release

MariaDB's apt repository can be updated to a new major release. How this is done depends on how you originally

configured the repository.

Updating the Major Release with the MariaDB Package Repository Setup Script

If you configured apt to install from MariaDB Corporation's MariaDB Package Repository by using the MariaDB Package

Repository setup script, then you can update the major release that the repository uses by running the script again.

Updating the Major Release with the MariaDB Repository Configuration Tool

If you configured apt to install from MariaDB Foundation's MariaDB Repository by using the MariaDB Repository

Configuration Tool , then you can update the major release in various ways, depending on how you originally added the

repository.

Updating a Repository with add-apt-repository

If you added the apt repository by using the add-apt-repository command, then you can update the major

release that the repository uses by using the the add-apt-repository command again.

First, look for the repository string for the old version in /etc/apt/sources.list .

And then, you can remove the repository for the old version by executing the add-apt-repository command and

providing the --remove option. For example, if you wanted to remove a MariaDB 10.2 repository, then you could do so by

executing something like the following:

sudo add-apt-repository --remove 'deb [arch=amd64,arm64,ppc64el]

http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.2/ubuntu bionic main'

After that, you can add the repository for the new version with the add-apt-repository command. For example, if

you wanted to use the repository to install MariaDB 10.3 on Ubuntu 18.04 LTS (Bionic), then you could use the following

commands to add the MariaDB apt repository:

1459/4161

https://downloads.mariadb.org/mariadb/repositories/
https://help.ubuntu.com/community/SynapticHowto#Managing_Repositories
http://archive.mariadb.org/
https://mariadb.com/kb/en/mariadb-10038-release-notes/
https://archive.mariadb.org/mariadb-10.0.38/repo/ubuntu/dists
https://downloads.mariadb.org/mariadb/repositories/
http://manpages.ubuntu.com/manpages/bionic/man1/add-apt-repository.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/add-apt-repository.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/add-apt-repository.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/add-apt-repository.1.html

sudo apt-get install software-properties-common

sudo add-apt-repository 'deb [arch=amd64,arm64,ppc64el]

http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu bionic main'

And then you would have to update the package cache by executing the following command:

sudo apt update

After that, the repository should refer to MariaDB 10.3.

Updating a Source List File

If you added the apt repository by creating a source list file in /etc/apt/sources.list.d/ , then you can update the

major release that the repository uses by updating the source list file in-place. For example, if you wanted to change the

repository from MariaDB 10.2 to MariaDB 10.3, and if the source list file was at

/etc/apt/sources.list.d/MariaDB.list , then you could execute the following:

sudo sed -i 's/10.2/10.3/' /etc/apt/sources.list.d/MariaDB.list

And then you would have to update the package cache by executing the following command:

sudo apt update

After that, the repository should refer to MariaDB 10.3.

Importing the MariaDB GPG Public Key

Before MariaDB can be installed, you also have to import the GPG public key that is used to verify the digital signatures of

the packages in our repositories. This allows the apt utility to verify the integrity of the packages that it installs.

Prior to Debian 9 (Stretch), and Debian Unstable (Sid), and Ubuntu 16.04 LTS (Xenial), the id of our GPG public key

is 0xcbcb082a1bb943db . The full key fingerprint is:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

The apt-key utility can be used to import this key. For example:

sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

Starting with Debian 9 (Stretch) and Ubuntu 16.04 LTS (Xenial), the id of our GPG public key is

0xF1656F24C74CD1D8 . The full key fingerprint is:

177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The apt-key utility can be used to import this key. For example:

sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 0xF1656F24C74CD1D8

Starting with Debian 9 (Stretch), the dirmngr package needs to be installed before the GPG public key can be

imported. To install it, execute: sudo apt install dirmngr

If you are unsure which GPG public key you need, then it is perfectly safe to import both keys.

The command used to import the GPG public key is the same on both Debian and Ubuntu. For example:

1460/4161

http://manpages.ubuntu.com/manpages/bionic/man5/sources.list.5.html
http://manpages.ubuntu.com/manpages/bionic/man8/apt-key.8.html
http://manpages.ubuntu.com/manpages/bionic/man8/apt-key.8.html
https://manpages.debian.org/stretch/dirmngr/dirmngr.8.en.html

$ sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --secret-keyring

/tmp/tmp.ASyOPV87XC --trustdb-name /etc/apt/trustdb.gpg --keyring /etc/apt/trusted.gpg --

primary-keyring /etc/apt/trusted.gpg --recv-keys --keyserver hkp://keyserver.ubuntu.com:80

0xcbcb082a1bb943db

gpg: requesting key 1BB943DB from hkp server keyserver.ubuntu.com

gpg: key 1BB943DB: "MariaDB Package Signing Key <package-signing-key@mariadb.org>" imported

gpg: no ultimately trusted keys found

gpg: Total number processed: 1

gpg: imported: 1

Once the GPG public key is imported, you are ready to install packages from the repository.

Installing MariaDB Packages with APT

After the apt repository is configured, you can install MariaDB by executing the apt-get command. The specific

command that you would use would depend on which specific packages that you want to install.

Installing the Most Common Packages with APT

To Install the most common packages, first you would have to update the package cache by executing the following

command:

sudo apt update

In MariaDB 10.4 and later, to Install the most common packages, execute the following command:

sudo apt-get install mariadb-server galera-4 mariadb-client libmariadb3 mariadb-backup mariadb-common

In MariaDB 10.2 and MariaDB 10.3, to Install the most common packages, execute the following command:

sudo apt-get install mariadb-server galera mariadb-client libmariadb3 mariadb-backup mariadb-common

Installing MariaDB Server with APT

To Install MariaDB Server, first you would have to update the package cache by executing the following command:

sudo apt update

Then, execute the following command:

sudo apt-get install mariadb-server

Installing MariaDB Galera Cluster with APT

The process to install MariaDB Galera Cluster with the MariaDB apt-get repository is practically the same as installing

standard MariaDB Server.

In MariaDB 10.1 and later, Galera Cluster support has been included in the standard MariaDB Server packages, so you will

need to install the mariadb-server package, as you normally would.

In MariaDB 10.4 and later, you also need to install the galera-4 package to obtain the Galera 4 wsrep provider library.

In MariaDB 10.3 and before, you also need to install the galera-3 package to obtain the Galera 3 wsrep provider library.

To install MariaDB Galera Cluster, first you would have to update the package cache by executing the following command:

sudo apt update

MariaDB starting with 10.4

MariaDB 10.2 - 10.3

MariaDB starting with 10.4
1461/4161

http://manpages.ubuntu.com/manpages/bionic/man8/apt-get.8.html

In MariaDB 10.4 and later, to install MariaDB Galera Cluster, you could execute the following command:

sudo apt-get install mariadb-server mariadb-client galera-4

In MariaDB 10.3 and before, to install MariaDB Galera Cluster, you could execute the following command:

sudo apt-get install mariadb-server mariadb-client galera-3

MariaDB Galera Cluster also has a separate package that can be installed on arbitrator nodes. In MariaDB 10.4 and later,

the package is called galera-arbitrator-4 In MariaDB 10.3 and before, the package is called galera-arbitrator-

3 . This package should be installed on whatever node you want to serve as the arbitrator. It can either run on a separate

server that is not acting as a cluster node, which is the recommended configuration, or it can run on a server that is also

acting as an existing cluster node.

In MariaDB 10.4 and later, to install the arbitrator package, you could execute the following command:

sudo apt-get install galera-arbitrator-4

In MariaDB 10.3 and before, to install the arbitrator package, you could execute the following command:

sudo apt-get install galera-arbitrator-3

See MariaDB Galera Cluster for more information on MariaDB Galera Cluster.

Installing MariaDB Clients and Client Libraries with APT

In MariaDB 10.2 and later, MariaDB Connector/C has been included as the client library.

To Install the clients and client libraries, first you would have to update the package cache by executing the following

command:

sudo apt update

Then, in MariaDB 10.2 and later, execute the following command:

sudo apt-get install mariadb-client libmariadb3

Installing Mariabackup with APT

To install Mariabackup, first you would have to update the package cache by executing the following command:

sudo apt update

Then, execute the following command:

sudo apt-get install mariadb-backup

Installing Plugins with APT

Some plugins may also need to be installed.

For example, to install the cracklib_password_check password validation plugin, first you would have to update the

package cache by executing the following command:

sudo apt update

Then, execute the following command:

MariaDB starting with 10.4

MariaDB until 10.3

MariaDB starting with 10.4

MariaDB until 10.3

1462/4161

https://mariadb.com/kb/en/about-mariadb-connector-c/

sudo apt-get install mariadb-cracklib-password-check

Installing Older Versions from the Repository

The MariaDB apt repository contains the last few versions of MariaDB. To show what versions are available, use the apt-

cache command:

sudo apt-cache showpkg mariadb-server

In the output you will see the available versions.

To install an older version of a package instead of the latest version we just need to specify the package name, an equal

sign, and then the version number.

However, when installing an older version of a package, if apt-get has to install dependencies, then it will automatically

choose to install the latest versions of those packages. To ensure that all MariaDB packages are on the same version in this

scenario, it is necessary to specify them all. Therefore, to install MariaDB 10.3.14 from this apt repository, we would do

the following:

sudo apt-get install mariadb-server=10.3.14-1 mariadb-client=10.3.14-1 libmariadb3=10.3.14-1

mariadb-backup=10.3.14-1 mariadb-common=10.3.14-1

The rest of the install and setup process is as normal.

Installing MariaDB with dpkg
While it is not recommended, it is possible to download and install the .deb packages manually. However, it is generally

recommended to use a package manager like apt-get .

A tarball that contains the .deb packages can be downloaded from the following URL:

https://downloads.mariadb.com

For example, to install the MariaDB 10.4.8 .deb packages on Ubuntu 18.04 LTS (Bionic), you could execute the following:

sudo apt-get update

sudo apt-get install libdbi-perl libdbd-mysql-perl psmisc libaio1 socat

wget https://downloads.mariadb.com/MariaDB/mariadb-10.4.8/repo/ubuntu/mariadb-10.4.8-ubuntu-

bionic-amd64-debs.tar

tar -xvf mariadb-10.4.8-ubuntu-bionic-amd64-debs.tar

cd mariadb-10.4.8-ubuntu-bionic-amd64-debs/

sudo dpkg --install ./mariadb-common*.deb \

 ./mysql-common*.deb \

 ./mariadb-client*.deb \

 ./libmariadb3*.deb \

 ./libmysqlclient18*.deb

sudo dpkg --install ./mariadb-server*.deb \

 ./mariadb-backup*.deb \

 ./galera-4*.deb

After Installation
After the installation is complete, you can start MariaDB .

If you are using MariaDB Galera Cluster, then keep in mind that the first node will have to be bootstrapped.

Available DEB Packages
The available DEB packages depend on the specific MariaDB release series.

Available DEB Packages in MariaDB 10.4

In MariaDB 10.4, the following DEBs are available:

Package Name Description

MariaDB starting with 10.4

1463/4161

http://manpages.ubuntu.com/manpages/bionic/man8/apt-cache.8.html
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://downloads.mariadb.com
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

galera-4 The WSREP provider for Galera 4.

libmariadb3 Dynamic client libraries.

libmariadb-dev Development headers and static libraries.

libmariadbclient18 Virtual package to satisfy external depends

libmysqlclient18 Virtual package to satisfy external depends

mariadb-backup Mariabackup

mariadb-client Client tools like mariadb CLI, mariadb-dump, and others.

mariadb-client-core Core client tools

mariadb-common Character set files and /etc/my.cnf

mariadb-plugin-connect The CONNECT storage engine.

mariadb-plugin-cracklib-password-

check The cracklib_password_check password validation plugin.

mariadb-plugin-gssapi-client The client-side component of the gssapi authentication plugin.

mariadb-plugin-gssapi-server The server-side component of the gssapi authentication plugin.

mariadb-plugin-rocksdb The MyRocks storage engine.

mariadb-plugin-spider The SPIDER storage engine.

mariadb-plugin-tokudb The TokuDB storage engine.

mariadb-server
The server and server tools, like myisamchk and mariadb-hotcopy are

here.

mariadb-server-core The core server.

mariadb-test
mysql-client-test executable, and mysql-test framework with

the tests.

mariadb-test-data MariaDB database regression test suite - data files

Available DEB Packages in MariaDB 10.2 and MariaDB 10.3

In MariaDB 10.2 and MariaDB 10.3, the following DEBs are available:

Package Name Description

galera The WSREP provider for Galera 3.

libmariadb3 Dynamic client libraries.

libmariadb-dev Development headers and static libraries.

libmariadbclient18 Virtual package to satisfy external depends

libmysqlclient18 Virtual package to satisfy external depends

mariadb-backup Mariabackup

mariadb-client Client tools like mariadb CLI, mariadb-dump, and others.

mariadb-client-core Core client tools

mariadb-common Character set files and /etc/my.cnf

mariadb-plugin-connect The CONNECT storage engine.

mariadb-plugin-cracklib-password-

check
The cracklib_password_check password validation plugin.

mariadb-plugin-gssapi-client The client-side component of the gssapi authentication plugin.

mariadb-plugin-gssapi-server The server-side component of the gssapi authentication plugin.

mariadb-plugin-rocksdb The MyRocks storage engine.

MariaDB starting with 10.2

1464/4161

https://mariadb.com/kb/en/tokudb/

mariadb-plugin-spider The SPIDER storage engine.

mariadb-plugin-tokudb The TokuDB storage engine.

mariadb-server
The server and server tools, like myisamchk and mariadb-hotcopy are

here.

mariadb-server-core The core server.

mariadb-test
mysql-client-test executable, and mysql-test framework with

the tests.

mariadb-test-data MariaDB database regression test suite - data files

Actions Performed by DEB Packages

Users and Groups Created

When the mariadb-server DEB package is installed, it will create a user and group named mysql , if they do not already

exist.

2.1.2.3 Installing MariaDB MSI Packages on
Windows
MSI packages is available for x64 (64 bit) processor architectures and, in some older releases only, for x86 (32 bit). We'll

use screenshots from an x64 installation below (the 32 bit installer is very similar).

Contents
1. Installation UI

1. Welcome

2. License Agreement

3. Custom Setup

4. Database Authentication/Security Related Properties

5. Other Database Properties

6. Ready to Install

7. End

2. New Entries in Start Menu

3. Uninstall UI

4. Silent Installation

1. Properties

2. Features

3. Silent Installation Examples

4. Silent Uninstall

5. Installation Logs

6. Running 32 and 64 Bit Distributions on the Same Machine

Installation UI
This is the typical mode of installation. To start the installer, just click on the mariadb-<major>.<minor>.<patch>.msi

Welcome

1465/4161

https://mariadb.com/kb/en/tokudb/

License Agreement

Click on "I accept the terms"

Custom Setup

1466/4161

Here, you can choose what features to install. By default, all features are installed with the exception of the debug symbols.

If the "Database instance" feature is selected, the installer will create a database instance, by default running as a service.

In this case the installer will present additional dialogs to control various database properties. Note that you do not

necessarily have to create an instance at this stage. For example, if you already have MySQL or MariaDB databases

running as services, you can just upgrade them during the installation. Also, you can create additional database instances

after the installation, with the mysql_install_db.exe utility.

NOTE: By default, if you install a database instance, the data directory will be in the "data" folder under the installation

root. To change the data directory location, select "Database instance" in the feature tree, and use the "Browse" button

to point to another place.

Database Authentication/Security Related Properties

This dialog is shown if you selected the "Database instance" feature. Here, you can set the password for the "root" database

user and specify whether root can access database from remote machines. The "Create anonymous account" setting allows

for anonymous (non-authenticated) users. It is off by default and it is not recommended to change this setting.

Other Database Properties

1467/4161

Install as service

Defines whether the database should be run as a service. If it should be run as a service, then it also defines the

service name. It is recommended to run your database instance as a service as it greatly simplifies database

management. In MariaDB 10.4 and later, the default service name used by the MSI installer is "MariaDB". In 10.3 and

before, the default service name used by the MSI installer is "MySQL". Note that the default service name for the --

install and --install-manual options for mysqld.exe is "MySQL" in all versions of MariaDB.

Enable Networking

Whether to enable TCP/IP (recommended) and which port MariaDB should listen to. If security is a concern, you can

change the bind-address parameter post-installation to bind to only local addresses. If the "Enable networking"

checkbox is deselected, the database will use named pipes for communication.

InnoDB engine settings

Defines the InnoDB buffer pool size, and the InnoDB page size. The default buffer pool size is 12.5% of RAM, and

depending on your requirements you can give InnoDB more (up to 70-80% RAM). 32 bit versions of MariaDB have

restrictions on maximum buffer pool size, which is approximately 1GB, due to virtual address space limitations for

32bit processes. A 16k page size is suitable for most situations. See the innodb_page_size system variable for details

on other settings.

Ready to Install

At this point, all installation settings are collected. Click on the "Install" button.

End

1468/4161

Installation is finished now. If you have upgradable instances of MariaDB/MySQL, running as services, this dialog will

present a "Do you want to upgrade existing instances" checkbox (if selected, it launches the Upgrade Wizard post-

installation).

If you installed a database instance as service, the service will be running already.

New Entries in Start Menu
Installation will add some entries in the Start Menu:

1469/4161

MariaDB Client - Starts command line client mysql.exe

Command Prompt - Starts a command prompt. Environment is set such that "bin" directory of the installation is

included into PATH environment variable, i.e you can use this command prompt to issue MariaDB commands

(mysqldadmin, mysql etc...)

Database directory - Opens the data directory in Explorer.

Error log - Opens the database error log in Notepad.

my.ini - Opens the database configuration file my.ini in Notepad.

Upgrade Wizard - Starts the Wizard to upgrade an existing MariaDB/MySQL database instance to this MariaDB

version.

Uninstall UI
In the Explorer applet "Programs and Features" (or "Add/Remove programs" on older Windows), find the entry for MariaDB,

choose Uninstall/Change and click on the "Remove" button in the dialog below.
1470/4161

If you installed a database instance, you will need to decide if you want to remove or keep the data in the database directory.

Silent Installation
The MSI installer supports silent installations as well. In its simplest form silent installation with all defaults can be

performed from an elevated command prompt like this:

 msiexec /i path-to-package.msi /qn

Note: the installation is silent due to msiexe.exe's /qn switch (no user interface), if you omit the switch, the installation

will have the full UI.

Properties

Silent installations also support installation properties (a property would correspond for example to checked/unchecked

state of a checkbox in the UI, user password, etc). With properties the command line to install the MSI package would look

like this:

msiexec /i path-to-package.msi [PROPERTY_1=VALUE_1 ... PROPERTY_N=VALUE_N] /qn

The MSI installer package requires property names to be all capitals and contain only English letters. By convention, for a

boolean property, an empty value means "false" and a non-empty is "true".

1471/4161

MariaDB installation supports the following properties:

Property name Default value Description

INSTALLDIR
%ProgramFiles%\MariaDB

<version>\
Installation root

PORT 3306 --port parameter for the server

ALLOWREMOTEROOTACCESS Allow remote access for root user

BUFFERPOOLSIZE RAM/8 Bufferpoolsize for innodb

CLEANUPDATA 1 Remove the data directory (uninstall only)

DATADIR INSTALLDIR\data Location of the data directory

DEFAULTUSER Allow anonymous users

PASSWORD Password of the root user

SERVICENAME
Name of the Windows service. A service is not created if

this value is empty.

SKIPNETWORKING Skip networking

STDCONFIG 1
Corresponds to "optimize for transactions" in the GUI,

default engine innodb, strict sql mode

UTF8 if set, adds character-set-server=utf8 to my.ini file

PAGESIZE 16K page size for innodb

Features

Feature is a Windows installer term for a unit of installation. Features can be selected and deselected in the UI in the feature

tree in the "Custom Setup" dialog.

Silent installation supports adding features with the special property ADDLOCAL=Feature_1,..,Feature_N and removing

features with REMOVE=Feature_1,..., Feature_N

Features in the MariaDB installer:

Feature id Installed by default? Description

DBInstance yes Install database instance

Client yes Command line client programs

MYSQLSERVER yes Install server

SharedLibraries yes Install client shared library

DEVEL yes install C/C++ header files and client libraries

HeidiSQL yes Installs HeidiSQL

Silent Installation Examples

All examples here require running as administrator (and elevated command line in Vista and later)

Install default features, database instance as service, non-default datadir and port

msiexec /i path-to-package.msi SERVICENAME=MySQL DATADIR=C:\mariadb5.2\data PORT=3307 /qn

Install service, add debug symbols, do not add development components (client libraries and headers)

msiexec /i path-to-package.msi SERVICENAME=MySQL ADDLOCAL=DEBUGSYMBOLS REMOVE=DEVEL /qn

Silent Uninstall

To uninstall silently, use the REMOVE=ALL property with msiexec:

msiexec /i path-to-package.msi REMOVE=ALL /qn

1472/4161

To keep the data directory during an uninstall, you will need to pass an additional parameter:

msiexec /i path-to-package.msi REMOVE=ALL CLEANUPDATA="" /qn

Installation Logs
If you encounter a bug in the installer, the installer logs should be used for diagnosis. Please attach verbose logs to the bug

reports you create. To create a verbose installer log, start the installer from the command line with the /l*v switch, like so:

 msiexec.exe /i path-to-package.msi /l*v path-to-logfile.txt

Running 32 and 64 Bit Distributions on the Same
Machine
It is possible to install 32 and 64 bit packages on the same Windows x64.

Apart from testing, an example where this feature can be useful is a development scenario, where users want to run a 64 bit

server and develop both 32 and 64 bit client components. In this case the full 64 bit package can be installed, including a

database instance plus development-related features (headers and libraries) from the 32 bit package.

2.1.2.4 Installing MariaDB Server PKG
packages on macOS

MariaDB Server does not currently provide a .pkg installer for macOS. For information about how to install MariaDB

Server on macOS using Homebrew, see Installing MariaDB Server on macOS Using Homebrew.

2.1.2.5 Installing MariaDB Binary Tarballs
Contents
1. Ensure You Use the Correct my.cnf Files

2. Installing MariaDB as root in /usr/local/mysql

3. Installing MariaDB as Not root in Any Directory

4. Auto Start of mysqld

5. Post Installation

MariaDB Binary tarballs are named following the pattern: mariadb-VERSION-OS.tar.gz. Be sure to download the correct

version for your machine.

Note: Some older binary tarballs are marked '(GLIBC_2.14)' or '(requires GLIBC_2.14+)'. These binaries are built the

same as the others, but on a newer build host, and they require GLIBC 2.14 or higher. Use the other binaries for

machines with older versions of GLIBC installed. Run ldd --version to see which version is running on your

distribution.

Others are marked 'systemd', which are for systems with systemd and GLIBC 2.19 or higher.

To install the binaries , unpack the distribution into the directory of your choice and run the mariadb-install-db script.

In the example below we install MariaDB in the /usr/local/mysql directory (this is the default location for MariaDB for

many platforms). However any other directory should work too.

We install the binary with a symlink to the original name. This is done so that you can easily change MariaDB versions just

by moving the symlink to point to another directory.

Ensure You Use the Correct my.cnf Files

MariaDB searches for the configuration files ' /etc/my.cnf ' (on some systems ' /etc/mysql/my.cnf ') and ' ~/.my.cnf '.

If you have an old my.cnf file (maybe from a system installation of MariaDB or MySQL) you need to take care that you

don't accidentally use the old one with your new binary .tar installation.

1473/4161

https://mariadb.org/download
http://downloads.mariadb.org

The normal solution for this is to ignore the my.cnf file in /etc when you use the programs in the tar file.

This is done by creating your own .my.cnf file in your home directory and telling mariadb-install-db, mysqld_safe and

possibly mysql (the command-line client utility) to only use this one with the option ' --defaults-file=~/.my.cnf '. Note

that this has to be first option for the above commands!

Installing MariaDB as root in /usr/local/mysql

If you have root access to the system, you probably want to install MariaDB under the user and group 'mysql' (to keep

compatibility with MySQL installations):

groupadd mysql

useradd -g mysql mysql

cd /usr/local

tar -zxvpf /path-to/mariadb-VERSION-OS.tar.gz

ln -s mariadb-VERSION-OS mysql

cd mysql

./scripts/mariadb-install-db --user=mysql

chown -R root .

chown -R mysql data

The symlinking with ln -s is recommended as it makes it easy to install many MariaDB version at the same time (for easy

testing, upgrading, downgrading etc).

If you are installing MariaDB to replace MySQL, then you can leave out the call to mariadb-install-db . Instead shut

down MySQL. MariaDB should find the path to the data directory from your old /etc/my.cnf file (path may vary

depending on your system).

To start mysqld you should now do:

./bin/mysqld_safe --user=mysql &

or

./bin/mysqld_safe --defaults-file=~/.my.cnf --user=mysql &

To test connection, modify your $PATH so you can invoke client such as mysql, mysqldump, etc.

export PATH=$PATH:/usr/local/mysql/bin/

You may want to modify your .bashrc or .bash_profile to make it permanent.

Installing MariaDB as Not root in Any Directory

Below, change /usr/local to the directory of your choice.

cd /usr/local

gunzip < /path-to/mariadb-VERSION-OS.tar.gz | tar xf -

ln -s mariadb-VERSION-OS mysql

cd mysql

./scripts/mariadb-install-db --defaults-file=~/.my.cnf

If you have problems with the above gunzip command line, you can instead, if you have gnu tar, do:

tar xfz /path-to/mariadb-VERSION-OS.tar.gz

To start mysqld you should now do:

./bin/mysqld_safe --defaults-file=~/.my.cnf &

Auto Start of mysqld

You can get mysqld (the MariaDB server) to autostart by copying the file mysql.server file to the right place.

cp support-files/mysql.server /etc/init.d/mysql.server

The exact place depends on your system. The mysql.server file contains instructions of how to use and fine tune it.

1474/4161

For systemd installation the mariadb.service file will need to be copied from the support-files/systemd folder to the

/usr/lib/systemd/system/ folder.

cp support-files/systemd/mariadb.service /usr/lib/systemd/system/mariadb.service

Note that by default the /usr/ directory is write protected by systemd though, so when having the data directory in

/usr/local/mysql/data as per the instructions above you also need to make that directory writable. You can do so by adding

an extra service include file:

mkdir /etc/systemd/system/mariadb.service.d/

cat > /etc/systemd/system/mariadb.service.d/datadir.conf <<EOF

[Service]

ReadWritePaths=/usr/local/mysql/data

EOF

systemctl daemon-reload

After this you can start and stop the service using

systemctl start mariadb.service

and

systemctl stop mariadb.service

respectively.

Please refer to the systemd page for further information.

Post Installation

After this, remember to set proper passwords for all accounts accessible from untrusted sources, to avoid exposing the host

to security risks!

Also consider using the mysql.server to start MariaDB automatically when your system boots.

On systems using systemd you can instead enable automatic startup during system boot with

systemctl enable mariadb.service

instead.

Our MariaDB binaries are similar to the Generic binaries available for the MySQL binary distribution. So for more options on

using these binaries, the MySQL 5.5 manual entry on installing generic binaries can be consulted.

For details on the exact steps used to build the binaries, see the compiling MariaDB section of the KB.

2.1.2.6 Installing MariaDB Server on macOS
Using Homebrew

Contents
1. Upgrading MariaDB

2. Building MariaDB Server from source

3. Other resources

MariaDB Server is available for installation on macOS (formerly Mac OS X) via the Homebrew package manager.

MariaDB Server is available as a Homebrew "bottle", a pre-compiled package. This means you can install it without having

to build from source yourself. This saves time.

After installing Homebrew, MariaDB Server can be installed with this command:

brew install mariadb

After installation, start MariaDB Server:

1475/4161

http://docs.oracle.com/cd/E17952_01/refman-5.5-en/binary-installation.html
http://brew.sh/

mysql.server start

To auto-start MariaDB Server, use Homebrew's services functionality, which configures auto-start with the launchctl utility

from launchd:

brew services start mariadb

After MariaDB Server is started, you can log in as your user:

mysql

Or log in as root:

sudo mysql -u root

Upgrading MariaDB
First you may need to update your brew installation:

brew update

Then, to upgrade MariaDB Server:

brew upgrade mariadb

Building MariaDB Server from source
In addition to the "bottled" MariaDB Server package available from Homebrew, you can use Homebrew to build MariaDB

from source. This is useful if you want to use a different version of the server or enable some different capabilities that are

not included in the bottle package.

Two components not included in the bottle package are the CONNECT and OQGRAPH engines, because they have non-

standard dependencies. To build MariaDB Server with these engines, you must first install boost and judy . Follow these

steps to install the dependencies and build the server:

brew install boost judy

brew install mariadb --build-from-source

You can also use Homebrew to build and install a pre-release version of MariaDB Server. Use this command to build and

install a "development" version of MariaDB Server:

brew install mariadb --devel

Other resources
mariadb.rb on github

MariaDB Server on macOS: Does it even make sense to try? (video)

2.1.2.7 Installing MariaDB Windows ZIP
Packages
Users need to run mysql_install_db.exe, without parameters to create a data directory, e.g

C:\zip_unpack\directory> bin\mysqld_install_db.exe

Then you can start server like this

C:\zip_unpack\directory> bin\mysqld.exe --console

1476/4161

https://github.com/Homebrew/homebrew-core/blob/master/Formula/m/mariadb.rb
https://www.youtube.com/watch?v=VoAPP6GDyYw

For very old distributions (10.3 and earlier), a prebuilt data directory is already provided.

If you like to customize the server instance (data directory, install as service etc), please refer to mysql_install_db.exe

documentation

2.1.2.8 Compiling MariaDB From Source
Get, Build and Test Latest MariaDB the Lazy Way

Instructions for people who don't have time to read the whole manual.

MariaDB Source Code

How to get the source code for MariaDB from GitHub.

Build Environment Setup for Linux

Requirements and build environment setup for Linux.

Generic Build Instructions

Instructions to help compile MariaDB from source.

Compiling MariaDB with Extra Modules/Options

Articles on compiling MariaDB with extra modules and options

Creating the MariaDB Source Tarball

How to create a source tar.gz file

Creating the MariaDB Binary Tarball

How to generate binary tar.gz files.

Build Environment Setup for Mac

Setting up the build environment for Mac

Building MariaDB from a Source RPM

How to build MariaDB from a source RPM (SRPM).

Building MariaDB on CentOS

CentOS build requirements and steps.

Building MariaDB on Fedora

Guide to building MariaDB from source code on Fedora Linux.

Building MariaDB on Debian

Steps to compiling MariaDB on Debian Linux.

Building MariaDB on FreeBSD

How to build MariaDB on FreeBSD.

Building MariaDB on Gentoo

Steps to build MariaDB on Gentoo

Building MariaDB on Solaris and OpenSolaris

Links and notes for building MariaDB on Solaris and OpenSolaris

Building MariaDB on Ubuntu

Requirements and steps for building MariaDB on Ubuntu.

Building MariaDB on Windows

Instructions for building MariaDB on Windows.

Installing MariaDB Server on macOS Using Homebrew

Installing MariaDB on macOS via the Homebrew package manager, the "missing ...

Compiling with the InnoDB Plugin from Oracle

Compiling MariaDB with the InnoDB plugin from Oracle.

2

17

7

7

1

11

4

1477/4161

https://mariadb.com/kb/en/compiling-with-the-innodb-plugin-from-oracle/

Creating a Debian Repository

Instructions for creating your own Debian repository

Building MariaDB From Source Using musl-based GNU/Linux

Instructions on compiling MariaDB on musl-based operating systems (Alpine)

Compiling MariaDB for Debugging

Passing -DCMAKE_BUILD_TYPE=Debug to cmake to compile with debug information.

Cross-compiling MariaDB

To cross-compile with cmake you will need a toolchain file

MariaDB Source Configuration Options

Options for configuring a MariaDB source distribution.

Building RPM Packages From Source

Building MariaDB RPM packages with CMake and CPackRPM.

Compile and Using MariaDB with Sanitizers (ASAN, UBSAN, TSAN, MSAN)

How to compile and use MariaDB with AddressSanitizer (ASAN).

There are 17 related questions .

1

2.1.2.8.1 Get, Build and Test Latest MariaDB
the Lazy Way
The intention of this documentation is show all the steps of getting, building and testing the latest MariaDB server (10.5 at

time of writing) from GitHub. Each stage links to the full documentation for that step if you need to find out more.

Install all tools needed to build MariaDB

OpenSuse

sudo zypper install git gcc gcc-c++ make bison ncurses ncurses-devel zlib-devel libevent-devel

cmake openssl

Debian

apt install -y build-essential bison

apt build-dep mariadb-server

Set Up git
Fetch and checkout the MariaDB source to a subdirectory of the current directory

git clone https://github.com/MariaDB/server.git mariadb

cd mariadb

git checkout 10.5

Build It
The following command builds a server the same way that is used for building releases. Use cmake . -

DCMAKE_BUILD_TYPE=Debug to build for debugging.

cmake . -DBUILD_CONFIG=mysql_release && make -j8

1478/4161

https://mariadb.com/kb/en/compile-and-using-mariadb-with-sanitizers-asan-ubsan-tsan-msan/
https://mariadb.com/kb/en/compiling-mariadb-from-source/+questions/

Check the Server (If You Want To)

cd mysql-test

./mtr --parallel=8 --force

Install the Default Databases

./scripts/mariadb-install-db --srcdir=.

(Older MariaDB version use mysql_install_db)

Install the Server (If needed)
You can also run and test mariadb directly from the build directory, in which case you can skip the rest of the steps below.

make install

Start the Server

Start the server in it's own terminal window for testing. Note that the directory depends on your system!

/usr/sbin/mysqld

2.1.2.8.2 MariaDB Source Code

Checking out the Source with Git
The MariaDB source is hosted on GitHub: https://github.com/MariaDB/server

If you want a source tarball for a specific released MariaDB version, you can find it at http://downloads.mariadb.org .

At any given time, developers will be working on their own branches locally or on GitHub, with the main MariaDB branches

receiving pushes less often.

The main MariaDB branches are:

11.4

11.3

11.2

11.1

11.0

10.11

10.6

10.5

10.4

Source repositories for the MariaDB Connectors are:

MariaDB Connector/C

MariaDB Connector/J

MariaDB Connector/Node.js

MariaDB Connector/ODBC

MariaDB Connector/Python

See the Using git page for instructions on how to use git to check out the source code and switch between the various

branches.

2.1.2.8.3 Build Environment Setup for Linux

1479/4161

https://github.com/MariaDB/server
http://downloads.mariadb.org
https://github.com/MariaDB/server/tree/11.4
https://github.com/MariaDB/server/tree/11.3
https://github.com/MariaDB/server/tree/11.2
https://github.com/MariaDB/server/tree/11.1
https://github.com/MariaDB/server/tree/11.0
https://github.com/MariaDB/server/tree/10.11
https://github.com/MariaDB/server/tree/10.6
https://github.com/MariaDB/server/tree/10.5
https://github.com/MariaDB/server/tree/10.4
https://github.com/mariadb-corporation/mariadb-connector-c
https://github.com/mariadb-corporation/mariadb-connector-j
https://github.com/mariadb-corporation/mariadb-connector-nodejs
https://github.com/mariadb-corporation/mariadb-connector-odbc
https://github.com/mariadb-corporation/mariadb-connector-python

Contents
1. Required Tools

Required Tools
The following is a list of tools that are required for building MariaDB on Linux and Mac OS X. Most, if not all, of these will

exist as packages in your distribution's package repositories, so check there first. See Building MariaDB on Ubuntu, Building

MariaDB on CentOS, and Building MariaDB on Gentoo pages for specific requirements for those platforms.

git

gzip

GNU tar

gcc/g++ 4.8.5 or later, recommend above 9 or clang/clang++

GNU make 3.75 or later or Ninja

bison (3.0)

libncurses

zlib-dev

libevent-dev

cmake above 2.8.7 though preferably above 3.3

gnutls or openssl

jemalloc (optional)

snappy (compression library, optional)

valgrind (only needed if running mysql-test-run --valgrind)

libcurl (only needed if you want to use the S3 storage engine)

libxml2-devel

boost

libaio-devel

systemd-devel

pcre2-devel (optiona, will be automatically downloaded and installed if not on the system)

ccache ; Will speed up builds if you are going to use the scripts in the BUILD directory.

You can install these programs individually through your package manager.

In addition, some package managers support the use a build dependency command. When using this command, the

package manager retrieves a list of build dependencies and install them for you, making it much easier to get started on the

compile. The actual option varies, depending on the distribution you use.

On Ubuntu and Debian you can use the build-dep command.

apt build-dep mariadb-server

Fedora uses the builddep command with DNF.

dnf builddep mariadb-server

If building on Centos 7, use the building MariaDB on Centos instructions.

With openSUSE and SUSE, you can use the source-install command.

zypper source-install -d mariadb

Each of these commands works off of the release of MariaDB provided in the official software repositories of the given

distribution. In some instances and especially in older versions of Linux, MariaDB may not be available in the official

repositories. In these cases you can use the MariaDB repositories as an alternative.

Bear in mind, the release of MariaDB provided by your distribution may not be the same as the version you are trying to

install. Additionally, the package managers don't always retrieve all of the packages you need to compile MariaDB. There

may be some missed or unlisted in the process. When this is the case, CMake fails during checks with an error message

telling you what's missing.

Note: On Debian-based distributions, you may receive a "You must put some 'source' URIs in your sources.list" error. To avoid this, ensure that

/etc/apt/sources.list contains the source repositories.

For example, for Debian buster:

1480/4161

https://mariadb.com/kb/en/building-mariadb-on-gentoo/
https://git-scm.com/
http://www.gzip.org/
http://www.gnu.org/software/tar/
http://gcc.gnu.org/
https://clang.llvm.org/
http://www.gnu.org/software/make/
https://ninja-build.org/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/ncurses/
http://www.zlib.net/
http://libevent.org
http://www.cmake.org
http://www.gnutls.org
http://www.openssl.org
http://www.canonware.com/jemalloc
http://google.github.io/snappy
http://www.valgrind.org/
https://curl.se/libcurl//libcurl

deb http://ftp.debian.org/debian buster main contrib

deb http://security.debian.org buster/updates main contrib

deb-src http://ftp.debian.org/debian buster main contrib

deb-src http://security.debian.org buster/updates main contrib

Refer to the documentation for your Linux distribution for how to do this on your system.

After editing the sources.list, do:

sudo apt update

...and then the above mentioned build-dep command.

Note: On openSUSE the source package repository may be disabled. The following command will enable it:

sudo zypper mr -er repo-source

After enabling it, you will be able to run the zypper command to install the build dependencies.

You should now have your build environment set up and can proceed to Getting the MariaDB Source Code and then using

the Generic Build Instructions to build MariadB (or following the steps for your Linux distribution or Creating a MariaDB

Binary Tarball).

2.1.2.8.4 Generic Build Instructions
Contents
1. Using cmake

2. Using BUILD Scripts

3. Starting MariaDB for the First Time

4. Testing MariaDB

5. Increasing Version Number or Tagging a Version

6. Non-ascii Symbols

7. Post-install Tasks

The instructions on this page will help you compile MariaDB from source. Links to more complete instructions for specific

platforms can be found on the source page.

First, get a copy of the MariaDB source.

Next, prepare your system to be able to compile the source.

If you don't want to run MariaDB as yourself, then you should create a mysql user. The example below uses this user.

Using cmake
MariaDB 5.5 and above is compiled using cmake.

It is recommended to create a build directory beside your source directory

mkdir build-mariadb

cd build-mariadb

NOTE If you have built MariaDB in the past and have recently updated the repository, you should perform a complete

cleanup of old artifacts (such as cmake configured files). In the base repository run:

git clean -xffd && git submodule foreach --recursive git clean -xffd

You can configure your build simply by running cmake without any special options, like

cmake ../server

where server is where you installed MariaDB. If you are building in the source directory, just omit ../server .

If you want it to be configured exactly as a normal MariaDB server release is built, use
1481/4161

https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/source/

cmake ../server -DBUILD_CONFIG=mysql_release

This will configure the build to generate binary tarballs similar to release tarballs from downloads.mariadb.org. Unfortunately

this doesn't work on old platforms, like OpenSuse Leap 15.0, because MariaDB binary tarballs are built to minimize external

dependencies, and that needs static libraries that might not be provided by the platform by default, and would need to be

installed manually.

To do a build suitable for debugging use:

cmake ../server -DCMAKE_BUILD_TYPE=Debug

By default, MariaDB is compiled with the -Werror flag, which causes compiling to abort if there is a compiler warning. You

can disable that by configuring with -DMYSQL_MAINTAINER_MODE=OFF .

cmake ../server -DCMAKE_BUILD_TYPE=Debug -DMYSQL_MAINTAINER_MODE=OFF.

All cmake configuration options for MariaDB can be displayed with:

cmake ../server -LH

To build and install MariaDB after running cmake use

cmake --build .

sudo cmake --install .

If the commands above fail, you can enable more compilation information by doing:

cmake --build . --verbose

If you want to generate a binary tarball, run

cpack

Using BUILD Scripts
There are also BUILD scripts for the most common systems for those that doesn't want to dig into cmake options. These

are optimized for in source builds.

The scripts are of type 'compile-#cpu#-how_to_build'. Some common scripts-are

Script Description

compile-

pentium64
 Compile an optimized binary optimized for 64 bit pentium (works also for amd64)

compile-

pentium-

debug

Compile a debug binary optimized for 64 bit pentium

compile-

pentium-

valgrind-max

 Compile a debug binary that can be used with valgrind to find wrong memory accesses and memory

leaks. Should be used if one want's to run the mysql-test-run test suite with the --valgrind option

Some common suffixes used for the scripts:

Suffix Description

32 Compile for 32 bit cpu's

64 Compile for 64 bit cpu's

-max
Enable (almost) all features and plugins that MariaDB supports

-gprof binary is compiled with profiling (gcc --pg)

-gcov binary is compiled with code coverage (gcc -fprofile-arcs -ftest-coverage)

1482/4161

http://www.valgrind.org/

-valgrind The binary is compiled for debugging and optimized to be used with valgrind .

-debug
 The binary is compiled with all symbols (gcc -g) and the DBUG log system is

enabled.

All BUILD scripts support the following options:

Suffix Description

-h, --help Show this help message.

-n, --just-print Don't actually run any commands; just print them.

-c, --just-configure Stop after running configure. Combined with --just-print shows configure options.

--extra-configs=xxx Add this to configure options

--extra-flags=xxx Add this C and CXX flags

--extra-cflags=xxx Add this to C flags

--extra-cxxflags=xxx Add this to CXX flags

--verbose Print out full compile lines

--with-debug=full Build with full debug(no optimizations, keep call stack).

A typical compilation used by a developer would be:

shell> ./BUILD/compile-pentium64-debug

This configures the source for debugging and runs make. The server binary will be sql/mariadbd or sql/mysqld .

Starting MariaDB for the First Time
After installing MariaDB (using sudo make install), but prior to starting MariaDB for the first time, one should:

1. Ensure the directory where you want MariaDB to store it's data is owned by the mariadb user (if the user doesn't

exist, you'll need to create it)

2. Create a MariaDB configuration config file (/.my.cnf or /etc/my.cnf) with the configuration options you desire. A

suggested minimum configuration file, to specify where you want your data to be stored, would be:

[mariadbd]

datadir=/usr/local/mariadb/data/

1. run the mariadb-install-db script to generate the needed system tables

Here is an example:

The following assumes that the 'mariadb' user exists and that we installed MariaDB

in /usr/local/mariadb

chown -R mariadb /usr/local/mariadb/

cd /usr/local/mariadb/

./scripts/mariadb-install-db --user=mariadb

/usr/local/mariadb/bin/mariadb-safe --user=mariadb &

If needed, you can also use the --datadir=/usr/local/mariadb/data/ options with mariadbd-install-db and mariadbd-

safe

Testing MariaDB
If you want to test your compiled MariaDB, you can do either of:

Run unit tests:

cmake --build . --target test

Or run mtr tests:

mysql-test/mysql-test-run --force

1483/4161

http://www.valgrind.org/
https://mariadb.com/kb/en/creating-a-trace-file/

Each of the above are run from the build directory. There is no need to ' make install / cmake --install . ' MariaDB

prior to running them.

NOTE: If you are doing more extensive testing or debugging of MariaDB (like with real application data and workloads) you may

want to start and run MariaDB directly from the source directory instead of installing it with ' sudo make install '. If so, see

Running MariaDB from the Source Directory .

Increasing Version Number or Tagging a Version
If you have made code changes and want to increase the version number or tag our version with a specific tag you can do

this by editing the VERSION file. Tags are shown when running the ' mariadbd --version ' command.

Non-ascii Symbols
MariaDB builds with readline ; using an alternative such as Editline may result in problems with non-ascii symbols.

Post-install Tasks
Installing system tables (mariadb-install-db)

Starting and Stopping MariaDB Automatically

2.1.2.8.5 Compiling MariaDB with Extra
Modules/Options

Compiling MariaDB with Vanilla XtraDB

Sometimes, one needs to have MariaDB compiled with Vanilla XtraDB. This pag...

Specifying Which Plugins to Build

Specifying which plugins to build.

Using MariaDB with TCMalloc or jemalloc

TCMalloc is a malloc replacement library optimized for multi-threaded usage.

2.1.2.8.5.1 Using MariaDB with TCMalloc or
jemalloc

Read the Profiling Memory Usage page for more information on how to debug high memory consumption.

Using tcmalloc or jemalloc

TCMalloc is a malloc replacement library optimized for multi-threaded usage. It also features a built-in heap debugger and

profiler.

Another malloc replacement that may speed up MariaDB is jemalloc .

The procedures to use one of these libraries with MariaDB are the same. Many other malloc replacement libraries (as well

as heap debuggers and profilers) can be used with MariaDB in a similar fashion.

Checking the malloc Implementation in Use

If you are unsure which malloc implementation is in use, or if you used one of the procedures explained in this page and you

want to verify if it succeeded, you can run this query:

SHOW GLOBAL VARIABLES LIKE 'version_malloc_library';

A value of "system" indicates the system default, which is normally malloc. If another library is used, this query will return the

name and version of the library.

1484/4161

https://mariadb.com/kb/en/running-mariadb-from-the-source-directory/
https://mariadb.com/kb/en/compiling-mariadb-with-vanilla-xtradb/
https://mariadb.com/kb/en/using-mariadb-with-tcmalloc-or-jemalloc/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://jemalloc.net/

Building MariaDB with an alternative to malloc

To build MariaDB 5.5 with TCMalloc , you need to use the following command

cmake -DCMAKE_EXE_LINKER_FLAGS='-ltcmalloc' -DWITH_SAFEMALLOC=OFF

To use jemalloc, the option should be -ljemalloc .

Starting mariadbd-safe with an alternative to malloc

If you want to do this only one time, as a test, you can also start a standard MariaDB server with TCmalloc with:

/usr/sbin/mariadbd-safe --malloc-lib=tcmalloc

If you want to configure mariadbd-safe to use tcmalloc or jemalloc, edit your configuration file, in the [server] or

[mariadbd] group:

malloc-lib=tcmalloc

Starting mariadbd with an alternative to malloc

First, locate the library file that needs to be used:

jemalloc

find /usr/lib -name "libjemalloc.so.*"

tcmalloc

find /usr/lib -name "libtcmalloc.so.*"

Now pass it to mariadbd using the LD_PRELOAD variable:

LD_PRELOAD=/path/to/library mariadbd

For example, on OpenSuse 15.4 one would do:

Configuring systemd

If you use systemd to run MariaDB, first locate the library as explained above. The locate the service configuration file:

systemctl status mariadb |grep Loaded

Now edit the mariadb.service file by adding a line to the [Service] group:

Environment=LD_PRELOAD=<path-to-library>

For example:

[Service]

Environment=LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2

Now you should reload the configuration, so that the news setting will take effect, and restart MariaDB:

systemctl daemon-reload

systemctl restart mariadb

Dockerfile

If you run MariaDB on Docker and use an image from a Dockerfile that is publicly available, most probably you have an

entrypoint that is a Bash script, which starts mariadbd directly. You can edit this Bash script as explained above. Or you

can set the LD_PRELOAD variable from the Dockerfile:

ENV LD_PRELOAD=<path-to-library>

To find the library file you can run one of these commands while the container is running:
1485/4161

jemalloc

docker exec -ti <container-name> find /usr/lib -name "libjemalloc.so.*"

tcmalloc

docker exec -ti <container-name> find /usr/lib -name "libtcmalloc.so.*"

Vagrantfile

Usually Vagrant is used to start a complete system in a virtual machine. If this is your case, you can use one of the methods

above, for example you can modify your Vagrantfile to copy a modified version of the mariadb.service file into the guest

system to configure systemd.

If you use Vagrant with the Docker provider, you can follow the instructions above to modify the Dockerfile.

Finding memory leaks with jemalloc

jemalloc can provide a report of memory leaks at program exit:

MALLOC_CONF=prof_leak:true,lg_prof_sample:0,prof_final:true \

LD_PRELOAD=${JEMALLOC_PATH}/lib/libjemalloc.so.2 path-to-mariadbd

This will produce something like:

<jemalloc>: Leak summary: 267184 bytes, 473 objects, 20 contexts

<jemalloc>: Run jeprof on "jeprof.19678.0.f.heap" for leak detail

You can learn more about the memory leaks with jeprof, that is included with jemalloc:

jeprof --show_bytes path-to-mariadbd jeprof.19678.0.f.heap

You can also generate a PDF call graph of the leak:

jeprof --show_bytes --pdf path-to-mariadbd jeprof.19678.0.f.heap > /tmp/mariadbd.pdf

2.1.2.8.5.2 Specifying Which Plugins to Build
By default all plugins are enabled and built as dynamic .so (or .dll) modules. If a plugin does not support dynamic

builds, it is not built at all.

Use PLUGIN_xxx cmake variables. They can be set on the command line with -DPLUGIN_xxx=value or in the cmake gui.

Supported values are

Value Effect

NO the plugin will be not compiled at all

STATIC the plugin will be compiled statically, if supported. Otherwise it will be not compiled.

DYNAMIC
the plugin will be compiled dynamically, if supported. Otherwise it will be not compiled. This is the default

behavior.

AUTO the plugin will be compiled statically, if supported. Otherwise it will be compiled dynamically.

YES
same as AUTO, but if plugin prerequisites (for example, specific libraries) are missing, it will not be skipped, it

will abort cmake with an error.

Note that unlike autotools, cmake tries to configure and build incrementally. You can modify one configuration option and

cmake will only rebuild the part of the tree affected by it. For example, when you do cmake -DWITH_EMBEDDED_SERVER=1

in the already-built tree, it will make libmysqld to be built, but no other configuration options will be changed or reset to their

default values.

In particular this means that if you have run, for example cmake -DPLUGIN_OQGRAPH=NO and later you want to restore the

default behavior (with OQGraph being built) in the same build tree, you would need to run cmake -

DPLUGIN_OQGRAPH=DYNAMIC

Alternatively, you might simply delete the CMakeCache.txt file 4 this is the file where cmake stores current build

configuration 4 and rebuild everything from scratch.

1486/4161

2.1.2.8.6 Creating the MariaDB Source Tarball
How to create a source tar.gz file.

First Setup your build environment.

Then use automake/configure/make to generate the tar file:

BUILD/autorun.sh

./configure --with-plugin-xtradb

make dist

This creates a source file with a name like mysql-5.3.2-MariaDB-beta.tar.gz

See also the generic build instructions.

2.1.2.8.7 Creating the MariaDB Binary Tarball
How to generate binary tar.gz files.

Setup your build environment.

Build binaries with your preferred options/plugins.

If the binaries are already built, you can generate a binary tarball with

make package

Prior to MariaDB 5.5, the following steps were required:

Use make_binary_distribution to generate a binary tar file:

cd mariadb-source

./scripts/make_binary_distribution

This creates a source file with a name like mariadb-5.3.2-MariaDB-beta-linux-x86_64.tar.gz in your current

directory.

The other option is to use the bakery scripts. In this case you don't have to compile MariaDB source first.

cd $PACKAGING_WORK

bakery/preheat.sh

cd bakery_{number}

bakery/tarbake51.sh last:1 $MARIA_WORK

bakery/autobake51-bintar.sh mariadb-{version_num}-maria-beta-ourdelta{number}.tar.gz

2.1.2.8.8 Build Environment Setup for Mac

XCode
Install Xcode from Apple (free registration required): https://developer.apple.com/xcode/ or from your Mac OS X

installation disk (macports needs XCode >= 3.1, so if you do not have that version or greater you will need to

download the latest version, which is 900+ MB)

You can install the necessary dependencies using either MacPorts or Homebrew.

Using MacPorts
Download and install the MacPorts dmg image from http://www.macports.org

After installing, update it from the terminal: sudo port -v selfupdate

sudo port install cmake jemalloc judy openssl boost gnutls

Using Homebrew

1487/4161

http://kb.askmonty.org/en/generic-build-instructions
https://developer.apple.com/xcode/
http://svn.macports.org/repository/macports/downloads/
http://www.macports.org

Download and install Homebrew from https:brew.sh

brew install cmake jemalloc traildb/judy/judy openssl boost gnutls

Your Mac should now have everything it needs to get, compile, and otherwise work with the MariaDB source code. The next

step is to actually get a copy of the code. For help with this see the Getting the MariaDB Source Code page.

When building with Mac, you'll need -DOPENSSL_ROOT_DIR=/usr/local/openssl passed as a cmake argument to build

against openssl correctly.

2.1.2.1.10 Building MariaDB From a Source RPM

2.1.2.8.10 Building MariaDB on CentOS
Contents
1. Installing Build Dependencies for MariaDB 5.5

2. Installing Build Dependencies for newer MariaDB versions

3. Building MariaDB

4. Creating MariaDB-compat package

5. Additional Dependencies

6. More about CMake and CPackRPM

In the event that you are using the Linux-based operating system CentOS or any of its derivatives, you can optionally

compile MariaDB from source code. This is useful in cases where you want use a more advanced release than the one

that's available in the official repositories, or when you want to enable certain feature that are not otherwise accessible.

Installing Build Dependencies for MariaDB 5.5
Before you start building MariaDB, you first need to install the build dependencies required to run the compile. CentOS

provides a tool for installing build dependencies. The yum-builddep utility reads a package and generates a list of the

packages required to build from source, then calls YUM to install them for you. In the event that this utility is not available on

your system, you can install it through the yum-utils package. Once you have it, install the MariaDB build dependencies.

yum install yum-utils

yum-builddep mariadb-server

Running the above command installs many of the build dependencies, but it doesn't install all of them. It will only install

dependencies for MariaDB 5.5, which is not enough if you want to compile a newer MariaDB version!

Installing Build Dependencies for newer MariaDB
versions
The following commands installs all packages needed to get and compile MariaDB 10.11:

1488/4161

https://brew.sh/

yum install git

yum install gcc

yum install gcc-c++

yum install tar make cmake

yum install bison

yum install ncurses-devel

yum install openssl openssl-devel

yum install snappy snappy-devel

yum install valgrind

yum install libcurl-devel

yum install gzip

yum install zlib-devel

yum install lz4-devel

yum install lzo-devel

yum install bzip2-devel

yum install libxml2-devel

yum install libevent-devel

yum install libaio-devel

yum install boost

yum install pcre2-devel

yum install systemd-devel

yum install rpm-build

yum install libaio-devel

yum install zstd

yum install pam-devel

yum install checkpolicy

yum install policycoreutils-python

yum install galera.x86_64

You can replace openssl with gnutls above, depending on the TLS implementation you want to use.

If you plan to use the BUILD scripts to make it easier to build different configurations of MariaDB, then you should also

install ccache to speed up your compilations:

yum install ccache

If you want to test the MariaDB installation, with the include mysql-test-run (mtr) system, you also need to install and

configure cpan:

yum install cpan

Complete Perl installing with the next command. Use the default answer to all questions

cpan App::cpanminus

For more information on dependencies, see Linux Build Environment.

Building MariaDB
Once you have the base dependencies installed, you can retrieve the source code and start building MariaDB. The source

code is available on GitHub. Use the --branch option to specify the particular version of MariaDB you want to build.

$ git clone --branch 10.11 https://github.com/MariaDB/server.git

With the source repository cloned onto your system, you can start building MariaDB. Run CMake to ready MariaDB for the

build,

$ cmake -DRPM=centos7 server/

Once CMake readies the relevant Makefile for your system, use Make to build MariaDB.

$ umask 0022

$ make package

This generates an RPM file, which you can then install on your system or copy over to install on other CentOS hosts. The

umask is needed because of a bug in cmake / cmake scripts.

Alternative, use one of the build scripts in the BUILD directory that allows you to compile different versions of MariaDB

(debug, optimized, profiling etc).

1489/4161

A good option for developers is:

./BUILD/compile-pentium64-debug

Creating MariaDB-compat package
MariaDB-compat package contains libraries from older MariaDB releases. They cannot be built from the current source tree,

so cpack creates them by repackaging old MariaDB-shared packages. If you want to have -compat package created, you

need to download MariaDB-shared-5.3 and MariaDB-shared-10.1 rpm packages for your architecture (any minor version will

do) and put them one level above the source tree you're building. CMake will pick them up and create a MariaDB-compat

package. CMake reports it as

$ ls ../*.rpm

../MariaDB-shared-10.1.17-centos7-x86_64.rpm

../MariaDB-shared-5.3.12-122.el5.x86_64.rpm

$ cmake -DRPM=centos7 .

...

Using ../MariaDB-shared-5.3.12-122.el5.x86_64.rpm to build MariaDB-compat

Using ../MariaDB-shared-10.1.17-centos7-x86_64.rpm to build MariaDB-compat

Additional Dependencies
In the event that you miss a package while installing build dependencies, CMake may continue to fail after you install the

necessary packages. If this happens to you, delete the CMake cache then run the above the command again:

$ rm CMakeCache.txt

When CMake runs through the tests again, it should now find the packages it needs, instead of the cache telling it they're

unavailable.

More about CMake and CPackRPM
See also building RPM packages from source

2.1.2.8.11 Building MariaDB on Fedora
In the event that you are using the Linux-based operating system Fedora or any of its derivatives and would like to compile

MariaDB from source code, you can do so using the MariaDB build in the official repositories.

Installing Build Dependencies
MariaDB requires a number of packages to compile from source. Fortunately, you can use the package in the Fedora

repository to retrieve most of the relevant build dependencies through DNF.

dnf builddep mariadb-server

Running DNF in this way pulls the build dependencies for the release of MariaDB compiled by your version of Fedora.

These may not be all the dependencies you need to build the particular version of MariaDB you want to use, but it will

retrieve most of them.

You'll also need to install Git to retrieve the source repository:

dnf install git

Building MariaDB
Once you have the base dependencies installed, you can retrieve the source code and start building MariaDB. The source

code is available on GitHub. Use the --branch option to specify the particular version of MariaDB you want to build.

$ git clone --branch 10.3 https://github.com/MariaDB/server.git mariadb-server

1490/4161

With the source repository cloned onto your system, you can start building MariaDB. Change into the new mariadb-

server/ directory and run CMake to prepare the build.

$ mkdir mariadb-build

$ cd mariadb-build

$ cmake -DRPM=fedora ../mariadb-server

Once CMake readies the relevant Makefile for your system, use Make to build MariaDB.

$ make package

2.1.2.8.12 Building MariaDB on Debian
Contents
1. Installing Build Dependencies

2. Building MariaDB

1. After Building

In the event that you are using the Linux-based operating system Debian or any of its direct derivatives and would like to

compile MariaDB from source code, you can do so using the MariaDB source repository for the release that interests you.

For Ubuntu and its derivatives, see Building on Ubuntu.

Before you begin, install the software-properties-common and devscripts packages:

$ sudo apt-get install -y software-properties-common \

 devscripts

Installing Build Dependencies
MariaDB requires a number of packages to compile from source. Fortunately, you can use the MariaDB repositories to

retrieve the necessary code for the version you want. Use the Repository Configuration tool to determine how to set up

the MariaDB repository for your release of Debian, the version of MariaDB that you want to install, and the mirror that you

want to use.

First add the authentication key for the repository, then add the repository.

$ sudo apt-key adv --recv-keys \

 --keyserver hkp://keyserver.ubuntu.com:80 \

 0xF1656F24C74CD1D8

$ sudo add-apt-repository 'deb [arch=amd64]

http://nyc2.mirrors.digitalocean.com/mariadb/repo/10.3/debian stretch main'

The second command added text to the /etc/apt/sources.list file. One of these lines is the repository containing

binary packages for MariaDB, the other contains the source packages. The line for the source packages is commented out

by default. This can be scripted:

sed -e '/^# deb-src.*mariadb/s/^# //' -i /etc/apt/sources.list

Alternately, open the file using your preferred text editor and uncomment the source repository.

$ sudo vim /etc/apt/sources.list

...

deb [arch=amd64] http://nyc2.mirrors.digitalocean.com/mariadb/repo/10.3/debian stretch main

deb-src [arch=amd64] http://nyc2.mirrors.digitalocean.com/mariadb/repo/10.3/debian stretch main

Once the repository is set up, you can use apt-get to retrieve the build dependencies. MariaDB packages supplied by

Ubuntu and packages supplied by the MariaDB repository have the same base name of mariadb-server . You need to

specify the specific version you want to retrieve.

$ sudo apt-get update

$ sudo apt-get build-dep -y mariadb-server-10.3

1491/4161

https://downloads.mariadb.org/mariadb/repositories/

Building MariaDB
Once you have the base dependencies installed, you can retrieve the source code and start building MariaDB. The source

code is available on GitHub. Use the --branch option to specify the particular version of MariaDB you want to build.

$ git clone --branch 10.3 https://github.com/MariaDB/server.git

The source code includes scripts to install the remaining build dependencies. For Ubuntu, they're located in the debian/

directory. Navigate into the repository and run the autobake-deb.sh script. Then use

$ export DEB_BUILD_OPTIONS=parallel=$(nproc)

$ cd server/

$./debian/autobake-deb.sh

After Building

After building the packages, it is a good idea to put them in a repository. See the Creating a Debian Repository page for

instructions.

2.1.2.8.13 Building MariaDB on FreeBSD
Contents
1. Using Ports

1. Building MariaDB from Ports

2. Using Poudriere

1. Building MariaDB

2. Using Poudriere Repositories

It is relatively straightforward to build MariaDB from source on FreeBSD. When working with an individual host, you can use

Ports to compile particular or multiple versions of MariaDB. When working with multiple hosts, you can use Poudriere to

build MariaDB once, then serve it as a package to multiple FreeBSD hosts.

Using Ports
The FreeBSD Ports Collection provides a series of Makefiles that you can use to retrieve source code, configure builds,

install dependencies and compile software. This allows you to use more advanced releases than what is normally available

through the package managers as well as enable any additional features that interest you.

In the event that you have not used Ports before on your system, you need to first fetch and extract the Ports tree. This

downloads the Ports tree from FreeBSD and extracts it onto your system, placing the various Makefiles, patches and so on

in the /usr/ports/ directory.

portsnap fetch extract

In the event that you have used Ports before on this system, run Portsnap again to download and install any updates to the

Ports tree.

portsnap fetch update

This ensures that you are using the most up to date release of the Ports tree that is available on your system.

Building MariaDB from Ports

Once Portsnap has installed or updated your Ports tree, you can change into the relevant directory and install MariaDB.

Ports for MariaDB are located in the /usr/ports/databases/ directory.

1492/4161

$ ls /usr/ports/databases | grep mariadb

mariadb-connector-c

mariadb-connector-odbc

mariadb100-client

mariadb100-server

mariadb101-client

mariadb101-server

mariadb102-client

mariadb102-server

mariadb103-client

mariadb103-server

mariadb55-client

mariadb55-server

Note that FreeBSD treats the Server and Client as separate packages. The Client is a dependency of the Server, so you

only need to build the Server to get both. It also provides a number of different versions. You can search the available ports

from Fresh Ports . Decide what version of MariaDB you want to install, the change into the relevant directory. Once in the

directory, run Make to build MariaDB.

cd /usr/ports/databases/mariadb103-server

make

In addition to downloading and building MariaDB, Ports also downloads and build any libraries on which MariaDB depends.

Each port it builds will take you to a GUI window where you can select various build options. In the case of MariaDB, this

includes various storage engines and specific features you need in your build.

Once you finish building the ports, install MariaDB on your system and clean the directory to free up disk space.

make install clean

This installs FreeBSD on your server. You can now enable, configure and start the service as you normally would after

installing MariaDB from a package.

Using Poudriere
Poudriere is a utility for building FreeBSD packages. It allows you to build MariaDB from a FreeBSD Jail, then serve it as a

binary package to other FreeBSD hosts. You may find this is particularly useful when building to deploy multiple MariaDB

servers on FreeBSD, such as with Galera Cluster or similar deployments.

Building MariaDB

Once you've configured your host to use Jails and Poudriere, initialize a jail to use in building packages and a jail for

managing ports.

poudriere jail -c -j package-builder -v 11.2-RELEASE

poudriere ports -c -p local-ports

This creates two jails, package-builder and local-ports , which you can then use to build MariaDB. Create a text file

to define the packages you want to build. Poudriere will build these packages as well as their dependencies. MariaDB is

located at databases/mariadb103-server . Adjust the path to match the version you want to install.

$ vi maraidb-package-builder.txt

databases/mariadb103-server

Use the options command to initialize the build options for the packages you want Poudriere to compile.

poudriere options -j package-builder -p local-ports -z mariadb-builder -f mariadb-package-builder.txt

Lastly, use the bulk command to compile the packages.

poudriere bulk -j package-builder -p local-ports -z mariadb-builder -f mariadb-package-builder.txt

1493/4161

http://www.freshports.org/databases

Using Poudriere Repositories

In order to use Poudriere, you need to set up and configure a web server, such as Nginx or Apache to serve the directory

that Poudriere built. For instance, in the case of the above example, you would map to the package-builder jail:

/usr/local/poudriere/data/packages/package-builder/ . You may find it useful to map this directory to a sub-

domain, for instance httpspkg.example.com or something similar.

Lastly, you need to configure the FreeBSD hosts to use the Poudriere repository you just created. On each host, disable the

FreeBSD official repositories and enable your Poudriere repository as an alternative.

vi /usr/local/etc/pkg/repos/FreeBSD.conf

FreeBSD: {

 enabled: no

}

Then add the URL for your Poudriere repository to configuration file:

vi /usr/local/etc/pkg/repos/mariadb.conf

custom: {

 url: "https://pkg.example.com",

 enabled: yes

}

You can then install MariaDB from Poudriere using the package manager.

pkg install mariadb103-server

2.1.2.8.14 Building MariaDB on Gentoo
MariaDB is in Gentoo, so the steps to build it are:

1. Synchronize your tree with

emerge --sync

2. Build MariaDB using

emerge mariadb

2.1.2.8.15 Building MariaDB on Solaris and
OpenSolaris
The following two articles should help you get your Solaris machine prepared to build MariaDB (just ignore the parts about

installing buildbot):

Buildbot Setup for Solaris Sparc

Buildbot Setup for Solaris x86

Notes
The BUILD dir contains various scripts for compiling MariaDB on Solaris. The BUILD/compile-solaris-amd64 and

BUILD/compile-solaris-amd64-debug are probably the most useful.

The scripts do not play nice with non-bash shells such as the Korn Shell (ksh). So if your /bin/sh is pointing at ksh or

ksh93, you'll want to change it so that it points at bash.

2.1.2.8.16 Building MariaDB on Ubuntu

1494/4161

https://mariadb.com/kb/en/buildbot-setup-for-solaris-sparc/
https://mariadb.com/kb/en/buildbot-setup-for-solaris-x86/

Contents
1. Installing Build Dependencies

2. Building MariaDB

1. Further Dependencies

2. After Building

In the event that you are using the Linux-based operating system Ubuntu or any of its derivatives and would like to compile

MariaDB from source code, you can do so using the MariaDB source repository for the release that interests you.

Before you begin, install the software-properties-common , devscripts and equivs packages.

$ sudo apt-get install software-properties-common \

 devscripts \

 equivs

Installing Build Dependencies
MariaDB requires a number of packages to compile from source. Fortunately, you can use the MariaDB repositories to

retrieve the necessary code for the version you want. Use the Repository Configuration tool to determine how to set up

the MariaDB repository for your release of Ubuntu, the version of MariaDB that you want to install, and the mirror that you

want to use.

First add the authentication key for the repository, then add the repository.

$ sudo apt-key adv --recv-keys \

 --keyserver hkp://keyserver.ubuntu.com:80 \

 0xF1656F24C74CD1D8

$ sudo add-apt-repository --update --yes --enable-source \

 'deb [arch=amd64] http://nyc2.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu

'$(lsb_release -sc)' main'

Once the repository is set up, you can use apt-get to retrieve the build dependencies. MariaDB packages supplied by

Ubuntu and packages supplied by the MariaDB repository have the same base name of mariadb-server . You need to

specify the specific version you want to retrieve.

$ sudo apt-get build-dep mariadb-10.3

Building MariaDB
Once you have the base dependencies installed, you can retrieve the source code and start building MariaDB. The source

code is available on GitHub. Use the --branch option to specify the particular version of MariaDB you want to build.

$ git clone --branch 10.3 https://github.com/MariaDB/server.git

The source code includes scripts to install the remaining build dependencies. For Ubuntu, they're located in the debian/

directory. Navigate into the repository and run the autobake-deb.sh script. Then use

$ cd server/

$./debian/autobake-deb.sh

After Building

After building the packages, it is a good idea to put them in a repository. See the Creating a Debian Repository page for

instructions.

2.1.2.8.17 Building MariaDB on Windows

1495/4161

https://downloads.mariadb.org/mariadb/repositories/

Contents
1. Build Requirements

2. Building Windows Binaries

3. Build Variations

1. Debug Builds

2. 32bit and 64 bit Builds

1. Build 64 bit binary

2. Build 32 bit binary

3. IDE Builds

4. Building the ZIP Package

5. Building the MSI Package

6. Including HeidiSQL in the MSI Installer

7. Code Signing

8. Building Packages for MariaDB Releases

9. Running Tests

1. Running a Test Under Debugger

Build Requirements
To build MariaDB you need the following:

Visual C++ : We currently support Visual Studio 2019 and 2022. Generally we try to support the two most recent VS

versions, but build ourselves using the last one. Community editions will work fine; we only use them in our builds.

While installing Visual Studio, make sure to add "Desktop Development with C++" .

CMake : We recommend the latest release. Older releases might not support your version of Visual Studio. Visual

Studio 2019 requires cmake 3.14 at least.

Git : Required to build newer versions from the source tree.

NOTE: run

git config --global core.autocrlf input

after the installation, otherwise some mtr tests will fail

In the "Adjusting your PATH" dialog, choose "Use Git from Windows command prompt", otherwise wrong (mingw64) git and

perl will be in your PATH

Bison from GnuWin32 : Bison creates parts of the SQL parser. Choose "Complete package except sources" when

downloading.

NOTE: Do not install this into your default path with spaces (e.g. under C:\Program Files\GnuWin32); the

build will break due to this bison bug . Instead, install into C:\GnuWin32 .

Add C:\GnuWin32\bin to your system PATH after installation.

Strawberry perl : Used to run the test suite. ActiveState Perl is another Win32 Perl distribution and should work as

well (but it is not as well tested). NOTE: Cygwin or mingw Perl versions will not work for testing. Use Windows

native Perl, please.

Optional: If you intend to build the MSI packages, install Windows Installer XML . If you build MSI with 10.4, also

modify your Visual Studio installation, add "Redistributable MSMs" (see MDEV-22555)

Gnu Diff , needed if you run mysql-test-run.pl tests.

Verify that bison.exe, or git.exe, cmake.exe and perl.exe can be found in the PATH environment variable with " where

bison ", " where git ", " where perl " etc. from the command line prompt.

Building Windows Binaries
The above instructions assume MariaDB 10.2 or higher.

Branch the MariaDB repository, or unpack the source archive. On the command prompt, switch to your source directory,

then execute:

mkdir bld

cd bld

cmake ..

cmake --build . --config RelWithDebInfo

The above example builds a release configured for 64 bit systems in a subdirectory named bld . " cmake ... " is the

configuration step, " cmake --build . --config Relwithdebinfo " is the build step.

1496/4161

http://www.microsoft.com/visualstudio
https://mariadb.com/kb/en/Building_MariaDB_on_Windows/+image/vs2019_workloads
https://cmake.org/download
https://git-scm.com/download
http://gnuwin32.sourceforge.net/packages/bison.htm
http://sourceforge.net/tracker/index.php?func=detail&aid=2788969&group_id=23617&atid=379173
http://strawberryperl.com
http://www.activestate.com/activeperl/downloads
https://wixtoolset.org/releases/
https://jira.mariadb.org/browse/MDEV-22555
http://gnuwin32.sourceforge.net/packages/diffutils.htm

Build Variations

Debug Builds

Building Debug version is done with:

cmake --build . --config Debug

- 32bit and 64 bit Builds

Build 64 bit binary

Visual Studio 2019-2022 cmake generator will use host architecture by default, that is, with the steps above, cmake will build

x64 binaries on x64 machine.

Build 32 bit binary

pass -A Win32 parameter for CMake, like this

cmake .. -A Win32

Historical note: With Visual Studio 2017 and earlier, one had to pass the name of 32bit generator ,e.g cmake .. -G "Visual

Studio 15 2017"

For a complete list of available generators, call "cmake" without any parameters.

IDE Builds

Instead of calling " cmake --build " as above, open MySQL.sln . When Visual Studio starts, choose Build/Compile.

Building the ZIP Package

cmake --build . --config relwithdebinfo --target package

This is how it is "done by the book", standard cmake target.

MariaDB however uses non-standard target "win_package" for the packaging for its releases, it generates 2 ZIPs, a slim

one with executables, and another one with debuginfo (.PDB files). The debuginfo is important to be able to debug released

binaries, and to analyze crashes.

cmake --build . --config relwithdebinfo --target win_package

Building the MSI Package

cmake --build . --config relwithdebinfo

cmake --build . --config relwithdebinfo --target MSI

Including HeidiSQL in the MSI Installer
Starting with MariaDB 5.2.7 , it is possible to build an installer which includes 3rd party products, as described in

MWL#200 . Currently only HeidiSQL support is implemented; it is also included in the official builds. Use the CMake

parameter -DWITH_THIRD_PARTY=HeidiSQL to include it in the installer.

Code Signing
MariaDB builds optionally support authenticode code signing with an optional parameter SIGNCODE . Use cmake -

DSIGNCODE=1 during the configuration step to sign the binaries in the ZIP and MSI packages.

Important: for SIGNCODE=1 to work, the user that runs the build needs to install a valid authenticode digital certificate into

their certificate store, otherwise the packaging step will fail.

1497/4161

https://mariadb.com/kb/en/mariadb-527-release-notes/
http://askmonty.org/worklog/Other/?tid=200
http://www.heidisql.com

Building Packages for MariaDB Releases
The full script to create the release in an out-of-source build with Visual Studio with signed binaries might look like:

mkdir bld

cd bld

cmake .. -DSIGNCODE=1 -DWITH_THIRD_PARTY=HeidiSQL

cmake --build . --config relwithdebinfo --target win_package

cmake --build . --config relwithdebinfo --target MSI

This command sequence will produce a ZIP package (e.g mariadb-5.2.6-win32.zip) and MSI package (e.g mariadb-5.2.6-

win32.msi) in the bld directory.

Running Tests
Important: Do not use Cygwin bash, MinGW bash, Git bash, WSL bash, or any other bash when running the test

suite. You will then very likely use the wrong version of Perl too (a "Unix-flavoured" one on Windows), and spend a lot

of time trying to figure out why this version of Perl does not work for the test suite. Use native perl, in cmd.exe , or

powershell instead,

Switch mysql-test subdirectory of the build directory

cd C:\server\bld\mysql-test

Run the test suite

perl mysql-test-run.pl --suite=main --parallel=auto

Running a Test Under Debugger

Assuming VS is installed on the machine

perl mysql-test-run.pl <test_name> --vsjitdebugger

If vsjitdebugger does not start, you can edit AeDebug registry key as mentioned in

https://docs.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?view=vs-2019#jit_errors

Alternatively:

perl mysql-test-run.pl <test_name> --devenv

(devenv.exe needs to be in PATH)

or, if you prefer WinDBG

perl mysql-test-run.pl <test_name> --windbg

2.1.2.8.18 Creating a Debian Repository
Below are instructions for creating your own Debian repository. The instructions are based on

http://www.debian.org/doc/manuals/repository-howto/repository-howto.en.html

REPO_DIR={pick some location}

mkdir $REPO_DIR

mkdir $REPO_DIR/binary

mkdir $REPO_DIR/source

cp *.deb *.ddeb $REPO_DIR/binary

cd $REPO_DIR

dpkg-scanpackages binary /dev/null | gzip -9c > binary/Packages.gz

dpkg-scansources source /dev/null | gzip -9c > source/Sources.gz

Using the Debian repository you just created
1498/4161

https://docs.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?view=vs-2019#jit_errors
http://www.debian.org/doc/manuals/repository-howto/repository-howto.en.html

One needs to add a new file to the /etc/apt/sources.list.d/ directory. For instance a new file called mariadb.list

sergey's MariaDB repository

#

deb file:///home/psergey/testrepo binary/

deb-src file:///home/psergey/testrepo source/

after which one can run

apt-get update # Let apt learn about the new repository

apt-get install mariadb-server

and collect bugs :-).

"apt-get install" will spray output of scripts and servers all over /var/log. It is also possible to set

DEBIAN_SCRIPT_DEBUG=1 to get some (not all) of it to stdout.

Cleaning up after failed installation
Run

dpkg --get-selections | grep mariadb

dpkg --get-selections | grep mysql

to see what is installed, and then

 dpkg --purge <packages>

until the former produces empty output. Note: after some failures, /etc/mysql and /var/lib/mysql are not cleaned and still need

to be removed manually.

2.1.2.8.19 Building MariaDB From Source Using
musl-based GNU/Linux

Instructions on compiling MariaDB on musl-based
operating systems (Alpine)

Contents
1. Instructions on compiling MariaDB on musl-based operating systems (Alpine)

2. Using cmake

The instructions on this page will help you compile MariaDB from source. Links to more complete instructions for specific

platforms can be found on the source page.

First, get a copy of the MariaDB source.

Next, prepare your system to be able to compile the source.

Using cmake
MariaDB 10.1 and above is compiled using cmake. You can configure your build simply by running cmake using special

option, i.e.

cmake . -DWITHOUT_TOKUDB=1

To build and install MariaDB after running cmake use

make

sudo make install

Note that building with MariaDB this way will disable tokuDB, till tokuDB becomes fully supported on musl.

1499/4161

https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/source/

2.1.2.8.20 Compiling MariaDB for Debugging
Contents
1. Compiling MariaDB for Debugging Using the CMAKE_BUILD_TYPE Option

2. Compiling MariaDB for Debugging Using Build Scripts

1. Example of Compiling MariaDB for Debugging Using Build Scripts

3. Building Optimized Build With Debug Symbols

4. Doing a Debug Build on Debian/Ubuntu

1. Temporarily Installing your Debug Build

2. Reinstalling your Release Build

5. Different Compilation Options

1. Changing DBUG_ASSERT to Print to Error Log

Compiling MariaDB with full debug information includes all code symbols and also new code to do internal testing of

structures and allow one to trace MariaDB execution. A full debug binary will be notably slower than a normal binary (30%).

Compiling MariaDB for Debugging Using the
CMAKE_BUILD_TYPE Option

On Unix systems, you can build a debug build by executing cmake and by setting the CMAKE_BUILD_TYPE option to

Debug . For example:

cmake -DCMAKE_BUILD_TYPE=Debug .

Compiling MariaDB for Debugging Using Build Scripts
The other option is to use the scripts in the BUILD directory that will compile MariaDB with most common debug options and

plugins:

./BUILD/compile-pentium64-debug-max

or alternatively if you want to use the Valgrind memory checking tool with the MariaDB test system:

./BUILD/compile-pentium64-valgrind-max

There are separate build scripts for different configurations in the BUILD directory.

You can find a list of the needed packages/libraries for building on Linux here.

Example of Compiling MariaDB for Debugging Using Build Scripts

Scripts containing "debug" in the name are for developers that want to build, develop and test MariaDB.

Scripts containing "valgrind" in the name are for running mysqld under [[|http://valgrind.org|valgrind]]. Compiling for

valgrind means that we are using another implementation of MEM_ROOT to allow valgrind to better detect memory

overruns. In addition, some memory areas are marked as used/not used to remove some false positives.

Scripts containing "max" in the name include all normal plugins.

Here is an example of how to compile MariaDB for debugging in your home directory with MariaDB 5.2.9 as an example:

cd ~

mkdir mariadb

cd mariadb

tar xvf mariadb-5.2.9.tar.gz

ln -s mariadb-5.2.9 current

cd current

./BUILD/compile-pentium64-debug-max

The last command will produce a debug version of sql/mysqld . If you have a system other than 64 bit Intel/AMD on Linux

you can use a different BUILD/...-debug-max file. If this fails, you can try with:

cmake --build . --config Debug

make -j4

1500/4161

http://www.valgrind.org
https://mariadb.com/kb/en/mariadb-529-release-notes/

Building Optimized Build With Debug Symbols
To build MariaDB with symbols, to get better stack traces and to be able to debug the binary with gdb , you need to supply

the -g3 option to the gcc compiler.

Just compiling with -g3 will make the binary much bigger but the slowdown of the server should be negligible.

One way to do this is to edit the script

BUILD/compile-pentium64-max

and add the -g3 last on the line with extra_flags , like this:

extra_flags="$pentium64_cflags $fast_cflags -g3"

After that you can compile MariaDB with debugging symbols by just execution the above script.

Doing a Debug Build on Debian/Ubuntu
To build a "mysqld" binary with debugging enabled that uses the same parameters as the ones used in Debian/Ubuntu

binary packages, you must do as follows (you must have a deb-src line of one of the MariaDB repositories on your

/etc/apt/sources.list in order to do that):

apt-get build-dep mariadb-10.2

apt-get install cmake libaio1 libaio-dev

apt-get source mariadb-10.2

cd mariadb-10.2*

./debian/rules configure

./BUILD/compile-pentuim64-debug-all

Then you will have your "debugging enabled" mysqld binary in the sql/ directory.

This binary can directly replace the one provided by the binary package that is placed on "/usr/bin/mysqld".

Temporarily Installing your Debug Build

The commands shown below replace the release mysqld binary with the debug mysqld binary that you compiled. Most

importantly, they replace the binary in a way which makes it trivial to revert back to the original release mysqld binary.

First, stop MariaDB .

Then, use the mv utility to rename the release mysqld binary:

sudo mv /usr/sbin/mysqld /usr/sbin/mysqld-orig

Note: Do not use the cp utility because that will change the file modification timestamp.

Then, install the debug mysqld binary from your source tree:

sudo install ~/mariadb-10.3.14/sql/mysqld /usr/sbin/mysqld-debug

Then, link the mysqld path to the path of your debug mysqld binary:

sudo ln -s /usr/sbin/mysqld-debug /usr/sbin/mysqld

Then, start MariaDB .

Be sure to replace /usr/sbin/mysqld with the path to your mysqld binary and to also replace ~ /mariadb-

10.3.14/sql/mysqld with the path to your debug mysqld binary.

Reinstalling your Release Build

If you want to restore your original mysqld binary, you can do it with the following process::

First, stop MariaDB .

1501/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Then, execute the following command to delete the symbolic link:

sudo rm /usr/sbin/mysqld

Then, execute the following command to move the original mysqld release binary back into place:

sudo mv /usr/sbin/mysqld-orig /usr/sbin/mysqld

Then, start MariaDB .

Be sure to replace /usr/sbin/mysqld with the path to your mysqld binary

Notice that the debug mysqld binary located at /usr/sbin/mysqld-debug was not deleted. Only the symbolic link to

this file was deleted. The debug mysqld binary is still present if it is needed again in the future.

Different Compilation Options

Changing DBUG_ASSERT to Print to Error Log

A debug binary has lots of code checks and asserts, that are not checked in production. This is done to get more

performance when running in production. In some cases, when one is trying to find a hard-to-repeat bug, it could be

beneficial to have these checks in production builds too.

Compiling with -DDBUG_ASSERT_AS_PRINTF will change DBUG_ASSERT() to print any failed check to the error log.

cmake . -DDBUG_ASSERT_AS_PRINTF

Enabling the above option should not have any notable impact on performance (probably < 1% slowdown). This is achieved

by grouping asserts in MariaDB server code into two groups:

Fast checks, using DBUG_ASSERT() : These are converted to printing to error log.

Slow checks, using DBUG_SLOW_ASSERT() . These will always be removed in production builds.

2.1.2.8.21 Cross-compiling MariaDB

Buildroot
Buildroot is a way to cross compile MariaDB and other packages into a root filesystem. In the menuconfig you need to

enable "Enable C++ Support" first under "Toolchain". After C++ is enabled MariaDB is an option under "Target Packages" -

>"Libraries" -> "Databases" -> "mysql support" -> "mysql variant" -> "mariadb". Also enable the "mariadb server" below the

"mysql support" option.

Details
To cross-compile with cmake you will need a toolchain file. See, for example, here . Besides cmake specific variables it

should have, at least

 SET(STACK_DIRECTION -1)

 SET(HAVE_IB_GCC_ATOMIC_BUILTINS 1)

with appropriate values for your target architecture. Normally these MariaDB configuration settings are detected by running

a small test program, and it cannot be done when cross-compiling.

Note that during the build few helper tools are compiled and then immediately used to generate more source files for this

very build. When cross-compiling these tools naturally should be built for the host architecture, not for the target architecture.

Do it like this (assuming you're in the mariadb source tree):

$ mkdir host

$ cd host

$ cmake ..

$ make import_executables

$ cd ..

1502/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://buildroot.org/downloads/manual/manual.html#_user_guide
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html?highlight=linker#cross-compiling-for-linux

Now the helpers are built and you can cross-compile:

$ mkdir target

$ cd target

$ cmake .. -DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain/file.cmake -

DIMPORT_EXECUTABLES=../host/import_executables.cmake

$ make

Here you invoke cmake, specifying the path to your toolchain file and the path to the import_executables.cmake that

you have just built on the previous step. Of course, you can also specify any other cmake parameters that could be

necessary for this build, for example, enable or disable specific storage engines.

See also https://lists.launchpad.net/maria-discuss/msg02911.html

2.1.2.8.22 MariaDB Source Configuration
Options

Contents

All CMake configuration options for MariaDB can be displayed with:

cmake . -LH

2.1.2.8.23 Building RPM Packages From Source
To generate RPM packages from the build, supply the -DRPM=xxx flag to CMake, where the value xxx is the name of the

distribution you're building for. For example, centos7 or rocky8 or fedora39 or sles15.

What these do are controlled in the following CMake files:

cmake/cpack_rpm.cmake

cmake/build_configurations/mysql_release.cmake

cmake/mariadb_connector_c.cmake

To build the packages you should execute:

$ umask 0022

$ cmake --build . --target package

2.1.2.8.24 Compile and Using MariaDB with
Sanitizers (ASAN, UBSAN, TSAN, MSAN)

Contents
1. What are Sanitizers?

2. How to Compile MariaDB with Sanitizers

3. Running an MSAN Build

4. Running an ASAN Build

1. Using Valgrind

What are Sanitizers?
Sanitizers are open source runtime error detectors developed by Google that are enabled during the compile step. These

sanitizers add extra code during compilation that will throw exceptions when certain errors are detected.

AddressSanitizer (aka ASAN) is a memory error detector for C/C++. It finds a lot of the same things as valgrind, but with a

lot less overhead.

Use after free (dangling pointer dereference)

Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

1503/4161

https://lists.launchpad.net/maria-discuss/msg02911.html
https://github.com/google/sanitizers/wiki/AddressSanitizer

Use after scope

Initialization order bugs

Memory leaks

To use ASAN you need a gcc version that supports ASAN. gcc 4.8.5 and up are known to work.

In addition to ASAN there are sanitizers for Undefined Behaviour, Thread and Memory related errors.

UndefinedBehaviourSanitizer (aka UBSAN)

ThreadSanitizer (aka TSAN)

MemorySanitizer (aka MSAN)

How to Compile MariaDB with Sanitizers
Before using ASAN locally, please ensure that it is installed on the system:

yum install -y /usr/lib64/libasan.so.6.0.0

ASAN is supported in MariaDB 10.1 and up.

You can use one of the two following build commands:

cmake . -DWITH_ASAN=ON

or from MariaDB 10.2 and up:

./BUILD/compile-pentium64-asan-max

Additionally, UBSAN, TSAN, and MSAN can be enabled in a similar way:

UBSAN:

yum install -y /usr/lib64/libubsan.so.1.0.0

cmake . -DWITH_UBSAN=ON

TSAN:

yum install -y /usr/lib64/libtsan.so.0.0.0

cmake . -DWITH_TSAN=ON

MSAN:

Note: keep in mind that only clang supports MSAN, g++ or other compilers will not work.

cmake . -DWITH_MSAN=ON

Running an MSAN Build
The time consuming aspect of building with MSAN is having instrumented system libraries. As MariaDB Foundation have

built the MSAN container already for buildbot, this is how you re-use this for building locally.

First, run the container where your current directory is the source directory:

podman run -v $PWD:/source:z -ti --user buildbot --entrypoint bash --shm-size 5G --env MSAN_SYMBOLIZER_PATH=/msan-libs/bin/llvm-symbolizer-msan --env MSAN_OPTIONS=abort_on_error=1:poison_in_dtor=0 quay.io/mariadb-foundation/bb-worker:debian11-msan

Note: docker can be used instead of the lighter weight podman if you so desire.

The shm-size is for the MTR tests which exceed the 64k default shm-size.

All the following instructions are executed within the container. Now run the configure stage of cmake:

cmake /source -DCMAKE_C_COMPILER=clang-15 -DCMAKE_CXX_COMPILER=clang++-15 '-DCMAKE_C_FLAGS=-O2 -Wno-unused-command-line-argument -fdebug-macro' '-DCMAKE_CXX_FLAGS=-stdlib=libc++ -O2 -Wno-unused-command-line-argument -fdebug-macro' -DWITH_EMBEDDED_SERVER=OFF -DWITH_UNIT_TESTS=OFF -DCMAKE_BUILD_TYPE=Debug -DWITH_INNODB_BZIP2=OFF -DWITH_INNODB_LZ4=OFF -DWITH_INNODB_LZMA=OFF -DWITH_INNODB_LZO=OFF -DWITH_INNODB_SNAPPY=OFF -DPLUGIN_ARCHIVE=NO -DPLUGIN_TOKUDB=NO -DPLUGIN_MROONGA=NO -DPLUGIN_OQGRAPH=NO -DPLUGIN_ROCKSDB=NO -DPLUGIN_CONNECT=NO -DPLUGIN_SPIDER=NO -DWITH_SAFEMALLOC=OFF -DWITH_ZLIB=bundled -DWITH_SSL=bundled -DWITH_PCRE=bundled -DHAVE_LIBAIO_H=0 -DCMAKE_DISABLE_FIND_PACKAGE_URING=1 -DCMAKE_DISABLE_FIND_PACKAGE_LIBAIO=1 -DWITH_MSAN=ON -DWITH_DBUG_TRACE=OFF

Run the build stage:

1504/4161

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html

cmake --build . --parallel

...

[100%] Built target mariadbd

[100%] Linking CXX executable mariadb-backup

Creating mariabackup link

[100%] Built target mariadb-backup

As the important MTR step needs to use the instrumented libraries MTR is run using the LD_LIBRARY_PATH to use those.

LD_LIBRARY_PATH=/msan-libs mysql-test/mtr --mem --big-test --force --retry=0 --skip-test=.*compression.* --parallel=auto

As newer versions occur and improvements happen these instructions may change. Look at the execution on the buildbot

builder to see if any changes have been made.

Running an ASAN Build
To run mysqld with instrumentation you have to set the ASAN_OPTIONS environment variable before starting mysqld .

Either in your shell or in your mysqld_safe script.

export ASAN_OPTIONS=abort_on_error=1

The above command will abort any instrumented executable if any errors are found, which is good for debugging. If you set

abort_on_error=0 all server errors are logged to your error log file (mysqld.err).

To catch errors for other processes than the server, you can set more options, like this:

export ASAN_OPTIONS=abort_on_error=1:log_path=/tmp/asan

If you are seeing an incomplete stack trace for a memory allocation, you may rerun the failing test with

export ASAN_OPTIONS=abort_on_error=1:log_path=/tmp/asan:fast_unwind_on_malloc=0

To get core dumps of failures:

export ASAN_OPTIONS=abort_on_error=1:disable_coredump=0

To see all the options (or to check if an executable is instrumented), you may try the following:

ASAN_OPTIONS=help=1 extra/perror 0

Using Valgrind

The MariaDB test system can use Valgrind for finding memory leaks and wrong memory accesses. Valgrind is an

instrumentation framework for building dynamic analysis tools. If Valgrind is installed on your system, you can simply use

mysql-test-run --valgrind to run the test under Valgrind.

2.1.2.9 Distributions Which Include MariaDB
Contents
1. Linux Distributions

2. BSD Distributions

3. macOS

The following is a partial list of distributions which include MariaDB in their package repositories. For these you can use the

distribution's management system to install MariaDB.

The term "default" in the list below refers to the distribution's default relational or MySQL-type database.

Linux Distributions
AlmaLinux 4 MariaDB 10.5 was included since 8.8.

1505/4161

https://buildbot.mariadb.org/#/builders/amd64-debian-11-msan
http://www.valgrind.org
https://almalinux.org/

Alpine Linux 4 Defaults to MariaDB. MariaDB 10.6 has been available 3.12.11 and MariaDB 10.11 since 3.18.2.

4mLinux 4 Defaults to MariaDB. MariaDB 10.6 has been available since 37.0

ALT Linux 4 MariaDB 5.5 included in 7.0.0, MariaDB is default from 8.1, which includes MariaDB 10.1, 9.1 includes MariaDB 10.4

Arch Linux 4 Features MariaDB 10.11, and replaced MySQL as a default

Austrumi 4 Defaulted to MariaDB 5.3 in 2.4.8, 3.5.8 includes MariaDB 10.1

BlackArch 4 Defaulted to MariaDB 5.5 in 2014.07.01, 2020.12.01 includes MariaDB 10.5

BlueOnyx 4 5209 defaults to MariaDB 5.5, 5210R to MariaDB 10.3

BlueStar 4 4.8.4 defaults to MariaDB 10.1, 5.4.2 to MariaDB 10.5

CentOS 4 MariaDB 5.5 replaced MySQL in CentOS 7

The Chakra Project 4 MariaDB replaced MySQL as default in 2013.05. 2016.02 includes MariaDB 10.1

Debian 4 Debian 10 "Buster" includes MariaDB 10.3, Debian 11 "Bullseye" MariaDB 10.5, Debian 12 "Bookworm" MariaDB 10.11 as default.

Elastix 4Defaulted to MariaDB 5.5 in 4.0.76

Exherbo 4Includes MariaDB 10.4

Fedora 4 MariaDB 5.5 became the default relational database in Fedora 19. Fedora 30 includes MariaDB 10.3 , Fedora 34 includes MariaDB

10.5 .

Funtoo 4Includes MariaDB 5.5

Gentoo Linux

Guix 411.2.0 includes MariaDB 10.1

Hanthana 4 19.1 defaulted to MariaDB 5.5, 21 includes MariaDB 10.0, 28.1.2 includes MariaDB 10.2, 30 includes MariaDB 10.3

KaOS 4Defaulted to MariaDB 5.5 in 2014.12, 2019.04 includes MariaDB 10.3

Kali Linux 42017.3 Included MariaDB 10.1, 2023.1 includes MariaDB 10.11

GNU/Linux KDu 4 MariaDB 5.5 replaced MySQL as a default in 2.0 Final.

Korora 4Defaulted to MariaDB in 19.1, 26 includes MariaDB 10.1

Linux from Scratch 410.1-BLFS defaults to MariaDB 10.5

Lunar 41.7.0 includes MariaDB 5.5, Moonbase includes MariaDB 10.5

Mageia 4 MariaDB 5.5 replaced MySQL as default in version 3, MariaDB 10.3 from version 7.1, MariaDB 10.5 from 8, MariaDB 10.11 from 9.

Manjaro Linux 4 Defaulted to MariaDB 5.5 in 0.8.11, 16.10.3 includes MariaDB 10.1.

NixOS 414.0.4.630 included MariaDB 10.0, 18.09 includes MariaDB 10.2, Stable includes MariaDB 10.5

Network Security Toolkit 420-5663 defaulted to MariaDB 5.5, 32-11992 includes MariaDB 10.4

NuTyX 414.11 included MariaDB 10.0, defaulted to MariaDB 10.1 in 8.2.1, 20.12.1 includes MariaDB 10.5

OpenELEC

OpenEuler 421.9 includes 10.5 , 22.03 LTS includes MariaDB 10.5

Open Mandriva 4Defaulted to MariaDB 10.0 in 2014.2, includes MariaDB 10.5 in 4.2

openSUSE 4 MariaDB 5.5 became the default relational database in openSUSE 12.3 , and MariaDB 10.6 the default since 15.5

Oracle Linux 4 7.3 includes MariaDB 5.5. 8.0 includes MariaDB 10.3

Paldo 4Defaults to MariaDB 10.5 in Stable

Parabola GNU/Linux 4Includes MariaDB 10.1 since 3.7

Parrot Security 4Based on Debian's testing branch (stretch), Parrot Security switched from MySQL to MariaDB 10.0 in 3.1, 4.7 includes

MariaDB 10.3

Parted Magic 4Defaulted to MariaDB 5.5 in 2015_11_13

PCLinuxOS 4Replaced MySQL with MariaDB 10.1 in 2017.03

Pisi Linux 4Defaulted to MariaDB 10.0 in 1.1

Plamo 4Defaulted to MariaDB 5.5 in 5.3.1, 7.3 includes MariaDB 10.2

PoliArch 4Defaulted to MariaDB 5.5 in 13.1, 15.1 includes MariaDB 10.0

Red Hat Enterprise Linux 4 MariaDB 5.5 was included as the default "MySQL" database since RHEL 7, RHEL 9 includes MariaDB 10.5

Rocky Linux 4 MariaDB 10.5 was included since 8.7.

ROSA 4Defaulted to MariaDB 10.0 in R4 and MariaDB 10.1 in R9.

Sabayon 4Included MariaDB 10.0 in 14.12, includes MariaDB 10.3 since 19.03

Scientific Linux 4Defaulted to MariaDB 5.5 in 7.3

Slackware 4 MariaDB 5.5 replaced MySQL as default in 14.1. 15.0 includes MariaDB 10.5, current includes MariaDB 10.11

SliTaz GNU/Linux 4Includes MariaDB 10.0 in 5.0-rolling

SME Server 4 started to use MariaDB 5.5 from 10.0

Springdale Linux 4Defaulted to MariaDB 5.5 in 7.2, 8.1 includes MariaDB 10.3

SuliX 4 Defaults to MariaDB 5.5 in 8.

SUSE Linux Enterprise 4 MariaDB 10.6 is the default relational database option on 15-SP6

Ubuntu 4MariaDB 5.5 was included in Trusty Tahr 14.04. 20.04 includes MariaDB 10.3 , and 22.04 includes 10.6 .

Void 4 Includes MariaDB 10.5 in current

Wifislax 4 Defaulted to MariaDB 10.0 in 4.11.1

BSD Distributions
Dragonfly BSD 4 3.8 included MariaDB 5.5. 5.8.0 includes MariaDB 10.4.

FreeBSD 4 MariaDB is available in the ports tree and the FreeBSD Manual has instructions on Installing Applications: Packages and Ports .

MariaDB 10.5 is included in 12.2

MariaDB on FreshPorts

NetBSD 4 6.1 and 7.0 include MariaDB 5.5.

1506/4161

https://www.alpinelinux.org/
https://4mlinux.com
http://4mlinux-releases.blogspot.com/2022/03/4mlinux-390-stable-released.html
https://packages.altlinux.org/en/Sisyphus/srpms/mariadb
https://www.archlinux.org/news/mariadb-replaces-mysql-in-repositories/
http://cyti.latgola.lv/ruuni/
http://blackarch.org/
http://www.blueonyx.it/
http://bluestarlinux.sourceforge.net/
https://wiki.centos.org/About/Product/
https://chakraos.org/
https://www.debian.org/
http://www.elastix.org/
http://exherbo.org/
https://getfedora.org/
https://bodhi.fedoraproject.org/updates/?packages=mariadb&page=1
https://fedoraproject.org/wiki/Releases/34/ChangeSet#MariaDB_10.5
http://www.funtoo.org/
https://packages.gentoo.org/packages/dev-db/mariadb
https://www.gnu.org/software/guix/
http://www.hanthana.org/
http://kaosx.us/
https://www.kali.org/
http://www.linux-kdu.com.br/
https://kororaproject.org/
http://www.linuxfromscratch.org/
http://www.lunar-linux.org/
https://www.mageia.org/
https://manjaro.github.io/
http://nixos.org/
http://www.networksecuritytoolkit.org/
http://www.nutyx.org/
http://news.softpedia.com/news/openelec-8-0-3-embedded-linux-entertainment-os-adds-mesa-17-0-5-and-linux-4-9-25-515302.shtml
https://openeuler.org/en/
https://repo.openeuler.org/openEuler-21.09/source/Packages/
https://repo.openeuler.org/openEuler-22.03-LTS/source/Packages/
http://openmandriva.org/
https://en.opensuse.org/Portal:MySQL
https://blog.mariadb.org/opensuse-12-3-released-with-mariadb-as-default
http://www.oracle.com/us/technologies/linux/index.html
http://www.paldo.org/
https://www.parabola.nu/packages/?q=mariadb
http://www.parrotsec.org/
http://partedmagic.com/
http://www.pclinuxos.com/forum/index.php?topic=140029.0
http://www.pisilinux.org/
http://www.plamolinux.org/
http://www.poliarch.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://rockylinux.org
http://www.rosalab.com/
http://www.sabayon.org/
https://www.scientificlinux.org/
https://slackbuilds.org/apps/mariadb/
http://www.slitaz.org/
https://wiki.contribs.org/SME_Server:10.0
http://springdale.math.ias.edu/
http://www.sulix.hu/
https://www.suse.com
https://wiki.ubuntu.com/Releases/
http://packages.ubuntu.com/focal/mariadb-server-10.3
https://packages.ubuntu.com/jammy/database/
http://www.voidlinux.eu/
https://voidlinux.org/packages/
http://www.wifislax.com/
https://www.dragonflybsd.org/
https://svnweb.freebsd.org/ports/head/databases/#mariadb100-client
https://www.freebsd.org/doc/en/books/handbook/ports.html
https://www.freshports.org/search.php?query=mariadb
https://www.netbsd.org/

OpenBSD 4 MariaDB 10.0 was included in 5.7, 6.8 includes MariaDB 10.5.

macOS
Homebrew 4 If you have Homebrew installed, you can install MariaDB Server by executing brew install mariadb . Find out more at

Installing MariaDB Server on macOS Using Homebrew.

MacPorts 4This provides mariadb and mariadb-server . A quick guide on how to install it.

2.1.2.10 Running Multiple MariaDB Server
Processes

Contents
1. Configuring Multiple MariaDB Server Processes

2. Starting Multiple MariaDB Server Processes

1. Service Managers

1. Systemd

2. Starting the Server Process Manually

1. mysqld

2. mysqld_safe

3. mysqld_multi

3. Other Options

It is possible to run multiple MariaDB Server processes on the same server, but there are certain things that need to be kept

in mind. This page will go over some of those things.

Configuring Multiple MariaDB Server Processes
If multiple MariaDB Server process are running on the same server, then at minimum, you will need to ensure that the

different instances do not use the same datadir , port , and socket . The following example shows these options set in

an option file:

[client]

TCP port to use to connect to mysqld server

port=3306

Socket to use to connect to mysqld server

socket=/tmp/mysql.sock

[mariadb]

TCP port to make available for clients

port=3306

Socket to make available for clients

socket=/tmp/mysql.sock

Where MariaDB should store all its data

datadir=/usr/local/mysql/data

The above values are the defaults. If you would like to run multiple MariaDB Server instances on the same server, then you

will need to set unique values for each instance.

There may be additional options that also need to be changed for each instance. Take a look at the full list of options for

mysqld .

To see the current values set for an instance, see Checking Program Options for how to do so.

To list the default values, check the end of:

mysqld --help --verbose

Starting Multiple MariaDB Server Processes
There are several different methods to start or stop the MariaDB Server process. There are two primary categories that most

of these methods fall into: starting the process with the help of a service manager, and starting the process manually. See

Starting and Stopping MariaDB for more information.

Service Managers

1507/4161

https://marc.info/?m=141063182731679
http://brew.sh/
https://www.macports.org/
https://trac.macports.org/browser/trunk/dports/databases/mariadb/Portfile
http://yosun.me/2012/04/13/mariadb-via-macports-on-mac-os-x-10-6/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

sysVinit and systemd are the most common Linux service managers. launchd is used in MacOS X. Upstart is a less

common service manager.

Systemd

RHEL/CentOS 7 and above, Debian 8 Jessie and above, and Ubuntu 15.04 and above use systemd by default.

For information on how to start and stop multiple MariaDB Server processes on the same server with this service manager,

see systemd: Interacting with Multiple MariaDB Server Processes.

Starting the Server Process Manually

mysqld

mysqld is the actual MariaDB Server binary. It can be started manually on its own.

If you want to force each instance to read only a single option file, then you can use the --defaults-file option:

mysqld --defaults-file=/etc/my_instance1.cnf

mysqld_safe

mysqld_safe is a wrapper that can be used to start the mysqld server process. The script has some built-in safeguards,

such as automatically restarting the server process if it dies. See mysqld_safe for more information.

If you want to force each instance to read only a single option file, then you can use the --defaults-file option:

mysqld_safe --defaults-file=/etc/my_instance1.cnf

mysqld_multi

mysqld_multi is a wrapper that can be used to start the mysqld server process if you plan to run multiple server

processes on the same host. See mysqld_multi for more information.

Other Options
In some cases, there may be easier ways to run multiple MariaDB Server instances on the same server, such as:

Using dbdeployer.

Starting multiple Docker containers.

2.1.2.11 Installing MariaDB Alongside MySQL
MariaDB was originally designed as a drop-in replacement of MySQL, with more features, new storage engines, fewer

bugs, and better performance, but you can also install it alongside MySQL. (This can be useful, for example, if you want to

migrate databases/applications one by one.)

Here are the steps to install MariaDB near an existing MySQL installation.

Download the compiled binary tar.gz that contains the latest version (mariadb-5.5.24-linux-x86_64.tar.gz - as of

writing this article) and extract the files in a directory of your choice. I will assume for this article that the directory was

/opt.

[root@mariadb-near-mysql ~]# cat /etc/issue

CentOS release 6.2 (Final)

[root@mariadb-near-mysql ~]# rpm -qa mysql*

mysql-5.1.61-1.el6_2.1.x86_64

mysql-libs-5.1.61-1.el6_2.1.x86_64

mysql-server-5.1.61-1.el6_2.1.x86_64

[root@mariadb-near-mysql ~]# ps axf | grep mysqld

 2072 pts/0 S+ 0:00 _ grep mysqld

 1867 ? S 0:01 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --

socket=/var/lib/mysql/mysql.sock ...

 1974 ? Sl 0:06 _ /usr/libexec/mysqld --basedir=/usr --datadir=/var/lib/mysql --

user=mysql ...

1508/4161

https://en.wikipedia.org/wiki/Upstart_(software)
http://downloads.mariadb.org/mariadb/5.5.24/#bits=64&file_type=tar_gz

Create data directory and symlinks as below:

[root@mariadb-near-mysql opt]# mkdir mariadb-data

[root@mariadb-near-mysql opt]# ln -s mariadb-5.5.24-linux-x86_64 mariadb

[root@mariadb-near-mysql opt]# ls -al

total 20

drwxr-xr-x. 5 root root 4096 2012-06-06 07:27 .

dr-xr-xr-x. 23 root root 4096 2012-06-06 06:38 ..

lrwxrwxrwx. 1 root root 27 2012-06-06 07:27 mariadb -> mariadb-5.5.24-linux-x86_64

drwxr-xr-x. 13 root root 4096 2012-06-06 07:07 mariadb-5.5.24-linux-x86_64

drwxr-xr-x. 2 root root 4096 2012-06-06 07:26 mariadb-data

Create group mariadb and user mariadb and set correct ownerships:

[root@mariadb-near-mysql opt]# groupadd --system mariadb

[root@mariadb-near-mysql opt]# useradd -c "MariaDB Server" -d /opt/mariadb -g mariadb --system

mariadb

[root@mariadb-near-mysql opt]# chown -R mariadb:mariadb mariadb-5.5.24-linux-x86_64/

[root@mariadb-near-mysql opt]# chown -R mariadb:mariadb mariadb-data/

Create a new my.cnf in /opt/mariadb from support files:

[root@mariadb-near-mysql opt]# cp mariadb/support-files/my-medium.cnf mariadb-data/my.cnf

[root@mariadb-near-mysql opt]# chown mariadb:mariadb mariadb-data/my.cnf

Edit the file /opt/mariadb-data/my.cnf and add custom paths, socket, port, user and the most important of all: data

directory and base directory. Finally the file should have at least the following:

[client]

port = 3307

socket = /opt/mariadb-data/mariadb.sock

[mysqld]

datadir = /opt/mariadb-data

basedir = /opt/mariadb

port = 3307

socket = /opt/mariadb-data/mariadb.sock

user = mariadb

Copy the init.d script from support files in the right location:

[root@mariadb-near-mysql opt]# cp mariadb/support-files/mysql.server /etc/init.d/mariadb

[root@mariadb-near-mysql opt]# chmod +x /etc/init.d/mariadb

Edit /etc/init.d/mariadb replacing mysql with mariadb as below:

- # Provides: mysql

+ # Provides: mariadb

- basedir=

+ basedir=/opt/mariadb

- datadir=

+ datadir=/opt/mariadb-data

- lock_file_path="$lockdir/mysql"

+ lock_file_path="$lockdir/mariadb"

The trickiest part will be the last changes to this file. You need to tell mariadb to use only one cnf file. In the start section

after $bindir/mysqld_safe add --defaults-file=/opt/mariadb-data/my.cnf. Finally the lines should look like:

Give extra arguments to mysqld with the my.cnf file. This script

may be overwritten at next upgrade.

$bindir/mysqld_safe --defaults-file=/opt/mariadb-data/my.cnf --datadir="$datadir" --pid-

file="$mysqld_pid_file_path" $other_args >/dev/null 2>&1 &

The same change needs to be made to the mariadb-admin command below in the wait_for_ready() function so that the

mariadb start command can properly listen for the server start. In the wait_for_ready() function, after $bindir/mariadb-

admin add --defaults-file=/opt/mariadb-data/my.cnf. The lines should look like:

1509/4161

wait_for_ready () {

[...]

 if $bindir/mariadb-admin --defaults-file=/opt/mariadb-data/my.cnf ping >/dev/null 2>&1;

then

Run mariadb-install-db by explicitly giving it the my.cnf file as argument:

[root@mariadb-near-mysql opt]# cd mariadb

[root@mariadb-near-mysql mariadb]# scripts/mariadb-install-db --defaults-file=/opt/mariadb-

data/my.cnf

Now you can start MariaDB by

[root@mariadb-near-mysql opt]# /etc/init.d/mariadb start

Starting MySQL... [OK]

Make MariaDB start at system start:

[root@mariadb-near-mysql opt]# cd /etc/init.d

[root@mariadb-near-mysql init.d]# chkconfig --add mariadb

[root@mariadb-near-mysql init.d]# chkconfig --levels 3 mariadb on

Finally test that you have both instances running:

[root@mariadb-near-mysql ~]# mysql -e "SELECT VERSION();"

+-----------+

| VERSION() |

+-----------+

| 5.1.61 |

+-----------+

[root@mariadb-near-mysql ~]# mysql -e "SELECT VERSION();" --socket=/opt/mariadb-

data/mariadb.sock

+----------------+

| VERSION() |

+----------------+

| 5.5.24-MariaDB |

+----------------+

What about MariaDB Upgrades ?
By having the mariadb.socket, my.cnf file and databases in /opt/mariadb-data if you want to upgrade the MariaDB

version you will will only need to:

extract the new version from the archive in /opt near the current version

stop MariaDB

change the symlink mariadb to point to the new directory

start MariaDB

run upgrade script... but remember you will need to provide the socket option --socket=/opt/mariadb-

data/mariadb.sock

2.1.2.12 GPG
Contents
1. Debian / Ubuntu key

2. RPM / Source Key 2023+

3. RPM / Source key pre-2023

4. Configuring Repositories

The MariaDB project signs their MariaDB packages for Debian, Ubuntu, Fedora, CentOS, and Red Hat.

Debian / Ubuntu key
Our repositories for Debian "Sid" and the Ubuntu 16.04 and beyond "Xenial" use the following GPG signing key. As detailed

in MDEV-9781 , APT 1.2.7 (and later) prefers SHA2 GPG keys and now prints warnings when a repository is signed using

1510/4161

https://jira.mariadb.org/browse/MDEV-9781

a SHA1 key like our previous GPG key. We have created a SHA2 key for use with these.

Information about this key:

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be added on Debian-based systems using the following command:

sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 0xF1656F24C74CD1D8

Usage of the apt-key command is deprecated in the latest versions of Debian and Ubuntu, and the replacement

method is to download the keyring file to the /etc/apt/trusted.gpg.d/ directory. This can be done with the

following:

sudo curl -LsSo /etc/apt/trusted.gpg.d/mariadb-keyring-2019.gpg https://supplychain.mariadb.com/mariadb-keyring-2019.gpg

RPM / Source Key 2023+
Beginning in 2023 we migrated the key used to sign our yum/dnf/zypper repositories and to sign our source code and binary

tarballs to the same key we use for Debian and Ubuntu. This unifies our GPG signing and enables our repositories to be

compatible with FIPS and other regulations that mandate a stronger signing key.

The key can be imported on RPM-based systems using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

or

sudo rpmkeys --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

RPM / Source key pre-2023
The GPG Key ID of the MariaDB signing key we used for yum/dnf/zypper repositories and to sign our source code tarballs

until the end of 2022 was 0xCBCB082A1BB943DB . The short form of the id is 0x1BB943DB and the full key fingerprint is:

1993 69E5 404B D5FC 7D2F E43B CBCB 082A 1BB9 43DB

This key was used by the yum/dnf/zypper repositories for RedHat, CentOS, Fedora, openSUSE, and SLES.

If you configure the mariadb.org rpm repositories using the repository configuration tool (see below) then your package

manager will prompt you to import the key the first time you install a package from the repository.

You can also import the key directly using the following command:

sudo rpmkeys --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Configuring Repositories
See the this page for details on using the mariadb_repo_setup script to configure repositories that use these keys.

See the this page for details on configuring MariaDB Foundation repositories that use these keys.

2.1.2.13 MariaDB Platform Deprecation Policy
Contents
1. Current Package Platforms

2. Deprecated Package Platforms

3. Support for Deprecated Platforms

The MariaDB Foundation tries to support as many different Operating Systems, Linux Distributions, and processor

architectures as possible. However, when a distribution or OS stops receiving security and other updates it becomes difficult

for the MariaDB project to provide freely packages for that platform. In such cases, our policy is to deprecate the platform

1511/4161

https://mariadb.com/docs/server/deploy/deployment-methods/repo/#Configure_MariaDB_Community_Repository
https://downloads.mariadb.org/mariadb/repositories/
http://mariadb.org

and stop providing binary packages for it.

This policy and related deprecated dates are from the MariaDB Foundation . For information on the MariaDB Corporation's

policies related to supporting software, see the Engineering Policies page.

Current Package Platforms
The MariaDB project builds packages for the following:

Platform Planned Deprecation Date

Windows Server 2019 Jan 2024

Red Hat Enterprise Linux 7.x (x86_64 only) Jun 2024

CentOS 7.x (x86_64 only) Jun 2024

Debian 10 "Buster" (i386, amd64 and arm64) Jun 2024

Ubuntu 23.10 "Mantic" Jul 2024

SLES-15.0 July 2024

SLES 12.x Oct 2024

Ubuntu 20.04 "Focal" Apr 2025

Windows 10 Oct 2025

Debian 11 "Bullseye" Jun 2026

Windows Server 2022 Oct 2026

Ubuntu 22.04 "Jammy" Apr 2027

SLES 15.x Jul 2028

Red Hat Enterprise Linux 8.x Jun 2029

Red Hat Enterprise Linux 9.x Jun 2032

Debian 12 "Bookworm" TBD

Fedora 38 approximately 1 month after release of Fedora 40

Fedora 39 approximately 1 month after release of Fedora 41

SLES 12.5 6 months after release of SLES 12.6

Windows 11 TBC

Ubuntu Release Information (End of Standard Support)

Debian LTS Information (i386, amd64 and arm64 only)

General Debian Release Information

Red Hat Enterprise Linux Release Information

Fedora Release Information

FreeBSD Security Information

openSUSE Lifetime Information

SLES Lifecycle Information

Windows client Lifecycle Information

Windows Server Lifecycle Information

Deprecated Package Platforms
The MariaDB project no longer builds packages for the following Operating Systems and Linux Distributions:

Platform
Deprecation

Date
Final MariaDB Version(s)

Fedora 37 Jan 2024 MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB

11.2.3, MariaDB 11.3.2

Ubuntu 23.04 "Lunar" Jan 2024
MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3, MariaDB

11.3.2

1512/4161

http://mariadb.org
https://mariadb.com/engineering-policies
https://wiki.ubuntu.com/Releases
https://wiki.debian.org/LTS
http://www.debian.org/releases/
https://access.redhat.com/support/policy/updates/errata/
https://fedoraproject.org/wiki/Fedora_Release_Life_Cycle
http://www.freebsd.org/security/
https://en.opensuse.org/Lifetime
https://www.suse.com/lifecycle/
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/lifecycle/search?alpha=windows%20server
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Ubuntu 18.04 LTS

"Bionic"
Jun 2023

MariaDB 10.4.31, MariaDB 10.5.22, MariaDB 10.6.15, MariaDB 10.7.8 , MariaDB

10.8.8 , MariaDB 10.9.8, MariaDB 10.10.6, MariaDB 10.11.5, MariaDB 11.0.3

Ubuntu 22.10

"Kinetic"
Jul 2023

MariaDB 10.6.15, MariaDB 10.7.8 , MariaDB 10.8.8 , MariaDB 10.9.8, MariaDB

10.10.6, MariaDB 10.11.5, MariaDB 11.0.3

Fedora 36 May 2023
MariaDB 10.6.13, MariaDB 10.8.8 , MariaDB 10.9.6, MariaDB 10.10.4, MariaDB

10.11.3

Fedora 35 Jan 2023
MariaDB 10.5.19, MariaDB 10.6.12, MariaDB 10.7.8 , MariaDB 10.9.5, MariaDB

10.10.3

Windows 8.1 Jan 2023
MariaDB 10.5.19, MariaDB 10.6.12, MariaDB 10.7.8 , MariaDB 10.9.5, MariaDB

10.10.3

Debian 10 "Buster"

(ppc64el)
Jul 2022

MariaDB 10.3.36 , MariaDB 10.4.26, MariaDB 10.5.17, MariaDB 10.6.9, MariaDB

10.7.5 , MariaDB 10.8.4

Ubuntu 21.10 "Impish" Jul 2022
MariaDB 10.5.16, MariaDB 10.6.8, MariaDB 10.7.4 , MariaDB 10.8.3 , MariaDB

10.9.1

Debian 9 "Stretch" Jun 2022
MariaDB 10.2.44 , MariaDB 10.3.35 , MariaDB 10.4.25, MariaDB 10.5.16,

MariaDB 10.6.8, MariaDB 10.7.4 , MariaDB 10.8.3 , MariaDB 10.9.1

Red Hat Enterprise

Linux 7.x (non-

x86_64)

May 2022
MariaDB 10.2.44 , MariaDB 10.3.35 , MariaDB 10.4.25, MariaDB 10.5.16,

MariaDB 10.6.8, MariaDB 10.7.4 , MariaDB 10.8.3 , MariaDB 10.9.1

CentOS 7.x (non-

x86_64)
May 2022

MariaDB 10.2.44 , MariaDB 10.3.35 , MariaDB 10.4.25, MariaDB 10.5.16,

MariaDB 10.6.8, MariaDB 10.7.4 , MariaDB 10.8.3 , MariaDB 10.9.1

Fedora 34 May 2022
MariaDB 10.5.16, MariaDB 10.6.8, MariaDB 10.7.4 , MariaDB 10.8.3 , MariaDB

10.9.1

Ubuntu 21.04

"Hirsute"
Feb 2022 MariaDB 10.7.2 , MariaDB 10.6.6, MariaDB 10.5.14

Fedora 33 Feb 2022 MariaDB 10.7.2 , MariaDB 10.6.6, MariaDB 10.5.14, MariaDB 10.4.23

CentOS 8.x Feb 2022
MariaDB 10.7.2 , MariaDB 10.6.6, MariaDB 10.5.14, MariaDB 10.4.23, MariaDB

10.3.33

Windows Server 2016 Feb 2022
MariaDB 10.7.2 , MariaDB 10.6.6, MariaDB 10.5.14, MariaDB 10.4.23, MariaDB

10.3.33

Ubuntu 20.10

"Groovy"
Jul 2021 MariaDB 10.6.4, MariaDB 10.5.12, MariaDB 10.4.21, MariaDB 10.3.31

Fedora 32 Apr 2021 MariaDB 10.5.10, MariaDB 10.4.19, MariaDB 10.3.29

Ubuntu 16.04 LTS

"Xenial"
Apr 2021 MariaDB 10.5.10, MariaDB 10.4.19, MariaDB 10.3.29 , MariaDB 10.2.38

Mint 18 LTS "Serena" Apr 2021 MariaDB 10.5.10, MariaDB 10.4.19, MariaDB 10.3.29 , MariaDB 10.2.38

Fedora 31 Nov 2020 MariaDB 10.5.7, MariaDB 10.4.16, MariaDB 10.3.26

Red Hat Enterprise

Linux 6.x
Nov 2020 MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35 , MariaDB 10.1.48

CentOS 6.x Nov 2020 MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35 , MariaDB 10.1.48

Fedora 30 Aug 2020 MariaDB 10.5.5, MariaDB 10.4.14, MariaDB 10.3.24

Ubuntu 19.10 "Eoan" Jul 2020 MariaDB 10.5.5, MariaDB 10.4.14, MariaDB 10.3.24

Debian 8 "Jessie" Jun 2020 MariaDB 10.4.13, MariaDB 10.3.23 , MariaDB 10.2.32 , MariaDB 10.1.45

Ubuntu 19.04 "Disco" Jan 2020 MariaDB 10.4.12, MariaDB 10.3.22

Windows Server 2008 Jan 2020 MariaDB 10.4.12, MariaDB 10.3.22

Windows Server 2008

R2
Jan 2020 MariaDB 10.4.12, MariaDB 10.3.22

Windows 7 Jan 2020 MariaDB 10.4.12, MariaDB 10.3.22

Fedora 29 Dec 2019 MariaDB 10.4.11, MariaDB 10.3.21

1513/4161

https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://mariadb.com/kb/en/mariadb-10336-release-notes/
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-10331-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10321-release-notes/

Ubuntu 18.10

"Cosmic"
Jul 2019 MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26 , MariaDB 10.1.41

openSUSE 42.3 Jun 2019 MariaDB 10.4.7, MariaDB 10.3.16 , MariaDB 10.2.25 , MariaDB 10.1.41

Fedora 28 May 2019 MariaDB 10.4.5, MariaDB 10.3.15 , MariaDB 10.2.24

Ubuntu 14.04 LTS

"Trusty"
Apr 2019

MariaDB 10.4.4, MariaDB 10.3.14 , MariaDB 10.2.23 , MariaDB 10.1.40 ,

MariaDB 5.5.64

Mint 17.1 LTS

"Rebecca"
Apr 2019

MariaDB 10.4.4, MariaDB 10.3.14 , MariaDB 10.2.23 , MariaDB 10.1.40 ,

MariaDB 5.5.64

Mint 17 LTS "Qiana" Apr 2019
MariaDB 10.4.4, MariaDB 10.3.14 , MariaDB 10.2.23 , MariaDB 10.1.40 ,

MariaDB 5.5.64

SLES 11.4 Mar 2019 MariaDB 10.1.40 , MariaDB 5.5.64

Windows Server 2012

R2
Oct 2018

Fedora 27 Nov 2018 MariaDB 10.3.11 , MariaDB 10.2.19

Ubuntu 17.10 "Artful" Jul 2018 MariaDB 10.3.8 , MariaDB 10.2.16 , MariaDB 10.1.34

Fedora 26 May 2018 MariaDB 10.3.7 , MariaDB 10.2.15 , MariaDB 10.1.33

Debian 7 "Wheezy" May 2018 MariaDB 10.3.7 , MariaDB 10.2.15 , MariaDB 10.1.33

Fedora 25 Feb 2018 MariaDB 10.3.5 , MariaDB 10.2.13 , MariaDB 10.1.31

Ubuntu 17.04 "Zesty" Jan 2018 MariaDB 10.3.4 , MariaDB 10.2.12 , MariaDB 10.1.30

openSUSE 42.2 Jan 2018 MariaDB 10.3.4 , MariaDB 10.2.12 , MariaDB 10.1.30

Red Hat Enterprise

Linux 7.2
Nov 2017

MariaDB 10.3.3 , MariaDB 10.2.12 , MariaDB 10.1.30 , MariaDB 10.0.33 ,

MariaDB 5.5.58

CentOS 7.2 Nov 2017
MariaDB 10.3.3 , MariaDB 10.2.12 , MariaDB 10.1.30 , MariaDB 10.0.33 ,

MariaDB 5.5.58

Fedora 24 Aug 2017 MariaDB 10.2.8

Ubuntu 16.10

"Yakkety"
Jul 2017 MariaDB 10.2.7 , MariaDB 10.1.26 , MariaDB 10.0.32

Ubuntu 12.04 LTS

"Precise"
Apr 2017 MariaDB 10.1.24 , MariaDB 10.0.31 , MariaDB 5.5.56

Mint 13 LTS "Maya" Apr 2017 MariaDB 10.1.24 , MariaDB 10.0.31 , MariaDB 5.5.56

Red Hat Enterprise

Linux 7.1
Mar 2017 MariaDB 10.1.24 , MariaDB 10.0.31 , MariaDB 5.5.56

CentOS 7.1 Mar 2017 MariaDB 10.1.24 , MariaDB 10.0.31 , MariaDB 5.5.56

Red Hat Enterprise

Linux 5
Mar 2017 MariaDB 10.1.22 , MariaDB 10.0.30 , MariaDB 5.5.54

CentOS 5 Mar 2017 MariaDB 10.1.22 , MariaDB 10.0.30 , MariaDB 5.5.54

Fedora 23 Feb 2017 MariaDB 10.2.4 , MariaDB 10.1.22 , MariaDB 10.0.30

OpenSUSE 13 Jan 2017 MariaDB 10.2.4 , MariaDB 10.1.22 , MariaDB 10.0.30

Fedora 22 Aug 2016 MariaDB 10.1.17 , MariaDB 10.0.27

Ubuntu 15.10 "Wily" Jul 2016 MariaDB 10.1.16 , MariaDB 10.0.26

Windows 2003 Server Apr 2016 MariaDB 10.1.13 , MariaDB 10.0.24 , MariaDB 5.5.48

Windows XP Apr 2016 MariaDB 10.1.13 , MariaDB 10.0.24 , MariaDB 5.5.48

Debian 6 "Squeeze" Feb 2016 MariaDB 10.0.24 , MariaDB 5.5.48

Ubuntu 15.04 "Vivid" Jan 2016 MariaDB 10.1.11 , MariaDB 10.0.24

Fedora 21 Dec 2015 MariaDB 10.1.10 , MariaDB 10.0.23

Fedora 20 Oct 2015 MariaDB 10.0.22 , MariaDB 5.5.46

Ubuntu 14.10 "Utopic" Jul 2015 MariaDB 10.0.22 , MariaDB 5.5.46

1514/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10316-release-notes/
https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-10134-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10033-release-notes/
https://mariadb.com/kb/en/mariadb-5558-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10033-release-notes/
https://mariadb.com/kb/en/mariadb-5558-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10032-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-5554-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-5554-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10116-release-notes/
https://mariadb.com/kb/en/mariadb-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-5546-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-5546-release-notes/

Ubuntu 10.04 LTS

"Lucid"
Apr 2015

MariaDB 10.0.18 , MariaDB 5.5.43

Mint 9 LTS "Isadora" Apr 2015 MariaDB 10.0.18 , MariaDB 5.5.43

Fedora 19 Apr 2015 MariaDB 10.0.18 , MariaDB 5.5.43

FreeBSD 9.2 Sep 2014

Ubuntu 13.10 "Saucy" Jul 2014 MariaDB 10.0.14 , MariaDB 5.5.40

Mint 16 "Petra" Jul 2014 MariaDB 10.0.14 , MariaDB 5.5.40

Ubuntu 12.10

"Quantal"
Apr 2014 MariaDB 10.0.11 , MariaDB 5.5.37

Mint 14 "Nadia" Apr 2014 MariaDB 10.0.11 , MariaDB 5.5.37

Ubuntu 13.04 "Raring" Jan 2014 MariaDB 10.0.8 , MariaDB 5.5.35

Mint 15 "Olivia" Jan 2014 MariaDB 10.0.8 , MariaDB 5.5.35

Fedora 18 Dec 2013 MariaDB 10.0.8 , MariaDB 5.5.35

Fedora 17 Aug 2013 MariaDB 10.0.5 , MariaDB 5.5.34

Ubuntu 8.04 LTS

"Hardy"
Apr 2013 MariaDB 10.0.2 , MariaDB 5.5.31

Ubuntu 11.10

"Oneiric"
Apr 2013 MariaDB 10.0.2 , MariaDB 5.5.31

Mint 12 "Lisa" Apr 2013 MariaDB 10.0.2 , MariaDB 5.5.31

Fedora 16 Feb 2013 MariaDB 10.0.1 , MariaDB 5.5.29

Ubuntu 10.10

"Maverick"
Jan 2013 MariaDB 10.0.1 , MariaDB 5.5.29

Ubuntu 11.04 "Natty" Jan 2013 MariaDB 10.0.1 , MariaDB 5.5.29

Debian 5 "Lenny" Jan 2013 MariaDB 10.0.1 , MariaDB 5.5.29

Debian 4 "Etch"

Ubuntu 9.10 "Karmic"

Ubuntu 9.04 "Jaunty"

Ubuntu 8.10 "Intrepid"

Support for Deprecated Platforms
If your chosen Linux Distribution or Operating System is deprecated, packages or support are not completely unavailable.

The MariaDB Corporation provides support for all versions of MariaDB back to even very old MySQL versions. This

includes packaged binaries. For specific dates related to each version and more details on the MariaDB Corporation's

policies, see the Engineering Policies page.

2.1.2.14 Automated MariaDB Deployment and
Administration
It is possible to automate the deployment and administration of MariaDB servers and related technologies by using third-

party software. This is especially useful when deploying and administering a large number of servers, but it also has benefits

for small environments.

This section describes some automation technologies from MariaDB users perspective.

Why to Automate MariaDB Deployments and Management

The reasons to automate deployment and configuration of MariaDB.

A Comparison Between Automation Systems

A summary of the differences between automation systems, to help evaluating them.

1515/4161

https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
http://www.freebsd.org/security/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-5540-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-5540-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-5534-release-notes/
https://mariadb.com/kb/en/mariadb-1002-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/mariadb-1002-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/mariadb-1002-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
http://mariadb.com
https://mariadb.com/engineering-policies

Ansible and MariaDB

General information and hints on automating MariaDB deployments with Ansible.

Puppet and MariaDB

General information on how to automate MariaDB deployments and configuration with Puppet.

Vagrant and MariaDB

General information on how to setup development MariaDB servers with Vagrant.

MariaDB Containers

MariaDB containers and Docker Official Images.

Kubernetes and MariaDB

General information and tips on deploying MariaDB on Kubernetes.

Automating Upgrades with MariaDB.Org Downloads REST API

How to use MariaDB.Org Downloads APIs to automate upgrades.

HashiCorp Vault and MariaDB

An overview of secret management with Vault for MariaDB users.

Orchestrator Overview

Using Orchestrator to automate failover and replication operations.

Rotating Logs on Unix and Linux

Rotating logs on Unix and Linux with logrotate.

Automating MariaDB Tasks with Events

Using MariaDB events for automating tasks.

2

2.1.2.14.1 Why to Automate MariaDB
Deployments and Management
MariaDB includes a powerful configuration system. This is enough when we need to deploy a single MariaDB instance, or a

small number of instances. But many modern organisations have many database servers. Deploying and upgrading them

manually could require too much time, and would be error-prone.

Contents
1. Infrastructure as Code

2. Automated Failover

3. Resources

Infrastructure as Code
Several tools exist to deploy and manage several servers automatically. These tools operate at a higher level, and execute

tasks like installing MariaDB, running queries, or generating new configuration files based on a template. Instead of

upgrading servers manually, users can launch a command to upgrade a group of servers, and the automation software will

run the necessary tasks.

Servers can be described in a code repository. This description can include MariaDB version, its configuration, users,

backup jobs, and so on. This code is human-readable, and can serve as a documentation of which servers exist and how

they are configured. The code is typically versioned in a repository, to allow collaborative development and track the

changes that occurred over time. This is a paradigm called Infrastructure as Code.

Automation code is high-level and one usually doesn9t care how operations are implemented. Their implementation is

delegated to modules that handle specific components of the infrastructure. For example a module could equally work with

apt and yum package managers. Other modules can implement operations for a specific cloud vendor, so we declare we

want a snapshot to be done, but we don9t need to write the commands to make it happen. For special cases, it is of course

possible to write Bash commands, or scripts in every language, and declare that they must be run.

Manual interventions on the servers will still be possible. This is useful, for example, to investigate performance problems.

But it is important to leave the servers in the state that is described by the code.

This code is not something you write once and never touch again. It is periodically necessary to modify infrastructures to

1516/4161

update some software, add new replicas, and so on. Once the base code is in place, making such changes is often trivial

and potentially it can be done in minutes.

Automated Failover
Once replication is in place, two important aspects to automate are load balancing and failover.

Proxies can implement load balancing, redirecting the queries they receive to different server, trying to distribute the load

equally. They can also monitor that MariaDB servers are running and in good health, thus avoiding sending queries to a

server that is down or struggling.

However, this does not solve the problem with replication: if a primary server crashes, its replicas should point to another

server. Usually this means that an existing replica is promoted to a master. This kind of changes are possible thanks to

MariaDB GTID.

One can promote a replica to a primary by making change to existing automation code. This is typically simple and relatively

quick to do for a human operator. But this operation takes time, and in the meanwhile the service could be down.

Automating failover will minimise the time to recover. A way to do it is to use Orchestrator, a tool that can automatically

promote a replica to a primary. The choice of the replica to promote is done in a smart way, keeping into account things like

the servers versions and the binary log format.

Resources
Continuous configuration automation on Wikipedia .

Infrastructure as code on Wikipedia .

Content initially contributed by Vettabase Ltd .

2.1.2.14.2 A Comparison Between Automation
Systems
This page compares the automation systems that are covered by this section of the MariaDB Knowledge Base. More

information about these systems are presented in the relevant pages, and more systems may be added in the future.

Contents
1. Code Structure Differences

1. Ansible Code Structure

2. Puppet Code Structure

2. Architectural Differences

1. Ansible Architecture

2. Puppet Architecture

1. Agent-Master Architecture

2. Standalone Architecture

3. Inventory

3. Storing Secrets

4. Ecosystems and Communities

1. Ansible Ecosystem

2. Puppet Ecosystem

Code Structure Differences
Different automation systems provide different ways to describe our infrastructure. Understanding how they work is the first

step to evaluate them and choose one for our organization.

Ansible Code Structure

Ansible code consists of the following components:

An inventory determines which hosts Ansible should be able to deploy. Each host may belong to one or more

groups. Groups may have children, forming a hierarchy. This is useful because it allows us to deploy on a group, or

to assign variables to a group.

A role describes the state that a host, or group of hosts, should reach after a deploy.

A play associates hosts or groups to their roles. Each role/group can have more than one role.

A role consists of a list of tasks. Despite its name a task is not necessarily something to do, but something that must
1517/4161

https://en.wikipedia.org/wiki/Continuous_configuration_automation
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://vettabase.com/

exist in a certain state.

Tasks can use variables. They can affect how a task is executed (for example a variable could be a file name), or

even whether a task is executed or not. Variables exist at role, group or host level. Variables can also be passed by

the user when a play is applied.

Playbooks are the code that is used to define tasks and variables.

Facts are data that Ansible retrieves from remote hosts before deploying. This is a very important step, because facts

may determine which tasks are executed or how they are executed. Facts include, for example, the operating system

family or its version. A playbook sees facts as pre-set variables.

Modules implement actions that tasks can use. Action examples are file (to declare that files and directories must

exist) or mysql_variables (to declare MySQL/MariaDB variables that need to be set).

See Ansible Overview - concepts for more details and an example.

Puppet Code Structure

Puppet code consists of the following components:

An inventory file defines a set of groups and their targets (the members of a group). plugins can be used to

retrieve groups and target dynamically, so they are equivalent to Ansible dynamic inventories.

A manifest is a file that describes a configuration.

A resource is a component that should run on a server. For example, "file" and "service" are existing support types.

An attribute relates to a resource and affects the way it is applied. For example, a resource of type "file" can have

attributes like "owner" and "mode".

A class groups resources and variables, describing a logical part of server configuration. A class can be associated

to several servers. A class is part of a manifest.

A module is a set of manifests and describes an infrastructure or a part of it.

Classes can have typed parameters that affect how they are applied.

Properties are variables that are read from the remote server, and cannot be arbitrarily assigned.

Facts are pre-set variables collected by Puppet before applying or compiling a manifest.

Architectural Differences
The architecture of the various systems is different. Their architectures determine how a deploy physically works, and what

is needed to be able to deploy.

Ansible Architecture

Ansible architecture is simple. Ansible can run from any host, and can apply its playbooks on remote hosts. To do this, it

runs commands via SSH. In practice, in most cases the commands will be run as superuser via sudo , though this is not

always necessary.

Inventories can be dynamic. In this case, when we apply a playbook Ansible connects to remote services to discover hosts.

Ansible playbooks are applied via the ansible-playbook binary. Changes to playbooks are only applied when we

perform this operation.

To recap, Ansible does not need to be installed on the server is administers. It needs an SSH access, and normally its user

needs to be able to run sudo . It is also possible to configure a dynamic inventory, and a remote service to be used for this

purpose.

Puppet Architecture

Puppet supports two types of architecture: agent-master or standalone. The agent-master architecture is recommended by

Puppet Labs, and it is the most popular among Puppet users. For this reason, those who prefer a standalone architecture

tend to prefer Ansible.

Agent-Master Architecture

When this architecture is chosen, manifests are sent to the Puppet master. There can be more than one master, for high

availability reasons. All target hosts run a Puppet agent. Normally this is a service that automatically starts at system boot.

The agent contacts a master at a given interval. It sends facts, and uses them to compile a catalog from the manifests. A

catalog is a description of what exactly an individual server should run. The agent receives the catalog and checks if there

are differences between its current configuration and the catalog. If differences are found, the agent applies the relevant

parts of the catalog.

An optional component is PuppetDB. This is a central place where some data are stored, including manifests, retrieved

facts and logs. PuppetDB is based on PostgreSQL and there are no plans to support MariaDB or other DBMSs.

1518/4161

If a manual change is made to a remove server, it will likely be overwritten the next time Puppet agent runs. To avoid this,

the Puppet agent service can be stopped.

Standalone Architecture

As mentioned, this architecture is not recommended by Puppet Labs nor popular amongst Puppet users. It is similar to

Ansible architecture.

Users can apply manifests from any host with Puppet installed. This could be their laptop but, in order to emulate the

behavior of an agent-master architecture, normally Puppet runs on a dedicated node as a cronjob. The Puppet apply

application will require facts from remote hosts, it will compile a catalog for each host, will check which parts of it need to be

applied, and will apply them remotely.

If a manual change is made to a remove server, it will be overwritten the next time Puppet apply runs. To avoid this,

comment out any cron job running Puppet apply, or comment out the target server in the inventory.

Inventory

As mentioned, Puppet supports plugins to retrieve the inventory dynamically from remote services. In an agent-master

architecture, one has to make sure that each target host has access to these services. In a standalone architecture, one has

to make sure that the hosts running Puppet apply have access to these services.

Storing Secrets
Often our automation repositories need to contain secrets, like MariaDB user passwords or private keys for SSH

authentication.

Both Ansible and Puppet support integration with secret stores, like Hashicorp Vault. For Puppet integration, see

Integrations with secret stores .

In the simplest case, Ansible allows encrypting secrets in playbooks and decrypting them during execution using ansible-

vault . This implies a minimal effort to handle secrets. However, it is not the most secure way to store secrets. The

passwords to disclose certain secrets need to be shared with the users who have the right to use them. Also, brute force

attacks are possible.

Ecosystems and Communities
Automation software communities are very important, because they make available a wide variety of modules to handle

specific software.

Ansible Ecosystem

Ansible is open source, released under the terms of the GNU GPL. It is produced by RedHat. RedHat has a page about

Red Hat Ansible Automation Platform Partners , who can provide support and consulting.

Ansible Galaxy is a big repository of Ansible roles produced by both the vendor and the community. Ansible comes with

ansible-galaxy , a tool that can be used to create roles and upload them to Ansible Galaxy.

At the time of this writing, Ansible does not have specific MariaDB official modules. MySQL official modules can be used.

However, be careful not try to use features that only apply to MySQL. There are several community-maintained MariaDB

roles.

Puppet Ecosystem

Puppet is open source, released under the GNU GPL. It is produced by a homonym company. The page Puppet Partners

lists partners that can provide support and consulting about Puppet.

Puppet Forge is a big repository of modules produced by the vendor and by the community, as well as how-to guides.

Currently Puppet has many MariaDB modules.

2.1.2.14.3 Ansible and MariaDB
General information and hints on how to automate MariaDB deployments and configuration with Ansible.

Ansible is an open source tool to automate deployment, configuration and operations.

1519/4161

https://puppet.com/docs/puppet/6.17/integrations_with_secret_stores.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://www.ansible.com/partners
https://galaxy.ansible.com/
https://puppet.com/partners/
https://forge.puppet.com/

Ansible Overview for MariaDB Users

Overview of Ansible and how it works with MariaDB.

Deploying to Remote Servers with Ansible

How to invoke Ansible to run commands or apply roles on remote hosts.

Deploying Docker Containers with Ansible

How to deploy and manage Docker containers with Ansible.

Existing Ansible Modules and Roles for MariaDB

Links to existing Ansible modules and roles for MariaDB.

Installing MariaDB .deb Files with Ansible

How to install MariaDB from .deb files using Ansible.

Running mariadb-tzinfo-to-sql with Ansible

Updating the timezone tables with mariadb-tzinfo-to-sql using Ansible.

Managing Secrets in Ansible

How to store passwords as part of an Ansible repository.

2.1.2.14.3.1 Ansible Overview for MariaDB
Users
Ansible is a tool to automate servers configuration management. It is produced by Red Hat and it is open source software

released under the terms of the GNU GPL.

It is entirely possible to use Ansible to automate MariaDB deployments and configuration. This page contains generic

information for MariaDB users who want to learn, or evaluate, Ansible.

For information about how to install Ansible, see Installing Ansible in Ansible documentation.

Contents
1. Automation Hubs

2. Design Principles

3. Concepts

1. Example

4. Architecture

5. Ansible Resources and References

Automation Hubs
Normally, Ansible can run from any computer that has access to the target hosts to be automated. It is not uncommon that

all members of a team has Ansible installed on their own laptop, and use it to deploy.

Red Hat offers a commercial version of Ansible called Ansible Tower . It consists of a REST API and a web-based

interface that work as a hub that handles all normal Ansible operations.

An alternative is AWX . AWX is the open source upstream project from which many Ansible Tower features are originally

developed. AWX is released under the terms of the Apache License 2.0. However, Red Hat does not recommend to run

AWX in production.

AWX development is fast. It has several features that may or may not end up in Ansible Tower. Ansible Tower is more

focused on making AWS features more robust, providing a stable tool to automate production environments.

Design Principles
Ansible allows us to write playbooks that describe how our servers should be configured. Playbooks are lists of tasks.

Tasks are usually declarative. You don't explain how to do something, you declare what should be done.

Playbooks are idempotent. When you apply a playbook, tasks are only run if necessary.

Here is a task example:

1520/4161

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/reference_appendices/tower.html
https://github.com/ansible/awx

- name: Install Perl

 package:

 name: perl

 state: present

"Install Perl" is just a description that will appear on screen when the task is applied. Then we use the package module to

declare that a package called "perl" should be installed. When we apply the playbook, if Perl is already installed nothing

happens. Otherwise, Ansible installs it.

When we apply a playbook, the last information that appears on the screen is a recap like the following:

PLAY RECAP

mariadb-01 : ok=6 changed=2 unreachable=0 failed=0 skipped=0 rescued=0

ignored=0

This means that six tasks were already applied (so no action was taken), and two tasks were applied.

As the above example shows, Ansible playbooks are written in YAML.

Modules (like package) can be written in any language, as long as they are able to process a JSON input and produce a

JSON output. However the Ansible community prefers to write them in Python, which is the language Ansible is written in.

Concepts
A piece of Ansible code that can be applied to a server is called a playbook.

A task is the smallest brick of code in a playbook. The name is a bit misleading, though, because an Ansible task should

not be seen as "something to do". Instead, it is a minimal description of a component of a server. In the example above, we

can see a task.

A task uses a single module, which is an interface that Ansible uses to interact with a specific system component. In the

example, the module is "package".

A task also has attributes, that describe what should be done with that module, and how. In the example above, "name" and

"state" are both attributes. The state attribute exists for every module, by convention (though there may be exceptions).

Typically, it has at least the "present" and "absent" state, to indicate if an object should exist or not.

Other important code concepts are:

An inventory determines which hosts Ansible should be able to deploy. Each host may belong to one or more

groups. Groups may have children, forming a hierarchy. This is useful because it allows us to deploy on a group, or

to assign variables to a group.

A role describes the state that a host, or group of hosts, should reach after a deploy.

A play associates hosts or groups to their roles. Each role/group can have more than one role.

A role is a playbook that describes how certain servers should be configured, based on the logical role they have in

the infrastructure. Servers can have multiple roles, for example the same server could have both the "mariadb" and

the "mydumper" role, meaning that they run MariaDB and they have mydumper installed (as shown later).

Tasks can use variables. They can affect how a task is executed (for example a variable could be a file name), or

even whether a task is executed or not. Variables exist at role, group or host level. Variables can also be passed by

the user when a play is applied.

Facts are data that Ansible retrieves from remote hosts before deploying. This is a very important step, because facts

may determine which tasks are executed or how they are executed. Facts include, for example, the operating system

family or its version. A playbook sees facts as pre-set variables.

Modules implement actions that tasks can use. Action examples are file (to declare that files and directories must

exist) or mysql_variables (to declare MySQL/MariaDB variables that need to be set).

Example

Let's describe a hypothetical infrastructure to find out how these concepts can apply to MariaDB.

The inventory could define the following groups:

"db-main" for the cluster used by our website. All nodes belong to this group.

"db-analytics" for our replicas used by data analysts.

"dump" for one or more servers that take dumps from the replicas.

"proxysql" for one or more hosts that run ProxySQL.

Then we'll need the following nodes:

1521/4161

"mariadb-node" for the nodes in "db-main". This role describes how to setup nodes of a cluster using Galera.

"mariadb-replica" for the members of "db-analytics". It describes a running replica, and it includes the tasks that are

necessary to provision the node if the data directory is empty when the playbook is applied. The hostname of the

primary server is defined in a variable.

"mariadb". The aforementioned "mariadb-node" and "mariadb-replica" can be children of this group. They have many

things in common (filesystem for the data directory, some basic MariaDB configuration, some installed tools...), so it

could make sense to avoid duplication and describe the common traits in a super-role.

A "mariabackup" role to take backups with Mariabackup, running jobs during the night. We can associate this role to

the "db-main" group, or we could create a child group for servers that will take the backups.

"mariadb-dump" for the server that takes dumps with mariadb-dump. Note that we may decide to take dumps on a

replica, so the same host may belong to "db-analytics" and "mariadb-dump".

"proxysql" for the namesake group.

Architecture
Ansible architecture is extremely simple. Ansible can run on any host. To apply playbooks, it connects to the target hosts

and runs system commands. By default the connection happens via ssh, though it is possible to develop connection plugins

to use different methods. Applying playbooks locally without establishing a connection is also possible.

Modules can be written in any language, though Python is the most common choice in the Ansible community. Modules

receive JSON "requests" and facts from Ansible core, they are supposed to run useful commands on a target host, and then

they should return information in JSON. Their output informs Ansible whether something has changed on the remote server

and if the operations succeeded.

Ansible is not centralized. It can run on any host, and it is common for a team to run it from several laptops. However, to

simplify things and improve security, it may be desirable to run it from a dedicated host. Users will connect to that host, and

apply Ansible playbooks.

Ansible Resources and References
Ansible.com

AWX

Ansible Tower

Ansible Galaxy

Ansible on Wikipedia

Ansible Automation Platform YouTube channel

Ansible: Getting Started

MariaDB Deployment and Management with Ansible (video)

Further information about the concepts discussed in this page can be found in Ansible documentation:

Basic Concepts .

Glossary .

Content initially contributed by Vettabase Ltd .

2.1.2.14.3.2 Deploying to Remote Servers with
Ansible
If we manage several remote servers, running commands on them manually can be frustrating and time consuming. Ansible

allows one to run commands on a whole group of servers.

This page shows some examples of ansible-playbook invocations. We'll see how to deploy roles or parts of them to remote

servers. Then we'll see how to run commands on remote hosts, and possibly to get information from them. Make sure to

read Ansible Overview first, to understand Ansible general concepts.

Contents
1. Pinging Remote Servers

2. Running Commands on Remote Servers

3. Applying Roles to Remote Servers

1. Check mode

4. References

Pinging Remote Servers

1522/4161

https://www.ansible.com/
https://github.com/ansible/awx
https://docs.ansible.com/ansible/latest/reference_appendices/tower.html
https://galaxy.ansible.com/
https://en.wikipedia.org/wiki/Ansible_(software)
https://www.youtube.com/c/AnsibleAutomation/videos
https://www.ansible.com/resources/get-started
https://youtu.be/CV8-56Fgjc0
https://docs.ansible.com/ansible/latest/network/getting_started/basic_concepts.html
https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://vettabase.com/

Let's start with the simplest example: we just want our local Ansible to ping remote servers to see if they are reachable.

Here's how to do it:

ansible -i production-mariadb all -m ping

Before proceeding with more useful examples, let's discuss this syntax.

ansible is the executable we can call to run a command from remote servers.

-i production-mariadb means that the servers must be read from an inventory called production-mariadb.

all means that the command must be executed against all servers from the above inventory.

-m ping specifies that we want to run the ping module. This is not the ping Linux command. It tells us if Ansible is able

to connect a remote server and run a simple commands on them.

To run ping on a specific group or host, we can just replace "all" with a group name or host name from the inventory:

ansible -i production-mariadb main_cluster -m ping

Running Commands on Remote Servers
The previous examples show how to run an Ansible module on remote servers. But it's also possible to run custom

commands over SSH. Here's how:

ansible -i production-mariadb all -a 'echo $PATH'

This command shows the value of $PATH on all servers in the inventory "production-mariadb".

We can also run commands as root by adding the -b (or --become) option:

print a MariaDB variable

ansible -i production-mariadb all -b -a 'mysql -e "SHOW GLOBAL VARIABLES LIKE

\'innodb_buffer_pool_size\';"'

reboot servers

ansible -i production-mariadb all -b -a 'reboot'

Applying Roles to Remote Servers
We saw how to run commands on remote hosts. Applying roles to remote hosts is not much harder, we just need to add

some information. An example:

ansible-playbook -i production-mariadb production-mariadb.yml

Let's see what changed:

ansible-playbook is the executable file that we need to call to apply playbooks and roles.

production-mariadb.yml is the play that associates the servers listed in the inventory to their roles.

If we call ansible-playbook with no additional arguments, we will apply all applicable roles to all the servers mentioned in the

play.

To only apply roles to certain servers, we can use the -l parameter to specify a group, an individual host, or a pattern:

Apply to the mariadb-main role role

ansible-playbook -i production-mariadb -l mariadb-main production-mariadb.yml

Apply to the mariadb-main-01 host

ansible-playbook -i production-mariadb -l mariadb-main-01 production-mariadb.yml

Apply to multiple hosts whose name starts with "mariadb-main-"

ansible-playbook -i production-mariadb -l mariadb-main-* production-mariadb.yml

We can also apply tasks from roles selectively. Tasks may optionally have tags, and each tag corresponds to an operation

that we may want to run on our remote hosts. For example, a "mariadb" role could have the "timezone-update" tag, to

update the contents of the timezone tables . To only apply the tasks with the "timezone-update" tag, we can use this

command:

1523/4161

https://mariadb.com/kb/en/time-zones/#mysql-time-zone-tables

ansible-playbook -i production-mariadb --tag timezone-update production-mariadb.yml

Using tags is especially useful for database servers. While most of the technologies typically managed by Ansible are

stateless (web servers, load balancers, etc.) database servers are not. We must pay special attention not to run tasks that

could cause a database server outage, for example destroying its data directory or restarting the service when it is not

necessary.

Check mode

We should always test our playbooks and roles on test servers before applying them to production. However, if test servers

and production servers are not exactly in the same state (which means, some facts may differ) it is still possible that applying

roles will fail. If it fails in the initial stage, Ansible will not touch the remote hosts at all. But there are cases where Ansible

could successfully apply some tasks, and fail to apply another task. After the first failure, ansible-playbook will show errors

and exit. But this could leave a host in an inconsistent state.

Ansible has a check mode that is meant to greatly reduce the chances of a failure. When run in check mode, ansible-

playbook will read the inventory, the play and roles; it will figure out which tasks need to be applied; then it will connect to

target hosts, read facts, and value all the relevant variables. If all these steps succeed, it is unlikely that running ansible-

playbook without check mode will fail.

To run ansible-playbook in check mode, just add the --check (or -C) parameter.

References
Further documentation can be found in the Ansible website:

ansible tool.

ansible-playbook tool.

Validating tasks: check mode and diff mode .

Content initially contributed by Vettabase Ltd .

2.1.2.14.3.3 Deploying Docker Containers with
Ansible
Ansible can be used to manage Docker container upgrades and configuration changes. Docker has native ways to do this,

namely Dockerfiles and Docker Compose. But sometimes there are reasons to start basic containers from an image and

then manage configuration with Ansible or similar software. See Benefits of Managing Docker Containers with Automation

Software.

In this page we'll discuss how to use Ansible to manage Docker containers.

Contents
1. How to Deploy a Container with Ansible

2. References

How to Deploy a Container with Ansible
Ansible has modules to manage the Docker server, Docker containers, and Docker Compose. These modules are

maintained by the community.

A dynamic inventory plugin for Docker exists. It retrieves the list of existing containers from Docker.

Docker modules and the Docker inventory plugin communicate with Docker using its API. The connection to the API can use

a TSL connection and supports key authenticity verification.

To communicate with Docker API, Ansible needs a proper Python module installed on the Ansible node (docker or

docker-py).

Several roles exist to deploy Docker and configure it. They can be found in Ansible Galaxy.

References
Further information can be found in Ansible documentation.

1524/4161

https://docs.ansible.com/ansible/latest/cli/ansible.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_checkmode.html
https://vettabase.com/

Docker Guide .

docker_container module.

Content initially contributed by Vettabase Ltd .

2.1.2.14.3.4 Existing Ansible Modules and Roles
for MariaDB
This page contains links to Ansible modules and roles that can be used to automate MariaDB deployment and configuration.

The list is not meant to be exhaustive. Use it as a starting point, but then please do your own research.

Contents
1. Modules

1. Other Useful Modules

1. shell and command

2. copy and template

3. Other Common Modules

2. Roles

Modules
At the time time of writing, there are no MariaDB-specific modules in Ansible Galaxy. MySQL modules can be used. Trying

to use MySQL-specific features may result in errors or unexpected behavior. However, the same applies when trying to use

a feature not supported by the MySQL version in use.

Currently, the MySQL collection in Ansible Galaxy contains at least the following modules:

mysql_db : manages MySQL databases.

mysql_info : gathers information about a MySQL server.

mysql_query : runs SQL queries against MySQL.

mysql_replication : configures and operates asynchronous replication.

mysql_user : creates, modifies and deletes MySQL users.

mysql_variables : manages MySQL configuration.

Note that some modules only exist as shortcuts, and it is possible to use mysql_query instead. However, it is important to

notice that mysql_query is not idempotent. Ansible does not understand MySQL queries, therefore it cannot check whether

a query needs to be run or not.

To install this collection locally:

ansible-galaxy collection install community.mysql

MariaDB Corporation maintains a ColumnStore playbook on GitHub.

Other Useful Modules

Let's see some other modules that are useful to manage MariaDB servers.

shell and command

Modules like shell and command allow one to run system commands.

To deploy on Windows, win_shell and win_command can be used.

Among other things, it is possible to use one of these modules to run MariaDB queries:

- name: Make the server read-only

 # become root to log into MariaDB with UNIX_SOCKET plugin

 become: yes

 shell: $(which mysql) -e "SET GLOBAL read_only = 1;"

The main disadvantage with these modules is that they are not idempotent, because they're meant to run arbitrary system

commands that Ansible can't understand. They are still useful in a variety of cases:

To run queries, because mysql_query is also not idempotent.

In cases when other modules do not allow us to use the exact arguments we need to use, we can achieve our goals

1525/4161

https://docs.ansible.com/ansible/latest/scenario_guides/guide_docker.html
https://docs.ansible.com/ansible/latest/collections/community/general/docker_container_module.html
https://vettabase.com/
https://galaxy.ansible.com/community/mysql?extIdCarryOver=true&sc_cid=701f2000001OH7YAAW
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_db_module.html
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_info_module.html
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_query_module.html
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_replication_module.html
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_user_module.html
https://docs.ansible.com/ansible/latest/collections/community/mysql/mysql_variables_module.html
https://github.com/mariadb-corporation/columnstore-ansible
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/command_module.html#ansible-collections-ansible-builtin-command-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/command_module.html#ansible-collections-ansible-builtin-command-module
https://docs.ansible.com/ansible/latest/collections/ansible/windows/win_shell_module.html#ansible-collections-ansible-windows-win-shell-module
https://docs.ansible.com/ansible/latest/collections/ansible/windows/win_command_module.html#ansible-collections-ansible-windows-win-command-module

by writing shell commands ourselves.

To run custom scripts that implement non-trivial logic. Implementing complex logic in Ansible tasks is possible, but it

can be tricky and inefficient.

To call command-line tools. There may be specific roles for some of the most common tools, but most of the times

using them is an unnecessary complication.

copy and template

An important part of configuration management is copying configuration files to remote servers.

The copy module allows us to copy files to target hosts. This is convenient for static files that we want to copy exactly as

they are. An example task:

- name: Copy my.cnf

 copy:

 src: ./files/my.cnf.1

 dest: /etc/mysql/my.cnf

As you can see, the local name and the name on remote host don't need to match. This is convenient, because it makes it

easy to use different configuration files with different servers. By default, files to copy are located in a files subdirectory

in the role.

However, typically the content of a configuration file should vary based on the target host, the group and various variables.

To do this, we can use the template module, which compiles and copies templates written in Jinja .

A simple template task:

- name: Compile and copy my.cnf

 copy:

 src: ./templates/my.cnf.j2

 dest: /etc/mysql/my.cnf

Again, the local and the remote names don't have to match. By default, Jinja templates are located in a templates

subdirectory in the role, and by convention they have the .j2 extension. This is because Ansible uses Jinja version 2 for

templating, at the time writing.

A simple template example:

WARNING: DO NOT EDIT THIS FILE MANUALLY !!

IF YOU DO, THIS FILE WILL BE OVERWRITTEN BY ANSIBLE

[mysqld]

innodb_buffer_pool_size = {{ innodb_buffer_pool_size }}

{% if use_connect sameas true %}

connect_work_size = {{ connect_work_size }}

{% endif %}

Other Common Modules

The following modules are also often used for database servers:

package , apt or yum . Package is package manager-agnostic. Use them to install, uninstall and upgrade

packages.

user , useful to create the system user and group that run MariaDB binary.

file can be used to make sure that MariaDB directories (like the data directory) exist and have proper permissions. It

can also be used to upload static files.

template allows to create configuration files (like my.cnf) more dynamically, using the Jinja template language.

service is useful after installing MariaDB as a service, to start it, restart it or stop it.

Roles
Specific roles exist for MariaDB in Ansible Galaxy. Using them for MariaDB is generally preferable, to be sure to avoid

incompatibilities and to probably be able to use some MariaDB specific features. However, using MySQL or Percona Server

roles is also possible. This probably makes sense for users who also administer MySQL and Percona Server instances.

To find roles that suits you, check Ansible Galaxy search page . Most roles are also available on GitHub.

You can also search roles using the ansible-galaxy tool:

1526/4161

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://jinja.palletsprojects.com/en/2.11.x/
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/package_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/yum_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://jinja.palletsprojects.com/en/3.0.x/
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/service_module.html
https://galaxy.ansible.com/search?deprecated=false&keywords=&order_by=-relevance
https://docs.ansible.com/ansible/latest/cli/ansible-galaxy.html

ansible-galaxy search mariadb

2.1.2.14.3.5 Installing MariaDB .deb Files with
Ansible
This page refers to the operations described in Installing MariaDB .deb Files. Refer to that page for a complete list and

explanation of the tasks that should be performed.

Here we discuss how to automate such tasks using Ansible. For example, here we show how to install a package or how to

import a GPG key; but for an updated list of the necessary packages and for the keyserver to use, you should refer to

Installing MariaDB .deb Files.

Adding apt Repositories
To add a repository:

- name: Add specified repository into sources list

 ansible.builtin.apt_repository:

 repo: deb [arch=amd64,arm64,ppc64el]

http://sfo1.mirrors.digitalocean.com/mariadb/repo/10.3/ubuntu bionic main

 state: present

If you prefer to keep the repository information in a source list file in the Ansible repository, you can upload that file to the

target hosts in this way:

- name: Create a symbolic link

 ansible.builtin.file:

 src: ./file/mariadb.list

 dest: /etc/apt/sources.list.d/

 owner: root

 group: root

 mod: 644

 state: file

Updating the Repository Cache
Both the Ansible modules ansible.builtin.apt and ansible.builtin.apt_repository have an update_cache attribute. In

ansible.builtin.apt it is set to "no" by default. Whenever a task sets it to 'yes', apt-get update is run on the target system.

You have three ways to make sure that repositories are updated.

The first is to use ansible.builtin.apt_repository to add the desired repository, as shown above. So you only need to worry

about updating repositories if you use the file method.

The second is to make sure that update_cache is set to 'yes' when you install a repository:

- name: Install foo

 apt:

 name: foo

 update_cache: yes

But if you run certain tasks conditionally, this option may not be very convenient. So the third option is to update the

repository cache explicitly as a separate task:

- name: Update repositories

 apt:

 - update_cache: yes

Importing MariaDB GPG Key
To import the GPG key for MariaDB we can use the ansible.builtin.apt_key Ansible module. For example:

1527/4161

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_repository_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_key_module.html

- name: Add an apt key by id from a keyserver

 ansible.builtin.apt_key:

 keyserver: hkp://keyserver.ubuntu.com:80

 id: 0xF1656F24C74CD1D8

Installing Packages
To install Deb packages into a system:

- name: Install software-properties-common

 apt:

 name: software-properties-common

 state: present

To make sure that a specific version is installed, performing an upgrade or a downgrade if necessary:

- name: Install foo 1.0

 apt:

 name: foo=1.0

To install a package or upgrade it to the latest version, use: state: latest .

To install multiple packages at once:

- name: Install the necessary packages

 apt:

 pkg:

 - pkg1

 - pkg2=1.0

If all your servers run on the same system, you will always use ansible.builtin.apt and the names and versions of the

packages will be the same for all servers. But suppose you have some servers running systems from the Debian family, and

others running systems from the Red Hat family. In this case, you may find convenient to use two different task files for two

different types of systems. To include the proper file for the target host's system:

- include: mariadb-debian.yml

 when: "{{ ansible_facts['os_family'] }} == 'Debian'

The variables you can use to run the tasks related to the proper system are:

ansible_fact['distribution']

ansible_fact['distribution_major_version']

ansible_fact['os_family']

There is also a system-independent package module , but if the package names depend on the target system using it may

be of very little benefit.

2.1.2.14.3.6 Running mariadb-tzinfo-to-sql with
Ansible
For documentation about the mariadb-tzinfo-to-sql utility, see mysql_tzinfo_to_sql. This page is about running it using

Ansible.

Installing or Upgrading the Package
First, we should install mariadb-tzinfo-to-sql if it is available on our system. For example, to install it on Ubuntu, we

can use this task. For other systems, use the proper module and package name.

1528/4161

https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#ansible-facts-distribution
https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#ansible-facts-distribution-major-version
https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#ansible-facts-os-family
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/package_module.html

- name: Update timezone info

 tags: [timezone-update]

 apt:

 name: tzdata

 state: latest

 install_recommends: no

 register: timezone_info

This task installs the latest version of the tzdata , unless it is already installed and up to date. We register the

timezone_info variables, so we can only run the next task if the package was installed or updated.

We also specify a timezone-update tag, so we can apply the role to only update the timezone tables.

Running the Script
The next task runs mariadb-tzinfo-to-sql .

- name: Move system timezone info into MariaDB

 tags: [timezone-update]

 shell: >

 mysql_tzinfo_to_sql /usr/share/zoneinfo \

 | grep -v "^Warning" \

 | mysql --database=mysql

 when: timezone_info.changed

We use the shell module to run the command. Running a command in this way is not idempotent, so we specify when:

timezone_info.changed to only run it when necessary. Some warnings may be generated, so we pipe the output of

mysql_tzinfo_to_sql to grep to filter warnings out.

Using Galera
If we're using MariaDB Galera Cluster we'll want to only update the timezone tables in one node, because the other nodes

will replicate the changes. For our convenience, we can run this operation on the first node. If the nodes hostnames are

defined in a list called cluster_hosts , we can check if the current node is the first in this way:

 when: timezone_info.changed and inventory_hostname == cluster_hosts[0].hostname

Content initially contributed by Vettabase Ltd .

2.1.2.14.3.7 Managing Secrets in Ansible
An Ansible role often runs commands that require certain privileges, so it must perform some forms of login, using

passwords or key pairs. In the context of database automation, we normally talk about: SSH access, sudo access, and

access to MariaDB. If we write these secrets (passwords or private keys) in clear text in an Ansible repository, anyone who

has access to the repository can access them, and this is not what we want.

Let's see how we can manage secrets.

Contents
1. The SSH Password or Keys

2. Avoiding Sharing Secrets

3. ansible-vault

The SSH Password or Keys
Most of the times, Ansible connects to the target hosts via SSH. It is common to use the system username and the SSH

keys installed in /.ssh , which is the SSH clients default. In this case, nothing has to be done on the clients to be able to

allow Ansible to use SSH, as long as they are already able to connect to the target hosts.

It is also possible to specify a different username as ANSIBLE_REMOTE_USER and an SSH configuration file as

ANSIBLE_NETCONF_SSH_CONFIG . These settings can be specified in Ansible configuration file or as environment

variables.

ANSIBLE_ASK_PASS can be specified. If this is the case, Ansible will prompt the user asking to type an SSH

1529/4161

https://vettabase.com/
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_REMOTE_USER
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_NETCONF_SSH_CONFIG
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#envvar-ANSIBLE_ASK_PASS

password.

Avoiding Sharing Secrets
As a general rule, any configuration that implies communicating sensible information to the persons who will connects to a

system implies some degree of risk. Therefore, the most common choice is to allow users to login into remote systems with

their local usernames, using SSH keys.

Once Ansible is able to connect remote hosts, it can also be used to install the public keys of some users to grant them

access. Sharing these keys implies no risk. Sharing private keys is never necessary, and must be avoided.

MariaDB has a UNIX_SOCKET plugin that can be used to let some users avoid entering a password, as far as they're

logged in the operating system. This authentication method is used by default for the root user. This is a good way to avoid

having one more password and possibly writing to a .my.cnf file so that the user doesn't have to type it.

Even for users who connect remotely, it is normally not necessary to insert passwords in an Ansible file. When we create a

user with a password, a hash of the original password is stored in MariaDB. That hash can be found in the mysql.user table.

To know the hash of a password without even creating a user, we can use the PASSWORD() function:

SELECT PASSWORD('my_password12') AS hash;

When we create a user, we can actually specify a hash instead of the password the user will have to type:

CREATE USER user@host IDENTIFIED BY PASSWORD '*54958E764CE10E50764C2EECBB71D01F08549980';

ansible-vault
Even if you try to avoid sharing secrets, it's likely you'll have to keep some in Ansible. For example, MariaDB users that

connect remotely have passwords, and if we want Ansible to create and manage those users, the hashes must be placed

somewhere in our Ansible repository. While a hash cannot be converted back to a password, treating hashes as secrets is

usually a good idea. Ansible provides a native way to handle secrets: ansible-vault .

In the simplest case, we can manage all our passwords with a single ansible-vault password. When we add or change a

new password in some file (typically a file in host_vars or group_vars) we'll use ansible-vault to crypt this password.

While doing so, we'll be asked to insert our ansible-vault password. When we apply a role and Ansible needs to decrypt this

password, it will ask us to enter again our ansible-vault password.

ansible-vault can use more than one password. Each password can manage a different set of secrets. So, for example,

some users may have the password to manage regular MariaDB users passwords, and only one may have the password

that is needed to manage the root user.

Content initially contributed by Vettabase Ltd .

2.1.2.14.4 Puppet and MariaDB
General information and hints on how to automate MariaDB deployments and configuration with Puppet.

Puppet is an open source tool deployment, configuration and operations.

Puppet Overview for MariaDB Users

Overview of Puppet and how it works with MariaDB.

Bolt Examples

How to invoke Bolt to run commands or apply roles on remote hosts.

Puppet hiera Configuration System

Using hiera to handle Puppet configuration files.

Deploying Docker Containers with Puppet

How to deploy and manage Docker containers with Puppet.

Existing Puppet Modules for MariaDB

Links to existing Puppet modules for MariaDB.

1530/4161

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://vettabase.com/

2.1.2.14.4.1 Puppet Overview for MariaDB
Users
Puppet is a tool to automate servers configuration management. It is produced by Puppet Inc, and released under the terms

of the Apache License, version 2.

It is entirely possible to use Ansible to automate MariaDB deployments and configuration. This page contains generic

information for MariaDB users who want to learn, or evaluate, Puppet.

Puppet modules can be searched using Puppet Forge . Most of them are also published on GitHub with open source

licenses. Puppet Forge allows filtering modules to only view the most reliable: supported by Puppet, supported by a Puppet

partner, or approved.

For information about installing Puppet, see Installing and upgrading in Puppet documentation.

Contents
1. Design Principles

1. Defining Resources

2. Defining Nodes

2. Concepts

3. Architecture

1. Agent-master Architecture

2. Standalone Architecture

3. PuppetDB

4. External Node Classifiers

5. Bolt

4. hiera

5. Puppet Resources

Design Principles
With Puppet, you write manifests that describe the resources you need to run on certain servers and their attributes.

Therefore manifests are declarative. You don't write the steps to achieve the desired result. Instead, you describe the

desired result. When Puppet detects differences between your description and the current state of a server, it decides what

to do to fix those differences.

Manifests are also idempotent. You don't need to worry about the effects of applying a manifest twice. This may happen

(see Architecture below) but it won't have any side effects.

Defining Resources

Here's an example of how to describe a resource in a manifest:

file { '/etc/motd':

 content => '',

 ensure => present,

}

This block describes a resource. The resource type is file , while the resource itself is /etc/motd . The description

consists of a set of attributes. The most important is ensure , which in this case states that the file must exist. It is also

common to use this resource to indicate that a file (probably created by a previous version of the manifest) doesn't exist.

These classes of resource types exist:

Built-in resources, or Puppet core resources: Resources that are part of Puppet, maintained by the Puppet team.

Defined resources: Resources that are defined as a combination of other resources. They are written in the Puppet

domain-specific language.

Custom resources: Resources that are written by users, in the Ruby language.

To obtain information about resources:

list existing resource types

puppet resource --types

print information about the file resource type

puppet describe file

To group several resources in a reusable class:

1531/4161

https://forge.puppet.com/
https://puppet.com/docs/puppet/7.3/architecture.html

class ssh_server {

 file { '/etc/motd':

 content => '',

 ensure => present,

 }

 file { '/etc/issue.net':

 content => '',

 ensure => present,

 }

}

There are several ways to include a class. For example:

include Class['ssh_server']

Defining Nodes

Puppet has a main manifest that could be a site.pp file or a directory containing .pp files. For simple infrastructures,

we can define the nodes here. For more complex infrastructures, we may prefer to import other files that define the nodes.

Nodes are defined in this way:

node 'maria-1.example.com' {

 include common

 include mariadb

}

The resource type is node . Then we specify a hostname that is used to match this node to an existing host. This can also

be a list of hostnames, a regular expression that matches multiple nodes, or the default keyword that matches all hosts.

To use a regular expression:

node /^(maria|mysql)-[1-3]\.example\.com$/ {

 include common

}

Concepts
The most important Puppet concepts are the following:

Target: A host whose configuration is managed via Puppet.

Group: A logical group of targets. For example there may be a mariadb group, and several targets may be part of

this group.

Facts: Information collected from the targets, like the system name or system version. They're collected by a Ruby

gem called Facter . They can be core facts (collected by default) or custom facts (defined by the user).

Manifest: A description that can be applied to a target.

Catalog: A compiled manifest.

Apply: Modifying the state of a target so that it reflects its description in a manifest.

Module: A set of manifests.

Resource: A minimal piece of description. A manifest consists of a piece of resources, which describe components of

a system, like a file or a service.

Resource type: Determines the class of a resource. For example there is a file resource type, and a manifest can

contain any number of resources of this type, which describe different files.

Attribute: It's a characteristic of a resource, like a file owner, or its mode.

Class: A group of resources that can be reused in several manifests.

Architecture
Depending on how the user decides to deploy changes, Puppet can use two different architectures:

An Agent-master architecture. This is the preferred way to use Puppet.

A standalone architecture, that is similar to Ansible architecture.

Agent-master Architecture

A Puppet master stores a catalog for each target. There may be more than one Puppet master, for redundancy.

1532/4161

https://puppet.com/docs/puppet/latest/facter.html
https://puppet.com/docs/puppet/latest/core_facts.html
https://puppet.com/docs/puppet/latest/custom_facts.html

Each target runs a Puppet agent in background. Each Puppet agent periodically connects to the Puppet master, sending

its facts. The Puppet master compiles the relevant manifest using the facts it receives, and send back a catalog. Note that it

is also possible to store the catalogs in PuppetDB instead.

Once the Puppet agent receives the up-to-date catalog, it checks all resources and compares them with its current state. It

applies the necessary changes to make sure that its state reflects the resources present in the catalog.

Standalone Architecture

With this architecture, the targets run Puppet apply. This application usually runs as a Linux cron job or a Windows

scheduled task, but it can also be manually invoked by the user.

When Puppet apply runs, it compiles the latest versions of manifests using the local facts. Then it checks every resource

from the resulting catalogs and compares it to the state of the local system, applying changes where needed.

Newly created or modified manifests are normally deployed to the targets, so Puppet apply can read them from the local

host. However it is possible to use PuppetDB instead.

PuppetDB

PuppetDB is a Puppet node that runs a PostgreSQL database to store information that can be used by other nodes.

PuppetDB can be used with both the Agent-master and the standalone architectures, but it is always optional. However it is

necessary to use some advanced Puppet features.

PuppetDB stored the following information:

The latest facts from each target.

The latest catalogs, compiled by Puppet apply or a Puppet master.

Optionally, the recent history of each node activities.

External Node Classifiers

With both architectures, it is possible to have a component called an External Node Classifier (ENC). This is a script or an

executable written in any language that Puppet can call to determine the list of classes that should be applied to a certain

target.

An ENC received a node name in input, and should return a list of classes, parameters, etc, as a YAML hash.

Bolt

Bolt can be used in both architectures to run operations against a target or a set of targets. These operations can be

commands passed manually to Bolt, scripts, Puppet tasks or plans. Bolt directly connects to targets via ssh and runs system

commands.

See Bolt Examples to get an idea of what you can do with Bolt.

hiera
hiera is a hierarchical configuration system that allows us to:

Store configuration in separate files;

Include the relevant configuration files for every server we automate with Puppet.

See Puppet hiera Configuration System for more information.

Puppet Resources
Puppet documentation .

forge.puppet.com .

Puppet on GitHub .

Puppet on Wikipedia .

More information about the topics discussed in this page can be found in the Ansible documentation:

Puppet Glossary in Puppet documentation.

Overview of Puppet's architecture in Puppet documentation.

PuppetDB documentation .

Classifying nodes in Puppet documentation.

Hiera in Puppet documentation.

1533/4161

https://puppet.com/docs/
https://forge.puppet.com/
https://github.com/puppetlabs/puppet
https://en.wikipedia.org/wiki/Puppet_(company)
https://puppet.com/docs/puppet/latest/glossary.html
https://puppet.com/docs/puppet/latest/architecture.html
https://puppet.com/docs/puppetdb/latest/index.html
https://puppet.com/docs/puppet/latest/nodes_external.html
https://puppet.com/docs/puppet/latest/hiera_intro.html

Bolt documentation .

Content initially contributed by Vettabase Ltd .

2.1.2.14.4.2 Bolt Examples
Contents
1. Inventory Files

2. Running Commands on Targets

3. Copying Files

4. Running Scripts on Targets

5. Running Tasks on Targets

6. Applying Puppet Code on Targets

7. Bolt Resources and References

This page shows some examples of what we can do with Bolt to administer a set of MariaDB servers. Bolt is a tool that is

part of the Puppet ecosystem.

For information about installing Bolt, see Installing Bolt in Bolt documentation.

Inventory Files

The simplest way to call Bolt and instruct it to do something on some remote targets is the following:

bolt ... --nodes 100.100.100.100,200.200.200.200,300,300,300,300

However, for non-trivial setups it is usually better to use an inventory file. An example:

targets:

 - uri: maria-1.example.com

 name: maria_1

 alias: mariadb_main

 ...

In this way, it will be possible to refer the target by name or alias.

We can also define groups, followed by the group members. For example:

groups:

 - name: mariadb-staging

 targets:

 - uri: maria-1.example.com

 name: maria_1

 - uri: maria-2.example.com

 name: maria_2

 - name: mariadb-production

 targets:

 ...

...

With an inventory of this type, it will be possible to run Bolt actions against all the targets that are members of a group:

bolt ... --nodes mariadb-staging

In the examples in the rest of the page, the --targets parameter will be indicated in this way, for simplicity: --targets

<targets> .

Running Commands on Targets
The simplest way to run a command remotely is the following:

1534/4161

https://puppet.com/docs/bolt/latest/bolt.html
https://vettabase.com/
https://puppet.com/docs/bolt/latest/bolt_installing.html

bolt command run 'mariadb-admin start-all-slaves' --targets <targets>

Copying Files
To copy a file or a whole directory to targets:

bolt file upload /path/to/source /path/to/destination --targets <targets>

To copy a file or a whole directory from the targets to the local host:

bolt file download /path/to/source /path/to/destination --targets <targets>

Running Scripts on Targets
We can use Bolt to run a local script on remote targets. Bolt will temporarily copy the script to the targets, run it, and delete it

from the targets. This is convenient for scripts that are meant to only run once.

bolt script run rotate_logs.sh --targets <targets>

Running Tasks on Targets
Puppet tasks are not always as powerful as custom scripts, but they are simpler and many of them are idempotent. The

following task stops MariaDB replication:

bolt task run mysql::sql --targets <targets> sql="STOP REPLICA"

Applying Puppet Code on Targets
It is also possible to apply whole manifests or portions of Puppet code (resources) on the targets.

To apply a manifest:

bolt apply manifests/server.pp --targets <targets>

To apply a resource description:

bolt apply --execute "file { '/etc/mysql/my.cnf': ensure => present }" --targets <targets>

Bolt Resources and References
Bolt documentation .

Bolt on GitHub .

Further information about the concepts explained in this page can be found in Bolt documentation:

Inventory Files in Bolt documentation.

Applying Puppet code in Bolt documentation.

Content initially contributed by Vettabase Ltd .

2.1.2.14.4.3 Puppet hiera Configuration System
hiera is part of Puppet. It is a hierarchical configuration system that allows us to:

Store configuration in separate files;

Include the relevant configuration files for every server we automate with Puppet.

1535/4161

https://puppet.com/docs/bolt/latest/bolt.html
https://github.com/puppetlabs/bolt
https://puppet.com/docs/bolt/latest/inventory_file_v2.html
https://puppet.com/docs/bolt/latest/applying_manifest_blocks.html
https://vettabase.com/

Contents
1. hiera Configuration Files

2. Configuration files

hiera Configuration Files
Each hierarchy allows to one choose the proper configuration file for a resource, based on certain criteria. For example

criteria may include node names, node groups, operating systems, or datacenters. Hierarchies are defined in a

hiera.yaml file, which also defines a path for the files in each hierarchy.

Puppet facts are commonly used to select the proper files to use. For example, a path may be defined as "os/%

{facts.os.name}.yaml" . In this case, each resource will use a file named after the operating system it uses, in the os

directory. You may need to use custom facts, for example to check which microservices will use a MariaDB server, or in

which datacenter it runs.

We do not have to create a file for each possible value of a certain fact. We can define a default configuration file with

settings that are reasonable for most resources. Other files, when included, will override some of the default settings.

A hiera configuration file will look like this:

version: 5

defaults:

 datadir: global

 data_hash: yaml_data

hierarchy:

 - name: "Node data"

 path: "nodes/%{trusted.certname}.yaml"

 - name: "OS data"

 path: "os/%{facts.os.family}.yaml"

 - name: "Per-datacenter business group data" # Uses custom facts.

 path: "location/%{facts.whereami}/%{facts.group}.yaml"

This file would include the global files, the OS-specific files and the node-specific files. Each hierarchy will override settings

from previous hierarchies.

We can actually have several hiera configuration files. hiera.yaml is the global file. But we will typically have additional

hiera configuration files for each environment. So we can include the configuration files that apply to production, staging, etc,

plus global configuration files that should be included for every environment.

Importantly, we can also have hiera configuration files for each module. So, for example, a separate

mariadb/hiera.yaml file may defined the hierarchies for MariaDB servers. This allow us to define, for example, different

configuration files for MariaDB and for MaxScale, as most of the needed settings are typically different.

Configuration files
You probably noticed that, in the previous example, we defined data_hash: yaml_data , which indicates that

configuration files are written in YAML. Other allowed formats are JSON and HOCON. The data_hash setting is defined in

defaults , but it can be overridden by hierarchies.

Content initially contributed by Vettabase Ltd .

2.1.2.14.4.4 Deploying Docker Containers with
Puppet
Puppet can also be used to manage Docker container upgrades and configuration changes. Docker has more specific tools

for this purpose, but sometimes there are reasons to choose alternatives. See Benefits of Managing Docker Containers with

Automation Software.

In this page you will find out what managing Docker with Puppet looks like. All the snippets in this page use the docker

resource type, supported by the Puppet company.

1536/4161

https://vettabase.com/

Contents
1. How to Install, Upgrade or Uninstall Docker with Puppet

2. How to Build or Pull Docker Images with Puppet

3. How to Deploy Containers with Puppet

4. References

How to Install, Upgrade or Uninstall Docker with Puppet
Installing or upgrading Docker is simple:

class { 'docker':

 use_upstream_package_source => false,

 version => '17.09.0~ce-0~debian',

}

In this example we are using our system's repositories instead of Docker official repositories, and we are specifying the

desired version. To upgrade Docker later, all we need to do is to modify the version number. While specifying a version is

not mandatory, it is a good idea because it makes our manifest more reproducible.

To uninstall Docker:

class { 'docker':

 ensure => absent

}

Check the docker resource type documentation to find out how to use more features: for example you can use Docker

Enterprise Edition, or bind the Docker daemon to a TCP port.

How to Build or Pull Docker Images with Puppet
To pull an image from Dockerhub:

docker::image { 'mariadb:10.0': }

We specified the 10.0 tag to get the desired MariaDB version. If we don't, the image with the latest tag will be used.

Note that this is not desirable in production, because it can lead to unexpected upgrades.

You can also write a Dockerfile yourself, and then build it to create a Docker image. To do so, you need to instruct Puppet to

copy the Dockerfile to the target and then build it::

file { '/path/to/remote/Dockerfile':

 ensure => file,

 source => 'puppet:///path/to/local/Dockerfile',

}

docker::image { 'image_name':

 docker_file => '/path/to/remote/Dockerfile'

}

It is also possible to subscribe to Dockerfile changes, and automatically rebuild the image whenever a new file is found:

docker::image { 'image_name':

 docker_file => '/path/to/remote/Dockerfile'

 subscribe => File['/path/to/remote/Dockerfile'],

}

To remove an image that was possibly built or pulled:

docker::image { 'mariadb':

 ensure => absent

}

How to Deploy Containers with Puppet
To run a container:

1537/4161

docker::run { 'mariadb-01':

 image => 'mariadb:10.5',

 ports => ['3306:6606']

}

mariadb-01 is the contained name. We specified the optional 10.5 tag, and we mapped the guest port 3306 to the host

port 6606. In production, you normally don't map ports because you don't need to connect MariaDB clients from the host

system to MariaDB servers in the containers. Third-party tools can be installed as separate containers.

References
docker resource type documentation , in Puppet documentation.

Content initially contributed by Vettabase Ltd .

2.1.2.14.4.5 Existing Puppet Modules for
MariaDB
This page contains links to Puppet modules that can be used to automate MariaDB deployment and configuration. The list is

not meant to be exhaustive. Use it as a starting point, but then please do your own research.

Contents
1. Puppet Forge

2. Acceptance Tests

3. Supported Modules for MariaDB

4. Resources and References

Puppet Forge
Puppet Forge is the website to search for Puppet modules, maintained by the Puppet company. Modules are searched by

the technology that needs to be automated, and the target operating system.

Search criteria include whether the modules are supported by Puppet or its partners, and whether a module is approved by

Puppet. Approved modules are certified by Puppet based on their quality and maintenance standards.

Acceptance Tests
Some modules that support the Puppet Development Kit allow some types of acceptance tests.

We can run a static analysis on a module's source code to find certain bad practices that are likely to be a source of bugs:

pdk validate

If a module's authors wrote unit tests, we can run them in this way:

pdk test unit

Supported Modules for MariaDB
At the time of writing, there are no supported or approved modules for MariaDB.

However there is a mysql module supported by Puppet, that supports the Puppet Development Kit. Though it doesn't

support MariaDB-specific features, it works with MariaDB. Its documentation shows how to use the module to install

MariaDB on certain operating systems.

Several unsupported and not approved modules exist for MariaDB and MaxScale.

Resources and References
Puppet Forge website.

Puppet Development Kit documentation.

1538/4161

https://forge.puppet.com/modules/puppetlabs/docker
https://vettabase.com/
https://forge.puppet.com/modules/puppetlabs/mysql
https://forge.puppet.com/
https://puppet.com/docs/pdk/1.x/pdk.html

Modules overview in Puppet documentation.

Beginner's guide to writing modules in Puppet documentation.

Puppet Supported Modules page in Puppet Forge.

Content initially contributed by Vettabase Ltd .

2.1.2.14.5 Vagrant and MariaDB
Vagrant is an open source tool to quickly setup machines that can be used for development and testing. These machines can

be local virtual machines, Docker containers, AWS EC2 instances, and so on. Vagrant allows one to easily and quickly setup

test MariaDB servers.

Vagrant Overview for MariaDB Users

Vagrant architecture, general concepts and basic usage.

Creating a Vagrantfile

How to create a new Vagrant box running MariaDB.

Vagrant Security Concerns

Security matters related to Vagrant machines.

Running MariaDB ColumnStore containers on Linux, Windows and MacOS

The ColumnStore container allows for a simple setup of a ColumnStore single...

2.1.2.14.5.1 Vagrant Overview for MariaDB
Users
Vagrant is a tool to create and manage development machines (Vagrant boxes). They are usually virtual machines on the

localhost system, but they could also be Docker containers or remote machines. Vagrant is open source software

maintained by HashiCorp and released under the MIT license.

Vagrant benefits include simplicity, and a system to create test boxes that is mostly independent from the technology used.

For information about installing Vagrant, see Installation in Vagrant documentation.

In this page we discuss basic Vagrant concepts.

Contents
1. Vagrant Concepts

1. Example

2. Vagrantfiles

3. Providers

4. Provisioners

5. Plugins

6. Changes in Vagrant 3.0

2. Vagrant Commands

3. Vagrant Resources and References

Vagrant Concepts
A Vagrant machine is compiled from a box. It can be a virtual machine, a container or a remote server from a cloud

service.

A box is a package that can be used to create Vagrant machines. We can download boxes from app.vagrantup.com, or we

can build a new box from a Vagrantfile. A box can be used as a base for another box. The base boxes are usually operating

system boxes downloaded from app.vagrantup.com.

A provider is responsible for providing the virtualization technology that will run our machine.

A provisioner is responsible for installing and configuring the necessary software on a newly created Vagrant machine.

Example

The above concepts are probably easier to understand with an example.

We can use an Ubuntu box as a base to build a Vagrant machine with MariaDB. So we write a Vagrantfile for this purpose.
1539/4161

https://puppet.com/docs/puppet/7.1/modules_fundamentals.html
https://puppet.com/docs/puppet/7.1/bgtm.html
https://forge.puppet.com/supported
https://vettabase.com/
https://mariadb.com/kb/en/running-mariadb-columnstore-containers-on-linux-windows-and-macos/
https://www.vagrantup.com/docs/installation

In the Vagrantfile we specify VirtualBox as a provider. And we use the Ansible provisioner to install and configure MariaDB.

Once we finish this Vagrantfile, we can run a Vagrant command to start a Vagrant machine, which is actually a VirtualBox

VM running MariaDB on Ubuntu.

The following diagram should make the example clear:

Vagrantfiles

A Vagrantfile is a file that describes how to create one or more Vagrant machines. Vagrantfiles use the Ruby language, as

well as objects provided by Vagrant itself.

A Vagrantfile is often based on a box, which is usually an operating system in which we are going to install our software. For

example, one can create a MariaDB Vagrantfile based on the ubuntu/trusty64 box. A Vagrantfile can describe a box

with a single server, like MariaDB, but it can also contain a whole environment, like LAMP. For most practical use cases,

having the whole environment in a single box is more convenient.

Boxes can be searched in Vagrant Cloud . Most of their Vagrantfiles are available on GitHub. Searches can be made,

among other things, by keyword to find a specific technology, and by provider.

Providers

A provider adds support for creating a specific type of machines. Vagrant comes with several providers, for example:

VirtualBox allows one to create virtual machines with VirtualBox.

Microsoft-Hyper-V allows one to create virtual machines with Microsoft Hyper-V.

Docker allows one to create Docker containers. On non-Linux systems, Vagrant will create a VM to run Docker.

Alternative providers are maintained by third parties or sold by HashiCorp. They allow one to create different types of

machines, for example using VMWare.

Some examples of useful providers, recognized by the community:

Vagrant AWS Provider .

Vagrant Google Compute Engine (GCE) Provider .

Vagrant Azure Provider .

OpenVZ .

vagrant-lxc .

If you need to create machines with different technologies, or deploy them to unsupported cloud platforms, you can develop

a custom provider in Ruby language. To find out how, see Plugin Development: Providers in Vagrant documentation. The

Vagrant AWS Provider was initially written as an example provider.

Provisioners

A provisioner is a technology used to deploy software to the newly created machines.

1540/4161

https://app.vagrantup.com/boxes/search
https://github.com/mitchellh/vagrant-aws
https://github.com/mitchellh/vagrant-google
https://github.com/Azure/vagrant-azure
https://app.vagrantup.com/OpenVZ
https://github.com/fgrehm/vagrant-lxc
https://www.vagrantup.com/docs/plugins/providers
https://github.com/mitchellh/vagrant-aws

The simplest provisioner is shell , which runs a shell file inside the Vagrant machine. powershell is also available.

Other providers use automation software to provision the machine. There are provisioners that allow one to use Ansible,

Puppet, Chef or Salt. Where relevant, there are different provisioners allowing the use of these technologies in a distributed

way (for example, using Puppet apply) or in a centralized way (for example, using a Puppet server).

It is interesting to note that there is both a Docker provider and a Docker provisioner. This means that a Vagrant machine

can be a Docker container, thanks to the docker provisioner. Or it could be any virtualisation technology with Docker

running in it, thanks to the docker provisioner. In this case, Docker pulls images and starts containers to run the software

that should be running in the Vagrant machine.

If you need to use an unsupported provisioning method, you can develop a custom provisioner in Ruby language. See

Plugin Development: Provisioners in Vagrant documentation.

Plugins

It is possible to install a plugin with this command:

vagrant plugin install <plugin_name>

A Vagrantfile can require that a plugin is installed in this way:

require 'plugin_name'

A plugin can be a Vagrant plugin or a Ruby gem installable from rubygems.org . It is possible to install a plugin that only

exists locally by specifying its path.

Changes in Vagrant 3.0

HashiCorp published an article that describes its plans for Vagrant 3.0 .

Vagrant will switch to a client-server architecture. Most of the logic will be stored in the server, while the development

machines will run a thin client that communicates with the server. It will be possible to store the configuration in a central

database.

Another notable change is that Vagrant is switching from Ruby to Go. For some time, it will still be possible to use

Vagrantfiles and plugins written in Ruby. However, in the future Vagrantfiles and plugins should be written in one of the

languages that support gRPC (not necessarily Go). Vagrantfiles can also be written in HCL , HashiCorp Configuration

Language.

Vagrant Commands
This is a list of the most common Vagrant commands. For a complete list, see Command-Line Interface in Vagrant

documentation.

To list the available machines:

vagrant box list

To start a machine from a box:

cd /box/directory

vagrant up

To connect to a machine:

vagrant ssh

To see all machines status and their id:

vagrant global-status

To destroy a machine:

vagrant destroy <id>

1541/4161

https://www.vagrantup.com/docs/plugins/provisioners
https://rubygems.org/
https://www.hashicorp.com/blog/toward-vagrant-3-0
https://grpc.io/
https://github.com/hashicorp/hcl
https://www.vagrantup.com/docs/cli

Vagrant Resources and References
Here are some valuable websites and pages for Vagrant users.

Vagrant Up .

app.vagrantup.com .

Vagrant Community .

Vagrant on Wikipedia .

Vagrant on HashiCorp Learn .

Content initially contributed by Vettabase Ltd .

2.1.2.14.5.2 Creating a Vagrantfile
In this page we discuss how to create a Vagrantfile, which you can use to create new boxes or machines. This content is

specifically written to address the needs of MariaDB users.

Contents
1. A Basic Vagrantfile

2. Providers

3. Provisioners

1. The shell Provisioner

2. Uploading Files

3. Provisioning Vagrant with Ansible

4. Provisioning Vagrant with Puppet

4. Sharing Files Between the Host and a Guest System

5. Network Communications

1. Private Networks

2. Public Networks

3. Exposing Ports

4. Use Cases

6. References

A Basic Vagrantfile
A Vagrantfile is a Ruby file that instructs Vagrant to create, depending on how it is executed, new Vagrant machines or

boxes. You can see a box as a compiled Vagrantfile. It describes a type of Vagrant machines. From a box, we can create

new Vagrant machines. However, while a box is easy to distribute to a team or to a wider public, a Vagrantfile can also

directly create one or more Vagrant machines, without generating any box.

Here is a simple Vagrantfile example:

Vagrant.configure("2") do |config|

 config.vm.box = "hashicorp/bionic64"

 config.vm.provider "virtualbox"

 config.vm.provision :shell, path: "bootstrap.sh"

end

Vagrant.configure("2") returns the Vagrant configuration object for the new box. In the block, we'll use the config

alias to refer this object. We are going to use version 2 of Vagrant API.

vm.box is the base box that we are going to use. It is Ubuntu BionicBeaver (18.04 LTS), 64-bit version, provided by

HashiCorp. The schema for box names is simple: the maintainer account in Vagrant Cloud followed by the box name.

We use vm.provision to specify the name of the file that is going to be executed at the machine creation, to provision the

machine. bootstrap.sh is the conventional name used in most cases.

To create new Vagrant machines from the Vagrantfile, move to the directory that contains the Vagrant project and run:

vagrant up

To compile the Vagrantfile into a box:

vagrant package

These operations can take time. To preventively check if the Vagrantfile contains syntax errors or certain types of bugs:
1542/4161

https://www.vagrantup.com/
https://app.vagrantup.com/
https://www.vagrantup.com/community
https://en.wikipedia.org/wiki/Vagrant_(software)
https://learn.hashicorp.com/vagrant
https://vettabase.com/
https://app.vagrantup.com/boxes/search

vagrant validate

Providers
A provider allows Vagrant to create a Vagrant machine using a certain technology. Different providers may enable a virtual

machine manager (VirtualBox , VMWare , Hyper-V ...), a container manager (Docker), or remote cloud hosts (AWS

, Google Compute Engine ...).

Some providers are developed by third parties. app.vagrant.com supports search for boxes that support the most

important third parties providers. To find out how to develop a new provider, see Plugin Development: Providers .

Provider options can be specified. Options affect the type of Vagrant machine that is created, like the number of virtual

CPUs. Different providers support different options.

It is possible to specify multiple providers. In this case, Vagrant will try to use them in the order they appear in the

Vagrantfile. It will try the first provider; if it is not available it will try the second; and so on.

Here is an example of providers usage:

Vagrant.configure("2") do |config|

 config.vm.box = "hashicorp/bionic64"

 config.vm.provider "virtualbox" do |vb|

 vb.customize ["modifyvm", :id, "--memory", 1024 * 4]

 end

 config.vm.provider "vmware_fusion"

end

In this example, we try to use VirtualBox to create a virtual machine. We specify that this machine must have 4G of RAM

(1024M * 4). If VirtualBox is not available, Vagrant will try to use VMWare.

This mechanism is useful for at least a couple of reasons:

Different users may use different systems, and maybe they don't have the same virtualization technologies installed.

We can gradually move from one provider to another. For a period of time, some users will have the new virtualization

technology installed, and they will use it; other users will only have the old technology installed, but they will still be

able to create machines with Vagrant.

Provisioners
We can use different methods for provisioning. The simplest provisioner is shell , that allows one to run a Bash file to

provision a machine. Other provisioners allow setting up the machines using automation software, including Ansible,

Puppet, Chef and Salt.

To find out how to develop a new provisioner, see Plugin Development: Provisioners .

The shell Provisioner

In the example above, the shell provisioner runs boostrap.sh inside the Vagrant machine to provision it. A simple

bootstrap.sh may look like the following:

#!/bin/bash

apt-get update

apt-get install -y

To find out the steps to install MariaDB on your system of choice, see the Getting, Installing, and Upgrading MariaDB

section.

You may also want to restore a database backup in the new Vagrant machine. In this way, you can have the database

needed by the application you are developing. To find out how to do it, see Backup and Restore Overview. The most flexible

type of backup (meaning that it works between different MariaDB versions, and in some cases even between MariaDB and

different DBMSs) is a dump.

On Linux machines, the shell provisioner uses the default shell. On Windows machines, it uses PowerShell.

Uploading Files

If we use the shell provisioner, we need a way to upload files to the new machine when it is created. We could use the

1543/4161

https://www.vagrantup.com/docs/providers/virtualbox
https://www.vagrantup.com/docs/providers/vmware
https://www.vagrantup.com/docs/providers/hyperv
https://www.vagrantup.com/docs/providers/docker
https://github.com/mitchellh/vagrant-aws
https://github.com/mitchellh/vagrant-google
https://app.vagrantup.com/
https://www.vagrantup.com/docs/plugins/providers
https://www.vagrantup.com/docs/plugins/provisioners
https://www.vagrantup.com/docs/provisioning/shell

file provisioner, but it works by connecting the machine via ssh, and the default user doesn't have permissions for any

directory except for the synced folders. We could change the target directory owner, or we could add the default user to a

group with the necessary privileges, but these are not considered good practices.

Instead, we can just put the file we need to upload somewhere in the synced folder, and then copy it with a shell command:

cp ./files/my.cnf /etc/mysql/conf.d/

Provisioning Vagrant with Ansible

Here is an example of how to provision a Vagrant machine or box by running Ansible:

Vagrant.configure("2") do |config|

 ...

 config.vm.provision "ansible" do |ansible|

 ansible.playbook = "vagrant.yml"

 end

end

With the Ansible provisioner , Ansible runs in the host system and applies a playbook in the guest system. In this example,

it runs a playbook called vagrant.yml . The Ansible Local provisioner runs the playbook in the vagrant machine.

For more information, see Using Vagrant and Ansible in the Ansible documentation. For an introduction to Ansible for

MariaDB users, see Ansible and MariaDB.

Provisioning Vagrant with Puppet

To provision a Vagrant machine or box by running Puppet:

Vagrant.configure("2") do |config|

 ...

 config.vm.provision "puppet" do |puppet|

 puppet.manifests_path = "manifests"

 puppet.manifest_file = "default.pp"

 end

end

In this example, Puppet Apply runs in the host system and no Puppet Server is needed. Puppet expects to find a

manifests directory in the project directory. It expects it to contain default.pp , which will be used as an entry point.

Note that puppet.manifests_path and puppet.manifest_file are set to their default values.

Puppet needs to be installed in the guest machine.

To use a Puppet server, the puppet_server provisioner can be used:

Vagrant.configure("2") do |config|

 ...

 config.vm.provision "puppet_server" do |puppet|

 puppet.puppet_server = "puppet.example.com"

 end

end

See the Puppet Apply provisioner and the Puppet Agent Provisioner .

For an introduction to Puppet for MariaDB users, see Puppet and MariaDB.

Sharing Files Between the Host and a Guest System
To restore a backup into MariaDB, in most cases we need to be able to copy it from the host system to the box. We may

also want to occasionally copy MariaDB logs from the box to the host system, to be able to investigate problems.

The project directory (the one that contains the Vagrantfile) by default is shared with the virtual machine and mapped to the

/vagrant directory (the synced folder). It is a good practice to put there all files that should be shared with the box when it

is started. Those files should normally be versioned.

The synced folder can be changed. In the above example, we could simply add one line:

config.vm.synced_folder "/host/path", "/guest/path"

1544/4161

https://www.vagrantup.com/docs/provisioning/ansible
https://www.vagrantup.com/docs/provisioning/ansible_local
https://docs.ansible.com/ansible/2.3/guide_vagrant.html
https://www.vagrantup.com/docs/provisioning/puppet_apply
https://www.vagrantup.com/docs/provisioning/puppet_agent

The synced folder can also be disabled:

config.vm.synced_folder '.', '/vagrant', disabled: true

Note that multiple Vagrant machines may have synced folders that point to the same directory on the host system. This can

be useful in some cases, if you prefer to test some functionalities quickly, rather that replicating production environment as

faithfully as possible. For example, to test if you're able to take a backup from one machine and restore it to another, you

can store the backup in a common directory.

Network Communications
It is often desirable for a machine to be able to communicate with "the outside". This can be done in several ways:

Private networks;

Public networks;

Exposing ports to the host.

Remembers that Vagrant doesn't create machines, but it asks a provisioner to create machines. Some provisioners support

all of these communication methods, others may support some of them, or even none of them. When you create a

Vagrantfile that starts machines using one of these features, it is implicit that this can only happen if the provisioner you are

using supports the features you need. Check your provisioner documentation to find out which features it supports.

The default provisioner, VirtualBox, supports all these communication methods, including multiple networks.

Private Networks

A private network is a networks that can only be accesses by machines that run on the same host. Usually this also means

that the machines must run on the same provisioner (for example, they all must be VirtualBox virtual machines).

Some provisioners support multiple private networks. This means that every network has a different name and can be

accessed by different machines.

The following line shows how to create or join a private network called "example", where this machine's IP is assigned by

the provisioner via DHCP:

config.vm.network 'private_network', name: 'example', type: 'dhcp'

While this is very convenient to avoid IP conflicts, sometimes you prefer to assign some IP's manually, in this way:

config.vm.network 'private_network', name: 'example', ip: '111.222.111.222'

Public Networks

As explained above, public networks are networks that can be accessed by machines that don't run on the same host with

the same provider.

To let a machine join a public network:

use provisioner DHCP:

config.vm.network "public_network", use_dhcp_assigned_default_route: true

assign ip manually:

config.vm.network "public_network", ip: "111.222.111.222"

To improve security, you may want to configure a gateway:

config.vm.provision "shell", run: "always", inline: "route add default gw 111.222.111.222"

Exposing Ports

Vagrant allows us to map a TCP or UDP port in a guest system to a TCP or UDP port in the host system. For example, you

can map a virtual machine port 3306 to the host port 12345. Then you can connect MariaDB in this way:

mariadb -hlocalhost -P12345 -u<user> -p<password>

You are not required to map a port to a port with a different number. In the above example, if the port 3306 in your host is

1545/4161

not in use, you are free to map the guest port 3306 to the host port 3306.

There are a couple of caveats:

You can't map a single host port to multiple guest ports. If you want to expose the port 3306 from multiple Vagrant

machines, you'll have to map them to different host ports. When running many machines this can be hard to maintain.

Ports with numbers below 1024 are privileged ports. Mapping privileged ports requires root privileges.

To expose a port:

config.vm.network 'forwarded_port', guest: 3306, host: 3306

Use Cases

Suppose you run MariaDB and an application server in two separate Vagrant machines. It's usually best to let them

communicate via a private network, because this greatly increases your security. The application server will still need to

expose ports to the host, so the application can be tested with a web browser.

Suppose you have multiple environments of the same type, like the one described above. They run different applications

that don't communicate with each other. In this case, if your provisioner supports this, you will run multiple private networks.

You will need to expose the applications servers ports, mapping them to different host ports.

You may even want to implement different private networks to create an environment that reflects production complexity.

Maybe in production you have a cluster of three MariaDB servers, and the application servers communicate with them via a

proxy layer (ProxySQL, HAProxy, or MaxScale). So the applications can communicate with the proxies, but have no way

to reach MariaDB directly. So there is a private network called "database" that can be accessed by the MariaDB servers and

the proxy servers, and another private network called "application" that can be accessed by the proxy servers and the

application servers. This requires that your provisioner supports multiple private networks.

Using public networks instead of private one will allow VMs that run on different hosts to be part of your topology. In general

this is considered as an insecure practice, so you should probably ask yourself if you really need to do this.

References
The vagrant-mariadb-examples repository is an example of a Vagrantfile that creates a box containing MariaDB and some

useful tools for developers.

Further information can be found in Vagrant documentation.

Vagrantfile .

Providers .

Synced Folders .

Ansible Provisioner .

Puppet Apply Provisioner .

Puppet Agent Provisioner .

See also Ruby documentation .

Content initially contributed by Vettabase Ltd .

2.1.2.14.5.3 Vagrant Security Concerns
Databases typically contain information to which access should be restricted. For this reason, it's worth discussing some

security concerns that Vagrant users should be aware of.

Contents
1. Access to the Vagrant Machine

2. Synced Folders

3. Reporting Security Bugs

Access to the Vagrant Machine
By default, Vagrant machines are only accessible from the localhost. SSH access uses randomly generated key pairs, and

therefore it is secure.

The password for root and vagrant is "vagrant" by default. Consider changing it.

1546/4161

https://mariadb.com/kb/en/maxscale/
https://github.com/Vettabase/vagrant-mariadb-examples
https://www.vagrantup.com/docs/vagrantfile
https://www.vagrantup.com/docs/providers
https://www.vagrantup.com/docs/synced-folders
https://www.vagrantup.com/docs/provisioning/ansible
https://www.vagrantup.com/docs/provisioning/puppet_apply
https://www.vagrantup.com/docs/provisioning/puppet_agent
http://www.ruby-lang.org/en/documentation/
https://vettabase.com/

Synced Folders
By default, the project folder in the host system is shared with the machine, which sees it as /vagrant . This means that

whoever has access to the project folder also has read and write access to the synced folder. If this is a problem, make sure

to properly restrict the access to the synced folder.

If we need to exchange files between the host system and the Vagrant machine, it is not advisable to disable the synced

folder. This is because the only alternative is to use the file provider, which works by copying files to the machine via

ssh. The problem is that the default ssh user does not have permissions to write to any directory by default, and changing

this would be less secure than using a synced folder.

When a machine is provisioned, it should read the needed files from the synced folder or copy them to other places. Files in

the synced folder should not be accessed by the Vagrant machine during its normal activities. For example, it is fine to load

a dump from the synced folder during provisioning; and it is fine to copy configuration files from the synced folder to

directories in /etc during provisioning. But it is a bad practice to let MariaDB use table files located in the synced folder.

Reporting Security Bugs
Note that security bugs are not reported as normal bugs. Information about security bugs are not public. See Security at

HashiCorp for details.

Content initially contributed by Vettabase Ltd .

2.1.2.14.5.4 Running MariaDB ColumnStore
containers on Linux, Windows and MacOS

Contents
1. Introduction

2. Windows Linux Subsystem

3. MariaDB Containers

Introduction
The ColumnStore container allows for a simple and lightweight setup of a MariaDB ColumnStore single server instance for

evaluation purposes. The configuration is designed for simplified developer / evaluation setup rather than production use. It

allows to evaluate ColumnStore on a Windows or MacOS system, setting up a Linux system in a container. The image uses

a base OS of RockyLinux.

Windows Linux Subsystem
If you have Windows 10 Creators update installed, then you can install the Ubuntu installation into the Bash console. Please

follow the Ubuntu instructions in getting started. If you have recently upgraded and had Bash installed previously, ensure

you uninstall and reinstall Bash first to have a clean Ubuntu installation. Note that ColumnStore will be terminated should

you terminate the Bash console.

MariaDB Containers
MariaDB Containers manages lightweight containers that allows for creation of lightweight and reproducible containers with

a dedicated function. On Windows and MacOS systems, Docker Engine transparently runs on a Linux virtual machine.

Since MariaDB ColumnStore relies on a Syslog daemon, the container must start both ColumnStore and rsyslogd and the

runit utility is used to achieve this.

A single node image can be found at MariaDB on Docker Hub .

docker run -d --name mcs mariadb/columnstore

docker exec -it mcs bash

A ColumnStore cluster can be brought up using a compose file provided in the ColumnStore github repository:

1547/4161

https://www.hashicorp.com/security
https://vettabase.com/
https://hub.docker.com/r/mariadb/columnstore/

git clone https://github.com/mariadb-corporation/mariadb-columnstore-docker.git

cd mariadb-columnstore-docker/columnstore

docker-compose up -d

For more information about how to manage containers, see Installing and Using MariaDB via Docker.

To test an application that uses ColumnStore, it is desirable to setup several containers that will communicate with each

other. To do this, we can use Docker Compose. See Setting Up a LAMP Stack with Docker Compose for more information.

2.1.2.14.6 MariaDB Containers

Containers are an OCI standard format for software images and their specified time all bundled up into a single distributable

time. They can be used for production, development or testing.

Docker Inc. run a Docker Official Images program to provide users with an essential base implementation of MariaDB in a

container and to exemplify best practices of a container.

The containers are available on Docker Hub as docker.io/library/mariadb though many container runtime implementation

will fill in the docker.io/library where the host/path isn't specified.

The containers are in a Open Container Initiative format that allows the containers to be interoperable with a number of

container runtime implementations. Docker, or more fully Docker Engine, is just one of the many available runtimes.

Many people use MariaDB Docker Official Image containers in CI systems like GitHub Actions, though its possible to use

these in production environments like kubernetes.

The MariaDB Server container images are available with a number of tags:

A full version, like 10.11.5

A major version like 10.11

The most recent stable GA version - latest

The most recent stable LTS version - lts

Versions that aren't stable will be suffixed with -rc, or -alpha to clearly show their release status, and enables Renovatebot

and other that follow semantic versioning to follow updates.

For a consistent application between testing an production environment using the SHA hash of the image is recommended

like docker.io/library/mariadb@sha256:29fe5062baf36bae8ec68f21a3dce4f0372dadc185e687624f1252fc49d91c67.

There is a list of mapping and history of tags to SHA hash on the Docker Library repository .

Benefits of Managing MariaDB Containers with Orchestration Software

Benefits of managing MariaDB Containers with Automation Software.

Installing and Using MariaDB via Docker

Creating and managing a MariaDB Docker container.

Container Backup and Restoration

Backup and Restore for the MariaDB Docker Official Image

Container Security Concerns

Security matters related to containers.

Adding Plugins to the MariaDB Docker Official Image

Summary of methods to install plugins in the MariaDB Docker Library Container.

Setting Up a LAMP Stack with Docker Compose

How to use Docker Compose to set up containers running a LAMP stack.

See MariaDB and Docker in action!

Set up web-based developer environments locally, and connect MariaDB to VS Code Server, CloudBeaver,

PHP/Laravel and phpMyAdmin, using a single docker-compose command and configuration file.

Watch the Webinar

5

2

1548/4161

https://go.mariadb.com/24Q2-WBN-GLBL-2024-02-22-Develop-via-Docker_Registration-LP.html?utm_source=onpagepromo&utm_medium=kb&utm_campaign=webinar-develop-via-docker
https://docs.docker.com/docker-hub/official_images
https://hub.docker.com/_/mariadb
https://github.com/grooverdan/mariadb-docker/commit/a9a98d720ddc5afe5c62449bbe737f4780aee0fe
https://docs.renovatebot.com/modules/versioning/#semantic-versioning
https://github.com/docker-library/repo-info/tree/master/repos/mariadb/remote

Creating a Custom Container Image

How to write a Dockerfile to create custom images.

MariaDB Server Docker Official Image Environment Variables

Environment variables can be passed on the docker run command line.

Running MariaDB ColumnStore containers on Linux, Windows and MacOS

The ColumnStore container allows for a simple setup of a ColumnStore single...

Docker Official Image Frequently Asked Questions

Frequently asked questions about the Docker Official Image.

MariaDB Container Cheat Sheet

Common commands when using MariaDB containers.

Using Healthcheck.sh

healthcheck.sh

Docker and AWS EC2

This process shows how to deploy, connect to, and create MariaDB database i...

Docker and Google Cloud

This process shows how to deploy, connect to, and create MariaDB database i...

Docker and Microsoft Azure

This process shows how to deploy, connect to, and create MariaDB database i...

There are 13 related questions .

2

1

2.1.2.14.6.1 Benefits of Managing MariaDB
Containers with Orchestration Software
In this page we'll discuss why automating containers with software like Ansible or Puppet may be desirable in some cases.

To talk about this, we'll first need to discuss why containers are defined ephemeral, and how this applies to containerized

database servers (particularly MariaDB).

During the discussion, we should keep in mind that Docker Engine, CRI-I, containerd, Mirantis Container Runtime ,

Podman and other OCI container runtimes can be used to setup production and/or development environments. These use

cases are very different from a database perspective: a production database may be big, and typically contains data that we

don't want to lose. Development environments usually contain small sample data that can be rebuilt relatively quickly. This

page focuses on the latter case.

Container Ephemeral Nature
Images are an OCI specified format that can be compiled from Dockerfiles as one of the ways. Containers are the OCI

runtime specified way of creating a runtime version of an images. Normally, a container is not modified from the moment

it is created. In other words, containers are usually designed to be ephemeral, meaning that they can be destroyed and

replaced with new containers at any time. Provided that there is proper redundancy (for example, there are several web

servers running the same services) destroying one container and starting a new one of the same type won't cause any

damage.

We will discuss a bit later how this applies to MariaDB, and more generally to database servers.

When something should change, for example some software version or configuration, normally Dockerfiles are updated and

containers are recreated from the latest image versions. For this reason, containers shouldn't contain anything that shouldn't

be lost, and recreating them should be an extremely cheap operation. Docker Compose or the Swarm mode are used to

declare which containers form a certain environment, and how they communicate with each other.

On the contrary, Ansible and Puppet are mainly built to manage the configuration of existing servers. It doesn't recreate

servers, it changes their configuration. So Docker and Ansible have very different approaches. For this reason, Ansible and

Puppet are not frequently used to deploy containers to production. However, using them together can bring some benefits,

especially for development environments.

1549/4161

https://mariadb.com/kb/en/creating-a-custom-container-image/
https://mariadb.com/kb/en/running-mariadb-columnstore-containers-on-linux-windows-and-macos/
https://mariadb.com/kb/en/using-healthcheck-sh/
https://mariadb.com/kb/en/docker-and-mariadb/+questions/
https://www.mirantis.com/software/mirantis-container-runtime/
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/runtime-spec/blob/main/spec.md

More on this later in the page. First, we need to understand how these concepts apply to database servers.

Stateful Technologies
Using ephemeral containers works very well for stateless technologies, like web servers and proxies. These technologies

virtually only need binaries, configuration and small amounts of data (web pages). If some data need to be restored after a

container creation, it will be a fast operation.

In the case of a database, the problem is that data can be large and need to be written somewhere. We don't want all

databases to disappear when we destroy a container. Even if we had an up-to-date backup, restoring it would take time.

However, OCI Containers has features called volumes. A volume is a directory in the host system mapped to a directory in

one or more containers. Volumes are not destroyed when containers are destroyed. They can be used to share data

between any number of containers and the host system. Therefore, they are also a good way to persist data.

Suppose a MariaDB container called mariadb-main-01 uses a volume that is mapped to

/var/docker/volumes/mariadb-main . At some point we want to use a more recent MariaDB version. As explained

earlier, the container way to do this is to destroy the container and create a new one that uses a more recent version of the

MariaDB image.

So, we will destroy mariadb-main-01 . The volume is still there. Then we create a new container with the same name, but

based on a newer image. We make sure to link the volume to the new container too, so it will be able to use

/var/docker/volumes/mariadb-main again. At this point we may want to run mariadb-upgrade, but apart from that,

everything should just work.

The container runtime implementations also provide the opportunity to create a volume with an explicit name and this is

also persistent. The actual location on the filesystem is managed by the runtime.

The above described steps are simple, but running them manually is time consuming and error-prone. Automating them

with some automation software like Ansible or Puppet is often desirable.

Ways to Deploy Containers
Containers can be deployed in the following ways:

Manually. See Installing and Using MariaDB via Docker. This is not recommended for production, or for complex

environments. However, it can easily be done for the simplest cases. If we want to make changes to our custom

images, we'll need to modify the Dockerfiles, destroy the containers and recreate them.

With Docker Compose. See Setting Up a LAMP Stack with Docker Compose for a simple example. When we modify

a Dockerfile, we'll need to destroy the containers and recreate them, which is usually as simple as running docker-

compose down followed by docker-compose-up . After changing docker-cmpose.yml (maybe to add a container

or a network) we'll simply need to run docker-compose-up again, because it is idempotent.

Using Ansible, Puppet or other automation software, as mentioned before. We can use Ansible or Puppet to create

the containers, and run them again every time we want to apply some change to the containers. This means that the

containers are potentially created once and modified any number of times.

In all these cases, it is entirely possible to add Vagrant to the picture. Vagrant is a way to deploy or provision several hosts,

including virtual machines (the most common case), and containers. It is agnostic in regarding the underlying technology, so

it can deploy to a virtual machine, a container, or even a remote server in the same way. Containers can work with Vagrant

in two ways:

As a provisioner. In this case Vagrant will most commonly deploy a virtual machine, and will use Docker to setup the

applications that need to run in it, as containers. This guarantees a higher level of isolation, compared to running the

containers in the local host. Especially if you have different environments to deploy locally, because you can have

them on different virtual machines.

As a provider. Vagrant will deploy one or more containers locally. Once each container is up, Vagrant can optionally

use a provisioner on it, to make sure that the container runs the proper software with proper configuration. In this

case, Ansible, Puppet or other automation software can be used as a provisioner. But again, this is optional: it is

possible to make changes to the Dockerfiles and recreate the containers every time.

Benefits of Managing Containers with Automation
Software
Containers can be entirely managed with Docker Compose or the Swarm mode. This is often a good idea.

However, choosing to use automation software like Ansible or Puppet has some benefits too. Benefits include:

Containers allow working without modifying the host system, and their creation is very fast. Much faster than virtual

machines. This makes containers desirable for development environments.

1550/4161

As explained, making all containers ephemeral and using volumes to store important data is possible. But this means

adding some complexity to adapt an ephemeral philosophy to technologies that are not ephemeral by nature

(databases). Also, many database professionals don't like this approach. Using automation software allows easily

triggering upgrades and configuration changes in the containers, treating them as non-ephemeral systems.

Sometimes containers are only used in development environments. If production databases are managed via Ansible,

Puppet, or other automation software, this could lead to some code duplication. Dealing with configuration changes

using the same procedures will reduce the cost of maintenance.

While recreating containers is fast, being able to apply small changes with Ansible or Puppet can be more convenient

in some cases: particularly if we write files into the container itself, or if recreating a container bootstrap involves some

lengthy procedure.

Trying to do something non-standard with Dockerfiles can be tricky. For example, running two processes in a

container is possible but can be problematic, as containers are designed to run single main process per container.

However there are situations when this is desirable. For example PMM containers run several different processes.

Launching additional processes with Ansible or Puppet may be easier than doing it with a Dockerfile.

With all this in mind, let's see some examples of cases when managing containers with Ansible, Puppet or other automation

software is preferable, rather than destroying containers every time we want to make a change:

We use Ansible or Puppet in production, and we try to keep development environments as similar as possible to

production. By using Ansible/Puppet in development too, we can reuse part of the code.

We make changes to the containers often, and recreating containers is not as fast as it should be (for example

because a MariaDB dump needs to be restored).

Creating a container implies some complex logic that does not easily fit a Dockerfile or Docker Compose (including,

but not limited to, running multiple processes per container).

That said, every case is different. There are environments where these advantages do not apply, or bring a very small

benefit. In those cases, the cost of adding some automation with Ansible, Puppet or similar software is probably not justified.

How to Deploy to Container from Orchestration Software
Suppose you want to manage containers configuration with Ansible.

At a first glance, the simplest way is to run Ansible in the host system. It will need to connect to the containers via SSH, so

they need to expose the 22 port. But we have multiple containers, so we'll need to map the 22 port of each container to a

different port in the host. This is hard to maintain and potentially insecure: in production you want to avoid exposing any

container port to the host.

A better solution is to run Ansible itself in a container. The playbooks will be in a container volume, so we can access them

from the host system to manage them more easily. The Ansible container will communicate with other containers using a

container network, using the standard 22 port (or another port of your choice) for all containers.

2.1.2.14.6.2 Installing and Using MariaDB via
Docker

See MariaDB and Docker in action!

Set up web-based developer environments locally, and connect MariaDB to VS Code Server, CloudBeaver,

PHP/Laravel and phpMyAdmin, using a single docker-compose command and configuration file.

Watch the Webinar

1551/4161

https://go.mariadb.com/24Q2-WBN-GLBL-2024-02-22-Develop-via-Docker_Registration-LP.html?utm_source=onpagepromo&utm_medium=kb&utm_campaign=webinar-develop-via-docker

Contents
1. Installing Docker on Your System with the Universal Installation Script

1. Starting dockerd

2. Using MariaDB Images

1. Downloading an Image

2. Creating a Container

3. Running and Stopping the Container

1. Automatic Restart

2. Pausing Containers

4. Troubleshooting a Container

5. Accessing the Container

6. Connecting to MariaDB from Outside the Container

1. Forcing a TCP Connection

2. Port Configuration for Clustered Containers and Replication

3. Installing MariaDB on Another Image

1. Daemonizing the Operating System

2. Installing MariaDB

Sometimes we want to install a specific version of MariaDB, MariaDB ColumnStore, or MaxScale on a certain system, but

no packages are available. Or maybe, we simply want to isolate MariaDB from the rest of the system, to be sure that we

won't cause any damage.

A virtual machine would certainly serve the scope. However, this means installing a system on the top of another system. It

requires a lot of resources.

In many cases, the best solution is using containers. Docker is a framework that runs containers. A container is meant to run

a specific daemon, and the software that is needed for that daemon to properly work. Docker does not virtualize a whole

system; a container only includes the packages that are not included in the underlying system.

Docker requires a very small amount of resources. It can run on a virtualized system. It is used both in development and in

production environments. Docker is an open source project, released under the Apache License, version 2.

Note that, while your package repositories could have a package called docker , it is probably not the Docker we are

talking about. The Docker package could be called docker.io or docker-engine .

For information about installing Docker, see Get Docker in Docker documentation.

Installing Docker on Your System with the Universal
Installation Script
The script below will install the Docker repositories, required kernel modules and packages on the most common Linux

distributions:

curl -sSL https://get.docker.com/ | sh

Starting dockerd

On some systems you may have to start the dockerd daemon yourself:

sudo systemctl start docker

sudo gpasswd -a "${USER}" docker

If you don't have dockerd running, you will get the following error for most docker commands: installing-and-using-

mariadb-via-docker Cannot connect to the Docker daemon at unix:/var/run/docker.sock. Is the docker daemon running?

<</code>>

Using MariaDB Images
The easiest way to use MariaDB on Docker is choosing a MariaDB image and creating a container.

Downloading an Image

You can download a MariaDB image for Docker from the Offical Docker MariaDB , or choose another image that better

suits your needs. You can search Docker Hub (the official set of repositories) for an image with this command:

1552/4161

https://mariadb.com/kb/en/mariadb-maxscale/
https://docs.docker.com/get-docker/
https://hub.docker.com/_/mariadb/

 docker search mariadb

Once you have found an image that you want to use, you can download it via Docker. Some layers including necessary

dependencies will be downloaded too. Note that, once a layer is downloaded for a certain image, Docker will not need to

download it again for another image.

For example, if you want to install the default MariaDB image, you can type:

docker pull mariadb:10.4

This will install the 10.4 version. Versions 10.2, 10.3, 10.5 are also valid choices.

You will see a list of necessary layers. For each layer, Docker will say if it is already present, or its download progress.

To get a list of installed images:

docker images

Creating a Container

An image is not a running process; it is just the software needed to be launched. To run it, we must create a container first.

The command needed to create a container can usually be found in the image documentation. For example, to create a

container for the official MariaDB image:

docker run --name mariadbtest -e MYSQL_ROOT_PASSWORD=mypass -p 3306:3306 -d

docker.io/library/mariadb:10.3

mariadbtest is the name we want to assign the container. If we don't specify a name, an id will be automatically

generated.

10.2 and 10.5 are also valid target versions:

docker run --name mariadbtest -e MYSQL_ROOT_PASSWORD=mypass -p 3306:3306 -d

docker.io/library/mariadb:10.2

docker run --name mariadbtest -e MYSQL_ROOT_PASSWORD=mypass -p 3306:3306 -d

docker.io/library/mariadb:10.5

Optionally, after the image name, we can specify some options for mysqld. For example:

docker run --name mariadbtest -e MYSQL_ROOT_PASSWORD=mypass -p 3306:3306 -d mariadb:10.3 --log-

bin --binlog-format=MIXED

Docker will respond with the container's id. But, just to be sure that the container has been created and is running, we can

get a list of running containers in this way:

docker ps

We should get an output similar to this one:

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

819b786a8b48 mariadb "/docker-entrypoint. 4 minutes ago Up 4

minutes 3306/tcp mariadbtest

Running and Stopping the Container

Docker allows us to restart a container with a single command:

docker restart mariadbtest

The container can also be stopped like this:

1553/4161

docker stop mariadbtest

The container will not be destroyed by this command. The data will still live inside the container, even if MariaDB is not

running. To restart the container and see our data, we can issue:

docker start mariadbtest

With docker stop , the container will be gracefully terminated: a SIGTERM signal will be sent to the mysqld process, and

Docker will wait for the process to shutdown before returning the control to the shell. However, it is also possible to set a

timeout, after which the process will be immediately killed with a SIGKILL . Or it is possible to immediately kill the process,

with no timeout.

docker stop --time=30 mariadbtest

docker kill mariadbtest

In case we want to destroy a container, perhaps because the image does not suit our needs, we can stop it and then run:

docker rm mariadbtest

Note that the command above does not destroy the data volume that Docker has created for /var/lib/mysql. If you want to

destroy the volume as well, use:

docker rm -v mariadbtest

Automatic Restart

When we start a container, we can use the --restart option to set an automatic restart policy. This is useful in

production.

Allowed values are:

no : No automatic restart.

on-failure : The container restarts if it exits with a non-zero exit code.

unless-stopped : Always restart the container, unless it was explicitly stopped as shown above.

always : Similar to unless-stopped , but when Docker itself restarts, even containers that were explicitly stopped

will restart.

It is possible to change the restart policy of existing, possibly running containers:

docker update --restart always mariadb

or, to change the restart policy of all containers:

docker update --restart always $(docker ps -q)

A use case for changing the restart policy of existing containers is performing maintenance in production. For example,

before upgrading the Docker version, we may want to change all containers restart policy to always , so they will restart as

soon as the new version is up and running. However, if some containers are stopped and not needed at the moment, we

can change their restart policy to unless-stopped .

Pausing Containers

A container can also be frozen with the pause command. Docker will freeze the process using croups. MariaDB will not

know that it is being frozen and, when we unpause it, MariaDB will resume its work as expected.

Both pause and unpause accept one or more container names. So, if we are running a cluster, we can freeze and

resume all nodes simultaneously:

docker pause node1 node2 node3

docker unpause node1 node2 node3

Pausing a container is very useful when we need to temporarily free our system's resources. If the container is not crucial at

this moment (for example, it is performing some batch work), we can free it to allow other programs to run faster.

Troubleshooting a Container

If the container doesn't start, or is not working properly, we can investigate with the following command:
1554/4161

docker logs mariadbtest

This command shows what the daemon sent to the stdout since the last attempt of starting - the text that we typically see

when we invoke mysqld from the command line.

On some systems, commands such as docker stop mariadbtest and docker restart mariadbtest may fail with a

permissions error. This can be caused by AppArmor, and even sudo won't allow you to execute the command. In this case,

you will need to find out which profile is causing the problem and correct it, or disable it. Disabling AppArmor altogether is

not recommended, especially in production.

To check which operations were prevented by AppArmor, see AppArmor Failures in AppArmor documentation.

To disable a profile, create a symlink with the profile name (in this example, mysqld) to etc/apparmor.d/disable , and

then reload profiles:

ln -s /etc/apparmor.d/usr.sbin.mysqld /etc/apparmor.d/disable/

sudo apparmor_parser -R /etc/apparmor.d/usr.sbin.mysqld

For more information, see Policy Layout in AppArmor documentation.

After disabling the profile, you may need to run:

sudo service docker restart

docker system prune --all --volumes

Restarting the system will then allow Docker to operate normally.

Accessing the Container

To access the container via Bash, we can run this command:

docker exec -it mariadbtest bash

Now we can use normal Linux commands like cd, ls, etc. We will have root privileges. We can even install our favorite file

editor, for example:

apt-get update

apt-get install vim

In some images, no repository is configured by default, so we may need to add them.

Note that if we run mariadb-admin shutdown or the SHUTDOWN command to stop the container, the container will be

deactivated, and we will automatically exit to our system.

Connecting to MariaDB from Outside the Container

If we try to connect to the MariaDB server on localhost , the client will bypass networking and attempt to connect to the

server using a socket file in the local filesystem. However, this doesn't work when MariaDB is running inside a container

because the server's filesystem is isolated from the host. The client can't access the socket file which is inside the container,

so it fails to connect.

Therefore connections to the MariaDB server must be made using TCP, even when the client is running on the same

machine as the server container.

Find the IP address that has been assigned to the container:

docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' mariadbtest

You can now connect to the MariaDB server using a TCP connection to that IP address.

Forcing a TCP Connection

After enabling network connections in MariaDB as described above, we will be able to connect to the server from outside

the container.

On the host, run the client and set the server address ("-h") to the container's IP address that you found in the previous step:

1555/4161

https://gitlab.com/apparmor/apparmor/-/wikis/AppArmor_Failures
https://gitlab.com/apparmor/apparmor/-/wikis/Policy_Layout

mysql -h 172.17.0.2 -u root -p

This simple form of the connection should work in most situations. Depending on your configuration, it may also be

necessary to specify the port for the server or to force TCP mode:

mysql -h 172.17.0.2 -P 3306 --protocol=TCP -u root -p

Port Configuration for Clustered Containers and Replication

Multiple MariaDB servers running in separate Docker containers can connect to each other using TCP. This is useful for

forming a Galera cluster or for replication.

When running a cluster or a replication setup via Docker, we will want the containers to use different ports. The fastest way

to achieve this is mapping the containers ports to different port on our system. We can do this when creating the containers

(docker run command), by using the -p option, several times if necessary. For example, for Galera nodes we will use a

mapping similar to this one:

-p 4306:3306 -p 5567:5567 -p 5444:5444 -p 5568:5568

Installing MariaDB on Another Image
It is possible to download a Linux distribution image, and to install MariaDB on it. This is not much harder than installing

MariaDB on a regular operating system (which is easy), but it is still the hardest option. Normally we will try existing images

first. However, it is possible that no image is available for the exact version we want, or we want a custom installation, or

perhaps we want to use a distribution for which no images are available. In these cases, we will install MariaDB in an

operating system image.

Daemonizing the Operating System

First, we need the system image to run as a daemon. If we skip this step, MariaDB and all databases will be lost when the

container stops.

To demonize an image, we need to give it a command that never ends. In the following example, we will create a Debian

Jessie daemon that constantly pings the 8.8.8.8 special address:

docker run --name debian -p 3306:3306 -d debian /bin/sh -c "while true; do ping 8.8.8.8; done"

Installing MariaDB

At this point, we can enter the shell and issue commands. First we will need to update the repositories, or no packages will

be available. We can also update the packages, in case some of them are newer than the image. Then, we will need to

install a text editor; we will need it to edit configuration files. For example:

start an interactive Bash session in the container

docker exec -ti debian bash

apt-get -y update

apt-get -y upgrade

apt-get -y install vim

Now we are ready to install MariaDB in the way we prefer.

2.1.2.14.6.3 Container Backup and Restoration
MariaDB databases in containers need backup and restore like their non-container equivalents.

Logicial Backups

Backup

mariadb-dump is in the Docker Official Image and can be used as follows:

1556/4161

$ docker exec some-%%REPO%% mariadb-dump --all-databases -uroot -p"$MARIADB_ROOT_PASSWORD"'

> /some/path/on/your/host/all-databases.sql

Restoring Data from Dump Files

For restoring data, you can use the `docker exec` command with the `-i` flag, similar to the following:

$ docker exec -i some-%%REPO%% sh -c 'exec mariadb -uroot -p"$MARIADB_ROOT_PASSWORD"'

< /some/path/on/your/host/all-databases.sql

Physical Backups
mariadb-backup is in the Docker Official Image.

Backup

MariaDB Backup can create a backup as follows:

To perform a backup using Mariabackup, a second container is started that shares the original container's data directory. An

additional volume for the backup needs to be included in the second backup instance. Authentication against the MariaDB

database instance is required to successfully complete the backup. In the example below, a `mysql@localhost` user is used

with the MariaDB server's Unix socket shared with the backup container.

$ docker volume create some-%%REPO%%-socket

$ docker run --name some-%%REPO%% -v /my/own/datadir:/var/lib/mysql

-v some-%%REPO%%-socket:/var/run/mysqld -e MARIADB_MYSQL_LOCALHOST_USER=1

-e MARIADB_MYSQL_LOCALHOST_GRANTS="RELOAD, PROCESS, LOCK TABLES, BINLOG MONITOR"

-e MARIADB_ROOT_PASSWORD=my-secret-pw -d %%IMAGE%%:latest

Note: Privileges listed here are for 10.5+. For an exact list, see Mariabackup: Authentication and Privileges.

Mariabackup will run as the `mysql` user in the container, so the permissions on `/backup` will need to ensure that it can be

written to by this user:

$ docker volume create some-%%REPO%%-backup

$ docker run --rm some-%%REPO%%-backup

-v some-%%REPO%%-backup:/backup %%IMAGE%%:latest chown mysql: /backup

Restore

These steps restore the backup made with Mariabackup.

At some point before doing the restore, the backup needs to be prepared. Perform the prepare like this:

$ docker run --user mysql --rm -v some-%%REPO%%-backup:/backup

%%IMAGE%%:latest mariabackup --prepare --target-dir=/backup

Now that the image is prepared, start the container with both the data and the backup volumes and restore the backup:

$ docker run --user mysql --rm -v /my/new/datadir:/var/lib/mysql

-v some-%%REPO%%-backup:/backup %%IMAGE%%:latest mariabackup --copy-back --target-dir=/backup

With `/my/new/datadir` containing the restored backup, start normally as this is an initialized data directory:

$ docker run --name some-%%REPO%% -v /my/new/datadir:/var/lib/mysql -d %%IMAGE%%:latest

For further information on Mariabackup, see Mariabackup Overview.

2.1.2.14.6.4 Container Security Concerns
When using containers in production, it is important to be aware of container security concerns.

1557/4161

Contents
1. Host System Security

2. Images Security

3. References

Host System Security
Depending on the container runtime, containers may be running on the host system's kernel or a kernel shared with other

containers. If this kernel has security bugs, those bugs are also present in the containers. Malicious containers may attempt

to explain a kernel vulnerability to impact the confidentiality, integrity or availability of other containers.

In particular, Linux based containers have a container runtime that can use the following features:

Namespaces, to isolate containers from each other and make sure that a container can't establish unauthorized

connections to another container.

Seccomp security profiles .

Rootless operation in Docker , or Rootless Podman

cgroups , to limit the resources (CPU, memory, IO) that each container can consume.

The administrators of a system should be particularly careful to upgrade the kernel whenever security bugs to these

features are fixed.

It is important to note that when we upgrade the kernel, runC or Docker itself we cause downtime for all the containers

running on the system.

Images Security
Containers are built from images. If security is a major concern, you should make sure that the images you use are secure.

If you want to be sure that you are pulling authentic images, you should only pull images signed with Docker Content Trust.

Signing only ensure authenticity or origin, it doesn't dictate that entity is trustworthy.

Updated images should be used. An image usually downloads packages information at build time. If the image is not

recently built, a newly created container will have old packages. Updating the packages on container creation and regularly

re-updating them will ensure that the container uses packages with the most recent versions. Rebuilding an image often will

reduce the time necessary to update the packages the first time.

Security bugs are usually important for a database server, so you don't want your version of MariaDB to contain known

security bugs. But suppose you also have a bug in Docker, in runC, or in the kernel. A bug in a user-facing application may

allow an attacker to exploit a bug in those lower level technologies. So, after gaining access to the container, an attacker

may gain access to the host system. This is why system administrators should keep both the host system and the software

running in the containers updated.

References
For more information, see the following links:

Container Security from Red Hat.

Docker security on Docker documentation.

Content initially contributed by Vettabase Ltd .

2.1.2.14.6.5 Adding Plugins to the MariaDB
Docker Official Image
MariaDB has many plugins. Most are not enabled by default, some are in the mariadb container, while others need to be

installed from additional packages.

The following methods summarize Installing plugins in the MariaDB Docker Library Container (mariadb.org blog post) on

this topic.

Which Plugins Does the Container Contain?

To see which plugins are available in the mariadb:

1558/4161

https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/rootless/
https://www.redhat.com/sysadmin/rootless-containers-podman
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://www.redhat.com/en/topics/security/container-security
https://docs.docker.com/engine/security/
https://vettabase.com/
https://mariadb.org/installing-plugins-in-the-mariadb-docker-library-container/

$ docker run --rm mariadb:latest ls -C /usr/lib/mysql/plugin

Enabling a Plugin Using Flags

Using the `--plugin-load-add` flag with the plugin name (can be repeated), the plugins will be loaded and ready when the

container is started:

For example, to enable the `simple_password_check` plugin:

$ docker run --name some-%%REPO%% -e MARIADB_ROOT_PASSWORD=my-secret-pw --network=host -d mariadb:latest --plugin-load-add=simple_password_check

Enabling a Plugin in the Configuration Files

plugin-load-add` can be used as a configuration option to load plugins. The example below loads the FederatedX Storage

Engine.

$ printf "[mariadb]\nplugin-load-add=ha_federatedx\n" > /my/custom/federatedx.conf

$ docker run --name some-mariadb -v /my/custom:/etc/mysql/conf.d -e MARIADB_ROOT_PASSWORD=my-secret-pw -d mariadb:latest

Install a Plugin Using SQL in /docker-entrypoint-initdb.d

INSTALL SONAME can be used to install a plugin as part of the database initialization.

Create the SQL file used in initialization:

$ echo 'INSTALL SONAME "disks";' > my_initdb/disks.sql

In this case, the `my_initdb` is a `/docker-entrypoint-initdb.d` directory per "Initializing a fresh instance" section above.

Identifying Additional Plugins in Additional Packages

A number of plugins are in separate packages to reduce their installation size. The package names of MariaDB-created

plugins can be determined using the following command:

$ docker run --rm mariadb:latest sh -c 'apt-get update -qq && apt-cache search mariadb-plugin'

Creating an Image With Plugins From Additional Packages

A new image needs to be created when using additional packages. The mariadb image can however be used as a base:

In the following, the CONNECT Storage Engine is installed:

FROM mariadb:latest

RUN apt-get update && \

 apt-get install mariadb-plugin-connect -y && \

 rm -rf /var/lib/apt/lists/*

Installing plugins from packages creates a configuration file in the directory `/etc/mysql/mariadb.conf.d/` that loads the plugin

on startup.

2.1.2.14.6.6 Setting Up a LAMP Stack with
Docker Compose
Docker Compose is a tool that allows one to declare which Docker containers should run, and which relationships should

exist between them. It follows the infrastructure as code approach, just like most automation software and Docker itself.

For information about installing Docker Compose, see Install Docker Compose in Docker documentation.

1559/4161

https://docs.docker.com/compose/install/

Contents
1. The docker-compose.yml File

1. About Volumes

2. Using Variables

2. Docker Compose Commands

3. Docker Compose Resources and References

The docker-compose.yml File

When using Docker Compose, the Docker infrastructure must be described in a YAML file called docker-compose.yml .

Let's see an example:

version: "3"

services:

 web:

 image: "apache:${PHP_VERSION}"

 restart: 'always'

 depends_on:

 - mariadb

 restart: 'always'

 ports:

 - '8080:80'

 links:

 - mariadb

 mariadb:

 image: "mariadb:${MARIADB_VERSION}"

 restart: 'always'

 volumes:

 - "/var/lib/mysql/data:${MARIADB_DATA_DIR}"

 - "/var/lib/mysql/logs:${MARIADB_LOG_DIR}"

 - /var/docker/mariadb/conf:/etc/mysql

 environment:

 MYSQL_ROOT_PASSWORD: "${MYSQL_ROOT_PASSWORD}"

 MYSQL_DATABASE: "${MYSQL_DATABASE}"

 MYSQL_USER: "${MYSQL_USER}"

 MYSQL_PASSWORD: "${MYSQL_PASSWORD}"

In the first line we declare that we are using version 3 of the Docker compose language.

Then we have the list of services, namely the web and the mariadb services.

Let's see the properties of the services:

port maps the 8080 container port to the 80 host system port. This is very useful for a development environment,

but not in production, because it allows us to connect our browser to the containerized web server. Normally there is

no need to connect to MariaDB from the host system.

links declares that this container must be able to connect mariadb . The hostname is the container name.

depends_on declares that mariadb needs to start before web . This is because we cannot do anything with our

application until MariaDB is ready to accept connections.

restart: always declares that the containers must restart if they crash.

volumes creates volumes for the container if it is set in a service definition, or a volume that can be used by any

container if it is set globally, at the same level as services . Volumes are directories in the host system that can be

accessed by any number of containers. This allows destroying a container without losing data.

environment sets environment variables inside the container. This is important because in setting these variables

we set the MariaDB root credentials for the container.

About Volumes

It is good practice to create volumes for:

The data directory, so we don't lose data when a container is created or replaced, perhaps to upgrade MariaDB.

The directory where we put all the logs, if it is not the datadir.

The directory containing all configuration files (for development environments), so we can edit those files with the

editor installed in the host system. Normally no editor is installed in containers. In production we don't need to do this,

because we can copy files from a repository located in the host system to the containers.

Note that Docker Compose variables are just placeholders for values. Compose does not support assignment, conditionals

or loops.

1560/4161

Using Variables

In the above example you can see several variables, like ${MARIADB_VERSION} . Before executing the file, Docker

Compose will replace this syntax with the MARIADB_VERSION variable.

Variables allow making Docker Compose files more re-usable: in this case, we can use any MariaDB image version without

modifying the Docker Compose file.

The most common way to pass variables is to write them into a file. This has the benefit of allowing us to version the

variable file along with the Docker Compose file. It uses the same syntax you would use in BASH:

PHP_VERSION=8.0

MARIADB_VERSION=10.5

...

For bigger setups, it could make sense to use different environment files for different services. To do so, we need to specify

the file to use in the Compose file:

services:

 web:

 env_file:

 - web-variables.env

...

Docker Compose Commands
Docker Compose is operated using docker-compose . Here we'll see the most common commands. For more commands

and for more information about the commands mentioned here, see the documentation.

Docker Compose assumes that the Composer file is located in the current directory and it's called docker-compose.yml .

To use a different file, the -f <filename> parameter must be specified.

To pull the necessary images:

docker-compose pull

Containers described in the Compose file can be created in several ways.

To create them only if they do not exist:

docker-compose up --no-recreate

To create them if they do not exist and recreate them if their image or configuration have changed:

docker-compose up

To recreate containers in all cases:

docker-compose up --force-recreate

Normally docker-compose up starts the containers. To create them without starting them, add the --no-start option.

To restart containers without recreating them:

docker-compose restart

To kill a container by sending it a SIGKILL :

docker-compose kill <service>

To instantly remove a running container:

docker-compose rm -f <serice>

To tear down all containers created by the current Compose file:

1561/4161

docker-compose down

Docker Compose Resources and References
Overview of Docker Compose in the Docker documentation.

Compose file in the Docker documentation.

Docker Compose on GitHub.

Further information about the concepts explained in this page can be found in Docker documentation:

Environment variables in Compose .

Overview of docker-compose CLI .

Compose command-line reference .

Content initially contributed by Vettabase Ltd .

2.1.2.14.6.7 Creating a Custom Container
Image
OCI containers, frequently and incorrectly called Docker containers, are created from OCI images. An image contains

software that can be launched, including the underlying system. A container is an instance of that software.

When we want to automate MariaDB, creating an image with MariaDB and the desired configuration, we may want to create

an image by ourselves, which fulfils our needs.

Contents
1. Images Architecture

2. Dockerfile Syntax

1. Using Variables

3. Versioning and Deploying Images

1. Container registries

2. Choosing Image Names and Tags

3. Pushing and Pulling Images

4. Docker Content Trust

4. Good Practices and Caveats

5. References

Images Architecture
One "source code" of an image is a Dockerfile. A Dockerfile is written in Docker specific language, and can be compiled into

an image by the docker binary, using the docker build command. It can also be compiled by buildah using

buildah bud .

Most images are based on another image. The base image is specified at the beginning of the Dockerfile, with the FROM

directive. If the base image is not present in the local system, it is downloaded from the repository specified, or if not

specified, from the default repository of the build program. This is often Docker Hub. For example, we can build a mariadb-

rocksdb:10.5 image starting from the debian:13 image. In this way, we'll have all the software included in a standard

Debian image, and we'll add MariaDB and its configuration upon that image.

All the following Dockerfile directives are compiled into a new Docker image, identified by an SHA256 string. Each of these

images is based on the image compiled from the previous directive. A physical compiled image can serve as a base for any

number of images. This mechanism saves a lot of disk space, download time and build time.

The following diagram shows the relationship between Dockerfiles, images and containers:

1562/4161

https://docs.docker.com/compose/
https://docs.docker.com/compose/compose-file/
https://github.com/docker/compose
https://docs.docker.com/compose/environment-variables/
https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/
https://vettabase.com/
https://buildah.io/

Dockerfile Syntax
Here's a simple Dockerfile example:

FROM ubuntu:20.04

RUN apt-get update

RUN apt-get install -y mariadb-server

EXPOSE 3306

LABEL version="1.0"

LABEL description="MariaDB Server"

HEALTHCHECK --start-period=5m \

 CMD mariadb -e 'SELECT @@datadir;' || exit 1

CMD ["mariadbd"]

This example is not very good for practical purposes, but it shows what a Dockerfile looks like.

First, we declare that the base image to use is ubuntu:20.04 .

Then we run some commands to install MariaDB from the Ubuntu default repositories and stop the MariaDB service.

We define some metadata about the image with LABEL . Any label is valid.

We declare that the port 3306 (MariaDB default port) should be exposed. However, this has no effect if the port is not

exposed at container creation.

We also define a healthcheck. This is a command that is run to check if the container is healthy. If the return code is 0 the

healthcheck succeeds, if it's 1 it fails. In the MariaDB specific case, we want to check that it's running and able to answer a

simple query. This is better than just checking that MariaDB process is running, because MariaDB could be running but

unable to respond, for example because max_connections was reached or data si corrupted. We read a system variable,

because we should not assume that any user-created table exists. We also specify --start-period to allow some time

for MariaDB to start, keeping in mind that restarting it may take some time if some data is corrupted. Note that there can be

only one healthcheck: if the command is specified multiple times, only the last occurrence will take effect.

Finally, we start the container command: mariadbd. This command is run when a container based on this image starts.

When the process stops or crashes, the container will immediately stop.

Note that, in a container, we normally run mariadbd directly or in an entrypoint script exec mariadbd , rather than running

mysqld_safe or running MariaDB as a service. Containers restart can be handled by the container service. See automatic

restart.

See the documentation links below to learn the syntax allowed in a Dockerfile.

Using Variables

It is possible to use variables in a Dockerfile. This allows us, for example, to install different packages, install different

versions of a package, or configure software differently depending on how variables are set, without modifying the

Dockerfile itself.

To use a variable, we can do something like this:

FROM ubuntu:20.04

ARG MARIADB_CONFIG_FILE

...

ENTRYPOINT mariadbd --defaults-file=$MARIADB_CONFIG_FILE

Here ARG is used after the FROM directive, thus the variable cannot be used in FROM . It is also possible to declare a

variable before FROM , so we can use a variable to select the base image to use or its tag, but in this case the variable

cannot be used after the FROM directive, unless ARG is re-declared after the FROM . Here is an example:

1563/4161

ARG UBUNTU_VERSION

FROM ubuntu:$UBUNTU_VERSION

Uncomment for the build error to be avoided

ARG UBUNTU_VERSION

But this will cause a build error:

RUN echo 'Ubuntu version: $UBUNTU_VERSION' > /var/build_log

We'll have to assign variables a value when we build the Dockerfile, in this way:

docker build --build-arg UBUNTU_VERSION=20.04 .

Note that Dockerfile variables are just placeholders for values. Dockerfiles do not support assignment, conditionals or loops.

Versioning and Deploying Images
Dockerfiles are normally versioned, as well as the files that are copied to the images.

Once an image is built, it can be pushed to a container registry. Whenever an image is needed on a host to start containers

from it, it is pulled from the registry.

Container registries

A default container registry for OCI images is Docker Hub. It contains Docker Official Images maintained by the Docker

Library team and the community. Any individual or organization can open an account and push images to Docker Hub. Most

Docker images are open source: the Dockerfiles and the needed files to build the images are usually on GitHub.

It is also possible to setup a self-hosted registry. Images can be pushed to that registry and pulled from it, instead of using

Docker Hub. If the registry is not publicly accessible, it can be used to store images used by the organization without making

them publicly available.

But a self-hosted registry can also be useful for open source images: if an image is available on Docker Hub and also on a

self-hosted registry, in case Docker Hub is down or not reachable, it will still be possible to pull images.

Choosing Image Names and Tags

The names of images developed by the community follow this schema:

repository/maintainer/technology

It doesn't matter if the maintainer is an individual or an organization. For images available on Docker Hub, the maintainer is

the name of a Docker Hub account.

Official images maintained by the Docker Library maintainers have the implicit name of library filled in by the container

fetching tool. For example, the official MariaDB image is called mariadb which is an alias for

docker.io/library/mariadb .

All images have a tag, which identifies the version or the variant of an image. For example, all MariaDB versions available

on Docker are used as image tags. MariaDB 10.11 is called mariadb:10.11 .

By conversion, tags form a hierarchy. So for example, there is a 10.1.1 tag whose meaning will not change over time.

10.5 will always identify the latest stable version in the 10.5 branch. For some time it was 10.5.1 , then it became

10.5.2 , and so on.

When we pull an image without specifying a tag (ie, docker pull mariadb), we are implicitly requiring the image with the

latest tag. This is even more mutable: at different periods of time, it pointed to the latest 10.0 version, to the latest

10.1 version, and so on.

In production, it is always better to know for sure which version we are installing. Therefore it is better to specify a tag

whose meaning won't change over time, like 10.5.21 . To keep to a latest LTS version, the lts can be used.

Pushing and Pulling Images

To pull an image from Docker Hub or a self-hosted registry, we use the docker pull command. For example:

1564/4161

docker pull mariadb:10.5

This command downloads the specified image if it is not already present in the system, or if the local version is not up to

date.

After modifying a Dockerfile, we can build an image in this way:

docker build .

This step can be automated by services like Docker Hub and GitHub. Check those service's documentation to find out how

this feature works.

Once an image is created, it can be pushed to a registry. We can do it in this way:

docker push <image_name>:<tag>

Docker Content Trust

Docker has a feature called Docker Content Trust (DCT). It is a system used to digitally sign images, based on PEM keys.

For environments where security is a major concern, it is important to sign images before pushing them. This can be done

with both Docker Hub and self-hosted registries.

Good Practices and Caveats
As mentioned, a Dockerfile is built by creating a new image for each directive that follows FROM . This leads to some

considerations.

Sometimes it can be a good idea to run several shell commands in a single RUN directive to avoid creating images

that are not useful.

Modifying a directive means that all subsequent directives also need to be rebuilt. When possible, directives that are

expected to change often should follow directives that will change seldom.

Directives like LABEL or EXPOSE should be placed close to the end of Dockerfiles. In this way they will be rebuilt

often, but this operation is cheap. On the other side, changing a label should not trigger a long rebuild process.

Variables should be used to avoid Dockerfiles proliferation. But if a variable is used, changing its value should be

tested. So, be sure not to use variables without a good reason.

Writing logic into a Dockerfile is impossible or very hard. Call shell scripts instead, and write your logic into them. For

example, in a shell script it is easy to perform a certain operation only if a variable is set to a certain value.

If you need MariaDB containers with different configurations or different sets of plugins, use the method explained

above. Do not create several Dockerfiles, with different tags, for each desired configuration or plugin set. This may

lead to undesired code duplication and increased maintenance costs.

References
More details can be found in the Docker documentation:

Dockerfile reference .

docker build .

Repositories .

Deploy a registry server .

Content trust in Docker .

See also:

Privacy-Enhanced Mail on Wikipedia.

Content initially contributed by Vettabase Ltd .

2.1.2.14.6.8 MariaDB Server Docker Official
Image Environment Variables

1565/4161

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/engine/security/trust/
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://vettabase.com/

Contents
1. MARIADB_ROOT_PASSWORD_HASH / MARIADB_ROOT_PASSWORD / MYSQL_ROOT_PASSWORD

2. MARIADB_ALLOW_EMPTY_ROOT_PASSWORD / MYSQL_ALLOW_EMPTY_PASSWORD

3. MARIADB_RANDOM_ROOT_PASSWORD / MYSQL_RANDOM_ROOT_PASSWORD

4. MARIADB_ROOT_HOST / MYSQL_ROOT_HOST

5. MARIADB_DATABASE / MYSQL_DATABASE

6. MARIADB_USER / MYSQL_USER, MARIADB_PASSWORD_HASH / MARIADB_PASSWORD /

MYSQL_PASSWORD

7. MARIADB_MYSQL_LOCALHOST_USER / MARIADB_MYSQL_LOCALHOST_GRANTS

8. MARIADB_HEALTHCHECK_GRANTS

9. MARIADB_INITDB_SKIP_TZINFO / MYSQL_INITDB_SKIP_TZINFO

10. MARIADB_AUTO_UPGRADE / MARIADB_DISABLE_UPGRADE_BACKUP

11. MARIADB_MASTER_HOST

12. MARIADB_REPLICATION_USER / MARIADB_REPLICATION_PASSWORD_HASH /

MARIADB_REPLICATION_PASSWORD

When you start the image, you can adjust the initialization of the MariaDB Server instance by passing one or more

environment variables on the docker run command line. Do note that all of the variables below, except

MARIADB_AUTO_UPGRADE , will have now effect if you start the container with a data directory that already contains a

database: any pre-existing database will always be left untouched on container startup.

From tag 10.2.38, 10.3.29, 10.4.19, 10.5.10 onwards, and all 10.6 and later tags, the MARIADB_* equivalent variables are

provided. MARIADB_* variants will always be used in preference to MYSQL_* variants.

One of MARIADB_ROOT_PASSWORD_HASH, MARIADB_ROOT_PASSWORD,

MARIADB_ALLOW_EMPTY_ROOT_PASSWORD, or MARIADB_RANDOM_ROOT_PASSWORD (or equivalents, including

*_FILE), is required. The other environment variables are optional.

MARIADB_ROOT_PASSWORD_HASH /
MARIADB_ROOT_PASSWORD / MYSQL_ROOT_PASSWORD

This specifies the password that will be set for the MariaDB root superuser account.

MARIADB_ALLOW_EMPTY_ROOT_PASSWORD /
MYSQL_ALLOW_EMPTY_PASSWORD

Set to a non-empty value, like 1 , to allow the container to be started with a blank password for the root user. NOTE:

Setting this variable to yes is not recommended unless you really know what you are doing, since this will leave your

MariaDB instance completely unprotected, allowing anyone to gain complete superuser access.

MARIADB_RANDOM_ROOT_PASSWORD /
MYSQL_RANDOM_ROOT_PASSWORD

Set to a non-empty value, like yes, to generate a random initial password for the root user. The generated root password

will be printed to stdout (GENERATED ROOT PASSWORD:).

MARIADB_ROOT_HOST / MYSQL_ROOT_HOST

This is the hostname part of the root user created. By default this is %, however it can be set to any default MariaDB allowed

hostname component. Setting this to localhost will prevent any root user being accessible except via the unix socket.

MARIADB_DATABASE / MYSQL_DATABASE

This variable allows you to specify the name of a database to be created on image startup.

MARIADB_USER / MYSQL_USER, MARIADB_PASSWORD_HASH /
MARIADB_PASSWORD / MYSQL_PASSWORD

Both user and password variables, along with a database, are required for a user to be created. This user will be granted all

access (corresponding to GRANT ALL) to the MARIADB_DATABASE database.

Do not use this mechanism to create the root superuser, that user gets created by default with the password specified by

the MARIADB_ROOT_PASSWORD / MYSQL_ROOT_PASSWORD variable.

1566/4161

MARIADB_MYSQL_LOCALHOST_USER /
MARIADB_MYSQL_LOCALHOST_GRANTS

Set MARIADB_MYSQL_LOCALHOST_USER to a non-empty value to create the mysql@locahost database user. This user

is especially useful for a variety of health checks and backup scripts.

The mysql@localhost user gets USAGE privileges by default. If more access is required, additional global privileges in the

form of a comma separated list can be provided. If you are sharing a volume containing MariaDB's unix socket

(/var/run/mysqld by default), privileges beyond USAGE can result in confidentiality, integrity and availability risks, so use a

minimal set. Its also possible to use for Mariadb-backup. The healthcheck.sh script also documents the required privileges

for each health check test.

MARIADB_HEALTHCHECK_GRANTS

Set MARIADB_HEALTHCHECK_GRANTS to the grants required to be given to the healthcheck@localhost ,

healthcheck@127.0.0.1 , healthcheck@::1 , users. When not specified the default grant is USAGE .

The main value used here will be REPLICA MONITOR for the healthcheck --replication test.

MARIADB_INITDB_SKIP_TZINFO / MYSQL_INITDB_SKIP_TZINFO

By default, the entrypoint script automatically loads the timezone data needed for the CONVERT_TZ() function. If it is not

needed, any non-empty value disables timezone loading.

MARIADB_AUTO_UPGRADE /
MARIADB_DISABLE_UPGRADE_BACKUP

Set MARIADB_AUTO_UPGRADE to a non-empty value to have the entrypoint check whether mariadb-upgrade needs to

run, and if so, run the upgrade before starting the MariaDB server.

Before the upgrade, a backup of the system database is created in the top of the datadir with the name

system_mysql_backup_*.sql.zst. This backup process can be disabled with by setting

MARIADB_DISABLE_UPGRADE_BACKUP to a non-empty value.

If MARIADB_AUTO_UPGRADE is set, and the .my-healthcheck.cnf file is missing, the healthcheck users are recreated

if they don't exist, MARIADB_HEALTHCHECK_GRANTS

grants are given, the passwords of the healthcheck users are reset to a random value and the .my-healthcheck.cnf

file is recreated with the new password populated.

MARIADB_MASTER_HOST

When specified, the container will connect to this host and replicate from it.

MARIADB_REPLICATION_USER /
MARIADB_REPLICATION_PASSWORD_HASH /
MARIADB_REPLICATION_PASSWORD

When MARIADB_MASTER_HOST is specified, MARIADB_REPLICATION_USER and

MARIADB_REPLICATION_PASSWORD will be used to connect to the master.

When not specified, the MARIADB_REPLICATION_USER will be created with the REPLICATION REPLICA grants required

to a client to start replication.

2.1.2.14.5.4 Running MariaDB ColumnStore Docker
containers on Linux, Windows and MacOS

2.1.2.14.6.10 Docker Official Image Frequently
Asked Questions

See MariaDB and Docker in action!
1567/4161

Contents
1. How to Reset Passwords

2. Temp Server Start Timeout

3. Creating a replication pair

4. Event Scheduler: An error occurred when initializing system tables. Disabling the Event Scheduler.

5. InnoDB: Upgrade after a crash is not supported. The redo log was created with MariaDB X.Y.Z

6. Every MariaDB start gives permission denies messages

7. Every MariaDB start is a crash recovery

8. How do I create a MariaDB-backup of the data?

9. How do I restore from a MariaDB-backup

10. How to start MariaDB with Apptainer

11. Why does the MariaDB container start as root?

12. Can I run the MariaDB container as an arbitrary user?

Frequently asked questions about the Docker Official Image

How to Reset Passwords
If you have an existing data directory and wish to reset the root and user passwords, and to create a database which the

user can fully modify, perform the following steps.

First create a `passwordreset.sql` file:

CREATE USER IF NOT EXISTS root@localhost IDENTIFIED BY 'thisismyrootpassword';

SET PASSWORD FOR root@localhost = PASSWORD('thisismyrootpassword');

GRANT ALL ON *.* TO root@localhost WITH GRANT OPTION;

GRANT PROXY ON ''@'%' ON root@localhost WITH GRANT OPTION;

CREATE USER IF NOT EXISTS root@'%' IDENTIFIED BY 'thisismyrootpassword';

SET PASSWORD FOR root@'%' = PASSWORD('thisismyrootpassword');

GRANT ALL ON *.* TO root@'%' WITH GRANT OPTION;

GRANT PROXY ON ''@'%' ON root@'%' WITH GRANT OPTION;

CREATE USER IF NOT EXISTS myuser@'%' IDENTIFIED BY 'thisismyuserpassword';

SET PASSWORD FOR myuser@'%' = PASSWORD('thisismyuserpassword');

CREATE DATABASE IF NOT EXISTS databasename;

GRANT ALL ON databasename.* TO myuser@'%';

Adjust `myuser`, `databasename` and passwords as needed.

Then:

$ docker run --rm -v /my/own/datadir:/var/lib/mysql -v /my/own/passwordreset.sql:/passwordreset.sql:z %%IMAGE%%:latest --init-file=/passwordreset.sql

On restarting the MariaDB container in this `/my/own/datadir`, the `root` and `myuser` passwords will be reset.

Temp Server Start Timeout
Question, are you getting errors like the following where a temporary server start fails to succeed in 30 seconds?

Example of log:

2023-01-28 12:53:42+00:00 [Note] [Entrypoint]: Starting temporary server

2023-01-28 12:53:42+00:00 [Note] [Entrypoint]: Waiting for server startup

2023-01-28 12:53:42 0 [Note] mariadbd (server 10.10.2-MariaDB-1:10.10.2+maria~ubu2204) starting as process 72 ...

....

2023-01-28 12:53:42 0 [Note] InnoDB: Setting file './ibtmp1' size to 12.000MiB. Physically writing the file full; Please wait ...

2023-01-28 12:54:13 0 [Note] mariadbd: ready for connections.

Version: '10.10.2-MariaDB-1:10.10.2+maria~ubu2204' socket: '/run/mysqld/mysqld.sock' port: 0 mariadb.org binary distribution

2023-01-28 12:54:13+00:00 [ERROR] [Entrypoint]: Unable to start server.

Set up web-based developer environments locally, and connect MariaDB to VS Code Server, CloudBeaver,

PHP/Laravel and phpMyAdmin, using a single docker-compose command and configuration file.

Watch the Webinar

1568/4161

https://go.mariadb.com/24Q2-WBN-GLBL-2024-02-22-Develop-via-Docker_Registration-LP.html?utm_source=onpagepromo&utm_medium=kb&utm_campaign=webinar-develop-via-docker

The timeout on a temporary server start is a quite generous 30 seconds.

The lack of a message like the following indicates it failed to complete writing a temporary file of 12MiB in 30 seconds.

2023-01-28 12:53:46 0 [Note] InnoDB: File './ibtmp1' size is now 12.000MiB.

If the datadir where this is stored is remote storage maybe it's a bit slow. It's ideal to have an InnoDB temporary path local

so this can be configured using the command or configuration setting:

innodb_temp_data_file_path=/dev/shm/ibtmp1:12M:autoextend

Note: depending on container runtime this space may be limited.

Creating a replication pair
`MARIADB_REPLICATION_USER` / `MARIADB_REPLICATION_PASSWORD` specify the authentication for the

connection. The `MARIADB_MASTER_HOST` is the indicator that it is a replica and specifies the container aka hostname,

of the master.

A `docker-compose.yml` example:

version: "3"

services:

 master:

 image: mariadb:latest

 command: --log-bin --log-basename=mariadb

 environment:

 - MARIADB_ROOT_PASSWORD=password

 - MARIADB_USER=testuser

 - MARIADB_PASSWORD=password

 - MARIADB_DATABASE=testdb

 - MARIADB_REPLICATION_USER=repl

 - MARIADB_REPLICATION_PASSWORD=replicationpass

 healthcheck:

 test: ["CMD", "healthcheck.sh", "--connect", "--innodb_initialized"]

 interval: 10s

 timeout: 5s

 retries: 3

 replica:

 image: mariadb:latest

 command: --server-id=2 --log-basename=mariadb

 environment:

 - MARIADB_ROOT_PASSWORD=password

 - MARIADB_MASTER_HOST=master

 - MARIADB_REPLICATION_USER=repl

 - MARIADB_REPLICATION_PASSWORD=replicationpass

 - MARIADB_HEALTHCHECK_GRANTS=REPLICA MONITOR

 healthcheck:

 test: ["CMD", "healthcheck.sh", "--connect", "--replication_io", "--replication_sql", "--replication_seconds_behind_master=1", "--replication"]

 interval: 10s

 timeout: 5s

 retries: 3

 depends_on:

 master:

 condition: service_healthy

Event Scheduler: An error occurred when initializing
system tables. Disabling the Event Scheduler.
This will show up in the container log as:

2024-01-29 17:38:13 0 [ERROR] Incorrect definition of table mysql.event: expected column 'definer' at position 3 to have type varchar(, found type char(141).

2024-01-29 17:38:13 0 [ERROR] mariadbd: Event Scheduler: An error occurred when initializing system tables. Disabling the Event Scheduler.

The cause is the underlying table has change structure from the last MariaDB version. The easiest solution to this is to start

the container with the environment variable MARIADB_AUTO_UPGRADE=1 and system tables will be updated. This is safe

1569/4161

to keep on as it detects the version installed. The next start should not show this error.

InnoDB: Upgrade after a crash is not supported. The redo
log was created with MariaDB X.Y.Z
This will show up in the error log as:

2022-05-23 12:29:20 0 [ERROR] InnoDB: Upgrade after a crash is not supported. The redo log was created with MariaDB 10.5.4.

2022-05-23 12:29:20 0 [ERROR] InnoDB: Plugin initialization aborted with error Generic error

This is attempting to start on a higher MariaDB version when the shutdown of the previous version crashed.

By crashed, it means the MariaDB was force killed or had a hard power failure. MariaDB, being a durable database, can

recover from these, if started with the same version. The redo log however is a less stable format, so the recovery has to be

on the same Major.Minor version, in this case 10.5. This error message is saying that you when from force killed MariaDB to

a later version.

So whenever you encounter this message. Start with the again with the tag set to the version in the error message, like

10.5.4, or as the redo long format is consistent in the Major.Minor version 10.5 is sufficient. After this has been started

correctly, cleanly shut the service down and it will be recovered.

The logs on shutdown should have a message like:

2023-11-06 10:49:23 0 [Note] InnoDB: Shutdown completed; log sequence number 84360; transaction id 49

2023-11-06 10:49:23 0 [Note] mariadbd: Shutdown complete

After you see this, you can update your MariaDB tag to a later version.

Every MariaDB start gives permission denies messages

2024-02-06 03:03:18+00:00 [Note] [Entrypoint]: Entrypoint script for MariaDB Server 1:10.11.6+maria~ubu2204 started.

/usr/local/bin/docker-entrypoint.sh: line 600: /var/lib/mysql//mysql_upgrade_info: Permission denied

2024-02-06 03:03:18+00:00 [Note] [Entrypoint]: MariaDB upgrade (mariadb-upgrade) required, but skipped due to $MARIADB_AUTO_UPGRADE setting

2024-02-06 3:03:18 0 [Warning] Can't create test file '/var/lib/mysql/80a2bb81d698.lower-test' (Errcode: 13 "Permission denied")

2024-02-06 3:03:18 0 [Note] Starting MariaDB 10.11.6-MariaDB-1:10.11.6+maria~ubu2204 source revision fecd78b83785d5ae96f2c6ff340375be803cd299 as process 1

2024-02-06 3:03:18 0 [ERROR] mariadbd: Can't create/write to file './ddl_recovery.log' (Errcode: 13 "Permission denied")

2024-02-06 3:03:18 0 [ERROR] DDL_LOG: Failed to create ddl log file: ./ddl_recovery.log

2024-02-06 3:03:18 0 [ERROR] Aborting

In this case, the container is running as a user that, inside the container, does not have write permissions on the datadir,

External images are disabled.

Every MariaDB start is a crash recovery
Do you get on every start:

db-1 | 2023-02-25 19:10:02 0 [Note] Starting MariaDB 10.11.2-MariaDB-1:10.11.2+maria~ubu2204-log source revision cafba8761af55ae16cc69c9b53a341340a845b36 as process 1

db-1 | 2023-02-25 19:10:02 0 [Note] mariadbd: Aria engine: starting recovery

db-1 | tables to flush: 3 2 1 0

db-1 | (0.0 seconds);

db-1 | 2023-02-25 19:10:02 0 [Note] mariadbd: Aria engine: recovery done

...

db-1 | 2023-02-26 13:03:29 0 [Note] InnoDB: Initializing buffer pool, total size = 32.000GiB, chunk size = 512.000MiB

db-1 | 2023-02-26 13:03:29 0 [Note] InnoDB: Completed initialization of buffer pool

db-1 | 2023-02-26 13:03:29 0 [Note] InnoDB: File system buffers for log disabled (block size=512 bytes)

db-1 | 2023-02-26 13:03:29 0 [Note] InnoDB: Starting crash recovery from checkpoint LSN=193796878816

Container runtimes are assume to start and stop very quickly. Check the the shutdown logs. They may be a log like:

1570/4161

db-1 | 2023-02-26 13:03:17 0 [Note] InnoDB: Starting shutdown...

db-1 | 2023-02-26 13:03:17 0 [Note] InnoDB: Dumping buffer pool(s) to /var/lib/mysql/ib_buffer_pool

db-1 | 2023-02-26 13:03:17 0 [Note] InnoDB: Restricted to 519200 pages due to innodb_buf_pool_dump_pct=25

db-1 | 2023-02-26 13:03:17 0 [Note] InnoDB: Buffer pool(s) dump completed at 230226 13:03:17

db-1 exited with code 0

Note that the logs didn't include the following messages:

db-1 | 2023-02-26 13:03:43 0 [Note] InnoDB: Shutdown completed; log sequence number 46590; transaction id 15

db-1 | 2023-02-26 13:03:43 0 [Note] mariadbd: Shutdown complete

As these messages aren't here, the container was killed off before it could just down cleanly. When this happens, the startup

will be a crash recovery and you won't be able to upgrade your MariaDB instance (previous FAQ) to the next Major.Minor

version.

Solution is to extend the timeout in the container runtime to allow MariaDB to complete its shutdown.

How do I create a MariaDB-backup of the data?

docker volume create backup

docker run --name mdb -v backup:/backup -v datavolume:/var/lib/mysql mariadb

docker exec mdb mariadb-backup --backup --target-dir=/backup/d --user root --password soverysecret

docker exec mdb mariadb-backup --prepare --target-dir=/backup/d

docker exec mdb sh -c '[! -f /backup/d/.my-healthcheck.cnf] && cp /var/lib/mysql/.my-healthcheck.cnf /backup/d'

docker exec --workdir /backup/d mdb tar -Jcf ../backup.tar.xz .

docker exec mdb rm -rf /backup/d

How do I restore from a MariaDB-backup
With the backup prepared like previously:

docker run -v backup:/docker-entrypoint-initdb.d -v newdatavolume:/var/lib/mysql mariadb

How to start MariaDB with Apptainer
Because Apptainer has all the filesystems readonly except or the volume, the /run/mysqld directory is used as a pidfile and

socket directory. An easy way is to mark this as a scratch directory.

mkdir mydatadir

apptainer run --no-home --bind $PWD/mydatadir:/var/lib/mysql --env MARIADB_RANDOM_ROOT_PASSWORD=1 --net --network-args "portmap=3308:3306/tcp" --fakeroot --scratch=/run/mysqld docker://mariadb:10.5

Alternately:

apptainer run --no-home --bind $PWD/mydatadir:/var/lib/mysql --env MARIADB_RANDOM_ROOT_PASSWORD=1 --net --network-args "portmap=3308:3306/tcp" --fakeroot docker://mariadb:10.5 --socket=/var/lib/mysql/mariadb.sock --pid-file=/var/lib/mysql/mariadb.pid

Why does the MariaDB container start as root?
The MariaDB entrypoint briefly starts as root, and if a explicit volume is there, the owner of this volume will be root. To allow

MariaDB to use the CHOWN capability to change to the volume owner to a user that can write to this volume, it needs to be

briefly root. After this one action is taken, the entrypoint uses gosu to drop to a non-root user and continues execution.

There is no accessible exploit vector to remotely affect the container startup when it is briefly running as the root user.

Can I run the MariaDB container as an arbitrary user?
Yes. using the user: 2022 in a compose file, or --user 2022 as a command will run the entrypoint as the user id 2022. When

this occurs, it is assumed that the volume of the datadir has the right permissions for MariaDB to access the datadir. This

can be useful if your local user is user id 2022 and your datadir is owned locally by this user. Note inside the container there

isn't the same user names outside the container defined, so working with numbers is more portable.
1571/4161

2.1.2.14.6.11 MariaDB Container Cheat Sheet

Contents
1. Get the images

2. Create the network

3. Get the list of running containers

4. Start the client from the container

5. Inspect logs of a container

6. Restart the container

7. Run commands within the container

8. Use a volume to specify configuration options

9. Use a volume to specify grants during container start

Get the images
Images can be found on MariaDB Docker Hub .

To get the list of images run

$ docker images -a

Create the network

$ docker network create mynetwork

It is good practice to create the container network and attach the container to the network.

 Start the container with server options

To start the container in the background with the MariaDB server image run:

$ docker run --rm --detach \

--env MARIADB_ROOT_PASSWORD=sosecret \

--network mynetwork \

--name mariadb-server \

mariadb:latest

Additionally |environment variables are also provided.

Get the list of running containers

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

ad374ec8a272 mariadb:latest "docker-entrypoint.s&" 3 seconds ago Up 1 second

3306/tcp mariadb-server

Note: specify the flag -a in case you want to see all containers

Start the client from the container

See MariaDB and Docker in action!

Set up web-based developer environments locally, and connect MariaDB to VS Code Server, CloudBeaver,

PHP/Laravel and phpMyAdmin, using a single docker-compose command and configuration file.

Watch the Webinar

1572/4161

https://go.mariadb.com/24Q2-WBN-GLBL-2024-02-22-Develop-via-Docker_Registration-LP.html?utm_source=onpagepromo&utm_medium=kb&utm_campaign=webinar-develop-via-docker
https://hub.docker.com/_/mariadb

To start the mariadb client inside the created container and run specific commands, run the following:

$ docker exec -it mariadb-server mariadb -psosecret -e "SHOW PLUGINS"

Inspect logs of a container

$ docker logs mariadb-server

In the logs you can find status information about the server, plugins, generated passwords, errors and so on.

Restart the container

$ docker restart mariadb-server

Run commands within the container

$ docker exec -it mariadb-server bash

Use a volume to specify configuration options

$ docker run --detach --env MARIADB_USER=anel \

 --env MARIADB_PASSWORD=anel \

 --env MARIADB_DATABASE=my_db \

 --env MARIADB_RANDOM_ROOT_PASSWORD=1 \

 --volume $PWD/my_container_config:/etc/mysql/conf.d:z \

 --network mynetwork \

 --name mariadb-server1 \

 mariadb:latest

One can specify custom configuration files through the /etc/mysql/conf.d volume during container startup.

Use a volume to specify grants during container start

$ docker run --detach --env MARIADB_USER=anel\

 --env MARIADB_PASSWORD=anel \

 --env MARIADB_DATABASE=my_db \

 --env MARIADB_RANDOM_ROOT_PASSWORD=1 \

 --volume $PWD/my_init_db:/docker-entrypoint-initdb.d \

 --network mynetwork \

 --name mariadb-server1 \

 mariadb:latest

User created with the environment variables has full grants only to the MARIADB_DATABASE. In order to override those

grants, one can specify grants to a user, or execute any SQL statements from host file to docker-entrypoint-initdb.d. In

the local_init_dir directory we can find the file, created like this:

$ echo "GRANT ALL PRIVILEGES ON *.* TO anel;" > my_init_db/my_grants.sql

2.1.2.14.6.12 Using Healthcheck.sh
The healthcheck.sh script is part of the Docker Official Images of MariaDB Server. The script is part of the respository of the

Docker Official Image of MariaDB Server .

The script processes a number of argument and tests, together, in strict order. Arguments pertaining to a test must occur

before the test name. If a test fails, no further processing is performed. Both arguments and tests begin with a double-

hyphen.

By default, (since 2023-06-27), official images will create healthcheck@localhost, healthcheck@127.0.0.1, healthcheck@::1

users with a random password and USAGE privileges. MARIADB_HEALTHCHECK_GRANTS can be used for --replication

1573/4161

https://github.com/MariaDB/mariadb-docker/blob/master/healthcheck.sh

where additional grants are required. This is stored in .my-healthcheck.cnf in the datadir of the container and passed as the

--defaults-extra-file to the healthcheck.sh script if it exists. The .my-healthcheck.cnf also sets protocol=tcp

for the mariadb so --connect is effectively there on all tests.

The MARIADB_MYSQL_LOCALHOST_USER=1, MARIADB_MYSQL_LOCALHOST_GRANTS environment variables can also be

used, but with the creation of the healthcheck user, these are backwards compatible.

Tests

--connect
This is active when a external user can connect to the TCP port of MariaDB Server. This strictly tests just the TCP

connection and not if any authentication works.

--innodb_initialized
This test is true when InnoDB has completed initializing. This includes any rollback or crash recovery that may be occurring

in the background as MariaDB is starting.

The connecting user must have USAGE privileges to perform this test.

--innodb_buffer_pool_loaded
This indicates that the buffer pool dump previously saved has been completed loaded into the InnoDB Buffer Pool and as

such the server has a hot cache ready for use. This checks the innodb_buffer_pool_load_status for a "complete" indicator.

This test doesn't check if innodb-system-variables/#innodb_buffer_pool_load_at_startupinnodb_buffer_pool_load_at_startup

is set at startup.

The connecting user must have USAGE privileges to perform this test.

--galera_online
This indicates that the galera node is online by the wsrep_local_state variable. This includes states like "joining" and

"donor" where it cannot serve SQL queries.

The connecting user must have USAGE privileges to perform this test.

--replication
This tests a replica based on the --replication_* parameters. The replica test must pass all of the subtests to be true.

The subtests are:

io - the IO thread is running

sql - the sql thread is running

seconds_behind_master - the replica is less than X seconds behind the master.

sql_remaining_delay - the delayed replica is less than X seconds behind the master's execution of the same SQL.

These are tested for all connections, if --replication_all is set (default), or --replication_name .

The connecting user must have REPLICATION_CLIENT if using a version less than MariaDB 10.5, or REPLICA MONITOR

for MariaDB 10.5 or later.

--mariadbupgrade
This healthcheck indicates that the mariadb is upgrade to the current version.

Parameters

--replication_all
Checks all replication sources

1574/4161

https://galeracluster.com/library/documentation/node-states.html#node-state-changes

--replication_name=n
Sets the multisource connection name tested. Unsets --replication_all .

--replication_io
IO thread is running

--replication_sql
SQL thread is running

--replication_seconds_behind_master=n
Less than or equal this seconds of delay

--replication_sql_remaining_delay=n
Less than or equal this seconds of remaining delay

--su=n
Change to this user. Can only be done once as the root user is default for healthchecks.

--su-mysql
Change to the mysql unix user. Like --su this respawns the script so will reset all parameters. Should be the first

argument. The MARIADB_MYSQL_LOCALHOST_USER=1 environment variable is designed around usage here.

--datadir=n
For the --mariadbupgrade test where the upgrade file is located.

--no-defaults --defaults-file --defaults-extra-file --defaults-
group-suffix
These are passed to mariadb shell for all tests except --mariadbupgrade

Examples

healthcheck.sh --su-mysql --connect --innodb_initialized

Switch to mysql user, and check if can connect and the innodb is initialized.

healthcheck.sh --su-mysql --connect --replication_io --replication_sql --replication_seconds_behind_master=600 --replication_sql_remaining_delay=30 ----replication_name=archive --replication --replication_seconds_behind_master=10 --replication_name=channel1 --replication

Switch to mysql user, check if connections can be made, for the replication channel "archive", ensure io and sql threads

are running and the seconds behind master < 600 seconds and the sql remaining delay < 30 seconds. For the "channel1",

the seconds behind master is limit to 10 seconds maximum.

2.1.2.14.6.13 Docker and AWS EC2
This process shows how to deploy MariaDB in a Docker container running on an EC2 instance. First we'll create the EC2

VM, then we'll deploy Docker to it. After that, we'll pull the MariaDB Docker image which we'll use to create a running

container with a MariaDB instance. Finally, we'll load a sample database into the MariaDB instance.

1575/4161

Create a VM in AWS EC2

1. Install MariaDB client on your local machine, either bundled with Maria DB server or standalone.

2. Login to AWS, navigate to EC2 service home

3. Choose Region for EC2 in the upper right corner of the console

4. Launch (1) Instance, giving instance a name (e.g. mrdb-ubuntu-docker-use1) and create or re-use a key pair

5. Choose Ubuntu 22.04 or similar free tier instance

6. Choose hardware, t2.micro or similar free tier instance

7. Create Key Pair with name (e.g. mrdb-docker-aws-pk.pem if using openSSH at the command line, or mrdb- docker-aws-

pk..ppk for use with programs like PuTTY.)

9. Create or select a security group where SSH is allowed from anywhere 0.0.0.0/0. If you9d like to make this more secure, it

can be restricted to a specific IP address or CIDR block.

10. Accept remaining instance creation defaults and click <launch instance=.

11. Save the *.pem or *.ppk keyfile on your local hard drive when prompted. You will need it later. If you9re on Linux, don9t

forget to change permissions on the downloaded *.pem / *.ppk key file: $ chmod 400 mrdb-docker-pk.pem

12. Click into the instance summary (EC2 > Instances > Instance ID) and click on the <security= tab towards the bottom.

1576/4161

https://mariadb.com/docs/server/connect/clients/mariadb-client/
https://console.aws.amazon.com/ec2/home

13. In the relevant security group for your instance, Create an inbound rule so that TCP port 3306 is open, allowing external

connections to Maria DB (like your local command line client for MariaDB). Double check that port 22 is open while you're

there for SSH.

Install Docker on the EC2 VM

For more detailed instructions, refer to Installing and Using MariaDB via Docker

14. Back in the instance summary (EC2 > Instances > Instance ID), copy the public IP (e.g. ww.xx.yyy.zzz)

15. Open terminal window, navigate to the directory with private key (*.pem or *.ppk) file and start a SSH remote shell

session by typing:

$ ssh -i mrdb-docker-pk.pem ubuntu@ww.xx.yyy.zzz

(switch ww.xx.yyy.zzz for your IP address from step 14).

16. Are you sure you want to continue connecting (yes/no/[fingerprint])? Say yes

17. Escalate to root

$ sudo su

18. Install Docker

$ curl -fsSL https://get.docker.com | sudo sh

Pull the MariaDB Docker image and create the container

19. Pull MariaDB Docker image

$ docker pull mariadb:lts

20. Start MDRB docker process

at your terminal / command line, type:

1577/4161

https://get.docker.com

$ docker run --detach --name mariadb-docker -v \Users\YouUID\Documents\YourDirName:/var/lib/mysql:Z -p 3306:3306 -e

MARIADB_ROOT_PASSWORD=yoursecurepassword mariadb:lts

The -v flag mounts a directory that you choose as /var/lib/mysql will ensure that the volume is persistent. Windows file paths

like C:\Users\YouUID\Documents\YourDirName should be represented as above. Linux file paths should also be absolute

vs. relative. Obviously replace the root password with something that is a bit more secure than you see in this example for

anything other than development purposes.

21. Shell into container

$ docker exec -it mariadb-docker bash

22. Login to MRDB inside container

Using the root password specified in step 20, type:

$ mariadb -pyoursecurepassword

23. Setup admin account with permission for remote connection, configure access control

MariaDB [(none)]> CREATE USER 'admin'@'%' IDENTIFIED BY 'admin';

MariaDB [(none)]> GRANT ALL ON *.* to 'admin'@'%' WITH GRANT OPTION;

MariaDB [(none)]> SHOW GRANTS FOR admin;

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

24. Setup service account for your app with permission for remote connection, configure access control

MariaDB [(none)]> CREATE USER 'yourappname'@'%' IDENTIFIED BY 'yoursecurepassword';

MariaDB [(none)]> GRANT INSERT, UPDATE, DELETE ON *.* to 'yourappname'@'%';

MariaDB [(none)]> SHOW GRANTS FOR yourappname;

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

25. Load up your database from your preexisting SQL script that contains CREATE DATABASE ; USE DATABASE; and

CREATE TABLE statements.

In a new local terminal window, not your SSH session, change directory to the directory containing your database creation

script, say, init.sql in this example. Type:

$ mariadb --host=ww.xx.yyy.zzz --port=3306 --user=admin --password=admin -e <SOURCE init.sql=

(switch ww.xx.yyy.zzz for your IP address from step 14).

2.1.2.14.6.14 Docker and Google Cloud
This process shows how to deploy MariaDB in a Docker container running on an GCE instance. First we'll create the GCE

VM, then we'll deploy Docker to it. After that, we'll pull the MariaDB Docker image which we'll use to create a running

container with a MariaDB instance. Finally, we'll load a sample database into the MariaDB instance.

Create a VM in Google Cloud Compute Engine

1. Install MariaDB client on your local machine, either bundled with Maria DB server or standalone.

2. Login to Google Cloud, navigate to VM instances

3. Enable Compute Engine API if you haven9t already.

4. Click create instance, give instance a name (e.g. mrdb-ubuntu-docker-use1b), choose a region and zone.

5. Machine configuration: Choose general-purpose / E2 micro

1578/4161

https://mariadb.com/docs/server/ref/mdb/sql-statements/CREATE_DATABASE/
https://mariadb.com/docs/server/connect/clients/mariadb-client/
https://console.cloud.google.com/compute/instances/

6. Boot Disk > Change

Switch the operating system to a modern Ubuntu release x86/64 CPU architecture, or similar free tier offering.

1579/4161

7. Create a firewall rule in the Firewall Policies section of the console. After naming it, change the targets, add 0.0.0.0/0

as a source IP range, and open TCP port 3306. Then Click create.

1580/4161

https://console.cloud.google.com/net-security/firewall-manager/firewall-policies/add

8. Connect using Google Cloud9s built in browser SSH. Accept all prompts for authorization.

1581/4161

Install Docker on the GCE VM

For more detailed instructions, refer to Installing and Using MariaDB via Docker

9. Escalate to root Escalate to root

$ sudo su

10. Install Docker

$ curl -fsSL https://get.docker.com | sudo sh

11. Pull Docker image

$ docker pull mariadb:lts

12. Start MDRB docker process

at your terminal / command line, type:

$ docker run --detach --name mariadb-docker -v \Users\YouUID\Documents\YourDirName:/var/lib/mysql:Z -p 3306:3306 -e

MARIADB_ROOT_PASSWORD=yoursecurepassword mariadb:lts

The -v flag mounts a directory that you choose as /var/lib/mysql will ensure that the volume is persistent. Windows file paths

like C:\Users\YouUID\Documents\YourDirName should be represented as above. Linux file paths should also be absolute

vs. relative. Obviously replace the root password with something that is a bit more secure than you see in this example for

anything other than development purposes.

13. Shell into container $ docker exec -it mariadb-docker bash

14. Login to MRDB inside container

Using the root password specified in step 12, type:

$ mariadb -pyoursecurepassword

15. Setup admin account with permission for remote connection, configure access control Execute these SQL commands in

sequence:

MariaDB [(none)]> CREATE USER 'admin'@'%' IDENTIFIED BY 'admin';

MariaDB [(none)]> GRANT ALL ON *.* to 'admin'@'%' WITH GRANT OPTION;

MariaDB [(none)]> SHOW GRANTS FOR admin;

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

16. Setup service account for your app with permission for remote connection, configure access control Execute these SQL

commands in sequence:

MariaDB [(none)]> CREATE USER 'yourappname'@'%' IDENTIFIED BY 'yoursecurepassword';

MariaDB [(none)]> GRANT INSERT, UPDATE, DELETE ON *.* to 'yourappname'@'%';

MariaDB [(none)]> SHOW GRANTS FOR yourappname;

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

17. Load up your database from your preexisting SQL script that contains CREATE DATABASE ; USE DATABASE; and

CREATE TABLE statements.

Copy the external IP address of your VM instance from the Console in the VM instances list.

In a new local terminal window, not your SSH session, change directory to the directory containing your database creation

script, say, init.sql in this example.

Type: $ mariadb --host=ww.xx.yyy.zzz --port=3306 --user=admin --password=admin -e <SOURCE init.sql= (switch

ww.xx.yyy.zzz for your IP address from step 17.

1582/4161

https://get.docker.com
https://mariadb.com/docs/server/ref/mdb/sql-statements/CREATE_DATABASE/
https://console.cloud.google.com/compute/instances/

2.1.2.14.6.15 Docker and Microsoft Azure
This process shows how to deploy MariaDB in a Docker container running on an Azure VM instance. First we'll create the

Azure VM, then we'll deploy Docker to it. After that, we'll pull the MariaDB Docker image which we'll use to create a running

container with a MariaDB instance. Finally, we'll load a sample database into the MariaDB instance.

Create a VM in Azure

1. Install MariaDB client on your local machine, either bundled with Maria DB server or standalone.

2. Login to Azure, navigate to Azure Virtual Machine

3. Create VM . Give the VM a name (e.g. mrdb-ubuntu-docker-use1), and create new or use an existing resource group.

Selection region and availability zone, and choose Ubuntu 22.04 LTS x64 (free services eligible).

4. Choose the VM instance size, like a B1s or similar free tier. Note that Azure free works on a credit based system for new

accounts

5. Configure an administrator account and generate a new key pair, and give the key pair a name.

1583/4161

https://mariadb.com/docs/server/connect/clients/mariadb-client/
https://portal.azure.com/#view/HubsExtension/BrowseResource/resourceType/Microsoft.Compute%252FVirtualMachines
https://portal.azure.com/#create/Microsoft.VirtualMachine-ARM

6. Click "Review + Create" at the very bottom of the "create virtual machine" page to create the VM.

7. Download the SSH keys and them in a safe place, you will need them later. For this example, let's name the key file

mrdb-docker-pk.pem.

If your local machine is Linux or you are using WSL on Windows, open a terminal window and: $ mv /mnt/c/<your-private-

key> /.ssh/ $ chmod 400 /.ssh/<your-private-key>

8. Once the VM is deployed, "click to resource" to get back to the virtual machine's overview page.

9. From the overview page, the left-hand navigation, choose settings > networking.

1584/4161

10. Click "add inbound port rule"

11. Configure the port rule to allow port TCP 3306 inbound (mySQL) so that you can make external connections from your

local Maria DB command line client, to the dockerized Maria DB instance in your Azure Linux VM.

1585/4161

1586/4161

12. Navigate back to the virtual machine's overview page. Then copy the public IP address to the clipboard.

Install Docker on the Azure VM

For more detailed instructions, refer to Installing and Using MariaDB via Docker

16. Open terminal window, referencing the path to the private key (*.pem or *.ppk) file, and start a SSH remote shell session

by typing:

$ ssh -i /.ssh/mrdb-docker-pk.pem azureuser@ww.xx.yyy.zzz

(switch ww.xx.yyy.zzz for your IP address from step 12, and replace "mrdb-docker-pk.pem" with your keyfile name if you

chose something different).

If you forget your administrator account details, simply go to the left-hand navigation and choose settings > connect, and

Azure will display the public IP address, admin username, and port for you.

17. Are you sure you want to continue connecting (yes/no/[fingerprint])? Say yes

18. Escalate to root

$ sudo su

19. Microsoft Azure on two machines come with docker preinstalled. For any reason you need to reinstall it , chose another

machine type is not have docker preinstalled, you can install docker inside your SSH session with cURL by typing:

$ curl -fsSL https://get.docker.com | sudo sh

Pull the MariaDB Docker image and create the container

20. Pull MariaDB Docker image

$ docker pull mariadb:lts

21. Start MDRB docker process

at your terminal / command line, type:

$ docker run --detach --name mariadb-docker -v \Users\YouUID\Documents\YourDirName:/var/lib/mysql:Z -p 3306:3306 -e

MARIADB_ROOT_PASSWORD=yoursecurepassword mariadb:lts

The -v flag mounts a directory that you choose as /var/lib/mysql will ensure that the volume is persistent. Windows file paths

like C:\Users\YouUID\Documents\YourDirName should be represented as above. Linux file paths should also be absolute

vs. relative. Obviously replace the root password with something that is a bit more secure than you see in this example for

anything other than development purposes.

22. Shell into container

$ docker exec -it mariadb-docker bash

23. Login to MRDB inside container

Using the root password specified in step 20, type:

$ mariadb -pyoursecurepassword

24. Setup admin account with permission for remote connection, configure access control

MariaDB [(none)]> CREATE USER 'admin'@'%' IDENTIFIED BY 'admin';

MariaDB [(none)]> GRANT ALL ON *.* to 'admin'@'%' WITH GRANT OPTION;

MariaDB [(none)]> SHOW GRANTS FOR admin;

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

25. Setup service account for your app with permission for remote connection, configure access control

MariaDB [(none)]> CREATE USER 'yourappname'@'%' IDENTIFIED BY 'yoursecurepassword';

MariaDB [(none)]> GRANT INSERT, UPDATE, DELETE ON *.* to 'yourappname'@'%';

MariaDB [(none)]> SHOW GRANTS FOR yourappname;

1587/4161

https://get.docker.com

Obviously replace these passwords with something that is a bit more secure than you see in this example for anything other

than development purposes.

26. Load up your database from your preexisting SQL script that contains CREATE DATABASE ; USE DATABASE; and

CREATE TABLE statements.

In a new local terminal window, not your SSH session, change directory to the directory containing your database creation

script, say, init.sql in this example. Then type:

$ mariadb --host=ww.xx.yyy.zzz --port=3306 --user=admin --password=admin -e <SOURCE init.sql=

(switch ww.xx.yyy.zzz for your IP address from step 12).

2.1.2.14.7 Kubernetes and MariaDB
General information and hints on how to deploy MariaDB Kubernetes containers.

Kubernetes is an open source containers orchestration system. It automates deployments, horizontal scaling, configuration

and operations. It is often referred to as K8s.

Kubernetes Overview for MariaDB Users

An overview of Kubernetes and how it works with MariaDB.

Kubernetes Operators for MariaDB

An overview of Kubernetes operators that can be used with MariaDB

2.1.2.14.8 Kubernetes Overview for MariaDB
Users
Kubernetes, or K8s, is software to orchestrate containers. It is released under the terms of an open source license, Apache

License 2.0.

Kubernetes was originally developed by Google. Currently it is maintained by the Cloud Native Computing Foundation

(CNCF), with the status of Graduated Project.

For information about how to setup a learning environment or a production environment, see Getting started in

Kubernetes documentation.

Contents
1. Architecture

1. Nodes

1. kubelet

2. kube-proxy

3. Container Runtime

2. Controllers

3. Control Plane

1. API Server

2. kube-controller-manager

3. etcd

4. kube-scheduler

5. cloud-controller-manager

4. Clients and Tools

1. kubectl

2. kubeadm

3. kind and minikube

2. Kubernetes Resources and References

Architecture
Kubernetes runs in a cluster. A cluster runs a workload: a set of servers that are meant to work together (web servers,

database servers, etc).

A Kubernetes cluster consists of the following components:

Nodes run containers with the servers needed by our applications.

Controllersconstantly check the cluster nodes current state, and compare it with the desired state.

A Control Plane is a set of different components that store the cluster desired state and take decisions about the

nodes. The Control Plane provides an API that is used by the controllers.

1588/4161

https://mariadb.com/docs/server/ref/mdb/sql-statements/CREATE_DATABASE/
https://kubernetes.io/docs/setup/

For more information on Kubernetes architecture, see Concepts and Kubernetes Components in Kubernetes

documentation.

Nodes

A node is a system that is responsible to run one or more pods. A pod is a set of containers that run a Kubernetes workload

or part of it. All containers that run in the same pod are also located on the same node. Usually identical pods run on

different nodes for fault tolerance.

For more details, see Nodes in the Kubernetes documentation.

Every node must necessarily have the following components:

kubelet

kube-proxy

A container runtime

kubelet

kubelet has a set of PodSpecs which describe the desired state of pods. It checks that the current state of the pods

matches the desired state. It especially takes care that containers don't crash.

kube-proxy

In a typical Kubernetes cluster, several containers located in different pods need to connect to other containers, located in

the same pods (for performance and fault tolerance reasons). Therefore, when we develop and deploy an application, we

can't know in advance the IPs of the containers to which it will have to connect. For example, an application server may

need to connect to MariaDB, but the MariaDB IP will be different for every pod.

The main purpose of kube-proxy is to implement the concept of Kubernetes services. When an application needs to

connect to MariaDB, it will connect to the MariaDB service. kube-proxy will receive the request and will redirect it to a

running MariaDB container in the same pod.

Container Runtime

Kubernetes manages the containers in a pod via a container runtime, or container manager, that supports the Kubernetes

Container Runtime Interface (CRI). Container runtimes that meet this requisite are listed in the Container runtimes page

in the Kubernetes documentation. More information about the Container Runtime Interface can be found on GitHub .

Originally, Kubernetes used Docker as a container runtime. This was later deprecated, but Docker images can still be used

using any container runtime.

Controllers

Controllers constantly check if there are differences between the pod's current state and their desired state. When

differences are found, controllers try to fix them. Each node type controls one or more resource types. Several types of

controllers are needed to run a cluster.

Most of the actions taken by the controllers user the API server in the Control Plane. However, this is not necessarily true for

custom controllers. Also, some actions cannot be performed via the Control Plane. For example, if some nodes crashed,

adding new nodes involves taking actions outside of the Kubernetes cluster, and controllers will have to do this themselves.

It is possible to write custom controllers to perform checks that require knowledge about a specific technology. For example,

a MariaDB custom controller may want to check if replication is working by issuing SHOW REPLICA STATUS commands.

This logic is specific to the way MariaDB works, and can only be implemented in a customer controller. Custom controllers

are usually part of operators.

For more information, see Controllers in the Kubernetes documentation.

Control Plane

The control plane consists of the following components.

For more information about the control plane, see Control Plane Components in Kubernetes documentation.

API Server

An API Server exposes API functions both internally and externally. It is essential to coordinate Kubernetes components so

that they react to node's change of state, and it allows the user to send commands.

The default implementation of the API Server is kube-apiserver. It is able to scale horizontally and to balance the load
1589/4161

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-node/container-runtime-interface.md
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/overview/components/

between its instances.

kube-controller-manager

Most controllers run in this component.

etcd

etcd contains all data used by a Kubernetes cluster. It is a good idea to take regular backups of etcd data.

kube-scheduler

When a new pod is created, kube-scheduler decides which node should host it. The decision is made based on several

criteria, like the resource requirements for the pod.

cloud-controller-manager

cloud-controller-manager implements the logic and API of a cloud provider. It receives requests from the API Server and

performs specific actions, like creating an instance in AWS. It also runs controllers that are specific to a cloud vendor.

Clients and Tools

Kubernetes comes with a set of tools that allow us to communicate with the API server and test a cluster.

kubectl

kubectl allows communication with the API server and run commands on a Kubernetes cluster.

kubeadm

kubeadm allows creating a Kubernetes cluster that is ready to receive commands from kubectl.

kind and minikube

These tools are meant to create and manage test clusters on a personal machine. They work on Linux, MacOS and

Windows. kind creates a cluster that consists of Docker containers, therefore it requires Docker to be installed. minikube

runs a single-node cluster on the local machine.

Kubernetes Resources and References
Kubernetes website .

Kubernetes on Wikipedia.

Kubernetes organization on GitHub.

OperatorHub.io

Kubernetes Community Forums .

(video) MariaDB database clusters on Kubernetes , by Pengfei Ma, at MariaDB Server Fest 2020.

Series of posts by Anel Husakovic on the MariaDB Foundation blog:

Start MariaDB in K8s

MariaDB & K8s: Communication between containers/Deployments

MariaDB & K8s: Create a Secret and use it in MariaDB deployment

MariaDB & K8s: Deploy MariaDB and WordPress using Persistent Volumes

Create statefulset MariaDB application in K8s

MariaDB replication using containers

MariaDB & K8s: How to replicate MariaDB in K8s

Content initially contributed by Vettabase Ltd .

2.1.2.14.9 Kubernetes Operators for MariaDB
Operators basically instruct Kubernetes about how to manage a certain technology. Kubernetes comes with some default

operators, but it is possible to create custom operators. Operators created by the community can be found on

OperatorHub.io .

1590/4161

https://kubernetes.io/
https://en.wikipedia.org/wiki/Kubernetes
https://github.com/kubernetes
https://operatorhub.io/
https://discuss.kubernetes.io/
https://mariadb.org/fest2020/kubernetes/
https://mariadb.org/start-mariadb-in-k8s/
https://mariadb.org/mariadb-k8s-communication-between-containers-deployments/
https://mariadb.org/mariadb-k8s-create-a-secret-and-use-it-in-mariadb-deployment/
https://mariadb.org/mariadb-k8s-deploy-mariadb-and-wordpress-using-persistent-volumes/
https://mariadb.org/create-statefulset-mariadb-application-in-k8s/
https://mariadb.org/mariadb-replication-using-containers/
https://mariadb.org/mariadb-k8s-how-to-replicate-mariadb-in-k8s/
https://vettabase.com/
https://operatorhub.io/

Contents
1. Custom Operators

2. MariaDB Operator

3. Other Operators

Custom Operators
Kubernetes provides a declarative API. To support a specific (i.e. MariaDB) technology or implement a desired behavior

(i.e. provisioning a replica), we extend Kubernetes API. This involves creating two main components:

A custom resource.

A custom controller.

A custom resource adds an API endpoint, so the resource can be managed via the API server. It includes functionality to get

information about the resource, like a list of the existing servers.

A custom controller implements the checks that must be performed against the resource to check if its state should be

corrected using the API. In the case of MariaDB, some reasonable checks would be verifying that it accepts connections,

replication is running, and a server is (or is not) read only.

MariaDB Operator
mariadb-operator is a Kubernetes operator that allows you to run and operate MariaDB in a cloud native way. It aims for

declaratively managing your MariaDB using Kubernetes CRDs rather than imperative commands.

It's available in both Artifact Hub and Operator Hub and supports the following features:

Easily provision MariaDB servers in Kubernetes.

Highly configurable MariaDB servers.

Multiple HA modes: SemiSync Replication and Galera.

Automated primary failover.

Automated Galera cluster recovery.

Enhanced HA with MaxScale: a sophisticated database proxy, router, and load balancer designed specifically for and

by MariaDB.

Query-based routing: Transparently route write queries to the primary nodes and read queries to the replica

nodes.

Connection-based routing: Load balance connections between multiple servers.

Automated primary failover based on MariaDB internals.

Replay pending transactions when a server goes down.

Support for Galera and Replication.

Flexible storage configuration. Volume expansion.

Take and restore backups.

Scheduled backups.

Multiple backup storage types: S3 compatible, PVCs and Kubernetes volumes.

Backup retention policy.

Target recovery time: infer which backup to restore.

Bootstrap new instances from: Backups, S3, PVCs ...

Prometheus metrics via mysqld-exporter.

Manage users, grants and logical databases.

Configure connections for your applications.

Orchestrate and schedule sql scripts.

Validation webhooks to provide CRD inmutability.

Additional printer columns to report the current CRD status.

CRDs designed according to the Kubernetes API conventions.

GitOps friendly.

Multi-arch distroless based image.

Install it using kubectl, helm or OLM.

This operator is open source and released under the terms of the MIT license. The source code is available on GitHub .

Other Operators
If you know about other MariaDB operators, feel free to add them to this page (see Writing and Editing Knowledge Base

Articles).

MySQL and Percona Server operators should work as well, though some changes may be necessary to fix incompatibilities

or take advantage of certain MariaDB features.

1591/4161

https://github.com/mariadb-operator/mariadb-operator
https://artifacthub.io/packages/helm/mariadb-operator/mariadb-operator
https://operatorhub.io/operator/mariadb-operator
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/writing-and-editing-knowledge-base-articles/

Content initially contributed by Vettabase Ltd .

2.1.2.14.10 Automating Upgrades with
MariaDB.Org Downloads REST API
The MariaDB Foundation maintains a Downloads REST API. See the Downloads API documentation to find out all the

tasks that you can accomplish with this API. Generally speaking, we can say that it provides information about MariaDB

products and available versions. This allows to easily automate upgrades for MariaDB and related products.

The Downloads API exposes HTTPS endpoints that return information in JSON format. HTTP and JSON are extremely

common standards that can be easily used with any programming language. All the information provided by the API is

public, so no authentication is required.

How to Use the API with a Unix Shell
Linux shells are great for writing simple scripts. They are compatible to each other to some extent, so simple scripts can be

run on almost any Unix/Linux system. In the following examples we'll use Bash.

On Linux, some programs you'll generally need to work with any REST API are:

curl , to call HTTP URLs and get their output.

js , to extract or transform information from a JSON document.

Example: Check When a New Version Becomes GA

A trivial use case is to write a script that checks the list of MariaDB GA major versions and, when something changes, send

us an email. So we can test the newest GA version and eventually install it.

The script in this example will be extremely simple. We'll do it this way:

Retrieve the JSON object describing all MariaDB versions.

For each element of the array, only show the release_id and release_status properties, and concatenate

them.

Apply a filter, so we only select the rows containing 'stable' but not 'old' (so we exclude 'Old Stable').

From the remaining rows, only show the first column (the version number).

If the results we obtained are different from the previously written file (see last point) send an email.

Save the results into a file.

This is something that we can easily do with a Unix shell:

#!/bin/bash

current_ga_versions=$(

 curl https://downloads.mariadb.org/rest-api/mariadb/ | \

 jq -r '.major_releases[] | .release_id + " " + .release_status' | \

 grep -i 'stable' | grep -vi 'old' | \

 cut -d ' ' -f 1

)

create file if it doesn't exist, then compare version lists

touch ga_versions

previous_ga_versions=$(cat ga_versions)

echo "$current_ga_versions" > ga_versions

if ["$current_ga_versions" != "$previous_ga_versions"];

then

 mail -s 'NOTE: New MariaDB GA Versions' devops@example.com <<< 'There seems to be a new

MariaDB GA version! Yay!'

fi

The only non-standard command here is jq. It is a great way to manipulate JSON documents, so if you don't know it you

may want to take a look at jq documentation .

How to Use the API with a Python Script
To use the API with Python, we need a module that is able to send HTTP requests and parse a JSON output. The

1592/4161

https://vettabase.com/
https://mariadb.org/downloads-rest-api/
https://curl.se/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/manual/

requests module has both these features. It can be installed as follows:

pip install requests

The following script prints stable versions to the standard output:

#!/usr/bin/env python

import requests

response = requests.get('https://downloads.mariadb.org/rest-api/mariadb/').json()

for x in response['major_releases']:

 if x['release_status'] == 'Stable':

 print(x['release_id'])

requests.get() makes an HTTP call of type GET, and requests.json() returns a dictionary representing the

previously obtained JSON document.

Content initially contributed by Vettabase Ltd .

2.1.2.14.11 HashiCorp Vault and MariaDB
Vault is open source software for secret management provided by HashiCorp. It is designed to avoid sharing secrets of

various types, like passwords and private keys. When building automation, Vault is a good solution to avoid storing secrets

in plain text in a repository.

MariaDB and Vault may relate to each other in several ways:

MariaDB has a Hashicorp Key Management plugin, to manage and rotate SSH keys.

Users passwords can be stored in Vault.

MariaDB (and MySQL) can be used as a secret engine, a component which stores, generates, or encrypts data.

MariaDB (and MySQL) can be used as a backend storage, providing durability for Vault data.

For information about how to install Vault, see Install Vault , as well as MySQL/MariaDB Database Secrets Engine .

Contents
1. Vault Features

2. Vault Architecture

3. Dev Mode

4. Vault Resources and References

Vault Features
Vault is used via an HTTP/HTTPS API.

Vault is identity-based. Users login and Vault sends them a token that is valid for a certain amount of time, or until certain

conditions occur. Users with a valid token may request to obtain secrets for which they have proper permissions.

Vault encrypts the secrets it stores.

Vault can optionally audit changes to secrets and secrets requests by the users.

Vault Architecture
Vault is a server. This allows decoupling the secrets management logic from the clients, which only need to login and keep

a token until it expires.

The sever can actually be a cluster of servers, to implement high availability.

The main Vault components are:

Storage Backed: This is where the secrets are stored. Vault only send encrypted data to the backend storage.

HTTP API: This API is used by the clients, and provides an access to Vault server.

Barrier: Similarly to an actual barrier, it protects all inner Vault components. The HTTP API and the storage backend

are outside of the barrier and could be accessed by anyone. All communications from and to these components have

to pass through the barrier. The barrier verifies data and encrypts it. The barrier can have two states: sealed or

unsealed. Data can only pass through when the barrier is unsealed. All the following components are located inside

1593/4161

https://vettabase.com/
https://www.vaultproject.io/docs/install
https://developer.hashicorp.com/vault/docs/secrets/databases/mysql-maria

the barrier.

Auth Method: Handles login attempts from clients. When a login succeeds, the auth method returns a list of security

policies to Vault core.

Token Store: Here the tokens generated as a result of a succeeded login are stored.

Secrets Engines: These components manage secrets. They can have different levels of complexity. Some of them

simply expect to receive a key, and return the corresponding secret. Others may generate secrets, including one-

time-passwords.

Audit Devices: These components log the requests received by Vault and the responses sent back to the

clients.There may be multiple devices, in which case an Audit Broker sends the request or response to the proper

device.

Dev Mode
It is possible to start Vault in dev mode:

vault server -dev

Dev mode is useful for learning Vault, or running experiments on some particular features. It is extremely insecure, because

dev mode is equivalent to starting Vault with several insecure options. This means that Vault should never run in production

in dev mode. However, this also means that all the regular Vault features are available in dev mode.

Dev mode simplifies all operations. Actually, no configuration is necessary to get Vault up and running in dev mode. It

makes it possible to communicate with the Vault API from the shell without any authentication. Data is stored in memory by

default. Vault is unsealed by default, and if explicitly sealed, it can be unsealed using only one key.

For more details, see "Dev" Server Mode in Vault documentation.

Vault Resources and References
Documentation .

MySQL/MariaDB Database Secrets Engine .

MySQL Storage Backend .

Content initially contributed by Vettabase Ltd .

2.1.2.14.12 Orchestrator Overview
Orchestrator is a MySQL and MariaDB high availability and replication management tool. It is released by Shlomi Noach

under the terms of the Apache License, version 2.0.

Orchestrator provides automation for MariaDB replication in the following ways:

It can be used to perform certain operations, like repairing broken replication or moving a replica from one master to

another. These operations can be requested using CLI commands, or via the GUI provided with Orchestrator. The

actual commands sent to MariaDB are automated by Orchestrator, and the user doesn't have to worry about the

details.

Orchestrator can also automatically perform a failover in case a master crashes or is unreachable by its replicas. If

that is the case, Orchestrator will promote one of the replicas to a master. The replica to promote is chosen based on

several criteria, like the server versions, the binary log formats in use and the datacenters locations.

Note that, if we don't want to use Orchestrator to automate operations, we can still use it as a dynamic inventory. Other

tools can use it to obtain a list of existing MariaDB servers via its REST API or CLI commands.

Orchestrator has several big users, listed in the documentation Users page. It is also included in the PMM monitoring

solution.

To install Orchestrator, see:

The install.md for a manual installation;

The links in README.md , to install Orchestrator using automation tools.

Contents
1. Supported Topologies

2. Architecture

3. CLI Examples

4. Orchestrator Resources and References

1594/4161

https://www.vaultproject.io/docs/concepts/dev-server
https://www.vaultproject.io/docs
https://www.vaultproject.io/docs/secrets/databases/mysql-maria
https://www.vaultproject.io/docs/configuration/storage/mysql
https://vettabase.com/
https://github.com/openark/orchestrator/blob/master/docs/users.md
https://github.com/openark/orchestrator/blob/master/docs/install.md
https://github.com/openark/orchestrator/blob/master/README.md

Supported Topologies
Currently, Orchestrator fully supports MariaDB GTID, replication, and semi-synchronous replication. While Orchestrator

does not support Galera specific logic, it works with Galera clusters. For details, see Supported Topologies and Versions

in Orchestrator documentation.

Architecture
Orchestrator consists of a single executable called orchestrator . This is a process that periodically connects to the

target servers. It will run SQL queries against target servers, so it needs a user with proper permissions. When the process

is running, a GUI is available via a web browser, at the URL 'https://localhost:3000' . It also exposes a REST API (see

Using the web API in the Orchestrator documentation).

Orchestrator expects to find a JSON configuration file called orchestrator.conf.json , in /etc .

A database is used to store the configuration and the state of the target servers. By default, this is done using built-in

SQLite. However, it is possible to use an external MariaDB or MySQL server instance.

If a cluster of Orchestrator instances is running, only one central database is used. One Orchestrator node is active, while

the others are passive and are only used for failover. If the active node crashes or becomes unreachable, one of the other

nodes becomes the active instance. The active_node table shows which node is active. Nodes communicate between

them using the Raft protocol.

CLI Examples
As mentioned, Orchestrator can be used from the command-line. Here you can find some examples.

List clusters:

orchestrator -c clusters

Discover a specified instance and add it to the known topology:

orchestrator -c discover -i <host>:<port>

Forget about an instance:

orchestrator -c topology -i <host>:<port>

Move a replica to a different master:

orchestrator -c move-up -i <replica-host>:<replica-port> -d <master-host>:<master-port>

Move a replica up, so that it becomes a "sibling" of its master:

orchestrator -c move-up -i <replica-host>:<replica-port>

Move a replica down, so that it becomes a replica of its"sibling":

orchestrator -c move-below -i <replica-host>:<replica-port> -d <master-host>:<master-port>

Make a node read-only:

orchestrator -c set-read-only -i <host>:<port>

Make a node writeable:

orchestrator -c set-writeable -i <host>:<port>

The --debug and --stack options can be added to the above commands to make them more verbose.

Orchestrator Resources and References
1595/4161

https://github.com/openark/orchestrator/blob/master/docs/supported-topologies-and-versions.md
https://github.com/openark/orchestrator/blob/master/docs/using-the-web-api.md

Orchestrator on GitHub .

Documentation .

Raft consensus protocol website .

The README.md file lists some related community projects, including modules to automate Orchestrator with Puppet

and other technologies.

On GitHub you can also find links to projects that allow the use of automation software to deploy and manage Orchestrator.

Content initially contributed by Vettabase Ltd .

2.4.6 Rotating Logs on Unix and Linux

2.1.2.14.14 Automating MariaDB Tasks with
Events
MariaDB has an event scheduler that can be used to automate tasks, making them run at regular intervals of time. This page

is about using events for automation. For more information about events themselves, and how to work with them, see event

scheduler.

Pros and Cons of Using Events for Automation
Events can be compared to Unix cron jobs or Windows scheduled tasks. MariaDB events have at least the following benefits

compared to those tools:

Events are system-independent. The same code can run on any system.

Events are written in procedural SQL. There is no need to install other languages or libraries.

If you use user-defined functions, you can still take advantage of them in your events.

Events run in MariaDB. An implication, for example, is that the results of queries remain in MariaDB itself and are not

sent to a client. This means that network glitches don't affect events, there is no overhead due to data roundtrip, and

therefore locks are held for a shorter time.

Some drawbacks of using events are the following:

Events can only perform tasks that can be developed in SQL. So, for example, it is not possible to send alerts.

Access to files or remote databases is limited.

The event scheduler runs as a single thread. This means that events that are scheduled to run while another event is

running will wait until the other event has stopped. This means that there is no guarantee that an event will run on

exactly it's scheduled time. This should not be a problem as long as one ensures that events are short lived.

For more events limitations, see Event Limitations.

In many cases you may prefer to develop scripts in an external programming language. However, you should know that

simple tasks consisting of a few queries can easily be implemented as events.

Good Practices
When using events to automate tasks, there are good practices one may want to follow.

Move your SQL code in a stored procedure. All the event will do is to call a stored procedures. Several events may call the

same stored procedure, maybe with different parameters. The procedure may also be called manually, if necessary. This

will avoid code duplication. This will separate the logic from the schedule, making it possible to change an event without a

risk of making changes to the logic, and the other way around.

Just like cron jobs, events should log whether if they succeed or not. Logging debug messages may also be useful for non-

trivial events. This information can be logged into a dedicated table. The contents of the table can be monitored by a

monitoring tool like Grafana. This allows to visualize in a dashboard the status of events, and send alerts in case of a failure.

Examples
Some examples of tasks that could easily be automated with events:

Copying data from a remote table to a local table by night, using the CONNECT storage engine. This can be a good

idea if many rows need be copied, because data won't be sent to an external client.

Periodically delete historical data. For example, rows that are older than 5 years. Nothing prevents us from doing this

with an external script, but probably this wouldn't add any value.

1596/4161

https://github.com/openark/orchestrator
https://github.com/openark/orchestrator/tree/master/docs
https://raft.github.io/
https://github.com/openark/orchestrator/blob/master/README.md
https://vettabase.com/

Periodically delete invalid rows. In an e-commerce, they could be abandoned carts. In a messaging system, they

could be messages to users that don't exist anymore.

Add a new partition to a table and drop the oldest one (partition rotation).

Content initially contributed by Vettabase Ltd .

2.1.2.15 MariaDB Package Repository Setup
and Usage
If you are looking to set up MariaDB Server, it is often easiest to use a repository. The MariaDB Foundation has a repository

configuration tool at https://mariadb.org/download/ and MariaDB Corporation provides a convenient shell script to

configure access to their MariaDB Package Repositories. It is available at:

https://r.mariadb.com/downloads/mariadb_repo_setup

The script by default sets up 3 different repositories in a single repository configuration file. The repositories are

MariaDB Server Repository

MariaDB MaxScale Repository

MariaDB Tools Repository

The script can be executed in the following way:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash

For the script to work, the curl and ca-certificates packages need to be installed on your system. Additionally on

Debian and Ubuntu the apt-transport-https package needs to be installed. The script will check if these are installed

and let you know before it attempts to create the repository configuration on your system.

Contents
1. Repositories

1. MariaDB Repository

2. MariaDB MaxScale Repository

2. Supported Distributions

3. Using the MariaDB Package Repository Setup Script

1. Options

1. --mariadb-server-version

2. --mariadb-maxscale-version

3. --os-type and --os-version

4. --write-to-stdout

2. Platform-Specific Behavior

1. Platform-Specific Behavior on RHEL and CentOS

2. Platform-Specific Behavior on Debian and Ubuntu

3. Platform-Specific Behavior on SLES

4. Installing Packages with the MariaDB Package Repository

1. Installing Packages on RHEL and CentOS

2. Installing Packages on Debian and Ubuntu

3. Installing Packages on SLES

5. Versions

Repositories
The script will will set up 2 different repositories in a single repository configuration file.

MariaDB Repository

The MariaDB Repository contains software packages related to MariaDB Server, including the server itself, clients and

utilities, client libraries , plugins, and Mariabackup.

The binaries in MariaDB Corporation's MariaDB Repository are currently identical to the binaries in MariaDB Foundation's

MariaDB Repository that is configured with the MariaDB Repository Configuration Tool .

By default, the script will configure your system to install from the repository of the latest GA version of MariaDB. That is

currently MariaDB 10.7. If a new major GA release occurs and you would like to upgrade to it, then you will need to either

manually edit the repository configuration file to point to the new version, or run the MariaDB Package Repository setup

script again.

1597/4161

https://vettabase.com/
https://mariadb.org/download/
https://r.mariadb.com/downloads/mariadb_repo_setup
https://mariadb.com/kb/en/client-libraries/
https://mariadb.org/download/?t=repo-config

The script can also configure your system to install from the repository of a different version of MariaDB if you use the --

mariadb-server-version option.

If you would not like to configure the MariaDB Repository on your system, then you can use the --skip-server option to

prevent the MariaDB Package Repository setup script from configuring it.

MariaDB MaxScale Repository

The MariaDB MaxScale Repository contains software packages related to MariaDB MaxScale .

By default, the script will configure your system to install from the repository of the latest GA version of MariaDB MaxScale.

When a new major GA release occurs, the repository will automatically switch to the new version. If instead you would like

to stay on a particular version you will need to manually edit the repository configuration file and change ' latest ' to the

version you want (e.g. ' 6.1 ') or run the MariaDB Package Repository setup script again, specifying the particular version or

series you want.

Older versions of the MariaDB Package Repository setup script would configure a specific MariaDB MaxScale series in the

repository (i.e. ' 2.4 '), so if you used the script in the past to set up your repository and want MariaDB MaxScale to

automatically use the latest GA version then change ' 2.4 ' or ' 2.3 ' in the repository configuration to ' latest '. Or

download the current version of the script and re-run it to set up the repository again.

The script can configure your system to install from the repository of an older version of MariaDB MaxScale if you use the -

-mariadb-maxscale-version option. For example, --mariadb-maxscale-version=2.4 if you want the latest release

in the MariaDB MaxScale 2.4.x series.

If you do not want to configure the MariaDB MaxScale Repository on your system, then you can use the --skip-

maxscale option to prevent the MariaDB Package Repository setup script from configuring it.

MariaDB MaxScale is licensed under the Business Source License 1.1 , so it is not entirely free to use for

organizations who do not have a subscription with MariaDB Corporation. If you would like more information, see the

information at MariaDB Business Source License (BSL): Frequently Asked Questions . If you would like to know how

much a subscription to use MariaDB MaxScale would cost, see MariaDB Corporation's subscription pricing .

Supported Distributions
The script supports Linux distributions that are officially supported by MariaDB Corporation's MariaDB TX subscription .

However, a MariaDB TX subscription with MariaDB Corporation is not required to use the MariaDB Package Repository.

The distributions currently supported by the script include:

Red Hat Enterprise Linux (RHEL) 7 and 8

CentOS 7

Debian 10 (Buster), 11 (Bullseye), 12 (Bookworm)

Ubuntu 18.04 LTS (Bionic), and 20.04 LTS (Focal)

SUSE Linux Enterprise Server (SLES) 12 and 15

To install MariaDB on distributions not supported by the MariaDB Package Repository setup script, please consider using

MariaDB Foundation's MariaDB Repository Configuration Tool . Some Linux distributions also include MariaDB in their

own repositories.

Using the MariaDB Package Repository Setup Script
The script can be executed in the following way:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash

The script will have to set up package repository configuration files, so it will need to be executed as root.

The script will also install the GPG public keys used to verify the signature of MariaDB software packages. If you want to

avoid that, then you can use the --skip-key-import option.

If the script tries to create the repository configuration file and one with that name already exists, then the script will rename

the existing file with an extension in the format ".old_[0-9]+", which would make the OS's package manager ignore the file.

You can safely remove those files after you have confirmed that the updated repository configuration file works..

If you want to see the repository configuration file that would be created without actually doing so, then you can use the --

write-to-stdout option. This also prevents the need to run the script as root,

1598/4161

https://mariadb.com/kb/en/maxscale/
https://mariadb.com/bsl11/
https://mariadb.com/bsl-faq-mariadb/
https://mariadb.com/pricing/
https://mariadb.com/products/mariadb-platform-transactional/
https://mariadb.org/download/?t=repo-config

If you want to download the script, rather than executing it, then you can do so in the following way:

curl -LO https://r.mariadb.com/downloads/mariadb_repo_setup

Options

To provide options to the script, you must tell bash to expect them by executing bash with the options -s -- , for example:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash -s -- --help

Option Description

--help Display a usage message and exit.

--mariadb-server-

version=<version>
Override the default MariaDB Server version.

--mariadb-

maxscale-version=

<version>

Override the default MariaDB MaxScale version. By default, the script will use 'latest'.

--os-type=<type> Override detection of OS type. Acceptable values include debian , ubuntu , rhel , and sles .

--os-version=

<version>
Override detection of OS version. Acceptable values depend on the OS type you specify.

--skip-key-import Skip importing GPG signing keys.

--skip-maxscale Skip the 'MaxScale' repository.

--skip-server Skip the 'MariaDB Server' repository.

--skip-tools Skip the 'Tools' repository.

--skip-verify
Skip verification of MariaDB Server versions. Use with caution as this can lead to an invalid

repository configuration file being created.

--skip-check-

installed
Skip tests for required prerequisites for this script.

--skip-eol-check Skip tests for versions being past their EOL date

--skip-os-eol-

check
Skip tests for operating system versions being past EOL date

--write-to-stdout

Write output to stdout instead of to the OS's repository configuration file. This will also skip

importing GPG public keys and updating the package cache on platforms where that behavior

exists.

--mariadb-server-version

By default, the script will configure your system to install from the repository of the latest GA version of MariaDB. If a new

major GA release occurs and you would like to upgrade to it, then you will need to either manually edit the repository

configuration file to point to the new version, or run the MariaDB Package Repository setup script again.

The script can also configure your system to install from the repository of a different version of MariaDB if you use the --

mariadb-server-version option.

The string mariadb- has to be prepended to the version number. For example, to configure your system to install from the

repository of MariaDB 10.6, that would be:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash -s -- --mariadb-

server-version="mariadb-10.6"

The following MariaDB versions are currently supported:

mariadb-10.4

mariadb-10.5

mariadb-10.6

mariadb-10.10

mariadb-10.11

1599/4161

mariadb-11.0

mariadb-11.1

mariadb-11.2

If you want to pin the repository of a specific minor release, such as MariaDB 10.6.14, then you can also specify the minor

release. For example, mariadb-10.6.14 . This may be helpful if you want to avoid upgrades. However, avoiding upgrades

is not recommended, since minor maintenance releases may contain important bug fixes and fixes for security

vulnerabilities.

--mariadb-maxscale-version

By default, the script will configure your system to install from the repository of the latest GA version of MariaDB MaxScale.

If you would like to pin the repository to a specific version of MariaDB MaxScale then you will need to either manually edit

the repository configuration file to point to the desired version, or use the --mariadb-maxscale-version option.

For example, to configure your system to install from the repository of MariaDB MaxScale 6.1, that would be:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash -s -- --mariadb-

maxscale-version="6.1"

The following MariaDB MaxScale versions are currently supported:

MaxScale 1.4

MaxScale 2.0

MaxScale 2.1

MaxScale 2.2

MaxScale 2.3

MaxScale 2.4

MaxScale 2.5

MaxScale 6.1

MaxScale 6.2

The special identifiers latest (for the latest GA release) and beta (for the latest beta release) are also supported. By

default the mariadb_repo_setup script uses latest as the version.

--os-type and --os-version

If you want to run this script on an unsupported OS that you believe to be package-compatible with an OS that is supported,

then you can use the --os-type and --os-version options to override the script's OS detection. If you use either

option, then you must use both options.

The supported values for --os-type are:

rhel

debian

ubuntu

sles

If you use a non-supported value, then the script will fail, just as it would fail if you ran the script on an unsupported OS.

The supported values for --os-version are entirely dependent on the OS type.

For Red Hat Enterprise Linux (RHEL) and CentOS, 7 and 8 are valid options.

For Debian and Ubuntu, the version must be specified as the codename of the specific release. For example, Debian 9 must

be specified as stretch , and Ubuntu 18.04 must be specified as bionic .

These options can be useful if your distribution is a fork of another distribution. As an example, Linux Mint 8.1 is based on

and is fully compatible with Ubuntu 16.04 LTS (Xenial). Therefore, If you are using Linux Mint 8.1, then you can configure

your system to install from the repository of Ubuntu 16.04 LTS (Xenial). If you would like to do that, then you can do so by

specifying --os-type=ubuntu and --os-version=xenial to the MariaDB Package Repository setup script.

For example, to manually set the --os-type and --os-version to RHEL 8 you could do:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash -s -- --os-type=rhel -

-os-version=8

--write-to-stdout

The --write-to-stdout option will prevent the script from modifying anything on the system. The repository

1600/4161

configuration will not be written to the repository configuration file. Instead, it will be printed to standard output. That allows

the configuration to be reviewed, redirected elsewhere, consumed by another script, or used in some other way.

The --write-to-stdout option automatically enables --skip-key-import .

For example:

curl -LsS https://r.mariadb.com/downloads/mariadb_repo_setup | sudo bash -s -- --write-to-

stdout

Platform-Specific Behavior

Platform-Specific Behavior on RHEL and CentOS

On Red Hat Enterprise Linux (RHEL) and CentOS, the MariaDB Package Repository setup script performs the following

tasks:

1. Creates a repository configuration file at /etc/yum.repos.d/mariadb.repo .

2. Imports the GPG public key used to verify the signature of MariaDB software packages with rpm --import from

downloads.mariadb.com .

Platform-Specific Behavior on Debian and Ubuntu

On Debian and Ubuntu, the MariaDB Package Repository setup script performs the following tasks:

1. Creates a repository configuration file at /etc/apt/sources.list.d/mariadb.list .

2. Creates a package preferences file at /etc/apt/preferences.d/mariadb-enterprise.pref , which gives

packages from MariaDB repositories a higher priority than packages from OS and other repositories, which can help

avoid conflicts. It looks like the following:

Package: *

Pin: origin downloads.mariadb.com

Pin-Priority: 1000

3. Imports the GPG public key used to verify the signature of MariaDB software package with apt-key from the

keyserver.ubuntu.com key server.

4. Updates the package cache with package definitions from the MariaDB Package Repository with apt-get update .

Platform-Specific Behavior on SLES

On SUSE Linux Enterprise Server (SLES), the MariaDB Package Repository setup script performs the following tasks:

1. Creates a repository configuration file at /etc/zypp/repos.d/mariadb.repo .

2. Imports the GPG public key used to verify the signature of MariaDB software packages with rpm --import from

downloads.mariadb.com .

Installing Packages with the MariaDB Package
Repository
After setting up the MariaDB Package Repository, you can install the software packages in the supported repositories.

Installing Packages on RHEL and CentOS

To install MariaDB on Red Hat Enterprise Linux (RHEL) and CentOS, see the instructions at Installing MariaDB Packages

with YUM. For example:

sudo yum install MariaDB-server MariaDB-client MariaDB-backup

To install MariaDB MaxScale on Red Hat Enterprise Linux (RHEL) and CentOS, see the instructions at MariaDB MaxScale

Installation Guide . For example:

sudo yum install maxscale

1601/4161

https://mariadb.com/kb/en/mariadb-maxscale-23-mariadb-maxscale-installation-guide/

Installing Packages on Debian and Ubuntu

To install MariaDB on Debian and Ubuntu, see the instructions at Installing MariaDB Packages with APT. For example:

sudo apt-get install mariadb-server mariadb-client mariadb-backup

To install MariaDB MaxScale on Debian and Ubuntu, see the instructions at MariaDB MaxScale Installation Guide . For

example:

sudo apt-get install maxscale

Installing Packages on SLES

To install MariaDB on SUSE Linux Enterprise Server (SLES), see the instructions at Installing MariaDB Packages with

ZYpp. For example:

sudo zypper install MariaDB-server MariaDB-client MariaDB-backup

To install MariaDB MaxScale on SUSE Linux Enterprise Server (SLES), see the instructions at MariaDB MaxScale

Installation Guide . For example:

sudo zypper install maxscale

Versions

Version sha256sum

2024-02-16 30d2a05509d1c129dd7dd8430507e6a7729a4854ea10c9dcf6be88964f3fdc25

2023-11-21 2d7291993f1b71b5dc84cc1d23a65a5e01e783aa765c2bf5ff4ab62814bb5da1

2023-08-21 935944a2ab2b2a48a47f68711b43ad2d698c97f1c3a7d074b34058060c2ad21b

2023-08-14 f5ba8677ad888cf1562df647d3ee843c8c1529ed63a896bede79d01b2ecc3c1d

2023-06-09 3a562a8861fc6362229314772c33c289d9096bafb0865ba4ea108847b78768d2

2023-02-16 ad125f01bada12a1ba2f9986a21c59d2cccbe8d584e7f55079ecbeb7f43a4da4

2022-11-17 367a80b01083c34899958cdd62525104a3de6069161d309039e84048d89ee98b

2022-08-22 733cf126b03f73050e242102592658913d10829a5bf056ab77e7f864b3f8de1f

2022-08-15 f99e1d560bd72a3a23f64eaede8982d5494407cafa8f995de45fb9a7274ebc5c

2022-06-14 d4e4635eeb79b0e96483bd70703209c63da55a236eadd7397f769ee434d92ca8

2022-02-08 b9e90cde27affc2a44f9fc60e302ccfcacf71f4ae02071f30d570e6048c28597

2022-01-18 c330d2755e18e48c3bba300a2898b0fc8ad2d3326d50b64e02fe65c67b454599

2.1.3 Upgrading MariaDB
Upgrading Between Major MariaDB Versions

MariaDB is designed for easy upgrades.

Upgrading Between Minor Versions on Linux

Upgrading between minor versions of MariaDB, e.g. from MariaDB 10.11.4 to MariaDB 10.11.5

Downgrading between Major Versions of MariaDB

Downgrading MariaDB is not officially supported between major versions.

Upgrading from MariaDB 11.2 to MariaDB 11.3

How to upgrade from MariaDB 11.2 to MariaDB 11.3.

1

2

1602/4161

https://mariadb.com/kb/en/mariadb-maxscale-23-mariadb-maxscale-installation-guide/
https://mariadb.com/kb/en/mariadb-maxscale-23-mariadb-maxscale-installation-guide/

Upgrading from MariaDB 11.1 to MariaDB 11.2

How to upgrade from MariaDB 11.1 to MariaDB 11.2.

Upgrading from MariaDB 11.0 to MariaDB 11.1

How to upgrade from MariaDB 11.0 to MariaDB 11.1.

Upgrading from MariaDB 10.11 to MariaDB 11.0

How to upgrade from MariaDB 10.11 to MariaDB 11.0.

Upgrading from MariaDB 10.6 to MariaDB 10.11

How to upgrade from MariaDB 10.6 to MariaDB 10.11

Upgrading from MariaDB 10.5 to MariaDB 10.6

How to upgrade from MariaDB 10.5 to MariaDB 10.6.

Upgrading from MariaDB 10.4 to MariaDB 10.5

How to upgrade from MariaDB 10.4 to MariaDB 10.5.

Upgrading from MariaDB 10.3 to MariaDB 10.4

How to upgrade from MariaDB 10.3 to MariaDB 10.4.

Upgrading MariaDB on Windows

Upgrading MariaDB on Windows.

Upgrading Galera Cluster

Upgrading MariaDB Galera Cluster.

Upgrading from MySQL to MariaDB

Upgrading from MySQL to MariaDB.

Upgrading to Unmaintained MariaDB Releases

Upgrading to unmaintained MariaDB releases

There are 25 related questions .

1

2

22

2.1.3.1 Upgrading Between Major MariaDB
Versions

Contents
1. Requirements for Doing an Upgrade Between Major Versions

2. Recommended Steps

1. Step by Step Instructions for Upgrades

3. Work Done by mariadb-upgrade

4. Post Upgrade Work

5. If Something Goes Wrong

1. Disaster Recovery

6. Downgrading

MariaDB is designed to allow easy upgrades. You should be able to trivially upgrade from ANY earlier MariaDB version to

the latest one (for example MariaDB 10.3.x to MariaDB 10.11.x), usually in a few seconds. This is also mainly true for any

MySQL version < 8.0 to MariaDB 10.4 and up.

Upgrades are normally easy because:

All MariaDB table data files are backward compatible

The MariaDB connection protocol is backward compatible. You don't normally need to upgrade any of your old clients

to be able to connect to a newer MariaDB version.

The MariaDB replica can be of any newer version than the primary.

MariaDB Corporation regularly runs tests to check that one can upgrade from MariaDB 5.5 to the latest MariaDB version

without any trouble. All older versions should work too (as long as the storage engines you were using are still around).

Note that if you are using MariaDB Galera Cluster, you have to follow the Galera upgrading instructions!

1603/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-5-to-mariadb-10-6/
https://mariadb.com/kb/en/upgrading-from-mariadb-10-4-to-mariadb-10-5/
https://mariadb.com/kb/en/upgrading-to-unmaintained-mariadb-releases/
https://mariadb.com/kb/en/upgrading/+questions/

Requirements for Doing an Upgrade Between Major
Versions

Go through the individual version upgrade notes (listed below) to look for any major changes or configuration options

that have changed.

Ensure that the target MariaDB version supports the storage engines you are using. For example, in 10.5 TokuDB

is not supported.

Backup the database (just in case). At least, take a copy of the mysql data directory with mariadb-dump --add-drop-

table mysql (called mysqldump in MariaDB 10.3 and earlier) as most of the upgrade changes are done there (adding

new fields and new system tables etc).

Cleanly shutdown the server. This is necessary because even if data files are compatible between versions, recovery

logs may not be.

Ensure that the innodb_fast_shutdown variable is not 2 (fast crash shutdown) or 3. The default of this variable

is 1. The safest and recommended option for upgrades is 0. The shutdown time may be notably larger with 0

than for 1 as there are a lot more cleanups done for 0, however when preparing for an upgrade this should not

be an issue.

innodb_force_recovery must be less than 3 .

Note that rpms don't support upgrading between major versions, only minor like 10.4.1 to 10.4.2. If you are using rpms, you

should de-install the old MariaDB rpms and install the new MariaDB rpms before running mariadb-upgrade. Note that when

installing the new rpms, mariadb-upgrade may be run automatically. There is no problem with running mariadb-upgrade

many times.

Recommended Steps
If you have a primary-replica setup, first upgrade one replica and when you have verified that the replica works well,

upgrade the rest of the replicas (if any). Then upgrade one replica to primary, upgrade the primary, and change the

replica to a primary.

If you don't have a primary-replica setup, then take a backup, shutdown MariaDB and do the upgrade.

Step by Step Instructions for Upgrades

Upgrade MariaDB binaries and libraries, preferably without starting MariaDB.

If the MariaDB server process, mysqld or mariadbd was not started as part of the upgrade, start it by executing

mysqld --skip-grant-tables . This may produce some warnings about some system tables not being up to date,

but you can ignore these for now as mariadb-upgrade will fix that.

Run mariadb-upgrade

Restart MariaDB server.

Work Done by mariadb-upgrade
The main work done when upgrading is done by running mariadb-upgrade. The main things it does are:

Updating the system tables in the mysql database to the newest version. This is very quick.

mariadb-upgrade also runs mariadb-check --check-upgrade to check if there have been any collation changes

between the major versions. This recreates indexes in old tables that are using any of the changed collations. This

can take a bit of time if there are a lot of tables or there are many tables which used the changed collation. The last

time a collation changed was in MariaDB/MySQL 5.1.23.

Post Upgrade Work
Check the MariaDB error log for any problems during upgrade. If there are any warnings in the log files, do your best to get

rid of them!

The common warnings/errors are:

Using obsolete options. If this is the case, remove them from your my.cnf files.

Check the manual for new features that have been added since your last MariaDB version.

Test that your application works as before. The main difference from before is that because of optimizer

improvements your application should work better than before, but in some rare cases the optimizer may get

something wrong. In this case, you can try to use explain, optimizer trace or optimizer_switch to fix the queries.

If Something Goes Wrong
1604/4161

https://mariadb.com/kb/en/tokudb/
file:///mysqld-options

First, check the MariaDB error log to see if you are using configure options that are not supported anymore.

Check the upgrade notices for the MariaDB release that you are upgrading to.

File an issue in the MariaDB bug tracker so that we know about the issue and can provide a fix to make upgrades

even better.

Add a comment to this manual entry for how we can improve it.

Disaster Recovery

In the unlikely event something goes wrong, you can try the following:

Remove the InnoDB tables from the mysql data directory. They are:

gtid_slave_pos

innodb_table_stats

innodb_index_stats

transaction_registry

Move the mysql data directory to mysql-old and run mariadb-install-db to generate a new one.

After the above, you have to add back your old users.

When done, delete the mysql-old data directory.

Downgrading
MariaDB server is not designed for downgrading. That said, in most cases, as long as you haven't run any ALTER TABLE or

CREATE TABLE statements and you have a mariadb-dump of your old mysql database , you should be able to

downgrade to your previous version by doing the following:

Do a clean shutdown. For this special case you have to set innodb_fast_shutdown to 0,before taking down the new

MariaDB server, to ensure there are no redo or undo logs that need to be applied on the downgraded server.

Delete the tables in the mysql database (if you didn't use the option --add-drop-table to mariadb-dump)

Delete the new MariaDB installation

Install the old MariaDB version

Start the server with mysqld --skip-grant-tables

Install the old mysql database

Execute in the mariadb client FLUSH PRIVILEGES

2.1.3.2 Upgrading Between Minor Versions on
Linux

For Windows, see Upgrading MariaDB on Windows instead.

For MariaDB Galera Cluster, see Upgrading Between Minor Versions with Galera Cluster instead.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

To upgrade between minor versions of MariaDB on Linux/Unix (for example from MariaDB 10.11.4 to MariaDB 10.11.5), the

following procedure is suggested:

1. Stop MariaDB .

2. Uninstall the old version of MariaDB.

3. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

4. Make any desired changes to configuration options in option files, such as my.cnf .

5. Start MariaDB .

6. Run mariadb-upgrade.

mariadb-upgrade does two things:

1605/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

In most cases this should be a fast operation (depending of course on the number of tables).

To upgrade between major versions, see the following:

Upgrading Between Major MariaDB Versions

Upgrading from MariaDB 11.1 to MariaDB 11.2

Upgrading from MariaDB 11.0 to MariaDB 11.1

Upgrading from MariaDB 10.11 to MariaDB 11.0

Upgrading from MariaDB 10.6 to MariaDB 10.11

Upgrading from MariaDB 10.5 to MariaDB 10.6

Upgrading from MariaDB 10.4 to MariaDB 10.5

Upgrading from MariaDB 10.3 to MariaDB 10.4

2.1.3.3 Upgrading from MariaDB 11.2 to
MariaDB 11.3

Contents
1. How to Upgrade

2. Incompatible Changes Between 11.2 and 11.3

1. Options That Have Changed Default Values

2. Options That Have Been Removed or Renamed

This page includes details for upgrading from MariaDB 11.2 to MariaDB 11.3. Note that MariaDB 11.2 and MariaDB

11.3 are both short-term releases , only maintained for one year.

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 11.3. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

1606/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-5-to-mariadb-10-6/
https://mariadb.org/about/#maintenance-policy

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 11.2 and 11.3

On most servers upgrading from 11.2 should be painless. However, there are some things that have changed which could

affect an upgrade:

Options That Have Changed Default Values

Option Old default New default

optimizer_switch See optimizer-switch.

session_track_system_variables

autocommit, character_set_client,

character_set_connection,

character_set_results, time_zone

autocommit, character_set_client,

character_set_connection,

character_set_results, redirect_url, time_zone

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

date_format Unused.

datetime_format Unused.

max_tmp_tables Unused.

time_format Unused.

wsrep_causal_reads Deprecated by wsrep_sync_wait=1.

2.1.3.4 Upgrading from MariaDB 11.1 to
MariaDB 11.2

Contents
1. How to Upgrade

2. Incompatible Changes Between 11.1 and 11.2

1. Options That Have Changed Default Values

2. Options That Have Been Removed or Renamed

3. Deprecated Options

This page includes details for upgrading from MariaDB 11.1 to MariaDB 11.2. Note that MariaDB 11.1 and MariaDB

11.2 are both short-term releases , only maintained for one year.

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 11.2. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

1607/4161

https://mariadb.org/about/#maintenance-policy

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 11.1 and 11.2

On most servers upgrading from 11.1 should be painless. However, there are some things that have changed which could

affect an upgrade:

Options That Have Changed Default Values

Option Old default New default

optimizer_switch See optimizer-switch.

innodb_purge_batch_size 300 1000

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

old_alter_table Superceded by alter_algorithm.

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

innodb_purge_rseg_truncate_frequency

The motivation for introducing this in MySQL seems to have been to avoid stalls

due to freeing undo log pages or truncating undo log tablespaces. In MariaDB,

innodb_undo_log_truncate=ON should be a much lighter operation because it

will not involve any log checkpoint, hence this is deprecated and ignored

2.1.3.5 Upgrading from MariaDB 11.0 to
MariaDB 11.1

1608/4161

Contents
1. How to Upgrade

2. Incompatible Changes Between 11.0 and 11.1

1. Options That Have Been Removed or Renamed

2. Deprecated Options

This page includes details for upgrading from MariaDB 11.0 to MariaDB 11.1. Note that MariaDB 11.0 and MariaDB

11.1 are both short-term releases , only maintained for one year.

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 11.1. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 11.0 and 11.1

On most servers upgrading from 10.11 should be painless. However, there are some things that have changed which could

affect an upgrade:

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

innodb_defragment Defragmenting InnoDB Tablespaces in this manner no longer supported.

innodb_defragment_fill_factor Defragmenting InnoDB Tablespaces in this manner no longer supported.

1609/4161

https://mariadb.org/about/#maintenance-policy

innodb_defragment_fill_factor_n_recs Defragmenting InnoDB Tablespaces in this manner no longer supported.

innodb_defragment_frequency Defragmenting InnoDB Tablespaces in this manner no longer supported.

innodb_defragment_n_pages Defragmenting InnoDB Tablespaces in this manner no longer supported.

innodb_defragment_stats_accuracy Defragmenting InnoDB Tablespaces in this manner no longer supported.

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

innodb_purge_rseg_truncate_frequency

The motivation for introducing this in MySQL seems to have been to avoid stalls

due to freeing undo log pages or truncating undo log tablespaces. In MariaDB,

innodb_undo_log_truncate=ON should be a much lighter operation because it

will not involve any log checkpoint, hence this is deprecated and ignored

tx_isolation Replaced with transaction_isolation to align the option and system variable.

tx_read_only Replaced with transaction_read_only to align the option and system variable.

2.1.3.6 Upgrading from MariaDB 10.11 to
MariaDB 11.0

Contents
1. How to Upgrade

2. Incompatible Changes Between 10.11 and 11.0

1. Options That Have Changed Default Values

2. Options That Have Been Removed or Renamed

3. Deprecated Options

This page includes details for upgrading from MariaDB 10.11 to MariaDB 11.0. It is currently incomplete. Note that

MariaDB 10.11 is maintained for five years , while MariaDB 11.0 is a short-term maintenance release, only

maintained for one year.

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 11.0. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

1610/4161

https://mariadb.org/about/#maintenance-policy

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 10.11 and 11.0

On most servers upgrading from 10.11 should be painless. However, there are some things that have changed which could

affect an upgrade:

Options That Have Changed Default Values

Option Old default New default

innodb_undo_tablespaces 0 3

histogram_type DOUBLE_PREC_HB JSON_HB

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

innodb_change_buffer_max_size InnoDB Change Buffer removed

innodb_change_buffering InnoDB Change Buffer removed

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

innodb_defragment
InnoDB Defragmentation is not particularly useful and causes a maintenance

burden.

innodb_defragment_n_pages

innodb_defragment_stats_accuracy

innodb_defragment_fill_factor_n_recs

innodb_defragment_fill_factor

innodb_defragment_frequency

innodb_file_per_table

innodb_flush_method

innodb_file_per_table
Has been set for many releases. Unsetting (the original InnoDB default) is no

longer useful

innodb_flush_method
Mapped it to 4 new boolean parameters that can be changed while the server is

running

log_slow_admin_statements Use log_slow_filter without admin

2.1.3.7 Upgrading from MariaDB 10.6 to
1611/4161

MariaDB 10.11
Contents
1. How to Upgrade

2. Incompatible Changes Between 10.6 and 10.11

1. Compression

2. Options That Have Changed Default Values

3. Options That Have Been Removed or Renamed

4. Deprecated Options

This page includes details for upgrading from MariaDB 10.6 to the subsequent long-term maintenance version,

MariaDB 10.11. It is currently incomplete.

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

For MariaDB Galera Cluster, see Upgrading from MariaDB 10.6 to MariaDB 10.11 with Galera Cluster .

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.11. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 10.6 and 10.11

On most servers upgrading from 10.6 should be painless. However, there are some things that have changed which could

affect an upgrade:

1612/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-6-to-mariadb-10-11-with-galeracluster/

Compression

If a non-zlib compression algorithm was used in InnoDB or Mroonga before upgrading to 10.11, those tables will be

unreadable until the appropriate compression library is installed. See Compression Plugins#Upgrading.

Options That Have Changed Default Values

Option Old default New default

innodb_buffer_pool_chunk_size 134217728 Autosized

spider_auto_increment_mode -1 0

spider_bgs_first_read -1 2

spider_bgs_mode -1 0

spider_bgs_second_read -1 100

spider_bka_mode -1 1

spider_bka_table_name_type -1 1

spider_buffer_size -1 16000

spider_bulk_size -1 16000

spider_bulk_update_mode -1 0

spider_bulk_update_size -1 16000

spider_casual_read -1 0

spider_connect_timeout -1 6

spider_crd_bg_mode -1 2

spider_crd_interval -1 51

spider_crd_mode -1 1

spider_crd_sync -1 0

spider_crd_type -1 2

spider_crd_weight -1 2

spider_delete_all_rows_type -1 1

spider_direct_dup_insert -1 0

spider_direct_order_limit -1 9223372036854775807

spider_error_read_mode -1 0

spider_error_write_mode -1 0

spider_first_read -1 0

spider_init_sql_alloc_size -1 1024

spider_internal_limit -1 9223372036854775807

spider_internal_offset -1 0

spider_internal_optimize -1 0

spider_internal_optimize_local -1 0

spider_load_crd_at_startup -1 1

spider_load_sts_at_startup -1 1

spider_low_mem_read -1 1

spider_max_order -1 32767

spider_multi_split_read -1 100

spider_net_read_timeout -1 600

spider_net_write_timeout -1 600

1613/4161

spider_quick_mode -1 3

spider_quick_page_byte -1 10485760

spider_quick_page_size -1 1024

spider_read_only_mode -1 0

spider_reset_sql_alloc -1 1

spider_second_read -1 0

spider_selupd_lock_mode -1 1

spider_semi_split_read -1 2

spider_semi_split_read_limit -1 1

spider_semi_table_lock_connection -1 1

spider_semi_table_lock 1 0

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

innodb_log_write_ahead_size
On Linux and Windows, the physical block size of the underlying storage is instead

detected and used.

innodb_version Redundant

wsrep_replicate_myisam Use wsrep_mode instead.

wsrep_strict_ddl Use wsrep_mode instead.

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

keep_files_on_create MariaDB now deletes orphan files, so this setting should never be necessary.

2.1.3.8 Upgrading from MariaDB 10.5 to
MariaDB 10.6

Contents
1. How to Upgrade

2. Incompatible Changes Between 10.5 and 10.6

1. Reserved Word

2. InnoDB COMPRESSED Row Format

3. Character Sets

4. Options That Have Changed Default Values

5. Options That Have Been Removed or Renamed

6. Deprecated Options

3. Major New Features To Consider

How to Upgrade

For Windows, see Upgrading MariaDB on Windows.

For MariaDB Galera Cluster, see Upgrading from MariaDB 10.5 to MariaDB 10.6 with Galera Cluster .

1614/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-5-to-mariadb-10-6-with-galera-cluster/

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.6. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mariadb-upgrade.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 10.5 and 10.6

On most servers upgrading from 10.5 should be painless. However, there are some things that have changed which could

affect an upgrade:

The bahaviour of sorting non-deterministic variables in a Select query can be changed , see (MDEV-27745)

Reserved Word

New reserved word: OFFSET. This can no longer be used as an identifier without being quoted.

InnoDB COMPRESSED Row Format

From MariaDB 10.6.0 until MariaDB 10.6.5, tables that are of the COMPRESSED row format are read-only by default. This

was intended to be the first step towards removing write support and deprecating the feature.

This plan has been scrapped, and from MariaDB 10.6.6, COMPRESSED tables are no longer read-only by default.

From MariaDB 10.6.0 to MariaDB 10.6.5, set the innodb_read_only_compressed variable to OFF to make the tables

writable.

Character Sets

From MariaDB 10.6, the utf8 character set (and related collations) is by default an alias for utf8mb3 rather than the

other way around. It can be set to imply utf8mb4 by changing the value of the old_mode system variable.

Options That Have Changed Default Values

Option Old default value New default value

character_set_client utf8 utf8mb3

1615/4161

https://jira.mariadb.org/browse/MDEV-27745

character_set_connection utf8 utf8mb3

character_set_results utf8 utf8mb3

character_set_system utf8 utf8mb3

innodb_flush_method fsync O_DIRECT

old_mode Empty UTF8_IS_UTF8MB3

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

innodb_adaptive_max_sleep_delay

innodb_background_scrub_data_check_interval

innodb_background_scrub_data_compressed

innodb_background_scrub_data_interval

innodb_background_scrub_data_uncompressed

innodb_buffer_pool_instances

innodb_checksum_algorithm

The variable is still present, but the *innodb and *none options have

been removed as the crc32 algorithm only is supported from MariaDB

10.6.

innodb_commit_concurrency

innodb_concurrency_tickets

innodb_file_format

innodb_large_prefix

innodb_lock_schedule_algorithm

innodb_log_checksums

innodb_log_compressed_pages

innodb_log_files_in_group

innodb_log_optimize_ddl

innodb_page_cleaners

innodb_replication_delay

innodb_scrub_log

innodb_scrub_log_speed

innodb_sync_array_size

innodb_thread_concurrency

innodb_thread_sleep_delay

innodb_undo_logs

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

wsrep_replicate_myisam Use wsrep_mode instead.

wsrep_strict_ddl Use wsrep_mode instead.

Major New Features To Consider

1616/4161

See also System Variables Added in MariaDB 10.6.

2.1.3.9 Upgrading from MariaDB 10.4 to
MariaDB 10.5

Contents
1. How to Upgrade

2. Incompatible Changes Between 10.4 and 10.5

1. Binary name changes

2. GRANT PRIVILEGE changes

3. Options That Have Changed Default Values

4. Options That Have Been Removed or Renamed

5. Deprecated Options

3. Major New Features To Consider

How to Upgrade

For Windows, see Upgrading MariaDB on Windows instead.

For MariaDB Galera Cluster, see Upgrading from MariaDB 10.4 to MariaDB 10.5 with Galera Cluster .

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.5. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mysql_upgrade.

mysql_upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 10.4 and 10.5

On most servers upgrading from 10.4 should be painless. However, there are some things that have changed which could

affect an upgrade:

1617/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-4-to-mariadb-10-5-with-galera-cluster/

Binary name changes

All binaries previously beginning with mysql now begin with mariadb, with symlinks for the corresponding mysql command.

Usually that shouldn't cause any changed behavior, but when starting the MariaDB server via systemd, or via the

mysqld_safe script symlink, the server process will now always be started as mariadbd , not mysqld .

So anything looking for the mysqld name in the system process list, like e.g. monitoring solutions, now needs for

mariadbd instead when the server / service is not started directly, but via mysqld_safe or as a system service.

GRANT PRIVILEGE changes

A number of statements changed the privileges that they require. The old privileges were historically inappropriately chosen

in the upstream. 10.5.2 fixes this problem. Note, these changes are incompatible to previous versions. A number of GRANT

commands might be needed after upgrade.

SHOW BINLOG EVENTS now requires the BINLOG MONITOR privilege (requred REPLICATION SLAVE prior to

10.5.2).

SHOW SLAVE HOSTS now requires the REPLICATION MASTER ADMIN privilege (required REPLICATION SLAVE

prior to 10.5.2).

SHOW SLAVE STATUS now requires the REPLICATION SLAVE ADMIN or the SUPER privilege (required

REPLICATION CLIENT or SUPER prior to 10.5.2).

SHOW RELAYLOG EVENTS now requires the REPLICATION SLAVE ADMIN privilege (required REPLICATION SLAVE

prior to 10.5.2).

Options That Have Changed Default Values

Option Old default value New default value

innodb_adaptive_hash_index ON OFF

innodb_checksum_algorithm crc32 full_crc32

innodb_log_optimize_ddl ON OFF

slave_parallel_mode conservative optimistic

performance_schema_max_cond_classes 80 90

performance_schema_max_file_classes 50 80

performance_schema_max_mutex_classes 200 210

performance_schema_max_rwlock_classes 40 50

performance_schema_setup_actors_size 100 -1

performance_schema_setup_objects_size 100 -1

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

innodb_checksums
Deprecated and functionality replaced by innodb_checksum_algorithms in MariaDB

10.0.

innodb_idle_flush_pct Has had no effect since merging InnoDB 5.7 from mysql-5.7.9 (MariaDB 10.2.2).

innodb_locks_unsafe_for_binlog
Deprecated in MariaDB 10.0. Use READ COMMITTED transaction isolation level

instead.

innodb_rollback_segments Deprecated and replaced by innodb_undo_logs in MariaDB 10.0.

innodb_stats_sample_pages Deprecated in MariaDB 10.0. Use innodb_stats_transient_sample_pages instead.

max_long_data_size Deprecated and replaced by max_allowed_packet in MariaDB 5.5.

multi_range_count Deprecated and has had no effect since MariaDB 5.3.

thread_concurrency Deprecated and has had no effect since MariaDB 5.5.

timed_mutexes Deprecated and has had no effect since MariaDB 5.5.

1618/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

Deprecated Options

The following options have been deprecated. They have not yet been removed, but will be in a future version, and should

ideally no longer be used.

Option Reason

innodb_adaptive_max_sleep_delay No need for thread throttling any more.

innodb_background_scrub_data_check_interval Problematic 8background scrubbing9 code removed.

innodb_background_scrub_data_interval Problematic 8background scrubbing9 code removed.

innodb_background_scrub_data_compressed Problematic 8background scrubbing9 code removed.

innodb_background_scrub_data_uncompressed Problematic 8background scrubbing9 code removed.

innodb_buffer_pool_instances Having more than one buffer pool is no longer necessary.

innodb_commit_concurrency No need for thread throttling any more.

innodb_concurrency_tickets No need for thread throttling any more.

innodb_log_files_in_group
Redo log was unnecessarily split into multiple files. Limited to 1 from

MariaDB 10.5.

innodb_log_optimize_ddl Prohibited optimizations.

innodb_page_cleaners Having more than one page cleaner task no longer necessary.

innodb_replication_delay No need for thread throttling any more.

innodb_scrub_log Never really worked as intended, redo log format is being redone.

innodb_scrub_log_speed Never really worked as intended, redo log format is being redone.

innodb_thread_concurrency No need for thread throttling any more.

innodb_thread_sleep_delay No need for thread throttling any more.

innodb_undo_logs
It always makes sense to use the maximum number of rollback

segments.

large_page_size Unused since multiple page size support was added.

Major New Features To Consider

You might consider using the following major new features in MariaDB 10.5:

The S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud

that implements S3 API.

ColumnStore columnar storage engine.

See also System Variables Added in MariaDB 10.5.

2.1.3.10 Upgrading from MariaDB 10.3 to
MariaDB 10.4

Contents
1. How to Upgrade

2. Incompatible Changes Between 10.3 and 10.4

1. Options That Have Changed Default Values

2. Options That Have Been Removed or Renamed

3. Authentication and TLS

3. Major New Features To Consider

How to Upgrade

For Windows, see Upgrading MariaDB on Windows instead.

For MariaDB Galera Cluster, see Upgrading from MariaDB 10.3 to MariaDB 10.4 with Galera Cluster instead.

1619/4161

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

The suggested upgrade procedure is:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.4. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. Stop MariaDB.

3. Uninstall the old version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server

4. Install the new version of MariaDB.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

5. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

options that are no longer supported.

6. Start MariaDB.

7. Run mysql_upgrade .

mysql_upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

Incompatible Changes Between 10.3 and 10.4

On most servers upgrading from 10.3 should be painless. However, there are some things that have changed which could

affect an upgrade:

Options That Have Changed Default Values

Option Old default value New default value

slave_transaction_retry_errors 1213,1205 1158,1159,1160,1161,1205,1213,1429,2013,12701

wsrep_debug OFF NONE

wsrep_load_data_splitting ON OFF

Options That Have Been Removed or Renamed

The following options should be removed or renamed if you use them in your option files:

Option Reason

Authentication and TLS

See Authentication from MariaDB 10.4 for an overview of the changes.

The unix_socket authentication plugin is now default on Unix-like systems.

TLSv1.0 is disabled by default in MariaDB 10.4. See tls_version and TLS Protocol Versions.

Major New Features To Consider

You might consider using the following major new features in MariaDB 10.4:

1620/4161

Galera has been upgraded from Galera 3 to Galera 4.

System-versioning extended with support for application-time periods.

User password expiry

Account Locking

See also System Variables Added in MariaDB 10.4.

2.1.3.11 Upgrading MariaDB on Windows
Contents
1. Minor Upgrades

2. General Information on Upgrade and Version Coexistence

3. General Recommendations

4. Upgrade Wizard

5. mysql_upgrade_service

6. Migration to 64 bit MariaDB from 32 bit

7. Upgrading ZIP-based Installations.

For incompatibilities such as removed features, and changes to variables, see the pages describing changes by

version on Upgrading MariaDB.

Minor Upgrades
To install a minor upgrade, e.g 10.1.27 on top of existing 10.1.26, with MSI, just download the 10.1.27 MSI and start it. It will

do everything that needs to be done for minor upgrade automatically - shutdown MariaDB service(s), replace executables

and DLLs, and start service(s) again.

The rest of the article is dedicated to *major* upgrades, e.g 10.1.x to 10.2.y.

General Information on Upgrade and Version
Coexistence
This section assumes MSI installations.

First, check everything listed in the Incompatibilities section of the article relating to the version you are upgrading, for

example, Upgrading from MariaDB 10.1 to MariaDB 10.2 , to make sure you are prepared for the upgrade.

MariaDB (and also MySQL) allows different versions of the product to co-exist on the same machine, as long as these

versions are different either in major or minor version numbers. For example, it is possible to have say MariaDB 5.1.51

and 5.2.6 to be installed on the same machine.

However only a single instance of 5.2 can exist. If for example 5.2.7 is installed on a machine where 5.2.6 is already

installed, the installer will just replace 5.2.6 executables with 5.2.7 ones.

Now imagine, that both 5.1 and 5.2 are installed on the same machine and we want to upgrade the database instance

running on 5.1 to the new version. In this case special tools are requied. Traditionally, mysql_upgrade is used to

accomplish this. On Windows, the MySQL upgrade is a complicated multiple-step manual process.

Since MariaDB 5.2.6 , the Windows distribution includes tools that simplify migration between different versions and also

allow migration between MySQL and MariaDB.

Note. Automatic upgrades are only possible for DB instances that run as a Windows service.

General Recommendations

Important: Ignore any statement that tells you to "just uninstall MySQL and install MariaDB". This does not work on

Windows, never has, and never will. Keep your MySQL installed until after the database had been converted.

The following install/upgrade sequence is recommended in case of "major" upgrades, like going from 5.3 to 5.5

Install new version, while still retaining the old one

Upgrade services one by one, like described later in the document (e.g with mysql_upgrade_service). It is

recommeded to have services cleanly shut down before the upgrade.

Uninstall old version when previous step is done.

1621/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-101-to-mariadb-102/
https://mariadb.com/kb/en/mariadb-5151-release-notes/
http://dev.mysql.com/doc/refman/5.5/en/windows-upgrading.html
https://mariadb.com/kb/en/mariadb-526-release-notes/

Note. This recommendation differs from the procedure on Unixes, where the upgrade sequence is "uninstall old

version, install new version"

Upgrade Wizard
This is a GUI tool that is typically invoked at the end of a MariaDB installation if upgradable services are found. The UI

allows you to select instances you want to upgrade.

mysql_upgrade_service
This is a command line tool that performs upgrades. The tool requires full administrative privileges (it has to start and stop

services).

Example usage:

 mysql_upgrade_service --service=MySQL

mysql_upgrade_service accepts a single parameter 4 the name of the MySQL or MariaDB service. It performs all the

steps to convert a MariaDB/MySQL instance running as the service to the current version.

Migration to 64 bit MariaDB from 32 bit
Earlier we said that only single instance of "MariaDB <major>.<minor>" version can be installed on the same machine. This

was almost correct, because MariaDB MSI installations allow 32 and 64-bit versions to be installed on the same machine,

and in this case it is possible to have two instances of say 5.2 installed at the same time, an x86 one and an x64 one. One

can use the x64 Upgrade wizard to upgrade an instance running as a 32-bit process to run as 64-bit.

Upgrading ZIP-based Installations.
Both UpgradeWizard and mysql_upgrade_service can also be used to upgrade database instances that were installed with

the ZIP installation.

2.1.3.12 Upgrading Galera Cluster
Upgrading Between Minor Versions with Galera Cluster

Upgrading between minor versions of MariaDB with Galera Cluster, e.g. from ...

Upgrading from MariaDB 10.6 to MariaDB 10.11 with Galera Cluster

How to upgrade from MariaDB 10.6 to MariaDB 10.11 in a Galera Cluster deployment.

Upgrading from MariaDB 10.5 to MariaDB 10.6 with Galera Cluster

How to upgrade from MariaDB 10.5 to MariaDB 10.6 in a Galera Cluster deployment.

2

1622/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-6-to-mariadb-10-11-with-galeracluster/
https://mariadb.com/kb/en/upgrading-from-mariadb-10-5-to-mariadb-10-6-with-galera-cluster/

Upgrading from MariaDB 10.4 to MariaDB 10.5 with Galera Cluster

How to upgrade from MariaDB 10.4 to MariaDB 10.5 in a Galera Cluster deployment.

Upgrading from MariaDB 10.3 to MariaDB 10.4 with Galera Cluster

How to upgrade from MariaDB 10.3 to MariaDB 10.4 in a Galera Cluster deployment.

Upgrading Galera Cluster - Unmaintained Releases

Upgrading Galera Cluster to unmaintained MariaDB releases.

There are 3 related questions .

2

2.1.3.12.1 Upgrading Between Minor Versions
with Galera Cluster

Performing a Rolling Upgrade
The following steps can be used to perform a rolling upgrade between minor versions of MariaDB (for example from

MariaDB 10.3.12 to MariaDB 10.3.13) when Galera Cluster is being used. In a rolling upgrade, each node is upgraded

individually, so the cluster is always operational. There is no downtime from the application's perspective.

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

For each node, perform the following steps:

1. Stop MariaDB .

2. Install the new version of MariaDB and the Galera wsrep provider.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

3. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

system variables or options that are no longer supported.

4. Start MariaDB .

5. Run mariadb-upgrade (the --skip-write-binlog option is important in this step. While it is not necessary to

specify it on the command-line because it is on by default, specifying it can help as a reminder that it is needed)

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

When this process is done for one node, move onto the next node.

Note that when upgrading the Galera wsrep provider, sometimes the Galera protocol version can change. The Galera

wsrep provider should not start using the new protocol version until all cluster nodes have been upgraded to the new

version, so this is not generally an issue during a rolling upgrade. However, this can cause issues if you restart a non-

upgraded node in a cluster where the rest of the nodes have been upgraded.

2.1.3.12.2 Upgrading from MariaDB 10.4 to
MariaDB 10.5 with Galera Cluster
Galera Cluster ships with the MariaDB Server. Upgrading a Galera Cluster node is very similar to upgrading a server from

MariaDB 10.4 to MariaDB 10.5. For more information on that process as well as incompatibilities between versions, see the

Upgrade Guide .

1623/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-4-to-mariadb-10-5-with-galera-cluster/
https://mariadb.com/kb/en/upgrading-galera-cluster-unmaintained-releases/
https://mariadb.com/kb/en/upgrading-galera-cluster/+questions/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/upgrading-from-mariadb-10-4-to-mariadb-10-5/

Performing a Rolling Upgrade
The following steps can be used to perform a rolling upgrade from MariaDB 10.4 to MariaDB 10.5 when using Galera

Cluster. In a rolling upgrade, each node is upgraded individually, so the cluster is always operational. There is no downtime

from the application's perspective.

First, before you get started:

1. First, take a look at Upgrading from MariaDB 10.4 to MariaDB 10.5 to see what has changed between the major

versions.

1. Check whether any system variables or options have been changed or removed. Make sure that your server's

configuration is compatible with the new MariaDB version before upgrading.

2. Check whether replication has changed in the new MariaDB version in any way that could cause issues while

the cluster contains upgraded and non-upgraded nodes.

3. Check whether any new features have been added to the new MariaDB version. If a new feature in the new

MariaDB version cannot be replicated to the old MariaDB version, then do not use that feature until all cluster

nodes have been upgrades to the new MariaDB version.

2. Next, make sure that the Galera version numbers are compatible.

1. If you are upgrading from the most recent MariaDB 10.4 release to MariaDB 10.5, then the versions will be

compatible.

2. See What is MariaDB Galera Cluster?: Galera wsrep provider Versions for information on which MariaDB

releases uses which Galera wsrep provider versions.

3. You want to have a large enough gcache to avoid a State Snapshot Transfer (SST) during the rolling upgrade. The

gcache size can be configured by setting gcache.size For example:

wsrep_provider_options="gcache.size=2G"

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

Then, for each node, perform the following steps:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.5. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. If you use a load balancing proxy such as MaxScale or HAProxy, make sure to drain the server from the pool so it

does not receive any new connections.

3. Stop MariaDB .

4. Uninstall the old version of MariaDB and the Galera wsrep provider.

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server galera

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server galera

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server galera

5. Install the new version of MariaDB and the Galera wsrep provider.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

6. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

system variables or options that are no longer supported.

7. On Linux distributions that use systemd you may need to increase the service startup timeout as the default timeout

of 90 seconds may not be sufficient. See Systemd: Configuring the Systemd Service Timeout for more information.

8. Start MariaDB .

9. Run mariadb-upgrade with the --skip-write-binlog option.

mariadb-upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

When this process is done for one node, move onto the next node.

1624/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-10-4-to-mariadb-10-5/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Note that when upgrading the Galera wsrep provider, sometimes the Galera protocol version can change. The Galera

wsrep provider should not start using the new protocol version until all cluster nodes have been upgraded to the new

version, so this is not generally an issue during a rolling upgrade. However, this can cause issues if you restart a non-

upgraded node in a cluster where the rest of the nodes have been upgraded.

2.1.3.12.3 Upgrading from MariaDB 10.3 to
MariaDB 10.4 with Galera Cluster

Since MariaDB 10.1, the MySQL-wsrep patch has been merged into MariaDB Server. Therefore, in MariaDB 10.1

and above, the functionality of MariaDB Galera Cluster can be obtained by installing the standard MariaDB Server

packages and the Galera wsrep provider library package.

Beginning in MariaDB 10.1, Galera Cluster ships with the MariaDB Server. Upgrading a Galera Cluster node is very similar

to upgrading a server from MariaDB 10.3 to MariaDB 10.4. For more information on that process as well as incompatibilities

between versions, see the Upgrade Guide.

Performing a Rolling Upgrade
The following steps can be used to perform a rolling upgrade from MariaDB 10.3 to MariaDB 10.4 when using Galera

Cluster. In a rolling upgrade, each node is upgraded individually, so the cluster is always operational. There is no downtime

from the application's perspective.

First, before you get started:

1. First, take a look at Upgrading from MariaDB 10.3 to MariaDB 10.4 to see what has changed between the major

versions.

1. Check whether any system variables or options have been changed or removed. Make sure that your server's

configuration is compatible with the new MariaDB version before upgrading.

2. Check whether replication has changed in the new MariaDB version in any way that could cause issues while

the cluster contains upgraded and non-upgraded nodes.

3. Check whether any new features have been added to the new MariaDB version. If a new feature in the new

MariaDB version cannot be replicated to the old MariaDB version, then do not use that feature until all cluster

nodes have been upgrades to the new MariaDB version.

2. Next, make sure that the Galera version numbers are compatible.

1. If you are upgrading from the most recent MariaDB 10.3 release to MariaDB 10.4, then the versions will be

compatible. MariaDB 10.3 uses Galera 3 (i.e. Galera wsrep provider versions 25.3.x), and MariaDB 10.4 uses

Galera 4 (i.e. Galera wsrep provider versions 26.4.x). This means that upgrading to MariaDB 10.4 also

upgrades the system to Galera 4. However, Galera 3 and Galera 4 should be compatible for the purposes of a

rolling upgrade, as long as you are using Galera 26.4.2 or later.

2. See What is MariaDB Galera Cluster?: Galera wsrep provider Versions for information on which MariaDB

releases uses which Galera wsrep provider versions.

3. Ideally, you want to have a large enough gcache to avoid a State Snapshot Transfer (SST) during the rolling upgrade.

The gcache size can be configured by setting gcache.size For example:

wsrep_provider_options="gcache.size=2G"

Before you upgrade, it would be best to take a backup of your database. This is always a good idea to do before an

upgrade. We would recommend Mariabackup.

Then, for each node, perform the following steps:

1. Modify the repository configuration, so the system's package manager installs MariaDB 10.4. For example,

On Debian, Ubuntu, and other similar Linux distributions, see Updating the MariaDB APT repository to a New

Major Release for more information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Updating the MariaDB YUM repository to

a New Major Release for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Updating the MariaDB ZYpp repository to a

New Major Release for more information.

2. If you use a load balancing proxy such as MaxScale or HAProxy, make sure to drain the server from the pool so it

does not receive any new connections.

3. Stop MariaDB .

4. Uninstall the old version of MariaDB and the Galera wsrep provider.

MariaDB starting with 10.1

1625/4161

https://github.com/codership/mysql-wsrep
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

On Debian, Ubuntu, and other similar Linux distributions, execute the following:

sudo apt-get remove mariadb-server galera

On RHEL, CentOS, Fedora, and other similar Linux distributions, execute the following:

sudo yum remove MariaDB-server galera

On SLES, OpenSUSE, and other similar Linux distributions, execute the following:

sudo zypper remove MariaDB-server galera

5. Install the new version of MariaDB and the Galera wsrep provider.

On Debian, Ubuntu, and other similar Linux distributions, see Installing MariaDB Packages with APT for more

information.

On RHEL, CentOS, Fedora, and other similar Linux distributions, see Installing MariaDB Packages with YUM

for more information.

On SLES, OpenSUSE, and other similar Linux distributions, see Installing MariaDB Packages with ZYpp for

more information.

6. Make any desired changes to configuration options in option files, such as my.cnf . This includes removing any

system variables or options that are no longer supported.

7. On Linux distributions that use systemd you may need to increase the service startup timeout as the default timeout

of 90 seconds may not be sufficient. See Systemd: Configuring the Systemd Service Timeout for more information.

8. Start MariaDB .

9. Run mysql_upgrade with the --skip-write-binlog option.

mysql_upgrade does two things:

1. Ensures that the system tables in the mysql database are fully compatible with the new version.

2. Does a very quick check of all tables and marks them as compatible with the new version of MariaDB .

When this process is done for one node, move onto the next node.

Note that when upgrading the Galera wsrep provider, sometimes the Galera protocol version can change. The Galera

wsrep provider should not start using the new protocol version until all cluster nodes have been upgraded to the new

version, so this is not generally an issue during a rolling upgrade. However, this can cause issues if you restart a non-

upgraded node in a cluster where the rest of the nodes have been upgraded.

2.1.3.13 Upgrading from MySQL to MariaDB
See Migrating to MariaDB from MySQL.

No items found.

2.1.3.13.1 Upgrading from MySQL to MariaDB
Contents
1. Upgrading from MySQL 5.6 or MySQL 5.7

1. Prerequisites

2. MySQL SHA-256 Authentication

3. JSON

4. XA

5. Encryption and Compression

6. Config Files

1. Audit plugin

7. Common Steps

8. Sample Steps for Single Instance MySQL Server

9. MySQL replication setup

2. Upgrading on Windows

3. Upgrading my.cnf

4. Other Things to Think About

For all practical purposes, you can view MariaDB as an upgrade of MySQL:

Before upgrading, please check if there are any known incompatibilities between your MySQL release and the

MariaDB release you want to move to.

In particular, note that the JSON type in MariaDB is a LONGTEXT, while in MySQL it's a binary type. See Making

MariaDB understand MySQL JSON .

If you are using MySQL 8.0 or above, you have to use mysqldump to move your database to MariaDB.

For upgrading from very old MySQL versions, see Upgrading to MariaDB from MySQL 5.0 (or older version) .

Within the same base version (for example MySQL 5.5 -> MariaDB 5.5, MySQL 5.6 -> MariaDB 10.0 and MySQL 5.7

-> MariaDB 10.2) you can in most cases just uninstall MySQL and install MariaDB and you are good to go. There is

1626/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.org/making-mariadb-understand-mysql-json/
https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql-50-or-older-version/

no need to dump and restore databases. As with any upgrade, we recommend making a backup of your data

beforehand.

You should run mariadb-upgrade (as you would with mysql_upgrade in MySQL) to finish the upgrade. This is

needed to ensure that your mysql privilege and event tables are updated with the new fields MariaDB uses. Note that

if you use a MariaDB package, mariadb-upgrade is usually run automatically.

All your old clients and connectors (PHP, Perl, Python, Java, etc.) will work unchanged (no need to recompile). This

works because MariaDB and MySQL use the same client protocol and the client libraries are binary compatible. You

can also use your old MySQL connector packages with MariaDB if you want.

Upgrading from MySQL 5.6 or MySQL 5.7

Prerequisites

Check the values of the following server variables:

innodb_file_per_table

innodb_fast_shutdown

select @@Innodb_file_per_table,@@Innodb_fast_shutdown\G

innodb_file_per_table should be 1. This is the default setting for MySQL and MariaDB. If not, one should use mysqldump for

migration as some of the following recommendations will not work.

innodb_fast_shutdown should be 0 (at least on the migrated server during shutdown, to ensure that a full shutdown is done

when taking server down). This is required when upgrading between major versions of both MySQL and MariaDB as the

format of the undo or redo files can change between major versions. This variable can be set just before doing the

shutdown.

If your distribution allows it, install the MariaDB packages or the MariaDB tar distribution on the database server. Do not

start MariaDB yet! This will decrease the downtime while doing the migration.

MySQL SHA-256 Authentication

MariaDB does not support the MySQL SHA-256 authentication protocol as it's cumbersome and not secure for in-house

attacks. (clear text password is available inside the server)

See [authentication-plugin-sha-256/|Authentication Plugin - SHA-256]]

MDEV-9804

You can check which MySQL users are using SHA-256 by executing:

SELECT user, plugin FROM mysql.user where plugin like "%sha%";

You can change the user/s to use a protocol compatible with both MySQL and MariaDB with:

ALTER USER user_name IDENTIFIED WITH mysql_native_password BY 'new_password';

JSON

MariaDB stores JSON differently than MySQL. Normally you do not have to do anything when migrating JSON data, except

if you are using replication or Galera. If this is the case, then you should convert your JSON columns to TEXT to ensure that

all data is stored identically in MySQL and MariaDB:

If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json plugin to automatically convert MySQL

JSON to TEXT.

Alternatively you need to either convert them to TEXT or use mysqldump to copy these tables to MariaDB.

You can check if you are have tables that uses the MySQL JSON type with:

select table_schema, table_name from information_schema.COLUMNS where

data_type="JSON";

You can convert the JSON column to text with:

ALTER TABLE table_name MODIFY json_column LONGTEXT;

1627/4161

https://jira.mariadb.org/browse/MDEV-9804

XA

When doing a backup, ensure that there are no active XA transactions in the backup, as these transactions needs to be

committed/rolled back before the migration.

Encryption and Compression

Encryption and compression are very different in MySQL and MariaDB.

Encrypted/compressed tables need to be de-encrypted/de-compressed before starting the conversion, and then

encrypted/compressed again afterwards.

Detect compressed tables with the following query:

select table_name, create_options from information_schema.TABLES where

create_options like "%comp%";

Config Files

Create config files for MariaDB that match the MySQL cluster option files

There are some configuration options that differ. See System Variable Differences between MariaDB and MySQL.

You can use [mariadb] or [mariadb-x.y.z] (for the specific version) in the current config files for MariaDB-

specific options.

You can also place MySQL-specific options inside a [mysqld-5.7] section. This includes all options that use mysql-

specific directories for logging or replication (on other words, paths with mysql as part of the path).

With a combination of these, it's easy to create a config file that will work with both MariaDB and MySQL, no matter

what options are present.

See also MDEV-32745 for an upcoming tool to automatically detect incompatible options.

Audit plugin

MariaDB does not have the audit_log_plugin. Rather, MariaDB uses the server_audit plugin, which takes different

options.

Common Steps

Perform all the prerequisite steps (SHA-256) on the MySQL Server.

If replication is used, do these steps also on the primary.

Take a backup.

Install the MariaB packages or MariaDB tar distribution.

Fix the my.cnf file to work with both MariaDB and MySQL.

When MariaDB is installed, you can test your config files with

mariadbd --help --verbose > /tmp/log 2>&1 which will display all unsupported config options. It's also

possible to use the script at MDEV-32745 to find all unsupported options.

Check the log for ERROR and fix the config files if needed.

Sample Steps for Single Instance MySQL Server

In the shell:

shell> mysql --user=root ...##

In MySQL:

set @@global.innodb_fast_shutdown=0;

quit

Take down the node with mysqladmin shutdown or sudo service mysqld stop :

shell> mysqladmin --user=root shutdown

Drop the MySQL packages:

shell> yum -y remove Percona-Server*

1628/4161

https://jira.mariadb.org/browse/MDEV-32745
https://jira.mariadb.org/browse/MDEV-32745

or

shell> rpm -q -a | grep Percona | xargs rpm -e --nodeps

or

shell> rpm -q -a | grep -i mysql | xargs rpm -e --nodeps

This can also be done later if one has both MySQL and MariaDB installed at the same time)

Remove the unsupported auditlog (Only relevant with Percona server):

shell> mv /etc/my.cnf.d/auditlog.cnf /etc/my.cnf.d/auditlog.cnf-backup

Install MariaDB if not already installed from the download site

Using the repo is recommended, or

shell> yum install MariaDB-server MariaDB-client

Start mariadbd on the node data

systemctl start mariadb.service

If it does not start, check the error file. Remove all unsupported options from the config files and try again.

run mariadb-upgrade:

mariadb-upgrade

If there were problems with a plugin that does not work or is not supported, you can disable it with:

mariadb mysql

Then, from the MariaDB client:

select * from mysql.plugin

and then for each unsupported plugin:

UNINSTALL PLUGIN IF EXISTS #plugin_name#;

Test your new server

As long as one does not create new tables or alter tables, it should be possible to go back to MySQL by:

Dropping all tables in the 'mysql' database

set @@global.innodb_fast_shutdown=0;

SHUTDOWN

Start MySQL server with --skip-grants

Install the backup of the 'mysql' database with:

shell> mysql mysql < /tmp/mysql-dump.txt

shell> mysqladmin flush-privileges

MySQL replication setup

In case of replication you can either convert one of the existing nodes directly to MariaDB or create a new node, convert that

to MariaDB and then delete the old MySQL node after testing.

Do all the "Prerequisite steps" on the to-be-converted node.

Follow the Single instance MySQL server instructions for the node.

Start MariaDB as a replica to MySQL.

Test that the new node works as expected.

Note that a MariaDB replica will work with replication positions, not with MySQL GTID.

Repeat with all other nodes.

1629/4161

https://mariadb.org/download/

Switch one of the MariaDB nodes to be the primary.

Convert the old primary according to the above instructions.

Add the old primary as a replica.

Upgrading on Windows
On Windows, you should not uninstall MySQL and install MariaDB, this would not work, the existing database will not be

found.

Thus On Windows, just install MariaDB and use the upgrade wizard which is part of installer package and is launched by

MSI installer. Or, in case you prefer command line, use mysql_upgrade_service <service_name> on the command

line.

Upgrading my.cnf
All the options in your original MySQL my.cnf file should work fine for MariaDB.

However as MariaDB has more features than MySQL, there are a few things that you should consider changing in your

my.cnf file.

MariaDB uses the Aria storage engine by default for internal temporary files, instead of MyISAM. If you have a lot of

temporary files, you should add and set aria-pagecache-buffer-size to the same value as you have for key-

buffer-size .

If you don't use MyISAM tables, you can set key-buffer-size to a very low value, like 64K.

If you have a LOT of connections (> 100) that mostly run short running queries, you should consider using the thread

pool. For example using : thread_handling=pool-of-threads and thread_pool_size=128 could give a notable

performance boost in this case. Where the thread_pool_size should be about 2 * number of cores on your

machine .

Other Things to Think About
Views with definition ALGORITHM=MERGE or ALGORITHM=TEMPTABLE got accidentally swapped between MariaDB

and MySQL. You have to re-create views created with either of these definitions (see MDEV-6916).

MariaDB has LGPL versions of the C connector and Java Client . If you are shipping an application that supports

MariaDB or MySQL, you should consider using these!

You should consider trying out the MyRocks storage engine or some of the other new storage engines that MariaDB

provides.

2.1.3.13.2 Moving from MySQL to MariaDB in
Debian 9
MariaDB 10.1 is now the default mysql server in Debian 9 "Stretch". This page provides information on this change and

instructions to help with upgrading your Debian 8 "Jessie" version of MySQL or MariaDB to MariaDB 10.1 in Debian 9

"Stretch".

Contents
1. Background information

2. Before you upgrade

1. Backup before you begin

2. Changed, renamed, and removed options

1. Options with changed default values

2. Options that have been removed or renamed

3. Suggested upgrade procedure for replication

4. Other resources to consult before beginning your upgrade

3. Upgrading to MariaDB 10.1 from MySQL 5.5

4. Upgrading to MariaDB 10.1 from an older version of MariaDB

5. MariaDB Galera Cluster

6. Configuration options for advanced database users

7. Secure passwordless root accounts only on new installs

8. Comments and suggestions

9. Notes

Background information
1630/4161

https://jira.mariadb.org/browse/MDEV-6916
https://mariadb.com/kb/en/client-library-for-c/
https://mariadb.com/kb/en/mariadb-java-client/

The version of MySQL in Debian 8 "Jessie" is 5.5. When installing, most users will install the mysql-server package,

which depends on the mysql-server-5.5 package . In Debian 9 "Stretch" the mysql-server package depends on a

new package called default-mysql-server . This package in turn depends on mariadb-server-10.1 . There is no

default-mysql-server package in Jessie.

In both Jessie and Stretch there is also a mariadb-server package which is a MariaDB-specific analog to the mysql-

server package. In Jessie this package depends on mariadb-server-10.0 and in Stretch this package depends on

mariadb-server-10.1 (the same as the default-mysql-server package).

So, the main repository difference in Debian 9 "Stretch" is that when you install the mysql-server package on Stretch you

will get MariaDB 10.1 instead of MySQL, like you would with previous versions of Debian. Note that mysql-server is just

an empty transitional meta-package and users are encouraged to install MariaDB using the actual package mariadb-

server .

All apps and tools, such as the popular LAMP stack, in the repositories that depend on the mysql-server package will

continue to work using MariaDB as the database. For new installs there is nothing different that needs to be done when

installing the mysql-server or mariadb-server packages.

Before you upgrade
If you are currently running MySQL 5.5 on Debian 8 "Jessie" and are planning an upgrade to MariaDB 10.1 on Debian 9

"Stretch", there are some things to keep in mind:

Backup before you begin

This is a major upgrade, and so complete database backups are strongly suggested before you begin. MariaDB 10.1 is

compatible on disk and wire with MySQL 5.5, and the MariaDB developer team has done extensive development and testing

to make upgrades as painless and trouble-free as possible. Even so, it's always a good idea to do regular backups,

especially before an upgrade. As the database has to shutdown anyway for the upgrade, this is a good opportunity to do a

backup!

Changed, renamed, and removed options

Some default values have been changed, some have been renamed, and others have been removed between MySQL 5.5

and MariaDB 10.1. The following sections detail them.

Options with changed default values

Most of the following options have increased a bit in value to give better performance. They should not use much additional

memory, but some of them do use a bit more disk space.

Option Old default value New default value

aria-sort-buffer-size 128M 256M

back_log 50 150

innodb-concurrency-tickets 500 5000

innodb-log-file-size 5M 48M

innodb_log_compressed_pages ON OFF

innodb-old-blocks-time 0 1000

innodb-open-files 300 400

innodb-purge-batch-size 20 300

innodb-undo-logs ON 20

join_buffer_size 128K 256K

max_allowed_packet 1M 4M

max-connect-errors 10 100

max-relay-log-size 0 1024M

myisam-sort-buffer-size 8M 128M

[2]

1631/4161

optimizer-switch ... Added extended_keys=on, exists_to_in=on

query_alloc_block_size 8192 16384

query_cache_size 0 1M

query_cache_type ON OFF

query_prealloc_size 8192 24576

secure_auth OFF ON

sql_log_bin No longer affects replication of events in a Galera cluster.

sql_mode empty NO_AUTO_CREATE_USER, NO_ENGINE_SUBSTITUTION

sync_master_info 0 10000

sync_relay_log 0 10000

sync_relay_log_info 0 10000

table_open_cache 400 2000

thread_pool_max_threads 500 1000

Options that have been removed or renamed

The following options should be removed or renamed if you use them in your config files:

Option Reason

engine-condition-pushdown
Replaced with set

optimizer_switch='engine_condition_pushdown=on'

innodb-adaptive-flushing-method Removed by XtraDB

innodb-autoextend-increment Removed by XtraDB

innodb-blocking-buffer-pool-

restore
Removed by XtraDB

innodb-buffer-pool-pages Removed by XtraDB

innodb-buffer-pool-pages-blob Removed by XtraDB

innodb-buffer-pool-pages-index Removed by XtraDB

innodb-buffer-pool-restore-at-

startup
Removed by XtraDB

innodb-buffer-pool-shm-checksum Removed by XtraDB

innodb-buffer-pool-shm-key Removed by XtraDB

innodb-checkpoint-age-target Removed by XtraDB

innodb-dict-size-limit Removed by XtraDB

innodb-doublewrite-file Removed by XtraDB

innodb-fast-checksum Renamed to innodb-checksum-algorithm

innodb-flush-neighbor-pages Renamed to innodb-flush-neighbors

innodb-ibuf-accel-rate Removed by XtraDB

innodb-ibuf-active-contract Removed by XtraDB

innodb-ibuf-max-size Removed by XtraDB

innodb-import-table-from-

xtrabackup
Removed by XtraDB

innodb-index-stats Removed by XtraDB

innodb-lazy-drop-table Removed by XtraDB

innodb-merge-sort-block-size Removed by XtraDB

1632/4161

innodb-persistent-stats-root-page Removed by XtraDB

innodb-read-ahead Removed by XtraDB

innodb-recovery-stats Removed by XtraDB

innodb-recovery-update-relay-log Removed by XtraDB

innodb-stats-auto-update Renamed to innodb-stats-auto-recalc

innodb-stats-update-need-lock Removed by XtraDB

innodb-sys-stats Removed by XtraDB

innodb-table-stats Removed by XtraDB

innodb-thread-concurrency-timer-

based
Removed by XtraDB

innodb-use-sys-stats-table Removed by XtraDB

rpl_recovery_rank Unused in 10.0+

xtradb-admin-command Removed by XtraDB

Suggested upgrade procedure for replication

If you have a master-slave setup, the normal procedure is to first upgrade your slaves to MariaDB, then move one of your

slaves to be the master and then upgrade your original master. In this scenario you can upgrade from MySQL to MariaDB or

upgrade later to a new version of MariaDB without any downtime.

Other resources to consult before beginning your upgrade

It may also be useful to check out the Upgrading MariaDB section. It contains several articles on upgrading from MySQL to

MariaDB and from one version of MariaDB to another. For upgrade purposes, MySQL 5.5 and MariaDB 5.5 are very similar.

In particular, see the Upgrading from MariaDB 5.5 to MariaDB 10.0 and Upgrading from MariaDB 10.0 to MariaDB 10.1

articles.

If you need help with upgrading or setting up replication, you can always contact the MariaDB corporation to find experts

to help you with this.

Upgrading to MariaDB 10.1 from MySQL 5.5
The suggested upgrade procedure is:

1. Set innodb_fast_shutdown to 0 . This is to ensure that if you make a backup as part of the upgrade, all data is written

to the InnoDB data files, which simplifies any restore in the future.

2. Shutdown MySQL 5.5

3. Take a backup

when the server is shut down is the perfect time to take a backup of your databases

store a copy of the backup on external media or a different machine for safety

4. Perform the upgrade from Debian 8 to Debian 9

5. During the upgrade, the mysql_upgrade script will be run automatically; this script does two things:

1. Upgrades the permission tables in the mysql database with some new fields

2. Does a very quick check of all tables and marks them as compatible with MariaDB 10.1

In most cases this should be a fast operation (depending of course on the number of tables)

6. Add new options to my.cnf to enable features

If you change my.cnf then you need to restart mysqld with e.g. sudo service mysql restart or sudo

service mariadb restart .

Upgrading to MariaDB 10.1 from an older version of
MariaDB
If you have installed MariaDB 5.5 or MariaDB 10.0 on your Debian 8 "Jessie" machine from the MariaDB repositories you will

need to upgrade to MariaDB 10.1 when upgrading to Debian 9 "Stretch". You can choose to continue using the MariaDB

repositories or move to using the Debian repositories.

If you want to continue using the MariaDB repositories edit the MariaDB entry in your sources.list and change every instance

of 5.5 or 10.0 to 10.1. Then upgrade as suggested above.

1633/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-55-to-mariadb-100/
https://mariadb.com/kb/en/upgrading-from-mariadb-100-to-mariadb-101/
https://mariadb.com/contact

If you want to move to using MariaDB 10.1 from the Debian repositories, delete or comment out the MariaDB entries in your

sources.list file. Then upgrade as suggested above.

If you are already using MariaDB 10.1 on your Debian 8 "Jessie" machine, you can choose to continue to use the MariaDB

repositories or move to using the Debian repositories as with MariaDB 5.5 and 10.0. In either case, the upgrade will at most

be just a minor upgrade from one version of MariaDB 10.1 to a newer version. In the case that you are already on the

current version of MariaDB that exists in the Debian repositories or a newer one) MariaDB will not be upgraded during the

system upgrade but will be upgraded when future versions of MariaDB are released.

You should always perform a compete backup of your data prior to performing any major system upgrade, even if

MariaDB itself is not being upgraded!

MariaDB Galera Cluster
If you have been using MariaDB Galera Cluster 5.5 or 10.0 on Debian 8 "Jessie" it is worth mentioning that Galera Cluster is

included by default in MariaDB 10.1, there is no longer a need to install a separate mariadb-galera-server package.

Configuration options for advanced database users
To get better performance from MariaDB used in production environments, here are some suggested additions to your

configuration file which in Debian is at /etc/mysql/mariadb.d/my.cnf :

[[mysqld]]

Cache for disk based temporary files

aria_pagecache_buffer_size=128M

If you are not using MyISAM tables directly (most people are using InnoDB)

key_buffer_size=64K

The reason for the above change is that MariaDB is using the newer Aria storage engine for disk based temporary files

instead of MyISAM. The main benefit of Aria is that it can cache both indexes and rows and thus gives better performance

than MyISAM for large queries.

Secure passwordless root accounts only on new installs
Unlike the old MySQL packages in Debian, MariaDB 10.0 onwards in Debian uses unix socket authentication on new

installs to avoid root password management issues and thus be more secure and easier to use with provision systems of

the cloud age.

This only affects new installs. Upgrades from old versions will continue to use whatever authentication and user accounts

already existed. This is however good to know, because it can affect upgrades of dependant systems, typically e.g. require

users to rewrite their Ansible scripts and similar tasks. The new feature is much easier than the old, so adjusting for it

requires little work.

2.1.3.13.3 Screencast for Upgrading MySQL to
MariaDB (Obsolete)
There is a screencast for upgrading from MySQL 5.1.55 to MariaDB. Watch this example to see how easy this process is.

It really is just a "drop in replacement" to MySQL.

2.1.4 Downgrading between Major Versions of
MariaDB
Downgrading MariaDB is not officially supported between major versions.

For minor versions, upgrade is supported to an earlier gamma/RC/GA version as we do not change the storage format

after Alpha and very rarely during Beta (it has to be a very critical bug to require such a change). There are a few very

rare cases when incompatible changes happen on a GA version, for example MariaDB 10.1.21 fixed a file format

incompatibility bug that prevents a downgrade to earlier MariaDB 10.1 releases. After MariaDB 10.1.21 this has not

happened in a GA release.

The main reason why downgrades between major versions do not work are:

1634/4161

http://www.youtube.com/watch?v=rF7wChx0uzQ
https://mariadb.com/kb/en/release-criteria/#commitment-for-gammarc-releases
https://mariadb.com/kb/en/release-criteria/#commitment-for-alpha-releases
https://mariadb.com/kb/en/release-criteria/#commitment-for-beta-releases
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/

Changes in the privilege/status tables in the mysql schema. These changes happen between most major versions as

we are continuously improving the privilege system.

Changes that affect how data is stored on disk. This happens more rarely and is usually table specific. For example, if

one has used Instant add column on a table in MariaDB 10.3, that table cannot be opened in MariaDB 10.2.

Between major releases there are often substantial changes, even if none of the new features are used. For example,

both MariaDB 10.2 and MariaDB 10.3 introduce new versions of the redo log.

The only reliable way to downgrade is to restore from a full backup made before upgrading, and start the old version of

MariaDB. At least one should take a backup of the mysql schema as most upgrade changes happens in this directory. This

may be of help if one needs to downgrade to an earlier MariaDB version. More about this later.

Some people have reported successfully downgrading, but there are many possible things that can go wrong, and

downgrading between two major versions is not tested in any way by the MariaDB developers.

In general, one can downgrade a major version to an earlier version if one has not yet run mariadb-upgrade on the new

version. Note however that it's recommended that one always uses mariadb-upgrade after upgrading to a new major version

as otherwise some security features in the new server may not work and tables that have indexes using a character collation

that has changed may not work properly.

Assuming one must downgrade to an earlier major version, here is a list of things one has to do:

MariaDB must be shut down cleanly. This means that:

One should ensure that innodb_fast_shutdownb2.

One uses the SHUTDOWN command, mariadb-admin shutdown or the operating system official commands,

like systemctl stop mariadb.service.

Start the old server with --skip-privilege-tables.

Use ALTER TABLE to restore the mysql schema tables to their original definition or drop and recreate the mysql

tables. One can find the old definition by using mariadb-install-db to create a separate temporary data directory.

Starting the MariaDB server on the temporary directory will allow you to use SHOW CREATE TABLE to find the old

definition.

Execute FLUSH PRIVILEGES to reload the old tables.

The cases when the above will not work are when the table format has changed in an incompatible manner. In this case the

affected tables may not be usable in the earlier version.

The following is an incomplete list of when one will not be able to use a table in an earlier major version:

MariaDB 11.0 or later

A downgrade to MariaDB 10.4 or earlier is not possible, because MDEV-29694 removed the InnoDB change

buffer.

A downgrade to MariaDB 10.5 or later is only possible if innodb_change_buffering=none (the default starting

with MDEV-27734).

MariaDB 10.8 or later

The InnoDB redo log file ib_logfile0 would have to be replaced with a logically equivalent file, or the

shutdown LSN has to be written to the FIL_PAGE_FILE_FLUSH_LSN field in the system tablespace (see

MDEV-27199), or the data may be accessed read-only when using innodb_force_recovery=6.

MariaDB 10.5 ³ MariaDB 10.4

The InnoDB redo log file ib_logfile0 has to be deleted between a clean shutdown of the newer version and

a startup of the older version. This is *not recommended*.

MariaDB 10.4 ³ MariaDB 10.3

Any InnoDB table where one has used ALTER TABLE ALGORITHM=INSTANT DROP COLUMN while

innodb_instant_alter_column_allowed=add_drop_reorder

Any InnoDB table that was created or rebuilt while innodb_checksum_algorithm=full_crc32

In MariaDB 10.4, the MariaDB mysql.user table was replaced by mysql.global_priv table which may cause

problems if ones wants to downgrade to 10.3.

MariaDB 10.3 ³ MariaDB 10.2

Any InnoDB table where one has used ALTER TABLE&ADD COLUMN (unless

innodb_instant_alter_column_allowed=never).

A prior shutdown with innodb_fast_shutdown=0 will be needed in order to empty the undo logs whose format

changed in MDEV-12288 , and even then, you might need to set innodb_force_recovery=3.

2.1.2.8 Compiling MariaDB From Source

2.1.6 Starting and Stopping MariaDB
Starting and Stopping MariaDB Server

Starting MariaDB, including details on service managers.

1635/4161

https://jira.mariadb.org/browse/MDEV-29694
https://jira.mariadb.org/browse/MDEV-27734
https://jira.mariadb.org/browse/MDEV-27199
https://mariadb.com/kb/en/mysql-user-table/
https://jira.mariadb.org/browse/MDEV-12288

Configuring MariaDB with Option Files

Configuring MariaDB with my.cnf and other option files.

mysqld Configuration Files and Groups

Which configuration files and groups mysqld reads.

mariadbd Options

Lists of all the options for mariadbd (previously called mysqld).

What to Do if MariaDB Doesn't Start

Troubleshooting MariaDB when it fails to start.

Running MariaDB from the Build Directory

Running mariadbd (mysqld) directly from the source directory without make install.

mysql.server

Startup script included in MariaDB distributions on Unix

mysqld_safe

Recommended way to start a mysqld server on a non-systemd Unix.

mysqladmin

Old name or symlink for mariadb-admin.

Switching Between Different Installed MariaDB Versions

Managing different installed MariaDB versions and running them one at a time

Running Multiple MariaDB Server Processes

Running multiple MariaDB Server processes on the same server.

Specifying Permissions for Schema (Data) Directories and Tables

MariaDB uses the following modes for creating directories and files

mysqld_multi

Manage several mysqld processes.

launchd

launchd is the startup service used in MacOS X.

systemd

How systemd is configured on MariaDB packages and how to alter its configuration.

sysVinit

sysVinit is one of the most common service managers for Linux and Unix.

mariadb-admin

Admin tool for monitoring, creating/dropping databases, stopping MariaDB etc.

mariadbd

Symlink or new name for mysqld.

mariadbd-multi

Symlink or new name for mysqld_multi.

mariadbd-safe

Symlink or new name for mysqld_safe.

There are 22 related questions .

12

1

2

7

1

1

2

2

2.1.6.1 Starting and Stopping MariaDB Server
1636/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb/+questions/

Contents
1. Service Managers

1. Systemd

2. SysVinit

3. launchd

4. Upstart

2. Starting the Server Process Manually

1. mariadbd

2. mysqld_safe

3. mysqld_multi

4. mysql.server

There are several different methods to start or stop the MariaDB Server process. There are two primary categories that most

of these methods fall into: starting the process with the help of a service manager, and starting the process manually.

Service Managers
sysVinit and systemd are the most common Linux service managers. launchd is used in MacOS X. Upstart is a less

common service manager.

Systemd

RHEL/CentOS 7 and above, Debian 8 Jessie and above, and Ubuntu 15.04 and above use systemd by default.

For information on how to start and stop MariaDB with this service manager, see systemd: Interacting with the MariaDB

Server Process.

SysVinit

RHEL/CentOS 6 and below, and Debian 7 Wheezy and below use sysVinit by default.

For information on how to start and stop MariaDB with this service manager, see sysVinit: Interacting with the MariaDB

Server Process.

launchd

launchd is used in MacOS X.

Upstart

Ubuntu 14.10 and below use Upstart by default.

Starting the Server Process Manually

mariadbd

mariadbd is the actual MariaDB Server binary. It can be started manually on its own.

mysqld_safe

mariadbd_safe is a wrapper that can be used to start the mariadbd server process. The script has some built-in safeguards,

such as automatically restarting the server process if it dies. See mariadbd_safe for more information.

mysqld_multi

mariadbd_multi is a wrapper that can be used to start the mariadbd server process if you plan to run multiple server

processes on the same host. See mariadbd_multi for more information.

mysql.server

mysql.server is a wrapper that works as a standard sysVinit script. However, it can be used independently of sysVinit as a

regular sh script. The script starts the mariadbd server process by first changing its current working directory to the

MariaDB install directory and then starting mysqld_safe. The script requires the standard sysVinit arguments, such as

1637/4161

https://en.wikipedia.org/wiki/Upstart_(software)

start , stop , and status . See mysql.server for more information.

2.1.6.2 Configuring MariaDB with Option Files
Contents
1. Global Options Related to Option Files

2. Default Option File Locations

1. Default Option File Locations on Linux, Unix, Mac

2. Default Option File Locations on Windows

3. Default Option File Hierarchy

3. Custom Option File Locations

4. Option File Syntax

5. Option Groups

1. Server Option Groups

2. Client Option Groups

3. Tool-Specific Option Groups

4. Custom Option Group Suffixes

6. Including Option Files

7. Including Option File Directories

8. Checking Program Options

9. MySQL 5.6 Obfuscated Authentication Credential Option File

10. Option Prefixes

11. Options

1. MariaDB Server Options

2. MariaDB Client Options

12. Example Option Files

1. Example Minimal Option File

2. Example Hybrid Option File

You can configure MariaDB to run the way you want by configuring the server with MariaDB's option files. The default

MariaDB option file is called my.cnf (or mariadb.cnf) on Unix-like operating systems and my.ini on Windows.

Depending on how you've installed MariaDB, the default option file may be in a number of places, or it may not exist at all.

Global Options Related to Option Files
The following options relate to how MariaDB handles option files. These options can be used with most of MariaDB's

command-line tools, not just mariadbd. They must be given as the first argument on the command-line:

Option Description

--print-defaults Read options from option files, print all option values, and then exit the program.

--no-defaults Don't read options from any option file.

--defaults-file =path Only read options from the given option file.

--defaults-extra-file =path Read this extra option file after all other option files are read.

--defaults-group-suffix

=suffix

In addition to the default option groups, also read option groups with the given

suffix.

Default Option File Locations
MariaDB reads option files from many different directories by default. See the sections below to find out which directories

are checked for which system.

For an exact list of option files read on your system by a specific program, you can execute:

$program --help --verbose

For example:

1638/4161

$ mariadbd --help --verbose

mariadbd Ver 10.11.2-MariaDB for linux-systemd on x86_64 (MariaDB Server)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Starts the MariaDB database server.

Usage: mariadbd [OPTIONS]

Default options are read from the following files in the given order:

/etc/my.cnf ~/.my.cnf

The following groups are read: mysqld server mysqld-10.11 mariadb mariadb-10.11 mariadbd mariadbd-10.11 client-server galera

....

The option files are each scanned once, in the order given by --help --verbose . The effect of the configuration options

are as if they would have been given as command line options in the order they are found.

Default Option File Locations on Linux, Unix, Mac

On Linux, Unix, or Mac OS X, the default option file is called my.cnf . MariaDB looks for the MariaDB option file in the

locations and orders listed below.

The locations are dependent on whether the DEFAULT_SYSCONFDIR cmake option was defined when MariaDB was built.

This option is usually defined as /etc when building RPM packages, but it is usually not defined when building DEB

packages or binary tarballs.

When the DEFAULT_SYSCONFDIR cmake option was not defined, MariaDB looks for the MariaDB option file in the

following locations in the following order:

Location Scope

/etc/my.cnf Global

/etc/mysql/my.cnf Global

$MARIADB_HOME/my.cnf Server

$MYSQL_HOME/my.cnf Server

defaults-extra-file File specified with --defaults-extra-file , if any

~/.my.cnf User

When the DEFAULT_SYSCONFDIR cmake option was defined, MariaDB looks for the MariaDB option file in the

following locations in the following order:

Location Scope

DEFAULT_SYSCONFDIR/my.cnf Global

$MARIADB_HOME/my.cnf Server (from MariaDB 10.6)

$MYSQL_HOME/my.cnf Server

defaults-extra-file File specified with --defaults-extra-file , if any

~/.my.cnf User

MARIADB_HOME (from MariaDB 10.6) or MYSQL_HOME is the environment variable containing the path to the

directory holding the server-specific my.cnf file. If MYSQL_HOME is not set, and the server is started with

mysqld_safe, MYSQL_HOME is set as follows:

If there is a my.cnf file in the MariaDB data directory, but not in the MariaDB base directory, MYSQL_HOME is

set to the MariaDB data directory.

Else, MYSQL_HOME is set to the MariaDB base directory.

Note that if MARIADB_HOME is set (from MariaDB 10.6), MYSQL_HOME will not be used, even if set.

Default Option File Locations on Windows

On Windows, the option file can be called either my.ini or my.cnf . MariaDB looks for the MariaDB option file in the

following locations in the following order:

Location Scope

1639/4161

System Windows Directory\my.ini Global

System Windows Directory\my.cnf Global

Windows Directory\my.ini Global

Windows Directory\my.cnf Global

C:\my.ini Global

C:\my.cnf Global

INSTALLDIR\my.ini Server

INSTALLDIR\my.cnf Server

INSTALLDIR\data\my.ini Server

INSTALLDIR\data\my.cnf Server

%MARIADB_HOME%\my.ini Server (from MariaDB 10.6)

%MARIADB_HOME%\my.cnf Server (from MariaDB 10.6)

%MYSQL_HOME%\my.ini Server

%MYSQL_HOME%\my.cnf Server

defaults-extra-file File specified with --defaults-extra-file , if any

The System Windows Directory is the directory returned by the GetSystemWindowsDirectory function.

The value is usually C:\Windows . To find its specific value on your system, open cmd.exe and execute:

echo %WINDIR%

The Windows Directory is the directory returned by the GetWindowsDirectory function. The value may be

a private Windows Directory for the application, or it may be the same as the System Windows Directory

returned by the GetSystemWindowsDirectory function.

INSTALLDIR is the parent directory of the directory where mysqld.exe is located. For example, if mysqld.exe is

in C:\Program Files\MariaDB 10.3\bin , then INSTALLDIR would be C:\Program Files\MariaDB 10.3 .

MARIADB_HOME (from MariaDB 10.6) or MYSQL_HOME is the environment variable containing the path to the

directory holding the server-specific my.cnf file.

Note that if MARIADB_HOME is set (from MariaDB 10.6), MYSQL_HOME will not be used, even if set.

Default Option File Hierarchy

MariaDB will look in all of the above locations, in order, even if has already found an option file, and it's possible for more

than one option file to exist. For example, you could have an option file in /etc/my.cnf with global settings for all servers,

and then you could another option file in ~/.my.cnf (i.e.your user account's home directory) which will specify additional

settings (or override previously specified setting) that are specific only to that user.

Option files are usually optional. However, if the --defaults-file option is set, and if the file does not exist, then

MariaDB will raise an error. If the --defaults-file option is set, then MariaDB will only read the option file referred to by

this option.

If an option or system variable is not explicitly set, then it will be set to its default value. See Server System Variables for a

full list of all server system variables and their default values.

Custom Option File Locations
MariaDB can be configured to read options from custom options files with the following command-line arguments. These

command-line arguments can be used with most of MariaDB's command-line tools, not just mariadbd . They must be given

as the first argument on the command-line:

Option Description

--defaults-file =path Only read options from the given option file.

--defaults-extra-file =path Read this extra option file after all other option files are read.

Option File Syntax

1640/4161

https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemwindowsdirectorya
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getwindowsdirectorya
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemwindowsdirectorya

The syntax of the MariaDB option files are:

Lines starting with # are comments.

Empty lines are ignored.

Option groups use the syntax [group-name] . See the Option Groups section below for more information on

available option groups.

The same option group can appear multiple times.

The !include directive can be used to include other option files. See the Including Option Files section below for

more information on this syntax.

The !includedir directive can be used to include all .cnf files (and potentially .ini files) in a given directory.

The option files within the directory are read in alphabetical order. See the Including Option File Directories section

below for more information on this syntax.

Dashes (-) and underscores (_) in options are interchangeable.

Double quotes can be used to quote values

\n , \r , \t , \b , \s , \" , \' , and \\ are recognized as character escapes for new line, carriage return, tab,

backspace, space, double quote, single quote, and backslash respectively.

Certain option prefixes are supported. See the Option Prefixes section below for information about available option

prefixes.

See the Options section below for information about available options.

Option Groups
A MariaDB program can read options from one or many option groups. For an exact list of option groups read on your

system by a specific program, you can execute:

$program --help --verbose

For example:

$ mariadbd --help --verbose

mariadbd Ver 10.11.2-MariaDB for linux-systemd on x86_64 (MariaDB Server)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Starts the MariaDB database server.

Usage: mariadbd [OPTIONS]

Default options are read from the following files in the given order:

/etc/my.cnf ~/.my.cnf

The following groups are read: mysqld server mysqld-10.11 mariadb mariadb-10.11 mariadbd mariadbd-10.11 client-server galera

....

Server Option Groups

MariaDB programs reads server options from the following server option groups:

Group Description

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[server] Options read by MariaDB Server.

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[mysqld-

X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-10.4] .

[mariadb] Options read by MariaDB Server.

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server. For example, [mariadb-10.4] .

[mariadbd] Options read by MariaDB Server. Available starting with MariaDB 10.4.6.

[mariadbd-

X.Y]

Options read by a specific version of MariaDB Server. For example, [mariadbd-10.4] . Available

starting with MariaDB 10.4.6.

1641/4161

[galera]

 Options read by MariaDB Server, but only if it is compiled with Galera Cluster support. In MariaDB 10.1

and later, all builds on Linux are compiled with Galera Cluster support. When using one of these builds,

options from this option group are read even if the Galera Cluster functionality is not enabled.

X.Y in the examples above refer to the base (major.minor) version of the server. For example, MariaDB 10.3.10 would

read from [mariadb-10.3] . By using the mariadb-X.Y syntax, one can create option files that have MariaDB-only

options in the MariaDB-specific option groups. That would allow the option file to work for both MariaDB and MySQL.

Client Option Groups

MariaDB programs reads client options from the following option groups:

Group Description

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mariadb-dump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[client-

mariadb]
Options read by all MariaDB client programs.

Tool-Specific Option Groups

Many MariaDB tools reads options from their own option groups as well. Many of them are listed below:

Group Description

[mysqld_safe] Options read by mysqld_safe, which includes both MariaDB Server and MySQL Server.

[safe_mysqld] Options read by mysqld_safe, which includes both MariaDB Server and MySQL Server.

[mariadb_safe] Options read by mysqld_safe from MariaDB Server.

[mariadb-safe] Options read by mysqld_safe from MariaDB Server. Available starting with MariaDB 10.4.6.

[mariabackup] Options read by Mariabackup. Available starting with MariaDB 10.1.31 and MariaDB 10.2.13 .

[xtrabackup] Options read by Mariabackup and Percona XtraBackup .

[mysql_upgrade] Options read by mysql_upgrade, which includes both MariaDB Server and MySQL Server.

[mariadb-

upgrade]
Options read by mariadb-upgrade. Available starting with MariaDB 10.4.6.

[sst] Specific options read by the mariabackup SST method and the xtrabackup-v2 SST method.

[mysql] Options read by mysql, which includes both MariaDB Server and MySQL Server.

[mariadb-client] Options read by mariadb. Available starting with MariaDB 10.4.6.

[mysqldump] Options read by mysqldump, which includes both MariaDB Server and MySQL Server.

[mariadb-dump] Options read by mariadb-dump. Available starting with MariaDB 10.4.6.

[mysqlimport] Options read by mysqlimport, which includes both MariaDB Server and MySQL Server.

[mariadb-import] Options read by mariadb-import. Available starting with MariaDB 10.4.6.

[mysqlbinlog] Options read by mysqlbinlog, which includes both MariaDB Server and MySQL Server.

[mariadb-binlog] Options read by mariadb-binlog. Available starting with MariaDB 10.4.6.

[mysqladmin] Options read by mysqladmin, which includes both MariaDB Server and MySQL Server.

[mariadb-admin] Options read by mariadb-admin. Available starting with MariaDB 10.4.6.

[mysqlshow] Options read by mysqlshow, which includes both MariaDB Server and MySQL Server.

[mariadb-show] Options read by mariadb-show. Available starting with MariaDB 10.4.6.

[mysqlcheck] Options read by mariadb-check, which includes both MariaDB Server and MySQL Server.

[mariadb-check] Options read by mariadb-check. Available starting with MariaDB 10.4.6.

1642/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/percona-xtrabackup-overview/

[mysqlslap] Options read by mysqlslap, which includes both MariaDB Server and MySQL Server.

[mariadb-slap] Options read by mariadb-slap . Available starting with MariaDB 10.4.6.

[odbc]
Options read by MariaDB Connector/ODBC , but only if the USE_MYCNF parameter has

been set.

Custom Option Group Suffixes

MariaDB can be configured to read options from option groups with a custom suffix by providing the following command-line

argument. This command-line argument can be used with most of MariaDB's command-line tools, not just mariadbd . It

must be given as the first argument on the command-line:

Option Description

--defaults-group-suffix

=suffix

In addition to the default option groups, also read option groups with the given

suffix.

The default group suffix can also be specified via the MYSQL_GROUP_SUFFIX environment variable.

Including Option Files
It is possible to include additional option files from another option file. For example, to include

/etc/mysql/dbserver1.cnf , an option file could contain:

[mariadb]

...

!include /etc/mysql/dbserver1.cnf

Including Option File Directories
It is also possible to include all option files in a directory from another option file. For example, to include all option files in

/etc/my.cnf.d/ , an option file could contain:

[mariadb]

...

!includedir /etc/my.cnf.d/

The option files within the directory are read in alphabetical order.

All option file names must end in .cnf on Unix-like operating systems. On Windows, all option file names must end in

.cnf or .ini .

Checking Program Options
You can check which options a given program is going to use by using the --print-defaults command-line argument:

Option Description

--print-defaults Read options from option files, print all option values, and then exit the program.

This command-line argument can be used with most of MariaDB's command-line tools, not just mariadbd . It must be given

as the first argument on the command-line. For example:

$ mariadb-dump --print-defaults

mariadb-dump would have been started with the following arguments:

--ssl_cert=/etc/my.cnf.d/certificates/client-cert.pem --

ssl_key=/etc/my.cnf.d/certificates/client-key.pem --ssl_ca=/etc/my.cnf.d/certificates/ca.pem --

ssl-verify-server-cert --max_allowed_packet=1GB

You can also check which options a given program is going to use by using the my_print_defaults utility and providing

the names of the option groups that the program reads. For example:

1643/4161

https://mariadb.com/kb/en/mariadb-connector-odbc/
https://mariadb.com/kb/en/about-mariadb-connector-odbc/#general-connection-parameters

$ my_print_defaults mariadb-dump client client-server client-mariadb

--ssl_cert=/etc/my.cnf.d/certificates/client-cert.pem

--ssl_key=/etc/my.cnf.d/certificates/client-key.pem

--ssl_ca=/etc/my.cnf.d/certificates/ca.pem

--ssl-verify-server-cert

--max_allowed_packet=1GB

The my_print_defaults utility's --mariadbd command-line option provides a shortcut to refer to all of the server option

groups:

$ my_print_defaults --mysqld

--log_bin=mariadb-bin

--log_slave_updates=ON

--ssl_cert=/etc/my.cnf.d/certificates/server-cert.pem

--ssl_key=/etc/my.cnf.d/certificates/server-key.pem

--ssl_ca=/etc/my.cnf.d/certificates/ca.pem

MySQL 5.6 Obfuscated Authentication Credential Option
File
MySQL 5.6 and above support an obfuscated authentication credential option file called .mylogin.cnf that is created with

mysql_config_editor .

MariaDB does not support this. The passwords in MySQL's .mylogin.cnf are only obfuscated, rather than encrypted, so

the feature does not really add much from a security perspective. It is more likely to give users a false sense of security,

rather than to seriously protect them.

Option Prefixes
MariaDB supports certain prefixes that can be used with options. The supported option prefixes are:

Option Prefix Description

autoset Sets the option value automatically. Only supported for certain options.

disable For all boolean options, disables the setting (equivalent to setting it to 0). Same as skip .

enable For all boolean options, enables the setting (equivalent to setting it to 1).

loose Don't produce an error if the option doesn't exist.

maximum Sets the maximum value for the option.

skip For all boolean options, disables the setting (equivalent to setting it to 0). Same as disable .

For example:

[mariadb]

...

determine a good value for open_files_limit automatically

autoset_open_files_limit

disable the unix socket plugin

disable_unix_socket

enable the slow query log

enable_slow_query_log

don't produce an error if these options don't exist

loose_file_key_management_filename = /etc/mysql/encryption/keyfile.enc

loose_file_key_management_filekey = FILE:/etc/mysql/encryption/keyfile.key

loose_file_key_management_encryption_algorithm = AES_CTR

set max_allowed_packet to maximum value

maximum_max_allowed_packet

disable external locking for MyISAM

skip_external_locking

1644/4161

https://dev.mysql.com/doc/refman/5.6/en/mysql-config-editor.html

Options
Dashes (-) and underscores (_) in options are interchangeable.

If an option is not explicitly set, then the server or client will simply use the default value for that option.

MariaDB Server Options

MariaDB Server options can be set in server option groups.

For a list of options that can be set for MariaDB Server, see the list of options available for mariadbd .

Most of the server system variables can also be set in MariaDB's option file.

MariaDB Client Options

MariaDB client options can be set in client option groups.

See the specific page for each client program to determine what options are available for that program.

Example Option Files
Most MariaDB installations include a sample MariaDB option file called my-default.cnf . On older releases, you would

have also found the following option files:

my-small.cnf

my-medium.cnf

my-large.cnf

my-huge.cnf

However, these option files are now very dated for modern servers, so they were removed in MariaDB 10.3.1 .

In source distributions, the sample option files are usually found in the support-files directory, and in other distributions,

the option files are usually found in the share/mysql directory that is relative to the MariaDB base installation directory.

You can copy one of these sample MariaDB option files and use it as the basis for building your server's primary MariaDB

option file.

Example Minimal Option File

The following is a minimal my.cnf file that you can use to test MariaDB.

[client-server]

Uncomment these if you want to use a nonstandard connection to MariaDB

#socket=/tmp/mysql.sock

#port=3306

This will be passed to all MariaDB clients

[client]

#password=my_password

The MariaDB server

[mysqld]

Directory where you want to put your data

data=/usr/local/mysql/var

Directory for the errmsg.sys file in the language you want to use

language=/usr/local/share/mysql/english

This is the prefix name to be used for all log, error and replication files

log-basename=mysqld

Enable logging by default to help find problems

general-log

log-slow-queries

Example Hybrid Option File

The following is an extract of an option file that one can use if one wants to work with both MySQL and MariaDB.

1645/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

Example mysql config file.

[client-server]

socket=/tmp/mysql-dbug.sock

port=3307

This will be passed to all mariadb clients

[client]

password=my_password

Here are entries for some specific programs

The following values assume you have at least 32M ram

The MariaDB server

[mysqld]

temp-pool

key_buffer_size=16M

datadir=/my/mysqldata

loose-innodb_file_per_table

[mariadb]

datadir=/my/data

default-storage-engine=aria

loose-mutex-deadlock-detector

max-connections=20

[mariadb-5.5]

language=/my/maria-5.5/sql/share/english/

socket=/tmp/mysql-dbug.sock

port=3307

[mariadb-10.1]

language=/my/maria-10.1/sql/share/english/

socket=/tmp/mysql2-dbug.sock

[mysqldump]

quick

max_allowed_packet=16M

[mysql]

no-auto-rehash

loose-abort-source-on-error

2.1.6.3 mysqld Configuration Files and Groups
For all about configuring mysqld, see Configuring MariaDB with Option Files.

2.1.6.4 mariadbd Options

From MariaDB 10.4.6, mariadbd is a symlink to mysqld .

From MariaDB 10.5.2, mariadbd is the name of the binary, with mysqld a symlink .

Contents
1. Option Prefixes

1. --autoset-*

2. --disable-*

3. --enable-*

4. --loose-*

5. --maximum-*

6. --skip-*

2. Option File Options

1. --defaults-extra-file

2. --defaults-file

3. --defaults-group-suffix

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1646/4161

3. --defaults-group-suffix

4. --no-defaults

5. --print-defaults

3. Compatibility Options

1. -a, --ansi

2. --new

3. --old

4. --old-alter-table

5. --old-mode

6. --old-passwords

7. --old-style-user-limits

8. --safe-mode

9. --show-old-temporals

10. --skip-new

11. Compatibility Options and System Variables

4. Locale Options

1. --character-set-client-handshake

2. --character-set-filesystem

3. --character-set-server

4. --character-sets-dir

5. --collation-server

6. --default-character-set

7. --default-time-zone

8. --default-week-format

9. --language

10. --lc-messages

11. --lc-messages-dir

12. --lc-time-names

13. Locale Options and System Variables

5. Windows Options

1. --console

2. --named-pipe

3. --install

4. --install-manual

5. --remove

6. --slow-start-timeout

7. --standalone

8. Windows Options and System Variables

6. Replication and Binary Logging Options

1. --abort-slave-event-count

2. --auto-increment-increment

3. --auto-increment-offset

4. --binlog-alter-two-phase

5. --binlog-annotate-row-events

6. --binlog-cache-size

7. --binlog-checksum

8. --binlog-commit-wait-count

9. --binlog-commit-wait-usec

10. --binlog-direct-non-transactional-updates

11. --binlog-do-db

12. --binlog-expire-logs-seconds

13. --binlog-file-cache-size

14. --binlog-format

15. --binlog-gtid-index

16. --binlog-gtid-index-page-size

17. --binlog-gtid-index-span-min

18. --binlog-ignore-db

19. --binlog-optimize-thread-scheduling

20. --binlog-row-event-max-size

21. --binlog-row-image

22. --binlog-row-metadata

23. --binlog-stmt-cache-size

24. --default-master-connection

25. --disconnect-slave-event-count

26. --flashback

27. --gtid-cleanup-batch-size

28. --gtid-domain-id

29. --gtid-ignore-duplicates
1647/4161

29. --gtid-ignore-duplicates

30. --gtid-strict-mode

31. --init-rpl-role

32. --init-slave

33. --log-basename

34. --log-bin

35. --log-bin-compress

36. --log-bin-compress-min-len

37. --log-bin-index

38. --log-bin-trust-function-creators

39. --log-bin-trust-routine-creators

40. --log-slave-updates

41. --master-host

42. --master-info-file

43. --master-password

44. --master-port

45. --master-retry-count

46. --master-ssl

47. --master-ssl-ca

48. --master-ssl-capath

49. --master-ssl-cert

50. --master-ssl-cipher

51. --master-ssl-key

52. --master-user

53. --master-verify-checksum

54. --max-binlog-cache-size

55. --max-binlog-dump-events

56. --max-binlog-size

57. --max-binlog-stmt-cache-size

58. --max-binlog-total-size

59. --max-relay-log-size

60. --read-binlog-speed-limit

61. --relay-log

62. --relay-log-index

63. --relay-log-info-file

64. --relay-log-purge

65. --relay-log-recovery

66. --relay-log-space-limit

67. --replicate-annotate-row-events

68. --replicate-do-db

69. --replicate-do-table

70. --replicate-events-marked-for-skip

71. --replicate-ignore-db

72. --replicate-ignore-table

73. --replicate-rewrite_db

74. --replicate-same-server-id

75. --replicate-wild-do-table

76. --replicate-wild-ignore-table

77. --report-host

78. --report-password

79. --report-port

80. --report-user

81. --rpl-recovery-rank

82. --server-id

83. --slave-ddl-exec-mode

84. --slave-compressed-protocol

85. --slave-connections-needed-for-purge

86. --slave-domain-parallel-threads

87. --slave-exec-mode

88. --slave-load-tmpdir

89. --slave-max-allowed-packet

90. --slave-max-statement-time

91. --slave-net-timeout

92. --slave-parallel-threads

93. --slave-parallel-max-queued

94. --slave-run-triggers-for-rbr

95. --slave-skip-errors

96. --slave-sql-verify-checksum
1648/4161

97. --slave-transaction-retries

98. --slave-transaction-retry-errors

99. --slave-transaction-retry-interval

100. --slave-type-conversions

101. --sporadic-binlog-dump-fail

102. --sync-binlog

103. --sync-master-info

104. --sync-relay-log

105. --sync-relay-log-info

106. --sysdate-is-now

107. Replication and Binary Logging Options and System Variables

108. Semisynchronous Replication Options and System Variables

1. rpl-semi-sync-master-enabled

2. rpl-semi-sync-master-timeout

3. rpl-semi-sync-master-trace-level

4. rpl-semi-sync-master-wait-no-slave

5. rpl-semi-sync-master-wait-point

6. rpl-semi-sync-slave-delay-master

7. rpl-semi-sync-slave-kill-conn-timeout

8. rpl-semi-sync-slave-enabled

9. rpl-semi-sync-slave-trace-level

7. Optimizer Options

1. --alter-algorithm

2. --analyze-sample-percentage

3. --big-tables

4. --bulk-insert-buffer-size

5. --expensive-subquery-limit

6. --join-buffer-size

7. --join-buffer-space-limit

8. --join-cache-level

9. --max-heap-table-size

10. --max-join-size

11. --max-seeks-for-key

12. --max-sort-length

13. --mrr-buffer-size

14. --optimizer-adjust-secondary-key-costs

15. --optimizer-extra-pruning-depth

16. --optimizer-max-sel-arg-weight

17. --optimizer-prune-level

18. --optimizer-search-depth

19. --optimizer-selectivity-sampling-limit

20. --optimizer-switch

21. -optimizer-trace

22. -optimizer-trace-max-mem-size

23. --optimizer-use-condition-selectivity

24. --query-alloc-block-size

25. --query-prealloc-size

26. --range-alloc-block-size

27. --read-buffer-size

28. --record-buffer

29. --rowid-merge-buff-size

30. --table-cache

31. --table-definition-cache

32. --table-open-cache

33. --table-open-cache-instances

34. --tmp-disk-table-size

35. --tmp-memory-table-size

36. --tmp-table-size

37. --use-stat-tables

38. Optimizer Options and System Variables

8. Storage Engine Options

1. --skip-bdb

2. --external-locking

3. MyISAM Storage Engine Options

1. --concurrent-insert

2. --delayed-insert-limit

3. --delayed-insert-timeout

4. --delayed-queue-size 1649/4161

https://mariadb.com/kb/en/optimizer_adjust_secondary_key_costs/#None

4. --delayed-queue-size

5. --keep-files-on-create

6. --key-buffer-size

7. --key-cache-age-threshold

8. --key-cache-block-size

9. --key-cache-division-limit

10. --key-cache-file-hash-size

11. --key-cache-segments

12. --log-isam

13. --myisam-block-size

14. --myisam-data-pointer-size

15. --myisam-max-sort-file-size

16. --myisam-mmap-size

17. --myisam-recover-options

18. --myisam-repair-threads

19. --myisam-sort-buffer-size

20. --myisam-stats-method

21. --myisam-use-mmap

22. MyISAM Storage Engine Options and System Variables

4. InnoDB Storage Engine Options

1. --ignore-builtin-innodb

2. --innodb

3. --innodb-adaptive-checkpoint

4. --innodb-adaptive-flushing

5. --innodb-adaptive-flushing-lwm

6. --innodb-adaptive-flushing-method

7. --innodb-adaptive-hash-index

8. --innodb-adaptive-hash-index-partitions

9. --innodb-adaptive-hash-index-parts

10. --innodb-adaptive-max-sleep-delay

11. --innodb-additional-mem-pool-size

12. --innodb-api-bk-commit-interval

13. --innodb-api-disable-rowlock

14. --innodb-api-enable-binlog

15. --innodb-api-enable-mdl

16. --innodb-api-trx-level

17. --innodb-auto-lru-dump

18. --innodb-autoextend-increment

19. --innodb-autoinc-lock-mode

20. --innodb-background-scrub-data-check-interval

21. --innodb-background-scrub-data-compressed

22. --innodb-background-scrub-data-interval

23. --innodb-background-scrub-data-uncompressed

24. --innodb-blocking-buffer-pool-restore

25. --innodb-buf-dump-status-frequency

26. --innodb-buffer-pool-chunk-size

27. --innodb-buffer-pool-dump-at-shutdown

28. --innodb-buffer-pool-dump-now

29. --innodb-buffer-pool-dump-pct

30. --innodb-buffer-pool-evict

31. --innodb-buffer-pool-filename

32. --innodb-buffer-pool-instances

33. --innodb-buffer-pool-load-abort

34. --innodb-buffer-pool-load-at-startup

35. --innodb-buffer-pool-load-now

36. --innodb-buffer-pool-load-pages-abort

37. --innodb-buffer-pool-populate

38. --innodb-buffer-pool-restore-at-startup

39. --innodb-buffer-pool-shm-checksum

40. --innodb-buffer-pool-shm-key

41. --innodb-buffer-pool-size

42. --innodb-change-buffer-max-size

43. --innodb-change-buffering

44. --innodb-change-buffering-debug

45. --innodb-checkpoint-age-target

46. --innodb-checksum-algorithm

47. --innodb-checksums

48. --innodb-cleaner-lsn-age-factor
1650/4161

48. --innodb-cleaner-lsn-age-factor

49. --innodb-cmp

50. --innodb-cmp-per-index-enabled

51. --innodb-cmp-reset

52. --innodb-cmpmem

53. --innodb-cmpmem-reset

54. --innodb-commit-concurrency

55. --innodb-compression-algorithm

56. --innodb-compression-failure-threshold-pct

57. --innodb-compression-level

58. --innodb-compression-pad-pct-max

59. --innodb-concurrency-tickets

60. --innodb-corrupt-table-action

61. --innodb-data-file-buffering

62. --innodb-data-file-path

63. --innodb-data-file-write-through

64. --innodb-data-home-dir

65. --innodb-deadlock-detect

66. --innodb-deadlock-report

67. --innodb-default-encryption-key-id

68. --innodb-default-page-encryption-key

69. --innodb-default-row-format

70. --innodb-defragment

71. --innodb-defragment-fill-factor

72. --innodb-defragment-fill-factor-n-recs

73. --innodb-defragment-frequency

74. --innodb-defragment-n-pages

75. --innodb-defragment-stats-accuracy

76. --innodb-dict-size-limit

77. --innodb-disable-sort-file-cache

78. --innodb-doublewrite

79. --innodb-doublewrite-file

80. --innodb-empty-free-list-algorithm

81. --innodb-enable-unsafe-group-commit

82. --innodb-encrypt-log

83. --innodb-encrypt-tables

84. --innodb-encrypt-temporary-tables

85. --innodb-encryption-rotate-key-age

86. --innodb-encryption-rotation-iops

87. --innodb-encryption-threads

88. --innodb-extra-rsegments

89. --innodb-extra-undoslots

90. --innodb-fake-changes

91. --innodb-fast-checksum

92. --innodb-fast-shutdown

93. --innodb-fatal-semaphore-wait-threshold

94. --innodb-file-format

95. --innodb-file-format-check

96. --innodb-file-format-max

97. --innodb-file-io-threads

98. --innodb-file-per-table

99. --innodb-filll-factor

100. --innodb-flush-log-at-trx-commi

101. --innodb-flush-method

102. --innodb-flush-neighbor-pages

103. --innodb-flush-neighbors

104. --innodb-flush-sync

105. --innodb-flushing-avg-loops

106. --innodb-force-load-corrupted

107. --innodb-force-primary-key

108. --innodb-force-recovery

109. --innodb-foreground-preflush

110. --innodb-ft-aux-table

111. --innodb-ft-cache-size

112. --innodb-ft-enable-diag-print

113. --innodb-ft-enable-stopword

114. --innodb-ft-max-token-size

115. --innodb-ft-min-token-size
1651/4161

116. --innodb-ft-num-word-optimize

117. --innodb-ft-result-cache-limit

118. --innodb-ft-server-stopword-table

119. --innodb-ft-sort-pll-degree

120. --innodb-ft-total-cache-size

121. --innodb-ft-user-stopword-table

122. --innodb-ibuf-accel-rate

123. --innodb-ibuf-active-contract

124. --innodb-ibuf-max-size

125. --innodb-idle-flush-pct

126. --innodb-immediate-scrub-data-uncompressed

127. --innodb-import-table-from-xtrabackup

128. --innodb-index-stats

129. --innodb-instant-alter-column-allowed

130. --innodb-instrument-semaphores

131. --innodb-io-capacity

132. --innodb-io-capacity-max

133. --innodb-large-prefix

134. --innodb-lazy-drop-table

135. --innodb-lock-schedule-algorithm

136. --innodb-lock-wait-timeout

137. --innodb-lock-waits

138. --innodb-locking-fake-changes

139. --innodb-locks

140. --innodb-locks-unsafe-for-binlog

141. --innodb-log-arch-dir

142. --innodb-log-arch-expire-sec

143. --innodb-log-archive

144. --innodb-log-block-size

145. --innodb-log-buffer-size

146. --innodb-log-checksum-algorithm

147. --innodb-log-checksums

148. --innodb-log-compressed-pages

149. --innodb-log-file-buffering

150. --innodb-log-file-size

151. --innodb-log-file-write-through

152. --innodb-log-files-in-group

153. --innodb-log-group-home-dir

154. --innodb-log-optimize-ddl

155. --innodb-log-write-ahead-size

156. --innodb-lru-flush-size

157. --innodb-lru-scan-depth

158. --innodb-max-bitmap-file-size

159. --innodb-max-changed-pages

160. --innodb-max-dirty-pages-pct

161. --innodb-max-dirty-pages-pct-lwm

162. --innodb-max-purge-lag

163. --innodb-max-purge-lag-delay

164. --innodb-max-purge-lag-wait

165. --innodb-max-undo-log-size

166. --innodb-merge-sort-block-size

167. --innodb-mirrored-log-groups

168. --innodb-monitor-disable

169. --innodb-monitor-enable

170. --innodb-monitor-reset

171. --innodb-monitor-reset-all

172. --innodb-mtflush-threads

173. --innodb-numa-interleave

174. --innodb-old-blocks-pct

175. --innodb-old-blocks-time

176. --innodb-online-alter-log-max-size

177. --innodb-open-files

178. --innodb-optimize-fulltext-only

179. --innodb-page-cleaners

180. --innodb-page-size

181. --innodb-pass-corrupt-table

182. --innodb-prefix-index-cluster-optimization

183. --innodb-print-all-deadlocks 1652/4161

183. --innodb-print-all-deadlocks

184. --innodb-purge-batch-size

185. --innodb-purge-rseg-truncate-frequency

186. --innodb-purge-threads

187. --innodb-random-read-ahead

188. --innodb-read-ahead

189. --innodb-read-ahead-threshold

190. --innodb-read-io-threads

191. --innodb-read-only

192. --innodb-recovery-update-relay-log

193. --innodb-replication-delay

194. --innodb-rollback-on-timeout

195. --innodb-rollback-segments

196. --innodb-rseg

197. --innodb-sched-priority-cleaner

198. --innodb-safe-truncate

199. --innodb-scrub-log

200. --innodb-scrub-log-interval

201. --innodb-scrub-log-speed

202. --innodb-show-locks-held

203. --innodb-show-verbose-locks

204. --innodb-sort-buffer-size

205. --innodb-spin-wait-delay

206. --innodb-stats-auto-recalc

207. --innodb-stats-auto-update

208. --innodb-stats-include-delete-marked

209. --innodb-stats-method

210. --innodb-stats-modified-counter

211. --innodb-stats-on-metadata

212. --innodb-stats-persistent

213. --innodb-stats-persistent-sample-pages

214. --innodb-stats-sample-pages

215. --innodb-stats-traditional

216. --innodb-stats-transient-sample-pages

217. --innodb-stats-update-need-lock

218. --innodb-status-file

219. --innodb-status-output

220. --innodb-status-output-locks

221. --innodb-strict-mode

222. --innodb-support-xa

223. --innodb-sync-array-size

224. --innodb-sync-spin-loops

225. --innodb-sys-indexes

226. --innodb-sys-stats

227. --innodb-sys-tables

228. --innodb-table-locks

229. --innodb-table-stats

230. --innodb-temp-data-file-path

231. --innodb-thread-concurrency

232. --innodb-thread-concurrency-timer-based

233. --innodb-thread-sleep-delay

234. --innodb-tmpdir

235. --innodb-track-changed-pages

236. --innodb-track-redo-log-now

237. --innodb-trx

238. --innodb-truncate-temporary-tablespace-now

239. --innodb-undo-directory

240. --innodb-undo-log-truncate

241. --innodb-undo-logs

242. --innodb-undo-tablespaces

243. --innodb-use-atomic-writes

244. --innodb-use-fallocate

245. --innodb-use-global-flush-log-at-trx-commit

246. --innodb-use-mtflush

247. --innodb-use-native-aio

248. --innodb-use-purge-thread

249. --innodb-use-stacktrace

250. --innodb-use-sys-malloc
1653/4161

250. --innodb-use-sys-malloc

251. --innodb-use-sys-stats-table

252. --innodb-use-trim

253. --innodb-write-io-threads

254. --skip-innodb

255. --skip-innodb-checksums

256. --skip-innodb-doublewrite

257. InnoDB Storage Engine Options and System Variables

5. Aria Storage Engine Options

1. --aria-block-size

2. --aria-checkpoint-interval

3. --aria-checkpoint-log-activity

4. --aria-encrypt-tables

5. --aria-force-start-after-recovery-failures

6. --aria-group-commit

7. --aria-group-commit-interval

8. --aria-log-dir-path

9. --aria-log-file-size

10. --aria-log-purge-type

11. --aria-max-sort-file-size

12. --aria-page-checksum

13. --aria-pagecache-age-threshold

14. --aria-pagecache-buffer-size

15. --aria-pagecache-division-limit

16. --aria-pagecache-file-hash-size

17. --aria-recover

18. --aria-recover-options

19. --aria-repair-threads

20. --aria-sort-buffer-size

21. --aria-stats-method

22. --aria-sync-log-dir

23. --aria-used-for-temp-tables

24. --deadlock-search-depth-long

25. --deadlock-search-depth-short

26. --deadlock-timeout-long

27. --deadlock-timeout-short

28. Aria Storage Engine Options and System Variables

6. MyRocks Storage Engine Options

7. S3 Storage Engine Options

1. --s3-access-key

2. --s3-block-size

3. --s3-bucket

4. --s3-debug

5. --s3-host-name

6. --s3-pagecache-age-threshold

7. --s3-pagecache-buffer-size

8. --s3-pagecache-division-limit

9. --s3-pagecache-file-hash-size

10. --s3-port

11. --s3-protocol-version

12. --s3-region

13. --s3-secret-key

14. --s3-slave-ignore-updates

15. --s3-use-http

8. CONNECT Storage Engine Options

1. --connect-class-path

2. --connect-cond-push

3. --connect-conv-size

4. --connect-default-depth

5. --connect-default-prec

6. --connect-enable-mongo

7. --connect-exact-info

8. --connect-force-bson

9. --connect-indx-map

10. --connect-java-wrapper

11. --connect-json-all-path

12. --connect-json-grp-size

13. --connect-json-null
1654/4161

14. --connect-jvm-path

15. --connect-type-conv

16. --connect-use-tempfile

17. --connect-work-size

18. --connect-xtrace

19. CONNECT Storage Engine Options and System Variables

9. Spider Storage Engine Options

10. Mroonga Storage Engine Options

11. TokuDB Storage Engine Options

9. Performance Schema Options

1. --performance-schema

2. --performance-schema-accounts-size

3. --performance-schema-consumer-events-stages-current

4. --performance-schema-consumer-events-stages-history

5. --performance-schema-consumer-events-stages-history-long

6. --performance-schema-consumer-events-statements-current

7. --performance-schema-consumer-events-statements-history

8. --performance-schema-consumer-events-statements-history-long

9. --performance-schema-consumer-events-waits-current

10. --performance-schema-consumer-events-waits-history

11. --performance-schema-consumer-events-waits-history-long

12. --performance-schema-consumer-global-instrumentation

13. --performance-schema-consumer-statements-digest

14. --performance-schema-consumer-thread-instrumentation

15. --performance-schema-digests-size

16. --performance-schema-events-stages-history-long-size

17. --performance-schema-events-stages-history-size

18. --performance-schema-events-statements-history-long-size

19. --performance-schema-events-statements-history-size

20. --performance-schema-events-transactions-history-long-size

21. --performance-schema-events-transactions-history-size

22. --performance-schema-events-waits-history-long-size

23. --performance-schema-events-waits-history-size

24. --performance-schema-hosts-size

25. --performance-schema-max-cond-classes

26. --performance-schema-max-cond-instances

27. --performance-schema-max-digest-length

28. --performance-schema-max-file-classes

29. --performance-schema-max-file-handles

30. --performance-schema-max-file-instances

31. --performance-schema-max-index-stat

32. --performance-schema-max-memory-classes

33. --performance-schema-max-metadata-locks

34. --performance-schema-max-mutex-classes

35. --performance-schema-max-mutex-instances

36. --performance-schema-max-prepared-statement-instances

37. --performance-schema-max-program-instances

38. --performance-schema-max-sql-text-length

39. --performance-schema-max-rwlock-classes

40. --performance-schema-max-rwlock-instances

41. --performance-schema-max-socket-classes

42. --performance-schema-max-socket-instances

43. --performance-schema-max-stage-classes

44. --performance-schema-max-statement-classes

45. --performance-schema-max-statement-stack

46. --performance-schema-max-table-handles

47. --performance-schema-max-table-instances

48. --performance-schema-max-table-lock-stat

49. --performance-schema-max-thread-classes

50. --performance-schema-max-thread-instances

51. --performance-schema-session-connect-attrs-size

52. --performance-schema-setup-actors-size

53. --performance-schema-setup-objects-size

54. --performance-schema-users-size

55. Performance Schema Options and System Variables

10. Galera Cluster Options

1. --wsrep-allowlist

2. --wsrep-auto-increment-control 1655/4161

2. --wsrep-auto-increment-control

3. --wsrep-causal-reads

4. --wsrep-certify-nonPK

5. --wsrep-cluster-address

6. --wsrep-cluster-name

7. --wsrep-convert-LOCK-to-trx

8. --wsrep-data-home-dir

9. --wsrep-dbug-option

10. --wsrep-debug

11. --wsrep-desync

12. --wsrep-dirty-reads

13. --wsrep-drupal-282555-workaround

14. --wsrep-forced-binlog-format

15. --wsrep-gtid-domain-id

16. --wsrep-gtid-mode

17. --wsrep-ignore-apply-errors

18. --wsrep-load-data-splitting

19. --wsrep-log-conflicts

20. --wsrep-max-ws-rows

21. --wsrep-max-ws-size

22. --wsrep-mode

23. --wsrep-mysql-replication-bundle

24. --wsrep-new-cluster

25. --wsrep-node-address

26. --wsrep-node-incoming-address

27. --wsrep-node-name

28. --wsrep-notify-cmd

29. --wsrep-on

30. --wsrep-OSU-method

31. --wsrep-provider

32. --wsrep-provider-options

33. --wsrep-recover

34. --wsrep-reject_queries

35. --wsrep-replicate-myisam

36. --wsrep-restart-slave

37. --wsrep-retry-autocommit

38. --wsrep-slave-FK-checks

39. --wsrep-slave-threads

40. --wsrep-slave-UK-checks

41. --wsrep-sr-store

42. --wsrep-sst-auth

43. --wsrep-sst-donor

44. --wsrep-sst-donor-rejects-queries

45. --wsrep-sst-method

46. --wsrep-sst-receive-address

47. --wsrep-start-position

48. --wsrep-status-file

49. --wsrep-strict-ddl

50. --wsrep-sync-wait

51. --wsrep-trx-fragment-size

52. --wsrep-trx-fragment-unit

53. Galera Cluster Options and System Variables

11. Options When Debugging mariadbd

1. --core-file

2. --debug

3. --debug-assert-if-crashed-table

4. --debug-binlog-fsync-sleep

5. --debug-crc-break

6. --debug-flush

7. --debug-no-thread-alarm

8. --debug-no-sync

9. --debug-sync-timeout

10. --gdb

11. --silent-startup

12. --sync-sys

13. --thread-alarm

14. Debugging Options and System Variables

12. Other Options
1656/4161

https://mariadb.com/kb/en/server-system-variables//#debug

12. Other Options

1. --allow-suspicious-udfs

2. --autocommit

3. --automatic-sp-privileges

4. --back-log

5. --basedir

6. --bind-address

7. --block-encryption-mode

8. --bootstrap

9. --check-constraint-checks

10. --chroot

11. --column-compression-threshold

12. --column-compression-zlib-level

13. --column-compression-zlib-strategy

14. --column-compression-zlib-wrap

15. --completion-type

16. --connect-timeout

17. --datadir

18. --date-format

19. --datetime-format

20. --deadlock-search-depth-long

21. --deadlock-search-depth-short

22. --deadlock-timeout-long

23. --deadlock-timeout-short

24. --default-password-lifetime

25. --default-regex-flags

26. --default-storage-engine

27. --default-table-type

28. --default-tmp-storage-engine

29. --delay-key-write

30. --des-key-file

31. --disconnect-on-expired-password

32. --div-precision-increment

33. --encrypt-binlog

34. --encrypt-tmp-disk-tables

35. --encrypt-tmp-files

36. --encryption-algorithm

37. --engine-condition-pushdown

38. --eq-range-index-dive-limit

39. --event-scheduler

40. --exit-info

41. --expire-logs-days

42. --explicit-defaults-for-timestamp

43. --extra-max-connections

44. --extra-port

45. --flush

46. --flush-time

47. --ft-boolean-syntax

48. --ft-max-word-len

49. --ft-min-word-len

50. --ft-query-expansion-limit

51. --ft-stopword-file

52. --general-log

53. --general-log-file

54. --getopt-prefix-matching

55. --group-concat-max-len

56. --help

57. --histogram-size

58. --histogram-type

59. --host-cache-size

60. --idle-readonly-transaction-timeout

61. --idle-transaction-timeout

62. --idle-write-transaction-timeout

63. --ignore-db-dirs

64. --in-predicate-conversion-threshold

65. --init-connect

66. --init-file

67. --interactive-timeout
1657/4161

https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_threshold
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_level
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_strategy
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_wrap

68. --large-pages

69. --local-infile

70. --lock-wait-timeout

71. --log

72. --log-disabled_statements

73. --log-error

74. --log-output

75. --log-queries-not-using-indexes

76. --log-ddl-recovery

77. --log-short-format

78. --log-slow-admin-statements

79. --log-slow-disabled-statements

80. --log-slow-file

81. --log-slow-filter

82. --log-slow-min-examined-row_limit

83. --log-slow-queries

84. --log-slow-query

85. --log-slow-query-file

86. --log-slow-query-time

87. --log-slow-rate-limit

88. --log-slow-slave-statements

89. --log-slow-time

90. --log-slow-verbosity

91. --log-tc

92. --log-tc-size

93. --log-warnings

94. --long-query-time

95. --low-priority-updates

96. --lower-case-table-names

97. --master-connect-retry

98. --max-allowed-packet

99. --max-connections

100. --max-connect-errors

101. --max-delayed-threads

102. --max-digest-length

103. --max-error-count

104. --max-length-for-sort-data

105. --max-long-data-size

106. --max-password-errors

107. --max-prepared-stmt-count

108. --max-recursive-iterations

109. --max-rowid-filter-size

110. --max-session-mem-used

111. --max-sp-recursion-depth

112. --max-statement-time

113. --max-tmp-tables

114. --max-user-connections

115. --max-write-lock-count

116. --memlock

117. --metadata-locks-cache-size

118. --metadata-locks-hash-instances

119. --min-examined-row-limit

120. --mrr-buffer-size

121. --multi-range-count

122. --mysql56-temporal-format

123. --ndb-use-copying-alter-table

124. --net-buffer-length

125. --net-read-timeout

126. --net-retry-count

127. --net-write-timeout

128. --one-thread

129. --open-files-limit

130. --pid-file

131. --plugin-load

132. --plugin-load-add

133. --plugin-dir

134. --plugin-maturity

135. --port 1658/4161

https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#log_slow_slave_statements

135. --port

136. --port-open-timeout

137. --preload-buffer-size

138. --profiling-history-size

139. --progress-report-time

140. --proxy-protocol-networks

141. --query-cache-info

142. --query-cache-limit

143. --query-cache-min-res-unit

144. --query-cache-size

145. --query-cache-strip-comments

146. --query-cache-type

147. --query-cache-wlock-invalidate

148. --read-rnd-buffer-size

149. --read-only

150. --redirect-url

151. --require-secure-transport

152. --safe-show-database

153. --safe-user-create

154. --safemalloc-mem-limit

155. --secure-auth

156. --secure-file-priv

157. --secure-timestamp

158. --session-track-schema

159. --session-track-state-change

160. --session-track-system-variables

161. --session-track-transaction-info

162. --show-slave-auth-info

163. --skip-automatic-sp-privileges

164. --skip-external-locking

165. --skip-grant-tables

166. --skip-host-cache

167. --skip-large-pages

168. --skip-log-error

169. --skip-name-resolve

170. --skip-networking

171. --skip-partition

172. --skip-show-database

173. --skip-slave-start

174. --skip-ssl

175. --skip-symlink

176. --skip-thread-priority

177. --slow-launch-time

178. --slow-query-log

179. --slow-query-log-file

180. --socket

181. --sort-buffer-size

182. --sql-bin-update-same

183. --sql-if-exists

184. --sql-mode

185. --ssl

186. --ssl-ca

187. --ssl-capath

188. --ssl-cert

189. --ssl-cipher

190. --ssl-crl

191. --ssl-crlpath

192. --ssl-key

193. --stack-trace

194. --standard-compliant-cte

195. --stored-program-cache

196. --strict-password-validation

197. --symbolic-links

198. --sync-frm

199. --system-versioning-alter-history

200. --system-versioning-asof

201. --system-versioning-innodb-algorithm-simple

202. --system-versioning-insert-history
1659/4161

https://mariadb.com/kb/en/query-cache-information-plugin//#query_cache_info
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_alter_history
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_asof
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_innodb_algorithm_simple
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_insert_history

202. --system-versioning-insert-history

203. --table-lock-wait-timeout

204. --tc-heuristic-recover

205. --tcp-keepalive-interval

206. --tcp-keepalive-probes

207. --tcp-keepalive-time

208. --tcp-nodelay

209. --temp-pool

210. --test-expect-abort

211. --test-ignore-wrong-options

212. --thread-cache-size

213. --thread-concurrency

214. --thread-handling

215. --thread-pool-dedicated-listener

216. --thread-pool-exact-stats

217. --thread-pool-idle-timeout

218. --thread-pool-max-threads

219. --thread-pool-min-threads

220. --thread-pool-prio-kickup-timer

221. --thread-pool-priority

222. --thread-pool-size

223. --thread-pool-stall-limit

224. --thread-stack

225. --timed-mutexes

226. --time-format

227. --tls_version

228. --tmpdir

229. --transaction-isolation

230. --transaction-alloc-block-size

231. --transaction-prealloc-size

232. --transaction-read-only

233. --updatable-views-with-limit

234. --user

235. --userstat

236. --verbose

237. --version

238. --wait-timeout

13. Other Options and System Variables

14. Authentication Plugins - Options and System Variables

1. Authentication Plugin - ed25519

1. ed25519

2. Authentication Plugin - gssapi

1. gssapi

2. gssapi_keytab_path

3. gssapi_principal_name

4. gssapi_mech_name

3. Authentication Plugin - named_pipe

1. named_pipe

4. Authentication Plugin - pam

1. pam

2. pam_debug

3. pam_use_cleartext_plugin

4. pam_winbind_workaround

5. Authentication Plugin - unix_socket

1. unix_socket

15. Encryption Plugins - Options and System Variables

1. Encryption Plugin - aws_key_management

1. aws_key_management

2. aws_key_management_key_spec

3. aws_key_management_log_level

4. aws_key_management_master_key_id

5. aws_key_management_mock

6. aws_key_management_region

7. aws_key_management_request_timeout

8. aws_key_management_rotate_key

2. Encryption Plugin - file_key_management

1. file_key_management

2. file_key_management_encryption_algorithm

1660/4161

3. file_key_management_filekey

4. file_key_management_filename

16. Password Validation Plugins - Options and System Variables

1. Password Validation Plugin - simple_password_check

1. simple_password_check

2. simple_password_check_digits

3. simple_password_check_letters_same_case

4. simple_password_check_minimal_length

5. simple_password_check_other_characters

2. Password Validation Plugin - cracklib_password_check

1. cracklib_password_check

2. cracklib_password_check_dictionary

17. Audit Plugins - Options and System Variables

1. Audit Plugin - server_audit

1. server-audit

2. server-audit-events

3. server-audit-excl-users

4. server-audit-file-path

5. server-audit-file-rotate-now

6. server-audit-file-rotate-size

7. server-audit-file-rotations

8. server-audit-incl-users

9. server-audit-logging

10. server-audit-mode

11. server-audit-output-type

12. server-audit-query-limit

13. server-audit-syslog-facility

14. server-audit-syslog-ident

15. server-audit-syslog-info

16. server-audit-syslog-priority

2. Audit Plugin - SQL_ERROR_LOG

1. sql_error_log

2. sql_error_log_filename

3. sql_error_log_filename

4. sql_error_log_rate

5. sql_error_log_rotate

6. sql_error_log_rotations

7. sql_error_log_size_limit

3. Audit Plugin - QUERY_RESPONSE_TIME_AUDIT

1. query_response_time_audit

18. Daemon Plugins - Options and System Variables

1. Daemon Plugin - handlersocket

1. handlersocket-accept-balance

2. handlersocket-address

3. handlersocket-backlog

4. handlersocket-epoll

5. handlersocket-plain-secret

6. handlersocket-plain-secret-wr

7. handlersocket-port

8. handlersocket-port-wr

9. handlersocket-rcvbuf

10. handlersocket-readsize

11. handlersocket-sndbuf

12. handlersocket-threads

13. handlersocket-threads-wr

14. handlersocket-timeout

15. handlersocket-verbose

16. handlersocket-wrlock-timeout

19. Information Schema Plugins - Options and System Variables

1. Information Schema Plugin - DISKS

1. disks

2. Information Schema Plugin - feedback

1. feedback

2. feedback_http_proxy

3. feedback_send_retry_wait

4. feedback_send_timeout

5. feedback_url

6. feedback_user_info 1661/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-optionsn/#sql_error_log
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotations
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_size_limit

6. feedback_user_info

3. Information Schema Plugin - LOCALES

1. locales

4. Information Schema Plugin - METADATA_LOCK_INFO

1. metadata_lock_info

5. Information Schema Plugin - QUERY_CACHE_INFO

1. query_cache_info

6. Information Schema Plugin - QUERY_RESPONSE_TIME

1. query_response_time

2. query_response_time_flush

3. query_response_time_range_base

4. query_response_time_exec_time_debug

5. query_response_time_stats

7. Information Schema Plugin - user_variables

1. user_variables

8. Information Schema Plugin - WSREP_MEMBERSHIP

1. wsrep_membership

9. Information Schema Plugin - WSREP_STATUS

1. wsrep_status

20. Replication Plugins - Options and System Variables

1. Replication Plugin - rpl_semi_sync_master

1. rpl_semi_sync_master

2. rpl-semi-sync-master-enabled

3. rpl-semi-sync-master-timeout

4. rpl-semi-sync-master-trace-level

5. rpl-semi-sync-master-wait-no-slave

6. rpl-semi-sync-master-wait-point

2. Replication Plugin - rpl_semi_sync_slave

1. rpl_semi_sync_slave

2. rpl-semi-sync-slave-delay-master

3. rpl-semi-sync-slave-kill-conn-timeout

4. rpl-semi-sync-slave-enabled

5. rpl-semi-sync-slave-trace-level

21. Default Values

This page lists all of the options for mariadbd (called mysqld before MariaDB 10.5), ordered by topic. For a full

alphabetical list of all mariadbd options, as well as server and status variables, see Full list of MariaDB options, system and

status variables.

In many cases, the entry here is a summary, and links to the full description.

By convention, server variables have usually been specified with an underscore in the configuration files, and a dash on the

command line. You can however specify underscores as dashes - they are interchangeable.

See Configuring MariaDB with Option Files for which files and groups mariadbd reads for it's default options.

Option Prefixes

--autoset-*

Description: Sets the option value automatically. Only supported for certain options.

--disable-*

Description: For all boolean options, disables the setting (equivalent to setting it to 0). Same as --skip .

--enable-*

Description: For all boolean options, enables the setting (equivalent to setting it to 1).

--loose-*

Description: Don't produce an error if the option doesn't exist.

--maximum-*

Description: Sets the maximum value for the option.

1662/4161

--skip-*

Description: For all boolean options, disables the setting (equivalent to setting it to 0). Same as --disable .

Option File Options

--defaults-extra-file

Commandline: --defaults-extra-file=name

Description: Read this extra option file after all other option files are read.

See Configuring MariaDB with Option Files.

--defaults-file

Commandline: --defaults-file=name

Description: Only read options from the given option file.

See Configuring MariaDB with Option Files.

--defaults-group-suffix

Commandline: --defaults-group-suffix=name

Description: In addition to the default option groups, also read option groups with the given suffix.

See Configuring MariaDB with Option Files.

--no-defaults

Commandline: --no-defaults

Description: Don't read options from any option file.

See Configuring MariaDB with Option Files.

--print-defaults

Commandline: --print-defaults

Description: Read options from option files, print all option values, and then exit the program.

See Configuring MariaDB with Option Files.

Compatibility Options
The following options have been added to MariaDB to make it more compliant with other MariaDB and MySQL versions.

Options that are also system variables are listed after:

-a, --ansi

Description: Use ANSI SQL syntax instead of MariaDB syntax. This mode will also set transaction isolation level

serializable.

--new

Description: Use new functionality that will exist in next version of MariaDB. This function exists to make it easier to

prepare for an upgrade. For version 5.1 this functions enables the LIST and RANGE partitions functions for

ndbcluster.

--old-style-user-limits

Description: Enable old-style user limits (before MySQL 5.0.3, user resources were counted per each user+host vs.

per account).

1663/4161

--safe-mode

Description: Disable some potential unsafe optimizations. For 5.2, INSERT DELAYED is disabled,

myisam_recover_options is set to DEFAULT (automatically recover crashed MyISAM files) and the query cache is

disabled. For Aria tables, disable bulk insert optimization to enable one to use aria_read_log to recover tables even if

tables are deleted (good for testing recovery).

--skip-new

Description: Disables --new in 5.2. In 5.1 used to disable some new potentially unsafe functions.

Compatibility Options and System Variables

--old

--old-alter-table

--old-mode

--old-passwords

--show-old-temporals

Locale Options
Options that are also system variables are listed after:

--character-set-client-handshake

Commandline: --character-set-client-handshake

Description: Don't ignore client side character set value sent during handshake.

--default-character-set

Commandline: --default-character-set=name

Description: Still available as an option for setting the default character set for clients and their connections, it was

deprecated and removed in MariaDB 10.2 as a server option. Use character-set-server instead.

--language

Description: This option can be used to set the server's language for error messages. This option can be specified

either as a language name or as the path to the directory storing the language's error message file. See Server

Locales for a list of supported locales and their associated languages.

This option is deprecated. Use the lc_messages and lc_messages_dir system variables instead.

See Setting the Language for Error Messages for more information.

Locale Options and System Variables

character-set-filesystem

character-set-client

character-set-connection

character-set-database

character-set-filesystem

character-set-results

character-set-server

character-set-system

character-sets-dir

collation-connection

collation-database

collation-server

default-week-format

default-time-zone

1664/4161

https://mariadb.com/kb/en/server-locale/

lc-messages

lc-messages-dir

lc-time-names

Windows Options
Options that are also system variables are listed after:

--console

Description: Windows-only option that keeps the console window open and for writing log messages to stderr and

stdout. If specified together with --log-error, the last option will take precedence.

--install

Description: Windows-only option that installs the mariadbd process as a Windows service.

The Windows service created with this option auto-starts . If you want a service that is started on demand ,

then use the --install-manual option.

This option takes a service name as an argument. If this option is provided without a service name, then the

service name defaults to "MARIADB".

This option is deprecated and may be removed in a future version. See MDEV-19358 for more information.

--install-manual

Description: Windows-only option that installs the mariadbd process as a Windows service.

The Windows service created with this option is started on demand . If you want a service that auto-starts ,

use the --install option.

This option takes a service name as an argument. If this option is provided without a service name, then the

service name defaults to "MARIADB".

This option is deprecated and may be removed in a future version. See MDEV-19358 for more information.

--remove

Description: Windows-only option that removes the Windows service created by the --install or --install-

manual options.

This option takes a service name as an argument. If this option is provided without a service name, then the

service name defaults to "MARIADB".

This option is deprecated and may be removed in a future version. See MDEV-19358 for more information.

--slow-start-timeout

Description: Windows-only option that defines the maximum number of milliseconds that the service control

manager should wait before trying to kill the Windows service during startup. Defaults to 15000 .

--standalone

Description: Windows-only option that has no effect. Kept for compatibility reasons.

Windows Options and System Variables

The following options and system variables are related to using MariaDB on Windows:

--named-pipe

Replication and Binary Logging Options
The following options are related to replication and the binary log. Options that are also system variables are listed after:

1665/4161

https://docs.microsoft.com/en-us/windows/desktop/Services/automatically-starting-services
https://docs.microsoft.com/en-us/windows/desktop/Services/starting-services-on-demand
https://jira.mariadb.org/browse/MDEV-19358
https://docs.microsoft.com/en-us/windows/desktop/Services/starting-services-on-demand
https://docs.microsoft.com/en-us/windows/desktop/Services/automatically-starting-services
https://jira.mariadb.org/browse/MDEV-19358
https://jira.mariadb.org/browse/MDEV-19358

--abort-slave-event-count

Commandline: --abort-slave-event-count=#

Description: Option used by mysql-test for debugging and testing of replication.

--binlog-do-db

Commandline: --binlog-do-db=name

Description: This option allows you to configure a replication master to write statements and transactions affecting

databases that match a specified name into its binary log. Since the filtered statements or transactions will not be

present in the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

This option can not be set dynamically. Available as a system variable from MariaDB 11.2.0.

When setting it on the command-line or in a server option group in an option file, the option does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the option multiple

times.

See Replication Filters for more information.

--binlog-ignore-db

Commandline: --binlog-ignore-db=name

Description: This option allows you to configure a replication master to not write statements and transactions

affecting databases that match a specified name into its binary log. Since the filtered statements or transactions will

not be present in the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

This option can not be set dynamically. Available as a system variable from MariaDB 11.2.0.

When setting it on the command-line or in a server option group in an option file, the option does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the option multiple

times.

See Replication Filters for more information.

--binlog-row-event-max-size

Commandline: --binlog-row-event-max-size=#

Description: The maximum size of a row-based binary log event in bytes. Rows will be grouped into events smaller

than this size if possible. The value has to be a multiple of 256. Available as a system variable from MariaDB 11.2.0.

Default value 8192

--disconnect-slave-event-count

Commandline: --disconnect-slave-event-count=#

Description: Option used by mysql-test for debugging and testing of replication.

--flashback

Commandline: --flashback

Description: Setup the server to use flashback. This enables the binary log and sets binlog_format=ROW .

--init-rpl-role

Commandline: --init-rpl-role=name

Description: Set the replication role.

--log-basename

Commandline: --log-basename=name

1666/4161

Description: Basename for all log files and the .pid file. This sets all log file names at once (in 'datadir') and is

normally the only option you need for specifying log files. This is especially recommended to be set if you are using

replication as it ensures that your log file names are not dependent on your host name. Sets names for log-bin, log-

bin-index, relay-log, relay-log-index, general-log-file, --log-slow-query-log-file , --log-error-file , and pid-

file.

Introduced: MariaDB 5.2

--log-bin-trust-routine-creators

Commandline: --log-bin-trust-routine-creators

Description: Deprecated, use log-bin-trust-function-creators.

--master-host

Commandline: --master-host=name

Description: Primary hostname or IP address for replication. If not set, the replica thread will not be started. Note that

the setting of master-host will be ignored if there exists a valid master.info file.

--master-info-file

Commandline: --master-info-file=name

Description: Name and location of the file on the replica where the MASTER_LOG_FILE and MASTER_LOG_POS

options (i.e. the binary log position on the primary) and most other CHANGE MASTER options are written. The

replica's I/O thread keeps this binary log position updated as it downloads events.

See CHANGE MASTER TO: Option Persistence for more information.

--master-password

Commandline: --master-password=name

Description: The password the replica thread will authenticate with when connecting to the primary. If not set, an

empty password is assumed. The value in master.info will take precedence if it can be read.

--master-port

Commandline: --master-port=#

Description: The port the master is listening on. If not set, the compiled setting of MYSQL_PORT is assumed. If you

have not tinkered with configure options, this should be 3306. The value in master.info will take precedence if it can

be read.

--master-retry-count

Commandline: --master-retry-count=#

Description: Number of times a replica will attempt to connect to a primary before giving up. The retry interval is

determined by the MASTER_CONNECT_RETRY option for the CHANGE MASTER statement. A value of 0 means

the replica will not stop attempting to reconnect. Reconnects are triggered when a replica has timed out. See

slave_net_timeout.

Default Value: 86400

Range - 32 bit: 0 to 4294967295

Range - 64 bit: 0 to 18446744073709551615

--master-ssl

Commandline: --master-ssl

Description: Enable the replica to connect to the master using TLS.

--master-ssl-ca

1667/4161

Commandline: --master-ssl-ca[=name]

Description: Master TLS CA file. Only applies if you have enabled master-ssl.

--master-ssl-capath

Commandline: --master-ssl-capath[=name]

Description: Master TLS CA path. Only applies if you have enabled master-ssl.

--master-ssl-cert

Commandline: --master-ssl-cert[=name]

Description: Master TLS certificate file name. Only applies if you have enabled master-ssl.

--master-ssl-cipher

Commandline: --master-ssl-cipher[=name]

Description: Master TLS cipher. Only applies if you have enabled master-ssl.

--master-ssl-key

Commandline: --master-ssl-key[=name]

Description: Master TLS keyfile name. Only applies if you have enabled master-ssl.

--master-user

Commandline: --master-user=name

Description: The username the replica thread will use for authentication when connecting to the primary. The user

must have FILE privilege. If the primary user is not set, user test is assumed. The value in master.info will take

precedence if it can be read.

--max-binlog-dump-events

Commandline: --max-binlog-dump-events=#

Description: Option used by mysql-test for debugging and testing of replication.

--replicate-same-server-id

Commandline: --replicate-same-server-id

Description: In replication, if set to 1, do not skip events having our server id. Default value is 0 (to break infinite

loops in circular replication). Can't be set to 1 if log-slave-updates is used.

--sporadic-binlog-dump-fail

Commandline: --sporadic-binlog-dump-fail

Description: Option used by mysql-test for debugging and testing of replication.

--sysdate-is-now

Commandline: --sysdate-is-now

Description: Non-default option to alias SYSDATE() to NOW() to make it safe for replication. Since 5.0, SYSDATE()

has returned a `dynamic' value different for different invocations, even within the same statement.

Replication and Binary Logging Options and System Variables

1668/4161

The following options and system variables are related to replication and the binary log:

auto-increment-increment

auto-increment-offset

binlog-alter-two-phase

binlog-annotate-row-events

binlog-cache-size

binlog-checksum

binlog-commit-wait-count

binlog-commit-wait-usec

binlog-direct-non-transactional-updates|

binlog-expire-logs-seconds

binlog-file-cache-size

binlog-format

binlog-gtid-index

binlog-gtid-index-page-size

binlog-gtid-index-span-min

binlog-optimize-thread-scheduling

binlog-row-image

binlog-row-metadata

binlog-stmt-cache-size

default-master-connection

gtid-cleanup-batch-size

gtid-domain-id

gtid-ignore-duplicates

gtid-strict-mode

init-slave

log-bin

log-bin-compress

log-bin-compress-min-len

log-bin-index

log-bin-trust-function-creators

log-slave-updates

master-verify-checksum

max-binlog-cache-size

max-binlog-size

max-binlog-stmt-cache-size

max-binlog-total-size

max-relay-log-size

read-binlog-speed-limit

relay-log

relay-log-index

relay-log-info-file

relay-log-purge

relay-log-recovery

relay-log-space-limit

replicate-annotate-row-events

replicate-do-db

replicate-do-table

replicate-events-marked-for-skip

replicate-ignore-db

replicate-ignore-table

replicate-rewrite-db

replicate-wild-do-table

replicate-wild-ignore-table

report-host

report-password

report-port

report-user

rpl-recovery-rank

server-id

slave-compressed-protocol

slave-connections-needed-for-purge

slave-ddl-exec-mode

slave-domain-parallel-threads

slave-exec-mode

slave-load-tmpdir

1669/4161

slave-max-allowed-packet

slave-max-statement-time

slave-net-timeout

slave-parallel-max-queued

slave-parallel-threads

slave-run-triggers-for-rbr

slave-skip-errors

slave-sql-verify-checksum

slave-transaction-retries

slave_transaction_retry_errors

slave_transaction_retry_interval

slave-type-conversions

sync-binlog

sync-master-info

sync-relay-log

sync-relay-log-info

Semisynchronous Replication Options and System Variables

The options and system variables related to Semisynchronous Replication are described here.

Optimizer Options
Options that are also system variables are listed after:

--record-buffer

Commandline: --record-buffer=#

Description: Old alias for read_buffer_size.

Removed: MariaDB 5.5

--table-cache

Commandline: --table-open-cache=#

Description: Removed; use --table-open-cache instead.

Removed: MariaDB 5.1.3

Optimizer Options and System Variables

alter-algorithm

analyze-sample-percentage

big-tables

bulk-insert-buffer-size

expensive-subquery-limit

join-buffer-size

join-buffer-space-limit

join-cache-level

max-heap-table-size

max-join-size

max-seeks-for-key

max-sort-length

mrr-buffer-size

optimizer-adjust-secondary-key-costs

optimizer-extra-pruning-depth

optimizer-max-sel-arg-weight

optimizer-prune-level

optimizer-search-depth

optimizer-selectivity-sampling-limit

optimizer-switch

optimizer-trace

optimizer-trace-max-mem-size

optimizer-use-condition-selectivity

query-alloc-block-size

1670/4161

https://mariadb.com/kb/en/mariadb-513-release-notes/
https://mariadb.com/kb/en/optimizer_adjust_secondary_key_costs/

query-prealloc-size

range-alloc-block-size

read-buffer-size

rowid-merge-buff-size

table-definition-cache

table-open-cache

table-open-cache-instances

tmp-disk-table-size

tmp-memory-table-size

tmp-table-size

use-stat-tables

Storage Engine Options

--skip-bdb

Commandline: ----skip-bdb

Description: Deprecated option; Exists only for compatibility with very old my.cnf files.

Removed: MariaDB 10.5.1

--external-locking

Commandline: --external-locking

Description: Use system (external) locking (disabled by default). With this option enabled you can run myisamchk to

test (not repair) tables while the server is running. Disable with --skip-external-locking. From MariaDB 10.2.40 ,

MariaDB 10.3.31 , MariaDB 10.4.21, MariaDB 10.5.12, MariaDB 10.6.4 and all later version, this effects InnoDB and

can be used to prevent multiple instances running on the same data.

MyISAM Storage Engine Options

The options related to the MyISAM storage engine are described below. Options that are also system variables are listed

after:

--log-isam

Commandline: --log-isam[=file_name]

Description: Enable the MyISAM log, which logs all MyISAM changes to file. If no filename is provided, the default,

myisam.log is used.

MyISAM Storage Engine Options and System Variables

Some options and system variables related to the MyISAM storage engine can be found here. Direct links to many of them

can be found below.

concurrent-insert

delayed-insert-limit

delayed-insert-timeout

delayed-queue-size

keep-files-on-create

key-buffer-size

key-cache-age-threshold

key-cache-block-size

key-cache-division-limit

key-cache-file-hash-size

key-cache-segments

myisam-block-size

myisam-data-pointer-size

myisam-max-sort-file-size

myisam-mmap-size

myisam-recover-options

myisam-repair-threads

myisam-sort-buffer-size

1671/4161

https://mariadb.com/kb/en/mariadb-10240-release-notes/
https://mariadb.com/kb/en/mariadb-10331-release-notes/

myisam-stats-method

myisam-use-mmap

InnoDB Storage Engine Options

The options related to the InnoDB storage engine are described below. Options that are also system variables are listed

after:

--innodb

Commandline: --innodb=value , --skip-innodb

Description: This variable controls whether or not to load the InnoDB storage engine. Possible values are ON , OFF ,

FORCE or FORCE_PLUS_PERMANENT (from MariaDB 5.5). If set to OFF (the same as --skip-innodb), since InnoDB is

the default storage engine, the server will not start unless another storage engine has been chosen with --default-

storage-engine. FORCE means that the storage engine must be successfully loaded, or else the server won't start.

FORCE_PLUS_PERMANENT enables the plugin, but if plugin cannot initialize, the server will not start. In addition, the

plugin cannot be uninstalled while the server is running.

--innodb-cmp

Commandline: --innodb-cmp

Description:

Default: ON

--innodb-cmp-reset

Commandline: --innodb-cmp-reset

Description:

Default: ON

--innodb-cmpmem

Commandline: --innodb-cmpmem

Description:

Default: ON

--innodb-cmpmem-reset

Commandline: --innodb-cmpmem-reset

Description:

Default: ON

--innodb-file-io-threads

Commandline: --innodb-file-io-threads

Description:

Default: 4

Removed: MariaDB 10.3.0

--innodb-index-stats

Commandline: --innodb-index-stats

Description:

Default: ON

Removed: MariaDB 10.0.0

--innodb-lock-waits

1672/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/

Commandline: --innodb-lock-waits

Description:

Default: ON

--innodb-locks

Commandline: --innodb-locks

Description:

Default: ON

--innodb-rseg

Commandline: --innodb-rseg

Description:

Default: ON

Removed: MariaDB 10.0.0

--innodb-status-file

Commandline: --innodb-status-file

Description:

Default: FALSE

--innodb-sys-indexes

Commandline: --innodb-sys-indexes

Description:

Default: ON

--innodb-sys-stats

Commandline: --innodb-sys-stats

Description:

Default: ON

Removed: MariaDB 10.0.0

--innodb-sys-tables

Commandline: --innodb-sys-tables

Description:

Default: ON

--innodb-table-stats

Commandline: --innodb-table-stats

Description:

Default: ON

Removed: MariaDB 10.0.0

--innodb-trx

Commandline: --innodb-trx

Description:

Default: ON

1673/4161

https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/

InnoDB Storage Engine Options and System Variables

Some options and system variables related to the InnoDB storage engine can be found here. Direct links to many of them

can be found below.

ignore-builtin-innodb

innodb-adaptive-checkpoint

innodb-adaptive-flushing

innodb-adaptive-flushing-lwm

innodb-adaptive-flushing-method

innodb-adaptive-hash-index

innodb-adaptive-hash-index-partitions

innodb-adaptive-hash-index-parts

innodb-adaptive-max-sleep-delay

innodb-additional-mem-pool-size

innodb-api-bk-commit-interval

innodb-api-disable-rowlock

innodb-api-enable-binlog

innodb-api-enable-mdl

innodb-api-trx-level

innodb-auto-lru-dump

innodb-autoextend-increment

innodb-autoinc-lock-mode

innodb-background-scrub-data-check-interval

innodb-background-scrub-data-compressed

innodb-background-scrub-data-interval

innodb-background-scrub-data-uncompressed

innodb-blocking-buffer-pool-restore

innodb-buf-dump-status-frequency

innodb-buffer-pool-chunk-size

innodb-buffer-pool-dump-at-shutdown

innodb-buffer-pool-dump-now

innodb-buffer-pool-dump-pct

innodb-buffer-pool-evict

innodb-buffer-pool-filename

innodb-buffer-pool-instances

innodb-buffer-pool-load-abort

innodb-buffer-pool-load-at-startup

innodb-buffer-pool-load-now

innodb-buffer-pool-load-pages-abort

innodb-buffer-pool-populate

innodb-buffer-pool-restore-at-startup

innodb-buffer-pool-shm-checksum

innodb-buffer-pool-shm-key

innodb-buffer-pool-size

innodb-change-buffer-max-size

innodb-change-buffering

innodb-change-buffering-debug

innodb-checkpoint-age-target

innodb-checksum-algorithm

innodb-checksums

innodb-cleaner-lsn-age-factor

innodb-cmp-per-index-enabled

innodb-commit-concurrency

innodb-compression-algorithm

innodb-compression-failure-threshold-pct

innodb-compression-level

innodb-compression-pad-pct-max

innodb-concurrency-tickets

innodb-corrupt-table-action

innodb-data-file-buffering

innodb-data-file-path

innodb-data-file-write-through

innodb-data-home-dir

innodb-deadlock-detect

innodb-deadlock-report

innodb-default-encryption-key-id

innodb-default-page-encryption-key
1674/4161

innodb-default-row-format

innodb-defragment

innodb-defragment-fill-factor

innodb-defragment-fill-factor-n-recs

innodb-defragment-frequency

innodb-defragment-n-pages

innodb-defragment-stats-accuracy

innodb-dict-size-limit

innodb_disable_sort_file_cache

innodb-doublewrite

innodb-doublewrite-file

innodb-empty-free-list-algorithm

innodb-enable-unsafe-group-commit

innodb-encrypt-log

innodb-encrypt-tables

innodb-encrypt-temporary-tables

innodb-encryption-rotate-key-age

innodb-encryption-rotation_iops

innodb-encryption-threads

innodb-extra-rsegments

innodb-extra-undoslots

innodb-fake-changes

innodb-fast-checksum

innodb-fast-shutdown

innodb-fatal-semaphore-wait-threshold

innodb-file-format

innodb-file-format-check

innodb-file-format-max

innodb-file-per-table

innodb-fill-factor

innodb-flush-log-at-trx-commit

innodb-flush-method

innodb-flush-neighbor-pages

innodb-flush-neighbors

innodb-flush-sync

innodb-flushing-avg-loops

innodb-force-load-corrupted

innodb-force-primary-key

innodb-force-recovery

innodb-foreground-preflush

innodb-ft-aux-table

innodb-ft-cache-size

innodb-ft-enable-diag-print

innodb-ft-enable-stopword

innodb-ft-max-token-size

innodb-ft-min-token-size

innodb-ft-num-word-optimize

innodb-ft-result-cache-limit

innodb-ft-server-stopword-table

innodb-ft-sort-pll-degree

innodb-ft-total-cache-size

innodb-ft-user-stopword-table

innodb-ibuf-accel-rate

innodb-ibuf-active-contract

innodb-ibuf-max-size

innodb-idle-flush-pct

innodb-immediate-scrub-data-uncompressed

innodb-import-table-from-xtrabackup

innodb-instant-alter-column-allowed

innodb-instrument-semaphores

innodb-io-capacity

innodb-io-capacity-max

innodb-large-prefix

innodb-lazy-drop-table

innodb-lock-schedule-algorithm

innodb-locking-fake-changes

innodb-locks-unsafe-for-binlog

1675/4161

innodb-log-arch-dir

innodb-log-arch-expire-sec

innodb-log-archive

innodb-log-block-size

innodb-log-buffer-size

innodb-log-checksum-algorithm

innodb-log-checksums

innodb-log-compressed-pages

innodb-log-file-buffering

innodb-log-file-size

innodb-log-file-write-through

innodb-log-files-in-group

innodb-log-group-home-dir

innodb-log-optimize-ddl

innodb-log-write-ahead-size

innodb-lru-flush-size

innodb-lru-scan-depth

innodb-max-bitmap-file-size

innodb-max-changed-pages

innodb-max-dirty-pages-pct

innodb-max-dirty-pages-pct-lwm

innodb-max-purge-lag

innodb-max-purge-lag-delay

innodb-max-purge-lag-wait

innodb-max-undo-log-size

innodb-merge-sort-block-size

innodb-mirrored-log-groups

innodb-monitor-disable

innodb-monitor-enable

innodb-monitor-reset

innodb-monitor-reset-all

innodb-mtflush-threads

innodb-numa-interleave

innodb-old-blocks-pct

innodb-old-blocks-time

innodb-online-alter-log-max-size

innodb-open-files

innodb-optimize-fulltext-only

innodb-page-cleaners

innodb-page-size

innodb-pass-corrupt-table

innodb-prefix-index-cluster-optimization

innodb-print-all-deadlocks

innodb-purge-batch-size

innodb-purge-rseg-truncate-frequency

innodb-purge-threads

innodb-random-read-ahead

innodb-read-ahead

innodb-read-ahead-threshold

innodb-read-io-threads

innodb-read-only

innodb-recovery-update-relay-log

innodb-replication-delay

innodb-rollback-on-timeout

innodb-rollback-segments

innodb-safe-truncate

innodb-sched-priority-cleaner

innodb-scrub-log

innodb-scrub-log-interval

innodb-scrub-log-speed

innodb-show-locks-held

innodb-show-verbose-locks

innodb-sort-buffer-size

innodb-spin-wait-delay

innodb-stats-auto-recalc

innodb-stats-auto-update

innodb-stats-include-delete-marked

1676/4161

innodb-stats-method

innodb-stats-modified-counter

innodb-stats-on-metadata

innodb-stats-persistent

innodb-stats-persistent-sample-pages

innodb-stats-sample-pages

innodb-stats-transient-sample-pages

innodb-stats-traditional

innodb-stats-update-need-lock

innodb-status-output

innodb-status-output-locks

innodb-strict-mode

innodb-support-xa

innodb-sync-array-size

innodb-sync-spin-loops

innodb-table-locks

innodb-temp-data-file-path

innodb-thread-concurrency

innodb-thread-concurrency-timer-based

innodb-thread-sleep-delay

innodb-tmpdir

innodb-track-changed-pages

innodb-track-redo-log-now

innodb-truncate-temporary-tablespace-now

innodb-undo-directory

innodb-undo-log-truncate

innodb-undo-logs

innodb-undo-tablespaces

innodb-use-atomic-writes

innodb-use-fallocate

innodb-use-global-flush-log-at-trx-commit

innodb-use-mtflush

innodb-use-native_aio

innodb-use-purge-thread

innodb-use-stacktrace

innodb-use-sys-malloc

innodb-use-sys-stats-table

innodb-use-trim

innodb-write-io-threads

skip-innodb

skip-innodb-checksums

skip-innodb-doublewrite

Aria Storage Engine Options

The options related to the Aria storage engine are described below. Options that are also system variables are listed after:

--aria-log-dir-path

Commandline: --aria-log-dir-path=value

Description: Path to the directory where transactional log should be stored

Default: SAME AS DATADIR

Aria Storage Engine Options and System Variables

Some options and system variables related to the Aria storage engine can be found here. Direct links to many of them can

be found below.

aria-block-size

aria-checkpoint-interval

aria-checkpoint-log-activity

aria-encrypt-tables

aria-force-start-after-recovery-failures

aria-group-commit

aria-group-commit-interval

aria-log-file-size

1677/4161

aria-log-purge-type

aria-max-sort-file-size

aria-page-checksum

aria-pagecache-age-threshold

aria-pagecache-buffer-size

aria-pagecache-division-limit

aria-pagecache-file-hash-size

aria-recover

aria-recover-options

aria-repair-threads

aria-sort-buffer-size

aria-stats-method

aria-sync-log-dir

aria-used-for-temp-tables

deadlock-search-depth-long

deadlock-search-depth-short

deadlock-timeout-long

deadlock-timeout-short

MyRocks Storage Engine Options

The options and system variables related to the MyRocks storage engine can be found here.

S3 Storage Engine Options

The options and system variables related to the S3 storage engine can be found here.

CONNECT Storage Engine Options

The options related to the CONNECT storage engine are described below.

CONNECT Storage Engine Options and System Variables

Some options and system variables related to the CONNECT storage engine can be found here. Direct links to many of

them can be found below.

connect-class-path

connect-cond-push

connect-conv-size

connect-default-depth

connect-default-prec

connect-enable-mongo

connect-exact-info

connect-force_bson

connect-indx-map

connect-java-wrapper

connect-json-all-path

connect-json-grp-size

connect-json-null

connect-jvm-path

connect-type-conv

connect-use-tempfile

connect-work-size

connect-xtrace

Spider Storage Engine Options

The options and system variables related to the Spider storage engine can be found here.

Mroonga Storage Engine Options

The options and system variables related to the Mroonga storage engine can be found here.

TokuDB Storage Engine Options

1678/4161

The options and system variables related to the TokuDB storage engine can be found here .

Performance Schema Options
The options related to the Performance Schema are described below. Options that are also system variables are listed

after:

--performance-schema-consumer-events-stages-current

Commandline: --performance-schema-consumer-events-stages-current

Description: Enable the events-stages-current consumer.

Default: OFF

--performance-schema-consumer-events-stages-history

Commandline: --performance-schema-consumer-events-stages-history

Description: Enable the events-stages-history consumer.

Default: OFF

--performance-schema-consumer-events-stages-history-long

Commandline: --performance-schema-consumer-events-stages-history-long

Description: Enable the events-stages-history-long consumer.

Default: OFF

--performance-schema-consumer-events-statements-current

Commandline: --performance-schema-consumer-events-statements-current

Description: Enable the events-statements-current consumer. Use --skip-performance-schema-consumer-

events-statements-current to disable.

Default: ON

--performance-schema-consumer-events-statements-history

Commandline: --performance-schema-consumer-events-statements-history

Description: Enable the events-statements-history consumer.

Default: OFF

--performance-schema-consumer-events-statements-history-long

Commandline: --performance-schema-consumer-events-statements-history-long

Description: Enable the events-statements-history-long consumer.

Default: OFF

--performance-schema-consumer-events-waits-current

Commandline: --performance-schema-consumer-events-waits-current

Description: Enable the events-waits-current consumer.

Default: OFF

--performance-schema-consumer-events-waits-history

Commandline: --performance-schema-consumer-events-waits-history

Description: Enable the events-waits-history consumer.

Default: OFF

1679/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/tokudb-system-variables/

--performance-schema-consumer-events-waits-history-long

Commandline: --performance-schema-consumer-events-waits-history-long

Description: Enable the events-waits-history-long consumer.

Default: OFF

--performance-schema-consumer-global-instrumentation

Commandline: --performance-schema-consumer-global-instrumentation

Description: Enable the global-instrumentation consumer. Use --skip-performance-schema-consumer-

global-instrumentation to disable.

Default: ON

--performance-schema-consumer-statements-digest

Commandline: --performance-schema-consumer-statements-digest

Description: Enable the statements-digest consumer. Use --skip-performance-schema-consumer-

statements-digest to disable.

Default: ON

--performance-schema-consumer-thread-instrumentation

Commandline: --performance-schema-consumer-thread-instrumentation

Description: Enable the statements-thread-instrumentation. Use --skip-performance-schema-thread-

instrumentation to disable.

Default: ON

Performance Schema Options and System Variables

Some options and system variables related to the Performance Schema can be found here. Direct links to many of them

can be found below.

performance-schema

performance-schema-accounts-size

performance-schema-digests-size

performance-schema-events-stages-history-long-size

performance-schema-events-stages-history-size

performance-schema-events-statements-history-long-size

performance-schema-events-statements-history-size

performance-schema-events-waits-history-long-size

performance-schema-events-waits-history-size

performance-schema-hosts-size

performance-schema-max-cond-classes

performance-schema-max-cond-instances

performance-schema-max-digest-length

performance-schema-max-file-classes

performance-schema-max-file-handles

performance-schema-max-file-instances

performance-schema-max-mutex-classes

performance-schema-max-mutex-instances

performance-schema-max-rwlock-classes

performance-schema-max-rwlock-instances

performance-schema-max-socket-classes

performance-schema-max-socket-instances

performance-schema-max-stage-classes

performance-schema-max-statement-classes

performance-schema-max-table-handles

performance-schema-max-table-instances

performance-schema-max-thread-classes

performance-schema-max-thread-instances

performance-schema-session-connect-attrs-size

performance-schema-setup-actors-size

1680/4161

performance-schema-setup-objects-size

performance-schema-users-size

Galera Cluster Options
The options related to Galera Cluster are described below. Options that are also system variables are listed after:

--wsrep-new-cluster

Commandline: --wsrep-new-cluster

Description: Bootstrap a cluster. It works by overriding the current value of wsrep_cluster_address. It is

recommended not to add this option to the config file as this will trigger bootstrap on every server start.

Galera Cluster Options and System Variables

Some options and system variables related to Galera Cluster can be found here. Direct links to many of them can be found

below.

wsrep-allowlist

wsrep-auto-increment-control

wsrep-causal-reads

wsrep-certify-nonPK

wsrep-cluster-address

wsrep-cluster-name

wsrep-convert-LOCK-to-trx

wsrep-data-home-dir

wsrep-dbug-option

wsrep-debug

wsrep-desync

wsrep-dirty-reads

wsrep-drupal-282555-workaround

wsrep-forced-binlog-format

wsrep-gtid-domain-id

wsrep-gtid-mode

wsrep-ignore-apply-errors

wsrep-load-data-splitting

wsrep-log-conflicts

wsrep-max-ws-rows

wsrep-max-ws-size

wsrep-mode

wsrep-mysql-replication-bundle

wsrep-node-address

wsrep-node-incoming-address

wsrep-node-name

wsrep-notify-cmd

wsrep-on

wsrep-OSU-method

wsrep-provider

wsrep-provider-options

wsrep-recover

wsrep-reject_queries

wsrep-retry-autocommit

wsrep-slave-FK-checks

wsrep-slave-threads

wsrep-slave-UK-checks

wsrep-sr-store

wsrep-sst-auth

wsrep-sst-donor

wsrep-sst-donor-rejects-queries

wsrep-sst-method

wsrep-sst-receive-address

wsrep-start-position

wsrep-status-file

wsrep-strict-ddl

wsrep-sync-wait

1681/4161

wsrep-trx_fragment_size

wsrep-trx_fragment_unit

Options When Debugging mariadbd

--debug-assert-if-crashed-table

Description: Do an assert in handler::print_error() if we get a crashed table.

--debug-binlog-fsync-sleep

Description: --debug-binlog-fsync-sleep=# If not set to zero, sets the number of micro-seconds to sleep after

running fsync() on the binary log to flush transactions to disk. This can thus be used to artificially increase the

perceived cost of such an fsync().

--debug-crc-break

Description: --debug-crc-break=# Call my_debug_put_break_here() if crc matches this number (for debug).

--debug-flush

Description: Default debug log with flush after write.

--debug-no-sync

Description: debug-no-sync[=#] Disables system sync calls. Only for running tests or debugging!

--debug-sync-timeout

Description: debug-sync-timeout[=#] Enable the debug sync facility and optionally specify a default wait timeout

in seconds. A zero value keeps the facility disabled.

--gdb

Description: Set up signals usable for debugging.

--silent-startup

Description: Don't print Notes to the error log during startup.

--sync-sys

Description: Enable/disable system sync calls. Syncs should only be turned off (--disable-sync-sys) when

running tests or debugging! Replaced by debug-no-sync from MariaDB 5.5.

Removed: MariaDB 5.5

--thread-alarm

Description: Enable/disable system thread alarm calls. Should only be turned off (--disable-thread-alarm)

when running tests or debugging!

Debugging Options and System Variables

1682/4161

core-file

debug

debug-no-thread-alarm

Other Options
Options that are also system variables are listed after:

--allow-suspicious-udfs

Commandline: --allow-suspicious-udfs

Description: Allows use of user-defined functions consisting of only one symbol x() without corresponding

x_init() or x_deinit() . That also means that one can load any function from any library, for example exit()

from libc.so . Not recommended unless you require old UDFs with one symbol that cannot be recompiled. From

MariaDB 10.10, available as a system variable as well.

--bootstrap

Commandline: --bootstrap

Description: Used by mariadb installation scripts, such as mariadb-install-db to execute SQL scripts before any

privilege or system tables exist. Do no use while an existing MariaDB instance is running.

--chroot

Commandline: --chroot=name

Description: Chroot mariadbd daemon during startup.

--des-key-file

Commandline: --des-key-file=name

Description: Load keys for des_encrypt() and des_encrypt from given file.

--exit-info

Commandline: --exit-info[=#]

Description: Used for debugging. Use at your own risk.

--getopt-prefix-matching

Commandline: --getopt-prefix-matching={0|1}

Description: Makes it possible to disable historical "unambiguous prefix" matching in the command-line option

parsing.

Default: TRUE

Introduced: MariaDB 10.1.3

--help

Commandline: --help

Description: Displays help with many commandline options described, and exits.

--log-ddl-recovery

Commandline: --log-ddl-recovery=name

Description: Path to file used for recovery of DDL statements after a crash.

Default Value: ddl-recover.log

Introduced: MariaDB 10.6.1

1683/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/

--log-short-format

Commandline: --log-short-format

Description: Don't log extra information to update and slow-query logs.

--log-slow-file

Commandline: --log-slow-file=name

Description: Log slow queries to given log file. Defaults logging to hostname-slow.log

--log-slow-time

Commandline: --log-slow-time=#

Description: Log all queries that have taken more than long-query-time seconds to execute to the slow query log, if

active. The argument will be treated as a decimal value with microsecond precision.

--log-tc

Commandline: --log-tc=name

Description: Defines the path to the memory-mapped file-based transaction coordinator log, which is only used if the

binary log is disabled. If you have two or more XA-capable storage engines enabled, then a transaction coordinator

log must be available. See Transaction Coordinator Log for more information. Also see the the log_tc_size system

variable and the --tc-heuristic-recover option.

Default Value: tc.log

--master-connect-retry

Commandline: --master-connect-retry=#

Description: Deprecated in 5.1.17 and removed in 5.5. The number of seconds the replica thread will sleep before

retrying to connect to the master, in case the master goes down or the connection is lost.

--memlock

Commandline: --memlock

Description: Lock mariadbd in memory.

--ndb-use-copying-alter-table

Commandline: --ndb-use-copying-alter-table

Description: Force ndbcluster to always copy tables at alter table (should only be used if on-line alter table fails).

--one-thread

Commandline: --one-thread

Description: (Deprecated): Only use one thread (for debugging under Linux). Use thread-handling=no-threads

instead.

Removed: MariaDB 10.0.4

--plugin-load

Commandline: --plugin-load=name

Description: This option can be used to configure the server to load specific plugins. This option uses the following

format:

Plugins can be specified in the format name=library , where name is the plugin name and library is the

plugin library. This format installs a single plugin from the given plugin library.

Plugins can also be specified in the format library , where library is the plugin library. This format installs

all plugins from the given plugin library.

1684/4161

https://mariadb.com/kb/en/mariadb-1004-release-notes/

Multiple plugins can be specified by separating them with semicolons.

Special care must be taken when specifying the --plugin-load option multiple times, or when specifying both the

--plugin-load option and the --plugin-load-add option together. The --plugin-load option resets the

plugin load list, and this can cause unexpected problems if you are not aware. The --plugin-load-add option does

not reset the plugin load list, so it is much safer to use. See Plugin Overview: Specifying Multiple Plugin Load Options

for more information.

See Plugin Overview: Installing a Plugin with Plugin Load Options for more information.

--plugin-load-add

Commandline: --plugin-load-add=name

Description: This option can be used to configure the server to load specific plugins. This option uses the following

format:

Plugins can be specified in the format name=library , where name is the plugin name and library is the

plugin library. This format installs a single plugin from the given plugin library.

Plugins can also be specified in the format library , where library is the plugin library. This format installs

all plugins from the given plugin library.

Multiple plugins can be specified by separating them with semicolons.

Special care must be taken when specifying both the --plugin-load option and the --plugin-load-add option

together. The --plugin-load option resets the plugin load list, and this can cause unexpected problems if you are

not aware. The --plugin-load-add option does not reset the plugin load list, so it is much safer to use. See

Plugin Overview: Specifying Multiple Plugin Load Options for more information.

See Plugin Overview: Installing a Plugin with Plugin Load Options for more information.

--port-open-timeout

Commandline: --port-open-timeout=#

Description: Maximum time in seconds to wait for the port to become free. (Default: No wait).

--safe-user-create

Commandline: --safe-user-create

Description: Don't allow new user creation by the user who has no write privileges to the mysql.user table.

--safemalloc-mem-limit

Commandline: --safemalloc-mem-limit=#

Description: Simulate memory shortage when compiled with the -- with-debug=full option.

--show-slave-auth-info

Commandline: --show-slave-auth-info

Description: Show user and password in SHOW SLAVE HOSTS on this primary.

--skip-grant-tables

Commandline: --skip-grant-tables

Description: Start without grant tables. This gives all users FULL ACCESS to all tables, which is useful in case of a

lost root password. Use mariadb-admin flush-privileges, mariadb-admin reload or FLUSH PRIVILEGES to resume

using the grant tables. From MariaDB 10.10, available as a system variable as well.

Because the Event Scheduler also depends on the grant tables for its functionality, it is automatically disabled when running

with --skip-grant-tables .

--skip-host-cache

Commandline: --skip-host-cache

Description: Don't cache host names.

1685/4161

--skip-partition

Commandline: --skip-partition , --disable-partition

Description: Disables user-defined partitioning. Previously partitioned tables cannot be accessed or modifed. Tables

can still be seen with SHOW TABLES or by viewing the INFORMATION_SCHEMA.TABLES table. Tables can be

dropped with DROP TABLE, but this only removes .frm files, not the associated .par files, which will need to be

removed manually.

--skip-slave-start

Commandline: --skip-slave-start

Description: If set, replica is not autostarted.

--skip-ssl

Commandline: --skip-ssl

Description: Disable TLS connections.

--skip-symlink

Commandline: --skip-symlink

Description: Don't allow symlinking of tables. Deprecated and removed in MariaDB 5.5. Use symbolic-links with the

skip option prefix instead.

Removed: MariaDB 5.5

--skip-thread-priority

Commandline: --skip-thread-priority

Description: Don't give threads different priorities. Deprecated and removed in MariaDB 10.0.

Removed: MariaDB 10.0

--sql-bin-update-same

Commandline: --sql-bin-update-same=#

Description: The update log was deprecated in version 5.0 and replaced by the binary log, so this option did nothing

since then. Deprecated and removed in MariaDB 5.5.

Removed: MariaDB 5.5

--ssl

Commandline: --ssl

Description: Enable TLS for connection (automatically enabled with other flags). Disable with ' -- skip-ssl '.

--stack-trace

Commandline: --stack-trace , --skip-stack-trace

Description: Print a stack trace on failure. Enabled by default, disable with -skip-stack-trace .

--symbolic-links

Commandline: --symbolic-links

Description: Enables symbolic link support. When set, the have_symlink system variable shows as YES . Silently

ignored in Windows. Use --skip-symbolic-links to disable.

1686/4161

--tc-heuristic-recover

Commandline: --tc-heuristic-recover=name

Description: If manual heuristic recovery is needed, this option defines the decision to use in the heuristic recovery

process. Manual heuristic recovery may be needed if the transaction coordination log is missing or if it doesn't contain

all prepared transactions. This option can be set to OFF , COMMIT , or ROLLBACK . The default is OFF . See also the

--log-tc server option and the log_tc_size system variable.

--temp-pool

Commandline: --temp-pool

Description: Using this option will cause most temporary files created to use a small set of names, rather than a

unique name for each new file. Defaults to 1 until MariaDB 10.5.6, use --skip-temp-pool to disable. Deprecated

and defaults to 0 from MariaDB 10.5.7, as benchmarking shows it causes a heavy mutex contention.

--test-expect-abort

Commandline: --test-expect-abort

Description: Expect that server aborts with 'abort'; Don't write out server variables on 'abort'. Useful only for test

scripts.

--test-ignore-wrong-options

Commandline: --test-ignore-wrong-options

Description: Ignore wrong enums values in command line arguments. Useful only for test scripts.

--user

Commandline: --user=name

Description: Run mariadbd daemon as user.

--verbose

Commandline: -v , --verbose

Description: Used with help option for detailed help.

Other Options and System Variables
allow-suspicious-udfs

automatic-sp-privileges

back-log

basedir

check-constraint-checks

column-compression-threshold

column-compression-zlib-level

column-compression-zlib-strategy

column-compression-zlib-wrap

completion-type

connect-timeout

datadir

date-format

datetime-format

deadlock-search-depth-long

deadlock-search-depth-short

deadlock-timeout-long

deadlock-timeout-short

default-password-lifetime

default-regex-flags

default-storage-engine

1687/4161

default-table-type

delay-key-write

disconnect-on-expired-password

div-precision-increment

enable-named-pipe

encrypt-binlog

encrypt-tmp-disk-tables

encrypt-tmp-files

encryption-algorithm

engine-condition-pushdown

eq-range-index-dive-limit

event-scheduler

expire-logs-days

explicit-defaults-for-timestamp

extra-max-connections

extra-port

flush

flush-time

ft-boolean-syntax

ft-max-word-len

ft-min-word-len

ft-query-expansion-limit

ft-stopword-file

general-log

general-log-file

group-concat-max-len

histogram-size

histogram-type

host-cache-size

idle-readonly-transaction-timeout

idle-transaction-timeout

idle-write-transaction-timeout

ignore-db-dirs

in-predicate-conversion-threshold

init-connect

init-file

interactive-timeout

large-pages

local-infile

lock-wait-timeout

log

log-disabled-statements

log-error

log-output

log-queries-not-using-indexes

log-slow-admin-statements

log-slow-disabled-statements

log-slow-filter

log-slow-min-examined-row-limit

log-slow-queries

log-slow-query

log-slow-query-file

log-slow-query-time

log-slow-rate-limit

log-slow-slave-statements

log-slow-verbosity

log-tc-size

log-warnings

long-query-time

low-priority-updates

lower-case-table-names

max-allowed-packet

max-connections

max-connect-errors

max-delayed-threads

max-digest-length

max-error-count

1688/4161

max-length-for-sort-data

max-long-data-size

max-password-errors

max-prepared-stmt-count

max-recursive-iterations

max-rowid-filter-size

max-session-mem-used

max-sp-recursion-depth

max-statement-time

max-tmp-tables

max-user-connections

max-write-lock-count

metadata-locks-cache-size

metadata-locks-hash-instances

min-examined-row-limit

mrr-buffer-size

multi-range-count

--mysql56-temporal-format

net-buffer-length

net-read-timeout

net-retry-count

net-write-timeout

open-files-limit

pid-file

plugin-dir

plugin-maturity

port

preload-buffer-size

profiling-history-size

progress-report-time

proxy-protocol-networks

query-cache-limit

query-cache-min-res-unit

query-cache-strip-comments

query-cache-wlock-invalidate

read-rnd-buffer-size

read-only

redirect-url

require-secure-transport

safe-show-database

secure-auth

secure-file-priv

secure-timestamp

session-track-schema

session-track-state-change

session-track-system-variables

session-track-transaction-info

skip-automatic-sp-privileges

skip-external-locking

skip-large-pages

skip-log-error

skip-name-resolve

skip-networking

skip-show-database

slow-launch-time

slow-query-log

slow-query-log-file

socket

sort-buffer-size

sql-if-exists

sql-mode

ssl-ca

ssl-capath

ssl-cert

ssl-cipher

ssl-crl

ssl-crlpath

1689/4161

ssl-key

standards_compliant_cte

stored-program-cache

strict_password_validation

sync-frm

system-versioning-alter-history

system-versioning-asof

system-versioning-innodb-algorithm-simple

system-versioning-insert-history

table-lock-wait-timeout

tcp-keepalive-interval

tcp-keepalive-probes

tcp-keepalive-time

tcp-nodelay

thread-cache-size

thread-concurrency

thread-handling

thread-pool-dedicated-listener

thread-pool-exact-stats

thread-pool-idle-timeout

thread-pool-max-threads

thread-pool-min-threads

thread-pool-oversubscribe

thread-pool-prio-kickup-timer

thread-pool-priority

thread-pool-size

thread-pool-stall-limit

thread-stack

timed-mutexes

time-format

tls-version

tmpdir

transaction-isolation

transaction-alloc-block-size

transaction-prealloc-size

transaction-read-only

updatable-views-with-limit

userstat

version

wait-timeout

Authentication Plugins - Options and System Variables

Authentication Plugin - ed25519

The options related to the ed25519 authentication plugin can be found here.

Authentication Plugin - gssapi

The system variables related to the gssapi authentication plugin can be found here.

The options related to the gssapi authentication plugin can be found here.

Authentication Plugin - named_pipe

The options related to the named_pipe authentication plugin can be found here.

Authentication Plugin - pam

The system variables related to the pam authentication plugin can be found here.

The options related to the pam authentication plugin can be found here.

Authentication Plugin - unix_socket
1690/4161

The options related to the unix_socket authentication plugin can be found here.

Encryption Plugins - Options and System Variables

Encryption Plugin - aws_key_management

The system variables related to the aws_key_management encryption plugin can be found here.

The options elated to the aws_key_management encryption plugin can be found here.

Encryption Plugin - file_key_management

The system variables related to the file_key_management encryption plugin can be found here.

The options related to the file_key_management encryption plugin can be found here.

Password Validation Plugins - Options and System
Variables

Password Validation Plugin - simple_password_check

The system variables related to the simple_password_check password validation plugin can be found here.

The options related to the simple_password_check password validation plugin can be found here.

Password Validation Plugin - cracklib_password_check

The system variables related to the cracklib_password_check password validation plugin can be found here.

The options related to the cracklib_password_check password validation plugin can be found here.

Audit Plugins - Options and System Variables

Audit Plugin - server_audit

Options and system variables related to the server_audit audit plugin can be found here.

Audit Plugin - SQL_ERROR_LOG

The options and system variables related to the SQL_ERROR_LOG audit plugin can be found here .

Audit Plugin - QUERY_RESPONSE_TIME_AUDIT

The options related to the QUERY_RESPONSE_TIME_AUDIT audit plugin can be found here.

Daemon Plugins - Options and System Variables

Daemon Plugin - handlersocket

The options for the HandlerSocket plugin are all described on the HandlerSocket Configuration Option page.

Information Schema Plugins - Options and System
Variables

Information Schema Plugin - DISKS

The options related to the DISKS information schema plugin can be found here.

1691/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#system-variables

Information Schema Plugin - feedback

The system variables related to the feedback plugin can be found here.

The options related to the feedback plugin can be found here.

Information Schema Plugin - LOCALES

The options related to the LOCALES information schema plugin can be found here.

Information Schema Plugin - METADATA_LOCK_INFO

The options related to the METADATA_LOCK_INFO information schema plugin can be found here.

Information Schema Plugin - QUERY_CACHE_INFO

The options related to the QUERY_CACHE_INFO information schema plugin can be found here.

Information Schema Plugin - QUERY_RESPONSE_TIME

The system variables related to the QUERY_RESPONSE_TIME information schema plugin can be found here.

The options related to the QUERY_RESPONSE_TIME information schema plugin can be found here.

Information Schema Plugin - user_variables

The options related to the user_variables information schema plugin can be found here.

Information Schema Plugin - WSREP_MEMBERSHIP

The options related to the WSREP_MEMBERSHIP information schema plugin can be found here.

Information Schema Plugin - WSREP_STATUS

The options related to the WSREP_STATUS information schema plugin can be found here.

Replication Plugins - Options and System Variables

Replication Plugin - rpl_semi_sync_master

The system variables related to the rpl_semi_sync_master replication plugin can be found here.

The options related to the rpl_semi_sync_master replication plugin can be found here.

Replication Plugin - rpl_semi_sync_slave

The system variables related to the rpl_semi_sync_slave replication plugin can be found here.

The options related to the rpl_semi_sync_slave replication plugin can be found here.

Default Values
You can verify the default values for an option by doing:

mariadbd --no-defaults --help --verbose

2.1.6.5 What to Do if MariaDB Doesn't Start

1692/4161

Contents
1. The Error Log and the Data Directory

2. Option Files

1. Invalid Option or Option Value

3. Can't Open Privilege Tables

4. Can't Create Test File

5. Can't Lock Aria Control File

6. Unable to lock ./ibdata1 error 11

7. InnoDB

1. Cannot Allocate Memory for the InnoDB Buffer Pool

2. InnoDB Table Corruption

8. MyISAM

9. systemd

10. SELinux

11. AppArmor

There could be many reasons that MariaDB fails to start. This page will help troubleshoot some of the more common

reasons and provide solutions.

If you have tried everything here, and still need help, you can ask for help on IRC or on the forums - see Where to find other

MariaDB users and developers - or ask a question at the Starting and Stopping MariaDB page.

The Error Log and the Data Directory
The reason for the failure will almost certainly be written in the error log and, if you are starting MariaDB manually, to the

console. By default, the error log is named host-name.err and is written to the data directory.

Common Locations:

/var/log/

/var/log/mysql

C:\Program Files\MariaDB x.y\data (x.y refers to the version number)

C:\Program Files (x86)\MariaDB x.y\data (32bit version on 64bit Windows)

It's also possible that the error log has been explicitly written to another location. This is often done by changing the

datadir or log_error system variables in an option file. See Option Files below for more information about that.

A quick way to get the values of these system variables is to execute the following commands:

mariadbd --help --verbose | grep 'log-error' | tail -1

mariadbd --help --verbose | grep 'datadir' | tail -1

Option Files
Another kind of file to consider when troubleshooting is option files. The default option file is called my.cnf . Option files

contain configuration options, such as the location of the data directory mentioned above. If you're unsure where the option

file is located, see Configuring MariaDB with Option Files: Default Option File Locations for information on the default

locations.

You can check which configuration options MariaDB server will use from its option files by executing the following command:

mariadbd --print-defaults

You can also check by executing the following command:

my_print_defaults --mysqld

See Configuring MariaDB with Option Files: Checking Program Options for more information on checking configuration

options.

Invalid Option or Option Value

Another potential reason for a startup failure is that an option file contains an invalid option or an invalid option value. In

those cases, the error log should contain an error similar to this:

140514 12:19:37 [ERROR] /usr/local/mysql/bin/mariadbd: unknown variable 'option=value'

1693/4161

https://mariadb.com/kb/en/where-to-find-other-mariadb-users-and-developers/

This is more likely to happen when you upgrade to a new version of MariaDB. In most cases the option file from the old

version of MariaDB will work just fine with the new version. However, occasionally, options are removed in new versions of

MariaDB, or the valid values for options are changed in new versions of MariaDB. Therefore, it's possible for an option file to

stop working after an upgrade.

Also remember that option names are case sensitive.

Examine the specifics of the error. Possible fixes are usually one of the following:

If the option is completely invalid, then remove it from the option file.

If the option's name has changed, then fix the name.

If the option's valid values have changed, then change the option's value to a valid one.

If the problem is caused by a simple typo, then fix the typo.

Can't Open Privilege Tables
It is possible to see errors similar to the following:

System error 1067 has occurred.

Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

If errors like this occur, then critical system tables are either missing or are in the wrong location. The above error is quite

common after an upgrade if the option files set the basedir or datadir to a non-standard location, but the new server is

using the default location. Therefore, make sure that the basedir and datadir variables are correctly set.

If you're unsure where the option file is located, see Configuring MariaDB with Option Files: Default Option File Locations for

information on the default locations.

If the system tables really do not exist, then you may need to create them with mariadb-install-db. See Installing System

Tables (mariadb-install-db) for more information.

Can't Create Test File
One of the first tests on startup is to check whether MariaDB can write to the data directory. When this fails, it will log an

error like this:

May 13 10:24:28 mariadb3 mariadbd[19221]: 2019-05-13 10:24:28 0 [Warning] Can't create test

file /usr/local/data/mariadb/mariadb3.lower-test

May 13 10:24:28 mariadb3 maridbd[19221]: 2019-05-13 10:24:28 0 [ERROR] Aborting

This is usually a permission error on the directory in which this file is being written. Ensure that the entire datadir is

owned by the user running mariadbd , usually mysql . Ensure that directories have the "x" (execute) directory permissions

for the owner. Ensure that all the parent directories of the datadir upwards have "x" (execute) permissions for all (user ,

group , and other).

Once this is checked look at the systemd and selinux documentation below, or AppArmor.

Can't Lock Aria Control File
On starting MariaDB, the aria_log_control file is locked. If a lock cannot be obtained, it will log and error like this:

2023-05-01 16:27:03 0 [ERROR] mariadbd: Can't lock aria control file

'/var/lib/mysql/aria_log_control' for exclusive use, error: 11. Will retry for 30 seconds

This almost always cause for this is that there is already an existing MariaDB service running on this data directory.

Recommend aborting this startup and looking closely for the other MariaDB instance.

The less likely case is there isn't locking available which might occur on a NFS data directory with explictly disable locking.

Unable to lock ./ibdata1 error 11
Like the above for the Aria Control File, this is a attempting to exclusively lock the ibdata1 InnoDB system tablespace.

Error 11 corresponds to the system error "OS error code 11: Resource temporarily unavailable" meaning the lock cannot be

created.

1694/4161

2023-05-01 16:27:34 0 [ERROR] InnoDB: Unable to lock ./ibdata1 error: 11

2023-05-01 16:27:34 0 [Note] InnoDB: Check that you do not already have another mariadbd process

using the same InnoDB data or log files.

2023-05-01 16:27:34 0 [ERROR] InnoDB: Plugin initialization aborted with error Generic error

2023-05-01 16:27:35 0 [Note] InnoDB: Starting shutdown...

Like the above, this is an indication that a second MariaDB instance is already running on the data directory.

InnoDB
InnoDB is probably the MariaDB component that most frequently causes a crash. In the error log, lines containing InnoDB

messages generally start with "InnoDB:".

Cannot Allocate Memory for the InnoDB Buffer Pool

In a typical installation on a dedicated server, at least 70% of your memory should be assigned to InnoDB buffer pool;

sometimes it can even reach 85%. But be very careful: don't assign to the buffer pool more memory than it can allocate. If it

cannot allocate memory, InnoDB will use the disk's swap area, which is very bad for performance. If swapping is disabled or

the swap area is not big enough, InnoDB will crash. In this case, MariaDB will probably try to restart several times, and each

time it will log a message like this:

140124 17:29:01 InnoDB: Fatal error: cannot allocate memory for the buffer pool

In that case, you will need to add more memory to your server/VM or decrease the value of the innodb_buffer_pool_size

variables.

Remember that the buffer pool will slightly exceed that limit. Also, remember that MariaDB also needs allocate memory for

other storage engines and several per-connection buffers. The operating system also needs memory.

InnoDB Table Corruption

By default, InnoDB deliberately crashes the server when it detects table corruption. The reason for this behavior is

preventing corruption propagation. However, in some situations, server availability is more important than data integrity. For

this reason, we can avoid these crashes by changing the value of innodb_corrupt_table_action to 'warn'.

If InnoDB crashes the server after detecting data corruption, it writes a detailed message in the error log. The first lines are

similar to the following:

InnoDB: Database page corruption on disk or a failed

InnoDB: file read of page 7.

InnoDB: You may have to recover from a backup.

Generally, it is still possible to recover most of the corrupted data. To do so, restart the server in InnoDB recovery mode and

try to extract the data that you want to backup. You can save them in a CSV file or in a non-InnoDB table. Then, restart the

server in normal mode and restore the data.

MyISAM
Most tables in the mysql database are MyISAM tables. These tables are necessary for MariaDB to properly work, or even

start.

A MariaDB crash could cause system tables corruption. With the default settings, MariaDB will simply not start if the system

tables are corrupted. With myisam_recover_options, we can force MyISAM to repair damaged tables.

systemd
If you are using systemd , then there are a few relevant notes about startup failures:

If MariaDB is configured to access files under /home , /root , or /run/user , then the default systemd unit file will

prevent access to these directories with a Permission Denied error. This happens because the unit file set

ProtectHome=true . See Systemd: Configuring Access to Home Directories for information on how to work

around this.

The default systemd unit file also sets ProtectSystem=full , which places restrictions on writing to a few other

1695/4161

https://www.freedesktop.org/software/systemd/man/systemd.exec.html#ProtectHome=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#ProtectSystem=

directories. Overwriting this with ProtectSystem=off in the same way as above will restore access to these

directories.

If MariaDB takes longer than 90 seconds to start, then the default systemd unit file will cause it to fail with an error.

This happens because the default value for the TimeoutStartSec option is 90 seconds. See Systemd:

Configuring the Systemd Service Timeout for information on how to work around this.

The systemd journal may also contain useful information about startup failures. See Systemd: Systemd Journal for

more information.

See systemd documentation for further information on systemd configuration.

SELinux
Security-Enhanced Linux (SELinux) is a Linux kernel module that provides a framework for configuring mandatory access

control (MAC) system for many resources on the system. It is enabled by default on some Linux distributions, including

RHEL, CentOS, Fedora, and other similar Linux distribution. SELinux prevents programs from accessing files, directories or

ports unless it is configured to access those resources.

You might need to troubleshoot SELinux-related issues in cases, such as:

MariaDB is using a non-default port.

MariaDB is reading from or writing to some files (datadir, log files, option files, etc.) located at non-default paths.

MariaDB is using a plugin that requires access to resources that default installations do not use.

Setting SELinux state to permissive is a common way to investigate what is going wrong while allowing MariaDB to

function normally. permissive is supposed to produce a log entry every time it should block a resource access, without

actually blocking it. However, there are situations when SELinux blocks resource accesses even in permissive mode.

See SELinux for more information.

AppArmor
Add the following to /etc/apparmor.d/tunables/alias if you have moved the datadir:

alias /var/lib/mysql/ -> /data/mariadb/,

The restart AppArmor:

sudo systemctl restart apparmor

2.1.6.6 Running MariaDB from the Build
Directory
You can run mariadbd directly from the build directory (without doing make install).

Starting mariadbd After Build on Windows
On Windows, the data directory is produced during the build.

The simplest way to start database from the command line is:

1. Go to the directory where mariadbd.exe is located (subdirectory sql\Debug or sql\Relwithdebinfo of the build

directory)

2. From here, execute, if you are using MariaDB 10.5 or newer,

mariadbd.exe --console

else

mariadbd.exe --console

As usual, you can pass other server parameters on the command line, or store them in a my.ini configuraton file and pass -

-defaults-file=path\to\my.ini

The default search path on Windows for the my.ini file is:

1696/4161

https://www.freedesktop.org/software/systemd/man/systemd.service.html#TimeoutStartSec=
https://selinuxproject.org/page/Main_Page
https://en.wikipedia.org/wiki/Mandatory_access_control
https://danwalsh.livejournal.com/67855.html

GetSystemWindowsDirectory()

GetWindowsDirectory()

C:\

Directory where the executable is located

Starting mariadbd After Build on Unix
Copy the following to your ' ~/.my.cnf ' file.

There are two lines you have to edit: ' datadir= ' and ' language= '. Be sure to change them to match your environment.

Example MariadB config file.

You can copy this to one of:

/etc/my.cnf to set global options,

/mysql-data-dir/my.cnf to get server specific options or

~/my.cnf for user specific options.

One can use all long options that the program supports.

Run the program with --help to get a list of available options

This will be passed to all MariaDB clients

[client]

#password=my_password

#port=3306

#socket=/tmp/mysql.sock

Here is entries for some specific programs

The following values assume you have at least 32M ram

The mariadb server (both [mysqld] and [mariadb] works here)

[mariadb]

#port=3306

#socket=/tmp/mysql.sock

The following three entries caused mysqld 10.0.1-MariaDB (and possibly other versions) to abort...

skip-locking

set-variable = key_buffer=16M

loose-innodb_data_file_path = ibdata1:1000M

loose-mutex-deadlock-detector

gdb

######### Fix the two following paths

Where you want to have your database

datadir=/path/to/data/dir

Where you have your mysql/MariaDB source + sql/share/english

language=/path/to/src/dir/sql/share/english

########## One can also have a different path for different versions, to simplify development.

[mariadb-10.1]

lc-messages-dir=/my/maria-10.1/sql/share

[mariadb-10.2]

lc-messages-dir=/my/maria-10.2/sql/share

[mysqldump]

quick

set-variable = max_allowed_packet=16M

[mysql]

no-auto-rehash

[myisamchk]

set-variable= key_buffer=128M

With the above file in place, go to your MariaDB source directory and execute:

1697/4161

./scripts/mariadb-install-db --srcdir=$PWD --datadir=/path/to/data/dir --user=$LOGNAME

Above '$PWD' is the environment variable that points to your current directory. If you added datadir to your my.cnf , you

don't have to give this option above. Also above, --user=$LOGNAME is necessary when using msqyld 10.0.1-MariaDB (and

possibly other versions)

Now you can start mariadbd (or mysqld if you are using a version older than MariaDB 10.5) in the debugger:

cd sql

ddd ./mariadbd &

Or start mariadbd on its own:

cd sql

./mariadbd &

After starting up mariadbd using one of the above methods (with the debugger or without), launch the client (as root if you

don't have any users setup yet).

../client/mariadb

Using a Storage Engine Plugin
The simplest case is to compile the storage engine into MariaDB:

cmake -DWITH_PLUGIN_<plugin_name>=1` .

Another option is to point mariadbd to the storage engine directory:

./mariadbd --plugin-dir={build-dir-path}/storage/connect/.libs

2.1.6.7 mysql.server
Contents
1. Using mysql.server

1. Options

2. Option Files

1. Option Groups

3. Customizing mysql.server

2. Installed Locations

1. Installed SysVinit Locations

1. Manually Installing with SysVinit

The mysql.server startup script is in MariaDB distributions on Linux and Unix. It is a wrapper that works as a standard

sysVinit script. However, it can be used independently of sysVinit as a regular sh script. The script starts the mysqld

server process by first changing its current working directory to the MariaDB install directory and then starting

mysqld_safe . The script requires the standard sysVinit arguments, such as start , stop , restart , and status . For

example:

mysql.server start

mysql.server restart

mysql.server stop

mysql.server status

It can be used on systems such as Linux, Solaris, and Mac OS X.

The mysql.server script starts mysqld by first changing to the MariaDB install directory and then calling

mysqld_safe .

Using mysql.server

1698/4161

file:///mysqld_safe

The command to use mysql.server and the general syntax is:

mysql.server [start | stop | restart | status] <options> <mysqld_options>

Options

If an unknown option is provided to mysqld_safe on the command-line, then it is passed to mysqld_safe .

mysql.server supports the following options:

Option Description

--basedir=path The path to the MariaDB installation directory.

--datadir=path The path to the MariaDB data directory.

--pid-

file=file_name

The path name of the file in which the server should write its process ID. If not provided, the

default, host_name.pid is used.

--service-

startup-

timeout=file_name

How long in seconds to wait for confirmation of server startup. If the server does not start within

this time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait

at all for startup. Negative values mean to wait forever (no timeout).

--use-

mysqld_safe
Use mysqld_safe to start the server. This is the default.

--use-manager Use Instance Manager to start the server.

--user=user_name The login user name to use for running mysqld .

Option Files

In addition to reading options from the command-line, mysql.server can also read options from option files.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

Option Groups

mysql.server reads options from the following option groups from option files:

Group Description

[mysql.server] Options read by mysql.server , which includes both MariaDB Server and MySQL Server.

mysql.server also reads options from the following server option groups from option files:

Group Description

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[server]
Options read by MariaDB Server.

[mysqld-

X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-5.5] .

[mariadb] Options read by MariaDB Server.

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server.

1699/4161

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[galera] Options read by a galera-capable MariaDB Server. Available on systems compiled with Galera support.

Customizing mysql.server

If you have installed MariaDB to a non-standard location, then you may need to edit the mysql.server script to get it to

work right.

If you do not want to edit the mysql.server script itself, then mysql.server also sources a few other sh scripts. These

files can be used to set any variables that might be needed to make the script work in your specific environment. The files

are:

/etc/default/mysql

/etc/sysconfig/mysql

/etc/conf.d/mysql

Installed Locations
mysql.server can be found in the support-files directory under your MariaDB installation directory or in a MariaDB

source distribution.

Installed SysVinit Locations

On systems that use sysVinit, mysql.server may also be installed in other locations and with other names.

If you installed MariaDB on Linux using RPMs, then the mysql.server script will be installed into the /etc/init.d

directory with the name mysql . You need not install it manually.

Manually Installing with SysVinit

If you install MariaDB from source or from a binary tarball that does not install mysql.server automatically, and if you are

on a system that uses sysVinit, then you can manually install mysql.server with sysVinit. This is usually done by copying

it to /etc/init.d/ and then creating specially named symlinks in the appropriate /etc/rcX.d/ directories (where 'X' is

a number between 0 and 6).

In the examples below we will follow the historical convention of renaming the mysql.server script to ' mysql ' when

we copy it to /etc/init.d/ .

The first step for most Linux distributions is to copy the mysql.server script to /etc/init.d/ and make it executable:

cd /path/to/your/mariadb-version/support-files/

cp mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

Now all that is needed is to create the specially-named symlinks. On both RPM and Debian-based Linux distributions there

are tools which do this for you. Consult your distribution's documentation if neither of these work for you and follow their

instructions for generating the symlinks or creating them manually.

On RPM-based distributions (like Fedora and CentOS), you use chkconfig :

chkconfig --add mysql

chkconfig --level 345 mysql on

On Debian-based distributions you use update-rc.d :

update-rc.d mysql defaults

On FreeBSD, the location for startup scripts is /usr/local/etc/rc.d/ and when you copy the mysql.server script

there you should rename it so that it matches the *.sh pattern, like so:

1700/4161

cd /path/to/your/mariadb/support-files/

cp mysql.server /usr/local/etc/rc.d/mysql.server.sh

As stated above, consult your distribution's documentation for more information on starting services like MariaDB at system

startup.

See mysqld startup options for information on configuration options for mysqld .

2.1.6.8 mysqld_safe

From MariaDB 10.4.6, mariadbd-safe is a symlink to mysqld_safe .

From MariaDB 10.5.2, mariadbd-safe is the name of the server, with mysqld_safe a symlink .

Contents
1. Using mysqld_safe

1. Options

2. Option Files

1. Option Groups

3. Configuring the Open Files Limit

4. Configuring the Core File Size

5. Configuring MariaDB to Write the Error Log to Syslog

2. Specifying mysqld

3. Specifying datadir

4. Logging

5. Editing mysqld_safe

6. NetWare

The mysqld_safe startup script is in MariaDB distributions on Linux and Unix. It is a wrapper that starts mysqld with

some extra safety features. For example, if mysqld_safe notices that mysqld has crashed, then mysqld_safe will

automatically restart mysqld .

mysqld_safe is the recommended way to start mysqld on Linux and Unix distributions that do not support systemd .

Additionally, the mysql.server init script used by sysVinit starts mysqld with mysqld_safe by default.

Using mysqld_safe
The command to use mysqld_safe and the general syntax is:

mysqld_safe [--no-defaults | --defaults-file | --defaults-extra-file | --defaults-group-suffix

| --print-defaults] <options> <mysqld_options>

Options

Many of the options supported by mysqld_safe are identical to options supported by mysqld . If an unknown option is

provided to mysqld_safe on the command-line, then it is passed to mysqld .

mysqld_safe supports the following options:

Option Description

--help Display a help message and exit.

--autoclose

(NetWare only) On NetWare, mysqld_safe provides a screen presence. When you unload (shut

down) the mysqld_safe NLM, the screen does not by default go away. Instead, it prompts for

user input: NLM has terminated; Press any key to close the screen . If you want

NetWare to close the screen automatically instead, use the --autoclose option to mysqld_safe.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1701/4161

--basedir=path The path to the MariaDB installation directory.

--core-file-

size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit

-c.

--crash-

script=file
Script to call in the event of mysqld crashing.

--datadir=path The path to the data directory.

--defaults-extra-

file=path

The name of an option file to be read in addition to the usual option files. This must be the first

option on the command line if it is used. If the file does not exist or is otherwise inaccessible, the

server will exit with an error.

--defaults-

file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option

on the command line if it is used.

--defaults-group-

suffix=#
In addition to the default option groups, also read option groups with this suffix.

--flush-caches Flush and purge buffers/caches before starting the server.

--ledir=path
If mysqld_safe cannot find the server, use this option to indicate the path name to the directory

where the server is located.

--log-

error=file_name
Write the error log to the given file.

--malloc-lib=lib Preload shared library lib if available. See debugging MariaDB for an example.

--

mysqld=prog_nam

The name of the server program (in the ledir directory) that you want to start. This option is

needed if you use the MariaDB binary distribution but have the data directory outside of the binary

distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path

name to the directory where the server is located.

--mysqld-

version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server

program name. The basename is assumed to be mysqld. For example, if you use --mysqld-

version=debug , mysqld_safe starts the mysqld-debug program in the ledir directory. If the

argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

--nice=priority Use the nice program to set the server´s scheduling priority to the given value.

--no-defaults Do not read any option files. This must be the first option on the command line if it is used.

--no-watch , --

nowatch , --no-

auto-restart

Exit after starting mysqld.

--numa-

interleave
Run mysqld with its memory interleaved on all NUMA nodes.

--open-files-

limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note that you need to start mysqld_safe as root for this to work properly.

--pid-

file=file_name
The path name of the process ID file.

--plugin-

dir=dir_name
Directory for client-side plugins.

--port=port_num
The port number that the server should use when listening for TCP/IP connections. The port

number must be 1024 or higher unless the server is started by the root system user.

--print-defaults Print the program argument list and exit.

--skip-kill-

mysqld
Do not try to kill stray mysqld processes at startup. This option works only on Linux.

--socket=path The Unix socket file that the server should use when listening for local connections.

--syslog , --

skip-syslog

--syslog causes error messages to be sent to syslog on systems that support the logger

program. --skip-syslog suppresses the use of syslog; messages are written to an error log

file.

1702/4161

https://mariadb.com/kb/en/debugging-a-running-server-on-linux/

--syslog-tag=tag

For logging to syslog, messages from mysqld_safe and mysqld are written with a tag of

mysqld_safe and mysqld, respectively. To specify a suffix for the tag, use --syslog-tag=tag ,

which modifies the tags to be mysqld_safe-tag and mysqld-tag .

--

timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating

system documentation for legal time zone specification formats. Also see Time Zones .

--user={user_name

or user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.

(<User= in this context refers to a system login account, not a MariaDB user listed in the grant

tables.)

Option Files

In addition to reading options from the command-line, mysqld_safe can also read options from option files. If an unknown

option is provided to mysqld_safe in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

Option Groups

mysqld_safe reads options from the following option groups from option files:

Group Description

[mysqld_safe] Options read by mysqld_safe , which includes both MariaDB Server and MySQL Server.

[safe_mysqld] Options read by mysqld_safe , which includes both MariaDB Server and MySQL Server.

[mariadb_safe] Options read by mysqld_safe from MariaDB Server.

[mariadb-safe] Options read by mysqld_safe from MariaDB Server. Available starting with MariaDB 10.4.6.

The [safe_mysqld] option group is primarily supported for backward compatibility. You should rename such option

groups to [mysqld_safe] in MariaDB installations to prevent breakage in the future if this compatibility is removed.

mysqld_safe also reads options from the following server option groups from option files:

Group Description

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[server] Options read by MariaDB Server.

[mysqld-

X.Y]
 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-5.5] .

[mariadb] Options read by MariaDB Server.

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server.

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[galera] Options read by a galera-capable MariaDB Server. Available on systems compiled with Galera support.

For example, if you specify the log_error option in a server option group in an option file, like this:

[mariadb]

log_error=error.log

1703/4161

https://mariadb.com/kb/en/time-zones/

Then mysqld_safe will also use this value for its own --log-error option:

Configuring the Open Files Limit

When using mysqld_safe , the system's open files limit can be changed by providing the --open-files-limit option

either on the command-line or in an option file. For example:

[mysqld_safe]

open_files_limit=4294967295

The option value is passed to ulimit -n . Note that you need to start mysqld_safe as root for this to work properly.

However, you can't currently set this to unlimited . See MDEV-18410 about that.

When mysqld_safe starts mysqld , it also uses this option to set the value of the open_files_limit system variable

for mysqld .

Configuring the Core File Size

When using mysqld_safe , if you would like to enable core dumps , the system's core file size limit can be changed by

providing the --core-file-size option either on the command-line or in an option file. For example:

[mysqld_safe]

core_file_size=unlimited

The option value is passed to ulimit -c . Note that you need to start mysqld_safe as root for this to work properly.

Configuring MariaDB to Write the Error Log to Syslog

When using mysqld_safe , if you would like to redirect the error log to the syslog , then that can easily be done by using

the --syslog option. mysqld_safe redirects two types of log messages to the syslog--its own log messages, and log

messages for mysqld .

mysqld_safe configures its own log messages to go to the daemon syslog facility. The log level for these

messages is either notice or error , depending on the specific type of log message. The default tag is

mysqld_safe .

mysqld_safe also configures the log messages for mysqld to go to the daemon syslog facility. The log level for

these messages is error . The default tag is mysqld .

Sometimes it can be helpful to add a suffix to the syslog tag, such as if you are running multiple instances of MariaDB on the

same host. To add a suffix to each syslog tag, use the --syslog-tag option.

Specifying mysqld
By default, mysqld_safe tries to start an executable named mysqld .

You can also specify another executable for mysqld_safe to start instead of mysqld by providing the --mysqld or --

mysqld-version options either on the command-line or in an option file.

By default, it will look for mysqld in the following locations in the following order:

$BASEDIR/libexec/mysqld

$BASEDIR/sbin/mysqld

$BASEDIR/bin/mysqld

$PWD/bin/mysqld

$PWD/libexec/mysqld

$PWD/sbin/mysqld

@libexecdir@/mysql

Where $BASEDIR is set by the --basedir option, $PWD is the current working directory where mysqld_safe was

invoked, and @libexecdir@ is set at compile-time by the INSTALL_BINDIR option for cmake .

You can also specify where the executable is located by providing the --ledir option either on the command-line or in an

option file.

1704/4161

https://jira.mariadb.org/browse/MDEV-18410
https://mariadb.com/kb/en/enabling-core-dumps/
https://linux.die.net/man/8/rsyslogd

Specifying datadir
By default, mysqld_safe will look for the datadir in the following locations in the following order:

$BASEDIR/data/mysql

$BASEDIR/data

$BASEDIR/var/mysql

$BASEDIR/var

@localstatedir@

Where $BASEDIR is set by the --basedir option, and @localstatedir@ is set at compile-time by the

INSTALL_MYSQLDATADIR option for cmake .

You can also specify where the datadir is located by providing the --datadir option either on the command-line or in

an option file.

Logging
When you use mysqld_safe to start mysqld , mysqld_safe logs to the same destination as mysqld .

mysqld_safe has several log-related options:

--syslog : Write error messages to syslog on systems that support the logger program.

--skip-syslog : Do not write error messages to syslog. Messages are written to the default error log file

(host_name.err in the data directory), or to a named file if the --log-error option is given.

--log-error=file_name : Write error messages to the named error file.

If none of these options is provided, then the default is --skip-syslog .

If --syslog and --log-error are both provided, then a warning is issued and --log-error takes precedence.

mysqld_safe also writes notices to stdout and errors to stderr .

Editing mysqld_safe
mysqld_safe is a sh script, so if you need to change its behavior, then it can easily be edited. However, you should not

normally edit the script. A lot of behavior can be changed by providing options either on the command-line or in an option

file.

If you do edit mysqld_safe , then you should be aware of the fact that a package upgrade can overwrite your changes. If

you would like to preserve your changes, be sure to have a backup.

NetWare
On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the original Unix shell script. It starts

the server as follows:

1. Runs a number of system and option checks.

2. Runs a check on MyISAM tables.

3. Provides a screen presence for the MariaDB server.

4. Starts mysqld, monitors it, and restarts it if it terminates in error.

5. Sends error messages from mysqld to the host_name.err file in the data directory.

6. Sends mysqld_safe screen output to the host_name.safe file in the data directory.

1.3.15 mysqladmin

2.1.6.10 Switching Between Different Installed
MariaDB Versions

1705/4161

Contents
1. Stopping a pre-installed MySQL/MariaDB from interfering with your tests

2. How to create a binary distribution (tar file)

3. Creating a directory structure for the different installations

4. Setting up the data directory

1. Setting up a common data directory

2. Setting up different data directories

5. Running a MariaDB server

6. Setting up a .my.cnf file for running multiple MariaDB main versions

This article is about managing many different installed MariaDB versions and running them one at a time. This is useful

when doing benchmarking, testing, or for when developing different MariaDB versions.

This is most easily done using the tar files from mariadb.org/download/ .

Stopping a pre-installed MySQL/MariaDB from interfering
with your tests
If MySQL/MariaDB is already installed and running, you have two options:

1. Use test MariaDB servers with a different port & socket.

In this case you are probably best off creating a specific section for MariaDB in your ~/.my.cnf file.

2. Stop mysqld with /etc/rc.d/mysql stop or mariadb-admin shutdown .

Note that you don't have to uninstall or otherwise remove MySQL!

How to create a binary distribution (tar file)
Here is a short description of how to generate a tar file from a source distribution. If you have downloaded a binary tar file,

you can skip this section.

The steps to create a binary tar file are:

Decide where to put the source. A good place is under /usr/local/src/mariadb-5.# .

Get the source

Compile the source

Create the binary tar ball.

You will then be left with a tar file named something like: mariadb-11.0.1-MariaDB-linux-x86_64.tar.gz

Creating a directory structure for the different installations
Install the binary tar files under /usr/local/ with the following directory names (one for each MariaDB version you want

to use), for example:

mariadb-10.5

mariadb-10.6

mariadb-10.11

mariadb-11.0

mariadb-11.1

The above assumes you are just testing major versions of MariaDB. If you are testing specific versions, use directory names

like mariadb-11.0.1

With the directories in place, create a sym-link named mariadb which points at the mariadb-XXX directory you are

currently testing. When you want to switch to testing a different version, just update the sym-link.

Example:

cd /usr/local

tar xfz /tmp/mariadb-11.0.1-linux-systemd-x86_64.tar.gz

mv -vi mariadb-11.0.1-MariaDB-systemd-linux-x86_64 mariadb-11.0

ln -vs mariadb-11.0 mariadb

Setting up the data directory
When setting up the data directory, you have the option of either using a shared database directory or creating a unique

1706/4161

https://mariadb.org/download/
http://downloads.askmonty.org/mariadb/

database directory for each server version. For testing, a common directory is probably easiest. Note that you can only have

one mysqld server running against one data directory.

Setting up a common data directory

The steps are:

1. Create the mysql system user if you don't have it already! (On Linux you do it with the useradd command).

2. Create the directory (we call it mariadb-data in the example below) or add a symlink to a directory which is in

some other place.

3. Create the mysql permission tables with mariadb-install-db

cd /usr/local/

mkdir mariadb-data

cd mariadb

./bin/mariadb-install-db --no-defaults --datadir=/usr/local/mariadb-data

chown -R mysql mariadb-data mariadb-data/*

The reason to use --no-defaults is to ensure that we don't inherit incorrect options from some old my.cnf.

Setting up different data directories

To create a different data directories for each installation:

cd mariadb

./scripts/mariadb-install-db --no-defaults

chown -R mysql mariadb-data mariadb-data/*

This will create a directory data inside the current directory.

If you want to use another disk you should do:

cd mariadb

ln -s path-to-empty-directory-for-data data

./scripts/mariadb-install-db --no-defaults --datadir=./data

chown -R mysql mariadb-data mariadb-data/*

Running a MariaDB server
The normal steps are:

rm mariadb

ln -s mariadb-# mariadb

cd mariadb

./bin/mysqld_safe --no-defaults --datadir=/usr/local/mariadb-data &

Setting up a .my.cnf file for running multiple MariaDB
main versions
If you are going to start/stop MariaDB a lot of times, you should create a ~/.my.cnf file for the common options you are

using.

The following example shows how to use a non-standard TCP-port and socket (to not interfere with a main MySQL/MariaDB

server) and how to setup different options for each main server:

[client-server]

socket=/tmp/mysql.sock

port=3306

[mysqld]

datadir=/usr/local/mariadb-data

[mariadb-11.0]

Options for MariaDB 11.0

[mariadb-11.1]

Options for MariaDB 11.1

1707/4161

If you create an ~/.my.cnf file, you should start mysqld with --defaults-file=~/.my.cnf instead of --no-

defaults in the examples above.

2.1.6.11 Specifying Permissions for Schema
(Data) Directories and Tables

Default File Permissions
By default MariaDB uses the following permissions for files and directories:

Object Type Default Mode Default Permissions

Files 0660 -rw-rw----

Directories 0700 drwx------

Configuring File Permissions with Environment Variables
You can configure MariaDB to use different permissions for files and directories by setting the following environment

variables before you start the server:

Object Type Environment Variable

Files UMASK

Directories UMASK_DIR

In other words, if you would run the following in a shell:

export UMASK=0640

export UMASK_DIR=0750

These environment variables do not set the umask. They set the default file system permissions. See MDEV-23058

for more information.

Configuring File Permissions with systemd

If your server is started by systemd , then there is a specific way to configure the umask. See Systemd: Configuring the

umask for more information.

2.1.6.12 mysqld_multi

From MariaDB 10.4.6, mariadbd-multi is a symlink to mysqld_multi .

From MariaDB 10.5.2, mariadbd-multi is the name of the server, with mysqld_multi a symlink .

Before using mysqld_multi be sure that you understand the meanings of the options that are passed to the mysqld

servers and why you would want to have separate mysqld processes. Beware of the dangers of using multiple mysqld

servers with the same data directory. Use separate data directories, unless you know what you are doing. Starting

multiple servers with the same data directory does not give you extra performance in a threaded system.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1708/4161

https://jira.mariadb.org/browse/MDEV-23058

Contents
1. Using mysqld_multi

1. Options

2. Option Files

1. Option Groups

3. Authentication and Privileges

2. User Account

3. Example

The mysqld_multi startup script is in MariaDB distributions on Linux and Unix. It is a wrapper that is designed to manage

several mysqld processes running on the same host. In order for multiple mysqld processes to work on the same host,

these processes must:

Use different Unix socket files for local connections.

Use different TCP/IP ports for network connections.

Use different data directories.

Use different process ID files (specified by the --pid-file option) if using mysqld_safe to start mysqld .

mysqld_multi can start or stop servers, or report their current status.

Using mysqld_multi
The command to use mysqld_multi and the general syntax is:

mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

start , stop , and report indicate which operation to perform.

You can specify which servers to perform the operation on by providing one or more GNR values. GNR refers to an option

group number, and it is explained more in the option groups section below. If there is no GNR list, then mysqld_multi

performs the operation for all GNR values found in its option files.

Multiple GNR values can be specified as a comma-separated list. GNR values can also be specified as a range by

separating the numbers by a dash. There must not be any whitespace characters in the GNR list.

For example:

This command starts a single server using option group [mysqld17] :

mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through [mysqld13] :

mysqld_multi stop 8,10-13

Options

mysqld_multi supports the following options:

Option Description

--example Give an example of a config file with extra information.

--help Display help and exit.

--log=filename Specify the path and name of the log file. If the file exists, log output is appended to it.

--

mysqladmin=prog_name

The mariadb-admin binary to be used to stop servers. Can be given within groups

[mysqld#] .

1709/4161

--mysqld=prog_name

The mysqld binary to be used. Note that you can also specify mysqld_safe as the value for this

option. If you use mysqld_safe to start the server, you can include the mysqld or ledir

options in the corresponding [mysqldN] option group. These options indicate the name of

the server that mysqld_safe should start and the path name of the directory where the server

is located. Example:

[mysqld38]

mysqld = mysqld-debug

ledir = /opt/local/mysql/libexec .

--no-log Print to stdout instead of the log file. By default the log file is turned on.

--password=password
The password of the MariaDB account to use when invoking mariadb-admin. Note that the

password value is not optional for this option, unlike for other MariaDB programs.

--silent Silent mode; disable warnings.

--tcp-ip

Connect to the MariaDB server(s) via the TCP/IP port instead of the UNIX socket. This affects

stopping and reporting. If a socket file is missing, the server may still be running, but can be

accessed only via the TCP/IP port. By default connecting is done via the UNIX socket. This

option affects stop and report operations.

--user=username The user name of the MariaDB account to use when invoking mariadb-admin.

--verbose Be more verbose.

--version Display version information and exit.

--wsrep-new-cluster Bootstrap a cluster. Added in MariaDB 10.1.15 .

Option Files

In addition to reading options from the command-line, mysqld_multi can also read options from option files. If an

unknown option is provided to mysqld_multi in an option file, then it is ignored.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given file #.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

Option Groups

mysqld_safe reads options from the following option groups from option files:

Group Description

[mysqld_multi] Options read by mysqld_multi , which includes both MariaDB Server and MySQL Server.

mysqld_multi also searches option files for option groups with names like [mysqldN] , where N can be any positive

integer. This number is referred to in the following discussion as the option group number, or GNR :

Group Description

[mysqldN]
 Options read by a mysqld instance managed by mysqld_multi , which includes both MariaDB Server

and MySQL Server. The N refers to the instance's GNR .

GNR values distinguish option groups from one another and are used as arguments to mysqld_multi to specify which

servers you want to start, stop, or obtain a status report for. The GNR value should be the number at the end of the option

group name in the option file. For example, the GNR for an option group named [mysqld17] is 17 .

Options listed in these option groups are the same that you would use in the regular server option groups used for

configuring mysqld . However, when using multiple servers, it is necessary that each one use its own value for options such

as the Unix socket file and TCP/IP port number.

1710/4161

https://mariadb.com/kb/en/mariadb-10115-release-notes/

The [mysqld_multi] option group can be used for options that are needed for mysqld_multi itself. [mysqldN] option

groups can be used for options passed to specific mysqld instances.

The regular server option groups can also be used for common options that are read by all instances:

Group Description

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[server] Options read by MariaDB Server.

[mysqld-

X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-5.5] .

[mariadb] Options read by MariaDB Server.

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server.

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients.

[galera] Options read by a galera-capable MariaDB Server. Available on systems compiled with Galera support.

For an example of how you might set up an option file, use this command:

mysqld_multi --example

Authentication and Privileges

Make sure that the MariaDB account used for stopping the mysqld processes (with the mariadb-admin utility) has the same

user name and password for each server. Also, make sure that the account has the SHUTDOWN privilege. If the servers that

you want to manage have different user names or passwords for the administrative accounts, you might want to create an

account on each server that has the same user name and password. For example, you might set up a common

multi_admin account by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p

Enter password:

mysql> GRANT SHUTDOWN ON *.*

 -> TO ´multi_admin´@´localhost´ IDENTIFIED BY ´multipass´;

Change the connection parameters appropriately when connecting to each one. Note that the host name part of the account

name must allow you to connect as multi_admin from the host where you want to run mysqld_multi .

User Account
Make sure that the data directory for each server is fully accessible to the Unix account that the specific mysqld process is

started as. If you run the mysqld_multi script as the Unix root account, and if you want the mysqld process to be

started with another Unix account, then you can use use the --user option with mysqld . If you specify the --user

option in an option file, and if you did not run the mysqld_multi script as the Unix root account, then it will just log a

warning and the mysqld processes are started under the original Unix account.

Do not run the mysqld process as the Unix root account, unless you know what you are doing.

Example
The following example shows how you might set up an option file for use with mysqld_multi. The order in which the mysqld

programs are started or stopped depends on the order in which they appear in the option file. Group numbers need not form

an unbroken sequence. The first and fifth [mysqldN] groups were intentionally omitted from the example to illustrate that you

can have <gaps= in the option file. This gives you more flexibility.

1711/4161

 # This file should probably be in your home dir (~/.my.cnf)

 # or /etc/my.cnf

 # Version 2.1 by Jani Tolonen

 [mysqld_multi]

 mysqld = /usr/local/bin/mysqld_safe

 mysqladmin = /usr/local/bin/mysqladmin

 user = multi_admin

 password = multipass

 [mysqld2]

 socket = /tmp/mysql.sock2

 port = 3307

 pid-file = /usr/local/mysql/var2/hostname.pid2

 datadir = /usr/local/mysql/var2

 language = /usr/local/share/mysql/english

 user = john

 [mysqld3]

 socket = /tmp/mysql.sock3

 port = 3308

 pid-file = /usr/local/mysql/var3/hostname.pid3

 datadir = /usr/local/mysql/var3

 language = /usr/local/share/mysql/swedish

 user = monty

 [mysqld4]

 socket = /tmp/mysql.sock4

 port = 3309

 pid-file = /usr/local/mysql/var4/hostname.pid4

 datadir = /usr/local/mysql/var4

 language = /usr/local/share/mysql/estonia

 user = tonu

 [mysqld6]

 socket = /tmp/mysql.sock6

 port = 3311

 pid-file = /usr/local/mysql/var6/hostname.pid6

 datadir = /usr/local/mysql/var6

 language = /usr/local/share/mysql/japanese

 user = jani

2.1.6.13 launchd
In MacOS, create a file called /Library/LaunchDaemons/com.mariadb.server.plist with the following contents (edit to suit):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>Label</key> <string>com.mariadb.server</string>

 <key>KeepAlive</key><true/>

 <key>RunAtLoad</key><true/>

 <key>LaunchOnlyOnce</key><false/>

 <key>ExitTimeOut</key><integer>600</integer>

 <key>WorkingDirectory</key><string>/usr/local/var</string>

 <key>Program</key><string>/usr/local/bin/mysqld</string>

 <key>ProgramArguments</key>

 <array>

 <string>/usr/local/bin/mysqld</string>

 <string>--user=_mysql</string>

 <string>--basedir=/usr/local/opt/mariadb</string>

 <string>--plugin-dir=/usr/local/opt/mariadb/lib/plugin</string>

 <string>--datadir=/usr/local/var/mysql</string>

 <string>--log-error=/usr/local/var/mysql/Data-Server.local.err</string>

 <string>--pid-file=/usr/local/var/mysql/Data-Server.local.pid</string>

 <string>--sql-

mode=ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION</string>

 </array>

</dict>

</plist>

Then from a shell, run launchctl load /Library/LaunchDaemons/com.mariadb.server.plist and MariaDB will run

immediately, and also upon reboot.

1712/4161

2.1.6.14 systemd
systemd is a sysVinit replacement that is the default service manager on the following Linux distributions:

RHEL 7 and above

CentOS 7 and above

Fedora 15 and above

Debian 8 and above

Ubuntu 15.04 and above

SLES 12 and above

OpenSUSE 12.2 and above

MariaDB's systemd unit file is included in the server packages for RPMs and DEBs. It is also included in certain binary

tarballs.

The service name is mariadb.service .

Installing & Starting MariaDB
When installing MariaDB server rpm / dep package, it will automatically run the mariadb-install-db script, that creates the

initial databases and users.

When MariaDB is started with the systemd unit file, it directly starts the mariadbd process as the mysql user. Unlike

with sysVinit , the mariadbd process is not started with mysqld_safe . As a consequence, options will not be read

from the [mysqld_safe] option group from option files.

1713/4161

Contents
1. Installing & Starting MariaDB

2. Contents of the MariaDB Service's Unit File

3. Interacting with the MariaDB Server Process

1. Starting the MariaDB Server Process on Boot

2. Starting the MariaDB Server Process

3. Stopping the MariaDB Server Process

4. Restarting the MariaDB Server Process

5. Checking the Status of the MariaDB Server Process

6. Interacting with Multiple MariaDB Server Processes

1. Default configuration of Multiple Instances in 10.4 and Later

2. Custom configuration of Multiple Instances in 10.4 and Later

3. Configuring Multiple Instances in 10.3 and Earlier

4. Systemd and Galera Cluster

1. Bootstrapping a New Cluster

2. Recovering a Node's Cluster Position

3. SSTs and Systemd

5. Configuring the Systemd Service

1. Useful Systemd Options

2. Configuring the Systemd Service Timeout

3. Configuring the Open Files Limit

4. Configuring the Core File Size

5. Configuring MariaDB to Write the Error Log to Syslog

6. Configuring LimitMEMLOCK

7. Configuring Access to Home Directories

8. Configuring the umask

9. Configuring the data directory

6. Systemd Socket Activation

1. Using Systemd Socket Activation

2. When to Use Systemd Socket Activation

3. Downsides to Using Systemd Socket Activiation

4. Configuring Systemd Socket Activation

5. Extra Port

6. Multi-instance socket activation

7. Systemd Socket Activation for Hosting Service Providers

1. End User Benefits

2. Hosting Service Provider Benefits

3. Downsides to the Hosting Service Provider

4. Example on configuration Items for a per user, systemd socket activitated multi-instance service

1. A MariaDB Template File

2. Custom Configuration for the Multi-instance Service

3. Custom Configuration for the Multi-instance Socket

8. Systemd Journal

9. Converting mysqld_safe Options to Systemd Options

Contents of the MariaDB Service's Unit File
The contents of the mariadb.service file can be examined with systemctl show mariadb.service .

Interacting with the MariaDB Server Process
The service can be interacted with by using the systemctl command.

Starting the MariaDB Server Process on Boot

MariaDB's systemd service can be configured to start at boot by executing the following:

sudo systemctl enable mariadb.service

Starting the MariaDB Server Process

MariaDB's systemd service can be started by executing the following:

sudo systemctl start mariadb.service

1714/4161

https://www.freedesktop.org/software/systemd/man/systemctl.html

MariaDB's systemd unit file has a default startup timeout of about 90 seconds on most systems. If certain startup tasks,

such as crash recovery, take longer than this default startup timeout, then systemd will assume that mariadbd has failed

to startup, which causes systemd to kill the mariadbd process. To work around this, you can reconfigure the MariaDB

systemd unit to have an infinite timeout.

Note that systemd 236 added the EXTEND_TIMEOUT_USEC environment variable that allows services to extend the

startup timeout during long-running processes. Starting with MariaDB 10.1.33 , MariaDB 10.2.15 , and MariaDB 10.3.6

, on systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during certain

startup processes that can run long. Therefore, if you are using systemd 236 or later, then you should not need to

manually override TimeoutStartSec , even if your startup tasks, such as crash recovery, run for longer than the configured

value. See MDEV-14705 for more information.

Stopping the MariaDB Server Process

MariaDB's systemd service can be stopped by executing the following:

sudo systemctl stop mariadb.service

Restarting the MariaDB Server Process

MariaDB's systemd service can be restarted by executing the following:

sudo systemctl restart mariadb.service

Checking the Status of the MariaDB Server Process

The status of MariaDB's systemd service can be obtained by executing the following:

sudo systemctl status mariadb.service

Interacting with Multiple MariaDB Server Processes

A systemd template unit file with the name mariadb@.service is installed in INSTALL_SYSTEMD_UNITDIR on some

systems. See Locating the MariaDB Service's Unit File to see what directory that refers to on each distribution.

This template unit file allows you to interact with multiple MariaDB instances on the same system using the same template

unit file. When you interact with a MariaDB instance using this template unit file, you have to provide an instance name as a

suffix. For example, the following command tries to start a MariaDB instance with the name node1 :

sudo systemctl start mariadb@node1.service

MariaDB's build system cannot include the mariadb@.service template unit file in RPM packages on platforms that

have cmake versions older than 3.3.0, because these cmake versions have a bug that causes it to encounter

errors when packaging a file in RPMs if the file name contains the @ character. MariaDB's RHEL 7 and CentOS 7

RPM build hosts only got a new enough cmake version starting with MariaDB 10.1.39 , MariaDB 10.2.23 , and

MariaDB 10.3.14 . To use this functionality on a MariaDB version that does not have the file, you can copy the file

from a package that does have the file.

Default configuration of Multiple Instances in 10.4 and Later

systemd will also look for an option file for a specific MariaDB instance based on the instance name.

It will use the .%I as the custom option group suffix that is appended to any server option group, in any configuration file

included by default.

In all distributions, the %I is the MariaDB instance name. In the above node1 case, it would use the option file at the

path /etc/mynode1.cnf .

When using multiple instances, each instance will of course also need their own datadir , socket and , port (unless

skip_networking is specified). As mariadb-install-db#option-groups reads the same sections as the

server, and ExecStartPre= run mariadb-install-db within the service, the instances are autocreated

if there is sufficient priviledges.

1715/4161

https://lists.freedesktop.org/archives/systemd-devel/2017-December/039996.html
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://jira.mariadb.org/browse/MDEV-14705
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://public.kitware.com/Bug/view.php?id=14782
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/

To use a 10.3 configuration in 10.4 or later and the following customisation in the editor after running sudo systemctl

edit mariadb@.service :

[Unit]

ConditionPathExists=

[Service]

Environment='MYSQLD_MULTI_INSTANCE=--defaults-file=/etc/my%I.cnf'

Custom configuration of Multiple Instances in 10.4 and Later

Because users may want to do many various things with their multiple instances, we've provided a way to let the user define

how they wish their multiple instances to run. The systemd environment variable MYSQLD_MULTI_INSTANCE can be set to

anything that mariadbd and mariadb-install-db will recognise.

A hosting environment where each user has their own instance may look like (with sudo systemctl edit

mariadb@.service):

[Service]

ProtectHome=false

Environment='MYSQLD_MULTI_INSTANCE=--defaults-file=/home/%I/my.cnf \

 --user=%I \

 --socket=/home/%I.sock \

 --datadir=/home/%I/mariadb_data \

 --skip-networking'

Here the instance name is the unix user of the service.

Configuring Multiple Instances in 10.3 and Earlier

systemd will also look for an option file for a specific MariaDB instance based on the instance name. By default, it will look

for the option file in a directory defined at build time by the INSTALL_SYSCONF2DIR option provided to cmake .

For example, on RHEL, CentOS, Fedora, and other similar Linux distributions, INSTALL_SYSCONF2DIR is defined as

/etc/my.cnf.d/ , so it will look for an option file that matches the format:

/etc/my.cnf.d/my%I.cnf

And on Debian, Ubuntu, and other similar Linux distributions, INSTALL_SYSCONF2DIR is defined as

/etc/mysql/conf.d// , so it will look for an option file that matches the format:

/etc/mysql/conf.d/my%I.cnf

In all distributions, the %I is the MariaDB instance name. In the above node1 case, it would use the option file at the

path /etc/my.cnf.d/mynode1.cnf for RHEL-like distributions and /etc/mysql/conf.d/mynode1.cnf for Debian-like

distributions.

When using multiple instances, each instance will of course also need their own datadir . See mariadb-install-db for

information on how to initialize the datadir for additional MariaDB instances.

Systemd and Galera Cluster

Bootstrapping a New Cluster

When using Galera Cluster with systemd, the first node in a cluster has to be started with galera_new_cluster . See

Getting Started with MariaDB Galera Cluster: Bootstrapping a New Cluster for more information.

Recovering a Node's Cluster Position

When using Galera Cluster with systemd, a node's position in the cluster can be recovered with galera_recovery . See

Getting Started with MariaDB Galera Cluster: Determining the Most Advanced Node for more information.

SSTs and Systemd

MariaDB's systemd unit file has a default startup timeout of about 90 seconds on most systems. If an SST takes longer

than this default startup timeout on a joiner node, then systemd will assume that mariadbd has failed to startup, which

1716/4161

causes systemd to kill the mariadbd process on the joiner node. To work around this, you can reconfigure the MariaDB

systemd unit to have an infinite timeout. See Introduction to State Snapshot Transfers (SSTs): SSTs and Systemd for

more information.

Note that systemd 236 added the EXTEND_TIMEOUT_USEC environment variable that allows services to extend the

startup timeout during long-running processes. Starting with MariaDB 10.1.35 , MariaDB 10.2.17 , and MariaDB 10.3.8

, on systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during long

SSTs. Therefore, if you are using systemd 236 or later, then you should not need to manually override

TimeoutStartSec , even if your SSTs run for longer than the configured value. See MDEV-15607 for more information.

Configuring the Systemd Service
You can configure MariaDB's systemd service by creating a "drop-in" configuration file for the systemd service. On most

systems, the systemd service's directory for "drop-in" configuration files is

/etc/systemd/system/mariadb.service.d/ . You can confirm the directory and see what "drop-in" configuration files

are currently loaded by executing:

$ sudo systemctl status mariadb.service

ï mariadb.service - MariaDB 10.1.37 database server

 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled)

 Drop-In: /etc/systemd/system/mariadb.service.d

 5%migrated-from-my.cnf-settings.conf, timeoutstartsec.conf

...

If you want to configure the systemd service, then you can create a file with the .conf extension in that directory. The

configuration option(s) that you would like to change would need to be placed in an appropriate section within the file,

usually [Service] . If a systemd option is a list, then you may need to set the option to empty before you set the

replacement values. For example:

[Service]

ExecStart=

ExecStart=/usr/bin/numactl --interleave=all /usr/sbin/mariadbd $MYSQLD_OPTS

$_WSREP_NEW_CLUSTER $_WSREP_START_POSITION

After any configuration change, you will need to execute the following for the change to go into effect:

sudo systemctl daemon-reload

Useful Systemd Options

Useful systemd options are listed below. If an option is equivalent to a common mysqld_safe option, then that is also

listed. Use systemctl edit mariadb.service to create the systemd option under a [Service] section header.

mysqld_safe

option
systemd option Comments

no option ProtectHome=false If any MariaDB files are in /home/

no option PrivateDevices=false
If any MariaDB storage references raw

block devices

no option ProtectSystem=
If any MariaDB write any files to

anywhere under /boot, /usr or /etc

no option TimeoutStartSec={time}

Service startup timeout. See

Configuring the Systemd Service

Timeout.

no option

(see MDEV-

9264)

OOMScoreAdjust={priority}
e.g. -600 to lower priority of OOM killer

for mariadbd

open-

files-

limit

LimitNOFILE={limit}
Limit on number of open files. See

Configuring the Open Files Limit.

1717/4161

https://lists.freedesktop.org/archives/systemd-devel/2017-December/039996.html
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://jira.mariadb.org/browse/MDEV-15607
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#ProtectHome=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#PrivateDevices=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#ProtectSystem=
https://www.freedesktop.org/software/systemd/man/systemd.service.html#TimeoutStartSec=
https://jira.mariadb.org/browse/MDEV-9264
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#OOMScoreAdjust=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=

core-file-

size
LimitCORE={size}

Limit on core file size. Useful when

enabling core dumps . See

Configuring the Core File Size.

LimitMEMLOCK={size} or infinity

Limit on how much can be locked in

memory. Useful when large-pages or

memlock is used

nice Nice={nice value}

syslog StandardOutput=syslog
See Configuring MariaDB to Write the

Error Log to Syslog.

StandardError=syslog

SyslogFacility=daemon

SyslogLevel=err

syslog-

tag
SyslogIdentifier

flush-

caches
ExecStartPre=/usr/bin/sync

ExecStartPre=/usr/sbin/sysctl -q -w vm.drop_caches=3

malloc-

lib
Environment=LD_PRELOAD=/path/to/library

numa-

interleave
NUMAPolicy=interleave from systemd v243 onwards

or: ExecStart=/usr/bin/numactl --interleave=all

/usr/sbin/mariadbd $MYSQLD_OPTS $_WSREP_NEW_CLUSTER

$_WSREP_START_POSITION

prepending

ExecStart=/usr/bin/numactl --

interleave=all to existing

ExecStart setting

no-auto-

restart
Restart={exit-status}

Note: the systemd manual contains the official meanings for these options. The manual also lists considerably more

options than the ones listed above.

There are other options and the mariadb-service-convert script will attempt to convert these as accurately as possible.

Configuring the Systemd Service Timeout

MariaDB's systemd unit file has a default startup timeout of about 90 seconds on most systems. If a service startup takes

longer than this default startup timeout, then systemd will assume that mariadbd has failed to startup, which causes

systemd to kill the mariadbd process. To work around this, it can be changed by configuring the TimeoutStartSec

 option for the systemd service.

A similar problem can happen when stopping the MariaDB service. Therefore, it may also be a good idea to set

TimeoutStopSec .

For example, you can reconfigure the MariaDB systemd service to have an infinite timeout by executing one of the

following commands:

If you are using systemd 228 or older, then you can execute the following to set an infinite timeout:

sudo systemctl edit mariadb.service

[Service]

TimeoutStartSec=0

TimeoutStopSec=0

Systemd 229 added the infinity option , so if you are using systemd 229 or later, then you can execute the following to

set an infinite timeout:

1718/4161

https://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
https://mariadb.com/kb/en/enabling-core-dumps/
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#Nice=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#StandardOutput=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#StandardError=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogFacility=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogLevel=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogIdentifier=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#Environment=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#NUMAPolicy=
http://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/systemd.service.html#TimeoutStartSec=
https://www.freedesktop.org/software/systemd/man/systemd.service.html#TimeoutStopSec=
https://lists.freedesktop.org/archives/systemd-devel/2016-February/035748.html

sudo systemctl edit mariadb.service

[Service]

TimeoutStartSec=infinity

TimeoutStopSec=infinity

Note that systemd 236 added the EXTEND_TIMEOUT_USEC environment variable that allows services to extend the

startup timeout during long-running processes. On systems with systemd versions that support it, MariaDB uses this feature

to extend the startup timeout during certain startup processes that can run long.

Configuring the Open Files Limit

When using systemd , rather than setting the open files limit by setting the open-files-limit option for mysqld_safe

or the open_files_limit system variable, the limit can be changed by configuring the LimitNOFILE option for the

MariaDB systemd service. The default is set to LimitNOFILE=16364 in mariadb.service .

For example, you can reconfigure the MariaDB systemd service to have a larger limit for open files by executing the

following commands:

sudo systemctl edit mariadb.service

[Service]

LimitNOFILE=infinity

An important note is that setting LimitNOFILE=infinity doesn't actually set the open file limit to infinite.

In systemd 234 and later, setting LimitNOFILE=infinity actually sets the open file limit to the value of the kernel's

fs.nr_open parameter. Therefore, in these systemd versions, you may have to change this parameter's value.

The value of the fs.nr_open parameter can be changed permanently by setting the value in /etc/sysctl.conf

and restarting the server.

The value of the fs.nr_open parameter can be changed temporarily by executing the sysctl utility. For example:

sudo sysctl -w fs.nr_open=1048576+

In systemd 233 and before, setting LimitNOFILE=infinity actually sets the open file limit to 65536 . See systemd

issue #6559 for more information. Therefore, in these systemd versions, it is not generally recommended to set

LimitNOFILE=infinity . Instead, it is generally better to set LimitNOFILE to a very large integer. For example:

sudo systemctl edit mariadb.service

[Service]

LimitNOFILE=1048576

Configuring the Core File Size

When using systemd , if you would like to enable core dumps , rather than setting the core file size by setting the core-

file-size option for mysqld_safe , the limit can be changed by configuring the LimitCORE option for the MariaDB

systemd service. For example, you can reconfigure the MariaDB systemd service to have an infinite size for core files by

executing the following commands:

sudo systemctl edit mariadb.service

[Service]

LimitCORE=infinity

Configuring MariaDB to Write the Error Log to Syslog

When using systemd , if you would like to redirect the error log to the syslog , then that can easily be done by doing the

following:

Ensure that log_error system variable is not set.

1719/4161

https://lists.freedesktop.org/archives/systemd-devel/2017-December/039996.html
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
https://linux.die.net/man/5/sysctl.conf
https://linux.die.net/man/8/sysctl
https://github.com/systemd/systemd/issues/6559
https://mariadb.com/kb/en/enabling-core-dumps/
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#LimitCPU=
https://linux.die.net/man/8/rsyslogd

Set StandardOutput=syslog .

Set StandardError=syslog .

Set SyslogFacility=daemon .

Set SysLogLevel=err .

For example:

sudo systemctl edit mariadb.service

[Service]

StandardOutput=syslog

StandardError=syslog

SyslogFacility=daemon

SysLogLevel=err

If you have multiple instances of MariaDB, then you may also want to set SyslogIdentifier with a different tag for

each instance.

Configuring LimitMEMLOCK

If using --memlock, or the io_uring asyncronious IO in InnoDB in MariaDB 10.6 or above, with a Linux Kernel version < 5.12,

you will need to raise the LimitMEMLOCK limit.

sudo systemctl edit mariadb.service

[Service]

LimitMEMLOCK=2M

Note: Prior to MariaDB 10.1.10 , the --memlock option could not be used with the MariaDB systemd service.

Configuring Access to Home Directories

MariaDB's systemd unit file restricts access to /home , /root , and /run/user by default. This restriction can be

overridden by setting the ProtectHome option to false for the MariaDB systemd service. This is done by creating a

"drop-in" directory /etc/systemd/system/mariadb.service.d/ and in it a file with a .conf suffix that contains the

ProtectHome=false directive.

You can reconfigure the MariaDB systemd service to allow access to /home by executing the following commands:

sudo systemctl edit mariadb.service

[Service]

ProtectHome=false

Configuring the umask

When using systemd , the default file permissions of mariadbd can be set by setting the UMASK and UMASK_DIR

environment variables for the systemd service. For example, you can configure the MariaDB systemd service's umask by

executing the following commands:

sudo systemctl edit mariadb.service

[Service]

Environment="UMASK=0750"

Environment="UMASK_DIR=0750"

These environment variables do not set the umask. They set the default file system permissions. See MDEV-23058

for more information.

Keep in mind that configuring the umask this way will only affect the permissions of files created by the mariadbd
1720/4161

https://www.freedesktop.org/software/systemd/man/systemd.exec.html#StandardOutput=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#StandardError=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogFacility=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogLevel=
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#SyslogIdentifier=
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://www.freedesktop.org/software/systemd/man/systemd.exec.html#ProtectHome=
https://jira.mariadb.org/browse/MDEV-23058

process that is managed by systemd . The permissions of files created by components that are not managed by

systemd , such as mariadb-install-db, will not be affected.

See Specifying Permissions for Schema (Data) Directories and Tables for more information.

Configuring the data directory

When doing a standard binary tarball install the datadir will be under /usr/local/data. The default systemd service file makes

the whole /usr directory tree write protected however.

So when just copying the distributed service file a tarball install will not start up, complaining e.g. about

[Warning] Can't create test file /usr/local/.../data/ubuntu-focal.lower-test

[ERROR] mariadbd: File '/usr/local/.../data/aria_log_control' not found (Errcode: 30 "Read-only

file system")

[ERROR] mariadbd: Got error 'Can't open file' when trying to use aria control file

'/usr/local/.../data/aria_log_control'

So when using a data directory under /usr/local that specific directory needs to be made writable for the service using the

ReadWritePaths setting:

sudo systemctl edit mariadb.service

[Service]

ReadWritePaths=/usr/local/mysql/data

Systemd Socket Activation

MariaDB can use systemd's socket activation.

This is an on-demand service for MariaDB that will activate when required.

Systemd socket activation uses a mariadb.socket definition file to define a set of UNIX and TCP sockets. Systemd will

listen on these sockets, and when they are connected to, systemd will start the mariadb.service and hand over the

socket file descriptors for MariaDB to process the connection.

MariaDB remains running at this point and will have all sockets available and process connections exactly like it did before

10.6.

When MariaDB is shut down, the systemd mariadb.socket remains active, and a new connection will restart the

mariadb.service .

Using Systemd Socket Activation

To use MariaDB systemd socket activation, instead of enabling/starting mariadb.service , mariadb.socket is used

instead.

So the following commands work exactly like the mariadb.service equivalents.

systemctl start mariadb.socket

systemctl enable mariadb.socket

These files alone only contain the UNIX and TCP sockets and basic network connection information to which will be

listening for connections. @mariadb is a UNIX abstract socket, which means it doesn't appear on the filesystem.

Connectors based on MariaDB Connector/C will be able to connect with these by using the socket name directly, provided

the higher level implementation doesn't try to test for the file's existence first. Some connectors like PHP use mysqlnd that is

a pure PHP implementation and as such will only be able to connect to on filesystem UNIX sockets.

With systemd activated sockets there is only a file descriptor limit on the number of listening sockets that can be created.

When to Use Systemd Socket Activation

A common use case for systemd socket activated MariaDB is when there needs to be a quick boot up time. MariaDB needs

to be ready to run, but it doesn't need to be running.

MariaDB starting with 10.6.0

1721/4161

The ideal use case for systemd socket activation for MariaDB is for infrastructure providers running many multiple instances

of MariaDB, where each instance is dedicated for a user.

Downsides to Using Systemd Socket Activiation

From the time the connection occurs, the client is going to be waiting until MariaDB has fully initialized before MariaDB can

process the awaiting connection. If MariaDB was previously hard shutdown and needs to perform an extensive InnoDB

rollback, then the activation time may be larger than the desired wait time of the client connection.

Configuring Systemd Socket Activation

When MariaDB is run under systemd socket activation, the usual socket , port, and backlog system variables are ignored, as

these settings are contained within the systemd socket definition file.

There is no configuration required in MariaDB to use MariaDB under socket activation.

The systemd options available are from the systemd documentation , however ListenStream and

BackLog would be the most common configuration options.

As MariaDB isn't creating these sockets, the sockets don't need to be created with a mysql user. The sockets MariaDB

may end up listening to under systemd socket activation, it may have not had the privileges to create itself.

Changes to the default mariadb.socket can be made in the same way as services, systemctl edit

mariadb.socket , or using /etc/systemd/system/mariadb.socket.d/someconfig.conf files.

Extra Port

A systemd socket can be configured as an extra_port, by using the FileDescriptorName=extra in the .socket

file.

The mariadb-extra.socket is already packaged and ready for use.

Multi-instance socket activation

mariadb@.socket is MariaDB's packaged multi-instance defination. It creates multiple UNIX sockets based on the socket

file started.

Starting mariadb@bob.socket will use the mariadb@.socket defination with %I within the defination replaced with

"bob".

When something connects to a socket defined there, the mariadb@bob.service will be started.

Systemd Socket Activation for Hosting Service Providers
A systemd socket activation service with multi-instance can provide an on-demand per user access to a hosting service

provider's dedicated database.

"User", in this case, refers to the customer of the hosting service provider.

End User Benefits

This provides the following benefits for the user:

Each user has their own dedicated instance with the following benefits:

The instance is free from the database contention of neighbors on MariaDB shared resources (table cache,

connections, etc)

The user is free to change their own configuration of MariaDB, within the limits and permissions of the service

provider.

Database service level backups, like mariabackup, are now directly available.

A user can install their own plugins.

The user can run a different database version to their neighbors.

If a user's neighbor triggers a fault in the server, the uder's instance isn't affected.

The database runs as their unix user in the server facilitating:

User can directly migrate their MariaDB data directory to a different provider.

The user's data is protected from other users on a kernel level.

Hosting Service Provider Benefits
1722/4161

https://www.freedesktop.org/software/systemd/man/systemd.socket.html
https://www.freedesktop.org/software/systemd/man/systemd.socket.html#ListenStream=
https://www.freedesktop.org/software/systemd/man/systemd.socket.html#Backlog=
https://www.freedesktop.org/software/systemd/man/systemd.socket.html#FileDescriptorName=

In addition to providing user benefits as a sales item, the following are additional benefits for the hosting service provider

compared to a monolith service:

Without passwords for the database, while still having security, support may be easier.

When a user's database isn't active, there is no resource usage, only listening file descriptors by systemd.

The socket activation transparently, with a minor startup time, starts the service as required.

When the user's database hasn't had any activity after a time, it will deactivate (MDEV-25282).

Planned enhancements in InnoDB provide:

an on-demand consumption of memory (MDEV-25340 .

a proactive reduction in memory (MDEV-25341).

a memory resource pressure reduction in memory use (MDEV-24670).

The service provider can still cap the user's database memory usage in a ulimit way that a user cannot override in

settings.

The service provider may choose a CPU/memory/IO based billing to the user on Linux cgroup accounting rather than

the available comprared to the rather limited options in CREATE USER .

Because a user's database will shutdown when inactive, a database upgrade on the server will not take effect for the

user until it passively shuts down, restarts, and then gets reactivated hence reducing user downtime..

Downsides to the Hosting Service Provider

The extra memory used by more instances. This is mitigated by the on-demand activation. The deactivation when idle, and

improved InnoDB memory management.

With plenty of medium size database servers running, the Linux OOM kill has the opportunity to kill off only a small number

of database servers running rather than everyones.

Example on configuration Items for a per user, systemd socket
activitated multi-instance service

From a server pespective the operation would be as follows;

To make the socket ready to connect and systemd will be listening to the socket:

systemctl start mariadb@username.socket

systemctl start mariadb-extra@username.socket

To enable this on reboot (the same way as a systemd service):

systemctl enable mariadb@username.socket

systemctl enable mariadb-extra@username.socket

A MariaDB Template File

A global template file. Once installed as a user's $HOME/.my.cnf file, it will becomes the default for many applications, and

the MariaDB server itself.

cat /etc/my.cnf.templ

[client]

socket=/home/USER/mariadb.sock

[client-server]

user=USER

[mariadbd]

datadir=/home/USER/mariadb-datadir

Custom Configuration for the Multi-instance Service

This extends/modifies the MariaDB multi-instance service.

The feature of this extension are:

that it will autocreate configuration file for user applications

It will install the database on first service start

auth-root-* in mariadb-install-db means that the user is their own privileged user with unix socket authentication

active. This means non-that user cannot access another users service, even with access to the unix socket(s). For

more information see unix socket authentication security.

If the MariaDB version was upgrade, the upgrade changes are made automatically

1723/4161

https://jira.mariadb.org/browse/MDEV-25282
https://jira.mariadb.org/browse/MDEV-25340
https://jira.mariadb.org/browse/MDEV-25341
https://jira.mariadb.org/browse/MDEV-24670

LimitData places a hard upper limit so the user doesn't exceed a portion of the server resources

cat /etc/systemd/system/mariadb@.service.d/user.conf

[Service]

User=%I

ProtectHome=false

Environment=MYSQLD_MULTI_INSTANCE="--defaults-file=/home/%I/.my.cnf"

ExecStartPre=

ExecStartPre=/bin/sh -c "[-f /home/%I/.my.cnf] || sed -e \"s/USER/%I/g\" /etc/my.cnf.templ >

/home/%I/.my.cnf"

ExecStartPre=mkdir -p /home/%I/mariadb-datadir

ExecStartPre=/usr/bin/mariadb-install-db $MYSQLD_MULTI_INSTANCE --rpm \

 --auth-root-authentication-method=socket --auth-root-socket-user=%I

ExecStartPost=/usr/bin/mariadb-upgrade $MYSQLD_MULTI_INSTANCE

To limit user based tuning

LimitData=768M

For io_uring use by innodb on < 5.12 kernels

LimitMEMLOCK=1M

Custom Configuration for the Multi-instance Socket

This extends/modifies the MariaDB socket defination to be per user.

Create sockets based on the user of the istance (%I). Permissions are only necessary in the sense that the user can

connect to them. It won't matter to the server. Access control is enforced within the server, however if the user web services

are run as the user, Mode=777 can be reduced. @mariadb-%I is a abstract unix socket not on the filesystem. It may help if

a user is in a chroot. Not all applications can connect to abstract sockets.

cat /etc/systemd/system/mariadb@.socket.d/user.conf

[Socket]

SocketUser=%I

SocketMode=777

ListenSteam=

ListenStream=@mariadb-%I

ListenStream=/home/%I/mariadb.sock

The extra socket provides the user the ability to access the server when all max-connections are used:

cat /etc/systemd/system/mariadb-extra@.socket.d/user.conf

[Socket]

SocketUser=%I

SocketMode=777

ListenSteam=

ListenStream=@mariadb-extra-%I

ListenStream=/home/%I/mariadb-extra.sock

Systemd Journal
systemd has its own logging system called the systemd journal. The systemd journal contains information about the

service startup process. It is a good place to look when a failure has occurred.

The MariaDB systemd service's journal can be queried by using the journalctl command. For example:

1724/4161

https://www.freedesktop.org/software/systemd/man/journalctl.html

$ sudo journalctl n 20 -u mariadb.service

-- Logs begin at Fri 2019-01-25 13:49:04 EST, end at Fri 2019-01-25 18:07:02 EST. --

Jan 25 13:49:15 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Starting MariaDB 10.1.37

database server...

Jan 25 13:49:16 ip-172-30-0-249.us-west-2.compute.internal mysqld[2364]: 2019-01-25 13:49:16

140547528317120 [Note] /usr/sbin/mysqld (mysqld 10.1.37-MariaDB) starting as process 2364 ...

Jan 25 13:49:17 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Started MariaDB 10.1.37

database server.

Jan 25 18:06:42 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Stopping MariaDB 10.1.37

database server...

Jan 25 18:06:44 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Stopped MariaDB 10.1.37

database server.

Jan 25 18:06:57 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Starting MariaDB 10.1.37

database server...

Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: mariadb.service start-pre

operation timed out. Terminating.

Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Failed to start MariaDB

10.1.37 database server.

Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: Unit mariadb.service

entered failed state.

Jan 25 18:08:32 ip-172-30-0-249.us-west-2.compute.internal systemd[1]: mariadb.service failed.

Converting mysqld_safe Options to Systemd Options
mariadb-service-convert is a script included in many MariaDB packages that is used by the package manager to

convert mysqld_safe options to systemd options. It reads any explicit settings in the [mysqld_safe] option group

from option files, and its output is directed to /etc/systemd/system/mariadb.service.d/migrated-from-my.cnf-

settings.conf . This helps to keep the configuration the same when upgrading from a version of MariaDB that does not

use systemd to one that does.

Implicitly high defaults of open-files-limit may be missed by the conversion script and require explicit configuration.

See Configuring the Open Files Limit.

2.1.6.15 sysVinit
Contents
1. Interacting with the MariaDB Server Process

1. Starting the MariaDB Server Process on Boot

2. Starting the MariaDB Server Process

3. Stopping the MariaDB Server Process

4. Restarting the MariaDB Server Process

5. Checking the Status of the MariaDB Server Process

2. Manually Installing mysql.server with SysVinit

3. SysVinit and Galera Cluster

1. Bootstrapping a New Cluster

sysVinit is one of the most common service managers. On systems that use sysVinit , the mysql.server script is

normally installed to /etc/init.d/mysql .

Interacting with the MariaDB Server Process
The service can be interacted with by using the service command.

Starting the MariaDB Server Process on Boot

On RHEL/CentOS and other similar distributions, the chkconfig command can be used to enable the MariaDB

Server process at boot:

chkconfig --add mysql

chkconfig --level 345 mysql on

On Debian and Ubuntu and other similar distributions, the update-rc.d command can be used:

1725/4161

https://en.wikipedia.org/wiki/Init#SysV-style
https://en.wikipedia.org/wiki/Init#SysV-style
https://linux.die.net/man/8/service
https://linux.die.net/man/8/chkconfig
https://manpages.debian.org/wheezy/sysv-rc/update-rc.d.8.en.html

update-rc.d mysql defaults

Starting the MariaDB Server Process

service mysql start

Stopping the MariaDB Server Process

service mysql stop

Restarting the MariaDB Server Process

service mysql restart

Checking the Status of the MariaDB Server Process

service mysql status

Manually Installing mysql.server with SysVinit
If you install MariaDB from source or from a binary tarball that does not install mysql.server automatically, and if you are

on a system that uses sysVinit, then you can manually install mysql.server with sysVinit. See mysql.server: Manually

Installing with SysVinit for more information.

SysVinit and Galera Cluster

Bootstrapping a New Cluster

When using Galera Cluster with sysVinit, the first node in a cluster has to be started with service mysql bootstrap .

See Getting Started with MariaDB Galera Cluster: Bootstrapping a New Cluster for more information.

1.3.25 Mariadb-admin

2.1.6.17 mariadbd

From MariaDB 10.4.6, mariadbd is a symlink to mysqld, the MariaDB server.

From MariaDB 10.5.2, mariadbd is the name of the server, with mysqld a symlink .

See mariadbd-options for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

2.1.6.18 mariadbd-multi

From MariaDB 10.4.6, mariadbd-multi is a symlink to mysqld_multi , the wrapper designed to manage several

mysqld processes running on the same host.

From MariaDB 10.5.2, mariadbd-multi is the name of the server, with mysqld_multi a symlink .

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

1726/4161

See mysqld_multi for details.

2.1.6.19 mariadbd-safe

From MariaDB 10.4.6, mariadbd-safe is a symlink to mysqld_safe , the tool for starting mysqld on Linux and Unix

distributions that do not support systemd.

From MariaDB 10.5.2, mariadbd-safe is the name of the binary, with mysqld_safe a symlink .

See mysqld_safe for details.

MariaDB starting with 10.4.6

MariaDB starting with 10.5.2

2.1.7 MariaDB Performance & Advanced
Configurations
Articles of how to setup your MariaDB optimally on different systems

Fusion-io

This category contains information about Fusion-io support in MariaDB

Atomic Write Support

Enabling atomic writes to speed up InnoDB on selected SSD cards.

Configuring Linux for MariaDB

Linux kernel settings IO scheduler For optimal IO performance running a da...

Configuring MariaDB for Optimal Performance

How to get optimal performance.

Configuring Swappiness

Setting Linux swappiness.

There are 5 related questions .

1

1

2

2.1.7.1 Fusion-io
This category contains information about Fusion-io support in MariaDB

Fusion-io Introduction

Fusion-io PCIe SSD cards to speed up MariaDB.

Atomic Write Support

Enabling atomic writes to speed up InnoDB on selected SSD cards.

MariaDB 10.0.15 Fusion-io Release Notes

Status: | Release Date: 12 Dec 2014

MariaDB 10.0.15 Fusion-io Changelog

Status: | Release Date: 12 Dec 2014

InnoDB Page Flushing

Configuring when and how InnoDB flushes dirty pages to disk.

1

2.1.7.1.1 Fusion-io Introduction

1727/4161

https://mariadb.com/kb/en/mariadb-performance-advanced-configurations/+questions/
https://mariadb.com/kb/en/mariadb-10015-fusion-io-release-notes/
https://mariadb.com/kb/en/mariadb-10015-fusion-io-changelog/

Contents
1. Use Cases

2. Atomic Writes

3. Future Suggested Development

4. Settings For Best Performance

5. Example Configuration

6. Card Models

7. Additional Software

Fusion-io develops PCIe based NAND flash memory cards and related software that can be used to speed up MariaDB

databases.

The ioDrive branded products can be used as block devices (super-fast disks) or to extend basic DRAM memory. ioDrive is

deployed by installing it on an x86 server and then installing the card driver under the operating system. All main line 64-bit

operating systems and hypervisors are supported: RHEL, CentOS, SuSe, Debian, OEL etc. and VMware, Microsoft

Windows/Server etc. Drivers and their features are constantly developed further.

ioDrive cards support software RAID and you can combine two or more physical cards into one logical drive. Through

ioMemory SDK and its APIs, one can integrate and enable more thorough interworking between your own software and the

cards - and cut latency.

The key differentiator between a Fusion-io and a legacy SSD/HDD is the following: A Fusion-io card is connected

directly on the system bus (PCIe), this enables high data transfer throughput (1.5 GB/s, 3.0 GB/s or 6GB/s) and the fast

direct memory access (DMA) method can be used to transfer data. The ATA/SATA protocol stack is omitted and therefore

latency is cut short. Fusion-io performance is dependent on server speed: the faster processors and the newer PCIe-bus

version you have, the better is the ioDrive performance. Fusion-io memory is non-volatile , in other words, data remains on

the card even when the server is powered off.

Use Cases
1. You can start by using ioDrive for database files that need heavy random access.

2. Whole database on ioDrive.

3. In some cases, Fusion-io devices allow for atomic writes, which allows the server to safely disable the doublewrite

buffer.

4. Use ioDrive as a write-through read cache. This is possible on server level with Fusion-io directCache software or in

VMware environments using ioTurbine software or the ioCache bundle product. Reads happen from ioDrive and all

writes go directly to your SAN or disk.

5. Highly Available shared storage with ION. Have two different hosts, Fusion-io cards in them and share/replicate data

with Fusion-io's ION software.

6. The luxurious Platinum setup: MariaDB Galera Cluster running on Fusion-io SLC cards on several hosts.

Atomic Writes
Starting with MariaDB 5.5.31 , MariaDB Server supports atomic writes on Fusion-io devices that use the NVMFS (formerly

called DirectFS) file system. Unfortunately, NVMFS was never offered under 8General Availability9, and SanDisk declared

that NVMFS would reach end-of-life in December 2015. Therefore, NVMFS support is no longer offered by SanDisk.

MariaDB Server does not currently support atomic writes on Fusion-io devices with any other file systems.

See atomic write support for more information about MariaDB Server's atomic write support.

Future Suggested Development
Extend InnoDB disk cache to be stored on Fusion-io acting as extended memory.

Settings For Best Performance
Fusion-io memory can be formatted with different sector size of either 512 or 4096 bytes. Bigger sectors are expected to be

faster, but only if I/O is done in blocks of 4KB or multiples of that. Speaking of MariaDB: if only InnoDB data files are stored

in Fusion-io memory, all I/O is done in blocks of 16K and thus 4K sector size can be used. If the InnoDB redo log (I/O block

size: 512 bytes) goes to the same Fusion-io memory, then short sectors should be used.

Note: XtraDB has the experimental feature of an increased InnoDB log block size of 4K. If this is enabled, then both redo

log I/O and page I/O in InnoDB will match a sector size of 4K.

As of file systems: currently XFS is expected to yield the best performance with MariaDB. However depending on the exact

kernel version and version of XFS code in use, one might be affected by a bug that severely limits XFS performance in

1728/4161

http://kb.askmonty.org/en/what-is-mariadb-galera-cluster/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
http://www.mysqlperformanceblog.com/2012/03/15/ext4-vs-xfs-on-ssd/comment-page-1/#comment-903938

concurrent environments . This has been fixed in kernel versions above 3.5 or RHEL6 kernels kernel-2.6.32-358 or later

 (because of bug 807503 being fixed) .

For the pitbull machine where I have run such tests, ext4 was faster than xfs for 32 or more threads:

up to 8 threads xfs was few percent faster (10% on average).

at 16 threads it was a draw (2036 tps vs. 2070 tps).

at 32 threads ext4 was 28% faster (2345 tps vs. 1829 tps).

at 64 threads ext4 was even 47% faster (2362 tps vs. 1601 tps).

at higher concurrency ext4 lost it9s bite, but was still constantly better than xfs.

Those numbers are for spinning disks. I guess for Fusion-io memory the XFS numbers will be even worse.

Example Configuration

Card Models
There are several card models. ioDrive is older generation, ioDrive2 is newer. SLC sustains more writes. MLC is good

enough for normal use.

1. ioDrive2, capacities per card 365GB, 785GB, 1.2TB with MLC. 400GB and 600GB with SLC, performance up to

535000 IOPS & 1.5GB/s bandwidth

2. ioDrive2 Duo, capacities per card 2.4TB MLC and 1.2TB SLC, performance up to 935000 IOPS & 3.0GB/s bandwidth

3. ioDrive, capacities per card 320GB, 640GB MLC and 160GB, 320GB SLC, performance up to 145000 IOPS &

790MB/s bandwidth

4. ioDrive Duo, capacities per card 640GB, 1.28TB MLC and 320GB, 640GB SLC, performance up to 285000 IOPS &

1.5GB/s bandwidth

5. ioDrive Octal, capacities per card 5TB and 10TB MLC, performance up to 1350000 IOPS & 6.7GB/s bandwidth

6. ioFX, a 420GB QDP MLC workstation product, 1.4GB/s bandwidth

7. ioCache, a 600GB MLC card with ioTurbine software bundle that can be used to speed up VMware based virtual

hosts.

8. ioScale, 3.2TB card, building block to enable all-flash data center build out in hyperscale web and cloud

environments. Product has been developed in co-operation with Facebook.

Additional Software

1729/4161

https://github.com/torvalds/linux/commit/507630b29f13a3d8689895618b12015308402e22
https://rhn.redhat.com/errata/RHSA-2013-0496.html
https://bugzilla.redhat.com/show_bug.cgi?id=807503

directCache - transforms ioDrive to work as a read cache in your server. Writes go directly to your SAN

ioTurbine - read cache software for VMware

ION - transforms ioDrive into a shareable storage

ioSphere - software to manage and monitor several ioDrives

2.1.7.1.2 Atomic Write Support
Contents
1. Partial Write Operations

2. innodb_doublewrite - an Imperfect Solution

3. Atomic Write - a Faster Alternative to innodb_doublewrite

4. Enabling Atomic Writes from MariaDB 10.2

5. Enabling Atomic Writes in MariaDB 5.5 to MariaDB 10.1

1. About innodb_use_atomic_writes (in MariaDB 5.5 to MariaDB 10.1)

6. Devices that Support Atomic Writes with MariaDB

Partial Write Operations
When Innodb writes to the filesystem, there is generally no guarantee that a given write operation will be complete (not

partial) in cases of a poweroff event, or if the operating system crashes at the exact moment a write is being done.

Without detection or prevention of partial writes, the integrity of the database can be compromised after recovery.

innodb_doublewrite - an Imperfect Solution
Since its inception, Innodb has had a mechanism to detect and ignore partial writes via the InnoDB Doublewrite Buffer (also

innodb_checksum can be used to detect a partial write).

Doublewrites, controlled by the innodb_doublewrite system variable, comes with its own set of problems. Especially on

SSD, writing each page twice can have detrimental effects (write leveling).

Atomic Write - a Faster Alternative to innodb_doublewrite
A better solution is to directly ask the filesystem to provide an atomic (all or nothing) write guarantee. Currently this is only

available on a few SSD cards.

Enabling Atomic Writes from MariaDB 10.2
When starting, MariaDB 10.2 and beyond automatically detects if any of the supported SSD cards are used.

When opening an InnoDB table, there is a check if the tablespace for the table is on a device that supports atomic writes

and if yes, it will automatically enable atomic writes for the table. If atomic writes support is not detected, the doublewrite

buffer will be used.

One can disable atomic write support for all cards by setting the variable innodb-use-atomic-writes to OFF in your my.cnf

file. It's ON by default.

Enabling Atomic Writes in MariaDB 5.5 to MariaDB 10.1
To use atomic writes instead of the doublewrite buffer, add:

innodb_use_atomic_writes = 1

to the my.cnf config file.

Note that atomic writes are only supported on Fusion-io devices that use the NVMFS file system in these versions of

MariaDB.

About innodb_use_atomic_writes (in MariaDB 5.5 to MariaDB 10.1)

The following happens when atomic writes are enabled

if innodb_flush_method is neither O_DIRECT , ALL_O_DIRECT , or O_DIRECT_NO_FSYNC , it is switched to

O_DIRECT

1730/4161

innodb_use_fallocate is switched ON (files are extended using posix_fallocate rather than writing zeros behind

the end of file)

Whenever an Innodb datafile is opened, a special ioctl() is issued to switch on atomic writes. If the call fails, an

error is logged and returned to the caller. This means that if the system tablespace is not located on an atomic write

capable device or filesystem, InnoDB/XtraDB will refuse to start.

if innodb_doublewrite is set to ON , innodb_doublewrite will be switched OFF and a message written to the error

log.

Here is a flowchart showing how atomic writes work inside InnoDB:

Devices that Support Atomic Writes with MariaDB
MariaDB currently supports atomic writes on the following devices:

Fusion-io devices with the NVMFS file system . MariaDB 5.5 and above.

Shannon SSD . MariaDB 10.2 and above.

5.3.2.16 InnoDB Page Flushing

2.1.7.2 Configuring Linux for MariaDB
Contents
1. Linux kernel settings

1. IO scheduler

2. Resource Limits

1. Configuring the Open Files Limit

2. Configuring the Core File Size

3. Swappiness

Linux kernel settings

IO scheduler

For optimal IO performance running a database we are using the none (previously called noop) scheduler. Recommended

schedulers are none and mq-deadline (previously called deadline). You can check your scheduler setting with:

cat /sys/block/${DEVICE}/queue/scheduler

For instance, it should look like this output:

cat /sys/block/vdb/queue/scheduler

[none] mq-deadline kyber bfq

Older kernels may look like:

cat /sys/block/sda/queue/scheduler

[noop] deadline cfq

1731/4161

http://www.shannon-sys.com

Writing the new scheduler name to the same /sys node will change the scheduler:

echo mq-deadline > /sys/block/vdb/queue/scheduler

The impact of schedulers depend significantly on workload and hardware. You can measure the IO-latency using the

biolatency bcc-tools script with an aim to keep the mean as low as possible.

Resource Limits

Configuring the Open Files Limit

By default, the system limits how many open file descriptors a process can have open at one time. It has both a soft and

hard limit. On many systems, both the soft and hard limit default to 1024. On an active database server, it is very easy to

exceed 1024 open file descriptors. Therefore, you may need to increase the soft and hard limits. There are a few ways to do

so.

If you are using mysqld_safe to start mysqld , then see the instructions at mysqld_safe: Configuring the Open Files Limit.

If you are using systemd to start mysqld , then see the instructions at systemd: Configuring the Open Files Limit .

Otherwise, you can set the soft and hard limits for the mysql user account by adding the following lines to

/etc/security/limits.conf :

mysql soft nofile 65535

mysql hard nofile 65535

After the system is rebooted, the mysql user should use the new limits, and the user's ulimit output should look like the

following:

$ ulimit -Sn

65535

$ ulimit -Hn

65535

Configuring the Core File Size

By default, the system limits the size of core files that could be created. It has both a soft and hard limit. On many systems,

the soft limit defaults to 0. If you want to enable core dumps , then you may need to increase this. Therefore, you may

need to increase the soft and hard limits. There are a few ways to do so.

If you are using mysqld_safe to start mysqld , then see the instructions at mysqld_safe: Configuring the Core File Size.

If you are using systemd to start mysqld , then see the instructions at systemd: Configuring the Core File Size.

Otherwise, you can set the soft and hard limits for the mysql user account by adding the following lines to

/etc/security/limits.conf :

mysql soft core unlimited

mysql hard core unlimited

After the system is rebooted, the mysql user should use the new limits, and the user's ulimit output should look like the

following:

$ ulimit -Sc

unlimited

$ ulimit -Hc

unlimited

Swappiness
See configuring swappiness.

2.1.7.3 Configuring MariaDB for Optimal
1732/4161

https://github.com/iovisor/bcc/blob/master/tools/biolatency_example.txt
https://linux.die.net/man/5/limits.conf
https://mariadb.com/kb/en/enabling-core-dumps/
https://linux.die.net/man/5/limits.conf

Performance
Contents
1. my.cnf Files

2. InnoDB Storage Engine

3. Aria Storage Engine

4. MyISAM

5. Lots of Connections

1. A Lot of Fast Connections + Small Set of Queries + Disconnects

2. Connecting From a Lot of Different Machines

6. External Links

This article is to help you configure MariaDB for optimal performance.

Note that by default MariaDB is configured to work on a desktop system and should because of this not take a lot of

resources. To get things to work for a dedicated server, you have to do a few minutes of work.

For this article we assume that you are going to run MariaDB on a dedicated server.

Feel free to update this article if you have more ideas.

my.cnf Files
MariaDB is normally configured by editing the my.cnf file.

The following my.cnf example files were included with MariaDB until MariaDB 10.3.0 . If present, you can examine them to

see more complete examples of some of the many ways to configure MariaDB and use the one that fits you best as a base.

Note that these files are now quite outdated, so what was huge a few years ago may no longer be seen as such.

my-small.cnf

my-medium.cnf

my-large.cnf

my-huge.cnf

InnoDB Storage Engine
InnoDB is normally the default storage engine with MariaDB.

You should set innodb_buffer_pool_size to about 80% of your memory. The goal is to ensure that 80 % of your

working set is in memory.

The other most important InnoDB variables are:

innodb_log_file_size

innodb_flush_method

innodb_thread_sleep_delay

Some other important InnoDB variables:

innodb_max_dirty_pages_pct_lwm

innodb_read_ahead_threshold

innodb_buffer_pool_instances. Deprecated and ignored from MariaDB 10.5.1.

innodb_adaptive_max_sleep_delay. Deprecated and ignored from MariaDB 10.5.5.

innodb_thread_concurrency. Deprecated and ignored from MariaDB 10.5.5.

Aria Storage Engine
MariaDB uses by default the Aria storage engine for internal temporary files. If you have many temporary files, you

should set aria_pagecache_buffer_size to a reasonably large value so that temporary overflow data is not flushed to

disk. The default is 128M.

MyISAM
If you don't use MyISAM tables explicitly (true for most MariaDB 10.4+ users), you can set key_buffer_size to a very

low value, like 64K.

Lots of Connections
1733/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

A Lot of Fast Connections + Small Set of Queries + Disconnects

If you are doing a lot of fast connections / disconnects, you should increase back_log and if you are running MariaDB

10.1 or below thread_cache_size.

If you have a lot (> 128) of simultaneous running fast queries, you should consider setting thread_handling to

pool_of_threads .

Connecting From a Lot of Different Machines

If you are connecting from a lot of different machines you should increase host_cache_size to the max number of

machines (default 128) to cache the resolving of hostnames. If you don't connect from a lot of machines, you can set

this to a very low value!

2.1.7.4 Configuring Swappiness
Contents
1. Why to Avoid Swapping

2. Setting Swappiness on Linux

3. Disabling Swap Altogether

Why to Avoid Swapping
Obviously, accessing swap memory from disk is far slower than accessing RAM directly. This is particularly bad on a

database server because:

MariaDB's internal algorithms assume that memory is not swap, and are highly inefficient if it is. Some algorithms are

intended to avoid or delay disk IO, and use memory where possible - performing this with swap can be worse than

just doing it on disk in the first place.

Swap increases IO over just using disk in the first place as pages are actively swapped in and out of swap. Even

something like removing a dirty page that is no longer going to be stored in memory, while designed to improve

efficiency, will under a swap situation cost more IO.

Database locks are particularly inefficient in swap. They are designed to be obtained and released often and quickly,

and pausing to perform disk IO will have a serious impact on their usability.

The main way to avoid swapping is to make sure you have enough RAM for all processes that need to run on the machine.

Setting the system variables too high can mean that under load the server runs short of memory, and needs to use swap. So

understanding what settings to use and how these impact your server's memory usage is critical.

Setting Swappiness on Linux
Linux has a swappiness setting which determines the balance between swapping out pages (chunks of memory) from RAM

to a preconfigured swap space on the hard drive.

The setting is from 0 to 100, with lower values meaning a lower likelihood of swapping. The default is usually 60 - you can

check this by running:

sysctl vm.swappiness

The default setting encourages the server to use swap. Since there probably won't be much else on the database server

besides MariaDB processes to put into swap, you'll probably want to reduce this to zero to avoid swapping as much as

possible. You can change the default by adding a line to the sysctl.conf file (usually found in /etc/sysctl.conf).

To set the swappiness to zero, add the line:

vm.swappiness = 0

This normally takes effect after a reboot, but you can change the value without rebooting as follows:

sysctl -w vm.swappiness=0

Since RHEL 6.4, setting swappiness=0 more aggressively avoids swapping out, which increases the risk of OOM

killing under strong memory and I/O pressure.

1734/4161

A low swappiness setting is recommended for database workloads. For MariaDB databases, it is recommended to set

swappiness to a value of 1.

vm.swappiness = 1

Disabling Swap Altogether
While some disable swap altogether, and you certainly want to avoid any database processes from using it, it can be

prudent to leave some swap space to at least allow the kernel to fall over gracefully should a spike occur. Having

emergency swap available at least allows you some scope to kill any runaway processes.

2.1.8 Troubleshooting Installation Issues
Articles relating to installation issues users might run into.

Troubleshooting Connection Issues

Common problems when trying to connect to MariaDB.

Installation issues on Windows

Issues people have encountered when installing MariaDB on Windows

Troubleshooting MariaDB Installs on Red Hat/CentOS

Issues people have encountered when installing MariaDB on Red Hat / CentOS

Installation issues on Debian and Ubuntu

Solutions to different installation issues on Debian and Ubuntu

What to Do if MariaDB Doesn't Start

Troubleshooting MariaDB when it fails to start.

Installing on an Old Linux Version

Typical errors from using an incompatible MariaDB binary on a linux system

Error: symbol mysql_get_server_name, version libmysqlclient_16 not defined

Error from using MariaDB's mysql command-line client with MySQL's libmysqlclient.so

Installation Issues with PHP5

PHP5 may give an error if used with the old connect method

There are 13 related questions .

9

6

7

1

17

6.2.7 Troubleshooting Connection Issues

2.1.8.2 Installation issues on Windows
Contents
1. MariaDB 10.4.13

2. Unsupported Versions of Windows

3. MariaDB 5.2.5 and earlier

1. On Windows Vista/7 , changes to database or my.ini are not persistent, when mysqld.exe is run from the

command line.

4. Systems with User Account Control

MariaDB 10.4.13
MariaDB 10.4.13 may not start on Windows. See MDEV-22555 .

To resolve this, download, click and install https://aka.ms/vs/16/release/vc_redist.x64.exe and then install 10.4.13.

1735/4161

https://mariadb.com/kb/en/installation-issues-with-php5/
https://mariadb.com/kb/en/troubleshooting-installation-issues/+questions/
https://jira.mariadb.org/browse/MDEV-22555
https://aka.ms/vs/16/release/vc_redist.x64.exe

Unsupported Versions of Windows
Recent versions of MariaDB may not install on unsupported Windows versions. See Deprecated Package Platforms to find

the final supported versions.

MariaDB 5.2.5 and earlier

On Windows Vista/7 , changes to database or my.ini are not persistent,
when mysqld.exe is run from the command line.

The reason for this behavior is Vista/Win7 file system redirection. Writes to protected locations (in this case a subdirectory

of Program Files) are redirected to the user's so-called "Virtual Store".

Workarounds:

Run mysqld.exe as service. See answer here on how to create a MariaDB service.

Run mysqld.exe from the elevated command prompt .

Change the ACL of the data directory and add full control for the current user.

The Windows installer for MariaDB 5.2.6 and higher will set the data directory ACL to include full access rights for the user

who runs the setup to prevent this issue from happening.

Systems with User Account Control
Running mysql_install_db.exe from a standard command prompt might cause the error:

FATAL ERROR: OpenSCManager failed

To get rid of it, use the elevated command prompt, for example on Windows 7 start it via 'Run as administrator' option.

2.1.2.1.6 Troubleshooting MariaDB Installs on Red
Hat/CentOS

2.1.8.4 Installation issues on Debian and Ubuntu
Solutions to different installation issues on Debian and Ubuntu

Differences in MariaDB in Debian (and Ubuntu)

MariaDB when installed from the Debian repos has a number of differences with standard MariaDB.

Moving from MySQL to MariaDB in Debian 9

MariaDB 10.1 is the default mysql server in Debian 9 "Stretch"

Creating a Debian Repository

Instructions for creating your own Debian repository

MariaDB 5.5.33 Debian and Ubuntu Installation Issues

Workarounds for some repository issues with the 5.5.33 release.

MariaDB Debian Live Images

Debian live iso images with pre-installed MariaDB (obsolete)

apt-upgrade Fails, But the Database is Running

timeout causing apt to fail while the database is running.

There are 9 related questions .

2

1

1

4

2.1.8.4.1 Differences in MariaDB in Debian (and
1736/4161

https://mariadb.com/kb/en/mariadb-525-release-notes/
http://stackoverflow.com/questions/4962342/mariadb-on-windows-what-is-this-error-when-trying-to-start-the-database-engine
http://www.winhelponline.com/articles/158/1/How-to-open-an-elevated-Command-Prompt-in-Windows-Vista.html
http://technet.microsoft.com/en-us/library/bb727008.aspx
https://mariadb.com/kb/en/mariadb-526-release-notes/
https://mariadb.com/kb/en/mariadb-5533-debian-and-ubuntu-installation-issues/
https://mariadb.com/kb/en/mariadb-debian-live-images/
https://mariadb.com/kb/en/installation-issues-on-debian-and-ubuntu/+questions/

Ubuntu)
Contents
1. Option File Locations

2. System Variables

3. Options

4. TLS

5. Authentication

6. More Information

The .deb packages provided by MariaDB Foundation's and MariaDB Corporation's repositories are not identical to the

official .deb packages provided by Debian's and Ubuntu's default repositories.

The packages provided by MariaDB Foundation's and MariaDB Corporation's repositories are generated using the Debian

packaging in MariaDB's official source code. The Debian packaging scripts are specifically in the debian/ directory.

The packages provided by Debian's and Ubuntu's default repositories are generated using the Debian packaging in

Debian's mirror of MariaDB's source code, which contains some custom changes. The source tree can be found here:

https://salsa.debian.org/mariadb-team/mariadb-server

As a consequence, MariaDB behaves a bit differently if it is installed from Debian's and Ubuntu's default repositories.

Option File Locations
The option file located at /etc/mysql/my.cnf is handled by the update-alternatives mechanism when

the mysql-common package is installed. It is a symbolic link that references either mysql.cnf or mariadb.cnf

depending on whether MySQL or MariaDB is installed. Most of the MariaDB option files are therefore actually located

in /etc/mysql/mariadb.d/ .

System Variables

Variable MariaDB in Debian Standard MariaDB Notes

character_set_server utf8mb4 latin1 Debian sets a default character set that can support emojis etc.

collation_server utf8mb4_general_ci latin1_swedish_ci

Options

Option
MariaDB in

Debian

Standard

MariaDB
Notes

plugin-

load-add
auth_socket.so -

Before MariaDB 10.4.3, MariaDB did not enable the unix_socket authentication

plugin by default.This is default in Debian, allowing passwordless login.

TLS
MariaDB binaries from .deb packages provided by Debian's and Ubuntu's default repositories are linked with a

different TLS library than MariaDB binaries from .deb packages provided by MariaDB Foundation's and MariaDB

Corporation's repositories.

MariaDB Server binaries:

In MariaDB 10.4.6 and later, MariaDB Server is statically linked with the bundled wolfSSL libraries in .deb

packages provided by Debian's and Ubuntu's default repositories.

In MariaDB 10.4.5 and before, MariaDB Server is statically linked with the bundled yaSSL libraries in .deb

packages provided by Debian's and Ubuntu's default repositories.

In contrast, MariaDB Server is dynamically linked with the system's OpenSSL libraries in .deb packages

provided by MariaDB Foundation and MariaDB Corporation.

MariaDB client and utility binaries:

In MariaDB 10.4.6 and later, MariaDB's clients and utilities and MariaDB Connector/C are dynamically linked

with the system's GnuTLS libraries in .deb packages provided by Debian's and Ubuntu's default

repositories. libmysqlclient is still statically linked with the bundled wolfSSL libraries.

In MariaDB 10.2 and later, MariaDB's clients and utilities and MariaDB Connector/C are dynamically linked

with the system's GnuTLS libraries in .deb packages provided by Debian's and Ubuntu's default

1737/4161

https://salsa.debian.org/mariadb-team/mariadb-server
http://manpages.ubuntu.com/manpages/trusty/en/man8/update-alternatives.8.html
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.gnutls.org/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://www.wolfssl.com/products/wolfssl/
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.gnutls.org/

repositories. libmysqlclient is still statically linked with the bundled yaSSL libraries.

In MariaDB 10.1 and earlier, MariaDB's clients and utilities and libmysqlclient are statically linked with the

bundled yaSSL libraries in .deb packages provided by Debian's and Ubuntu's default repositories.

In contrast, MariaDB's clients and utilities, libmysqlclient , and MariaDB Connector/C are dynamically linked

with the system's OpenSSL libraries in .deb packages provided by MariaDB Foundation's and MariaDB

Corporation's repositories.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on which

platforms.

Authentication
The unix_socket authentication plugin is installed by default in new installations that use the .deb packages

provided by Debian's default repositories in Debian 9 and later and Ubuntu's default repositories in Ubuntu 15.10 and

later.

The root@localhost created by mariadb-install-db will also be created to authenticate via the unix_socket

authentication plugin in these builds.

2.1.3.13.2 Upgrading from MySQL to MariaDB

2.1.2.8.18 Creating a Debian Repository

2.1.8.4.4 apt-upgrade Fails, But the Database is
Running
After running apt-upgrade mariadb , it's possible that apt shows a fail in trying to start the server, but in fact the database

is up and running, which then provokes apt to remain in a non finished state.

For example:

apt-get upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

2 not fully installed or removed.

After this operation, 0 B of additional disk space will be used.

Do you want to continue? [Y/n]

Setting up mariadb-server-10.1 (10.1.10+maria-1~trusty) ...

 * Stopping MariaDB database server mysqld

 ...done.

 * Starting MariaDB database server mysqld

 ...fail!

invoke-rc.d: initscript mysql, action "start" failed.

dpkg: error processing package mariadb-server-10.1 (--configure):

 subprocess installed post-installation script returned error exit status 1

dpkg: dependency problems prevent configuration of mariadb-server:

 mariadb-server depends on mariadb-server-10.1 (= 10.1.10+maria-1~trusty); however:

 Package mariadb-server-10.1 is not configured yet.

dpkg: error processing package mariadb-server (--configure):

 dependency problems - leaving unconfigured

No apport report written because the error message indicates its a followup error from a

previous failure.

Errors were encountered while processing:

 mariadb-server-10.1

 mariadb-server

E: Sub-process /usr/bin/dpkg returned an error code (1)

This situation could occur if the timeout for the init script was too short. For example, see MDEV-9382 , a situation where

the timeout was 30 seconds, but the server was taking 48 seconds to start.

To overcome this, the timeout needs to be increased. This can be achieved as follows:

On systems where systemd is not enabled/supported: The timeout can be increased by setting

1738/4161

https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://www.wolfssl.com/products/yassl/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://www.wolfssl.com/products/yassl/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.openssl.org/
https://jira.mariadb.org/browse/MDEV-9382

MYSQLD_STARTUP_TIMEOUT either directly in the script or via the command line. In MariaDB 10.1.13 and later

versions, the init script also sources /etc/default/mariadb, so it can also be used to set

MYSQLD_STARTUP_TIMEOUT to persistently change the startup timeout. The default timeout has been increased

from 30s to 60s in MariaDB 10.1.13 .

On systems that support systemd: The startup timeout can be increased by setting TimeoutStartSec systemd

option.

2.1.6.5 What to Do if MariaDB Doesn't Start

2.1.8.6 Installing on an Old Linux Version
This article lists some typical errors that may happen when you try to use an incompatible MariaDB binary on a linux system:

The following example errors are from trying to install MariaDB built for SuSE 11.x on a SuSE 9.0 server:

> scripts/mysql_install_db

./bin/my_print_defaults: /lib/i686/libc.so.6:

 version `GLIBC_2.4' not found (required by ./bin/my_print_defaults)

and

> ./bin/mysqld --skip-grant &

./bin/mysqld: error while loading shared libraries: libwrap.so.0:

cannot open shared object file: No such file or directory

If you see either of the above errors, the binary MariaDB package you installed is not compatible with your system.

The options you have are:

Find another MariaDB package or tar from the download page that matches your system.

or

Download the source and build it.

2.1.8.7 Error: symbol mysql_get_server_name,
version libmysqlclient_16 not defined
If you see the error message:

symbol mysql_get_server_name, version libmysqlclient_16 not defined in file libmysqlclient.so.16

with link time reference

...then you are probably trying to use the mysql command-line client from MariaDB with libmysqlclient.so from MySQL.

The symbol mysql_get_server_name() is something present in the MariaDB source tree and not in the MySQL tree.

If you have both the MariaDB client package and the MySQL client packages installed this error will happen if your system

finds the MySQL version of libmysqlclient.so first.

To figure out which library is being linked in dynamically (ie, the wrong one) use the 'ldd' tool.

ldd $(which mysql) | grep mysql

or

ldd /path/to/the/binary | grep mysql

For example:

me@mybox:~$ ldd $(which mysql)|grep mysql

 libmysqlclient.so.16 => /usr/lib/libmysqlclient.so.16 (0xb74df000)

You can then use your package manager's tools to find out which package the library belongs to.

1739/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://downloads.mariadb.org/

On CentOS the command to find out which package installed a specific file is:

rpm -qf /path/to/file

On Debian-based systems, the command is:

dpkg -S /path/to/file

Here's an example of locating the library and finding out which package it belongs to on an Ubuntu system:

me@mybox:~$ ldd $(which mysql)|grep mysql

 libmysqlclient.so.16 => /usr/lib/libmysqlclient.so.16 (0xb75f8000)

me@mybox:~$ dpkg -S /usr/lib/libmysqlclient.so.16

libmariadbclient16: /usr/lib/libmysqlclient.so.16

The above shows that the mysql command-line client is using the library /usr/lib/libmysqlclient.so.16 and that that

library is part of the libmariadbclient16 Ubuntu package. Unsurprisingly, the mysql command-line client works perfectly

on this system.

If the answer that came back had been something other than a MariaDB package, then it is likely there would have been

issues with running the MariaDB mysql client application.

If the library that the system tries to use is not from a MariaDB package, the remedy is to remove the offending package

(and possibly install or re-install the correct package) so that the correct library can be used.

2.1.9 Installing System Tables (mysql_install_db)

2.1.10 mysql_install_db.exe
Contents
1. Functionality

2. Example

3. Removing Database Instances

The mysql_install_db.exe utility is the Windows equivalent of mysql_install_db.

Functionality
The functionality of mysql_install_db.exe is comparable with the shell script mysql_install_db used on Unix,

however it has been extended with both Windows specific functionality (creating a Windows service) and to generally useful

functionality. For example, it can set the 'root' user password during database creation. It also creates the my.ini

configuration file in the data directory and adds most important parameters to it (e.g port).

mysql_install_db.exe is used by the MariaDB installer for Windows if the "Database instance" feature is selected. It

obsoletes similar utilities and scripts that were used in the past such as mysqld.exe -- install ,

mysql_install_db.pl , and mysql_secure_installation.pl .

Parameter Description

-? , -- help Display help message and exit

-d , -- datadir=name Data directory of the new database

-S , -- service=name Name of the Windows service

-p , -- password=name Password of the root user

-P , -- port=#
mysqld port

-W , -- socket=name named pipe name

-D , -- default-user Create default user

-R , -- allow-remote-root-access Allow remote access from network for user root

-N , -- skip-networking Do not use TCP connections, use pipe instead

1740/4161

https://mariadb.com/kb/en/installing-system-tables-mysql_install_db/

-i , -- innodb-page-size Innodb page size, since MariaDB 10.2.5

-s , -- silent Print less information

-o , -- verbose-bootstrap Include mysqld bootstrap output

-l , -- large-pages Use large pages, since MariaDB 10.6.1

-c , -- config my.ini config template file, since MariaDB 10.6.1

Note : to create a Windows service, mysql_install_db.exe should be run by a user with full administrator privileges

(which means elevated command prompt on systems with UAC). For example, if you are running it on Windows 7, make

sure that your command prompt was launched via 'Run as Administrator' option.

Example

 mysql_install_db.exe --datadir=C:\db --service=MyDB --password=secret

will create the database in the directory C:\db, register the auto-start Windows service "MyDB", and set the root password to

'secret'.

To start the service from the command line, execute

sc start MyDB

Removing Database Instances
If you run your database instance as service, to remove it completely from the command line, use

sc stop <servicename>

sc delete <servicename>

rmdir /s /q <path-to-datadir>

2.1.6.2 Configuring MariaDB with Option Files

2.1.12 MariaDB Environment Variables
MariaDB makes use of numerous environment variables that may be set on your system. Environment variables have the

lowest precedence, so any options set on the command line or in an option file will take precedence.

It's usually better not to rely on environment variables, and to rather set the options you need directly, as this makes the

system a little more robust and easy to administer.

Here is a list of environment variables used by MariaDB.

Environment Variable Description

CXX Name of the C++ compiler, used for running CMake.

CC Name of the C compiler, used for running CMake.

DBI_USER Perl DBI default username.

DBI_TRACE Perl DBI trace options.

HOME Default directory for the mysql_history file.

MYSQL_DEBUG Debug trace options used when debugging.

MYSQL_GROUP_SUFFIX In addition to the given option groups, also read groups with this suffix.

MYSQL_HISTFILE Path to the mysql_history file, overriding the $HOME/.mysql_history setting.

MYSQL_HOME Path to the directory containing the my.cnf file used by the server.

MYSQL_HOST Default host name used by the mariadb command line client.

MYSQL_PS1 Command prompt for use by the mariadb command line client.

1741/4161

https://mariadb.com/kb/en/mariadb-1025-release-notes/

MYSQL_PWD
Default password when connecting to mysqld. It is strongly recommended to use a more

secure method of sending the password to the server.

MYSQL_TCP_PORT Default TCP/IP port number.

MYSQL_UNIX_PORT On Unix, default socket file used for localhost connections.

PATH
Path to directories that hold executable programs (such as the mariadb client, mariadb-

admin), so that these can be run from any location.

TMPDIR Directory where temporary files are created.

TZ Local time zone .

UMASK
Creation mode when creating files. See Specifying Permissions for Schema (Data)

Directories and Tables.

UMASK_DIR
Creation mode when creating directories. See Specifying Permissions for Schema (Data)

Directories and Tables.

USER
On Windows, up to MariaDB 5.5, the default user name when connecting to the mysqld

server. API GetUserName() is used in later versions.

2.1.13 MariaDB on Amazon AWS
MariaDB is available on Amazon AWS through MariaDB SkySQL, as one of the database options when using Amazon's

RDS service, or using a MariaDB AMI on Amazon EC2 from the AWS Marketplace.

MariaDB SkySQL
Cloud database service is available through MariaDB SkySQL on Amazon AWS. MariaDB SkySQL delivers MariaDB with

enterprise features for mission-critical workloads. Support is provided directly by MariaDB. Refer to SkySQL Documentation

 for complete details. Get started to launch a MariaDB database on AWS in minutes.

Amazon RDS
To get started with MariaDB on Amazon's RDS service, click on the RDS link in the Database section of the AWS console .

Next, click on the Get Started Now button. Alternatively, you can click on the Launch DB Instance button from the

Instances section of the RDS Dashboard .

In either case, you will be brought to the page where you can select the database engine you want to use. Click on the

MariaDB logo and then click on the Select button.

You will then move to step 2 where you choose whether or not you want to use your MariaDB instance for production or non-

production usage. Amazon has links on this page to documentation on the various options.

After selecting the choice you want you will move to step 3 where you specify the details for your database, including setting

up an admin user in the database.

1742/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/products/skysql/docs/
https://mariadb.com/products/skysql/get-started/
https://console.aws.amazon.com/console/home
https://console.aws.amazon.com/rds/home#dbinstances:

You will then move to step 4 where you can configure advanced settings, including security settings, various options,

backup settings, maintenance defaults, and so on.

Refer to Amazon's RDS documentation for complete documentation on all the various settings and for information on

connecting to and using your RDS MariaDB instances.

AMI on EC2
MariaDB AMIs (Amazon Machine Images) are available in the AWS Marketplace. These AMIs, kept up-to-date with the most

recently released versions of MariaDB, are a great way to try out the newest MariaDB versions before they make it to RDS

and/or to use MariaDB in a more traditional server environment.

2.1.14 Migrating to MariaDB
Migrating to MariaDB from another DBMS.

Migrating to MariaDB from MySQL

Help with moving from MySQL to MariaDB, features and compatibility

Migrating to MariaDB from SQL Server

Guide to help you migrate from SQL Server to MariaDB.

Migrating to MariaDB from PostgreSQL

Information on migrating from PostgreSQL to MariaDB.

Migrating to MariaDB from Oracle

Help with migrating to MariaDB from Oracle

2.1.14.1 Migrating to MariaDB from MySQL
.

MariaDB versus MySQL - Features

MariaDB advantage in delivering enterprise-level high availability, scalability and security.

MariaDB versus MySQL - Compatibility

Compatibility and differences with MariaDB related to high availability, security and scalability.

Upgrading from MySQL to MariaDB

Upgrading from MySQL to MariaDB.

Incompatibilities and Feature Differences Between MariaDB 11.3 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 11.3 and MySQL 8.0.

8

25

8

1743/4161

https://aws.amazon.com/documentation/rds/
https://mariadb.com/kb/en/migrating-to-mariadb-from-oracle/

Incompatibilities and Feature Differences Between MariaDB 11.2 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 11.2 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 11.1 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 11.0 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 11.0 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 10.11 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 10.11 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 10.6 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 10.6 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 10.5 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 10.5 and MySQL 8.0.

Incompatibilities and Feature Differences Between MariaDB 10.4 and MySQL 8.0

List of incompatibilities and feature differences between MariaDB 10.4 and MySQL 8.0.

Function Differences Between MariaDB and MySQL

Functions available only in MariaDB.

System Variable Differences between MariaDB and MySQL

Comparison of variable differences between major versions of MariaDB and MySQL.

Installing MariaDB Alongside MySQL

MariaDB was designed as a drop in place replacement for MySQL, but you can ...

Moving from MySQL to MariaDB in Debian 9

MariaDB 10.1 is the default mysql server in Debian 9 "Stretch"

Migrating to MariaDB from MySQL - Obsolete Articles

Out-of-date articles that should not be relied on when migrating from MySQL to MariaDB.

There are 1 related questions .

1

5

1

2.1.14.1.1 MySQL vs MariaDB: Performance

Title: MariaDB versus MySQL - Features

See also MariaDB vs MySQL - Compatibility

Differences Per Release

For differences between specific releases, see

Incompatibilities and Feature Differences Between MariaDB 11.3 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 11.2 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 11.0 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.11 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.10 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.9 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.8 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.7 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.6 and MySQL 8.0

1744/4161

https://mariadb.com/kb/en/migrating-to-mariadb-from-mysql-obsolete-articles/
https://mariadb.com/kb/en/moving-from-mysql/+questions/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-10-10-and-mysql-8/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-10-9-and-mysql-8-/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-108-and-mysql-80/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-107-and-mysql-80/

Incompatibilities and Feature Differences Between MariaDB 10.5 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.4 and MySQL 8.0

Incompatibilities and Feature Differences Between MariaDB 10.3 and MySQL 5.7

Incompatibilities and Feature Differences Between MariaDB 10.2 and MySQL 5.7

For a detailed breakdown of system variable differences, see:

System variable differences between MariaDB 11.3 and MySQL 8.0

System variable differences between MariaDB 11.2 and MySQL 8.0

System variable differences between MariaDB 11.1 and MySQL 8.0

System variable differences between MariaDB 11.0 and MySQL 8.0

System variable differences between MariaDB 10.11 and MySQL 8.0

System variable differences between MariaDB 10.10 and MySQL 8.0

System variable differences between MariaDB 10.9 and MySQL 8.0

System variable differences between MariaDB 10.8 and MySQL 8.0

System variable differences between MariaDB 10.7 and MySQL 8.0

System variable differences between MariaDB 10.6 and MySQL 8.0

System variable differences between MariaDB 10.5 and MySQL 8.0

System variable differences between MariaDB 10.4 and MySQL 8.0

System variable differences between MariaDB 10.3 and MySQL 8.0

System variable differences between MariaDB 10.3 and MySQL 5.7

System variable differences between MariaDB 10.2 and MySQL 5.7

System variable differences between MariaDB 10.1 and MySQL 5.7

System variable differences between MariaDB 10.1 and MySQL 5.6

System variable differences between MariaDB 10.0 and MySQL 5.6

System variable differences between MariaDB 5.5 and MySQL 5.5

For a detailed breakdown of function differences, see:

Function Differences Between MariaDB 11.3 and MySQL 8.0

Function Differences Between MariaDB 11.2 and MySQL 8.0

Function Differences Between MariaDB 11.1 and MySQL 8.0

Function Differences Between MariaDB 11.0 and MySQL 8.0

Function Differences Between MariaDB 10.11 and MySQL 8.0

Function Differences Between MariaDB 10.10 and MySQL 8.0

Function Differences Between MariaDB 10.9 and MySQL 8.0

Function Differences Between MariaDB 10.8 and MySQL 8.0

Function Differences Between MariaDB 10.7 and MySQL 8.0

Function Differences Between MariaDB 10.6 and MySQL 8.0

Function Differences Between MariaDB 10.5 and MySQL 8.0

Function Differences Between MariaDB 10.4 and MySQL 8.0

Function Differences Between MariaDB 10.3 and MySQL 8.0

Function Differences Between MariaDB 10.3 and MySQL 5.7

Function Differences Between MariaDB 10.2 and MySQL 5.7

More Storage Engines

In addition to the standard MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the following

are also included with MariaDB Source and Binary packages:

ColumnStore , a column oriented storage engine optimized for Data warehousing.

MyRocks, a storage engine with great compression, in 10.2

Aria, MyISAM replacement with better caching.

FederatedX (drop-in replacement for Federated)

OQGRAPH (In MariaDB 5.2 and later. Disabled in MariaDB 5.5 only.)

SphinxSE (In MariaDB 5.2 and later)

CONNECT in MariaDB 10.0 and later.

SEQUENCE in MariaDB 10.0 and later.

Spider in MariaDB 10.0 and later.

TokuDB (In MariaDB 5.5 and later, removed in 10.6)

Cassandra (In MariaDB 10.0, removed in 10.6)

Speed Improvements

MariaDB now provides much faster privilege checks for setups with many user accounts or many database

The new FLUSH SSL command allows SSL certificates to be reloaded without restarting the server

Many optimizer enhancements in MariaDB 5.3. Subqueries are now finally usable. The complete list and a

comparison with MySQL is here . A benchmark can be found here .

Faster and safer replication: Group commit for the binary log. This makes many setups that use replication and lots of
1745/4161

https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-10-10-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-109-and-mysql-80/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-108-and-mysql-80/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-107-and-mysql-80/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-103-and-mysql-80/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-101-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-101-and-mysql-56/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-100-and-mysql-56/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-55-and-mysql-55/
https://mariadb.com/kb/en/function-differences-between-mariadb-10-10-and-mysql-8-0/
https://mariadb.com/kb/en/function-differences-between-mariadb-109-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-108-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-107-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-103-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/function-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/cassandra-storage-engine/
https://mariadb.com/kb/en/optimizer-feature-comparison-matrix/
https://mariadb.com/blog/mariadb-53-optimizer-benchmark

updates more than 2x times faster .

Parallel replication 4 new in 10.0

Improvements for InnoDB asynchronous IO subsystem on Windows.

Indexes for the MEMORY(HEAP) engine are faster. According to a simple test, 24% faster on INSERT for integer

index and 60% faster for index on a CHAR(20) column. Fixed in MariaDB 5.5 and MySQL 5.7.

Segmented Key Cache for MyISAM. Can speed up MyISAM tables with up to 4x 4 new in 5.2

Adjustable hash size for MyISAM and Aria. This can greatly improve shutdown time (from hours to minutes) if using a

lot of MyISAM/Aria tables with delayed keys 4 new in 10.0.13

CHECKSUM TABLE is faster.

We improved the performance of character set conversions (and removed conversions when they were not really

needed). Overall speed improvement is 1-5 % (according to sql-bench) but can be higher for big result sets with all

characters between 0x00-0x7f.

Pool of Threads in MariaDB 5.1 and even better in MariaDB 5.5. This allows MariaDB to run with 200,000+

connections and with a notable speed improvement when using many connections.

Several speed improvements when a client connects to MariaDB. Many of the improvements were done in MariaDB

10.1 and MariaDB 10.2.

There are some improvements to the DBUG code to make its execution faster when debug is compiled in but not

used.

Our use of the Aria storage engine enables faster complex queries (queries which normally use disk-based temporary

tables). The Aria storage engine is used for internal temporary tables, which should give a speedup when doing

complex selects. Aria is usually faster for temporary tables when compared to MyISAM because Aria caches row data

in memory and normally doesn't have to write the temporary rows to disk.

The test suite has been extended and now runs much faster than before, even though it tests more things.

Extensions & New Features

We've added a lot of new features to MariaDB . If a patch or feature is useful, safe, and stable 4 we make every effort to

include it in MariaDB. The most notable features are:

Support introduced for System-versioned tables. Allows queries to access both current and historic data, aiding in

managing retention, analysis and point-in-time recovery. 4 new in 10.3

ALTER TABLE... DROP COLUMN can now run as Instant operations. Can also now change the ordering of columns.

4 new in 10.4

Support introduced for password expiration, using the user password expiry 4 new in 10.4

In order to support the use of multiple authentication plugins for a single user, the mysql.user system table has

been retired in favor of the mysql.glob_priv system table. 4 new in 10.4

The unix_socket authentication plugin is now the default on Unix-like systems. This represents a major change to

authentication in MariaDB 4 new in 10.4

Support introduced for Optimizer Trace, which provides detailed information on how the Optimizer processes queries.

To enable Optimizer Trace, set the optimizer_trace system variable 4 new in 10.4

The MariaDB SQL/PL stored procedure dialect (enabled with sql_mode=ORACLE) now supports Oracle style

packages. Support for the following statements are available: CREATE PACKAGE, CREATE PACKAGE BODY,

DROP PACKAGE, DROP PACKAGE BODY, SHOW CREATE PACKAGE, SHOW CREATE PACKAGE BODY 4 new in

10.3

Automatic collection of Engine Independent Table Statistics 4 new in 10.4

Support for the use of parentheses (brackets) for specifying precedence in the ordering of execution for SELECT

statements and Table Value Operations, (including the use of UNION, EXCEPT, INTERSECT operations) 4 new in 10.4

Support for anchored data types added to local stored procedure variables. 4 new in 10.3

Support added for Stored Aggregate functions 4 new in 10.3

Oracle compatible SUBSTR() function is available 4 new in 10.3

Oracle compatible SEQUENCE support is provided 4 new in 10.3

Support for anchored data types added to stored routine variables 4 new in 10.3

Support for anchored data types added to stored routine parameters 4 new in 10.3

Cursors with parameters are now supported 4 new in 10.3

INVISIBLE columns are now supported 4 new in 10.3

Instant ADD COLUMN is now available for InnoDB 4 new in 10.3

Window functions are supported 4 new in 10.2

Number of supported decimals in DECIMAL has increased from 30 to 38 4 new in 10.2

Recursive Common Table Expressions 4 new in 10.2

New WITH statement. WITH is a common table expression that allows one to refer to a subquery expression many

times in a query 4 new in 10.2

CHECK CONSTRAINT 4 new in 10.2

DEFAULT expression, including DEFAULT for BLOB and TEXT 4 new in 10.2

Added catchall for list partitions 4 new in 10.2

Oracle-style EXECUTE IMMEDIATE statement 4 new in 10.2

Several new JSON functions 4 new in 10.2

Microsecond Precision in Processlist

1746/4161

http://www.facebook.com/note.php?note_id=10150211546215933
https://mariadb.com/kb/en/mariadb-53-asynchronous-io-on-windows-with-innodb/
https://mariadb.com/kb/en/pool-of-threads/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/table-value-operations

Table Elimination

Virtual Columns 4 new in 5.2

Microseconds in MariaDB 4 new in 5.3

Extended User Statistics 4 new in 5.2

KILL all queries for a user 4 new in 5.3,

KILL QUERY ID - terminates the query by query_id, leaving the connection intact 4 new in 10.0.5,

Pluggable Authentication 4 new in 5.2

Storage-engine-specific CREATE TABLE 4 new in 5.2

Enhancements to INFORMATION SCHEMA.PLUGINS table 4 new in 5.2

Group commit for the binary log. This makes replication notably faster! 4 new in 5.3

Added -- rewrite-db mysqlbinlog option to change the used database 4 new in 5.2

Progress reporting for ALTER TABLE and LOAD DATA INFILE 4 new in 5.3

Faster joins and subqueries 4 new in 5.3

HandlerSocket and faster HANDLER calls 4 new in 5.3

Dynamic Columns support 4 new in 5.3

GIS Functionality 4 new in 5.3

Multi-source replication 4 new in 10.0

Global Transaction ID 4 new in 10.0

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. 4 new in 10.0

Roles 4 new in 10.0

PCRE Regular Expressions (including REGEXP_REPLACE()) 4 new in 10.0

CREATE OR REPLACE

DELETE ... RETURNING 4 new in 10.0

MariaDB supports more collations than MySQL.

For a full list, please see features for each release

Better Testing

More tests in the test suite.

Bugs in tests fixed.

Test builds with different configure options to get better feature testing.

Remove invalid tests. (e.g. don't test feature ''X'' if that feature is not in the tested build)

Fewer Warnings and Fewer Bugs

Bugs are bad. Fix as many bugs as possible and try to not introduce new ones.

Compiler warnings are also bad. Eliminate as many compiler warnings as possible.

Truly Open Source

All code in MariaDB is released under GPL, LGPL or BSD.

MariaDB does not have closed source modules like the ones that can be found in MySQL Enterprise Edition. In fact,

all the closed source features in MySQL 5.5 Enterprise Edition are found in the MariaDB open source version.

MariaDB client libraries (for C, for Java (JDBC), for Windows (ODBC)) are released under LGPL to allow linking with

closed source software. MySQL client libraries are released under GPL that does not allow linking with closed source

software.

MariaDB includes test cases for all fixed bugs. Oracle doesn't provide test cases for new bugs fixed in MySQL 5.5.

All bugs and development plans are public.

MariaDB is developed by the community in true open source spirit.

Related Links

Compatiblity between MariaDB and MySQL

Moving from MySQL

Troubleshooting Installation Issues

2.1.14.1.2 MariaDB versus MySQL:
Compatibility

See also MariaDB vs MySQL - Features

1747/4161

http://www.facebook.com/note.php?note_id=10150261692455933
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://jira.mariadb.org
https://mariadb.com/kb/en/development-plans/
https://mariadb.com/kb/en/who-is-behind-mariadb/

Contents
1. Replacement for MySQL

1. Drop-in Compatibility of Specific MariaDB Versions

2. Replication Compatibility

1. MySQL 5.7

2. MySQL 8.0

3. Incompatibilities between Currently Maintained MariaDB Versions and MySQL

1. Incompatibilities between MariaDB 11.3 and MySQL 8.0

2. Incompatibilities between MariaDB 11.2 and MySQL 8.0

3. Incompatibilities between MariaDB 11.1 and MySQL 8.0

4. Incompatibilities between MariaDB 11.0 and MySQL 8.0

5. Incompatibilities between MariaDB 10.11 and MySQL 8.0

6. Incompatibilities between MariaDB 10.6 and MySQL 8.0

7. Incompatibilities between MariaDB 10.5 and MySQL 8.0

8. Incompatibilities between MariaDB 10.4 and MySQL 8.0

4. Incompatibilities between Unmaintained MariaDB Versions and MySQL

1. Incompatibilities between MariaDB 10.10 and MySQL 8.0

2. Incompatibilities between MariaDB 10.9 and MySQL 8.0

3. Incompatibilities between MariaDB 10.8 and MySQL 8.0

4. Incompatibilities between MariaDB 10.7 and MySQL 8.0

5. Incompatibilities between MariaDB 10.3 and MySQL 5.7

6. Incompatibilities between MariaDB 10.2 and MySQL 5.7

7. Incompatibilities between MariaDB 10.1 and MySQL 5.7

8. Incompatibilities between MariaDB 10.0 and MySQL 5.6

9. Incompatibilities between MariaDB 5.5 and MySQL 5.5

10. Incompatibilities between MariaDB 5.3 and MySQL 5.1

11. Incompatibilities between MariaDB 5.2 and MySQL 5.1

12. Incompatibilities between MariaDB 5.1 and MySQL 5.1

5. Old, Unsupported Configuration Options

6. Replacing a MySQL RPM

7. Incompatibilities between MariaDB and MySQL-Proxy

8. Related Links

Replacement for MySQL
Until MariaDB 5.5, MariaDB versions functioned as a "drop-in replacement" for the equivalent MySQL version, with some

limitations. From MariaDB 10.0, it is usually still very easy to upgrade from MySQL.

MariaDB's data files are generally binary compatible with those from the equivalent MySQL version.

All filenames and paths are generally the same.

Data and table definition files (.frm) files are binary compatible.

See note below for an incompatibility with views!

MariaDB's client protocol is binary compatible with MySQL's client protocol.

All client APIs and structs are identical.

All ports and sockets are generally the same.

All MySQL connectors (PHP, Perl, Python, Java, .NET, MyODBC, Ruby, MySQL C connector etc) work

unchanged with MariaDB.

There are some installation issues with PHP5 that you should be aware of (a bug in how the old PHP5 client

checks library compatibility).

This means that for many cases, you can just uninstall MySQL and install MariaDB and you are good to go. There is not

generally any need to convert any data files.

However, you must still run mysql_upgrade to finish the upgrade. This is needed to ensure that your mysql privilege and

event tables are updated with the new fields MariaDB uses.

That said, MariaDB has a lot of new options, extension, storage engines and bug fixes that are not in MySQL. You can

find the feature set for the different MariaDB versions on the What is in the different MariaDB Releases page.

Drop-in Compatibility of Specific MariaDB Versions

MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4 function as limited drop-in replacements for MySQL 5.7, as far as InnoDB

is concerned. However, the implementation differences continue to grow in each new MariaDB version.

MariaDB 10.0 and MariaDB 10.1 function as limited drop-in replacements for MySQL 5.6, as far as InnoDB is concerned.

However, there are some implementation differences in some features.

MariaDB 5.5 functions as a drop-in replacement for MySQL 5.5.

1748/4161

https://mariadb.com/kb/en/installation-issues-with-php5/
https://mariadb.com/kb/en/mariadb-versus-mysql-features/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

MariaDB 5.1, MariaDB 5.2, and MariaDB 5.3 function as drop-in replacements for MySQL 5.1.

Replication Compatibility
Replication compatibility depends on:

The MariaDB Server version

The MySQL Server version

The role of each server

Replication compatibility details are described below for each MySQL version that is still maintained.

For replication compatibility details between MariaDB versions, see Cross-Version Replication Compatibility.

MySQL 5.7

MariaDB Server 10.2 and later can replicate from a MySQL 5.7 primary server.

MariaDB Server does not support the MySQL implementation of Global Transaction IDs (GTIDs), so the MariaDB replica

server must use the binary log file and position for replication. If GTID mode is enabled on the MySQL primary server, the

MariaDB replica server will remove the MySQL GTID events and replace them with MariaDB GTID events.

Although MariaDB Server and MySQL 5.7 are compatible at the replication level, they may have some incompatibilities at

the SQL (detailed below). Those differences can cause replication failures in some cases. To decrease the risk of

compatibility issues, it is recommended to set binlog_format to ROW . When you want to replicate from MySQL 5.7 to

MariaDB Server, it is recommended to test your application, so that any compatibility issues can be found and fixed.

MariaDB can't make any claims about whether a MySQL 5.7 replica server can replicate from a MariaDB primary server.

MySQL 8.0

MariaDB Server cannot replicate from a MySQL 8.0 primary server, because MySQL 8.0 has a binary log format that is

incompatible.

Incompatibilities between Currently Maintained MariaDB
Versions and MySQL

Incompatibilities between MariaDB 11.3 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 11.3 and MySQL 8.0 for details.

Function Differences Between MariaDB 11.3 and MySQL 8.0

System Variable Differences Between MariaDB 11.3 and MySQL 8.0

Incompatibilities between MariaDB 11.2 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 11.2 and MySQL 8.0 for details.

Function Differences Between MariaDB 11.2 and MySQL 8.0

System Variable Differences Between MariaDB 11.2 and MySQL 8.0

Incompatibilities between MariaDB 11.1 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL 8.0 for details.

Function Differences Between MariaDB 11.1 and MySQL 8.0

System Variable Differences Between MariaDB 11.1 and MySQL 8.0

Incompatibilities between MariaDB 11.0 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 11.0 and MySQL 8.0 for details.

Function Differences Between MariaDB 11.0 and MySQL 8.0

System Variable Differences Between MariaDB 11.0 and MySQL 8.0

Incompatibilities between MariaDB 10.11 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.11 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.11 and MySQL 8.0

1749/4161

System Variable Differences Between MariaDB 10.11 and MySQL 8.0

Incompatibilities between MariaDB 10.6 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.6 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.6 and MySQL 8.0

System Variable Differences Between MariaDB 10.6 and MySQL 8.0

Incompatibilities between MariaDB 10.5 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.5 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.5 and MySQL 8.0

System Variable Differences Between MariaDB 10.5 and MySQL 8.0

Incompatibilities between MariaDB 10.4 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.4 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.4 and MySQL 8.0

System Variable Differences Between MariaDB 10.4 and MySQL 8.0

Incompatibilities between Unmaintained MariaDB
Versions and MySQL

Incompatibilities between MariaDB 10.10 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.10 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.10 and MySQL 8.0

System Variable Differences Between MariaDB 10.10 and MySQL 8.0

Incompatibilities between MariaDB 10.9 and MySQL 8.0

Function Differences Between MariaDB 10.9 and MySQL 8.0

System Variable Differences Between MariaDB 10.9 and MySQL 8.0

Incompatibilities between MariaDB 10.8 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.8 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.8 and MySQL 8.0

System Variable Differences Between MariaDB 10.8 and MySQL 8.0

Incompatibilities between MariaDB 10.7 and MySQL 8.0

See Incompatibilities and Feature Differences Between MariaDB 10.7 and MySQL 8.0 for details.

Function Differences Between MariaDB 10.7 and MySQL 8.0

System Variable Differences Between MariaDB 10.7 and MySQL 8.0

Incompatibilities between MariaDB 10.3 and MySQL 5.7

See Incompatibilities and Feature Differences Between MariaDB 10.3 and MySQL 5.7 for details.

Function Differences Between MariaDB 10.3 and MySQL 5.7

System Variable Differences Between MariaDB 10.3 and MySQL 5.7

Incompatibilities between MariaDB 10.2 and MySQL 5.7

See Incompatibilities and Feature Differences Between MariaDB 10.2 and MySQL 5.7 for details.

System Variable Differences Between MariaDB 10.2 and MySQL 5.7

Incompatibilities between MariaDB 10.1 and MySQL 5.7

MariaDB 10.1 and above does not support MySQL 5.7's packed JSON objects. MariaDB follows the SQL standard

and stores the JSON as a normal TEXT/BLOB. If you want to replicate JSON columns from MySQL to MariaDB, you

1750/4161

https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-10-10-and-mysql-8/
https://mariadb.com/kb/en/function-differences-between-mariadb-10-10-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-10-10-and-mysql-8-0/
https://mariadb.com/kb/en/function-differences-between-mariadb-10-9-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-109-and-mysql-80/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-108-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-10-8-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-108-and-mysql-80/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-107-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-10-7-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-107-and-mysql-80/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/function-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-107-and-mysql-80/

should store JSON objects in MySQL in a TEXT column or use statement based replication. If you are using JSON

columns and want to upgrade to MariaDB, you can either convert the JSON columns to TEXT or use mysqldump to

copy these tables to MariaDB. In MySQL, JSON is compared according to json values. In MariaDB JSON strings are

normal strings and compared as strings.

MariaDB 10.1's InnoDB encryption is implemented differently than MySQL 5.7's InnoDB encryption.

MariaDB 10.1 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 10.1 does not support multiple triggers for a table - MDEV-6112 . This is fixed in MariaDB 10.2

MariaDB 10.1 does not support CREATE TABLESPACE for InnoDB.

MariaDB 10.1 does not support MySQL 5.7's <native= InnoDB partitioning handler. Fixed in MariaDB 10.6.15.

MariaDB does not support MySQL 5.7's X protocol.

MariaDB 10.1 does not support the use of multiple triggers of the same type for a table. This feature was introduced in

MariaDB 10.2.2 .

MariaDB 10.1 does not support MySQL 5.7's transportable tablespaces for partitioned InnoDB tables. ALTER TABLE

... {DISCARD|IMPORT} PARTITION is not supported. For a workaround see the following blog post .

MariaDB 10.1 does not support MySQL 5.7's online undo tablespace truncation. However, this feature was added to

MariaDB 10.2.

MySQL 5.7 features a new implementation of the performance_schema and a sys schema wrapper. These are

not yet supported in MariaDB.

MySQL 5.7 adds multi-source replication and replication channels. Multi-source replication was added to MariaDB

previously, in MariaDB 10.0, and uses a different syntax.

MySQL 5.7 adds group replication. This feature is incompatible with MariaDB's galera-cluster replication.

MariaDB 10.1 does not support MySQL 5.7's, ACCOUNT LOCK/UNLOCK synax for CREATE USER and ALTER USER

statements.

MariaDB 10.1 does not support MySQL 5.7's ALTER TABLE...RENAME INDEX statements.

MariaDB 10.1 does not support MySQL 5.7's STACKED operation for GET DIAGNOSTICS statements.

MariaDB 10.1 does not support MySQL 5.7's {WITH|WITHOUT} VALIDATION syntax for ALTER TABLE.. EXCHANGE

PARTITION statements.

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mysql_install_db instead. - MDEV-19010

Also see Incompatibilities between MariaDB 10.0 and MySQL 5.6.

Also see a detailed breakdown of System variable differences between MariaDB 10.1and MySQL 5.7 .

Incompatibilities between MariaDB 10.0 and MySQL 5.6

MySQL does not support MariaDB's Spider Storage Engine.

All MySQL binaries (mysqld , myisamchk etc.) give a warning if one uses a prefix of an option (such as --big-

table instead of --big-tables). MariaDB binaries work in the same way as most other Unix commands and don't

give warnings when using unique prefixes.

MariaDB GTID is not compatible with MySQL 5.6. This means that one can't have MySQL 5.6 as a slave for MariaDB

10.0. However MariaDB 10.0 can be a slave of MySQL 5.6 or any earlier MySQL/MariaDB version. Note that MariaDB

and MySQL also have different GTID system variables, so these need to be adjusted when migrating.

MariaDB 10.0 multi-source replication is not supported in MySQL 5.6.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

See also a detailed breakdown of System variable differences between MariaDB 10.0 and MySQL 5.6 .

MySQL 5.6 has performance schema enabled by default. For performance reasons MariaDB 10.0 has it disabled by

default. You can enable it by starting mysqld with the option --performance-schema .

MariaDB 10.0 does not support the MySQL Memcached plugin. However, data stored using memcached can be

retrieved because the data is stored as InnoDB tables. MariaDB is able to start successfully with an error message of

not being able to find libmemcached.so library.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 10.0 as MariaDB does not

include MySQL's sha256_password plugin.

MariaDB 10.0 does not support delayed replication - MDEV-7145 .

Also see a detailed breakdown of System variable differences between MariaDB 10.0 and MySQL 5.6 .

The low-level temporal format used by TIME, DATETIME and TIMESTAMP is different in MySQL 5.6 and MariaDB

10.0. (In MariaDB 10.1, the MySQL implementation is used by default - see mysql56_temporal_format.)

MariaDB implements some changes in the SQL query optimizer over what's available in MySQL. This can result in

EXPLAIN statements showing different plans.

MySQL delayed replication, (through MASTER_DELAY), is not supported in MariaDB 10.0, it was implemented in

MariaDB 10.2.5

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

1751/4161

https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://jira.mariadb.org/browse/MDEV-6112
https://mariadb.com/kb/en/mariadb-1022-release-notes/
http://www.geoffmontee.com/importing-innodb-partitions-in-mysql-5-6-and-mariadb-10-010-1/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/Galera_Cluster
https://mariadb.com/kb/en/get-diagnostics/
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-101-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-100-and-mysql-56/
https://jira.mariadb.org/browse/MDEV-7145
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-100-and-mysql-56/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://jira.mariadb.org/browse/MDEV-9069

Incompatibilities between MariaDB 5.5 and MySQL 5.5

Views with definition ALGORITHM=MERGE or ALGORITHM=TEMPTABLE got accidentally swapped between

MariaDB and MySQL! You have to re-create views created with either of these definitions!

INSERT IGNORE also gives warnings for duplicate key errors. You can turn this off by setting

OLD_MODE=NO_DUP_KEY_WARNINGS_WITH_IGNORE (see OLD_MODE).

Before MariaDB 5.5.31 , X'HHHH' , the standard SQL syntax for binary string literals, erroneously worked in the

same way as 0xHHHH , which could work as a number or string depending on the context. In 5.5.31 this was fixed to

behave as a string in all contexts (and never as a number), introducing an incompatibility with previous versions of

MariaDB, and all versions of MySQL. See CAST and Hexadecimal Literals for more details and examples.

MariaDB dynamic columns are not supported by MySQL.

MariaDB virtual columns are not supported by MySQL.

MariaDB's HandlerSocket plugin is not supported by MySQL.

MariaDB's Cassandra Storage Engine is not supported by MySQL.

As of MariaDB 5.5.35 , EXTRACT (HOUR FROM ...) adheres to the SQL standard and returns a result from 0 to 23.

In MySQL, and earlier versions of MariaDB, the result can be greater than 23.

See also a detailed breakdown of System variable differences between MariaDB 5.5 and MySQL 5.5 .

Incompatibilities between MariaDB 5.3 and MySQL 5.1

Views with definition ALGORITHM=MERGE or ALGORITHM=TEMPTABLE got accidentally swapped between

MariaDB 5.2 and MariaDB 5.3! You have to re-create views created with either of these definitions!

A few error messages related to wrong conversions are different as MariaDB provides more information in the

message about what went wrong.

Error numbers for MariaDB-specific errors have been moved to start from 1900 so as not to conflict with MySQL

errors.

Microseconds now work in all contexts; MySQL, in some contexts, lost the microsecond part from datetime and time.

UNIX_TIMESTAMP(constant-date-string) returns a timestamp with 6 decimals in MariaDB while MySQL returns it

without a decimal. This can cause a problem if you are using UNIX_TIMESTAMP() as a partitioning function. You can

fix this by using FLOOR(UNIX_TIMESTAMP(..)) or changing the date string to a date number, like 20080101000000.

MariaDB performs stricter checking of date, datetime and timestamp values. For example UNIX_TIMESTAMP('x')

now returns NULL instead of 0.

The old --maria- startup options are removed. You should use the --aria- prefix instead. (MariaDB 5.2

supports both --maria- and --aria-)

SHOW PROCESSLIST has an extra Progress column which shows progress for some commands. You can disable it

by starting mysqld with either --old-mode=NO_PROGRESS_INFO or with the --old flag (see OLD_MODE).

INFORMATION_SCHEMA.PROCESSLIST has three new columns for progress reporting: STAGE , MAX_STAGE , and

PROGRESS .

Long comments which start with /*M! or /*M!##### are executed.

If you use max_user_connections=0 (which means any number of connections) when starting mysqld, you can't

change the global variable anymore while mysqld remains running. This is because when mysqld is started with

max_user_connections=0 it does not allocate counting structures (which also involve a mutex for each

connection). This would lead to wrong counters if you later changed the variable. If you want to be able to change this

variable at runtime, set it to a high value at startup.

You can set max_user_connections (both the global variable and the GRANT option) to -1 to stop users from

connecting to the server. The global max_user_connections variable does not affect users with the SUPER

privilege.

The IGNORE directive does not ignore all errors (like fatal errors), only things that are safe to ignore.

Incompatibilities between MariaDB 5.2 and MySQL 5.1

The list is the same as between MariaDB 5.1 and MySQL 5.1, with one addition:

A new SQL_MODE value was added: IGNORE_BAD_TABLE_OPTIONS . If it is not set, using a table, field, or index

attribute (option) that is not supported by the chosen storage engine will cause an error. This change might cause

warnings in the error log about incorrectly defined tables from the mysql database, fix that with mysql_upgrade.

For all practical purposes, MariaDB 5.2 is a drop in replacement for MariaDB 5.1 and MySQL 5.1.

Incompatibilities between MariaDB 5.1 and MySQL 5.1

In some few cases MariaDB has to be incompatible to allow MariaDB to provide more and better information than MySQL.

Here is the list of all known user level incompatibilities you may see when using MariaDB 5.1 instead of MySQL 5.1.

The installation package names start with MariaDB instead of MySQL.

Timings may be different as MariaDB is in many cases faster than MySQL.

1752/4161

https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/cassandra/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-55-and-mysql-55/

mysqld in MariaDB also reads the [mariadb] sections of your my.cnf files.

You can't use a binary only storage engine library with MariaDB if it's not compiled for exactly the same MariaDB

version. (This is because the server internal structure THD is different between MySQL and MariaDB. This is

common also between different MySQL versions). This should not be a problem as most people don't load new

storage engines and MariaDB comes with more storage engines than MySQL.

CHECKSUM TABLE may give different result as MariaDB doesn't ignore NULL's in the columns as MySQL 5.1 does

(Future MySQL versions should calculate checksums the same way as MariaDB). You can get the 'old style'

checksum in MariaDB by starting mysqld with the --old option. Note however that that the MyISAM and Aria

storage engines in MariaDB are using the new checksum internally, so if you are using --old , the CHECKSUM

command will be slower as it needs to calculate the checksum row by row.

The slow query log has more information about the query, which may be a problem if you have a script which parses

the slow query log.

MariaDB by default takes a bit more memory than MySQL because we have by default enabled the Aria storage

engine for handling internal temporary tables. If you need MariaDB to take very little memory (at the expense of

performance), you can set the value of aria_pagecache_buffer_size to 1M (the default is 128M).

If you are using new command options, new features of MariaDB or new storage engines, you can't move easily

back and forth between MySQL and MariaDB anymore.

Old, Unsupported Configuration Options
If you are using any of the following options in your /etc/my.cnf or other my.cnf file you should remove them. This is

also true for MySQL 5.1 or newer:

skip-bdb

Replacing a MySQL RPM
If you uninstalled a MySQL RPM to install MariaDB, note that the MySQL RPM on uninstall renames /etc/my.cnf to

/etc/my.cnf.rpmsave .

After installing MariaDB you should do the following to restore your old configuration options:

mv -vi /etc/my.cnf.rpmsave /etc/my.cnf

Incompatibilities between MariaDB and MySQL-Proxy
A MySQL client API is able to connect to MariaDB using MySQL-Proxy but a MariaDB client API will receive progress

reporting informations that MySQL-Proxy does not implement, to get full compatibility in all case just disable progress

reporting on the client or server side.

Another option is to use the MariaDB MaxScale proxy , that works with both MySQL and MariaDB.

Related Links
MariaDB vs MySQL - Features

Moving from MySQL to MariaDB

Troubleshooting Installation Issues

Projects and applications that work with MariaDB

2.1.3.13.1 Upgrading from MySQL to MariaDB

2.1.14.1.4 Incompatibilities and Feature
Differences Between MariaDB 11.3 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

1753/4161

https://mariadb.com/kb/en/mariadb-versus-mysql-features/
https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/works-with-mariadb/

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 11.3 and

MySQL 8.0. It is based on the versions MySQL 8.0.35 and MariaDB 11.3.1. Note that MySQL 8 is an 'evergreen' release, so

features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 11.3:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

MariaDB supports localization in a number of additional languages: Bulgarian, Chinese, Georgian, Hindi, Serbian,

and Ukrainian.

MariaDB has made major improvements to the optimizer.

Sequences

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

GRANT to PUBLIC - MDEV-5215 (blog post)

WAIT syntax for setting the lock wait timeout.

UUID data type for storing UUIDs.

INET6 and INET4 data types for storing IPv6 and IPv4 addresses.

SUPER privileges made more granular.

PROXY protocol support

Multiple compression algorithms available as plugins

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations (506) than MySQL (266).

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

1754/4161

https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://mariadb.com/kb/en/proxy-protocol-support/

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 11.3, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 11.3 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 11.3 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 11.3, MariaDB supports

40 character sets and 506 collations . As of 8.0.35, MySQL supports 41 character sets (gb18030 being the

additional one - MDEV-7495) and 286 collations.

MariaDB indicates collation pad status as part of the name (e.g. utf8mb3_unicode_nopad_ci), while MySQL

indicates pad status by means of an extra column in SHOW COLLATION.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the replica. One benefit of this is that if the replica dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 11.3 - MDEV-9804 .

MariaDB 11.3 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB 11.3 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 11.3 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 11.3 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 11.3 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

MariaDB has removed the InnoDB Change Buffer.

In MariaDB 11.3, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any
1755/4161

http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228
https://jira.mariadb.org/browse/MDEV-7495
https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 11.3 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 11.3 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 11.3 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 11.3, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mariadb-install-db instead. - MDEV-19010

MariaDB 11.3 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 11.3 does not support the MySQL X plugin .

MariaDB 11.3 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 11.3 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

MariaDB 11.3 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 11.3 does not support the RESTART statement - MDEV-30813

MariaDB 11.3 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.5 Incompatibilities and Feature
Differences Between MariaDB 11.2 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 11.2 and

MySQL 8.0. It is based on the versions MySQL 8.0.35 and MariaDB 11.2.2. Note that MySQL 8 is an 'evergreen' release, so

features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 11.2:

1756/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

MariaDB supports localization in a number of additional languages: Bulgarian, Chinese, Georgian, Hindi, Serbian,

and Ukrainian.

MariaDB has made major improvements to the optimizer.

Sequences

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

GRANT to PUBLIC - MDEV-5215 (blog post)

WAIT syntax for setting the lock wait timeout.

UUID data type for storing UUIDs.

INET6 and INET4 data types for storing IPv6 and IPv4 addresses.

SUPER privileges made more granular.

PROXY protocol support

Multiple compression algorithms available as plugins

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations (506) than MySQL (266).

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE
1757/4161

https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 11.2, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 11.2 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 11.2 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 11.2, MariaDB supports

40 character sets and 506 collations . As of 8.0.35, MySQL supports 41 character sets (gb18030 being the

additional one - MDEV-7495) and 286 collations.

MariaDB indicates collation pad status as part of the name (e.g. utf8mb3_unicode_nopad_ci), while MySQL

indicates pad status by means of an extra column in SHOW COLLATION.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the replica. One benefit of this is that if the replica dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 11.2 - MDEV-9804 .

MariaDB 11.2 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB 11.2 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 11.2 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 11.2 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 11.2 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

MariaDB has removed the InnoDB Change Buffer.

In MariaDB 11.2, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 11.2 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 11.2 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 11.2 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

1758/4161

https://jira.mariadb.org/browse/MDEV-16228
https://jira.mariadb.org/browse/MDEV-7495
https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 11.2, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mariadb-install-db instead. - MDEV-19010

MariaDB 11.2 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 11.2 does not support the MySQL X plugin .

MariaDB 11.2 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 11.2 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

MariaDB 11.2 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 11.2 does not support the RESTART statement - MDEV-30813

MariaDB 11.2 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.6 Incompatibilities and Feature
Differences Between MariaDB 11.1 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 11.1 and

MySQL 8.0. It is based on the versions MySQL 8.0.34 and MariaDB 11.1.2. Note that MySQL 8 is an 'evergreen' release, so

features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 11.1:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

1759/4161

https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/columnstore/

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

MariaDB supports localization in a number of additional languages: Bulgarian, Chinese, Georgian, Hindi, Serbian,

and Ukrainian.

MariaDB has made major improvements to the optimizer.

Sequences

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

GRANT to PUBLIC - MDEV-5215 (blog post)

WAIT syntax for setting the lock wait timeout.

UUID data type for storing UUIDs.

INET6 and INET4 data types for storing IPv6 and IPv4 addresses.

SUPER privileges made more granular.

PROXY protocol support

Multiple compression algorithms available as plugins

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations (506) than MySQL (266).

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 11.1, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 11.1 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 11.1 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

1760/4161

https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 11.1, MariaDB supports

40 character sets and 506 collations . As of 8.0.34, MySQL supports 41 character sets (gb18030 being the

additional one - MDEV-7495) and 286 collations.

MariaDB indicates collation pad status as part of the name (e.g. utf8mb3_unicode_nopad_ci), while MySQL

indicates pad status by means of an extra column in SHOW COLLATION.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the replica. One benefit of this is that if the replica dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 11.1 - MDEV-9804 .

MariaDB 11.1 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB 11.1 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 11.1 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 11.1 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 11.1 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

MariaDB has removed the InnoDB Change Buffer.

In MariaDB 11.1, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 11.1 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 11.1 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 11.1 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 11.1, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

1761/4161

https://jira.mariadb.org/browse/MDEV-7495
https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement

TEXT fields in MariaDB.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mariadb-install-db instead. - MDEV-19010

MariaDB 11.1 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 11.1 does not support the MySQL X plugin .

MariaDB 11.1 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 11.1 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

MariaDB 11.1 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 11.1 does not support the RESTART statement - MDEV-30813

MariaDB 11.1 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.7 Incompatibilities and Feature
Differences Between MariaDB 11.0 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 11.0 and

MySQL 8.0. It is based on the versions MySQL 8.0.34 and MariaDB 11.0.2. Note that MySQL 8 is an 'evergreen' release, so

features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 11.0:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

1762/4161

https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

MariaDB supports localization in a number of additional languages: Bulgarian, Chinese, Georgian, Hindi, Serbian,

and Ukrainian.

MariaDB has made major improvements to the optimizer.

Sequences

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

GRANT to PUBLIC - MDEV-5215 (blog post)

WAIT syntax for setting the lock wait timeout.

UUID data type for storing UUIDs.

INET6 and INET4 data types for storing IPv6 and IPv4 addresses.

SUPER privileges made more granular.

PROXY protocol support

Multiple compression algorithms available as plugins

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations (506) than MySQL (266).

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 11.0, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 11.0 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 11.0 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 11.0, MariaDB supports

40 character sets and 506 collations . As of 8.0.34, MySQL supports 41 character sets (gb18030 being the

additional one - MDEV-7495) and 286 collations.

1763/4161

https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228
https://jira.mariadb.org/browse/MDEV-7495

MariaDB indicates collation pad status as part of the name (e.g. utf8mb3_unicode_nopad_ci), while MySQL

indicates pad status by means of an extra column in SHOW COLLATION.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 11.0 - MDEV-9804 .

MariaDB 11.0 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB 11.0 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 11.0 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 11.0 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 11.0 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

MariaDB has removed the InnoDB Change Buffer.

In MariaDB 11.0, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 11.0 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 11.0 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 11.0 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 11.0, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

1764/4161

https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mariadb-install-db instead. - MDEV-19010

MariaDB 11.0 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 11.0 does not support the MySQL X plugin .

MariaDB 11.0 before MariaDB 11.0.3 does not support MySQL 8's <native= InnoDB partitioning handler - MDEV-

29253

MariaDB 11.0 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 11.0 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

MariaDB 11.0 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 11.0 does not support the RESTART statement - MDEV-30813

MariaDB 11.0 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.8 Incompatibilities and Feature
Differences Between MariaDB 10.11 and
MySQL 8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 10.11 and

MySQL 8.0. It is based on the versions MySQL 8.0.32 and MariaDB 10.11.2. Note that MySQL 8 is an 'evergreen' release,

so features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 10.11:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

MariaDB supports localization in a number of additional languages: Bulgarian, Chinese, Hindi, Serbian, and

1765/4161

https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

Ukrainian.

Sequences

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

GRANT to PUBLIC - MDEV-5215 (blog post)

WAIT syntax for setting the lock wait timeout.

UUID data type for storing UUIDs.

INET6 and INET4 data types for storing IPv6 and IPv4 addresses.

SUPER privileges made more granular.

PROXY protocol support

Multiple compression algorithms available as plugins

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations (506) than MySQL (266).

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 10.11, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 10.11 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 10.11 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 10.11, MariaDB supports

40 character sets and 506 collations . As of 8.0.32, MySQL supports 41 character sets (gb18030 being the

additional one - MDEV-7495) and 286 collations.

MariaDB indicates collation pad status as part of the name (e.g. utf8mb3_unicode_nopad_ci), while MySQL

indicates pad status by means of an extra column in SHOW COLLATION.

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 10.11 - MDEV-9804 .

MariaDB 10.11 does not support Lateral Derived Tables - MDEV-19078 .

1766/4161

https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228
https://jira.mariadb.org/browse/MDEV-7495
https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-19078

MariaDB 10.11 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 10.11 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 10.11 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 10.11 has it disabled by

default. You can enable it by starting mysqld with the option --performance-schema .

In MariaDB 10.11, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mysqld , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 10.11 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 10.11 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 10.11 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0).

However, data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is

able to start successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 10.11, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mariadb-install-db instead. - MDEV-19010

MariaDB 10.11 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 10.11 does not support the MySQL X plugin .

MariaDB 10.11 before MariaDB 10.11.5 does not support MySQL 8's <native= InnoDB partitioning handler - MDEV-

29253

MariaDB 10.11 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 10.11 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

1767/4161

https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-29253

MariaDB 10.11 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 10.11 does not support the RESTART statement - MDEV-30813

MariaDB 10.11 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.9 Incompatibilities and Feature
Differences Between MariaDB 10.6 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 10.6 and

MySQL 8.0. It is based on the versions MySQL 8.0.25 and MariaDB 10.6.0. Note that MySQL 8 is an 'evergreen' release, so

features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 10.6:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

Sequences

Invisible Columns

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

INTERSECT/INTERSECT ALL and EXCEPT/EXCEPT ALL

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

WAIT syntax for setting the lock wait timeout.

1768/4161

https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

INET6 data type for storing IPv6 addresses.

SUPER privileges made more granular.

PROXY protocol support

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations than MySQL, including NO PAD collations.

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 10.6, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 10.6 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 10.6 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 10.6.0, MariaDB supports

40 character sets and 322 collations (armscii8_general_nopad_ci, armscii8_nopad_bin, ascbig5_chinese_nopad_ci,

big5_nopad_bin, iicp1250_general_nopad_ci, cp1250_nopad_bin, cp1250_general_nopad_ci, cp1250_nopad_bin,

cp1251_general_nopad_ci, cp1251_nopad_bin, cp1256_general_nopad_ci, cp1256_nopad_bin,

cp1257_general_nopad_ci, cp1257_nopad_bin, cp850_general_nopad_ci, cp850_nopad_bin,

cp852_general_nopad_ci, cp852_nopad_bin, cp866_general_nopad_ci, cp866_nopad_bin,

cp932_japanese_nopad_ci, cp932_nopad_bin, dec8_nopad_bin, dec8_swedish_nopad_ci,

eucjpms_japanese_nopad_ci, eucjpms_nopad_bin, eucjpms_japanese_nopad_ci, eucjpms_nopad_bin,

euckr_korean_nopad_ci, euckr_nopad_bin, gb2312_chinese_nopad_ci, gb2312_nopad_bin, gbk_chinese_nopad_ci,

gbk_nopad_bin, geostd8_general_nopad_ci, geostd8_nopad_bin, greek_general_nopad_ci, greek_nopad_bin,

hebrew_general_nopad_ci, hebrew_nopad_bin, hp8_english_nopad_ci, hp8_nopad_bin, keybcs2_general_nopad_ci,

keybcs2_nopad_bin, koi8r_general_nopad_ci, koi8r_nopad_bin, koi8u_general_nopad_ci, koi8u_nopad_bin,

latin1_nopad_bin, latin1_swedish_nopad_ci, latin2_general_nopad_ci, latin2_nopad_bin, latin5_nopad_bin,

latin5_turkish_ci, latin5_turkish_nopad_ci, latin7_general_nopad_ci, latin7_nopad_bin, macce_general_nopad_ci,

macce_nopad_bin, macroman_general_nopad_ci, macroman_nopad_bin, sjis_japanese_nopad_ci, sjis_nopad_bin,

swe7_nopad_bin, tis620_thai_nopad_ci, tis620_nopad_bin, ucs2_croatian_mysql561_ci, ucs2_general_mysql500_ci,

ucs2_general_nopad_ci, ucs2_myanmar_ci, ucs2_nopad_bin, ucs2_swedish_ci, ucs2_thai_520_w2,

ucs2_unicode_ci, ucs2_unicode_nopad_ci, ujis_japanese_nopad_ci, ujis_nopad_bin, utf16le_general_nopad_ci,

utf16le_nopad_bin, utf16_croatian_mysql561_ci, utf16_general_nopad_ci, utf16_myanmar_ci, utf16_nopad_bin,

utf16_thai_520_w2, utf16_unicode_520_nopad_ci, utf16_unicode_nopad_ci, utf32_croatian_mysql561_ci,

utf32_general_nopad_ci, utf32_myanmar_ci, utf32_nopad_bin, utf32_thai_520_w2, utf32_unicode_520_nopad_ci,

utf32_unicode_nopad_ci, utf8mb4_general_nopad_ci, utf8mb4_myanmar_ci, utf8mb4_nopad_bin,

utf8mb4_thai_520_w2, utf8mb4_unicode_520_nopad_ci, utf8mb4_unicode_nopad_ci, utf8_croatian_mysql561_ci,

1769/4161

https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228

utf8_general_nopad_ci, utf8_myanmar_ci, utf8_nopad_bin, utf8_thai_520_w2, utf8_unicode_520_nopad_ci,

utf8_unicode_ci and utf8_unicode_nopad_ci being the additional ones).

As of 8.0.25, MySQL supports 41 character sets (gb18030 being the additional one - MDEV-7495) and 272

collations (gb18030_bin, gb18030_chinese_ci, gb18030_unicode_520_ci, utf8mb4_0900_ai_ci, utf8mb4_0900_as_ci,

utf8mb4_0900_as_cs, utf8mb4_0900_bin, utf8mb4_cs_0900_ai_ci, utf8mb4_cs_0900_as_cs,

utf8mb4_da_0900_ai_ci, utf8mb4_da_0900_as_cs, utf8mb4_de_pb_0900_ai_ci, utf8mb4_de_pb_0900_as_cs,

utf8mb4_eo_0900_ai_ci, utf8mb4_eo_0900_as_cs, utf8mb4_es_0900_ai_ci, utf8mb4_es_0900_as_cs,

utf8mb4_es_trad_0900_ai_ci, utf8mb4_es_trad_0900_as_cs, utf8mb4_et_0900_ai_ci, utf8mb4_et_0900_as_cs,

utf8mb4_hr_0900_ai_ci, utf8mb4_hr_0900_as_cs, utf8mb4_hu_0900_ai_ci, utf8mb4_hu_0900_as_cs,

utf8mb4_is_0900_ai_ci, utf8mb4_is_0900_as_cs, utf8mb4_ja_0900_as_cs, utf8mb4_ja_0900_as_cs_ks,

utf8mb4_la_0900_ai_ci, utf8mb4_la_0900_as_cs, utf8mb4_lt_0900_ai_ci, utf8mb4_lt_0900_as_cs,

utf8mb4_lv_0900_ai_ci, utf8mb4_lv_0900_as_cs, utf8mb4_pl_0900_ai_ci, utf8mb4_pl_0900_as_cs,

utf8mb4_ro_0900_ai_ci, utf8mb4_ro_0900_as_cs, utf8mb4_ru_0900_ai_ci, utf8mb4_ru_0900_as_cs,

utf8mb4_sk_0900_ai_ci, utf8mb4_sk_0900_as_cs, utf8mb4_sl_0900_ai_ci, utf8mb4_sl_0900_as_cs,

utf8mb4_sv_0900_ai_ci, utf8mb4_sv_0900_as_cs, utf8mb4_tr_0900_ai_ci, utf8mb4_vi_0900_ai_ci,

utf8mb4_vi_0900_as_cs, utf8mb4_zh_0900_as_cs being the additional ones) - MDEV-20912 .

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 10.6 - MDEV-9804 .

MariaDB 10.6 does not support CIDR notation for user accounts - MDEV-25515 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 10.6 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 10.6 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 10.6 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

In MariaDB 10.6, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 10.6 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 10.6 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 10.6 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.
1770/4161

https://jira.mariadb.org/browse/MDEV-7495
https://jira.mariadb.org/browse/MDEV-20912
https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-25515
https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement

In MariaDB 10.6, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

Since MariaDB supports INTERSECT and EXCEPT, these are both reserved words and can't be used as an identifier

without being quoted.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB 10.6 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mysql_install_db instead. - MDEV-19010

MariaDB 10.6 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 10.6 does not support the MySQL X plugin .

MariaDB 10.6 before MariaDB 10.6.15 does not support MySQL 8's <native= InnoDB partitioning handler - MDEV-

29253

MariaDB 10.6 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 10.6 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

MariaDB 10.6 client executables allow the connection protocol to be forced by specifying only connection properties

on the command-line. See mariadb Command-line client

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB syntax supporting Spatial Reference System IDs for spatial data type columns with REF_SYSTEM_ID

is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which is not supported by

MariaDB - MDEV-29953

MariaDB 10.6 does not support the RESTART statement - MDEV-30813

MariaDB 10.6 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

2.1.14.1.10 Incompatibilities and Feature
Differences Between MariaDB 10.5 and MySQL
8.0

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 10.5 and

MySQL 8.0. It is based on the stable versions MySQL 8.0.22 and MariaDB 10.5.7. Note that MySQL 8 is an 'evergreen'

release, so features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 10.5:

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

MyRocks, a storage engine with great compression

S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud that

implements S3 API.

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

FederatedX (drop-in replacement for Federated)

1771/4161

https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data), including the WITHOUT

OVERLAPS clause added in 10.5.

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

Sequences

Invisible Columns

Table Value Constructors

Dynamic Columns support

Semi-sync plugin merged into the server

INTERSECT/INTERSECT ALL and EXCEPT/EXCEPT ALL

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING, INSERT ... RETURNING, REPLACE ... RETURNING

WAIT syntax for setting the lock wait timeout.

INET6 data type for storing IPv6 addresses.

SUPER privileges made more granular.

PROXY protocol support

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations than MySQL, including NO PAD collations.

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 10.5, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 10.5 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 10.5 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

All mysql* binaries are now named mariadb* (the previous mysql named is retained as a symlink for compatibility

1772/4161

https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933
https://jira.mariadb.org/browse/MDEV-16228

purposes)

Not all character sets and collations are supported across both MySQL and MariaDB. As of 10.5.4, MariaDB supports

40 character sets and 322 collations (armscii8_general_nopad_ci, armscii8_nopad_bin, ascbig5_chinese_nopad_ci,

big5_nopad_bin, iicp1250_general_nopad_ci, cp1250_nopad_bin, cp1250_general_nopad_ci, cp1250_nopad_bin,

cp1251_general_nopad_ci, cp1251_nopad_bin, cp1256_general_nopad_ci, cp1256_nopad_bin,

cp1257_general_nopad_ci, cp1257_nopad_bin, cp850_general_nopad_ci, cp850_nopad_bin,

cp852_general_nopad_ci, cp852_nopad_bin, cp866_general_nopad_ci, cp866_nopad_bin,

cp932_japanese_nopad_ci, cp932_nopad_bin, dec8_nopad_bin, dec8_swedish_nopad_ci,

eucjpms_japanese_nopad_ci, eucjpms_nopad_bin, eucjpms_japanese_nopad_ci, eucjpms_nopad_bin,

euckr_korean_nopad_ci, euckr_nopad_bin, gb2312_chinese_nopad_ci, gb2312_nopad_bin, gbk_chinese_nopad_ci,

gbk_nopad_bin, geostd8_general_nopad_ci, geostd8_nopad_bin, greek_general_nopad_ci, greek_nopad_bin,

hebrew_general_nopad_ci, hebrew_nopad_bin, hp8_english_nopad_ci, hp8_nopad_bin, keybcs2_general_nopad_ci,

keybcs2_nopad_bin, koi8r_general_nopad_ci, koi8r_nopad_bin, koi8u_general_nopad_ci, koi8u_nopad_bin,

latin1_nopad_bin, latin1_swedish_nopad_ci, latin2_general_nopad_ci, latin2_nopad_bin, latin5_nopad_bin,

latin5_turkish_ci, latin5_turkish_nopad_ci, latin7_general_nopad_ci, latin7_nopad_bin, macce_general_nopad_ci,

macce_nopad_bin, macroman_general_nopad_ci, macroman_nopad_bin, sjis_japanese_nopad_ci, sjis_nopad_bin,

swe7_nopad_bin, tis620_thai_nopad_ci, tis620_nopad_bin, ucs2_croatian_mysql561_ci, ucs2_general_mysql500_ci,

ucs2_general_nopad_ci, ucs2_myanmar_ci, ucs2_nopad_bin, ucs2_swedish_ci, ucs2_thai_520_w2,

ucs2_unicode_ci, ucs2_unicode_nopad_ci, ujis_japanese_nopad_ci, ujis_nopad_bin, utf16le_general_nopad_ci,

utf16le_nopad_bin, utf16_croatian_mysql561_ci, utf16_general_nopad_ci, utf16_myanmar_ci, utf16_nopad_bin,

utf16_thai_520_w2, utf16_unicode_520_nopad_ci, utf16_unicode_nopad_ci, utf32_croatian_mysql561_ci,

utf32_general_nopad_ci, utf32_myanmar_ci, utf32_nopad_bin, utf32_thai_520_w2, utf32_unicode_520_nopad_ci,

utf32_unicode_nopad_ci, utf8mb4_general_nopad_ci, utf8mb4_myanmar_ci, utf8mb4_nopad_bin,

utf8mb4_thai_520_w2, utf8mb4_unicode_520_nopad_ci, utf8mb4_unicode_nopad_ci, utf8_croatian_mysql561_ci,

utf8_general_nopad_ci, utf8_myanmar_ci, utf8_nopad_bin, utf8_thai_520_w2, utf8_unicode_520_nopad_ci,

utf8_unicode_ci and utf8_unicode_nopad_ci being the additional ones).

As of 8.0.21, MySQL supports 41 character sets (gb18030 being the additional one) and 272 collations

(gb18030_bin, gb18030_chinese_ci, gb18030_unicode_520_ci, utf8mb4_0900_ai_ci, utf8mb4_0900_as_ci,

utf8mb4_0900_as_cs, utf8mb4_0900_bin, utf8mb4_cs_0900_ai_ci, utf8mb4_cs_0900_as_cs,

utf8mb4_da_0900_ai_ci, utf8mb4_da_0900_as_cs, utf8mb4_de_pb_0900_ai_ci, utf8mb4_de_pb_0900_as_cs,

utf8mb4_eo_0900_ai_ci, utf8mb4_eo_0900_as_cs, utf8mb4_es_0900_ai_ci, utf8mb4_es_0900_as_cs,

utf8mb4_es_trad_0900_ai_ci, utf8mb4_es_trad_0900_as_cs, utf8mb4_et_0900_ai_ci, utf8mb4_et_0900_as_cs,

utf8mb4_hr_0900_ai_ci, utf8mb4_hr_0900_as_cs, utf8mb4_hu_0900_ai_ci, utf8mb4_hu_0900_as_cs,

utf8mb4_is_0900_ai_ci, utf8mb4_is_0900_as_cs, utf8mb4_ja_0900_as_cs, utf8mb4_ja_0900_as_cs_ks,

utf8mb4_la_0900_ai_ci, utf8mb4_la_0900_as_cs, utf8mb4_lt_0900_ai_ci, utf8mb4_lt_0900_as_cs,

utf8mb4_lv_0900_ai_ci, utf8mb4_lv_0900_as_cs, utf8mb4_pl_0900_ai_ci, utf8mb4_pl_0900_as_cs,

utf8mb4_ro_0900_ai_ci, utf8mb4_ro_0900_as_cs, utf8mb4_ru_0900_ai_ci, utf8mb4_ru_0900_as_cs,

utf8mb4_sk_0900_ai_ci, utf8mb4_sk_0900_as_cs, utf8mb4_sl_0900_ai_ci, utf8mb4_sl_0900_as_cs,

utf8mb4_sv_0900_ai_ci, utf8mb4_sv_0900_as_cs, utf8mb4_tr_0900_ai_ci, utf8mb4_vi_0900_ai_ci,

utf8mb4_vi_0900_as_cs, utf8mb4_zh_0900_as_cs being the additional ones).

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 10.5 - MDEV-9804 .

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement-based replication. If you are using JSON columns and want to upgrade to MariaDB, use the mysql_json

plugin to automatically convert MySQL JSON to TEXT, or alternatively you need to either convert them to TEXT or

use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 10.5 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 10.5 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

1773/4161

https://jira.mariadb.org/browse/MDEV-9804
https://jira.mariadb.org/browse/MDEV-13594

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 10.5 has it disabled by

default. You can enable it by starting mariadbd with the option --performance-schema .

In MariaDB 10.5, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mariadbd , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 10.5 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 10.5 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 10.5 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 10.5, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

Since MariaDB supports INTERSECT and EXCEPT, these are both reserved words and can't be used as an identifier

without being quoted.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB 10.5 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MariaDB does not support the --initialize option. Use mysql_install_db instead. - MDEV-19010

MariaDB 10.5 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 10.5 does not support the MySQL X plugin .

MariaDB 10.5 does not support MySQL 8's <native= InnoDB partitioning handler - MDEV-29253

MariaDB 10.5 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 10.5 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB 10.1 syntax supporting Spatial Reference System IDs for spatial data type columns with

REF_SYSTEM_ID is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which

is not supported by MariaDB - MDEV-29953

MariaDB 10.5 does not support the RESTART statement - MDEV-30813

MariaDB 10.5 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

Also see Incompatibilities between MariaDB 10.4 and MySQL 8.0 and Incompatibilities between MariaDB 10.3 and

MySQL 5.7 .

2.1.14.1.11 Incompatibilities and Feature
Differences Between MariaDB 10.4 and MySQL
8.0

1774/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010
https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-103-and-mysql-57/

Contents
1. Storage Engines

2. Extensions and New Features

3. Incompatibilities

MariaDB maintains high levels of compatibility with MySQL, and most applications that use MySQL will work seamlessly

with MariaDB. However, take note of the following incompatibilities and feature differences between MariaDB 10.4 and

MySQL 8.0. It is based on the stable versions MySQL 8.0.22 and MariaDB 10.4.15. Note that MySQL 8 is an 'evergreen'

release, so features may be added or removed in later releases.

Storage Engines
In addition to the standard InnoDB, MyISAM, BLACKHOLE, CSV, MEMORY, ARCHIVE, and MERGE storage engines, the

following are also available with MariaDB 10.4:

MyRocks, a storage engine with great compression

Aria, MyISAM replacement with better caching.

CONNECT

SEQUENCE

Spider

SphinxSE

TokuDB

FederatedX (drop-in replacement for Federated)

OQGRAPH

Extensions and New Features
The most notable features available in MariaDB , but not in MySQL, are:

Galera is a standard part of MariaDB Server.

Temporal data tables in the form of:

System-versioned tables (allow you to query and operate on historic data).

Application-time periods (allow you to query and operate on a temporal range of data).

Bitemporal tables (which combine both system-versioning and application-time periods).

DML-only flashback, allowing instances, databases or tables to be rolled back to an old snapshot.

Oracle compatibility mode

Sequences

Invisible Columns

Table Value Constructors

Semi-sync plugin merged into the server

INTERSECT and EXCEPT

OR REPLACE syntax for CREATE statements, such as CREATE OR REPLACE TABLE, CREATE OR REPLACE

DATABASE, etc

DELETE ... RETURNING

WAIT syntax for setting the lock wait timeout.

PROXY protocol support

Number of supported decimals in DECIMAL has increased from 30 to 38

Number of parts of an index increased from 16 to 32 .

Added catchall for list partitions

Oracle-style EXECUTE IMMEDIATE statement

Lots of new JSON functions

Microsecond Precision in Processlist

Table Elimination

Virtual Columns

Extended User Statistics

KILL all queries for a user

Storage-engine-specific CREATE TABLE

MariaDB supports more collations than MySQL, including NO PAD collations.

FLUSH SSL command to reload SSL certificates without server restart.

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME

Enhancements to INFORMATION SCHEMA.PLUGINS table

Group commit for the binary log. This makes replication notably faster!

The binary log in MariaDB can be compressed.

New server command, SHUTDOWN WAIT FOR ALL SLAVES, and a new mysqladmin shutdown --wait-for-all-slaves

option, are added to instruct the server to wait for the last binlog event to be sent to all connected slaves before

1775/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://mariadb.com/kb/en/proxy-protocol-support/
http://www.facebook.com/note.php?note_id=10150261692455933

shutting down.

BACKUP STAGE allows one to implement very efficient backups with minimal locking.

Progress reporting for ALTER TABLE and LOAD DATA INFILE

SHOW EXPLAIN gives the EXPLAIN plan for a query running in another thread. MySQL introduced the EXPLAIN

FOR CONNECTION syntax to do the same thing.

PCRE Regular Expressions (including REGEXP_REPLACE())

HandlerSocket and faster HANDLER calls

MySQL 8 does not support PROCEDURE ANALYSE

MySQL 8 does not support the use of \N as an alias for NULL

Incompatibilities
When moving from MySQL 8.0 to MariaDB 10.4, please take note of the following incompatibilities:

For a list of function differences, see Function Differences Between MariaDB 10.4 and MySQL 8.0

For a list of system variable differences, see System Variable Differences Between MariaDB 10.4 and MySQL 8.0

MariaDB does not support MySQL's SET PERSIST - MDEV-16228

MariaDB's GTID is not compatible with MySQL's. Note that MariaDB and MySQL also have different GTID system

variables, so these need to be adjusted when migrating.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB. See Authentication from MariaDB 10.4 for an overview of the changes.

Not all character sets and collations are supported across both MySQL and MariaDB. As of 10.4.14, MariaDB

supports 40 character sets and 322 collations (armscii8_general_nopad_ci, armscii8_nopad_bin,

ascbig5_chinese_nopad_ci, big5_nopad_bin, iicp1250_general_nopad_ci, cp1250_nopad_bin,

cp1250_general_nopad_ci, cp1250_nopad_bin, cp1251_general_nopad_ci, cp1251_nopad_bin,

cp1256_general_nopad_ci, cp1256_nopad_bin, cp1257_general_nopad_ci, cp1257_nopad_bin,

cp850_general_nopad_ci, cp850_nopad_bin, cp852_general_nopad_ci, cp852_nopad_bin,

cp866_general_nopad_ci, cp866_nopad_bin, cp932_japanese_nopad_ci, cp932_nopad_bin, dec8_nopad_bin,

dec8_swedish_nopad_ci, eucjpms_japanese_nopad_ci, eucjpms_nopad_bin, eucjpms_japanese_nopad_ci,

eucjpms_nopad_bin, euckr_korean_nopad_ci, euckr_nopad_bin, gb2312_chinese_nopad_ci, gb2312_nopad_bin,

gbk_chinese_nopad_ci, gbk_nopad_bin, geostd8_general_nopad_ci, geostd8_nopad_bin, greek_general_nopad_ci,

greek_nopad_bin, hebrew_general_nopad_ci, hebrew_nopad_bin, hp8_english_nopad_ci, hp8_nopad_bin,

keybcs2_general_nopad_ci, keybcs2_nopad_bin, koi8r_general_nopad_ci, koi8r_nopad_bin,

koi8u_general_nopad_ci, koi8u_nopad_bin, latin1_nopad_bin, latin1_swedish_nopad_ci, latin2_general_nopad_ci,

latin2_nopad_bin, latin5_nopad_bin, latin5_turkish_ci, latin5_turkish_nopad_ci, latin7_general_nopad_ci,

latin7_nopad_bin, macce_general_nopad_ci, macce_nopad_bin, macroman_general_nopad_ci,

macroman_nopad_bin, sjis_japanese_nopad_ci, sjis_nopad_bin, swe7_nopad_bin, tis620_thai_nopad_ci,

tis620_nopad_bin, ucs2_croatian_mysql561_ci, ucs2_general_mysql500_ci, ucs2_general_nopad_ci,

ucs2_myanmar_ci, ucs2_nopad_bin, ucs2_swedish_ci, ucs2_thai_520_w2, ucs2_unicode_ci,

ucs2_unicode_nopad_ci, ujis_japanese_nopad_ci, ujis_nopad_bin, utf16le_general_nopad_ci, utf16le_nopad_bin,

utf16_croatian_mysql561_ci, utf16_general_nopad_ci, utf16_myanmar_ci, utf16_nopad_bin, utf16_thai_520_w2,

utf16_unicode_520_nopad_ci, utf16_unicode_nopad_ci, utf32_croatian_mysql561_ci, utf32_general_nopad_ci,

utf32_myanmar_ci, utf32_nopad_bin, utf32_thai_520_w2, utf32_unicode_520_nopad_ci, utf32_unicode_nopad_ci,

utf8mb4_general_nopad_ci, utf8mb4_myanmar_ci, utf8mb4_nopad_bin, utf8mb4_thai_520_w2,

utf8mb4_unicode_520_nopad_ci, utf8mb4_unicode_nopad_ci, utf8_croatian_mysql561_ci, utf8_general_nopad_ci,

utf8_myanmar_ci, utf8_nopad_bin, utf8_thai_520_w2, utf8_unicode_520_nopad_ci, utf8_unicode_ci and

utf8_unicode_nopad_ci being the additional ones).

As of 8.0.21, MySQL supports 41 character sets (gb18030 being the additional one) and 272 collations (gb18030_bin,

gb18030_chinese_ci, gb18030_unicode_520_ci, utf8mb4_0900_ai_ci, utf8mb4_0900_as_ci, utf8mb4_0900_as_cs,

utf8mb4_0900_bin, utf8mb4_cs_0900_ai_ci, utf8mb4_cs_0900_as_cs, utf8mb4_da_0900_ai_ci,

utf8mb4_da_0900_as_cs, utf8mb4_de_pb_0900_ai_ci, utf8mb4_de_pb_0900_as_cs, utf8mb4_eo_0900_ai_ci,

utf8mb4_eo_0900_as_cs, utf8mb4_es_0900_ai_ci, utf8mb4_es_0900_as_cs, utf8mb4_es_trad_0900_ai_ci,

utf8mb4_es_trad_0900_as_cs, utf8mb4_et_0900_ai_ci, utf8mb4_et_0900_as_cs, utf8mb4_hr_0900_ai_ci,

utf8mb4_hr_0900_as_cs, utf8mb4_hu_0900_ai_ci, utf8mb4_hu_0900_as_cs, utf8mb4_is_0900_ai_ci,

utf8mb4_is_0900_as_cs, utf8mb4_ja_0900_as_cs, utf8mb4_ja_0900_as_cs_ks, utf8mb4_la_0900_ai_ci,

utf8mb4_la_0900_as_cs, utf8mb4_lt_0900_ai_ci, utf8mb4_lt_0900_as_cs, utf8mb4_lv_0900_ai_ci,

utf8mb4_lv_0900_as_cs, utf8mb4_pl_0900_ai_ci, utf8mb4_pl_0900_as_cs, utf8mb4_ro_0900_ai_ci,

utf8mb4_ro_0900_as_cs, utf8mb4_ru_0900_ai_ci, utf8mb4_ru_0900_as_cs, utf8mb4_sk_0900_ai_ci,

utf8mb4_sk_0900_as_cs, utf8mb4_sl_0900_ai_ci, utf8mb4_sl_0900_as_cs, utf8mb4_sv_0900_ai_ci,

utf8mb4_sv_0900_as_cs, utf8mb4_tr_0900_ai_ci, utf8mb4_vi_0900_ai_ci, utf8mb4_vi_0900_as_cs,

utf8mb4_zh_0900_as_cs being the additional ones).

To make CREATE TABLE ... SELECT work the same way in statement based and row based replication it's by

default executed as CREATE OR REPLACE TABLE on the slave. One benefit of this is that if the slave dies in the

middle of CREATE ... SELECT it will be able to continue.

One can use the slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Users created with MySQL's SHA256 password algorithm cannot be used in MariaDB 10.4 - MDEV-9804 .

1776/4161

https://jira.mariadb.org/browse/MDEV-16228
https://jira.mariadb.org/browse/MDEV-9804

MariaDB stores JSON as true text, not in binary format as MySQL. MariaDB's JSON functions are much faster than

MySQL's so there is no need to store in binary format, which would add complexity when manipulating JSON objects.

For the same reason, MariaDB's JSON data type is an alias for LONGTEXT. If you want to replicate JSON columns

from MySQL to MariaDB, you should store JSON objects in MySQL in a TEXT or LONGTEXT column or use

statement based replication. If you are using JSON columns and want to upgrade to MariaDB, you need to either

convert them to TEXT or use mysqldump to copy these tables to MariaDB.

In MySQL, JSON is compared according to json values. In MariaDB JSON strings are normal strings and compared

as strings.

MariaDB 10.4 does not support MySQL's JSON operators (-> and ->>) - MDEV-13594

MariaDB 10.4 supports the standard by producing null and a warning for JSON_SEARCH when given invalid data,

while MySQL produces an error.

Roles

MariaDB never allows authentication via roles, while MySQL permits this.

MySQL permits activating multiple roles at the same time. MariaDB can achieve the same result by creating an

intermediate aggregate role.

In the INFORMATION_SCHEMA.ENABLED_ROLES table, MySQL reports just the direct list of enabled roles,

while MariaDB reports the enabled role, plus the effective inherited roles.

MySQL extends the INFORMATION_SCHEMA.APPLICABLE_ROLES table .

MySQL includes the tables INFORMATION_SCHEMA.ROLE_TABLE_GRANTS,

INFORMATION_SCHEMA.ROLE_ROUTINE_GRANTS,

INFORMATION_SCHEMA.ROLE_COLUMN_GRANTS, and INFORMATION_SCHEMA

ADMINISTRABLE_ROLE_AUTHORIZATIONS.

MySQL has the performance schema enabled by default. For performance reasons MariaDB 10.4 has it disabled by

default. You can enable it by starting mysqld with the option --performance-schema .

MySQL features a new implementation of the performance_schema and a sys schema wrapper. These are only

supported in MariaDB 10.5.

In MariaDB 10.4, using FLUSH TABLES without any table list will only close tables not in use, and tables not locked

by the FLUSH TABLES connection. If there are no locked tables, FLUSH TABLES will be instant and will not cause

any waits, as it no longer waits for tables in use. When a table list is provided, the server will wait for the end of any

transactions that are using the tables. In MySQL, FLUSH TABLES only waits for the statements to complete.

MariaDB binaries (mysqld , myisamchk etc.) give a warning if one uses a unique prefix of an option (such as --

big-table instead of --big-tables). MySQL binaries require the full option name.

MariaDB 10.4 implements InnoDB encryption in a different way to MySQL 8.0.

MySQL's implementation of aborting statements that exceed a certain time to execute can only kill SELECTs, while

MariaDB's can kill any queries (excluding stored procedures).

MariaDB 10.4 does not support MySQL's SELECT /*+ MAX_EXECUTION_TIME(n) */ ... - see Aborting

Statements that Exceed a Certain Time to Execute.

MySQL 8.0 does not support the Query Cache.

MariaDB 10.4 does not support the MySQL Memcached plugin (which has been deprecated in MySQL 8.0). However,

data stored using memcached can be retrieved because the data is stored as InnoDB tables. MariaDB is able to start

successfully with an error message of not being able to find libmemcached.so library.

MariaDB 10.4 does not support MySQL 8.0's ALTER TABLE...RENAME INDEX statements (supported in MariaDB

10.5).

In MySQL, X'HHHH' , the standard SQL syntax for binary string literals, erroneously works in the same way as

0xHHHH , which could work as a number or string depending on the context. In MariaDB, this has been fixed to

behave as a string in all contexts (and never as a number). See CAST and Hexadecimal Literals for more details and

examples.

In MariaDB 10.4, SHOW CREATE TABLE does not quote the DEFAULT value of an integer. MariaDB 10.2 and

earlier, and MySQL, do. Since MariaDB can support defaults for BLOB and TEXT fields, while MySQL does not,

SHOW CREATE TABLE will also append DEFAULT NULL where no default is explicitly provided to nullable BLOB or

TEXT fields in MariaDB.

Since MariaDB supports INTERSECT and EXCEPT, these are both reserved words and can't be used as an identifier

without being quoted.

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE().

MariaDB's NOWAIT supports SELECT statements, LOCK TABLES and various DDL statements, while MySQL's

NOWAIT only supports SELECT.

MariaDB's NOWAIT cannot be added on views and stored procedures while MySQL's can - MDEV-25247

MariaDB returns an ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

when unable to lock within the time, while MySQL returns ERROR 3572 (HY000): Statement aborted because

lock(s) could not be acquired immediately and NOWAIT is set

MariaDB does not support RENAME table while it is write-locked - MDEV-30814

MariaDB 10.4 does not support Lateral Derived Tables - MDEV-19078 .

MariaDB does not support the optional init_vector argument for AES_ENCRYPT and AES_DECRYPT or the

block_encryption_mode variable - MDEV-9069

MySQL supports SKIP LOCKED , while MariaDB doesn't.

MariaDB does not support the --initialize option. Use mysql_install_db instead. - MDEV-19010

1777/4161

https://jira.mariadb.org/browse/MDEV-13594
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/aborting-statement
https://jira.mariadb.org/browse/MDEV-25247
https://jira.mariadb.org/browse/MDEV-30814
https://jira.mariadb.org/browse/MDEV-19078
https://jira.mariadb.org/browse/MDEV-9069
https://jira.mariadb.org/browse/MDEV-19010

MariaDB 10.4 does not support the ngram and MeCab full-text parser plugins - MDEV-10267 , MDEV-10268 .

MariaDB 10.4 does not support the MySQL X plugin .

MariaDB 10.4 does not support MySQL 8's <native= InnoDB partitioning handler - MDEV-29253

MariaDB 10.4 does not support CREATE TABLESPACE for InnoDB.

The MySQL 8.0 and MariaDB 10.4 INFORMATION_SCHEMA.COLUMNS table contain slightly different fields.

The MySQL binary log includes the thread_id, while MariaDB's binary log does not - MDEV-7850

The MariaDB 10.1 syntax supporting Spatial Reference System IDs for spatial data type columns with

REF_SYSTEM_ID is not supported by MySQL. MySQL 8 introduced CREATE SPATIAL REFERENCE SYSTEM , which

is not supported by MariaDB - MDEV-29953

MariaDB 10.4 does not support the RESTART statement - MDEV-30813

MariaDB 10.4 does not support the SELECT FOR UPDATE and FOR SHARE locks - MDEV-17514

Also see Incompatibilities between MariaDB 10.3 and MySQL 5.7 and Incompatibilities between MariaDB 10.2 and

MySQL 5.7 .

2.1.14.1.12 Function Differences Between
MariaDB and MySQL
Functions in MariaDB that are not present in MySQL, or vice-versa.

Function Differences Between MariaDB 11.3 and MySQL 8.0

Functions present in MariaDB 11.3 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 11.2 and MySQL 8.0

Functions present in MariaDB 11.2 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 11.1 and MySQL 8.0

Functions present in MariaDB 11.1 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 11.0 and MySQL 8.0

Functions present in MariaDB 11.0 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 10.11 and MySQL 8.0

Functions present in MariaDB 10.11 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 10.6 and MySQL 8.0

Functions present in MariaDB 10.6 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 10.5 and MySQL 8.0

Functions present in MariaDB 10.5 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB 10.4 and MySQL 8.0

Functions present in MariaDB 10.4 and not present in MySQL 8.0 and vice-versa.

Function Differences Between MariaDB and MySQL - Unmaintained Series

Comparison of function differences between major unmaintained series of MariaDB and MySQL.

2.1.14.1.12.1 Function Differences Between
MariaDB 11.3 and MySQL 8.0

1778/4161

https://jira.mariadb.org/browse/MDEV-10267
https://jira.mariadb.org/browse/MDEV-10268
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-29953
https://jira.mariadb.org/browse/MDEV-30813
https://jira.mariadb.org/browse/MDEV-17514
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/function-differences-between-mariadb-and-mysql-unmaintained-series/

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 11.3 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.35 and the MariaDB 11.3.1 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 11.3 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

ADD_MONTHS

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

KDF

LENGTHB

NATURAL_SORT_KEY

NVL (Synonym for IFNULL)

NVL2

SFORMAT

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

1779/4161

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_ARRAY_INTERSECT

JSON_COMPACT
1780/4161

JSON_DETAILED

JSON_EQUALS

JSON_EXISTS

JSON_LOOSE

JSON_NORMALIZE

JSON_OBJECT_FILTER_KEYS

JSON_OBJECT_TO_ARRAY

JSON_QUERY

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_Collect

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LineInterpolatePoint

ST_LineInterpolatePoints

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointAtDistance

ST_PointFromGeoHash

ST_SIMPLIFY

ST_VALIDATE (MDEV-17398)

JSON

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

1781/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

SOURCE_POS_WAIT

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.2 Function Differences Between
MariaDB 11.2 and MySQL 8.0

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 11.2 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.34 and the MariaDB 11.2.1 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 11.2 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General
1782/4161

https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25703

ADD_MONTHS

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NATURAL_SORT_KEY

NVL (Synonym for IFNULL)

NVL2

SFORMAT

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

1783/4161

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_ARRAY_INTERSECT

JSON_COMPACT

JSON_DETAILED

JSON_EQUALS

JSON_EXISTS

JSON_LOOSE

JSON_NORMALIZE

JSON_OBJECT_FILTER_KEYS

JSON_OBJECT_TO_ARRAY

JSON_QUERY

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_Collect

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE
1784/4161

ST_LineInterpolatePoint

ST_LineInterpolatePoints

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointAtDistance

ST_PointFromGeoHash

ST_SIMPLIFY

ST_VALIDATE (MDEV-17398)

JSON

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

SOURCE_POS_WAIT

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.3 Function Differences Between
MariaDB 11.1 and MySQL 8.0

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 11.1 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.34 and the MariaDB 11.1.1 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 11.1 and MySQL 8.0

1785/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599
https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25703

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

ADD_MONTHS

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NATURAL_SORT_KEY

NVL (Synonym for IFNULL)

NVL2

SFORMAT

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

1786/4161

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EQUALS

JSON_EXISTS

JSON_LOOSE

JSON_NORMALIZE

JSON_QUERY

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

1787/4161

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_Collect

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LineInterpolatePoint

ST_LineInterpolatePoints

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointAtDistance

ST_PointFromGeoHash

ST_SIMPLIFY

ST_VALIDATE (MDEV-17398)

JSON

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

SOURCE_POS_WAIT

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.4 Function Differences Between
MariaDB 11.0 and MySQL 8.0

1788/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599
https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25703

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 11.0 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.34 and the MariaDB 11.0.2 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 11.0 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

ADD_MONTHS

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NATURAL_SORT_KEY

NVL (Synonym for IFNULL)

NVL2

SFORMAT

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

1789/4161

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EQUALS
1790/4161

JSON_EXISTS

JSON_LOOSE

JSON_NORMALIZE

JSON_QUERY

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_Collect

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LineInterpolatePoint

ST_LineInterpolatePoints

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointAtDistance

ST_PointFromGeoHash

ST_SIMPLIFY

ST_VALIDATE (MDEV-17398)

JSON

JSON_SCHEMA_VALID (MDEV-27128)

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID
1791/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

SOURCE_POS_WAIT

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.5 Function Differences Between
MariaDB 10.11 and MySQL 8.0

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 10.11 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.32 and the MariaDB 10.11.2 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 10.11 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

ADD_MONTHS

CHR

DECODE_ORACLE

1792/4161

https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25703

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NATURAL_SORT_KEY

NVL (Synonym for IFNULL)

NVL2

SFORMAT

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

1793/4161

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EQUALS

JSON_EXISTS

JSON_LOOSE

JSON_NORMALIZE

JSON_QUERY

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_Collect

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LineInterpolatePoint

ST_LineInterpolatePoints

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointAtDistance

ST_PointFromGeoHash
1794/4161

ST_SIMPLIFY

ST_VALIDATE (MDEV-17398)

JSON

JSON_SCHEMA_VALID (MDEV-27128)

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

FORMAT_PICO_TIME (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

SOURCE_POS_WAIT

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.6 Function Differences Between
MariaDB 10.6 and MySQL 8.0

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographic

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 10.6 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.23 and the MariaDB 10.6.12 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 10.6 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

1795/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599
https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25703

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

ADD_MONTHS

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NVL (Synonym for IFNULL)

NVL2

SYS_GUID

TO_CHAR

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographic

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

1796/4161

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EXISTS

JSON_LOOSE

JSON_QUERY

JSON_VALUE

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS

1797/4161

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_FrechetDistance

ST_GeoHash

ST_HausdorffDistance

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointFromGeoHash

ST_SIMPLIFY

ST_TRANSFORM

ST_VALIDATE (MDEV-17398)

JSON

JSON_OVERLAPS (MDEV-27677)

JSON_SCHEMA_VALID (MDEV-27128)

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN (MDEV-15854)

Miscellaneous

ANY_VALUE (MDEV-10426)

ASYNCHRONOUS_CONNECTION_FAILOVER_ADD_SOURCE

ASYNCHRONOUS_CONNECTION_FAILOVER_DELETE_SOURCE

FORMAT_BYTES (MDEV-19629)

FORMAT_PICO_TIME (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

RANDOM_BYTES (MDEV-25704)

VALIDATE_PASSWORD_STRENGTH (MDEV-25703)

2.1.14.1.12.7 Function Differences Between
MariaDB 10.5 and MySQL 8.0

1798/4161

https://jira.mariadb.org/browse/MDEV-17398
https://jira.mariadb.org/browse/MDEV-27677
https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599
https://jira.mariadb.org/browse/MDEV-15854
https://jira.mariadb.org/browse/MDEV-10426
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-25704
https://jira.mariadb.org/browse/MDEV-25703

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographical

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 10.5 and MySQL 8.0. It is based on functions available in

the MySQL 8.0.17 and the MariaDB 10.5.19 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 10.5 and MySQL 8.0

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NVL (Synonym for IFNULL)

NVL2

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographical

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

1799/4161

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EXISTS

JSON_LOOSE

JSON_QUERY

JSON_VALUE

1800/4161

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_GeoHash

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointFromGeoHash

ST_SIMPLIFY

ST_TRANSFORM

ST_VALIDATE

JSON

JSON_OVERLAPS

JSON_SCHEMA_VALID (MDEV-27128)

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

JSON_TABLE

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN

Miscellaneous

ANY_VALUE

FORMAT_BYTES (MDEV-19629)

FORMAT_PICO_TIME (MDEV-19629)

GROUPING (MDEV-32789)
1801/4161

https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

RANDOM_BYTES

VALIDATE_PASSWORD_STRENGTH

2.1.14.1.12.8 Function Differences Between
MariaDB 10.4 and MySQL 8.0

Contents
1. Present in MariaDB Only

1. Dynamic Columns

2. Galera

3. General

4. Geographical

5. JSON

6. Sequences

7. Window Functions

2. Present in MySQL Only

1. GTID

2. Geographic

3. JSON

4. Regular Expressions

5. UUID

6. Miscellaneous

The following is a list of all function differences between MariaDB 10.4 and MySQL 8.0. It is based on functions available in

the stable MySQL 8.0.17 and MariaDB 10.4.28 releases. For a more complete list of differences, see Incompatibilities and

Feature Differences Between MariaDB 10.4 and MySQL 8.0.

Present in MariaDB Only

Dynamic Columns

COLUMN_ADD

COLUMN_CHECK

COLUMN_CREATE

COLUMN_DELETE

COLUMN_EXISTS

COLUMN_GET

COLUMN_JSON

COLUMN_LIST

Galera

WSREP_LAST_SEEN_GTID

WSREP_LAST_WRITTEN_GTID

WSREP_SYNC_WAIT_UPTO_GTID

General

CHR

DECODE_ORACLE

DES_DECRYPT

DES_ENCRYPT

LENGTHB

NVL (Synonym for IFNULL)

NVL2

TRIM_ORACLE

VALUE - the VALUES() function was renamed after MariaDB introduced Table Value Constructors.

Geographical

1802/4161

https://jira.mariadb.org/browse/MDEV-19629

MySQL has removed the following functions in MySQL 8.0.

AREA

AsBinary

AsText

AsWKB

AsWKT

Buffer

Centroid

Contains

ConvexHull

Crosses

Dimension

Disjoint

EndPoint

Envelope

Equals

ExteriorRing

GeomCollFromText

GeomCollFromWKB

GeomFromText

GeomFromWKB

GeometryCollectionFromText

GeometryCollectionFromWKB

GeometryFromText

GeometryFromWKB

GeometryN

GeometryType

GLENGTH

InteriorRingN

Intersects

IsClosed

IsEmpty

IsSimple

LineFromText

LineFromWKB

LineStringFromText

LineStringFromWKB

MLineFromText

MLineFromWKB

MPointFromText

MPointFromWKB

MPolyFromText

MPolyFromWKB

MultiLineStringFromText

MultiLineStringFromWKB

MultiPointFromText

MultiPointFromWKB

MultiPolygonFromText

MultiPolygonFromWKB

NumGeometries

NumInteriorRings

NumPoints

Overlaps

PointFromText

PointFromWKB

PointN

PolyFromText

PolyFromWKB

PolygonFromText

PolygonFromWKB

SRID

StartPoint

Touches

Within

X

Y

1803/4161

JSON

JSON_COMPACT

JSON_DETAILED

JSON_EXISTS

JSON_LOOSE

JSON_QUERY

JSON_VALUE

Sequences

LASTVAL

NEXTVAL

SETVAL

Window Functions

MEDIAN

PERCENTILE_CONT

PERCENTILE_DISC

Present in MySQL Only

GTID

MariaDB and MySQL have differing GTID implementations.

GTID_SUBSET

GTID_SUBTRACT

WAIT_FOR_EXECUTED_GTID_SET

WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()

Geographic

MBRCOVEREDBY

ST_BUFFER_STRATEGY

ST_GeoHash

ST_IsValid

ST_LatFromGeoHash

ST_LATITUDE

ST_LongFromGeoHash

ST_LONGITUDE

ST_PointFromGeoHash

ST_SIMPLIFY

ST_TRANSFORM

ST_VALIDATE

JSON

JSON_ARRAYAGG

JSON_OBJECTAGG

JSON_OVERLAPS

JSON_SCHEMA_VALID (MDEV-27128)

JSON_SCHEMA_VALIDATION_REPORT

JSON_STORAGE_FREE

JSON_STORAGE_SIZE (MDEV-17397)

JSON_TABLE

MEMBER_OF operator

Regular Expressions

REGEXP_LIKE (MDEV-16599)

1804/4161

https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-17397
https://jira.mariadb.org/browse/MDEV-16599

UUID

BIN_TO_UUID

IS_UUID

UUID_TO_BIN

Miscellaneous

ANY_VALUE

FORMAT_BYTES (MDEV-19629)

FORMAT_PICO_TIME (MDEV-19629)

GROUPING (MDEV-32789)

PS_THREAD_ID (MDEV-19629)

PS_CURRENT_THREAD_ID

RANDOM_BYTES

RELEASE_ALL_LOCKS

VALIDATE_PASSWORD_STRENGTH

2.1.14.1.13 System Variable Differences
between MariaDB and MySQL
The following articles list the differences between the system variables available in MariaDB and in MySQL for each of the

major releases.

System Variable Differences Between MariaDB 11.3 and MySQL 8.0

Comparison of MariaDB 11.3 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 11.2 and MySQL 8.0

Comparison of MariaDB 11.2 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 11.1 and MySQL 8.0

Comparison of MariaDB 11.1 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 11.0 and MySQL 8.0

Comparison of MariaDB 11.0 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 10.11 and MySQL 8.0

Comparison of MariaDB 10.11 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 10.6 and MySQL 8.0

Comparison of MariaDB 10.6 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 10.5 and MySQL 8.0

Comparison of MariaDB 10.5 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB 10.4 and MySQL 8.0

Comparison of MariaDB 10.4 and MySQL 8.0 system variables.

System Variable Differences Between MariaDB and MySQL - Unmaintained Series

Comparison of variable differences between major series of MariaDB and MySQL.

2.1.14.1.13.1 System Variable Differences
Between MariaDB 11.3 and MySQL 8.0

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 11.3 or MySQL 8.0, or have different default

settings in MariaDB 11.3, and MySQL 8.0. The releases MariaDB 11.3.1 and MySQL 8.0.35, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

1805/4161

https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-32789
https://jira.mariadb.org/browse/MDEV-19629
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-10-6-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-10-5-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-10-4-and-mysql-8-0/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-and-mysql-unmaintained-series/

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 11.3 and MySQL

8.0 and Function Differences Between MariaDB 11.3 and MySQL 8.0

Comparison Table
Variable MariaDB 11.3 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

admin* - * MySQL admin connections.

allow_suspicious_udfs 0 - Only available as an option in MySQL.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

authentication_policy - *,, MySQL authentication policy.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog_alter_two_phase OFF -

When set, split ALTER at binary logging

into two statements: START ALTER and

COMMIT/ROLLBACK ALTER.

binlog_annotate_row_events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_do_db NULL -
A system variable as well as an option in

MariaDB 11.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_ignore_db NULL -
A system variable as well as an option in

MariaDB 11.

binlog_encryption - OFF MySQL name for encrypt_binlog.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_auto_purge - ON
Enables or disables automatic purging of

binary log files.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for

the binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing

binary log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the

binary log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and

syncing log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may

be committed in parallel.

binlog_rotate_encryption_master_key_at_startup - OFF Specifically for use with MySQL binary

key encryption.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table

metadata added to the binary log with

row-based logging.

1806/4161

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_compression* - *
MySQL variables relating to binary log

compression.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified

a given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

character_set_collations Empty -
Overrides for character set default

collations.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that

violates some constraints that you plan

to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

connection_memory_chunk_size - 8192
Chunk size for updates to the

Global_connection_memory counter.

connection_memory_limit - 18446744073709551615
Maximum memory for a single user

connection.

create_admin_listener_thread - OFF

MySQL-only variable for whether to use

a dedicated listening thread for admin

network interface connections.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new

authentication plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling

specific storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not

disconnect a client when a password

has expired.

1807/4161

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different

GTID implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

extra_max_connections 1 -
Introduced in the MariaDB 5.1

threadpool.

extra_port 0 -
Introduced in the MariaDB 5.1

threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different

GTID implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different

GTID implementations.

gtid_current_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_executed - empty
MariaDB and MySQL have different

GTID implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different

GTID implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different

GTID implementations.

gtid_mode - OFF
MariaDB and MySQL have different

GTID implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different

GTID implementations.

gtid_owned - empty
MariaDB and MySQL have different

GTID implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different

GTID implementations.

gtid_purged - empty
MariaDB and MySQL have different

GTID implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different

GTID implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is

a synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB

uses histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

1808/4161

histogram_type JSON_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this

this low water mark percentage of the

redo log capacity is reached. MariaDB's

variable is a double, MySQL's an

integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP

TABLE, TRUNCATE TABLE, ALTER

TABLE, or DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 since

the original reasons for introducing no

longer apply.

innodb_change* *
The InnoDB Change Buffer was

removed in MariaDB 11.0.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX,

which crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server

is a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB InnoDB flushing method by

default on Unix systems bypasses the

file system cache for improved

performance in most cases.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the

use of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will

return an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

1809/4161

innodb_log_checksums - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6, as

there is no reason to allow checksums to

be disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

the original reasons for for splitting the

buffer pool have mostly gone away.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_purge_batch_size 1000 300

Increased to 1000 in MariaDB after

benchmarking found this value to help

reduce purge lag without having a

significant impact on workload

throughput.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables

to read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different

name. The equivalent option in MariaDB

is innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to

always create and use the maximum

number of rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of

index statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_tablespaces 3 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased

the default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

1810/4161

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different

formats for temporary tables. In

MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query

buffer. See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks

used by MyISAM tables and shared for

all threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different

GTID implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row

mode) that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether

or not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from

a master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to

the slow query log.

log_slow_min_examined_row_limit 0 -
Previously named

min_examined_row_limit (still an alias).

log_slow_query 0 -
Previously named log_slow_query (still

an alias).

log_slow_query_file host_name-slow.log - Previously named slow_query_log_file

(still an alias).

log_slow_query_time 10.000000 -
Previously named long_query_time (still

an alias).

log_slow_max_warnings 10 -
Max numbers of warnings printed to

slow query log per statement.

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to

the slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query

Log Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

1811/4161

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

max_length_for_sort_data 64 1024

Used to decide which algorithm to

choose when sorting rows. If the total

size of the column data, not including

columns that are part of the sort, is less

than max_length_for_sort_data, then

these are added to the sort key. This can

speed up the sort as there's no need to

re-read the same row again later. Setting

the value too high can slow things down

as there will be a higher disk activity for

doing the sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of

the actual index cardinality. If this value

is set lower than its default and

maximum, indexes will tend to be

preferred over table scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted.

MySQL used to have a variable of this

name before renaming it

max_execution_time .

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 -
Block size used for MyISAM index

pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated

when creating or sorting indexes on a

MyISAM table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the

MariaDB 5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

note_verbosity basic,explain -
Verbosity level for note-warnings given

to the user.

1812/4161

ngram_token_size - 2
Sets the n-gram token size for MySQL's

n-gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether

the server should run in offline mode.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL

or MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with

the old pre-MySQL 4.1 form of password

hashing.

optimizer_extra_pruning_depth 8 -

If the optimizer needs to enumerate a

join prefix of this size or larger, then it

will try aggressively prune away the

search space.

optimizer_max_sel_arg_weight 32000 -
The maximum weight of the SEL_ARG

graph.

optimizer_max_sel_args 16000 -
Maximum number of SEL_ARG objects

created when optimizing a range.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - *
Used by MySQL 8 for delaying

replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by

default in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional

variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these

source networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks

allocated during query parsing and

execution (after query_prealloc_size is

used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated

on connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on

the range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -

Permits restricting the speed at which

the slave reads the binlog from the

master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining

whether the slave's position in the relay

logs is written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

1813/4161

https://mariadb.com/kb/en/proxy-protocol-support/

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_rewrite_db empty string - Only available as an option in MySQL.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections

where this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE

waits before timing out.

s3_* * -
The S3 storage engine is only available

in MariaDB.

schema_definition_cache - 256

Limits the number of schema definition

objects kept in the dictionary object

cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID
MySQL-only variable containing the

UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

session_track_system_variables

autocommit, character_set_client,

character_set_connection,

character_set_results, redirect_url,

time_zone

time_zone, autocommit,

character_set_client,

character_set_results,

character_set_connection

MariaDB supports connection

redirection.

sha256_password_proxy_users - OFF

MySQL-only variable determining

whether the sha256_password plugin

supports proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

skip_grant_tables 0 - Only available as an option in MySQL.

slave_max_statement_time 0.000000 -

MariaDB setting to abort a query that

has taken more than this in seconds to

run on the replica.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

1814/4161

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a

transaction on the slave, replication

usually halts. By default, transactions

that caused a deadlock or elapsed lock

wait timeout will be retried. One can add

other errors to the the list of errors that

should be retried by adding a comma-

separated list of error numbers to this

variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to

a deadlock, elapsed lock wait timeout or

an error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has

been reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side. Deprecated in MySQL.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine,

removed in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords

that cannot be validated (passwords

specified as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

system_versioning_insert_history OFF - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256

Limits the number of tablespace

definition objects kept in the dictionary

object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent

if no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

1815/4161

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal

temporary on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction

in MySQL Cluster.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
A MariaDB-only variable, replaced with

transaction_isolation.

tx_read_only OFF -
A MariaDB-only variable, replaced with

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available

in MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 11.3 MySQL 8.0 Notes

2.1.14.1.13.2 System Variable Differences
Between MariaDB 11.2 and MySQL 8.0

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 11.2 or MySQL 8.0, or have different default

settings in MariaDB 11.2, and MySQL 8.0. The releases MariaDB 11.2.2 and MySQL 8.0.34, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 11.2 and MySQL

8.0 and Function Differences Between MariaDB 11.2 and MySQL 8.0

Comparison Table
Variable MariaDB 11.2 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

admin* - * MySQL admin connections.

allow_suspicious_udfs 0 - Only available as an option in MySQL.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

1816/4161

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

authentication_policy - *,, MySQL authentication policy.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog_alter_two_phase OFF -

When set, split ALTER at binary logging

into two statements: START ALTER and

COMMIT/ROLLBACK ALTER.

binlog_annotate_row_events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_do_db NULL -
A system variable as well as an option in

MariaDB 11.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_ignore_db NULL -
A system variable as well as an option in

MariaDB 11.

binlog_encryption - OFF MySQL name for encrypt_binlog.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_auto_purge - ON
Enables or disables automatic purging of

binary log files.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for

the binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing

binary log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the

binary log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and

syncing log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may

be committed in parallel.

binlog_rotate_encryption_master_key_at_startup - OFF
Specifically for use with MySQL binary

key encryption.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table

metadata added to the binary log with

row-based logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_compression* - *
MySQL variables relating to binary log

compression.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified

a given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

1817/4161

character_set_collations Empty -
Overrides for character set default

collations.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that

violates some constraints that you plan

to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

connection_memory_chunk_size - 8192
Chunk size for updates to the

Global_connection_memory counter.

connection_memory_limit - 18446744073709551615
Maximum memory for a single user

connection.

create_admin_listener_thread - OFF

MySQL-only variable for whether to use

a dedicated listening thread for admin

network interface connections.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new

authentication plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling

specific storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not

disconnect a client when a password

has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different

GTID implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

1818/4161

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

extra_max_connections 1 -
Introduced in the MariaDB 5.1

threadpool.

extra_port 0 -
Introduced in the MariaDB 5.1

threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different

GTID implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different

GTID implementations.

gtid_current_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_executed - empty
MariaDB and MySQL have different

GTID implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different

GTID implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different

GTID implementations.

gtid_mode - OFF
MariaDB and MySQL have different

GTID implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different

GTID implementations.

gtid_owned - empty
MariaDB and MySQL have different

GTID implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different

GTID implementations.

gtid_purged - empty
MariaDB and MySQL have different

GTID implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different

GTID implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is

a synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB

uses histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type JSON_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

1819/4161

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this

this low water mark percentage of the

redo log capacity is reached. MariaDB's

variable is a double, MySQL's an

integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP

TABLE, TRUNCATE TABLE, ALTER

TABLE, or DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 since

the original reasons for introducing no

longer apply.

innodb_change* *
The InnoDB Change Buffer was

removed in MariaDB 11.0.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX,

which crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server

is a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB InnoDB flushing method by

default on Unix systems bypasses the

file system cache for improved

performance in most cases.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the

use of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will

return an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_log_checksums - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6, as

there is no reason to allow checksums to

be disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

1820/4161

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

the original reasons for for splitting the

buffer pool have mostly gone away.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_purge_batch_size 1000 300

Increased to 1000 in MariaDB after

benchmarking found this value to help

reduce purge lag without having a

significant impact on workload

throughput.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables

to read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different

name. The equivalent option in MariaDB

is innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to

always create and use the maximum

number of rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of

index statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_tablespaces 3 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased

the default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different

formats for temporary tables. In

MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query

buffer. See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks

used by MyISAM tables and shared for

all threads.

1821/4161

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different

GTID implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row

mode) that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether

or not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from

a master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to

the slow query log.

log_slow_min_examined_row_limit 0 -
Previously named

min_examined_row_limit (still an alias).

log_slow_query 0 -
Previously named log_slow_query (still

an alias).

log_slow_query_file host_name-slow.log -
Previously named slow_query_log_file

(still an alias).

log_slow_query_time 10.000000 -
Previously named long_query_time (still

an alias).

log_slow_max_warnings 10 -
Max numbers of warnings printed to

slow query log per statement.

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to

the slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query

Log Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -

MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

1822/4161

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

max_length_for_sort_data 64 1024

Used to decide which algorithm to

choose when sorting rows. If the total

size of the column data, not including

columns that are part of the sort, is less

than max_length_for_sort_data, then

these are added to the sort key. This can

speed up the sort as there's no need to

re-read the same row again later. Setting

the value too high can slow things down

as there will be a higher disk activity for

doing the sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of

the actual index cardinality. If this value

is set lower than its default and

maximum, indexes will tend to be

preferred over table scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted.

MySQL used to have a variable of this

name before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 -
Block size used for MyISAM index

pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated

when creating or sorting indexes on a

MyISAM table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the

MariaDB 5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

note_verbosity basic,explain -
Verbosity level for note-warnings given

to the user.

ngram_token_size - 2
Sets the n-gram token size for MySQL's

n-gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether

the server should run in offline mode.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL

or MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with

the old pre-MySQL 4.1 form of password

hashing.

1823/4161

optimizer_extra_pruning_depth 8 -

If the optimizer needs to enumerate a

join prefix of this size or larger, then it

will try aggressively prune away the

search space.

optimizer_max_sel_arg_weight 32000 -
The maximum weight of the SEL_ARG

graph.

optimizer_max_sel_args 16000 -
Maximum number of SEL_ARG objects

created when optimizing a range.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - *
Used by MySQL 8 for delaying

replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by

default in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional

variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these

source networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks

allocated during query parsing and

execution (after query_prealloc_size is

used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated

on connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on

the range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -

Permits restricting the speed at which

the slave reads the binlog from the

master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining

whether the slave's position in the relay

logs is written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_rewrite_db empty string - Only available as an option in MySQL.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections

where this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

1824/4161

https://mariadb.com/kb/en/proxy-protocol-support/

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE

waits before timing out.

s3_* * -
The S3 storage engine is only available

in MariaDB.

schema_definition_cache - 256

Limits the number of schema definition

objects kept in the dictionary object

cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID
MySQL-only variable containing the

UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining

whether the sha256_password plugin

supports proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

skip_grant_tables 0 - Only available as an option in MySQL.

slave_max_statement_time 0.000000 -

MariaDB setting to abort a query that

has taken more than this in seconds to

run on the replica.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a

transaction on the slave, replication

usually halts. By default, transactions

that caused a deadlock or elapsed lock

wait timeout will be retried. One can add

other errors to the the list of errors that

should be retried by adding a comma-

separated list of error numbers to this

variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to

a deadlock, elapsed lock wait timeout or

an error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has

been reduced in MySQL.

1825/4161

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side. Deprecated in MySQL.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine,

removed in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords

that cannot be validated (passwords

specified as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

system_versioning_insert_history OFF - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256

Limits the number of tablespace

definition objects kept in the dictionary

object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent

if no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

1826/4161

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal

temporary on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction

in MySQL Cluster.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
A MariaDB-only variable, replaced with

transaction_isolation.

tx_read_only OFF -
A MariaDB-only variable, replaced with

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available

in MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 11.2 MySQL 8.0 Notes

2.1.14.1.13.3 System Variable Differences
Between MariaDB 11.1 and MySQL 8.0

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 11.1 or MySQL 8.0, or have different default

settings in MariaDB 11.1, and MySQL 8.0. The releases MariaDB 11.1.2 and MySQL 8.0.34, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 11.1 and MySQL

8.0 and Function Differences Between MariaDB 11.1 and MySQL 8.0

Comparison Table
Variable MariaDB 11.1 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

admin* - * MySQL admin connections.

allow_suspicious_udfs 0 - Only available as an option in MySQL.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

authentication_policy - *,, MySQL authentication policy.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

1827/4161

binlog_alter_two_phase OFF -

When set, split ALTER at binary logging

into two statements: START ALTER and

COMMIT/ROLLBACK ALTER.

binlog_annotate_row_events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_encryption - OFF MySQL name for encrypt_binlog.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_auto_purge - ON
Enables or disables automatic purging of

binary log files.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for

the binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing

binary log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the

binary log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and

syncing log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may

be committed in parallel.

binlog_rotate_encryption_master_key_at_startup - OFF
Specifically for use with MySQL binary

key encryption.

binlog_row_event_max_size - 8192
Only available as a system variable in

MariaDB 11.2.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table

metadata added to the binary log with

row-based logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_compression* - *
MySQL variables relating to binary log

compression.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified

a given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that

violates some constraints that you plan

to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

1828/4161

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

connection_memory_chunk_size - 8192
Chunk size for updates to the

Global_connection_memory counter.

connection_memory_limit - 18446744073709551615
Maximum memory for a single user

connection.

create_admin_listener_thread - OFF

MySQL-only variable for whether to use

a dedicated listening thread for admin

network interface connections.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new

authentication plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling

specific storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not

disconnect a client when a password

has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different

GTID implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

extra_max_connections 1 -
Introduced in the MariaDB 5.1

threadpool.

extra_port 0 -
Introduced in the MariaDB 5.1

threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

1829/4161

gtid_binlog_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different

GTID implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different

GTID implementations.

gtid_current_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_executed - empty
MariaDB and MySQL have different

GTID implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different

GTID implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different

GTID implementations.

gtid_mode - OFF
MariaDB and MySQL have different

GTID implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different

GTID implementations.

gtid_owned - empty
MariaDB and MySQL have different

GTID implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different

GTID implementations.

gtid_purged - empty
MariaDB and MySQL have different

GTID implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different

GTID implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is

a synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB

uses histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type JSON_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this

this low water mark percentage of the

redo log capacity is reached. MariaDB's

variable is a double, MySQL's an

integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP

TABLE, TRUNCATE TABLE, ALTER

TABLE, or DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

1830/4161

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 since

the original reasons for introducing no

longer apply.

innodb_change* *
The InnoDB Change Buffer was

removed in MariaDB 11.0.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX,

which crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server

is a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB InnoDB flushing method by

default on Unix systems bypasses the

file system cache for improved

performance in most cases.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the

use of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will

return an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_log_checksums - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6, as

there is no reason to allow checksums to

be disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

the original reasons for for splitting the

buffer pool have mostly gone away.

1831/4161

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables

to read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different

name. The equivalent option in MariaDB

is innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to

always create and use the maximum

number of rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of

index statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_tablespaces 3 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased

the default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different

formats for temporary tables. In

MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query

buffer. See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks

used by MyISAM tables and shared for

all threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty MariaDB and MySQL have different

GTID implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

1832/4161

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row

mode) that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether

or not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from

a master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to

the slow query log.

log_slow_min_examined_row_limit 0 -
Previously named

min_examined_row_limit (still an alias).

log_slow_query 0 -
Previously named log_slow_query (still

an alias).

log_slow_query_file host_name-slow.log -
Previously named slow_query_log_file

(still an alias).

log_slow_query_time 10.000000 -
Previously named long_query_time (still

an alias).

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to

the slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query

Log Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

1833/4161

max_length_for_sort_data 64 1024

Used to decide which algorithm to

choose when sorting rows. If the total

size of the column data, not including

columns that are part of the sort, is less

than max_length_for_sort_data, then

these are added to the sort key. This can

speed up the sort as there's no need to

re-read the same row again later. Setting

the value too high can slow things down

as there will be a higher disk activity for

doing the sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of

the actual index cardinality. If this value

is set lower than its default and

maximum, indexes will tend to be

preferred over table scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted.

MySQL used to have a variable of this

name before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 -
Block size used for MyISAM index

pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated

when creating or sorting indexes on a

MyISAM table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the

MariaDB 5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's

n-gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether

the server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL

or MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with

the old pre-MySQL 4.1 form of password

hashing.

optimizer_extra_pruning_depth 8 -

If the optimizer needs to enumerate a

join prefix of this size or larger, then it

will try aggressively prune away the

search space.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - * MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

1834/4161

original_commit_timestamp - *
Used by MySQL 8 for delaying

replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by

default in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional

variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these

source networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks

allocated during query parsing and

execution (after query_prealloc_size is

used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated

on connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on

the range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -

Permits restricting the speed at which

the slave reads the binlog from the

master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining

whether the slave's position in the relay

logs is written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_rewrite_db empty string - Only available as an option in MySQL.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections

where this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE

waits before timing out.

s3_* * -
The S3 storage engine is only available

in MariaDB.

schema_definition_cache - 256

Limits the number of schema definition

objects kept in the dictionary object

cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

1835/4161

https://mariadb.com/kb/en/proxy-protocol-support/

server_uuid - UUID
MySQL-only variable containing the

UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining

whether the sha256_password plugin

supports proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

skip_grant_tables 0 - Only available as an option in MySQL.

slave_max_statement_time 0.000000 -

MariaDB setting to abort a query that

has taken more than this in seconds to

run on the replica.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a

transaction on the slave, replication

usually halts. By default, transactions

that caused a deadlock or elapsed lock

wait timeout will be retried. One can add

other errors to the the list of errors that

should be retried by adding a comma-

separated list of error numbers to this

variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to

a deadlock, elapsed lock wait timeout or

an error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has

been reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side. Deprecated in MySQL.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine,

removed in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords

that cannot be validated (passwords

specified as a hash).

1836/4161

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

system_versioning_insert_history OFF - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256

Limits the number of tablespace

definition objects kept in the dictionary

object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent

if no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal

temporary on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction

in MySQL Cluster.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
A MariaDB-only variable, replaced with

transaction_isolation.

tx_read_only OFF -
A MariaDB-only variable, replaced with

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available

in MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

1837/4161

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 11.1 MySQL 8.0 Notes

2.1.14.1.13.4 System Variable Differences
Between MariaDB 11.0 and MySQL 8.0

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 11.0 or MySQL 8.0, or have different default

settings in MariaDB 11.0, and MySQL 8.0. The releases MariaDB 11.0.2 and MySQL 8.0.34, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 11.0 and MySQL

8.0 and Function Differences Between MariaDB 11.0 and MySQL 8.0

Comparison Table
Variable MariaDB 11.0 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

admin* - * MySQL admin connections.

allow_suspicious_udfs 0 - Only available as an option in MySQL.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

authentication_policy - *,, MySQL authentication policy.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog_alter_two_phase OFF -

When set, split ALTER at binary logging

into two statements: START ALTER and

COMMIT/ROLLBACK ALTER.

binlog_annotate_row_events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_encryption - OFF MySQL name for encrypt_binlog.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_auto_purge - ON
Enables or disables automatic purging of

binary log files.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 - For setting the size of the file cache for

the binary log.

1838/4161

binlog_format MIXED ROW
MariaDB and MySQL have differing

binary log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the

binary log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and

syncing log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may

be committed in parallel.

binlog_rotate_encryption_master_key_at_startup - OFF
Specifically for use with MySQL binary

key encryption.

binlog_row_event_max_size - 8192
Only available as a system variable in

MariaDB 11.2.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table

metadata added to the binary log with

row-based logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_compression* - *
MySQL variables relating to binary log

compression.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified

a given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that

violates some constraints that you plan

to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

connection_memory_chunk_size - 8192
Chunk size for updates to the

Global_connection_memory counter.

connection_memory_limit - 18446744073709551615
Maximum memory for a single user

connection.

create_admin_listener_thread - OFF

MySQL-only variable for whether to use

a dedicated listening thread for admin

network interface connections.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

1839/4161

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new

authentication plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling

specific storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not

disconnect a client when a password

has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different

GTID implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

extra_max_connections 1 -
Introduced in the MariaDB 5.1

threadpool.

extra_port 0 -
Introduced in the MariaDB 5.1

threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different

GTID implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different

GTID implementations.

gtid_current_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_executed - empty
MariaDB and MySQL have different

GTID implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different

GTID implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different

GTID implementations.

1840/4161

gtid_mode - OFF
MariaDB and MySQL have different

GTID implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different

GTID implementations.

gtid_owned - empty
MariaDB and MySQL have different

GTID implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different

GTID implementations.

gtid_purged - empty
MariaDB and MySQL have different

GTID implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different

GTID implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is

a synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB

uses histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type JSON_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this

this low water mark percentage of the

redo log capacity is reached. MariaDB's

variable is a double, MySQL's an

integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP

TABLE, TRUNCATE TABLE, ALTER

TABLE, or DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 since

the original reasons for introducing no

longer apply.

innodb_change* *
The InnoDB Change Buffer was

removed in MariaDB 11.0.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX,

which crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

1841/4161

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server

is a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_defragment * -
MariaDB can defragment InnoDB

tablespaces.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB InnoDB flushing method by

default on Unix systems bypasses the

file system cache for improved

performance in most cases.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the

use of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will

return an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_log_checksums - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6, as

there is no reason to allow checksums to

be disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

the original reasons for for splitting the

buffer pool have mostly gone away.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables

to read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different

name. The equivalent option in MariaDB

is innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

1842/4161

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to

always create and use the maximum

number of rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of

index statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_tablespaces 3 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased

the default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different

formats for temporary tables. In

MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query

buffer. See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks

used by MyISAM tables and shared for

all threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different

GTID implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row

mode) that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether

or not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

1843/4161

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from

a master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to

the slow query log.

log_slow_min_examined_row_limit 0 -
Previously named

min_examined_row_limit (still an alias).

log_slow_query 0 -
Previously named log_slow_query (still

an alias).

log_slow_query_file host_name-slow.log -
Previously named slow_query_log_file

(still an alias).

log_slow_query_time 10.000000 -
Previously named long_query_time (still

an alias).

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to

the slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query

Log Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

max_length_for_sort_data 64 1024

Used to decide which algorithm to

choose when sorting rows. If the total

size of the column data, not including

columns that are part of the sort, is less

than max_length_for_sort_data, then

these are added to the sort key. This can

speed up the sort as there's no need to

re-read the same row again later. Setting

the value too high can slow things down

as there will be a higher disk activity for

doing the sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of

the actual index cardinality. If this value

is set lower than its default and

maximum, indexes will tend to be

preferred over table scans.

1844/4161

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted.

MySQL used to have a variable of this

name before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 -
Block size used for MyISAM index

pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated

when creating or sorting indexes on a

MyISAM table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the

MariaDB 5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's

n-gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether

the server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL

or MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with

the old pre-MySQL 4.1 form of password

hashing.

optimizer_extra_pruning_depth 8 -

If the optimizer needs to enumerate a

join prefix of this size or larger, then it

will try aggressively prune away the

search space.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - *
Used by MySQL 8 for delaying

replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by

default in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional

variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these

source networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks

allocated during query parsing and

execution (after query_prealloc_size is

used up).

1845/4161

https://mariadb.com/kb/en/proxy-protocol-support/

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated

on connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on

the range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -

Permits restricting the speed at which

the slave reads the binlog from the

master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining

whether the slave's position in the relay

logs is written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_rewrite_db empty string - Only available as an option in MySQL.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections

where this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE

waits before timing out.

s3_* * -
The S3 storage engine is only available

in MariaDB.

schema_definition_cache - 256

Limits the number of schema definition

objects kept in the dictionary object

cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID
MySQL-only variable containing the

UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining

whether the sha256_password plugin

supports proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

1846/4161

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

skip_grant_tables 0 - Only available as an option in MySQL.

slave_max_statement_time 0.000000 -

MariaDB setting to abort a query that

has taken more than this in seconds to

run on the replica.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a

transaction on the slave, replication

usually halts. By default, transactions

that caused a deadlock or elapsed lock

wait timeout will be retried. One can add

other errors to the the list of errors that

should be retried by adding a comma-

separated list of error numbers to this

variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to

a deadlock, elapsed lock wait timeout or

an error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has

been reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side. Deprecated in MySQL.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine,

removed in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords

that cannot be validated (passwords

specified as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

system_versioning_insert_history OFF - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256

Limits the number of tablespace

definition objects kept in the dictionary

object cache.

1847/4161

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent

if no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal

temporary on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction

in MySQL Cluster.

transaction_isolation - REPEATABLE-READ The MariaDB equivalent is tx_isolation.

transaction_read_only - OFF The MariaDB equivalent is tx_read_only.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
The MySQL equivalent is

transaction_isolation.

tx_read_only OFF -
The MySQL equivalent is

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available

in MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 11.01 MySQL 8.0 Notes

2.1.14.1.13.5 System Variable Differences
Between MariaDB 10.11 and MySQL 8.0

1848/4161

https://mariadb.com/kb/en/what-is-mariadb-1101/

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 10.11 or MySQL 8.0, or have different default

settings in MariaDB 10.11, and MySQL 8.0. The releases MariaDB 10.11.2 and MySQL 8.0.34, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 10.11 and MySQL

8.0 and Function Differences Between MariaDB 10.11 and MySQL 8.0

Comparison Table
Variable MariaDB 10.11 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

admin* - * MySQL admin connections.

allow_suspicious_udfs 0 - Only available as an option in MySQL.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

authentication_policy - *,, MySQL authentication policy.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog_alter_two_phase OFF -

When set, split ALTER at binary logging

into two statements: START ALTER and

COMMIT/ROLLBACK ALTER.

binlog_annotate_row_events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_encryption - OFF MySQL name for encrypt_binlog.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_auto_purge - ON
Enables or disables automatic purging of

binary log files.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for

the binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing

binary log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the

binary log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and

syncing log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may

be committed in parallel.

1849/4161

binlog_rotate_encryption_master_key_at_startup - OFF
Specifically for use with MySQL binary

key encryption.

binlog_row_event_max_size - 8192
Only available as a system variable in

MariaDB 11.2.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table

metadata added to the binary log with

row-based logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_compression* - *
MySQL variables relating to binary log

compression.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified

a given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that

violates some constraints that you plan

to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

connection_memory_chunk_size - 8192
Chunk size for updates to the

Global_connection_memory counter.

connection_memory_limit - 18446744073709551615
Maximum memory for a single user

connection.

create_admin_listener_thread - OFF

MySQL-only variable for whether to use

a dedicated listening thread for admin

network interface connections.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new

authentication plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

1850/4161

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling

specific storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not

disconnect a client when a password

has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different

GTID implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

extra_max_connections 1 -
Introduced in the MariaDB 5.1

threadpool.

extra_port 0 -
Introduced in the MariaDB 5.1

threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different

GTID implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different

GTID implementations.

gtid_current_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_executed - empty
MariaDB and MySQL have different

GTID implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different

GTID implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different

GTID implementations.

gtid_mode - OFF
MariaDB and MySQL have different

GTID implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different

GTID implementations.

gtid_owned - empty
MariaDB and MySQL have different

GTID implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different

GTID implementations.

gtid_purged - empty
MariaDB and MySQL have different

GTID implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different

GTID implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different

GTID implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different

GTID implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

1851/4161

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is

a synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB

uses histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type DOUBLE_PREC_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this

this low water mark percentage of the

redo log capacity is reached. MariaDB's

variable is a double, MySQL's an

integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP

TABLE, TRUNCATE TABLE, ALTER

TABLE, or DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 since

the original reasons for introducing no

longer apply.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX,

which crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server

is a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_defragment * -
MariaDB can defragment InnoDB

tablespaces.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB InnoDB flushing method by

default on Unix systems bypasses the

file system cache for improved

performance in most cases.

1852/4161

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the

use of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will

return an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_log_checksums - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6, as

there is no reason to allow checksums to

be disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

part of the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6 as

the original reasons for for splitting the

buffer pool have mostly gone away.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables

to read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different

name. The equivalent option in MariaDB

is innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to

always create and use the maximum

number of rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of

index statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_concurrency - 0 Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB

10.5 and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

1853/4161

innodb_undo_tablespaces 0 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased

the default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different

formats for temporary tables. In

MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query

buffer. See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks

used by MyISAM tables and shared for

all threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different

GTID implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row

mode) that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether

or not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from

a master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to

the slow query log.

log_slow_min_examined_row_limit 0 -
Previously named

min_examined_row_limit (still an alias).

log_slow_query 0 -
Previously named log_slow_query (still

an alias).

log_slow_query_file host_name-slow.log -
Previously named slow_query_log_file

(still an alias).

log_slow_query_time 10.000000 -
Previously named long_query_time (still

an alias).

1854/4161

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to

the slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query

Log Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

max_length_for_sort_data 64 1024

Used to decide which algorithm to

choose when sorting rows. If the total

size of the column data, not including

columns that are part of the sort, is less

than max_length_for_sort_data, then

these are added to the sort key. This can

speed up the sort as there's no need to

re-read the same row again later. Setting

the value too high can slow things down

as there will be a higher disk activity for

doing the sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of

the actual index cardinality. If this value

is set lower than its default and

maximum, indexes will tend to be

preferred over table scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted.

MySQL used to have a variable of this

name before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 -
Block size used for MyISAM index

pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated

when creating or sorting indexes on a

MyISAM table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

1855/4161

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the

MariaDB 5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's

n-gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether

the server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL

or MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with

the old pre-MySQL 4.1 form of password

hashing.

optimizer_extra_pruning_depth 8 -

If the optimizer needs to enumerate a

join prefix of this size or larger, then it

will try aggressively prune away the

search space.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - *
Used by MySQL 8 for delaying

replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by

default in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional

variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these

source networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks

allocated during query parsing and

execution (after query_prealloc_size is

used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated

on connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on

the range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -

Permits restricting the speed at which

the slave reads the binlog from the

master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining

whether the slave's position in the relay

logs is written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

1856/4161

https://mariadb.com/kb/en/proxy-protocol-support/

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_rewrite_db empty string - Only available as an option in MySQL.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections

where this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE

waits before timing out.

s3_* * -
The S3 storage engine is only available

in MariaDB.

schema_definition_cache - 256

Limits the number of schema definition

objects kept in the dictionary object

cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID
MySQL-only variable containing the

UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining

whether the sha256_password plugin

supports proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_max_statement_time 0.000000 -

MariaDB setting to abort a query that

has taken more than this in seconds to

run on the replica.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

skip_grant_tables 0 - Only available as an option in MySQL.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

1857/4161

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a

transaction on the slave, replication

usually halts. By default, transactions

that caused a deadlock or elapsed lock

wait timeout will be retried. One can add

other errors to the the list of errors that

should be retried by adding a comma-

separated list of error numbers to this

variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to

a deadlock, elapsed lock wait timeout or

an error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has

been reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side. Deprecated in MySQL.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine,

removed in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords

that cannot be validated (passwords

specified as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

system_versioning_insert_history OFF - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256

Limits the number of tablespace

definition objects kept in the dictionary

object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent

if no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 - Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

1858/4161

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal

temporary on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction

in MySQL Cluster.

transaction_isolation - REPEATABLE-READ The MariaDB equivalent is tx_isolation.

transaction_read_only - OFF The MariaDB equivalent is tx_read_only.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
The MySQL equivalent is

transaction_isolation.

tx_read_only OFF -
The MySQL equivalent is

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available

in MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 10.11 MySQL 8.0 Notes

2.1.14.1.13.6 System Variable Differences
Between MariaDB 10.6 and MySQL 8.0

Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 10.6 or MySQL 8.0, or have different default

settings in MariaDB 10.6, and MySQL 8.0. The stable releases MariaDB 10.6.4 and MySQL 8.0.11, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 10.6 and MySQL

8.0 and Function Differences Between MariaDB 10.6 and MySQL 8.0

The most notable differences are that MariaDB includes, by default, the Aria storage engine (resulting in extra memory

allocation), Galera Cluster, and has a different thread pool implementation. For this reason, a default implementation of

MariaDB 10.6 will use more memory than MySQL 8.0. MariaDB 10.6 and MySQL 8.0 also have different GTID

implementations.

MariaDB's extra memory usage can be handled with the following rules of thumb:

If you are not using MyISAM and don't plan to use Aria:

Set key_buffer_size to something very low (16K) as it's not used.

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

1859/4161

Normally this is what before you had set for key_buffer_size (at least 1M).

If you are using MyISAM and not planning to use Aria:

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

If you are planning to use Aria, you should set aria_pagecache_buffer_size to something that fits a big part of your

normal data + overflow temporary tables.

Comparison Table
Variable MariaDB 10.6 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog-annotate-row-events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_seconds 0 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for the

binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing binary

log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the binary

log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and syncing

log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may be

committed in parallel.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table metadata

added to the binary log with row-based

logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified a

given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER

For determining how to best use the

slave's multithreaded applier.

1860/4161

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that violates

some constraints that you plan to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new authentication

plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling specific

storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not disconnect

a client when a password has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different GTID

implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

1861/4161

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

explicit_defaults_for_timestamp OFF ON
MySQL 8 disables the old timestamp

behavior.

extra_max_connections 1 - Introduced in the MariaDB 5.1 threadpool.

extra_port 0 - Introduced in the MariaDB 5.1 threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different GTID

implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different GTID

implementations.

gtid_current_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_executed - empty
MariaDB and MySQL have different GTID

implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different GTID

implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different GTID

implementations.

gtid_mode - OFF
MariaDB and MySQL have different GTID

implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different GTID

implementations.

gtid_owned - empty
MariaDB and MySQL have different GTID

implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different GTID

implementations.

gtid_purged - empty
MariaDB and MySQL have different GTID

implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different GTID

implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is a

synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB uses

histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type DOUBLE_PREC_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

1862/4161

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this this

low water mark percentage of the redo log

capacity is reached. MariaDB's variable is

a double, MySQL's an integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP TABLE,

TRUNCATE TABLE, ALTER TABLE, or

DROP INDEX operations

innodb_adaptive_max_sleep_delay - 150000
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_buffer_pool_instances - 1

Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6 since the

original reasons for introducing no longer

apply.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX, which

crc32 does not support.

innodb_commit_concurrency - 0
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_concurrency_tickets - 5000
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_deadlock_report Full - How to report deadlocks.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server is

a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_defragment * -
MariaDB can defragment InnoDB

tablespaces.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_flush_method O_DIRECT fsync

MariaDB 10.6 InnoDB flushing method by

default on Unix systems bypasses the file

system cache for improved performance in

most cases.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the use

of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will return

an error.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_log_checksums - ON

Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6, as there is

no reason to allow checksums to be

disabled on the redo log.

innodb_log_compressed_pages - ON

Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6 as part of

the InnoDB redo log performance

improvements.

innodb_log_files_in_group - 2

Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6 as part of

the InnoDB redo log performance

improvements.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

1863/4161

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_page_cleaners - 1

Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6 as the

original reasons for for splitting the buffer

pool have mostly gone away.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_read_only_compressed ON -

Whether to set

ROW_FORMAT=COMPRESSED tables to

read-only.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different name.

The equivalent option in MariaDB is

innodb_encrypt_log.

innodb_replication_delay - 0
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to always

create and use the maximum number of

rollback segments.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of index

statistics calculation.

innodb_sync_array_size - 1
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_thread_concurrency - 0
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_thread_sleep_delay - 10000
Deprecated and ignored in MariaDB 10.5

and removed in MariaDB 10.6.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_tablespaces 0 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased the

default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different formats

for temporary tables. In MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query buffer.

See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks used

by MyISAM tables and shared for all

threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different GTID

implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

1864/4161

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row mode)

that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether or

not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from a

master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to the

slow query log.

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to the

slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query Log

Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

max_length_for_sort_data 64 1024

Used to decide which algorithm to choose

when sorting rows. If the total size of the

column data, not including columns that

are part of the sort, is less than

max_length_for_sort_data, then these are

added to the sort key. This can speed up

the sort as there's no need to re-read the

same row again later. Setting the value

too high can slow things down as there

will be a higher disk activity for doing the

sort.

1865/4161

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of the

actual index cardinality. If this value is set

lower than its default and maximum,

indexes will tend to be preferred over table

scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted. MySQL

used to have a variable of this name

before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 - Block size used for MyISAM index pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated when

creating or sorting indexes on a MyISAM

table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the MariaDB

5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's n-

gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether the

server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL or

MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with the

old pre-MySQL 4.1 form of password

hashing.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - * Used by MySQL 8 for delaying replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by default

in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

1866/4161

proxy_protocol_networks (empty) -
Enable proxy protocol for these source

networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks allocated

during query parsing and execution (after

query_prealloc_size is used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated on

connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on the

range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -
Permits restricting the speed at which the

slave reads the binlog from the master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining whether

the slave's position in the relay logs is

written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections where

this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE waits

before timing out.

s3_* * -
The S3 storage engine is only available in

MariaDB.

schema_definition_cache - 256
Limits the number of schema definition

objects kept in the dictionary object cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID MySQL-only variable containing the UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining whether

the sha256_password plugin supports

proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

1867/4161

https://mariadb.com/kb/en/proxy-protocol-support/

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a transaction

on the slave, replication usually halts. By

default, transactions that caused a

deadlock or elapsed lock wait timeout will

be retried. One can add other errors to the

the list of errors that should be retried by

adding a comma-separated list of error

numbers to this variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to a

deadlock, elapsed lock wait timeout or an

error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has been

reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES, VIEWS,

FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine, removed

in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords that

cannot be validated (passwords specified

as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256
Limits the number of tablespace definition

objects kept in the dictionary object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent if

no acknowledgement is received.

1868/4161

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal temporary

on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction in

MySQL Cluster.

transaction_isolation - REPEATABLE-READ The MariaDB equivalent is tx_isolation.

transaction_read_only - OFF The MariaDB equivalent is tx_read_only.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ -
The MySQL equivalent is

transaction_isolation.

tx_read_only OFF -
The MySQL equivalent is

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available in

MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 10.6 MySQL 8.0 Notes

2.1.14.1.13.7 System Variable Differences
Between MariaDB 10.5 and MySQL 8.0

Contents
1. Comparison Table

1869/4161

The following is a comparison of variables that either appear only in MariaDB 10.5 or MySQL 8.0, or have different default

settings in MariaDB 10.5, and MySQL 8.0. The RC release MariaDB 10.5.3 and the stable MySQL 8.0.11, with only default

plugins enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or

removed in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 10.5 and MySQL

8.0 and Function Differences Between MariaDB 10.5 and MySQL 8.0

The most notable differences are that MariaDB includes, by default, the Aria storage engine (resulting in extra memory

allocation), Galera Cluster, and has a different thread pool implementation. For this reason, a default implementation of

MariaDB 10.5 will use more memory than MySQL 8.0. MariaDB 10.5 and MySQL 8.0 also have different GTID

implementations.

MariaDB's extra memory usage can be handled with the following rules of thumb:

If you are not using MyISAM and don't plan to use Aria:

Set key_buffer_size to something very low (16K) as it's not used.

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

Normally this is what before you had set for key_buffer_size (at least 1M).

If you are using MyISAM and not planning to use Aria:

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

If you are planning to use Aria, you should set aria_pagecache_buffer_size to something that fits a big part of your

normal data + overflow temporary tables.

Comparison Table
Variable MariaDB 10.5 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog-annotate-row-events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_seconds - 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for the

binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing binary

log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the binary

log file to disk.

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

1870/4161

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and syncing

log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may be

committed in parallel.

binlog_row_metadata NO_LOG MINIMAL

Determines the amount of table metadata

added to the binary log with row-based

logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified a

given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that violates

some constraints that you plan to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new authentication

plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling specific

storage engines.

1871/4161

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not disconnect

a client when a password has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different GTID

implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

explicit_defaults_for_timestamp OFF ON
MySQL 8 disables the old timestamp

behavior.

extra_max_connections 1 - Introduced in the MariaDB 5.1 threadpool.

extra_port 0 - Introduced in the MariaDB 5.1 threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different GTID

implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different GTID

implementations.

gtid_current_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_executed - empty
MariaDB and MySQL have different GTID

implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different GTID

implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different GTID

implementations.

gtid_mode - OFF
MariaDB and MySQL have different GTID

implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different GTID

implementations.

gtid_owned - empty
MariaDB and MySQL have different GTID

implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different GTID

implementations.

gtid_purged - empty
MariaDB and MySQL have different GTID

implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different GTID

implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is a

synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

1872/4161

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB uses

histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type DOUBLE_PREC_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this this

low water mark percentage of the redo log

capacity is reached. MariaDB's variable is

a double, MySQL's an integer.

innodb_adaptive_hash_index OFF ON

Defaulting to OFF is a performance

improvement especially for DROP TABLE,

TRUNCATE TABLE, ALTER TABLE, or

DROP INDEX operations

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_background_* * -
Earlier versions of MariaDB had support

for background data scrubbing.

innodb_checksum_algorithm full_crc32 crc32

fullcrc32 permits encryption to be

supported over a SPATIAL INDEX, which

crc32 does not support.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server is

a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_defragment * -
MariaDB can defragment InnoDB

tablespaces.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_file_format (empty) -

MariaDB 10.4 has restored this unused,

deprecated variable for compatibility

reasons.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the use

of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will return

an error.

innodb_idle_flush_pct 100 -

Up to what percentage of dirty pages in

MariaDB should be flushed when InnoDB

finds it has spare resources to do so.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_instant_alter_column_allowed add_drop_reorder - See Instant ADD COLUMN for InnoDB.

innodb_large_prefix (empty) -

MariaDB 10.4 has restored this unused,

deprecated variable for compatibility

reasons.

1873/4161

innodb_lock_schedule_algorithm VATS -

MariaDB has an improved algorithm for

deciding which of the waiting transactions

should be granted a lock once it has been

released.

innodb_log_optimize_ddl OFF -

Deprecated and ignored in MariaDB.

Previously determined whether redo

logging should be reduced when natively

creating indexes or rebuilding tables.

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different name.

The equivalent option in MariaDB is

innodb_encrypt_log.

innodb_rollback_segments - 128

Removed in MariaDB as part of the

InnoDB cleanup. It makes sense to always

create and use the maximum number of

rollback segments.

innodb_scrub_* * -
Earlier version of MariaDB included

options to scrub the redo log.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of index

statistics calculation.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_logs 128 - Removed in MySQL 8.

innodb_undo_tablespaces 0 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased the

default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different formats

for temporary tables. In MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query buffer.

See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks used

by MyISAM tables and shared for all

threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

last_gtid - empty
MariaDB and MySQL have different GTID

implementations.

1874/4161

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row mode)

that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether or

not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from a

master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to the

slow query log.

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to the

slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query Log

Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

1875/4161

max_length_for_sort_data 64 1024

Used to decide which algorithm to choose

when sorting rows. If the total size of the

column data, not including columns that

are part of the sort, is less than

max_length_for_sort_data, then these are

added to the sort key. This can speed up

the sort as there's no need to re-read the

same row again later. Setting the value

too high can slow things down as there

will be a higher disk activity for doing the

sort.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of the

actual index cardinality. If this value is set

lower than its default and maximum,

indexes will tend to be preferred over table

scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted. MySQL

used to have a variable of this name

before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

myisam_block_size 1024 - Block size used for MyISAM index pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated when

creating or sorting indexes on a MyISAM

table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the MariaDB

5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's n-

gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether the

server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL or

MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with the

old pre-MySQL 4.1 form of password

hashing.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

original_commit_timestamp - * Used by MySQL 8 for delaying replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

1876/4161

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by default

in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these source

networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks allocated

during query parsing and execution (after

query_prealloc_size is used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated on

connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on the

range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -
Permits restricting the speed at which the

slave reads the binlog from the master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining whether

the slave's position in the relay logs is

written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections where

this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE waits

before timing out.

s3_* * -
The S3 storage engine is only available in

MariaDB.

schema_definition_cache - 256
Limits the number of schema definition

objects kept in the dictionary object cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID MySQL-only variable containing the UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

sha256_password_proxy_users - OFF

MySQL-only variable determining whether

the sha256_password plugin supports

proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

1877/4161

https://mariadb.com/kb/en/proxy-protocol-support/

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

slave_parallel_mode optimistic -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a transaction

on the slave, replication usually halts. By

default, transactions that caused a

deadlock or elapsed lock wait timeout will

be retried. One can add other errors to the

the list of errors that should be retried by

adding a comma-separated list of error

numbers to this variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to a

deadlock, elapsed lock wait timeout or an

error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has been

reduced in MySQL.

sql_if_exists OFF -

Adds an implicit IF EXISTS to ALTER,

RENAME and DROP of TABLES, VIEWS,

FUNCTIONS and PACKAGES

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine, removed

in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords that

cannot be validated (passwords specified

as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

table_open_cache_instances 8 16
Maximum number of table cache

instances.

1878/4161

tablespace_definition_cache - 256
Limits the number of tablespace definition

objects kept in the dictionary object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent if

no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_pool_dedicated_listener 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_exact_stats 0 -

Better precision for the data in the

Information Schema

THREADPOOL_QUEUES Table.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal temporary

on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction in

MySQL Cluster.

transaction_isolation - REPEATABLE-READ The MariaDB equivalent is tx_isolation.

transaction_read_only - OFF The MariaDB equivalent is tx_read_only.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ - The MySQL equivalent is

transaction_isolation.

tx_read_only OFF -
The MySQL equivalent is

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available in

MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 10.5 MySQL 8.0 Notes

2.1.14.1.13.8 System Variable Differences

1879/4161

Between MariaDB 10.4 and MySQL 8.0
Contents
1. Comparison Table

The following is a comparison of variables that either appear only in MariaDB 10.4 or MySQL 8.0, or have different default

settings in MariaDB 10.4, and MySQL 8.0. The stable releases MariaDB 10.4.6 and MySQL 8.0.11, with only default plugins

enabled, were used for the comparison. Note that MySQL 8 is an 'evergreen' release, so features may be added or removed

in later releases.

For a more complete list of differences, see Incompatibilities and Feature Differences Between MariaDB 10.4 and MySQL

8.0 and Function Differences Between MariaDB 10.4 and MySQL 8.0

The most notable differences are that MariaDB includes, by default, the Aria storage engine (resulting in extra memory

allocation), Galera Cluster, and has a different thread pool implementation. For this reason, a default implementation of

MariaDB 10.4 will use more memory than MySQL 8.0. MariaDB 10.4 and MySQL 8.0 also have different GTID

implementations.

MariaDB's extra memory usage can be handled with the following rules of thumb:

If you are not using MyISAM and don't plan to use Aria:

Set key_buffer_size to something very low (16K) as it's not used.

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

Normally this is what before you had set for key_buffer_size (at least 1M).

If you are using MyISAM and not planning to use Aria:

Set aria_pagecache_buffer_size to what you think you need for handling internal tmp tables that didn't fit in

memory.

If you are planning to use Aria, you should set aria_pagecache_buffer_size to something that fits a big part of your

normal data + overflow temporary tables.

Comparison Table
Variable MariaDB 10.4 Default MySQL 8.0 Default Notes

activate_all_roles_on_login - OFF
Determines whether to automatically

activate roles on login.

alter_algorithm DEFAULT -

MariaDB 10.3 introduced new ALTER

TABLE ALGORITHM clauses to avoid

slow copies in certain instances. This

variable allows setting this if no

ALGORITHM clause is specified.

analyze_sample_percentage 100.0000 -

Percentage of rows from the table

ANALYZE TABLE will sample to collect

table statistics.

aria_* * -
The Aria storage engine is only available

in MariaDB.

auto_generate_certs - ON
Whether to automatically generate SSL

key and certificate files.

avoid_temporal_upgrade - OFF
Determines whether ALTER TABLE

implicitly upgrades temporal columns.

back_log Autosized Autosized
MariaDB and MySQL have different

autosizing algorithms.

binlog-annotate-row-events ON -

Introduced in MariaDB 5.3 for replicating

between MariaDB 5.3 and

MySQL/MariaDB 5.1.

binlog_commit_wait_count 0 - For use in MariaDB's parallel replication.

binlog_commit_wait_usec 100000 - For use in MariaDB's parallel replication.

binlog_error_action ABORT_SERVER

MySQL-only variable for controlling what

happens when the server cannot write to

the binary log.

binlog_expire_logs_seconds - 2592000
Sets the binary log expiration period in

seconds

binlog_file_cache_size 16184 -
For setting the size of the file cache for the

binary log.

binlog_format MIXED ROW
MariaDB and MySQL have differing binary

log formats.

binlog_group_commit_sync_delay 0

MySQL-only variable for controlling the

wait time before synchronizing the binary

log file to disk.

1880/4161

binlog_group_commit_sync_no_delay_count 0

MySQL-only variable for setting the

maximum number of transactions to wait

for before aborting the current

binlog_group_commit_sync_delay

delay.

binlog_gtid_simple_recovery - ON
MySQL-only GTID variable. MariaDB's

GTID implementation is different.

binlog_max_flush_queue_time - 0

Specifies a timeout for reading

transactions from the flush queue before

continuing with group commit and syncing

log to disk.

binlog_optimize_thread_scheduling ON - For optimized kernel thread scheduling.

binlog_order_commits - ON
Determines whether transactions may be

committed in parallel.

binlog_row_metadata - MINIMAL

Determines the amount of table metadata

added to the binary log with row-based

logging.

binlog_row_value_options - (empty)
Permits an alternative binlog format for

JSON document updates.

binlog_rows_query_log_events - OFF
MySQL-only variable for logging extra

information in row-based logging.

binlog_transaction_dependency_history_size - 25000

Maximum number of row hashes kept for

looking up transactions that last modified a

given row.

binlog_transaction_dependency_tracking - COMMIT_ORDER
For determining how to best use the

slave's multithreaded applier.

block_encryption_mode - aes-128-ecb

MySQL-only variable for controlling the

block encryption mode for block-based

algorithms.

caching_sha2_password* - *
For use with MySQL's SHA-256

authentication with caching.

character_set_* latin1 or utf8 utf8mb4
MySQL 8.0 defaults to the utf8mb4

character set.

check_constraint_checks ON -

Permits disabling constraint checks, for

example when loading a table that violates

some constraints that you plan to fix later.

check_proxy_users OFF

MySQL-only variable for controlling

whether the server performs proxy user

mapping for authentication plugins.

collation_* latin1_swedish_ci or utf8_general_ci utf8mb4_0900_ai_ci
MySQL 8.0 defaults to the utf8mb4

character set.

column_compression_threshold 100 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_level 6 -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_strategy DEFAULT_STRATEGY -
MariaDB supports Storage-engine

Independent Column Compression.

column_compression_zlib_wrap OFF -
MariaDB supports Storage-engine

Independent Column Compression.

cte_max_recursion_depth - 1000

When MySQL 8.0 introduced common

table expressions they used a different

name. MariaDB's variable is called

max_recursive_iterations.

date_format %Y-%m-%d - Unused variable removed in MySQL 8.0

datetime_format %Y-%m-%d - Unused variable removed in MySQL 8.0

deadlock_search_depth_long 15 -
The Aria storage engine is only available

in MariaDB.

deadlock_search_depth_short 4 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_long 50000000 -
The Aria storage engine is only available

in MariaDB.

deadlock_timeout_short 10000 -
The Aria storage engine is only available

in MariaDB.

debug_no_thread_alarm OFF -
Disable system thread alarm calls, for

debugging or testing.

default_authentication_plugin - caching_sha2_password
MySQL 8 introduced a new authentication

plugin.

default_collation_for_utf8mb4 - utf8mb4_0900_ai_ci For internal use in MySQL 8 replication.

default_master_connection empty -
For use with MariaDB's multi-source

replication.

default_password_lifetime 0 360
MariaDB defaults to password expiration

off.

1881/4161

default_regex_flags empty -

For handling incompatibilities between

MariaDB's PCRE and the old regex

library.

default_tmp_storage_engine empty InnoDB

Default storage engine used for tables

created with CREATE TEMPORARY

TABLE.

disabled_storage_engines empty
MySQL-only variable for disabling specific

storage engines.

disconnect_on_expired_password OFF ON

MariaDB password expiration is off by

default, and by default does not disconnect

a client when a password has expired.

encrypt_binlog OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_files OFF -
MariaDB enables table and tablespace

encryption.

encrypt_tmp_disk_tables OFF -
MariaDB enables table and tablespace

encryption.

end_markers_in_json - OFF
MySQL-only variable for adding end

markers to JSON output.

enforce_gtid_consistency - OFF
MariaDB and MySQL have different GTID

implementations.

enforce_storage_engine none
Forces the use of a particular storage

engine for new tables.

eq_range_index_dive_limit 0 200

Variable for tuning when the optimizer

should switch from using index dives to

index statistics for qualifying rows

estimation.

event_scheduler OFF ON
MySQL enables the event scheduler by

default.

expensive_subquery_limit 100 -
Used for determining expensive queries

for optimization.

explicit_defaults_for_timestamp OFF ON
MySQL 8 disables the old timestamp

behavior.

extra_max_connections 1 - Introduced in the MariaDB 5.1 threadpool.

extra_port 0 - Introduced in the MariaDB 5.1 threadpool.

group_concat_max_len 1048576 1024

MariaDB increases the maximum length

for a GROUP_CONCAT() result from 1K

to 1M.

gtid_binlog_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_binlog_state empty -
MariaDB and MySQL have different GTID

implementations.

gtid_cleanup_batch_size 64 -
MariaDB and MySQL have different GTID

implementations.

gtid_current_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_domain_id 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_executed - empty
MariaDB and MySQL have different GTID

implementations.

gtid_executed_compression_period - 1000
MariaDB and MySQL have different GTID

implementations.

gtid_ignore_duplicates OFF -
MariaDB and MySQL have different GTID

implementations.

gtid_mode - OFF
MariaDB and MySQL have different GTID

implementations.

gtid_next - AUTOMATIC
MariaDB and MySQL have different GTID

implementations.

gtid_owned - empty
MariaDB and MySQL have different GTID

implementations.

gtid_pos_auto_engines empty -
MariaDB and MySQL have different GTID

implementations.

gtid_purged - empty
MariaDB and MySQL have different GTID

implementations.

gtid_seq_no 0 -
MariaDB and MySQL have different GTID

implementations.

gtid_slave_pos empty -
MariaDB and MySQL have different GTID

implementations.

gtid_strict_mode OFF -
MariaDB and MySQL have different GTID

implementations.

have_crypt YES -
MySQL has removed the ENCRYPT

function.

1882/4161

have_openssl

MariaDB's version indicates whether

YaSSL or openssl was used. MySQL's is a

synonym for have_ssl .

have_query_cache YES - MySQL has removed the query cache.

have_statement_timeout -
Whether MySQL's statement execution

timeout feature is available.

have_symlink YES DISABLED MySQL has removed symlink support.

histogram_generation_max_mem_size - 20000000

Added when MySQL 8 introduced

Histogram-based Statistics. MariaDB uses

histogram_size

histogram_size 0 -
MariaDB introduced Histogram-based

Statistics.

histogram_type SINGLE_PREC_HB -
MariaDB introduced Histogram-based

Statistics.

idle_readonly_transaction_timeout 0 -
Time in seconds that the server waits for

idle read-only transactions.

idle_transaction_timeout 0 -
Time in seconds that the server waits for

idle transactions.

idle_write_transaction_timeout 0 -
Time in seconds that the server waits for

idle write transactions.

ignore_builtin_innodb OFF - Ignored and removed in MySQL 8.

in_predicate_conversion_threshold 1000 -
Controls the Conversion of Big IN

Predicates Into Subqueries optimization.

in_transaction 0 -
Set to 1 if you are in a transaction, and

0 if not.

information_schema_stats_expiry - 86400
Time until MySQL Information Schema

cached statistics expire.

innodb_adaptive_flushing_lwm 10.000000 10

Adaptive flushing is enabled when this this

low water mark percentage of the redo log

capacity is reached. MariaDB's variable is

a double, MySQL's an integer.

innodb_api_* - *
Specific to MySQL's memcached,

removed in MariaDB 10.2.

innodb_autoinc_lock_mode 1 2

MariaDB has an extra mode, 3 , for

skipping the rollback of connected

transactions. MySQL defaults to row-

based replication, so can safely use 2 .

innodb_background_* * - MariaDB has support for data scrubbing.

innodb_checksums ON - Deprecated option removed in MySQL.

innodb_compression_* * -
Introduced with MariaDB's InnoDB

compression.

innodb_dedicated_server - OFF

MySQL option that automatically

configures various settings if the server is

a dedicated InnoDB database server.

innodb_default_encryption_key_id 1 -
Default encryption key id used for table

encryption. See Data at Rest Encryption.

innodb_defragment * -
MariaDB can defragment InnoDB

tablespaces.

innodb_directories - (empty)
Used to search for tablespace files when

moving or restoring a new location.

innodb_disallow_writes OFF - Tell InnoDB to stop any writes to disk.

innodb_encrypt_* 1 - See MariaDB's Data at Rest Encryption.

innodb_fatal_semaphore_wait_threshold 600 -
MariaDB's fatal semaphore timeout is

configurable.

innodb_file_format (empty) -

MariaDB 10.4 has restored this unused,

deprecated variable for compatibility

reasons.

innodb_flush_neighbors 1 0
MySQL 8 by default now assumes the use

of an SSD device.

innodb_force_primary_key OFF -

If set to 1 in MariaDB (0 is default)

CREATE TABLEs without a primary or

unique key where all keyparts are NOT

NULL will not be accepted, and will return

an error.

innodb_idle_flush_pct 100 -

Up to what percentage of dirty pages in

MariaDB should be flushed when InnoDB

finds it has spare resources to do so.

innodb_immediate_scrub_data_uncompressed OFF - MariaDB has support for data scrubbing.

innodb_large_prefix (empty) -

MariaDB 10.4 has restored this unused,

deprecated variable for compatibility

reasons.

1883/4161

innodb_lock_schedule_algorithm VATS -

MariaDB has an improved algorithm for

deciding which of the waiting transactions

should be granted a lock once it has been

released.

innodb_locks_unsafe_for_binlog OFF -

Deprecated option in MariaDB for

disabling gap locking for searches and

index scans. Deprecated in MariaDB, use

READ COMMITTED transaction isolation

instead.

innodb_log_optimize_ddl ON -

Whether redo logging should be reduced

when natively creating indexes or

rebuilding tables

innodb_log_spin_* - *
MySQL variables for constraining CPU

usage while waiting for flushed redo.

innodb_log_wait_for_flush_spin_hwm - *
MySQL variable for constraining CPU

usage while waiting for flushed redo.

innodb_max_dirty_pages_pct 75 90 MySQL 8 increased the default to 90.

innodb_max_dirty_pages_pct_lwm 0 10 MySQL 8 increased the default to 10.

innodb_max_undo_log_size 10485760 1073741824

MariaDB 10.2 reduced the limit for when

an undo tablespace is marked for

truncation.

innodb_open_files Autosized (2000) Autosized (4000)

In most systems, autosized based on the

table_open_cache setting, which differs

between MariaDB and MySQL.

innodb_prefix_index_cluster_optimization OFF -
MariaDB includes the Facebook prefix

index queries optimization.

innodb_print_ddl_logs - OFF
MySQL option for writing DDL logs to

stderr.

innodb_redo_log_encrypt - OFF

MySQL 8 has also now introduced redo

log encryption, but used a different name.

The equivalent option in MariaDB is

innodb_encrypt_log.

innodb_scrub_* * -
MariaDB includes options to scrub the

redo log.

innodb_spin_wait_delay 4 6
MariaDB changed the default from 6 to 4

based on extensive benchmarking.

innodb_stats_modified_counter 0 -
MariaDB option to control the calculation

of new statistics.

innodb_stats_sample_pages 8 -
Deprecated MariaDB option for control

over index distribution statistics.

innodb_stats_traditional ON -

Enabling gives a larger sample of pages

for larger tables for the purposes of index

statistics calculation.

innodb_undo_log_encrypt - OFF
MySQL option for encrypting undo logs

residing in separate undo tablespaces.

innodb_undo_log_truncate OFF ON
MySQL 8 changes the default to ON,

marking larger undo logs for truncation.

innodb_undo_logs 128 - Removed in MySQL 8.

innodb_undo_tablespaces 0 2

Number of tablespace files used for

dividing up the undo logs. MySQL 8 has

deprecated this setting, and increased the

default (and minimum) to 2.

innodb_use_atomic_writes ON -

Atomic writes are a faster alternative to

innodb_doublewrite and MariaDB

automatically detects when supporting

SSD cards are used.

internal_tmp_disk_storage_engine - INNODB

MySQL uses this variable to set the

storage engine for on-disk internal

temporary tables.

internal_tmp_mem_storage_engine - TEMPTABLE

MySQL and MariaDB use different formats

for temporary tables. In MariaDB, the

aria_used_for_temp_tables performs a

similar function.

join_buffer_space_limit 2097152 -
Maximum size in bytes of the query buffer.

See block-based join algorithms.

join_cache_level 2 -
For determining the join algorithms. See

block-based join algorithms

key_buffer_size 134217728 8388608

Size of the buffer for the index blocks used

by MyISAM tables and shared for all

threads.

key_cache_file_hash_size 512 -
Number of hash buckets for open and

changed files.

key_cache_segments 0 -
The number of segments in a key cache.

See Segmented Key Cache.

keyring_operations - ON
Whether MySQL 8's keyring operations

are enabled.

1884/4161

last_gtid - empty
MariaDB and MySQL have different GTID

implementations.

local_infile ON OFF
MySQL no longer supports LOAD DATA

LOCAL by default.

lock_wait_timeout 86400 31536000
MariaDB has reduced the timeout for

acquiring metadata locks.

log_bin OFF ON
MySQL 8 enables the binary log by

default.

log_bin_compress OFF -
MariaDB setting for whether or not the

binary log can be compressed.

log_bin_compress_min_len 256 -

Minimum length of sql statement (in

statement mode) or record (in row mode)

that can be compressed. See

Compressing Events to Reduce Size of

the Binary Log.

log_bin_use_v1_row_events - OFF

MySQL-only variable showing whether or

not MySQL's version 2 binary logging

format is being used.

log_disabled_statements sp -
Disable logging of certain statements to

the general log.

log_error_services - log_filter_internal; log_sink_internal
Components to enable for MySQL error

logging.

log_error_verbosity - 3

MySQL variable for setting verbosity of

error, warning, and note messages in the

error log.

log_slave_updates OFF ON

MySQL 8 has by default enabled binary

logging of updates a slave receives from a

master.

log_slow_admin_statements ON OFF
MariaDB logs slow admin statements to

the slow query log by default.

log_slow_disabled_statements admin,call,slave,sp -
Disable logging of certain statements to

the slow query log.

log_slow_filter

admin, filesort, filesort_on_disk,

full_join, full_scan, query_cache,

query_cache_miss, tmp_table,

tmp_table_on_disk

- For slow query log filtering.

log_slow_rate_limit 1 -
Limits the number of queries logged to the

slow query log.

log_slow_slave_statements ON OFF
MariaDB logs slow slave statements to the

slow query log by default.

log_slow_verbosity empty -

Controls information to be added to the

slow query log. See also Slow Query Log

Extended Statistics.

log_statements_unsafe_for_binlog - ON

MySQL setting for controlling whether

binlog warnings are written to the error

log.

log_syslog* platform-dependent -
MySQL variables with settings for writing

to syslog.

log_tc_size 24576 -

Size in bytes of the transaction

coordinator log, defined in multiples of

4096.

log_throttle_queries_not_using_indexes - 0

MySQL-only variable for limiting the

number of statements without indexes

written to the slow query log.

log_timestamps - UTC
MySQL-only variable controlling the

timezone for certain logging conditions.

log_warnings 2 -
MySQL 8 has replaced with

log_error_verbosity .

mandatory_roles - (empty)
MySQL variable for assigning roles to all

users.

master_info_repository - TABLE
Whether slave logs master status and

connection info to a table or a file.

max_allowed_packet 16M 64M

max_error_count 64 1024

Specifies the maximum number of

messages stored for display by SHOW

ERRORS and SHOW WARNINGS

statements.

max_execution_time - 0
MySQL renamed the

max_statement_time variable.

1885/4161

max_length_for_sort_data 64 1024

Used to decide which algorithm to choose

when sorting rows. If the total size of the

column data, not including columns that

are part of the sort, is less than

max_length_for_sort_data, then these are

added to the sort key. This can speed up

the sort as there's no need to re-read the

same row again later. Setting the value

too high can slow things down as there

will be a higher disk activity for doing the

sort.

max_long_data_size 16777216 -

Maximum size for parameter values sent

with mysql_stmt_send_long_data().

Removed in MySQL 5.6.

max_password_errors 4294967295 -
Maximum number of failed connections

attempts before no more are permitted.

max_points_in_geometry - 65536
Maximum points_per_circle for MySQL's

ST_Buffer_Strategy() function.

max_recursive_iterations 4294967295 -
Maximum number of iterations when

executing recursive queries.

max_relay_log_size 1073741824 0 Can be set by session in MariaDB.

max_seeks_for_key 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

The most key seeks required when

searching with an index, regardless of the

actual index cardinality. If this value is set

lower than its default and maximum,

indexes will tend to be preferred over table

scans.

max_session_mem_used 9223372036854775807 -
Amount of memory a single user session

is allowed to allocate.

max_statement_time 0 -

Maximum time in seconds that a query

can execute before being aborted. MySQL

used to have a variable of this name

before renaming it

max_execution_time .

max_tmp_tables 32 - Unused variable removed in MySQL.

max_write_lock_count 4294967295
4294967295 (32-bit) or

18446744073709547520 (64-bit)

Read lock requests will be permitted for

processing after this many write locks.

mrr_buffer_size 262144 -

Size of buffer to use when using multi-

range read with range access. See Multi

Range Read optimization.

multi_range_count 1024 - Unused variable removed in MySQL.

myisam_block_size 1024 - Block size used for MyISAM index pages.

myisam_recover_options BACKUP,QUICK OFF MyISAM recovery mode.

myisam_sort_buffer_size 134216704 8388608

Size in bytes of the buffer allocated when

creating or sorting indexes on a MyISAM

table.

mysql_native_password_proxy_users - OFF
Whether MySQL's authentication plugin

supports proxy users. I

mysql56_temporal_format ON

Causes MariaDB to use the MySQL-5.6

low level formats for TIME, DATETIME

and TIMESTAMP instead of the MariaDB

5.3+ version.

new - OFF
Used for backward-compatibility with

MySQL 4.1, not present in MariaDB.

mysqlx+* - * MySQL's X plugin related variables.

ngram_token_size - 2
Sets the n-gram token size for MySQL's n-

gram full-text parser.

offline_mode - OFF
MySQL settting for specifying whether the

server should run in offline mode.

old_alter_table DEFAULT OFF An alias for alter_algorithm.

old_mode Empty string -

Used for getting MariaDB to emulate

behavior from an old version of MySQL or

MariaDB. See OLD Mode.

old_passwords OFF -

MySQL 8 is no longer compatible with the

old pre-MySQL 4.1 form of password

hashing.

optimizer_selectivity_sampling_limit 100 -
Controls number of record samples to

check condition selectivity.

optimizer_switch See details

A series of flags for controlling the query

optimizer. MariaDB has introduced a

number of new settings.

optimizer_trace_* - *
MySQL has more settings for optimizer

tracing.

optimizer_use_condition_selectivity 4 -

Controls which statistics can be used by

the optimizer when looking for the best

query execution plan.

1886/4161

original_commit_timestamp - * Used by MySQL 8 for delaying replication.

parser_max_mem_size -
4294967295 (32-bit) or

18446744073709547520 (64-bit)

MySQL variable for limiting memory

available to the parser.

password_* - *
Controls reuse of previous passwords in

MySQL.

performance_schema OFF ON
The Performance Schema is off by default

in MariaDB.

performance_schema_*

Many performance schema variables are

autoset in MySQL, and MySQL has a

different version, with additional variables.

plugin_maturity One less than the server maturity - Minimum acceptable plugin maturity.

progress_report_time 5 -

Time in seconds between sending

progress reports to the client for time-

consuming statements.

proxy_protocol_networks (empty) -
Enable proxy protocol for these source

networks.

query_alloc_block_size 16384 8192

Size in bytes of the extra blocks allocated

during query parsing and execution (after

query_prealloc_size is used up).

query_cache_* * - MySQL has removed the query cache.

query_prealloc_size 24576 8192

Size in bytes of the persistent buffer for

query parsing and execution, allocated on

connect and freed on disconnect.

range_optimizer_max_mem_size - 8388608
MySQL-only variable setting a limit on the

range optimizer's memory usage.

rbr_exec_mode - STRICT
MySQL-only variable for determining the

handling of certain key errors.

read_binlog_speed_limit 0 -
Permits restricting the speed at which the

slave reads the binlog from the master.

regexp_* - *
Memory and time limits for regular

expression matching operations.

relay_log_info_repository - TABLE

MySQL-only variable determining whether

the slave's position in the relay logs is

written to a file or table.

replicate_annotate_row_events ON -

Tells the slave to reproduce

annotate_rows_events received from the

master in its own binary log.

replicate_do_db empty string - See Dynamic Replication Variables.

replicate_do_table empty string - See Dynamic Replication Variables.

replicate_events_marked_for_skip replicate -
See Selectively skipping replication of

binlog events.

replicate_ignore_db empty string - See Dynamic Replication Variables.

replicate_ignore_table empty string - See Dynamic Replication Variables.

replicate_wild_do_table empty string - See Dynamic Replication Variables.

replicate_wild_ignore_table empty string - See Dynamic Replication Variables.

require_secure_transport - OFF

MySQL-only variable determining whether

client to server connections need to be

secure.

result_metadata - FULL

Determine whether the server returns

result set metadata for connections where

this is optional.

rowid_merge_buff_size 8388608 -
See Non-semi-join subquery

optimizations.

rpl_read_size - 8192
Minimum data in bytes read from the

binary and relay log files.

rpl_semi_sync_* - -

MariaDB includes semisynchronous

replication without the need to install a

plugin.

rpl_stop_slave_timeout - 31536000
Controls the time that STOP SLAVE waits

before timing out.

schema_definition_cache - 256
Limits the number of schema definition

objects kept in the dictionary object cache.

secure_auth ON - Removed in MySQL.

secure_timestamp NO -

MariaDB-only option permitting the

restricting of direct setting of a session

timestamp..

server_id_bits - server_id
MySQL-only variable for use in MySQL

Cluster.

server_uuid - UUID MySQL-only variable containing the UUID.

session_track_gtids - OFF

MySQL-only variables for tracking gtid

changes. MariaDB and MySQL's gtid

implementation is different.

1887/4161

https://mariadb.com/kb/en/proxy-protocol-support/

sha256_password_proxy_users - OFF

MySQL-only variable determining whether

the sha256_password plugin supports

proxy users.

show_create_table_verbosity - OFF
Option to cause SHOW CREATE TABLE

to display ROW_FORMAT in all cases.

show_old_temporals - OFF

MySQL-only variable for determining

whether SHOW CREATE TABLE output

should include comments for old format

temporal columns.

skip_parallel_replication OFF - See parallel replication.

skip_replication OFF -
See Selectively skipping replication of

binlog events.

slave_allow_batching - OFF MySQL-only replication variable.

slave_checkpoint_group - 512 MySQL-only replication variable.

slave_checkpoint_period - 300 MySQL-only replication variable.

slave_ddl_exec_mode IDEMPOTENT -
Modes for how replication of DDL events

should be executed.

slave_domain_parallel_threads 0 - For configuring parallel replication.

slave_net_timeout 3600 60 MySQL reduced the timeout to 60s.

slave_parallel_max_queued 131072 - For configuring parallel replication.

slave_parallel_mode conservative -
Controls what transactions are applied in

parallel when using parallel_replication.

slave_parallel_threads 0 - For configuring parallel replication.

slave_parallel_type - DATABASE MySQL-only replication variable.

slave_pending_jobs_size_max - 16777216 MySQL-only replication variable.

slave_preserve_commit_order - OFF MySQL-only replication variable.

slave_rows_search_algorithms - INDEX_SCAN, HASH_SCAN MySQL-only replication variable.

slave_run_triggers_for_rbr NO

See Running triggers on the slave for

Row-based events for a description and

use-case for this setting.

slave_transaction_retry_errors 1213,1205 -

When an error occurs during a transaction

on the slave, replication usually halts. By

default, transactions that caused a

deadlock or elapsed lock wait timeout will

be retried. One can add other errors to the

the list of errors that should be retried by

adding a comma-separated list of error

numbers to this variable.

slave_transaction_retry_interval 0 -

Interval in seconds for the slave SQL

thread to retry a failed transaction due to a

deadlock, elapsed lock wait timeout or an

error listed in

slave_transaction_retry_errors.

sort_buffer_size 2097152 262144
The default sort buffer allocated has been

reduced in MySQL.

sql_mode

STRICT_TRANS_TABLES,

ERROR_FOR_DIVISION_BY_ZERO,

NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

ONLY_FULL_GROUP_BY,

STRICT_TRANS_TABLES,

NO_ZERO_IN_DATE,

NO_ZERO_DATE,

ERROR_FOR_DIVISION_BY_ZERO,

NO_ENGINE_SUBSTITUTION

See SQL Mode.

ssl_fips_mode - OFF
Whether FIPS mode is enabled on the

server side.

standard_compliant_cte ON - See Common Table Expressions.

storage_engine InnoDB -
Alias for default_storage_engine, removed

in MySQL.

strict_password_validation ON -

In MariaDB, when password validation

plugins are enabled, reject passwords that

cannot be validated (passwords specified

as a hash).

stored_program_definition_cache - 256

Limits the number of stored program

definition objects kept in the dictionary

object cache.

super_read_only - OFF

MySQL variable for prohibiting client

updates from users with the SUPER

privilege.

sync_binlog 0 1
MySQL synchronizes all actions to the

binary log before they are committed.

sync_frm 1 - .frm files have been removed in MySQL.

system_versioning_alter_history ERROR - MariaDB has System-Versioned Tables

system_versioning_asof DEFAULT - MariaDB has System-Versioned Tables

table_definition_cache 400 -1 (autosized)
Number of table definitions that can be

cached.

1888/4161

table_open_cache_instances 8 16
Maximum number of table cache

instances.

tablespace_definition_cache - 256
Limits the number of tablespace definition

objects kept in the dictionary object cache.

tcp_keepalive_interval 0 -

Interval, in seconds, between when

successive keep-alive packets are sent if

no acknowledgement is received.

tcp_keepalive_probes 0 -

Number of unacknowledged probes to

send before considering the connection

dead and notifying the application layer.

tcp_keepalive_time 0 -
Set the TCP_NODELAY option (disable

Nagle's algorithm) on socket.

tcp_nodelay 1 -

Timeout, in milliseconds, with no activity

until the first TCP keep-alive packet is

sent.

temptable_max_ram - 1GB
Limits the RAM used by MySQL's

TempTable storage engine.

thread_cache_size Autosized -1 (autosized) MariaDB uses an improved thread pool.

thread_concurrency 10 - Removed in MySQL 5.7.

thread_pool_idle_timeout 60 - See Using the Thread Pool .

thread_pool_max_threads 65536 - See Using the Thread Pool .

thread_pool_min_threads 1 -
Windows-only. See Using the Thread

Pool.

thread_pool_oversubscribe 3 - See Using the Thread Pool .

thread_pool_prio_kickup auto - See Using the Thread Pool .

thread_pool_priority auto - See Using the Thread Pool .

thread_pool_size Number of processors 16*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_pool_stall_limit 500 6*

See Using the Thread Pool . *Only

available in MySQL with a commercial

plugin.

thread_stack 299008 Varies See Using the Thread Pool .

time_format %H:%i:%s - Removed in MySQL.

timed_mutexes OFF - Removed in MySQL.

tmp_disk_table_size 18446744073709551615 -
Max size for data for an internal temporary

on-disk MyISAM or Aria table.

tmp_memory_table_size 16777216 - Alias for tmp_table_size.

transaction_allow_batching - OFF

Variable for enabling batching of

statements within the same transaction in

MySQL Cluster.

transaction_isolation - REPEATABLE-READ The MariaDB equivalent is tx_isolation.

transaction_read_only - OFF The MariaDB equivalent is tx_read_only.

transaction_write_set_extraction - OFF Unused MySQL-only variable.

tx_isolation REPEATABLE-READ - The MySQL equivalent is

transaction_isolation.

tx_read_only OFF -
The MySQL equivalent is

transaction_read_only.

use_stat_tables preferably_for_queries -
Controls the use of engine-independent

table statistics.

userstat OFF -

Whether to activate MariaDB's User

Statistics implementation, not available in

MySQL.

version_compile_zlib - * Version of the zlib library compiled in.

version_malloc_library * - Version of the used malloc library.

version_source_revision Varies -
Permits seeing exactly which version of

the source was used for a build.

version_ssl_library * - Version of the used TLS library.

windowing_high_use_precision - *

MySQL option allowing safety to be

sacrificed for speed in window function

calculations.

wsrep_* * -
Galera cluster is only available in

MariaDB.

Variable MariaDB 10.4 MySQL 8.0 Notes

2.1.14.1.14 Upgrading from MySQL 5.7 to
MariaDB 10.2

1889/4161

Following compatibility report was done on 10.2.4 and may get some fixing in next minor releases

MySQL unix socket plugin can be different. MariaDB can get similar usage via INSTALL PLUGIN unix_socket

SONAME 'auth_socket.so'; you may have to enable this plugin in config files via load plugin.

When using data type JSON , one should convert type to TEXT, virtual generated column works the same after.

When using InnoDB FULLTEXT index one should not use innodb_defragment

MySQL re-implemented partitioning in 5.7, thus you cannot perform in-place upgrades for partitioned tables. They will

require mysqldump/import to work correctly in MariaDB.

2.1.2.11 Installing MariaDB Alongside MySQL

2.1.3.13.2 Moving from MySQL to MariaDB in Debian 9

2.1.14.2 Migrating to MariaDB from SQL Server
This section is a guide to help you migrate from SQL Server to MariaDB. This includes a general understanding of MariaDB,

information to help plan the migration, and differences in the configuration and syntax.

Understanding MariaDB Architecture

An overview of MariaDB server architecture, especially where it differs from SQL Server.

SQL Server Features Not Available in MariaDB

List of SQL Server features not available in MariaDB.

SQL Server Features Implemented Differently in MariaDB

List of SQL Server features that MariaDB implements in a different way.

MariaDB Features Not Available in SQL Server

List of MariaDB features not available in SQL Server.

Setting Up MariaDB for Testing for SQL Server Users

Hints for SQL Server users to setup MariaDB for testing.

Syntax Differences between MariaDB and SQL Server

MariaDB syntax hints for SQL Server users.

SQL Server and MariaDB Types Comparison

Comparison tables between SQL Server types and MariaDB types.

MariaDB Transactions and Isolation Levels for SQL Server Users

How MariaDB transactions and isolation levels differ from SQL Server.

MariaDB Authorization and Permissions for SQL Server Users

MariaDB handles users and permissions quite differently to SQL Server.

Repairing MariaDB Tables for SQL Server Users

MariaDB table repair explained to SQL Server users.

MariaDB Backups Overview for SQL Server Users

An overview of MariaDB backup tools and techniques for SQL Server users.

MariaDB Replication Overview for SQL Server Users

An overview of MariaDB replication types for SQL Server users.

Moving Data Between SQL Server and MariaDB

Information and some advice on how to import SQL Server data into MariaDB.

SQL_MODE=MSSQL

Microsoft SQL Server compatibility mode.

There are 2 related questions .

2

1890/4161

https://mariadb.com/kb/en/migrating-to-mariadb-from-sql-server/+questions/

2.1.14.2.1 Understanding MariaDB Architecture
Contents
1. Storage Engines

1. InnoDB

1. Primary Key and Indexes

2. Tablespaces

3. Transaction Logs

4. InnoDB Buffer Pool

5. InnoDB Background Threads

6. Checksums and Doublewrite Buffer

2. Aria

2. Databases

1. System Databases

2. Default Database

3. The Binary Log

4. Plugins

5. Thread Pool

6. Configuration

1. Configuration Files

2. Dynamic and Static Variables

3. Scope

4. Syntax

5. Setting System Variables with Startup Parameters

6. Debugging Configuration

7. Status Variables

MariaDB architecture is partly different from the architecture of traditional DBMSs, like SQL Server. Here we will examine

the main components that a new MariaDB DBA needs to know. We will also discuss a bit of history, because this may help

understand MariaDB philosophy and certain design choices.

This section is an overview of the most important components. More information is included in specific sections of this

migration guide, or in other pages of the MariaDB Knowledge Base (see the links scattered over the text).

Storage Engines
MariaDB was born from the source code of MySQL, in 2008. Therefore, its history begins with MySQL.

MySQL was born at the beginning of the 90s. Back in the days, if compared to its existing competitors, MySQL was

lightweight, simple to install, easy to learn. While it had a very limited set of features, it was also fast in certain common

operations. And it was open source. These characteristics made it suitable to back the simple websites that existed at that

time.

The web evolved rapidly, and the same happened to MySQL. Being open source helped a lot in this respect, because the

community needed functionalities that weren9t supported at that time.

MySQL was probably the first database system to support a pluggable storage engine architecture. Basically, this means

that MySQL knows very little about creating or populating a table, reading from it, building proper indexes and caches. It just

delegated all these operations to a special plugin type called a storage engine.

One of the first plugins developed by third parties was InnoDB. It is very fast, and it adds two important features that are not

otherwise supported: transactions and foreign keys.

Note that when MariaDB asks a storage engine to write or read a row, the storage engine could theoretically do anything.

This led to the creation of very interesting alternative engines, like BLACKHOLE (which doesn9t write or read any data,

acting like the /dev/null file in Linux), or CONNECT (which can read and write to files written in many different formats, or

remote DBMSs, or some other special data sources).

Nowadays InnoDB is the default MariaDB storage engine, and it is the best choice for most use cases. But for particular

needs, sometimes using a different storage engine is desirable. In case of doubts about the best storage engine to use for a

specific case, check the Choosing the Right Storage Engine page.

When we create a table, we specify its storage engine or use the default one. It is possible to convert an existing table to

another storage engine, though this is a blocking operation which requires a complete table copy. Third-party storage

engines can also be installed while MariaDB is running.

Note that it is perfectly possible to use tables with different storage engines in the same transaction (even if some engines

are not transactional). It is even possible to use different engines in the same query, for example with JOINs and

1891/4161

subqueries.

The default storage engine can be changed by changing the default_storage_engine variable. A different default can be

specified for temporary tables by setting default_tmp_storage_engine. MariaDB uses Aria for system tables and temporary

tables created internally to store the intermediate results of a query.

InnoDB

It is worth spending some more words here about InnoDB, the default storage engine.

Primary Key and Indexes

InnoDB primary keys are always the equivalent of SQL Server clustered indexes. In other words, an InnoDB table is always

ordered by the primary key.

If an InnoDB table doesn't have a user-defined primary key, the first UNIQUE index whose columns are all NOT NULL is

used as a primary key. If there is no such index, the table will have a clustered index. The terminology here can be a bit

confusing for SQL Server and other DBMS users. A clustered index in InnoDB is a 6 bytes value that is added to the table.

This index and its values are completely invisible to the users. It's important to note that clustered indexes are governed by

a global mutex that greatly reduces their scalability.

Secondary indexes are ordered by the columns that are part of the index, and contain a reference to each entry's

corresponding primary key value.

Some consequences of these design choices are the following:

For performance reasons, a primary key value should be inserted in order. In other words, the last inserted value

should be the highest. This order is normally followed when inserting values into an AUTO_INCREMENT primary key.

The reason is that inserting values in the middle of an ordered data structure is slower, unless they fit into existing

holes. If we insert primary key values randomly, InnoDB often has to rearrange pages to make some room for the

new data.

A big primary keys means that all secondary indexes are also big.

A query by primary key will require a single search. A query on a secondary index that also reads columns not

contained in the index will require one search on the index, plus one more search for each row that satisfies the index

condition.

We shouldn't explicitly include the primary key in a secondary index. If we do so, the primary key column will be

duplicated in the index.

Tablespaces

For InnoDB, a tablespace is a file containing data (not a file group as in SQL Server). The types of tablespaces are:

System tablespace.

File-per-table tablespaces.

Temporary tablespaces.

The system tablespace is stored in the file ibdata . It contains information used by InnoDB internally, like rollback

segments, as well as some system tables. Historically, the system tablespace also contained all tables created by the user.

In modern MariaDB versions, a table is created in the system tablespace only if the innodb_file_per_table system variable is

set to 0 at the moment of the table creation. By default, innodb_file_per_table is 1.

Tables created while innodb_file_per_table=1 are written into their own tablespace. These are .ibd files.

Starting from MariaDB 10.2, temporary tables are written into temporary tablespaces, which means ibtmp* files.

Previously, they were created in the system tablespace or in file-per-table tablespaces according to the value of

innodb_file_per_table , just like regular tables. Temporary tablespaces, if present, are deleted when MariaDB starts.

It is important to remember that tablespaces can never shrink . If a file-per-table tablespace grows too much, deleting

data won't recover space. Instead, a new table must be created and data needs to be copied. Finally, the old table will be

deleted. If the system tablespace grows too much, the only solution is to move data into a new MariaDB installation.

Transaction Logs

In SQL Server, the transaction log contains both the undo log and the redo log. Usually we have only one transaction log.

In MariaDB the undo log and the redo log are stored separately. By default, the redo log is written to two files, called

ib_logfile0 and ib_logfile1 . The undo log by default is written to the system tablespace, which is in the ibdata1

file. However, it is possible to write it in separate files in a specified directory.

MariaDB provides no way to inspect the contents of the transaction logs. However, it is possible to inspect the binary log.

InnoDB transaction logs are written in a circular fashion: their size is normally fixed, and when the end is reached, InnoDB

1892/4161

continues to write from the beginning. However, if very long transactions are running, InnoDB cannot overwrite the oldest

data, so it has to expand the log size instead.

InnoDB Buffer Pool

MariaDB doesn't have a central buffer pool. Each storage engine may or may not have a buffer pool. The InnoDB buffer

pool is typically assigned a big amount of memory. See MariaDB Memory Allocation.

MariaDB has no extension like the SQL Server buffer pool extension.

A part of the buffer pool is called the change buffer. It contains dirty pages that have been modified in memory and not yet

flushed.

InnoDB Background Threads

InnoDB has background threads that take care of flushing dirty pages from the change buffer to the tablespaces. They don't

directly affect the latency of queries, but they are very important for performance.

SHOW ENGINE InnoDB STATUS shows information about them in the BACKGROUND THREAD section. They can also be

seen using the threads table, in the performance_schema.

InnoDB flushing is similar to lazy writes and checkpoints in SQL Server. It has no equivalent for eager writing.

For more information, see InnoDB Page Flushing and InnoDB Purge.

Checksums and Doublewrite Buffer

InnoDB pages have checksums. After writing pages to disk, InnoDB verifies that the checksums match. The checksum

algorithm is determined by innodb_checksum_algorithm. Check the variable documentation for its consequences on

performance, backward compatibility and encryption.

In case of a system crash, hardware failure or power outage, a page could be half-written on disk. For some pages, this

causes a disaster. Therefore, InnoDB writes essential pages to disk twice. A backup copy of the new page version is written

first. Then, the old page is overwritten. The backup copies are written into a file called the doublewrite buffer.

If an event prevents the first page from being written, the old version of the page will still be available.

If an event prevents the old page from being completely overwritten by its new version, the page can still be

recovered using the doublewrite buffer.

The doublewrite buffer can disabled using the innodb_doublewrite variable, but this usually doesn't bring big performance

benefits. The doublewrite buffer location can be changed with innodb_doublewrite_file.

Aria

Even if we only create InnoDB tables, we use Aria indirectly, in two ways:

For system tables.

For internal temporary tables.

Aria is a non-transactional storage engine. By default it is crash-safe, meaning that all changes to data are written and

fsynced to a write-ahead log and can always be recovered in case of a crash.

Aria caches indexes into the pagecache. Data are not directly cached by Aria, so it's important that the underlying filesystem

caches reads and writes.

The pagecache size is determined by the aria_pagecache_buffer_size system variable. To know if it is big enough we can

check the proportion of free pages (the ratio between Aria_pagecache_blocks_used and Aria_pagecache_blocks_unused)

and the proportion of cache misses (the ratio between Aria_pagecache_read_requests and Aria_pagecache_reads.

The proportion of dirty pages is the ratio between Aria_pagecache_blocks_used and Aria_pagecache_blocks_not_flushed

tells us if the log file is big enough.

The size of Aria log is determined by aria_log_file_size.

Databases
MariaDB does not support the concept of schema. In MariaDB SQL, schema and schemas are synonyms for database and

databases.

When a user connects to MariaDB, they don't connect to a specific database. Instead, they can access any table they have

permissions for. There is however a concept of default database, see below.

A database is a container for database objects like tables and views. A database serves the following purposes:

1893/4161

A database is a namespace.

A database is a logical container to separate objects.

A database has a default character set and collation, which are inherited by their tables.

Permissions can be assigned on a whole database, to make permission maintenance simpler.

Physical data files are stored in a directory which has the same name as the database to which they belong.

System Databases

MariaDB has the following system databases:

mysql is for internal use only, and should not be read or written directly.

information_schema contains all information that can be found in SQL Server's information_schema and more.

However, while SQL Server's information_schema is a schema containing information about the local database,

MariaDB's information_schema is a database that contains information about all databases.

performance_schema contains information about MariaDB runtime. It is disabled by default. Enabling it requires

setting the performance_schema system variable to 1 and restarting MariaDB.

Default Database

When a user connects to MariaDB, they can optionally specify a default database. A default database can also be specified

or changed later, with the USE command.

Having a default database specified allows one to specify tables without specifying the name of the database where they are

located. If no default database is specified, all table names must be fully qualified.

For example, the two following snippets are equivalent:

SELECT * FROM my_database.my_table;

-- is equivalent to:

USE my_database;

SELECT * FROM my_table;

Even if a default database is specified, tables from other databases can be accessed by specifying their fully qualified

names:

-- this query joins my_database.my_table to your_database.your_table

USE my_database;

SELECT m.*

 FROM my_table m

 JOIN your_database.your_table y

 ON m.xyz = y.xyz;

MariaDB has the DATABASE() function to determine the current database:

SELECT DATABASE();

Stored procedures and triggers don't inherit a default database from the session, nor by a caller procedure. In that context,

the default database is the database which contains the procedure. USE can be used to change it. The default database will

only be valid for the rest of the procedure.

The Binary Log
Different tables can be built using different storage engines. It is important to note that not all engines are transactional, and

that different engines implement the transaction logs in different ways. For this reason, MariaDB cannot replicate data from

a primary to a replica using an equivalent of SQL Server transactional replication.

Instead, it needs a global mechanism to log the changes that are applied to data. This mechanism is the binary log, often

abbreviated to binlog.

The binary log can be written in the following formats:

STATEMENT logs SQL statements that modify data;

ROW logs a reference to the rows that have been modified, if any (usually it9s the primary key), and the new values

that have been added or modified, in a binary format.

MIXED is a combination of the above formats. It means that ROW is used for statements that can safely be logged in

this way (see below), and STATEMENT is used in other cases. This is the default format from MariaDB 10.2.

1894/4161

In most cases, STATEMENT is slower because the SQL statement needs to be re-executed by the replica, and because

certain statements may produce a different result in the replica (think about queries that use LIMIT without ORDER BY, or

the CURRENT_TIMESTAMP() function). But there are exceptions, and besides, DDL statements are always logged as

STATEMENT to avoid flooding the binary log. Therefore, the binary log may well contain both ROW and STATEMENT

entries.

See Binary Log Formats.

The binary log allows:

replication, if enabled on the primary;

promoting a replica to a primary, if enabled on that replica;

incremental backups;

seeing data as they were in a point of time in the past (flashback);

restoring a backup and re-appling the binary log, with the exception of a data change which caused problems (human

mistake, application bug, SQL injection);

Capture Data Changes (CDC), by streaming the binary log to technologies like Apache Kafka.

If you don't plan to use any of these features on a server, it is possible to disable the binary log to slightly improve the

performance.

The binary log can be inspected using the mariadb-binlog utility, which comes with MariaDB. Enabling or disabling the binary

log requires restarting MariaDB.

See also MariaDB Replication Overview for SQL Server Users and MariaDB Backups Overview for SQL Server Users for a

better understanding of how the binary log is used.

Plugins
Storage engines are a special type of plugin. But others exist. For example, plugins can add authentication methods, new

features, SQL syntax, functions, informative tables, and more.

A plugin may add some server variables and some status variables. Server variables can be used to configure the plugin,

and status variables can be used to monitor its activities and status. These variables generally use the plugin's name as a

prefix. For example InnoDB has a server variable called innodb_buffer_pool_size to configure the size of its buffer pool, and

a status variable called Innodb_pages_read which indicates the number of memory pages read from the buffer pool. The

category system variables of the MariaDB Knowledge Base has specific pages for system and status variables associated

with various plugins.

Many plugins are installed by default, or available but not installed by default. They can be installed or uninstalled at runtime

with SQL statements, like INSTALL PLUGIN , UNINSTALL PLUGIN and others; see Plugin SQL Statements. 3rd party

plugins can be made available for installation by simply copying them to the plugin_dir.

It is important to note that different plugins may have different maturity levels. It is possible to prevent the installation of

plugins we don9t consider production-ready by setting the plugin_maturity system variable. For plugins that are distributed

with MariaDB, the maturity level is determined by the MariaDB team based on the bugs reported and fixed.

Some plugins are developed by 3rd parties. Even some 3rd party plugins are included in MariaDB official distributions - the

ones available on mariadb.org.

In MariaDB every authorization method (including the default one) is provided by an authentication plugin. A user can be

required to use a certain authentication plugin. This gives us much flexibility and control. Windows users may be interested

in gsapi (which supports Windows authentication, Kerberos and NTLM) and named_pipe (which uses named pipe

impersonation).

Other plugins that can be very useful include userstat, which includes statistics about resources and table usage, and

METADATA_LOCK_INFO, which provides information about metadata locks.

Thread Pool
MariaDB supports thread pool. It works differently on UNIX and on Windows. On Windows, it is enabled by default and its

implementation is quite similar to SQL Server. It uses the Windows native CreateThreadpool API.

If we don't use the thread pool, MariaDB will use its traditional method to handle connections. It consists of using a

dedicated thread for each client connection. Creating a new thread has a cost in terms of CPU time. To mitigate this cost,

after a client disconnects, the thread may be preserved for a certain time in the thread cache.

Whichever connection method we use, MariaDB has a maximum number of simultaneous connections, which can be

changed at runtime. When the limit is reached, if more clients try to connect they will receive an error. This prevents

MariaDB from consuming all the server resources and freezing or crashing. See Handling Too Many Connections.

1895/4161

Configuration
MariaDB has many settings that control the server behavior. These can be set up when starting mysqld (mysqld options),

and the vast majority are also accessible as server system variables. These can be classified in these ways:

Dynamic or static;

Global, session, or both.

Note that server system variables are not to be confused with user-defined variables. The latter are not used for MariaDB

configuration.

Configuration Files

MariaDB can use several configuration files. Configuration files are searched in several locations, including in the user

directory, and if present they all are read and used. They are read in a consistent order. These locations depend on the

operating system; see Default Option File Locations. It is possible to tell MariaDB which files it should read; see Global

Options Related to Option Files.

On Linux, by default the configuration files are called my.cnf . On Windows, by default the configuration files can be called

my.ini or my.cnf . The former is more common.

If a variable is mentioned multiple times in different files, the occurrence that is read last will overwrite the others. Similarly, if

a variable is mentioned several times in a single file, the occurrence that is read last overwrites the others.

The contents of each configuration file are organized by option groups. MariaDB Server and client programs read different

groups. The read groups also depend on the MariaDB version. See Option Groups for the details. Most commonly, the

[server] or [mysqld] groups are used to contain all server configuration. The [client-server] group can be used

for options that are shared by the server and the clients (like the port to use), to avoid repeating those variables multiple

times.

Dynamic and Static Variables

Dynamic variables have a value that can be changed at runtime, using the SET SQL statement. Static variables have a

value that is decided at startup (see below) and cannot be changed without a restart.

The Server System Variables page states if variables are dynamic or static.

Scope

A global system variable is one that affects the general behavior of MariaDB. For example innodb_buffer_pool_size

determines the size of the InnoDB buffer pool, which is used by read and write operations, no matter which user issued

them. A session system variable is one that affects MariaDB behavior for the current connection; changing it will not affect

other connected users, or future connections from the current user.

A variable could exist in both the global and session scopes. In this case, the session value is what affects the current

connection. When a user connects, the current global value is copied to the session scope. Changing the global value

afterward will not change existing connections.

The Server System Variables page states the scope of each variable.

Global variables and some session variables can only be modified by a user with the SUPER privilege (typically root).

Syntax

To see the value of a system variable:

-- global variables:

SELECT @@global.variable_name;

-- session variables:

SELECT @@session.variable_name;

-- or just use the shortcut:

SELECT @@variable_name;

A longer syntax, which is mostly useful to get multiple variables, makes use of the same pattern syntax that is used by the

LIKE operator:

1896/4161

-- global variables whose name starts with 'innodb':

SHOW GLOBAL VARIABLES LIKE 'innodb%';

-- session variables whose name starts with 'innodb':

SHOW SESSION VARIABLES LIKE 'innodb%';

SHOW VARIABLES LIKE 'innodb%';

To modify the global or session value of a dynamic variable:

SET @@global.variable_name = 'new 'value';

SET @@session.variable_name = 'new 'value';

Notice that if we modify a global variable in this way, the new value will be lost at server restart. For this reason we probably

want to change the value in the configuration file too.

For further information see:

The SET statement.

The SHOW VARIABLES statement.

Setting System Variables with Startup Parameters

System variables can be set at server startup without writing their values into a configuration file. This is useful if we want a

value to be set once, until we change it or restart MariaDB. Values passed in this way override values written in the

configuration files.

The general rule is that every global variable can be passed as an argument of mysqld by prefixing its name with -- and

by replacing every occurrence of _ with - in its name.

For example, to pass bind_address as a startup argument:

mysqld --bind-address=127.0.0.1

Debugging Configuration

Mistyping a variable can prevent MariaDB from starting. We cannot set a variable that doesn't exist in the MariaDB version

in use. In these cases, an error is written in the error log.

Having several configuration files and configuration groups, as well as being able to pass variables as command-line

arguments, brings a lot of flexibility but can sometimes be confusing. When we are unsure about which values will be used,

we can run:

mysqld --print-defaults

Status Variables
MariaDB status variables and some system tables allow external tools to monitor a server, building graphs on how they

change over time, and allow the user to inspect what is happening inside the server.

Status variables cannot be directly modified by the user. Their values indicate how MariaDB is operating. Their scope can

be:

Global, meaning that the value is about some MariaDB activity.

Session, meaning that the value measures activities taking place in the current session.

Many status variables exist in both scopes. For example,Cpu_time at global level indicates how much time the CPU was

used by the MariaDB process (including all user sessions and all the background threads). At session level, it indicates how

much time the CPU was used by the current session.

The status variables created by a plugin, usually, use the plugin name as a prefix.

The SHOW STATUS statement prints the values of the status variables that match a certain pattern.

-- Show all InnoDB global status variables

SHOW GLOBAL STATUS LIKE 'innodb%';

-- Show all InnoDB session status variables

SHOW SESSION STATUS LIKE 'innodb%';

SHOW STATUS LIKE 'innodb%';

-- Show global variables that contain the "size" substring:

SHOW GLOBAL STATUS LIKE '%size%';

1897/4161

Some status variables values are reset when FLUSH STATUS is executed. A possible use:

DELIMITER ||

BEGIN NOT ATOMIC

SET @i = 0;

WHILE @i < 60 DO

 SHOW GLOBAL STATUS LIKE 'Com_select';

 FLUSH STATUS;

 DO SLEEP(1);

 SET @i = @i + 1;

END WHILE;

END ||

2.1.14.2.2 SQL Server Features Not Available in
MariaDB

Contents
1. Introduced in SQL Server versions older than 2016

2. Introduced in SQL Server 2016

3. Introduced in SQL Server 2017

When planning a migration between different DBMSs, one of the most important aspects to consider is that the new

database system will probably miss some features supported by the old one. This is not relevant for all users. The most

widely used features are supported by most DBMSs. However, it is important to make a list of unsupported features and

check which of them are currently used by applications. In most cases it is possible to implement such features on the

application side, or simply stop using them.

This page has a list of SQL Server features that are not supported in MariaDB. The list is not exhaustive.

Introduced in SQL Server versions older than 2016
Full outer joins.

GROUP BY CUBE syntax.

MERGE statement.

In MariaDB, indexes are always ascending. Defining them as ASC or DESC has no effect.

For single-column indexes, the performance difference between an ORDER BY ... ASC and DESC is

negligible.

For multiple-column indexes, an index may be unusable for certain queries because DESC is not supported. In

some cases, a generated column can be used to invert the order of an index (for example, the expression 0 -

price can be indexed to index the prices in a descending order).

The WITH syntax is currently only supported for the SELECT statement.

Filtered indexes (CREATE INDEX ... WHERE).

Autonomous transactions.

User-defined types.

Rules.

Triggers don't support the following features:

Triggers on DDL and login.

INSTEAD OF triggers.

The DISABLE TRIGGER syntax.

Cursors advanced features.

Global cursors.

DELETE ... CURRENT OF , UPDATE ... CURRENT OF statements: MariaDB cursors are read-only.

Specifying a direction (MariaDB cursors can only advance by one row).

Synonyms.

Table variables.

Queues.

XML indexes, XML schema collection, XQuery.

User access to system functionalities, for example:

Running system commands (xp_cmdshell()).

Sending emails (sp_send_dbmail()).

Sending HTTP requests.

External languages, external libraries (MariaDB only supports procedural SQL and PL/SQL).

Negative permissions (the DENY command).

Snapshot replication. See Provisioning a Slave.

1898/4161

Introduced in SQL Server 2016
Native data masking

PolyBase (however, MariaDB 10.5 supports accessing Amazon S3 via the S3 storage engine and several DBMSs via

CONNECT)

R and Python services

ColumnStore indexes. MariaDB has a storage engine called ColumnStore, but this is a completely different feature.

Introduced in SQL Server 2017
Adaptive joins

Graph SQL

2.1.14.2.3 SQL Server Features Implemented
Differently in MariaDB

Contents
1. SQL

2. Indexes and Performance

3. Tables

4. High Availability

5. Security

6. Other Features

Modern DBMSs implement several advanced features. While an SQL standard exists, the complete feature list is different

for every database system. Sometimes different features allow achieving the same purpose, but with a different logic and

different limitations. This is something to take into account when planning a migration.

Some features are implemented by different DBMSs, with a similar logic and similar syntax. But there could be important

differences that users should be aware of.

This page has a list of SQL Server features that MariaDB implements in a different way, and SQL Server features for which

MariaDB has an alternative feature. Minor differences are not taken into account here. The list is not exhaustive.

SQL
The list of supported data types is different.

There are relevant differences in transaction isolation levels.

SNAPSHOT isolation level is not supported. Instead, you can use START TRANSACTION WITH CONSISTENT

SNAPSHOT to acquire a snapshot at the beginning of the transaction. This is compatible with all isolation levels. See

How Isolation Levels are Implemented in MariaDB.

JSON support is different.

Indexes and Performance
Clustered indexes. In MariaDB, the physical order of rows is delegated to the storage engine. InnoDB uses the

primary key as a clustered index.

Hash indexes. Only some storage engines support HASH indexes.

The InnoDB storage engine has a feature called adaptive hash index, enabled by default. It means that in

InnoDB all indexes are created as BTREE , and depending on how they are used, InnoDB could convert them

from BTree to hash indexes, or the other way around. This happens in the background.

The MEMORY storage engine uses hash indexes by default, if we don't specify the BTREE keyword.

See Storage Engine Index Types for more information.

Query store. MariaDB allows query performance analysis using the slow log and performance_schema. Some open

source or commercial 3rd party tools read that information to produce statistics and make it easy to identify slow

queries.

Tables
Computed columns are called generated columns in MariaDB and are created with a different syntax. See also

Implementation Differences Compared to Microsoft SQL Server.

Temporal tables use a different (more standard) syntax on MariaDB. In MariaDB, the history is stored in the same

1899/4161

table as current data (but optionally in different partitions). MariaDB supports both SYSTEM_TIME and

APPLICATION_TIME.

Hidden columns are Invisible columns in MariaDB.

Temporary tables are implemented and used differently.

High Availability
NOT FOR REPLICATION

MariaDB supports replication filters to exclude some tables or databases from replication

It is possible to keep a table empty in a slave (or in the master) by using the BLACKHOLE storage engine.

The master can have columns that are not present in a slave (the other way around is also supported). Before

using this feature, carefully read the Replication When the Master and Slave Have Different Table Definitions

page.

With MariaDB it's possible to prevent a trigger from running on slaves .

It's possible to run events without replicating them. The same applies to some administrative statements.

MariaDB superusers can run statements without replicating them, by using the sql_log_bin system variable.

Constraints and triggers cannot be disabled for replication, but it is possible to drop them on the slaves.

The IF EXISTS syntax allows one to easily create a table on the master that already exists (possibly in a

different version) on a slave.

pollinginterval option. See Delayed Replication.

Security
The list of permissions is different.

Security policies. MariaDB allows one to achieve the same results by assigning permissions on views and stored

procedures. However, this is not a common practice and it's more complicated than defining security policies. See

Other Uses of Views.

MariaDB does not support an OUTPUT clause. Instead, we can use DELETE RETURNING and, since MariaDB 10.5,

INSERT RETURNING and REPLACE RETURNING.

Other Features
Linked servers. MariaDB supports storage engines to read from, and write to, remote tables. When using the

CONNECT engine, those tables could be in different DBMSs, including SQL Server.

Job scheduler: MariaDB uses an event scheduler to schedule events instead.

2.1.14.2.4 MariaDB Features Not Available in
SQL Server

Contents
1. Plugin Architecture

2. SQL

3. Types

1. JSON

4. Features

Some MariaDB features are not available in SQL Server.

At first glance, it is not important to know about those features to migrate from SQL Server to MariaDB. However, this is not

the case. Using MariaDB features that are not in SQL Server allows one to obtain more advantages from the migration,

getting the most from MariaDB.

This page has a list of MariaDB features that are not supported in SQL Server. The list is not exhaustive.

Plugin Architecture
Storage engines.

Authentication plugins.

Encryption plugins.

ColumnStore is a columnar storage engine designed to scale horizontally. It runs on a specific edition of MariaDB, so

currently it cannot be used in combination with other engines.

1900/4161

SQL
The sql_mode variable determines in which cases an SQL statement should fail with an error, and in which cases it

should succeed with a warning even if it is not entirely correct. For example, when a statement tries to insert a string

in a column which is not big enough to contain it, it could fail, or it could insert a truncated string and emit a warning.

It is a tradeoff between reliability and flexibility.

SQL_MODE=MSSQL allows one to use a small subset of SQL Server proprietary syntax.

The CREATE ... IF EXISTS , CREATE OR REPLACE , DROP ... IF NOT EXISTS options are supported for most

DDL statements.

SHOW statements.

SHOW CREATE statements.

SHOW PROCESSLIST and PERFORMANCE_SCHEMA THREAD table provide much richer information, compared

to SQL Server sp_who() and sp_who2() procedures.

CHECKSUM TABLE statement.

PL/SQL support (only for stored procedures and stored functions).

Row constructors.

BEFORE triggers.

HANDLER statements, to scroll table rows ordered by an index or in their physical order.

DO statement, to call functions without returning a result set.

BENCHMARK() function, to measure the speed of an SQL expression.

See also Syntax Differences between MariaDB and SQL Server.

Types
Character sets and collations don't depend on column type. They can be set globally, or at database, table or column

level.

Columns may use non-constant expressions as the DEFAULT value. TIMESTAMP columns may have a DEFAULT

value.

UNSIGNED numeric types.

Dynamic columns (note that JSON is usually preferred to this feature).

See also SQL Server and MariaDB Types Comparison.

JSON

For compatibility with some other database systems, MariaDB supports the JSON pseudo-type. However, it is just an alias

for:

LONGTEXT CHECK (JSON_VALID(column_name))

JSON_VALID() is the MariaDB equivalent of SQL Server's ISJSON() .

Features
Flashback functionality allows one to "undo" the changes that happened after a certain point in time.

Partitioned tables support the following features:

Tables can be partitioned based on multiple columns.

Several partitioning types are available.

Subpartitions.

Progress reporting for some typically expensive statements.

2.1.14.2.5 Setting Up MariaDB for Testing for
SQL Server Users

Contents
1. Choosing a MariaDB Version

2. Setting up MariaDB on Windows

1. ZIP Packages

2. MSI Packages

3. Installing MariaDB on Docker

4. Reinitializing MariaDB Data Directory

This page contains links and hints to setup MariaDB for testing. The page is designed for SQL Server users, assuming that

1901/4161

they are mostly familiar with Windows and they are not familiar with MariaDB.

Choosing a MariaDB Version
As a general rule, for new installations it's better to choose the latest Generally Available (GA) version .

If you need a feature that is only present in a version that is not yet production-ready, and the project will surely not go to

production before that version is GA, it could make sense to use a non-GA version. In this case however, keep in mind that

you are using a version that is only suitable for testing.

If you need to work with an existing production instance, you should of course use the same version in testing. However,

deprecated versions should not be used in production, because they could be exposed to vulnerabilities that will never be

fixed. See deprecation policies if you are not sure about the version you are using.

Setting up MariaDB on Windows
There are two different ways to use MariaDB on Windows natively: using Zip packages or MSI packages.

In both cases, 32-bit platforms are still supported.

Check the page Installation issues on Windows to verify if current versions of MariaDB have troubles on Windows. More

generally, it is a good idea to check the Troubleshooting Installation Issues category.

ZIP Packages

Windows users don't necessarily need to install MariaDB to use it. They can download ready-to-use ZIP packages to avoid

any change in the system (except for downloading MariaDB and writing databases on the disk). This is very useful for testing

without risking some undesired side effect on the machine in use. And it avoids the hassle of installing Docker or virtual

machines.

Starting with MariaDB 10.4.3, it is necessary to run mysql_install_db.exe to install the data directory.

The drawback is that MariaDB will need to be started and stopped from the command line.

See Installing MariaDB Windows ZIP Packages.

MSI Packages

MSI packages provide a friendly graphical interface to install MariaDB. The installation process is easy but flexible. For

example, the user can decide which components to install, whether to install it as a service or not, and if networking should

be enabled. An interface to uninstall MariaDB is also provided.

See Installing MariaDB MSI Packages on Windows.

Installing MariaDB on Docker
Docker is a container platform that runs natively on Linux. A Docker image is a representation of a basic Linux system,

which usually runs a single process - in our case, that process is MariaDB. A container is an instance of an image, which

can be created or destroyed instantaneously. Once a container is started, it can be used just like a normal system.

Docker runs on all major operating systems. On Windows and MacOS it runs on a Linux virtual machine, but this additional

complexity is transparent for the end user.

Docker's characteristics makes it optimal to test MariaDB functionalities without wasting time on installation and without

making changes to the host system. However, it is not ideal to test MariaDB performance.

See Installing and Using MariaDB via Docker.

Reinitializing MariaDB Data Directory
While experimenting with MariaDB, you could end up with an unusable installation. This occurs for example if you

deliberately delete files that you shouldn't delete. If it happens, there is no need to uninstall and reinstall MariaDB. Instead,

you can simply delete the contents of the data directory and run mariadb-install-db. The program will recreate your system

tables and the essential files.

To know where your data directory is, check the datadir system variable.

MariaDB starting with 10.4.3

1902/4161

https://mariadb.com/kb/en/download-latest-releases/

2.1.14.2.6 Syntax Differences between MariaDB
and SQL Server

Contents
1. Compatibility Features

1. sql_mode and old_mode

2. Executable Comments

2. Generic Syntax

1. Delimiters

2. Names

3. Quoting Strings

4. NULL

5. LIKE

3. Data Definition Language

1. Altering Tables Online

2. IF EXISTS, IF NOT EXISTS, OR REPLACE

3. Altering Columns

4. SHOW Statements

5. SHOW CREATE Statements

6. Database Comments

7. Error Handling

4. Administration

5. BULK INSERT

This article contains a non-exhaustive list of syntax differences between MariaDB and SQL Server, and is written for SQL

Server users that are unfamiliar with MariaDB.

Compatibility Features
Some features are meant to improve syntax and semantics compatibility between MariaDB versions, between MariaDB and

MySQL, and between MariaDB and other DBMSs. This section focuses on compatibility between MariaDB and SQL Server.

sql_mode and old_mode

SQL semantics and syntax, in MariaDB, are affected by the sql_mode variable. Its value is a comma-separated list of flags,

and each of them, if specified, affects a different aspect of SQL syntax and semantics.

A particularly important flag for users familiar with SQL Server is MSSQL.

sql_mode can be changed locally, in which case it only affects the current session; or globally, in which case it will affect all

new connections (but not the connections already established). sql_mode must be assigned a comma-separated list of

flags.

A usage example:

check the current global and local sql_mode values

SELECT @@global.sql_mode;

SELECT @@session.sql_mode;

empty sql_mode for all usaers

SET GLOBAL sql_mode = '';

add MSSQL flag to the sql_mode for the current session

SET SESSION sql_mode = CONCAT(sql_mode, ',MSSQL');

old_mode is very similar to sql_mode, but its purpose is to provide compatibility with older MariaDB versions. Its flags

shouldn't affect compatibility with SQL Server (though it is theoretically possible that some of them do, as a side effect).

Executable Comments

MariaDB supports executable comments. These are designed to write generic queries that are only executed by MariaDB,

and optionally only certain versions.

The following examples show how to insert SQL code that will be ignored by SQL Server but executed by MariaDB, or some

of its versions.

Executed by MariaDB and MySQL (see below):

1903/4161

SELECT * FROM tab /*! FORCE INDEX (idx_a) */ WHERE a = 1 OR b = 2;

Executed by MariaDB only:

SELECT * /*M! , @in_transaction */ FROM tab;

Executed by MariaDB starting from version 10.0.5:

DELETE FROM user WHERE id = 100 /*!M100005 RETURNING email */;

As explained in the Understanding MariaDB Architecture page, MariaDB was initially forked from MySQL. At that time,

executable comments were already supported by MySQL. This is why the /*! ... */ syntax is supported by both

MariaDB and MySQL. But because MariaDB also supports specific syntax not supported by MySQL, it added the /*M! ...

*/ syntax.

Generic Syntax
Here we discuss some differences between MariaDB and SQL Server syntax that may affect any user, as well as some

hints to make queries compatible with a reasonable amount of work.

Delimiters

SQL Server uses two different terminators:

The batch terminator is the go command. It tells Microsoft clients to send the text we typed to SQL Server.

The query terminator is a semicolon (;) and it tells SQL Server where a query ends.

It is rarely necessary to use ; in SQL Server. It is required for certain common table expressions, for example.

But the same doesn't apply to MariaDB. Normally, with MariaDB you only use ; .

However, MariaDB also has some situations where you want to use a ; but you don't want the mariadb command-line

client to send the query yet. This can be done in any situation, but it is particularly useful when creating stored routines or

using BEGIN NOT ATOMIC.

The reason is better explained with an example:

CREATE PROCEDURE p()

BEGIN

 SELECT * FROM t1;

 SELECT * FROM t2;

END;

If we enter this procedure in this way in the mariadb client, as soon as we type the first ; (after the first SELECT) and

press enter, the statement will be sent. MariaDB will try to parse it, and will return an error.

To avoid this, mariadb implements the DELIMITER statement. This client statement is never sent to MariaDB. Instead, the

client uses it to find out when the typed query should be sent. Let's correct the above example:

DELIMITER ||

CREATE PROCEDURE p()

BEGIN

 SELECT * FROM t1;

 SELECT * FROM t2;

END;

DELIMITER ;

Names

In MariaDB, most names have a maximum length of 64 characters. When migrating an SQL Server database to MariaDB,

check if some names exceed this limit (SQL Server maximum length is 128).

By default, MariaDB names are case-sensitive if the operating system has case-sensitive file names (Linux), and case-

insensitive if the operating system is case-insensitive (Windows). SQL Server is case-insensitive by default on all operating

systems.

1904/4161

When migrating a SQL Server database to MariaDB on Linux, to avoid problems you may want to set the

lower_case_table_names system variable to 1, making table names, database names and aliases case-insensitive.

Names can be quoted inside backtick characters (`). This character can be used in names, in which case it should be

doubled. By default this is the only way to quote names.

To also enable the use of double quotes ("), modify sql_mode adding the ANSI_QUOTES flag. This is the equivalent of

setting QUOTED_IDENTIFIER ON in SQL Server.

To also enable the use of SQL Server style quotes ([and]), modify sql_mode adding the MSSQL flag.

The case-sensitivity of stored procedures and functions is never a problem, as they are case-insensitive in SQL Server.

Quoting Strings

In SQL Server, by default strings can only be quoted with single-quotes ('), and to use a double quote in a string it should

be doubled (''). This also works by default in MariaDB.

SQL Server also allows to use double quotes (") to quote strings. This works by default in MariaDB, but as mentioned

before it won't work if sql_mode contains the ANSI_QUOTES flag.

NULL

The default semantics of NULL in SQL Server and MariaDB is the same, by default.

However, SQL Server allows one to change it globally with SET ANSI_NULLS OFF , or at database level with ALTER

DATABASE .

There is no way to achieve exactly the same result in MariaDB. To perform NULL-safe comparisons in MariaDB, one should

replace the = operator with the <=> operator.

Also, note that MariaDB doesn't support the UNKNOWN pseudo-value. An expression like NULL OR 0 returns NULL in

MariaDB.

LIKE

In MariaDB, LIKE expressions only have two characters with special meanings: % and _ . These two characters have the

same meanings they have in SQL Server.

The additional characters recognized by SQL Server ([,] and ^) are part of regular expressions. MariaDB supports the

REGEXP operator, that supports the full regular expressions syntax.

Data Definition Language
Here we discuss some DDL differences that database administrators will want to be aware of.

While this section is meant to highlight the most noticeable DDL differences between MariaDB and SQL Server, there are

many others, both in the syntax and in the semantics. See the ALTER statement documentation.

Altering Tables Online

Altering tables online can be a problem, especially when the tables are big and we don't want to cause a disruption.

MariaDB offers the following solutions to help:

The ALTER TABLE ... ALGORITHM clause allows one to specify which algorithm should be used to run a certain

operation. For example INPLACE tells MariaDB not to create a table copy (perhaps because we don't have enough

disk space), and INSTANT tells MariaDB to execute the operation instantaneously. Not all algorithms are supported

for certain operations. If the algorithm we've chosen cannot be used, the ALTER TABLE statement will fail with an

error.

The ALTER TABLE ... LOCK clause allows one to specify which lock type should be used. For example NONE tells

MariaDB to avoid any lock on the table, and SHARED only allows one to acquire a share lock. If the operation

requires a lock that is more strict than the one we are requesting, the ALTER TABLE statement will fail with an error.

Sometimes this happens because the LOCK level we want is not available for the specified ALGORITHM .

To find out which operations require a table copy and which lock levels are necessary, see InnoDB Online DDL Overview.

An ALTER TABLE can be queued because a long-running statement (even a SELECT) required a metadata lock. Since

this may cause troubles, sometimes we want the operation to simply fail if the wait is too long. This can be achieved with the

WAIT and NOWAIT clauses, whose syntax is a bit different from SQL Server.

1905/4161

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-quoted-identifier-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-ansi-nulls-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql

SQL Server WITH ONLINE = ON is equivalent to MariaDB LOCK = NONE . However, note that most ALTER TABLE

statements support ALGORITHM = INSTANT , which is non-blocking and much faster (almost instantaneous, as the syntax

suggests).

IF EXISTS, IF NOT EXISTS, OR REPLACE

Most DDL statements, including ALTER TABLE, support the following syntax:

DROP IF EXISTS : A warning (not an error) is produced if the object does not exist.

OR REPLACE : If the object exists, it is dropped and recreated; otherwise it is created. This operation is atomic, so at

no point in time does the object not exist.

CREATE IF NOT EXISTS : If the object already exists, a warning (not an error) is produced. The object will not be

replaced.

These statements are functionally similar (but less verbose) than SQL Server snippets similar to the following:

IF NOT EXISTS (

 SELECT name

 FROM sysobjects

 WHERE name = 'my_table' AND xtype = 'U'

)

 CREATE TABLE my_table (

 ...

)

go

Altering Columns

With SQL Server, the only syntax to alter a table column is ALTER TABLE ... ALTER COLUMN . MariaDB provides more

ALTER TABLE commands to obtain the same result:

CHANGE COLUMN allows one to perform any change by specifying a new column definition, including the name.

MODIFY COLUMN allows any change, except renaming the column. This is a slightly simpler syntax that we can use

when we don't want to change a column name.

ALTER COLUMN allows one to change or drop the DEFAULT value.

RENAME COLUMN allows one to only change the column name.

Using a more specific syntax is less error-prone. For example, by using ALTER TABLE ... ALTER COLUMN we will not

accidentally change the data type.

The word COLUMN is usually optional, except in the case of RENAME COLUMN .

SHOW Statements

MariaDB supports SHOW statements to quickly list all objects of a certain type (tables, views, triggers...). Most SHOW

statements support a LIKE clause to filter data. For example, to list the tables in the current database whose name begins

with 'wp_':

SHOW TABLES LIKE 'wp_%';

This is the equivalent of this query, which would work on both MariaDB and SQL Server:

SELECT TABLE_SCHEMA, TABLE_NAME

 FROM INFORMATION_SCHEMA.TABLES

 WHERE TABLE_NAME LIKE 'wp_';

SHOW CREATE Statements

In general, for each CREATE statement MariaDB also supports a SHOW CREATE statement. For example there is a SHOW

CREATE TABLE that returns the CREATE TABLE statement that can be used to recreate a table.

Though SQL Server has no way to show the DDL statement to recreate an object, SHOW CREATE statements are

functionally similar to sp_helptext() .

Database Comments

1906/4161

MariaDB does not support extended properties. Instead, it supports a COMMENT clause for most CREATE and ALTER

statements.

For example, to create and then change a table comment:

CREATE TABLE counter (

 c INT UNSIGNED AUTO_INCREMENT PRIMARY KEY

)

 COMMENT 'Monotonic counter'

;

ALTER TABLE counter COMMENT

 'Counter. It can contain many values, we only care about the max';

Comments can be seen with SHOW CREATE statements, or by querying information_schema tables. For example:

SELECT TABLE_COMMENT

 FROM information_schema.TABLES

 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'counter';

+---+

| TABLE_COMMENT |

+---+

| Counter. It can contain many values, we only care about the max |

+---+

Error Handling

MariaDB SHOW ERRORS and SHOW WARNINGS statements can be used to show errors, or warning and errors. This is

convenient for clients, but stored procedures cannot work with the output of these commands.

Instead, inside stored procedures you can:

Use the GET DIAGNOSTICS command to assign error properties to variables. This is the equivalent of using SQL

Server functions like ERROR_NUMBER() or ERROR_STATE() .

Add a DECLARE HANDLER block to handle all errors, a class of errors, or a specific error. This is the equivalent of

SQL Server TRY ... CATCH .

An error or warning can be generated on purpose using SIGNAL. Inside a DECLARE HANDLER block, RESIGNAL can

be used to issue the error again, and interrupt the execution of the block. These are the equivalents of SQL Server

RAISERROR() .

Administration
Administration and maintenance commands in MariaDB use different syntax to SQL Server.

OPTIMIZE TABLE rebuilds table data and indexes. It can be considered as the MariaDB equivalent of SQL Server's

ALTER INDEX REBUILD . See Defragmenting InnoDB Tablespaces for more information. This statement is always

locking. It supports WAIT and NOWAIT syntax,

MariaDB has an ANALYZE TABLE command, which is an equivalent of UPDATE STATISTICS .

BULK INSERT
MariaDB has no BULK INSERT statement. Instead, it supports:

LOAD DATA INFILE to load data from files in CSV or similar formats;

LOAD XML INFILE to load data from XML files.

See also How to Quickly Insert Data Into MariaDB.

2.1.14.2.7 SQL Server and MariaDB Types
Comparison

1907/4161

https://mariadb.com/kb/en/get-diagnostics/

Contents
1. Numbers

1. Integer Numbers

2. Real Numbers (approximated)

1. Aliases

3. Real Numbers (Exact)

1. Aliases

4. Money

5. Bits

2. BOOLEAN Pseudo-Type

3. Date and Time

1. Zero Values

2. Syntax

3. Precision

4. String and Binary

1. Binary Strings

2. Character Strings

5. SQL Server Special Types

1. rowversion

2. sql_variant

3. uniqueidentifier

4. xml

5. JSON

6. MariaDB Specific Types

This page helps to map each SQL Server type to the matching MariaDB type.

Numbers
In MariaDB, numeric types can be declared as SIGNED or UNSIGNED . By default, numeric columns are SIGNED , so not

specifying either will not break compatibility with SQL Server.

When using UNSIGNED values, there is a potential problem with subtractions. When subtracting an UNSIGNED valued from

another, the result is usually of an UNSIGNED type. But if the result is negative, this will cause an error. To solve this

problem, we can enable the NO_UNSIGNED_SUBTRACTION flag in sql_mode.

For more information see Numeric Data Type Overview.

Integer Numbers

SQL Server Types Size (bytes) MariaDB Types Size (bytes) Notes

tinyint 1 TINYINT 1

smallint 2 SMALLINT 2

MEDIUMINT 3 Takes 3 bytes on disk, but 4 bytes in memory

int 1 INT / INTEGER 4

bigint 8 BIGINT 8

Real Numbers (approximated)

SQL Server Types Precision Size MariaDB Types Size

float(1-24) 7 digits 4 FLOAT(0-23) 4

float(25-53) 15 digist 8 FLOAT(24-53) 8

MariaDB supports an alternative syntax: FLOAT(M, D) . M is the total number of digits, and D is the number of digits after

the decimal point.

See also: Floating-point Accuracy.

Aliases

In SQL Server real is an alias for float(24) .

1908/4161

In MariaDB DOUBLE, and DOUBLE PRECISION are aliases for FLOAT(24-53) .

Normally, REAL is also a synonym for FLOAT(24-53) . However, the sql_mode variable can be set with the

REAL_AS_FLOAT flag to make REAL a synonym for FLOAT(0-23) .

Real Numbers (Exact)

SQL Server Types Precision Size (bytes) MariaDB Types Precision Size (bytes)

decimal 0 - 38 Up to 17 DECIMAL 0 - 38 See table

MariaDB supports this syntax: DECIMAL(M, D) . M and D are both optional. M is the total number of digits (10 by default),

and D is the number of digits after the decimal point (0 by default). In SQL Server, defaults are 18 and 0, respectively. The

reason for this difference is that SQL standard imposes a default of 0 for D, but it leaves the implementation free to choose

any default for M.

SQL Server DECIMAL is equivalent to MariaDB DECIMAL(18) .

Aliases

The following aliases for DECIMAL are recognized in both SQL Server and MariaDB: DEC , NUMERIC . MariaDB also allows

one to use FIXED .

Money

SQL Server money and smallmoney types represent real numbers guaranteeing a very low level of approximation (five

decimal digits are accurate), optionally associated with one of the supported currencies.

MariaDB doesn't have monetary types. To represent amounts of money:

Store the currency in a separate column, if necessary. It's possible to use a foreign key to a currencies table, or the

ENUM type.

Use a non-approximated type:

DECIMAL is very convenient, as it allows one to store the number as-is. But calculations are potentially slower.

An integer type is faster for calculations. It is possible to store, for example, the amount of money multiplied by

100.

There is a small incompatibility that users should be aware about. money and smallmoney are accurate to about 4

decimal digits. This means that, if you use enough decimal digits, operations on these types may produce different results

than the results they would produce on MariaDB types.

Bits

The BIT type is supported in MariaDB. Its maximum size is BIT(64) . The BIT type has a fixed length. If we insert a value

which requires less bits than the ones that are allocated, zero-bits are padded on the left.

In MariaDB, binary values can be written in one of the following ways:

b'value'

0value where value is a sequence of 0 and 1 digits. Hexadecimal syntax can also be used. For more details, see

Binary Literals and Hexadecimal Literals.

MariaDB and SQL Server have different sets of bitwise operators. See Bit Functions and Operators.

BOOLEAN Pseudo-Type
In SQL Server, it is common to use bit to represent boolean values. In MariaDB it is possible to do the same, but this is

not a common practice.

A column can also be defined as BOOLEAN or BOOL , which is just a synonym for TINYINT. TRUE and FALSE keywords

also exist, but they are synonyms for 1 and 0. To understand what this implies, see Boolean Literals.

In MariaDB 'True' and 'False' are always strings.

Date and Time

1909/4161

SQL Server

Types
Range Precision

Size

(bytes)

MariaDB

Types
Range

Size

(bytes)
Precision Notes

date
0001-01-01 -

9999-12-31
3 / DATE

0001-01-01

- 9999-12-

31

3 /
They cover the

same range

datetime
1753-01-01 -

9999-12-31
8

0 to 3,

rounded
DATETIME

001-01-01 -

9999-12-31
8 0 to 6

MariaDB values

are not

approximated,

see below.

datetime2
001-01-01 -

9999-12-31
8 6 to 8 DATETIME

001-01-01 -

9999-12-31
8 0 to 6

MariaDB values

are not

approximated,

see below.

smalldatetime DATETIME

datetimeoffset DATETIME

time TIME

You may also consider the following MariaDB types:

TIMESTAMP has little to do with SQL Server's timestamp . In MariaDB it is the number of seconds elapsed since

the beginning of 1970-01-01, with a decimal precision up to 6 digits (0 by default). The maximum allowed value is

'2038-01-19 03:14:07'. Values are always stored in UTC. A TIMESTAMP column can optionally be automatically set

to the current timestamp on insert, on update, or both. It is not meant to be a unique row identifier. Also, in MariaDB

the range of TIMESTAMP values is

YEAR is a 1-byte type representing years between 1901 and 2155, as well as 0000.

Zero Values

MariaDB allows a special value where all the parts of a date are zeroes: '0000-00-00' . This can be disallowed by setting

sql_mode=NO_ZERO_DATE.

It is also possible to use values where only some date parts are zeroes, for example '1994-01-00' or '1994-00-00' .

These values can be disallowed by setting sql_mode=NO_ZERO_IN_DATE. They are not affected by NO_ZERO_DATE .

Syntax

Several different date formats are understood. Typically used formats are 'YYYY-MM-DD' and YYYYMMDD . Several

separators are accepted.

The syntax defined in standard SQL and ODBC are understood - for example, DATE '1994-01-01' and {d '1994-01-

01'} . Using these eliminates possible ambiguities in contexts where a temporal value could be interpreted as a string or

as an integer.

See Date and Time Literals for the details.

Precision

For temporal types that include a day time, MariaDB allows a precision from 0 to 6 (microseconds), 0 being the default. The

subsecond part is never approximated. It adds up to 3 bytes. See Data Type Storage Requirements for the details.

String and Binary

Binary Strings

SQL Server Types Size (bytes) MariaDB Types Notes

binary 1 to 8000 VARBINARY or BLOB See below for BLOB types

varbinary 1 to 8000 VARBINARY or BLOB See below for BLOB types

image 2^31-1 VARBINARY or BLOB See below for BLOB types

The VARBINARY type is similar to VARCHAR , but stores binary byte strings, just like SQL Server binary does.

1910/4161

For large binary strings, MariaDB has four BLOB types, with different sizes. See BLOB and TEXT Data Types for more

information.

Character Strings

One important difference between SQL Server and MariaDB is that in MariaDB character sets do not depend on types

and collations. Character sets can be set at database, table or column level. If this is not done, the default character sets

applies, which is specified by the character_set_server system variable.

To create a MariaDB table that is identical to a SQL Server table, it may be necessary to specify a character set for

each string column. However, in many cases using UTF-8 will work.

SQL Server Types Size (bytes) MariaDB Types Size (bytes) Character set

char 1 to 8000 CHAR 0 to 255 utf8mb4 (1, 4)

varchar 1 to 8000 VARCHAR 0 to 65,532 (2) utf8mb4 (1)

text 2^31-1 TEXT 2^31-1 ucs2

nchar 2 to 8000 CHAR 0 to 255 utf16 or ucs2 (3, 4)

nvarchar 2 to 8000 VARCHAR 0 to 65,532 (2) (5) utf16 or ucs2 (1) (3)

ntext 2^30 - 1 TEXT 2^31-1 ucs2

Notes:

1) If SQL Server uses a non-unicode collation, a subset of UTF-8 is used. So it is possible to use a smaller character set on

MariaDB too.

2) InnoDB has a maximum row length of 65,535 bytes. TEXT columns do not contribute to the row size, because they are

stored separately (except for the first 12 bytes).

3) In SQL Server, UTF-16 is used if data contains Supplementary Characters, otherwise UCS-2 is used. If not sure, use

utf16 in MariaDB.

4) In SQL Server, the value of ANSI_PADDING determines if char values should be padded with spaces to their maximum

length. In MariaDB, this depends on the PAD_CHAR_TO_FULL_LENGTH sql_mode flag.

5) See JSON, below.

SQL Server Special Types

rowversion

MariaDB does not have the rowversion type.

If the only purpose is to check if a row has been modified since its last read, a TIMESTAMP column can be used instead. Its

default value should be ON UPDATE CURRENT_TIMESTAMP . In this way, the timestamp will be updated whenever the

column is modified.

A way to preserve much more information is to use a temporal table. Past versions of the row will be preserved.

sql_variant

MariaDB does not support the sql_variant type.

MariaDB is quite flexible about implicit and explicit type conversions. Therefore, for most cases storing the values as a string

should be equivalent to using sql_variant .

Be aware that the maximum length of an sql_variant value is 8,000 bytes. In MariaDB, you may need to use

TINYBLOB .

uniqueidentifier

While MariaDB does not support the uniqueidentifier type, the UUID type can typically be used for the same purpose.

uniqueidentifier columns contain 16-bit GUIDs. MariaDB UUID columns store UUIDv1 values (128 bits).

The UUID type was implemented in MariaDB 10.7. On older versions, you can generate unique values with the UUID() or

UUID_SHORT() functions, and store them in BIT(128) or BIT(64) columns, respectively.

1911/4161

xml

MariaDB does not support the xml type.

XML data can be stored in string columns. MariaDB supports several XML functions.

JSON

With SQL Server, typically JSON documents are stored in nvarchar columns in a text form.

MariaDB has a JSON pseudo-type that maps to LONGTEXT. However, from MariaDB 10.5 the JSON pseudo-type also

checks that the value is valid a JSON document.

MariaDB supports different JSON functions than SQL Server. MariaDB currently has more functions, and SQL Server

syntax will not work. See JSON functions for more information.

MariaDB Specific Types
The following types are supported by MariaDB and don't have a direct equivalent in SQL Server. If you are migrating your

database to MariaDB, you can consider using these types.

INET6 - IPv6 addresses.

INET4 - IPv4 addresses.

2.1.14.2.8 MariaDB Transactions and Isolation
Levels for SQL Server Users

Contents
1. Missing Features

2. Transactions, Storage Engines and the Binary Log

3. Transaction Syntax

4. Constraint Checking

5. Isolation Levels and Locks

1. Locking Reads

2. Changing the Isolation Level

3. How Isolation Levels are Implemented in MariaDB

4. Avoiding Lock Waits

6. InnoDB Transactions

1. InnoDB Lock Types

2. Information Schema

3. Deadlocks

This page explains how transactions work in MariaDB, and highlights the main differences between MariaDB and SQL

Server transactions.

Note that XA transactions are handled in a completely different way and are not covered in this page. See XA Transactions.

Missing Features
These SQL Server features are not available in MariaDB:

Autonomous transactions;

Distributed transactions.

Transactions, Storage Engines and the Binary Log
In MariaDB, transactions are optionally implemented by storage engines. The default storage engine, InnoDB, fully supports

transactions. Other transactional storage engines include MyRocks and TokuDB . Most storage engines are not

transactional, therefore they should not considered general purpose engines.

Most of the information in this page refers to generic MariaDB server behaviors or InnoDB. For MyRocks and TokuDB

please check the proper KnowledgeBase sections.

Writing into a non-transactional table in a transaction can still be useful. The reason is that a metadata lock is acquired on

the table for the duration of the transaction, so that ALTER TABLEs are queued.

1912/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/tokudb/

It is possible to write into transactional and non-transactional tables within a single transaction. It is important to remember

that non-transactional engines will have the following limitations:

In case of rollback, changes to non-transactional engines won't be undone. We will receive a warning `1196` which

reminds us of this.

Data in transactional tables cannot be changed by other connections in the middle of a transaction, but data in non-

transactional tables can.

In case of a crash, committed data written into a transactional table can always be recovered, but this is not

necessarily true for non-transactional tables.

If the binary log is enabled, writing into different transactional storage engines in a single transaction, or writing into

transactional and non-transactional engines inside the same transaction, implies some extra work for MariaDB. It needs to

perform a two-phase commit to be sure that changes to different tables are logged in the correct order. This affects the

performance.

Transaction Syntax
The first read or write to an InnoDB table starts a transaction. No data access is possible outside a transaction.

By default autocommit is on, which means that the transaction is committed automatically after each SQL statement. We

can disable it, and manually commit transactions:

SET SESSION autocommit = 0;

SELECT ... ;

DELETE ... ;

COMMIT;

Whether autocommit is enabled or not, we can start transactions explicitly, and they will not be automatically committed:

START TRANSACTION;

SELECT ... ;

DELETE ... ;

COMMIT;

BEGIN can also be used to start a transaction, but does not work in stored procedures.

Read-only transactions are also available using START TRANSACTION READ ONLY . This is a small performance

optimization. MariaDB will issue an error when trying to write data in the middle of a read-only transaction.

Only DML statements are transactional and can be rolled back. This may change in a future version, see MDEV-17567 -

Atomic DDL and MDEV-4259 - transactional DDL.

Changing autocommit and explicitly starting a transaction will implicitly commit the active transaction, if any. DDL

statements, and several other statements, implicitly commit the active transaction. See SQL statements That Cause an

Implicit Commit for the complete list of these statements.

A rollback can also be triggered implicitly, when certain errors occur.

You can experiment with transactions to check in which cases they implicitly commit or rollback. The in_transaction system

variable can help: it is set to 1 when a transaction is in progress, or 0 when no transaction is in progress.

This section only covers the basic syntax for transactions. Much more options are available. For more information, see

Transactions.

Constraint Checking
MariaDB supports the following constraints:

Primary keys

UNIQUE

CHECK

Foreign keys

In some databases, constraints can temporarily be violated during a transaction, and their enforcement can be deferred to

the commit time. SQL Server does not support this, and always validates data against constraints at the end of each

statement.

MariaDB does something different: it always checks constraints after each row change. There are cases this policy makes

some statements fail with an error, even if those statements would work on SQL Server.

For example, suppose you have an id column that is the primary key, and you need to increase its value for some reason:

1913/4161

https://jira.mariadb.org/browse/MDEV-17567
https://jira.mariadb.org/browse/MDEV-4259

SELECT id FROM customer;

+----+

| id |

+----+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

+----+

UPDATE customer SET id = id + 1;

ERROR 1062 (23000): Duplicate entry '2' for key 'PRIMARY'

The reason why this happens is that, as the first thing, MariaDB tries to change 1 to 2, but a value of 2 is already present in

the primary key.

A solution is to use this non-standard syntax:

UPDATE customer SET id = id + 1 ORDER BY id DESC;

Query OK, 5 rows affected (0.00 sec)

Rows matched: 5 Changed: 5 Warnings: 0

Changing the ids in reversed order won't duplicate any value.

Similar problems can happen with CHECK constraints and foreign keys. To solve them, we can use a different approach:

SET SESSION check_constraint_checks = 0;

-- run some queries

-- that temporarily violate a CHECK clause

SET SESSION check_constraint_checks = 1;

SET SESSION foreign_key_checks = 0;

-- run some queries

-- that temporarily violate a foreign key

SET SESSION foreign_key_checks = 1;

The last solutions temporarily disable CHECK constraints and foreign keys. Note that, while this may solve practical

problems, it is dangerous because:

This doesn't disable a single CHECK or foreign key, but also others, that you don't expect to violate.

This doesn't defer the constraint checks, but it simply disables them for a while. This means that, if you insert some

invalid values, they will not be detected.

See check_constraint_checks and foreign_key_checks system variables.

Isolation Levels and Locks
For more information about MariaDB isolation levels see SET TRANSACTION.

Locking Reads

In MariaDB, the locks acquired by a read do not depend on the isolation level (with one exception noted below).

As a general rule:

Plain SELECTs are not locking, they acquire snapshots instead.

To force a read to acquire a shared lock, use SELECT ... LOCK IN SHARED MODE.

To force a read to acquire an exclusive lock, use SELECT ... FOR UPDATE.

Changing the Isolation Level

The default, the isolation level in MariaDB is REPEATABLE READ . This can be changed with the tx_isolation system

variable.

Applications developed for SQL Server and later ported to MariaDB may run with READ COMMITTED without problems.

Using a stricter level would reduce scalability. To use READ COMMITTED by default, add the following line to the MariaDB

configuration file:

1914/4161

tx_isolation = 'READ COMMITTED'

It is also possible to change the default isolation level for the current session:

SET SESSION tx_isolation = 'read-committed';

Or just for one transaction, by issuing the following statement before starting a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

How Isolation Levels are Implemented in MariaDB

MariaDB supports the following isolation levels:

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

MariaDB isolation levels differ from SQL Server in the following ways:

REPEATABLE READ does not acquire share locks on all read rows, nor a range lock on the missing values that match

a WHERE clause.

It is not possible to change the isolation level in the middle of a transaction.

SNAPSHOT isolation level is not supported. Instead, you can use START TRANSACTION WITH CONSISTENT

SNAPSHOT to acquire a snapshot at the beginning of the transaction. This is compatible with all isolation levels.

Here is an example of WITH CONSISTENT SNAPSHOT usage:

-- session 1

SELECT * FROM t1;

+----+

| id |

+----+

| 1 |

+----+

SELECT * FROM t2;

+----+

| id |

+----+

| 1 |

+----+

START TRANSACTION WITH CONSISTENT SNAPSHOT;

-- session 2

INSERT INTO t1 VALUES (2);

-- session 1

SELECT * FROM t1;

+----+

| id |

+----+

| 1 |

+----+

-- session 2

INSERT INTO t2 VALUES (2);

-- session 1

SELECT * FROM t2;

+----+

| id |

+----+

| 1 |

+----+

As you can see, session 1 uses WITH CONSISTENT SNAPSHOT , thus it sees all tables as they were when the transaction

begun.
1915/4161

Avoiding Lock Waits

When we try to read or modify a row that is exclusive-locked by another transaction, our transaction is queued until that lock

is released. There could be more queued transactions waiting to acquire the same lock, in which case we will wait even

more.

There is a timeout for such waits, defined by the innodb_lock_wait_timeout variable. If it is set to 0, statements that

encounter a row lock will fail immediately. When the timeout is exceeded, MariaDB produces the following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

It is important to note that this variable has two limitations (by design):

It only affects transactional statements, not statements like ALTER TABLE or TRUNCATE TABLE .

It only concerns row locks. It does not put a timeout on metadata locks, or table locks acquired - for example - with

the LOCK TABLES statement.

Note however that lock_wait_timeout can be used for metadata locks.

There is a special syntax that can be used with SELECT and some non-transactional statements including ALTER TABLE :

the WAIT and NOWAIT clauses. This syntax puts a timeout in seconds for all lock types, including row locks, table locks,

and metadata locks. For example:

Session 1:

START TRANSACTION;

-- let's acquire a metadata lock

SELECT id FROM t WHERE 0;

Session 2:

DROP TABLE t WAIT 0;

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

InnoDB Transactions

InnoDB Lock Types

InnoDB locks are classified based on what exactly they lock, and which operations they lock.

The first classification is the following:

Record Locks lock a row or, more precisely, an index entry.

Gap Locks lock an interval between two index entries. Note that indexes have virtual values of -Infinum and Infinum,

so a gap lock can cover the gap before the first or after the last index entry.

Next-Key Locks lock an index entry and the gap between it and the next entry. They're a combination of record locks

and gap locks.

Insert Intention Locks are gap locks acquired before inserting a new row.

Lock modes are the following:

Exclusive Locks (X) are generally acquired on writes, e.g. immediately before deleting a row. Only one exclusive lock

can be acquired on a resource simultaneously.

Shared Locks (S) can be acquired acquired on reads. Multiple shared locks can be acquired at the same time

(because the rows are not supposed to change when shared-locked) but are incompatible with exclusive locks.

Intention locks (IS, XS) are acquired when it is not possible to acquire an exclusive lock or a shared lock. When a

lock on a row or gap is released, the oldest intention lock on that resource (if any) is converted to an X or S lock.

For more information see InnoDB Lock Modes.

Information Schema

Querying the information_schema is the best way to see which transactions have acquired some locks and which

transactions are waiting for some locks to be released.

In particular, check the following tables:

INNODB_LOCKS: requests for locks not yet fulfilled, or that are blocking another transaction.

INNODB_LOCK_WAITS: queued requests to acquire a lock.

INNODB_TRX: information about all currently executing InnoDB transactions, including SQL queries that are running.

Here is an example of their usage.
1916/4161

-- session 1

START TRANSACTION;

UPDATE t SET id = 15 WHERE id = 10;

-- session 2

DELETE FROM t WHERE id = 10;

-- session 1

USE information_schema;

SELECT l.*, t.*

 FROM information_schema.INNODB_LOCKS l

 JOIN information_schema.INNODB_TRX t

 ON l.lock_trx_id = t.trx_id

 WHERE trx_state = 'LOCK WAIT' \G

*************************** 1. row ***************************

 lock_id: 840:40:3:2

 lock_trx_id: 840

 lock_mode: X

 lock_type: RECORD

 lock_table: `test`.`t`

 lock_index: PRIMARY

 lock_space: 40

 lock_page: 3

 lock_rec: 2

 lock_data: 10

 trx_id: 840

 trx_state: LOCK WAIT

 trx_started: 2019-12-23 18:43:46

 trx_requested_lock_id: 840:40:3:2

 trx_wait_started: 2019-12-23 18:43:46

 trx_weight: 2

 trx_mysql_thread_id: 46

 trx_query: DELETE FROM t WHERE id = 10

 trx_operation_state: starting index read

 trx_tables_in_use: 1

 trx_tables_locked: 1

 trx_lock_structs: 2

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 1

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

Deadlocks

InnoDB detects deadlocks automatically. Since this consumes CPU time, some users prefer to disable this feature by

setting the innodb_deadlock_detect variable to 0. If this is done, locked transactions will wait until the they exceed the

innodb_lock_wait_timeout. Therefore it is important to set innodb_lock_wait_timeout to a very low value, like 1.

When InnoDB detects a deadlock, it kills the transaction that modified the least amount of data. The client will receive the

following error:

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

The latest detected deadlock, and the killed transaction, can be viewed in the output of SHOW ENGINE InnoDB STATUS.

Here's an example:

1917/4161

LATEST DETECTED DEADLOCK

2019-12-23 18:55:18 0x7f51045e3700

*** (1) TRANSACTION:

TRANSACTION 847, ACTIVE 10 sec starting index read

mysql tables in use 1, locked 1

LOCK WAIT 4 lock struct(s), heap size 1136, 3 row lock(s), undo log entries 1

MySQL thread id 46, OS thread handle 139985942054656, query id 839 localhost root Updating

delete from t where id = 10

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 40 page no 3 n bits 80 index PRIMARY of table `test`.`t` trx id 847

lock_mode X locks rec but not gap waiting

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 32

 0: len 4; hex 8000000a; asc ;;

 1: len 6; hex 00000000034e; asc N;;

 2: len 7; hex 760000019c0495; asc v ;;

*** (2) TRANSACTION:

TRANSACTION 846, ACTIVE 25 sec starting index read

mysql tables in use 1, locked 1

3 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1

MySQL thread id 39, OS thread handle 139985942361856, query id 840 localhost root Updating

delete from t where id = 11

*** (2) HOLDS THE LOCK(S):

RECORD LOCKS space id 40 page no 3 n bits 80 index PRIMARY of table `test`.`t` trx id 846

lock_mode X locks rec but not gap

Record lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 32

 0: len 4; hex 8000000a; asc ;;

 1: len 6; hex 00000000034e; asc N;;

 2: len 7; hex 760000019c0495; asc v ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 40 page no 3 n bits 80 index PRIMARY of table `test`.`t` trx id 846

lock_mode X locks rec but not gap waiting

Record lock, heap no 3 PHYSICAL RECORD: n_fields 3; compact format; info bits 32

 0: len 4; hex 8000000b; asc ;;

 1: len 6; hex 00000000034f; asc O;;

 2: len 7; hex 770000019d031d; asc w ;;

*** WE ROLL BACK TRANSACTION (2)

The latest detected deadlock never disappears from the output of SHOW ENGINE InnoDB STATUS . If you cannot see any,

MariaDB hasn't detected any InnoDB deadlocks since the last restart.

Another way to monitor deadlocks is to set innodb_print_all_deadlocks to 1 (0 is the default). InnoDB will log all detected

deadlocks into the error log.

2.1.14.2.9 MariaDB Authorization and
Permissions for SQL Server Users

Contents
1. Understanding Accounts and Users

1. Setting or Changing Passwords

2. Authentication Plugins

3. TLS connections

4. Permissions

5. Roles

Understanding Accounts and Users
MariaDB authorizes access and check permissions on accounts, rather than users. Even if MariaDB supports standard SQL

commands like CREATE USER and DROP USER, it is important to remember that it actually works with accounts.

An account is specified in the format 'user'@'host' . The quotes are optional and allow one to include special characters,

like dots. The host part can actually be a pattern, which follows the same syntax used in LIKE comparisons. Patterns are

often convenient because they can match several hostnames.

Here are some examples.

1918/4161

Omitting the host part indicates an account that can access from any host. So the following statements are equivalent:

CREATE USER viviana;

CREATE USER viviana@'%';

However, such accounts may be unable to connect from localhost if an anonymous user ''@'%' is present. See localhost

and % for the details.

Accounts are not bound to a specific database. They are global. Once an account is created, it is possible to assign it

permissions on any existing or non existing database.

The sql_mode system variable has a NO_AUTO_CREATE_USER flag. In recent MariaDB versions it is enabled by default.

If it is not enabled, a GRANT statement specifying privileges for a non-existent account will automatically create that

account.

For more information: Account Management SQL Commands.

Setting or Changing Passwords

Accounts with the same username can have different passwords.

By default, an account has no password. A password can be set, or changed, in the following way:

By specifying it in CREATE USER.

By the user, with SET PASSWORD.

By root, with SET PASSWORD or ALTER USER.

With all these statements (CREATE USER , ALTER USER , SET PASSWORD) it is possible to specify the password in plain or

as a hash:

-- specifying plain passwords:

CREATE USER tom@'%.example.com' IDENTIFIED BY 'plain secret';

ALTER USER tom@'%.example.com' IDENTIFIED BY 'plain secret';

SET PASSWORD = 'plain secret';

-- specifying hashes:

CREATE USER tom@'%.example.com' IDENTIFIED BY PASSWORD 'secret hash';

ALTER USER tom@'%.example.com' IDENTIFIED BY PASSWORD 'secret hash';

SET PASSWORD = PASSWORD('secret hash');

The PASSWORD() function uses the same algorithm used internally by MariaDB to generate hashes. Therefore it can be

used to get a hash from a plain password. Note that this function should not be used by applications, as its output may

depend on MariaDB version and configuration.

SET PASSWORD applies to the current account, by default. Superusers can change other accounts passwords in this way:

SET PASSWORD FOR tom@'%.example.com' = PASSWORD 'secret hash';

Passwords can have an expiry date, set by default_password_lifetime. To set a different date for a particular user:

CREATE USER 'tom'@'%.example.com' PASSWORD EXPIRE INTERVAL 365 DAY;

To set no expiry date for a particular user:

CREATE USER 'tom'@'%.example.com' PASSWORD EXPIRE NEVER;

For more details, see User Password Expiry.

It is also possible to lock an account with immediate effect:

CREATE USER 'tom'@'%.example.com' ACCOUNT LOCK;

See Account Locking for more details.

Authentication Plugins

MariaDB starting with 10.4.3

MariaDB starting with 10.4.2

1919/4161

MariaDB supports authentication plugins. These plugins implement user's login and authorization before they can use

MariaDB.

Each user has one or more authentication plugins assigned. The default one is mysql_native_password. It is the traditional

login using the username and password set in MariaDB, as described above.

On UNIX systems, root is also assigned the unix_socket plugin, which allows a user logged in the operating system to

be recognized by MariaDB.

Windows users may be interested in the named pipe and GSSAPI plugins. GSSAPI also requires the use of a plugin on the

client side.

A plugin can be assigned to a user with CREATE USER , ALTER USER or GRANT , using the IDENTIFIED VIA syntax. For

example:

CREATE USER username@hostname IDENTIFIED VIA gssapi;

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA named_pipe;

TLS connections
A particular user can be required to use TLS connections. Additional requirements can be set:

Having a valid X509 certificate.

The certificate may be required to be issued by a particular authority.

A particular certificate subject can be required.

A particular certificate cipher suite can be required.

These requirements can be set with CREATE USER , ALTER USER or GRANT . For the syntax, see CREATE USER.

MariaDB can be bundled with several cryptography libraries, depending on its version. For more information about the

libraries, see TLS and Cryptography Libraries Used by MariaDB.

For more information about secure connections, see Secure Connections Overview.

Permissions
Permissions can be granted to accounts. As mentioned before, the specified accounts can actually be patterns, and multiple

accounts may match a pattern. For example, in this example we are creating three accounts, and we are assigning

permissions to all of them:

CREATE USER 'tom'@'example.com';

CREATE USER 'tom'@'123.123.123.123;

CREATE USER 'tom'@'tomlaptop';

GRANT USAGE ON *.* TO tom@'%';

The following permission levels exist in MariaDB:

Global privileges;

Database privileges;

Table privileges;

Column privileges;

Function and procedure privileges.

Note that database and schema are synonymous in MariaDB.

Permissions can be granted for non-existent objects that could exist in the future.

The list of supported privileges can be found in the GRANT page. Some highlights can be useful for SQL Server users:

USAGE privilege has no effect. The GRANT command fails if we don't grant at least one privilege; but sometimes we

want to run it for other purposes, for example to require a user to use TLS connections. In such cases, it is useful to

grant USAGE .

Normally we can obtain a list of all databases for which we have at least one permission. The SHOW DATABASES

permission allows getting a list of all databases.

There is no SHOWPLAN privilege in MariaDB. Instead, EXPLAIN requires the SELECT privilege for each accessed

table and the SHOW VIEW privilege for each accessed view.

The same permissions are needed to see a table structure (SELECT) or a view definition (SHOW VIEW).

REFERENCES has no effect.

MariaDB starting with 10.4

1920/4161

MariaDB does not support negative permissions (the DENY command).

Some differences concerning the SQL commands:

In MariaDB GRANT and REVOKE statements can only assign/revoke permissions to one user at a time.

While we can assign/revoke privileges at column level, we have to run a GRANT or REVOKE statement for each

column. The table (column_list) syntax is not recognized by MariaDB.

In MariaDB it is not needed (or possible) to specify a class type.

Roles
MariaDB supports roles. Permissions can be assigned to roles, and roles can be assigned to accounts.

An account may have zero or one default roles. A default role is a role that is automatically active for a user when they

connect. To assign an account or remove a default role, these SQL statements can be used:

SET DEFAULT ROLE some_role FOR username@hostname;

SET DEFAULT ROLE NONE FOR username@hostname;

Normally a role is not a default role. If we assign a role in this way:

GRANT some_role TO username@hostname;

...the user will not have that role automatically enabled. They will have to enable it explicitly:

SET ROLE some_role;

MariaDB does not have predefined roles, like public.

For an introduction to roles, see Roles Overview.

2.1.14.2.10 Repairing MariaDB Tables for SQL
Server Users

Contents
1. Partitioned Tables

2. Indexes

3. Checking and Repairing Tables

1. InnoDB

2. Aria and MyISAM

3. Other Storage Engines

Repairing tables in MariaDB is not similar to repairing tables in SQL Server.

The first thing to understand is that every MariaDB table is handled by a storage engine. Storage engines are plugins that

know how to physically read and write a table, so each storage engine allows one to repair tables in different ways. The

default storage engine is InnoDB.

MariaDB provides specific SQL statements to deal with corrupted tables:

CHECK TABLE checks if a table is corrupted;

REPAIR TABLE repairs a table if it is corrupted.

As a general rule, there is no reason why a table that is corrupted on a master should also be corrupted on the slaves.

Therefore, REPAIR is generally used with the NO_WRITE_TO_BINLOG option, to avoid replicating it to the slaves.

Partitioned Tables
Partitioned tables are normally split into multiple physical files (one per partition). Even if one of the partitions is corrupted, in

most cases other partitions are healthy.

For this reason, CHECK TABLE and REPAIR TABLE don't work on partitioned tables. Instead, use ALTER TABLE to check

or repair a single partition.

For example:

1921/4161

ALTER TABLE orders CHECK PARTITION p_2019, p_2020;

ALTER TABLE orders REPAIR PARTITION p_2019, p_2020;

Indexes
Indexes can get corrupted. However, as long as data is not corrupted, indexes can always be dropped and rebuilt with

ALTER TABLE:

ALTER TABLE customer DROP INDEX idx_email;

ALTER TABLE customer ADD INDEX idx_email (email);

Checking and Repairing Tables
Here we discuss how to repair tables, depending on the storage engine.

InnoDB

InnoDB follows the "fail fast" philosophy. If table corruption is detected, by default InnoDB deliberately causes MariaDB to

crash to avoid corruption propagation, logging an error into the error log. This happens even if the corruption is found with a

CHECK TABLE statement. This behavior can be changed with the innodb_corrupt_table_action server variable.

To repair an InnoDB table after a crash:

1. Restart MariaDB with the --innodb-force-recovery option set to a low but non-zero value.

2. If MariaDB fails to start, retry with a higher value. Repeat until you succeed.

At this point, you can follow two different procedures, depending if you can use a backup or not. Provided that you have a

usable backup, it is often the best option to bring the database up quickly. But if you want to reduce the data loss as much

as possible, you prefer to follow the second method.

Restoring a backup:

1. Drop the whole database with DROP DATABASE.

2. Restore a backup of the database. The exact procedure depends on the type of backup.

Recovering existing data:

1. Dump data from the corrupter table, ordered by primary key. MariaDB could crash when it finds damaged data.

Repeat the process skipping damaged data.

2. Save somewhere the table structure with SHOW CREATE TABLE.

3. Restart MariaDB.

4. Drop the table with DROP TABLE.

5. Recreate the table and restore the dump.

For more details, see InnoDB Recovery Modes.

Aria and MyISAM

MyISAM is not crash-safe. In case of a MariaDB crash, the changes applied to MyISAM tables but not yet flushed to the

disk are lost.

Aria is crash-safe by default, which means that in case of a crash, after repairing any table that is damaged, no changes are

lost. However, Aria tables are not crash-safe if created with TRANSACTIONAL=0 or ROW_FORMAT set to FIXED or

DYNAMIC .

System tables use the Aria storage engine and they are crash-safe.

To check if a MyISAM/Aria table is corrupted, we can use CHECK TABLE. To repair a MyISAM/Aria table, one can use

REPAIR TABLE. Before running REPAIR TABLE against big tables, consider increasing myisam_repair_threads or

aria_repair_threads.

MyISAM and Aria tables can also be automatically repaired when corruption is detected. This is particularly useful for Aria,

in case corrupted system tables prevent MariaDB from starting. See myisam_recover_options and aria_recover_options. By

default Aria runs the quickest repair type. Occasionally, to repair a system table, we may have to start MariaDB in this way:

mysqld --aria-recover-options=BACKUP,FORCE

It is also possible to stop MariaDB and repair MyISAM tables with myisamchk, and Aria tables with aria_chk. With default

values, a repair can be unnecessarily very slow. Before running these tools, be sure to check the Memory and Disk Use

1922/4161

With myisamchk page.

Other Storage Engines

Notes on the different storage engines:

For MyRocks, see MyRocks and CHECK TABLE.

With ARCHIVE, REPAIR TABLE also improves the compression rate.

For CSV, see Checking and Rpairing CSV Tables.

Some special storage engines, like MEMORY or BLACKHOLE, do not support any form of check and repair.

2.1.14.2.11 MariaDB Backups Overview for SQL
Server Users

Contents
1. Logical Backups (Dumps)

1. mariadb-dump

2. mydumper

2. Hot Backups (mariabackup)

3. Cold Backups and Snapshots

4. Incremental Backups

1. Replaying the Binary Log

2. Incremental Backups with mariabackup

3. Flashback

4. Copying Individual Tables

MariaDB has the following types of backups:

Logical backups (dumps).

Hot backups with Mariabackup.

Snapshots.

Incremental backups.

Logical Backups (Dumps)
A dump, also called a logical backup, consists of the SQL statements needed to recreate MariaDB databases and their data

into another server. A dump is the slowest form of backup to restore, because it implies executing all the SQL statements

needed to recreate data. However it is also the most flexible, because restoring will work on any MariaDB version, because

the SQL syntax is usually compatible. It is even possible to restore a dump into an older version, though the incompatible

syntax (new features) will be ignored. Under certain conditions, MariaDB dumps may also be restored on other DBMSs,

including SQL Server.

The compatibility between different versions and technologies is achieved by using executable comments, but we should be

aware of how they work. If we use a feature introduced in version 11.1, for example, it will be included in the dump inside an

executable comment. If we restore that backup on a server with MariaDB 10.11, the 11.1 feature will be ignored. This is the

only way to restore backups in older MariaDB versions.

mariadb-dump

Logical backups are usually taken with mariadb-dump (previously called mysqldump).

mariadb-dump allows one to dump all databases, a single database, or a set of tables from a database. It is even possible

to specify a WHERE clause, which under certain circumstances allows to obtain incremental dumps.

For consistency reasons, when using the default storage engine InnoDB, it is important to use the --single-

transaction option. This will read all data in a single transaction. It's important however to understand that long

transactions may have a big impact on performance.

The --master-data option adds the statements to setup a slave to the dump.

MariaDB also supports statements which make easy to write applications to obtain custom types of dumps. For most

CREATE <object_type> statement, a corresponding SHOW CREATE <object_type> exists. For example, SHOW

CREATE TABLE returns the CREATE TABLE statement that can be used to recreate a certain table, without data.

mydumper

1923/4161

mydumper is a 3rd party tools to take dumps from MariaDB and MySQL databases. It is much faster than mariadb-dump

because it takes backups with several parallel threads, usually one thread for each available CPU core. It produces several

files, that can be used to restore a database using the related tool myloader.

Since is it a 3rd party tool, it could be incompatible with some present or future MariaDB features.

Hot Backups (mariabackup)
Mariabackup is a tool for taking a backup of MariaDB files while MariaDB is working. A lock is only held for a small amount

of time, so it is suitable to backup a server without causing disruptions. It works by taking corrupted backups and then

bringing them to a consistent state by using the InnoDB undo log. Mariabackup also properly backups MyRocks tables and

non-transactional storage engines.

Cold Backups and Snapshots
A copy of all MariaDB files is a working backup. Therefore, the easiest way to backup a dataset is to shutdown the server

and copy all its files. It will be entirely possible to start another server with a copy of those files. This is often referred to as a

cold backup. However, in most cases we don't want to do this, because it implies downtime for the server: it will not be

working at least for the time necessary to copy the files.

Snapshots are usually a better idea, as they are a consistent copy of the files at a given moment in time, taken without

stopping the normal operations.

A snapshot of the files can be taken at several levels: filesystem level, if the filesystem supports snapshots, for example zfs;

Linux Logical Volume Manager (LVM) also supports snapshots; and virtual machines also allow one to take snapshots.

Windows shadow copies are also snapshots, with a benefit: it is possible to restore a single file from a shadow copy. A

snapshot is not an expensive operation, because it does not imply a copy of the files. The current files will not be modified

anymore, and changes to them will be written in separate places.

The problem with snapshots is that they behave like a logical copy of the files as they are in a given point in time. But

database files are not guaranteed to be consistent in every moment, because contents can be buffered before being flushed

to the disk. You can think a database snapshot like a database after an operating system crash.

With non-transactional tables, some data is typically lost. Data changes that are present in a buffer before the snapshot, but

not written on a disk, cannot be recovered in any way. Data changes in transactional tables, like InnoDB tables, can always

be recovered after restoring a snapshot (or after a crash), as long as a commit was done. Tables will still need to be

repaired, just like it happens after an SQL Server crash.

Snapshots can be taken while MariaDB is running. To restore them, stop MariaDB first - or kill the process, because you

don't really care of the consequences in this case. Then restore a snapshot and start MariaDB again.

For more information about snapshots, check your filesystem, LVM or virtual machine documentation.

Incremental Backups
The term incremental backup in MariaDB indicates what SQL Server calls a differential backup . An important difference is

that in SQL Server such backups are based on the transaction log , which wouldn't be possible in MariaDB because

transaction logs are handled at storage engine level.

As mentioned here, MariaDB can use the binary log instead for backup purposes. Such incremental backups can be done

manually. This means that:

The binary log files are copied just like any other regular file.

To copy those files it is necessary to have the proper permissions at filesystem level, not in MariaDB.

Backups do not expire until we delete the last needed complete backup.

Replaying the Binary Log

The page Using mariadb-binlog shows how to use the mariadb-binlog utility to replay a binary log file.

The page also shows how to edit the binary log before replaying it. This allows one to undo an SQL statement that was

executed by mistake, for example a DROP TABLE against a wrong table. The high level procedure is the following:

Restore a backup that is older than the SQL statement to undo.

Use mariadb-binlog to generate a file with the SQL statements that were executed after the backup.

Edit the SQL file, erasing the unwanted statement.

Run the SQL file.

Incremental Backups with mariabackup
1924/4161

https://github.com/maxbube/mydumper
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/differential-backups-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/transaction-log-backups-sql-server

The simplest way to take an incremental backup is to use Mariabackup. This tool is able to take and restore incremental

backups. For the complete procedure to use, see Incremental Backup and Restore with Mariabackup.

Mariabackup can run on both Linux and Windows systems.

Flashback

Flashback is a feature that allows one to bring all databases, some databases or some tables back to a certain point in time.

This can only be done if the binary log is enabled. Flashback is not a proper backup, but it can be used to restore a certain

set of data.

Copying Individual Tables

It is entirely possible to restore a single table from a physical backup, or to copy the table to another server.

With the MyISAM storage engine it was very easy to move tables between different servers, as long as the MySQL or

MariaDB version was the same.

InnoDB is nowadays the default storage engine, and it is more complex, as it supports transactions for example. It still

supports restoring a table from a physical file, this feature is called transportable tablespaces. There is a particular

procedure to follow, and some limitations. This is basically the MariaDB equivalent of detaching and re-attaching tables in

SQL Server.

For more information, see InnoDB File-Per-Table Tablespaces.

By default. all table files are located in the data directory, which is defined by the system variable datadir. There may be

exceptions, because a table's files can be located elsewhere using the DATA DIRECTORY and INDEX DIRECTORY options

in CREATE TABLE .

Regardless of the storage engine used, each table's structure is generally stored in a file with the .frm extension.

The files used for partitioned tables are different from the files used for non-partitioned tables. See Partitions Files for details.

2.1.14.2.12 MariaDB Replication Overview for
SQL Server Users

Contents
1. Asynchronous Replication

1. Binary Log Coordinates, Relay Log Coordinates and GTID

2. Provisioning a Replica

3. Replication and Permissions

4. Parallel Replication and Group Commit

5. Differences Between the Primary and the Replicas

6. Delayed Replication

7. Multi-Source Replication

8. Dual Primary

2. Semi-Synchronous Replication

1. Enabling Semi-Synchronous Replication

2. Tuning the Wait Point and the Primary Timeout

3. Galera Cluster

1. Raft and the Primary Cluster

2. Transaction Certification

3. Galera Cache and SST

4. Flow Control

5. Configuration

4. Galera Limitations

MariaDB supports the following types of replication:

Asynchronous replication.

Semi-synchronous replication.

Galera Cluster.

Note: in the snippets in this page, several SQL statements use the keyword SLAVE . This word is considered

inappropriate by some persons or cultures, so from MariaDB 10.5 it is possible to use the REPLICA keyword, as a

synonym.

Similar synonyms will be created in the future for status variables and system variables. See MDEV-18777 to track

MariaDB starting with 10.5.1

1925/4161

https://jira.mariadb.org/browse/MDEV-18777

the status of these changes.

Asynchronous Replication
The original MariaDB replication system is asynchronous primary-replica replication.

A primary needs to have the binary log enabled. The primary logs all data changes in the binary log. Every event (a binary

log entry) is sent to all the replicas.

For a high-level description of the binary log for SQL Server users, see Understanding MariaDB Architecture.

The events can be written in two formats: as an SQL statement (statement-based replication, or SBR), or as a binary

representation of the change (row-based replication, or RBR). The former is generally slower, because the statement needs

to be re-executed by the replicas. It is also less reliable, because some SQL statements are not deterministic, so they could

produce different results on the replicas. On the other hand row-based replication could make the binary log much bigger,

and require more network traffic. For this reason, DML statements are always logged in statement format.

For more details on replication formats, see binary log formats.

The replicas have an I/O thread that receives the binary log events and writes them to the relay log. These events are then

read by the SQL thread. This thread could directly apply the changes to the local databases, and this was the only option

before MariaDB 10.0.5 . If parallel replication is enabled, the SQL thread hands the events to the worker thread, that apply

them to the databases. The latter method is recommended for performance reasons.

When a replica cannot apply an event to the local data, the SQL thread stops. This happens, for example, if the event is a

row deletion but that row doesn't exist on the replica. There can be several reasons for this, for example non-deterministic

statements, or a user deleted the row in the replica. To reduce the risk, it is recommended to set read_only to 1 in the

replicas.

SHOW SLAVE STATUS has columns named Slave_SQL_State and Slave_IO_State that show, respectively, if the

SQL thread and the IO thread are running. If they are not, the column Last_IO_Errno and Last_IO_Error (for the IO

thread) or Last_SQL_Errno and Last_SQL_Error (for the SQL thread) show what the problem is.

In a replication chain, every server must have a unique server_id.

For more information on replication, see standard replication.

Binary Log Coordinates, Relay Log Coordinates and GTID

The binary log coordinates provide a way to identify a certain data change made by a server. Coordinates consist of a file

name and the position of the latest event, expressed as an integer. The last event coordinates can be seen with the SHOW

MASTER STATUS columns File and Position . mariadb-dump includes them in a dump if the --master-data option

is used.

A replica uses primary binary log coordinates to identify the last event it read. This can be seen with the SHOW SLAVE

STATUS columns Master_Log_File and Read_Master_Log_Pos .

The columns Relay_Master_Log_File and Exec_Master_Log_Pos identify the primary event that corresponds to the

last event applied by the SQL thread.

The replica relay log also has coordinates. The coordinates of the last applied event can be seen with the SHOW SLAVE

STATUS columns Relay_Log_File and Relay_Log_Pos .

To easily find out how far the replica is lagging behind the primary, we can look at Seconds_Behind_Master .

Coordinates represented in this way have a problem: they are different on each server. Each server can use files with

different (or the same) names, depending on its configuration. And files can be rotated at different times, including when a

user runs FLUSH LOGS. By enabling the GTID (global transaction id) an event will have the same id on the primary and on

all the replicas.

When GTID is enabled, SHOW SLAVE STATUS shows two GTIDs: Gtid_IO_Pos is the last event written into the relay log,

and Gtid_Slave_Pos is the last event applied by the SQL thread. There is no need for a column identifying the same

event in the primary, because the id is the same.

Provisioning a Replica

MariaDB does not have an equivalent to SQL Server's snapshot replication.

To setup a replica, it is necessary to manually provision it. It can be provisioned from the primary in this way:

A backup from the primary must be restored on the new replica;

The binary log coordinates at the moment of the backup should be set as replication coordinates in the replica, via

1926/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/

CHANGE MASTER TO.

However, if there is at least one existing replica, it is better to use it to provision the new replica:

A backup from the existing replica must be restored in the new replica;

The backup should include the system tables. In this way it will not be necessary to set the correct coordinates

manually.

For more information see Setting Up Replication and Setting up a Replica with Mariabackup .

Replication and Permissions

A replica connects to a primary using its credentials. See CHANGE MASTER TO.

The appropriate account must be created in the primary, and it needs to have the REPLICATION SLAVE permission.

See Setting Up Replication for more information.

Parallel Replication and Group Commit

MariaDB uses group commit, which means that a group of events are physically written in the binary log altogether. This

reduces the number of IOPS (input/output operations per second). Group commit cannot be disabled, but it can be tuned

with variables like binlog_commit_wait_count and binlog_commit_wait_usec.

Replicas can apply the changes using multiple threads. This is known as parallel replication. Before MariaDB 10.0.5 only

one thread was used to apply changes. Since a primary can use many threads to write data, mono-thread replication is a

well-known bottleneck. Parallel replication is not enabled by default. To use it, set the slave_parallel_threads variable to a

number greater than 1. If replication is running, the replica threads must be stopped in order to change this value:

STOP SLAVE SQL_THREAD;

SET GLOBAL slave_parallel_threads = 4;

START SLAVE SQL_THREAD;

There are different parallel replication styles available: in-order and out-of-order. The exact mode in use is determined by

the slave_parallel_mode system variable. In parallel replication, the events are not replicated exactly in the same order as

they occurred in the primary. But with an in-order replication mode the commit phase is always applied simultaneously. In

this way data in the replica always reflect data as they have been in the primary at a certain point in time. Out-of-order

replication is faster because there is less queuing, but it's not completely consistent with the primary. If two transactions

modified different sets of rows in the primary, they could become visible in the replica in a different order.

conservative relies on primary group commit: events in different groups are executed in a parallel way.

optimistic does not try to find out which transaction can be executed in a parallel way - except for transactions that

conflicted on the primary. Instead, it always tries to apply many events together, and rolls transactions back when there is a

conflict.

aggressive is similar to optimistic, but it does not take into account which transactions conflicted in the primary.

minimal applies commits together, but all other events are applied in order.

Out-of-order replication cannot be enabled automatically by changing a variable in the replica. Instead, it must be enabled

by the applications that run transactions in the primary. They can do this if the GTID is enabled. They can set different

values for the gtid_domain_id variable in different transactions. This shifts a lot of responsibility to the application layer;

however, if the application is aware of which transactions are not going to conflict and this information allows one to sensibly

increase the parallelism, and using out-of-order replication can be a good idea.

Even if out-of-order replication is not normally used, it can be a good idea to use it for long running transactions or ALTER

TABLEs, so they can be applied at the same time as normal operations that are not conflicting.

The impact of the number of threads and mode on performance can be partly seen with SHOW PROCESSLIST, which

shows the state of all threads. This includes the replication worker threads, and shows if they are blocking each other.

Differences Between the Primary and the Replicas

As a general rule, we want the primary and the replicas to contain exactly the same data. In this way, no conflicts are

possible. Conflicts are the most likely cause of replication outages.

To reduce the possible causes of conflicts, the following best practices are recommended:

Users must not change data in the replica directly. Set read_only to 1. Note that this won't prevent root from making

changes.

Use the same table definitions in the primary and in the replica.

Use ROW binary log format on the primary.
1927/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/

Another cause of inconsistencies include MariaDB bugs and failover in case the primary crashes.

An open source third party tool is available to check if the primary and a replica are consistent. It is called pt-table-

checksum. Another tool, pt-table-sync, can be used to eliminate the differences. Both are part of Percona Toolkit. The

advice is to run pt-table-checksum periodically, and use pt-table-sync if inconsistencies are found.

If a replication outage occurs because an inconsistency is found, sometimes we want to quickly bring the replica up again

as quickly as possible, and solve the core problem later. If GTID is not used, a way to do this is to run SET GLOBAL

SQL_SLAVE_SKIP_COUNTER = 1, which skips the problematic replication event.

If GTID is used, the gtid_slave_pos variable can be used instead. See the link for an explanation of how it works.

There are ways to have different data on the replicas. For example:

Multi-source replication is possible. In this way, a replica will replicate data from multiple primaries. This feature is

described below.

Replication filters are supported. This allows one to exclude or include in replication specific tables, entire databases,

or tables whose name matches a certain pattern. This allows one to avoid replicating data that is present in the

primary but can always be rebuilt.

Differences in table definitions are also possible. For example, a replica could have more columns or less columns

compared to the primary. In this way we can avoid replicating columns whose values can be rebuilt. Or we can add

columns for analytics purposes, without having them in the primary. Be sure to understand the limitations and risks of

this technique.

Delayed Replication

MariaDB supports delayed replication. This is the equivalent of setting a pollinginterval in SQL Server.

To delay replication in a MariaDB replica, use CHANGE MASTER TO to specify a delay in seconds.

For more information, see Delayed Replication.

Multi-Source Replication

Multi-source replication is an equivalent to peer-to-peer replication, available in SQL Server Enterprise Edition.

A MariaDB replica can replicate from any number of primaries. It is very important that different primaries don't have the

same tables. Otherwise there could be conflicts between data changes made on different primaries, and this will result in a

replication outage.

In multi-source replication different channels exist, one for each primary.

This changed the way SQL replication statements work. SHOW PROCESSLIST returns a different row for each channel.

Several statements, like CHANGE MASTER TO, START SLAVE or STOP SLAVE. accept a parameter which specifies

which replication channel they should affect. For example, to stop a channel called wp1 :

STOP SLAVE "wp1";

Furthermore, variables that affect parallel replication can be prefixed with a channel name. This allow one to only use

parallel replication for certain channels, or to tune it differently for each channel. For example, to enable parallel replication

on a channel called wp1 :

SET GLOBAL wp1.slave_parallel_threads = 4;

Dual Primary

It is possible to configure two servers in a way that each of them acts as a primary for the other server.

In this way, data could theoretically be inserted into any of these servers, and will then be replicated to the other server.

However, in such a configuration conflicts are very likely. So it is impractical to use this technique to scale writes.

A dual primary (or primary-primary) configuration however can be useful for failover. In this case we talk about an active

primary that receives reads and writes from the clients, and a passive primary that is not used until the active primary

crashes.

Several problems should be considered in this scenario:

If the active primary crashes, it is very possible that the passive primary did not receive all events yet, because

replication is asynchronous. If the primary data are lost (for example because the disk is damaged), some data are

also lost.

If data is not lost, when we bring the primary up again, the latest events will be replicated by the other server. There

could be conflicts that will break replication.
1928/4161

When is the active primary considered down? Even if a server cannot reach it, the active primary could be running

and it could be able to communicate with the passive primary. Switching the clients to the passive primary could lead

to unnecessary problems. It is a good idea to always check SHOW SLAVE STATUS to be sure that the two primary are

not communicating.

If we want to have more replicas, we should attach some of them to the active primary, and some of them to the

passive primary. The reason is that when a server crashes, its replicas stop receiving any data. Failover is still

possible, but it's better to have some servers that will not need any failover.

A safe primary-primary configuration where both servers accept writes, however, is possible. This is the case is data never

conflicts. For example, the two servers could accept writes on different databases. We will have to decide what should

happens in case of a server crash:

Writes can be stopped until the server is up again. Reads can be sent to the other server, but keep in mind that the

most recently written data could be missing.

Both writes and reads can failover to the other server. All the problems mentioned above may apply to this situation.

See Sveta Smirnova's slides at MariaDB Day 2020: "How Safe is Asynchronous Master-Master Setup? ".

Semi-Synchronous Replication
Semi-synchronous replication was initially implemented as a plugin, in MySQL. Two different plugins needed to be used,

one on the primary and the other on the replicas. Starting from MariaDB 10.3.3 it is built-in, which improved its

performance.

The problem with standard replication is that there is no guarantee that it will not lag, even by long amounts of time. Semi-

synchronous replication reduces this problem, at the cost of reducing the speed of the primary.

In semi-synchronous replication, when a transaction is committed on the primary, the primary does not immediately return

control to the client. Instead, it sends the event to the replicas. After one replica reported that the commit was executed with

success, the primary reports success to the client.

Semi-synchronous replication is useful for failover, therefore a dual primary setup is not needed in this case. If the primary

crashes, the most up-to-date replica can be promoted to primary without losing any data.

Enabling Semi-Synchronous Replication

Semi-synchronous replication can be enabled at runtime in this way on the primary:

SET GLOBAL rpl_semi_sync_master_enabled = ON;

Semi-synchronous replication is not used until it has been enabled on the replicas also. If the replicas are already

replicating, the io_thread needs to be stopped and restarted. This can be done as follows:

SET GLOBAL rpl_semi_sync_slave_enabled = ON;

STOP SLAVE IO_THREAD;

START SLAVE IO_THREAD;

Tuning the Wait Point and the Primary Timeout

The most important aspects to tune are the wait point and the primary timeout.

When the binary log is enabled, transactions must be committed both in the storage engine (usually InnoDB) and in the

binary log. Semi-synchronous replication requires that the transaction is also acknowledged by at least one replica before

the primary can report success to the client.

The wait point determines at which point the primary must stop and wait for a confirmation from a replica. This is an

important decision from disaster recovery standpoint, in case the primary crashes when a transaction is not fully committed.

The rpl_semi_sync_master_wait_point is used to set the wait point, Its allowed values are:

AFTER_SYNC : After committing the transaction in the binary log, but before committing it to the storage engine. After

a crash, a transaction may be present in the binary log even if it was not committed.

AFTER_COMMIT . After committing a transaction both in the binary log and in the storage engine. In case of a crash, a

transaction could possibly be committed in the primary but not replicated in the slaves. This is the default.

Primary timeout is meant to avoid that a primary remains stuck for a long time, or virtually forever, because no replica

acknowledges a transaction. If primary timeout is reached, the primary switches to asynchronous replication. Before doing

that, the primary writes an error in the error log and increments the Rpl_semi_sync_master_no_times status variable.

The timeout is set via the rpl_semi_sync_master_timeout variable.

1929/4161

https://www.slideshare.net/SvetaSmirnova/how-safe-is-asynchronous-mastermaster-setup
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Galera Cluster
Galera is a technology that implements virtually synchronous, primary-primary replication for a cluster of MariaDB servers.

Raft and the Primary Cluster

Nodes of the cluster communicate using the Raft protocol. In case the cluster is partitioned or some nodes crash, a cluster

knows that it's still the primary cluster if it has the quorum: half of the nodes + 1. Only the primary cluster accepts reads and

writes.

For this reason a cluster should consist of an odd number of nodes. Imagine for example that a cluster consists of two

nodes: if one of them crashes of the connection between them is interrupted, there will be no primary cluster.

Transaction Certification

A transaction can be executed against any node. The node will use a 2-phase commit. After running the transaction locally,

the node will ask other nodes to certify it. This means that other nodes will receive it, and will try to apply it, and will report

success or a failure. The node that received the transaction will not wait for an answer from all the nodes. Once it

succeeded on more than half of the nodes (the quorum) the node will run the final commit and data becomes visible.

It is desirable to write data on only one node (unless it fails), or write different databases on different nodes. This will

minimize the risk of conflicts.

Galera Cache and SST

Data changes applied are recorded for some time in the Galera cache. This is an on-disk cache, written in a circularly

written file.

The size of Galera cache can be tuned using the wsrep_provider_options system variable, which contains many flags. We

need to tune gcache.size. To tune it, add a line similar to the following to a configuration file:

wsrep_provider_options = 'gcache.size=2G';

If a single transaction is bigger than half of the Galera cache, it needs to be written in a separate file, as on-demand pages.

On-demand pages are regularly replaced. Whether a new page replaces an old one depends on another

wsrep_provider_options flag: wsrep_provider_options#gcachekeep_pages_size|gcache.keep_pages_size , which

limits the total size of on-demand pages.

When a node is restarted (after a crash or for maintenance reasons), it will need to receive all the changes that were written

by other nodes since the moment it was unreachable. A node is therefore chosen as a donor, possibly using the

gcssync_donor wsrep_provider_options flag.

If possible, the donor will send all the recent changes, reading them from the Galera cache and on-demand pages.

However, sometimes the Galera cache is not big enough to contain all the needed changes, or the on-demand pages have

been overwritten because gcache.keep_pages_size is not big enough. In these cases, a State Snapshot Transfer (SST)

needs to be sent. This means that the donor will send the whole dataset to the restarted node. Most commonly, this

happens using the mariabackup method.

Flow Control

While transaction certification is synchronous, certified transactions are applied locally in asynchronous fashion. However, a

node should never lag too much behind others. To avoid that, a node may occasionally trigger a mechanism called flow

control to ask other nodes to stop replication until its situation improves. Several wsrep_provider_options flags affect flow

control.

gcs.fc_master_slave should normally be set to 1 if all writes are sent to a single node.

gcs.fc_limit is tuned automatically, unless gcs.fc_master_slave is set to 0. The receive queue (the transactions received and

not yet applied) should not exceed this limit. When this happens, flow control is triggered by the node to pause other node's

replication.

Once flow control is activated, gcs.fc_factor determines when it is released. It is a number from 0 to 1, and it represents a

fraction. When the receive queue is below this fraction, the flow control is released.

Flow control and the receive queue can and should be monitored. The most useful metrics are:

wsrep_flow_control_paused indicates how many times the replication has been paused as requested by other nodes,

since the last FLUSH STATUS .

wsrep_flow_control_sent indicates how many times this node requested other nodes to pause replication.

1930/4161

wsrep_local_recv_queue is the size of the receive queue.

Configuration

Galera is implemented as a plugin. Starting from version 10.1, MariaDB comes with Galera pre-installed, but not in use by

default. To enable it one has to set the wsrep_on system variable.

Like asynchronous replication, Galera uses the binary log. It also requires that data changes are logged in the ROW format.

For other required settings, see Mandatory Options.

Galera Limitations
Galera is not suitable for all databases and workloads.

Galera only replicates InnoDB tables. Other storage engines should not be used.

For performance reasons, it is highly desirable that all tables have a primary key.

Long transactions will damage performance.

Some applications use an integer AUTO_INCREMENT primary key. In case of failover from a crashed node to

another, Galera does not guarantee that AUTO_INCREMENT follows a chronological order. Therere, applications

should use TIMESTAMP columns for chronological order instead.

2.1.14.2.13 Moving Data Between SQL Server
and MariaDB

Contents
1. Moving Data Definition from SQL Server to MariaDB

1. Variables That Affect DDL Statements

2. Dumps and sys.sql_modules

3. CSV Data

2. Moving Data from MariaDB to SQL Server

1. Using a Dump (Structure)

2. Using a Dump (Data)

3. Using a CSV File

4. Using CONNECT Tables

5. Linked Server

There are several ways to move data between SQL Server and MariaDB. Here we will discuss them and we will highlight

some caveats.

Moving Data Definition from SQL Server to MariaDB
To copy SQL Server data structures to MariaDB, one has to:

1. Generate a CSV file from SQL Server data.

2. Modify the syntax so that it works in MariaDB.

3. Run the file in MariaDB.

Variables That Affect DDL Statements

DDL statements are affected by some server system variables.

sql_mode determines the behavior of some SQL statements and expressions, including how strict error checking is, and

some details regarding the syntax. Objects like stored procedures, stored functions triggers and views, are always executed

with the sql_mode that was in effect during their creation. sql_mode='MSSQL' can be used to have MariaDB behaving as

close to SQL Server as possible.

innodb_strict_mode enables the so-called InnoDB strict mode. Normally some errors in the CREATE TABLE options are

ignored. When InnoDB strict mode is enabled, the creation of InnoDB tables will fail with an error when certain mistakes are

made.

updatable_views_with_limit determines whether view updates can be made with an UPDATE or DELETE statement with a

LIMIT clause if the view does not contain all primary or not null unique key columns from the underlying table.

Dumps and sys.sql_modules
1931/4161

SQL Server Management Studio allows one to create a working SQL script to recreate a database - something that

MariaDB users refer to as a dump. Several options allow fine-tuning the generated syntax. It could be necessary to adjust

some of these options to make the output compatible with MariaDB. It is possible to export schemas, data or both. One can

create a single global file, or one file for each exported object. Normally, producing a single file is more practical.

Alternatively, the sp_helptext() procedure returns information about how to recreate a certain object. Similar information is

also present in the sql_modules table (definition column), in the sys schema. Such information, however, is not a

ready-to-use set of SQL statements.

Remember however that MariaDB does not support schemas. An SQL Server schema is approximately a MariaDB

database.

To execute a dump, we can pass the file to mariadb, the MariaDB command-line client.

Provided that a dump file contains syntax that is valid in MariaDB, it can be executed in this way:

mariadb --show-warnings < dump.sql

--show-warnings tells MariaDB to output any warnings produced by the statements contained in the dump. Without this

option, warnings will not appear on screen. Warnings don't stop the dump execution.

Errors will appear on screen. Errors will stop the dump execution, unless the --force option (or just -f) is specified.

For other mariadb options, see mariadb Command-line Client Options.

Another way to achieve the same purpose is to start the mariadb client in interactive mode first, and then run the source

command. For example:

root@d5a54a082d1b:/# mariadb -uroot -psecret

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 22

Server version: 10.4.7-MariaDB-1:10.4.7+maria~bionic mariadb.org binary distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> \W

Show warnings enabled.

MariaDB [(none)]> source dump.sql

In this case, to show warnings we used the \W command, where "w" is uppercase. To hide warnings (which is the default),

we can use \w (lowercase).

For other mariadb commands, see mariadb Commands.

CSV Data

If the table structures are already in MariaDB, we need only to import table data. While this can still be done as explained

above, it may be more practical to export CSV files from SQL Server and import them into MariaDB.

SQL Server Management Studio and several other Microsoft tools allow one to export CSV files.

MariaDB allows importing CSV files with the LOAD DATA INFILE statement, which is essentially the MariaDB equivalent of

BULK INSERT .

It can happen that we don't want to import the whole data, but some filtered or transformed version of it. In that case, we

may prefer to use the CONNECT storage engine to access CSV files and query them. The results of a query can be

inserted into a table using INSERT SELECT.

Moving Data from MariaDB to SQL Server
There are several ways to move data from MariaDB to SQL Server:

If the tables don't exist at all in SQL Server, we need to generate a dump first. The dump can include data or not.

If the tables are already in SQL Server, we can use CSV files instead of dumps to move the rows. CSV files are the

most concise format to move data between different technologies.

With the tables already in SQL Server, another way to move data is to insert the rows into CONNECT tables that

"point" to remote SQL Server tables.

1932/4161

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-helptext-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-sql-modules-transact-sql

Using a Dump (Structure)

mariadb-dump can be used to generate dumps of all databases, a specified database, or a set of tables. It is even possible

to only dump a set of rows by specifying the WHERE clause.

By specifying the --no-data option we can dump the table structures without data.

--compatible=mssql will produce an output that should be usable in SQL Server.

Using a Dump (Data)

mariadb-dump by default produces an output with both data and structure.

--no-create-info can be used to skip the CREATE TABLE statements.

--compatible=mssql will produce an output that should be usable in SQL Server.

--single-transaction should be specified to select the source data in a single transaction, so that a consistent dump is

produced.

--quick speeds up the dump process when dumping big tables.

Using a CSV File

CSV files can also be used to export data to SQL Server. There are several ways to produce CSV files from MariaDB:

The SELECT INTO OUTFILE statement.

The CONNECT storage engine, with the CSV table type.

The CSV storage engine (note that it doesn't support NULL and indexes).

Using CONNECT Tables

The CONNECT storage engine allows one to access external data, in many forms:

Data files (CSV, JSON, XML, HTML and more).

Remote databases, using the ODBC or JDBC standards, or MariaDB/MySQL native protocol.

Some special data sources.

CONNECT was mentioned previously because it could allow one to read a CSV file and query it in SQL, filtering and

transforming the data that we want to move into regular MariaDB tables.

However, CONNECT can also access remote SQL Server tables. We can read data from it, or even write data.

To enable CONNECT to work with SQL Server, we need to fulfill these requirements:

Install the ODBC driver, downloadable form Microsoft website. The driver is also available for Linux and MacOS.

Install unixODBC .

Install CONNECT (unless it is already installed).

Here is an example of a CONNECT table that points to a SQL Server table:

CREATE TABLE city (

 id INT PRIMARY KEY,

 city_name VARCHAR(100),

 province_id INT NOT NULL

)

 ENGINE=CONNECT,

 TABLE_TYPE=ODBC,

 TABNAME='city'

 CONNECTION='Driver=SQL Server Native Client 13.0;Server=sql-server-

hostname;Database=world;UID=mariadb_connect;PWD=secret';

The key points here are:

ENGINE=CONNECT tells MariaDB that we want to create a CONNECT table.

TABLE_TYPE must be 'ODBC', so CONNECT knows what type of data source it has to use.

CONNECTION is the connection string to use, including server address, username and password.

TABNAME tells CONNECT what the remote table is called. The local name could be different.

CONNECT is able to query SQL Server to find out the remote table structure. We can use this feature to avoid specifying the

column names and types:

1933/4161

https://microsoft.com/
http://www.unixodbc.org/

CREATE TABLE city

 ENGINE=CONNECT,

 TABLE_TYPE=ODBC,

 TABNAME='city'

 CONNECTION='Driver=SQL Server Native Client 13.0;Server=sql-server-

hostname;Database=world;UID=mariadb_connect;PWD=secret';

However, we may prefer to manually specify the MariaDB types, sizes and character sets to use.

Linked Server

Instead of using MariaDB CONNECT , it is possible to use SQL Server Linked Server functionality. This will allow one to read

data from a remote MariaDB database and copy it into local SQL Server tables. However, note that CONNECT allows more

control on types and character sets mapping.

Refer to Linked Servers section in Microsoft documentation.

2.1.14.2.14 SQL_MODE=MSSQL
Contents
1. Supported Syntax in MSSQL Mode

1. Using [] for Quoting

SET SQL_MODE=MSSQL implies all the following sql_mode flags:

PIPES_AS_CONCAT

ANSI_QUOTES

IGNORE_SPACE

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_FIELD_OPTIONS

Setting the sql_mode system variable to MSSQL allows the server to understand a small subset of Microsoft SQL Server's

language. For the moment MSSQL mode only has limited functionality, but we plan to add more later according to demand.

Supported Syntax in MSSQL Mode

Using [] for Quoting

One can use [] instead of "" or `` for quoting identifiers:

SET SQL_MODE="MSSQL";

CREATE TABLE [t 1] ([a b] INT);

SHOW CREATE TABLE [t 1];

Table Create Table

t 1 CREATE TABLE "t 1" (

 "a b" int(11) DEFAULT NULL

)

You can use '[' in identifiers. If you want to use ']' in identifiers you have to specify it twice.

2.1.14.3 Migrating to MariaDB from PostgreSQL
There are many different ways to migrate from PostgreSQL to MariaDB. This article will discuss some of those options.

1934/4161

https://docs.microsoft.com/en-us/sql/relational-databases/linked-servers/linked-servers-database-engine?view=sql-server-ver15
https://www.postgresql.org/

Contents
1. MariaDB's CONNECT Storage Engine

1. Tables with ODBC table_type

2. Tables with JDBC table_type

2. PostgreSQL's Foreign Data Wrappers

1. mysql_fdw

3. PostgreSQL's COPY TO

4. MySQL Workbench

5. Known Issues

1. Migrating Functions and Procedures

MariaDB's CONNECT Storage Engine
MariaDB's CONNECT storage engine can be used to migrate from PostgreSQL to MariaDB. There are two primary ways

that this can be done.

See Loading the CONNECT Storage Engine for information on how to install the CONNECT storage engine.

Tables with ODBC table_type

The CONNECT storage engine allows you to create tables that refer to tables on an external server, and it can fetch the

data using a compatible ODBC driver. PostgreSQL does have a freely available ODBC driver called psqlODBC .

Therefore, if you install psqlODBC on the MariaDB Server, and then configure the system's ODBC framework (such as

unixODBC), then the MariaDB server will be able to connect to the remote PostgreSQL server. At that point, you can

create tables with the ENGINE=CONNECT and table_type=ODBC table options set, so that you can access the PostgreSQL

tables from MariaDB.

See CONNECT ODBC Table Type: Accessing Tables From Another DBMS for more information on how to do that.

Once the remote table is setup, you can migrate the data to local tables very simply. For example:

CREATE TABLE psql_tab (

 id int,

 str varchar(50)

) ENGINE = CONNECT

table_type=ODBC

tabname='tab'

connection='DSN=psql_server';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE = InnoDB;

INSERT INTO tab SELECT * FROM psql_tab;

Tables with JDBC table_type

The CONNECT storage engine allows you to create tables that refer to tables on an external server, and it can fetch the

data using a compatible JDBC driver. PostgreSQL does have a freely available JDBC driver . If you install this JDBC

driver on the MariaDB server, then the MariaDB server will be able to connect to the remote PostgreSQL server via JDBC.

At that point, you can create tables with the ENGINE=CONNECT and table_type=JDBC table options set, so that you can

access the PostgreSQL tables from MariaDB.

See CONNECT JDBC Table Type: Accessing Tables from Another DBMS for more information on how to do that.

Once the remote table is setup, you can migrate the data to local tables very simply. For example:

1935/4161

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://odbc.postgresql.org/
http://www.unixodbc.org/
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://jdbc.postgresql.org/

CREATE TABLE psql_tab (

 id int,

 str varchar(50)

) ENGINE = CONNECT

table_type=JDBC

tabname='tab'

connection='jdbc:postgresql://psql_server/db1';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE = InnoDB;

INSERT INTO tab SELECT * FROM psql_tab;

PostgreSQL's Foreign Data Wrappers
PostgreSQL's foreign data wrappers can also be used to migrate from PostgreSQL to MariaDB.

mysql_fdw

mysql_fdw allows you to create a table in PostgreSQL that actual refers to a remote MySQL or MariaDB server. Since

MySQL and MariaDB are compatible at the protocol level, this should also support MariaDB.

The foreign data wrapper also supports writes, so you should be able to write to the remote MariaDB table to migrate your

PostgreSQL data. For example:

CREATE TABLE tab (

 id int,

 str text

);

INSERT INTO tab VALUES (1, 'str1');

CREATE SERVER mariadb_server

 FOREIGN DATA WRAPPER mysql_fdw

 OPTIONS (host '10.1.1.101', port '3306');

CREATE USER MAPPING FOR postgres

 SERVER mariadb_server

 OPTIONS (username 'foo', password 'bar');

CREATE FOREIGN TABLE mariadb_tab (

 id int,

 str text

)

SERVER mariadb_server

OPTIONS (dbname 'db1', table_name 'tab');

INSERT INTO mariadb_tab SELECT * FROM tab;

PostgreSQL's COPY TO
PostgreSQL's COPY TO allows you to copy the data from a PostgreSQL table to a text file. This data can then be

loaded into MariaDB with LOAD DATA INFILE .

MySQL Workbench
MySQL Workbench has a migration feature that requires an ODBC driver. PostgreSQL does have a freely available

ODBC driver called psqlODBC .

See Set up and configure PostgreSQL ODBC drivers for the MySQL Workbench Migration Wizard for more information.

Known Issues

Migrating Functions and Procedures
1936/4161

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://github.com/EnterpriseDB/mysql_fdw
https://www.postgresql.org/docs/current/sql-copy.html
https://www.mysql.com/products/workbench/migrate/
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://odbc.postgresql.org/
http://mysqlworkbench.org/2012/11/set-up-and-configure-postgresql-odbc-drivers-for-the-mysql-workbench-migration-wizard/

PostgreSQL's functions and procedures use a language called PL/pgSQL . This language is quite different than

the default SQL/PSM language used for MariaDB's stored procedures. PL/pgSQL is more similar to PL/PSQL from Oracle,

so you may find it beneficial to try migrate with SQL_MODE=ORACLE set.

2.1.14.3.1 SQL_MODE=ORACLE
From MariaDB 10.3, setting the sql_mode system variable to Oracle allows the server to understand a subset of Oracle's

PL/SQL language. For example:

SET SQL_MODE='ORACLE';

All traditional MariaDB SQL/PSM syntax should work as before, as long as it does not conflict with Oracle's PL/SQL syntax.

All MariaDB functions should be supported in both normal and Oracle modes.

Prior to MariaDB 10.3, MariaDB does not support Oracle's PL/SQL language, and SET SQL_MODE=ORACLE is only an alias

for the following sql_mode in those versions:

SET SQL_MODE='PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,

NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER';

From MariaDB 10.3, SET SQL_MODE=ORACLE is same as:

SET SQL_MODE='PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ORACLE,NO_KEY_OPTIONS,

NO_TABLE_OPTIONS,NO_FIELD_OPTIONS,NO_AUTO_CREATE_USER,SIMULTANEOUS_ASSIGNMENT';

Contents
1. Supported Syntax in Oracle Mode

1. Stored Procedures and Stored Functions

2. Cursors

3. LOOP

4. Variables

5. Exceptions

6. BEGIN Blocks

7. Simple Syntax Compatibility

8. Functions

9. Prepared Statements

10. Synonyms for Basic SQL Types

11. Packages

12. NULL Handling

1. NULL As a Statement

2. Translating Empty String Literals to NULL

3. Concat Operator Ignores NULL

13. Reserved Words

14. SHOW CREATE TABLE

Supported Syntax in Oracle Mode

Stored Procedures and Stored Functions

Oracle mode makes the following changes to Stored Procedures and Stored Functions:

Oracle syntax Description

CREATE PROCEDURE p1 (param

OUT INT)
ANSI uses (OUT param INT)

CREATE PROCEDURE p1 (a IN

OUT INT)
ANSI uses (INOUT param INT)

AS before function body CREATE FUNCTION f1 RETURN NUMBER AS BEGIN...

IS before function body CREATE FUNCTION f1 RETURN NUMBER IS BEGIN...

If function has no parameters then

parentheses must be omitted
Example: CREATE PROCEDURE p1 AS BEGIN NULL; END;

1937/4161

https://www.postgresql.org/docs/current/sql-createfunction.html
https://www.postgresql.org/docs/11/sql-createprocedure.html
https://www.postgresql.org/docs/current/plpgsql.html

CREATE PROCEDURE p1 AS

BEGIN END p1 ;
Optional routine name after END keyword. MDEV-12089

CREATE FUNCTION f1(a VARCHAR)
VARCHAR can be used without length for routine parameters and RETURN clause. The

length is inherited from the argument at call time. MDEV-10596

CREATE AGGREGATE FUNCTION

f1()

Creates an aggregate function, which performs the function against a set of rows and

returns one aggregate result.

No CALL needed in Stored

Procedures
In Oracle mode one can call other stored procedures with name only. MDEV-12107

RETURN . Can also be used in stored

procedures
ANSI uses RETURNS . MariaDB mode only supports RETURNS in stored functions

Cursors

Oracle mode makes the following changes to Cursors:

Oracle syntax Description

CREATE PROCEDURE p1 AS CURSOR cur IS (SELECT a, b FROM t1); BEGIN

FOR rec IN cur ...
Explicit cursor with FOR loop. MDEV-10581

CREATE PROCEDURE p1 AS rec IN (SELECT a, b FROM t1) Implicit cursor with FOR loop. MDEV-12098

CURSOR c(prm_a VARCHAR2, prm_b VARCHAR2) ... OPEN c(1,2) Cursor with parameters. MDEV-10597

CURSOR c(prm_a VARCHAR2, prm_b VARCHAR2) ... FOR rec in c(1,2)
Cursor with parameters and FOR loop.

MDEV-12314

s %ISOPEN, %ROWCOUNT, %FOUND, %NOTFOUND Explicit cursor attributes. MDEV-10582

LOOP

Oracle mode makes the following changes to LOOP:

Oracle syntax Description

FOR i IN 1..10 LOOP ... END LOOP Numeric FOR loop. MDEV-10580

GOTO GOTO statement. MDEV-10697

<<label>> used with GOTO ANSI uses label: . MDEV-10697

To leave loop block: EXIT [label] [WHEN bool_expr]
ANSI syntax is IF bool_expr THEN LEAVE

label

[<<label>>] WHILE boolean_expression LOOP statement... END LOOP [label

] ;
Oracle style WHILE loop

CONTINUE [label] [WHEN boolean_expression] CONTINUE is only valid inside a loop

Variables

Oracle syntax Version Description

var:= 10 ; Can also be used

with MariaDB systemvariables
10.3 MariaDB uses SET var= 10 ;

var INT := 10 10.3 Default variable value

var1

table_name.column_name%TYPE
10.3 Take data type from a table column. MDEV-10577

var2 var1%TYPE 10.3 Take data type from another variable

rec1 table_name%ROWTYPE 10.3 Take ROW structure from a table. MDEV-12133

rec2 rec1%ROWTYPE
10.3 Take ROW structure from ROW variable

CURSOR c1 IS SELECT a,b

FROM t1; rec1 c1%ROWTYPE;
10.3 Take ROW structure from a cursor. MDEV-12011

Variables can be declared after

cursor declarations
10.3 In MariaDB mode, variables must be declared before cursors. MDEV-10598

Triggers uses :NEW and :OLD 10.3 ANSI uses NEW and OLD . MDEV-10579

1938/4161

https://jira.mariadb.org/browse/MDEV-12089
https://jira.mariadb.org/browse/MDEV-10596
https://jira.mariadb.org/browse/MDEV-12107
https://jira.mariadb.org/browse/MDEV-10581
https://jira.mariadb.org/browse/MDEV-12098
https://jira.mariadb.org/browse/MDEV-10597
https://jira.mariadb.org/browse/MDEV-12314
https://jira.mariadb.org/browse/MDEV-10582
https://jira.mariadb.org/browse/MDEV-10580
https://jira.mariadb.org/browse/MDEV-10697
https://jira.mariadb.org/browse/MDEV-10697
https://jira.mariadb.org/browse/MDEV-10577
https://jira.mariadb.org/browse/MDEV-12133
https://jira.mariadb.org/browse/MDEV-12011
https://jira.mariadb.org/browse/MDEV-10598
https://jira.mariadb.org/browse/MDEV-10579

SQLCODE 10.3
Returns the number code of the most recent exception. Can only be used in Stored

Procedures. MDEV-10578

SQLERRM 10.3
Returns the error message associdated to it's error number argument or SQLCODE if

no argument is given. Can only be used in Stored Procedures. MDEV-10578

SQL%ROWCOUNT 10.3 Almost same as ROW_COUNT(). MDEV-10583

ROWNUM 10.6.1 Returns number of accepted rows

Exceptions

Oracle syntax Description

BEGIN ... EXCEPTION WHEN OTHERS THEN BEGIN .. END;

END;
Exception handlers are declared at the end of a block

TOO_MANY_ROWS, NO_DATA_FOUND, DUP_VAL_ON_INDEX Predefined exceptions. MDEV-10839

RAISE TOO_MANY_ROWS ; EXCEPTION WHEN

TOO_MANY_ROWS THEN ...

Exception can be used with RAISE and

EXCEPTION...WHEN. MDEV-10840

CREATE OR REPLACE FUNCTION f1 (a INT) RETURN INT AS

e1 EXCEPTION ...
User defined exceptions. MDEV-10587

BEGIN Blocks

Oracle syntax Description

BEGIN to start a block
MariaDB uses BEGIN NOT ATOMIC for anyonymous blocks. MDEV-

10655

DECLARE is used before BEGIN DECLARE a INT; b VARCHAR(10); BEGIN v:= 10; END;

WHEN DUP_VAL_ON_INDEX THEN NULL ; NULL;

WHEN OTHERS THEN NULL

Do not require BEGIN..END in multi-statement exception handlers in

THEN clause. MDEV-12088

Simple Syntax Compatibility

Oracle syntax Version Description

ELSIF 10.3 ANSI uses ELSEIF

SELECT UNIQUE 10.3 Same as SELECT DISTINCT . MDEV-12086

TRUNCATE TABLE t1 [DROP STORAGE] or

[REUSE STORAGE]
10.3

DROP STORAGE and REUSE STORAGE are allowed as optional

keywords for TRUNCATE TABLE. MDEV-10588

Subqueries in a FROM clause without an

alias
10.6 SELECT * FROM (SELECT 1 FROM DUAL), (SELECT 2 FROM DUAL)

UNION, EXCEPT and INTERSECT all have

the same precedence.
10.3

INTERSECT has higher precedence than UNION and EXCEPT in non-

Oracle modes.

MINUS 10.6 MINUS is a synonym for EXCEPT.

Functions

Oracle syntax Version Description

ADD_MONTHS() 10.6.1 Added as a wrapper for DATE_ADD() to enhance Oracle compatibility. All modes.

CAST(expr as

VARCHAR(N))
10.3 Cast expression to a VARCHAR(N) . MDEV-11275

DECODE 10.3 In Oracle mode, compares and matches search expressions

LENGTH() is same as

CHAR_LENGTH()
10.3

MariaDB translates LENGTH() to OCTET_LENGTH(). In all modes one can use LENGTHB()

as a synonym to OCTET_LENGTH()

CHR(num) 10.3
Returns a VARCHAR(1) with character set and collation according to

@@character_set_database and @@collation_database

substr('abc',0 ,3)

same as

substr('abc', 1 ,3)

10.3 Position 0 for substr() is same as position 1

1939/4161

https://jira.mariadb.org/browse/MDEV-10578
https://jira.mariadb.org/browse/MDEV-10578
https://jira.mariadb.org/browse/MDEV-10583
https://jira.mariadb.org/browse/MDEV-10839
https://jira.mariadb.org/browse/MDEV-10840
https://jira.mariadb.org/browse/MDEV-10587
https://jira.mariadb.org/browse/MDEV-10655
https://jira.mariadb.org/browse/MDEV-12088
https://jira.mariadb.org/browse/MDEV-12086
https://jira.mariadb.org/browse/MDEV-10588
https://jira.mariadb.org/browse/MDEV-11275

SYS_GUID 10.6.1 Generates a globally unique identifier. Similar to UUID but without the - . All modes.

TO_CHAR 10.6.1 Added to enhance Oracle compatibility. All modes.

TRIM, LTRIM, RTRIM,

LPAD and RPAD
10.3

Returns NULL instead of an empty string if returning an empty result. These functions can also

be accessed outside of ORACLE mode by suffixing _ORACLE onto the end of the function

name, such as TRIM_ORACLE.

Prepared Statements

Oracle mode makes the following changes to Prepared Statements:

Oracle syntax Description

PREPARE stmt FROM 'SELECT :1 , :2 ' ANSI uses ? . MDEV-10801

EXECUTE IMMEDIATE 'INSERT INTO t1 SELECT (:x,:y) FROM DUAL' USING 10,20 Dynamic placeholders. MDEV-10801

Synonyms for Basic SQL Types

Oracle type MariaDB synonym

VARCHAR2 VARCHAR

NUMBER DECIMAL

DATE (with time portion) MariaDB DATETIME

RAW VARBINARY

CLOB LONGTEXT

BLOB LONGBLOB

This was implemented as part of MDEV-10343 .

If one does a SHOW CREATE TABLE in ORACLE mode on a table that has a native MariaDB DATE column, it will be

displayed as mariadb_schema.date to not conflict with the Oracle DATE type.

Packages

The following syntax has been supported since MariaDB 10.3.5 :

CREATE PACKAGE

CREATE PACKAGE BODY

DROP PACKAGE

DROP PACKAGE BODY

SHOW CREATE PACKAGE

SHOW CREATE PACKAGE BODY

NULL Handling

Oracle mode makes the following changes to NULL handling:

NULL As a Statement

NULL can be used as a statement:

IF a=10 THEN NULL; ELSE NULL; END IF

Translating Empty String Literals to NULL

In Oracle, empty string ('') and NULL are the same thing,

By using sql_mode=EMPTY_STRING_IS_NULL you can get a similar experience in MariaDB:

SET sql_mode=EMPTY_STRING_IS_NULL;

SELECT '' IS NULL; -- returns TRUE

INSERT INTO t1 VALUES (''); -- inserts NULL

Concat Operator Ignores NULL
1940/4161

https://jira.mariadb.org/browse/MDEV-10801
https://jira.mariadb.org/browse/MDEV-10801
https://jira.mariadb.org/browse/MDEV-10343
https://mariadb.com/kb/en/mariadb-1035-release-notes/

CONCAT() and || ignore NULL in Oracle mode. Can also be accessed outside of ORACLE mode by using

CONCAT_OPERATOR_ORACLE. MDEV-11880 and MDEV-12143 .

Reserved Words

There are a number of extra reserved words in Oracle mode.

SHOW CREATE TABLE

The SHOW CREATE TABLE statement will not display MariaDB-specific table options, such as AUTO_INCREMENT or

CHARSET, when Oracle mode is set.

2.1.14.4 Installing MariaDB on IBM Cloud
Contents
1. Step 1 provision Kubernetes Cluster

2. Step 2 deploy IBM Cloud Block Storage plug-in

3. Step 3 deploy MariaDB

4. Verify MariaDB installation

Get MariaDB on IBM Cloud

You should have an IBM Cloud account, otherwise you can register here . At the end of the tutorial you will have a cluster

with MariaDB up and running. IBM Cloud uses Bitnami charts to deploy MariaDB on with helm

1. We will provision a new Kubernetes Cluster for you if, you already have one skip to step 2

2. We will deploy the IBM Cloud Block Storage plug-in, if already have it skip to step 3

3. MariaDB deployment

Step 1 provision Kubernetes Cluster
Click the Catalog button on the top

Select Service from the catalog

Search for Kubernetes Service and click on it

You are now at the Kubernetes deployment page, you need to specify some details about the cluster

Choose a plan standard or free, the free plan only has one worker node and no subnet, to provision a standard

1941/4161

https://jira.mariadb.org/browse/MDEV-11880
https://jira.mariadb.org/browse/MDEV-12143
https://cloud.ibm.com/registration

cluster, you will need to upgrade you account to Pay-As-You-Go

To upgrade to a Pay-As-You-Go account, complete the following steps:

In the console, go to Manage > Account.

Select Account settings, and click Add credit card.

Enter your payment information, click Next, and submit your information

Choose classic or VPC, read the docs and choose the most suitable type for yourself

Now choose your location settings, for more information please visit Locations

Choose Geography (continent)

Choose Single or Multizone, in single zone your data is only kept in on datacenter, on the other hand with Multizone

it is distributed to multiple zones, thus safer in an unforseen zone failure

Choose a Worker Zone if using Single zones or Metro if Multizone

If you wish to use Multizone please set up your account with VRF or enable Vlan spanning

If at your current location selection, there is no available Virtual LAN, a new Vlan will be created for you

1942/4161

https://cloud.ibm.com/docs/containers?topic=containers-infrastructure_providers
https://cloud.ibm.com/docs/containers?topic=containers-regions-and-zones#zones
https://cloud.ibm.com/docs/dl?topic=dl-overview-of-virtual-routing-and-forwarding-vrf-on-ibm-cloud
https://cloud.ibm.com/docs/vlans?topic=vlans-vlan-spanning#vlan-spanning

Choose a Worker node setup or use the preselected one, set Worker node amount per zone

Choose Master Service Endpoint, In VRF-enabled accounts, you can choose private-only to make your master

accessible on the private network or via VPN tunnel. Choose public-only to make your master publicly accessible.

When you have a VRF-enabled account, your cluster is set up by default to use both private and public endpoints.

For more information visit endpoints .

Give cluster a name

Give desired tags to your cluster, for more information visit tags

Click create

1943/4161

https://cloud.ibm.com/docs/account?topic=account-service-endpoints-overview
https://cloud.ibm.com/docs/account?topic=account-tag

Wait for you cluster to be provisioned

Your cluster is ready for usage

Step 2 deploy IBM Cloud Block Storage plug-in
The Block Storage plug-in is a persistent, high-performance iSCSI storage that you can add to your apps by using

Kubernetes Persistent Volumes (PVs).

Click the Catalog button on the top

Select Software from the catalog

Search for IBM Cloud Block Storage plug-in and click on it

1944/4161

On the application page Click in the dot next to the cluster, you wish to use

Click on Enter or Select Namespace and choose the default Namespace or use a custom one (if you get error

please wait 30 minutes for the cluster to finalize)

Give a name to this workspace

Click install and wait for the deployment

1945/4161

Step 3 deploy MariaDB
We will deploy MariaDB on our cluster

Click the Catalog button on the top

Select Software from the catalog

Search for MariaDB and click on it

Please select IBM Kubernetes Service

On the application page Click in the dot next to the cluster, you wish to use

1946/4161

Click on Enter or Select Namespace and choose the default Namespace or use a custom one

Give a unique name to workspace, which you can easily recognize

1947/4161

Select which resource group you want to use, it's for access controll and billing purposes. For more information

please visit resource groups

Give tags to your MariaDB, for more information visit tags

Click on Parameters with default values, You can set deployment values or use the default ones

Please set the MariaDB root password in the parameters

1948/4161

https://cloud.ibm.com/docs/account?topic=account-account_setup#bp_resourcegroups
https://cloud.ibm.com/docs/account?topic=account-tag

After finishing everything, tick the box next to the agreements and click install

The MariaDB workspace will start installing, wait a couple of minutes

Your MariaDB workspace has been successfully deployed

Verify MariaDB installation
Go to Resources in your browser

Click on Clusters

Click on your Cluster

Now you are at you clusters overview, here Click on Actions and Web terminal from the dropdown menu

1949/4161

http://cloud.ibm.com/resources

Click install - wait couple of minutes

Click on Actions

Click Web terminal --> a terminal will open up

Type in the terminal, please change NAMESPACE to the namespace you choose at the deployment setup:

$ kubectl get ns

$ kubectl get pod -n NAMESPACE -o wide

$ kubectl get service -n NAMESPACE

Enter your pod with bash , please replace PODNAME with your mariadb pod's name

$ kubectl exec --stdin --tty PODNAME -n NAMESPACE -- /bin/bash

1950/4161

After you are in your pod please enter enter Mariadb and enter your root password after the prompt

$ mysql -u root -p

You have succesfully deployed MariaDB IBM Cloud!

2.1.6.3 mysqld Configuration Files and Groups

2.2 User & Server Security
Securing MariaDB

Securing your MariaDB installation

User Account Management

Administering user accounts in MariaDB

There are 4 related questions .

2.2.1 Securing MariaDB

This section is about securing your MariaDB installation. If you are looking for the list of security vulnerabilities fixed in

MariaDB, see Security Vulnerabilities Fixed in MariaDB .

There are a number of issues to consider when looking at improving the security of your MariaDB installation. These include:

Encryption

MariaDB supports encryption for data while at rest and while in transit.

Running mysqld as root

MariaDB should never normally be run as root

mysql_secure_installation

Symlink or old name for mariadb-secure-installation.

SecuRich

Library of security-related stored procedures.

SELinux

Security-Enhanced Linux (SELinux) is a Linux kernel module that provides a ...

There are 4 related questions .

8

2.2.1.1 Encryption

1951/4161

https://mariadb.com/kb/en/user-server-security/+questions/
https://mariadb.com/kb/en/cve/
https://mariadb.com/kb/en/securich/
https://mariadb.com/kb/en/securing-mariadb/+questions/

Data-in-Transit Encryption

Data can be encrypted in transit using the Transport Layer Security (TLS) protocol.

Data-at-Rest Encryption

MariaDB supports the use of data-at-rest encryption for tables and tablespa...

TLS and Cryptography Libraries Used by MariaDB

MariaDB supports several different TLS and cryptography libraries.

There are 3 related questions .

1

2.2.1.1.1 Data-in-Transit Encryption
Data can be encrypted in transit using the Transport Layer Security (TLS) protocol.

Secure Connections Overview

Data can be encrypted in transit using the TLS protocol.

Certificate Creation with OpenSSL

How to generate a self-signed certificate in OpenSSL.

Securing Connections for Client and Server

Enabling TLS encryption in transit on both the client and server.

Replication with Secure Connections

Enabling TLS encryption in transit for MariaDB replication.

Securing Communications in Galera Cluster

Enabling TLS encryption in transit for Galera Cluster.

SSL/TLS System Variables

List and description of Transport Layer Security (TLS)-related system variables.

SSL/TLS Status Variables

List and description of Transport Layer Security (TLS)-related status variables.

Using TLSv1.3

TLSv1.3 is a major rewrite of the protocol.

There are 6 related questions .

2

1

6

5

2

2.2.1.1.1.1 Secure Connections Overview

1952/4161

https://mariadb.com/kb/en/encryption-data-at-rest-encryption/
https://mariadb.com/kb/en/securing-mariadb-encryption/+questions/
https://mariadb.com/kb/en/data-in-transit-encryption/+questions/

Contents
1. Checking MariaDB Server for TLS Support

2. TLS Libraries

3. TLS Protocol Versions

1. Enabling Specific TLS Protocol Versions

2. TLS Protocol Version Support

1. TLS Protocol Version Support in OpenSSL

2. TLS Protocol Version Support in wolfSSL

3. TLS Protocol Version Support in yaSSL

4. TLS Protocol Version Support in Schannel

5. TLS Protocol Version Support in GnuTLS

4. Enabling TLS

5. Certificate Verification

1. Certificate Authorities (CAs)

1. Requiring a Specific Certificate Authority (CA)

2. Certificate Revocation Lists (CRLs)

3. Server Certificate Verification

1. Server Certificate Verification with Subject Alternative Names (SANs)

1. SAN Support with OpenSSL, wolfSSL, and yaSSL

2. SAN Support with Schannel

3. SAN Support with GnuTLS

4. Client Certificate Verification

By default, MariaDB transmits data between the server and clients without encrypting it. This is generally acceptable when

the server and client run on the same host or in networks where security is guaranteed through other means. However, in

cases where the server and client exist on separate networks or they are in a high-risk network, the lack of encryption does

introduce security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network

between them.

To mitigate this concern, MariaDB allows you to encrypt data in transit between the server and clients using the Transport

Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the SSL

protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still uses

the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix ssl_ ,

but internally, MariaDB only supports its secure successors.

Checking MariaDB Server for TLS Support
In order for MariaDB Server to use TLS, it needs to be compiled with TLS support. All MariaDB packages distributed by

MariaDB Foundation and MariaDB Corporation are compiled with TLS support.

If you aren't sure whether your MariaDB Server binary was compiled with TLS support, then you can check the value of the

have_ssl system variable. For example:

SHOW GLOBAL VARIABLES LIKE 'have_ssl';

+---------------+----------+

| Variable_name | Value |

+---------------+----------+

| have_ssl | DISABLED |

+---------------+----------+

The possible values are:

If it is DISABLED , then the server was compiled with TLS support, but TLS is not enabled.

If it is YES , then the server was compiled with TLS support, and TLS is enabled.

If it is NO , then the server was not compiled with TLS support.

TLS Libraries
When MariaDB is compiled with TLS and cryptography support, it is usually either statically linked with MariaDB's bundled

TLS and cryptography library, which might be wolfSSL or yaSSL , or dynamically linked with the system's TLS and

cryptography library, which might be OpenSSL , GnuTLS , or Schannel .

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on which

platforms.

TLS Protocol Versions
1953/4161

https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://www.gnutls.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel

There are 4 versions of the TLS protocol:

TLSv1.0

TLSv1.1

TLSv1.2

TLSv1.3

Enabling Specific TLS Protocol Versions

The tls_version system variable was first introduced in MariaDB 10.4.6.

In some cases, it might make sense to only enable specific TLS protocol versions. For example, it would make sense if your

organization has to comply with a specific security standard. It would also make sense if a vulnerability is found in a specific

TLS protocol version, and you would like to ensure that your server does not use the vulnerable protocol version.

The PCI DSS v3.2 recommends using a minimum protocol version of TLSv1.2.

On the server side, users can enable specific TLS protocol versions by setting the tls_version system variable. This

system variable accepts a comma-separated list of TLS protocol versions. A TLS protocol version will only be enabled if it is

present in this list. All other TLS protocol versions will not be permitted. This system variable can be specified as a

command-line argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

tls_version = TLSv1.2,TLSv1.3

You can check which TLS protocol versions are enabled on a server by executing SHOW GLOBAL VARIABLES . For

example:

SHOW GLOBAL VARIABLES LIKE 'tls_version';

On the client side, users can enable specific TLS protocol versions by setting the --tls-version option. This option

accepts a comma-separated list of TLS protocol versions. A TLS protocol version will only be enabled if it is present in this

list. All other TLS protocol versions will not be permitted. For example, to specify this option in a relevant client option group

in an option file, you could set the following:

[client-mariadb]

...

tls_version = TLSv1.2,TLSv1.3

Or if you wanted to specify it on the command-line with the mariadb client, then you could execute something like this:

$ mariadb -u myuser -p -h myserver.mydomain.com \

 --ssl \

 --tls-version="TLSv1.2,TLSv1.3"

TLS Protocol Version Support

The TLS protocol versions that are supported depend on the underlying TLS library used by the specific MariaDB binary.

TLS Library Supported TLS Protocol Versions

openSSL TLSv1, TLSv1.1, TLSv1.2, TLSv1.3

wolfSSL TLSv1, TLSv1.1, TLSv1.2, TLSv1.3

yaSSL TLSv1, TLSv1.1

Schannel TLSv1, TLSv1.1, TLSv1.2

GnuTLS TLSv1, TLSv1.1, TLSv1.2, TLSv1.3

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used by the server

and by clients on each platform.

MariaDB starting with 10.4

1954/4161

https://blog.pcisecuritystandards.org/resource-guide-migrating-from-ssl-and-early-tls

TLS Protocol Version Support in OpenSSL

MariaDB binaries built with the OpenSSL library (OpenSSL 1.0.1 or later) support TLSv1.1 and TLSv1.2 since MariaDB

5.5.41 , MariaDB 10.0.15 , and MariaDB 10.1.4 .

MariaDB binaries built with the OpenSSL library (OpenSSL 1.1.1 or later) support TLSv1.3 since MariaDB 10.2.16

and MariaDB 10.3.8 .

If your MariaDB Server binary is built with OpenSSL , then you can set the ssl_cipher system variable to values like

SSLv3 or TLSv1.2 to allow all SSLv3.0 or all TLSv1.2 ciphers. However, this does not necessarily limit the protocol

version to TLSv1.2. See MDEV-14101 for more information about that.

Note that the TLSv1.3 ciphers cannot be excluded when using OpenSSL , even by using the ssl_cipher system

variable. See Using TLSv1.3 for details.

SSLv3.0 is known to be vulnerable to the POODLE attack , so it should not be used. SSLv2.0 and SSLv3.0 are

disabled for MariaDB Server binaries linked with OpenSSL since MariaDB 5.5.41 , MariaDB 10.0.15 , and

MariaDB 10.1.4 . If you are using a MariaDB version older than that and you cannot upgrade, then please see the

section titled "SSL 3.0 Fallback protection" in OpenSSL Security Advisory - 15 Oct 2014 .

TLS Protocol Version Support in wolfSSL

MariaDB binaries built with the bundled wolfSSL library support TLSv1.0, TLSv1.1, TLSv1.2, and TLSv1.3.

TLS Protocol Version Support in yaSSL

MariaDB binaries built with the bundled yaSSL library support SSLv3.0, TLSv1.0, and TLSv1.1.

SSLv3.0 is known to be vulnerable to the POODLE attack , so it should not be used. SSLv2.0 and SSLv3.0 are

disabled for MariaDB Server binaries linked with yaSSL since MariaDB 5.5.41 , MariaDB 10.0.15 , and MariaDB

10.1.4 .

TLS Protocol Version Support in Schannel

MariaDB binaries built with the Schannel library support different versions of TLS on different versions of Windows. See

the Protocols in TLS/SSL (Schannel SSP) documentation from Microsoft to determine which versions of TLS are

supported on each version of Windows.

TLS Protocol Version Support in GnuTLS

MariaDB binaries built with the GnuTLS library support TLSv1.0, TLSv1.1, TLSv1.2, and TLSv1.3.

Enabling TLS
See Securing Connections for Client and Server for information on how to enable TLS on the client and server.

Certificate Verification
Certificate verification is how TLS authenticates its connections by verifying that it is talking to who it says it is. There are

multiple components to this verification process:

Was the certificate signed by a trusted Certificate Authority (CA)?

Is the certificate expired?

Is the certificate on my Certificate Revocation List (CRL)?

Does the certificate belong to who I believe that I'm communicating with?

Certificate Authorities (CAs)

Certificate Authorities (CAs) are entities that you trust to sign TLS certificates. Your organization might have its own internal

CA, or it might use trusted third-party CAs.

CAs are specified on the server and client by using the ssl_ca and ssl_capath options.

The ssl_ca option defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate

Authorities (CAs). This option requires that you use the absolute path, not a relative path.

1955/4161

https://www.openssl.org/
https://www.openssl.org/news/changelog.html
https://mariadb.com/kb/en/mariadb-5541-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://www.openssl.org/
https://www.openssl.org/news/changelog.html
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://www.openssl.org/
https://jira.mariadb.org/browse/MDEV-14101
https://www.openssl.org/
https://en.wikipedia.org/wiki/POODLE
https://www.openssl.org/
https://mariadb.com/kb/en/mariadb-5541-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://www.openssl.org/news/secadv/20141015.txt
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://en.wikipedia.org/wiki/POODLE
https://www.wolfssl.com/products/yassl/
https://mariadb.com/kb/en/mariadb-5541-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://docs.microsoft.com/en-us/windows/desktop/secauthn/protocols-in-tls-ssl--schannel-ssp-
https://www.gnutls.org/

The ssl_capath option defines a path to a directory that contains one or more PEM files that should each contain one

X509 certificate for a trusted Certificate Authority (CA). This option requires that you use the absolute path, not a relative

path. The ssl_capath option is only supported if the server or client was built with OpenSSL , wolfSSL , or yaSSL . If

the client was built with GnuTLS or Schannel , then the ssl_capath option is not supported.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on which

platforms.

The directory specified by ssl_capath needs to be run through the openssl rehash command. For example, if

the following is configured:

ssl_capath=/etc/my.cnf.d/certificates/ca/

Then you would have to execute the following:

openssl rehash /etc/my.cnf.d/certificates/ca/

Requiring a Specific Certificate Authority (CA)

The server can require a specific Certificate Authority (CA) for a client if the client's user account has been defined with

REQUIRE ISSUER . See Securing Connections for Client and Server: Requiring TLS for more information.

Certificate Revocation Lists (CRLs)

Certificate Revocation Lists (CRLs) are lists of certificates that have been revoked by the Certificate Authority (CA) before

they were due to expire.

CRLs are specified on the server and client by using the ssl_crl and ssl_crlpath options.

The ssl_crl option defines a path to a PEM file that should contain one or more X509 revoked certificates. This option

requires that you use the absolute path, not a relative path. For servers, the ssl_crl option is only valid if the server was

built with OpenSSL. If the server was built with wolfSSL or yaSSL , then the ssl_crl option is not supported. For

clients, the ssl_crl option is only valid if the client was built with OpenSSL or Schannel . Likewise, if the client was

built with GnuTLS , wolfSSL or yaSSL , then the ssl_crl option is not supported.

The ssl_crlpath option defines a path to a directory that contains one or more PEM files that should each contain one

revoked X509 certificate. This option requires that you use the absolute path, not a relative path. The ssl_crlpath option

is only supported if the server or client was built with OpenSSL . If the server was built with wolfSSL or yaSSL , then

the ssl_crlpath option is not supported. Likewise, if the client was built with GnuTLS , Schannel , wolfSSL , or

yaSSL , then the ssl_crlpath option is not supported.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on which

platforms.

The directory specified by ssl_crlpath needs to be run through the openssl rehash command. For example, if

the following is configured:

ssl_crlpath=/etc/my.cnf.d/certificates/crl/

Then you would have to execute the following:

openssl rehash /etc/my.cnf.d/certificates/crl/

Server Certificate Verification

Clients and utilities verify a server certificate by checking the server's host name and IP address against certain attributes in

the certificate. For most clients and utilities, server certificate verification is disabled by default, and it is only enabled if an

option, such as ssl-verify-server-cert is specified.

To verify the server's certificate, clients and utilities will check the Common Name (CN) attribute located in the Subject

field of the certificate against the server's host name and IP address. If the Common Name (CN) matches either of those,

then the certificate is verified.

Server Certificate Verification with Subject Alternative Names (SANs)

The Subject Alternative Name (SAN) field, which is an X.509v3 extension, can also be used for server certificate

verification, if it is present in the server certificate. This field is also sometimes called subjectAltName. When using a client

1956/4161

https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.gnutls.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://www.gnutls.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.gnutls.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://tools.ietf.org/html/rfc5280#section-4.1.2.6
https://tools.ietf.org/html/rfc5280#section-4.2.1.6

or utility that supports server certificate verification with subjectAltName fields, if the server certificate contains any

subjectAltName fields, then those fields will also be checked against the server's host name and IP address.

Whether server certificate verification with subjectAltName fields is supported depends on the underlying TLS library used

by the client or utility.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on which

platforms.

SAN Support with OpenSSL, wolfSSL, and yaSSL

For clients and utilities built with OpenSSL (OpenSSL 1.0.2 or later), support for server certificate verification with

subjectAltName fields that contain the server's host name was added in MariaDB 10.1.23 and MariaDB 10.2.6 . See

MDEV-10594 for more information.

For clients and utilities built with OpenSSL (OpenSSL 1.0.2 or later), support for server certificate verification with

subjectAltName fields that contain the server's IP address was added in MariaDB 10.1.39 , MariaDB 10.2.24 , MariaDB

10.3.15 , and MariaDB 10.4.5. See MDEV-18131 for more information.

This support also applies to other TLS libraries that use OpenSSL's API. In OpenSSL's API, server certificate verification

with subjectAltName fields depends on the X509_check_host and X509_check_ip functions. These

functions are supported in the following TLS libraries:

OpenSSL 1.0.2 or later

wolfSSL

And they are not supported in the following TLS libraries:

yaSSL

MariaDB's RPM packages were built with OpenSSL 1.0.1 on RHEL 7 and CentOS 7, even after OpenSSL 1.0.2

became available on those distributions. As a side effect, the clients and utilities bundled in these packages did not

support server certificate verification with the subjectAltName field, even if the packages were installed on a system

that had OpenSSL 1.0.2 installed. Starting with MariaDB MariaDB 10.1.39 , MariaDB 10.2.23 , MariaDB 10.3.14 ,

and MariaDB 10.4.4, MariaDB's RPM packages on RHEL 7 and CentOS 7 are built with OpenSSL 1.0.2. See MDEV-

18277 for more information.

SAN Support with Schannel

For clients and utilities linked with Schannel , support for server certificate verification with subjectAltName fields was

added in MariaDB Connector/C 3.0.2. See CONC-250 for more information.

SAN Support with GnuTLS

For clients and utilities linked with GnuTLS, support for server certificate verification with subjectAltName fields was added

in MariaDB Connector/C 3.0.0. See CONC-250 for more information.

Client Certificate Verification

The server verifies a client certificate by checking the client's known SUBJECT against the Subject attribute in the client's

certificate. This is only done for user accounts that have been defined with REQUIRE SUBJECT . See Securing Connections

for Client and Server: Requiring TLS for more information.

2.2.1.1.1.2 Certificate Creation with OpenSSL
Contents
1. Certificate Creation

1. Creating a Certificate Authority Private Key and Certificate

2. Creating a Private Key and a Self-signed Certificate

2. Certificate Verification

Warning: the instructions below generate version 1 certificates only. These work fine with servers and clients using

OpenSSL, but fail if WolfSSL is used instead, as is the case for our Windows MSI packages and our binary tarballs for

Linux.

WolfSSL requires version 3 certificates instead when using TLS v1.2 or higher, and so won't work with certificates

generated as shown here when using two-way TLS with explicit client certificates.

Generating version 3 certificates requires a few more minor steps, we will upgrade the instructions below soon to

1957/4161

https://www.openssl.org/
https://www.openssl.org/news/changelog.html
https://mariadb.com/kb/en/mariadb-10123-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://jira.mariadb.org/browse/MDEV-10594
https://www.openssl.org/
https://www.openssl.org/news/changelog.html
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://jira.mariadb.org/browse/MDEV-18131
https://www.openssl.org/docs/man1.1.1/man3/X509_check_host.html
https://www.openssl.org/docs/man1.1.1/man3/X509_check_host.html
https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://jira.mariadb.org/browse/MDEV-18277
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://mariadb.com/kb/en/mariadb-connector-c/
https://jira.mariadb.org/browse/CONC-250
https://mariadb.com/kb/en/mariadb-connector-c/
https://jira.mariadb.org/browse/CONC-250

include these.

See also: MDEV-25701

In order to secure communications with the MariaDB Server using TLS, you need to create a private key and an X509

certificate for the server. You may also want to create additional private keys and X509 certificates for any clients that need

to connect to the server with TLS. This guide covers how to create a private key and a self-signed X509 certificate with

OpenSSL.

Certificate Creation
The OpenSSL library provides a command-line tool called openssl , which can be used for performing various

tasks with the library, such as generating private keys, creating X509 certificate requests, signing X509 certificates as a

Certificate Authority (CA), and verifying X509 certificates.

Creating a Certificate Authority Private Key and Certificate

The Certificate Authority (CA) is typically an organization (such as Let's Encrypt) that signs the X509 certificate and

validates ownership of the domain. However, when you would like to use self-signed certificates, you need to create the

private key and certificate for the CA yourself, and then you can use them to sign your own X509 certificates.

To start, generate a private key for the CA using the openssl genrsa command. For example:

openssl genrsa 2048 > ca-key.pem

After that, you can use the private key to generate the X509 certificate for the CA using the openssl req command.

For example:

openssl req -new -x509 -nodes -days 365000 \

 -key ca-key.pem -out ca.pem

The above commands create two files in the working directory: The ca-key.pem private key and the ca.pem X509

certificate are both are used by the CA to create self-signed X509 certificates below.

Creating a Private Key and a Self-signed Certificate

Once you have the CA's private key and X509 certificate, you can create the self-signed X509 certificates to use for the

MariaDB Server, client, replication and other purposes.

To start, generate a private key and create a certificate request using the openssl req command. For example:

openssl req -newkey rsa:2048 -days 365000 \

 -nodes -keyout server-key.pem -out server-req.pem

After that, process the key to remove the passphrase using the openssl rsa command. For example:

openssl rsa -in server-key.pem -out server-key.pem

Lastly, using the certificate request and the CA's private key and X509 certificate, you can generate a self-signed X509

certificate from the certificate request using the openssl x509 command. For example:

openssl x509 -req -in server-req.pem -days 365000 \

 -CA ca.pem -CAkey ca-key.pem -set_serial 01 \

 -out server-cert.pem

This creates a server-cert.pem file, which is the self-signed X509 certificate.

Certificate Verification
Once you have created the CA's X509 certificate and a self-signed X509 certificate, you can verify that the X509 certificate

was correctly generated using the openssl verify command. For example:

1958/4161

https://jira.mariadb.org/browse/MDEV-25701
https://www.openssl.org/
https://www.openssl.org/docs/man1.1.1/man1/openssl.html
https://letsencrypt.org/
https://www.openssl.org/docs/man1.1.1/man1/genrsa.html
https://www.openssl.org/docs/man1.1.1/man1/req.html
https://www.openssl.org/docs/man1.1.1/man1/req.html
https://www.openssl.org/docs/man1.1.1/man1/rsa.html
https://www.openssl.org/docs/man1.1.1/man1/x509.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-verify.html

openssl verify -CAfile ca.pem server-cert.pem

server-cert.pem: OK

You can add as many X509 certificates to check against the CA's X509 certificate as you want to verify. A value of OK

indicates that you can use it was correctly generated and is ready for use with MariaDB.

2.2.1.1.1.3 Securing Connections for Client and
Server

Contents
1. Enabling TLS

1. Enabling TLS for MariaDB Server

1. Reloading the Server's Certificates and Keys Dynamically

2. Enabling TLS for MariaDB Clients

1. Enabling Two-Way TLS for MariaDB Clients

2. Enabling One-Way TLS for MariaDB Clients

1. Enabling One-Way TLS for MariaDB Clients with Server Certificate Verification

2. Enabling One-Way TLS for MariaDB Clients without Server Certificate Verification

3. Enabling TLS for MariaDB Connector/C Clients

4. Enabling TLS for MariaDB Connector/ODBC Clients

5. Enabling TLS for MariaDB Connector/J Clients

2. Verifying that a Connection is Using TLS

3. Requiring TLS

1. Requiring TLS for Specific User Accounts

2. Requiring TLS for Specific User Accounts from Specific Hosts

By default, MariaDB transmits data between the server and clients without encrypting it. This is generally acceptable when

the server and client run on the same host or in networks where security is guaranteed through other means. However, in

cases where the server and client exist on separate networks or they are in a high-risk network, the lack of encryption does

introduce security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network

between them.

To mitigate this concern, MariaDB allows you to encrypt data in transit between the server and clients using the Transport

Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the SSL

protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still uses

the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix ssl_ ,

but internally, MariaDB only supports its secure successors.

In order to secure connections between the server and client, you need to ensure that your server was compiled with TLS

support. See Secure Connections Overview to determine how to check whether a server was compiled with TLS support.

You also need an X509 certificate, a private key, and the Certificate Authority (CA) chain to verify the X509 certificate for the

server. If you want to use two-way TLS, then you will also need an X509 certificate, a private key, and the Certificate

Authority (CA) chain to verify the X509 certificate for the client. If you want to use self-signed certificates that are created

with OpenSSL, then see Certificate Creation with OpenSSL for information on how to create those.

Enabling TLS

Enabling TLS for MariaDB Server

In order to enable TLS on a MariaDB server that was compiled with TLS support, there are a number of system variables

that you need to set, such as:

You need to set the path to the server's X509 certificate by setting the ssl_cert system variable.

You need to set the path to the server's private key by setting the ssl_key system variable.

You need to set the path to the certificate authority (CA) chain that can verify the server's certificate by setting either

the ssl_ca or the ssl_capath system variables.

If you want to restrict the server to certain ciphers, then you also need to set the ssl_cipher system variable.

For example, to set these variables for the server, add the system variables to a relevant server option group in an option

file:

1959/4161

[mariadb]

...

ssl_cert = /etc/my.cnf.d/certificates/server-cert.pem

ssl_key = /etc/my.cnf.d/certificates/server-key.pem

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

And then restart the server to make the changes persistent.

Once the server is back up, you can check that TLS is enabled by checking the value of the have_ssl system variable. For

example:

SHOW VARIABLES LIKE 'have_ssl';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| have_ssl | YES |

+---------------+-------+

Reloading the Server's Certificates and Keys Dynamically

The FLUSH SSL command was first added in MariaDB 10.4.

In MariaDB 10.4 and later, the FLUSH SSL command can be used to dynamically reinitialize the server's TLS context.

See FLUSH SSL for more information.

Enabling TLS for MariaDB Clients

Different clients and utilities may use different methods to enable TLS.

For many of the standard clients and utilities that come bundled with MariaDB, you can enable two-way TLS by adding the

same options that were set for the server to a relevant client option group in an option file. For example:

[client-mariadb]

...

ssl_cert = /etc/my.cnf.d/certificates/client-cert.pem

ssl_key = /etc/my.cnf.d/certificates/client-key.pem

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

The specific options that you would need to set would depend on whether you want one-way TLS or two-way TLS, and

whether you want to verify the server certificate.

The same options may also enable TLS on non-standard clients and utilities that are linked with either libmysqlclient or

MariaDB Connector/C .

Enabling Two-Way TLS for MariaDB Clients

Two-way TLS means that both the client and server provide a private key and an X509 certificate. It is called "two-way" TLS

because both the client and server can be authenticated. For example, to specify these options in a relevant client option

group in an option file, you could set the following:

[client-mariadb]

...

ssl_cert = /etc/my.cnf.d/certificates/client-cert.pem

ssl_key = /etc/my.cnf.d/certificates/client-key.pem

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

ssl-verify-server-cert

Or if you wanted to specify them on the command-line with the mariadb client, then you could execute something like this:

$ mariadb -u myuser -p -h myserver.mydomain.com \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-verify-server-cert

MariaDB starting with 10.4

1960/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://mariadb.com/kb/en/mariadb-connector-c/

Two-way SSL is required for an account if the REQUIRE X509 , REQUIRE SUBJECT , and/or REQUIRE ISSUER clauses are

specified for the account.

Enabling One-Way TLS for MariaDB Clients

Enabling One-Way TLS for MariaDB Clients with Server Certificate Verification

One-way TLS means that only the server provides a private key and an X509 certificate. When TLS is used without a client

certificate, it is called "one-way" TLS, because only the server can be authenticated, so authentication is only possible in

one direction. However, encryption is still possible in both directions. Server certificate verification means that the client

verifies that the certificate belongs to the server. For example, to specify these options in a a relevant client option group in

an option file, you could set the following:

[client-mariadb]

...

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

ssl-verify-server-cert

Or if you wanted to specify them on the command-line with the mariadb client, then you could execute something like this:

$ mariadb -u myuser -p -h myserver.mydomain.com \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-verify-server-cert

Enabling One-Way TLS for MariaDB Clients without Server Certificate Verification

One-way TLS means that only the server provides a private key and an X509 certificate. When TLS is used without a client

certificate, it is called "one-way" TLS, because only the server can be authenticated, so authentication is only possible in

one direction. However, encryption is still possible in both directions. For example, to specify these options in a a relevant

client option group in an option file, you could set the following:

[client-mariadb]

...

ssl

Or if you wanted to specify them on the command-line with the mariadb client, then you could execute something like this:

$ mariadb -u myuser -p -h myserver.mydomain.com \

 --ssl

Enabling TLS for MariaDB Connector/C Clients

See the documentation on MariaDB Connector/C's TLS Options for information on how to enable TLS for clients that use

MariaDB Connector/C.

Enabling TLS for MariaDB Connector/ODBC Clients

See the documentation on MariaDB Connector/ODBC's TLS-Related Connection Parameters for information on how to

enable TLS for clients that use MariaDB Connector/ODBC.

Enabling TLS for MariaDB Connector/J Clients

See the documentation on Using TLS/SSL with MariaDB Connector/J for information on how to enable TLS for clients that

use MariaDB Connector/J.

Verifying that a Connection is Using TLS
You can verify that a connection is using TLS by checking the connection's Ssl_cipher status variable. If it is non-empty,

then the connection is using TLS. For example:

1961/4161

https://mariadb.com/kb/en/mysql_optionsv/#tlsssl-options
https://mariadb.com/kb/en/about-mariadb-connector-odbc/#tls-related-connection-parameters
https://mariadb.com/kb/en/using-tls-ssl-with-mariadb-java-connector/
https://mariadb.com/kb/en/library/ssltls-status-variables/#ssl_cipher

SHOW SESSION STATUS LIKE 'Ssl_cipher';

+---------------+---------------------------+

| Variable_name | Value |

+---------------+---------------------------+

| Ssl_cipher | DHE-RSA-AES256-GCM-SHA384 |

+---------------+---------------------------+

1 row in set (0.00 sec)

Requiring TLS
From MariaDB 10.5.2, the require_secure_transport system variable is available. When set (by default it is off), connections

attempted using insecure transport will be rejected. Secure transports are SSL/TLS, Unix sockets or named pipes. Note that

requirements set for specific user accounts will take precedence over this setting.

Requiring TLS for Specific User Accounts

You can set certain TLS-related restrictions for specific user accounts. For instance, you might use this with user accounts

that require access to sensitive data while sending it across networks that you do not control. These restrictions can be

enabled for a user account with the CREATE USER, ALTER USER, or GRANT statements. For example:

A user account must connect via TLS if the user account is defined with the REQUIRE SSL clause.

ALTER USER 'alice'@'%'

 REQUIRE SSL;

A user account must connect via TLS with a specific cipher if the user account is defined with the REQUIRE CIPHER

clause.

ALTER USER 'alice'@'%'

 REQUIRE CIPHER 'ECDH-RSA-AES256-SHA384';

A user account must connect via TLS with a valid client certificate if the user account is defined with the REQUIRE

X509 clause.

ALTER USER 'alice'@'%'

 REQUIRE X509;

A user account must connect via TLS with a specific client certificate if the user account is defined with the REQUIRE

SUBJECT clause.

ALTER USER 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland';

A user account must connect via TLS with a client certificate that must be signed by a specific certificate authority if

the user account is defined with the REQUIRE ISSUER clause.

ALTER USER 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland'

 AND ISSUER '/C=FI/ST=Somewhere/L=City/ O=Some Company/CN=Peter

Parker/emailAddress=p.parker@marvel.com';

Requiring TLS for Specific User Accounts from Specific Hosts

A user account can have different definitions depending on what host the user account is logging in from. Therefore, it is

possible to have different TLS requirements for the same username for different hosts. For example:

CREATE USER 'alice'@'localhost'

 REQUIRE NONE;

CREATE USER 'alice'@'%'

 REQUIRE SUBJECT '/CN=alice/O=My Dom, Inc./C=US/ST=Oregon/L=Portland'

 AND ISSUER '/C=FI/ST=Somewhere/L=City/ O=Some Company/CN=Peter

Parker/emailAddress=p.parker@marvel.com'

 AND CIPHER 'ECDHE-ECDSA-AES256-SHA384';

1962/4161

In the above example, the alice user account does not require TLS when logging in from localhost. However, when the

alice user account logs in from any other host, they must use TLS with the given cipher, and they must provide a valid

client certificate with the given subject that must have been signed by the given issuer.

2.2.1.1.1.4 Replication with Secure Connections

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Securing Replication Traffic

1. Executing CHANGE MASTER

1. Enabling Two-Way TLS with CHANGE MASTER

2. Enabling One-Way TLS with CHANGE MASTER

1. Enabling One-Way TLS with CHANGE MASTER with Server Certificate Verification

2. Enabling One-Way TLS with CHANGE MASTER without Server Certificate Verification

2. Setting TLS Client Options in an Option File

By default, MariaDB replicates data between primaries and replicas without encrypting it. This is generally acceptable when

the primary and replica run are in networks where security is guaranteed through other means. However, in cases where the

primary and replica exist on separate networks or they are in a high-risk network, the lack of encryption does introduce

security concerns as a malicious actor could potentially eavesdrop on the traffic as it is sent over the network between them.

To mitigate this concern, MariaDB allows you to encrypt replicated data in transit between primaries and replicas using the

Transport Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly speaking the

SSL protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The documentation still

uses the term SSL often and for compatibility reasons TLS-related server system and status variables still use the prefix

ssl_ , but internally, MariaDB only supports its secure successors.

In order to secure connections between the primary and replica, you need to ensure that both servers were compiled with

TLS support. See Secure Connections Overview to determine how to check whether a server was compiled with TLS

support.

You also need an X509 certificate, a private key, and the Certificate Authority (CA) chain to verify the X509 certificate for the

primary. If you want to use two-way TLS, then you will also an X509 certificate, a private key, and the Certificate Authority

(CA) chain to verify the X509 certificate for the replica. If you want to use self-signed certificates that are created with

OpenSSL, then see Certificate Creation with OpenSSL for information on how to create those.

Securing Replication Traffic
In order to secure replication traffic, you will need to ensure that TLS is enabled on the primary. If you want to use two-way

TLS, then you will also need to ensure that TLS is enabled on the replica. See Securing Connections for Client and Server

for information on how to do that.

For example, to set the TLS system variables for each server, add them to a relevant server option group in an option file

on each server:

[mariadb]

...

ssl_cert = /etc/my.cnf.d/certificates/server-cert.pem

ssl_key = /etc/my.cnf.d/certificates/server-key.pem

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

And then restart the server to make the changes persistent.

At this point, you can reconfigure the replicas to use TLS to encrypt replicated data in transit. There are two methods

available to do this:

Executing the CHANGE MASTER statement to set the relevant TLS options.

Setting TLS client options in an option file.

Executing CHANGE MASTER

TLS can be enabled on a replication replica by executing the CHANGE MASTER statement. In order to do so, there are a

number of options that you would need to set. The specific options that you would need to set would depend on whether you

1963/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

want one-way TLS or two-way TLS, and whether you want to verify the server certificate.

Enabling Two-Way TLS with CHANGE MASTER

Two-way TLS means that both the client and server provide a private key and an X509 certificate. It is called "two-way" TLS

because both the client and server can be authenticated. In this case, the "client" is the replica. To configure two-way TLS,

you would need to set the following options:

You need to set the path to the server's certificate by setting the MASTER_SSL_CERT option.

You need to set the path to the server's private key by setting the MASTER_SSL_KEY option.

You need to set the path to the certificate authority (CA) chain that can verify the server's certificate by setting either

the MASTER_SSL_CA or the MASTER_SSL_CAPATH options.

If you want server certificate verification, then you also need to set the MASTER_SSL_VERIFY_SERVER_CERT option

(enabled by default from MariaDB 11.3).

If you want to restrict the server to certain ciphers, then you also need to set the MASTER_SSL_CIPHER option.

If the replica threads are currently running, you first need to stop them by executing the STOP SLAVE statement. For

example:

STOP SLAVE;

Then, execute the CHANGE MASTER statement to configure the replica to use TLS. For example:

CHANGE MASTER TO

 MASTER_SSL_CERT = '/path/to/client-cert.pem',

 MASTER_SSL_KEY = '/path/to/client-key.pem',

 MASTER_SSL_CA = '/path/to/ca/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

At this point, you can start replication by executing the START SLAVE statement. For example:

START SLAVE;

The replica now uses TLS to encrypt data in transit as it replicates it from the primary.

Enabling One-Way TLS with CHANGE MASTER

Enabling One-Way TLS with CHANGE MASTER with Server Certificate Verification

One-way TLS means that only the server provides a private key and an X509 certificate. When TLS is used without a client

certificate, it is called "one-way" TLS, because only the server can be authenticated, so authentication is only possible in

one direction. However, encryption is still possible in both directions. Server certificate verification means that the client

verifies that the certificate belongs to the server. In this case, the "client" is the replica. This mode is enabled by default

starting from MariaDB 11.3. To configure one-way TLS in earlier versions, you would need to set the following options:

You need to set the path to the certificate authority (CA) chain that can verify the server's certificate by setting either

the MASTER_SSL_CA or the MASTER_SSL_CAPATH options.

You need to set the MASTER_SSL_VERIFY_SERVER_CERT option.

If you want to restrict the server to certain ciphers, then you also need to set the MASTER_SSL_CIPHER option.

If the replica threads are currently running, you first need to stop them by executing the STOP SLAVE statement. For

example:

STOP SLAVE;

Then, execute the CHANGE MASTER statement to configure the replica to use TLS. For example:

CHANGE MASTER TO

 MASTER_SSL_CA = '/path/to/ca/ca.pem',

 MASTER_SSL_VERIFY_SERVER_CERT=1;

At this point, you can start replication by executing the START SLAVE statement. For example:

START SLAVE;

The replica now uses TLS to encrypt data in transit as it replicates it from the primary.

1964/4161

Enabling One-Way TLS with CHANGE MASTER without Server Certificate Verification

One-way TLS means that only the server provides a private key and an X509 certificate. When TLS is used without a client

certificate, it is called "one-way" TLS, because only the server can be authenticated, so authentication is only possible in

one direction. However, encryption is still possible in both directions. In this case, the "client" is the replica. To configure two-

way TLS without server certificate verification, you would need to set the following options:

You need to configure the replica to use TLS by setting the MASTER_SSL option.

If you want to restrict the server to certain ciphers, then you also need to set the MASTER_SSL_CIPHER option.

Starting from MariaDB 11.3 you need to disable the MASTER_SSL_VERIFY_SERVER_CERT option.

If the replica threads are currently running, you first need to stop them by executing the STOP SLAVE statement. For

example:

STOP SLAVE;

Then, execute the CHANGE MASTER statement to configure the replica to use TLS. For example:

CHANGE MASTER TO

 MASTER_SSL=1, MASTER_SSL_VERIFY_SERVER_CERT=0;

At this point, you can start replication by executing the START SLAVE statement. For example:

START SLAVE;

The replica now uses TLS to encrypt data in transit as it replicates it from the primary.

2.2.1.1.1.5 Securing Communications in Galera
Cluster

Contents
1. Securing Galera Cluster Replication Traffic

2. Securing State Snapshot Transfers

1. mariabackup

2. xtrabackup-v2

3. mysqldump

4. rsync

By default, Galera Cluster replicates data between each node without encrypting it. This is generally acceptable when the

cluster nodes runs on the same host or in networks where security is guaranteed through other means. However, in cases

where the cluster nodes exist on separate networks or they are in a high-risk network, the lack of encryption does introduce

security concerns as a malicious actor could potentially eavesdrop on the traffic or get a complete copy of the data by

triggering an SST.

To mitigate this concern, Galera Cluster allows you to encrypt data in transit as it is replicated between each cluster node

using the Transport Layer Security (TLS) protocol. TLS was formerly known as Secure Socket Layer (SSL), but strictly

speaking the SSL protocol is a predecessor to TLS and, that version of the protocol is now considered insecure. The

documentation still uses the term SSL often and for compatibility reasons TLS-related server system and status variables

still use the prefix ssl_ , but internally, MariaDB only supports its secure successors.

In order to secure connections between the cluster nodes, you need to ensure that all servers were compiled with TLS

support. See Secure Connections Overview to determine how to check whether a server was compiled with TLS support.

For each cluster node, you also need a certificate, private key, and the Certificate Authority (CA) chain to verify the

certificate. If you want to use self-signed certificates that are created with OpenSSL, then see Certificate Creation with

OpenSSL for information on how to create those.

Securing Galera Cluster Replication Traffic
In order to enable TLS for Galera Cluster's replication traffic, there are a number of wsrep_provider_options that you need

to set, such as:

You need to set the path to the server's certificate by setting the socket.ssl_cert wsrep_provider_option.

You need to set the path to the server's private key by setting the socket.ssl_key wsrep_provider_option.

You need to set the path to the certificate authority (CA) chain that can verify the server's certificate by setting the

socket.ssl_ca wsrep_provider_option.

1965/4161

If you want to restrict the server to certain ciphers, then you also need to set the socket.ssl_cipher

wsrep_provider_option.

It is also a good idea to set MariaDB Server's regular TLS-related system variables, so that TLS will be enabled for regular

client connections as well. See Securing Connections for Client and Server for information on how to do that.

For example, to set these variables for the server, add the system variables to a relevant server option group in an option

file:

[mariadb]

...

ssl_cert = /etc/my.cnf.d/certificates/server-cert.pem

ssl_key = /etc/my.cnf.d/certificates/server-key.pem

ssl_ca = /etc/my.cnf.d/certificates/ca.pem

wsrep_provider_options="socket.ssl_cert=/etc/my.cnf.d/certificates/server-

cert.pem;socket.ssl_key=/etc/my.cnf.d/certificates/server-

key.pem;socket.ssl_ca=/etc/my.cnf.d/certificates/ca.pem"

And then restart the server to make the changes persistent.

By setting both MariaDB Server's TLS-related system variables and Galera Cluster's TLS-related wsrep_provider_options,

the server can secure both external client connections and Galera Cluster's replication traffic.

Securing State Snapshot Transfers
The method that you would use to enable TLS for State Snapshot Transfers (SSTs) would depend on the value of

wsrep_sst_method .

mariabackup

See mariabackup SST Method: TLS for more information.

xtrabackup-v2

See xtrabackup-v2 SST Method: TLS for more information.

mysqldump

This SST method simply uses the mariadb-dump (previously mysqldump) utility, so TLS would be enabled by following the

guide at Securing Connections for Client and Server: Enabling TLS for MariaDB Clients

rsync

This SST method supports encryption in transit via stunnel . See Introduction to State Snapshot Transfers (SSTs):

rsync for more information.

2.2.1.1.1.6 SSL/TLS System Variables
Contents
1. Variables

1. have_openssl

2. have_ssl

3. ssl_ca

4. ssl_capath

5. ssl_cert

6. ssl_cipher

7. ssl_crl

8. ssl_crlpath

9. ssl_key

10. tls_version

11. version_ssl_library

The system variables listed on this page relate to encrypting data during transfer between servers and clients using the

Transport Layer Security (TLS) protocol. Often, the term Secure Sockets Layer (SSL) is used interchangeably with TLS,

although strictly speaking the SSL protocol is the predecessor of TLS and is no longer considered secure.

1966/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://www.stunnel.org/

For compatibility reasons, the TLS system variables in MariaDB still use the ssl_ prefix, but MariaDB only supports its

more secure successors. For more information on SSL/TLS in MariaDB, see Secure Connections Overview.

Variables

have_openssl

Description: This variable shows whether the server is linked with OpenSSL rather than MariaDB's bundled TLS

library, which might be wolfSSL or yaSSL .

In MariaDB 10.0.1 and later, if this system variable shows YES , then the server is linked with OpenSSL.

In MariaDB 10.0.0 and before, this system variable was an alias for the have_ssl system variable.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

Scope: Global

Dynamic: No

have_ssl

Description: This variable shows whether the server supports using TLS to secure connections.

If the value is YES , then the server supports TLS, and TLS is enabled.

If the value is DISABLED , then the server supports TLS, but TLS is not enabled.

If the value is NO , then the server was not compiled with TLS support, so TLS cannot be enabled.

When TLS is supported, check the have_openssl system variable to determine whether the server is using

OpenSSL or MariaDB's bundled TLS library. See TLS and Cryptography Libraries Used by MariaDB for more

information about which libraries are used on which platforms.

Scope: Global

Dynamic: No

ssl_ca

Description: Defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate

Authorities (CAs) to use for TLS. This system variable requires that you use the absolute path, not a relative path.

This system variable implies the ssl option.

See Secure Connections Overview: Certificate Authorities (CAs) for more information.

Commandline: --ssl-ca=file_name

Scope: Global

Dynamic: No

Data Type: file name

ssl_capath

Description: Defines a path to a directory that contains one or more PEM files that should each contain one X509

certificate for a trusted Certificate Authority (CA) to use for TLS. This system variable requires that you use the

absolute path, not a relative path. The directory specified by this variable needs to be run through the openssl

rehash command. This system variable implies the ssl option.

See Secure Connections Overview: Certificate Authorities (CAs) for more information.

Commandline: --ssl-capath=directory_name

Scope: Global

Dynamic: No

Data Type: directory name

ssl_cert

Description: Defines a path to the X509 certificate file to use for TLS. This system variable requires that you use the

absolute path, not a relative path. This system variable implies the ssl option.

Commandline: --ssl-cert=name

Scope: Global

Dynamic: No

Data Type: file name

Default Value: None

1967/4161

https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://www.openssl.org/docs/man1.1.1/man1/rehash.html

ssl_cipher

Description: List of permitted ciphers or cipher suites to use for TLS. Besides cipher names, if MariaDB was

compiled with OpenSSL, this variable could be set to "SSLv3" or "TLSv1.2" to allow all SSLv3 or all TLSv1.2 ciphers.

Note that the TLSv1.3 ciphers cannot be excluded when using OpenSSL, even by using this system variable. See

Using TLSv1.3 for details. This system variable implies the ssl option.

Commandline: --ssl-cipher=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: None

ssl_crl

Description: Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for TLS.

This system variable requires that you use the absolute path, not a relative path.

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This variable is only valid if the server was built with OpenSSL. If the server was built with wolfSSL or yaSSL

, then this variable is not supported. See TLS and Cryptography Libraries Used by MariaDB for more

information about which libraries are used on which platforms.

Commandline: --ssl-crl=name

Scope: Global

Dynamic: No

Data Type: file name

Default Value: None

ssl_crlpath

Description: Defines a path to a directory that contains one or more PEM files that should each contain one revoked

X509 certificate to use for TLS. This system variable requires that you use the absolute path, not a relative path. The

directory specified by this variable needs to be run through the openssl rehash command.

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This variable is only supported if the server was built with OpenSSL. If the server was built with wolfSSL or

yaSSL , then this variable is not supported. See TLS and Cryptography Libraries Used by MariaDB for more

information about which libraries are used on which platforms.

Commandline: --ssl-crlpath=name

Scope: Global

Dynamic: No

Data Type: directory name

Default Value: None

ssl_key

Description: Defines a path to a private key file to use for TLS. This system variable requires that you use the

absolute path, not a relative path. This system variable implies the ssl option.

Commandline: --ssl-key=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: None

tls_version

Description: This system variable accepts a comma-separated list (with no whitespaces) of TLS protocol versions. A

TLS protocol version will only be enabled if it is present in this list. All other TLS protocol versions will not be

permitted.

See Secure Connections Overview: TLS Protocol Versions for more information.

Commandline: --tls-version=value

Scope: Global

Dynamic: No

1968/4161

https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/docs/man1.1.1/man1/rehash.html
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/

Data Type: enumerated

Default Value: TLSv1.1,TLSv1.2,TLSv1.3

Valid Values: TLSv1.0,TLSv1.1,TLSv1.2,TLSv1.3

Introduced: MariaDB 10.4.6

version_ssl_library

Description: The version of the TLS library that is being used. Note that the version returned by this system variable

does not always necessarily correspond to the exact version of the OpenSSL package installed on the system.

OpenSSL shared libraries tend to contain interfaces for multiple versions at once to allow for backward compatibility.

Therefore, if the OpenSSL package installed on the system is newer than the OpenSSL version that the MariaDB

server binary was built with, then the MariaDB server binary might use one of the interfaces for an older version.

See TLS and Cryptography Libraries Used by MariaDB: Checking the Server's OpenSSL Version for more

information.

Scope: Global

Dynamic: No

Data Type: string

Default Value: None

2.2.1.1.1.7 SSL/TLS Status Variables
Contents
1. Variables

1. Ssl_accept_renegotiates

2. Ssl_accepts

3. Ssl_callback_cache_hits

4. Ssl_cipher

5. Ssl_cipher_list

6. Ssl_client_connects

7. Ssl_connect_renegotiates

8. Ssl_ctx_verify_depth

9. Ssl_ctx_verify_mode

10. Ssl_default_timeout

11. Ssl_finished_accepts

12. Ssl_finished_connects

13. Ssl_server_not_after

14. Ssl_server_not_before

15. Ssl_session_cache_hits

16. Ssl_session_cache_misses

17. Ssl_session_cache_mode

18. Ssl_session_cache_overflows

19. Ssl_session_cache_size

20. Ssl_session_cache_timeouts

21. Ssl_sessions_reused

22. Ssl_used_session_cache_entries

23. Ssl_verify_depth

24. Ssl_verify_mode

25. Ssl_version

The status variables listed on this page relate to encrypting data during transfer with the Transport Layer Security (TLS)

protocol. Often, the term Secure Socket Layer (SSL) is used interchangeably with TLS, although strictly speaking, the SSL

protocol is a predecessor to TLS and is no longer considered secure.

For compatibility reasons, the TLS status variables in MariaDB still use the Ssl_ prefix, but MariaDB only supports its more

secure successors. For more information on SSL/TLS in MariaDB, see Secure Connections Overview.

Variables

Ssl_accept_renegotiates

Description: Number of negotiations needed to establish the TLS connection. The global value can be flushed by

FLUSH STATUS .

1969/4161

Scope: Global

Data Type: numeric

Ssl_accepts

Description: Number of accepted TLS handshakes. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_callback_cache_hits

Description: Number of sessions retrieved from the session cache. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_cipher

Description: The TLS cipher currently in use.

Scope: Global, Session

Data Type: string

Ssl_cipher_list

Description: List of the available TLS ciphers.

Scope: Global, Session

Data Type: string

Ssl_client_connects

Description: Number of TLS handshakes started in client mode. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_connect_renegotiates

Description: Number of negotiations needed to establish the connection to a TLS-enabled master. The global value

can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_ctx_verify_depth

Description: Number of tested TLS certificates in the chain. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_ctx_verify_mode

Description: Mode used for TLS context verification.The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_default_timeout

1970/4161

Description: Default timeout for TLS, in seconds.

Scope: Global, Session

Data Type: numeric

Ssl_finished_accepts

Description: Number of successful TLS sessions in server mode. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_finished_connects

Description: Number of successful TLS sessions in client mode. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_server_not_after

Description: Last valid date for the TLS certificate.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.0

Ssl_server_not_before

Description: First valid date for the TLS certificate.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.0

Ssl_session_cache_hits

Description: Number of TLS sessions found in the session cache. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_session_cache_misses

Description: Number of TLS sessions not found in the session cache. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Ssl_session_cache_mode

Description: Mode used for TLS caching by the server.

Scope: Global

Data Type: string

Ssl_session_cache_overflows

Description: Number of sessions removed from the session cache because it was full. The global value can be

flushed by FLUSH STATUS .

1971/4161

Scope: Global

Data Type: numeric

Ssl_session_cache_size

Description: Size of the session cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_session_cache_timeouts

Description: Number of sessions which have timed out. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_sessions_reused

Description: Number of sessions reused. The global value can be flushed by FLUSH STATUS .

Scope: Global, Session

Data Type: numeric

Ssl_used_session_cache_entries

Description: Current number of sessions in the session cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Ssl_verify_depth

Description: TLS verification depth.

Scope: Global, Session

Data Type: numeric

Ssl_verify_mode

Description: TLS verification mode.

Scope: Global, Session

Data Type: numeric

Ssl_version

Description: TLS version in use.

Scope: Global, Session

Data Type: string

2.2.1.1.1.8 Using TLSv1.3
Contents

OpenSSL 1.1.1 introduced support for TLSv1.3. TLSv1.3 is a major rewrite of the TLS protocol. Some even argued it

should've been called TLSv2.0. One of the changes is that it introduces a new set of cipher suites that only work with

TLSv1.3. Additionally, TLSv1.3 does not support cipher suites from previous TLS protocol versions.

This incompatible change had a non-obvious consequence. If a user had been explicitly specifying cipher suites to disable

old and obsolete TLS protocol version, then that user may have also inadvertently prevented TLSv1.3 from working, unless

the user remembered to add the TLSv1.3 cipher suites to their cipher list. After upgrading to OpenSSL 1.1.1, this user might

1972/4161

believe they are using TLSv1.3, when their existing cipher suite configuration might be preventing it.

To avoid this problem, OpenSSL developers decided that TLSv1.3 cipher suites should not be affected by the normal

cipher-selecting API. This means that ssl_cipher system variable has no effect on the TLSv1.3 cipher suites.

See this OpenSSL blog post and GitHub issue for more information.

2.2.1.1.2 Data-at-Rest Encryption
MariaDB supports the use of data-at-rest encryption for tables and tablespaces. For a minor performance overhead of 3-5%,

this makes it almost impossible for someone with access to the host system or who steals a hard drive to read the original

data.

Data-at-Rest Encryption Overview

Having data encrypted will make it hard for someone to steal your data.

Why Encrypt MariaDB Data?

When to use encryption for MariaDB data.

Key Management and Encryption Plugins

MariaDB uses plugins to handle key management and encryption of data.

Encrypting Binary Logs

Data-at-rest encryption for binary logs and relay logs.

Aria Encryption

Configuration and use of data-at-rest encryption with the Aria storage engine.

InnoDB Encryption

Articles on using data-at-rest encryption with the InnoDB storage engine.

There are 4 related questions .

20

2.2.1.1.2.1 Data-at-Rest Encryption Overview
Contents
1. Overview

2. Which Storage Engines Does MariaDB Encryption Support?

3. Limitations

4. Encryption Key Management

5. Encrypting Data

1. Encrypting Table Data

2. Encrypting Temporary Files

3. Encrypting Binary Logs

6. Encryption and Page Compression

7. Thanks

Overview
Having tables encrypted makes it almost impossible for someone to access or steal a hard disk and get access to the

original data. MariaDB got Data-at-Rest Encryption with MariaDB 10.1. This functionality is also known as "Transparent Data

Encryption (TDE)".

This assumes that encryption keys are stored on another system.

Using encryption has an overhead of roughly 3-5%.

Which Storage Engines Does MariaDB Encryption
Support?
MariaDB encryption is fully supported for the InnoDB storage engines. Encryption is also supported for the Aria storage

engine, but only for tables created with ROW_FORMAT=PAGE (the default), and for the binary log (replication log).

1973/4161

https://www.openssl.org/blog/blog/2018/02/08/tlsv1.3/
https://github.com/openssl/openssl/issues/5359
https://mariadb.com/kb/en/encryption-data-at-rest-encryption/+questions/

MariaDB allows the user to configure flexibly what to encrypt. In or InnoDB, one can choose to encrypt:

everything 4 all tablespaces (with all tables)

individual tables

everything, excluding individual tables

Additionally, one can choose to encrypt InnoDB log files (recommended).

Limitations
These limitations exist in the data-at-rest encryption implementation:

Only data and only at rest is encrypted. Metadata (for example .frm files) and data sent to the client are not

encrypted (but see Secure Connections).

Only the MariaDB server knows how to decrypt the data, in particular

mariadb-binlog can read encrypted binary logs only when --read-from-remote-server is used (MDEV-8813).

Percona XtraBackup cannot back up instances that use encrypted InnoDB. However, MariaDB's fork,

MariaDB Backup, can back up encrypted instances.

The disk-based Galera gcache is not encrypted in the community version of MariaDB Server (MDEV-9639).

However, this file is encrypted in MariaDB Enterprise Server 10.4 .

The Audit plugin cannot create encrypted output. Send it to syslog and configure the protection there instead.

File-based general query log and slow query log cannot be encrypted (MDEV-9639).

The Aria log is not encrypted (MDEV-8587). This affects only non-temporary Aria tables though.

The MariaDB error log is not encrypted. The error log can contain query text and data in some cases, including

crashes, assertion failures, and cases where InnoDB write monitor output to the log to aid in debugging. It can be

sent to syslog too, if needed.

Encryption Key Management
MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

How MariaDB manages encryption keys depends on which encryption key management solution you choose. Currently,

MariaDB has four options:

File Key Management Plugin

AWS Key Management Plugin

Eperi Key Management Plugin

Hashicorp Key Management Plugin

Once you have an key management and encryption plugin set up and configured for your server, you can begin using

encryption options to better secure your data.

Encrypting Data
Encryption occurs whenever MariaDB writes pages to disk. Encrypting table data requires that you install a key

management and encryption plugin, such as the File Key Management plugin. Once you have a plugin set up and

configured, you can enable encryption for your InnoDB and Aria tables.

Encrypting Table Data

MariaDB supports data-at-rest encryption for InnoDB and Aria storage engines. Additionally, it supports encrypting the

InnoDB redo log and internal on-disk temporary tables that use the Aria storage engine..

Encrypting Data for InnoDB

Encrypting Data for Aria

Encrypting Temporary Files

MariaDB also creates temporary files on disk. For example, a binary log cache will be written to a temporary file if the binary

log cache exceeds binlog_cache_size or binlog_stmt_cache_size , and temporary files are also often used for

filesorts during query execution. Since MariaDB 10.1.5 , these temporary files can also be encrypted if

encrypt_tmp_files=ON is set.

1974/4161

https://mariadb.com/kb/en/secure-connections/
https://jira.mariadb.org/browse/MDEV-8813
https://mariadb.com/kb/en/percona-xtrabackup/
https://galeracluster.com/library/documentation/state-transfer.html#write-set-cache-gcache
https://jira.mariadb.org/browse/MDEV-9639
https://mariadb.com/docs/features/mariadb-enterprise-server/
https://jira.mariadb.org/browse/MDEV-9639
https://jira.mariadb.org/browse/MDEV-8587
https://mariadb.com/kb/en/encrypting-data-for-aria/
https://mariadb.com/kb/en/mariadb-1015-release-notes/

Since MariaDB 10.1.27 , MariaDB 10.2.9 and MariaDB 10.3.2 , temporary files created internally by InnoDB, such as

those used for merge sorts and row logs can also be encrypted if innodb_encrypt_log=ON is set. These files are encrypted

regardless of whether the tables involved are encrypted or not, and regardless of whether encrypt_tmp_files is set or not.

Encrypting Binary Logs

MariaDB can also encrypt binary logs (including relay logs).

Encrypting Binary Logs

Encryption and Page Compression
Data-at-rest encryption and InnoDB page compression can be used together. When they are used together, data is first

compressed, and then it is encrypted. In this case you save space and still have your data protected.

Thanks
Tablespace encryption was donated to the MariaDB project by Google.

Per-table encryption and key identifier support was donated to the MariaDB project by eperi .

We are grateful to these companies for their support of MariaDB!

2.2.1.1.2.2 Why Encrypt MariaDB Data?
Nearly everyone owns data of immense value: customer data, construction plans, recipes, product designs and other

information. These data are stored in clear text on your storage media. Everyone with file system access is able to read and

modify the data. If this data falls into the wrong hands (criminals or competitors) this may result in serious consequences.

With encryption you protect Data At Rest (see the Wikipedia article). That way, the database files are protected against

unauthorized access.

When Does Encryption Help to Protect Your Data?
Encryption helps in case of threats against the database files:

An attacker gains access to the system and copies the database files to avoid the MariaDB authorization check.

MariaDB is operated by a service provider who should not gain access to the sensitive data.

When is Encryption No Help?
Encryption provides no additional protection against threats caused by authorized database users. Specifically, SQL

injections aren9t prevented.

What to Encrypt?
All data that is not supposed to fall into possible attackers hands should be encrypted. Especially information, subject to

strict data protection regulations, is to be protected by encryption (e.g. in the healthcare sector: patient records). Additionally

data being of interest for criminals should be protected. Data which should be encrypted are:

Personal related information

Customer details

Financial and credit card data

Public authorities data

Construction plans and research and development results

How to Handle Key Management?
There are currently three options for key management:

File Key Management Plugin

AWS Key Management Plugin

eperi Gateway for Databases

See Encryption Key Management for details.

1975/4161

https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
http://eperi.de/en
http://en.wikipedia.org/wiki/Data_at_Rest

5.4.8 Key Management and Encryption Plugins

2.2.1.1.2.4 Encrypting Binary Logs
Contents
1. Basic Configuration

2. Encryption Keys

1. Key Rotation

3. Enabling Encryption

4. Disabling Encryption

5. Understanding Binlog Encryption

1. Effects of Data-at-Rest Encryption on Replication

2. Effects of Data-at-Rest Encryption on mariadb-binlog

MariaDB Server can encrypt the server's binary logs and relay logs. This ensures that your binary logs are only accessible

through MariaDB.

Basic Configuration
Since MariaDB 10.1.7 , MariaDB can also encrypt binary logs (including relay logs). Encryption of binary logs is configured

by the encrypt_binlog system variable.

Users of data-at-rest encryption will also need to have a key management and encryption plugin configured. Some

examples are File Key Management Plugin and AWS Key Management Plugin.

[mariadb]

...

File Key Management

plugin_load_add = file_key_management

file_key_management_filename = /etc/mysql/encryption/keyfile.enc

file_key_management_filekey = FILE:/etc/mysql/encryption/keyfile.key

file_key_management_encryption_algorithm = AES_CTR

Binary Log Encryption

encrypt_binlog=ON

Encryption Keys
Key management and encryption plugins support using multiple encryption keys. Each encryption key can be defined with a

different 32-bit integer as a key identifier.

MariaDB uses the encryption key with ID 1 to encrypt binary logs.

Key Rotation

Some key management and encryption plugins allow you to automatically rotate and version your encryption keys. If a

plugin support key rotation, and if it rotates the encryption keys, then InnoDB's background encryption threads can re-

encrypt InnoDB pages that use the old key version with the new key version. However, the binary log does not have a

similar mechanism, which means that existing binary logs remain encrypted with the older key version, but new binary logs

will be encrypted with the new key version. For more information, see MDEV-20098 .

In order for key rotation to work, both the backend key management service (KMS) and the corresponding key

management and encryption plugin have to support key rotation. See Encryption Key Management: Support for Key

Rotation in Encryption Plugins to determine which plugins currently support key rotation.

Enabling Encryption
Encryption of binary logs can be enabled by doing the following process.

First, stop the server.

Then, set encrypt_binlog=ON in the MariaDB configuration file.

1976/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://jira.mariadb.org/browse/MDEV-20098

Then, start the server.

From that point forward, any new binary logs will be encrypted. To delete old unencrypted binary logs, you can use RESET

MASTER or PURGE BINARY LOGS .

Disabling Encryption
Encryption of binary logs can be disabled by doing the following process.

First, stop the server.

Then, set encrypt_binlog=OFF in the MariaDB configuration file.

Then, start the server.

From that point forward, any new binary logs will be unencrypted. If you would like the server to continue to have access to

old encrypted binary logs, then make sure to keep your key management and encryption plugin loaded.

Understanding Binlog Encryption
When starting with binary log encryption, MariaDB Server logs a Format_descriptor_log_event and a

START_ENCRYPTION_EVENT , then encrypts all subsequent events for the binary log.

Each event's header and footer are created and processed to produce encrypted blocks. These encrypted blocks are

produced before transactions are committed and before the events are flushed to the binary log. As such, they exist in an

encrypted state in memory buffers and in the IO_CACHE files for user connections.

Effects of Data-at-Rest Encryption on Replication

When using encrypted binary logs with replication, it is completely supported to have different encryption keys on the master

and slave. The master decrypts encrypted binary log events as it reads them from disk, and before its binary log dump

thread sends them to the slave, so the slave actually receives the unencrypted binary log events.

If you want to ensure that binary log events are encrypted as they are transmitted between the master and slave, then you

will have to use TLS with the replication connection.

Effects of Data-at-Rest Encryption on mariadb-binlog

mariadb-binlog does not currently have the ability to decrypt encrypted binary logs on its own (see MDEV-8813 about

that). In order to use mariadb-binlog with encrypted binary logs, you have to use the --read-from-remote-server command-

line option, so that the server can decrypt the binary logs for mariadb-binlog.

Note, using the --read-from-remote-server option on versions of the mariadb-binlog utility that do not have the

MDEV-20574 fix (<=MariaDB 10.4.9, MariaDB 10.3.19 , MariaDB 10.2.28) can corrupt binlog positions when the

binary log is encrypted.

2.2.1.1.2.5 Aria Encryption
Configuration and use of data-at-rest encryption with the Aria storage engine.

Aria Encryption Overview

Data-at-rest encryption for user-created tables and internal on-disk tempor...

Aria Enabling Encryption

In order to enable data-at-rest encryption for tables using the Aria stora...

Aria Disabling Encryption

The process involved in safely disabling data-at-rest encryption for your ...

Aria Encryption Keys

As with other storage engines that support data-at-rest encryption, Aria r...

5.3.4.10 Aria Encryption Overview

1977/4161

https://mariadb.com/kb/en/sql-commands-purge-logs/
https://jira.mariadb.org/browse/MDEV-8813
https://jira.mariadb.org/browse/MDEV-20574
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-10228-release-notes/

2.2.1.1.2.5.2 Aria Enabling Encryption
Contents
1. Encrypting User-created Tables

1. Encrypting Existing Tables

2. Encrypting Internal On-disk Temporary Tables

3. Manually Encrypting Tables

In order to enable data-at-rest encryption for tables using the Aria storage engine, you first need to configure the server to

use an Encryption Key Management plugin. Once this is done, you can enable encryption by setting the relevant system

variables.

Encrypting User-created Tables
With tables that the user creates, you can enable encryption by setting the aria_encrypt_tables system variable to ON ,

then restart the Server. Once this is set, Aria automatically enables encryption on all tables you create after with the

ROW_FORMAT table option set to PAGE .

Currently, Aria does not support encryption on tables where the ROW_FORMAT table option is set to the FIXED or DYNAMIC

values.

Unlike InnoDB, Aria does not support the ENCRYPTED table option (see MDEV-18049 about that). Encryption for Aria can

only be enabled globally using the aria_encrypt_tables system variable.

Encrypting Existing Tables

In cases where you have existing Aria tables that you would like to encrypt, the process is a little more complicated. Unlike

InnoDB, Aria does not utilize background encryption threads to automatically perform encryption changes (see MDEV-

18971 about that). Therefore, to encrypt existing tables, you need to identify each table that needs to be encrypted, and

then you need to manually rebuild each table.

First, set the aria_encrypt_tables system variable to encrypt new tables.

SET GLOBAL aria_encrypt_tables=ON;

Identify Aria tables that have the ROW_FORMAT table option set to PAGE .

SELECT TABLE_SCHEMA, TABLE_NAME

FROM information_schema.TABLES

WHERE ENGINE='Aria'

 AND ROW_FORMAT='PAGE'

 AND TABLE_SCHEMA != 'information_schema';

For each table in the result-set, issue an ALTER TABLE statement to rebuild the table.

ALTER TABLE test.aria_table ENGINE=Aria ROW_FORMAT=PAGE;

This statement causes Aria to rebuild the table using the ROW_FORMAT table option. In the process, with the new default

setting, it encrypts the table when it writes to disk.

Encrypting Internal On-disk Temporary Tables
During the execution of queries, MariaDB routinely creates internal temporary tables. These internal temporary tables

initially use the MEMORY storage engine, which is entirely stored in memory. When the table size exceeds the allocation

defined by the max_heap_table_size system variable, MariaDB writes the data to disk using another storage engine. If

you have the aria_used_for_temp_tables set to ON , MariaDB uses Aria in writing the internal temporary tables to disk.

Encryption for internal temporary tables is handled separately from encryption for user-created tables. To enable encryption

for these tables, set the encrypt_tmp_disk_tables system variable to ON . Once set, all internal temporary tables that

are written to disk using Aria are automatically encrypted.

Manually Encrypting Tables
Currently, Aria does not support manually encrypting tables through the ENCRYPTED and ENCRYPTION_KEY_ID table

1978/4161

https://jira.mariadb.org/browse/MDEV-18049
https://jira.mariadb.org/browse/MDEV-18971

options. For more information, see MDEV-18049 .

In cases where you want to encrypt tables manually or set the specific encryption key, use InnoDB.

2.2.1.1.2.5.3 Aria Disabling Encryption
Contents
1. Disabling Encryption on User-created Tables

2. Disabling Encryption for Internal On-disk Temporary Tables

The process involved in safely disabling data-at-rest encryption for your Aria tables is very similar to that of enabling

encryption. To disable, you need to set the relevant system variables and then rebuild each table into an unencrypted state.

Don't remove the Encryption Key Management plugin from your configuration file until you have unencrypted all tables

in your database. MariaDB cannot read encrypted tables without the relevant encryption key.

Disabling Encryption on User-created Tables
With tables that the user creates, you can disable encryption by setting the aria_encrypt_tables system variable to

OFF . Once this is set, MariaDB no longer encrypts new tables created with the Aria storage engine.

SET GLOBAL aria_encrypt_tables = OFF;

Unlike InnoDB, Aria does not currently use background encryption threads. Before removing the Encryption Key

Management plugin from the configuration file, you first need to manually rebuild each table to an unencrypted state.

To find the encrypted tables, query the Information Schema, filtering the TABLES table for those that use the Aria storage

engine and the PAGE ROW_FORMAT .

SELECT TABLE_SCHEMA, TABLE_NAME

FROM information_schema.TABLES

WHERE ENGINE = 'Aria'

 AND ROW_FORMAT = 'PAGE'

 AND TABLE_SCHEMA != 'information_schema';

Each table in the result-set was potentially written to disk in an encrypted state. Before removing the configuration for the

encryption keys, you need to rebuild each of these to an unencrypted state. This can be done with an ALTER TABLE

statement.

ALTER TABLE test.aria_table ENGINE = Aria ROW_FORMAT = PAGE;

Once all of the Aria tables are rebuilt, they're safely unencrypted.

Disabling Encryption for Internal On-disk Temporary
Tables
MariaDB routinely creates internal temporary tables. When these temporary tables are written to disk and the

aria_used_for_temp_tables system variable is set to ON , MariaDB uses the Aria storage engine.

To decrypt these tables, set the encrypt_tmp_disk_tables to OFF . Once set, all internal temporary tables that are

created from that point on are written unencrypted to disk.

2.2.1.1.2.5.4 Aria Encryption Keys
Contents
1. Encryption Keys

2. Key Rotation

As with other storage engines that support data-at-rest encryption, Aria relies on an Encryption Key Management plugin to

handle its encryption keys. Where the support is available, Aria can use multiple keys.

1979/4161

https://jira.mariadb.org/browse/MDEV-18049
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/key-management-encryption-plugins
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/key-management-encryption-plugins
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/information_schema-tables-table

Encryption Keys
MariaDB keeps track of each encryption key internally using a 32-bit integer, which serves as the key identifier. Unlike

InnoDB, Aria does not support the ENCRYPTION_KEY_ID table option (for more information, see MDEV-18049), which

allows the user to specify the encryption key to use. Instead, Aria defaults to specific encryption keys provided by the

Encryption Key Management plugin.

When working with user-created tables, Aria encrypts them to disk using the ID 1 key.

When working with internal temporary tables written to disk, Aria encrypts them to disk using the ID 2 key, unless

there is no ID 2 key, then it falls back on the ID 1 key.

Key Rotation
Some key management and encryption plugins allow you to automatically rotate and version your encryption keys. If a

plugin support key rotation, and if it rotates the encryption keys, then InnoDB's background encryption threads can re-

encrypt InnoDB pages that use the old key version with the new key version. However, Aria does not have a similar

mechanism, which means that the tables remain encrypted with the older key version. For more information, see MDEV-

18971 .

In order for key rotation to work, both the backend key management service (KMS) and the corresponding key

management and encryption plugin have to support key rotation. See Encryption Key Management: Support for Key

Rotation in Encryption Plugins to determine which plugins currently support key rotation.

2.2.1.1.2.6 InnoDB Encryption
Data-at-rest encryption configuration and use with the InnoDB storage engine.

InnoDB Encryption Overview

Data-at-rest encryption for tables that use the InnoDB storage engine.

Enabling InnoDB Encryption

Configuration and procedure for enabling data-at-rest encryption for InnoDB tables.

Disabling InnoDB Encryption

Configuration and procedure to disable data-at-rest encryption for InnoDB tables.

InnoDB Background Encryption Threads

InnoDB performs some encryption and decryption operations with background encryption threads.

InnoDB Encryption Keys

InnoDB uses encryption key management plugins to support the use of multiple encryption keys.

InnoDB Encryption Troubleshooting

Troubleshooting InnoDB encryption

1

5.3.2.25 InnoDB Encryption Overview

2.2.1.1.2.6.2 Enabling InnoDB Encryption
Contents
1. Enabling Encryption for Automatically Encrypted Tablespaces

2. Enabling Encryption for Manually Encrypted Tablespaces

3. Enabling Encryption for Temporary Tablespaces

4. Enabling Encryption for the Redo Log

In order to enable data-at-rest encryption for tables using the InnoDB storage engines, you first need to configure the Server

to use an Encryption Key Management plugin. Once this is done, you can enable encryption by setting the

innodb_encrypt_tables system variable to encrypt the InnoDB system and file tablespaces and setting the

innodb_encrypt_log system variable to encrypt the InnoDB Redo Log.

Setting these system variables enables the encryption feature for InnoDB tables on your server. To use the feature, you
1980/4161

https://jira.mariadb.org/browse/MDEV-18049
https://jira.mariadb.org/browse/MDEV-18971

need to use the ENCRYPTION_KEY_ID table option to set what encryption key you want to use and set the ENCRYPTED

table option to enable encryption.

When encrypting any InnoDB tables, the best practice is also enable encryption for the Redo Log. If you have

encrypted InnoDB tables and have not encrypted the Redo Log, data written to an encrypted table may be found

unencrypted in the Redo Log.

Enabling Encryption for Automatically Encrypted Tablespaces

The innodb_encrypt_tables system variable controls the configuration of automatic encryption of InnoDB tables. It has the

following possible values:

Option Description

OFF Disables table encryption.

ON Enables table encryption, but allows unencrypted tables to be created.

FORCE Enables table encryption, and doesn't allow unencrypted tables to be created. Added in MariaDB 10.1.4 .

When innodb_encrypt_tables is set to ON , InnoDB tables are automatically encrypted by default. For example, the

following statements create an encrypted table and confirm that it is encrypted:

SET GLOBAL innodb_encryption_threads=4;

SET GLOBAL innodb_encrypt_tables=ON;

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

);

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

When innodb_encrypt_tables is set to ON , an unencrypted InnoDB table can be created by setting the ENCRYPTED table

option to NO for the table. For example, the following statements create an unencrypted table and confirm that it is not

encrypted:

SET GLOBAL innodb_encryption_threads=4;

SET GLOBAL innodb_encrypt_tables=ON;

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=NO;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 0 | 100 |

+----------+-------------------+----------------+

When innodb_encrypt_tables is set to FORCE , InnoDB tables are automatically encrypted by default, and unencrypted

InnoDB tables can not be created. In this scenario, if you set the ENCRYPTED table option to NO for a table, then you will

1981/4161

https://mariadb.com/kb/en/mariadb-1014-release-notes/

encounter an error. For example:

SET GLOBAL innodb_encryption_threads=4;

SET GLOBAL innodb_encrypt_tables='FORCE';

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=NO;

ERROR 1005 (HY000): Can't create table `db1`.`tab1` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: ENCRYPTED=NO implies ENCRYPTION_KEY_ID=1 |

| Warning | 140 | InnoDB: ENCRYPTED=NO cannot be used with innodb_encrypt_tables=FORCE |

| Error | 1005 | Can't create table `db1`.`tab1` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

4 rows in set (0.00 sec)

When innodb_encrypt_tables is set to ON or FORCE , then you must ensure that innodb_encryption_threads is set to

a non-zero value, so that InnoDB can perform any necessary encryption operations in the background. See

background operations for more information about that. innodb_encryption_rotate_key_age must also be set to a non-

zero value for the initial encryption operations to happen in the background. See disabling key rotations for more

information about that.

Enabling Encryption for Manually Encrypted Tablespaces

If you do not want to automatically encrypt every InnoDB table, then it is possible to manually enable encryption for just the

subset of InnoDB tables that you would like to encrypt. MariaDB provides the ENCRYPTED and ENCRYPTION_KEY_ID

table options that can be used to manually enable encryption for specific InnoDB tables. These table options can be used

with CREATE TABLE and ALTER TABLE statements. These table options can only be used with InnoDB tables that have

their own InnoDB's file-per-table tablespaces, meaning that tables that were created with innodb_file_per_table=ON set.

Table Option Value Description

ENCRYPTED Boolean Defines whether to encrypt the table

ENCRYPTION_KEY_ID 32-bit integer Defines the identifier for the encryption key to use

You can manually enable or disable encryption for a table by using the ENCRYPTED table option. If you only need to

protect a subset of InnoDB tables with encryption, then it can be a good idea to manually encrypt each table that needs the

extra protection, rather than encrypting all InnoDB tables globally with innodb_encrypt_tables. This allows you to balance

security with speed, as it means the encryption and decryption performance overhead only applies to those tables that

require the additional security.

If a manually encrypted InnoDB table contains a FULLTEXT INDEX, then the internal table for the full-text index will not

also be manually encrypted. To encrypt internal tables for InnoDB full-text indexes, you must enable automatic InnoDB

encryption by setting innodb_encrypt_tables to ON or FORCE .

You can also manually specify a encryption key for a table by using the ENCRYPTION_KEY_ID table option. This allows

you to use different encryption keys for different tables. For example, you might create a table using a statement like this:

1982/4161

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=YES ENCRYPTION_KEY_ID=100;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

If the ENCRYPTION_KEY_ID table option is not specified, then the table will be encrypted with the key identified by the

innodb_default_encryption_key_id system variable. For example, you might create a table using a statement like this:

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=YES;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

In the event that you have an existing table and you want to manually enable encryption for that table, then you can do the

same with an ALTER TABLE statement. For example:

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=NO;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 0 | 100 |

+----------+-------------------+----------------+

ALTER TABLE tab1

 ENCRYPTED=YES ENCRYPTION_KEY_ID=100;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

InnoDB does not permit manual encryption changes to tables in the system tablespace using ALTER TABLE.

Encryption of the system tablespace can only be configured by setting the value of the innodb_encrypt_tables system

variable. This means that when you want to encrypt or decrypt the system tablespace, you must also set a non-zero

value for the innodb_encryption_threads system variable, and you must also set the innodb_system_rotate_key_age

system variable to 1 to ensure that the system tablespace is properly encrypted or decrypted by the background

threads. See MDEV-14398 for more information.

1983/4161

https://jira.mariadb.org/browse/MDEV-14398

Enabling Encryption for Temporary Tablespaces

The innodb_encrypt_temporary_tables system variable controls the configuration of encryption for the temporary

tablespace. It has the following possible values:

Option Description

OFF Disables temporary table encryption.

ON Enables temporary table encryption.

This system variable can be specified as a command-line argument to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

innodb_encrypt_temporary_tables=ON

Enabling Encryption for the Redo Log

InnoDB uses the Redo Log in crash recovery. By default, these events are written to file in an unencrypted state. In

configuring MariaDB for data-at-rest encryption, ensure that you also enable encryption for the Redo Log.

To encrypt the Redo Log, first stop the server process. Then, set the innodb_encrypt_log to ON in a relevant server option

group in an option file. For example:

[mariadb]

...

innodb_encrypt_log = ON

Then, start MariaDB. When the server starts back up, it checks to recover InnoDB in the event of a crash. Once it is back

online, it begins writing encrypted data to the Redo Log.

In MariaDB 10.3 and before, InnoDB does not support key rotation for the Redo Log. Key rotation for the Redo Log is

supported in MariaDB 10.4 and later. See InnoDB Encryption Keys: Key Rotation for more information.

2.2.1.1.2.6.3 Disabling InnoDB Encryption
Contents
1. Disabling Encryption for Automatically Encrypted Tablespaces

1. Decryption Status

2. Disabling Encryption for Manually Encrypted Tablespaces

3. Disabling Encryption for Temporary Tablespaces

4. Disabling Encryption for the Redo Log

The process involved in safely disabling encryption for your InnoDB tables is a little more complicated than that of enabling

encryption. Turning off the relevant system variables doesn't decrypt the tables. If you turn it off and remove the encryption

key management plugin, it'll render the encrypted data inaccessible.

In order to safely disable encryption, you first need to decrypt the tablespaces and the Redo Log, then turn off the system

variables. The specifics of this process depends on whether you are using automatic or manual encryption of the InnoDB

tablespaces.

Disabling Encryption for Automatically Encrypted Tablespaces

When an InnoDB tablespace has the ENCRYPTED table option set to DEFAULT and the innodb_encrypt_tables system

variable is set to ON or FORCE , the tablespace's encryption is automatically managed by the background encryption

threads. When you want to disable encryption for these tablespaces, you must ensure that the background encryption

threads decrypt the tablespaces before removing the encryption keys. Otherwise, the tablespace remains encrypted and

becomes inaccessible once you've removed the keys.

To safely decrypt the tablespaces, first, set the innodb_encrypt_tables system variable to OFF :

SET GLOBAL innodb_encrypt_tables = OFF;

1984/4161

Next, set the innodb_encryption_threads system variable to a non-zero value:

SET GLOBAL innodb_encryption_threads = 4;

Then, set the innodb_encryption_rotate_key_age system variable to 1 :

SET GLOBAL innodb_encryption_rotate_key_age = 1;

Once set, any InnoDB tablespaces that have the ENCRYPTED table option set to DEFAULT will be decrypted in the

background by the InnoDB background encryption threads.

Decryption Status

You can check the status of the decryption process using the INNODB_TABLESPACES_ENCRYPTION table in the

information_schema database.

SELECT COUNT(*) AS "Number of Encrypted Tablespaces"

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE ENCRYPTION_SCHEME != 0

 OR ROTATING_OR_FLUSHING != 0;

This query shows the number of InnoDB tablespaces that currently using background encryption threads. Once the count

reaches 0, then all of your InnoDB tablespaces are unencrypted. Be sure to also remove encryption on the Redo Log and

the Aria storage engine before removing the encryption key management settings from your configuration file.

Disabling Encryption for Manually Encrypted Tablespaces

In the case of manually encrypted InnoDB tablespaces, (that is, those where the ENCRYPTED table option is set to YES),

you must issue an ALTER TABLE statement to decrypt each tablespace before removing the encryption keys. Otherwise,

the tablespace remains encrypted and becomes inaccessible without the keys.

First, query the Information Schema TABLES table to find the encrypted tables. This can be done with a WHERE clause

filtering the CREATE_OPTIONS column.

SELECT TABLE_SCHEMA AS "Database", TABLE_NAME AS "Table"

FROM information_schema.TABLES

WHERE ENGINE='InnoDB'

 AND CREATE_OPTIONS LIKE '%`ENCRYPTED`=YES%';

For each table in the result-set, issue an ALTER TABLE statement, setting the ENCRYPTED table option to NO .

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

ALTER TABLE tab1

 ENCRYPTED=NO;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 0 | 100 |

+----------+-------------------+----------------+

Once you have removed encryption from all the tables, your InnoDB deployment is unencrypted. Be sure to also remove

encryption from the Redo Log as well as Aria and any other storage engines that support encryption before removing the

encryption key management settings from your configuration file.

InnoDB does not permit manual encryption changes to tables in the system tablespace using ALTER TABLE.
1985/4161

Encryption of the system tablespace can only be configured by setting the value of the innodb_encrypt_tables system

variable. This means that when you want to encrypt or decrypt the system tablespace, you must also set a non-zero

value for the innodb_encryption_threads system variable, and you must also set the innodb_system_rotate_key_age

system variable to 1 to ensure that the system tablespace is properly encrypted or decrypted by the background

threads. See MDEV-14398 for more information.

Disabling Encryption for Temporary Tablespaces

The innodb_encrypt_temporary_tables system variable controls the configuration of encryption for the temporary

tablespace. To disable it, remove the system variable from your server's option file, and then restart the server.

Disabling Encryption for the Redo Log

InnoDB uses the Redo Log in crash recovery. By default, these events are written to file in an unencrypted state. In

removing data-at-rest encryption for InnoDB, be sure to also disable encryption for the Redo Log before removing encryption

key settings. Otherwise the Redo Log can become inaccessible without the encryption keys.

First, check the value of the innodb_fast_shutdown system variable with the SHOW VARIABLES statement. For example:

SHOW VARIABLES LIKE 'innodb_fast_shutdown';

+----------------------+-------+

| Variable_name | Value |

+----------------------+-------+

| innodb_fast_shutdown | 2 |

+----------------------+-------+

When the value is set to 2 , InnoDB performs an unclean shutdown, so it will need the Redo Log at the next server startup.

Ensure that the variable is set to 0 , 1 , or 3 . For performance reasons, 1 is usually the best option. It can be changed

dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_fast_shutdown = 1;

Then, set the innodb_encrypt_log system variable to OFF in a server option group in an option file. Once this is done,

restart the MariaDB Server. When the Server comes back online, it begins writing unencrypted data to the Redo Log.

2.2.1.1.2.6.4 InnoDB Background Encryption
Threads
InnoDB performs some encryption and decryption operations with background encryption threads. The

innodb_encryption_threads system variable controls the number of threads that the storage engine uses for encryption-

related background operations, including encrypting and decrypting pages after key rotations or configuration changes, and

scrubbing data to permanently delete it.

Contents
1. Background Operations

2. Non-background Operations

3. Checking the Status of Background Operations

Background Operations
InnoDB performs the following encryption and decryption operations using background encryption threads:

When rotating encryption keys, InnoDB's background encryption threads re-encrypt pages that use key versions older

than innodb_encryption_rotate_key_age to the new key version.

When changing the innodb_encrypt_tables system variable to FORCE , InnoDB's background encryption threads

encrypt the system tablespace and any file-per-table tablespaces that have the ENCRYPTED table option set to

DEFAULT .

When changing the innodb_encrypt_tables system variable to OFF , InnoDB's background encryption threads decrypt

the system tablespace and any file-per-table tablespacs that have the ENCRYPTED table option set to DEFAULT .

The innodb_encryption_rotation_iops system variable can be used to configure how many I/O operations you want to allow

for the operations performed by InnoDB's background encryption threads.

Whenever you change the value on the innodb_encrypt_tables system variable, InnoDB's background encryption
1986/4161

https://jira.mariadb.org/browse/MDEV-14398
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

threads perform the necessary encryption or decryption operations. Because of this, you must have a non-zero value

set for the innodb_encryption_threads system variable. InnoDB also considers these operations to be key rotations

internally. Because of this, you must have a non-zero value set for the innodb_encryption_rotate_key_age system

variable. For more information, see disabling key rotations.

Non-background Operations
InnoDB performs the following encryption and decryption operations without using background encryption threads:

When a file-per-table tablespaces and using ALTER TABLE to manually set the ENCRYPTED table option to YES ,

InnoDB does not use background threads to encrypt the tablespaces.

Similarly, when using file-per-table tablespaces and using ALTER TABLE to manually set the ENCRYPTED table

option to NO , InnoDB does not use background threads to decrypt the tablespaces.

In these cases, InnoDB performs the encryption or decryption operation using the server thread for the client connection that

executes the statement. This means that you can update encryption on file-per-table tablespaces with an ALTER TABLE

statement, even when the innodb_encryption_threads and/or the innodb_rotate_key_age system variables are set to 0 .

InnoDB does not permit manual encryption changes to tables in the system tablespace using ALTER TABLE.

Encryption of the system tablespace can only be configured by setting the value of the innodb_encrypt_tables system

variable. This means that when you want to encrypt or decrypt the system tablespace, you must also set a non-zero

value for the innodb_encryption_threads system variable, and you must also set the innodb_system_rotate_key_age

system variable to 1 to ensure that the system tablespace is properly encrypted or decrypted by the background

threads. See MDEV-14398 for more information.

Checking the Status of Background Operations
InnoDB records the status of background encryption operations in the INNODB_TABLESPACES_ENCRYPTION table in

the information_schema database.

For example, to see which InnoDB tablespaces are currently being decrypted or encrypted on by background encryption,

you can check which InnoDB tablespaces have the ROTATING_OR_FLUSHING column set to 1 :

SELECT SPACE, NAME

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE ROTATING_OR_FLUSHING = 1;

And to see how many InnoDB tablespaces are currently being decrypted or encrypted by background encryption threads,

you can call the COUNT() aggregate function.

SELECT COUNT(*) AS 'encrypting'

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE ROTATING_OR_FLUSHING = 1;

And to see how many InnoDB tablespaces are currently being decrypted or encrypted by background encryption threads,

while comparing that to the total number of InnoDB tablespaces and the total number of encrypted InnoDB tablespaces, you

can join the table with the INNODB_SYS_TABLESPACES table in the information_schema database:

1987/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb-file-per-table-tablspaces
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb-file-per-table-tablspaces
https://jira.mariadb.org/browse/MDEV-14398
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/information-schema-innodb_tablespaces_encryption

/* information_schema.INNODB_TABLESPACES_ENCRYPTION does not always have rows for all

tablespaces,

 so let's join it with information_schema.INNODB_SYS_TABLESPACES */

WITH tablespace_ids AS (

 SELECT SPACE

 FROM information_schema.INNODB_SYS_TABLESPACES ist

 UNION

 /* information_schema.INNODB_SYS_TABLESPACES doesn't have a row for the system tablespace

(MDEV-20802) */

 SELECT 0 AS SPACE

)

SELECT NOW() as 'time',

 'tablespaces', COUNT(*) AS 'tablespaces',

 'encrypted', SUM(IF(ite.ENCRYPTION_SCHEME IS NOT NULL, ite.ENCRYPTION_SCHEME, 0)) AS

'encrypted',

 'encrypting', SUM(IF(ite.ROTATING_OR_FLUSHING IS NOT NULL, ite.ROTATING_OR_FLUSHING, 0)) AS

'encrypting'

FROM tablespace_ids

LEFT JOIN information_schema.INNODB_TABLESPACES_ENCRYPTION ite

 ON tablespace_ids.SPACE = ite.SPACE

2.2.1.1.2.6.5 InnoDB Encryption Keys
Contents
1. Encryption Keys

1. Keys with Manually Encrypted Tablespaces

2. Keys with Automatically Encrypted Tablespaces

2. Key Rotation

1. Disabling Background Key Rotation Operations

1. Pending Encryption Operations

InnoDB uses encryption key management plugins to support the use of multiple encryption keys.

Encryption Keys
Each encryption key has a 32-bit integer that serves as a key identifier.

The default key is set using the innodb_default_encryption_key_id system variable.

Encryption keys can also be specified with the ENCRYPTION_KEY_ID table option for tables that use file-per-table

tablespaces.

InnoDB encrypts the temporary tablespace using the encryption key with the ID 1 .

InnoDB encrypts the Redo Log using the encryption key with the ID 1 .

Keys with Manually Encrypted Tablespaces

With tables that use manually enabled encryption, one way to set the specific encryption key for the table is to use the

ENCRYPTION_KEY_ID table option. For example:

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=YES ENCRYPTION_KEY_ID=100;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

If the ENCRYPTION_KEY_ID table option is not set for a table that uses manually enabled encryption, then it will inherit the

value from the innodb_default_encryption_key_id system variable. For example:

1988/4161

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTED=YES;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

Keys with Automatically Encrypted Tablespaces

With tables that use automatically enabled encryption, one way to set the specific encryption key for the table is to use the

innodb_default_encryption_key_id system variable. For example:

SET GLOBAL innodb_encryption_threads=4;

SET GLOBAL innodb_encrypt_tables=ON;

SET SESSION innodb_default_encryption_key_id=100;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

);

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

InnoDB tables that are part of the system tablespace can only be encrypted using the encryption key set by the

innodb_default_encryption_key_id system variable.

If the table is in a file-per-table tablespace, and if innodb_encrypt_tables is set to ON or FORCE , and if

innodb_encryption_threads is set to a value greater than 0 , then you can also set the specific encryption key for the table

by using the ENCRYPTION_KEY_ID table option. For example:

SET GLOBAL innodb_encryption_threads=4;

SET GLOBAL innodb_encrypt_tables=ON;

CREATE TABLE tab1 (

 id int PRIMARY KEY,

 str varchar(50)

) ENCRYPTION_KEY_ID=100;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

 -> FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

 -> WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

However, if innodb_encrypt_tables is set to OFF or if innodb_encryption_threads is set to 0 , then this will not work. See

InnoDB Encryption Troubleshooting: Setting Encryption Key ID For an Unencrypted Table for more information.

1989/4161

Key Rotation
Some key management and encryption plugins allow you to automatically rotate and version your encryption keys. If a

plugin support key rotation, and if it rotates the encryption keys, then InnoDB's background encryption threads can re-

encrypt InnoDB pages that use the old key version with the new key version.

You can set the maximum age for an encryption key using the innodb_encryption_rotate_key_age system variable. When

this variable is set to a non-zero value, background encryption threads constantly check pages to determine if any page is

encrypted with a key version that's too old. When the key version is too old, any page encrypted with the older version of the

key is automatically re-encrypted in the background to use a more current version of the key. Bear in mind, this constant

checking can sometimes result in high CPU usage.

Key rotation for the InnoDB Redo Log is only supported in MariaDB 10.4.0 and later. For more information, see MDEV-

12041 .

In order for key rotation to work, both the backend key management service (KMS) and the corresponding key

management and encryption plugin have to support key rotation. See Encryption Key Management: Support for Key

Rotation in Encryption Plugins to determine which plugins currently support key rotation.

Disabling Background Key Rotation Operations

In the event that you encounter issues with background key encryption, you can disable it by setting the

innodb_encryption_rotate_key_age system variable to 0 . You may find this useful when the constant key version checks

lead to excessive CPU usage. It's also useful in cases where your encryption key management plugin does not support key

rotation, (such as with the file_key_management plugin). For more information, see MDEV-14180 .

There are, however, issues that can arise when the background key rotation is disabled.

Pending Encryption Operations

Prior to MariaDB 10.2.24 , MariaDB 10.3.15 , and MariaDB 10.4.5, when you update the value on the

innodb_encrypt_tables system variable InnoDB internally treats the subsequent background operations to encrypt and

decrypt tablespaces as background key rotations. See MDEV-14398 for more information.

In older versions of MariaDB, if you have recently changed the value of the innodb_encrypt_tables system variable, then

you must ensure that any pending background encryption or decryption operations are complete before disabling key

rotation. You can check the status of background encryption operations by querying the

INNODB_TABLESPACES_ENCRYPTION table in the information_schema database.

See InnoDB Background Encryption Threads: Checking the Status of Background Operations for some example queries.

Otherwise, in older versions of MariaDB, if you disable key rotation while there are background encryption threads at work,

it may result in unencrypted tables that you want encrypted or vice versa.

For more information, see MDEV-14398 .

2.2.1.1.2.6.6 InnoDB Encryption
Troubleshooting

Contents
1. Wrong Create Options

2. Setting Encryption Key ID For an Unencrypted Table

3. Tablespaces Created on MySQL 5.1.47 or Earlier

4. Spatial Indexes

Wrong Create Options

With InnoDB tables using encryption, there are several cases where a CREATE TABLE or ALTER TABLE statement can

throw Error 1005, due to the InnoDB error 140, Wrong create options . For instance,

CREATE TABLE `test`.`table1` (`id` int(4) primary key , `name` varchar(50));

ERROR 1005 (HY000): Can't create table `test`.`table1` (errno: 140 "Wrong create options")

1990/4161

https://jira.mariadb.org/browse/MDEV-12041
https://jira.mariadb.org/browse/MDEV-14180
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://jira.mariadb.org/browse/MDEV-14398
https://jira.mariadb.org/browse/MDEV-14398

When this occurs, you can usually get more information about the cause of the error by following it with a SHOW

WARNINGS statement.

This error is known to occur in the following cases:

Encrypting a table by setting the ENCRYPTED table option to YES when the innodb_file_per_table is set to OFF .In

this case, SHOW WARNINGS would return the following:

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 140 | InnoDB: ENCRYPTED requires innodb_file_per_table |

| Error | 1005 | Can't create table `db1`.`tab3` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.00 sec)

Encrypting a table by setting the ENCRYPTED table option to YES , and the innodb_default_encryption_key_id

system variable or the ENCRYPTION_KEY_ID table option refers to a non-existent key identifier. In this case, SHOW

WARNINGS would return the following:

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 140 | InnoDB: ENCRYPTION_KEY_ID 500 not available |

| Error | 1005 | Can't create table `db1`.`tab3` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.00 sec)

In some versions, this could happen while creating a table with the ENCRYPTED table option set to DEFAULT while

the innodb_encrypt_tables system variable is set to OFF , and the innodb_default_encryption_key_id system variable

or the ENCRYPTION_KEY_ID table option are not set to 1 . In this case, SHOW WARNINGS would return the

following:

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 140 | InnoDB: innodb_encrypt_tables=OFF only allows ENCRYPTION_KEY_ID=1 |

| Error | 1005 | Can't create table `db1`.`tab3` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.00 sec)

Starting in MariaDB 10.1.39 , MariaDB 10.2.23 , and MariaDB 10.3.14 , creating a table with the ENCRYPTED table

option set to DEFAULT while the innodb_encrypt_tables system variable is set to OFF , and the

innodb_default_encryption_key_id system variable or the ENCRYPTION_KEY_ID table option are not set to 1 will no

longer fail, and it will no longer throw a warning.

For more information, see MDEV-18601 .

Setting Encryption Key ID For an Unencrypted Table

If you set the ENCRYPTION_KEY_ID table option for a table that is unencrypted because the innodb_encrypt_tables

system variable is set to OFF and the ENCRYPTED table option set to DEFAULT , then this encryption key ID will be saved

in the table's .frm file, but the encryption key will not be saved to the table's .ibd file.

As a side effect, with the current encryption design, if the innodb_encrypt_tables system variable is later set to ON , and

InnoDB goes to encrypt the table, then the InnoDB background encryption threads will not read this encryption key ID from

the .frm file. Instead, the threads may encrypt the table with the encryption key with ID 1 , which is internally considered

the default encryption key when no key is specified. For example:

1991/4161

https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://jira.mariadb.org/browse/MDEV-18601

SET GLOBAL innodb_encrypt_tables=OFF;

CREATE TABLE tab1 (

 id INT PRIMARY KEY,

 str VARCHAR(50)

) ENCRYPTION_KEY_ID=100;

SET GLOBAL innodb_encrypt_tables=ON;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME='db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 1 |

+----------+-------------------+----------------+

A similar problem is that, if you set the ENCRYPTION_KEY_ID table option for a table that is unencrypted because the

ENCRYPTED table option is set to NO , then this encryption key ID will be saved in the table's .frm file, but the encryption

key will not be saved to the table's .ibd file.

Recent versions of MariaDB will throw warnings in the case where the ENCRYPTED table option is set to NO , but they will

allow the operation to succeed. For example:

CREATE TABLE tab1 (

 id INT PRIMARY KEY,

 str VARCHAR(50)

) ENCRYPTED=NO ENCRYPTION_KEY_ID=100;

Query OK, 0 rows affected, 1 warning (0.01 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: ENCRYPTED=NO implies ENCRYPTION_KEY_ID=1 |

+---------+------+--+

1 row in set (0.00 sec)

However, in this case, if you change the ENCRYPTED table option to YES or DEFAULT with ALTER TABLE, then it will

actually use the proper key. For example:

SET GLOBAL innodb_encrypt_tables=ON;

ALTER TABLE tab1 ENCRYPTED=DEFAULT;

SELECT NAME, ENCRYPTION_SCHEME, CURRENT_KEY_ID

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION

WHERE NAME = 'db1/tab1';

+----------+-------------------+----------------+

| NAME | ENCRYPTION_SCHEME | CURRENT_KEY_ID |

+----------+-------------------+----------------+

| db1/tab1 | 1 | 100 |

+----------+-------------------+----------------+

For more information, see MDEV-17230 , MDEV-18601 , and MDEV-19086 .

Tablespaces Created on MySQL 5.1.47 or Earlier

MariaDB's data-at-rest encryption implementation re-used previously unused fields in InnoDB's buffer pool pages to identify

the encryption key version and the post-encryption checksum. Prior to MySQL 5.1.48, these unused fields were not

initialized in memory due to performance concerns. These fields still had zero values most of the time, but since they were

not explicitly initialized, that means that these fields could have occasionally had non-zero values that could have been

written into InnoDB's tablespace files. If MariaDB were to encounter an unencrypted page from a tablespace file that was

created on an early version of MySQL that also had non-zero values in these fields, then it would mistakenly think that the

page was encrypted.

The fix for MDEV-12112 that was included in MariaDB 10.1.38 , MariaDB 10.2.20 , and MariaDB 10.3.12 changed

the way that MariaDB distinguishes between encrypted and unencrypted pages, so that it is less likely to mistake an

1992/4161

https://jira.mariadb.org/browse/MDEV-17230
https://jira.mariadb.org/browse/MDEV-18601
https://jira.mariadb.org/browse/MDEV-19086
https://jira.mariadb.org/browse/MDEV-12112
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10220-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/

unencrypted page for an encrypted page.

In MariaDB 10.4.3 and later, if innodb_checksum_algorithm is set to full_crc32 or strict_full_crc32 , and if the

table does not use ROW_FORMAT=COMPRESSED, then data files will be guaranteed to be zero-initialized.

For more information, see MDEV-18097 .

Spatial Indexes

MariaDB 10.4.3 introduces support for encrypting spatial indexes. To enable, set the innodb_checksum_algorithm to

full_crc32 or to strict_full_crc32 . Note that MariaDB only encrypts spatial indexes when the ROW_FORMAT table

option is not set to COMPRESSED.

In older versions of MariaDB, spatial index encryption is unsupported. Tables that contain spatial indexes store them

unencrypted.

For more information, see MDEV-12026 .

2.2.1.1.3 TLS and Cryptography Libraries Used
by MariaDB

Contents
1. Checking Dynamically vs. Statically Linked

2. Checking If the Server Uses OpenSSL

3. Checking the Server's OpenSSL Version

4. FIPS Certification

1. FIPS Certification by OpenSSL

2. FIPS Certification by wolfSSL

3. FIPS Certification by yaSSL

5. Libraries Used by Each Platform and Package

1. MariaDB Server

1. MariaDB Server on Windows

2. MariaDB Server on Linux

1. MariaDB Server in Binary Tarballs

2. MariaDB Server in DEB Packages

3. MariaDB Server in RPM Packages

2. MariaDB Clients and Utilities

1. MariaDB Clients and Utilities on Windows

2. MariaDB Clients and Utilities on Linux

1. MariaDB Clients and Utilities in Binary Tarballs

2. MariaDB Clients and Utilities in DEB Packages

3. MariaDB Clients and Utilities in RPM Packages

6. Updating Dynamically Linked OpenSSL Libraries on Linux

1. Updating Dynamically Linked OpenSSL Libraries with yum/dnf

2. Updating Dynamically Linked OpenSSL Libraries with apt-get

3. Updating Dynamically Linked OpenSSL Libraries with zypper

When MariaDB Server is compiled with TLS and cryptography support, it is usually either statically linked with MariaDB's

bundled TLS and cryptography library or dynamically linked with the system's OpenSSL library. MariaDB's bundled TLS

library is either wolfSSL or yaSSL , depending on the server version.

When a MariaDB client or client library is compiled with TLS and cryptography support, it is usually either statically linked

with MariaDB's bundled TLS and cryptography library or dynamically linked with the system's TLS and cryptography library,

which might be OpenSSL , GnuTLS , or Schannel .

Checking Dynamically vs. Statically Linked
Dynamically linking MariaDB to the system's TLS and cryptography library can often be beneficial, since this allows you to

fix bugs in the system's TLS and cryptography library independently of MariaDB. For example, when information on the

Heartbleed Bug in OpenSSL was released in 2014, the bug could be mitigated by simply updating your system to use a

fixed version of the OpenSSL library, and then restarting the MariaDB Server.

You can verify that mysqld is in fact dynamically linked to the OpenSSL shared library on your system by using the ldd

 command:

1993/4161

https://jira.mariadb.org/browse/MDEV-18097
https://jira.mariadb.org/browse/MDEV-12026
https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://www.gnutls.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
http://heartbleed.com/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://linux.die.net/man/1/ldd

$ ldd $(which mysqld) | grep -E '(libssl|libcrypto)'

 libssl.so.10 => /lib64/libssl.so.10 (0x00007f8736386000)

 libcrypto.so.10 => /lib64/libcrypto.so.10 (0x00007f8735f25000)

If the command does not return any results, then either your mysqld is statically linked to the TLS and cryptography library

on your system or your mysqld is not built with TLS and cryptography support at all.

Checking If the Server Uses OpenSSL
In MariaDB 10.0 and later, if you aren't sure whether your server is linked with OpenSSL or the bundled TLS library, then

you can check the value of the have_openssl system variable. For example:

SHOW GLOBAL VARIABLES LIKE 'have_openssl';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| have_openssl | YES |

+---------------+-------+

Checking the Server's OpenSSL Version
In MariaDB 10.1 and later, if you want to see what version of OpenSSL your server is using, then you can check the value

of the version_ssl_library system variable. For example:

SHOW GLOBAL VARIABLES LIKE 'version_ssl_library';

+---------------------+---------------------------------+

| Variable_name | Value |

+---------------------+---------------------------------+

| version_ssl_library | OpenSSL 1.0.1e-fips 11 Feb 2013 |

+---------------------+---------------------------------+

Note that the version returned by this system variable does not always necessarily correspond to the exact version of the

OpenSSL package installed on the system. OpenSSL shared libraries tend to contain interfaces for multiple versions at

once to allow for backward compatibility. Therefore, if the OpenSSL package installed on the system is newer than the

OpenSSL version that the MariaDB Server binary was built with, then the MariaDB Server binary might use one of the

interfaces for an older version. See MDEV-15848 for more information. For example:

$ cat /etc/redhat-release

Red Hat Enterprise Linux Server release 7.5 (Maipo)

$ rpm -q openssl

openssl-1.0.2k-12.el7.x86_64

$ mysql -u root --batch --execute="SHOW GLOBAL VARIABLES LIKE 'version_ssl_library';"

Variable_name Value

version_ssl_library OpenSSL 1.0.1e-fips 11 Feb 2013

$ ldd $(which mysqld) | grep libcrypto

 libcrypto.so.10 => /lib64/libcrypto.so.10 (0x00007f3dd3482000)

$ readelf -a /lib64/libcrypto.so.10 | grep SSLeay_version

 1374: 000000000006f5d0 21 FUNC GLOBAL DEFAULT 13 SSLeay_version@libcrypto.so.10

 1375: 000000000006f5f0 21 FUNC GLOBAL DEFAULT 13 SSLeay_version@OPENSSL_1.0.1

 1377: 000000000006f580 70 FUNC GLOBAL DEFAULT 13 SSLeay_version@@OPENSSL_1.0.2

FIPS Certification
Federal Information Processing Standards (FIPS) are standards published by the U.S. federal government that are used

to establish requirements for various aspects of computer systems. FIPS 140-2 is a set of standards for security

requirements for cryptographic modules.

This standard is relevant when discussing the TLS and cryptography libraries used by MariaDB. Some of these libraries

have been certified to meet the standards set by FIPS 140-2.

FIPS Certification by OpenSSL

The OpenSSL library has a special FIPS mode that has been certified to meet the FIPS 140-2 standard. In FIPS mode,

only algorithms and key sizes that meet the FIPS 140-2 standard are enabled by the library.

1994/4161

https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://jira.mariadb.org/browse/MDEV-15848
https://www.nist.gov/itl/itl-publications/federal-information-processing-standards-fips
https://www.nist.gov/publications/security-requirements-cryptographic-modules-includes-change-notices-1232002?pub_id=902003
https://www.openssl.org/

MariaDB does not yet support enabling FIPS mode within the database server. See MDEV-20260 for more information.

Therefore, if you would like to use OpenSSL's FIPS mode with MariaDB, then you would either need to enable FIPS mode

at the kernel level or enable it via the OpenSSL configuration file, system-wide or only for the MariaDB process.. See the

following resources for more information on how to do that:

Red Hat Enterprise Linux 7: Security Guide: Chapter 8. Federal Standards and Regulations

Ubuntu Security Certifications Documentation: FIPS for Ubuntu 16.04 and 18.04

OpenSSL 1.0.2, configuration file method

OpenSSL 3.0 configuration file method

FIPS Certification by wolfSSL

The standard version of the wolfSSL library has not been certified to meet the FIPS 140-2 standard, but a special "FIPS-

ready" version has been certified. Unfortunately, the "FIPS-ready" version of wolfSSL uses a license that is incompatible

with MariaDB's license, so it cannot be used with MariaDB.

FIPS Certification by yaSSL

The yaSSL library has not been certified to meet the FIPS 140-2 standard.

Libraries Used by Each Platform and Package

MariaDB Server

MariaDB Server on Windows

MariaDB Server is statically linked with the bundled wolfSSL library in MSI and ZIP packages on Windows.

MariaDB Server is statically linked with the bundled yaSSL library in MSI and ZIP packages on Windows.

MariaDB Server on Linux

MariaDB Server in Binary Tarballs

In MariaDB 10.4.6 and later, MariaDB Server is statically linked with the bundled wolfSSL library in binary tarballs on

Linux.

In MariaDB 10.4.5 and before, MariaDB Server is statically linked with the bundled yaSSL library in binary tarballs on

Linux.

MariaDB Server in DEB Packages

MariaDB Server is dynamically linked with the system's OpenSSL library in .deb packages.

In MariaDB 10.3 and before, MariaDB Server is statically linked with the bundled yaSSL library in .deb packages

provided by Debian's and Ubuntu's default repositories.

See Differences in MariaDB in Debian (and Ubuntu) for more information.

MariaDB Server in RPM Packages

MariaDB Server is dynamically linked with the system's OpenSSL library in .rpm packages.

MariaDB Clients and Utilities

In MariaDB 10.2 and later, MariaDB Connector/C has been included with MariaDB Server , and the bundled and the

MariaDB starting with 10.4.6

MariaDB until 10.4.5

MariaDB starting with 10.4.6

MariaDB until 10.4.5

MariaDB until 10.3

1995/4161

https://jira.mariadb.org/browse/MDEV-20260
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/chap-federal_standards_and_regulations
https://security-certs.docs.ubuntu.com/en/fips
https://www.openssl.org/docs/fips/UserGuide-2.0.pdf#page=73
https://www.openssl.org/docs/man3.0/man7/fips_module.html#Making-all-applications-use-the-FIPS-module-by-default
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/wolfssl-fips-ready/
https://www.wolfssl.com/products/yassl/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://www.wolfssl.com/products/yassl/
https://www.openssl.org/
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/about-mariadb-connector-c/#integration-with-mariadb-server

clients and utilities are linked with it. On some platforms, MariaDB Connector/C and these clients and utilities may use a

different TLS library than the one used by MariaDB Server and libmysqlclient .

MariaDB Clients and Utilities on Windows

In MariaDB 10.4.6 and later, MariaDB's clients and utilities and MariaDB Connector/C are are dynamically linked with

the system's Schannel libraries in MSI and ZIP packages on Windows. libmysqlclient is still statically linked with

the bundled wolfSSL library.

MariaDB Clients and Utilities on Linux

MariaDB Clients and Utilities in Binary Tarballs

In MariaDB 10.4.6 and later, MariaDB's clients and utilities and MariaDB Connector/C are statically linked with the

GnuTLS library in binary tarballs on Linux. libmysqlclient is still statically linked with the bundled wolfSSL library.

MariaDB Clients and Utilities in DEB Packages

MariaDB's clients and utilities, libmysqlclient , and MariaDB Connector/C are dynamically linked with the system's

OpenSSL library in .deb packages.

See Differences in MariaDB in Debian (and Ubuntu) for more information.

MariaDB Clients and Utilities in RPM Packages

MariaDB's clients and utilities, libmysqlclient , and MariaDB Connector/C are dynamically linked with the system's

OpenSSL library in .rpm packages.

Updating Dynamically Linked OpenSSL Libraries on
Linux
When the MariaDB Server or clients and utilities are dynamically linked to the system's OpenSSL library, it makes it very

easy to update the libraries. The information below will show how to update these libraries for each platform.

Updating Dynamically Linked OpenSSL Libraries with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to update the libraries using

yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced by dnf , which is the next major version

of yum . However, yum commands still work on many systems that use dnf . For example:

Update the package by executing the following command:

sudo yum update openssl

And then restart MariaDB server and any clients or applications that use the library.

Updating Dynamically Linked OpenSSL Libraries with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to recommended to update the libraries

using apt-get . For example:

First update the package cache by executing the following command:

sudo apt update

And then update the package by executing the following command:

sudo apt-get update openssl

And then restart MariaDB server and any clients or applications that use the library.

MariaDB starting with 10.4.6

MariaDB starting with 10.4.6

1996/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://mariadb.com/kb/en/mariadb-connector-c/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://www.wolfssl.com/products/wolfssl/
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.gnutls.org/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://www.wolfssl.com/products/wolfssl/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.openssl.org/
https://dev.mysql.com/doc/refman/5.5/en/c-api.html
https://mariadb.com/kb/en/mariadb-connector-c/
https://www.openssl.org/
https://www.openssl.org/
https://en.wikipedia.org/wiki/DNF_(software)
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://wiki.debian.org/apt-get
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Updating Dynamically Linked OpenSSL Libraries with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to recommended to update the

libraries using zypper . For example:

Update the package by executing the following command:

sudo zypper update openssl

And then restart MariaDB server and any clients or applications that use the library.

2.2.1.2 Running mysqld as root
MariaDB should never normally be run as the system's root user (this is unrelated to the MariaDB root user). If it is, any user

with the FILE privilege can create or modify any files on the server as root.

MariaDB will normally return the error Fatal error: Please read "Security" section of the manual to find out how to run

mysqld as root! if you attempt to run mysqld as root. If you need to override this restriction for some reason, start mysqld

with the user=root option.

Better practice, and the default in most situations, is to use a separate user, exclusively used for MariaDB. In most

distributions, this user is called mysql .

1.3.43.14 mysql_secure_installation

2.2.1.4 Security-Enhanced Linux with MariaDB
Contents
1. Verifying Whether SELinux Is Enabled

1. Temporarily Putting mysqld Into Permissive Mode

2. Configuring a MariaDB Server SELinux Policy

3. Setting File Contexts

1. Setting the File Context for the Data Directory

2. Setting the File Context for Log Files

3. Setting the File Context for Option Files

4. Allowing Access to the Tmpfs File Context

4. Troubleshooting SELinux Issues

1. File System Permission Errors

2. SELinux and MariaDB On a Different Port

3. Generating SELinux Policies with audit2allow

Security-Enhanced Linux (SELinux) is a Linux kernel module that provides a framework for configuring mandatory access

control (MAC) system for many resources on the system. It is enabled by default on some Linux distributions, including

RHEL, CentOS, Fedora, and other similar Linux distribution. SELinux prevents programs from accessing files, directories or

ports unless it is configured to access those resources.

Verifying Whether SELinux Is Enabled
To verify whether SELinux is enabled, execute the getenforce command. For example:

getenforce

Temporarily Putting mysqld Into Permissive Mode

When you are troubleshooting issues that you think SELinux might be causing, it can help to temporarily put mysqld_t into

permissive mode. This can be done by executing the semanage command. For example:

sudo semanage permissive -a mysqld_t

If that solved the problem, then it means that the current SELinux policy is the culprit. You need to adjust the SELinux policy

or labels for MariaDB.

1997/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://selinuxproject.org/page/Main_Page
https://en.wikipedia.org/wiki/Mandatory_access_control
https://linux.die.net/man/8/getenforce
https://linux.die.net/man/8/semanage

Configuring a MariaDB Server SELinux Policy
MariaDB Server should work with your default distribution policy (which is usually part of the selinux-policy or

selinux-policy-targeted system package). If you use mysqld_safe , you will need an additional policy file,

mariadb.pp , which is installed together with the MariaDB Server. It will be loaded automatically if you have

/usr/sbin/semodule installed, but you can load it manually anytime with

/usr/sbin/semodule -i /usr/share/mysql/policy/selinux/mariadb.pp

Note that this policy file extends, but not replaces the system policy.

Setting File Contexts
SELinux uses file contexts as a way to determine who should be able to access that file.

File contexts are managed with the semanage fcontext and restorecon commands.

On many systems, the semanage utility is installed by the policycoreutils-python package, and the restorecon

 utility is installed by the policycoreutils package. You can install these with the following command:

sudo yum install policycoreutils policycoreutils-python

A file or directory's current context can be checked by executing ls with the --context or --scontext options.

Setting the File Context for the Data Directory

If you use a custom directory for datadir , then you may need to set the file context for that directory. The SELinux file

context for MariaDB data files is mysqld_db_t . You can determine if this file context is present on your system and which

files or directories it is associated with by executing the following command:

sudo semanage fcontext --list | grep mysqld_db_t

If you would like to set the file context for your custom directory for your datadir , then that can be done by executing the

semanage fcontext and restorecon commands. For example:

sudo semanage fcontext -a -t mysqld_db_t "/mariadb/data(/.*)?"

sudo restorecon -Rv /mariadb/data

If you would like to check the current file context, you can do so by by executing ls with the --context or --scontext

options. For example:

ls --directory --scontext /mariadb/data

Setting the File Context for Log Files

If you use a custom directory for log files, then you may need to set the file context for that directory. The SELinux file

context for MariaDB log files is mysqld_log_t . You can determine if this file context is present on your system and which

files or directories it is associated with by executing the following command:

sudo semanage fcontext --list | grep mysqld_log_t

If you would like to set the file context for your custom directory for log files, then that can be done by executing the

semanage fcontext and restorecon commands. For example:

sudo semanage fcontext -a -t mysqld_log_t "/var/log/mysql(/.*)?"

sudo restorecon -Rv /var/log/mysql

If you would like to check the current file context, you can do so by by executing ls with the --context or --scontext

options. For example:

ls --directory --scontext /var/log/mysql

1998/4161

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/sect-security-enhanced_linux-working_with_selinux-selinux_contexts_labeling_files
https://linux.die.net/man/8/restorecon
https://linux.die.net/man/8/restorecon
https://linux.die.net/man/8/semanage
https://linux.die.net/man/8/restorecon
https://linux.die.net/man/8/semanage
https://linux.die.net/man/8/restorecon

Setting the File Context for Option Files

If you use a custom directory for option files, then you may need to set the file context for that directory. The SELinux file

context for MariaDB option files is mysqld_etc_t . You can determine if this file context is present on your system and

which files or directories it is associated with by executing the following command:

sudo semanage fcontext --list | grep mysqld_etc_t

If you would like to set the file context for your custom directory for option files, then that can be done by executing the

semanage fcontext and restorecon commands. For example:

sudo semanage fcontext -a -t mysqld_etc_t "/etc/mariadb(/.*)?"

sudo restorecon -Rv /etc/mariadb

If you would like to check the current file context, you can do so by by executing ls with the --context or --scontext

options. For example:

ls --directory --scontext /etc/mariadb

Allowing Access to the Tmpfs File Context

If you wanted to mount your tmpdir on a tmpfs file system or wanted to use a tmpfs file system on /run/shm , then

you might need to allow mysqld_t to have access to a couple tmpfs-related file contexts. For example:

cd /usr/share/mysql/policy/selinux/

tee ./mysqld_tmpfs.te <<EOF

module mysqld_tmpfs 1.0;

require {

type tmpfs_t;

type mysqld_t;

class dir { write search read remove_name open getattr add_name };

class file { write getattr read lock create unlink open };

}

allow mysqld_t tmpfs_t:dir { write search read remove_name open getattr add_name };

allow mysqld_t tmpfs_t:file { write getattr read lock create unlink open }

EOF

sudo checkmodule -M -m mysqld_tmpfs.te -o mysqld_tmpfs.mod

sudo semodule_package -m mysqld_tmpfs.mod -o mysqld_tmpfs.pp

sudo semodule -i mysqld_tmpfs.pp

Troubleshooting SELinux Issues
You might need to troubleshoot SELinux-related issues in cases, such as:

MariaDB is using a non-default port.

MariaDB is reading from or writing to some files (datadir, log files, option files, etc.) located at non-default paths.

MariaDB is using a plugin that requires access to resources that default installations do not use.

File System Permission Errors

If the file system permissions for some MariaDB directory look fine, but the MariaDB error log still has errors that look similar

to the following:

130321 11:50:51 mysqld_safe Starting mysqld daemon with databases from /datadir

...

2013-03-21 11:50:52 2119 [Warning] Can't create test file /datadir/

2013-03-21 11:50:52 2119 [Warning] Can't create test file /datadir/

...

2013-03-21 11:50:52 2119 [ERROR] /usr/sbin/mysqld: Can't create/write to file

 '/datadir/boxy.pid' (Errcode: 13 - Permission denied)

2013-03-21 11:50:52 2119 [ERROR] Can't start server: can't create PID file:

 Permission denied

130321 11:50:52 mysqld_safe mysqld from pid file /datadir/boxy.pid ended

1999/4161

https://linux.die.net/man/8/semanage
https://linux.die.net/man/8/restorecon

Then check SELinux's /var/log/audit/audit.log for log entries that look similar to the following:

type=AVC msg=audit(1363866652.030:24): avc: denied { write } for pid=2119

 comm="mysqld" name="datadir" dev=dm-0 ino=394

 scontext=unconfined_u:system_r:mysqld_t:s0

 tcontext=unconfined_u:object_r:default_t:s0 tclass=dir

If you see any entries that look similar to this, then you most likely need to adjust the file contexts for some files or

directories. See Setting File Contexts for more information on how to do that.

SELinux and MariaDB On a Different Port

TCP and UDP ports are enabled for permission to bind too. If you are using a different port, or some Galera ports, configure

SELinux to be able to use those ports:

sudo semanage port -a -t mysqld_port_t -p tcp 3307

Generating SELinux Policies with audit2allow

In some cases, a MariaDB system might need non-standard policies. It is possible to create these policies from the SELinux

audit log using the audit2allow utility. The semanage and semodule utilities will also be needed.

On many systems, the audit2allow and semanage utilities are installed by the policycoreutils-python

package, and the semodule utility is installed by the policycoreutils package. You can install these with the

following command:

sudo yum install policycoreutils policycoreutils-python

The following process can be used to generate a policy from the audit log:

Remove dontaudits from the policy:

sudo semodule -DB

Temporarily put mysqld_t into permissive mode. For example:

sudo semanage permissive -a mysqld_t

Start MariaDB .

Do whatever was causing SELinux errors.

Use the generated audit log to create a policy:

sudo grep mysqld /var/log/audit/audit.log | audit2allow -M mariadb_local

sudo semodule -i mariadb_local.pp

Pull mysqld_t out of permissive mode. For example:

sudo semanage permissive -d mysqld_t

Restore dontaudits for the policy:

sudo setmodule -B

The same procedure can be used if MariaDB starts but SELinux prevents it from functioning correctly. For example,

SELinux may prevent PAM plugin from authenticating users. The solution is the same 4 enable auditing, switch to

permissive, do, whatever SELinux didn't allow you to, create a policy from the audit log.

When you discover any needed SELinux permissions, please report the needed permissions to your operating system bug

tracking so all users can benefit from your work (e.g. Red Hat Bugzilla https://bugzilla.redhat.com/).

2.2.2 User Account Management
2000/4161

https://linux.die.net/man/1/audit2allow
https://linux.die.net/man/8/semanage
https://linux.die.net/man/8/semodule
https://linux.die.net/man/1/audit2allow
https://linux.die.net/man/8/semanage
https://linux.die.net/man/8/semodule
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/pam-authentication-plugin/
https://bugzilla.redhat.com/

Administering user accounts in MariaDB

Account Management SQL Commands

CREATE/DROP USER, GRANT, REVOKE, SET PASSWORD etc.

Data-in-Transit Encryption

Data can be encrypted in transit using the Transport Layer Security (TLS) protocol.

Roles

Roles bundle privileges together to ease account management.

Catalogs

Catalogs permit several unrelated users or customers to share a single MariaDB Server instance.

Account Locking

Account locking permits privileged administrators to lock/unlock user accounts.

Authentication from MariaDB 10.4

Authentication changes from MariaDB 10.4.

User Password Expiry

Password expiry permits administrators to expire user passwords.

There are 3 related questions .

2

4

1.1.1.1 Account Management SQL Commands

2.2.1.1.1 Data-in-Transit Encryption

2.2.2.3 Roles
Roles bundle privileges together to ease account management

Roles Overview

Bundling privileges together.

CREATE ROLE

Add new roles.

DROP ROLE

Drop a role.

CURRENT_ROLE

Current role name.

SET ROLE

Enable a role.

SET DEFAULT ROLE

Sets a default role for a specified (or current) user.

GRANT

Create accounts and set privileges or roles.

REVOKE

Remove privileges or roles.

mysql.roles_mapping Table

MariaDB roles information.

5

1

1

5

6

4

2001/4161

https://mariadb.com/kb/en/authentication-from-mariadb-10-4/
https://mariadb.com/kb/en/user-account-management/+questions/

Information Schema APPLICABLE_ROLES Table

Roles available to be used.

Information Schema ENABLED_ROLES Table

Enabled roles for the current session.

SecuRich

Library of security-related stored procedures.

There are 2 related questions .

2.2.2.3.1 Roles Overview
Contents
1. Description

2. System Tables

3. Examples

4. Roles and Views (and Stored Routines)

5. Other Resources

Description
A role bundles a number of privileges together. It assists larger organizations where, typically, a number of users would

have the same privileges, and, previously, the only way to change the privileges for a group of users was by changing each

user's privileges individually.

Alternatively, multiple external users could have been assigned the same user, and there would have been no way to see

which actual user was responsible for which action.

With roles, managing this is easy. For example, there could be a number of users assigned to a journalist role, with identical

privileges. Changing the privileges for all the journalists is a matter of simply changing the role's privileges, while the

individual user is still linked with any changes that take place.

Roles are created with the CREATE ROLE statement, and dropped with the DROP ROLE statement. Roles are then

assigned to a user with an extension to the GRANT statement, while privileges are assigned to a role in the regular way

with GRANT. Similarly, the REVOKE statement can be used to both revoke a role from a user, or revoke a privilege from a

role.

Once a user has connected, he can obtain all privileges associated with a role by setting a role with the SET ROLE

statement. The CURRENT_ROLE function returns the currently set role for the session, if any.

Only roles granted directly to a user can be set, roles granted to other roles cannot. Instead the privileges granted to a role,

which is, in turn, granted to another role (grantee), will be immediately available to any user who sets this second grantee

role.

The SET DEFAULT ROLE statement allows one to set a default role for a user. A default role is automatically enabled when

a user connects (an implicit SET ROLE statement is executed immediately after a connection is established).

Roles were implemented as a GSoC 2013 project by Vicentiu Ciorbaru.

System Tables
Information about roles and who they've been granted to can be found in the Information Schema APPLICABLE_ROLES

table as well as the mysql.ROLES_MAPPING table.

The Information Schema ENABLED_ROLES table shows the enabled roles for the current session.

Examples
Creating a role and granting a privilege:

CREATE ROLE journalist;

GRANT SHOW DATABASES ON *.* TO journalist;

GRANT journalist to hulda;

2002/4161

https://mariadb.com/kb/en/securich/
https://mariadb.com/kb/en/roles/+questions/

Note, that hulda has no SHOW DATABASES privilege, even though she was granted the journalist role. She needs to set the

role first:

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

+--------------------+

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| NULL |

+--------------+

SET ROLE journalist;

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| journalist |

+--------------+

SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| ... |

| information_schema |

| mysql |

| performance_schema |

| test |

| ... |

+--------------------+

SET ROLE NONE;

Roles can be granted to roles:

CREATE ROLE writer;

GRANT SELECT ON data.* TO writer;

GRANT writer TO journalist;

But one does not need to set a role granted to a role. For example, hulda will automatically get all writer privileges when she

sets the journalist role:

2003/4161

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| NULL |

+--------------+

SHOW TABLES FROM data;

Empty set (0.01 sec)

SET ROLE journalist;

SELECT CURRENT_ROLE;

+--------------+

| CURRENT_ROLE |

+--------------+

| journalist |

+--------------+

SHOW TABLES FROM data;

+------------------------------+

| Tables_in_data |

+------------------------------+

| set1 |

| ... |

+------------------------------+

Roles and Views (and Stored Routines)
When a user sets a role, he, in a sense, has two identities with two associated sets of privileges. But a view (or a stored

routine) can have only one definer. So, when a view (or a stored routine) is created with the SQL SECURITY DEFINER , one

can specify whether the definer should be CURRENT_USER (and the view will have none of the privileges of the user's role)

or CURRENT_ROLE (in this case, the view will use role's privileges, but none of the user's privileges). As a result, sometimes

one can create a view that is impossible to use.

2004/4161

CREATE ROLE r1;

GRANT ALL ON db1.* TO r1;

GRANT r1 TO foo@localhost;

GRANT ALL ON db.* TO foo@localhost;

SELECT CURRENT_USER

+---------------+

| current_user |

+---------------+

| foo@localhost |

+---------------+

SET ROLE r1;

CREATE TABLE db1.t1 (i int);

CREATE VIEW db.v1 AS SELECT * FROM db1.t1;

SHOW CREATE VIEW db.v1;

+------+---

---+----------------------+----------------

------+

| View | Create View

| character_set_client | collation_connection |

+------+---

---+----------------------+----------------

------+

| v1 | CREATE ALGORITHM=UNDEFINED DEFINER=`foo`@`localhost` SQL SECURITY DEFINER VIEW

`db`.`v1` AS SELECT `db1`.`t1`.`i` AS `i` from `db1`.`t1` | utf8 |

utf8_general_ci |

+------+---

---+----------------------+----------------

------+

CREATE DEFINER=CURRENT_ROLE VIEW db.v2 AS SELECT * FROM db1.t1;

SHOW CREATE VIEW db.b2;

+------+---

--+----------------------+----------------------+

| View | Create View

| character_set_client | collation_connection |

+------+---

--+----------------------+----------------------+

| v2 | CREATE ALGORITHM=UNDEFINED DEFINER=`r1` SQL SECURITY DEFINER VIEW `db`.`v2` AS select

`db1`.`t1`.`a` AS `a` from `db1`.`t1` | utf8 | utf8_general_ci |

+------+---

--+----------------------+----------------------+

Other Resources
Roles Review by Peter Gulutzan

1.1.1.1.8 CREATE ROLE

1.1.1.1.9 DROP ROLE

1.2.8.3.7 CURRENT_ROLE

1.1.1.1.10 SET ROLE

1.1.1.1.11 SET DEFAULT ROLE

1.1.1.1.4 GRANT
2005/4161

http://ocelot.ca/blog/blog/2014/01/12/roles-review/

1.1.1.1.6 REVOKE

1.1.1.2.9.3.20 mysqlroles_mapping Table

1.1.1.2.9.1.1.5 Information Schema
APPLICABLE_ROLES Table

1.1.1.2.9.1.1.14 Information Schema ENABLED_ROLES
Table

2.2.2.4 Catalogs
Catalogs are an upcoming feature intended primarily for Cloud Service Providers with many customers, each having many

MariaDB Server users and databases.

Catalogs will permit several unrelated users or customers to share a single MariaDB Server instance.

Catalogs Overview

Catalogs offer multi-tenancy.

Starting with Catalogs

Installing MariaDB with catalogs and adding new catalogs.

Catalog Status Variables

With catalogs enabled, status information is collected for the whole server...

DROP CATALOG

Deletes a catalog.

USE CATALOG

Changes to another catalog.

2.2.2.4.1 Catalogs Overview
Contents
1. Background

2. User Experience With Catalogs

3. New 'catalog root user'

4. New Storage Layout

5. Catalog SQL Commands/Functions

6. Changes Needed in MariaDB Codebase

7. Some Implementation Ideas

8. Limitations (in addition to limitations listed in <User experience with catalogs=)

9. Stage 2 (not in first release)

10. Stage 3

11. Migration of existing MariaDB original mode to the new catalog layout

12. Migration of one catalog user to another MariaDB server

13. Other Things

Catalogs are an upcoming feature that will be included in a future release of MariaDB. The MariaDB catalogs will be a

multi-tenancy feature where a single instance MariaDB server handles multiple independent tenants (customers), who

have their own users, schemas etc. See MDEV-31542 "Add multi-tenancy catalogs to MariaDB" for details.

Background
For hosting providers, a common solution, to drive down cost, is to have one MariaDB server support several different

customers by creating one named schema for each of them.

This has however a lot of limitations:

2006/4161

https://jira.mariadb.org/browse/MDEV-31542

The user cannot have exactly the same schema(s) on the cloud as they have on premise.

The user cannot use multiple schemas.

The user cannot take a backup of all their data (not even with mariadb-dump). This is because the 8mysql9 schema,

which includes users, stored procedures etc. cannot be copied as its data is shared among all server users.

The user cannot access the general or error log.

The suggested solution to solve all of the above and thus create a better multi-tenant database is to add support for

catalogs to MariaDB.

By each user having their own catalog, they will get very close to the same user experience as if they would have the

MariaDB server for themselves.

Catalogs make it possible for hosting providers to have 10-100x more 'not that active' database users on a server compared

to having a container or MariaDB server per customer (which limits a 192G server to about 100 customers with a 1G

InnoDB buffer each).

User Experience With Catalogs
Each user is assigned one catalog. The user can specify their catalog in their my.cnf file or as an argument to clients

or when connecting to MariaDB server.

Users can mariadb-dump of all their tables (including the 8mysql9 database) and apply it on their own on premise

MariaDB or to another 8MariaDB catalog9 to duplicate their setup.

Each catalog has its own privilege system. This allows a MariaDB admin to create users independently in their

catalog to users in any other catalog. This also implies that the catalog has to be part of the connect information as

otherwise the server does not know which user table to use.

If the user is using applications that don9t yet support catalogs, they can specify the catalog as part of the database

when connecting to the server ('catalog.database') or by connecting to a specific port that is associated with a

catalog.

After logging in, a normal user can only see the objects (databases, tables, users etc) from their database. They

cannot access other catalogs or change catalogs.

A normal user cannot change the active catalog with a command. They need to logout from the current catalog and

login to another.

For the end user, the MariaDB server will act as a normal a standalone server, with the following differences:

When connecting to the server, a normal user must specify the catalog. If the connector software does not support

catalogs, then the catalog should be specified in the database string. If the catalog is not specified, the 'def' catalog is

assumed.

LOAD DATA INFILE and SELECT & INTO OUTFILE can be configured to only be used with the catalog directory or

a directory in it.

SHUTDOWN command is only for the 'catalog root users'

Replication (MASTER and SLAVE commands) are only for 'catalog root users'

Errors from background task (like write error) will be logged into the system error log, not the catalog error log.

SHOW STATUS will show status data for the whole server, not only for the active catalog.

The server will handle legacy applications by extending the default database in the connection to contain the catalog

in the form <catalog/database=. See Appendix for details.

Tables that are only read from the 8def.mysql9 schema:

plugin

help_* tables

time_zone* tables

gtid_slave_pos (replication state)

innodb_index_stats (innodb internal)

servers (federated)

transaction_registry (innodb internal)

func (udf)

performance_schema

New 'catalog root user'
The 'def' catalog is reserved to store permissions for 'catalog root users', which can access any catalog. * These are

meant for admin users that need to do tasks like shutdown, upgrade, create/drop catalogs, managing primaries and

replicas etc.

Only the 8catalog root user9 can change to another catalog with 8set catalog catalog_name9.

A normal user can do 8set catalog current-catalog9. This will be needed to be able to execute a mariadb-dump that

includes this command.

New Storage Layout
2007/4161

https://mariadb.com/kb/en/mysql-transaction_registry-table/

MariaDB server will be able to run either on 'original mode', where the data layout is exactly as it was before, or on 'catalog'

mode, with a new data layout:

When running mariadb-install-db with --use-catalogs, it will create the following new data structure:

data_directory/

engine system data files

system files

replication files

general.log

error.log

mariadb/

mysql/

privilege tables

catalog1

general.log

error.log

mysql/

privilege tables

database1/

tables for database1

database2/

tables for database2

catalog2/

general.log

error.log

mysql/

privilege tables

database1/

tables for database1

database2/

tables for database2

The disk structure when not using catalogs is:

data_directory/

engine system data files

system files

replication files

general.log

error.log

mysql/

privilege tables

database1/

tables for database1

database2/

tables for database2

The above shows:

There is a 'mariadb' catalog that stores admin users that can access all catalogs, shutdown servers, create new

catalogs etc. The 'system root' user uses this when connecting.

Each catalog has their own users, privilege tables, databases, error log and general logs

The MariaDB server will automatically start in catalog mode if it notices the new directory structure.

Catalog SQL Commands/Functions
USE CATALOG catalog_name;

CREATE CATALOG

DROP CATALOG

ALTER CATALOG

SHOW CATALOGS (and also information_schema.catalogs)

SHOW CREATE CATALOG catalog_name;

SELECT CATALOG();

Changes Needed in MariaDB Codebase
Client changes:

2008/4161

Add --catalog option to all standard MariaDB clients

Add support for looping over all existing catalogs to:

mariadb-dump

mariadb-backup

mariadb-upgrade

Changes to mariadb-install-db:

Allow one to create multiple catalogs at once: -3catalogs==catalog1,catalog2=

Init MariaDB with catalog support: 4use-catalogs

Changes to mariadb (mysql client):

Add support for 'USE CATALOG xxx9' (and later 'use database xxx').

Changes to mysql-test-run:

Add support of running tests with catalogs (normal tests are run without catalogs)

Changes to MariaDB server (See MDEV-31542):

Add support for 'catalog' in the connection string. For old clients, the user can specify the catalog as part of the

database. If catalog is not specified, the 'def' catalog (like now) is assumed.

Add CATALOG() function that returns the current catalog.

Add 8USE CATALOG xxx9

Add 'USE DATABASE xxx'

Create a global CATALOG object to hold all information related to the catalog.

Add the current catalog to the 'thd' object.

Add catalog argument to all functions that take 'database' as an argument.

Add SHOW CATALOGS and information_schema.catalogs

Move all relevant global variables (users, privileges, mdl-locks(?), open log files) to be stored in the CATALOG

structure.

Add 'catalog privilege', for 8catalog super users9 to allow them to access data in any catalog.

Add support for accessing tables with 'catalog.schema.table' (needed for catalog super users).

For normal users, only show processes for the current catalog in 'show processlist'.

Add loops over all catalogs for information schema for the 'catalog root user'.

Update performance schema to take catalogs into account.

Work with external connectors to get them to support connecting with a catalog.

Check/update all storage engines to ensure they work also with catalogs.

Notes:

The storage handler calls will probably not be changed. The storage engine will get the catalog name as part of the

database name (catalog/database).

We don't need a 'catalog' column for tables in the 'mysql' schema (like mysql.proc) as these are stored per catalog.

Some Implementation Ideas
Instead of sending a catalog string to function, use a pointer to the global catalog object. Do the same later for

databases. This allows use to precompute things like 'filename' for catalogs and databases and we don't have to do

this for every table open. It also allows us to later support logging information at a catalog and database level.

Don't take a MDL lock for the catalog for each table. The metadata lock for the catalog will be taken when a user logs

in or changes catalog.

Add system variables 8current_catalog9 and 8current_database9 and allow users to change these.

Add support for 8catalog ports9 that are connected to catalog. This allows users to connect to a specific catalog from

any client software.

Limitations (in addition to limitations listed in <User
experience with catalogs=)

Database names cannot contain 8.9 when connecting from clients without the new catalog connect option.

One cannot refer to other catalogs in triggers, stored procedures, events etc. This is because a transaction cannot

span catalogs.

Only the catalog root user can use mariadb-backup. This is a normal restriction as one has to be system root to be

able to use mariadb-backup.

Events are global (to save resources). Catalog users can enable/disable events for their catalog.

Stage 2 (not in first release)
2009/4161

https://jira.mariadb.org/browse/MDEV-31542

Support usage statistics per catalog and whole server (the last for the 8catalog root user9). This allows the DBA to see

the number of queries, type of queries etc. Some 8system9 and 8global innodb9 statistics will only be shown globally

(number of open files, number of sync calls etc).

Support a my.cnf file in each catalog directory to handle catalog (customer) unique defaults.

Add quotas per catalog for tables and temporary files.

Add more support to limit users from overusing resources (cpu, tables, databases, number of connections etc)

Support 'drop catalog'. (This is in Stage 2 as there may be some issues to drop already active CATALOG objects)

Add optional catalog support to the S3 engine

More things will be added later.

Stage 3
Allow users to manage their own replication stream (maybe?).

Allow users to have different options for the S3 engine

More things will be added later.

Appendix

Legacy Connector Support

SQLALchemy test:

In [1]: from sqlalchemy.engine import make_url

In [2]: u = make_url('mariadb+mariadbconnector://app_user:Password123!@127.0.0.1:3306/catalog/company')

In [3]: u.database

Out[3]: 'catalog/company'

The following tests ensured that inside the server (mysql_change_db), the <catalog/test= was picked up as the database.

PHP PDO test:

$ php -r '$db = new \PDO("mysql:host=localhost;user=dan;dbname=catalog/test;charset=utf8mb4;unix_socket=/tmp/build-mariadb-server-10.4.sock");'

PHP mysqli test:

php -r '$dbcon = mysqli_connect("localhost","dan","nopass","catalog/test",3306,"/tmp/build-mariadb-server-10.4.sock");'

Nodejs test:

var mysql = require('mysql')

var con = mysql.createConnection({

 socketPath: "/tmp/build-mariadb-server-10.4.sock",

 user: "dan",

 password: "yourpassword",

 database: "catalog/test",

})

con.connect(function(err) {

 if (err) throw err;

 console.log("Connected!");

})

(need to map out a few other connectors here to make sure it9s supported well in this form).

Ref: https://mariadb.com/kb/en/connection/#handshake-response-packet

Migration of existing MariaDB original mode to the new
catalog layout
As shared hosting services have a naming scheme from user/schema to database name in MariaDB, to provide a migration

to the new catalog layout, the following steps will be required:

Use mariadb-dump to dump the original data

On the new server execute:

mariadb-install-db 3catalogs=9catalog_name9

mariadb 3catalog catalog_name < dump_file

2010/4161

https://mariadb.com/kb/en/connection/#handshake-response-packet

This is needed as InnoDB needs to know where the new files are located.

Migration of one catalog user to another MariaDB server
Create a migration tool set / procedure that does the following

Execute FLUSH TABLES FOR EXPORT for all tables in a catalog.

Take a copy of the catalog directory

Copy the data to a new catalog directory to the new server

Run ALTER TABLE ... IMPORT TABLESPACE on each InnoDB table

Note that for partitioned tables the process will be a bit more complex, see above link.

This procedure will be a bit easier after an in-the-works patch for InnoDB related to IMPORT will be pushed. (Should happen

before we start on the catalog project)

Other Things
Drizzle9s default catalog was called "local". MariaDB9s default will be called 8def9, as this is what we already have as

the default catalog in information_schema, in current connectors and other places.

CONNECT engine will need testing against catalogs and maybe a small code change to support them. It could also

be a way to join from one catalog to another.

2.2.2.4.2 Starting with Catalogs

Catalog support is planned for 11.3.

Contents
1. Background

2. Initializing a New Server with Catalog Support

3. Adding More Catalogs to a Running Server

Background
mariadb-install-db initializes the MariaDB data directory and creates the system tables in the mysql database.

When used with the --catalog options it will initialize MariaDB server to use catalogs. The mariadbd server will

automatically discover if catalogs are used or not.

Note that one cannot change a 'normal server' to a server with catalogs or a server with catalogs to a 'normal server'. In

the future we will add tools that will allow one to easily move an existing server inside a catalog or move an server inside a

catalog to a standalone server.

Initializing a New Server with Catalog Support
To initialize a server with 4 catalogs (the def catalog, that holds the catalog root user (CRU) is automatically created):

mariadb_install_db --catalogs="cat1 cat2 cat3" --datadir=/my/data/

The above will create a directory /my/data and the 4 directories under it, one for each catalog.

Adding More Catalogs to a Running Server
When adding more catalogs to an existing server, mariadb_install_db will start the mariadb client to execute the

needed commands on the running server. This is why one has to supply user and password to mariadb_install_db .

mariadb_install_db --catalogs="cat4 cat5 cat6" --datadir=/my/data --catalog-user=monty --catalog-password

MariaDB starting with 11.3

2.2.2.4.3 Catalog Status Variables
2011/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mysqld

When using a MariaDB Server with catalogs support, all status information is collected for the whole server, per catalog and

per user.

SHOW SERVER STATUS;

shows the status for the whole server. Note that only the super user in the 'def' catalog has privileges for the above

statement.

SHOW GLOBAL STATUS;

SHOW CATALOG STATUS;

Both commands show the status for the current catalog. The reason that GLOBAL shows catalog status is that because

catalogs are 'multi-tenant', a catalog user should not be able to see the status from other users (for most things).

SHOW [SESSION] STATUS;

Shows the status for the current connection.

The main "new thing" is that catalogs enable SAS providers to see the status for a single tenant (catalog user). This makes

it much easier to find 'bad neighbors' (tenants that cause problems for other tenants) so that they can be moved to other

servers.

When the MariaDB server is not configured for catalogs, the following commands are equivalent:

SHOW GLOBAL STATUS

SHOW SERVER STATUS

SHOW CATALOG STATUS

2.2.2.4.4 DROP CATALOG

Syntax

DROP CATALOG catalog_name

Description
Deletes a catalog. Can only be performed by a super user in the 'def' catalog. If the current catalog is dropped, the user is

moved to the 'def' catalog. 'def' catalog cannot be dropped.

Currently, there cannot be any databases in a catalog to be dropped. This will be fixed soon.

2.2.2.4.5 USE CATALOG

Syntax

USE CATALOG catalog_name

Description
Changes to another catalog. Can only be done by a super user in the 'def' catalog. Changing catalog will update catalog

status and reset all session status.

A tenant (a user in any other catalog than 'def') cannot change to another catalog. However tenants can execute USE

CATALOG current_catalog . This is to allow the user to import SQL scripts that use USE CATALOG... .

2.2.2.5 Account Locking

2012/4161

Account locking was introduced in MariaDB 10.4.2.

Contents
1. Description

Description

Account locking permits privileged administrators to lock/unlock user accounts. No new client connections will be permitted

if an account is locked (existing connections are not affected).

User accounts can be locked at creation, with the CREATE USER statement, or modified after creation with the ALTER

USER statement. For example:

CREATE USER 'lorin'@'localhost' ACCOUNT LOCK;

or

ALTER USER 'marijn'@'localhost' ACCOUNT LOCK;

The server will return an ER_ACCOUNT_HAS_BEEN_LOCKED error when locked users attempt to connect:

mysql -ulorin

 ERROR 4151 (HY000): Access denied, this account is locked

The ALTER USER statement is also used to unlock a user:

ALTER USER 'lorin'@'localhost' ACCOUNT UNLOCK;

The SHOW CREATE USER statement will show whether the account is locked:

SHOW CREATE USER 'marijn'@'localhost';

+---+

| CREATE USER for marijn@localhost |

+---+

| CREATE USER 'marijn'@'localhost' ACCOUNT LOCK |

+---+

as well as querying the mysql.global_priv table:

SELECT CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) FROM mysql.global_priv

 WHERE user='marijn';

+--+

| CONCAT(user, '@', host, ' => ', JSON_DETAILED(priv)) |

+--+

| marijn@localhost => {

 "access": 0,

 "plugin": "mysql_native_password",

 "authentication_string": "",

 "account_locked": true,

 "password_last_changed": 1558017158

} |

+--+

MariaDB starting with 10.4.2

2.2.2.6 Authentication from MariaDB 10.4

MariaDB 10.4 introduced a number of changes to the authentication process, intended to make things easier and more

intuitive.

MariaDB starting with 10.4

2013/4161

Contents
1. Overview

2. Description

3. Cookbook

4. Reverting to the Previous Authentication Method for root@localhost

1. Configuring mariadb-install-db to Revert to the Previous Authentication Method

2. Altering the User Account to Revert to the Previous Authentication Method

Overview
There are four new main features in 10.4 relating to authentication:

It is possible to use more than one authentication plugin for each user account. For example, this can be useful to

slowly migrate users to the more secure ed25519 authentication plugin over time, while allowing the old

mysql_native_password authentication plugin as an alternative for the transitional period.

The root@localhost user account created by mariadb-install-db is created with the ability to use two

authentication plugins.

First, it is configured to try to use the unix_socket authentication plugin. This allows the root@localhost user

to login without a password via the local Unix socket file defined by the socket system variable, as long as the

login is attempted from a process owned by the operating system root user account.

Second, if authentication fails with the unix_socket authentication plugin, then it is configured to try to use the

mysql_native_password authentication plugin. However, an invalid password is initially set, so in order to

authenticate this way, a password must be set with SET PASSWORD.

However, just using the unix_socket authentication plugin may be fine for many users, and it is very secure.

You may want to try going without password authentication to see how well it works for you. Remember, the

best way to keep your password safe is not to have one!

All user accounts, passwords, and global privileges are now stored in the mysql.global_priv table. The mysql.user

table still exists and has exactly the same set of columns as before, but it9s now a view that references the

mysql.global_priv table. Tools that analyze the mysql.user table should continue to work as before. From MariaDB

10.4.13, the dedicated mariadb.sys user is created as the definer of this view. Previously root was the definer,

which resulted in privilege problems when this username was changed.

MariaDB 10.4 adds supports for User Password Expiry, which is not active by default.

Description
As a result of the above changes, the open-for-everyone all-powerful root account is finally gone. And installation scripts will

no longer demand that you <PLEASE REMEMBER TO SET A PASSWORD FOR THE MariaDB root USER !=, because the

root account is securely created automatically.

Two all-powerful accounts are created by default 4 root and the OS user that owns the data directory, typically mysql. They

are created as:

CREATE USER root@localhost IDENTIFIED VIA unix_socket OR mysql_native_password USING 'invalid'

CREATE USER mysql@localhost IDENTIFIED VIA unix_socket OR mysql_native_password USING 'invalid'

Using unix_socket means that if you are the system root user, you can login as root@locahost without a password. This

technique was pioneered by Otto Kekäläinen in Debian MariaDB packages and has been successfully used in Debian since

as early as MariaDB 10.0.

It is based on a simple fact that asking the system root for a password adds no extra security 4 root has full access to all

the data files and all process memory anyway. But not asking for a password means, there is no root password to forget (no

need for the numerous tutorials on <how to reset MariaDB root password=). And if you want to script some tedious database

work, there is no need to store the root password in plain text for the script to use (no need for debian-sys-maint user).

Still, some users may wish to log in as MariaDB root without using sudo. Hence the old authentication method 4

conventional MariaDB password 4 is still available. By default it is disabled (<invalid= is not a valid password hash), but one

can set the password with a usual SET PASSWORD statement. And still retain the password-less access via sudo.

If you install MariaDB locally (say from a tarball), you would not want to use sudo to be able to login. This is why MariaDB

creates a second all-powerful user with the same name as a system user that owns the data directory. In local (not system-

wide) installations, this will be the user who installed MariaDB 4 they automatically get convenient password-less root-like

access, because they can access all the data files anyway.

Even if MariaDB is installed system-wide, you may not want to run your database maintenance scripts as system root 4

now you can run them as system mysql user. And you will know that they will never destroy your entire system, even if you

make a typo in a shell script.

However, seasoned MariaDB DBAs who are used to the old ways do need to make some changes. See the examples

below for common tasks.
2014/4161

Cookbook
After installing MariaDB system-wide the first thing you9ve got used to doing is logging in into the unprotected root account

and protecting it, that is, setting the root password:

$ sudo dnf install MariaDB-server

$ mysql -uroot

...

MariaDB> set password = password("XH4VmT3_jt");

This is not only unnecessary now, it will simply not work 4 there is no unprotected root account. To login as root use

$ sudo dnf install MariaDB-server

$ sudo mysql

Note that it implies you are connecting via the unix socket, not tcp. If you happen to have protocol=tcp in a system-wide

/etc/my.cnf file, use sudo mysql --protocol=socket .

After installing MariaDB locally you9ve also used to connect to the unprotected root account using mysql -uroot . This will

not work either, simply use mysql without specifying a username.

If you've forgotten your root password, no problem 4 you can still connect using sudo and change the password. And if

you've also removed unix_socket authentication, to restore access do as follows:

restart MariaDB with --skip-grant-tables

login into the unprotected server

run FLUSH PRIVILEGES (note, before 10.4 this would9ve been the last step, not anymore). This disables --skip-

grant-tables and allows you to change the stored authentication method

run SET PASSWORD FOR root@localhost to change the root password.

To view inside privilege tables, the old mysql.user table still exists. You can select from it as before, although you cannot

update it anymore. It doesn9t show alternative authentication plugins and this was one of the reasons for switching to the

mysql.global_priv table 4 complex authentication rules did not fit into rigid structure of a relational table. You can select

from the new table, for example:

select concat(user, '@', host, ' => ', json_detailed(priv)) from mysql.global_priv;

Reverting to the Previous Authentication Method for
root@localhost
If you don't want the root@localhost user account created by mariadb-install-db to use unix_socket authentication by

default, then there are a few ways to revert to the previous mysql_native_password authentication method for this user

account.

Configuring mariadb-install-db to Revert to the Previous Authentication
Method

One way to revert to the previous mysql_native_password authentication method for the root@localhost user account is

to execute mariadb-install-db with a special option. If mariadb-install-db is executed while --auth-root-

authentication-method=normal is specified, then it will create the default user accounts using the default behavior of

MariaDB 10.3 and before.

This means that the root@localhost user account will use mysql_native_password authentication by default. There are

some other differences as well. See mariadb-install-db: User Accounts Created by Default for more information.

For example, the option can be set on the command-line while running mariadb-install-db:

mariadb-install-db --user=mysql --datadir=/var/lib/mysql --auth-root-authentication-method=normal

The option can also be set in an option file in an option group supported by mariadb-install-db. For example:

[mysql_install_db]

auth_root_authentication_method=normal

2015/4161

If the option is set in an option file and if mariadb-install-db is executed, then mariadb-install-db will read this option from the

option file, and it will automatically set this option.

Altering the User Account to Revert to the Previous Authentication
Method

If you have already installed MariaDB, and if the root@localhost user account is already using unix_socket

authentication, then you can revert to the old mysql_native_password authentication method for the user account by

executing the following:

ALTER USER root@localhost IDENTIFIED VIA mysql_native_password USING PASSWORD("verysecret")

2.2.2.7 User Password Expiry

User password expiry was introduced in MariaDB 10.4.3.

Contents
1. System Variables

2. Setting a Password Expiry Limit for a User

3. SHOW CREATE USER

4. Checking When Passwords Expire

5. --connect-expired-password Client Option

Password expiry permits administrators to expire user passwords, either manually or automatically.

System Variables
There are two system variables which affect password expiry: default_password_lifetime, which determines the amount of

time between requiring the user to change their password. 0 , the default, means automatic password expiry is not active.

The second variable, disconnect_on_expired_password determines whether a client is permitted to connect if their

password has expired, or whether they are permitted to connect in sandbox mode, able to perform a limited subset of

queries related to resetting the password, in particular SET PASSWORD and SET.

Setting a Password Expiry Limit for a User
Besides automatic password expiry, as determined by default_password_lifetime, password expiry times can be set on an

individual user basis, overriding the global using the CREATE USER or ALTER USER statements, for example:

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

Limits can be disabled by use of the NEVER keyword, for example:

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE NEVER;

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE NEVER;

A manually set limit can be restored the system default by use of DEFAULT , for example:

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE DEFAULT;

ALTER USER 'monty'@'localhost' PASSWORD EXPIRE DEFAULT;

SHOW CREATE USER

MariaDB starting with 10.4.3

2016/4161

The SHOW CREATE USER statement will display information about the password expiry status of the user. Unlike MySQL,

it will not display if the user is unlocked, or if the password expiry is set to default.

CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY;

CREATE USER 'konstantin'@'localhost' PASSWORD EXPIRE NEVER;

CREATE USER 'amse'@'localhost' PASSWORD EXPIRE DEFAULT;

SHOW CREATE USER 'monty'@'localhost';

+--+

| CREATE USER for monty@localhost |

+--+

| CREATE USER 'monty'@'localhost' PASSWORD EXPIRE INTERVAL 120 DAY |

+--+

SHOW CREATE USER 'konstantin'@'localhost';

+--+

| CREATE USER for konstantin@localhost |

+--+

| CREATE USER 'konstantin'@'localhost' PASSWORD EXPIRE NEVER |

+--+

SHOW CREATE USER 'amse'@'localhost';

+--------------------------------+

| CREATE USER for amse@localhost |

+--------------------------------+

| CREATE USER 'amse'@'localhost' |

+--------------------------------+

Checking When Passwords Expire
The following query can be used to check when the current passwords expire for all users:

WITH password_expiration_info AS (

 SELECT User, Host,

 IF(

 IFNULL(JSON_EXTRACT(Priv, '$.password_lifetime'), -1) = -1,

 @@global.default_password_lifetime,

 JSON_EXTRACT(Priv, '$.password_lifetime')

) AS password_lifetime,

 JSON_EXTRACT(Priv, '$.password_last_changed') AS password_last_changed

 FROM mysql.global_priv

)

SELECT pei.User, pei.Host,

 pei.password_lifetime,

 FROM_UNIXTIME(pei.password_last_changed) AS password_last_changed_datetime,

 FROM_UNIXTIME(

 pei.password_last_changed +

 (pei.password_lifetime * 60 * 60 * 24)

) AS password_expiration_datetime

 FROM password_expiration_info pei

 WHERE pei.password_lifetime != 0

 AND pei.password_last_changed IS NOT NULL

UNION

SELECT pei.User, pei.Host,

 pei.password_lifetime,

 FROM_UNIXTIME(pei.password_last_changed) AS password_last_changed_datetime,

 0 AS password_expiration_datetime

 FROM password_expiration_info pei

 WHERE pei.password_lifetime = 0

 OR pei.password_last_changed IS NULL;

--connect-expired-password Client Option
The mariadb client --connect-expired-password option notifies the server that the client is prepared to handle expired

password sandbox mode (even if the --batch option was specified).

2.3 Backing Up and Restoring Databases
There are a number of ways to backup a MariaDB server.

2017/4161

Backup and Restore Overview

Backing up and restoring MariaDB.

Replication as a Backup Solution

Replication can be used to support the backup strategy.

mariadb-dump

Dump a database or a collection of databases in a portable format.

Mariabackup

Physical backups, supports Data-at-Rest and InnoDB compression.

Backup and Restore via dbForge Studio

The fastest and easiest way to perform these operations with MariaDB databases.

mariadb-hotcopy

Fast backup program on local machine. Deprecated.

There are 13 related questions .

9

2.3.1 Backup and Restore Overview
Contents
1. Logical vs Physical Backups

2. Backup Tools

1. Mariadb-backup

2. mariadb-dump

1. InnoDB Logical Backups

2. Examples

3. mariadb-hotcopy

1. Examples

4. Percona XtraBackup

5. Filesystem Snapshots

6. LVM

7. Percona TokuBackup

8. dbForge Studio for MySQL

This article briefly discusses the main ways to backup MariaDB. For detailed descriptions and syntax, see the individual

pages. More detail is in the process of being added.

Logical vs Physical Backups
Logical backups consist of the SQL statements necessary to restore the data, such as CREATE DATABASE, CREATE

TABLE and INSERT.

Physical backups are performed by copying the individual data files or directories.

The main differences are as follows:

logical backups are more flexible, as the data can be restored on other hardware configurations, MariaDB versions or

even on another DBMS, while physical backups cannot be imported on significantly different hardware, a different

DBMS, or potentially even a different MariaDB version.

logical backups can be performed at the level of database and table, while physical databases are the level of

directories and files. In the MyISAM and InnoDB storage engines, each table has an equivalent set of files. (In

versions prior to MariaDB 5.5, by default a number of InnoDB tables are stored in the same file, in which case it is not

possible to backup by table. See innodb_file_per_table.)

logical backups are larger in size than the equivalent physical backup.

logical backups takes more time to both backup and restore than the equivalent physical backup.

log files and configuration files are not part of a logical backup

Backup Tools

2018/4161

https://mariadb.com/kb/en/backup-and-restore-via-dbforge-studio/
https://mariadb.com/kb/en/backing-up-and-restoring-databases/+questions/

Mariadb-backup

Mariadb-backup is a fork of Percona XtraBackup with added support for MariaDB 10.1 compression and data-at-rest

encryption. It is included with MariaDB 10.1.23 and later.

mariadb-dump

mariadb-dump (previously mysqldump) performs a logical backup. It is the most flexible way to perform a backup and

restore, and a good choice when the data size is relatively small.

For large datasets, the backup file can be large, and the restore time lengthy.

mariadb-dump dumps the data into SQL format (it can also dump into other formats, such as CSV or XML) which can then

easily be imported into another database. The data can be imported into other versions of MariaDB, MySQL, or even another

DBMS entirely, assuming there are no version or DBMS-specific statements in the dump.

mariadb-dump dumps triggers along with tables, as these are part of the table definition. However, stored procedures,

views, and events are not, and need extra parameters to be recreated explicitly (for example, --routines and --

events). Procedures and functions are however also part of the system tables (for example mysql.proc).

InnoDB Logical Backups

InnoDB uses the buffer pool, which stores data and indexes from its tables in memory. This buffer is very important for

performance. If InnoDB data doesn't fit the memory, it is important that the buffer contains the most frequently accessed

data. However, last accessed data is candidate for insertion into the buffer pool. If not properly configured, when a table

scan happens, InnoDB may copy the whole contents of a table into the buffer pool. The problem with logical backups is that

they always imply full table scans.

An easy way to avoid this is by increasing the value of the innodb_old_blocks_time system variable. It represents the

number of milliseconds that must pass before a recently accessed page can be put into the "new" sublist in the buffer pool.

Data which is accessed only once should remain in the "old" sublist. This means that they will soon be evicted from the

buffer pool. Since during the backup process the "old" sublist is likely to store data that is not useful, one could also consider

resizing it by changing the value of the innodb_old_blocks_pct system variable.

It is also possible to explicitly dump the buffer pool on disk before starting a logical backup, and restore it after the process.

This will undo any negative change to the buffer pool which happens during the backup. To dump the buffer pool, the

innodb_buffer_pool_dump_now system variable can be set to ON. To restore it, the innodb_buffer_pool_load_now system

variable can be set to ON.

Examples

Backing up a single database

shell> mariadb-dump db_name > backup-file.sql

Restoring or loading the database

shell> mariadb db_name < backup-file.sql

See the mariadb-dump page for detailed syntax and examples.

mariadb-hotcopy

mariadb-hotcopy is deprecated.

mariadb-hotcopy performs a physical backup, and works only for backing up MyISAM and ARCHIVE tables. It can only be

run on the same machine as the location of the database directories.

Examples

shell> mariadb-hotcopy db_name [/path/to/new_directory]

shell> mariadb-hotcopy db_name_1 ... db_name_n /path/to/new_directory

Percona XtraBackup

2019/4161

https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/InnoDB_compression
https://mariadb.com/kb/en/mariadb-10123-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/functions

In MariaDB 10.1 and later, Mariabackup is the recommended backup method to use instead of Percona XtraBackup.

In MariaDB 10.3, Percona XtraBackup is not supported. See Percona XtraBackup Overview: Compatibility with

MariaDB for more information.

In MariaDB 10.2 and MariaDB 10.1, Percona XtraBackup is only partially supported. See Percona XtraBackup

Overview: Compatibility with MariaDB for more information.

Percona XtraBackup is a tool for performing fast, hot backups. It was designed specifically for XtraDB/InnoDB databases,

but can be used with any storage engine (although not with MariaDB 10.1 encryption and compression). It is not included by

default with MariaDB.

Filesystem Snapshots

Some filesystems, like Veritas, support snapshots. During the snapshot, the table must be locked. The proper steps to

obtain a snapshot are:

From the mariadb client, execute FLUSH TABLES WITH READ LOCK. The client must remain open.

From a shell, execute mount vxfs snapshot

The client can execute UNLOCK TABLES.

Copy the snapshot files.

From a shell, unmount the snapshot with umount snapshot .

LVM

Widely-used physical backup method, using a Perl script as a wrapper. See http://www.lenzg.net/mylvmbackup/ .

Percona TokuBackup

For details, see:

TokuDB Hot Backup 3 Part 1

TokuDB Hot Backup 3 Part 2

TokuDB Hot Backup Now a MySQL Plugin

dbForge Studio for MySQL

Besides the system utilities, it is possible to use third-party GUI tools to perform backup and restore operations. In this

context, it is worth mentioning dbForge Studio for MySQL, a feature-rich database IDE that is fully compatible with MariaDB

and delivers extensive backup functionality.

The backup and restore module of the Studio allows precise configuration and management of full and partial backups up

to particular database objects. The feature of scheduling regular backups offers specific settings to handle errors and keep a

log of them. Additionally, settings and configurations can be saved for later reuse.

These operations are wizard-aided allowing users to set up all tasks in a visual mode.

3.1.6 Replication as a Backup Solution

1.3.6.2 mysqldump

2.3.4 Mariabackup
Mariabackup is an open source tool provided by MariaDB for performing physical online backups of InnoDB, MyRocks, Aria

and MyISAM tables.

Mariabackup Overview

The Mariabackup utility performs physical backups and supports Data-at-Rest...15

2020/4161

https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/
http://www.lenzg.net/mylvmbackup/
https://www.percona.com/blog/2013/09/12/tokudb-hot-backup-part-1/
https://www.percona.com/blog/2013/09/19/tokudb-hot-backup-part-2/
https://www.percona.com/blog/2015/02/05/tokudb-hot-backup-now-mysql-plugin/
https://mariadb.com/kb/en/backup-and-restore-via-dbforge-studio/

Mariabackup Options

Options for Mariabackup.

Full Backup and Restore with Mariabackup

Taking complete backups of databases and restoring from a complete backup.

Incremental Backup and Restore with Mariabackup

Backing up incremental changes of a database

Partial Backup and Restore with Mariabackup

Taking partial backups of databases and restoring from a partial backup.

Restoring Individual Tables and Partitions with Mariabackup

Restoring individual tables and partitions from a backup.

Setting up a Replica with Mariabackup

Setting up a replica with Mariabackup.

Files Backed Up By Mariabackup

Mariabackup backs up many different files in order to perform its operations.

Files Created by Mariabackup

Mariabackup creates many different files in order to perform its operations.

Using Encryption and Compression Tools With Mariabackup

Mariabackup supports streaming to stdout, allowing easy integration with popular tools.

How Mariabackup Works

Description of the different Mariabackup stages, what they do and why they are needed.

Mariabackup and BACKUP STAGE Commands

How Mariabackup could use BACKUP STAGE commands.

mariabackup SST Method

The mariabackup SST method uses the Mariabackup utility for performing SSTs.

Manual SST of Galera Cluster Node With Mariabackup

It can be helpful to perform a "manual SST" with Mariabackup when Galera's normal SSTs fail.

Individual Database Restores with MariaBackup from Full Backup

Restoring individual databases with MariaBackup from full backup.

There are 9 related questions .

7

15

5

1

2

1

1

1

2.3.4.1 Mariabackup Overview
Mariabackup is an open source tool provided by MariaDB for performing physical online backups of InnoDB, Aria and

MyISAM tables. For InnoDB, <hot online= backups are possible. It was originally forked from Percona XtraBackup 2.3.8. It

is available on Linux and Windows.

This tool provides a production-quality, nearly non-blocking method for performing full backups on running systems. While

partial backups with MariaBackup are technically possible, they require many steps and cannot be restored directly onto

existing servers containing other data.

2021/4161

https://mariadb.com/kb/en/mariabackup/+questions/
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/

Contents
1. Backup Support for MariaDB-Exclusive Features

1. Supported Features

1. Supported Features in MariaDB Enterprise Backup

2. Differences Compared to Percona XtraBackup

1. Difference in Versioning Schemes

2. Compatibility of Mariabackup Releases with MariaDB Server Releases

3. Installing Mariabackup

1. Installing on Linux

1. Installing with a Package Manager

1. Installing with yum/dnf

2. Installing with apt-get

3. Installing with zypper

2. Installing on Windows

4. Using Mariabackup

1. Options

2. Option Files

1. Server Option Groups

2. Client Option Groups

3. Authentication and Privileges

4. File System Permissions

5. Using Mariabackup with Data-at-Rest Encryption

6. Using Mariabackup for Galera SSTs

5. Files Backed up by Mariabackup

6. Files Created by Mariabackup

7. Known Issues

1. Unsupported Server Option Groups

2. No Default Datadir

3. Concurrent DDL and Backup Issues

4. Manual Restore with Pre-existing InnoDB Redo Log files

5. Too Many Open Files

8. Versions

Backup Support for MariaDB-Exclusive Features
MariaDB 10.1 introduced features that are exclusive to MariaDB, such as InnoDB Page Compression and Data-at-Rest

Encryption. These exclusive features have been very popular with MariaDB users. However, existing backup solutions from

the MySQL ecosystem, such as Percona XtraBackup , did not support full backup capability for these features.

To address the needs of our users, we decided to develop a backup solution that would fully support these popular

MariaDB-exclusive features. We did this by creating Mariabackup, which is based on the well-known and commonly used

backup tool called Percona XtraBackup . Mariabackup was originally extended from version 2.3.8.

Supported Features

Mariabackup supports all of the main features of Percona XtraBackup 2.3.8, plus:

Backup/Restore of tables using Data-at-Rest Encryption.

Backup/Restore of tables using InnoDB Page Compression.

mariabackup SST method with Galera Cluster.

Microsoft Windows support.

Backup/Restore of tables using the MyRocks storage engine starting with MariaDB 10.2.16 and MariaDB 10.3.8 .

See Files Backed up by Mariabackup: MyRocks Data Files for more information.

Supported Features in MariaDB Enterprise Backup

MariaDB Enterprise Backup supports some additional features, such as:

Minimizes locks during the backup to permit more concurrency and to enable faster backups.

This relies on the usage of BACKUP STAGE commands and DDL logging.

This includes no locking during the copy phase of ALTER TABLE statements, which tends to be the longest

phase of these statements.

Provides optimal backup support for all storage engines that store things on local disk.

Differences Compared to Percona XtraBackup

Percona XtraBackup copies its InnoDB redo log files to the file xtrabackup_logfile , while Mariabackup uses the

2022/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/InnoDB_compression
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/InnoDB_compression
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/docs/usage/mariadb-enterprise-backup/

file ib_logfile0 .

Percona XtraBackup's libgcrypt-based encryption of backups is not supported by Mariabackup.

There is no symbolic link from mariabackup to innobackupex , as there is for xtrabackup . Instead,

mariabackup has the --innobackupex command-line option to enable innobackupex-compatible options.

The --compact and --rebuild_indexes options are not supported.

Support for --stream=tar was removed from Mariabackup in MariaDB 10.1.24 .

The xbstream utility has been renamed to mbstream . However, to select this output format when creating a

backup, Mariabackup's --stream option still expects the xbstream value.

Mariabackup does not support lockless binlog .

Difference in Versioning Schemes

Each Percona XtraBackup release has two version numbers--the Percona XtraBackup version number and the version

number of the MySQL Server release that it is based on. For example:

xtrabackup version 2.2.8 based on MySQL server 5.6.22

Each Mariabackup release only has one version number, and it is the same as the version number of the MariaDB Server

release that it is based on. For example:

mariabackup based on MariaDB server 10.2.15-MariaDB Linux (x86_64)

See Compatibility of Mariabackup Releases with MariaDB Server Releases for more information on Mariabackup versions.

Compatibility of Mariabackup Releases with MariaDB
Server Releases

It is not generally possible, or supported, to prepare a backup in a different MariaDB version than the database version

at the time when backup was taken. For example, if you backup MariaDB 10.4, you should use mariabackup version

10.4, rather than e.g 10.5.

A MariaDB Server version can often be backed up with most other Mariabackup releases in the same release series. For

example, MariaDB 10.2.21 and MariaDB 10.2.22 are both in the MariaDB 10.2 release series, so MariaDB Server from

MariaDB 10.2.21 could be backed up by Mariabackup from MariaDB 10.2.22 , or vice versa.

However, occasionally, a MariaDB Server or Mariabackup release will include bug fixes that will break compatibility with

previous releases. For example, the fix for MDEV-13564 changed the InnoDB redo log format in MariaDB 10.2.19

which broke compatibility with previous releases. To be safest, a MariaDB Server release should generally be backed up

with the Mariabackup release that has the same version number.

Mariabackup from MariaDB 10.1 releases may also be able to back up MariaDB Server from MariaDB 5.5 and MariaDB

10.0 releases in many cases. However, this is not fully supported. See MDEV-14936 for more information.

Installing Mariabackup

Installing on Linux

The mariabackup executable is included in binary tarballs on Linux.

Installing with a Package Manager

Mariabackup can also be installed via a package manager on Linux. In order to do so, your system needs to be configured

to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

2023/4161

https://www.percona.com/doc/percona-xtrabackup/2.3/backup_scenarios/encrypted_backup.html
https://www.percona.com/doc/percona-xtrabackup/2.3/innobackupex/innobackupex_option_reference.html
https://www.percona.com/doc/percona-xtrabackup/2.3/xtrabackup_bin/xbk_option_reference.html
https://www.percona.com/doc/percona-xtrabackup/2.3/xtrabackup_bin/xbk_option_reference.html#cmdoption-xtrabackup-compact
https://www.percona.com/doc/percona-xtrabackup/2.3/xtrabackup_bin/xbk_option_reference.html#cmdoption-xtrabackup-rebuild-indexes
https://www.percona.com/doc/percona-xtrabackup/2.3/howtos/recipes_ibkx_stream.html
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://www.percona.com/doc/percona-xtrabackup/2.3/xbstream/xbstream.html
https://www.percona.com/doc/percona-xtrabackup/2.3/advanced/lockless_bin-log.html
https://mariadb.com/kb/en/mariadb-10221-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10221-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://jira.mariadb.org/browse/MDEV-13564
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://jira.mariadb.org/browse/MDEV-14936
https://downloads.mariadb.org/mariadb/repositories/

Installing with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

package from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced

by dnf , which is the next major version of yum . However, yum commands still work on many systems that use dnf . For

example:

sudo yum install MariaDB-backup

Installing with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB package from

MariaDB's repository using apt-get . For example:

sudo apt-get install mariadb-backup

Installing with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM package

from MariaDB's repository using zypper . For example:

sudo zypper install MariaDB-backup

Installing on Windows

The mariabackup executable is included in MSI and ZIP packages on Windows.

When using the Windows MSI installer, mariabackup can be installed by selecting Backup utilities:

Using Mariabackup
The command to use mariabackup and the general syntax is:

mariabackup <options>

For in-depth explanations on how to use Mariabackup, see:

Full Backup and Restore with Mariabackup

Incremental Backup and Restore with Mariabackup

Partial Backup and Restore with Mariabackup

Restoring Individual Tables and Partitions with Mariabackup

Setting up a Replication Slave with Mariabackup

Using Encryption and Compression Tools With Mariabackup

2024/4161

https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get

Options

Options supported by Mariabackup can be found here.

mariabackup will currently silently ignore unknown command-line options, so be extra careful about accidentally including

typos in options or accidentally using options from later mariabackup versions. The reason for this is that mariabackup

currently treats command-line options and options from option files equivalently. When it reads from these option files, it has

to read a lot of options from the server option groups read by mysqld . However, mariabackup does not know about

many of the options that it normally reads in these option groups. If mariabackup raised an error or warning when it

encountered an unknown option, then this process would generate a large amount of log messages under normal use.

Therefore, mariabackup is designed to silently ignore the unknown options instead. See MDEV-18215 about that.

Option Files

In addition to reading options from the command-line, Mariabackup can also read options from option files.

The following options relate to how MariaDB command-line tools handles option files. They must be given as the first

argument on the command-line:

Option Description

--print-defaults Print the program argument list and exit.

--no-defaults Don't read default options from any option file.

--defaults-file=# Only read default options from the given option file.

--defaults-extra-file=# Read this file after the global files are read.

--defaults-group-suffix=# In addition to the default option groups, also read option groups with this suffix.

Server Option Groups

Mariabackup reads server options from the following option groups from option files:

Group Description

[mariabackup] Options read by Mariabackup. Available starting with MariaDB 10.1.31 and MariaDB 10.2.13 .

[mariadb-

backup]
Options read by Mariabackup. Available starting with MariaDB 10.4.14 and MariaDB 10.5.4.

[xtrabackup] Options read by Mariabackup and Percona XtraBackup .

[server]
Options read by MariaDB Server. Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and

MariaDB 10.3.13 .

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

[mysqld-X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL

Server. For example, [mysqld-10.4] . Available starting with MariaDB 10.1.38 , MariaDB 10.2.22

, and MariaDB 10.3.13 .

[mariadb]
Options read by MariaDB Server. Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and

MariaDB 10.3.13 .

[mariadb-X.Y]
 Options read by a specific version of MariaDB Server. For example, [mariadb-10.4] . Available

starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 .

[mariadbd] Options read by MariaDB Server. Available starting with MariaDB 10.4.14 and MariaDB 10.5.4.

[mariadbd-

X.Y]

 Options read by a specific version of MariaDB Server. For example, [mariadbd-10.4] . Available

starting with MariaDB 10.4.14 and MariaDB 10.5.4.

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients. Available starting with MariaDB

10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 .

[galera]

 Options read by MariaDB Server, but only if it is compiled with Galera Cluster support. In MariaDB

10.1 and later, all builds on Linux are compiled with Galera Cluster support. When using one of these

builds, options from this option group are read even if the Galera Cluster functionality is not enabled.

Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 on systems

compiled with Galera Cluster support.

2025/4161

https://jira.mariadb.org/browse/MDEV-18215
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/percona-xtrabackup-overview/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/

Client Option Groups

Mariabackup reads client options from the following option groups from option files:

Group Description

[mariabackup] Options read by Mariabackup. Available starting with MariaDB 10.1.31 and MariaDB 10.2.13 .

[mariadb-

backup]
Options read by Mariabackup. Available starting with MariaDB 10.4.14 and MariaDB 10.5.4.

[xtrabackup] Options read by Mariabackup and Percona XtraBackup .

[client]
 Options read by all MariaDB and MySQL client programs, which includes both MariaDB and MySQL

clients. For example, mysqldump .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like

socket and port, which is common between the server and the clients. Available starting with MariaDB

10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 .

[client-

mariadb]

Options read by all MariaDB client programs. Available starting with MariaDB 10.1.38 , MariaDB

10.2.22 , and MariaDB 10.3.13 .

Authentication and Privileges

Mariabackup needs to authenticate with the database server when it performs a backup operation (i.e. when the --backup

option is specified). For most use cases, the user account that performs the backup needs to have the following global

privileges on the database server.

In 10.5 and later the required privileges are:

CREATE USER 'mariabackup'@'localhost' IDENTIFIED BY 'mypassword';

GRANT RELOAD, PROCESS, LOCK TABLES, BINLOG MONITOR ON *.* TO 'mariabackup'@'localhost';

Prior to 10.5, the required privileges are:

CREATE USER 'mariabackup'@'localhost' IDENTIFIED BY 'mypassword';

GRANT RELOAD, PROCESS, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'mariabackup'@'localhost';

If your database server is also using the MyRocks storage engine, then the user account that performs the backup will also

need the SUPER global privilege. This is because Mariabackup creates a checkpoint of this data by setting the

rocksdb_create_checkpoint system variable, which requires this privilege. See MDEV-20577 for more information.

CONNECTION ADMIN is also required where -kill-long-queries-timeout is greater than 0, and --no-lock isn't

applied in order to KILL queries. Prior to 10.5 a SUPER privilege is required instead of CONNECTION ADMIN .

To use the --history option, the backup user also needs to have the following privileges granted:

GRANT CREATE, INSERT ON mysql.* TO 'mariabackup'@'localhost';

Prior to MariaDB 10.11, the necessary permissions to use --history were:

GRANT CREATE, INSERT ON PERCONA_SCHEMA.* TO 'mariabackup'@'localhost';

If you're upgrading from an older version and you want to use the new default table without losing your backup history, you

can move and rename the current table in this way:

RENAME TABLE PERCONA_SCHEMA.xtrabackup_history TO mysql.mariadb_backup_history;

The user account information can be specified with the --user and --password command-line options. For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

The user account information can also be specified in a supported client option group in an option file. For example:

2026/4161

https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/percona-xtrabackup-overview/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://jira.mariadb.org/browse/MDEV-20577

[mariabackup]

user=mariabackup

password=mypassword

Mariabackup does not need to authenticate with the database server when preparing or restoring a backup.

File System Permissions

Mariabackup has to read MariaDB's files from the file system. Therefore, when you run Mariabackup as a specific operating

system user, you should ensure that user account has sufficient permissions to read those files.

If you are using Linux and if you installed MariaDB with a package manager, then MariaDB's files will probably be owned by

the mysql user and the mysql group.

Using Mariabackup with Data-at-Rest Encryption

Mariabackup supports Data-at-Rest Encryption.

Mariabackup will query the server to determine which key management and encryption plugin is being used, and then it will

load that plugin itself, which means that Mariabackup needs to be able to load the key management and encryption plugin's

shared library.

Mariabackup will also query the server to determine which encryption keys it needs to use.

In other words, Mariabackup is able to figure out a lot of encryption-related information on its own, so normally one doesn't

need to provide any extra options to backup or restore encrypted tables.

Mariabackup backs up encrypted and unencrypted tables as they are on the original server. If a table is encrypted, then the

table will remain encrypted in the backup. Similarly, if a table is unencrypted, then the table will remain unencrypted in the

backup.

The primary reason that Mariabackup needs to be able to encrypt and decrypt data is that it needs to apply InnoDB redo log

records to make the data consistent when the backup is prepared. As a consequence, Mariabackup does not perform many

encryption or decryption operations when the backup is initially taken. MariaDB performs more encryption and decryption

operations when the backup is prepared. This means that some encryption-related problems (such as using the wrong

encryption keys) may not become apparent until the backup is prepared.

Using Mariabackup for Galera SSTs

The mariabackup SST method uses the Mariabackup utility for performing SSTs. See mariabackup SST method for more

information.

Files Backed up by Mariabackup
Mariabackup backs up many different files in order to perform its backup operation. See Files Backed up by Mariabackup

for a list of these files.

Files Created by Mariabackup
Mariabackup creates several different types of files during the backup and prepare phases. See Files Created by

Mariabackup for a list of these files.

Known Issues

Unsupported Server Option Groups

Prior to MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 , Mariabackup doesn't read server options from all

option groups supported by the server. In those versions, it only looks for server options in the following server option

groups:

Group Description

[xtrabackup] Options read by Percona XtraBackup and Mariabackup.

[mariabackup]
Options read by Percona XtraBackup and Mariabackup. Available starting with MariaDB 10.1.31 and

MariaDB 10.2.13 .

2027/4161

https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/

[mysqld] Options read by mysqld , which includes both MariaDB Server and MySQL Server.

Those versions do not read server options from the following option groups supported by the server:

Group Description

[server]
Options read by MariaDB Server. Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and

MariaDB 10.3.13 .

[mysqld-

X.Y]

 Options read by a specific version of mysqld , which includes both MariaDB Server and MySQL Server.

For example, [mysqld-5.5] Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB

10.3.13 .

[mariadb]
Options read by MariaDB Server. Available starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and

MariaDB 10.3.13 .

[mariadb-

X.Y]
 Options read by a specific version of MariaDB Server. For example, [mariadb-10.3] Available starting

with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 .

[client-

server]

Options read by all MariaDB client programs and the MariaDB Server. This is useful for options like socket

and port, which is common between the server and the clients. Available starting with MariaDB 10.1.38 ,

MariaDB 10.2.22 , and MariaDB 10.3.13 .

[galera]

 Options read by MariaDB Server, but only if it is compiled with Galera Cluster support. In MariaDB 10.1

and later, all builds on Linux are compiled with Galera Cluster support. When using one of these builds,

options from this option group are read even if the Galera Cluster functionality is not enabled. Available

starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 on systems compiled with

Galera Cluster support.

See MDEV-18347 for more information.

No Default Datadir

Prior to MariaDB 10.1.36 , MariaDB 10.2.18 , and MariaDB 10.3.10 , if you were performing a --copy-back

operation, and if you did not explicitly specify a value for the datadir option either on the command line or one of the

supported server option groups in an option file, then Mariabackup would not default to the server's default datadir .

Instead, Mariabackup would fail with an error. For example:

Error: datadir must be specified.

The solution is to explicitly specify a value for the datadir option either on the command line or in one of the supported

server option groups in an option file. For example:

[mysqld]

datadir=/var/lib/mysql

In MariaDB 10.1.36 , MariaDB 10.2.18 , and MariaDB 10.3.10 and later, Mariabackup will default to the server's default

datadir value.

See MDEV-12956 for more information.

Concurrent DDL and Backup Issues

Prior to MariaDB 10.2.19 and MariaDB 10.3.10 , if concurrent DDL was executed while the backup was taken, then that

could cause various kinds of problems to occur.

One example is that if DDL caused any tablespace IDs to change (such as TRUNCATE TABLE or RENAME TABLE), then

that could cause the effected tables to be inconsistent in the backup. In this scenario, you might see errors about

mismatched tablespace IDs when the backup is prepared.

For example, the errors might look like this:

2028/4161

https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://jira.mariadb.org/browse/MDEV-18347
https://mariadb.com/kb/en/mariadb-10136-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10136-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://jira.mariadb.org/browse/MDEV-12956
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/

2018-12-07 07:49:32 7f51b3184820 InnoDB: Error: table 'DB1/TAB_TEMP'

InnoDB: in InnoDB data dictionary has tablespace id 1355633,

InnoDB: but a tablespace with that id does not exist. There is

InnoDB: a tablespace of name DB1/TAB_TEMP and id 1354713, though. Have

InnoDB: you deleted or moved .ibd files?

InnoDB: Please refer to

InnoDB: http://dev.mysql.com/doc/refman/5.6/en/innodb-troubleshooting-datadict.html

InnoDB: for how to resolve the issue.

Or they might look like this:

2018-07-12 21:24:14 139666981324672 [Note] InnoDB: Ignoring data file 'db1/tab1.ibd' with space

ID 200485, since the redo log references db1/tab1.ibd with space ID 200484.

Some of the problems related to concurrent DDL are described below.

Problems solved by setting --lock-ddl-per-table (Mariabackup command-line option added in MariaDB 10.2.9):

If a table is dropped during the backup, then it might still exists after the backup is prepared.

If a table exists when the backup starts, but it is dropped before the backup copies it, then the tablespace file can't be

copied, so the backup would fail.

Problems solved by setting innodb_log_optimize_ddl=OFF (MariaDB Server system variable added in MariaDB 10.2.17

 and removed in 10.6.0):

If the backup noticed concurrent DDL, then it might fail with "ALTER TABLE or OPTIMIZE TABLE was executed

during backup".

Problems solved by innodb_safe_truncate=ON (MariaDB Server system variable in MariaDB 10.2.19 and removed in

10.3.0):

If a table is created during the backup, then it might not exist in the backup after prepare.

If a table is renamed during the backup after the tablespace file was copied, then the table may not exist after the

backup is prepared.

If a table is dropped and created under the same name during the backup after the tablespace file was copied, then

the table will have the wrong tablespace ID when the backup is prepared.

Note that, with the removal of innodb_log_optimize_ddl and innodb_safe_truncate , the above problems were

definitely solved.

Problems solved by other bug fixes:

If --lock-ddl-per-table is used and if a table is concurrently being dropped or renamed, then Mariabackup can

fail to acquire the MDL lock.

These problems are only fixed in MariaDB 10.2 and later, so it is not recommended to execute concurrent DDL when using

Mariabackup with MariaDB 10.1.

See MDEV-13563 , MDEV-13564 , MDEV-16809 , and MDEV-16791 for more information.

Manual Restore with Pre-existing InnoDB Redo Log files

Prior to MariaDB 10.2.10 , Mariabackup users could run into issues if they restored a backup by manually copying the files

from the backup into the datadir while the directory still contained pre-existing InnoDB redo log files. The backup itself

did not contain InnoDB redo log files with the traditional ib_logfileN file names, so the pre-existing log files would

remain in the datadir . If the server were started with these pre-existing log files, then it could perform crash recovery with

them, which could cause the database to become inconsistent or corrupt.

In these MariaDB versions, this problem could be avoided by not restoring the backup by manually copying the files and

instead restoring the backup by using Mariabackup and providing the --copy-back option, since Mariabackup deletes

pre-existing InnoDB redo log files from the datadir during the restore process.

In MariaDB 10.2.10 and later, Mariabackup prevents this issue by creating an empty InnoDB redo log file called

ib_logfile0 as part of the --prepare stage. That way, if the backup is manually restored, any pre-existing InnoDB

redo log files would get overwritten by the empty one.

See MDEV-13311 for more information.

Too Many Open Files

If Mariabackup uses more file descriptors than the system is configured to allow, then users can see errors like the following:

2029/4161

https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://jira.mariadb.org/browse/MDEV-13563
https://jira.mariadb.org/browse/MDEV-13564
https://jira.mariadb.org/browse/MDEV-16809
https://jira.mariadb.org/browse/MDEV-16791
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://jira.mariadb.org/browse/MDEV-13311

2019-02-12 09:48:38 7ffff7fdb820 InnoDB: Operating system error number 23 in a file operation.

InnoDB: Error number 23 means 'Too many open files in system'.

InnoDB: Some operating system error numbers are described at

InnoDB: http://dev.mysql.com/doc/refman/5.6/en/operating-system-error-codes.html

InnoDB: Error: could not open single-table tablespace file ./db1/tab1.ibd

InnoDB: We do not continue the crash recovery, because the table may become

InnoDB: corrupt if we cannot apply the log records in the InnoDB log to it.

InnoDB: To fix the problem and start mysqld:

InnoDB: 1) If there is a permission problem in the file and mysqld cannot

InnoDB: open the file, you should modify the permissions.

InnoDB: 2) If the table is not needed, or you can restore it from a backup,

InnoDB: then you can remove the .ibd file, and InnoDB will do a normal

InnoDB: crash recovery and ignore that table.

InnoDB: 3) If the file system or the disk is broken, and you cannot remove

InnoDB: the .ibd file, you can set innodb_force_recovery > 0 in my.cnf

InnoDB: and force InnoDB to continue crash recovery here.

Prior to MariaDB 10.1.39 , MariaDB 10.2.24 , and MariaDB 10.3.14 , Mariabackup would actually ignore the error and

continue the backup. In some of those cases, Mariabackup would even report a successful completion of the backup to the

user. In later versions, Mariabackup will properly throw an error and abort when this error is encountered. See MDEV-19060

 for more information.

When this error is encountered, one solution is to explicitly specify a value for the open-files-limit option either on the

command line or in one of the supported server option groups in an option file. For example:

[mariabackup]

open_files_limit=65535

An alternative solution is to set the soft and hard limits for the user account that runs Mariabackup by adding new limits to

/etc/security/limits.conf . For example, if Mariabackup is run by the mysql user, then you could add lines like

the following:

mysql soft nofile 65535

mysql hard nofile 65535

After the system is rebooted, the above configuration should set new open file limits for the mysql user, and the user's

ulimit output should look like the following:

$ ulimit -Sn

65535

$ ulimit -Hn

65535

Versions

Mariabackup/Server Version Maturity

MariaDB 10.2.10 +, MariaDB 10.1.26 + Stable

MariaDB 10.2.7 +, MariaDB 10.1.25 Beta

MariaDB 10.1.23 Alpha

2.3.4.2 Mariabackup Options
Contents
1. List of Options

1. --apply-log

2. --apply-log-only

3. --backup

4. --binlog-info

5. --close-files

6. --compress

7. --compress-chunk-size

8. --compress-threads

9. --copy-back
2030/4161

https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://jira.mariadb.org/browse/MDEV-19060
https://linux.die.net/man/5/limits.conf
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-10125-release-notes/
https://mariadb.com/kb/en/mariadb-10123-release-notes/

10. --core-file

11. --databases

12. --databases-exclude

13. --databases-file

14. -h, --datadir

15. --debug-sleep-before-unlock

16. --decompress

17. --debug-sync

18. --defaults-extra-file

19. --defaults-file

20. --defaults-group

21. --encrypted-backup

22. --export

23. --extra-lsndir

24. --force-non-empty-directories

25. --ftwrl-wait-query-type

26. --ftwrl-wait-threshold

27. --ftwrl-wait-timeout

28. --galera-info

29. --history

30. -H, --host

31. --include

32. --incremental

33. --incremental-basedir

34. --incremental-dir

35. --incremental-force-scan

36. --incremental-history-name

37. --incremental-history-uuid

38. --incremental-lsn

39. --innobackupex

40. --innodb

41. --innodb-adaptive-hash-index

42. --innodb-autoextend-increment

43. --innodb-buffer-pool-filename

44. --innodb-buffer-pool-size

45. --innodb-checksum-algorithm

46. --innodb-data-file-path

47. --innodb-data-home-dir

48. --innodb-doublewrite

49. --innodb-encrypt-log

50. --innodb-file-io-threads

51. --innodb-file-per-table

52. --innodb-flush-method

53. --innodb-io-capacity

54. --innodb-log-checksums

55. --innodb-log-buffer-size

56. --innodb-log-files-in-group

57. --innodb-log-group-home-dir

58. --innodb-max-dirty-pages-pct

59. --innodb-open-files

60. --innodb-page-size

61. --innodb-read-io-threads

62. --innodb-undo-directory

63. --innodb-undo-tablespaces

64. --innodb-use-native-aio

65. --innodb-write-io-threads

66. --kill-long-queries-timeout

67. --kill-long-query-type

68. --lock-ddl-per-table

69. --log

70. --log-bin

71. --log-copy-interval

72. --log-innodb-page-corruption

73. --move-back

74. --mysqld

75. --no-backup-locks

76. --no-lock

77. --no-timestamp 2031/4161

77. --no-timestamp

78. --no-version-check

79. --open-files-limit

80. --parallel

81. -p, --password

82. --plugin-dir

83. --plugin-load

84. -P, --port

85. --prepare

86. --print-defaults

87. --print-param

88. --rollback-xa

89. --rsync

90. --safe-slave-backup

91. --safe-slave-backup-timeout

92. --secure-auth

93. --skip-innodb-adaptive-hash-index

94. --skip-innodb-doublewrite

95. --skip-innodb-log-checksums

96. --skip-secure-auth

97. --slave-info

98. -S, --socket

99. --ssl

100. --ssl-ca

101. --ssl-capath

102. --ssl-cert

103. --ssl-cipher

104. --ssl-crl

105. --ssl-crlpath

106. --ssl-key

107. --ssl-verify-server-cert

108. --stream

109. --tables

110. --tables-exclude

111. --tables-file

112. --target-dir

113. --throttle

114. --tls-version

115. -t, --tmpdir

116. --use-memory

117. --user

118. --version

There are a number of options available in Mariabackup .

List of Options

--apply-log

Prepares an existing backup to restore to the MariaDB Server. This is only valid in innobackupex mode, which can be

enabled with the --innobackupex option.

Files that Mariabackup generates during --backup operations in the target directory are not ready for use on the Server.

Before you can restore the data to MariaDB, you first need to prepare the backup.

In the case of full backups, the files are not point in time consistent, since they were taken at different times. If you try to

restore the database without first preparing the data, InnoDB rejects the new data as corrupt. Running Mariabackup with the

--prepare command readies the data so you can restore it to MariaDB Server. When working with incremental backups,

you need to use the --prepare command and the --incremental-dir option to update the base backup with the

deltas from an incremental backup.

$ mariabackup --innobackupex --apply-log

Once the backup is ready, you can use the --copy-back or the --move-back commands to restore the backup to the

server.

2032/4161

--apply-log-only

If this option is used when preparing a backup, then only the redo log apply stage will be performed, and other stages of

crash recovery will be ignored. This option is used with incremental backups.

This option is only supported in MariaDB 10.1. In MariaDB 10.2 and later, this option is not needed or supported.

--backup

Backs up your databases.

Using this command option, Mariabackup performs a backup operation on your database or databases. The backups are

written to the target directory, as set by the --target-dir option.

$ mariabackup --backup

 --target-dir /path/to/backup \

 --user user_name --password user_passwd

Mariabackup can perform full and incremental backups. A full backup creates a snapshot of the database in the target

directory. An incremental backup checks the database against a previously taken full backup, (defined by the --

incremental-basedir option) and creates delta files for these changes.

In order to restore from a backup, you first need to run Mariabackup with the --prepare command option, to make a full

backup point-in-time consistent or to apply incremental backup deltas to base. Then you can run Mariabackup again with

either the --copy-back or --move-back commands to restore the database.

For more information, see Full Backup and Restore and Incremental Backup and Restore.

--binlog-info

Defines how Mariabackup retrieves the binary log coordinates from the server.

--binlog-info[=OFF | ON | LOCKLESS | AUTO]

The --binlog-info option supports the following retrieval methods. When no retrieval method is provided, it defaults to

AUTO .

Option Description

OFF Disables the retrieval of binary log information

ON Enables the retrieval of binary log information, performs locking where available to ensure consistency

LOCKLESS Unsupported option

AUTO Enables the retrieval of binary log information using ON or LOCKLESS where supported

Using this option, you can control how Mariabackup retrieves the server's binary log coordinates corresponding to the

backup.

When enabled, whether using ON or AUTO , Mariabackup retrieves information from the binlog during the backup process.

When disabled with OFF , Mariabackup runs without attempting to retrieve binary log information. You may find this useful

when you need to copy data without metadata like the binlog or replication coordinates.

$ mariabackup --binlog-info --backup

Currently, the LOCKLESS option depends on features unsupported by MariaDB Server. See the description of the

xtrabackup_binlog_pos_innodb file for more information. If you attempt to run Mariabackup with this option, then it

causes the utility to exit with an error.

--close-files

Defines whether you want to close file handles.

Using this option, you can tell Mariabackup that you want to close file handles. Without this option, Mariabackup keeps files

open in order to manage DDL operations. When working with particularly large tablespaces, closing the file can make the

backup more manageable. However, it can also lead to inconsistent backups. Use at your own risk.

2033/4161

https://mariadb.com/kb/en/full-backup-and-restore-with-mariadb-backup/

$ mariabackup --close-files --prepare

--compress

This option was deprecated starting with MariaDB 10.1.31 and 10.2.13 as it relies on the no longer maintained

QuickLZ library. It is recommended to instead backup to a stream (stdout), and use a 3rd party compression library

to compress the stream, as described in Using Encryption and Compression Tools With Mariabackup.

Defines the compression algorithm for backup files.

--compress[=compression_algorithm]

The --compress option only supports the now deprecated quicklz algorithm.

Option Description

quicklz Uses the QuickLZ compression algorithm

$ mariabackup --compress --backup

If a backup is compressed using this option, then Mariabackup will record that detail in the xtrabackup_info file.

--compress-chunk-size

Deprecated, for details see the --compress option.

Defines the working buffer size for compression threads.

--compress-chunk-size=#

Mariabackup can perform compression operations on the backup files before writing them to disk. It can also use multiple

threads for parallel data compression during this process. Using this option, you can set the chunk size each thread uses

during compression. It defaults to 64K.

$ mariabackup --backup --compress \

 --compress-threads=12 --compress-chunk-size=5M

To further configure backup compression, see the --compress and --compress-threads options.

--compress-threads

Deprecated, for details see the --compress option.

Defines the number of threads to use in compression.

--compress-threads=#

Mariabackup can perform compression operations on the backup files before writing them to disk. Using this option, you can

define the number of threads you want to use for this operation. You may find this useful in speeding up the compression of

particularly large databases. It defaults to single-threaded.

$ mariabackup --compress --compress-threads=12 --backup

To further configure backup compression, see the --compress and --compress-chunk-size options.

--copy-back

2034/4161

https://mariadb.com/kb/en/mariadb-10131-release-notes/
http://www.quicklz.com/

Restores the backup to the data directory.

Using this command, Mariabackup copies the backup from the target directory to the data directory, as defined by the --

datadir option. You must stop the MariaDB Server before running this command. The data directory must be empty. If you

want to overwrite the data directory with the backup, use the --force-non-empty-directories option.

Bear in mind, before you can restore a backup, you first need to run Mariabackup with the --prepare option. In the case

of full backups, this makes the files point-in-time consistent. With incremental backups, this applies the deltas to the base

backup. Once the backup is prepared, you can run --copy-back to apply it to MariaDB Server.

$ mariabackup --copy-back --force-non-empty-directories

Running the --copy-back command copies the backup files to the data directory. Use this command if you want to save

the backup for later. If you don't want to save the backup for later, use the --move-back command.

--core-file

Defines whether to write a core file.

Using this option, you can configure Mariabackup to dump its core to file in the event that it encounters fatal signals. You

may find this useful for review and debugging purposes.

$ mariabackup --core-file --backup

--databases

Defines the databases and tables you want to back up.

--databases="database[.table][database[.table] ...]"

Using this option, you can define the specific database or databases you want to back up. In cases where you have a

particularly large database or otherwise only want to back up a portion of it, you can optionally also define the tables on the

database.

$ mariabackup --backup \

 --databases="example.table1 example.table2"

In cases where you want to back up most databases on a server or tables on a database, but not all, you can set the specific

databases or tables you don't want to back up using the --databases-exclude option.

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

In innobackupex mode, which can be enabled with the --innobackupex option, the --databases option can be used

as described above, or it can be used to refer to a file, just as the --databases-file option can in the normal mode.

--databases-exclude

Defines the databases you don't want to back up.

--databases-exclude="database[.table][database[.table] ...]"

Using this option, you can define the specific database or databases you want to exclude from the backup process. You may

find it useful when you want to back up most databases on the server or tables on a database, but would like to exclude a

few from the process.

$ mariabackup --backup \

 --databases="example" \

 --databases-exclude="example.table1 example.table2"

To include databases in the backup, see the --databases option option

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

--databases-file

2035/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/-databases-file

Defines the path to a file listing databases and/or tables you want to back up.

--databases-file="/path/to/database-file"

Format the databases file to list one element per line, with the following syntax:

database[.table]

In cases where you need to back up a number of databases or specific tables in a database, you may find the syntax for the

--databases and --databases-exclude options a little cumbersome. Using this option you can set the path to a file

listing the databases or databases and tables you want to back up.

For instance, imagine you list the databases and tables for a backup in a file called main-backup .

$ cat main-backup

example1

example2.table1

example2.table2

$ mariabackup --backup --databases-file=main-backup

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

-h, --datadir

Defines the path to the database root.

--datadir=PATH

Using this option, you can define the path to the source directory. This is the directory that Mariabackup reads for the data it

backs up. It should be the same as the MariaDB Server datadir system variable.

$ mariabackup --backup -h /var/lib64/mysql

--debug-sleep-before-unlock

This is a debug-only option used by the Xtrabackup test suite.

--decompress

Deprecated, for details see the --compress option.

This option requires that you have the qpress utility installed on your system.

Defines whether you want to decompress previously compressed backup files.

When you run Mariabackup with the --compress option, it compresses the subsequent backup files, using the QuickLZ

algorithm. Using this option, Mariabackup decompresses the compressed files from a previous backup.

For instance, run a backup with compression,

$ mariabackup --compress --backup

Then decompress the backup,

$ mariabackup --decompress

You can enable the decryption of multiple files at a time using the --parallel option. By default, Mariabackup does not

remove the compressed files from the target directory. If you want to delete these files, use the --remove-original

option.

2036/4161

--debug-sync

Defines the debug sync point. This option is only used by the Mariabackup test suite.

--defaults-extra-file

Defines the path to an extra default option file.

--defaults-extra-file=/path/to/config

Using this option, you can define an extra default option file for Mariabackup. Unlike --defaults-file , this file is read

after the default option files are read, allowing you to only overwrite the existing defaults.

$ mariabackup --backup \

 --defaults-file-extra=addition-config.cnf \

 --defaults-file=config.cnf

--defaults-file

Defines the path to the default option file.

--defaults-file=/path/to/config

Using this option, you can define a default option file for Mariabackup. Unlike the --defaults-extra-file option, when

this option is provided, it completely replaces all default option files.

$ mariabackup --backup \

 --defaults-file="config.cnf

--defaults-group

Defines the option group to read in the option file.

--defaults-group="name"

In situations where you find yourself using certain Mariabackup options consistently every time you call it, you can set the

options in an option file. The --defaults-group option defines what option group Mariabackup reads for its options.

Options you define from the command-line can be set in the configuration file using minor formatting changes. For instance,

if you find yourself perform compression operations frequently, you might set --compress-threads and --compress-

chunk-size options in this way:

[mariabackup]

compress_threads = 12

compress_chunk_size = 64K

Now whenever you run a backup with the --compress option, it always performs the compression using 12 threads and

64K chunks.

$ mariabackup --compress --backup

See Mariabackup Overview: Server Option Groups and Mariabackup Overview: Client Option Groups for a list of the option

groups read by Mariabackup by default.

--encrypted-backup

When this option is used with --backup , if Mariabackup encounters a page that has a non-zero key_version value,

then Mariabackup assumes that the page is encrypted.

Use --skip-encrypted-backup instead to allow Mariabackup to copy unencrypted tables that were originally created

before MySQL 5.1.48.

This option was added in MariaDB 10.2.22 , MariaDB 10.3.13 , and MariaDB 10.4.2.

2037/4161

https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/

--export

If this option is provided during the --prepare stage, then it tells Mariabackup to create .cfg files for each InnoDB file-

per-table tablespace. These .cfg files are used to import transportable tablespaces in the process of restoring partial

backups and restoring individual tables and partitions.

The --export option could require rolling back incomplete transactions that had modified the table. This will likely create a

"new branch of history" that does not correspond to the server that had been backed up, which makes it impossible to apply

another incremental backup on top of such additional changes. The option should only be applied when doing a --

prepare of the last incremental.

$ mariabackup --prepare --export

In MariaDB 10.2.8 and before, Mariabackup did not support the --export option. See MDEV-13466 about that.

In earlier versions of MariaDB, this means that Mariabackup could not create .cfg files for InnoDB file-per-table

tablespaces during the --prepare stage. You can still import file-per-table tablespaces without the .cfg files in

many cases, so it may still be possible in those versions to restore partial backups or to restore individual tables and

partitions with just the .ibd files. If you have a full backup and you need to create .cfg files for InnoDB file-per-table

tablespaces, then you can do so by preparing the backup as usual without the --export option, and then restoring

the backup, and then starting the server. At that point, you can use the server's built-in features to copy the

transportable tablespaces.

--extra-lsndir

Saves an extra copy of the xtrabackup_checkpoints and xtrabackup_info files into the given directory.

--extra-lsndir=PATH

When using the --backup command option, Mariabackup produces a number of backup files in the target directory. Using

this option, you can have Mariabackup produce additional copies of the xtrabackup_checkpoints and

xtrabackup_info files in the given directory.

$ mariabackup --extra-lsndir=extras/ --backup

This is especially usefull when using --stream for streaming output, e.g. for compression and/or encryption using external

tools in combination with incremental backups, as the xtrabackup_checkpoints file necessary to determine the LSN to

continue the incremental backup from is still accessible without uncompressing / decrypting the backup file first. Simply pass

in the --extra-lsndir of the previous backup as --incremental-basedir

--force-non-empty-directories

Allows --copy-back or --move-back command options to use non-empty target directories.

When using Mariabackup with the --copy-back or --move-back command options, they normally require a non-empty

target directory to avoid conflicts. Using this option with either of command allows Mariabackup to use a non-empty

directory.

$ mariabackup --force-non-empty-directories --copy-back

Bear in mind that this option does not enable overwrites. When copying or moving files into the target directory, if

Mariabackup finds that the target file already exists, it fails with an error.

--ftwrl-wait-query-type

Defines the type of query allowed to complete before Mariabackup issues the global lock.

--ftwrl-wait-query-type=[ALL | UPDATE | SELECT]

The --ftwrl-wait-query-type option supports the following query types. The default value is ALL .

MariaDB until 10.2.8

2038/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://jira.mariadb.org/browse/MDEV-13466

Option Description

ALL Waits until all queries complete before issuing the global lock

SELECT Waits until SELECT statements complete before issuing the global lock

UPDATE Waits until UPDATE statements complete before issuing the global lock

When Mariabackup runs, it issues a global lock to prevent data from changing during the backup process. When it

encounters a statement in the process of executing, it waits until the statement is finished before issuing the global lock.

Using this option, you can modify this default behavior to ensure that it waits only for certain query types, such as for

SELECT and UPDATE statements.

$ mariabackup --backup \

 --ftwrl-wait-query-type=UPDATE

--ftwrl-wait-threshold

Defines the minimum threshold for identifying long-running queries for FTWRL.

--ftwrl-wait-threshold=#

When Mariabackup runs, it issues a global lock to prevent data from changing during the backup process and ensure a

consistent record. If it encounters statements still in the process of executing, it waits until they complete before setting the

lock. Using this option, you can set the threshold at which Mariabackup engages FTWRL. When it --ftwrl-wait-

timeout is not 0 and a statement has run for at least the amount of time given this argument, Mariabackup waits until the

statement completes or until the --ftwrl-wait-timeout expires before setting the global lock and starting the backup.

$ mariabackup --backup \

 --ftwrl-wait-timeout=90 \

 --ftwrl-wait-threshold=30

--ftwrl-wait-timeout

Defines the timeout to wait for queries before trying to acquire the global lock. In MariaDB 10.4 and later, the global lock

refers to BACKUP STAGE BLOCK_COMMIT . In MariaDB 10.3 and before, the global lock refers to FLUSH TABLES WITH

READ LOCK (FTWRL) .

--ftwrl-wait-timeout=#

When Mariabackup runs, it acquires a global lock to prevent data from changing during the backup process and ensure a

consistent record. If it encounters statements still in the process of executing, it can be configured to wait until the

statements complete before trying to acquire the global lock.

If the --ftwrl-wait-timeout is set to 0, then Mariabackup tries to acquire the global lock immediately without waiting.

This is the default value.

If the --ftwrl-wait-timeout is set to a non-zero value, then Mariabackup waits for the configured number of seconds

until trying to acquire the global lock.

Starting in MariaDB 10.5.3, MariaDB 10.4.13, MariaDB 10.3.23 , and MariaDB 10.2.32 , Mariabackup will exit if it can't

acquire the global lock after waiting for the configured number of seconds. In earlier versions, it could wait for the global lock

indefinitely, even if --ftwrl-wait-timeout was set to a non-zero value.

$ mariabackup --backup \

 --ftwrl-wait-query-type=UPDATE \

 --ftwrl-wait-timeout=5

--galera-info

Defines whether you want to back up information about a Galera Cluster node's state.

When this option is used, Mariabackup creates an additional file called xtrabackup_galera_info , which records

information about a Galera Cluster node's state. It records the values of the wsrep_local_state_uuid and

wsrep_last_committed status variables.

You should only use this option when backing up a Galera Cluster node. If the server is not a Galera Cluster node, then this
2039/4161

https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/

option has no effect.

$ mariabackup --backup --galera-info

--history

Defines whether you want to track backup history in the PERCONA_SCHEMA.xtrabackup_history table.

--history[=name]

When using this option, Mariabackup records its operation in a table on the MariaDB Server. Passing a name to this option

allows you group backups under arbitrary terms for later processing and analysis.

$ mariabackup --backup --history=backup_all

Currently, the table it uses by default is named mysql.mariadb_backup_history . Prior to MariaDB 10.11, the default

table was PERCONA_SCHEMA.xtrabackup_history .

Mariabackup will also record this in the xtrabackup_info file.

-H, --host

Defines the host for the MariaDB Server you want to backup.

--host=name

Using this option, you can define the host to use when connecting to a MariaDB Server over TCP/IP. By default,

Mariabackup attempts to connect to the local host.

$ mariabackup --backup \

 --host="example.com"

--include

This option is a regular expression to be matched against table names in databasename.tablename format. It is equivalent

to the --tables option. This is only valid in innobackupex mode, which can be enabled with the --innobackupex

option.

--incremental

Defines whether you want to take an increment backup, based on another backup. This is only valid in innobackupex

mode, which can be enabled with the --innobackupex option.

mariabackup --innobackupex --incremental

Using this option with the --backup command option makes the operation incremental rather than a complete overwrite.

When this option is specified, either the --incremental-lsn or --incremental-basedir options can also be given.

If neither option is given, option --incremental-basedir is used by default, set to the first

timestamped backup directory in the backup base directory.

$ mariabackup --innobackupex --backup --incremental \

 --incremental-basedir=/data/backups \

 --target-dir=/data/backups

If a backup is a incremental backup, then Mariabackup will record that detail in the xtrabackup_info file.

--incremental-basedir

Defines whether you want to take an incremental backup, based on another backup.

--incremental-basedir=PATH

2040/4161

Using this option with the --backup command option makes the operation incremental rather than a complete overwrite.

Mariabackup will only copy pages from .ibd files if they are newer than the backup in the specified directory.

$ mariabackup --backup \

 --incremental-basedir=/data/backups \

 --target-dir=/data/backups

If a backup is a incremental backup, then Mariabackup will record that detail in the xtrabackup_info file.

--incremental-dir

Defines whether you want to take an incremental backup, based on another backup.

--increment-dir=PATH

Using this option with --prepare command option makes the operation incremental rather than a complete overwrite.

Mariabackup will apply .delta files and log files into the target directory.

$ mariabackup --prepare \

 --increment-dir=backups/

If a backup is a incremental backup, then Mariabackup will record that detail in the xtrabackup_info file.

--incremental-force-scan

Defines whether you want to force a full scan for incremental backups.

When using Mariabackup to perform an incremental backup, this option forces it to also perform a full scan of the data

pages being backed up, even when there's bitmap data on the changes. MariaDB 10.2 and later does not support changed

page bitmaps, so this option is useless in those versions. See MDEV-18985 for more information.

$ mariabackup --backup \

 --incremental-basedir=/path/to/target \

 --incremental-force-scan

--incremental-history-name

Defines a logical name for the backup.

--incremental-history-name=name

Mariabackup can store data about its operations on the MariaDB Server. Using this option, you can define the logical name

it uses in identifying the backup.

$ mariabackup --backup \

 --incremental-history-name=morning_backup

Currently, the table it uses by default is named mysql.mariadb_backup_history . Prior to MariaDB 10.11, the default

table was PERCONA_SCHEMA.xtrabackup_history .

Mariabackup will also record this in the xtrabackup_info file.

--incremental-history-uuid

Defines a UUID for the backup.

--incremental-history-uuid=name

Mariabackup can store data about its operations on the MariaDB Server. Using this option, you can define the UUID it uses

in identifying a previous backup to increment from. It checks --incremental-history-name , --incremental-

basedir , and --incremental-lsn . If Mariabackup fails to find a valid lsn, it generates an error.

2041/4161

https://jira.mariadb.org/browse/MDEV-18985

$ mariabackup --backup \

 --incremental-history-uuid=main-backup012345678

Currently, the table it uses is named PERCONA_SCHEMA.xtrabackup_history , but expect that name to change in future

releases. See MDEV-19246 for more information.

Mariabackup will also record this in the xtrabackup_info file.

--incremental-lsn

Defines the sequence number for incremental backups.

--incremental-lsn=name

Using this option, you can define the sequence number (LSN) value for --backup operations. During backups,

Mariabackup only copies .ibd pages newer than the specified values.

WARNING: Incorrect LSN values can make the backup unusable. It is impossible to diagnose this issue.

--innobackupex

Deprecated in MariaDB 10.3.0 .

Enables innobackupex mode, which is a compatibility mode.

$ mariabackup --innobackupex

In innobackupex mode, Mariabackup has the following differences:

To prepare a backup, the --apply-log option is used instead of the --prepare option.

To create an incremental backup, the --incremental option is supported.

The --no-timestamp option is supported.

To create a partial backup, the --include option is used instead of the --tables option.

To create a partial backup, the --databases option can still be used, but it's behavior changes slightly.

The --target-dir option is not used to specify the backup directory. The backup directory should instead be

specified as a standalone argument.

The primary purpose of innobackupex mode is to allow scripts and tools to more easily migrate to Mariabackup if they

were originally designed to use the innobackupex utility that is included with Percona XtraBackup . It is not

recommended to use this mode in new scripts, since it is not guaranteed to be supported forever. See MDEV-20552 for

more information.

--innodb

This option has no effect. Set only for MySQL option compatibility.

--innodb-adaptive-hash-index

Enables InnoDB Adaptive Hash Index.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option you can explicitly enable the InnoDB Adaptive Hash Index. This feature is enabled by default for

Mariabackup. If you want to disable it, use --skip-innodb-adaptive-hash-index .

$ mariabackup --backup \

 --innodb-adaptive-hash-index

--innodb-autoextend-increment

Defines the increment in megabytes for auto-extending the size of tablespace file.

--innodb-autoextend-increment=36

2042/4161

https://jira.mariadb.org/browse/MDEV-19246
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/percona-xtrabackup-overview/
https://jira.mariadb.org/browse/MDEV-20552

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can set the increment in megabytes for automatically extending the size of tablespace data file in

InnoDB.

$ mariabackup --backup \

 --innodb-autoextend-increment=35

--innodb-buffer-pool-filename

Using this option has no effect. It is available to provide compatibility with the MariaDB Server.

--innodb-buffer-pool-size

Defines the memory buffer size InnoDB uses the cache data and indexes of the table.

--innodb-buffer-pool-size=124M

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can configure the buffer pool for InnoDB operations.

$ mariabackup --backup \

 --innodb-buffer-pool-size=124M

--innodb-checksum-algorithm

innodb_checksum_algorithm was deprecated in MariaDB 10.3.29 , MariaDB 10.4.19, MariaDB 10.5.10 and removed in

MariaDB 10.6.

In earlier versions, it is used to define the checksum algorithm.

--innodb-checksum-algorithm=crc32

 | strict_crc32

 | innodb

 | strict_innodb

 | none

 | strict_none

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can specify the algorithm Mariabackup uses when checksumming on InnoDB tables. Currently,

MariaDB supports the following algorithms CRC32 , STRICT_CRC32 , INNODB , STRICT_INNODB , NONE , STRICT_NONE .

$ mariabackup --backup \

 ---innodb-checksum-algorithm=strict_innodb

--innodb-data-file-path

Defines the path to individual data files.

--innodb-data-file-path=/path/to/file

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option you can define the path to InnoDB data files. Each path is appended to the --innodb-data-home-

dir option.

$ mariabackup --backup \

 --innodb-data-file-path=ibdata1:13M:autoextend \

 --innodb-data-home-dir=/var/dbs/mysql/data

--innodb-data-home-dir

Defines the home directory for InnoDB data files.

--innodb-data-home-dir=PATH

2043/4161

https://mariadb.com/kb/en/mariadb-10329-release-notes/

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option you can define the path to the directory containing InnoDB data files. You can specific the files using

the --innodb-data-file-path option.

$ mariabackup --backup \

 --innodb-data-file-path=ibdata1:13M:autoextend \

 --innodb-data-home-dir=/var/dbs/mysql/data

--innodb-doublewrite

Enables doublewrites for InnoDB tables.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. When using this option, Mariabackup improves fault tolerance on InnoDB tables with a doublewrite buffer. By default,

this feature is enabled. Use this option to explicitly enable it. To disable doublewrites, use the --skip-innodb-

doublewrite option.

$ mariabackup --backup \

 --innodb-doublewrite

--innodb-encrypt-log

Defines whether you want to encrypt InnoDB logs.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can tell Mariabackup that you want to encrypt logs from its InnoDB activity.

--innodb-file-io-threads

Defines the number of file I/O threads in InnoDB.

--innodb-file-io-threads=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the number of file I/O threads Mariabackup uses on InnoDB tables.

$ mariabackup --backup \

 --innodb-file-io-threads=5

--innodb-file-per-table

Defines whether you want to store each InnoDB table as an .ibd file.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option causes Mariabackup to store each InnoDB table as an .ibd file in the target directory.

--innodb-flush-method

Defines the data flush method. Ignored from MariaDB 11.0.

--innodb-flush-method=fdatasync

 | O_DSYNC

 | O_DIRECT

 | O_DIRECT_NO_FSYNC

 | ALL_O_DIRECT

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the data flush method Mariabackup uses with InnoDB tables.

$ mariabackup --backup \

 --innodb-flush-method==_DIRECT_NO_FSYNC

Note, the 0_DIRECT_NO_FSYNC method is only available with MariaDB 10.0 and later. The ALL_O_DIRECT method

available with version 5.5 and later, but only with tables using the XtraDB storage engine.

2044/4161

--innodb-io-capacity

Defines the number of IOP's the utility can perform.

--innodb-io-capacity=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can limit the I/O activity for InnoDB background tasks. It should be set around the number of I/O

operations per second that the system can handle, based on drive or drives being used.

$ mariabackup --backup \

 --innodb-io-capacity=200

--innodb-log-checksums

Defines whether to include checksums in the InnoDB logs.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can explicitly set Mariabackup to include checksums in the InnoDB logs. The feature is enabled

by default. To disable it, use the --skip-innodb-log-checksums option.

$ mariabackup --backup \

 --innodb-log-checksums

--innodb-log-buffer-size

This option has no functionality in Mariabackup. It exists for MariaDB Server compatibility.

--innodb-log-files-in-group

This option has no functionality in Mariabackup. It exists for MariaDB Server compatibility.

--innodb-log-group-home-dir

Defines the path to InnoDB log files.

--innodb-log-group-home-dir=PATH

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the path to InnoDB log files.

$ mariabackup --backup \

 --innodb-log-group-home-dir=/path/to/logs

--innodb-max-dirty-pages-pct

Defines the percentage of dirty pages allowed in the InnoDB buffer pool.

--innodb-max-dirty-pages-pct=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the maximum percentage of dirty, (that is, unwritten) pages that Mariabackup allows in

the InnoDB buffer pool.

$ mariabackup --backup \

 --innodb-max-dirty-pages-pct=80

--innodb-open-files

Defines the number of files kept open at a time.

--innodb-open-files=#

2045/4161

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can set the maximum number of files InnoDB keeps open at a given time during backups.

$ mariabackup --backup \

 --innodb-open-files=10

--innodb-page-size

Defines the universal page size.

--innodb-page-size=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the universal page size in bytes for Mariabackup.

$ mariabackup --backup \

 --innodb-page-size=16k

--innodb-read-io-threads

Defines the number of background read I/O threads in InnoDB.

--innodb-read-io-threads=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can set the number of I/O threads MariaDB uses when reading from InnoDB.

$ mariabackup --backup \

 --innodb-read-io-threads=4

--innodb-undo-directory

Defines the directory for the undo tablespace files.

--innodb-undo-directory=PATH

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the path to the directory where you want MariaDB to store the undo tablespace on

InnoDB tables. The path can be absolute.

$ mariabackup --backup \

 --innodb-undo-directory=/path/to/innodb_undo

--innodb-undo-tablespaces

Defines the number of undo tablespaces to use.

--innodb-undo-tablespaces=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can define the number of undo tablespaces you want to use during the backup.

$ mariabackup --backup \

 --innodb-undo-tablespaces=10

--innodb-use-native-aio

Defines whether you want to use native AI/O.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can enable the use of the native asynchronous I/O subsystem. It is only available on Linux

operating systems.

2046/4161

$ mariabackup --backup \

 --innodb-use-native-aio

--innodb-write-io-threads

Defines the number of background write I/O threads in InnoDB.

--innodb-write-io-threads=#

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can set the number of background write I/O threads Mariabackup uses.

$ mariabackup --backup \

 --innodb-write-io-threads=4

--kill-long-queries-timeout

Defines the timeout for blocking queries.

--kill-long-queries-timeout=#

When Mariabackup runs, it issues a FLUSH TABLES WITH READ LOCK statement. It then identifies blocking queries. Using

this option you can set a timeout in seconds for these blocking queries. When the time runs out, Mariabackup kills the

queries.

The default value is 0, which causes Mariabackup to not attempt killing any queries.

$ mariabackup --backup \

 --kill-long-queries-timeout=10

--kill-long-query-type

Defines the query type the utility can kill to unblock the global lock.

--kill-long-query-type=ALL | UPDATE | SELECT

When Mariabackup encounters a query that sets a global lock, it can kill the query in order to free up MariaDB Server for the

backup. Using this option, you can choose the types of query it kills: SELECT , UPDATE , or both set with ALL . The default

is ALL .

$ mariabackup --backup \

 --kill-long-query-type=UPDATE

--lock-ddl-per-table

Prevents DDL for each table to be backed up by acquiring MDL lock on that. NOTE: Unless --no-lock option was also

specified, conflicting DDL queries , will be killed at the end of backup This is done avoid deadlock between "FLUSH TABLE

WITH READ LOCK", user's DDL query (ALTER, RENAME), and MDL lock on table. Only available in MariaDB 10.2.9 and

later.

--log

This option has no functionality. It is set to ensure compatibility with MySQL.

--log-bin

Defines the base name for the log sequence.

--log-bin[=name]

Using this option you, you can set the base name for Mariabackup to use in log sequences.

2047/4161

https://mariadb.com/kb/en/mariadb-1029-release-notes/

--log-copy-interval

Defines the copy interval between checks done by the log copying thread.

--log-copy-interval=#

Using this option, you can define the copy interval Mariabackup uses between checks done by the log copying thread. The

given value is in milliseconds.

$ mariabackup --backup \

 --log-copy-interval=50

--log-innodb-page-corruption

Continue backup if InnoDB corrupted pages are found. The pages are logged in innodb_corrupted_pages and backup is

finished with error. --prepare will try to fix corrupted pages. If innodb_corrupted_pages exists after --prepare in base

backup directory, backup still contains corrupted pages and can not be considered as consistent.

Added in MariaDB 10.2.37 , MariaDB 10.3.28 , MariaDB 10.4.18, MariaDB 10.5.9

--move-back

Restores the backup to the data directory.

Using this command, Mariabackup moves the backup from the target directory to the data directory, as defined by the --

datadir option. You must stop the MariaDB Server before running this command. The data directory must be empty. If you

want to overwrite the data directory with the backup, use the --force-non-empty-directories option.

Bear in mind, before you can restore a backup, you first need to run Mariabackup with the --prepare option. In the case

of full backups, this makes the files point-in-time consistent. With incremental backups, this applies the deltas to the base

backup. Once the backup is prepared, you can run --move-back to apply it to MariaDB Server.

$ mariabackup --move-back \

 --datadir=/var/mysql

Running the --move-back command moves the backup files to the data directory. Use this command if you don't want to

save the backup for later. If you do want to save the backup for later, use the --copy-back command.

--mysqld

Used internally to prepare a backup.

--no-backup-locks

Mariabackup locks the database by default when it runs. This option disables support for Percona Server's backup locks.

When backing up Percona Server, Mariabackup would use backup locks by default. To be specific, backup locks refers to

the LOCK TABLES FOR BACKUP and LOCK BINLOG FOR BACKUP statements. This option can be used to disable support

for Percona Server's backup locks. This option has no effect when the server does not support Percona's backup locks.

This option may eventually be removed. See MDEV-19753 for more information.

$ mariabackup --backup --no-backup-locks

--no-lock

Disables table locks with the FLUSH TABLE WITH READ LOCK statement.

Using this option causes Mariabackup to disable table locks with the FLUSH TABLE WITH READ LOCK statement. Only use

this option if:

You are not executing DML statements on non-InnoDB tables during the backup. This includes the mysql database

system tables (which are MyISAM).

You are not executing any DDL statements during the backup.

You are _not_ using the file "xtrabackup_binlog_info", which is not consistent with the data when --no-lock is used.

2048/4161

https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://jira.mariadb.org/browse/MDEV-19753

Use the file "xtrabackup_binlog_pos_innodb" [link] instead.

All tables you're backing up use the InnoDB storage engine.

$ mariabackup --backup --no-lock

If you're considering --no-lock due to backups failing to acquire locks, this may be due to incoming replication events

preventing the lock. Consider using the --safe-slave-backup option to momentarily stop the replica thread. This alternative

may help the backup to succeed without resorting to --no-lock .

The --no-lock option only provides a consistent backup if the user ensures that no DDL or non-transactional table

updates occur during the backup. The --no-lock option is not supported by MariaDB plc.

--no-timestamp

This option prevents creation of a time-stamped subdirectory of the BACKUP-ROOT-DIR given on the command line. When

it is specified, the backup is done in BACKUP-ROOT-DIR instead. This is only valid in innobackupex mode, which can be

enabled with the --innobackupex option.

--no-version-check

Disables version check.

Using this option, you can disable Mariabackup version check.

$ mariabackup --backup --no-version-check

--open-files-limit

Defines the maximum number of file descriptors.

--open-files-limit=#

Using this option, you can define the maximum number of file descriptors Mariabackup reserves with setrlimit() .

$ mariabackup --backup \

 --open-files-limit=

--parallel

Defines the number of threads to use for parallel data file transfer.

--parallel=#

Using this option, you can set the number of threads Mariabackup uses for parallel data file transfers. By default, it is set to

1.

-p, --password

Defines the password to use to connect to MariaDB Server.

--password=passwd

When you run Mariabackup, it connects to MariaDB Server in order to access and back up the databases and tables. Using

this option, you can set the password Mariabackup uses to access the server. To set the user, use the --user option.

$ mariabackup --backup \

 --user=root \

 --password=root_password

--plugin-dir

2049/4161

Defines the directory for server plugins.

--plugin-dir=PATH

Using this option, you can define the path Mariabackup reads for MariaDB Server plugins. It only uses it during the --

prepare phase to load the encryption plugin. It defaults to the plugin_dir server system variable.

$ mariabackup --backup \

 --plugin-dir=/var/mysql/lib/plugin

--plugin-load

Defines the encryption plugins to load.

--plugin-load=name

Using this option, you can define the encryption plugin you want to load. It is only used during the --prepare phase to

load the encryption plugin. It defaults to the server --plugin-load option.

The option was removed starting from MariaDB 10.2.18

-P, --port

Defines the server port to connect to.

--port=#

When you run Mariabackup, it connects to MariaDB Server in order to access and back up your databases and tables.

Using this option, you can set the port the utility uses to access the server over TCP/IP. To set the host, see the --host

option. Use mysql --help for more details.

$ mariabackup --backup \

 --host=192.168.11.1 \

 --port=3306

--prepare

Prepares an existing backup to restore to the MariaDB Server.

Files that Mariabackup generates during --backup operations in the target directory are not ready for use on the Server.

Before you can restore the data to MariaDB, you first need to prepare the backup.

In the case of full backups, the files are not point in time consistent, since they were taken at different times. If you try to

restore the database without first preparing the data, InnoDB rejects the new data as corrupt. Running Mariabackup with the

--prepare command readies the data so you can restore it to MariaDB Server. When working with incremental backups,

you need to use the --prepare command and the --incremental-dir option to update the base backup with the

deltas from an incremental backup.

$ mariabackup --prepare

Once the backup is ready, you can use the --copy-back or the --move-back commands to restore the backup to the

server.

--print-defaults

Prints the utility argument list, then exits.

Using this argument, MariaDB prints the argument list to stdout and then exits. You may find this useful in debugging to see

how the options are set for the utility.

$ mariabackup --print-defaults

--print-param
2050/4161

https://mariadb.com/kb/en/mariadb-10218-release-notes/

Prints the MariaDB Server options needed for copyback.

Using this option, Mariabackup prints to stdout the MariaDB Server options that the utility requires to run the --copy-back

command option.

$ mariabackup --print-param

--rollback-xa

By default, Mariabackup will not commit or rollback uncommitted XA transactions, and when the backup is restored, any

uncommitted XA transactions must be manually committed using XA COMMIT or manually rolled back using XA

ROLLBACK .

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, Mariabackup's --rollback-xa option can be used to rollback

uncommitted XA transactions while performing a --prepare operation, so that they do not need to be manually committed

or rolled back when the backup is restored.

This option is not present from MariaDB 10.5, because the server has more robust ways of handling uncommitted XA

transactions in later versions.

This is an experimental option. Do not use this option in versions older than MariaDB 10.2.33 , MariaDB 10.3.24 ,

and MariaDB 10.4.14. Older implementation can cause corruption of InnoDB data.

--rsync

Defines whether to use rsync.

During normal operation, Mariabackup transfers local non-InnoDB files using a separate call to cp for each file. Using this

option, you can optimize this process by performing this transfer with rsync, instead.

$ mariabackup --backup --rsync

This option is not compatible with the --stream option.

--safe-slave-backup

Stops replica SQL threads for backups.

When running Mariabackup on a server that uses replication, you may occasionally encounter locks that block backups.

Using this option, it stops replica SQL threads and waits until the Slave_open_temp_tables in the SHOW STATUS

statement is zero. If there are no open temporary tables, the backup runs, otherwise the SQL thread starts and stops until

there are no open temporary tables.

$ mariabackup --backup \

 --safe-slave-backup \

 --safe-slave-backup-timeout=500

The backup fails if the Slave_open_temp_tables doesn't reach zero after the timeout period set by the --safe-slave-

backup-timeout option.

--safe-slave-backup-timeout

Defines the timeout for replica backups.

--safe-slave-backup-timeout=#

When running Mariabackup on a server that uses replication, you may occasionally encounter locks that block backups.

With the --safe-slave-backup option, it waits until the Slave_open_temp_tables in the SHOW STATUS statement reaches

zero. Using this option, you set how long it waits. It defaults to 300.

$ mariabackup --backup \

 --safe-slave-backup \

 --safe-slave-backup-timeout=500

2051/4161

https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/

--secure-auth

Refuses client connections to servers using the older protocol.

Using this option, you can set it explicitly to refuse client connections to the server when using the older protocol, from

before 4.1.1. This feature is enabled by default. Use the --skip-secure-auth option to disable it.

$ mariabackup --backup --secure-auth

--skip-innodb-adaptive-hash-index

Disables InnoDB Adaptive Hash Index.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option you can explicitly disable the InnoDB Adaptive Hash Index. This feature is enabled by default for

Mariabackup. If you want to explicitly enable it, use --innodb-adaptive-hash-index .

$ mariabackup --backup \

 --skip-innodb-adaptive-hash-index

--skip-innodb-doublewrite

Disables doublewrites for InnoDB tables.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. When doublewrites are enabled, InnoDB improves fault tolerance with a doublewrite buffer. By default this feature is

turned on. Using this option you can disable it for Mariabackup. To explicitly enable doublewrites, use the --innodb-

doublewrite option.

$ mariabackup --backup \

 --skip-innodb-doublewrite

--skip-innodb-log-checksums

Defines whether to exclude checksums in the InnoDB logs.

Mariabackup initializes its own embedded instance of InnoDB using the same configuration as defined in the configuration

file. Using this option, you can set Mariabackup to exclude checksums in the InnoDB logs. The feature is enabled by

default. To explicitly enable it, use the --innodb-log-checksums option.

--skip-secure-auth

Refuses client connections to servers using the older protocol.

Using this option, you can set it accept client connections to the server when using the older protocol, from before 4.1.1. By

default, it refuses these connections. Use the --secure-auth option to explicitly enable it.

$ mariabackup --backup --skip-secure-auth

--slave-info

Prints the binary log position and the name of the primary server.

If the server is a replica, then this option causes Mariabackup to print the hostname of the replica's replication primary and

the binary log file and position of the replica's SQL thread to stdout .

This option also causes Mariabackup to record this information as a CHANGE MASTER command that can be used to set

up a new server as a replica of the original server's primary after the backup has been restored. This information will be

written to to the xtrabackup_slave_info file.

Mariabackup does not check if GTIDs are being used in replication. It takes a shortcut and assumes that if the

gtid_slave_pos system variable is non-empty, then it writes the CHANGE MASTER command with the

MASTER_USE_GTID option set to slave_pos . Otherwise, it writes the CHANGE MASTER command with the

MASTER_LOG_FILE and MASTER_LOG_POS options using the primary's binary log file and position. See MDEV-19264

for more information.

2052/4161

https://jira.mariadb.org/browse/MDEV-19264

$ mariabackup --slave-info

-S, --socket

Defines the socket for connecting to local database.

--socket=name

Using this option, you can define the UNIX domain socket you want to use when connecting to a local database server. The

option accepts a string argument. For more information, see the mysql --help command.

$ mariabackup --backup \

 --socket=/var/mysql/mysql.sock

--ssl

Enables TLS. By using this option, you can explicitly configure Mariabackup to to encrypt its connection with TLS when

communicating with the server. You may find this useful when performing backups in environments where security is extra

important or when operating over an insecure network.

TLS is also enabled even without setting this option when certain other TLS options are set. For example, see the

descriptions of the following options:

--ssl-ca

--ssl-capath

--ssl-cert

--ssl-cipher

--ssl-key

--ssl-ca

Defines a path to a PEM file that should contain one or more X509 certificates for trusted Certificate Authorities (CAs) to use

for TLS. This option requires that you use the absolute path, not a relative path. For example:

--ssl-ca=/etc/my.cnf.d/certificates/ca.pem

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem

See Secure Connections Overview: Certificate Authorities (CAs) for more information.

This option implies the --ssl option.

--ssl-capath

Defines a path to a directory that contains one or more PEM files that should each contain one X509 certificate for a trusted

Certificate Authority (CA) to use for TLS. This option requires that you use the absolute path, not a relative path. For

example:

--ssl-capath=/etc/my.cnf.d/certificates/ca/

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-capath=/etc/my.cnf.d/certificates/ca/

The directory specified by this option needs to be run through the openssl rehash command.

2053/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

See Secure Connections Overview: Certificate Authorities (CAs) for more information

This option implies the --ssl option.

--ssl-cert

Defines a path to the X509 certificate file to use for TLS. This option requires that you use the absolute path, not a relative

path. For example:

--ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem

This option implies the --ssl option.

--ssl-cipher

Defines the list of permitted ciphers or cipher suites to use for TLS. For example:

--ssl-cipher=name

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem

 --ssl-cipher=TLSv1.2

To determine if the server restricts clients to specific ciphers, check the ssl_cipher system variable.

This option implies the --ssl option.

--ssl-crl

Defines a path to a PEM file that should contain one or more revoked X509 certificates to use for TLS. This option requires

that you use the absolute path, not a relative path. For example:

--ssl-crl=/etc/my.cnf.d/certificates/crl.pem

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-crl=/etc/my.cnf.d/certificates/crl.pem

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This option is only supported if Mariabackup was built with OpenSSL. If Mariabackup was built with yaSSL, then this option

is not supported. See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used

on which platforms.

--ssl-crlpath

Defines a path to a directory that contains one or more PEM files that should each contain one revoked X509 certificate to

use for TLS. This option requires that you use the absolute path, not a relative path. For example:

--ssl-crlpath=/etc/my.cnf.d/certificates/crl/

2054/4161

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-crlpath=/etc/my.cnf.d/certificates/crl/

The directory specified by this option needs to be run through the openssl rehash command.

See Secure Connections Overview: Certificate Revocation Lists (CRLs) for more information.

This option is only supported if Mariabackup was built with OpenSSL. If Mariabackup was built with yaSSL, then this option

is not supported. See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used

on which platforms.

--ssl-key

Defines a path to a private key file to use for TLS. This option requires that you use the absolute path, not a relative path.

For example:

--ssl-key=/etc/my.cnf.d/certificates/client-key.pem

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem

This option implies the --ssl option.

--ssl-verify-server-cert

Enables server certificate verification. This option is disabled by default.

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --ssl-verify-server-cert

--stream

Streams backup files to stdout.

--stream=xbstream

Using this command option, you can set Mariabackup to stream the backup files to stdout in the given format. Currently, the

supported format is xbstream .

$ mariabackup --stream=xbstream > backup.xb

To extract all files from the xbstream archive into a directory use the mbstream utility

$ mbstream -x < backup.xb

If a backup is streamed, then Mariabackup will record the format in the xtrabackup_info file.

--tables

Defines the tables you want to include in the backup.

2055/4161

https://www.openssl.org/docs/man1.1.1/man1/rehash.html

--tables=REGEX

Using this option, you can define what tables you want Mariabackup to back up from the database. The table values are

defined using Regular Expressions. To define the tables you want to exclude from the backup, see the --tables-exclude

option.

$ mariabackup --backup \

 --databases=example

 --tables=nodes_* \

 --tables-exclude=nodes_tmp

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

--tables-exclude

Defines the tables you want to exclude from the backup.

--tables-exclude=REGEX

Using this option, you can define what tables you want Mariabackup to exclude from the backup. The table values are

defined using Regular Expressions. To define the tables you want to include from the backup, see the --tables option.

$ mariabackup --backup \

 --databases=example

 --tables=nodes_* \

 --tables-exclude=nodes_tmp

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

--tables-file

Defines path to file with tables for backups.

--tables-file=/path/to/file

Using this option, you can set a path to a file listing the tables you want to back up. Mariabackup iterates over each line in

the file. The format is database.table .

$ mariabackup --backup \

 --databases=example \

 --tables-file=/etc/mysql/backup-file

If a backup is a partial backup, then Mariabackup will record that detail in the xtrabackup_info file.

--target-dir

Defines the destination directory.

--target-dir=/path/to/target

Using this option you can define the destination directory for the backup. Mariabackup writes all backup files to this

directory. Mariabackup will create the directory, if it does not exist (but it will not create the full path recursively, i.e. at least

parent directory if the --target-dir must exist=

$ mariabackup --backup \

 --target-dir=/data/backups

--throttle

Defines the limit for I/O operations per second in IOS values.

--throttle=#

2056/4161

Using this option, you can set a limit on the I/O operations Mariabackup performs per second in IOS values. It is only used

during the --backup command option.

--tls-version

This option accepts a comma-separated list of TLS protocol versions. A TLS protocol version will only be enabled if it is

present in this list. All other TLS protocol versions will not be permitted. For example:

--tls-version="TLSv1.2,TLSv1.3"

This option is usually used with other TLS options. For example:

$ mariabackup --backup \

 --ssl-cert=/etc/my.cnf.d/certificates/client-cert.pem \

 --ssl-key=/etc/my.cnf.d/certificates/client-key.pem \

 --ssl-ca=/etc/my.cnf.d/certificates/ca.pem \

 --tls-version="TLSv1.2,TLSv1.3"

This option was added in MariaDB 10.4.6.

See Secure Connections Overview: TLS Protocol Versions for more information.

-t, --tmpdir

Defines path for temporary files.

--tmpdir=/path/tmp[;/path/tmp...]

Using this option, you can define the path to a directory Mariabackup uses in writing temporary files. If you want to use more

than one, separate the values by a semicolon (that is, ;). When passing multiple temporary directories, it cycles through

them using round-robin.

$ mariabackup --backup \

 --tmpdir=/data/tmp;/tmp

--use-memory

Defines the buffer pool size that is used during the prepare stage.

--use-memory=124M

Using this option, you can define the buffer pool size for Mariabackup. Use it instead of buffer_pool_size .

$ mariabackup --prepare \

 --use-memory=124M

--user

Defines the username for connecting to the MariaDB Server.

--user=name

-u name

When Mariabackup runs, it connects to the specified MariaDB Server to get its backups. Using this option, you can define

the database user used for authentication. Starting from MariaDB 10.5.24, MariaDB 10.6.17, MariaDB 10.11.7, MariaDB

11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3, MariaDB 11.3.2, MariaDB 11.4.1, if the --user option is ommited, the user

name is detected from the OS.

$ mariabackup --backup \

 --user=root \

 --password=root_passwd

2057/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

--version

Prints version information.

Using this option, you can print the Mariabackup version information to stdout.

$ mariabackup --version

2.3.4.3 Full Backup and Restore with
Mariabackup

Contents
1. Backing up the Database Server

2. Preparing the Backup for Restoration

3. Restoring the Backup

1. Restoring with Other Tools

When using Mariabackup, you have the option of performing a full or an incremental backup. Full backups create a

complete backup of the database server in an empty directory while incremental backups update a previous backup with

whatever changes to the data have occurred since the backup. This page documents how to perform full backups.

Backing up the Database Server
In order to back up the database, you need to run Mariabackup with the --backup option to tell it to perform a backup and

with the --target-dir option to tell it where to place the backup files. When taking a full backup, the target directory must

be empty or it must not exist.

To take a backup, run the following command:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

The time the backup takes depends on the size of the databases or tables you're backing up. You can cancel the backup if

you need to, as the backup process does not modify the database.

Mariabackup writes the backup files the target directory. If the target directory doesn't exist, then it creates it. If the target

directory exists and contains files, then it raises an error and aborts.

Here is an example backup directory:

$ ls /var/mariadb/backup/

aria_log.0000001 mysql xtrabackup_checkpoints

aria_log_control performance_schema xtrabackup_info

backup-my.cnf test xtrabackup_logfile

ibdata1 xtrabackup_binlog_info

Preparing the Backup for Restoration
The data files that Mariabackup creates in the target directory are not point-in-time consistent, given that the data files are

copied at different times during the backup operation. If you try to restore from these files, InnoDB notices the

inconsistencies and crashes to protect you from corruption

Before you can restore from a backup, you first need to prepare it to make the data files consistent. You can do so with the

--prepare option.

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup/

Restoring the Backup
Once the backup is complete and you have prepared the backup for restoration (previous step), you can restore the backup

2058/4161

using either the --copy-back or the --move-back options. The --copy-back option allows you to keep the original

backup files. The --move-back option actually moves the backup files to the datadir , so the original backup files are

lost.

First, stop the MariaDB Server process.

Then, ensure that the datadir is empty.

Then, run Mariabackup with one of the options mentioned above:

$ mariabackup --copy-back \

 --target-dir=/var/mariadb/backup/

Then, you may need to fix the file permissions.

When Mariabackup restores a database, it preserves the file and directory privileges of the backup. However, it writes the

files to disk as the user and group restoring the database. As such, after restoring a backup, you may need to adjust the

owner of the data directory to match the user and group for the MariaDB Server, typically mysql for both. For example, to

recursively change ownership of the files to the mysql user and group, you could execute:

$ chown -R mysql:mysql /var/lib/mysql/

Finally, start the MariaDB Server process.

Restoring with Other Tools

Once a full backup is prepared, it is a fully functional MariaDB data directory. Therefore, as long as the MariaDB Server

process is stopped on the target server, you can technically restore the backup using any file copying tool, such as cp or

rysnc . For example, you could also execute the following to restore the backup:

$ rsync -avrP /var/mariadb/backup /var/lib/mysql/

$ chown -R mysql:mysql /var/lib/mysql/

2.3.4.4 Incremental Backup and Restore with
Mariabackup

Contents
1. Backing up the Database Server

2. Backing up the Incremental Changes

3. Combining with --stream output

4. Preparing the Backup

5. Restoring the Backup

When using Mariabackup, you have the option of performing a full or incremental backup. Full backups create a complete

copy in an empty directory while incremental backups update a previous backup with new data. This page documents

incremental backups.

InnoDB pages contain log sequence numbers, or LSN's. Whenever you modify a row on any InnoDB table on the database,

the storage engine increments this number. When performing an incremental backup, Mariabackup checks the most recent

LSN for the backup against the LSN's contained in the database. It then updates any of the backup files that have fallen

behind.

Backing up the Database Server
In order to take an incremental backup, you first need to take a full backup. In order to back up the database, you need to

run Mariabackup with the --backup option to tell it to perform a backup and with the --target-dir option to tell it

where to place the backup files. When taking a full backup, the target directory must be empty or it must not exist.

To take a backup, run the following command:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

2059/4161

This backs up all databases into the target directory /var/mariadb/backup . If you look in that directory at the

xtrabackup_checkpoints file, you can see the LSN data provided by InnoDB.

For example:

backup_type = full-backuped

from_lsn = 0

to_lsn = 1635102

last_lsn = 1635102

recover_binlog_info = 0

Backing up the Incremental Changes
Once you have created a full backup on your system, you can also back up the incremental changes as often as you would

like.

In order to perform an incremental backup, you need to run Mariabackup with the --backup option to tell it to perform a

backup and with the --target-dir option to tell it where to place the incremental changes. The target directory must be

empty. You also need to run it with the --incremental-basedir option to tell it the path to the full backup taken above.

For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/inc1/ \

 --incremental-basedir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

This command creates a series of delta files that store the incremental changes in /var/mariadb/inc1 . You can find a

similar xtrabackup_checkpoints file in this directory, with the updated LSN values.

For example:

backup_type = incremental

from_lsn = 1635102

to_lsn = 1635114

last_lsn = 1635114

recover_binlog_info = 0

To perform additional incremental backups, you can then use the target directory of the previous incremental backup as the

incremental base directory of the next incremental backup. For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/inc2/ \

 --incremental-basedir=/var/mariadb/inc1/ \

 --user=mariabackup --password=mypassword

Combining with --stream output

When using --stream , e.g for compression or encryption using external tools, the xtrabackup_checkpoints file

containing the information where to continue from on the next incremental backup will also be part of the

compressed/encrypted backup file, and so not directly accessible by default.

A directory containing an extra copy of the file can be created using the --extra-lsndir=... option though, and this

directory can then be passed to the next incremental backup --incremental-basedir=... , for example:

initial full backup

$ mariabackup --backup --stream=mbstream \

 --user=mariabackup --password=mypassword \

 --extra-lsndir=backup_base | gzip > backup_base.gz

incremental backup

$ mariabackup --backup --stream=mbstream \

 --incremental-basedir=backup_base \

 --user=mariabackup --password=mypassword \

 --extra-lsndir=backup_inc1 | gzip > backup-inc1.gz

Preparing the Backup
2060/4161

Following the above steps, you have three backups in /var/mariadb : The first is a full backup, the others are increments

on this first backup. In order to restore a backup to the database, you first need to apply the incremental backups to the

base full backup. This is done using the --prepare command option. In MariaDB 10.1, you would also have to use the the

--apply-log-only option.

In MariaDB 10.2 and later, perform the following process:

First, prepare the base backup:

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup

Running this command brings the base full backup, that is, /var/mariadb/backup , into sync with the changes contained

in the InnoDB redo log collected while the backup was taken.

Then, apply the incremental changes to the base full backup:

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup \

 --incremental-dir=/var/mariadb/inc1

Running this command brings the base full backup, that is, /var/mariadb/backup , into sync with the changes contained

in the first incremental backup.

For each remaining incremental backup, repeat the last step to bring the base full backup into sync with the changes

contained in that incremental backup.

Restoring the Backup
Once you've applied all incremental backups to the base, you can restore the backup using either the --copy-back or the

--move-back options. The --copy-back option allows you to keep the original backup files. The --move-back option

actually moves the backup files to the datadir , so the original backup files are lost.

First, stop the MariaDB Server process .

Then, ensure that the datadir is empty.

Then, run Mariabackup with one of the options mentioned above:

$ mariabackup --copy-back \

 --target-dir=/var/mariadb/backup/

Then, you may need to fix the file permissions.

When Mariabackup restores a database, it preserves the file and directory privileges of the backup. However, it writes the

files to disk as the user and group restoring the database. As such, after restoring a backup, you may need to adjust the

owner of the data directory to match the user and group for the MariaDB Server, typically mysql for both. For example, to

recursively change ownership of the files to the mysql user and group, you could execute:

$ chown -R mysql:mysql /var/lib/mysql/

Finally, start the MariaDB Server process .

2.3.4.5 Partial Backup and Restore with
Mariabackup

Contents
1. Backing up the Database Server

2. Preparing the Backup

3. Restoring the Backup

1. Restoring Individual Non-Partitioned Tables

2. Restoring Individual Partitions and Partitioned Tables

When using Mariabackup, you have the option of performing partial backups. Partial backups allow you to choose which

databases or tables to backup, as long as the table or partition involved is in an InnoDB file-per-table tablespace.This page

documents how to perform partial backups.

2061/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Backing up the Database Server
Just like with full backups, in order to back up the database, you need to run Mariabackup with the --backup option to tell

it to perform a backup and with the --target-dir option to tell it where to place the backup files. The target directory

must be empty or not exist.

For a partial backup, there are a few other arguments that you can provide as well:

To tell it which databases to backup, you can provide the --databases option.

To tell it which databases to exclude from the backup, you can provide the --databases-exclude option.

To tell it to check a file for the databases to backup, you can provide the --databases-file option.

To tell it which tables to backup, you can use the --tables option.

To tell it which tables to exclude from the backup, you can provide the --tables-exclude option.

To tell it to check a file for specific tables to backup, you can provide the --tables-file option.

The non-file partial backup options support regex in the database and table names.

For example, to take a backup of any database that starts with the string app1_ and any table in those databases that start

with the string tab_ , run the following command:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --databases='app1_*' --tables='tab_*' \

 --user=mariabackup --password=mypassword

Mariabackup cannot currently backup a subset of partitions from a partitioned table. Backing up a partitioned table is

currently an all-or-nothing selection. See MDEV-17132 about that. If you need to backup a subset of partitions, then

one possibility is that instead of using Mariabackup, you can export the file-per-table tablespaces of the partitions.

The time the backup takes depends on the size of the databases or tables you're backing up. You can cancel the backup if

you need to, as the backup process does not modify the database.

Mariabackup writes the backup files the target directory. If the target directory doesn't exist, then it creates it. If the target

directory exists and contains files, then it raises an error and aborts.

Preparing the Backup
Just like with full backups, the data files that Mariabackup creates in the target directory are not point-in-time consistent,

given that the data files are copied at different times during the backup operation. If you try to restore from these files,

InnoDB notices the inconsistencies and crashes to protect you from corruption. In fact, for partial backups, the backup is not

even a completely functional MariaDB data directory, so InnoDB would raise more errors than it would for full backups. This

point will also be very important to keep in mind during the restore process.

Before you can restore from a backup, you first need to prepare it to make the data files consistent. You can do so with the

--prepare command option.

Partial backups rely on InnoDB's transportable tablespaces. For MariaDB to import tablespaces like these, InnoDB looks for

a file with a .cfg extension. For Mariabackup to create these files, you also need to add the --export option during the

prepare step.

For example, you might execute the following command:

$ mariabackup --prepare --export \

 --target-dir=/var/mariadb/backup/

If this operation completes without error, then the backup is ready to be restored.

In MariaDB 10.2.8 and before, Mariabackup did not support the --export option. See MDEV-13466 about that.

In these versions of MariaDB, this means that Mariabackup could not create .cfg files for InnoDB file-per-table

tablespaces during the --prepare stage. You can still import file-per-table tablespaces without the .cfg files in

many cases, so it may still be possible in those versions to restore partial backups or to restore individual tables and

partitions with just the .ibd files. If you have a full backup and you need to create .cfg files for InnoDB file-per-table

tablespaces, then you can do so by preparing the backup as usual without the --export option, and then restoring

the backup, and then starting the server. At that point, you can use the server's built-in features to copy the

transportable tablespaces.

MariaDB until 10.2.8

2062/4161

https://jira.mariadb.org/browse/MDEV-17132
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://jira.mariadb.org/browse/MDEV-13466

Restoring the Backup
The restore process for partial backups is quite different than the process for full backups. A partial backup is not a

completely functional data directory. The data dictionary in the InnoDB system tablespace will still contain entries for the

databases and tables that were not included in the backup.

Rather than using the --copy-back or the --move-back , each individual InnoDB file-per-table tablespace file will have to

be manually imported into the target server. The process that is used to import the file will depend on whether partitioning is

involved.

Restoring Individual Non-Partitioned Tables

To restore individual non-partitioned tables from a backup, find the .ibd and .cfg files for the table in the backup, and

then import them using the Importing Transportable Tablespaces for Non-partitioned Tables process.

Restoring Individual Partitions and Partitioned Tables

To restore individual partitions or partitioned tables from a backup, find the .ibd and .cfg files for the partition(s) in the

backup, and then import them using the Importing Transportable Tablespaces for Partitioned Tables process.

2.3.4.6 Restoring Individual Tables and
Partitions with Mariabackup

Contents
1. Preparing the Backup

2. Restoring the Backup

1. Restoring Individual Non-Partitioned Tables

2. Restoring Individual Partitions and Partitioned Tables

When using Mariabackup, you don't necessarily need to restore every table and/or partition that was backed up. Even if

you're starting from a full backup, it is certainly possible to restore only certain tables and/or partitions from the backup, as

long as the table or partition involved is in an InnoDB file-per-table tablespace. This page documents how to restore

individual tables and partitions.

Preparing the Backup
Before you can restore from a backup, you first need to prepare it to make the data files consistent. You can do so with the

--prepare command option.

The ability to restore individual tables and partitions relies on InnoDB's transportable tablespaces. For MariaDB to import

tablespaces like these, InnoDB looks for a file with a .cfg extension. For Mariabackup to create these files, you also need

to add the --export option during the prepare step.

For example, you might execute the following command:

$ mariabackup --prepare --export \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

If this operation completes without error, then the backup is ready to be restored.

Before MariaDB 10.2.9 , Mariabackup did not support the --export option. See MDEV-13466 about that. In

earlier versions of MariaDB, this means that Mariabackup could not create .cfg files for InnoDB file-per-table

tablespaces during the --prepare stage. You can still import file-per-table tablespaces without the .cfg files in

many cases, so it may still be possible in those versions to restore partial backups or to restore individual tables and

partitions with just the .ibd files. If you have a full backup and you need to create .cfg files for InnoDB file-per-table

tablespaces, then you can do so by preparing the backup as usual without the --export option, and then restoring

the backup, and then starting the server. At that point, you can use the server's built-in features to copy the

transportable tablespaces.

MariaDB until 10.2.8

2063/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://jira.mariadb.org/browse/MDEV-13466

Restoring the Backup
The restore process for restoring individual tables and/or partitions is quite different than the process for full backups.

Rather than using the --copy-back or the --move-back , each individual InnoDB file-per-table tablespace file will have to

be manually imported into the target server. The process that is used to restore the backup will depend on whether

partitioning is involved.

Restoring Individual Non-Partitioned Tables

To restore individual non-partitioned tables from a backup, find the .ibd and .cfg files for the table in the backup, and

then import them using the Importing Transportable Tablespaces for Non-partitioned Tables process.

Restoring Individual Partitions and Partitioned Tables

To restore individual partitions or partitioned tables from a backup, find the .ibd and .cfg files for the partition(s) in the

backup, and then import them using the Importing Transportable Tablespaces for Partitioned Tables process.

2.3.4.7 Setting up a Replica with Mariabackup

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Backup the Database and Prepare It

2. Copy the Backup to the New Replica

3. Restore the Backup on the New Replica

4. Create a Replication User on the Primary

5. Configure the New Replica

6. Start Replication on the New Replica

1. GTIDs

2. File and Position

7. Check the Status of the New Replica

Mariabackup makes it very easy to set up a replica using a full backup. This page documents how to set up a replica from a

backup.

If you are using MariaDB Galera Cluster, then you may want to try one of the following pages instead:

Configuring MariaDB Replication between MariaDB Galera Cluster and MariaDB Server

Configuring MariaDB Replication between Two MariaDB Galera Clusters

Backup the Database and Prepare It
The first step is to simply take and prepare a fresh full backup of a database server in the replication topology. If the source

database server is the desired replication primary, then we do not need to add any additional options when taking the full

backup. For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

If the source database server is a replica of the desired primary, then we should add the --slave-info option, and possibly the

--safe-slave-backup option. For example:

$ mariabackup --backup \

 --slave-info --safe-slave-backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

And then we would prepare the backup as you normally would. For example:

2064/4161

https://jira.mariadb.org/browse/MDEV-18777

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup/

Copy the Backup to the New Replica
Once the backup is done and prepared, we can copy it to the new replica. For example:

$ rsync -avP /var/mariadb/backup dbserver2:/var/mariadb/backup

Restore the Backup on the New Replica
At this point, we can restore the backup to the datadir, as you normally would. For example:

$ mariabackup --copy-back \

 --target-dir=/var/mariadb/backup/

And adjusting file permissions, if necessary:

$ chown -R mysql:mysql /var/lib/mysql/

Create a Replication User on the Primary
Before the new replica can begin replicating from the primary, we need to create a user account on the primary that the

replica can use to connect, and we need to grant the user account the REPLICATION SLAVE privilege. For example:

CREATE USER 'repl'@'dbserver2' IDENTIFIED BY 'password';

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'dbserver2';

Configure the New Replica
Before we start the server on the new replica, we need to configure it. At the very least, we need to ensure that it has a

unique server_id value. We also need to make sure other replication settings are what we want them to be, such as the

various GTID system variables, if those apply in the specific environment.

Once configuration is done, we can start the MariaDB Server process on the new replica.

Start Replication on the New Replica
At this point, we need to get the replication coordinates of the primary from the original backup directory.

If we took the backup on the primary, then the coordinates will be in the xtrabackup_binlog_info file. If we took the backup on

another replica and if we provided the --slave-info option, then the coordinates will be in the file xtrabackup_slave_info file.

Mariabackup dumps replication coordinates in two forms: GTID coordinates and binary log file and position coordinates, like

the ones you would normally see from SHOW MASTER STATUS output. We can choose which set of coordinates we would

like to use to set up replication.

For example:

mariadb-bin.000096 568 0-1-2

Regardless of the coordinates we use, we will have to set up the primary connection using CHANGE MASTER TO and then

start the replication threads with START SLAVE.

GTIDs

If we want to use GTIDs, then we will have to first set gtid_slave_pos to the GTID coordinates that we pulled from either the

xtrabackup_binlog_info file or the xtrabackup_slave_info file in the backup directory. For example:

$ cat xtrabackup_binlog_info

mariadb-bin.000096 568 0-1-2

2065/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

And then we would set MASTER_USE_GTID=slave_pos in the CHANGE MASTER TO command. For example:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO

 MASTER_HOST="dbserver1",

 MASTER_PORT=3306,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_USE_GTID=slave_pos;

START SLAVE;

File and Position

If we want to use the binary log file and position coordinates, then we would set MASTER_LOG_FILE and MASTER_LOG_POS

in the CHANGE MASTER TO command to the file and position coordinates that we pulled; either the xtrabackup_binlog_info

file or the xtrabackup_slave_info file in the backup directory, depending on whether the backup was taken from the primary

or from a replica of the primary. For example:

CHANGE MASTER TO

 MASTER_HOST="dbserver1",

 MASTER_PORT=3306,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_LOG_FILE='mariadb-bin.000096',

 MASTER_LOG_POS=568;

START SLAVE;

Check the Status of the New Replica
We should be done setting up the replica now, so we should check its status with SHOW SLAVE STATUS. For example:

SHOW SLAVE STATUS\G

2.3.4.8 Files Backed Up By Mariabackup
Contents
1. Files Included in Backup

1. InnoDB Data Files

2. MyRocks Data Files

3. Other Data Files

2. Files Excluded From Backup

Files Included in Backup
Mariabackup backs up the files listed below.

InnoDB Data Files

Mariabackup backs up the following InnoDB data files:

InnoDB system tablespace

InnoDB file-per-table tablespaces

MyRocks Data Files

Starting with MariaDB 10.2.16 and MariaDB 10.3.8 , Mariabackup will back up tables that use the MyRocks storage

engine. This data data is located in the directory defined by the rocksdb_datadir system variable. Mariabackup backs

this data up by performing a checkpoint using the rocksdb_create_checkpoint system variable.

Mariabackup does not currently support partial backups for MyRocks.

Other Data Files

2066/4161

https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/

Mariabackup also backs up files with the following extensions:

frm

isl

MYD

MYI

MAD

MAI

MRG

TRG

TRN

ARM

ARZ

CSM

CSV

opt

par

Files Excluded From Backup
Mariabackup does not back up the files listed below.

InnoDB Temporary Tablespaces

Binary logs

Relay logs

2.3.4.9 Files Created by Mariabackup
Contents
1. backup-my.cnf

2. ib_logfile0

3. xtrabackup_logfile

4. xtrabackup_binlog_info

5. xtrabackup_binlog_pos_innodb

6. xtrabackup_checkpoints

1. backup_type

2. from_lsn

3. to_lsn

4. last_lsn

7. xtrabackup_info

1. uuid

2. name

3. tool_name

4. tool_command

5. tool_version

6. ibbackup_version

7. server_version

8. start_time

9. end_time

10. lock_time

11. binlog_pos

12. innodb_from_lsn

13. innodb_to_lsn

14. partial

15. incremental

16. format

17. compressed

8. xtrabackup_slave_info

9. xtrabackup_galera_info

10. <table>.delta

11. <table>.delta.meta

1. page_size

2. zip_size

3. space_id

2067/4161

Mariabackup creates the following files:

backup-my.cnf
During the backup, any server options relevant to Mariabackup are written to the backup-my.cnf option file, so that they

can be re-read later during the --prepare stage.

ib_logfile0
In MariaDB 10.2.10 and later, Mariabackup creates an empty InnoDB redo log file called ib_logfile0 as part of the --

prepare stage. This file has 3 roles:

1. In the source server, ib_logfile0 is the first (and possibly the only) InnoDB redo log file.

2. In the non-prepared backup, ib_logfile0 contains all of the InnoDB redo log copied during the backup. Previous

versions of Mariabackup would use a file called xtrabackup_logfile for this.

3. During the --prepare stage, ib_logfile0 would previously be deleted. Now during the --prepare stage,

ib_logfile0 is initialized as an empty InnoDB redo log file. That way, if the backup is manually restored, any pre-

existing InnoDB redo log files would get overwritten by the empty one. This helps to prevent certain kinds of known

issues. For example, see Mariabackup Overview: Manual Restore with Pre-existing InnoDB Redo Log files.

xtrabackup_logfile
In MariaDB 10.2.9 and before, Mariabackup creates xtrabackup_logfile to store the InnoDB redo log, In later

versions, ib_logfile0 is created instead.

xtrabackup_binlog_info
This file stores the binary log file name and position that corresponds to the backup.

This file also stores the value of the gtid_current_pos system variable that correspond to the backup.

For example:

mariadb-bin.000096 568 0-1-2

The values in this file are only guaranteed to be consistent with the backup if the --no-lock option was not provided

when the backup was taken.

xtrabackup_binlog_pos_innodb
This file is created by mariabackup to provide the binary log file name and position when the --no-lock option is used. It can

be used instead of the file "xtrabackup_binlog_info" to obtain transactionally consistent binlog coordinates from the backup

of a master server with the --no-lock option to minimize the impact on a running server.

Whenever a transaction is committed inside InnoDB when the binary log is enabled, the corresponding binlog coordinates

are written to the InnoDB redo log along with the transaction commit. This allows one to restore the binlog coordinates

corresponding to the last commit done by InnoDB along with a backup.

The limitation of using "xtrabackup_binlog_pos_innodb" with the "--no-lock" option is that no DDL or modification of non-

transactional tables should be done during the backup. If the last event in the binlog is a DDL/non-transactional update, the

coordinates in the file "xtrabackup_binlog_pos_innodb" will be too old. But as long as only InnoDB updates are done during

the backup, the coordinates will be correct.

xtrabackup_checkpoints
The xtrabackup_checkpoints file contains metadata about the backup.

For example:

2068/4161

https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/

backup_type = full-backuped

from_lsn = 0

to_lsn = 1635102

last_lsn = 1635102

recover_binlog_info = 0

See below for a description of the fields.

If the --extra-lsndir option is provided, then an extra copy of this file will be saved in that directory.

backup_type

If the backup is a non-prepared full backup or a non-prepared partial backup, then backup_type is set to full-

backuped .

If the backup is a non-prepared incremental backup, then backup_type is set to incremental .

If the backup has already been prepared, then backup_type is set to log-applied .

from_lsn

If backup_type is full-backuped , then from_lsn has the value of 0 .

If backup_type is incremental , then from_lsn has the value of the log sequence number (LSN) at which the backup

started reading from the InnoDB redo log. This is internally used by Mariabackup when preparing incremental backups.

This value can be manually set during an incremental backup with the --incremental-lsn option. However, it is

generally better to let Mariabackup figure out the from_lsn automatically by specifying a parent backup with the --

incremental-basedir option.

to_lsn

to_lsn has the value of the log sequence number (LSN) of the last checkpoint in the InnoDB redo log. This is internally

used by Mariabackup when preparing incremental backups.

last_lsn

last_lsn has the value of the last log sequence number (LSN) read from the InnoDB redo log. This is internally used by

Mariabackup when preparing incremental backups.

xtrabackup_info
The xtrabackup_info file contains information about the backup. The fields in this file are listed below.

If the --extra-lsndir option is provided, then an extra copy of this file will be saved in that directory.

uuid

If a UUID was provided by the --incremental-history-uuid option, then it will be saved here. Otherwise, this will be

the empty string.

name

If a name was provided by the --history or the ---incremental-history-name options, then it will be saved here.

Otherwise, this will be the empty string.

tool_name

The name of the Mariabackup executable that performed the backup. This is generally mariabackup .

tool_command

The arguments that were provided to Mariabackup when it performed the backup.

2069/4161

tool_version

The version of Mariabackup that performed the backup.

ibbackup_version

The version of Mariabackup that performed the backup.

server_version

The version of MariaDB Server that was backed up.

start_time

The time that the backup started.

end_time

The time that the backup ended.

lock_time

The amount of time that Mariabackup held its locks.

binlog_pos

This field stores the binary log file name and position that corresponds to the backup.

This field also stores the value of the gtid_current_pos system variable that correspond to the backup.

The values in this field are only guaranteed to be consistent with the backup if the --no-lock option was not provided

when the backup was taken.

innodb_from_lsn

This is identical to from_lsn in xtrabackup_checkpoints .

If the backup is a full backup, then innodb_from_lsn has the value of 0 .

If the backup is an incremental backup, then innodb_from_lsn has the value of the log sequence number (LSN) at which

the backup started reading from the InnoDB redo log.

innodb_to_lsn

This is identical to to_lsn in xtrabackup_checkpoints .

innodb_to_lsn has the value of the log sequence number (LSN) of the last checkpoint in the InnoDB redo log.

partial

If the backup is a partial backup, then this value will be Y .

Otherwise, this value will be N .

incremental

If the backup is an incremental backup, then this value will be Y .

Otherwise, this value will be N .

format

This field's value is the format of the backup.

If the --stream option was set to xbstream , then this value will be xbstream .

2070/4161

If the --stream option was not provided, then this value will be file .

compressed

If the --compress option was provided, then this value will be compressed .

Otherwise, this value will be N .

xtrabackup_slave_info
If the --slave-info option is provided, then this file contains the CHANGE MASTER command that can be used to set up a

new server as a slave of the original server's master after the backup has been restored.

Mariabackup does not check if GTIDs are being used in replication. It takes a shortcut and assumes that if the

gtid_slave_pos system variable is non-empty, then it writes the CHANGE MASTER command with the

MASTER_USE_GTID option set to slave_pos . Otherwise, it writes the CHANGE MASTER command with the

MASTER_LOG_FILE and MASTER_LOG_POS options using the master's binary log file and position. See MDEV-19264 for

more information.

xtrabackup_galera_info
If the --galera-info option is provided, then this file contains information about a Galera Cluster node's state.

The file contains the values of the wsrep_local_state_uuid and wsrep_last_committed status variables.

The values are written in the following format:

wsrep_local_state_uuid:wsrep_last_committed

For example:

d38587ce-246c-11e5-bcce-6bbd0831cc0f:1352215

<table>.delta
If the backup is an incremental backup, then this file contains changed pages for the table.

<table>.delta.meta
If the backup is an incremental backup, then this file contains metadata about <table>.delta files. The fields in this file

are listed below.

page_size

This field contains either the value of innodb_page_size or the value of the KEY_BLOCK_SIZE table option for the table if

the ROW_FORMAT table option for the table is set to COMPRESSED .

zip_size

If the ROW_FORMAT table option for this table is set to COMPRESSED , then this field contains the value of the compressed

page size.

space_id

This field contains the value of the table's space_id .

2.3.4.10 Using Encryption and Compression
Tools With Mariabackup

2071/4161

https://jira.mariadb.org/browse/MDEV-19264

Contents
1. Encrypting and Decrypting Backup With openssl

2. Compressing and Decompressing Backup With gzip

3. Compressing and Encrypting Backup, Using gzip and openssl

4. Compressing and Encrypting with 7Zip

5. Compressing with zstd

6. Encrypting With GPG

7. Interactive Input for Passphrases

8. Writing extra status files

Mariabackup supports streaming to stdout with the --stream=xbstream option. This option allows easy integration with

popular encryption and compression tools. Below are several examples.

Encrypting and Decrypting Backup With openssl
The following example creates an AES-encrypted backup, protected with the password "mypass" and stores it in a file

"backup.xb.enc":

mariabackup --user=root --backup --stream=xbstream | openssl enc -aes-256-cbc -k mypass >

backup.xb.enc

To decrypt and unpack this backup into the current directory, the following command can be used:

openssl enc -d -aes-256-cbc -k mypass -in backup.xb.enc | mbstream -x

Compressing and Decompressing Backup With gzip
This example compresses the backup without encrypting:

mariabackup --user=root --backup --stream=xbstream | gzip > backupstream.gz

We can decompress and unpack the backup as follows:

gunzip -c backupstream.gz | mbstream -x

Compressing and Encrypting Backup, Using gzip and
openssl
This example adds a compression step before the encryption, otherwise looks almost identical to the previous example:

mariabackup --user=root --backup --stream=xbstream | gzip | openssl enc -aes-256-cbc -k mypass

> backup.xb.gz.enc

We can decrypt, decompress and unpack the backup as follow (note gzip -d in the pipeline):

openssl enc -d -aes-256-cbc -k mypass -in backup.xb.gz.enc |gzip -d| mbstream -x

Compressing and Encrypting with 7Zip
7zip archiver is a popular utility (especially on Windows) that supports reading from standard output, with the - -si option,

and writing to stdout with the -so option, and can thus be used together with Mariabackup.

Compressing backup with the 7z command line utility works as follows:

mariabackup --user=root --backup --stream=xbstream | 7z a -si backup.xb.7z

Uncompress and unpack the archive with

2072/4161

7z e backup.xb.7z -so |mbstream -x

7z also has builtin AES-256 encryption. To encrypt the backup from the previous example using password SECRET, add -

pSECRET to the 7z command line.

Compressing with zstd
Compress

mariabackup --user=root --backup --stream=xbstream | zstd - -o backup.xb.zst -f -1

Decompress , unpack

zstd -d backup.xbstream.zst -c | mbstream -x

Encrypting With GPG
Encryption

mariabackup --user=root --backup --stream=xbstream | gpg -c --passphrase SECRET --batch --yes -

o backup.xb.gpg

Decrypt, unpack

gpg --decrypt --passphrase SECRET --batch --yes backup.xb.gpg | mbstream -x

Interactive Input for Passphrases
Most of the described tools also provide a way to enter a passphrase interactively (although 7zip does not seem to work

well when reading input from stdin). Please consult documentation of the tools for more info.

Writing extra status files
By default files like xtrabackup_checkpoints are also written to the output stream only, and so would not be available for

taking further incremental backups without prior extraction from the compressed or encrypted stream output file.

To avoid this these files can additionally be written to a directory that can then be used as input for further incremental

backups using the --extra-lsndir=... option.

See also e.g: Combining incremental backups with streaming output

2.3.4.11 How Mariabackup Works
Contents
1. Execution Stages

1. Initialization Phase

2. Redo Log Handling

3. Copy-phase for InnoDB Tablespaces

4. Create a Consistent Backup Point

5. Last Copy Phase

6. Release Locks

7. Handle Log Tables (TODO)

2. Notes

This is a description of the different stages in Mariabackup, what they do and why they are needed.

Note that a few items are marked with TODO ; these are things we are working on and will be in next version of

Mariabackup.

Execution Stages
2073/4161

Initialization Phase

Connect to mysqld instance, find out important variables (datadir ,InnoDB pagesize, encryption keys, encryption

plugin etc)

Scan the database directory, datadir , looking for InnoDB tablespaces, load the tablespaces (basically, it is an

<open= in InnoDB sense)

If --lock-ddl-per-table is used:

Do MDL locks, for InnoDB tablespaces that we want to copy. This is to ensure that there are no ALTER,

RENAME , TRUNCATE or DROP TABLE on any of the tables that we want to copy.

This is implemented with:

BEGIN

For each affected table

SELECT 1 from <table> LIMIT 0

If lock-ddl-per-table is not done, then Mariabackup would have to know all tables that were created or altered during

the backup. See MDEV-16791 .

Redo Log Handling

Start a dedicated thread in Mariabackup to copy InnoDB redo log (ib_logfile*).

This is needed to record all changes done while the backup is running. (The redo log logically is a single circular file,

split into innodb_log_files_in_group files.)

The log is also used to see detect if any truncate or online alter tables are used.

The assumption is that the copy thread will be able to keep up with server. It should always be able keep up, if the

redo log is big enough.

Copy-phase for InnoDB Tablespaces

Copy all selected tablespaces, file by file, in dedicated threads in Mariabackup without involving the mysqld server.

This is special <careful= copy, it looks for page-level consistency by checking the checksum.

The files are not point-in-time consistent as data may change during copy.

The idea is that InnoDB recovery would make it point-in-time consistent.

Copy Aria log files (TODO)

Create a Consistent Backup Point

Execute FLUSH TABLE WITH READ LOCK. This is default, but may be omitted with the -3no-lock parameter. The

reason why FLUSH is needed is to ensure that all tables are in a consistent state at the exact same point in time,

independent of storage engine.

If --lock-ddl-per-table is used and there is a user query waiting for MDL, the user query will be killed to resolve

a deadlock. Note that these are only queries of type ALTER, DROP, TRUNCATE or RENAME TABLE. (MDEV-15636

)

Last Copy Phase

Copy .frm , MyISAM , Aria and other storage engine files

If MyRocks is used, create rocksdb checkpoint via "set

rocksdb_create_checkpoint=$rocksdb_data_dir/mariabackup_rocksdb_checkpoint " command. The result of it is a

directory with hardlinks to MyRocks files. Copy the checkpoint directory to the backup (or create hardlinks in backup

directory is on the same partition as data directory). Remove the checkpoint directory.

Copy tables that were created while the backup was running and do rename files that were changed during backup

(since MDEV-16791)

Copy the rest of InnoDB redo log, stop redo-log-copy thread

Copy changes to Aria log files (They are append only, so this is easy to do) (TODO)

Write some metadata info (binlog position)

Release Locks

If FLUSH TABLE WITH READ LOCK was done:

execute: UNLOCK TABLES

If --lock-ddl-per-table was done:

execute COMMIT

2074/4161

https://jira.mariadb.org/browse/MDEV-16791
https://jira.mariadb.org/browse/MDEV-15636
https://jira.mariadb.org/browse/MDEV-16791

Handle Log Tables (TODO)

If log tables exists:

Take MDL lock for log tables

Copy part of log tables that wasn't copied before

Unlock log tables

Notes
If FLUSH TABLE WITH READ LOCK is not used, then only InnoDB tables will be consistent (not the privilege tables

in the mysql database or the binary log). The backup point depends on the content of the redo log within the backup

itself.

2.3.4.12 Mariabackup and BACKUP STAGE
Commands

The BACKUP STAGE commands were introduced in MariaDB 10.4.1.

Contents
1. Mariabackup and BACKUP STAGE Commands in MariaDB Community Server

1. Tasks Performed Prior to BACKUP STAGE in MariaDB Community Server

2. BACKUP STAGE START in MariaDB Community Server

3. BACKUP STAGE FLUSH in MariaDB Community Server

4. BACKUP STAGE BLOCK_DDL in MariaDB Community Server

5. BACKUP STAGE BLOCK_COMMIT in MariaDB Community Server

6. BACKUP STAGE END in MariaDB Community Server

2. Mariabackup and BACKUP STAGE Commands in MariaDB Enterprise Server

1. BACKUP STAGE START in MariaDB Enterprise Server

2. BACKUP STAGE FLUSH in MariaDB Enterprise Server

3. BACKUP STAGE BLOCK_DDL in MariaDB Enterprise Server

4. BACKUP STAGE BLOCK_COMMIT in MariaDB Enterprise Server

5. BACKUP STAGE END in MariaDB Enterprise Server

The BACKUP STAGE commands are a set of commands to make it possible to make an efficient external backup tool. How

Mariabackup uses these commands depends on whether you are using the version that is bundled with MariaDB

Community Server or the version that is bundled with MariaDB Enterprise Server .

Mariabackup and BACKUP STAGE Commands in
MariaDB Community Server

In MariaDB Community Server, Mariabackup first supported BACKUP STAGE commands in MariaDB 10.4.1.

In MariaDB 10.3 and before, the BACKUP STAGE commands are not supported, so Mariabackup executes the FLUSH

TABLES WITH READ LOCK command to lock the database. When the backup is complete, it executes the UNLOCK TABLES

command to unlock the database.

In MariaDB 10.4 and later, the BACKUP STAGE commands are supported. However, the version of Mariabackup that is

bundled with MariaDB Community Server does not yet use the BACKUP STAGE commands in the most efficient way.

Mariabackup simply executes the following BACKUP STAGE commands to lock the database:

BACKUP STAGE START;

BACKUP STAGE BLOCK_COMMIT;

When the backup is complete, it executes the following BACKUP STAGE command to unlock the database:

BACKUP STAGE END;

MariaDB starting with 10.4.1

MariaDB starting with 10.4.1

2075/4161

https://mariadb.com/docs/products/mariadb-enterprise-server/

If you would like to use a version of Mariabackup that uses the BACKUP STAGE commands in the most efficient way,

then your best option is to use MariaDB Enterprise Backup that is bundled with MariaDB Enterprise Server .

Tasks Performed Prior to BACKUP STAGE in MariaDB Community
Server

Copy some transactional tables.

InnoDB (i.e. ibdataN and file extensions .ibd and .isl)

Copy the tail of some transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

BACKUP STAGE START in MariaDB Community Server

Mariabackup from MariaDB Community Server does not currently perform any tasks in the START stage.

BACKUP STAGE FLUSH in MariaDB Community Server

Mariabackup from MariaDB Community Server does not currently perform any tasks in the FLUSH stage.

BACKUP STAGE BLOCK_DDL in MariaDB Community Server

Mariabackup from MariaDB Community Server does not currently perform any tasks in the BLOCK_DDL stage.

BACKUP STAGE BLOCK_COMMIT in MariaDB Community Server

Mariabackup from MariaDB Community Server performs the following tasks in the BLOCK_COMMIT stage:

Copy other files.

i.e. file extensions .frm , .isl , .TRG , .TRN , .opt , .par

Copy some transactional tables.

Aria (i.e. aria_log_control and file extensions .MAD and .MAI)

Copy the non-transactional tables.

MyISAM (i.e. file extensions .MYD and .MYI)

MERGE (i.e. file extensions .MRG)

ARCHIVE (i.e. file extensions .ARM and .ARZ)

CSV (i.e. file extensions .CSM and .CSV)

Create a MyRocks checkpoint using the rocksdb_create_checkpoint system variable.

Copy the tail of some transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

Save the binary log position to xtrabackup_binlog_info .

Save the Galera Cluster state information to xtrabackup_galera_info .

BACKUP STAGE END in MariaDB Community Server

Mariabackup from MariaDB Community Server performs the following tasks in the END stage:

Copy the MyRocks checkpoint into the backup.

Mariabackup and BACKUP STAGE Commands in
MariaDB Enterprise Server

MariaDB Enterprise Backup first supported BACKUP STAGE commands in MariaDB Enterprise Server 10.4.6-1 ,

MariaDB Enterprise Server 10.3.16-1 , and MariaDB Enterprise Server 10.2.25-1 .

The following sections describe how the MariaDB Enterprise Backup version of Mariabackup that is bundled with

MariaDB Enterprise Server uses each BACKUP STAGE command in an efficient way.

BACKUP STAGE START in MariaDB Enterprise Server

MariaDB starting with 10.2.25

2076/4161

https://mariadb.com/docs/usage/mariadb-enterprise-backup/
https://mariadb.com/docs/products/mariadb-enterprise-server/
https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/docs/usage/mariadb-enterprise-backup/
https://mariadb.com/docs/appendix/release-notes/mariadb-enterprise-server-10-4-6-1-release-notes/
https://mariadb.com/docs/appendix/release-notes/mariadb-enterprise-server-10-3-16-1-release-notes/
https://mariadb.com/docs/appendix/release-notes/mariadb-enterprise-server-10-2-25-1-release-notes/
https://mariadb.com/docs/usage/mariadb-enterprise-backup/
https://mariadb.com/docs/products/mariadb-enterprise-server/

Mariabackup from MariaDB Enterprise Server performs the following tasks in the START stage:

Copy all transactional tables.

InnoDB (i.e. ibdataN and file extensions .ibd and .isl)

Aria (i.e. aria_log_control and file extensions .MAD and .MAI)

Copy the tail of all transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

The tail of the Aria redo log (i.e. aria_log.N files) will be copied for Aria tables.

BACKUP STAGE FLUSH in MariaDB Enterprise Server

Mariabackup from MariaDB Enterprise Server performs the following tasks in the FLUSH stage:

Copy all non-transactional tables that are not in use. This list of used tables is found with SHOW OPEN TABLES .

MyISAM (i.e. file extensions .MYD and .MYI)

MERGE (i.e. file extensions .MRG)

ARCHIVE (i.e. file extensions .ARM and .ARZ)

CSV (i.e. file extensions .CSM and .CSV)

Copy the tail of all transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

The tail of the Aria redo log (i.e. aria_log.N files) will be copied for Aria tables.

BACKUP STAGE BLOCK_DDL in MariaDB Enterprise Server

Mariabackup from MariaDB Enterprise Server performs the following tasks in the BLOCK_DDL stage:

Copy other files.

i.e. file extensions .frm , .isl , .TRG , .TRN , .opt , .par

Copy the non-transactional tables that were in use during BACKUP STAGE FLUSH .

MyISAM (i.e. file extensions .MYD and .MYI)

MERGE (i.e. file extensions .MRG)

ARCHIVE (i.e. file extensions .ARM and .ARZ)

CSV (i.e. file extensions .CSM and .CSV)

Check ddl.log for DDL executed before the BLOCK DDL stage.

The file names of newly created tables can be read from ddl.log .

The file names of dropped tables can also be read from ddl.log .

The file names of renamed tables can also be read from ddl.log , so the files can be renamed instead of re-

copying them.

Copy changes to system log tables.

mysql.general_log

mysql.slow_log

This is easy as these are append only.

Copy the tail of all transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

The tail of the Aria redo log (i.e. aria_log.N files) will be copied for Aria tables.

BACKUP STAGE BLOCK_COMMIT in MariaDB Enterprise Server

Mariabackup from MariaDB Enterprise Server performs the following tasks in the BLOCK_COMMIT stage:

Create a MyRocks checkpoint using the rocksdb_create_checkpoint system variable.

Copy changes to system log tables.

mysql.general_log

mysql.slow_log

This is easy as these are append only.

Copy changes to statistics tables.

mysql.table_stats

mysql.column_stats

mysql.index_stats

Copy the tail of all transaction logs.

The tail of the InnoDB redo log (i.e. ib_logfileN files) will be copied for InnoDB tables.

The tail of the Aria redo log (i.e. aria_log.N files) will be copied for Aria tables.

Save the binary log position to xtrabackup_binlog_info .

Save the Galera Cluster state information to xtrabackup_galera_info .

2077/4161

BACKUP STAGE END in MariaDB Enterprise Server

Mariabackup from MariaDB Enterprise Server performs the following tasks in the END stage:

Copy the MyRocks checkpoint into the backup.

2.3.4.13 mariabackup SST Method
The mariabackup SST method uses the Mariabackup utility for performing SSTs. It is one of the methods that does not

block the donor node. Mariabackup was originally forked from Percona XtraBackup , and similarly, the mariabackup

SST method was originally forked from the xtrabackup-v2 SST method.

Note that if you use the mariabackup SST method, then you also need to have socat installed on the server. This is

needed to stream the backup from the donor node to the joiner node. This is a limitation that was inherited from the

xtrabackup-v2 SST method.

Contents
1. Choosing Mariabackup for SSTs

2. Major version upgrades

3. Authentication and Privileges

1. Passwordless Authentication - Unix Socket

2. Passwordless Authentication - GSSAPI

4. Choosing a Donor Node

5. Socat Dependency

1. Installing Socat on RHEL/CentOS

6. TLS

1. TLS Using OpenSSL Encryption Built into Socat

2. TLS Using OpenSSL Encryption with Galera-compatible Certificates and Keys

7. Logs

1. Logging to SST Logs

2. Logging to Syslog

8. Performing SSTs with IPv6 Addresses

9. Manual SST with Mariabackup

Choosing Mariabackup for SSTs
To use the mariabackup SST method, you must set the wsrep_sst_method=mariabackup on both the donor and joiner

node. It can be changed dynamically with SET GLOBAL on the node that you intend to be a SST donor. For example:

SET GLOBAL wsrep_sst_method='mariabackup';

It can be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_method = mariabackup

For an SST to work properly, the donor and joiner node must use the same SST method. Therefore, it is recommended to

set wsrep_sst_method to the same value on all nodes, since any node will usually be a donor or joiner node at some

point.

Major version upgrades
The InnoDB redo log format has been changed in MariaDB 10.5 and MariaDB 10.8 in a way that will not allow the crash

recovery or the preparation of a backup from an older major version. Because of this, the mariabackup SST method

cannot be used for some major version upgrades, unless you temporarily edit the wsrep_sst_mariabackup script so that

the --prepare step on the newer-major-version joiner will be executed using the older-major-version mariabackup tool.

The default method wsrep_sst_method=rsync will work for major version upgrades; see MDEV-27437 .

Authentication and Privileges
To use the mariabackup SST method, Mariabackup needs to be able to authenticate locally on the donor node, so that it

can create a backup to stream to the joiner. You can tell the donor node what username and password to use by setting the

2078/4161

https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://jira.mariadb.org/browse/MDEV-27437

wsrep_sst_auth system variable. It can be changed dynamically with SET GLOBAL on the node that you intend to be a

SST donor. For example:

SET GLOBAL wsrep_sst_auth = 'mariabackup:mypassword';

It can also be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_auth = mariabackup:mypassword

Some authentication plugins do not require a password. For example, the unix_socket and gssapi authentication

plugins do not require a password. If you are using a user account that does not require a password in order to log in, then

you can just leave the password component of wsrep_sst_auth empty. For example:

[mariadb]

...

wsrep_sst_auth = mariabackup:

The user account that performs the backup for the SST needs to have the same privileges as Mariabackup, which are the

RELOAD , PROCESS , LOCK TABLES and BINLOG MONITOR (or REPLICATION CLIENT for MariaDB 10.4 or earlier) global

privileges. To be safe, you should ensure that these privileges are set on each node in your cluster. Mariabackup connects

locally on the donor node to perform the backup, so the following user should be sufficient:

CREATE USER 'mariabackup'@'localhost' IDENTIFIED BY 'mypassword';

GRANT RELOAD, PROCESS, LOCK TABLES, BINLOG MONITOR ON *.* TO 'mariabackup'@'localhost';

Passwordless Authentication - Unix Socket

It is possible to use the unix_socket authentication plugin for the user account that performs SSTs. This would provide

the benefit of not needing to configure a plain-text password in wsrep_sst_auth .

The user account would have to have the same name as the operating system user account that is running the mysqld

process. On many systems, this is the user account configured as the user option, and it tends to default to mysql .

For example, if the unix_socket authentication plugin is already installed, then you could execute the following to create

the user account:

CREATE USER 'mysql'@'localhost' IDENTIFIED VIA unix_socket;

GRANT RELOAD, PROCESS, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'mysql'@'localhost';

And then to configure wsrep_sst_auth , you could set the following in a server option group in an option file prior to

starting up a node:

[mariadb]

...

wsrep_sst_auth = mysql:

Passwordless Authentication - GSSAPI

It is possible to use the gssapi authentication plugin for the user account that performs SSTs. This would provide the

benefit of not needing to configure a plain-text password in wsrep_sst_auth .

The following steps would need to be done beforehand:

You need a KDC running MIT Kerberos or Microsoft Active Directory .

You will need to create a keytab file for the MariaDB server.

You will need to install the package containing the gssapi authentication plugin.

You will need to install the plugin in MariaDB, so that the gssapi authentication plugin is available to use.

You will need to configure the plugin.

You will need to create a user account that authenticates with the gssapi authentication plugin, so that the user

account can be used for SSTs. This user account will need to correspond with a user account that exists on the

backend KDC.

For example, you could execute the following to create the user account in MariaDB:

2079/4161

http://web.mit.edu/Kerberos/krb5-1.12/doc/index.html
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview

CREATE USER 'mariabackup'@'localhost' IDENTIFIED VIA gssapi;

GRANT RELOAD, PROCESS, LOCK TABLES, BINLOG MONITOR ON *.* TO 'mariabackup'@'localhost';

And then to configure wsrep_sst_auth , you could set the following in a server option group in an option file prior to

starting up a node:

[mariadb]

...

wsrep_sst_auth = mariabackup:

Choosing a Donor Node
When Mariabackup is used to create the backup for the SST on the donor node, Mariabackup briefly requires a system-wide

lock at the end of the backup. In MariaDB 10.3 and before, this is done with FLUSH TABLES WITH READ LOCK . In MariaDB

10.4 and later, this is done with BACKUP STAGE BLOCK_COMMIT .

If a specific node in your cluster is acting as the primary node by receiving all of the application's write traffic, then this node

should not usually be used as the donor node, because the system-wide lock could interfere with the application. In this

case, you can define one or more preferred donor nodes by setting the wsrep_sst_donor system variable.

For example, let's say that we have a 5-node cluster with the nodes node1 , node2 , node3 , node4 , and node5 , and

let's say that node1 is acting as the primary node. The preferred donor nodes for node2 could be configured by setting

the following in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_donor=node3,node4,node5,

The trailing comma tells the server to allow any other node as donor when the preferred donors are not available. Therefore,

if node1 is the only node left in the cluster, the trailing comma allows it to be used as the donor node.

Socat Dependency
During the SST process, the donor node uses socat to stream the backup to the joiner node. Then the joiner node

prepares the backup before restoring it. The socat utility must be installed on both the donor node and the joiner node in

order for this to work. Otherwise, the MariaDB error log will contain an error like:

WSREP_SST: [ERROR] socat not found in path:

/usr/sbin:/sbin:/usr//bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin (20180122

14:55:32.993)

Installing Socat on RHEL/CentOS

On RHEL/CentOS, socat can be installed from the Extra Packages for Enterprise Linux (EPEL) repository.

TLS
This SST method supports two different TLS methods. The specific method can be selected by setting the encrypt option

in the [sst] section of the MariaDB configuration file. The options are:

TLS using OpenSSL encryption built into socat (encrypt=2)

TLS using OpenSSL encryption with Galera-compatible certificates and keys (encrypt=3)

Note that encrypt=1 refers to a TLS encryption method that has been deprecated and removed. encrypt=4 refers to a

TLS encryption method in xtrabackup-v2 that has not yet been ported to mariabackup . See MDEV-18050 about

that.

TLS Using OpenSSL Encryption Built into Socat

To generate keys compatible with this encryption method, you can follow these directions .

For example:

First, generate the keys and certificates:

2080/4161

http://www.dest-unreach.org/socat/doc/socat.html
https://fedoraproject.org/wiki/EPEL
https://jira.mariadb.org/browse/MDEV-18050
http://www.dest-unreach.org/socat/doc/socat-openssltunnel.html

FILENAME=sst

openssl genrsa -out $FILENAME.key 1024

openssl req -new -key $FILENAME.key -x509 -days 3653 -out $FILENAME.crt

cat $FILENAME.key $FILENAME.crt >$FILENAME.pem

chmod 600 $FILENAME.key $FILENAME.pem

On some systems, you may also have to add dhparams to the certificate:

openssl dhparam -out dhparams.pem 2048

cat dhparams.pem >> sst.pem

Then, copy the certificate and keys to all nodes in the cluster.

Then, configure the following on all nodes in the cluster:

[sst]

encrypt=2

tca=/etc/my.cnf.d/certificates/sst.crt

tcert=/etc/my.cnf.d/certificates/sst.pem

But replace the paths with whatever is relevant on your system.

This should allow your SSTs to be encrypted.

TLS Using OpenSSL Encryption with Galera-compatible Certificates
and Keys

To generate keys compatible with this encryption method, you can follow these directions .

For example:

First, generate the keys and certificates:

CA

openssl genrsa 2048 > ca-key.pem

openssl req -new -x509 -nodes -days 365000 \

-key ca-key.pem -out ca-cert.pem

server1

openssl req -newkey rsa:2048 -days 365000 \

-nodes -keyout server1-key.pem -out server1-req.pem

openssl rsa -in server1-key.pem -out server1-key.pem

openssl x509 -req -in server1-req.pem -days 365000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 \

-out server1-cert.pem

Then, copy the certificate and keys to all nodes in the cluster.

Then, configure the following on all nodes in the cluster:

[sst]

encrypt=3

tkey=/etc/my.cnf.d/certificates/server1-key.pem

tcert=/etc/my.cnf.d/certificates/server1-cert.pem

But replace the paths with whatever is relevant on your system.

This should allow your SSTs to be encrypted.

Logs
The mariabackup SST method has its own logging outside of the MariaDB Server logging.

Logging to SST Logs

Starting with MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 , logging for mariabackup SSTs works

the following way.

MariaDB starting with 10.3.13

2081/4161

https://galeracluster.com/library/documentation/ssl-cert.html
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/

By default, on the donor node, it logs to mariabackup.backup.log . This log file is located in the datadir .

By default, on the joiner node, it logs to mariabackup.prepare.log and mariabackup.move.log These log files

are also located in the datadir .

By default, before a new SST is started, existing mariabackup SST log files are compressed and moved to

/tmp/sst_log_archive . This behavior can be disabled by setting sst-log-archive=0 in the [sst] option group

in an option file. Similarly, the archive directory can be changed by setting sst-log-archive-dir . For example:

[sst]

sst-log-archive=1

sst-log-archive-dir=/var/log/mysql/sst/

See MDEV-17973 for more information.

Prior to MariaDB 10.1.38 , MariaDB 10.2.22 , and MariaDB 10.3.13 , logging for mariabackup SSTs works the

following way.

By default, on the donor node, it logs to innobackup.backup.log . This log file is located in the datadir .

By default, on the joiner node, it logs to innobackup.prepare.log and innobackup.move.log . These log files are

located in the .sst directory, which is a hidden directory inside the datadir .

These log files are overwritten by each subsequent SST, so if an SST fails, it is best to copy them somewhere safe

before starting another SST, so that the log files can be analyzed.

Logging to Syslog

You can redirect the SST logs to the syslog instead by setting the following in the [sst] option group in an option file:

[sst]

sst-syslog=1

You can also redirect the SST logs to the syslog by setting the following in the [mysqld_safe] option group in an option

file:

[mysqld_safe]

syslog

Performing SSTs with IPv6 Addresses
If you are performing Mariabackup SSTs with IPv6 addresses, then the socat utility needs to be passed the pf=ip6

option. This can be done by setting the sockopt option in the [sst] option group in an option file. For example:

[sst]

sockopt=",pf=ip6"

See MDEV-18797 for more information.

Manual SST with Mariabackup
In some cases, if Galera Cluster's automatic SSTs repeatedly fail, then it can be helpful to perform a "manual SST". See the

following page on how to do that:

Manual SST of Galera Cluster node with Mariabackup

MariaDB until 10.3.13

3.2.8.3 Manual SST of Galera Cluster Node with
Mariabackup

2.3.4.15 Individual Database Restores with

2082/4161

https://jira.mariadb.org/browse/MDEV-17973
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://jira.mariadb.org/browse/MDEV-18797

MariaBackup from Full Backup
This method is to solve a flaw with Mariabackup; it cannot do single database restores from a full backup easily. There is a

blog post that details a way to do this , but it's a manual process which is fine for a few tables but if you have hundreds or

even thousands of tables then it would be impossible to do quickly.

Contents
1. Single Node

2. Replica nodes

3. Galera cluster

We can't just move the data files to the datadir as the tables are not registered in the engines, so the database will error.

Currently, the only effective method is to a do full restore in a test database and then dump the database that requires

restoring or running a partial backup. This has only been tested with InnoDB. Also, if you have stored procedures or

triggers then these will need to be deleted and recreated.

Some of the issues that this method overcomes:

Tables not registered in the InnoDB engine so will error when you try to select from a table if you move the data files

into the datadir

Tables with foreign keys need to be created without keys, otherwise it will error when you discard the tablespace

Single Node
Below is the process to perform a single database restore.

Firstly, we will need the table structure from a mariadb-dump backup with the --no-data option. I recommend this is done at

least once per day or every six hours via a cronjob. As it is just the structure, it will be very fast.

mariadb-dump -u root -p --all-databases --no-data > nodata.sql

Using SED to return only the table structure we require, then use vim or another text editor to make sure nothing is left.

sed -n '/Current Database: `DATABASENAME`/, /Current Database:/p' nodata.sql > trimednodata.sql

vim trimednodata.sql

I won9t go over the backup process, as this is done earlier in other documents, such as full-backup-and-restore-with-

mariabackup. Prepare the backup with any incremental-backup-and-restores that you have, and then run the following on

the full backup folder using the --export option to generate files with .cfg extensions which InnoDB will look for.

Mariabackup --prepare --export --target-dir=/media/backups/fullbackupfolder

Once we have done these steps, we can then import the table structure. If you have used the --all-databases option, then

you will need to either use SED or open it in a text editor and export out tables that you require. You will also need to log in

to the database and create the database if the dump file doesn't. Run the following command below:

Mysql -u root -p schema_name < nodata.sql

Once the structure is in the database, we have now registered the tables to the engine. Next, we will run the following

statements in the information_schema database, to export statements to import/discard table spaces and drop and create

foreign keys which we will use later. (edit the CONSTRAINT_SCHEMA and TABLE_SCHEMA WHERE clause to the

database you are restoring. Also, add the following lines after your SELECT and before the FROM to have MariaDB export

the files to the OS)

SELECT ...

into outfile '/tmp/filename.sql'

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

FROM ...

The following are the statements that we will need later.

2083/4161

https://mariadb.com/resources/blog/how-to-restore-a-single-database-from-mariadb-backup/

USE information_schema;

select concat("ALTER TABLE ",table_name," DISCARD TABLESPACE;") AS discard_tablespace

from information_schema.tables

where TABLE_SCHEMA="DATABASENAME";

select concat("ALTER TABLE ",table_name," IMPORT TABLESPACE;") AS import_tablespace

from information_schema.tables

where TABLE_SCHEMA="DATABASENAME";

SELECT

concat ("ALTER TABLE ", rc.CONSTRAINT_SCHEMA, ".",rc.TABLE_NAME," DROP FOREIGN KEY ", rc.CONSTRAINT_NAME,";") AS drop_keys

FROM REFERENTIAL_CONSTRAINTS AS rc

where CONSTRAINT_SCHEMA = 'DATABASENAME';

SELECT

CONCAT ("ALTER TABLE ",

KCU.CONSTRAINT_SCHEMA, ".",

KCU.TABLE_NAME,"

ADD CONSTRAINT ",

KCU.CONSTRAINT_NAME, "

FOREIGN KEY ", "

(`",KCU.COLUMN_NAME,"`)", "

REFERENCES `",REFERENCED_TABLE_NAME,"`

(`",REFERENCED_COLUMN_NAME,"`)" ,"

ON UPDATE " ,(SELECT UPDATE_RULE FROM REFERENTIAL_CONSTRAINTS WHERE CONSTRAINT_NAME = KCU.CONSTRAINT_NAME AND CONSTRAINT_SCHEMA = KCU.CONSTRAINT_SCHEMA),"

ON DELETE ",(SELECT DELETE_RULE FROM REFERENTIAL_CONSTRAINTS WHERE CONSTRAINT_NAME = KCU.CONSTRAINT_NAME AND CONSTRAINT_SCHEMA = KCU.CONSTRAINT_SCHEMA),";") AS add_keys

FROM KEY_COLUMN_USAGE AS KCU

WHERE KCU.CONSTRAINT_SCHEMA = 'DATABASENAME'

AND KCU.POSITION_IN_UNIQUE_CONSTRAINT >= 0

AND KCU.CONSTRAINT_NAME NOT LIKE 'PRIMARY';

Once we have run those statements, and they have been exported to a Linux directory or copied from a GUI interface.

Run the ALTER DROP KEYS statements in the database

ALTER TABLE schemaname.tablename DROP FOREIGN KEY key_name;

...

Once completed, run the DROP TABLE SPACE statements in the database

ALTER TABLE test DISCARD TABLESPACE;

...

Exit out the database and change into the directory of the full backup location. Run the following commands to copy all the

.cfg and .ibd files to the datadir such as /var/lib/mysql/testdatabase (Change the datadir location if needed). Learn more

about files that Mariabackup generates with files-created-by-mariabackup

cp *.cfg /var/lib/mysql

cp *.ibd /var/lib/mysql

After moving the files, it is very important that MySQL is the owner of the files, otherwise it won't have access to them and

will error when we import the tablespaces.

sudo chown -R mysql:mysql /var/lib/mysql

Run the import table spaces statements in the database.

ALTER TABLE test IMPORT TABLESPACE;

...

Run the add key statements in the database

ALTER TABLE schmeaname.tablename ADD CONSTRAINT key_name FOREIGN KEY (`column_name`) REFERENCES `foreign_table` (`colum_name`) ON UPDATE NO ACTION ON DELETE NO ACTION;

...

We have successfully restored a single database. To test that this has worked, we can do a basic check on some tables.

2084/4161

use database

SELECT * from test limit 10;

Replica nodes
If you have a primary-replica set up, it would be best to follow the sets above for the primary node and then either take a full

mariadb-dump or take a new full mariabackup and restore this to the replica. You can find more information about restoring

a replica with mariabackup in Setting up a Replica with Mariabackup

After running the below command, copy to the replica and use the LESS linux command to grab the change master

statement. Remember to follow this process: Stop replica > restore data > run CHANGE MASTER statement > start replica

again.

mariadb-dump -u user -p --single-transaction --master-data=2 > fullbackup.sql

Please follow Setting up a Replica with Mariabackup on restoring a replica with Mariabackup

$ mariabackup --backup \

 --slave-info --safe-slave-backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

Galera cluster
For this process to work with Galera cluster, we first need to understand that some statements are not replicated across

Galera nodes. One of which is the DISCARD and IMPORT for ALTER TABLES statements, and these statements will need

to be ran on all nodes. We also need to run the OS level steps on each server as seen below.

Run the ALTER DROP KEYS statements on ONE NODE as these are replicated.

ALTER TABLE schemaname.tablename DROP FOREIGN KEY key_name;

...

Once completed, run the DROP TABLE SPACE statements on EVERY NODE, as these are not replicated.

ALTER TABLE test DISCARD TABLESPACE;

...

Exit out the database and change into the directory of the full backup location. Run the following commands to copy all the

.cfg and .ibd files to the datadir such as /var/lib/mysql/testdatabase (Change the datadir location if needed). Learn more

about files that Mariabackup generates with files-created-by-mariabackup. This step needs to be done on all nodes. You will

need to copy the backup files to each node, we can use the same backup on all nodes.

cp *.cfg /var/lib/mysql

cp *.ibd /var/lib/mysql

After moving the files, it is very important that MySQL is the owner of the files, otherwise it won't have access to them and

will error when we import the tablespaces.

sudo chown -R mysql:mysql /var/lib/mysql

Run the import table spaces statements on EVERY NODE.

ALTER TABLE test IMPORT TABLESPACE;

...

Run the add key statements on ONE NODE

ALTER TABLE schmeaname.tablename ADD CONSTRAINT key_name FOREIGN KEY (`column_name`) REFERENCES `foreign_table` (`colum_name`) ON UPDATE NO ACTION ON DELETE NO ACTION;

...

2085/4161

1.3.6.3 mariadb-hotcopy

2.4 Server Monitoring & Logs
MariaDB can keep a number of log files, including the error log, the binary log, the general query log and the slow query log.

Overview of MariaDB Logs

What to log and what not to log.

Error Log

Record of critical errors that occurred during the server's operation.

Setting the Language for Error Messages

Specifying the language for the server error messages.

General Query Log

Log of every SQL query received from a client, as well as connects/disconnects.

Slow Query Log

Logging slow queries

Rotating Logs on Unix and Linux

Rotating logs on Unix and Linux with logrotate.

Binary Log

Contains a record of all changes to the databases, both data and structure

InnoDB Redo Log

The redo log is used by InnoDB during crash recovery.

InnoDB Undo Log

InnoDB Undo log.

MyISAM Log

Records all changes to MyISAM tables

Transaction Coordinator Log

The transaction coordinator log (tc_log) is used to coordinate transactions...

SQL Error Log Plugin

Records SQL-level errors to a log file.

Writing Logs Into Tables

The general query log and the slow query log can be written into system tables

Performance Schema

Monitoring server performance.

MariaDB Audit Plugin

Logging user activity with the MariaDB Audit Plugin.

There are 4 related questions .

6

1

2

1

2

7

2.4.1 Overview of MariaDB Logs
There are many variables in MariaDB that you can use to define what to log and when to log.

This article will give you an overview of the different logs and how to enable/disable logging to these.

Note that storage engines can have their logs too: for example, InnoDB keeps an Undo Log and a Redo Log which are used

for rollback and crash recovery. However, this page only lists MariaDB server logs.

2086/4161

https://mariadb.com/kb/en/server-monitoring-logs/+questions/

Error Log

Always enabled

Usually a file in the data directory, but some distributions may move this to other locations.

All critical errors are logged here.

One can get warnings to be logged by setting log_warnings.

With the mysqld_safe --syslog option one can duplicate the messages to the system's syslog.

General Query Log

Enabled with --general-log

Logs all queries to a file or table.

Useful for debugging or auditing queries.

The super user can disable logging to it for a connection by setting SQL_LOG_OFF to 1.

Slow Query Log

Enabled by starting mysqld with --slow-query-log

Logs all queries to a file or table.

Useful to find queries that causes performance problems.

Logs all queries that takes more than long_query_time to run.

One can decide what to log with the options --log-slow-admin-statements, --log-slow-slave-statements, log_slow_filter

or log_slow_rate_limit.

One can change what is logged by setting log_slow_verbosity.

One can disable it globally by setting global.slow_query_log to 0

In 10.1 one can disable it for a connection by setting local.slow_query_log to 0.

Binary Log

Enabled by starting mysqld with --log-bin

Used on machines that are, or may become, replication masters.

Required for point-in-time recovery.

Binary log files are mainly used by replication and can also be used with mariadb-binlog to apply on a backup to get

the database up to date.

One can decide what to log with --binlog-ignore-db=database_name or --binlog-do-db=database_name.

The super user can disable logging for a connection by setting SQL_LOG_BIN to 0. However while this is 0, no

changes done in this connection will be replicated to the slaves!

For examples, see Using and Maintaining the Binary Log.

Examples

If you know that your next query will be slow and you don't want to log it in the slow query log, do:

SET LOCAL SLOW_QUERY_LOG=0;

If you are a super user running a log batch job that you don't want to have logged (for example mariadb-dump), do:

SET LOCAL SQL_LOG_OFF=1, LOCAL SLOW_QUERY_LOG=0;

mariadb-dump (previously mysqldump) since MariaDB 10.1 will add this automatically to your dump file if you run it with the

--skip-log-queries option.

2.4.2 Error Log

2087/4161

Contents
1. Configuring the Error Log Output Destination

1. Writing the Error Log to a File

2. Writing the Error Log to Stderr on Unix

3. Writing the Error Log to Syslog on Unix

1. Syslog with mysqld_safe

2. Syslog with Systemd

4. Writing the Error Log to Console on Windows

5. Writing the Error Log to the Windows Event Viewer

2. Finding the Error Log

3. Configuring the Error Log Verbosity

1. Verbosity Level 0

2. Verbosity Level 1

3. Verbosity Level 2

4. Verbosity Level 3

5. Verbosity Level 4

6. Verbosity Level 9

7. MySQL's log_error_verbosity

4. Format

5. Rotating the Error Log on Unix and Linux

6. Error Messages File

The error log contains a record of critical errors that occurred during the server's operation, table corruption, start and stop

information.

SQL errors can also be logged in a separate file using the SQL_ERROR_LOG plugin.

Configuring the Error Log Output Destination
MariaDB always writes its error log, but the destination is configurable.

Writing the Error Log to a File

To configure the error log to be written to a file, you can set the log_error system variable. You can configure a specific file

name. However, if a specific file name is not configured, then the log will be written to the ${hostname}.err file in the

datadir directory by default.

The log_error system variable can be set in a server option group in an option file prior to starting up the server. For

example, to write the error log to the default ${hostname}.err file, you could configure the following:

[mariadb]

...

log_error

If you configure a specific file name as the log_error system variable, and if it is not an absolute path, then it will be relative

to the datadir directory. For example, if you configured the following, then the error log would be written to mariadb.err in

the datadir directory:

[mariadb]

...

log_error=mariadb.err

If it is a relative path, then the log_error is relative to the datadir directory.

However, the log_error system variable can also be an absolute path. For example:

[mariadb]

...

log_error=/var/log/mysql/mariadb.err

Another way to configure the error log file name is to set the log-basename option, which configures MariaDB to use a

common prefix for all log files (e.g. general query log, slow query log, error log, binary logs, etc.). The error log file name will

be built by adding a .err extension to this prefix. For example, if you configured the following, then the error log would still

be written to mariadb.err in the datadir directory:

2088/4161

[mariadb]

...

log-basename=mariadb

log_error

The log-basename cannot be an absolute path. The log file name is relative to the datadir directory.

Writing the Error Log to Stderr on Unix

On Unix, if the log_error system variable is not set, then errors are written to stderr , which usually means that the log

messages are output to the terminal that started mysqld .

If the log_error system variable was set in an option file or on the command-line, then it can still be unset by specifying --

skip-log-error .

Writing the Error Log to Syslog on Unix

On Unix, the error log can also be redirected to the syslog . How this is done depends on how you start MariaDB.

Syslog with mysqld_safe

If you start MariaDB with mysqld_safe, then the error log can be redirected to the syslog. See mysqld_safe: Configuring

MariaDB to Write the Error Log to Syslog for more information.

Syslog with Systemd

If you start MariaDB with systemd, then the error log can also be redirected to the syslog. See Systemd: Configuring

MariaDB to Write the Error Log to Syslog for more information.

systemd also has its own logging system called the journal , and some errors may get logged there instead. See

Systemd:Systemd Journal for more information.

Writing the Error Log to Console on Windows

On Windows, if the console option is specified, and if the log_error system variable is not used, then errors are written to the

console. If both options are specified, then the last option takes precedence.

Writing the Error Log to the Windows Event Viewer

On Windows, error log messages are also written to the Windows Event Viewer. You can find MariaDB's error log

messages by browsing Windows Logs, and then selecting Application or Application Log, depending on the Windows

version.

In MariaDB 10.3 and before, you can find MariaDB's error log messages by searching for the Source MySQL .

In MariaDB 10.4 and later, you can find MariaDB's error log messages by searching for the Source MariaDB .

Finding the Error Log
To find where the error log is stored, one can find the options used for the error log with:

mariadbd --print-defaults

or

my_print_defaults --mysqld | grep log-error

If the above don't help, check also if your system is set to write to syslog, in which case you need to use journalctl to access

it.

Configuring the Error Log Verbosity
The default value of the log_warnings system variable is 2 .

2089/4161

https://linux.die.net/man/8/rsyslogd
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

The log_warnings system variable can be used to configure the verbosity of the error log. It can be changed dynamically

with SET GLOBAL. For example:

SET GLOBAL log_warnings=3;

It can also be set either on the command-line or in a server option group in an option file prior to starting up the server. For

example:

[mariadb]

...

log_warnings=3

Some of the warnings included in each verbosity level are described below.

The log_warnings system variable only has an effect on some log messages. Some log messages are always written

to the error log, regardless of the error log verbosity. For example, most warnings from the InnoDB storage engine are

not affected by log_warnings. For a complete list of log messages affected by log_warnings, see the description of the

log_warnings system variable.

Verbosity Level 0

If log_warnings is 0 , then many optional warnings will not be logged. However, this does not prevent all warnings from

being logged, because there are certain core warnings that will always be written to the error log. For example:

If InnoDB strict mode is disabled, and if DDL is performed on a table that triggers a "Row size too large" error, then

InnoDB will log a warning:

[Warning] InnoDB: Cannot add field col25 in table db1.tab because after

 adding it, the row size is 8477 which is greater than maximum allowed

 size (8126) for a record on index leaf page.

However, if InnoDB strict mode is enabled, then the same message will be logged as an error.

Verbosity Level 1

Default until MariaDB 10.2.3 . If log_warnings is 1 , then many types of warnings are logged. Some useful warnings are:

Replication-related messages:

[Note] Error reading relay log event: slave SQL thread was killed

[Note] Slave SQL thread exiting, replication stopped in log

 'dbserver-2-bin.000033' at position 181420;

 GTID position '0-263316466-368886'

[Note] Slave I/O thread exiting, read up to log

 'dbserver-2-bin.000034', position 642;

 GTID position 0-263316466-368887

Messages related to DNS lookup failures:

[Warning] IP address '192.168.1.193'

 could not be resolved: Name or service not known

Messages related to the event scheduler:

[Note] Event Scheduler: Loaded 0 events

Messages related to unsafe statements for statement-based replication:

[Warning] Unsafe statement written to the binary log using statement format since

 BINLOG_FORMAT = STATEMENT. The statement is unsafe because

 it uses a LIMIT clause. This

 is unsafe because the set of rows included cannot be predicted.

Frequent warnings about unsafe statements for statement-based replication can cause the error log to grow very large.

2090/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

MariaDB will automatically detect frequent duplicate warnings about unsafe statements for statement-based replication.

After 10 identical warnings are detected, MariaDB will prevent that same warning from being written to the error log again for

the next 5 minutes.

Verbosity Level 2

Default from MariaDB 10.2.4 . If log_warnings is 2 , then a couple other different kinds of warnings are printed. For

example:

Messages related to access denied errors:

[Warning] Access denied for user 'root'@'localhost' (using password: YES)

Messages related to connections that are aborted due to errors or timeouts:

[Warning] Aborted connection 35 to db: 'unconnected' user:

 'user1@host1' host: '192.168.1.40' (Got an error writing communication packets)

[Warning] Aborted connection 36 to db: 'unconnected' user:

 'user1@host2' host: '192.168.1.230' (Got an error writing communication packets)

[Warning] Aborted connection 38 to db: 'db1' user:

 'user2' host: '192.168.1.60' (Unknown error)

[Warning] Aborted connection 51 to db: 'db1' user:

 'user2' host: '192.168.1.50' (Got an error reading communication packets)

[Warning] Aborted connection 52 to db: 'db1' user:

 'user3' host: '192.168.1.53' (Got timeout reading communication packets)

Messages related to table handler errors:

[Warning] Can't find record in 'tab1'.

[Warning] Can't write; duplicate key in table 'tab1'.

[Warning] Lock wait timeout exceeded; try restarting transaction.

[Warning] The number of locks exceeds the lock table size.

[Warning] Update locks cannot be acquired during a READ UNCOMMITTED transaction.

Messages related to the files used to persist replication state:

Either the default master.info file or the file that is configured by the master_info_file option.

Either the default relay-log.info file or the file that is configured by the relay_log_info_file system variable.

[Note] Reading Master_info: '/mariadb/data/master.info'

 Relay_info:'/mariadb/data/relay-log.info'

[Note] Initialized Master_info from '/mariadb/data/master.info'

[Note] Reading of all Master_info entries succeded

[Note] Deleted Master_info file '/mariadb/data/master.info'.

[Note] Deleted Master_info file '/mariadb/data/relay-log.info'.

Messages about a master's binary log dump thread:

[Note] Start binlog_dump to slave_server(263316466), pos(, 4)

Verbosity Level 3

If log_warnings is 3 , then a couple other different kinds of warnings are printed. For example:

Messages related to old-style language options:

[Warning] An old style --language value with language specific

 part detected: /usr/local/mysql/data/

[Warning] Use --lc-messages-dir without language specific part instead.

Messages related to progress of InnoDB online DDL :

2091/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.org/monitoring-progress-and-temporal-memory-usage-of-online-ddl-in-innodb/

[Note] InnoDB: Online DDL : Start

[Note] InnoDB: Online DDL : Start reading clustered index of the table and

 create temporary files

[Note] InnoDB: Online DDL : End of reading clustered index of the table and

 create temporary files

[Note] InnoDB: Online DDL : Start merge-sorting index PRIMARY (1 / 3),

 estimated cost : 18.0263

[Note] InnoDB: Online DDL : merge-sorting has estimated 33 runs

[Note] InnoDB: Online DDL : merge-sorting current run 1 estimated 33 runs

[Note] InnoDB: Online DDL : merge-sorting current run 2 estimated 17 runs

[Note] InnoDB: Online DDL : merge-sorting current run 3 estimated 9 runs

[Note] InnoDB: Online DDL : merge-sorting current run 4 estimated 5 runs

[Note] InnoDB: Online DDL : merge-sorting current run 5 estimated 3 runs

[Note] InnoDB: Online DDL : merge-sorting current run 6 estimated 2 runs

[Note] InnoDB: Online DDL : End of merge-sorting index PRIMARY (1 / 3)

[Note] InnoDB: Online DDL : Start building index PRIMARY (1 / 3),

 estimated cost : 27.0395

[Note] InnoDB: Online DDL : End of building index PRIMARY (1 / 3)

[Note] InnoDB: Online DDL : Completed

[Note] InnoDB: Online DDL : Start merge-sorting index ux1 (2 / 3),

 estimated cost : 5.7895

[Note] InnoDB: Online DDL : merge-sorting has estimated 2 runs

[Note] InnoDB: Online DDL : merge-sorting current run 1 estimated 2 runs

[Note] InnoDB: Online DDL : End of merge-sorting index ux1 (2 / 3)

[Note] InnoDB: Online DDL : Start building index ux1 (2 / 3),

 estimated cost : 8.6842

[Note] InnoDB: Online DDL : End of building index ux1 (2 / 3)

[Note] InnoDB: Online DDL : Completed

[Note] InnoDB: Online DDL : Start merge-sorting index ix1 (3 / 3),

 estimated cost : 6.1842

[Note] InnoDB: Online DDL : merge-sorting has estimated 3 runs

[Note] InnoDB: Online DDL : merge-sorting current run 1 estimated 3 runs

[Note] InnoDB: Online DDL : merge-sorting current run 2 estimated 2 runs

[Note] InnoDB: Online DDL : End of merge-sorting index ix1 (3 / 3)

[Note] InnoDB: Online DDL : Start building index ix1 (3 / 3),

 estimated cost : 9.2763

[Note] InnoDB: Online DDL : End of building index ix1 (3 / 3)

[Note] InnoDB: Online DDL : Completed

Verbosity Level 4

If log_warnings is 4 , then a couple other different kinds of warnings are printed. For example:

Messages related to killed connections:

[Warning] Aborted connection 53 to db: 'db1' user:

 'user2' host: '192.168.1.50' (KILLED)

Messages related to all closed connections:

[Warning] Aborted connection 56 to db: 'db1' user:

 'user2' host: '192.168.1.50' (CLOSE_CONNECTION)

Messages related to released connections, such as when a transaction is committed and completion_type is set to

RELEASE :

[Warning] Aborted connection 58 to db: 'db1' user:

 'user2' host: '192.168.1.50' (RELEASE)

Verbosity Level 9

If log_warnings is 9 , then some very verbose warnings are printed. For example:

Messages about initializing plugins:

[Note] Initializing built-in plugins

[Note] Initializing plugins specified on the command line

[Note] Initializing installed plugins

2092/4161

MySQL's log_error_verbosity

MariaDB does not support the log_error_verbosity system variable added in MySQL 5.7.

Format
The format consists of the date (yyyy-mm-dd) and time, the thread ID, followed by the type of error (Note, Warning or Error)

and the error message, for example:

2016-06-15 16:53:33 139651251140544 [Note] InnoDB:

 The InnoDB memory heap is disabled

Until MariaDB 10.1.4 , the format only consisted of the date (yymmdd) and time, followed by the type of error (Note,

Warning or Error) and the error message, for example:

160615 16:53:08 [Note] InnoDB: The InnoDB memory heap is disabled

Rotating the Error Log on Unix and Linux
Unix and Linux distributions offer the logrotate utility, which makes it very easy to rotate log files. See Rotating Logs on

Unix and Linux for more information on how to use this utility to rotate the error log.

Error Messages File
Many error messages are ready from an error messages file that contains localized error messages. If the server can't find

this file when it starts up, then you might see errors like the following:

[ERROR] Can't find messagefile '/usr/share/errmsg.sys'

If this error is occurring because the file is in a custom location, then you can configure this location by setting the

lc_messages_dir system variable either on the command-line or in a server option group in an option file prior to starting up

the server. For example:

[mariadb]

...

lc_messages_dir=/usr/share/mysql/

If you want to use a different locale for error messages, then you can also set the lc_messages system variable. For

example:

[mariadb]

...

lc_messages_dir=/usr/share/mysql/

lc_messages=en_US

See Setting the Language for Error Messages for more information.

2.4.3 Setting the Language for Error Messages
Contents
1. Supported Languages for Error Messages

2. Setting the lc_messages and lc_messages_dir System Variables

3. Setting the --language Option

4. Character Set

MariaDB server error messages are by default in English. However, MariaDB server also supports error message

localization in many different languages. Each supported language has its own version of the error message file called

errmsg.sys in a dedicated directory for that language.

Supported Languages for Error Messages

2093/4161

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://linux.die.net/man/8/logrotate
https://mariadb.com/kb/en/server-locale/

Error message localization is supported for the following languages:

Bulgarian

Chinese (from MariaDB 10.4.25, 10.5.16, 10.6.8, 10.7.4 , 10.8.3)

Czech

Danish

Dutch

English

Estonian

French

Georgian (from MariaDB 10.11.3)

German

Greek

Hindi

Hungarian

Italian

Japanese

Korean

Norwegian

Norwegian-ny (Nynorsk)

Polish

Portuguese

Romanian

Russian

Serbian

Slovak

Spanish

Swahili (from MariaDB 11.1.2)

Swedish

Ukrainian

Setting the lc_messages and lc_messages_dir
System Variables
The lc_messages and lc_messages_dir system variables can be used to set the server locale used for error messages.

The lc_messages system variable can be specified as a locale name. The language of the associated locale will be

used for error messages. See Server Locales for a list of supported locales and their associated languages.

The lc_messages system variable is set to en_US by default, which means that error messages are in English by default.

If the lc_messages system variable is set to a valid locale name, but the server can't find an error message file for the

language associated with the locale , then the default language will be used instead.

This system variable can be specified as command-line arguments to mariadbd or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

lc_messages=fr_CA

The lc_messages system variable can also be changed dynamically with SET GLOBAL. For example:

SET GLOBAL lc_messages='fr_CA';

If a server has the lc_messages system variable set to the fr_CA locale like the above example, then error messages

would be in French. For example:

SELECT blah;

ERROR 1054 (42S22): Champ 'blah' inconnu dans field list

The lc_messages_dir system variable can be specified either as the path to the directory storing the server's error message

files or as the path to the directory storing the specific language's error message file.

The server initially tries to interpret the value of the lc_messages_dir system variable as a path to the directory storing

the server's error message files. Therefore, it constructs the path to the language's error message file by concatenating the

value of the lc_messages_dir system variable with the language name of the locale specified by the lc_messages system

2094/4161

https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/

variable .

If the server does not find the error message file for the language, then it tries to interpret the value of the lc_messages_dir

system variable as a direct path to the directory storing the specific language's error message file.

This system variable can be specified as command-line arguments to mariadbd or it can be specified in a relevant server

option group in an option file.

For example, to specify the path to the directory storing the server's error message files:

[mariadb]

...

lc_messages_dir=/usr/share/mysql/

Or to specify the path to the directory storing the specific language's error message file:

[mariadb]

...

lc_messages_dir=/usr/share/mysql/french/

The lc_messages_dir system variable can not be changed dynamically.

Setting the --language Option
The --language option can also be used to set the server's language for error messages, but it is deprecated. It is

recommended to set the lc_messages system variable instead.

The --language option can be specified either as a language name or as the path to the directory storing the language's

error message file. See Server Locales for a list of supported locales and their associated languages.

This option can be specified as command-line arguments to mariadbd or it can be specified in a relevant server option group

in an option file.

For example, to specify a language name:

[mariadb]

...

language=french

Or to specify the path to the directory storing the language's error message file:

[mariadb]

...

language=/usr/share/mysql/french/

Character Set
The character set that the error messages are returned in is determined by the character_set_results variable, which

defaults to UTF8.

2.4.4 General Query Log
Contents
1. Enabling the General Query Log

2. Configuring the General Query Log Filename

3. Choosing the General Query Log Output Destination

1. Writing the General Query Log to a File

2. Writing the General Query Log to a Table

4. Disabling the General Query Log for a Session

5. Disabling the General Query Log for Specific Statements

6. Rotating the General Query Log on Unix and Linux

The general query log is a log of every SQL query received from a client, as well as each client connect and disconnect.

Since it's a record of every query received by the server, it can grow large quite quickly.

However, if you only want a record of queries that change data, it might be better to use the binary log instead. One

important difference is that the binary log only logs a query when the transaction is committed by the server, but the general

2095/4161

https://mariadb.com/kb/en/server-locale/

query log logs a query immediately when it is received by the server.

Enabling the General Query Log
The general query log is disabled by default.

To enable the general query log, set the general_log system variable to 1 . It can be changed dynamically with SET

GLOBAL . For example:

SET GLOBAL general_log=1;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

general_log

Configuring the General Query Log Filename
By default, the general query log is written to ${hostname}.log in the datadir directory. However, this can be changed.

One way to configure the general query log filename is to set the general_log_file system variable. It can be changed

dynamically with SET GLOBAL . For example:

SET GLOBAL general_log_file='mariadb.log';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

general_log

general_log_file=mariadb.log

If it is a relative path, then the general_log_file is relative to the datadir directory.

However, the general_log_file system variable can also be an absolute path. For example:

[mariadb]

...

general_log

general_log_file=/var/log/mysql/mariadb.log

Another way to configure the general query log filename is to set the log-basename option, which configures MariaDB to

use a common prefix for all log files (e.g. general query log, slow query log, error log, binary logs, etc.). The general query

log filename will be built by adding a .log extension to this prefix. This option cannot be set dynamically. It can be set in a

server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log-basename=mariadb

general_log

The log-basename cannot be an absolute path. The log file name is relative to the datadir directory.

Choosing the General Query Log Output Destination
The general query log can either be written to a file on disk, or it can be written to the general_log table in the mysql

database. To choose the general query log output destination, set the log_output system variable.

Writing the General Query Log to a File

The general query log is output to a file by default. However, it can be explicitly chosen by setting the log_output system

variable to FILE . It can be changed dynamically with SET GLOBAL . For example:

2096/4161

SET GLOBAL log_output='FILE';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

general_log

general_log_file=queries.log

Writing the General Query Log to a Table

The general query log can either be written to the general_log table in the mysql database by setting the log_output

system variable to TABLE . It can be changed dynamically with SET GLOBAL . For example:

SET GLOBAL log_output='TABLE';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=TABLE

general_log

Some rows in this table might look like this:

SELECT * FROM mysql.general_log\G

*************************** 1. row ***************************

 event_time: 2014-11-11 08:40:04.117177

 user_host: root[root] @ localhost []

 thread_id: 74

 server_id: 1

command_type: Query

 argument: SELECT * FROM test.s

*************************** 2. row ***************************

 event_time: 2014-11-11 08:40:10.501131

 user_host: root[root] @ localhost []

 thread_id: 74

 server_id: 1

command_type: Query

 argument: SELECT * FROM mysql.general_log

...

See Writing logs into tables for more information.

Disabling the General Query Log for a Session
A user with the SUPER privilege can disable logging to the general query log for a connection by setting the

SQL_LOG_OFF system variable to 1 . For example:

SET SESSION SQL_LOG_OFF=1;

Disabling the General Query Log for Specific Statements
In MariaDB 10.3.1 and later, it is possible to disable logging to the general query log for specific types of statements by

setting the log_disabled_statements system variable. This option cannot be set dynamically. It can be set in a server

option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

general_log

general_log_file=queries.log

log_disabled_statements='slave,sp'

2097/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

Rotating the General Query Log on Unix and Linux
Unix and Linux distributions offer the logrotate utility, which makes it very easy to rotate log files. See Rotating Logs on

Unix and Linux for more information on how to use this utility to rotate the general query log.

2.4.5 Slow Query Log
The slow query log is a record of SQL queries that took a long time to perform.

Slow Query Log Overview

A record of SQL queries that took a long time to perform.

Slow Query Log Extended Statistics

The slow query log makes extended statistics available.

mysqldumpslow

Symlink or old name for mariadb-dumpslow.

EXPLAIN in the Slow Query Log

EXPLAIN output in the slow query log.

mysql.slow_log Table

Contents of the slow query log if written to table.

There are 1 related questions .

1

2.4.5.1 Slow Query Log Overview
Contents
1. Enabling the Slow Query Log

2. Configuring the Slow Query Log Filename

3. Choosing the Slow Query Log Output Destination

1. Writing the Slow Query Log to a File

2. Writing the Slow Query Log to a Table

4. Disabling the Slow Query Log for a Session

5. Disabling the Slow Query Log for Specific Statements

6. Configuring the Slow Query Log Time

7. Logging Queries That Don't Use Indexes

8. Logging Queries That Examine a Minimum Row Limit

9. Logging Slow Administrative Statements

10. Enabling the Slow Query Log for Specific Criteria

11. Throttling the Slow Query Log

12. Configuring the Slow Query Log Verbosity

13. Viewing the Slow Query Log

14. Variables Related to the Slow Query Log

15. Rotating the Slow Query Log on Unix and Linux

The slow query log is a record of SQL queries that took a long time to perform.

Note that, if your queries contain user's passwords, the slow query log may contain passwords too. Thus, it should be

protected.

The number of rows affected by the slow query are also recorded in the slow query log.

Enabling the Slow Query Log
The slow query log is disabled by default.

To enable the slow query log, set the slow_query_log system variable to 1 . It can be changed dynamically with SET

GLOBAL. For example:

SET GLOBAL slow_query_log=1;

2098/4161

https://linux.die.net/man/8/logrotate
https://mariadb.com/kb/en/slow-query-log/+questions/

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

slow_query_log

Configuring the Slow Query Log Filename
By default, the slow query log is written to ${hostname}-slow.log in the datadir directory. However, this can be changed.

One way to configure the slow query log filename is to set the slow_query_log_file system variable. It can be changed

dynamically with SET GLOBAL. For example:

SET GLOBAL slow_query_log_file='mariadb-slow.log';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

slow_query_log

slow_query_log_file=mariadb-slow.log

If it is a relative path, then the slow_query_log_file is relative to the datadir directory.

However, the slow_query_log_file system variable can also be an absolute path. For example:

[mariadb]

...

slow_query_log

slow_query_log_file=/var/log/mysql/mariadb-slow.log

Another way to configure the slow query log filename is to set the log-basename option, which configures MariaDB to use a

common prefix for all log files (e.g. slow query log, general query log, error log, binary logs, etc.). The slow query log

filename will be built by adding -slow.log to this prefix. This option cannot be set dynamically. It can be set in a server

option group in an option file prior to starting up the server. For example:

[mariadb]

...

log-basename=mariadb

slow_query_log

The log-basename cannot be an absolute path. The log file name is relative to the datadir directory.

Choosing the Slow Query Log Output Destination
The slow query log can either be written to a file on disk, or it can be written to the slow_log table in the mysql database. To

choose the slow query log output destination, set the log_output system variable.

Writing the Slow Query Log to a File

The slow query log is output to a file by default. However, it can be explicitly chosen by setting the log_output system

variable to FILE . It can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL log_output='FILE';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

Writing the Slow Query Log to a Table
2099/4161

The slow query log can either be written to the slow_log table in the mysql database by setting the log_output system

variable to TABLE . It can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL log_output='TABLE';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=TABLE

slow_query_log

Some rows in this table might look like this:

SELECT * FROM mysql.slow_log\G

...

*************************** 2. row ***************************

 start_time: 2014-11-11 07:56:28.721519

 user_host: root[root] @ localhost []

 query_time: 00:00:12.000215

 lock_time: 00:00:00.000000

 rows_sent: 1

 rows_examined: 0

 db: test

last_insert_id: 0

 insert_id: 0

 server_id: 1

 sql_text: SELECT SLEEP(12)

 thread_id: 74

...

See Writing logs into tables for more information.

Disabling the Slow Query Log for a Session
A user can disable logging to the slow query log for a connection by setting the slow_query_log system variable to 0 . For

example:

SET SESSION slow_query_log=0;

Disabling the Slow Query Log for Specific Statements
In MariaDB 10.3.1 and later, it is possible to disable logging to the slow query log for specific types of statements by

setting the log_slow_disabled_statements system variable. This option cannot be set dynamically. It can be set in a server

option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

general_log

general_log_file=queries.log

log_slow_disabled_statements='admin,call,slave,sp'

Configuring the Slow Query Log Time
The time that defines a slow query can be configured by setting the long_query_time system variable. It uses a units of

seconds, with an optional milliseconds component. The default value is 10 . It can be changed dynamically with SET

GLOBAL. For example:

SET GLOBAL long_query_time=5.0;

It can also be set in a server option group in an option file prior to starting up the server. For example:

2100/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

Logging Queries That Don't Use Indexes
It can be beneficial to log queries that don't use indexes to the slow query log, since queries that don't use indexes can

usually be optimized either by adding an index or by doing a slight rewrite. The slow query log can be configured to log

queries that don't use indexes regardless of their execution time by setting the log_queries_not_using_indexes system

variable. It can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL log_queries_not_using_indexes=ON;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

log_queries_not_using_indexes=ON

As a significant number of queries can run quickly even without indexes, you can use the min_examined_row_limit system

variable with log_queries_not_using_indexes to limit the logged queries to those having a material impact on the server.

Logging Queries That Examine a Minimum Row Limit
It can be beneficial to log queries that examine a minimum number of rows. The slow query log can be configured to log

queries that examine a minimum number of rows regardless of their execution time by setting the min_examined_row_limit

system variable. It can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL min_examined_row_limit=100000;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

min_examined_row_limit=100000

Logging Slow Administrative Statements
By default, the Slow Query Log only logs slow non-administrative statements. To log administrative statements, set the

log_slow_admin_statements system variable. The Slow Query Log considers the following statements administrative:

ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR

TABLE. In MariaDB 10.3 and later, this also includes ALTER SEQUENCE statements.

You can dynamically enable this feature using a SET GLOBAL statement. For example:

SET GLOBAL log_slow_admin_statements=ON;

It can also be set in a server option group in an option file prior to starting up the server. For example:

2101/4161

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

log_slow_admin_statements=ON

Enabling the Slow Query Log for Specific Criteria
It is possible to enable logging to the slow query log for queries that meet specific criteria by configuring the log_slow_filter

system variable. It can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL log_slow_filter='filesort,filesort_on_disk,tmp_table,tmp_table_on_disk';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

log_slow_filter=filesort,filesort_on_disk,tmp_table,tmp_table_on_disk

Throttling the Slow Query Log
The slow query log can create a lot of I/O, so it can be beneficial to throttle it in some cases. The slow query log can be

throttled by configuring the log_slow_rate_limit system variable. It can be changed dynamically with SET GLOBAL. For

example:

SET GLOBAL log_slow_rate_limit=5;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

log_slow_rate_limit=5

Configuring the Slow Query Log Verbosity
There are a few optional pieces of information that can be included in the slow query log for each query. This optional

information can be included by configuring the log_slow_verbosity system variable. It can be changed dynamically with SET

GLOBAL. For example:

SET GLOBAL log_slow_verbosity='full';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

log_output=FILE

slow_query_log

slow_query_log_file=slow-queries.log

long_query_time=5.0

log_slow_verbosity=query_plan,explain,engine

It is possible to have EXPLAIN output printed in the slow query log.

2102/4161

Viewing the Slow Query Log
Slow query logs written to file can be viewed with any text editor, or you can use the mariadb-dumpslow tool to ease the

process by summarizing the information.

Queries that you find in the log are key queries to try to optimize by constructing a more efficient query or by making better

use of indexes.

For queries that appear in the log that cannot be optimized in the above ways, perhaps because they are simply very large

selects, due to slow hardware, or very high lock/cpu/io contention, using shard/clustering/load balancing solutions, better

hardware, or stats tables may help to improve these queries.

Slow query logs written to table can be viewed by querying the slow_log table.

Variables Related to the Slow Query Log
slow_query_log - enable/disable the slow query log. Renamed to log_slow_query from MariaDB 10.11.0.

log_output - how the output will be written

slow_query_log_file - name of the slow query log file. Renamed to log_slow_query_file_name from MariaDB 10.11.0.

long_query_time - time in seconds/microseconds defining a slow query. Renamed to log_slow_query_time from

MariaDB 10.11.0.

log_queries_not_using_indexes - whether to log queries that don't use indexes

log_slow_admin_statements - whether to log certain admin statements

log_slow_disabled_statements - types of statements that should not be logged in the slow query log

min_examined_row_limit - minimum rows a query must examine to be slow. Renamed to

log_slow_min_examined_row_limit from MariaDB 10.11.0.

log_slow_rate_limit - permits a fraction of slow queries to be logged

log_slow_verbosity - amount of detail in the log

log_slow_filter - limit which queries to log

log_slow_slave_statements - log slow statements executed by replica thread to the slow log if it is open.

Rotating the Slow Query Log on Unix and Linux
Unix and Linux distributions offer the logrotate utility, which makes it very easy to rotate log files. See Rotating Logs on

Unix and Linux for more information on how to use this utility to rotate the slow query log.

3.3.4.6.5 Slow Query Log Extended Statistics

1.3.43.3 mysqldumpslow

2.4.5.4 EXPLAIN in the Slow Query Log

Switching it On
EXPLAIN output can be switched on by specifying the " explain " keyword in the log_slow_verbosity system variable.

Alternatively, you can set with the log-slow-verbosity command line argument.

[mysqld]

log-slow-verbosity=query_plan,explain

EXPLAIN output will only be recorded if the slow query log is written to a file (and not to a table - see Writing logs into

tables). This limitation also applies to other extended statistics that are written into the slow query log.

What it Looks Like
When explain recording is on, slow query log entries look like this:

2103/4161

https://linux.die.net/man/8/logrotate

Time: 131112 17:03:32

User@Host: root[root] @ localhost []

Thread_id: 2 Schema: dbt3sf1 QC_hit: No

Query_time: 5.524103 Lock_time: 0.000337 Rows_sent: 1 Rows_examined: 65633

#

explain: id select_type table type possible_keys key key_len ref rows

Extra

explain: 1 SIMPLE nation ref PRIMARY,n_name n_name 26 const 1 Using

where; Using index

explain: 1 SIMPLE customer ref PRIMARY,i_c_nationkey i_c_nationkey 5

dbt3sf1.nation.n_nationkey 3145 Using index

explain: 1 SIMPLE orders ref i_o_custkey i_o_custkey 5

dbt3sf1.customer.c_custkey 7 Using index

#

SET timestamp=1384261412;

select count(*) from customer, orders, nation where c_custkey=o_custkey and

c_nationkey=n_nationkey and n_name='GERMANY';

EXPLAIN lines start with # explain: .

1.1.1.2.9.3.22 mysqlslow_log Table

2.4.6 Rotating Logs on Unix and Linux
Contents
1. Configuring Locations and File Names of Logs

2. Configuring Authentication for Logrotate

3. Configuring Logrotate

4. Testing Log Rotation

5. Logrotate in Ansible

Unix and Linux distributions offer the logrotate utility, which makes it very easy to rotate log files. This page will

describe how to configure log rotation for the error log, general query log, and the slow query log.

Configuring Locations and File Names of Logs
The first step is to configure the locations and file names of logs. To make the log rotation configuration easier, it can be best

to put these logs in a dedicated log directory.

We will need to configure the following:

The error log location and file name is configured with the log_error system variable.

The general query log location and file name is configured with the general_log_file system variable.

The slow query log location and file name is configured with the slow_query_log_file system variable.

If you want to enable the general query log and slow query log immediately, then you will also have to configure the

following:

The general query log is enabled with the general_log system variable.

The slow query log is enabled with the slow_query_log system variable.

These options can be set in a server option group in an option file prior to starting up the server. For example, if we wanted

to put our log files in /var/log/mysql/ , then we could configure the following:

[mariadb]

...

log_error=/var/log/mysql/mariadb.err

general_log

general_log_file=/var/log/mysql/mariadb.log

slow_query_log

slow_query_log_file=/var/log/mysql/mariadb-slow.log

long_query_time=5

We will also need to create the relevant directory:

2104/4161

https://linux.die.net/man/8/logrotate

sudo mkdir /var/log/mysql/

sudo chown mysql:mysql /var/log/mysql/

sudo chmod 0770 /var/log/mysql/

If you are using SELinux, then you may also need to set the SELinux context for the directory. See SELinux: Setting the File

Context for Log Files for more information. For example:

sudo semanage fcontext -a -t mysqld_log_t "/var/log/mysql(/.*)?"

sudo restorecon -Rv /var/log/mysql

After MariaDB is restarted , it will use the new log locations and file names.

Configuring Authentication for Logrotate
The logrotate utility needs to be able to authenticate with MariaDB in order to flush the log files.

The easiest way to allow the logrotate utility to authenticate with MariaDB is to configure the root@localhost

user account to use unix_socket authentication.

In MariaDB 10.4 and later, the root@localhost user account is configured to use unix_socket authentication by

default, so this part can be skipped in those versions.

In MariaDB 10.3 and before, a user account is only able to have one authentication method at a time. In these

versions, this means that once you enable unix_socket authentication for the root@localhost user account, you

will no longer be able to use a password to log in with that user account. The user account will only be able to use

unix_socket authentication.

In MariaDB 10.3 and before, you need to install the unix_socket plugin before you can configure the root@localhost user

account to use it. For example:

INSTALL SONAME 'auth_socket';

After the plugin is installed, the root@localhost user account can be configured to use unix_socket authentication.

How this is done depends on the version of MariaDB.

The root@localhost user account can be altered to use unix_socket authentication with the ALTER USER statement.

For example:

ALTER USER 'root'@'localhost' IDENTIFIED VIA unix_socket;

<</product>>

Configuring Logrotate
At this point, we can configure the logrotate utility to rotate the log files.

On many systems, the primary logrotate configuration file is located at the following path:

/etc/logrotate.conf

And the logrotate configuration files for individual services are located in the following directory:

/etc/logrotate.d/

We can create a logrotate configuration file for MariaDB by executing the following command in a shell:

MariaDB starting with 10.4

MariaDB until 10.3

2105/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate

$ sudo tee /etc/logrotate.d/mariadb <<EOF

/var/log/mysql/* {

 su mysql mysql

 missingok

 create 660 mysql mysql

 notifempty

 daily

 minsize 1M # only use with logrotate >= 3.7.4

 maxsize 100M # only use with logrotate >= 3.8.1

 rotate 30

 # dateext # only use if your logrotate version is compatible with below dateformat

 # dateformat .%Y-%m-%d-%H-%M-%S # only use with logrotate >= 3.9.2

 compress

 delaycompress

 sharedscripts

 olddir archive/

 createolddir 770 mysql mysql # only use with logrotate >= 3.8.9

 postrotate

 # just if mysqld is really running

 if test -x /usr/bin/mysqladmin && \

 /usr/bin/mysqladmin ping &>/dev/null

 then

 /usr/bin/mysqladmin --local flush-error-log \

 flush-engine-log flush-general-log flush-slow-log

 fi

 endscript

}

EOF

You may have to modify this configuration file to use it on your system, depending on the specific version of the

logrotate utility that is installed. See the description of each configuration directive below to determine which

logrotate versions support that configuration directive.

Each specific configuration directive does the following:

missingok : This directive configures it to ignore missing files, rather than failing with an error.

create 660 mysql mysql : This directive configures it to recreate the log files after log rotation with the specified

permissions and owner.

notifempty : This directive configures it to skip a log file during log rotation if it is empty.

daily : This directive configures it to rotate each log file once per day.

minsize 1M : This directive configures it to skip a log file during log rotation if it is smaller than 1 MB. This directive

is only available with logrotate 3.7.4 and later.

maxsize 100M : This directive configures it to rotate a log file more frequently than daily if it grows larger than 100

MB. This directive is only available with logrotate 3.8.1 and later.

rotate 30 : This directive configures it to keep 30 old copies of each log file.

dateext : This directive configures it to use the date as an extension, rather than just a number. This directive is only

available with logrotate 3.7.6 and later.

dateformat .%Y-%m-%d-%H-%M-%S : This directive configures it to use this date format string (as defined by the

format specification for strftime) for the date extension configured by the dateext directive. This directive

is only available with logrotate 3.7.7 and later. Support for %H is only available with logrotate 3.9.0

and later. Support for %M and %S is only available with logrotate 3.9.2 and later.

compress : This directive configures it to compress the log files with gzip .

delaycompress : This directive configures it to delay compression of each log file until the next log rotation. If the log

file is compressed at the same time that it is rotated, then there may be cases where a log file is being compressed

while the MariaDB server is still writing to the log file. Delaying compression of a log file until the next log rotation can

prevent race conditions such as these that can happen between the compression operation and the MariaDB server's

log flush operation.

olddir archive/ : This directive configures it to archive the rotated log files in /var/log/mysql/archive/ .

createolddir 770 mysql mysql : This directive configures it to create the directory specified by the olddir

directive with the specified permissions and owner, if the directory does not already exist. This directive is only

available with logrotate 3.8.9 and later.

sharedscripts : This directive configures it to run the postrotate script just once, rather than once for each

rotated log file.

postrotate : This directive configures it to execute a script after log rotation. This particular script executes the

mariadb-admin utility, which executes the FLUSH statement, which tells the MariaDB server to flush its various log

files. When MariaDB server flushes a log file, it closes its existing file handle and reopens a new one. This ensure

2106/4161

https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/3/strftime
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/1/gzip
https://linux.die.net/man/8/logrotate

that MariaDB server does not continue writing to a log file after it has been rotated. This is an important component of

the log rotation process.

If our system does not have logrotate 3.8.9 or later, which is needed to support the createolddir directive, then

we will also need to create the relevant directory specified by the olddir directive:

sudo mkdir /var/log/mysql/archive/

sudo chown mysql:mysql /var/log/mysql/archive/

sudo chmod 0770 /var/log/mysql/archive/

Testing Log Rotation
We can test log rotation by executing the logrotate utility with the --force option. For example:

sudo logrotate --force /etc/logrotate.d/mariadb

Keep in mind that under normal operation, the logrotate utility may skip a log file during log rotation if the utility

does not believe that the log file needs to be rotated yet. For example:

If you set the notifempty directive mentioned above, then it will be configured to skip a log file during log rotation if

the log file is empty.

If you set the daily directive mentioned above, then it will be configured to only rotate each log file once per day.

If you set the minsize 1M directive mentioned above, then it will be configured to skip a log file during log rotation if

the log file size is smaller than 1 MB.

However, when running tests with the --force option, the logrotate utility does not take these options into

consideration.

After a few tests, we can see that the log rotation is indeed working:

$ sudo ls -l /var/log/mysql/archive/

total 48

-rw-rw---- 1 mysql mysql 440 Mar 31 15:31 mariadb.err.1

-rw-rw---- 1 mysql mysql 138 Mar 31 15:30 mariadb.err.2.gz

-rw-rw---- 1 mysql mysql 145 Mar 31 15:28 mariadb.err.3.gz

-rw-rw---- 1 mysql mysql 1007 Mar 31 15:27 mariadb.err.4.gz

-rw-rw---- 1 mysql mysql 1437 Mar 31 15:32 mariadb.log.1

-rw-rw---- 1 mysql mysql 429 Mar 31 15:31 mariadb.log.2.gz

-rw-rw---- 1 mysql mysql 439 Mar 31 15:28 mariadb.log.3.gz

-rw-rw---- 1 mysql mysql 370 Mar 31 15:27 mariadb.log.4.gz

-rw-rw---- 1 mysql mysql 3915 Mar 31 15:32 mariadb-slow.log.1

-rw-rw---- 1 mysql mysql 554 Mar 31 15:31 mariadb-slow.log.2.gz

-rw-rw---- 1 mysql mysql 569 Mar 31 15:28 mariadb-slow.log.3.gz

-rw-rw---- 1 mysql mysql 487 Mar 31 15:27 mariadb-slow.log.4.gz

Logrotate in Ansible
Let's see an example of how to configure logrotate in Ansible.

First, we'll create a couple of tasks in our playbook:

- name: Create mariadb_logrotate_old_dir

 file:

 path: "{{ mariadb_logrotate_old_dir }}"

 owner: mysql

 group: mysql

 mode: '770'

 state: directory

- name: Configure logrotate

 template:

 src: "../templates/logrotate.j2"

 dest: "/etc/logrotate.d/mysql"

The first task creates a directory to store the old, compressed logs, and set proper permissions.

The second task uploads logrotate configuration file into the proper directory, and calls it mysql . As you can see the

original name is different, and it ends with the .j2 extension, because it is a Jinja 2 template.

2107/4161

https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate
https://linux.die.net/man/8/logrotate

The file will look like the following:

{{ mariadb_log_dir }}/* {

 su mysql mysql

 missingok

 create 660 mysql mysql

 notifempty

 daily

 minsize 1M {{ mariadb_logrotate_min_size }}

 maxsize 100M {{ mariadb_logrotate_max_size }}

 rotate {{ mariadb_logrotate_old_dir }}

 dateformat .%Y-%m-%d-%H-%M-%S # only use with logrotate >= 3.9.2

 compress

 delaycompress

 sharedscripts

 olddir archive/

 createolddir 770 mysql mysql # only use with logrotate >= 3.8.9

 postrotate

 # just if mysqld is really running

 if test -x /usr/bin/mysqladmin && \

 /usr/bin/mysqladmin ping &>/dev/null

 then

 /usr/bin/mysqladmin --local flush-error-log \

 flush-engine-log flush-general-log flush-slow-log

 fi

 endscript

}

The file is very similar to the file shown above, which is obvious because we're still uploading a logrotate configuration file.

Ansible is just a tool we've chosen to do this.

However, both in the tasks and in the template, we used some variables. This allows to use different paths and rotation

parameters for different hosts, or host groups.

If we have a group host called mariadb that contains the default configuration for all our MariaDB servers, we can define

these variables in a file called group_vars/mariadb.yml :

MariaDB writes its logs here

mariadb_log_dir: /var/lib/mysql/logs

logrotate configuration

mariadb_logrotate_min_size: 500M

mariadb_logrotate_max_size: 1G

mariadb_logrotate_old_files: 7

mariadb_logrotate_old_dir: /var/mysql/old-logs

After setting up logrotate in Ansible, you may want to deploy it to a non-production server and test it manually as explained

above. Once you're sure that it works fine on one server, you can be confident in the new Ansible tasks and deploy them on

all servers.

For more information on how to use Ansible to automate MariaDB configuration, see Ansible and MariaDB.

3.1.13 Binary Log

5.3.2.14 InnoDB Redo Log

5.3.2.15 InnoDB Undo Log

5.3.13.6 MyISAM Log

2.4.11 Transaction Coordinator Log
Transaction Coordinator Log Overview

The transaction coordinator log (tc_log) is used to coordinate transactions...

2108/4161

Heuristic Recovery with the Transaction Coordinator Log

The transaction coordinator log (tc_log) can be used to recover prepared XA...

2.4.11.1 Transaction Coordinator Log Overview
Contents
1. Types of Transaction Coordinator Logs

1. Binary Log-Based Transaction Coordinator Log

2. Memory-Mapped File-Based Transaction Coordinator Log

1. Monitoring the Memory-Mapped File-Based Transaction Coordinator Log

2. Heuristic Recovery with the Transaction Coordinator Log

3. Known Issues

1. You must enable exactly N storage engines

2. Bad magic header in tc log

3. MariaDB Galera Cluster

The transaction coordinator log (tc_log) is used to coordinate transactions that affect multiple XA-capable storage engines.

If you have two or more XA-capable storage engines enabled, then a transaction coordinator log must be available.

Types of Transaction Coordinator Logs
There are currently two implementations of the transaction coordinator log:

Binary log-based transaction coordinator log

Memory-mapped file-based transaction coordinator log

If the binary log is enabled on a server, then the server will use the binary log-based transaction coordinator log. Otherwise,

it will use the memory-mapped file-based transaction coordinator log.

Binary Log-Based Transaction Coordinator Log

This transaction coordinator uses the binary log, which is enabled by the log_bin server option.

Memory-Mapped File-Based Transaction Coordinator Log

This transaction coordinator uses the memory-mapped file defined by the --log-tc server option. The size is defined by

the log_tc_size system variable.

Some facts about this log:

The log consists of a memory-mapped file that is divided into pages of 8KB size.

The usable size of the first page is smaller because of the log header. There is a PAGE control structure for each

page.

Each page (or rather its PAGE control structure) can be in one of the three states - active, syncing, pool.

There could be only one page in the active or syncing state, but many in the pool state - pool is a fifo queue.

The usual lifecycle of a page is pool->active->syncing->pool.

The "active" page is a page where new xid's are logged.

The page stays active as long as the syncing slot is taken.

The "syncing" page is being synced to disk. no new xid can be added to it.

When the syncing is done the page is moved to a pool and an active page becomes "syncing".

The result of such an architecture is a natural "commit grouping" - If commits are coming faster than the system can sync,

they do not stall. Instead, all commits that came since the last sync are logged to the same "active" page, and they all are

synced with the next - one - sync. Thus, thought individual commits are delayed, throughput is not decreasing.

When an xid is added to an active page, the thread of this xid waits for a page's condition until the page is synced. When a

syncing slot becomes vacant one of these waiters is awakened to take care of syncing. It syncs the page and signals all

waiters that the page is synced. The waiters are counted, and a page may never become active again until waiters==0,

which means that is all waiters from the previous sync have noticed that the sync was completed.

Note that a page becomes "dirty" and has to be synced only when a new xid is added into it. Removing a xid from a page

does not make it dirty - we don't sync xid removals to disk.

Monitoring the Memory-Mapped File-Based Transaction Coordinator Log

The memory-mapped transaction coordinator log can be monitored with the following status variables:

2109/4161

Tc_log_max_pages_used

Tc_log_page_size

Tc_log_page_waits

Heuristic Recovery with the Transaction Coordinator Log
One of the main purposes of the transaction coordinator log is in crash recovery. See Heuristic Recovery with the

Transaction Coordinator Log for more information about that.

Known Issues

You must enable exactly N storage engines

Prior to MariaDB 10.1.10 , if you were using the memory-mapped file-based transaction coordinator log, and then if the

server crashed and you changed the number of XA-capable storage engines that it loaded, then you could see errors like

the following:

2018-11-30 23:08:49 140046048638848 [Note] Recovering after a crash using tc.log

2018-11-30 23:08:49 140046048638848 [ERROR] Recovery failed! You must enable exactly 3 storage

engines that support two-phase commit protocol

2018-11-30 23:08:49 140046048638848 [ERROR] Crash recovery failed. Either correct the problem

(if it's, for example, out of memory error) and restart, or delete tc log and start mysqld with

--tc-heuristic-recover={commit|rollback}

2018-11-30 23:08:49 140046048638848 [ERROR] Can't init tc log

2018-11-30 23:08:49 140046048638848 [ERROR] Aborting

To recover from this error, delete the file defined by the --log-tc server option, and then restart the server with the --

tc-heuristic-recover option set.

See MDEV-9214 for more information.

Bad magic header in tc log

If you are using the memory-mapped file-based transaction coordinator log, then it is possible to see errors like the following:

2018-09-19 4:29:31 0 [Note] Recovering after a crash using tc.log

2018-09-19 4:29:31 0 [ERROR] Bad magic header in tc log

2018-09-19 4:29:31 0 [ERROR] Crash recovery failed. Either correct the problem (if it's, for

example, out of memory error) and restart, or delete tc log and start mysqld with --tc-

heuristic-recover={commit|rollback}

2018-09-19 4:29:31 0 [ERROR] Can't init tc log

2018-09-19 4:29:31 0 [ERROR] Aborting

This means that the header of the memory-mapped file-based transaction coordinator log is corrupt. To recover from this

error, delete the file defined by the --log-tc server option, and then restart the server with the --tc-heuristic-

recover option set.

This issue is known to occur when using docker. In that case, the problem may be caused by using a MariaDB container

version with a data directory from a different MariaDB or MySQL version. Therefore, some potential fixes are:

Pinning the docker instance to a specific MariaDB version in the docker compose file, so that it consistently uses the

same version.

Running mariadb-upgrade to ensure that the data directory is upgraded to match the server version.

See this docker issue for more information.

MariaDB Galera Cluster

MariaDB Galera Cluster builds include a built-in plugin called wsrep . Prior to MariaDB 10.4.3, this plugin was internally

considered an XA-capable storage engine. Consequently, these MariaDB Galera Cluster builds have multiple XA-capable

storage engines by default, even if the only "real" storage engine that supports external XA transactions enabled on these

builds by default is InnoDB. Therefore, when using one these builds MariaDB would be forced to use a transaction

coordinator log by default, which could have performance implications.

For example, MDEV-16509 describes performance problems where MariaDB Galera Cluster actually performs better

when the binary log is enabled. It is possible that this is caused by the fact that MariaDB is forced to use the memory-
2110/4161

https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://jira.mariadb.org/browse/MDEV-9214
https://github.com/docker-library/mariadb/issues/201
https://jira.mariadb.org/browse/MDEV-16509

mapped file-based transaction coordinator log in this case, which may not perform as well.

This became a bigger issue in MariaDB 10.1 when the MySQL-wsrep patch that powers MariaDB Galera Cluster was

enabled on most MariaDB builds on Linux by default. Consequently, this built-in wsrep plugin would exist on those

MariaDB builds on Linux by default. Therefore, MariaDB users might pay a performance penalty, even if they never actually

intended to use the MariaDB Galera Cluster features included in MariaDB 10.1.

In MariaDB 10.4.3 and later, the built-in wsrep plugin has been changed to a replication plugin. Therefore, it is no longer

considered an XA-capable storage engine, so it no longer forces MariaDB to use a transaction coordinator log by default.

See MDEV-16442 for more information.

2.4.11.2 Heuristic Recovery with the Transaction
Coordinator Log

Contents
1. Modes of Crash Recovery

2. Automatic Crash Recovery

1. Automatic Crash Recovery with the Binary Log-Based Transaction Coordinator Log

2. Automatic Crash Recovery with the Memory-Mapped File-Based Transaction Coordinator Log

3. Manual Heuristic Recovery

1. Manual Heuristic Recovery with the Binary Log-Based Transaction Coordinator Log

2. Manual Heuristic Recovery with the Memory-Mapped File-Based Transaction Coordinator Log

The transaction coordinator log (tc_log) is used to coordinate transactions that affect multiple XA-capable storage engines.

One of the main purposes of this log is in crash recovery.

Modes of Crash Recovery
There are two modes of crash recovery:

Automatic crash recovery.

Manual heuristic recovery when --tc-heuristic-recover is set to some value other than OFF .

Automatic Crash Recovery
Automatic crash recovery occurs during startup when MariaDB needs to recover from a crash and --tc-heuristic-

recover is set to OFF , which is the default value.

Automatic Crash Recovery with the Binary Log-Based Transaction
Coordinator Log

If MariaDB needs to perform automatic crash recovery and if the binary log is enabled, then the error log will contain

messages like this:

[Note] Recovering after a crash using cmdb-mariadb-0-bin

[Note] InnoDB: Buffer pool(s) load completed at 190313 11:24:29

[Note] Starting crash recovery...

[Note] Crash recovery finished.

Automatic Crash Recovery with the Memory-Mapped File-Based
Transaction Coordinator Log

If MariaDB needs to perform automatic crash recovery and if the binary log is not enabled, then the error log will contain

messages like this:

[Note] Recovering after a crash using tc.log

[Note] InnoDB: Buffer pool(s) load completed at 190313 11:26:32

[Note] Starting crash recovery...

[Note] Crash recovery finished.

Manual Heuristic Recovery
2111/4161

https://github.com/codership/mysql-wsrep
https://jira.mariadb.org/browse/MDEV-16442

Manual heuristic recovery occurs when --tc-heuristic-recover is set to some value other than OFF . This might be

needed if the server finds prepared transactions during crash recovery that are not in the transaction coordinator log. For

example, the error log might contain an error like this:

[ERROR] Found 1 prepared transactions! It means that mysqld was not shut down properly last

time and critical recovery information (last binlog or tc.log file) was manually deleted after

a crash. You have to start mysqld with --tc-heuristic-recover switch to commit or rollback

pending transactions.

When manual heuristic recovery is initiated, MariaDB will ignore information about transactions in the transaction

coordinator log during the recovery process. Prepared transactions that are encountered during the recovery process will

either be rolled back or committed, depending on the value of --tc-heuristic-recover .

When manual heuristic recovery is initiated, the error log will contain a message like this:

[Note] Heuristic crash recovery mode

Manual Heuristic Recovery with the Binary Log-Based Transaction
Coordinator Log

If --tc-heuristic-recover is set to some value other than OFF and if the binary log is enabled, then MariaDB will

ignore information about transactions in the binary log during the recovery process. Prepared transactions that are

encountered during the recovery process will either be rolled back or committed, depending on the value of --tc-

heuristic-recover .

After the recovery process is complete, MariaDB will create a new empty binary log file, so that the old corrupt ones can be

ignored.

Manual Heuristic Recovery with the Memory-Mapped File-Based
Transaction Coordinator Log

If --tc-heuristic-recover is set to some value other than OFF and if the binary log is not enabled, then MariaDB will

ignore information about transactions in the the memory-mapped file defined by the --log-tc option during the recovery

process. Prepared transactions that are encountered during the recovery process will either be rolled back or committed,

depending on the value of --tc-heuristic-recover .

5.4.11.7 SQL Error Log Plugin

1.1.1.2.9.6 Writing Logs Into Tables

1.1.1.2.9.2 Performance Schema

5.4.5 MariaDB Audit Plugin

2.5 Partitioning Tables
A huge table can be split into smaller subsets. Both data and indexes are partitioned.

Partitioning Overview

A table partitioning overview

Partitioning Types

A partitioning type determines how a table rows are distributed across partitions.

Partition Pruning and Selection

Partition pruning is when the optimizer knows which partitions are relevant for the query.

Partition Maintenance

For time series (includes list of PARTITION uses)

2112/4161

Partitioning Limitations

Limitations applying to partitioning in MariaDB.

Partitions Files

A partitioned table is stored in multiple files

Partitions Metadata

How to obtain information about partitions definition

Information Schema PARTITIONS Table

Table partition information.

There are 2 related questions .

1

2.5.1 Partitioning Overview
Contents
1. Uses for Partitioning

1. Partitioning for Specific Storage Engines

2. Partitioning Types

3. Enabling Partitioning

4. Using Partitions

1. Adding Partitions

2. Coalescing Partitions

3. Converting Partitions to/from Tables

1. CONVERT TABLE ... WITH / WITHOUT VALIDATION

4. Dropping Partitions

5. Exchanging Partitions

1. WITH / WITHOUT VALIDATION

6. Removing Partitioning

7. Reorganizing Partitions

1. Splitting Partitions

2. Merging Partitions

3. Changing Ranges

4. Renaming Partitions

8. Truncating Partitions

9. Analyzing Partitions

10. Checking Partitions

11. Repairing Partitions

12. Optimizing Partitions

In MariaDB, a table can be split in smaller subsets. Both data and indexes are partitioned.

Uses for Partitioning
There can be several reasons to use this feature:

Very big tables and indexes can be slow even with optimized queries. But if the target table is partitioned, queries that

read a small number of partitions can be much faster.

Partitioning allows one to distribute files over multiple storage devices. For example, we can have historical data on

slower, larger disks (historical data are not supposed to be frequently read); and current data can be on faster disks,

or SSD devices.

In case we separate historical data from recent data, we will probably need to take regular backups of one partition,

not the whole table.

Partitioning for Specific Storage Engines

Some MariaDB storage engines allow more interesting uses for partitioning.

MERGE storage engine allows one to:

Threat a set of identical defined MyISAM tables as one.

A MyISAM table can be in many different MERGE sets and also used separately.

2113/4161

https://mariadb.com/kb/en/partitioning-tables/+questions/

SPIDER allows one to:

Move partitions of the same table on different servers. In this way, the workload can be distributed on more physical

or virtual machines (data sharding).

All partitions of a SPIDER table can also live on the same machine. In this case there will be a small overhead

(SPIDER will use connections to localhost), but queries that read multiple partitions will use parallel threads.

CONNECT allows one to:

Build a table whose partitions are tables using different storage engines (like InnoDB, MyISAM, or even engines that

do not support partitioning).

Build an indexable, writeable table on several data files. These files can be in different formats.

See also: Using CONNECT - Partitioning and Sharding

Partitioning Types
When partitioning a table, the use should decide:

a partitioning type;

a partitioning expression.

A partitioning type is the method used by MariaDB to decide how rows are distributed over existing partitions. Choosing the

proper partitioning type is important to distribute rows over partitions in an efficient way.

With some partitioning types, a partitioning expression is also required. A partitioning function is an SQL expression

returning an integer or temporal value, used to determine which row will contain a given row. The partitioning expression is

used for all reads and writes on involving the partitioned table, thus it should be fast.

MariaDB supports the following partitioning types:

RANGE

LIST

RANGE COLUMNS and LIST COLUMNS

HASH

LINEAR HASH

KEY

LINEAR KEY

SYSTEM_TIME

Enabling Partitioning
By default, MariaDB permits partitioning. You can determine this by using the SHOW PLUGINS statement, for example:

SHOW PLUGINS;

...

| Aria | ACTIVE | STORAGE ENGINE | NULL | GPL |

| FEEDBACK | DISABLED | INFORMATION SCHEMA | NULL | GPL |

| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |

+-------------------------------+----------+--------------------+---------+---------+

If partition is listed as DISABLED:

| partition | DISABLED | STORAGE ENGINE | NULL | GPL |

+-------------------------------+----------+--------------------+---------+---------+

MariaDB has either been built without partitioning support, or has been started with the the --skip-partition option, or one of

its variants:

--skip-partition

--disable-partition

--partition=OFF

and you will not be able to create partitions.

Using Partitions
It is possible to create a new partitioned table using CREATE TABLE.

2114/4161

ALTER TABLE allows one to:

Partition an existing table;

Remove partitions from a partitioned table (with all data in the partition);

Add/remove partitions, or reorganize them, as long as the partitioning function allows these operations (see below);

Exchange a partition with a table;

Perform administrative operations on some or all partitions (analyze, optimize, check, repair).

Adding Partitions

ADD PARTITION [IF NOT EXISTS] (partition_definition)

ALTER TABLE ... ADD PARTITION can be used to add partitions to an existing table:

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

ALTER TABLE t1 ADD PARTITION (

 PARTITION p4 VALUES LESS THAN (2017),

 PARTITION p5 VALUES LESS THAN (2018)

);

With RANGE partitions, it is only possible to add a partition to the high end of the range, not the low end. For example, the

following results in an error:

ALTER TABLE t1 ADD PARTITION (

 PARTITION p0a VALUES LESS THAN (2012)

);

ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition

You can work around this by using REORGANIZE PARTITION to split the partition instead. See Splitting Partitions.

Coalescing Partitions

COALESCE PARTITION number

ALTER TABLE ... COALESCE PARTITION is used to reduce the number of HASH or KEY partitions by the specified

number. For example, given the following table with 5 partitions:

CREATE OR REPLACE TABLE t1 (v1 INT)

 PARTITION BY KEY (v1)

 PARTITIONS 5;

The following statement will reduce the number of partitions by 2, leaving the table with 3 partitions:

ALTER TABLE t1 COALESCE PARTITION 2;

Converting Partitions to/from Tables

CONVERT PARTITION partition_name TO TABLE tbl_name

CONVERT TABLE normal_table TO partition_definition

ALTER TABLE ... CONVERT PARTITION can, from MariaDB 10.7, be used to convert partitions in an existing table to

MariaDB starting with 10.7

2115/4161

a standalone table:

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

INSERT INTO t1 VALUES ('2013-11-11'),('2014-11-11'),('2015-11-11');

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

| 2015-11-11 00:00:00 |

+---------------------+

ALTER TABLE t1 CONVERT PARTITION p3 TO TABLE t2;

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

+---------------------+

SELECT * FROM t2;

+--------------+

| dt |

+--------------+

| 2015-11-11 00:00:00 |

+---------------------+

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

 PARTITION BY RANGE (year(`dt`))

(PARTITION `p0` VALUES LESS THAN (2013) ENGINE = InnoDB,

 PARTITION `p1` VALUES LESS THAN (2014) ENGINE = InnoDB,

 PARTITION `p2` VALUES LESS THAN (2015) ENGINE = InnoDB)

SHOW CREATE TABLE t2\G

*************************** 1. row ***************************

 Table: t2

Create Table: CREATE TABLE `t2` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

CONVERT TABLE does the reverse, converting a table into a partition:

2116/4161

ALTER TABLE t1 CONVERT TABLE t2 to PARTITION p3 VALUES LESS THAN (2016);

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

| 2015-11-11 00:00:00 |

+---------------------+

3 rows in set (0.001 sec)

SELECT * FROM t2;

ERROR 1146 (42S02): Table 'test.t2' doesn't exist

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

 PARTITION BY RANGE (year(`dt`))

(PARTITION `p0` VALUES LESS THAN (2013) ENGINE = InnoDB,

 PARTITION `p1` VALUES LESS THAN (2014) ENGINE = InnoDB,

 PARTITION `p2` VALUES LESS THAN (2015) ENGINE = InnoDB,

 PARTITION `p3` VALUES LESS THAN (2016) ENGINE = InnoDB)

CONVERT TABLE ... WITH / WITHOUT VALIDATION

When converting tables to a partition, validation is performed on each row to ensure it meets the partition requirements.

This can be very slow in the case of larger tables.

From MariaDB 11.4, it is possible to disable this validation by specifying the WITHOUT VALIDATION option.

CONVERT TABLE normal_table TO partition_definition [{WITH | WITHOUT} VALIDATION]

WITH VALIDATION will result in the validation being performed, and is the default behaviour.

An alternative (and the only method prior to MariaDB 10.7) to convert partitions to tables is to use ALTER TABLE ...

EXCHANGE PARTITION . This requires having to manually do the following steps:

create an empty table with the same structure as the partition

exchange the table with the partition

drop the empty partition

For example:

MariaDB starting with 11.4

2117/4161

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

INSERT INTO t1 VALUES ('2013-11-11'),('2014-11-11'),('2015-11-11');

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

| 2015-11-11 00:00:00 |

+---------------------+

CREATE OR REPLACE TABLE t2 LIKE t1;

ALTER TABLE t2 REMOVE PARTITIONING;

ALTER TABLE t1 EXCHANGE PARTITION p3 WITH TABLE t2;

ALTER TABLE t1 DROP PARTITION p3;

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

+---------------------+

SELECT * FROM t2;

+--------------+

| dt |

+--------------+

| 2015-11-11 00:00:00 |

+---------------------+

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

 PARTITION BY RANGE (year(`dt`))

(PARTITION `p0` VALUES LESS THAN (2013) ENGINE = InnoDB,

 PARTITION `p1` VALUES LESS THAN (2014) ENGINE = InnoDB,

 PARTITION `p2` VALUES LESS THAN (2015) ENGINE = InnoDB)

SHOW CREATE TABLE t2\G

*************************** 1. row ***************************

 Table: t2

Create Table: CREATE TABLE `t2` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

Similarly, to do the reverse and convert a table into a partition ALTER TABLE ... EXCHANGE PARTITION can also be

used, with the following manual steps required:

create the partition

exchange the partition with the table

drop the old table:

For example:

2118/4161

ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2016));

ALTER TABLE t1 EXCHANGE PARTITION p3 WITH TABLE t2;

DROP TABLE t2;

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-11 00:00:00 |

| 2014-11-11 00:00:00 |

| 2015-11-11 00:00:00 |

+---------------------+

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `dt` datetime NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

 PARTITION BY RANGE (year(`dt`))

(PARTITION `p0` VALUES LESS THAN (2013) ENGINE = InnoDB,

 PARTITION `p1` VALUES LESS THAN (2014) ENGINE = InnoDB,

 PARTITION `p2` VALUES LESS THAN (2015) ENGINE = InnoDB,

 PARTITION `p3` VALUES LESS THAN (2016) ENGINE = InnoDB)

Dropping Partitions

DROP PARTITION [IF EXISTS] partition_names

ALTER TABLE ... DROP PARTITION can be used to drop specific partitions (and discard all data within the specified

partitions) for RANGE and LIST partitions. It cannot be used on HASH or KEY partitions. To rather remove all partitioning,

while leaving the data unaffected, see Removing Partitioning.

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

INSERT INTO t1 VALUES ('2012-11-15');

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2012-11-15 00:00:00 |

+---------------------+

ALTER TABLE t1 DROP PARTITION p0;

SELECT * FROM t1;

Empty set (0.002 sec)

Exchanging Partitions

<= MariaDB 11.3

EXCHANGE PARTITION partition_name WITH TABLE tbl_name

>= MariaDB 11.4

2119/4161

EXCHANGE PARTITION partition_name WITH TABLE tbl_name [{WITH | WITHOUT} VALIDATION]

ALTER TABLE t1 EXCHANGE PARTITION p1 WITH TABLE t2 permits one to exchange a partition or subpartition with

another table.

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014)

);

CREATE OR REPLACE TABLE t2 (

 dt DATETIME NOT NULL

) ENGINE = InnoDB;

INSERT INTO t1 VALUES ('2012-01-01'),('2013-01-01');

INSERT INTO t2 VALUES ('2013-02-02');

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2012-01-01 00:00:00 |

| 2013-01-01 00:00:00 |

+---------------------+

SELECT * FROM t2;

+--------------+

| dt |

+--------------+

| 2013-02-02 00:00:00 |

+---------------------+

ALTER TABLE t1 EXCHANGE PARTITION p1 with TABLE t2;

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2012-01-01 00:00:00 |

| 2013-02-02 00:00:00 |

+---------------------+

SELECT * FROM t2;

+--------------+

| dt |

+--------------+

| 2013-01-01 00:00:00 |

+---------------------+

The following requirements must be met:

Table t1 must be partitioned, and table t2 cannot be partitioned

Table t2 cannot be a temporary table

Table t1 and t2 must otherwise be identica

Any existing row in t2 must match the conditions for storage in the exchanged partition p1 unless, from MariaDB 11.4,

the WITHOUT VALIDATION option is specified.

MariaDB will by default perform the validation to see that each row meets the partition requirements, and the statement will

fail if a row does not fit.

This attempted exchange fails, as the value already in t2, 2015-05-05 is outside of the partition conditions:

2120/4161

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014)

);

CREATE OR REPLACE TABLE t2 (

 dt DATETIME NOT NULL

) ENGINE = InnoDB;

INSERT INTO t1 VALUES ('2012-02-02'),('2013-03-03');

INSERT INTO t2 VALUES ('2015-05-05');

ALTER TABLE t1 EXCHANGE PARTITION p1 with TABLE t2;

ERROR 1526 (HY000): Table has no partition for value 0

WITH / WITHOUT VALIDATION

This validation is performed for each row, and can be very slow in the case of larger tables.

From MariaDB 11.4, it is possible to disable this validation by specifying the WITHOUT VALIDATION option.

ALTER TABLE t1 EXCHANGE PARTITION p1 with TABLE t2 WITHOUT VALIDATION;

Query OK, 0 rows affected (0.048 sec)

WITH VALIDATION will result in the validation being performed, and is the default behaviour.

Removing Partitioning

REMOVE PARTITIONING

ALTER TABLE ... REMOVE PARTITIONING will remove all partitioning from the table, while leaving the data unaffected.

To rather drop a particular partition (and discard all of its data), see Dropping Partitions.

ALTER TABLE t1 REMOVE PARTITIONING;

Reorganizing Partitions

REORGANIZE PARTITION [partition_names INTO (partition_definitions)]

Reorganizing partitions allows one to adjust existing partitions, without losing data. Specifically, the statement can be used

for:

Splitting an existing partition into multiple partitions

Merging a number of existing partitions into a new, single, partition

Changing the ranges for a subset of existing partitions defined using VALUES LESS THAN

Changing the value lists for a subset of partitions defined using VALUES I.

Renaming partitions

Splitting Partitions

An existing partition can be split into multiple partitions. This can also be used to add a new partition at the low end of a

RANGE partition (which is not possible by Adding Partitions).

MariaDB starting with 11.4

2121/4161

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

ALTER TABLE t1 REORGANIZE PARTITION p0 INTO (

 PARTITION p0a VALUES LESS THAN (2012),

 PARTITION p0b VALUES LESS THAN (2013)

);

Similarly, if MAXVALUE binds the high end:

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016),

 PARTITION p4 VALUES LESS THAN MAXVALUE

);

ALTER TABLE t1 REORGANIZE PARTITION p4 INTO (

 PARTITION p4 VALUES LESS THAN (2017),

 PARTITION p5 VALUES LESS THAN MAXVALUE

);

Merging Partitions

A number of existing partitions can be merged into a new partition, for example:

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

ALTER TABLE t1 REORGANIZE PARTITION p2,p3 INTO (

 PARTITION p2 VALUES LESS THAN (2016)

);

Changing Ranges

2122/4161

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

ALTER TABLE t1 REORGANIZE PARTITION p3 INTO (

 PARTITION p3 VALUES LESS THAN (2017)

);

Renaming Partitions

The REORGANIZE PARTITION statement can also be used for renaming partitions. Note that this creates a copy of the

partition:

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

ALTER TABLE t1 REORGANIZE PARTITION p3 INTO (

 PARTITION p3_new VALUES LESS THAN (2016)

);

Truncating Partitions

TRUNCATE PARTITION partition_names

ALTER TABLE ... TRUNCATE PARTITION will remove all data from the specified partition/s, leaving the table and partition

structure unchanged. Partitions don't need to be contiguous.

2123/4161

CREATE OR REPLACE TABLE t1 (

 dt DATETIME NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE (YEAR(dt))

 (

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

INSERT INTO t1 VALUES ('2012-11-01'),('2013-11-02'),('2014-11-03'),('2015-11-04');

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2012-11-01 00:00:00 |

| 2013-11-02 00:00:00 |

| 2014-11-03 00:00:00 |

| 2015-11-04 00:00:00 |

+---------------------+

ALTER TABLE t1 TRUNCATE PARTITION p0,p2;

SELECT * FROM t1;

+--------------+

| dt |

+--------------+

| 2013-11-02 00:00:00 |

| 2015-11-04 00:00:00 |

+---------------------+

Analyzing Partitions

Similar to ANALYZE TABLE, key distributions for specific partitions can also be analyzed and stored, for example:

ALTER TABLE t1 ANALYZE PARTITION p0,p1,p3;

+---------+---------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+---------+----------+----------+

| test.t1 | analyze | status | OK |

+---------+---------+----------+----------+

Checking Partitions

CHECK PARTITION {ALL | partition [,partition2 ...]}

Similar to CHECK TABLE, specific partitions can be checked for errors, for example:

ALTER TABLE t1 CHECK PARTITION p1,p3;

+---------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+-------+----------+----------+

| test.t1 | check | status | OK |

+---------+-------+----------+----------+

The ALL keyword can be used in place of the list of partition names, and the check operation will be performed on all

partitions.

Repairing Partitions

REPAIR PARTITION {ALL | partition [,partition2 ...]} [QUICK] [EXTENDED]

Similar to REPAIR TABLE, specific partitions can be repaired, for example:

2124/4161

ALTER TABLE t1 REPAIR PARTITION p0,p3;

+---------+--------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+--------+----------+----------+

| test.t1 | repair | status | OK |

+---------+--------+----------+----------+

As with REPAIR TABLE, the QUICK and EXTENDED options are available. However, the USE_FRM option cannot be used

with this statement on a partitioned table.

REPAIR PARTITION will fail if there are duplicate key errors. ALTER IGNORE TABLE ... REPAIR PARTITION can be

used in this case.

The ALL keyword can be used in place of the list of partition names, and the repair operation will be performed on all

partitions.

Optimizing Partitions

OPTIMIZE PARTITION {ALL | partition [,partition2 ...]}

Similar to OPTIMIZE TABLE, specific partitions can be checked for errors, for example:

ALTER TABLE t1 OPTIMIZE PARTITION p0,p3;

+---------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+----------+----------+----------+

| test.t1 | optimize | status | OK |

+---------+----------+----------+----------+

OPTIMIZE PARTITION does not support per-partition optimization on InnoDB tables, and will issue a warning and cause

the entire table to rebuilt and analyzed. ALTER TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE

PARTITION can be used instead.

The ALL keyword can be used in place of the list of partition names, and the optimize operation will be performed on all

partitions.

2.5.2 Partitioning Types
Partitioning Types Overview

A partition type determines how a partitioned table rows are distributed across partitions

LIST Partitioning Type

LIST partitioning is used to assign each partition a list of values

RANGE Partitioning Type

The RANGE partitioning type is used to assign each partition a range of values.

HASH Partitioning Type

Form of partitioning in which the server takes care of the partition in which to place the data.

KEY Partitioning Type

Used to have the server assign the distribution of rows across partitions.

LINEAR HASH Partitioning Type

Form of partitioning, similar to HASH, in which the server takes care of th...

LINEAR KEY Partitioning Type

Form of partitioning similar to KEY partitioning.

RANGE COLUMNS and LIST COLUMNS Partitioning Types

Used to assign each partition a range or a list of values

2125/4161

2.5.2.1 Partitioning Types Overview
A partitioning type determines how a partitioned table's rows are distributed across partitions. Some partition types require

the user to specify a partitioning expression that determines in which partition a row will be stored.

The size of individual partitions depends on the partitioning type. Read and write performance are affected by the

partitioning expression. Therefore, these choices should be made carefully.

MariaDB supports the following partitioning types:

RANGE

LIST

RANGE COLUMNS and LIST COLUMNS

HASH

LINEAR HASH

KEY

LINEAR KEY

SYSTEM_TIME

2.5.2.2 LIST Partitioning Type
LIST partitioning is conceptually similar to RANGE partitioning. In both cases you decide a partitioning expression (a

column, or a slightly more complex calculation) and use it to determine which partitions will contain each row. However, with

the RANGE type, partitioning is done by assigning a range of values to each partition. With the LIST type, we assign a set

of values to each partition. This is usually preferred if the partitioning expression can return a limited set of values.

A variant of this partitioning method, LIST COLUMNS, allows us to use multiple columns and more datatypes.

Syntax
The last part of a CREATE TABLE statement can be the definition of the new table's partitions. In the case of LIST

partitioning, the syntax is the following:

PARTITION BY LIST (partitioning_expression)

(

 PARTITION partition_name VALUES IN (value_list),

 [PARTITION partition_name VALUES IN (value_list), ...]

 [PARTITION partition_name DEFAULT]

)

PARTITION BY LIST indicates that the partitioning type is LIST.

The partitioning_expression is an SQL expression that returns a value from each row. In the simplest cases, it is a

column name. This value is used to determine which partition should contain a row.

partition_name is the name of a partition.

value_list is a list of values. If partitioning_expression returns one of these values, the row will be stored in this

partition. If we try to insert something that does not belong to any of these value lists, the row will be rejected with an error.

The DEFAULT partition catches all records which do not fit into other partitions.

Use Cases
LIST partitioning can be useful when we have a column that can only contain a limited set of values. Even in that case,

RANGE partitioning could be used instead; but LIST partitioning allows us to equally distribute the rows by assigning a

proper set of values to each partition.

Example

2126/4161

CREATE OR REPLACE TABLE t1 (

 num TINYINT(1) NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY LIST (num) (

 PARTITION p0 VALUES IN (0,1),

 PARTITION p1 VALUES IN (2,3),

 PARTITION p2 DEFAULT

);

2.5.2.3 RANGE Partitioning Type
Contents
1. Syntax

2. Use Cases

3. Examples

The RANGE partitioning type is used to assign each partition a range of values generated by the partitioning expression.

Ranges must be ordered, contiguous and non-overlapping. The minimum value is always included in the first range. The

highest value may or may not be included in the last range.

A variant of this partitioning method, RANGE COLUMNS, allows us to use multiple columns and more datatypes.

Syntax
The last part of a CREATE TABLE statement can be definition of the new table's partitions. In the case of RANGE

partitioning, the syntax is the following:

PARTITION BY RANGE (partitioning_expression)

(

 PARTITION partition_name VALUES LESS THAN (value),

 [PARTITION partition_name VALUES LESS THAN (value), ...]

 [PARTITION partition_name VALUES LESS THAN MAXVALUE]

)

PARTITION BY RANGE indicates that the partitioning type is RANGE.

The partitioning_expression is an SQL expression that returns a value from each row. In the simplest cases, it is a

column name. This value is used to determine which partition should contain a row.

partition_name is the name of a partition.

value indicates the upper bound for that partition. The values must be ascending. For the first partition, the lower limit is

NULL. When trying to insert a row, if its value is higher than the upper limit of the last partition, the row will be rejected (with

an error, if the IGNORE keyword is not used).

As a catchall, MAXVALUE can be specified as a value for the last partition. Note however that in order to append a new

partition, it is not possible to use ADD PARTITION; rather REORGANIZE PARTITION must be used.

Use Cases
A typical use case is when we want to partition a table whose rows refer to a moment or period in time; for example

commercial transactions, blog posts, or events of some kind. We can partition the table by year, to keep all recent data in

one partition and distribute historical data in big partitions that are stored on slower disks. Or, if our queries always read

rows which refer to the same month or week, we can partition the table by month or year week (in this case, historical data

and recent data will be stored together).

AUTO_INCREMENT values also represent a chronological order. So, these values can be used to store old data in

separate partitions. However, partitioning by id is not the best choice if we usually query a table by date.

Examples
In the following example, we will partition a log table by year.

2127/4161

CREATE TABLE log

(

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 dt DATETIME NOT NULL,

 user INT UNSIGNED,

 PRIMARY KEY (id, dt)

)

 ENGINE = InnoDB

PARTITION BY RANGE (YEAR(dt))

(

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016)

);

As an alternative, we can partition the table by both year and month:

CREATE TABLE log2

(

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 ts TIMESTAMP NOT NULL,

 user INT UNSIGNED,

 PRIMARY KEY (id, ts)

)

 ENGINE = InnoDB

PARTITION BY RANGE (UNIX_TIMESTAMP(ts))

(

 PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2014-08-01 00:00:00')),

 PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2014-11-01 00:00:00')),

 PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2015-01-01 00:00:00')),

 PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2015-02-01 00:00:00'))

);

As you can see, we used the UNIX_TIMESTAMP function to accomplish the purpose. Also, the first two partitions cover

longer periods of time (probably because the logged activities were less intensive).

In both cases, when our tables become huge and we don't need to store all historical data any more, we can drop the oldest

partitions in this way:

 ALTER TABLE log DROP PARTITION p0;

We will still be able to drop a partition that does not contain the oldest data, but all rows stored in it will disappear.

Example of an error when inserting outside a defined partition range:

INSERT INTO log(id,dt) VALUES

 (1, '2016-01-01 01:01:01'),

 (2, '2015-01-01 01:01:01');

ERROR 1526 (HY000): Table has no partition for value 2016

Unless the IGNORE keyword is used:

INSERT IGNORE INTO log(id,dt) VALUES

 (1, '2016-01-01 01:01:01'),

 (2, '2015-01-01 01:01:01');

SELECT * FROM log;

+----+---------------------+------+

| id | timestamp | user |

+----+---------------------+------+

| 2 | 2015-01-01 01:01:01 | NULL |

+----+---------------------+------+

An alternative definition with MAXVALUE as a catchall:

2128/4161

CREATE TABLE log

(

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 dt DATETIME NOT NULL,

 user INT UNSIGNED,

 PRIMARY KEY (id, dt)

)

 ENGINE = InnoDB

PARTITION BY RANGE (YEAR(dt))

(

 PARTITION p0 VALUES LESS THAN (2013),

 PARTITION p1 VALUES LESS THAN (2014),

 PARTITION p2 VALUES LESS THAN (2015),

 PARTITION p3 VALUES LESS THAN (2016),

 PARTITION p4 VALUES LESS THAN MAXVALUE

);

2.5.2.4 HASH Partitioning Type

Syntax

PARTITION BY HASH (partitioning_expression)

[PARTITIONS(number_of_partitions)]

Description
HASH partitioning is a form of partitioning in which the server takes care of the partition in which to place the data, ensuring

an even distribution among the partitions.

It requires a column value, or an expression based on a column value, which is hashed, as well as the number of partitions

into which to divide the table.

partitioning_expression needs to return a non-constant, deterministic integer. It is evaluated for each insert and update, so

overly complex expressions can lead to performance issues. A hashing function operating on a single column, and where

the value changes consistently with the column value, allows for easy pruning on ranges of partitions, and is usually a better

choice. For this reason, using multiple columns in a hashing expression is not usually recommended.

number_of_partitions is a positive integer specifying the number of partitions into which to divide the table. If the

PARTITIONS clause is omitted, the default number of partitions is one.

Determining the Partition

To determine which partition to use, the following calculation is performed: MOD(partitioning_expression,

number_of_partitions)

For example, if the expression is TO_DAYS(datetime_column) and the number of partitions is 5, inserting a datetime value

of '2023-11-15' would determine the partition as follows:

TO_DAYS('2023-11-15') gives a value of 739204

MOD(739204,5) returns 4 so the 4th partition is used.

HASH partitioning making use of the modulus of the hashing function's value. The LINEAR HASH partitioning type is similar,

using a powers-of-two algorithm. Data is more likely to be evenly distributed over the partitions than with the LINEAR HASH

partitioning type, however, adding, dropping, merging and splitting partitions is much slower.

Examples

CREATE OR REPLACE TABLE t1 (c1 INT, c2 DATETIME)

 PARTITION BY HASH(TO_DAYS(c2))

 PARTITIONS 5;

Using the Information Schema PARTITIONS Table for more information:

2129/4161

INSERT INTO t1 VALUES (1,'2023-11-15');

SELECT PARTITION_NAME,TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS

 WHERE TABLE_SCHEMA='test' AND TABLE_NAME='t1';

+----------------+------------+

| PARTITION_NAME | TABLE_ROWS |

+----------------+------------+

| p0 | 0 |

| p1 | 0 |

| p2 | 0 |

| p3 | 0 |

| p4 | 1 |

+----------------+------------+

2.5.2.5 KEY Partitioning Type

Syntax

PARTITION BY KEY ([column_names])

[PARTITIONS (number_of_partitions)]

Description

Partitioning by key is a type of partitioning that is similar to and can be used in a similar way as partitioning by hash.

KEY takes an optional list of column_names, and the hashing function is given by the server.

Just like HASH partitioning, in KEY partitioning the server takes care of the partition and ensures an even distribution

among the partitions. However, the largest difference is that KEY partitioning makes use of column_names, and cannot

accept a partitioning_expression which is based on column_names, in contrast to HASH partitioning, which can.

If no column_names are specified, the table's primary key is used if present, or not null unique key if no primary key is

present. If neither of these keys are present, not specifying any column_names will result in ERROR 1488 (HY000): Field

in list of fields for partition function not found in table

Unlike other partitioning types, columns used for partitioning by KEY are not limited to integer or NULL values.

KEY partitions do not support column index prefixes. Any columns in the partitioning key that make use of column prefixes

are not used (see also MDEV-32727).

Example

CREATE OR REPLACE TABLE t1 (v1 INT)

 PARTITION BY KEY (v1)

 PARTITIONS 2;

CREATE OR REPLACE TABLE t1 (v1 INT, v2 INT)

 PARTITION BY KEY (v1,v2)

 PARTITIONS 2;

CREATE OR REPLACE TABLE t1 (

 id INT NOT NULL PRIMARY KEY,

 name VARCHAR(5)

)

PARTITION BY KEY()

PARTITIONS 2;

CREATE OR REPLACE TABLE t1 (

 id INT NOT NULL UNIQUE KEY,

 name VARCHAR(5)

)

PARTITION BY KEY()

PARTITIONS 2;

2130/4161

https://jira.mariadb.org/browse/MDEV-32727

The unique key must be NOT NULL:

CREATE OR REPLACE TABLE t1 (

 id INT NULL UNIQUE KEY,

 name VARCHAR(5)

)

PARTITION BY KEY()

PARTITIONS 2;

ERROR 1488 (HY000): Field in list of fields for partition function not found in table

KEY requires column_values if no primary key or not null unique key is present:

CREATE OR REPLACE TABLE t1 (

 id INT NULL UNIQUE KEY,

 name VARCHAR(5)

)

PARTITION BY KEY()

PARTITIONS 2;

ERROR 1488 (HY000): Field in list of fields for partition function not found in table

CREATE OR REPLACE TABLE t1 (

 id INT NULL UNIQUE KEY,

 name VARCHAR(5)

)

PARTITION BY KEY(name)

PARTITIONS 2;

Primary key columns with index prefixes are silently ignored, so the following two queries are equivalent:

CREATE OR REPLACE TABLE t1 (

 a VARCHAR(10),

 b VARCHAR(10),

 c VARCHAR(10),

 PRIMARY KEY (a(5), b, c(5))

) PARTITION BY KEY() PARTITIONS 2;

CREATE OR REPLACE TABLE t1 (

 a VARCHAR(10),

 b VARCHAR(10),

 c VARCHAR(10),

 PRIMARY KEY (b)

) PARTITION BY KEY() PARTITIONS 2;

a(5) and c(5) are silently ignored in the former.

If all columns use index prefixes, the statement fails with a slightly misleading error:

CREATE OR REPLACE TABLE t1 (

 a VARCHAR(10),

 b VARCHAR(10),

 c VARCHAR(10),

 PRIMARY KEY (a(5), b(5), c(5))

) PARTITION BY KEY() PARTITIONS 2;

ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

2.5.2.6 LINEAR HASH Partitioning Type

Syntax

PARTITION BY LINEAR HASH (partitioning_expression)

[PARTITIONS(number_of_partitions)]

Description

2131/4161

LINEAR HASH partitioning is a form of partitioning, similar to HASH partitioning, in which the server takes care of the

partition in which to place the data, ensuring a relatively even distribution among the partitions.

LINEAR HASH partitioning makes use of a powers-of-two algorithm, while HASH partitioning uses the modulus of the

hashing function's value. Adding, dropping, merging and splitting partitions is much faster than with the HASH partitioning

type, however, data is less likely to be evenly distributed over the partitions.

Example

CREATE OR REPLACE TABLE t1 (c1 INT, c2 DATETIME)

 PARTITION BY LINEAR HASH(TO_DAYS(c2))

 PARTITIONS 5;

2.5.2.7 LINEAR KEY Partitioning Type

Syntax

LINEAR PARTITION BY KEY ([column_names])

[PARTITIONS (number_of_partitions)]

Description
LINEAR KEY partitioning is a form of partitioning, similar to KEY partitioning.

LINEAR KEY partitioning makes use of a powers-of-two algorithm, while KEY partitioning uses modulo arithmetic, to

determine the partition number.

Adding, dropping, merging and splitting partitions is much faster than with the KEY partitioning type, however, data is less

likely to be evenly distributed over the partitions.

Example

CREATE OR REPLACE TABLE t1 (v1 INT)

 PARTITION BY LINEAR KEY (v1)

 PARTITIONS 2;

2.5.2.8 RANGE COLUMNS and LIST
COLUMNS Partitioning Types
RANGE COLUMNS and LIST COLUMNS are variants of, respectively, RANGE and LIST. With these partitioning types

there is not a single partitioning expression; instead, a list of one or more columns is accepted. The following rules apply:

The list can contain one or more columns.

Columns can be of any integer, string, DATE, and DATETIME types.

Only bare columns are permitted; no expressions.

All the specified columns are compared to the specified values to determine which partition should contain a specific row.

See below for details.

Syntax
The last part of a CREATE TABLE statement can be definition of the new table's partitions. In the case of RANGE

COLUMNS partitioning, the syntax is the following:

PARTITION BY RANGE COLUMNS (col1, col2, ...)

(

 PARTITION partition_name VALUES LESS THAN (value1, value2, ...),

 [PARTITION partition_name VALUES LESS THAN (value1, value2, ...), ...]

)

2132/4161

The syntax for LIST COLUMNS is the following:

PARTITION BY LIST COLUMNS (partitioning_expression)

(

 PARTITION partition_name VALUES IN (value1, value2, ...),

 [PARTITION partition_name VALUES IN (value1, value2, ...), ...]

 [PARTITION partititon_name DEFAULT]

)

partition_name is the name of a partition.

Comparisons
To determine which partition should contain a row, all specified columns will be compared to each partition definition.

With LIST COLUMNS, a row matches a partition if all row values are identical to the specified values. At most one partition

can match the row.

With RANGE COLUMNS, a row matches a partition if all row values are less than the specified values. The first partition

that matches the row values will be used.

The DEFAULT partition catches all records which do not fit in other partitions. Only one DEFAULT partition is allowed.

Examples
RANGE COLUMNS partition:

CREATE OR REPLACE TABLE t1 (

 date1 DATE NOT NULL,

 date2 DATE NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY RANGE COLUMNS (date1,date2) (

 PARTITION p0 VALUES LESS THAN ('2013-01-01', '1994-12-01'),

 PARTITION p1 VALUES LESS THAN ('2014-01-01', '1995-12-01'),

 PARTITION p2 VALUES LESS THAN ('2015-01-01', '1996-12-01')

);

LIST COLUMNS partition:

CREATE OR REPLACE TABLE t1 (

 num TINYINT(1) NOT NULL

)

 ENGINE = InnoDB

 PARTITION BY LIST COLUMNS (num) (

 PARTITION p0 VALUES IN (0,1),

 PARTITION p1 VALUES IN (2,3),

 PARTITION p2 DEFAULT

);

2.5.3 Partition Pruning and Selection
When a WHERE clause is related to the partitioning expression, the optimizer knows which partitions are relevant for the

query. Other partitions will not be read. This optimization is called partition pruning.

EXPLAIN PARTITIONS can be used to know which partitions will be read for a given query. A column called partitions

will contain a comma-separated list of the accessed partitions. For example:

2133/4161

EXPLAIN PARTITIONS SELECT * FROM orders WHERE id < 15000000;

+------+-------------+--------+------------+-------+---------------+---------+---------+-----

-+------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |

rows | Extra |

+------+-------------+--------+------------+-------+---------------+---------+---------+-----

-+------+-------------+

| 1 | SIMPLE | orders | p0,p1 | range | PRIMARY | PRIMARY | 4 | NULL

| 2 | Using where |

+------+-------------+--------+------------+-------+---------------+---------+---------+-----

-+------+-------------+

Sometimes the WHERE clause does not contain the necessary information to use partition pruning, or the optimizer cannot

infer this information. However, we may know which partitions are relevant for the query. Since MariaDB 10.0, we can force

MariaDB to only access the specified partitions by adding a PARTITION clause. This feature is called partition selection. For

example:

SELECT * FROM orders PARTITION (p3) WHERE user_id = 50;

SELECT * FROM orders PARTITION (p2,p3) WHERE user_id >= 40;

The PARTITION clause is supported for all DML statements:

SELECT

INSERT

UPDATE

DELETE

REPLACE

Partition Pruning and Triggers
In general, partition pruning is applied to statements contained in triggers.

However, note that if a BEFORE INSERT or BEFORE UPDATE trigger is defined on a table, MariaDB doesn't know in

advance if the columns used in the partitioning expression will be changed. For this reason, it is forced to lock all partitions.

2.5.4 Partition Maintenance
Contents
1. Preface

2. Use Cases for PARTITIONing

3. AUTO_INCREMENT in PARTITION

4. PARTITION maintenance for the time-series case

5. High level view of the code

6. Why?

7. When to do the ALTERs?

8. Variants

9. Detailed code

10. Postlog

Preface
This article covers

PARTITIONing uses and non-uses

How to Maintain a time-series PARTITIONed table

AUTO_INCREMENT secrets

First, my Opinions on PARTITIONing

Taken from Rick's RoTs - Rules of Thumb

#1: Don't use PARTITIONing until you know how and why it will help.

Don't use PARTITION unless you will have >1M rows

No more than 50 PARTITIONs on a table (open, show table status, etc, are impacted) (fixed in MySQL 5.6.6?; a

better fix coming eventually in 5.7)

PARTITION BY RANGE is the only useful method.

SUBPARTITIONs are not useful.

2134/4161

http://mysql.rjweb.org/doc.php/ricksrots

The partition field should not be the field first in any key.

It is OK to have an AUTO_INCREMENT as the first part of a compound key, or in a non-UNIQUE index.

It is so tempting to believe that PARTITIONing will solve performance problems. But it is so often wrong.

PARTITIONing splits up one table into several smaller tables. But table size is rarely a performance issue. Instead, I/O time

and indexes are the issues.

A common fallacy: "Partitioning will make my queries run faster". It won't. Ponder what it takes for a 'point query'. Without

partitioning, but with an appropriate index, there is a BTree (the index) to drill down to find the desired row. For a billion

rows, this might be 5 levels deep. With partitioning, first the partition is chosen and "opened", then a smaller BTree (of say 4

levels) is drilled down. Well, the savings of the shallower BTree is consumed by having to open the partition. Similarly, if you

look at the disk blocks that need to be touched, and which of those are likely to be cached, you come to the conclusion that

about the same number of disk hits is likely. Since disk hits are the main cost in a query, Partitioning does not gain any

performance (at least for this typical case). The 2D case (below) gives the main contradiction to this discussion.

Use Cases for PARTITIONing
Use case #1 -- time series . Perhaps the most common use case where PARTITIONing shines is in a dataset where "old"

data is periodically deleted from the table. RANGE PARTITIONing by day (or other unit of time) lets you do a nearly

instantaneous DROP PARTITION plus REORGANIZE PARTITION instead of a much slower DELETE. Much of this blog is

focused on this use case. This use case is also discussed in Big DELETEs

The big win for Case #1: DROP PARTITION is a lot faster than DELETEing a lot of rows.

Use case #2 -- 2-D index . INDEXes are inherently one-dimensional. If you need two "ranges" in the WHERE clause, try to

migrate one of them to PARTITIONing.

Finding the nearest 10 pizza parlors on a map needs a 2D index. Partition pruning sort of gives a second dimension. See

Latitude/Longitude Indexing That uses PARTITION BY RANGE(latitude) together with PRIMARY KEY(longitude, ...)

The big win for Case #2: Scanning fewer rows.

Use case #3 -- hot spot . This is a bit complicated to explain. Given this combination:

A table's index is too big to be cached, but the index for one partition is cacheable, and

The index is randomly accessed, and

Data ingestion would normally be I/O bound due to updating the index Partitioning can keep all the index "hot" in

RAM, thereby avoiding a lot of I/O.

The big win for Case #3: Improving caching to decrease I/O to speed up operations.

AUTO_INCREMENT in PARTITION
For AUTO_INCREMENT to work (in any table), it must be the first field in some index. Period. There are no other

requirements on indexing it.

Being the first field in some index lets the engine find the 'next' value when opening the table.

AUTO_INCREMENT need not be UNIQUE. What you lose: prevention of explicitly inserting a duplicate id. (This is

rarely needed, anyway.)

Examples (where id is AUTO_INCREMENT):

PRIMARY KEY (...), INDEX(id)

PRIMARY KEY (...), UNIQUE(id, partition_key) -- not useful

INDEX(id), INDEX(...) (but no UNIQUE keys)

PRIMARY KEY(id), ... -- works only if id is the partition key (not very useful)

PARTITION maintenance for the time-series case
Let's focus on the maintenance task involved in Case #1, as described above.

You have a large table that is growing on one end and being pruned on the other. Examples include news, logs, and other

transient information. PARTITION BY RANGE is an excellent vehicle for such a table.

DROP PARTITION is much faster than DELETE. (This is the big reason for doing this flavor of partitioning.)

Queries often limit themselves to 'recent' data, thereby taking advantage of "partition pruning".

Depending on the type of data, and how long before it expires, you might have daily or weekly or hourly (etc) partitions.

There is no simple SQL statement to "drop partitions older than 30 days" or "add a new partition for tomorrow". It would be

tedious to do this by hand every day.

2135/4161

High level view of the code

ALTER TABLE tbl

 DROP PARTITION from20120314;

ALTER TABLE tbl

 REORGANIZE PARTITION future INTO (

 PARTITION from20120415 VALUES LESS THAN (TO_DAYS('2012-04-16')),

 PARTITION future VALUES LESS THAN MAXVALUE);

After which you have...

 CREATE TABLE tbl (

 dt DATETIME NOT NULL, -- or DATE

 ...

 PRIMARY KEY (..., dt),

 UNIQUE KEY (..., dt),

 ...

)

 PARTITION BY RANGE (TO_DAYS(dt)) (

 PARTITION start VALUES LESS THAN (0),

 PARTITION from20120315 VALUES LESS THAN (TO_DAYS('2012-03-16')),

 PARTITION from20120316 VALUES LESS THAN (TO_DAYS('2012-03-17')),

 ...

 PARTITION from20120414 VALUES LESS THAN (TO_DAYS('2012-04-15')),

 PARTITION from20120415 VALUES LESS THAN (TO_DAYS('2012-04-16')),

 PARTITION future VALUES LESS THAN MAXVALUE

);

Why?
Perhaps you noticed some odd things in the example. Let me explain them.

Partition naming: Make them useful.

from20120415 ... 04-16: Note that the LESS THAN is the next day's date

The "start" partition: See paragraph below.

The "future" partition: This is normally empty, but it can catch overflows; more later.

The range key (dt) must be included in any PRIMARY or UNIQUE key.

The range key (dt) should be last in any keys it is in -- You have already "pruned" with it; it is almost useless in the

index, especially at the beginning.

DATETIME, etc -- I picked this datatype because it is typical for a time series. Newer MySQL versions allow

TIMESTAMP. INT could be used; etc.

There is an extra day (03-16 thru 04-16): The latest day is only partially full.

Why the bogus "start" partition? If an invalid datetime (Feb 31) were to be used, the datetime would turn into NULL. NULLs

are put into the first partition. Since any SELECT could have an invalid date (yeah, this stretching things), the partition

pruner always includes the first partition in the resulting set of partitions to search. So, if the SELECT must scan the first

partition, it would be slightly more efficient if that partition were empty. Hence the bogus "start" partition. Longer discussion,

by The Data Charmer 5.5 eliminates the bogus check, but only if you switch to a new syntax:

 PARTITION BY RANGE COLUMNS(dt) (

 PARTITION day_20100226 VALUES LESS THAN ('2010-02-27'), ...

More on the "future" partition. Sooner or later the cron/EVENT to add tomorrow's partition will fail to run. The worst that

could happen is for tomorrow's data to be lost. The easiest way to prevent that is to have a partition ready to catch it, even if

this partition is normally always empty.

Having the "future" partition makes the ADD PARTITION script a little more complex. Instead, it needs to take tomorrow's

data from "future" and put it into a new partition. This is done with the REORGANIZE command shown. Normally nothing

need be moved, and the ALTER takes virtually zero time.

When to do the ALTERs?
DROP if the oldest partition is "too old".

Add 'tomorrow' near the end of today, but don't try to add it twice.

Do not count partitions -- there are two extra ones. Use the partition names or

information_schema.PARTITIONS.PARTITION_DESCRIPTION.

DROP/Add only once in the script. Rerun the script if you need more.

2136/4161

Run the script more often than necessary. For daily partitions, run the script twice a day, or even hourly. Why?

Automatic repair.

Variants
As I have said many times, in many places, BY RANGE is perhaps the only useful variant. And a time series is the most

common use for PARTITIONing.

(as discussed here) DATETIME/DATE with TO_DAYS()

DATETIME/DATE with TO_DAYS(), but with 7-day intervals

TIMESTAMP with TO_DAYS(). (version 5.1.43 or later)

PARTITION BY RANGE COLUMNS(DATETIME) (5.5.0)

PARTITION BY RANGE(TIMESTAMP) (version 5.5.15 / 5.6.3)

PARTITION BY RANGE(TO_SECONDS()) (5.6.0)

INT UNSIGNED with constants computed as unix timestamps.

INT UNSIGNED with constants for some non-time-based series.

MEDIUMINT UNSIGNED containing an "hour id": FLOOR(FROM_UNIXTIME(timestamp) / 3600)

Months, Quarters, etc: Concoct a notation that works.

How many partitions?

Under, say, 5 partitions -- you get very little of the benefits.

Over, say, 50 partitions, and you hit inefficiencies elsewhere.

Certain operations (SHOW TABLE STATUS, opening the table, etc) open every partition.

MyISAM, before version 5.6.6, would lock all partitions before pruning!

Partition pruning does not happen on INSERTs (until Version 5.6.7), so INSERT needs to open all the partitions.

A possible 2-partition use case: http://forums.mysql.com/read.php?24,633179,633179

8192 partitions is a hard limit (1024 before MariaDB 10.0.4).

Before "native partitions" (5.7.6), each partition consumed a chunk of memory.

Detailed code
Reference implementation, in Perl, with demo of daily partitions

The complexity of the code is in the discovery of the PARTITION names, especially of the oldest and the 'next'.

To run the demo,

Install Perl and DBIx::DWIW (from CPAN).

copy the txt file (link above) to demo_part_maint.pl

execute perl demo_part_maint.pl to get the rest of the instructions

The program will generate and execute (when needed) either of these:

 ALTER TABLE tbl REORGANIZE PARTITION

 future

 INTO (

 PARTITION from20150606 VALUES LESS THAN (736121),

 PARTITION future VALUES LESS THAN MAXVALUE

)

 ALTER TABLE tbl

 DROP PARTITION from20150603

Postlog
Original writing -- Oct, 2012; Use cases added: Oct, 2014; Refreshed: June, 2015; 8.0: Sep, 2016

Slides from Percona Amsterdam 2015

PARTITIONing requires at least MySQL 5.1

The tips in this document apply to MySQL, MariaDB, and Percona.

More on PARTITIONing

LinkedIn discussion

Why NOT Partition

Geoff Montee's Stored Proc

Future (as envisioned in 2016):

MySQL 5.7.6 has "native partitioning for InnoDB".
2137/4161

http://forums.mysql.com/read.php?24,633179,633179
https://mariadb.com/kb/en/mariadb-1004-release-notes/
http://mysql.rjweb.org/demo_part_maint.pl.txt
http://mysql.rjweb.org/slides/Partition.pdf
http://www.mysqlperformanceblog.com/2010/12/11/mysql-partitioning-can-save-you-or-kill-you/
http://www.linkedin.com/groups/MySql-Horizontal-partitioning-ProsCons-78638.S.5861525157444595715?qid=0d54d3f9-21d7-43e8-9b75-dbc0270c7236&trk=groups_guest_most_popular-0-b-ttl&goback=%252Egmp_78638
http://dba.stackexchange.com/questions/107408/why-not-partition
http://www.geoffmontee.com/automatically-dropping-old-partitions-in-mysql-and-mariadb-part-2/

FOREIGN KEY support, perhaps in a later 8.0.xx.

"GLOBAL INDEX" -- this would avoid the need for putting the partition key in every unique index, but make DROP

PARTITION costly. This will be farther into the future.

MySQL 8.0, released Sep, 2016, not yet GA)

Only InnoDB tables can be partitioned -- MariaDB is likely to continue maintaining Partitioning on non-InnoDB tables,

but Oracle is clearly not.

Some of the problems having lots of partitions are lessened by the Data-Dictionary-in-a-table.

Native partitioning will give:

This will improve performance slightly by combining two "handlers" into one.

Decreased memory usage, especially when using a large number of partitions.

2.5.5 Partitioning Limitations with MariaDB
The following limitations apply to partitioning in MariaDB:

Each table can contain a maximum of 8192 partitions. Until MariaDB 10.0.3 , the limit was 1024.

Queries are never parallelized, even when they involve multiple partitions.

A table can only be partitioned if the storage engine supports partitioning.

All partitions must use the same storage engine. For a workaround, see Using CONNECT - Partitioning and

Sharding.

A partitioned table cannot contain, or be referenced by, foreign keys.

The query cache is not aware of partitioning and partition pruning. Modifying a partition will invalidate the entries

related to the whole table.

Updates can run more slowly when binlog_format=ROW and a partitioned table is updated than an equivalent update

of a non-partitioned table.

All columns used in the partitioning expression for a partitioned table must be part of every unique key that the table

may have.

In versions prior to MariaDB 11.3.2, it is not possible to create partitions on tables that contain GEOMETRY types.

2.5.6 Partitions Files
A partitioned table is stored in multiple files. By default, these files are stored in the MariaDB (or InnoDB) data directory. It is

possible to keep them in different paths by specifying DATA_DIRECTORY and INDEX_DIRECTORY table options. This is

useful to store different partitions on different devices.

Note that, if the innodb_file_per_table server system variable is set to 0 at the time of the table creation, all partitions

will be stored in the system tablespace.

The following files exist for each partitioned tables:

File name Notes

table_name.frm Contains the table definition. Non-partitioned tables have this file, too.

table_name.par Contains the partitions definitions.

table_name#P#partition_name.ext
Normal files created by the storage engine use this pattern for names. The extension

depends on the storage engine.

For example, an InnoDB table with 4 partitions will have the following files:

orders.frm

orders.par

orders#P#p0.ibd

orders#P#p1.ibd

orders#P#p2.ibd

orders#P#p3.ibd

If we convert the table to MyISAM, we will have these files:

2138/4161

https://mariadb.com/kb/en/mariadb-1003-release-notes/

orders.frm

orders.par

orders#P#p0.MYD

orders#P#p0.MYI

orders#P#p1.MYD

orders#P#p1.MYI

orders#P#p2.MYD

orders#P#p2.MYI

orders#P#p3.MYD

orders#P#p3.MYI

2.5.7 Partitions Metadata
The PARTITIONS table in the INFORMATION_SCHEMA database contains information about partitions.

The SHOW TABLE STATUS statement contains a Create_options column, that contains the string 'partitioned' for

partitioned tables.

The SHOW CREATE TABLE statement returns the CREATE TABLE statement that can be used to re-create a table,

including the partitions definition.

1.1.1.2.9.1.1.32 Information Schema PARTITIONS Table

5.4.5 MariaDB Audit Plugin

2.7 Variables and Modes
The different variables and modes to use to affect how MariaDB works.

Full List of MariaDB Options, System and Status Variables

Complete alphabetical list of all MariaDB options as well as system and status variables.

Server Status Variables

List and description of the Server Status Variables.

Server System Variables

List of system variables.

OLD_MODE

Used to emulate behavior from older MariaDB and MySQL versions.

SQL_MODE

Used to emulate behavior from other SQL servers.

SQL_MODE=MSSQL

Microsoft SQL Server compatibility mode.

SQL_MODE=ORACLE

MariaDB understands a subset of Oracle's PL/SQL language.

There are 3 related questions .

2

9

12

1

2.7.1 Full List of MariaDB Options, System and
Status Variables
Alphabetical list of all mariadbd Options, Server System Variables and Server Status Variables. The convention used is that

variable names are listed with '_' and options with '-'.

Name

2139/4161

https://mariadb.com/kb/en/variables-and-modes/+questions/

-a (--ansii)

--abort-slave-event-count

Aborted_clients

Aborted_connects

Aborted_connects_preauth

Access_denied_errors

Acl_column_grants

Acl_database_grants

Acl_function_grants

Acl_package_body_grants

Acl_package_spec_grants

Acl_procedure_grants

Acl_proxy_users

Acl_role_grants

Acl_roles

Acl_table_grants

Acl_users

--allow-suspicious-udfs, allow_suspicious_udfs

alter_algorithm

analyze_sample_percentage

--ansii

aria_block_size

aria_checkpoint_interval

aria_checkpoint_log_activity

aria_encrypt_tables

aria_force_start_after_recovery_failures

aria_group_commit

aria_group_commit_interval

--aria-log-dir-path

aria_log_file_size

aria_log_purge_type

aria_max_sort_file_size

aria_page_checksum

aria_pagecache_age_threshold

Aria_pagecache_blocks_not_flushed

Aria_pagecache_blocks_unused

Aria_pagecache_blocks_used

aria_pagecache_buffer_size

aria_pagecache_division_limit

aria_pagecache_file_hash_size

Aria_pagecache_read_requests

Aria_pagecache_reads

Aria_pagecache_write_requests

Aria_pagecache_writes

aria_recover

aria_recover_options

2140/4161

aria_repair_threads

aria_sort_buffer_size

aria_stats_method

aria_sync_log_dir

Aria_transaction_log_syncs

aria_used_for_temp_tables

autocommit

auto_increment_increment

auto_increment_offset

automatic_sp_privileges

aws_key_management_key_spec

aws_key_management_log_level

aws_key_management_master_key_id

aws_key_management_mock

aws_key_management_region

aws_key_management_request_timeout

aws_key_management_rotate_key

back_log

-b, basedir

big_tables

bind_address

binlog_alter_two_phase

binlog_annotate_row_events

Binlog_bytes_written

Binlog_cache_disk_use

binlog_cache_size

Binlog_cache_use

binlog_checksum

binlog_commit_wait_count

binlog_commit_wait_usec

Binlog_commits

binlog_direct_non_transactional_updates

--binlog-do-db, binlog_do_db

binlog_expire_logs_seconds

binlog_file_cache_size

binlog_format

Binlog_group_commits

Binlog_group_commit_trigger_count

Binlog_group_commit_trigger_lock_wait

Binlog_group_commit_trigger_timeout

binlog_gtid_index

Binlog_gtid_index_hit

Binlog_gtid_index_miss

binlog_gtid_index_page_size

binlog_gtid_index_span_min

--binlog-ignore-db, binlog_ignore_db

2141/4161

binlog_optimize_thread_scheduling

binlog_row_image

--binlog-row-event-max-size, binlog_row_event_max_size

binlog_row_metadata

Binlog_snapshot_file

Binlog_snapshot_position

Binlog_stmt_cache_disk_use

Binlog_stmt_cache_use

binlog_stmt_cache_size

block_encryption_mode

--bootstrap

bulk_insert_buffer_size

Busy_time

Bytes_received

Bytes_sent

cassandra_default_thrift_host

cassandra_failure_retries

cassandra_insert_batch_size

cassandra_multiget_batch_size

Cassandra_multiget_keys_scanned

Cassandra_multiget_reads

Cassandra_multiget_rows_read

Cassandra_network_exceptions

cassandra_read_consistency

cassandra_rnd_batch_size

Cassandra_row_inserts

Cassandra_row_insert_batches

Cassandra_timeout_exceptions

Cassandra_unavailable_exceptions

cassandra_write_consistency

character_set_client

--character-set-client-handshake

character_set_collations

character_set_connection

character_set_database

character_set_filesystem

character_set_results

-C, character_set_server

character_set_system

character_sets_dir

check_constraint_checks

-r, --chroot

collation_connection

collation_database

collation_server

Column_compressions

2142/4161

https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_default_thrift_host
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_failure_retries
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_insert_batch_size
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_multiget_batch_size
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_keys_scanned
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_reads
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_rows_read
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_network_exceptions
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_read_consistency
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_rnd_batch_size
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_row_inserts
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_row_insert_batches
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_timeout_exceptions
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_unavailable_exceptions
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_write_consistency

column_compression_threshold

column_compression_zlib_level

column_compression_zlib_strategy

column_compression_zlib_wrap

Column_decompressions

Com_admin_commands

Com_alter_db

Com_alter_db_upgrade

Com_alter_event

Com_alter_function

Com_alter_procedure

Com_alter_sequence

Com_alter_server

Com_alter_table

Com_alter_tablespace

Com_alter_user

Com_analyze

Com_assign_to_keycache

Com_backup

Com_backup_lock

Com_backup_table

Com_begin

Com_binlog

Com_call_procedure

Com_change_db

Com_change_master

Com_check

Com_checksum

Com_commit

Com_compound_sql

Com_create_db

Com_create_event

Com_create_function

Com_create_index

Com_create_package

Com_create_package_body

Com_create_procedure

Com_create_role

Com_create_sequence

Com_create_server

Com_create_table

Com_create_temporary_table

Com_create_trigger

Com_create_udf

Com_create_user

Com_create_view

2143/4161

Com_dealloc_sql

Com_delete

Com_delete_multi

Com_do

Com_drop_db

Com_drop_event

Com_drop_function

Com_drop_index

Com_drop_package

Com_drop_package_body

Com_drop_procedure

Com_drop_role

Com_drop_sequence

Com_drop_server

Com_drop_table

Com_drop_temporary_table

Com_drop_trigger

Com_drop_user

Com_drop_user

Com_drop_view

Com_empty_query

Com_execute_immediate

Com_execute_sql

Com_flush

Com_get_diagnostics

Com_grant

Com_grant_role

Com_ha_close

Com_ha_open

Com_ha_read

Com_help

Com_insert

Com_insert_select

Com_install_plugin

Com_kill

Com_load

Com_load_master_data

Com_load_master_table

Com_lock_tables

Com_multi

Com_optimize

Com_preload_keys

Com_prepare_sql

Com_purge

Com_purge_before_date

Com_release_savepoint

2144/4161

Com_rename_table

Com_rename_user

Com_repair

Com_replace

Com_replace_select

Com_reset

Com_resignal

Com_restore_table

Com_revoke

Com_revoke_all

Com_revoke_grant

Com_rollback

Com_rollback_to_savepoint

Com_savepoint

Com_select

Com_set_option

Com_show_authors

Com_show_binlog_events

Com_show_binlogs

Com_show_charsets

Com_show_client_statistics

Com_show_collations

Com_show_column_types

Com_show_contributors

Com_show_create_db

Com_show_create_event

Com_show_create_func

Com_show_create_package

Com_show_create_package_body

Com_show_create_proc

Com_show_create_table

Com_show_create_trigger

Com_show_create_user

Com_show_databases

Com_show_engine_logs

Com_show_engine_mutex

Com_show_engine_status

Com_show_events

Com_show_errors

Com_show_explain

Com_show_fields

Com_show_function_status

Com_show_generic

Com_show_grants

Com_show_keys

Com_show_index_statistics

2145/4161

Com_show_binlog_status

Com_show_master_status

Com_show_new_master

Com_show_open_tables

Com_show_package_status

Com_show_package_body_status

Com_show_plugins

Com_show_privileges

Com_show_procedure_status

Com_show_processlist

Com_show_profile

Com_show_profiles

Com_show_relaylog_events

Com_show_slave_hosts

Com_show_slave_status

Com_show_status

Com_show_storage_engines

Com_show_table_statistics

Com_show_table_status

Com_show_tables

Com_show_triggers

Com_show_user_statistics

Com_show_variable

Com_show_warnings

Com_shutdown

Com_signal

Com_slave_start

Com_slave_stop

Com_start_all_slaves

Com_start_slave

Com_stop_all_slaves

Com_stop_slave

Com_stmt_close

Com_stmt_execute

Com_stmt_fetch

Com_stmt_prepare

Com_stmt_reprepare

Com_stmt_reset

Com_stmt_send_long_data

Com_truncate

Com_uninstall_plugin

Com_unlock_tables

Com_update

Com_update_multi

Com_xa_commit

Com_xa_end

2146/4161

Com_xa_prepare

Com_xa_recover

Com_xa_rollback

Com_xa_start

completion_type

Compression

concurrent_insert

connect_class_path

connect_cond_push

connect_conv_size

connect_default_depth

connect_default_prec

connect_enable_mongo

connect_exact_info

connect_force_bson

connect_indx_map

connect_java_wrapper

connect_json_all_path

connect_json_grp_size

connect_json_null

connect_jvm_path

connect_timeout

connect_type_conv

connect_use_tempfile

connect_work_size

connect_xtrace

Connection_errors_accept

Connection_errors_internal

Connection_errors_max_connections

Connection_errors_peer_address

Connection_errors_select

Connection_errors_tcpwrap

Connections

--console

--core-file, core_file

Cpu_time

--cracklib-password-check

--cracklib-password-check-dictionary, cracklib_password_check-dictionary

Created_tmp_disk_tables

Created_tmp_files

Created_tmp_tables

-h, --datadir, datadir

--date-format, date_format

--datetime-format, datetime_format

--deadlock-search-depth-long, deadlock_search_depth_long

--deadlock-search-depth-short, deadlock_search_depth_short

2147/4161

--deadlock-timeout-long, deadlock_timeout_long

--deadlock-timeout-short, deadlock_timeout_short

-#, --debug, debug

--debug-assert-if-crashed-table

--debug-binlog-fsync-sleep

--debug-crc-break

--debug-flush

--debug-no-sync

--debug-no-thread-alarm, debug_no_thread_alarm

debug_sync

--debug-sync-timeout

--default-character-set

--default-master-connection, default_master_connection

--default-password-lifetime, default_password_lifetime

--default-regex-flags, default_regex_flags

--default-storage-engine, default_storage_engine

--default-table-type, default_table_type

--default-tmp-storage-engine, default_tmp_storage_engine

--default-time-zone

--default-week-format, default_week_format

--defaults-extra-file

--defaults-file

--delay-key-write, delay_key_write

Delayed_errors

--delayed-insert-limit, delayed_insert_limit

Delayed_insert_threads

--delayed-insert-timeout, delayed_insert_timeout

--delayed-queue-size, delayed_queue_size

Delayed_writes

Delete_scan

--des-key-file

--disconnect-on-expired-password, disconnect_on_expired_password

--disconnect-slave-event-count

--disks

--div-precision-increment, div_precision_increment

Empty_queries

--encrypt-binlog, encrypt_binlog

--encrypt-tmp-disk-tables, encrypt_tmp_disk_tables

--encrypt-tmp-files, encrypt_tmp_files

--encryption-algorithm, encryption_algorithm

enforce_storage_engine

--engine-condition-pushdown, engine_condition_pushdown

--eq-range-index-dive-limit, eq_range_index_dive_limit

error_count

--event-scheduler, event_scheduler

2148/4161

Executed_events

Executed_triggers

-T, --exit-info

--expensive-subquery-limit, expensive_subquery_limit

--expire-logs-days, expire_logs_days

--explicit-defaults-for-timestamp, explicit_defaults_for_timestamp

--external-locking

external_user

--extra-max-connections, extra_max_connections

--extra-port, extra_port

Feature_application_time_periods

Feature_check_constraint

Feature_custom_aggregate_functions

Feature_delay_key_write

Feature_dynamic_columns

Feature_fulltext

Feature_gis

Feature_insert_returning

Feature_invisible_columns

Feature_json

Feature_locale

Feature_subquery

Feature_timezone

Feature_trigger

Feature_window_functions

Feature_xml

--feedback

--feedback-http-proxy, feedback_http_proxy

--feedback-send-retry-wait, feedback_send_retry_wait

--feedback-send-timeout, feedback_send_timeout

feedback_server_uid

--feedback-url, feedback_url

--feedback-user-info, feedback_user_info

--file-key-management-encryption-algorithm, file_key_management_encryption_algorithm

--file-key-management-filekey, file_key_management_filekey

--file-key-management-filename, file_key_management_filename

--flashback

--flush, flush

Flush_commands

--flush-time, flush_time

foreign_key_checks

--ft-boolean-syntax, ft_boolean_syntax

--ft-max-word-len, ft_max_word_len

--ft-min-word-len, ft_min_word_len

--ft-query-expansion-limit, ft_query_expansion_limit

--ft-stopword-file, ft_stopword_file

2149/4161

--gdb

--general-log, general_log

--general-log-file, general_log_file

--getopt-prefix-matching

--group-concat-max-len, group_concat_max_len

--gssapi-keytab-path, gssapi_keytab_path

--gssapi-principal-name, gssapi_principal_name

--gssapi-mech-name, gssapi_mech_name

gtid_binlog_pos

gtid_binlog_state

--gtid-cleanup-batch-size, gtid_cleanup_batch_size

gtid_current_pos

--gtid-domain-id, gtid_domain_id

--gtid-ignore-duplicates, gtid_ignore_duplicates

gtid_pos_auto_engines

gtid_seq_no

gtid_slave_pos

--gtid-strict-mode, gtid_strict_mode

-h, --datadir, datadir

Handler_commit

Handler_delete

Handler_discover

Handler_external_lock

Handler_icp_attempts

Handler_icp_match

Handler_mrr_init

Handler_mrr_key_refills

Handler_mrr_rowid_refills

Handler_prepare

Handler_read_first

Handler_read_key

Handler_read_last

Handler_read_next

Handler_read_prev

Handler_read_retry

Handler_read_rnd

Handler_read_rnd_deleted

Handler_read_rnd_next

Handler_rollback

Handler_savepoint

Handler_savepoint_rollback

Handler_tmp_delete

Handler_tmp_update

Handler_tmp_write

Handler_update

2150/4161

Handler_write

--handlersocket-accept-balance, handlersocket_accept_balance

--handlersocket-address, handlersocket_address

--handlersocket-backlog, handlersocket_backlog

--handlersocket-epoll, handlersocket_epoll

--handlersocket-plain-secret, handlersocket_plain_secret

--handlersocket-plain-secret-wr, handlersocket_plain_secret_wr

--handlersocket-port, handlersocket_port

--handlersocket-port-wr, handlersocket_port_wr

--handlersocket-rcvbuf, handlersocket_rcvbuf

--handlersocket-readsize, handlersocket_readsize

--handlersocket-sndbuf, handlersocket_sndbuf

--handlersocket-threads, handlersocket_threads

--handlersocket-threads_wr, handlersocket_threads_wr

--handlersocket-timeout, handlersocket_timeout

--handlersocket-verbose, handlersocket_verbose

--handlersocket-wrlock-timeout, handlersocket_wrlock_timeout

hashicorp-key-management-cache-timeout

hashicorp-key-management-cache-version-timeout

hashicorp-key-management-caching-enabled

hashicorp-key-management-check-kv-version

hashicorp-key-management-retries

hashicorp-key-management-timeout

hashicorp-key-management-token

hashicorp-key-management-use-cache-on-timeout

hashicorp-key-management-vault-ca

hashicorp-key-management-vault-url

have_compress

have_crypt

have_csv

have_dynamic_loading

have_geometry

have_innodb

have_ndbcluster

have_openssl

have_partitioning

have_profiling

have_query_cache

have_rtree_keys

have_ssl

have_symlink

--help

--histogram-size, histogram_size

--histogram-type, histogram_type

--host-cache-size, host_cache_size

hostname

2151/4161

identity

--idle-readonly-transaction-timeout, idle_readonly_transaction_timeout

--idle-transaction-timeout, idle_transaction_timeout

--idle-write-transaction-timeout, idle_write_transaction_timeout

--ignore-db-dirs, ignore_db_dirs

--ignore-builtin-innodb, ignore_builtin_innodb

--in-predicate-conversion-threshold, in_predicate_conversion_threshold

in_transaction

--init-connect, init_connect

--init-file, init_file

--init-rpl-role

--init-slave, init_slave

--innodb

--innodb-adaptive-checkpoint, innodb_adaptive_checkpoint

--innodb-adaptive-flushing, innodb_adaptive_flushing

--innodb-adaptive-flushing-lwm, innodb_adaptive_flushing_lwm

--innodb_adaptive-flushing-method, innodb_adaptive_flushing_method

Innodb_adaptive_hash_cells

Innodb_adaptive_hash_hash_searches

Innodb_adaptive_hash_heap_buffers

--innodb-adaptive-hash-index, innodb_adaptive_hash_index

--innodb-adaptive-hash-index-partitions, innodb_adaptive_hash_index_partitions

--innodb-adaptive-hash-index-parts, innodb_adaptive_hash_index_parts

Innodb_adaptive_hash_non_hash_searches

--innodb-adaptive-max-sleep-delay, innodb_adaptive_max_sleep_delay

--innodb-additional-mem-pool-size, innodb_additional_mem_pool_size

--innodb-api-bk-commit_interval, innodb_api_bk_commit_interval

--innodb-api-disable-rowlock, innodb_api_disable_rowlock

--innodb_api_enable_binlog, innodb_api_enable_binlog

--innodb-api-enable-mdl, innodb_api_enable_mdl

--innodb-api-trx-level, innodb_api_trx_level

--innodb-auto-lru-dump, innodb-auto-lru-dump

--innodb-autoextend-increment, innodb_autoextend_increment

--innodb-autoinc-lock-mode, innodb_autoinc_lock_mode

Innodb_available_undo_logs

Innodb_background_log_sync

--innodb-background-scrub-data-check-interval, innodb_background_scrub_data_check_interval

--innodb-background-scrub-data-compressed, innodb_background_scrub_data_compressed

--innodb-background-scrub-data-interval, innodb_background_scrub_data_interval

--innodb-background-scrub-data-uncompressed, innodb_background_scrub_data_uncompressed

--innodb-blocking-buffer-pool-restore, innodb_blocking_buffer_pool_restore

--innodb-buf-dump-status-frequency, innodb_buf_dump_status_frequency

Innodb_buffer_pool_bytes_data

Innodb_buffer_pool_bytes_dirty

--innodb-buffer-pool-chunk-size, innodb_buffer_pool_chunk_size

--innodb-buffer-pool-dump-at-shutdown, innodb_buffer_pool_dump_at_shutdown

2152/4161

--innodb-buffer-pool-dump-now, innodb_buffer_pool_dump_now

--innodb-buffer-pool-dump-pct, innodb_buffer_pool_dump_pct

Innodb_buffer_pool_dump_status

--innodb-buffer-pool-evict, innodb_buffer_pool_evict

--innodb-buffer-pool-filename, innodb_buffer_pool_filename

--innodb-buffer-pool-instances, innodb_buffer_pool_instances

--innodb-buffer-pool-load-abort, innodb_buffer_pool_load_abort

--innodb-buffer-pool-load-at-startup, innodb_buffer_pool_load_at_startup

--innodb-buffer-pool-load-now, innodb_buffer_pool_load_now

Innodb_buffer_pool_load_incomplete

--innodb-buffer-pool-load-pages-abort, innodb_buffer_pool_load_pages_abort

Innodb_buffer_pool_load_status

Innodb_buffer_pool_pages_data

Innodb_buffer_pool_pages_dirty

Innodb_buffer_pool_pages_flushed

Innodb_buffer_pool_pages_LRU_flushed

Innodb_buffer_pool_pages_LRU_freed

Innodb_buffer_pool_pages_free

Innodb_buffer_pool_pages_made_not_young

Innodb_buffer_pool_pages_made_young

Innodb_buffer_pool_pages_misc

Innodb_buffer_pool_pages_old

Innodb_buffer_pool_pages_total

--innodb-buffer-pool-populate, innodb_buffer_pool_populate

Innodb_buffer_pool_read_ahead

Innodb_buffer_pool_read_ahead_evicted

Innodb_buffer_pool_read_ahead_rnd

Innodb_buffer_pool_read_requests

Innodb_buffer_pool_reads

Innodb_buffer_pool_resize_status

--innodb-buffer-pool-restore-at-startup, innodb_buffer_pool_restore_at_startup

--innodb-buffer-pool-shm-checksum, innodb_buffer_pool_shm_checksum

--innodb-buffer-pool-shm-key, innodb_buffer_pool_shm_key

--innodb-buffer-pool-size, innodb_buffer_pool_size

Innodb_buffer_pool_wait_free

Innodb_buffer_pool_write_requests

Innodb_buffered_aio_submitted

--innodb-change-buffer-dump, innodb_change_buffer_dump

--innodb-change-buffer-max-size, innodb_change_buffer_max_size

--innodb-change-buffering, innodb_change_buffering

--innodb-change-buffering-debug, innodb_change_buffering_debug

Innodb_checkpoint_age

--innodb-checkpoint-age-target, innodb_checkpoint_age_target

Innodb_checkpoint_max_age

Innodb_checkpoint_target_age

--innodb-checksum-algorithm, innodb_checksum_algorithm

2153/4161

--innodb-checksums, innodb_checksums

--innodb-cleaner-lsn-age-factor, innodb_cleaner_lsn_age_factor

--innodb-cmp

--innodb-cmp-per-index-enabled, innodb_cmp_per_index_enabled

--innodb-cmp-reset

--innodb-cmpmem

--innodb-cmpmem-reset

--innodb-commit-concurrency, innodb_commit_concurrency

--innodb-compression-algorithm, innodb_compression_algorithm

--innodb-compression-default, innodb_compression_default

--innodb-compression-failure-threshold-pct, innodb_compression_failure_threshold_pct

--innodb-compression-level, innodb_compression_level

--innodb-compression-pad-pct-max, innodb_compression_pad_pct_max

--innodb-concurrency-tickets, innodb_concurrency_tickets

--innodb-corrupt-table-action, innodb_corrupt_table_action

Innodb_current_row_locks

--innodb-data-file-buffering, innodb_data_file_buffering

--innodb-data-file-path, innodb_data_file_path

--innodb-data-file-write_through, innodb_data_file_write_through

Innodb_data_fsyncs

--innodb-data-home-dir, innodb_data_home_dir

Innodb_data_pending_fsyncs

Innodb_data_pending_reads

Innodb_data_pending_writes

Innodb_data_read

Innodb_data_reads

Innodb_data_writes

Innodb_data_written

Innodb_dblwr_pages_written

Innodb_dblwr_writes

--innodb-deadlock-detect, innodb_deadlock_detect

--innodb-deadlock-report, innodb_deadlock_report

Innodb_deadlocks

--innodb-default-encryption-key-id, innodb_default_encryption_key_id

--innodb-default-page-encryption-key, innodb_default_page_encryption_key

--innodb-default-row-format, innodb_default_row_format

--innodb-defragment, innodb_defragment

Innodb_defragment_compression_failures

Innodb_defragment_count

Innodb_defragment_failures

--innodb-defragment-fill-factor, innodb_defragment_fill_factor

--innodb-defragment-fill-factor-n-recs, innodb_defragment_fill_factor_n_recs

--innodb-defragment-frequency, innodb_defragment_frequency

--innodb-defragment-n-pages, innodb_defragment_n_pages

--innodb-defragment-stats-accuracy, innodb_defragment_stats_accuracy

--innodb-dict-size-limit, innodb_dict_size_limit

2154/4161

Innodb_dict_tables

--innodb-disable-sort-file-cache, innodb_disable_sort_file_cache

innodb_disallow_writes

--innodb-doublewrite, innodb_doublewrite

--innodb-doublewrite-file, innodb_doublewrite_file

--innodb_empty-free-list-algorithm, innodb_empty_free_list_algorithm

--innodb-enable-unsafe-group-commit, innodb_enable_unsafe_group_commit

--innodb-encrypt-log, innodb_encrypt_log

--innodb-encrypt-tables, innodb_encrypt_tables

--innodb-encrypt-temporary-tables, innodb_encrypt_temporary_tables

Innodb_encryption_n_merge_blocks_decrypted

Innodb_encryption_n_merge_blocks_encrypted

Innodb_encryption_n_rowlog_blocks_decrypted

Innodb_encryption_n_rowlog_blocks_encrypted

Innodb_encryption_n_temp_blocks_decrypted

Innodb_encryption_n_temp_blocks_encrypted

Innodb_encryption_num_key_requests

--innodb-encryption-rotate-key-age, innodb_encryption_rotate_key_age

Innodb_encryption_rotation_estimated_iops

--innodb-encryption-rotation-iops, innodb_encryption_rotation_iops

Innodb_encryption_rotation_pages_flushed

Innodb_encryption_rotation_pages_modified

Innodb_encryption_rotation_pages_read_from_cache

Innodb_encryption_rotation_pages_read_from_disk

--innodb-encryption-threads, innodb_encryption_threads

--innodb-extra-rsegments, innodb_extra_rsegments

--innodb-extra-undoslots, innodb_extra_undoslots

--innodb-fake-changes, innodb_fake_changes

--innodb-fast-checksum, innodb_fast_checksum

--innodb-fast-shutdown, innodb_fast_shutdown

--innodb-fatal-semaphore-wait-threshold, innodb_fatal_semaphore_wait_threshold

--innodb-file-format, innodb_file_format

--innodb-file-format-check, innodb_file_format_check

--innodb-file-format-max, innodb_file_format_max

--innodb-file-io-threads

--innodb-file-per-table, innodb_file_per_table

--innodb-fill-factor, innodb_fill_factor

--innodb-flush-log-at-timeout, innodb_flush_log_at_timeout

--innodb-flush-log-at-trx-commit, innodb_flush_log_at_trx_commit

--innodb-flush-method, innodb_flush_method

--innodb-flush-neighbor-pages, innodb_flush_neighbor_pages

--innodb-flush-neighbors, innodb_flush_neighbors

--innodb-flush-sync, innodb_flush_sync

--innodb-flushing-avg-loops, innodb_flushing_avg_loops

--innodb-force-load-corrupted, innodb_force_load_corrupted

--innodb-force-primary-key, innodb_force_primary_key

2155/4161

--innodb-force-recovery, innodb_force_recovery

--innodb-foreground-preflush, innodb_foreground_preflush

--innodb-ft-aux-table, innodb_ft_aux_table

--innodb-ft-cache-size, innodb_ft_cache_size

--innodb-ft-enable-diag-print, innodb_ft_enable_diag_print

--innodb-ft-enable-stopword, innodb_ft_enable_stopword

--innodb-ft-max-token-size, innodb_ft_max_token_size

--innodb-ft-min-token-size, innodb_ft_min_token_size

--innodb-ft-num-word-optimize, innodb_ft_num_word_optimize

--innodb-ft-result-cache-limit, innodb_ft_result_cache_limit

--innodb-ft-server-stopword-table, innodb_ft_server_stopword_table

--innodb-ft-sort-pll-degree, innodb_ft_sort_pll_degree

--innodb-ft-total-cache-size, innodb_ft_total_cache_size

--innodb-ft-user-stopword-table, innodb_ft_user_stopword_table

Innodb_have_atomic_builtins

Innodb_have_bzip2

Innodb_have_lz4

Innodb_have_lzma

Innodb_have_lzo

Innodb_have_punch_hole

Innodb_have_snappy

Innodb_history_list_length

--innodb-ibuf-accel-rate, innodb_ibuf_accel_rate

--innodb-ibuf-active-contract, innodb_ibuf_active_contract

Innodb_ibuf_discarded_delete_marks

Innodb_ibuf_discarded_deletes

Innodb_ibuf_discarded_inserts

Innodb_ibuf_free_list

--innodb-ibuf-max-size, innodb_ibuf_max_size

Innodb_ibuf_merged_delete_marks

Innodb_ibuf_merged_deletes

Innodb_ibuf_merged_inserts

Innodb_ibuf_merges

Innodb_ibuf_segment_size

Innodb_ibuf_size

--innodb-idle-flush-pct, innodb_idle_flush_pct

--innodb-immediate-scrub-data-uncompressed, innodb_immediate_scrub_data_uncompressed

--innodb-import-table-from-xtrabackup, innodb_import_table_from_xtrabackup

--innodb-index-stats

Innodb_instant_alter_column

--innodb-instant-alter-column-allowed, innodb_instant_alter_column_allowed

--innodb-instrument-semaphores, innodb_instrument_semaphores

--innodb-io-capacity, innodb_io_capacity

--innodb-io-capacity-max, innodb_io_capacity_max

innodb_kill_idle_transaction

--innodb-large-prefix, innodb_large_prefix

2156/4161

--innodb-lazy-drop-table, innodb_lazy_drop_table

--innodb-lock-schedule-algorithm, innodb_lock_schedule_algorithm

--innodb-lock-wait-timeout, innodb_lock_wait_timeout

--innodb-lock-waits

--innodb-locking-fake-changes, innodb_locking_fake_changes

--innodb-locks

--innodb-locks-unsafe-for-binlog, innodb_locks_unsafe_for_binlog

--innodb-log-arch-dir, innodb_log_arch_dir

--innodb-log-arch-expire-sec, innodb_log_arch_expire_sec

--innodb-log-archive, innodb_log_archive

--innodb-log-block-size, innodb_log_block_size

--innodb-log-buffer-size, innodb_log_buffer_size

-- innodb-log-checksum-algorithm, innodb_log_checksum_algorithm

-- innodb-log-checksums, innodb_log_checksums

-- innodb-log-compressed-pages, innodb_log_compressed_pages

--innodb-log-file-buffering, innodb_log_file_buffering

--innodb-log-file-size, innodb_log_file_size

--innodb-log-file-write_through, innodb_log_file_write_through

--innodb-log-files-in-group, innodb_log_files_in_group

--innodb-log-group-home-dir, innodb_log_group_home_dir

--innodb-log-optimize-ddl, innodb_log_optimize_ddl

Innodb_log_waits

--innodb-log-write-ahead-size, innodb_log_write_ahead_size

Innodb_log_write_requests

Innodb_log_writes

--innodb-lru-flush-size, innodb_lru_flush_size

--innodb-lru-scan-depth, innodb_lru_scan_depth

Innodb_lsn_current

Innodb_lsn_flushed

Innodb_lsn_last_checkpoint

Innodb_master_thread_1_second_loops

Innodb_master_thread_10_second_loops

Innodb_master_thread_active_loops

Innodb_master_thread_background_loops

Innodb_master_thread_idle_loops

Innodb_master_thread_main_flush_loops

Innodb_master_thread_sleeps

--innodb-max-bitmap-file-size, innodb_max_bitmap_file_size

--innodb-max-changed-pages, innodb_max_changed_pages

--innodb-max-dirty-pages-pct, innodb_max_dirty_pages_pct

--innodb-max-dirty-pages-pct-lwm, innodb_max_dirty_pages_pct_lwm

--innodb-max-purge-lag, innodb_max_purge_lag

--innodb-max-purge-lag-delay, innodb_max_purge_lag_delay

--innodb-max-purge-lag-wait, innodb_max_purge_lag_wait

Innodb_max_trx_id

--innodb-max-undo-log-size, innodb_max_undo_log_size

2157/4161

Innodb_mem_adaptive_hash

Innodb_mem_dictionary

Innodb_mem_total

--innodb-merge-sort-block-size, innodb_merge_sort_block_size

--innodb-mirrored-log-groups, innodb_mirrored_log_groups

--innodb-monitor-disable, innodb_monitor_disable

--innodb-monitor-enable, innodb_monitor_enable

--innodb-monitor-reset, innodb_monitor_reset

--innodb-monitor-reset-all, innodb_monitor_reset_all

--innodb-mtflush-threads, innodb_mtflush_threads

Innodb_mutex_os_waits

Innodb_mutex_spin_rounds

Innodb_mutex_spin_waits

Innodb_num_index_pages_written

Innodb_num_non_index_pages_written

Innodb_num_open_files

Innodb_num_page_compressed_trim_op

Innodb_num_page_compressed_trim_op_saved

Innodb_num_pages_encrypted

Innodb_num_pages_page_compressed

Innodb_num_pages_page_compression_error

Innodb_num_pages_page_decompressed

Innodb_num_pages_page_decrypted

Innodb_num_pages_page_encryption_error

--innodb-numa-interleave, innodb_numa_interleave

--innodb-old-blocks-pct, innodb_old_blocks_pct

--innodb-old-blocks-time, innodb_old_blocks_time

Innodb_oldest_view_low_limit_trx_id

--innodb-online-alter-log-max-size, innodb_online_alter_log_max_size

Innodb_onlineddl_pct_progress

Innodb_onlineddl_rowlog_pct_used

Innodb_onlineddl_rowlog_rows

--innodb-open-files, innodb_open_files

--innodb-optimize-fulltext-only, innodb_optimize_fulltext_only

Innodb_os_log_fsyncs

Innodb_os_log_pending_fsyncs

Innodb_os_log_pending_writes

Innodb_os_log_written

--innodb-page-cleaners, innodb_page_cleaners

Innodb_page_compression_saved

Innodb_page_compression_trim_sect512

Innodb_page_compression_trim_sect1024

Innodb_page_compression_trim_sect2048

Innodb_page_compression_trim_sect4096

Innodb_page_compression_trim_sect8192

Innodb_page_compression_trim_sect16384

2158/4161

Innodb_page_compression_trim_sect32768

--innodb-page-size, innodb_page_size

Innodb_page_size

Innodb_pages_created

Innodb_pages_read

Innodb_pages0_read

Innodb_pages_written

--innodb-pass-corrupt-table, innodb-pass-corrupt-table

--innodb-prefix-index-cluster-optimization, innodb_prefix_index_cluster_optimization

--innodb-print-all-deadlocks, innodb_print_all_deadlocks

--innodb-purge-batch-size, innodb_purge_batch_size

--innodb-purge-rseg-truncate-frequency, innodb_purge_rseg_truncate_frequency

--innodb-purge-threads, innodb_purge_threads

Innodb_purge_trx_id

Innodb_purge_undo_no

--innodb-random-read-ahead, innodb_random_read_ahead

--innodb-read-ahead, innodb_read_ahead

--innodb-read-ahead-threshold, innodb_read_ahead_threshold

--innodb-read-io-threads, innodb_read_io_threads

--innodb-read-only, innodb_read_only

Innodb_read_views_memory

--innodb-recovery-stats, innodb_recovery_stats

--innodb-recovery-update-relay-log, innodb-recovery-update-relay-log

--innodb-replication-delay, innodb_replication_delay

--innodb-rollback-on-timeout, innodb_rollback_on_timeout

--innodb-rollback-segments, innodb_rollback_segments

Innodb_row_lock_current_waits

Innodb_row_lock_numbers

Innodb_row_lock_time

Innodb_row_lock_time_avg

Innodb_row_lock_time_max

Innodb_row_lock_waits

Innodb_rows_deleted

Innodb_rows_inserted

Innodb_rows_read

Innodb_rows_updated

--innodb-rseg

Innodb_s_lock_os_waits

Innodb_s_lock_spin_rounds

Innodb_s_lock_spin_waits

--innodb_safe_truncate, innodb_safe_truncate

--innodb-sched-priority-cleaner, innodb_sched_priority_cleaner

Innodb_scrub_background_page_reorganizations

Innodb_scrub_background_page_split_failures_missing_index

Innodb_scrub_background_page_split_failures_out_of_filespace

Innodb_scrub_background_page_split_failures_underflow

2159/4161

Innodb_scrub_background_page_split_failures_unknown

Innodb_scrub_background_page_splits

--innodb-scrub-log, innodb_scrub_log

Innodb_scrub_log

--innodb-scrub-log-interval, innodb_scrub_log_interval

--innodb-scrub-log-speed, innodb_scrub_log_speed

Innodb_secondary_index_triggered_cluster_reads

Innodb_secondary_index_triggered_cluster_reads_avoided

--innodb-show-locks-held, innodb-show-locks-held

--innodb-show-verbose-locks, innodb_show_verbose_locks

innodb_simulate_comp_failures

--innodb-sort-buffer-size, innodb_sort_buffer_size

--innodb-spin-wait-delay, innodb_spin_wait_delay

--innodb-stats-auto-recalc, innodb_stats_auto_recalc

--innodb-stats-auto-update, innodb_stats_auto_update

--innodb-stats-include-delete-marked, innodb_stats_include_delete_marked

--innodb-stats-method, innodb_stats_method

--innodb-stats-modified-counter, innodb_stats_modified_counter

--innodb_stats_on_metadata, innodb-stats-on-metadata

--innodb-stats-persistent, innodb_stats_persistent

--innodb-stats-persistent-sample-pages, innodb_stats_persistent_sample_pages

--innodb-stats-sample-pages, innodb_stats_sample_pages

--innodb-stats-traditional, innodb_stats_traditional

--innodb-stats-transient-sample-pages, innodb_stats_transient_sample_pages

--innodb-stats-update-need-lock, innodb_stats_update_need_lock

--innodb-status-file

--innodb-status-output, innodb_status_output

--innodb-status-output-locks, innodb_status_output_locks

--innodb-strict-mode, innodb_strict_mode

--innodb-support-xa, innodb_support_xa

--innodb-sync-array-size, innodb_sync_array_size

--innodb-sync-spin-loops, innodb_sync_spin_loops

--innodb-sys-indexes

--innodb-sys-stats

--innodb-sys-tables

Innodb_system_rows_deleted

Innodb_system_rows_inserted

Innodb_system_rows_read

Innodb_system_rows_updated

--innodb-table-locks, innodb_table_locks

--innodb-table-stats

--innodb_temp_data_file_path, innodb_temp_data_file_path

--innodb-thread-concurrency, innodb_thread_concurrency

--innodb-thread-concurrency-timer-based, innodb_thread_concurrency_timer_based

--innodb-thread-sleep-delay, innodb_thread_sleep_delay

--innodb-tmpdir, innodb_tmpdir

2160/4161

--innodb-track-changed-pages, innodb_track_changed_pages

--innodb-track-redo-log-now, innodb_track_redo_log_now

--innodb-trx

--innodb-truncate-temporary-tablespace-now, innodb_truncate_temporary_tablespace_now

Innodb_truncated_status_writes

--innodb-undo-directory, innodb_undo_directory

--innodb-undo-log-truncate, innodb_undo_log_truncate

--innodb-undo-logs, innodb_undo_logs

--innodb-undo-tablespaces, innodb_undo_tablespaces

Innodb_undo_truncations

--innodb-use-atomic-writes, innodb_use_atomic_writes

--innodb-use-fallocate, innodb_use_fallocate

--innodb-use-global-flush-log-at-trx-commit, innodb_use_global_flush_log_at_trx_commit

--innodb-use-mtflush, innodb_use_mtflush

--innodb-use-native_aio, innodb_use_native_aio

--innodb-use-purge-thread, innodb_use_purge_thread

--innodb-use-stacktrace, innodb_use_stacktrace

--innodb-use-sys-malloc, innodb_use_sys_malloc

--innodb-use-sys-stats-table, innodb_use_sys_stats_table

--innodb-use-trim, innodb_use_trim

innodb_version

--innodb-write-io-threads, innodb_write_io_threads

Innodb_x_lock_os_waits

Innodb_x_lock_spin_rounds

Innodb_x_lock_spin_waits

--insert_id

--install

--install-manual

--interactive-timeout, interactive_timeout

--join-buffer-size, join_buffer_size

--join-buffer-space-limit, join_buffer_space_limit

--join-cache-level, join_cache_level

--keep-files-on-create, keep_files_on_create

Key_blocks_not_flushed

Key_blocks_unused

Key_blocks_used

Key_blocks_warm

--key-buffer-size, key_buffer_size

--key-cache-age-threshold, key_cache_age_threshold

--key-cache-block-size, key_cache_block_size

--key-cache-division-limit, key_cache_division_limit

--key-cache-file-hash-size, key_cache_file_hash_size

--key-cache-segments, key_cache_segments

Key_read_requests

Key_reads

2161/4161

Key_write_requests

Key_writes

-L, --language, language

large_files_support

large_page_size

--large-pages, large_pages

last_gtid

last_insert_id

Last_query_cost

--lc-messages, lc_messages

--lc-messages-dir, lc_messages_dir

--lc-time-names, lc_time_names

license

--local-infile, local_infile

--lock-wait-timeout, lock_wait_timeout

locked_in_memory

-l, --log, log

--log-basename

--log-bin, log_bin

log_bin_basename

--log-bin-compress, log_bin_compress

--log-bin-compress-min-len, log_bin_compress_min_len

--log-bin-index, log_bin_index

--log-bin-trust-function-creators, log_bin_trust_function_creators

--log-bin-trust-routine-creators

--log-ddl-recovery

--log-disabled-statements, log_disabled_statements

--log-error, log_error

-0, --log-long-format

--log-output, log_output

--log-queries-not-using-indexes, log_queries_not_using_indexes

--log-short-format

--log-slave-updates, log_slave_updates

--log-slow-admin-statements, log_slow_admin_statements

--log-slow-disabled-statements, log_slow_disabled_statements

--log-slow-file

--log-slow-filter, log_slow_filter

--log-slow-min-examined-row-limit, log_slow_min_examined_row_limit

--log-slow-queries, log_slow_queries

--log-slow-query, log_slow_query

--log-slow-query-file, log_slow_query_file

--log-slow-query-time, log_slow_query_time

--log-slow-rate-limit, log_slow_rate_limit

--log-slow-slave-statements, log_slow_slave_statements

--log-slow-time

--log-slow-verbosity, log_slow_verbosity

2162/4161

--log-tc

--log-tc-size, log_tc_size

-W, --log-warnings, log_warnings

--long-query-time, long_query_time

--log-isam

--low-priority-updates, low_priority_updates

lower_case_file_system

--lower-case-table-names, lower_case_table_names

--master-connect-retry

Master_gtid_wait_count

Master_gtid_wait_time

Master_gtid_wait_timeouts

--master-host

--master-info-file

--master-password

--master-port

--master-retry-count

--master-ssl

--master-ssl-ca

--master-ssl-capath

--master-ssl-cert

--master-ssl-cipher

--master-ssl-key

--master-user

--master-verify-checksum, master_verify_checksum

--max-allowed-packet, max_allowed_packet

--max-binlog-dump-events

--max-binlog-cache-size, max_binlog_cache_size

--max-binlog-size, max_binlog_size

--max-binlog-stmt-cache-size, max_binlog_stmt_cache_size

--max-binlog-total-size, max_binlog_total_size

--max-connect-errors, max_connect_errors

--max-connections, max_connections

--max-delayed-threads, max_delayed_threads

--max-digest-length, max_digest_length

--max-error-count, max_error_count

--max-heap-table-size, max_heap_table_size

max_insert_delayed_threads

--max-join-size, max_join_size

--max-length-for-sort-data, max_length_for_sort_data

--max-long-data-size, max_long_data_size

--max-prepared-stmt-count, max_prepared_stmt_count

--max-password-errors, max_password_errors

--max-recursive-iterations, max_recursive_iterations

--max-relay-log-size, max_relay_log_size

--max-rowid-filter-size, max_rowid_filter_size

2163/4161

--max-seeks-for-key, max_seeks_for_key

--max-session-mem-used, max_session_mem_used

--max-sort-length, max_sort_length

--max-sp-recursion-depth, max_sp_recursion_depth

--max-statement-time, max_statement_time

Max_statement_time_exceeded

--max-tmp-tables, max_tmp_tables

Max_used_connections_time

Max_used_connections

--max-user-connections, max_user_connections

--max-write-lock-count, max_write_lock_count

--memlock

Memory_used

Memory_used_initial

--metadata-locks-cache-size, metadata_locks_cache_size

--metadata-locks-hash-instances, metadata_locks_hash_instances

--min-examined-row-limit, min-examined-row-limit

mroonga_action_on_fulltext_query_error

mroonga_boolean_mode_syntax_flags

Mroonga_count_skip

mroonga_database_path_prefix

mroonga_default_parser

mroonga_default_tokenizer

mroonga_default_wrapper_engine

mroonga_dry_write

mroonga_enable_operations_recording

mroonga_enable_optimization

Mroonga_fast_order_limit

mroonga_libgroonga_embedded

mroonga_libgroonga_support_zlib

mroonga_libgroonga_support_zstd

mroonga_libgroonga_version

mroonga_log_file

mroonga_log_level

mroonga_match_escalation_threshold

mroonga_max_n_records_for_estimate

mroonga_query_log_file

mroonga_vector_column_delimiter

mroonga_version

--mrr-buffer-size, mrr_buffer_size

--multi-range-count, multi_range_count

--myisam-block-size, myisam_block_size

--myisam-data-pointer-size, myisam_data_pointer_size

--myisam-max-extra-sort-file-size, myisam_max_extra_sort_file_size

--myisam-max-sort-file-size, myisam_max_sort_file_size

--myisam-mmap-size, myisam_mmap_size

2164/4161

--myisam-recover-options, myisam_recover_options

--myisam-repair-threads, myisam_repair_threads

--myisam-sort-buffer-size, myisam_sort_buffer_size

--myisam-stats-method, myisam_stats_method

--myisam-use-mmap, myisam_use_mmap

--mysql56-temporal-format, mysql56_temporal_format

--named-pipe, named_pipe

--ndb-use-copying-alter-table

--net-buffer-length, net_buffer_length

--net-read-timeout, net_read_timeout

--net-retry-count, net_retry_count

--net-write-timeout, net_write_timeout

Not_flushed_delayed_rows

--new

--old, old

--old-alter-table, old_alter_table

--old-mode, old_mode

--old-passwords, old_passwords

--old-style-user-limits

--one-thread

Open_files

--open-files-limit, open_files_limit

Open_streams

Open_table_definitions

Open_tables

Opened_files

Opened_plugin_libraries

Opened_table_definitions

Opened_tables

Opened_views

optimizer_adjust_secondary_key_costs

--optimizer-extra-pruning-depth , optimizer_extra_pruning_depth

--optimizer-max-sel-arg-weight , optimizer_max_sel_arg_weight

--optimizer-prune-level , optimizer_prune_level

--optimizer-search-depth, optimizer_search_depth

--optimizer-selectivity-sampling-limit, optimizer_selectivity_sampling_limit

--optimizer-switch, optimizer_switch

--optimizer-trace, optimizer_trace

--optimizer-trace-max-mem-size, optimizer_trace_max_mem_size

--optimizer-use-condition-selectivity, optimizer_use_condition_selectivity

oqgraph_allow_create_integer_latch

Oqgraph_boost_version

Oqgraph_compat_mode

Oqgraph_verbose_debug

--pam-debug, pam_debug

-P, --port, port

2165/4161

https://mariadb.com/kb/en/optimizer_adjust_secondary_key_costs/

--pam-use-cleartext-plugin, pam_use_cleartext_plugin

--pam-windbind-workaround, pam_windbind_workaround

--password-reuse-check-interval, password_reuse_check_interval

--pbxt

--pbxt-auto-increment-mode

--pbxt-checkpoint-frequency

--pbxt-data-file-grow-size

--pbxt-data-log-threshold

--pbxt-flush-log-at-trx-commit

--pbxt-garbage-threshold

--pbxt-index-cache-size

--pbxt-log-buffer-size

--pbxt-log-cache-size

--pbxt-log-file-count

--pbxt-log-file-threshold

--pbxt-max-threads

--pbxt-offline-log-function

--pbxt-record-cache-size

--pbxt-row-file-grow-size

--pbxt-statistics

--pbxt-sweeper-priority

--pbxt-support-xa

--pbxt-transaction-buffer-size

--performance-schema, performance_schema

Performance_schema_accounts_lost

--performance-schema-accounts-size, performance_schema_accounts_size

Performance_schema_cond_classes_lost

Performance_schema_cond_instances_lost

--performance-schema-consumer-events-stages-current

--performance-schema-consumer-events-stages-history

--performance-schema-consumer-events-stages-history-long

--performance-schema-consumer-events-statements-current

--performance-schema-consumer-events-statements-history

--performance-schema-consumer-events-statements-history-long

--performance-schema-consumer-events-waits-current

--performance-schema-consumer-events-waits-history

--performance-schema-consumer-events-waits-history-long

--performance-schema-consumer-global-instrumentation

--performance-schema-consumer-statements-digest

--performance-schema-consumer-thread-instrumentation

Performance_schema_digest_lost

--performance-schema-digests-size, performance_schema_digests_size

--performance-schema-events-stages-history-long-size, performance_schema_events_stages_history_long_size

--performance-schema-events-stages-history-size, performance_schema_events_stages_history_size

--performance-schema-events-statements-history-long-size, performance_schema_events_statements_history_long_size

--performance-schema-events-statements-history-size, performance_schema_events_statements_history_size

2166/4161

https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_auto_increment_mode
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_checkpoint_frequency
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_data_file_grow_size
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_data_log_threshold
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_flush_log_at_trx_commit
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_garbage_threshold
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_index_cache_size
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_log_buffer_size
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_log_cache_size
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_log_file_count
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_log_file_threshold
https://mariadb.com/kb/en/pbxt-system-variables/#options-for-pbxt
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_offline_log_function
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_record_cache_size
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_row_file_grow_size
https://mariadb.com/kb/en/pbxt-system-variables/#options-for-pbxt
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_sweeper_priority
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_support_xa
https://mariadb.com/kb/en/pbxt-system-variables/#pbxt_transaction_buffer_size

--performance-schema-events-transactions-history-long-size, performance_schema_events_transactions_history_long_size

--performance-schema-events-transactions-history-size, performance_schema_events_transactions_history_size

--performance-schema-events-waits-history-long-size, performance_schema_events_waits_history_long_size

--performance-schema-events-waits-history-size, performance_schema_events_waits_history_size

Performance_schema_file_classes_lost

Performance_schema_file_handles_lost

Performance_schema_file_instances_lost

Performance_schema_hosts_lost

--performance-schema-hosts-size, performance_schema_hosts_size

Performance_schema_locker_lost

Performance_schema_index_stat_lost

--performance-schema-max-cond-classes, performance_schema_max_cond_classes

--performance-schema-max-cond-instances, performance_schema_max_cond_instances

--performance-schema-max-digest-length, performance_schema_max_digest_length

--performance-schema-max-file-classes, performance_schema_max_file_classes

--performance-schema-max-file-handles, performance_schema_max_file_handles

--performance-schema-max-file-instances, performance_schema_max_file_instances

--performance-schema-max-index-stat, performance_schema_max_index_stat

--performance-schema-max-memory-classes, performance_schema_max_memory_classes

--performance-schema-max-metadata-locks, performance_schema_max_metadata_locks

--performance-schema-max-mutex-classes, performance_schema_max_mutex_classes

--performance-schema-max-mutex-instances, performance_schema_max_mutex_instances

--performance-schema-max-prepared-statement-instances, performance_schema_max_prepared_statement_instances

--performance-schema-max-program-instances, performance_schema_max_program_instances

--performance-schema-max-sql-text-length, performance_schema_max_sql_text_length

--performance-schema-max-rwlock-classes, performance_schema_max_rwlock_classes

--performance-schema-max-rwlock-instances, performance_schema_max_rwlock_instances

--performance-schema-max-socket-classes, performance_schema_max_socket_classes

--performance-schema-max-socket-instances, performance_schema_max_socket_instances

--performance-schema-max-stage-classes, performance_schema_max_stage_classes

--performance-schema-max-statement-classes, performance_schema_max_statement_classes

--performance-schema-max-statement-stack, performance_schema_max_statement_stack

--performance-schema-max-table-handles, performance_schema_max_table_handles

--performance-schema-max-table-instances, performance_schema_max_table_instances

--performance-schema-max-table-lock-stat, performance_schema_max_table_lock_stat

--performance-schema-max-thread-classes, performance_schema_max_thread_classes

--performance-schema-max-thread-instances, performance_schema_max_thread_instances

Performance_schema_memory_classes_lost

Performance_schema_metadata_lock_lost

Performance_schema_mutex_classes_lost

Performance_schema_mutex_instances_lost

Performance_schema_nested_statement_lost

Performance_schema_prepared_statements_lost

Performance_schema_program_lost

Performance_schema_rwlock_classes_lost

Performance_schema_rwlock_instances_lost

2167/4161

Performance_schema_session_connect_attrs_lost

Performance_schema_socket_classes_lost

Performance_schema_socket_instances_lost

Performance_schema_stage_classes_lost

Performance_schema_stage_classes_lost

Performance_schema_statement_classes_lost

--performance-schema-session-connect-attrs-size, performance_schema_session_connect_attrs_size

--performance-schema-setup-actors-size, performance_schema_setup_actors_size

--performance-schema-setup-objects-size, performance_schema_setup_objects_size

Performance_schema_table_handles_lost

Performance_schema_table_instances_lost

Performance_schema_table_lock_stat_lost

Performance_schema_thread_classes_lost

Performance_schema_thread_instances_lost

Performance_schema_schema_users_lost

--performance_schema_users_size, performance_schema_users_size

--pid-file, pid_file

--plugin-load

--plugin-load-add

--plugin-dir, plugin_dir

--plugin-maturity, plugin_maturity

-P, --port, port

--port-open-timeout

--preload-buffer-size, preload_buffer_size

Prepared_stmt_count

profiling

--profiling-history-size, profiling_history_size

--progress-report-time, progress_report_time

protocol_version

--proxy-protocol-networks, proxy_protocol_networks

proxy_user

pseudo_slave_mode

pseudo_thread_id

Qcache_free_blocks

Qcache_free_memory

Qcache_hits

Qcache_inserts

Qcache_lowmem_prunes

Qcache_not_cached

Qcache_queries_in_cache

Qcache_total_blocks

Queries

--query-alloc-block-size, query_alloc_block_size

--query-cache-info

--query-cache-limit, query_cache_limit

--query-cache-min-res-unit, query_cache_min_res_unit

2168/4161

--query-cache-size, query_cache_size

--query-cache-strip-comments, query_cache_strip_comments

--query-cache-type, query_cache_type

--query-cache-wlock-invalidate, query_cache_wlock_invalidate

--query-prealloc-size, query_prealloc_size

--query-response-time

--query-response-time-audit

query_response_time_flush

--query-response-time-range-base , query_response_time_range_base

query_response_time_exec_time_debug

--query-response-time-stats, query_response_time_stats

Questions

-r, --chroot

rand_seed1

rand_seed2

--range-alloc-block-size, range_alloc_block_size

--read-buffer-size, read_buffer_size

--read-binlog-speed-limit, read_binlog_speed_limit

--read-only, read_only

--read-rnd-buffer-size, read_rnd_buffer_size

--record-buffer

--redirect-url, redirect_url

--relay-log, relay_log

relay_log_basename

--relay-log-index, relay_log_index

--relay-log-info-file, relay_log_info_file

--relay-log-purge, relay_log_purge

--relay-log-recovery, relay_log_recovery

--relay-log-space-limit, relay_log_space_limit

--remove

--replicate-annotate-row-events, replicate_annotate_row_events

--replicate-do-db, replicate_do_db

--replicate-do-table, replicate_do_table

--replicate-events-marked-for-skip, replicate_events_marked_for_skip

--replicate-ignore-db, replicate_ignore_db

--replicate-ignore-table, replicate_ignore_table

--replicate-rewrite-db, replicate_rewrite_db

--replicate-same-server-id

--replicate-wild-do-table, replicate_wild_do_table

--replicate-wild-ignore-table, replicate_wild_ignore_table

--report-host, report_host

--report-password, report_password

--report-port, report_port

--report-user, report_user

--require-secure-transport, require_secure_transport

--rocksdb-access-hint-on-compaction-start, rocksdb_access_hint_on_compaction_start

2169/4161

--rocksdb-advise-random-on-open, rocksdb_advise_random_on_open

--rocksdb-allow-concurrent-memtable-write, rocksdb_allow_concurrent_memtable_write

--rocksdb-allow-mmap-reads, rocksdb_allow_mmap_reads

--rocksdb-allow-mmap-writes, rocksdb_allow_mmap_writes

--rocksdb-allow-to-start-after-corruption, rocksdb_allow_to_start_after_corruption

--rocksdb-background-sync, rocksdb_background_sync

--rocksdb_base-background-compactions, rocksdb_base_background_compactions

--rocksdb-blind-delete-primary-key, rocksdb_blind_delete_primary_key

--rocksdb-block-cache-size, rocksdb_block_cache_size

--rocksdb_block_restart_interval, rocksdb_block_restart_interval

Rocksdb_block_cache_add

Rocksdb_block_cache_add_failures

Rocksdb_block_bytes_read

Rocksdb_block_bytes_write

Rocksdb_block_cache_data_add

Rocksdb_block_cache_data_bytes_insert

Rocksdb_block_cache_data_hit

Rocksdb_block_cache_data_miss

Rocksdb_block_cache_filter_add

Rocksdb_block_cache_filter_bytes_evict

Rocksdb_block_cache_filter_bytes_insert

Rocksdb_block_cache_filter_hit

Rocksdb_block_cache_filter_miss

Rocksdb_block_cache_hit

Rocksdb_block_cache_index_add

Rocksdb_block_cache_index_bytes_evict

Rocksdb_block_cache_index_bytes_insert

Rocksdb_block_cache_index_hit

Rocksdb_block_cache_index_miss

Rocksdb_block_cache_miss

Rocksdb_block_cachecompressed_hit

Rocksdb_block_cachecompressed_miss

--rocksdb-block-size, rocksdb_block_size

--rocksdb-block-size-deviation, rocksdb_block_size_deviation

Rocksdb_bloom_filter_full_positive

Rocksdb_bloom_filter_full_true_positive

Rocksdb_bloom_filter_prefix_checked

Rocksdb_bloom_filter_prefix_useful

Rocksdb_bloom_filter_useful

--rocksdb-bulk-load, rocksdb_bulk_load

--rocksdb-bulk-load_allow_sk, rocksdb_bulk_load_allow_sk

--rocksdb-bulk-load_allow_unsorted, rocksdb_bulk_load_allow_unsorted

--rocksdb-bulk-load-size, rocksdb_bulk_load_size

--rocksdb-bytes-per-sync, rocksdb_bytes_per_sync

Rocksdb_bytes_read

Rocksdb_bytes_written

2170/4161

--rocksdb-cache-dump, rocksdb_cache_dump

--rocksdb-cache-high-pri-pool-ratio, rocksdb_cache_high_pri_pool_ratio

--rocksdb-cache-index-and-filter-blocks, rocksdb_cache_index_and_filter_blocks

--rocksdb-cache-index-and-filter-with-high-priority, rocksdb_cache_index_and_filter_with_high_priority

--rocksdb-checksums-pct, rocksdb_checksums_pct

--rocksdb-collect-sst-properties, rocksdb_collect_sst_properties

--rocksdb-commit-in-the-middle, rocksdb_commit_in_the_middle

--rocksdb-commit-time-batch-for-recovery, rocksdb_commit_time_batch_for_recovery

--rocksdb-compact-cf, rocksdb_compact_cf

Rocksdb_compact_read_bytes

Rocksdb_compact_write_bytes

Rocksdb_compaction_key_drop_new

Rocksdb_compaction_key_drop_obsolete

Rocksdb_compaction_key_drop_user

--rocksdb-compaction-readahead-size, rocksdb_compaction_readahead_size

--rocksdb-compaction-sequential-deletes, rocksdb_compaction_sequential_deletes

--rocksdb-compaction-sequential-deletes-count-sd, rocksdb_compaction_sequential_deletes_count_sd

--rocksdb-concurrent-prepare, rocksdb_concurrent_prepare

--rocksdb-compaction-sequential-deletes-file-size, rocksdb_compaction_sequential_deletes_file_size

--rocksdb-compaction-sequential-deletes-window, rocksdb_compaction_sequential_deletes_window

Rocksdb_covered_secondary_key_lookups

--rocksdb-create-checkpoint, rocksdb_create_checkpoint

--rocksdb-create-if-missing, rocksdb_create_if_missing

--rocksdb-create-missing-column-families, rocksdb_create_missing_column_families

--rocksdb-datadir, rocksdb_datadir

--rocksdb-db-write-buffer-size, rocksdb_db_write_buffer_size

--rocksdb-deadlock-detect, rocksdb_deadlock_detect

--rocksdb-deadlock-detect-depth, rocksdb_deadlock_detect_depth

--rocksdb-debug-manual-compaction-delay, rocksdb_debug_manual_compaction_delay

--rocksdb-debug-optimizer-no-zero-cardinality, rocksdb_debug_optimizer_no_zero_cardinality

--rocksdb-debug-ttl-ignore-pk, rocksdb_debug_ttl_ignore_pk

--rocksdb-debug-ttl-read-filter-ts, rocksdb_debug_ttl_read_filter_ts

--rocksdb-debug-ttl-rec-ts, rocksdb_debug_ttl_rec_ts

--rocksdb-debug-ttl-snapshot-ts, rocksdb_debug_ttl_snapshot_ts

--rocksdb-default-cf-options, rocksdb_default_cf_options

--rocksdb-delayed-write-rate, rocksdb_delayed_write_rate

--rocksdb-delete-cf, rocksdb_delete_cf

--rocksdb-delete-obsolete-files-period-micros, rocksdb_delete_obsolete_files_period_micros

--rocksdb-enable-2pc, rocksdb_enable_2pc

--rocksdb-enable-bulk-load-api, rocksdb_enable_bulk_load_api

--rocksdb-enable-insert-with-update-caching, rocksdb_enable_insert_with_update_caching

--rocksdb-enable-thread-tracking, rocksdb_enable_thread_tracking

--rocksdb-enable-ttl, rocksdb_enable_ttl

--rocksdb-enable-ttl-read-filtering, rocksdb_enable_ttl_read_filtering

--rocksdb-enable-write-thread-adaptive-yield, rocksdb_enable_write_thread_adaptive_yield

--rocksdb-error-if-exists, rocksdb_error_if_exists

2171/4161

--rocksdb-error-on-suboptimal-collation, rocksdb_on_suboptimal_collation

--rocksdb-flush-log-at-trx-commit, rocksdb_flush_log_at_trx_commit

--rocksdb-flush-memtable-on-analyze, rocksdb_flush_memtable_on_analyze

Rocksdb_flush_write_bytes

--rocksdb-force-compute-memtable-stats, rocksdb_force_compute_memtable_stats

--rocksdb-force-compute-memtable-stats-cachetime, rocksdb_force_compute_memtable_stats_cachetime

--rocksdb-force-flush-memtable-and-lzero-now, rocksdb_force_flush_memtable_and_lzero_now

--rocksdb-force-flush-memtable-now, rocksdb_force_flush_memtable_now

--rocksdb-force-index-records-in-range, rocksdb_force_index_records_in_range

Rocksdb_get_hit_l0

Rocksdb_get_hit_l1

Rocksdb_get_hit_l2_and_up

Rocksdb_getupdatessince_calls

--rocksdb-git-hash, rocksdb_git_hash

--rocksdb-hash-index-allow-collision, rocksdb_hash_index_allow_collision

--rocksdb-ignore-unknown-options, rocksdb_ignore_unknown_options

--rocksdb-index-type, rocksdb_index_type

--rocksdb-info-log-level, rocksdb_info_log_level

--rocksdb-io-write-timeout, rocksdb_io_write_timeout

--rocksdb-is-fd-close-on-exec, rocksdb_is_fd_close_on_exec

Rocksdb_iter_bytes_read

--rocksdb-keep-log-file-num, rocksdb_keep_log_file_num

Rocksdb_l0_num_files_stall_micros

Rocksdb_l0_slowdown_micros

--rocksdb-large-prefix, rocksdb_large_prefix

--rocksdb-lock-scanned-rows, rocksdb_lock_scanned_rows

--rocksdb-lock-wait-timeout, rocksdb_lock_wait_timeout

--rocksdb-log-dir, rocksdb_log_dir

--rocksdb-log-file-time-to-roll, rocksdb_log_file_time_to_roll

--rocksdb-manifest-preallocation-size, rocksdb_manifest_preallocation_size

--rocksdb-manual-compaction-threads, rocksdb_manual_compaction_threads

Rocksdb_manual_compactions_processed

Rocksdb_manual_compactions_running

--rocksdb-manual-wal-flush, rocksdb_manual_wal_flush

--rocksdb-master-skip-tx-api, rocksdb_master_skip_tx_api

--rocksdb-max-background-compactions, rocksdb_max_background_compactions

--rocksdb-max-latest-deadlocks, rocksdb_max_latest_deadlocks

--rocksdb-max-background-flushes, rocksdb_max_background_flushes

--rocksdb-max-background-jobs, rocksdb_max_background_jobs

--rocksdb-max-log-file-size, rocksdb_max_log_file_size

--rocksdb-max-manifest-file-size, rocksdb_max_manifest_file_size

--rocksdb-max-manual-compactions, rocksdb_max_manual_compactions

--rocksdb-max-open-files, rocksdb_max_open_files

--rocksdb-max-row-locks, rocksdb_max_row_locks

--rocksdb-max-subcompactions, rocksdb_max_subcompactions

--rocksdb-max-total-wal-size, rocksdb_max_total_wal_size

2172/4161

Rocksdb_memtable_compaction_micros

Rocksdb_memtable_hit

Rocksdb_memtable_miss

Rocksdb_memtable_total

Rocksdb_memtable_unflushed

--rocksdb-merge-buf-size, rocksdb_merge_buf_size

--rocksdb-merge-combine-read-size, rocksdb_merge_combine_read_size

--rocksdb-merge-tmp-file-removal-delay-ms, rocksdb_merge_tmp_file_removal_delay_ms

--rocksdb-new-table-reader-for-compaction-inputs, rocksdb_new_table_reader_for_compaction_inputs

--rocksdb-no-block-cache, rocksdb_no_block_cache

Rocksdb_no_file_closes

Rocksdb_no_file_errors

Rocksdb_no_file_opens

Rocksdb_num_iterators

Rocksdb_number_block_not_compressed

Rocksdb_db_next

Rocksdb_db_next_found

Rocksdb_db_prev

Rocksdb_db_prev_found

Rocksdb_db_seek

Rocksdb_db_seek_found

Rocksdb_number_deletes_filtered

Rocksdb_number_keys_read

Rocksdb_number_keys_updated

Rocksdb_number_keys_written

Rocksdb_number_merge_failures

Rocksdb_number_multiget_bytes_read

Rocksdb_number_multiget_get

Rocksdb_number_multiget_keys_read

Rocksdb_number_reseeks_iteration

Rocksdb_number_sst_entry_delete

Rocksdb_number_sst_entry_merge

Rocksdb_number_sst_entry_other

Rocksdb_number_sst_entry_put

Rocksdb_number_sst_entry_singledelete

Rocksdb_number_superversion_acquires

Rocksdb_number_superversion_cleanups

Rocksdb_number_superversion_releases

--rocksdb-override-cf-options, rocksdb_override_cf_options

--rocksdb-paranoid-checks, rocksdb_paranoid_checks

--rocksdb-pause-background-work, rocksdb_pause_background_work

--rocksdb-perf-context-level, rocksdb_perf_context_level

--rocksdb-persistent-cache-path, rocksdb_persistent_cache_path

--rocksdb-persistent-cache-size-mb, rocksdb_persistent_cache_size_mb

--rocksdb-pin-l0-filter-and-index-blocks-in-cache, rocksdb_pin_l0_filter_and_index_blocks_in_cache

--rocksdb-print-snapshot-conflict-queries, rocksdb_print_snapshot_conflict_queries

2173/4161

Rocksdb_queries_point

Rocksdb_queries_range

--rocksdb-rate-limiter-bytes-per-sec, rocksdb_rate_limiter_bytes_per_sec

--rocksdb-read-free-rpl-tables, rocksdb_read_free_rpl_tables

--rocksdb-records-in-range, rocksdb_records_in_range

--rocksdb-remove-mariabackup-checkpoint, rocksdb_remove_mariabackup_checkpoint

--rocksdb-reset-stats, rocksdb_reset_stats

--rocksdb-rollback-on-timeout, rocksdb_rollback_on_timeout

Rocksdb_row_lock_deadlocks

Rocksdb_row_lock_wait_timeouts

Rocksdb_rows_deleted

Rocksdb_rows_deleted_blind

Rocksdb_rows_expired

Rocksdb_rows_filtered

Rocksdb_rows_inserted

Rocksdb_rows_read

Rocksdb_rows_updated

--rocksdb-seconds-between-stat-computes, rocksdb_seconds_between_stat_computes

--rocksdb-signal-drop-index-thread, rocksdb_signal_drop_index_thread

--rocksdb-sim-cache-size, rocksdb_sim_cache_size

--rocksdb-skip-bloom-filter-on-read, rocksdb_skip_bloom_filter_on_read

--rocksdb-skip-fill-cache, rocksdb_skip_fill_cache

--rocksdb-skip-unique-check-tables, rocksdb_skip_unique_check_tables

Rocksdb_snapshot_conflict_errors

--rocksdb-sst-mgr-rate-bytes-per-sec, rocksdb_sst_mgr_rate_bytes_per_sec

Rocksdb_stall_l0_file_count_limit_slowdowns

Rocksdb_stall_l0_file_count_limit_stops

Rocksdb_stall_locked_l0_file_count_limit_slowdowns

Rocksdb_stall_locked_l0_file_count_limit_stops

Rocksdb_stall_memtable_limit_slowdowns

Rocksdb_stall_memtable_limit_stops

Rocksdb_stall_micros

Rocksdb_stall_pending_compaction_limit_slowdowns

Rocksdb_stall_pending_compaction_limit_stops

Rocksdb_stall_total_slowdowns

Rocksdb_stall_total_stops

--rocksdb-stats-dump-period-sec, rocksdb_stats_dump_period_sec

--rocksdb-stats-level, rocksdb_stats_level

--rocksdb-stats-recalc-rate, rocksdb_stats_recalc_rate

--rocksdb-store-row-debug-checksums, rocksdb_store_row_debug_checksums

--rocksdb-strict-collation-check, rocksdb_strict_collation_check

--rocksdb-strict-collation-exceptions, rocksdb_strict_collation_exceptions

--rocksdb-supported-compression-types, rocksdb_supported_compression_types

Rocksdb_system_rows_deleted

Rocksdb_system_rows_inserted

Rocksdb_system_rows_read

2174/4161

Rocksdb_system_rows_updated

--rocksdb-table-cache-numshardbits, rocksdb_table_cache_numshardbits

--rocksdb-table-stats-sampling-pct, rocksdb_table_stats_sampling_pct

--rocksdb-tmpdir, rocksdb_tmpdir

--rocksdb-trace-sst-api, rocksdb_trace_sst_api

--rocksdb-two-write-queues, rocksdb_two_write_queues

--rocksdb-unsafe-for-binlog, rocksdb_unsafe_for_binlog

--rocksdb-update-cf-options, rocksdb_update_cf_options

--rocksdb-use-adaptive-mutex, rocksdb_use_adaptive_mutex

--rocksdb-use-clock-cache, rocksdb_use_clock_cache

--rocksdb-use-direct-io-for-flush-and-compaction, rocksdb_use_direct_io_for_flush_and_compaction

--rocksdb-use-direct-reads, rocksdb_use_direct_reads

--rocksdb-use-fsync, rocksdb_use_fsync

--rocksdb-validate-tables, rocksdb_validate_tables

--rocksdb-verify-row-debug-checksums, rocksdb_verify_row_debug_checksums

Rocksdb_wal_bytes

--rocksdb-wal-bytes-per-sync, rocksdb_wal_bytes_per_sync

--rocksdb-wal-dir, rocksdb_wal_dir

Rocksdb_wal_group_syncs

--rocksdb-wal-recovery-mode, rocksdb_wal_recovery_mode

--rocksdb-wal-size-limit-mb, rocksdb_wal_size_limit_mb

Rocksdb_wal_synced

--rocksdb-wal-ttl-seconds, rocksdb_wal_ttl_seconds

--rocksdb-whole-key-filtering, rocksdb_whole_key_filtering

--rocksdb-write-batch-max-bytes, rocksdb_write_batch_max_bytes

--rocksdb-write-disable-wal, rocksdb_write_disable_wal

--rocksdb-write-ignore-missing-column-families, rocksdb_write_ignore_missing_column_families

--rocksdb-write-policy, rocksdb_write_policy

Rocksdb_write_other

Rocksdb_write_self

Rocksdb_write_timedout

Rocksdb_write_wal

--rowid-merge-buff-size, rowid_merge_buff_size

Resultset_metadata_skipped

Rows_read

Rows_sent

Rows_tmp_read

--rpl-recovery-rank, rpl_recovery_rank

Rpl_semi_sync_master_clients

rpl-semi-sync-master-enabled rpl_semi_sync_master_enabled

Rpl_semi_sync_master_net_avg_wait_time

Rpl_semi_sync_master_net_wait_time

Rpl_semi_sync_master_net_waits

Rpl_semi_sync_master_no_times

Rpl_semi_sync_master_no_tx

Rpl_semi_sync_master_status

2175/4161

Rpl_semi_sync_master_timefunc_failures

rpl-semi-sync-master-timeout, rpl_semi_sync_master_timeout

rpl-semi-sync-master-trace-level , rpl_semi_sync_master_trace_level

Rpl_semi_sync_master_tx_avg_wait_time

Rpl_semi_sync_master_tx_wait_time

Rpl_semi_sync_master_tx_waits

rpl-semi-sync-master-wait-no-slave, rpl_semi_sync_master_wait_no_slave

rpl-semi-sync-master-wait-point, rpl_semi_sync_master_wait_point

Rpl_semi_sync_master_wait_pos_backtraverse

Rpl_semi_sync_master_wait_sessions

Rpl_semi_sync_master_yes_tx

rpl-semi-sync-slave-delay-master, rpl_semi_sync_slave_delay_master

rpl-semi-sync-slave-enabled, rpl_semi_sync_slave_enabled

rpl-semi-sync-slave-kill-conn-timeout, rpl_semi_sync_slave_kill_conn_timeout

Rpl_semi_sync_slave_status

rpl-semi-sync-slave-trace-level, rpl_semi_sync_slave_trace_level

Rpl_status

Rpl_transactions_multi_engine

-s, --symbolic-links

--s3-access-key, s3_access_key

--s3-block-size, s3_block_size

--s3-bucket, s3_bucket

--s3-debug, s3_debug

--s3-host-name, s3_host_name

--s3-pagecache-age-threshold, s3_pagecache_age_threshold

--s3-pagecache-buffer-size, s3_pagecache_buffer_size

--s3-pagecache-division-limit, s3_pagecache_division_limit

--s3-pagecache-file-hash-size, s3_pagecache_file_hash_size

--s3-port, s3_port

--s3-protocol-version, s3_protocol_version

--s3-region, s3_region

--s3-secret-key, s3_secret_key

--s3-slave-ignore-updates, s3_slave_ignore_updates

--s3-use_http, s3_use_http

--safe-mode

--safe-show-database, safe_show_database

--safe-user-create

--safemalloc-mem-limit

--secure-auth, secure_auth

--secure-file-priv, secure_file_priv

--secure-timestamp, secure_timestamp

Select_full_join

Select_full_range_join

Select_range

Select_range_check

Select_scan

2176/4161

--server-audit

Server_audit_active

Server_audit_current_log

--server-audit-events, server_audit_events

--server-audit-excl-users, server_audit_excl_users

--server-audit-file-path, server_audit_file_path

Server_audit_last_error

--server-audit-file-rotate-now, server_audit_file_rotate_now

--server-audit-file-rotate-size, server_audit_file_rotate_size

--server-audit-file-rotations, server_audit_file_rotations

--server-audit-incl-users, server_audit_incl_users

--server-audit-loc-info, server_audit_loc_info

--server-audit-logging, server_audit_logging

--server-audit-mode, server_audit_mode

--server-audit-output-type, server_audit_output_type

--server-audit-query-limit, server_audit_query_limit

--server-audit-syslog-facility, server_audit_syslog_facility

--server-audit-syslog-ident, server_audit_syslog_ident

--server-audit-syslog-info, server_audit_syslog_info

--server-audit-syslog-priority, server_audit_syslog_priority

Server_audit_writes_failed

--server-id, server_id

--session-track-schema, session_track_schema

--session-track-state-change, session_track_state_change

--session-track-system-variables, session_track_system_variables

--session-track-transaction-info, session_track_transaction_info

-O, --set-variable

shared_memory

shared_memory_base_name

--show_old_temporals, show_old_temporals

--show-slave-auth-info

--silent-startup

--simple-password-check-digits, simple_password_check_digits

--simple_password-check-letters-same-case, simple_password_check_letters_same_case

--simple-password-check-minimal_length, simple_password_check_minimal_length

--simple_password-check-other-characters, simple_password_check_other_characters

--skip-automatic-sp-privileges

--skip-bdb

--skip-external-locking, skip_external_locking

--skip-grant-tables, skip_grant_tables

--skip-host-cache

--skip-innodb

--skip-innodb-checksums

--skip-innodb-doublewrite

--skip-large-pages

--skip-log-error

2177/4161

--skip-name-resolve, skip_name_resolve

--skip-new

--skip-networking, skip_networking

skip_parallel_replication

--skip-partition

skip_replication

--skip-show-database, skip_show_database

--skip-slave-start

--skip-ssl

--skip-stack-trace

--skip-symbolic-links

--skip-symlink

--skip-thread-priority

--slave-compressed-protocol, slave_compressed_protocol

--slave-connections-needed-for-purge, slave_connections_needed_for_purge

Slave_connections

--slave-ddl-exec-mode, slave_ddl_exec_mode

--slave-domain-parallel-threads, slave_domain_parallel_threads

--slave-exec-mode, slave_exec_mode

Slave_heartbeat_period

--slave-load-tmpdir, slave_load_tmpdir

--slave-max-allowed-packet, slave_max_allowed_packet

--slave-max-statement-time, slave_max_statement_time

--slave-net-timeout, slave_net_timeout

Slave_open_temp_tables

--slave-parallel-max-queued, slave_parallel_max_queued

slave_parallel_mode

--slave-parallel-threads, slave_parallel_threads

--slave-parallel-workers, slave_parallel_workers

Slave_received_heartbeats

Slave_retried_transactions

slave_run_triggers_for_rbr, slave-run-triggers-for-rbr

Slave_running

--slave-skip-errors, slave_skip_errors

Slave_skipped_errors

--slave-sql-verify-checksum, slave_sql_verify_checksum

--slave-transaction-retries, slave_transaction_retries

--slave-transaction-retry-errors, slave_transaction_retry_errors

--slave-transaction-retry-interval, slave_transaction_retry_interval

--slave-type-conversions, slave_type_conversions

Slaves_connected

Slaves_running

Slow_launch_threads

--slow-launch-time, slow_launch_time

Slow_queries

--slow-query-log, slow_query_log

2178/4161

--slow-query-log-file, slow_query_log_file

--slow-start-timeout

--socket, socket

--sort-buffer-size, sort_buffer_size

Sort_merge_passes

Sort_priority_queue_sorts

Sort_range

Sort_rows

Sort_scan

Sphinx_error

Sphinx_time

Sphinx_total

Sphinx_total_found

Sphinx_word_count

Sphinx_words

spider_auto_increment_mode

spider_bgs_first_read

spider_bgs_mode

spider_bgs_second_read

spider_bka_engine

spider_bka_mode

spider_block_size

spider_buffer_size

spider_bulk_size

spider_bulk_update_mode

spider_bulk_update_size

spider_casual_read

spider_conn_recycle_mode

spider_conn_recycle_strict

spider_conn_wait_timeout

spider_connect_error_interval

spider_connect_mutex

spider_connect_retry_count

spider_connect_retry_interval

spider_connect_timeout

spider_crd_bg_mode

spider_crd_interval

spider_crd_mode

spider_crd_sync

spider_crd_type

spider_crd_weight

spider_delete_all_rows_type

Spider_direct_aggregate

Spider_direct_delete

spider_direct_dup_insert

spider_direct_order_limit

2179/4161

Spider_direct_order_limit

Spider_direct_update

spider_dry_access

spider_error_read_mode

spider_error_write_mode

spider_first_read

spider_force_commit

spider_general_log

spider_ignore_comments

spider_index_hint_pushdown

spider_init_sql_alloc_size

spider_internal_limit

spider_internal_offset

spider_internal_optimize

spider_internal_optimize_local

spider_internal_sql_log_off

spider_internal_unlock

spider_internal_xa

spider_internal_xa_id_type

spider_internal_xa_snapshot

spider_load_crd_at_startup

spider_load_sts_at_startup

spider_local_lock_table

spider_lock_exchange

spider_log_result_error_with_sql

spider_log_result_errors

spider_low_mem_read

spider_max_connections

spider_max_order

Spider_mon_table_cache_version

Spider_mon_table_cache_version_req

spider_multi_split_read

spider_net_read_timeout

spider_net_write_timeout

Spider_parallel_search

spider_ping_interval_at_trx_start

spider_quick_mode

spider_quick_page_byte

spider_quick_page_size

spider_read_only_mode

spider_remote_access_charset

spider_remote_autocommit

spider_remote_default_database

spider_remote_sql_log_off

spider_remote_time_zone

spider_remote_trx_isolation

2180/4161

spider_remote_wait_timeout

spider_reset_sql_alloc

spider_same_server_link

spider_second_read

spider_select_column_mode

spider_selupd_lock_mode

spider_semi_split_read

spider_semi_split_read_limit

spider_semi_table_lock

spider_semi_table_lock_connection

spider_semi_trx

spider_semi_trx_isolation

spider_skip_default_condition

spider_skip_parallel_search

spider_slave_trx_isolation

spider_split_read

spider_store_last_crd

spider_store_last_sts

spider_strict_group_by

spider_sts_bg_mode

spider_sts_interval

spider_sts_mode

spider_sts_sync

spider_support_xa

spider_sync_autocommit

spider_sync_sql_mode

spider_sync_time_zone

spider_sync_trx_isolation

spider_table_crd_thread_count

spider_table_init_error_interval

spider_table_sts_thread_count

spider_udf_ct_bulk_insert_interval

spider_udf_ct_bulk_insert_rows

spider_udf_ds_bulk_insert_rows

spider_udf_ds_table_loop_mode

spider_udf_ds_use_real_table

spider_udf_table_lock_mutex_count

spider_udf_table_mon_mutex_count

spider_use_all_conns_snapshot

spider_use_cond_other_than_pk_for_update

spider_use_consistent_snapshot

spider_use_default_database

spider_use_flash_logs

spider_use_handler

spider_use_pushdown_udf

spider_use_table_charset

2181/4161

spider_version

spider_wait_timeout

spider_xa_register_mode

--sporadic-binlog-dump-fail

sql_auto_is_null

sql_big_selects

sql_big_tables

sql_buffer_result

--sql-bin-update-same

--sql-error-log-filename , sql_error_log_filename

--sql-error-log-rate , sql_error_log_rate

--sql-error-log-rotate , sql_error_log_rotate

--sql-error-log-rotations , sql_error_log_rotations

--sql-error-log-size-limit , sql_error_log_size_limit

--sql-error-log-warnings , sql_error_log_warnings

--sql-if-exists, sql_if_exists

sql_log_bin

sql_log_off

sql_log_update

sql_low_priority_updates

sql_max_join_size

--sql-mode, sql_mode

sql_notes

sql_quote_show_create

--sql-safe-updates, sql_safe_updates

sql_select_limit

sql_slave_skip_counter

sql_warnings

--ssl

Ssl_accept_renegotiates

Ssl_accepts

--ssl-ca, ssl_ca

Ssl_callback_cache_hits

--ssl-capath, ssl_capath

--ssl-cert, ssl_cert

--ssl-cipher, ssl_cipher

Ssl_cipher

Ssl_cipher_list

Ssl_client_connects

Ssl_connect_renegotiates

--ssl-crl, ssl_crl

--ssl-crlpath, ssl_crlpath

Ssl_ctx_verify_depth

Ssl_ctx_verify_mode

Ssl_default_timeout

Ssl_finished_accepts

2182/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotations
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotations
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_size_limit
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_size_limit
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_warnings
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_warnings

Ssl_finished_connects

--ssl-key, ssl_key

Ssl_server_not_after

Ssl_server_not_before

Ssl_session_cache_hits

Ssl_session_cache_misses

Ssl_session_cache_mode

Ssl_session_cache_overflows

Ssl_session_cache_size

Ssl_session_cache_timeouts

Ssl_sessions_reused

Ssl_used_session_cache_entries

Ssl_verify_depth

Ssl_verify_mode

--standard-compliant-cte, standard_compliant_cte

--stack-trace

--standalone

storage_engine

--stored-program-cache, stored_program_cache

--strict-password-validation, strict_password_validation

Subquery_cache_hit

Subquery_cache_miss

-s, --symbolic-links

--sync-binlog, sync_binlog

--sync-frm, sync_frm

--sync-master-info, sync_master_info

--sync-relay-log, sync_relay_log

--sync-relay-log-info, sync_relay_log_info

--sync-sys

Syncs

--sysdate-is-now

-T, --exit-info

--system_time_zone

--system-versioning-alter-history, system_versioning_alter_history

system_versioning_asof

--system-versioning-innodb-algorithm-simple, system_versioning_innodb_algorithm_simple

--system-versioning-insert-history, system_versioning_insert_history

--table-cache

--table-definition-cache, table_definition_cache

--table-lock-wait-timeout, table_lock_wait_timeout

Table_locks_immediate

Table_locks_waited

--table-open-cache, table_open_cache

Table_open_cache_active_instances

Table_open_cache_hits

2183/4161

--table-open-cache-instances, table_open_cache_instances

Table_open_cache_misses

Table_open_cache_overflows

table_type

--tc-heuristic-recover

Tc_log_max_pages_used

Tc_log_page_size

Tc_log_page_waits

--tcp-keepalive-interval, tcp_keepalive_interval

--tcp-keepalive-probes, tcp_keepalive_probes

--tcp-keepalive-interval, tcp_keepalive_time

--tcp-nodelay, tcp_nodelay

--temp-pool

--test-expect-abort

--test-ignore-wrong-options

--thread-alarm

--thread-cache-size, thread_cache_size

--thread-concurrency, thread_concurrency

--thread-handling, thread_handling

--thread-pool-dedicated-listener, thread_pool_dedicated_listener

--thread-pool-exact-stats, thread_pool_exact_stats

--thread-pool-idle-timeout, thread_pool_idle_timeout

--thread-pool-max-threads, thread_pool_max_threads

--thread-pool-min-threads, thread_pool_min_threads

thread_pool_oversubscribe

--thread-pool-prio-kickup-timer, thread_pool_prio_kickup_timer

--thread-pool-priority, thread_pool_priority

--thread-pool-size, thread_pool_size

--thread-pool-stall-limit, thread_pool_stall_limit

Threadpool_idle_threads

Threadpool_threads

--thread-stack, thread_stack

Threads_cached

Threads_connected

Threads_created

Threads_running

--timed-mutexes, timed_mutexes

timestamp

--time-format, time-format

time_zone

--tls-version, tls_version

--tmp-disk-table-size, tmp_disk_table_size

--tmp-memory-table-size, tmp_memory_table_size

--tmp-table-size, tmp_table_size

-t, --tmpdir, tmpdir

tokudb_alter_print_error

2184/4161

https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_alter_print_error

tokudb_analyze_time

Tokudb_basement_deserialization_fixed_key

Tokudb_basement_deserialization_variable_key

Tokudb_basements_decompressed_for_write

Tokudb_basements_decompressed_prefetch

Tokudb_basements_decompressed_prelocked_range

Tokudb_basements_decompressed_target_query

Tokudb_basements_fetched_for_write

Tokudb_basements_fetched_for_write_bytes

Tokudb_basements_fetched_for_write_seconds

Tokudb_basements_fetched_prefetch

Tokudb_basements_fetched_prefetch_bytes

Tokudb_basements_fetched_prefetch_seconds

Tokudb_basements_fetched_prelocked_range

Tokudb_basements_fetched_prelocked_range_bytes

Tokudb_basements_fetched_prelocked_range_seconds

Tokudb_basements_fetched_target_query

Tokudb_basements_fetched_target_query_bytes

Tokudb_basements_fetched_target_query_seconds

Tokudb_broadcase_messages_injected_at_root

Tokudb_buffers_decompressed_prefetch

Tokudb_buffers_decompressed_for_write

Tokudb_buffers_decompressed_prelocked_range

Tokudb_buffers_decompressed_target_query

Tokudb_buffers_fetched_for_write

Tokudb_buffers_fetched_for_write_bytes

Tokudb_buffers_fetched_for_write_seconds

Tokudb_buffers_fetched_prefetch

Tokudb_buffers_fetched_prefetch_bytes

Tokudb_buffers_fetched_prefetch_seconds

Tokudb_buffers_fetched_prelocked_range

Tokudb_buffers_fetched_prelocked_range_bytes

Tokudb_buffers_fetched_prelocked_range_seconds

Tokudb_buffers_fetched_target_query

Tokudb_buffers_fetched_target_query_bytes

Tokudb_buffers_fetched_target_query_seconds

tokudb_bulk_fetch

tokudb_cache_size

Tokudb_cachetable_cleaner_executions

Tokudb_cachetable_cleaner_iterations

Tokudb_cachetable_cleaner_period

Tokudb_cachetable_evictions

Tokudb_cachetable_long_wait_pressure_count

Tokudb_cachetable_long_wait_pressure_time

Tokudb_cachetable_miss

Tokudb_cachetable_miss_time

2185/4161

https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_analyze_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basement_deserialization_fixed_key
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basement_deserialization_variable_key
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_broadcase_messages_injected_at_root
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query_seconds
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_bulk_fetch
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cache_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_executions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_iterations
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_period
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_long_wait_pressure_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_long_wait_pressure_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_miss
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_miss_time

Tokudb_cachetable_prefetches

Tokudb_cachetable_size_cachepressure

Tokudb_cachetable_size_cloned

Tokudb_cachetable_size_current

Tokudb_cachetable_size_leaf

Tokudb_cachetable_size_limit

Tokudb_cachetable_size_nonleaf

Tokudb_cachetable_size_rollback

Tokudb_cachetable_size_writing

Tokudb_cachetable_wait_pressure_count

Tokudb_cachetable_wait_pressure_time

tokudb_check_jemalloc

Tokudb_checkpoint_begin_time

Tokudb_checkpoint_duration

Tokudb_checkpoint_duration_last

Tokudb_checkpoint_failed

Tokudb_checkpoint_last_began

Tokudb_checkpoint_last_complete_began

Tokudb_checkpoint_last_complete_ended

tokudb_checkpoint_lock

Tokudb_checkpoint_long_begin_count

Tokudb_checkpoint_long_begin_time

tokudb_checkpoint_on_flush_logs

Tokudb_checkpoint_period

Tokudb_checkpoint_taken

tokudb_checkpointing_period

tokudb_cleaner_iterations

tokudb_cleaner_period

tokudb_commit_sync

tokudb_create_index_online

Tokudb_cursor_skip_deleted_leaf_entry

tokudb_data_dir

Tokudb_db_closes

Tokudb_db_open_current

Tokudb_db_open_max

Tokudb_db_opens

tokudb_debug

Tokudb_descriptor_set

Tokudb_dictionary_broadcast_updates

Tokudb_dictionary_updates

tokudb_directio

tokudb_disable_hot_alter

tokudb_disable_prefetching

tokudb_disable_slow_alter

tokudb_empty_scan

Tokudb_filesystem_fsync_num

2186/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_prefetches
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_cachepressure
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_cloned
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_leaf
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_limit
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_nonleaf
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_rollback
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_writing
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_wait_pressure_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_wait_pressure_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_check_jemalloc
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_begin_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_duration
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_duration_last
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_failed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_began
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_complete_began
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_complete_ended
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpoint_lock
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_long_begin_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_long_begin_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpoint_on_flush_logs
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_period
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_taken
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpointing_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cleaner_iterations
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cleaner_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_commit_sync
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_create_index_online
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cursor_skip_deleted_leaf_entry
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_data_dir
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_closes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_open_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_open_max
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_opens
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_debug
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_descriptor_set
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_dictionary_broadcast_updates
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_dictionary_updates
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_directio
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_hot_alter
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_prefetching
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_slow_alter
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_empty_scan
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_fsync_num

Tokudb_filesystem_fsync_time

Tokudb_filesystem_long_fsync_num

Tokudb_filesystem_long_fsync_time

Tokudb_filesystem_threads_blocked_by_full_disk

tokudb_fs_reserve_percent

tokudb_fsync_log_period

tokudb_hide_default_row_format

tokudb_killed_time

tokudb_last_lock_timeout

Tokudb_leaf_compression_to_memory_seconds

Tokudb_leaf_decompression_to_memory_seconds

Tokudb_leaf_deserialization_to_memory_seconds

Tokudb_leaf_node_compression_ratio

Tokudb_leaf_node_full_evictions

Tokudb_leaf_node_full_evictions_bytes

Tokudb_leaf_node_partial_evictions

Tokudb_leaf_node_partial_evictions_bytes

Tokudb_leaf_nodes_created

Tokudb_leaf_nodes_destroyed

Tokudb_leaf_nodes_flushed_checkpoint

Tokudb_leaf_nodes_flushed_checkpoint_bytes

Tokudb_leaf_nodes_flushed_checkpoint_seconds

Tokudb_leaf_nodes_flushed_checkpoint_uncompressed_bytes

Tokudb_leaf_nodes_flushed_not_checkpoint

Tokudb_leaf_nodes_flushed_not_checkpoint_bytes

Tokudb_leaf_nodes_flushed_not_checkpoint_secondss

Tokudb_leaf_nodes_flushed_not_checkpoint_uncompressed_bytes

Tokudb_leaf_serialization_to_memory_seconds

tokudb_load_save_space

tokudb_loader_memory_size

Tokudb_loader_num_created

Tokudb_loader_num_current

Tokudb_loader_num_max

tokudb_lock_timeout

tokudb_lock_timeout_debug

Tokudb_locktree_escalation_num

Tokudb_locktree_escalation_seconds

Tokudb_locktree_latest_post_escalation_memory_size

Tokudb_locktree_long_wait_count

Tokudb_locktree_long_wait_escalation_count

Tokudb_locktree_long_wait_escalation_time

Tokudb_locktree_long_wait_time

Tokudb_locktree_memory_size

Tokudb_locktree_memory_size_limit

Tokudb_locktree_open_current

Tokudb_locktree_pending_lock_requests

2187/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_fsync_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_long_fsync_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_long_fsync_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_threads_blocked_by_full_disk
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_fs_reserve_percent
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_fsync_log_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_hide_default_row_format
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_killed_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_last_lock_timeout
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_compression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_decompression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_deserialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_full_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_full_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_partial_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_partial_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_destroyed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_not_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_not_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_not_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_not_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_serialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_load_save_space
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_loader_memory_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_max
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_lock_timeout
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_lock_timeout_debug
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_escalation_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_escalation_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_latest_post_escalation_memory_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_escalation_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_escalation_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_memory_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_memory_size_limit
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_open_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_pending_lock_requests

Tokudb_locktree_sto_eligible_num

Tokudb_locktree_sto_ended_num

Tokudb_locktree_sto_ended_seconds

Tokudb_locktree_timeout_count

Tokudb_locktree_wait_count

Tokudb_locktree_wait_escalation_count

Tokudb_locktree_wait_escalation_time

Tokudb_locktree_wait_time

tokudb_log_dir

Tokudb_logger_wait_long

Tokudb_logger_writes

Tokudb_logger_writes_bytes

Tokudb_logger_writes_seconds

Tokudb_logger_writes_uncompressed_bytes

tokudb_max_lock_memory

Tokudb_mem_estimated_maximum_memory_footprint

Tokudb_messages_flushed_from_h1_to_leaves_bytes

Tokudb_messages_ignored_by_leaf_due_to_msn

Tokudb_messages_in_trees_estimate_bytes

Tokudb_messages_injected_at_root

Tokudb_messages_injected_at_root_bytes

Tokudb_nonleaf_compression_to_memory_seconds

Tokudb_nonleaf_decompression_to_memory_seconds

Tokudb_nonleaf_deserialization_to_memory_seconds

Tokudb_nonleaf_node_compression_ratio

Tokudb_nonleaf_node_full_evictions

Tokudb_nonleaf_node_full_evictions_bytes

Tokudb_nonleaf_node_partial_evictions

Tokudb_nonleaf_node_partial_evictions_bytes

Tokudb_nonleaf_nodes_created

Tokudb_nonleaf_nodes_destroyed

Tokudb_nonleaf_nodes_flushed_to_disk_checkpoint

Tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_bytes

Tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_seconds

Tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_uncompressed_bytes

Tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint

Tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_bytes

Tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_seconds

Tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_uncompressed_bytes

Tokudb_nonleaf_serialization_to_memory_seconds

tokudb_optimize_index_fraction

tokudb_optimize_index_name

tokudb_optimize_throttle

Tokudb_overall_node_compression_ratio

Tokudb_pivots_fetched_for_query

Tokudb_pivots_fetched_for_query_bytes

2188/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_eligible_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_ended_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_ended_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_timeout_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_escalation_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_escalation_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_log_dir
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_wait_long
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_max_lock_memory
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_mem_estimated_maximum_memory_footprint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_flushed_from_h1_to_leaves_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_ignored_by_leaf_due_to_msn
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_in_trees_estimate_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_injected_at_root
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_injected_at_root_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_compression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_decompression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_deserialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_full_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_full_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_partial_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_partial_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_destroyed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_to_disk_not_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_serialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_index_fraction
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_index_name
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_throttle
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_overall_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query_bytes

Tokudb_pivots_fetched_for_query_seconds

Tokudb_pivots_fetched_for_prefetch

Tokudb_pivots_fetched_for_prefetch_bytes

Tokudb_pivots_fetched_for_prefetch_seconds

Tokudb_pivots_fetched_for_write

Tokudb_pivots_fetched_for_write_bytes

Tokudb_pivots_fetched_for_write_seconds

tokudb_pk_insert_mode

tokudb_prelock_empty

Tokudb_promotion_h1_roots_injected_into

Tokudb_promotion_injections_at_depth_0

Tokudb_promotion_injections_at_depth_1

Tokudb_promotion_injections_at_depth_2

Tokudb_promotion_injections_at_depth_3

Tokudb_promotion_injections_lower_than_depth_3

Tokudb_promotion_leaf_roots_injected_into

Tokudb_promotion_roots_split

Tokudb_promotion_stopped_after_locking_child

Tokudb_promotion_stopped_at_height_1

Tokudb_promotion_stopped_child_locked_or_not_in_memory

Tokudb_promotion_stopped_child_not_fully_in_memory

Tokudb_promotion_stopped_nonempty_buffer

tokudb_read_block_size

tokudb_read_buf_size

tokudb_read_status_frequency

tokudb_row_format

tokudb_rpl_check_readonly

tokudb_rpl_lookup_rows

tokudb_rpl_lookup_rows_delay

tokudb_rpl_unique_checks

tokudb_rpl_unique_checks_delay

tokudb_support_xa

tokudb_tmp_dir

Tokudb_txn_aborts

Tokudb_txn_begin

Tokudb_txn_begin_read_only

Tokudb_txn_commits

tokudb_version

tokudb_write_status_frequency

--transaction-alloc-block-size, transaction_alloc_block_size

--transaction-isolation, transaction_isolation

--transaction-prealloc-size, transaction_prealloc_size

--transaction-read-only

Transactions_gtid_foreign_engine

Transactions_multi_engine

tx_isolation

2189/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write_seconds
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_pk_insert_mode
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_prelock_empty
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_h1_roots_injected_into
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_0
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_1
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_2
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_3
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_lower_than_depth_3
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_leaf_roots_injected_into
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_roots_split
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_after_locking_child
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_at_height_1
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_child_locked_or_not_in_memory
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_child_not_fully_in_memory
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_nonempty_buffer
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_block_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_buf_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_status_frequency
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_row_format
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_check_readonly
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_lookup_rows
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_lookup_rows_delay
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_unique_checks
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_unique_checks_delay
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_support_xa
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_tmp_dir
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_aborts
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_begin
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_begin_read_only
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_commits
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_version
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_write_status_frequency

tx_read_only

-u, --user

unique_checks

--updatable-views-with-limit, updatable_views_with_limit

Update_scan

Uptime

Uptime_since_flush_status

-u, --user

--use-stat-tables, use_stat_tables

--userstat, userstat

-v, --verbose

-V, --version, version

version_comment

version_compile_machine

version_compile_os

version_malloc_library

version_source_revision

version_ssl_library

-W, --log-warnings, log_warnings

--wait-timeout, wait_timeout

warning_count

wsrep

wsrep_allowlist

wsrep_applier_thread_count

wsrep_apply_oooe

wsrep_apply_oool

wsrep_auto_increment_control

wsrep_causal_reads

wsrep_cert_deps_distance

wsrep_certification_rules

wsrep_certify_nonPK

wsrep_cluster_address

wsrep_cluster_capabilities

wsrep_cluster_conf_id

wsrep_cluster_name

wsrep_cluster_size

wsrep_cluster_state_uuid

wsrep_cluster_status

wsrep_connected

wsrep_convert_LOCK_to_trx

wsrep_data_home_dir

wsrep_dbug_option

wsrep_debug

wsrep_desync

wsrep_dirty_reads

wsrep_drupal_282555_workaround

2190/4161

wsrep_flow_control_paused

wsrep_flow_control_recv

wsrep_flow_control_sent

wsrep_gtid_domain_id

wsrep_gtid_mode

wsrep_gtid_seq_no

wsrep_forced_binlog_format

wsrep_ignore_apply_errors

wsrep_last_committed

wsrep_load_data_splitting

wsrep_local_bf_aborts

wsrep_local_cert_failures

wsrep_local_commits

wsrep_local_index

wsrep_local_recv_queue

wsrep_local_recv_queue_avg

wsrep_local_replays

wsrep_local_send_queue

wsrep_local_send_queue_avg

wsrep_local_state

wsrep_local_state_comment

wsrep_local_state_uuid

wsrep_log_conflicts

wsrep_max_ws_rows

wsrep_max_ws_size

wsrep_mode

wsrep_mysql_replication_bundle

--wsrep-new-cluster

wsrep_node_address

wsrep_node_incoming_address

wsrep_node_name

wsrep_notify_cmd

wsrep_on

wsrep_OSU_method

wsrep_protocol_version

wsrep_provider_name

wsrep_patch_version

wsrep_provider

wsrep_provider_options

wsrep_provider_vendor

wsrep_provider_version

wsrep_ready

wsrep_received

wsrep_received_bytes

wsrep_recover

wsrep_reject_queries

2191/4161

wsrep_replicate_myisam

wsrep_replicated

wsrep_replicated_bytes

wsrep_retry_autocommit

wsrep_rollbacker_thread_count

wsrep_slave_FK_checks

wsrep_slave_threads

wsrep_slave_UK_checks

wsrep_sr_store

wsrep_sst_auth

wsrep_sst_donor

wsrep_sst_donor_rejects_queries

wsrep_sst_method

wsrep_sst_receive_address

wsrep_start_position

wsrep_status_file

wsrep_strict_ddl

wsrep_sync_wait

wsrep-trx-fragment-size

wsrep-trx-fragment-unit

wsrep_thread_count

2.7.2 Server System Variables
Contents
1. About the Server System Variables

2. Setting Server System Variables

3. List of Server System Variables

1. allow_suspicious_udfs

2. alter_algorithm

3. analyze_sample_percentage

4. aria_block_size

5. aria_checkpoint_interval

6. aria_checkpoint_log_activity

7. aria_encrypt_tables

8. aria_force_start_after_recovery_failures

9. aria_group_commit

10. aria_group_commit_interval

11. aria_log_file_size

12. aria_log_purge_type

13. aria_max_sort_file_size

14. aria_page_checksum

15. aria_pagecache_age_threshold

16. aria_pagecache_buffer_size

17. aria_pagecache_division_limit

18. aria_pagecache_file_hash_size

19. aria_recover

20. aria_repair_threads

21. aria_sort_buffer_size

22. aria_stats_method

23. aria_sync_log_dir

24. aria_used_for_temp_tables

25. auto_increment_increment

26. auto_increment_offset

27. autocommit

28. automatic_sp_privileges

29. aws_key_management_key_spec
2192/4161

https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_key_spec

29. aws_key_management_key_spec

30. aws_key_management_log_level

31. aws_key_management_master_key_id

32. aws_key_management_mock

33. aws_key_management_region

34. aws_key_management_request_timeout

35. aws_key_management_rotate_key

36. back_log

37. basedir

38. big_tables

39. bind_address

40. binlog_alter_two_phase

41. binlog_annotate_row_events

42. binlog_cache_size

43. binlog_checksum

44. binlog_commit_wait_count

45. binlog_commit_wait_usec

46. binlog_direct_non_transactional_updates

47. binlog_do_db

48. binlog_expire_logs_seconds

49. binlog_file_cache_size

50. binlog_format

51. binlog_gtid_index

52. binlog_gtid_index_page_size

53. binlog_gtid_index_span_min

54. binlog_ignore_db

55. binlog_optimize_thread_scheduling

56. binlog_do_db

57. binlog_row_event_max_size

58. binlog_row_metadata

59. binlog_stmt_cache_size

60. block_encryption_mode

61. bulk_insert_buffer_size

62. cassandra_default_thrift_host

63. cassandra_failure_retries

64. cassandra_insert_batch_size

65. cassandra_multiget_batch_size

66. cassandra_read_consistency

67. cassandra_rnd_batch_size

68. cassandra_write_consistency

69. character_set_client

70. character_set_collations

71. character_set_connection

72. character_set_database

73. character_set_filesystem

74. character_set_results

75. character_set_server

76. character_set_system

77. character_sets_dir

78. check_constraint_checks

79. collation_connection

80. collation_database

81. collation_server

82. column_compression_threshold

83. column_compression_zlib_level

84. column_compression_zlib_strategy

85. column_compression_zlib_wrap

86. completion_type

87. concurrent_insert

88. connect_class_path

89. connect_cond_push

90. connect_conv_size

91. connect_default_depth

92. connect_default_prec

93. connect_enable_mongo

94. connect_exact_info

95. connect_force_bson

96. connect_indx_map
2193/4161

https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_log_level
https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_master_key_id
https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_mock
https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_region
https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_request_timeout
https://mariadb.com/kb/en/aws-key-management-encryption-plugin//#aws_key_management_rotate_key
https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#binlog_alter_two_phase
https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#binlog_do_db
https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#binlog_ignore_db
https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#binlog_do_db
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_default_thrift_host
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_failure_retries
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_insert_batch_size
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_multiget_batch_size
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_read_consistency
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_rnd_batch_size
https://mariadb.com/kb/en/cassandra-system-variables/#cassandra_write_consistency
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_threshold
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_level
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_strategy
https://mariadb.com/kb/en/storage-engine-independent-column-compression//#column_compression_zlib_wrap

97. connect_java_wrapper

98. connect_json_all_path

99. connect_json_grp_size

100. connect_json_null

101. connect_jvm_path

102. connect_timeout

103. connect_type_conv

104. connect_use_tempfile

105. connect_work_size

106. connect_xtrace

107. core_file

108. cracklib_password_check

109. cracklib_password_check_dictionary

110. datadir

111. date_format

112. datetime_format

113. deadlock_search_depth_long

114. deadlock_search_depth_short

115. deadlock_timeout_long

116. deadlock_timeout_short

117. debug/debug_dbug

118. debug_no_thread_alarm

119. debug_sync

120. default_master_connection

121. default_password_lifetime

122. default_regex_flags

123. default_storage_engine

124. default_table_type

125. default_tmp_storage_engine

126. default_week_format

127. delay_key_write

128. delayed_insert_limit

129. delayed_insert_timeout

130. delayed_queue_size

131. disconnect_on_expired_password

132. div_precision_increment

133. encrypt_binlog

134. encrypt_tmp_disk_tables

135. encrypt_tmp_files

136. encryption_algorithm

137. enforce_storage_engine

138. engine_condition_pushdown

139. eq_range_index_dive_limit

140. error_count

141. event_scheduler

142. expensive_subquery_limit

143. expire_logs_days

144. explicit_defaults_for_timestamp

145. external_user

146. extra_max_connections

147. extra_port

148. feedback

149. feedback_http_proxy

150. feedback_send_retry_wait

151. feedback_send_timeout

152. feedback_server_uid

153. feedback_url

154. feedback_user_info

155. file_key_management_encryption_algorithm

156. file_key_management_filekey

157. file_key_management_filename

158. flush

159. flush_time

160. foreign_key_checks

161. ft_boolean_syntax

162. ft_max_word_len

163. ft_min_word_len

164. ft_query_expansion_limit 2194/4161

https://mariadb.com/kb/en/file-key-management-encryption-plugin//#file_key_management_encryption_algorithm
https://mariadb.com/kb/en/file-key-management-encryption-plugin//#file_key_management_filekey
https://mariadb.com/kb/en/file-key-management-encryption-plugin//#file_key_management_filename

164. ft_query_expansion_limit

165. ft_stopword_file

166. general_log

167. general_log_file

168. group_concat_max_len

169. gssapi_keytab_path

170. gssapi_principal_name

171. gssapi_mech_name

172. gtid_binlog_pos

173. gtid_binlog_state

174. gtid_cleanup_batch_size

175. gtid_current_pos

176. gtid_domain_id

177. gtid_ignore_duplicates

178. gtid_seq_no

179. gtid_slave_pos

180. gtid_strict_mode

181. gtid_pos_auto_engines

182. handlersocket_accept_balance

183. handlersocket_address

184. handlersocket_backlog

185. handlersocket_epoll

186. handlersocket_port

187. handlersocket_port_wr

188. handlersocket_sndbuf

189. handlersocket_rcvbuf

190. handlersocket_readsize

191. handlersocket_threads

192. handlersocket_threads_wr

193. handlersocket_timeout

194. handlersocket_verbose

195. handlersocket_wrlock_timeout

196. have_compress

197. have_crypt

198. have_csv

199. have_dynamic_loading

200. have_geometry

201. have_innodb

202. have_ndbcluster

203. have_openssl

204. have_partitioning

205. have_profiling

206. have_query_cache

207. have_rtree_keys

208. have_ssl

209. have_symlink

210. histogram_size

211. histogram_type

212. host_cache_size

213. hostname

214. identity

215. ignore_builtin_innodb

216. idle_readonly_transaction_timeout

217. idle_transaction_timeout

218. idle_write_transaction_timeout

219. ignore_db_dirs

220. in_predicate_conversion_threshold

221. in_transaction

222. init_connect

223. init_file

224. init_slave

225. innodb_adaptive_checkpoint

226. innodb_adaptive_flushing

227. innodb_adaptive_flushing_lwm

228. innodb_adaptive_flushing_method

229. innodb_adaptive_hash_index

230. innodb_adaptive_hash_index_partitions

231. innodb_adaptive_hash_index_parts
2195/4161

https://mariadb.com/kb/en/authentication-plugin-gssapi//#gssapi_keytab_path
https://mariadb.com/kb/en/authentication-plugin-gssapi//#gssapi_principal_name
https://mariadb.com/kb/en/authentication-plugin-gssapi//#gssapi_mech_name

231. innodb_adaptive_hash_index_parts

232. innodb_adaptive_max_sleep_delay

233. innodb_additional_mem_pool_size

234. innodb_api_bk_commit_interval

235. innodb_api_disable_rowlock

236. innodb_api_enable_binlog

237. innodb_api_enable_mdl

238. innodb_api_trx_level

239. innodb_auto_lru_dump

240. innodb_autoextend_increment

241. innodb_autoinc_lock_mode

242. innodb_background_scrub_data_check_interval

243. innodb_background_scrub_data-compressed

244. innodb_background_scrub_data_interval

245. innodb_background_scrub_data-uncompressed

246. innodb_blocking_buffer_pool_restore

247. innodb_buf_dump_status_frequency

248. innodb_buffer_pool_chunk_size

249. innodb_buffer_pool_dump_at_shutdown

250. innodb_buffer_pool_dump_now

251. innodb_buffer_pool_evict

252. innodb_buffer_pool_filename

253. innodb_buffer_pool_instances

254. innodb_buffer_pool_load_abort

255. innodb_buffer_pool_load_at_startup

256. innodb_buffer_pool_load_now

257. innodb_buffer_pool_load_pages_abort

258. innodb_buffer_pool_populate

259. innodb_buffer_pool_restore_at_startup

260. innodb_buffer_pool_shm_checksum

261. innodb_buffer_pool_shm_key

262. innodb_buffer_pool_size

263. innodb_change_buffer_dump

264. innodb_change_buffer_max_size

265. innodb_change_buffering

266. innodb_change_buffering_debug

267. innodb_checkpoint_age_target

268. innodb_checksum_algorithm

269. innodb_checksums

270. innodb_cleaner_lsn_age_factor

271. innodb_cmp_per_index_enabled

272. innodb_commit_concurrency

273. innodb_compression_algorithm

274. innodb_compression_default

275. innodb_compression_failure_threshold_pct

276. innodb_compression_level

277. innodb_compression_pad_pct_max

278. innodb_concurrency_tickets

279. innodb_corrupt_table_action

280. innodb_data_file_buffering

281. innodb_data_file_path

282. innodb_data_file_write_through

283. innodb_data_home_dir

284. innodb_deadlock_detect

285. innodb_deadlock_report

286. innodb_default_encryption_key_id

287. innodb_default_page_encryption_key

288. innodb_default_row_format

289. innodb_defragment

290. innodb_defragment_fill_factor

291. innodb_defragment_fill_factor_n_recs

292. innodb_defragment_frequency

293. innodb_defragment_n_pages

294. innodb_defragment_stats_accuracy

295. innodb_dict_size_limit

296. innodb_disable_sort_file_cache

297. innodb_disallow_writes

298. innodb_doublewrite
2196/4161

299. innodb_doublewrite_file

300. innodb_empty_free_list_algorithm

301. innodb_enable_unsafe_group_commit

302. innodb_encrypt_log

303. innodb_encrypt_tables

304. innodb_encrypt_temporary_tables

305. innodb_encryption_rotate_key_age

306. innodb_encryption_rotation_iops

307. innodb_encryption_threads

308. innodb_extra_rsegments

309. innodb_extra_undoslots

310. innodb_fake_changes

311. innodb_fast_checksum

312. innodb_fast_shutdown

313. innodb_fatal_semaphore_wait_threshold

314. innodb_file_format

315. innodb_file_format_check

316. innodb_file_format_max

317. innodb_file_per_table

318. innodb_fill_factor

319. innodb_flush_log_at_timeout

320. innodb_flush_log_at_trx_commit

321. innodb_flush_method

322. innodb_flush_neighbor_pages

323. innodb_flush_neighbors

324. innodb_flush_sync

325. innodb_flushing_avg_loops

326. innodb_force_load_corrupted

327. innodb_force_primary_key

328. innodb_force_recovery

329. innodb_foreground_preflush

330. innodb_ft_aux_table

331. innodb_ft_cache_size

332. innodb_ft_enable_diag_print

333. innodb_ft_enable_stopword

334. innodb_ft_max_token_size

335. innodb_ft_min_token_size

336. innodb_ft_num_word_optimize

337. innodb_ft_result_cache_limit

338. innodb_ft_server_stopword_table

339. innodb_ft_sort_pll_degree

340. innodb_ft_total_cache_size

341. innodb_ft_user_stopword_table

342. innodb_ibuf_accel_rate

343. innodb_ibuf_active_contract

344. innodb_ibuf_max_size

345. innodb_idle_flush_pct

346. innodb_immediate_scrub_data-uncompressed

347. innodb_import_table_from_xtrabackup

348. innodb_instant_alter_column_allowed

349. innodb_instrument_semaphores

350. innodb_io_capacity

351. innodb_io_capacity_max

352. innodb_kill_idle_transaction

353. innodb_large_prefix

354. innodb_lazy_drop_table

355. innodb_lock_schedule_algorithm

356. innodb_lock_wait_timeout

357. innodb_locking_fake_changes

358. innodb_locks_unsafe_for_binlog

359. innodb_log_arch_dir

360. innodb_log_arch_expire_sec

361. innodb_log_archive

362. innodb_log_block_size

363. innodb_log_buffer_size

364. innodb_log_checksum_algorithm

365. innodb_log_checksums

366. innodb_log_compressed_pages 2197/4161

366. innodb_log_compressed_pages

367. innodb_log_file_size

368. innodb_log_file_write_through

369. innodb_log_files_in_group

370. innodb_log_group_home_dir

371. innodb_log_optimize_ddl

372. innodb_log_write_ahead_size

373. innodb_lru_flush_size

374. innodb_lru_scan_depth

375. innodb_max_bitmap_file_size

376. innodb_max_changed_pages

377. innodb_max_dirty_pages_pct

378. innodb_max_dirty_pages_pct_lwm

379. innodb_max_purge_lag

380. innodb_max_purge_lag_delay

381. innodb_max_purge_lag_wait

382. innodb_max_undo_log_size

383. innodb_merge_sort_block_size

384. innodb_mirrored_log_groups

385. innodb_monitor_disable

386. innodb_monitor_enable

387. innodb_monitor_reset

388. innodb_monitor_reset_all

389. innodb_mtflush_threads

390. innodb_numa_interleave

391. innodb_old_blocks_pct

392. innodb_old_blocks_time

393. innodb_online_alter_log_max_size

394. innodb_open_files

395. innodb_optimize_fulltext_only

396. innodb_page_cleaners

397. innodb_page_size

398. innodb_prefix_index_cluster_optimization

399. innodb_print_all_deadlocks

400. innodb_purge_batch_size

401. innodb_purge_rseg_truncate_frequency

402. innodb_purge_threads

403. innodb_random_read_ahead

404. innodb_read_ahead

405. innodb_read_ahead_threshold

406. innodb_read_io_threads

407. innodb_read_only

408. innodb_recovery_stats

409. innodb_recovery_update_relay_log

410. innodb_replication_delay

411. innodb_rollback_on_timeout

412. innodb_rollback_segments

413. innodb_safe_truncate

414. innodb_sched_priority_cleaner

415. innodb_scrub_log

416. innodb_scrub_log_interval

417. innodb_scrub_log_speed

418. innodb_show_locks_held

419. innodb_show_verbose_locks

420. innodb_simulate_comp_failures

421. innodb_sort_buffer_size

422. innodb_spin_wait_delay

423. innodb_stats_auto_recalc

424. innodb_stats_auto_update

425. innodb_stats_include_delete_marked

426. innodb_stats_method

427. innodb_stats_modified_counter

428. innodb_stats_on_metadata

429. innodb_stats_persistent

430. innodb_stats_persistent_sample_pages

431. innodb_stats_sample_pages

432. innodb_stats_traditional

433. innodb_stats_transient_sample_pages
2198/4161

433. innodb_stats_transient_sample_pages

434. innodb_stats_update_need_lock

435. innodb_status_output

436. innodb_status_output_locks

437. innodb_strict_mode

438. innodb_support_xa

439. innodb_sync_array_size

440. innodb_sync_spin_loops

441. innodb_table_locks

442. innodb_temp_data_file_path

443. innodb_thread_concurrency

444. innodb_thread_concurrency_timer_based

445. innodb_thread_sleep_delay

446. innodb_tmpdir

447. innodb_track_changed_pages

448. innodb_track_redo_log_now

449. innodb_truncate_temporary_tablespace_now

450. innodb_undo_directory

451. innodb_undo_log_truncate

452. innodb_undo_logs

453. innodb_use_atomic_writes

454. innodb_use_fallocate

455. innodb_use_global_flush_log_at_trx_commit

456. innodb_use_native_aio

457. innodb_use_purge_thread

458. innodb_use_stacktrace

459. innodb_use_sys_malloc

460. innodb_use_sys_stats_table

461. innodb_version

462. innodb_write_io_threads

463. insert_id

464. interactive_timeout

465. join_buffer_size

466. join_buffer_space_limit

467. join_cache_level

468. keep_files_on_create

469. key_buffer_size

470. key_cache_age_threshold

471. key_cache_block_size

472. key_cache_division_limit

473. key_cache_file_hash_size

474. key_cache_segments

475. large_files_support

476. large_page_size

477. large_pages

478. last_gtid

479. last_insert_id

480. lc_messages

481. lc_messages_dir

482. lc_time_names

483. license

484. local_infile

485. lock_wait_timeout

486. locked_in_memory

487. log

488. log_bin

489. log_bin_basename

490. log_bin_compress

491. log_bin_compress_min_len

492. log_bin_index

493. log_bin_trust_function_creators

494. log_disabled_statements

495. log_error

496. log_output

497. log_queries_not_using_indexes

498. log_slave_updates

499. log_slow_admin_statements

500. log_slow_disabled_statements
2199/4161

501. log_slow_filter

502. log_slow_min_examined_row_limit

503. log_slow_queries

504. log_slow_query

505. log_slow_query_file

506. log_slow_query_time

507. log_slow_rate_limit

508. log_slow_slave_statements

509. log_slow_verbosity

510. log_slow_max_warnings

511. log_tc_size

512. log_warnings

513. long_query_time

514. low_priority_updates

515. lower_case_file_system

516. lower_case_table_names

517. master_verify_checksum

518. max_allowed_packet

519. max_binlog_cache_size

520. max_binlog_size

521. max_binlog_stmt_cache_size

522. max_binlog_total_size

523. max_connect_errors

524. max_connections

525. max_delayed_threads

526. max_digest_length

527. max_error_count

528. max_heap_table_size

529. max_insert_delayed_threads

530. max_join_size

531. max_length_for_sort_data

532. max_long_data_size

533. max_password_errors

534. max_prepared_stmt_count

535. max_recursive_iterations

536. max_relay_log_size

537. max_rowid_filter_size

538. max_seeks_for_key

539. max_session_mem_used

540. max_sort_length

541. max_sp_recursion_depth

542. max_statement_time

543. max_tmp_tables

544. max_user_connections

545. max_write_lock_count

546. metadata_locks_cache_size

547. metadata_locks_hash_instances

548. min_examined_row_limit

549. mroonga_action_on_fulltext_query_error

550. mroonga_boolean_mode_syntax_flags

551. mroonga_database_path_prefix

552. mroonga_default_parser

553. mroonga_default_tokenizer

554. mroonga_default_wrapper_engine

555. mroonga_dry_write

556. mroonga_enable_operations_recording

557. mroonga_enable_optimization

558. mroonga_libgroonga_embedded

559. mroonga_libgroonga_support_zlib

560. mroonga_libgroonga_support_zstd

561. mroonga_libgroonga_version

562. mroonga_log_file

563. mroonga_log_level

564. mroonga_match_escalation_threshold

565. mroonga_max_n_records_for_estimate

566. mroonga_query_log_file

567. mroonga_vector_column_delimiter

568. mroonga_version 2200/4161

https://mariadb.com/kb/en/replication-and-binary-log-system-variables//#max_binlog_total_size

568. mroonga_version

569. mrr_buffer_size

570. multi_range_count

571. myisam_block_size

572. myisam_data_pointer_size

573. myisam_max_sort_file_size

574. myisam_mmap_size

575. myisam_recover_options

576. myisam_repair_threads

577. myisam_sort_buffer_size

578. myisam_stats_method

579. myisam_use_mmap

580. mysql56_temporal_format

581. named_pipe

582. net_buffer_length

583. net_read_timeout

584. net_retry_count

585. net_write_timeout

586. note_verbosity

587. old

588. old_alter_table

589. old_mode

590. old_passwords

591. open_files_limit

592. optimizer_adjust_secondary_key_costs

593. optimizer_extra_pruning_depth

594. optimizer_max_sel_args

595. optimizer_max_sel_arg_weight

596. optimizer_prune_level

597. optimizer_search_depth

598. optimizer_selectivity_sampling_limit

599. optimizer_switch

600. optimizer_trace

601. optimizer_trace_max_mem_size

602. optimizer_use_condition_selectivity

603. oqgraph_allow_create_integer_latch

604. pam_debug

605. pam_use_cleartext_plugin

606. pam_winbind_workaround

607. performance_schema

608. performance_schema_accounts_size

609. performance_schema_digests_size

610. performance_schema_events_stages_history_long_size

611. performance_schema_events_stages_history_size

612. performance_schema_events_statements_history_long_size

613. performance_schema_events_statements_history_size

614. performance_schema_events_transactions_history_long_size

615. performance_schema_events_transactions_history_size

616. performance_schema_events_waits_history_long_size

617. performance_schema_events_waits_history_size

618. performance_schema_hosts_size

619. performance_schema_max_cond_classes

620. performance_schema_max_cond_instances

621. performance_schema_max_digest_length

622. performance_schema_max_file_classes

623. performance_schema_max_file_handles

624. performance_schema_max_file_instances

625. performance_schema_max_index_stat

626. performance_schema_max_memory_classes

627. performance_schema_max_metadata_locks

628. performance_schema_max_mutex_classes

629. performance_schema_max_mutex_instances

630. performance_schema_max_prepared_statement_instances

631. performance_schema_max_program_instances

632. performance_schema_max_sql_text_length

633. performance_schema_max_rwlock_classes

634. performance_schema_max_rwlock_instances

635. performance_schema_max_socket_classes
2201/4161

https://mariadb.com/kb/en/optimizer_adjust_secondary_key_costs/#None

635. performance_schema_max_socket_classes

636. performance_schema_max_socket_instances

637. performance_schema_max_stage_classes

638. performance_schema_max_statement_classes

639. performance_schema_max_statement_stack

640. performance_schema_max_table_handles

641. performance_schema_max_table_instances

642. performance_schema_max_table_lock_stat

643. performance_schema_max_thread_classes

644. performance_schema_max_thread_instances

645. performance_schema_session_connect_attrs_size

646. performance_schema_setup_actors_size

647. performance_schema_setup_objects_size

648. performance_schema_users_size

649. pid_file

650. plugin_dir

651. plugin_maturity

652. port

653. preload_buffer_size

654. profiling

655. profiling_history_size

656. progress_report_time

657. protocol_version

658. proxy_protocol_networks

659. proxy_user

660. pseudo_slave_mode

661. pseudo_thread_id

662. query_alloc_block_size

663. query_cache_limit

664. query_cache_min_res_unit

665. query_cache_size

666. query_cache_strip_comments

667. query_cache_type

668. query_cache_wlock_invalidate

669. query_prealloc_size

670. query_response_time_flush

671. query_response_time_range_base

672. query_response_time_range_exec_time_debug

673. query_response_time_stats

674. rand_seed1

675. rand_seed2

676. range_alloc_block_size

677. read_binlog_speed_limit

678. read_buffer_size

679. read_only

680. read_rnd_buffer_size

681. redirect_url

682. relay_log

683. relay_log_basename

684. relay_log_index

685. relay_log_info_file

686. relay_log_purge

687. relay_log_recovery

688. relay_log_space_limit

689. replicate_annotate_row_events

690. replicate_do_db

691. replicate_do_table

692. replicate_events_marked_for_skip

693. replicate_ignore_db

694. replicate_ignore_table

695. replicate_rewrite_db

696. replicate_wild_do_table

697. replicate_wild_ignore_table

698. report_host

699. report_password

700. report_port

701. report_user

702. require_secure_transport
2202/4161

703. rocksdb_access_hint_on_compaction_start

704. rocksdb_advise_random_on_open

705. rocksdb_allow_concurrent_memtable_write

706. rocksdb_allow_mmap_reads

707. rocksdb_allow_mmap_writes

708. rocksdb_allow_to_start_after_corruption

709. rocksdb_background_sync

710. rocksdb_base_background_compactions

711. rocksdb_blind_delete_primary_key

712. rocksdb_block_cache_size

713. rocksdb_block_restart_interval

714. rocksdb_block_size

715. rocksdb_block_size_deviation

716. rocksdb_bulk_load

717. rocksdb_bulk_load_allow_sk

718. rocksdb_bulk_load_allow_unsorted

719. rocksdb_bulk_load_size

720. rocksdb_bytes_per_sync

721. rocksdb_cache_dump

722. rocksdb_cache_high_pri_pool_ratio

723. rocksdb_cache_index_and_filter_blocks

724. rocksdb_cache_index_and_filter_with_high_priority

725. rocksdb_checksums_pct

726. rocksdb_collect_sst_properties

727. rocksdb_commit_in_the_middle

728. rocksdb_commit_time_batch_for_recovery

729. rocksdb_compact_cf

730. rocksdb_compaction_readahead_size

731. rocksdb_compaction_sequential_deletes

732. rocksdb_compaction_sequential_deletes_count_sd

733. rocksdb_compaction_sequential_deletes_file_size

734. rocksdb_compaction_sequential_deletes_window

735. rocksdb_concurrent_prepare

736. rocksdb_create_checkpoint

737. rocksdb_create_if_missing

738. rocksdb_create_missing_column_families

739. rocksdb_datadir

740. rocksdb_db_write_buffer_size

741. rocksdb_deadlock_detect

742. rocksdb_deadlock_detect_depth

743. rocksdb_debug_manual_compaction_delay

744. rocksdb_debug_optimizer_no_zero_cardinality

745. rocksdb_debug_ttl_ignore_pk

746. rocksdb_debug_ttl_read_filter_ts

747. rocksdb_debug_ttl_rec_ts

748. rocksdb_debug_ttl_snapshot_ts

749. rocksdb_default_cf_options

750. rocksdb_delayed_write_rate

751. rocksdb_delete_cf

752. rocksdb_delete_obsolete_files_period_micros

753. rocksdb_enable_2pc

754. rocksdb_enable_bulk_load_api

755. rocksdb_enable_insert_with_update_caching

756. rocksdb_enable_thread_tracking

757. rocksdb_enable_ttl

758. rocksdb_enable_ttl_read_filtering

759. rocksdb_enable_write_thread_adaptive_yield

760. rocksdb_error_if_exists

761. rocksdb_error_on_suboptimal_collation

762. rocksdb_flush_log_at_trx_commit

763. rocksdb_flush_memtable_on_analyze

764. rocksdb_force_compute_memtable_stats

765. rocksdb_force_compute_memtable_stats_cachetime

766. rocksdb_force_flush_memtable_and_lzero_now

767. rocksdb_force_flush_memtable_now

768. rocksdb_force_index_records_in_range

769. rocksdb_git_hash

770. rocksdb_hash_index_allow_collision 2203/4161

770. rocksdb_hash_index_allow_collision

771. rocksdb_ignore_unknown_options

772. rocksdb_index_type

773. rocksdb_info_log_level

774. rocksdb_io_write_timeout

775. rocksdb_is_fd_close_on_exec

776. rocksdb_keep_log_file_num

777. rocksdb_large_prefix

778. rocksdb_lock_scanned_rows

779. rocksdb_lock_wait_timeout

780. rocksdb_log_dir

781. rocksdb_log_file_time_to_roll

782. rocksdb_manifest_preallocation_size

783. rocksdb_manual_compaction_threads

784. rocksdb_manual_wal_flush

785. rocksdb_master_skip_tx_api

786. rocksdb_max_background_compactions

787. rocksdb_max_background_flushes

788. rocksdb_max_background_jobs

789. rocksdb_max_latest_deadlocks

790. rocksdb_max_log_file_size

791. rocksdb_max_manifest_file_size

792. rocksdb_max_manual_compactions

793. rocksdb_max_open_files

794. rocksdb_max_row_locks

795. rocksdb_max_subcompactions

796. rocksdb_max_total_wal_size

797. rocksdb_merge_buf_size

798. rocksdb_merge_combine_read_size

799. rocksdb_merge_tmp_file_removal_delay_ms

800. rocksdb_new_table_reader_for_compaction_inputs

801. rocksdb_no_block_cache

802. rocksdb_override_cf_options

803. rocksdb_paranoid_checks

804. rocksdb_pause_background_work

805. rocksdb_perf_context_level

806. rocksdb_persistent_cache_path

807. rocksdb_persistent_cache_size_mb

808. rocksdb_pin_l0_filter_and_index_blocks_in_cache

809. rocksdb_print_snapshot_conflict_queries

810. rocksdb_rate_limiter_bytes_per_sec

811. rocksdb_read_free_rpl_tables

812. rocksdb_records_in_range

813. rocksdb_remove_mariabackup_checkpoint

814. rocksdb_reset_stats

815. rocksdb_rollback_on_timeout

816. rocksdb_seconds_between_stat_computes

817. rocksdb_signal_drop_index_thread

818. rocksdb_sim_cache_size

819. rocksdb_skip_bloom_filter_on_read

820. rocksdb_skip_fill_cache

821. rocksdb_skip_unique_check_tables

822. rocksdb-sst-mgr-rate-bytes-per-sec

823. rocksdb_stats_dump_period_sec

824. rocksdb_stats_level

825. rocksdb_stats_recalc_rate

826. rocksdb_store_row_debug_checksums

827. rocksdb_strict_collation_check

828. rocksdb_strict_collation_exceptions

829. rocksdb_supported_compression_types

830. rocksdb_table_cache_numshardbits

831. rocksdb_table_stats_sampling_pct

832. rocksdb_tmpdir

833. rocksdb_trace_sst_api

834. rocksdb_two_write_queues

835. rocksdb_unsafe_for_binlog

836. rocksdb_update_cf_options

837. rocksdb_use_adaptive_mutex
2204/4161

837. rocksdb_use_adaptive_mutex

838. rocksdb_use_clock_cache

839. rocksdb_use_direct_io_for_flush_and_compaction

840. rocksdb_use_direct_reads

841. rocksdb_use_fsync

842. rocksdb_validate_tables

843. rocksdb_verify_row_debug_checksums

844. rocksdb_wal_bytes_per_sync

845. rocksdb_wal_dir

846. rocksdb_wal_recovery_mode

847. rocksdb_wal_size_limit_mb

848. rocksdb_wal_ttl_seconds

849. rocksdb_whole_key_filtering

850. rocksdb_write_batch_max_bytes

851. rocksdb_write_disable_wal

852. rocksdb_write_ignore_missing_column_families

853. rocksdb_write_policy

854. rowid_merge_buff_size

855. rpl_recovery_rank

856. rpl_semi_sync_master_enabled

857. rpl_semi_sync_master_timeout

858. rpl_semi_sync_master_trace_level

859. rpl_semi_sync_master_wait_no_slave

860. rpl_semi_sync_master_wait_point

861. rpl_semi_sync_slave_delay_master

862. rpl_semi_sync_slave_enabled

863. rpl_semi_sync_slave_kill_conn_timeout

864. rpl_semi_sync_slave_trace_level

865. s3_access_key

866. s3_block_size

867. s3_bucket

868. s3_debug

869. s3_host_name

870. s3_pagecache_age_threshold

871. s3_pagecache_buffer_size

872. s3_pagecache_division_limit

873. s3_pagecache_file_hash_size

874. s3_port

875. s3_protocol_version

876. s3_region

877. s3_secret_key

878. s3_slave_ignore_updates

879. s3_use_http

880. safe_show_database

881. secure_auth

882. secure_file_priv

883. secure_timestamp

884. server_audit_events

885. server_audit_excl_users

886. server_audit_file_path

887. server_audit_file_rotate_now

888. server_audit_file_rotate_size

889. server_audit_file_rotations

890. server_audit_incl_users

891. server_audit_loc_info

892. server_audit_logging

893. server_audit_mode

894. server_audit_output_type

895. server_audit_query_limit

896. server_audit_syslog_facility

897. server_audit_syslog_ident

898. server_audit_syslog_info

899. server_audit_syslog_priority

900. server_id

901. session_track_schema

902. session_track_state_change

903. session_track_system_variables

904. session_track_transaction_info

2205/4161

905. shared_memory

906. shared_memory_base_name

907. simple_password_check_digits

908. simple_password_check_letters_same_case

909. simple_password_check_minimal_length

910. simple_password_check_other_characters

911. skip_external_locking

912. skip_grant_tables

913. skip_name_resolve

914. skip_networking

915. skip_parallel_replication

916. skip_replication

917. skip_show_database

918. slave_compressed_protocol

919. slave_connections_needed_for_purge

920. slave_ddl_exec_mode

921. slave_domain_parallel_threads

922. slave_exec_mode

923. slave_load_tmpdir

924. slave_max_allowed_packet

925. slave_max_statement_time

926. slave_net_timeout

927. slave_parallel_max_queued

928. slave_parallel_mode

929. slave_parallel_threads

930. slave_parallel_workers

931. slave_run_triggers_for_rbr

932. slave_skip_errors

933. slave_sql_verify_checksum

934. slave_transaction_retries

935. slave_transaction_retry_errors

936. slave_transaction_retry_interval

937. slave_type_conversions

938. slow_launch_time

939. slow_query_log

940. slow_query_log_file

941. socket

942. sort_buffer_size

943. spider_auto_increment_mode

944. spider_auto_increment_mode

945. spider_auto_increment_mode

946. spider_bgs_second_read

947. spider_bka_engine

948. spider_bka_mode

949. spider_block_size

950. spider_buffer_size

951. spider_bulk_size

952. spider_bulk_update_mode

953. spider_bulk_update_size

954. spider_casual_read

955. spider_conn_recycle_mode

956. spider_conn_recycle_strict

957. spider_conn_wait_timeout

958. spider_connect_error_interval

959. spider_connect_mutex

960. spider_connect_retry_count

961. spider_connect_retry_interval

962. spider_connect_timeout

963. spider_crd_bg_mode

964. spider_crd_interval

965. spider_crd_mode

966. spider_crd_sync

967. spider_crd_type

968. spider_crd_weight

969. spider_delete_all_rows_type

970. spider_direct_dup_insert

971. spider_direct_order_limit

972. spider_dry_access 2206/4161

972. spider_dry_access

973. spider_error_read_mode

974. spider_error_write_mode

975. spider_first_read

976. spider_force_commit

977. spider_general_log

978. spider_ignore_comments

979. spider_index_hint_pushdown

980. spider_init_sql_alloc_size

981. spider_internal_limit

982. spider_internal_offset

983. spider_internal_optimize

984. spider_internal_optimize_local

985. spider_internal_sql_log_off

986. spider_internal_unlock

987. spider_internal_xa

988. spider_internal_xa_id_type

989. spider_internal_xa_snapshot

990. spider_load_crd_at_startup

991. spider_load_sts_at_startup

992. spider_local_lock_table

993. spider_lock_exchange

994. spider_log_result_error_with_sql

995. spider_log_result_errors

996. spider_low_mem_read

997. spider_max_connections

998. spider_max_order

999. spider_multi_split_read

1000. spider_net_read_timeout

1001. spider_net_write_timeout

1002. spider_ping_interval_at_trx_start

1003. spider_quick_mode

1004. spider_quick_page_byte

1005. spider_quick_page_size

1006. spider_read_only_mode

1007. spider_remote_access_charset

1008. spider_remote_autocommit

1009. spider_remote_default_database

1010. spider_remote_sql_log_off

1011. spider_remote_time_zone

1012. spider_remote_trx_isolation

1013. spider_remote_wait_timeout

1014. spider_reset_sql_alloc

1015. spider_same_server_link

1016. spider_second_read

1017. spider_select_column_mode

1018. spider_selupd_lock_mode

1019. spider_semi_split_read

1020. spider_semi_split_read_limit

1021. spider_semi_table_lock

1022. spider_semi_table_lock_connection

1023. spider_semi_trx

1024. spider_semi_trx_isolation

1025. spider_skip_default_condition

1026. spider_skip_parallel_search

1027. spider_slave_trx_isolation

1028. spider_split_read

1029. spider_store_last_crd

1030. spider_store_last_sts

1031. spider_strict_group_by

1032. spider_sts_bg_mode

1033. spider_sts_interval

1034. spider_sts_mode

1035. spider_sts_sync

1036. spider_support_xa

1037. spider_suppress_comment_ignored_warning

1038. spider_sync_autocommit

1039. spider_sync_sql_mode
2207/4161

1039. spider_sync_sql_mode

1040. spider_sync_time_zone

1041. spider_sync_trx_isolation

1042. spider_table_crd_thread_count

1043. spider_table_init_error_interval

1044. spider_table_sts_thread_count

1045. spider_udf_ct_bulk_insert_interval

1046. spider_udf_ct_bulk_insert_rows

1047. spider_udf_ds_bulk_insert_rows

1048. spider_udf_ds_table_loop_mode

1049. spider_udf_ds_use_real_table

1050. spider_udf_table_lock_mutex_count

1051. spider_udf_table_mon_mutex_count

1052. spider_use_all_conns_snapshot

1053. spider_use_cond_other_than_pk_for_update

1054. spider_use_consistent_snapshot

1055. spider_use_default_database

1056. spider_use_flash_logs

1057. spider_use_handler

1058. spider_use_pushdown_udf

1059. spider_use_table_charset

1060. spider_version

1061. spider_wait_timeout

1062. spider_xa_register_mode

1063. sql_auto_is_null

1064. sql_big_selects

1065. sql_big_tables

1066. sql_buffer_result

1067. sql_error_log_filename

1068. sql_error_log_rate

1069. sql_error_log_rotate

1070. sql_error_log_rotations

1071. sql_error_log_size_limit

1072. sql_error_log_warnings

1073. sql_if_exists

1074. sql_log_bin

1075. sql_log_off

1076. sql_log_update

1077. sql_low_priority_updates

1078. sql_max_join_size

1079. sql_mode

1080. sql_notes

1081. sql_quote_show_create

1082. sql_safe_updates

1083. sql_select_limit

1084. sql_slave_skip_counter

1085. sql_warnings

1086. ssl_ca

1087. ssl_capath

1088. ssl_cert

1089. ssl_cipher

1090. ssl_crl

1091. ssl_crlpath

1092. ssl_key

1093. storage_engine

1094. standard_compliant_cte

1095. stored_program_cache

1096. strict_password_validation

1097. sync_binlog

1098. sync_frm

1099. sync_master_info

1100. sync_relay_log

1101. sync_relay_log_info

1102. system_time_zone

1103. system_versioning_alter_history

1104. system_versioning_asof

1105. system_versioning_innodb_algorithm_simple

1106. system_versioning_insert_history

1107. table_definition_cache 2208/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotate
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotations
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_size_limit
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_warnings
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_alter_history
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_asof
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_innodb_algorithm_simple
https://mariadb.com/kb/en/system-versioned-tables//#system_versioning_insert_history

1107. table_definition_cache

1108. table_lock_wait_timeout

1109. table_open_cache

1110. table_open_cache_instances

1111. table_type

1112. tcp_keepalive_interval

1113. tcp_keepalive_probes

1114. tcp_keepalive_time

1115. tcp_nodelay

1116. thread_cache_size

1117. thread_concurrency

1118. thread_handling

1119. thread_pool_dedicated_listener

1120. thread_pool_exact_stats

1121. thread_pool_idle_timeout

1122. thread_pool_max_threads

1123. thread_pool_min_threads

1124. thread_pool_oversubscribe

1125. thread_pool_prio_kickup_timer

1126. thread_pool_priority

1127. thread_pool_size

1128. thread_pool_stall_limit

1129. thread_stack

1130. time_format

1131. time_zone

1132. timed_mutexes

1133. timestamp

1134. tls_version

1135. tmp_disk_table_size

1136. tmp_memory_table_size

1137. tmp_table_size

1138. tmpdir

1139. tokudb_alter_print_error

1140. tokudb_analyze_time

1141. tokudb_block_size

1142. tokudb_bulk_fetch

1143. tokudb_cache_size

1144. tokudb_check_jemalloc

1145. tokudb_checkpoint_lock

1146. tokudb_checkpoint_on_flush_logs

1147. tokudb_checkpointing_period

1148. tokudb_cleaner_iterations

1149. tokudb_cleaner_period

1150. tokudb_commit_sync

1151. tokudb_create_index_online

1152. tokudb_data_dir

1153. tokudb_debug

1154. tokudb_directio

1155. tokudb_disable_hot_alter

1156. tokudb_disable_prefetching

1157. tokudb_disable_slow_alter

1158. tokudb_empty_scan

1159. tokudb_fs_reserve_percent

1160. tokudb_fsync_log_period

1161. tokudb_hide_default_row_format

1162. tokudb_killed_time

1163. tokudb_last_lock_timeout

1164. tokudb_load_save_space

1165. tokudb_loader_memory_size

1166. tokudb_lock_timeout

1167. tokudb_lock_timeout_debug

1168. tokudb_log_dir

1169. tokudb_max_lock_memory

1170. tokudb_optimize_index_fraction

1171. tokudb_optimize_index_name

1172. tokudb_optimize_throttle

1173. tokudb_pk_insert_mode

1174. tokudb_prelock_empty
2209/4161

https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_alter_print_error
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_analyze_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_block_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_bulk_fetch
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cache_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_check_jemalloc
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpoint_lock
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpoint_on_flush_logs
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_checkpointing_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cleaner_iterations
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_cleaner_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_commit_sync
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_create_index_online
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_data_dir
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_debug
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_directio
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_hot_alter
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_prefetching
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_disable_slow_alter
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_empty_scan
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_fs_reserve_percent
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_fsync_log_period
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_hide_default_row_format
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_killed_time
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_last_lock_timeout
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_load_save_space
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_loader_memory_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_lock_timeout
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_lock_timeout_debug
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_log_dir
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_max_lock_memory
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_index_fraction
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_index_name
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_optimize_throttle
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_pk_insert_mode
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_prelock_empty

1174. tokudb_prelock_empty

1175. tokudb_read_block_size

1176. tokudb_read_buf_size

1177. tokudb_read_status_frequency

1178. tokudb_row_format

1179. tokudb_rpl_check_readonly

1180. tokudb_rpl_lookup_rows

1181. tokudb_rpl_lookup_rows_delay

1182. tokudb_rpl_unique_checks

1183. tokudb_rpl_unique_checks_delay

1184. tokudb_support_xa

1185. tokudb_tmp_dir

1186. tokudb_version

1187. tokudb_write_status_frequency

1188. transaction_alloc_block_size

1189. transaction_isolation

1190. transaction_prealloc_size

1191. transaction_read_only

1192. tx_isolation

1193. tx_read_only

1194. unique_checks

1195. updatable_views_with_limit

1196. use_stat_tables

1197. userstat

1198. version

1199. version_comment

1200. version_compile_machine

1201. version_compile_os

1202. version_malloc_library

1203. version_source_revision

1204. version_ssl_library

1205. wait_timeout

1206. warning_count

1207. wsrep_allowlist

1208. wsrep_auto_increment_control

1209. wsrep_causal_reads

1210. wsrep_certification_rules

1211. wsrep_certify_nonPK

1212. wsrep_cluster_address

1213. wsrep_cluster_name

1214. wsrep_convert_LOCK_to_trx

1215. wsrep_data_home_dir

1216. wsrep_dbug_option

1217. wsrep_debug

1218. wsrep_desync

1219. wsrep_dirty_reads

1220. wsrep_drupal_282555_workaround

1221. wsrep_forced_binlog_format

1222. wsrep_gtid_domain_id

1223. wsrep_gtid_mode

1224. wsrep_gtid_seq_no

1225. wsrep_ignore_apply_errors

1226. wsrep_load_data_splitting

1227. wsrep_log_conflicts

1228. wsrep_max_ws_rows

1229. wsrep_max_ws_size

1230. wsrep_mode

1231. wsrep_mysql_replication_bundle

1232. wsrep_node_address

1233. wsrep_node_incoming_address

1234. wsrep_node_name

1235. wsrep_notify_cmd

1236. wsrep_on

1237. wsrep_OSU_method

1238. wsrep_provider

1239. wsrep_provider_options

1240. wsrep_recover

1241. wsrep_reject_queries
2210/4161

https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_block_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_buf_size
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_read_status_frequency
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_row_format
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_check_readonly
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_lookup_rows
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_lookup_rows_delay
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_unique_checks
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_rpl_unique_checks_delay
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_support_xa
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_tmp_dir
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_version
https://mariadb.com/kb/en/tokudb-system-and-status-variables/#tokudb_write_status_frequency

1241. wsrep_reject_queries

1242. wsrep_replicate_myisam

1243. wsrep_restart_slave

1244. wsrep_retry_autocommit

1245. wsrep_slave_FK_checks

1246. wsrep_slave_threads

1247. wsrep_slave_UK_checks

1248. wsrep_sr_store

1249. wsrep_sst_auth

1250. wsrep_sst_donor

1251. wsrep_sst_donor_rejects_queries

1252. wsrep_sst_method

1253. wsrep_sst_receive_address

1254. wsrep_start_position

1255. wsrep_status_file

1256. wsrep_strict_ddl

1257. wsrep_sync_wait

1258. wsrep_trx_fragment_size

1259. wsrep_trx_fragment_unit

About the Server System Variables
MariaDB has many system variables that can be changed to suit your needs.

The full list of server variables are listed in the contents on this page, and most are described on this page, but some are

described elsewhere:

Aria System Variables

CONNECT System Variables

Galera System Variables

Global Transaction ID System Variables

HandlerSocket Plugin System Variables

InnoDB System Variables

Mroonga System Variables

MyRocks System Variables

MyISAM System Variables

Performance Schema System Variables

Replication and Binary Log System Variables

S3 Storage Engine System Variables

Server_Audit System Variables

Spider System Variables

SQL_ERROR_LOG Plugin System Variables

SSL System Variables

Threadpool System Variables

TokuDB System Variables

See also the Full list of MariaDB options, system and status variables.

Most of these can be set with command line options and many of them can be changed at runtime. Variables that can be

changed at runtime (and therefore are not read-only) are described as "Dynamic" below, and elsewhere in the

documentation.

There are a few ways to see the full list of server system variables:

While in the mariadb client, run:

SHOW VARIABLES;

See SHOW VARIABLES for instructions on using this command.

From your shell, run mariadbd like so:

mariadbd --verbose --help

View the Information Schema GLOBAL_VARIABLES, SESSION_VARIABLES, and SYSTEM_VARIABLES tables.

Setting Server System Variables
There are several ways to set server system variables:

2211/4161

https://mariadb.com/kb/en/tokudb-system-variables/

Specify them on the command line:

shell> ./mysqld_safe --aria_group_commit="hard"

Specify them in your my.cnf file (see Configuring MariaDB with my.cnf for more information):

aria_group_commit = "hard"

Set them from the mariadb client using the SET command. Only variables that are dynamic can be set at runtime in

this way. Note that variables set in this way will not persist after a restart.

SET GLOBAL aria_group_commit="hard";

By convention, server variables have usually been specified with an underscore in the configuration files, and a dash on the

command line. You can however specify underscores as dashes - they are interchangeable.

Variables that take a numeric size can either be specified in full, or with a suffix for easier readability. Valid suffixes are:

Suffix Description Value

K kilobytes 1024

M megabytes 1024

G gigabytes 1024

T terabytes 1024 (from MariaDB 10.3.3)

P petabytes 1024 (from MariaDB 10.3.3)

E exabytes 1024 (from MariaDB 10.3.3)

The suffix can be upper or lower-case.

List of Server System Variables

allow_suspicious_udfs

Description: Allows use of user-defined functions consisting of only one symbol x() without corresponding

x_init() or x_deinit() . That also means that one can load any function from any library, for example exit()

from libc.so . Not recommended unless you require old UDFs with one symbol that cannot be recompiled. Before

MariaDB 10.10, available as an option only.

Commandline: --allow-suspicious-udfs

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.10

alter_algorithm

Description: The implied ALGORITHM for ALTER TABLE if no ALGORITHM clause is specified. The deprecated

variable old_alter_table is an alias for this.

COPY corresponds to the pre-MySQL 5.1 approach of creating an intermediate table, copying data one row at

a time, and renaming and dropping tables.

INPLACE requests that the operation be refused if it cannot be done natively inside a the storage engine.

DEFAULT (the default) chooses INPLACE if available, and falls back to COPY .

NOCOPY refuses to copy a table.

INSTANT refuses an operation that would involve any other than metadata changes.

Commandline: --alter-algorithm=default

Scope: Global, Session

Dynamic: Yes

Data Type: enumerated

Default Value: DEFAULT

Valid Values: DEFAULT , COPY , INPLACE , NOCOPY , INSTANT

Introduced: MariaDB 10.3.7

2

3

4

5

6

2212/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

analyze_sample_percentage

Description: Percentage of rows from the table ANALYZE TABLE will sample to collect table statistics. Set to 0 to let

MariaDB decide what percentage of rows to sample.

Commandline: --analyze-sample-percentage=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 100.000000

Range: 0 to 100

Introduced: MariaDB 10.4.3

autocommit

Description: If set to 1, the default, all queries are committed immediately. The LOCK IN SHARE MODE and FOR

UPDATE clauses therefore have no effect. If set to 0, they are only committed upon a COMMIT statement, or rolled

back with a ROLLBACK statement. If autocommit is set to 0, and then changed to 1, all open transactions are

immediately committed.

Commandline: --autocommit[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

automatic_sp_privileges

Description: When set to 1, the default, when a stored routine is created, the creator is automatically granted

permission to ALTER (which includes dropping) and to EXECUTE the routine. If set to 0, the creator is not

automatically granted these privileges.

Commandline: --automatic-sp-privileges , --skip-automatic-sp-privileges

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 1

back_log

Description: Connections take a small amount of time to start, and this setting determines the number of outstanding

connection requests MariaDB can have, or the size of the listen queue for incoming TCP/IP requests. Requests

beyond this will be refused. Increase if you expect short bursts of connections. Cannot be set higher than the

operating system limit (see the Unix listen() man page). If not set, set to 0 , or the --autoset-back-log option is

used, will be autoset to the lower of 900 and (50 + max_connections/5).

Commandline: --back-log=#

Scope: Global

Dynamic: No

Type: number

Default Value:

The lower of 900 and (50 + max_connections/5)

basedir

Description: Path to the MariaDB installation directory. Other paths are usually resolved relative to this base

directory.

Commandline: --basedir=path or -b path

Scope: Global

Dynamic: No

Type: directory name

big_tables

Description: If this system variable is set to 1, then temporary tables will be saved to disk intead of memory.

2213/4161

https://mariadb.com/kb/en/transactions-commit-statement/
https://mariadb.com/kb/en/rollback-statement/

This system variable's original intention was to allow result sets that were too big for memory-based temporary

tables and to avoid the resulting 'table full' errors.

This system variable is no longer needed, because the server can automatically convert large memory-based

temporary tables into disk-based temporary tables when they exceed the value of the

tmp_memory_table_size system variable.

To prevent memory-based temporary tables from being used at all, set the tmp_memory_table_size system

variable to 0 .

In MariaDB 5.5 and earlier, sql_big_tables is a synonym.

In MariaDB 10.5, this system variable is deprecated.

Commandline: --big-tables

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

Deprecated: MariaDB 10.5.0

bind_address

Description: By default, the MariaDB server listens for TCP/IP connections on all addresses. You can specify an

alternative when the server starts using this option; either a host name, an IPv4 or an IPv6 address, "::" or "*" (all

addresses). In some systems, such as Debian and Ubuntu, the bind_address is set to 127.0.0.1, which binds the

server to listen on localhost only. bind_address has always been available as a mariadbd option; from MariaDB

10.3.3 its also available as a system variable. Before MariaDB 10.6.0 "::" implied listening additionally on IPv4

addresses like "*". From 10.6.0 onwards it refers to IPv6 stictly. Starting with MariaDB 10.11, a comma-separated list

of addresses to bind to can be given. See also Configuring MariaDB for Remote Client Access.

Commandline: --bind-address=addr

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty string)

Valid Values: Host name, IPv4, IPv6, ::, *

Introduced: MariaDB 10.3.3 (as a system variable)

block_encryption_mode

Description: Default block encryption mode for AES_ENCRYPT() and AES_DECRYPT() functions.

Commandline: --block-encryption-mode=val

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: aes-128-ecb

Valid values: aes-128-ecb , aes-192-ecb , aes-256-ecb , aes-128-cbc , aes-192-cbc , aes-256-cbc ,

aes-128-ctr , aes-192-ctr , aes-256-ctr

Introduced: MariaDB 11.2.0

bulk_insert_buffer_size

Description: Size in bytes of the per-thread cache tree used to speed up bulk inserts into MyISAM and Aria tables. A

value of 0 disables the cache tree.

Commandline: --bulk-insert-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 8388608

Range - 32 bit: 0 to 4294967295

Range - 64 bit: 0 to 18446744073709547520

character_set_client

Description: Determines the character set for queries arriving from the client. It can be set per session by the client,

although the server can be configured to ignore client requests with the --skip-character-set-client-

2214/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

handshake option. If the client does not request a character set, or requests a character set that the server does not

support, the global value will be used. utf16, utf16le, utf32 and ucs2 cannot be used as client character sets. From

MariaDB 10.6, the utf8 character set (and related collations) is by default an alias for utf8mb3 rather than the

other way around. It can be set to imply utf8mb4 by changing the value of the old_mode system variable.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: utf8mb3 (>= MariaDB 10.6), utf8 (<= MariaDB 10.5)

character_set_collations

Description: Overrides for character set default collations. Takes a comma-delimited list of character set and

collation settings, for example SET @@character_set_collations = 'utf8mb4=uca1400_ai_ci,

latin2=latin2_hungarian_ci'; The new variable will take effect in all cases where a character set is explicitly or

implicitly specified without an explicit COLLATE clause, including but not limited to:

Column collation

Table collation

Database collation

CHAR(expr USING csname)

CONVERT(expr USING csname)

CAST(expr AS CHAR CHARACTER SET csname)

'' - character string literal

_utf8mb3'text' - a character string literal with an introducer

_utf8mb3 X'61' - a character string literal with an introducer with hex notation

_utf8mb3 0x61 - a character string literal with an introducer with hex hybrid notation

@@collation_connection after a SET NAMES without COLLATE

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: Empty

Introduced: MariaDB 11.2

character_set_connection

Description: Character set used for number to string conversion, as well as for literals that don't have a character set

introducer. From MariaDB 10.6, the utf8 character set (and related collations) is by default an alias for utf8mb3

rather than the other way around. It can be set to imply utf8mb4 by changing the value of the old_mode system

variable.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: utf8mb3 (>= MariaDB 10.6), utf8 (<= MariaDB 10.5)

character_set_database

Description: Character set used by the default database, and set by the server whenever the default database is

changed. If there's no default database, character_set_database contains the same value as character_set_server.

This variable is dynamic, but should not be set manually, only by the server.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: latin1

character_set_filesystem

Description: The character set for the filesystem. Used for converting file names specified as a string literal from

character_set_client to character_set_filesystem before opening the file. By default set to binary , so no conversion

takes place. This could be useful for statements such as LOAD_FILE() or LOAD DATA INFILE on system where multi-

byte file names are use.

Commandline: --character-set-filesystem=name

Scope: Global, Session

2215/4161

Dynamic: Yes

Data Type: string

Default Value: binary

character_set_results

Description: Character set used for results and error messages returned to the client. From MariaDB 10.6, the utf8

character set (and related collations) is by default an alias for utf8mb3 rather than the other way around. It can be

set to imply utf8mb4 by changing the value of the old_mode system variable.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: utf8mb3 (>= MariaDB 10.6), utf8 (<= MariaDB 10.5)

character_set_server

Description: Default character set used by the server. See character_set_database for character sets used by the

default database. Defaults may be different on some systems, see for example Differences in MariaDB in Debian.

Commandline: --character-set-server

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: latin1

character_set_system

Description: Character set used by the server to store identifiers, always set to utf8, or its synonym utf8mb3 starting

with MariaDB 10.6. From MariaDB 10.6, the utf8 character set (and related collations) is by default an alias for

utf8mb3 rather than the other way around. It can be set to imply utf8mb4 by changing the value of the old_mode

system variable.

Scope: Global

Dynamic: No

Data Type: string

Default Value: utf8mb3 (>= MariaDB 10.6), utf8 (<= MariaDB 10.5)

character_sets_dir

Description: Directory where the character sets are installed.

Commandline: --character-sets-dir=path

Scope: Global

Dynamic: No

Type: directory name

check_constraint_checks

Description: If set to 0 , will disable constraint checks, for example when loading a table that violates some

constraints that you plan to fix later.

Scope: Global, Session

Dynamic: Yes

Type: boolean

Default: ON

collation_connection

Description: Collation used for the connection character set.

Scope: Global, Session

Dynamic: Yes

Data Type: string

2216/4161

collation_database

Description: Collation used for the default database. Set by the server if the default database changes, if there is no

default database the value from the collation_server variable is used. This variable is dynamic, but should not be

set manually, only by the server.

Scope: Global, Session

Dynamic: Yes

Data Type: string

collation_server

Description: Default collation used by the server. This is set to the default collation for a given character set

automatically when character_set_server is changed, but it can also be set manually. Defaults may be different on

some systems, see for example Differences in MariaDB in Debian.

Commandline: --collation-server=name

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: latin1_swedish_ci

completion_type

Description: The transaction completion type. If set to NO_CHAIN or 0 (the default), there is no effect on commits

and rollbacks. If set to CHAIN or 1 , a COMMIT statement is equivalent to COMMIT AND CHAIN, while a

ROLLBACK is equivalent to ROLLBACK AND CHAIN, so a new transaction starts straight away with the same

isolation level as transaction that's just finished. If set to RELEASE or 2 , a COMMIT statement is equivalent to

COMMIT RELEASE, while a ROLLBACK is equivalent to ROLLBACK RELEASE, so the server will disconnect

after the transaction completes. Note that the transaction completion type only applies to explicit commits, not implicit

commits.

Commandline: --completion-type=name

Scope: Global, Session

Dynamic: Yes

Data Type: enumerated

Default Value: NO_CHAIN

Valid Values: 0 , 1 , 2 , NO_CHAIN , CHAIN , RELEASE

concurrent_insert

Description: If set to AUTO or 1 , the default, MariaDB allows concurrent INSERTs and SELECTs for MyISAM

tables with no free blocks in the data (deleted rows in the middle). If set to NEVER or 0 , concurrent inserts are

disabled. If set to ALWAYS or 2 , concurrent inserts are permitted for all MyISAM tables, even those with holes, in

which case new rows are added at the end of a table if the table is being used by another thread.

If the --skip-new option is used when starting the server, concurrent_insert is set to NEVER .

Changing the variable only affects new opened tables. Use FLUSH TABLES If you want it to also affect cached

tables.

See Concurrent Inserts for more.

Commandline: --concurrent-insert[=value]

Scope: Global

Dynamic: Yes

Data Type: enumerated

Default Value: AUTO

Valid Values: 0 , 1 , 2 , AUTO , NEVER , ALWAYS

connect_timeout

Description: Time in seconds that the server waits for a connect packet before returning a 'Bad handshake'.

Increasing may help if clients regularly encounter 'Lost connection to MySQL server at 'X', system error:

error_number' type-errors.

2217/4161

https://mariadb.com/kb/en/transactions-commit-statement/
https://mariadb.com/kb/en/rollback-statement/
https://mariadb.com/kb/en/transactions-commit-statement/
https://mariadb.com/kb/en/rollback-statement/

Commandline: --connect-timeout=#

Scope: Global

Dynamic: Yes

Type: numeric

Default Value: 10

core_file

Description: Write a core-file on crashes. The file name and location are system dependent. On Linux it is usually

called core.${PID} , and it is usually written to the data directory. However, this can be changed.

See Enabling Core Dumps for more information.

Previously this system variable existed only as an option, but it was also made into a read-only system variable

starting with MariaDB 10.3.9 , MariaDB 10.2.17 and MariaDB 10.1.35 .

On Windows >= MariaDB 10.4.3, this option is set by default.

Note that the option accepts no arguments; specifying --core-file sets the value to ON . It cannot be

disabled in the case of Windows >= MariaDB 10.4.3.

Commandline: --core-file

Scope: Global

Dynamic: No

Type: boolean

Default Value:

Windows >= MariaDB 10.4.3: ON

All other systems: OFF

datadir

Description: Directory where the data is stored.

Commandline: --datadir=path or -h path

Scope: Global

Dynamic: No

Type: directory name

date_format

Description: Unused.

Removed: MariaDB 11.3.0

datetime_format

Description: Unused.

Removed: MariaDB 11.3.0

debug/debug_dbug

Description: Available in debug builds only (built with -DWITH_DEBUG=1). Used in debugging through the DBUG

library to write to a trace file. Just using --debug will write a trace of what mariadbd is doing to the default trace file.

Commandline: -# , --debug[=debug_options]

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value:

<= MariaDB 10.4: d:t:i:o,/tmp/mysqld.trace (Unix) or d:t:i:O,\mysqld.trace (Windows)

>= MariaDB 10.5: d:t:i:o,/tmp/mariadbd.trace (Unix) or d:t:i:O,\mariadbd.trace (Windows)

Debug Options: See the option flags on the mysql_debug page

debug_no_thread_alarm

Description: Disable system thread alarm calls. Disabling it may be useful in debugging or testing, never do it in

production.

2218/4161

https://mariadb.com/kb/en/enabling-core-dumps/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mysql_debug/

Commandline: --debug-no-thead-alarm=#

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

debug_sync

Description: Used in debugging to show the interface to the Debug Sync facility. MariaDB needs to be configured

with -DENABLE_DEBUG_SYNC=1 for this variable to be available.

Scope: Session

Dynamic: Yes

Data Type: string

Default Value: OFF or ON - current signal signal name

default_password_lifetime

Description: This defines the global password expiration policy. 0 means automatic password expiration is disabled.

If the value is a positive integer N, the passwords must be changed every N days. This behavior can be overridden

using the password expiration options in ALTER USER.

Commandline: --default-password-lifetime=#

Scope: Global

Dynamic: Yes

Type: numeric

Default Value: 0

Range: 0 to 4294967295

Introduced: MariaDB 10.4.3

default_regex_flags

Description: Introduced to address remaining incompatibilities between PCRE and the old regex library. Accepts a

comma-separated list of zero or more of the following values:

Value Pattern equivalent Meaning

DOTALL (?s) . matches anything including NL

DUPNAMES (?J) Allow duplicate names for subpatterns

EXTENDED (?x) Ignore white space and # comments

EXTRA (?X)
extra features (e.g. error on unknown escape

character)

MULTILINE (?m) ^ and $ match newlines within data

UNGREEDY (?U) Invert greediness of quantifiers

Commandline: --default-regex-flags=value

Scope: Global, Session

Dynamic: Yes

Type: enumeration

Default Value: empty

Valid Values: DOTALL , DUPNAMES , EXTENDED , EXTRA , MULTILINE , UNGREEDY

default_storage_engine

Description: The default storage engine. The default storage engine must be enabled at server startup or the server

won't start.

Commandline: --default-storage-engine=name

Scope: Global, Session

Dynamic: Yes

Type: enumeration

Default Value: InnoDB

default_table_type
2219/4161

Description: A synonym for default_storage_engine. Removed in MariaDB 5.5.

Commandline: --default-table-type=name

Scope: Global, Session

Dynamic: Yes

Removed: MariaDB 5.5

default_tmp_storage_engine

Description: Default storage engine that will be used for tables created with CREATE TEMPORARY TABLE where

no engine is specified. For internal temporary tables see aria_used_for_temp_tables). The storage engine used must

be active or the server will not start. See default_storage_engine for the default for non-temporary tables. Defaults to

NULL, in which case the value from default_storage_engine is used. ROCKSDB temporary tables cannot be created.

Before MariaDB 10.7, attempting to do so would silently fail, and a MyISAM table would instead be created. From

MariaDB 10.7, an error is returned.

Commandline: --default-tmp-storage-engine=name

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value: NULL

default_week_format

Description: Default mode for the WEEK() function. See that page for details on the different modes

Commandline: --default-week-format=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 7

delay_key_write

Description: Specifies how MyISAM tables handles CREATE TABLE DELAY_KEY_WRITE. If set to ON , the

default, any DELAY KEY WRITEs are honored. The key buffer is then flushed only when the table closes, speeding

up writes. MyISAM tables should be automatically checked upon startup in this case, and --external locking should

not be used, as it can lead to index corruption. If set to OFF , DELAY KEY WRITEs are ignored, while if set to ALL ,

all new opened tables are treated as if created with DELAY KEY WRITEs enabled.

Commandline: --delay-key-write[=name]

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: ON

Valid Values: ON , OFF , ALL

delayed_insert_limit

Description: After this many rows have been inserted with INSERT DELAYED, the handler will check for and

execute any waiting SELECT statements.

Commandline: --delayed-insert-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 1 to 4294967295

delayed_insert_timeout

Description: Time in seconds that the INSERT DELAYED handler will wait for INSERTs before terminating.

Commandline: --delayed-insert-timeout=#

Scope: Global

2220/4161

Dynamic: Yes

Data Type: numeric

Default Value: 300

delayed_queue_size

Description: Number of rows, per table, that can be queued when performing INSERT DELAYED statements. If the

queue becomes full, clients attempting to perform INSERT DELAYED's will wait until the queue has room available

again.

Commandline: --delayed-queue-size=#

Scope: Global

Dynamic: Yes

Type: numeric

Default Value: 1000

Range: 1 to 4294967295

disconnect_on_expired_password

Description: When a user password has expired (see User Password Expiry), this variable controls how the server

handles clients that are not aware of the sandbox mode. If enabled, the client is not permitted to connect, otherwise

the server puts the client in a sandbox mode.

Commandline: --disconnect-on-expired-password[={0|1}]

Scope: Global

Dynamic: Yes

Type: boolean

Default Value: OFF

Introduced: MariaDB 10.4.3

div_precision_increment

Description: The precision of the result of the decimal division will be the larger than the precision of the dividend by

that number. By default it's 4 , so SELECT 2/15 would return 0.1333 and SELECT 2.0/15 would return 0.13333.

After setting div_precision_increment to 6 , for example, the same operation would return 0.133333 and 0.1333333

respectively.

From MariaDB 10.1.46 , MariaDB 10.2.33 , MariaDB 10.3.24 , MariaDB 10.4.14 and MariaDB 10.5.5,

div_precision_increment is taken into account in intermediate calculations. Previous versions did not, and the

results were dependent on the optimizer, and therefore unpredictable.

In MariaDB 10.1.46 , MariaDB 10.1.47 , MariaDB 10.2.33 , MariaDB 10.2.34 , MariaDB 10.2.35 , MariaDB

10.3.24 , MariaDB 10.3.25 , MariaDB 10.4.14, MariaDB 10.4.15, MariaDB 10.5.5 and MariaDB 10.5.6 only, the fix

truncated decimal values after every division, resulting in lower precision in some cases for those versions only.

From MariaDB 10.1.48 , MariaDB 10.2.35 , MariaDB 10.3.26 , MariaDB 10.4.16 and MariaDB 10.5.7, a different fix

was implemented. Instead of truncating decimal values after every division, they are instead truncated for comparison

purposes only.

For example

Versions other than MariaDB 10.1.46 , MariaDB 10.1.47 , MariaDB 10.2.33 , MariaDB 10.2.34 , MariaDB 10.2.35

, MariaDB 10.3.24 , MariaDB 10.3.25 , MariaDB 10.4.14, MariaDB 10.4.15, MariaDB 10.5.5 and MariaDB 10.5.6:

SELECT (55/23244*1000);

+-----------------+

| (55/23244*1000) |

+-----------------+

| 2.3662 |

+-----------------

MariaDB 10.1.46 , MariaDB 10.1.47 , MariaDB 10.2.33 , MariaDB 10.2.34 , MariaDB 10.2.35 , MariaDB 10.3.24

, MariaDB 10.3.25 , MariaDB 10.4.14, MariaDB 10.4.15, MariaDB 10.5.5 and MariaDB 10.5.6 only:

2221/4161

https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/

SELECT (55/23244*1000);

+-----------------+

| (55/23244*1000) |

+-----------------+

| 2.4000 |

+-----------------+

This is because the intermediate result, SELECT 55/23244 takes into account div_precision_increment and

results were truncated after every division in those versions only.

Commandline: --div-precision-increment=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 4

Range: 0 to 30

encrypt_tmp_disk_tables

Description: Enables automatic encryption of all internal on-disk temporary tables that are created during query

execution if aria_used_for_temp_tables=ON is set. See Data at Rest Encryption and Enabling Encryption for

Internal On-disk Temporary Tables .

Commandline: --encrypt-tmp-disk-tables[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

encrypt_tmp_files

Description: Enables automatic encryption of temporary files, such as those created for filesort operations, binary

log file caches, etc. See Data at Rest Encryption.

Commandline: --encrypt-tmp-files[={0|1}]

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

encryption_algorithm

Description: Which encryption algorithm to use for table encryption. aes_cbc is the recommended one. See Table

and Tablespace Encryption.

Commandline: --encryption-algorithm=value

Scope: Global

Dynamic: No

Data Type: enum

Default Value: none

Valid Values: none , aes_ecb , aes_cbc , aes_ctr

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.1.4

enforce_storage_engine

Description: Force the use of a particular storage engine for new tables. Used to avoid unwanted creation of tables

using another engine. For example, setting to InnoDB will prevent any MyISAM tables from being created. If another

engine is specified in a CREATE TABLE statement, the outcome depends on whether the

NO_ENGINE_SUBSTITUTION SQL_MODE has been set or not. If set, the query will fail, while if not set, a warning will

be returned and the table created according to the engine specified by this variable. The variable has a session

scope, but is only modifiable by a user with the SUPER privilege.

Commandline: None

Scope: Session

2222/4161

https://mariadb.com/kb/en/encrypting-data-for-aria/#enabling-encryption-for-internal-on-disk-temporary-tables
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

Dynamic: Yes

Data Type: string

Default Value: none

engine_condition_pushdown

Description: Deprecated in MariaDB 5.5 and removed and replaced by the optimizer_switch

engine_condition_pushdown={on|off} flag in MariaDB 10.0.. Specifies whether the engine condition pushdown

optimization is enabled. Since MariaDB 10.1.1 , engine condition pushdown is enabled for all engines that support

it.

Commandline: --engine-condition-pushdown

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 5.5

Removed: MariaDB 10.0

eq_range_index_dive_limit

Description: Limit used for speeding up queries listed by long nested INs. The optimizer will use existing index

statistics instead of doing index dives for equality ranges if the number of equality ranges for the index is larger than

or equal to this number. If set to 0 (unlimited, the default), index dives are always used.

Commandline: --eq-range-index-dive-limit=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 200 (>= MariaDB 10.4.3), 0 (<= MariaDB 10.4.2)

Range: 0 to 4294967295

error_count

Description: Read-only variable denoting the number of errors from the most recent statement in the current session

that generated errors. See SHOW_ERRORS().

Scope: Session

Dynamic: Yes

Data Type: numeric

event_scheduler

Description: Status of the Event Scheduler. Can be set to ON or OFF , while DISABLED means it cannot be set at

runtime. Setting the variable will cause a load of events if they were not loaded at startup.

Commandline: --event-scheduler[=value]

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: OFF

Valid Values: ON (or 1), OFF (or 0), DISABLED

expensive_subquery_limit

Description: Number of rows to be examined for a query to be considered expensive, that is, maximum number of

rows a subquery may examine in order to be executed during optimization and used for constant optimization.

Commandline: --expensive-subquery-limit=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 0 upwards

2223/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/

explicit_defaults_for_timestamp

Description: This option causes CREATE TABLE to create all TIMESTAMP columns as NULL with the DEFAULT

NULL attribute, Without this option, TIMESTAMP columns are NOT NULL and have implicit DEFAULT clauses.

Commandline: --explicit-defaults-for-timestamp=[={0|1}]

Scope:

Global, Session (>= MariaDB 10.8.4 , MariaDB 10.7.5 , MariaDB 10.6.9, MariaDB 10.5.17)

Global (<= MariaDB 10.8.3 , MariaDB 10.7.4 , MariaDB 10.6.8, MariaDB 10.5.16)

Dynamic:

Yes (>= MariaDB 10.8.4 , MariaDB 10.7.5 , MariaDB 10.6.9, MariaDB 10.5.17)

No (<= MariaDB 10.8.3 , MariaDB 10.7.4 , MariaDB 10.6.8, MariaDB 10.5.16)

Data Type: boolean

Default Value: ON (>= MariaDB 10.10), OFF (<= MariaDB 10.9)

external_user

Description: External user name set by the plugin used to authenticate the client. NULL if native MariaDB

authentication is used.

Scope: Session

Dynamic: No

Data Type: string

Default Value: NULL

flush

Description: Usually, MariaDB writes changes to disk after each SQL statement, and the operating system handles

synchronizing (flushing) it to disk. If set to ON , the server will synchronize all changes to disk after each statement.

Commandline: --flush

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

flush_time

Description: Interval in seconds that tables are closed to synchronize (flush) data to disk and free up resources. If

set to 0, the default, there is no automatic synchronizing tables and closing of tables. This option should not be

necessary on systems with sufficient resources.

Commandline: --flush_time=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

foreign_key_checks

Description: If set to 1 (the default) foreign key constraints (including ON UPDATE and ON DELETE behavior)

InnoDB tables are checked, while if set to 0, they are not checked. 0 is not recommended for normal use, though it

can be useful in situations where you know the data is consistent, but want to reload data in a different order from that

that specified by parent/child relationships. Setting this variable to 1 does not retrospectively check for inconsistencies

introduced while set to 0.

Commandline: None

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

ft_boolean_syntax

Description: List of operators supported by an IN BOOLEAN MODE full-text search. If you wish to change, note that

2224/4161

https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/

each character must be ASCII and non-alphanumeric, the full string must be 14 characters and the first or second

character must be a space. Positions 10, 13 and 14 are reserved for future extensions. Also, no duplicates are

permitted except for the phrase quoting characters in positions 11 and 12, which may be the same.

Commandline: --ft-boolean-syntax=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: + -><()*:""&|

ft_max_word_len

Description: Maximum length for a word to be included in the MyISAM full-text index. If this variable is changed, the

full-text index must be rebuilt in order for the new value to take effect. The quickest way to do this is by issuing a

REPAIR TABLE table_name QUICK statement. See innodb_ft_max_token_size for the InnoDB equivalent.

Commandline: --ft-max-word-len=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 84

Minimum Value: 10

ft_min_word_len

Description: Minimum length for a word to be included in the MyISAM full-text index. If this variable is changed, the

full-text index must be rebuilt in order for the new value to take effect. The quickest way to do this is by issuing a

REPAIR TABLE table_name QUICK statement. See innodb_ft_min_token_size for the InnoDB equivalent.

Commandline: --ft-min-word-len=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 4

Minimum Value: 1

ft_query_expansion_limit

Description: For full-text searches, denotes the numer of top matches when using WITH QUERY EXPANSION.

Commandline: --ft-query-expansion-limit=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 20

Range: 0 to 1000

ft_stopword_file

Description: File containing a list of stopwords for use in MyISAM full-text searches. Unless an absolute path is

specified the file will be looked for in the data directory. The file is not parsed for comments, so all words found

become stopwords. By default, a built-in list of words (built from storage/myisam/ft_static.c file) is used.

Stopwords can be disabled by setting this variable to '' (an empty string). If this variable is changed, the full-text

index must be rebuilt. The quickest way to do this is by issuing a REPAIR TABLE table_name QUICK statement.

See innodb_ft_server_stopword_table for the InnoDB equivalent.

Commandline: --ft-stopword-file=file_name

Scope: Global

Dynamic: No

Data Type: file name

Default Value: (built-in)

general_log

Description: If set to 0, the default unless the --general-log option is used, the general query log is disabled, while if

2225/4161

set to 1, the general query log is enabled. See log_output for how log files are written. If that variable is set to NONE ,

no logs will be written even if general_query_log is set to 1 .

Commandline: --general-log

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

general_log_file

Description: Name of the general query log file. If this is not specified, the name is taken from the log-basename

setting or from your system hostname with .log as a suffix.

Commandline: --general-log-file=file_name

Scope: Global

Dynamic: Yes

Data Type: file name

Default Value: host_name.log

group_concat_max_len

Description: Maximum length in bytes of the returned result for the functions GROUP_CONCAT(),

JSON_OBJECTAGG and JSON_ARRAYAGG.

Commandline: --group-concat-max-len=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value:

1048576 (1M)

Range: 4 to 4294967295

.

have_compress

Description: If the zlib compression library is accessible to the server, this will be set to YES , otherwise it will be

NO . The COMPRESS() and UNCOMPRESS() functions will only be available if set to YES .

Scope: Global

Dynamic: No

have_crypt

Description: If the crypt() system call is available this variable will be set to YES , otherwise it will be set to NO . If

set to NO , the ENCRYPT() function cannot be used.

Scope: Global

Dynamic: No

have_csv

Description: If the server supports CSV tables, will be set to YES , otherwise will be set to NO . Removed in

MariaDB 10.0, use the Information Schema PLUGINS table or SHOW ENGINES instead.

Scope: Global

Dynamic: No

Removed: MariaDB 10.0

have_dynamic_loading

Description: If the server supports dynamic loading of plugins, will be set to YES , otherwise will be set to NO .

Scope: Global

Dynamic: No

2226/4161

have_geometry

Description: If the server supports spatial data types, will be set to YES , otherwise will be set to NO .

Scope: Global

Dynamic: No

have_ndbcluster

Description: If the server supports NDBCluster (disabled in MariaDB).

Scope: Global

Dynamic: No

Removed: MariaDB 10.0

have_partitioning

Description: If the server supports partitioning, will be set to YES , unless the --skip-partition option is used, in

which case will be set to DISABLED . Will be set to NO otherwise. Removed in MariaDB 10.0 - SHOW PLUGINS

should be used instead.

Scope: Global

Dynamic: No

Removed: MariaDB 10.0

have_profiling

Description: If statement profiling is available, will be set to YES , otherwise will be set to NO . See SHOW

PROFILES() and SHOW PROFILE().

Scope: Global

Dynamic: No

have_query_cache

Description: If the server supports the query cache, will be set to YES , otherwise will be set to NO .

Scope: Global

Dynamic: No

have_rtree_keys

Description: If RTREE indexes (used for spatial indexes) are available, will be set to YES , otherwise will be set to

NO .

Scope: Global

Dynamic: No

have_symlink

Description: This system variable can be used to determine whether the server supports symbolic links (note that it

has no meaning on Windows).

If symbolic links are supported, then the value will be YES .

If symbolic links are not supported, then the value will be NO .

If symbolic links are disabled with the --symbolic-links option and the skip option prefix (i.e. --skip-symbolic-

links), then the value will be DISABLED .

Symbolic link support is required for the INDEX DIRECTORY and DATA DIRECTORY table options.

Scope: Global

Dynamic: No

histogram_size

Description: Number of bytes used for a histogram, or, from MariaDB 10.7 when histogram_type is set to JSON_HB ,

2227/4161

https://mariadb.com/kb/en/ndb-disabled-in-mariadb/

number of buckets. If set to 0, no histograms are created by ANALYZE.

Commandline: --histogram-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 254 (>= MariaDB 10.4.3), 0 (<= MariaDB 10.4.2)

Range: 0 to 255

histogram_type

Description: Specifies the type of histograms created by ANALYZE.

SINGLE_PREC_HB - single precision height-balanced.

DOUBLE_PREC_HB - double precision height-balanced.

JSON_HB - JSON histograms (from MariaDB 10.7)

Commandline: --histogram-type=value

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value:

JSON_HB (>= MariaDB 11.0)

DOUBLE_PREC_HB (<= MariaDB 10.11, >= MariaDB 10.4.3)

SINGLE_PREC_HB (<= MariaDB 10.4.2)

Valid Values:

SINGLE_PREC_HB , DOUBLE_PREC_HB (<= MariaDB 10.6)

SINGLE_PREC_HB , DOUBLE_PREC_HB , JSON_HB (>= MariaDB 10.7)

host_cache_size

Description: Number of host names that will be cached to avoid resolving. Setting to 0 disables the cache.

Changing the value while the server is running causes an implicit FLUSH HOSTS, clearing the host cache and

truncating the performance_schema.host_cache table. If you are connecting from a lot of different machines you

should consider increasing.

Commandline: --host-cache-size=# .

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 128

Range: 0 to 65536

hostname

Description: When the server starts, this variable is set to the server host name.

Scope: Global

Dynamic: No

Data Type: string

identity

Description: A synonym for last_insert_id variable.

idle_readonly_transaction_timeout

Description: Time in seconds that the server waits for idle read-only transactions before killing the connection. If set

to 0 , the default, connections are never killed. See also idle_transaction_timeout, idle_write_transaction_timeout

and Transaction Timeouts.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 31536000

2228/4161

Introduced: MariaDB 10.3.0

idle_transaction_timeout

Description: Time in seconds that the server waits for idle transactions before killing the connection. If set to 0 , the

default, connections are never killed. See also idle_readonly_transaction_timeout, idle_write_transaction_timeout and

Transaction Timeouts.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 31536000

Introduced: MariaDB 10.3.0

idle_write_transaction_timeout

Description: Time in seconds that the server waits for idle read-write transactions before killing the connection. If set

to 0 , the default, connections are never killed. See also idle_transaction_timeout, idle_readonly_transaction_timeout

and Transaction Timeouts. Called idle_readwrite_transaction_timeout until MariaDB 10.3.2 .

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 31536000

Introduced: MariaDB 10.3.0

ignore_db_dirs

Description: Tells the server that this directory can never be a database. That means two things - firstly it is ignored

by the SHOW DATABASES command and INFORMATION_SCHEMA tables. And secondly, USE, CREATE

DATABASE and SELECT statements will return an error if the database from the ignored list specified. Use this

option several times if you need to ignore more than one directory. To make the list empty set the void value to the

option as --ignore-db-dir=. If the option or configuration is specified multiple times, viewing this value will list the

ignore directories separated by commas.

Commandline: --ignore-db-dirs=dir .

Scope: Global

Dynamic: No

Data Type: string

in_predicate_conversion_threshold

Description: The minimum number of scalar elements in the value list of an IN predicate that triggers its conversion

to an IN subquery. Set to 0 to disable the conversion. See Conversion of Big IN Predicates Into Subqueries.

Commandline: --in-predicate-conversion-threshold=#

Scope: Global, Session

Dynamic: No

Data Type: numeric

Default Value: 1000

Range: 0 to 4294967295

Introduced: MariaDB 10.3.18 (previously debug builds only)

in_transaction

Description: Session-only and read-only variable that is set to 1 if a transaction is in progress, 0 if not.

Commandline: No

Scope: Session

Dynamic: No

Data Type: boolean

Default Value: 0

2229/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-10318-release-notes/

init_connect

Description: String containing one or more SQL statements, separated by semicolons, that will be executed by the

server for each client connecting. If there's a syntax error in the one of the statements, the client will fail to connect.

For this reason, the statements are not executed for users with the SUPER privilege or, from MariaDB 10.5.2, the

CONNECTION ADMIN privilege, who can then still connect and correct the error. See also init_file.

Commandline: --init-connect=name

Scope: Global

Dynamic: Yes

Data Type: string

init_file

Description: Name of a file containing SQL statements that will be executed by the server on startup. Each

statement should be on a new line, and end with a semicolon. See also init_connect.

Commandline: init-file=file_name

Scope: Global

Dynamic: No

Data Type: file name

insert_id

Description: Value to be used for the next statement inserting a new AUTO_INCREMENT value.

Scope: Session

Dynamic: Yes

Data Type: numeric

interactive_timeout

Description: Time in seconds that the server waits for an interactive connection (one that connects with the

mysql_real_connect() CLIENT_INTERACTIVE option) to become active before closing it. See also wait_timeout.

Commandline: --interactive-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 28800

Range: (Windows): 1 to 2147483

Range: (Other): 1 to 31536000

join_buffer_size

Description: Minimum size in bytes of the buffer used for queries that cannot use an index, and instead perform a full

table scan. Increase to get faster full joins when adding indexes is not possible, although be aware of memory issues,

since joins will always allocate the minimum size. Best left low globally and set high in sessions that require large full

joins. In 64-bit platforms, Windows truncates values above 4GB to 4GB with a warning. See also Block-Based Join

Algorithms - Size of Join Buffers.

Commandline: --join-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 262144 (256kB)

Range (non-Windows): 128 to 18446744073709547520

Range (Windows): 8228 to 18446744073709547520

join_buffer_space_limit

Description: Maximum size in bytes of the query buffer, By default 1024*128*10. See Block-based join algorithms.

Commandline: --join-buffer-space-limit=#

Scope: Global, Session

Dynamic: Yes

2230/4161

Data Type: numeric

Default Value: 2097152

Range: 2048 to 18446744073709551615

join_cache_level

Description: Controls which of the eight block-based algorithms can be used for join operations. See Block-based

join algorithms for more information.

1 3 flat (Block Nested Loop) BNL

2 3 incremental BNL

3 3 flat Block Nested Loop Hash (BNLH)

4 3 incremental BNLH

5 3 flat Batch Key Access (BKA)

6 3 incremental BKA

7 3 flat Batch Key Access Hash (BKAH)

8 3 incremental BKAH

Commandline: --join-cache-level=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 2

Range: 0 to 8

keep_files_on_create

Description: If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is stored in the database

directory. When set to 0 , the default, if MariaDB finds another .MYD file in the database directory it will overwrite it.

Setting this variable to 1 means that MariaDB will return an error instead, just as it usually does in the same situation

outside of the database directory. The same applies for .MYI files and no INDEX DIRECTORY option. Deprecated in

MariaDB 10.8.0 .

Commandline: --keep-files-on-create=#

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.8.0

large_files_support

Description: ON if the server if was compiled with large file support or not, else OFF

Scope: Global

Dynamic: No

large_page_size

Description: Indicates the size of memory page if large page support (Linux only) is enabled. The page size is

determined from the Hugepagesize setting in /proc/meminfo . See large_pages. Deprecated and unused in

MariaDB 10.5.3 since multiple page size support was added.

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: Autosized (see description)

Deprecated: MariaDB 10.5.3

large_pages

Description: Indicates whether large page support (prior to MariaDB 10.5, Linux only, by now supported Windows

and BSD distros, also called huge pages) is used. This is set with --large-pages or disabled with --skip-

large-pages . Large pages are used for the innodb buffer pool and for online DDL (of size 3*

innodb_sort_buffer_size (or 6 when encryption is used)). To use large pages, the Linux sysctl variable

2231/4161

https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/

kernel.shmmax must be large than the llocation. Also the sysctl variable vm.nr_hugepages multipled by large-

page) must be larger than the usage. The ulimit for locked memory must be sufficient to cover the amount used

(ulimit -l and equalivent in /etc/security/limits.conf / or in systemd LimitMEMLOCK). If these operating system

controls or insufficient free huge pages are available, the allocation of large pages will fall back to conventional

memory allocation and a warning will appear in the logs. Only allocations of the default Hugepagesize currently

occur (see /proc/meminfo).

Commandline: --large-pages , --skip-large-pages

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

last_insert_id

Description: Contains the same value as that returned by LAST_INSERT_ID(). Note that setting this variable doen't

update the value returned by the underlying function.

Scope: Session

Dynamic: Yes

Data Type: numeric

lc_messages

Description: This system variable can be specified as a locale name. The language of the associated locale will

be used for error messages. See Server Locales for a list of supported locales and their associated languages.

This system variable is set to en_US by default, which means that error messages are in English by default.

If this system variable is set to a valid locale name, but the server can't find an error message file for the

language associated with the locale , then the default language will be used instead.

This system variable is used along with the lc_messages_dir system variable to construct the path to the

error messages file.

See Setting the Language for Error Messages for more information.

Commandline: --lc-messages=name

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: en_us

lc_messages_dir

Description: This system variable can be specified either as the path to the directory storing the server's error

message files or as the path to the directory storing the specific language's error message file. See Server Locales

for a list of available locales and their related languages.

The server initially tries to interpret the value of this system variable as a path to the directory storing the

server's error message files. Therefore, it constructs the path to the language's error message file by

concatenating the value of this system variable with the language name of the locale specified by the

lc_messages system variable .

If the server does not find the error message file for the language, then it tries to interpret the value of this

system variable as a direct path to the directory storing the specific language's error message file.

See Setting the Language for Error Messages for more information.

Commandline: --lc-messages-dir=path

Scope: Global

Dynamic: No

Data Type: directory name

lc_time_names

Description: The locale that determines the language used for the date and time functions DAYNAME(),

MONTHNAME() and DATE_FORMAT(). Locale names are language and region subtags, for example 'en_ZA'

(English - South Africa) or 'es_US: Spanish - United States'. The default is always 'en-US' regardless of the system's

locale setting. See server locale for a full list of supported locales.

Commandline: --lc-time-names=name

Scope: Global, Session

2232/4161

https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/server-locale/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/date-format
https://mariadb.com/kb/en/server-locale/

Dynamic: Yes

Data Type: string

Default Value: en_US

license

Description: Server license, for example GPL .

Scope: Global

Dynamic: No

Data Type: string

local_infile

Description: If set to 1 , LOCAL is supported for LOAD DATA INFILE statements. If set to 0 , usually for security

reasons, attempts to perform a LOAD DATA LOCAL will fail with an error message.

Commandline: --local-infile=#

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

lock_wait_timeout

Description: Timeout in seconds for attempts to acquire metadata locks. Statements using metadata locks include

FLUSH TABLES WITH READ LOCK, LOCK TABLES, HANDLER and DML and DDL operations on tables, stored

procedures and functions, and views. The timeout is separate for each attempt, of which there may be multiple in a

single statement. 0 (from MariaDB 10.3.0) means no wait. See WAIT and NOWAIT.

Commandline: --lock-wait-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value:

86400 (1 day)

Range:

0 to 31536000

locked_in_memory

Description: Indicates whether --memlock was used to lock mariadbd in memory.

Commandline: --memlock

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

log

Description: Deprecated and removed in MariaDB 10.0, use general_log instead.

Commandline: -l [filename] or --log[=filename]

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: OFF

Removed: MariaDB 10.0

log_disabled_statements

Description: If set, the specified type of statements (slave and/or stored procedure statements) will not be logged to

the general log. Multiple values are comma-separated, without spaces.

2233/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

Commandline: --log-disabled_statements=value

Scope: Global, Session

Dynamic: No

Data Type: set

Default Value: sp

Valid Values: slave and/or sp , or empty string for none

Introduced: MariaDB 10.3.1

log_error

Description: Specifies the name of the error log. If --console is specified later in the configuration (Windows only) or

this option isn't specified, errors will be logged to stderr. If no name is provided, errors will still be logged to

hostname.err in the datadir directory by default. If a configuration file sets --log-error , one can reset it with

--skip-log-error (useful to override a system wide configuration file). MariaDB always writes its error log, but the

destination is configurable. See error log for details.

Commandline: --log-error[=name] , --skip-log-error

Scope: Global

Dynamic: No

Data Type: file name

Default Value: (empty string)

log_output

Description: How the output for the general query log and the slow query log is stored. By default written to file

(FILE), it can also be stored in the general_log and slow_log tables in the mysql database (TABLE), or not stored at

all (NONE). More than one option can be chosen at the same time, with NONE taking precedence if present. Logs will

not be written if logging is not enabled. See Writing logs into tables, and the slow_query_log and general_log server

system variables.

Commandline: --log-output=name

Scope: Global

Dynamic: Yes

Data Type: set

Default Value: FILE

Valid Values: TABLE , FILE or NONE

log_queries_not_using_indexes

Description: Queries that don't use an index, or that perform a full index scan where the index doesn't limit the

number of rows, will be logged to the slow query log (regardless of time taken). The slow query log needs to be

enabled for this to have an effect. Mapped to log_slow_filter='not_using_index' from MariaDB 10.3.1 .

Commandline: --log-queries-not-using-indexes

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

log_slow_admin_statements

Description: Log slow OPTIMIZE, ANALYZE, ALTER and other administrative statements to the slow log if it is

open. See also log_slow_disabled_statements and log_slow_filter. Deprecated, use log_slow_filter without admin .

Commandline: --log-slow-admin-statements

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

ON

Deprecated: MariaDB 11.0.1

log_slow_disabled_statements

2234/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

Description: If set, the specified type of statements will not be logged to the slow query log. See also

log_slow_admin_statements and log_slow_filter.

Commandline: --log-slow-disabled_statements=value

Scope: Global, Session

Dynamic: No

Data Type: set

Default Value: sp

Valid Vales: admin , call , slave and/or sp

Introduced: MariaDB 10.3.1

log_slow_filter

Description: Comma-delimited string (without spaces) containing one or more settings for filtering what is logged to

the slow query log. If a query matches one of the types listed in the filter, and takes longer than long_query_time, it

will be logged(except for 'not_using_index' which is always logged if enabled, regardless of the time). Sets log-slow-

admin-statements to ON. See also log_slow_disabled_statements.

admin log administrative queries (create, optimize, drop etc...)

filesort logs queries that use a filesort.

filesort_on_disk logs queries that perform a a filesort on disk.

filesort_priority_queue (from MariaDB 10.3.2)

full_join logs queries that perform a join without indexes.

full_scan logs queries that perform full table scans.

not_using_index logs queries that don't use an index, or that perform a full index scan where the index

doesn't limit the number of rows. Disregards long_query_time, unlike other options.

log_queries_not_using_indexes maps to this option. From MariaDB 10.3.1 .

query_cache log queries that are resolved by the query cache.

query_cache_miss logs queries that are not found in the query cache.

tmp_table logs queries that create an implicit temporary table.

tmp_table_on_disk logs queries that create a temporary table on disk.

Commandline: log-slow-filter=value1[,value2...]

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value:

admin , filesort , filesort_on_disk , filesort_priority_queue , full_join , full_scan ,

query_cache , query_cache_miss , tmp_table , tmp_table_on_disk

Valid Values:

admin , filesort , filesort_on_disk , filesort_priority_queue , full_join , full_scan ,

not_using_index , query_cache , query_cache_miss , tmp_table , tmp_table_on_disk

log_slow_min_examined_row_limit

Description: If a query examines more than this number of rows, it is logged to the slow query log. If set to 0 , the

default, no row limit is used. min_examined_row_limit is an alias.

Commandline: --log-slow-min-examined-row-limit=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0-4294967295

Introduced: MariaDB 10.11.0

log_slow_queries

Description: Deprecated and removed in MariaDB 10.0, use slow_query_log instead.

Commandline: --log-slow-queries[=name]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0

2235/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

log_slow_query

Description: If set to 0, the default unless the --slow-query-log option is used, the slow query log is disabled, while if

set to 1 (both global and session variables), the slow query log is enabled. Named slow_query_log before MariaDB

10.11.0, which is now an alias.

Commandline: --slow-query-log

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

Introduced: MariaDB 10.11.0

See also: See log_output to see how log files are written. If that variable is set to NONE , no logs will be written even

if log_slow_query is set to 1 .

log_slow_query_file

Description: Name of the slow query log file. Before MariaDB 10.11, was named slow_query_log_file. This was

named log_slow_query_file_name in the MariaDB 10.11.0 preview release.

Commandline: --log-slow-query-file=file_name

Scope: Global

Dynamic: Yes

Data Type: file name

Default Value: host_name-slow.log

Introduced: MariaDB 10.11.0

log_slow_query_time

Description: If a query takes longer than this many seconds to execute (microseconds can be specified too), the

Slow_queries status variable is incremented and, if enabled, the query is logged to the slow query log. Before

MariaDB 10.11, was named long_query_time.

Commandline: --log-slow-query-time=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 10.000000

Range: 0 to 31536000

Introduced: MariaDB 10.11.0

log_slow_rate_limit

Description: The slow query log will log every this many queries. The default is 1 , or every query, while setting it to

20 would log every 20 queries, or five percent. Aims to reduce I/O usage and excessively large slow query logs. See

also Slow Query Log Extended Statistics.

Commandline: log-slow-rate-limit=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 upwards

log_slow_verbosity

Description: Controls information to be added to the slow query log. Options are added in a comma-delimited string.

See also Slow Query Log Extended Statistics. log_slow_verbosity is not supported when log_output='TABLE'.

query_plan logs query execution plan information

innodb Alias to engine (from MariaDB 10.6.15 and MariaDB 10.11.5), previously ignored.

explain prints EXPLAIN output in the slow query log. See EXPLAIN in the Slow Query Log.

engine Logs engine statistics (from MariaDB 10.6.15 and MariaDB 10.11.5).

warnings Print all errors, warnings and notes for the statement to the slow query log. (from MariaDB

10.6.16).

all Enables all above options (From MariaDB 10.6.16)

2236/4161

full Enables all above options.

Commandline: log-slow-verbosity=value1[,value2...]

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value: (Empty)

Valid Values:

>= MariaDB 10.6.16, MariaDB 10.11.6: (Empty), query_plan , innodb , explain , engine , warnings ,

all , full

>= MariaDB 10.6.15, MariaDB 10.11.5: (Empty), query_plan , innodb , explain , engine , full

<= MariaDB 10.6.14, MariaDB 10.11.4: (Empty), query_plan , innodb , explain

log_slow_max_warnings

Description: Max numbers of warnings printed to slow query log per statement

Commandline: log-slow-max-warnings=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 0 to 1000

Introduced: MariaDB 10.6.16

log_tc_size

Description: Defines the size in bytes of the memory-mapped file-based transaction coordinator log, which is only

used if the binary log is disabled. If you have two or more XA-capable storage engines enabled, then a transaction

coordinator log must be available. This size is defined in multiples of 4096. See Transaction Coordinator Log for more

information. Also see the --log-tc server option and the --tc-heuristic-recover option.

Commandline: log-tc-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 24576

Range: 12288 to 18446744073709551615

log_warnings

Description: Determines which additional warnings are logged. Setting to 0 disables additional warning logging.

Note that this does not prevent all warnings, there is a core set of warnings that will always be written to the error log.

The additional warnings are as follows:

log_warnings >= 1

Event scheduler information.

System signals

Wrong usage of --user

Failed setrlimit() and mlockall()

Changed limits

Wrong values of lower_case_table_names and stack_size

Wrong values for command line options

Start log position and some master information when starting slaves

Slave reconnects

Killed slaves

Error reading relay logs

Unsafe statements for statement-based replication. If this warning occurs frequently, it is throttled to

prevent flooding the log.

Disabled plugins that one tried to enable or use.

UDF files that didn't include the required init functions.

DNS lookup failures.

log_warnings >= 2

Access denied errors.

Connections aborted or closed due to errors or timeouts.

Table handler errors

2237/4161

Messages related to the files used to persist replication state:

Either the default master.info file or the file that is configured by the master_info_file

option.

Either the default relay-log.info file or the file that is configured by the

relay_log_info_file system variable.

Information about a master's binary log dump thread.

log_warnings >= 3

All errors and warnings during MyISAM repair and auto recover.

Information about old-style language options.

Information about progress of InnoDB online DDL .

log_warnings >=4

Connections aborted due to "Too many connections" errors.

Connections closed normally without authentication.

Connections aborted due to KILL .

Connections closed due to released connections, such as when completion_type is set to RELEASE .

Could not read packet: (a lot more information)

All read/write errors for a connection are logged to the error log.

log_warnings >=9

Information about initializing plugins.

Commandline: -W [level] or --log-warnings[=level]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value:

2

Range: 0 to 4294967295

long_query_time

Description: If a query takes longer than this many seconds to execute (microseconds can be specified too), the

Slow_queries status variable is incremented and, if enabled, the query is logged to the slow query log. From MariaDB

10.11.0, this is an alias for log_slow_query_time.

Commandline: --long-query-time=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 10.000000

Range: 0 upwards

low_priority_updates

Description: If set to 1 (0 is the default), for storage engines that use only table-level locking (Aria, MyISAM,

MEMORY and MERGE), all INSERTs, UPDATEs, DELETEs and LOCK TABLE WRITEs will wait until there are no

more SELECTs or LOCK TABLE READs pending on the relevant tables. Set this to 1 if reads are prioritized over

writes.

In MariaDB 5.5 and earlier, sql_low_priority_updates is a synonym.

Commandline: --low-priority-updates

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

lower_case_file_system

Description: Read-only variable describing whether the file system is case-sensitive. If set to OFF , file names are

case-sensitive. If set to ON , they are not case-sensitive.

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ##

2238/4161

https://mariadb.org/monitoring-progress-and-temporal-memory-usage-of-online-ddl-in-innodb/

lower_case_table_names

Description: If set to 0 (the default on Unix-based systems), table names and aliases and database names are

compared in a case-sensitive manner. If set to 1 (the default on Windows), names are stored in lowercase and not

compared in a case-sensitive manner. If set to 2 (the default on Mac OS X), names are stored as declared, but

compared in lowercase. This system variable's value cannot be changed after the datadir has been initialized.

lower_case_table_names is set when a MariaDB instance starts, and it remains constant afterwards.

Commandline: --lower-case-table-names[=#]

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0 (Unix), 1 (Windows), 2 (Mac OS X)

Range: 0 to 2

max_allowed_packet

Description: Maximum size in bytes of a packet or a generated/intermediate string. The packet message buffer is

initialized with the value from net_buffer_length, but can grow up to max_allowed_packet bytes. Set as large as the

largest BLOB, in multiples of 1024. If this value is changed, it should be changed on the client side as well. See

slave_max_allowed_packet for a specific limit for replication purposes.

Commandline: --max-allowed-packet=#

Scope: Global, Session

Dynamic: Yes (Global), No (Session)

Data Type: numeric

Default Value:

16777216 (16M)

1073741824 (1GB) (client-side)

Range: 1024 to 1073741824

max_connect_errors

Description: Limit to the number of successive failed connects from a host before the host is blocked from making

further connections. The count for a host is reset to zero if they successfully connect. To unblock, flush the host cache

with a FLUSH HOSTS statement or mariadb-admin flush-hosts. The performance_schema.host_cache table contains

the status of the current hosts.

Commandline: --max-connect-errors=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 1 to 4294967295

max_connections

Description: The maximum number of simultaneous client connections. See also Handling Too Many Connections.

Note that this value affects the number of file descriptors required on the operating system. Minimum was changed

from 1 to 10 to avoid possible unexpected results for the user (MDEV-18252). Note that MariaDB always has

one reserved connection for a superuser. Additionally it can listen on a separate port, so will be available even when

the max_connections limit is reached.

Commandline: --max-connections=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 151

Range: 10 to 100000

max_delayed_threads

Description: Limits to the number of INSERT DELAYED threads. Once this limit is reached, the insert is handled as

if there was no DELAYED attribute. If set to 0 , DELAYED is ignored entirely. The session value can only be set to

0 or to the same as the global value.

2239/4161

https://jira.mariadb.org/browse/MDEV-18252

Commandline: --max-delayed-threads=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 20

Range: 0 to 16384

max_digest_length

Description: Maximum length considered for computing a statement digest, such as used by the Performance

Schema and query rewrite plugins. Statements that differ after this many bytes produce the same digest, and are

aggregated for statistics purposes. The variable is allocated per session. Increasing will allow longer statements to be

distinguished from each other, but increase memory use, while decreasing will reduce memory use, but more

statements may become indistinguishable.

Commandline: --max-digest-length=#

Scope: Global,

Dynamic: No

Data Type: numeric

Default Value: 1024

Range: 0 to 1048576

max_error_count

Description: Specifies the maximum number of messages stored for display by SHOW ERRORS and SHOW

WARNINGS statements.

Commandline: --max-error-count=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 64

Range: 0 to 65535

max_heap_table_size

Description: Maximum size in bytes for user-created MEMORY tables. Setting the variable while the server is active

has no effect on existing tables unless they are recreated or altered. The smaller of max_heap_table_size and

tmp_table_size also limits internal in-memory tables. When the maximum size is reached, any further attempts to

insert data will receive a "table ... is full" error. Temporary tables created with CREATE TEMPORARY will not be

converted to Aria, as occurs with internal temporary tables, but will also receive a table full error.

Commandline: --max-heap-table-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16777216

Range : 16384 to 4294966272

max_insert_delayed_threads

Description: Synonym for max_delayed_threads.

max_join_size

Description: Statements will not be performed if they are likely to need to examine more than this number of rows,

row combinations or do more disk seeks. Can prevent poorly-formatted queries from taking server resources.

Changing this value to anything other the default will reset sql_big_selects to 0. If sql_big_selects is set again,

max_join_size will be ignored. This limit is also ignored if the query result is sitting in the query cache. Previously

named sql_max_join_size, which is still a synonym.

Commandline: --max-join-size=#

Scope: Global, Session

Dynamic: Yes

2240/4161

Data Type: numeric

Default Value: 18446744073709551615

Range: 1 to 18446744073709551615

max_length_for_sort_data

Description: Used to decide which algorithm to choose when sorting rows. If the total size of the column data, not

including columns that are part of the sort, is less than max_length_for_sort_data , then we add these to the sort

key. This can speed up the sort as we don't have to re-read the same row again later. Setting the value too high can

slow things down as there will be a higher disk activity for doing the sort.

Commandline: --max-length-for-sort-data=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1024

Range: 4 to 8388608

max_long_data_size

Description: Maximum size for parameter values sent with mysql_stmt_send_long_data(). If not set, will default to

the value of max_allowed_packet. Deprecated in MariaDB 5.5 and removed in MariaDB 10.5.0; use

max_allowed_packet instead.

Commandline: --max-long-data-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value:

16777216 (16M)

Range: 1024 to 4294967295

Deprecated: MariaDB 5.5

Removed: MariaDB 10.5.0

max_password_errors

Description: The maximum permitted number of failed connection attempts due to an invalid password before a user

is blocked from further connections. FLUSH_PRIVILEGES will permit the user to connect again. This limit is ignored

for users with the SUPER privilege or, from MariaDB 10.5.2, the CONNECTION ADMIN privilege. The maximum also

doesn't apply to users with a hostname of localhost, 127.0.0.1 or ::1.

Commandline: --max-password-errors=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4294967295

Range: 1 to 4294967295

Introduced: MariaDB 10.4.2

max_prepared_stmt_count

Description: Maximum number of prepared statements on the server. Can help prevent certain forms of denial-of-

service attacks. If set to 0 , no prepared statements are permitted on the server.

Commandline: --max-prepared-stmt-count=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 16382

Range: 0 to 4294967295 (>= MariaDB 10.3.6), 0 to 1048576 (<= MariaDB 10.3.5)

max_recursive_iterations

Description: Maximum number of iterations when executing recursive queries, used to prevent infinite loops in

2241/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

recursive CTEs.

Commandline: --max-recursive-iterations=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1000 (>= MariaDB 10.6.0), 4294967295 (<= MariaDB 10.5)

Range: 0 to 4294967295

max_rowid_filter_size

Description: The maximum size of the container of a rowid filter.

Commandline: --max-rowid-filter-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 131072

Range: 1024 to 18446744073709551615

Introduced: MariaDB 10.4.3

max_seeks_for_key

Description: The optimizer assumes that the number specified here is the most key seeks required when searching

with an index, regardless of the actual index cardinality. If this value is set lower than its default and maximum,

indexes will tend to be preferred over table scans.

Commandline: --max-seeks-for-key=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 4294967295

Range: 1 to 4294967295

max_session_mem_used

Description: Amount of memory a single user session is allowed to allocate. This limits the value of the session

variable Memory_used.

Commandline: --max-session-mem-used=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 9223372036854775807 (8192 PB)

Range: 8192 to 18446744073709551615

max_sort_length

Description: Maximum size in bytes used for sorting data values - anything exceeding this is ignored. The server

uses only the first max_sort_length bytes of each value and ignores the rest. Increasing this may require

sort_buffer_size to be increased (especially if ER_OUT_OF_SORTMEMORY errors start appearing).

Commandline: --max-sort-length=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1024

Range:

4 to 8388608 (<= MariaDB 10.4.13, MariaDB 10.5.3)

8 to 8388608 (>= MariaDB 10.4.14, MariaDB 10.5.4)

max_sp_recursion_depth

Description: Permitted number of recursive calls for a stored procedure. 0 , the default, no recursion is permitted.

Increasing this value increases the thread stack requirements, so you may need to increase thread_stack as well.

2242/4161

This limit doesn't apply to stored functions.

Commandline: --max-sp-recursion-depth[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 255

max_statement_time

Description: Maximum time in seconds that a query can execute before being aborted. This includes all queries, not

just SELECT statements, but excludes statements in stored procedures. If set to 0, no limit is applied. See Aborting

statements that take longer than a certain time to execute for details and limitations. Useful when combined with SET

STATEMENT for limiting the execution times of individual queries. Replicas are not affected by this variable,

however, from MariaDB 10.10, there's slave_max_statement_time that sets the limit to abort queries on a replica.

Commandline: --max-statement-time[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0.000000

Range: 0 to 31536000

max_tmp_tables

Description: Unused.

Removed: MariaDB 11.3.0

max_user_connections

Description: Maximum simultaneous connections permitted for each user account. When set to 0 , there is no per

user limit. Setting it to -1 stops users without the SUPER privilege or, from MariaDB 10.5.2, the CONNECTION

ADMIN privilege, from connecting to the server. The session variable is always read-only and only privileged users

can modify user limits. The session variable defaults to the global max_user_connections variable, unless the

user's specific MAX_USER_CONNECTIONS resource option is non-zero. When both global variable and the user

resource option are set, the user's MAX_USER_CONNECTIONS is used. Note: This variable does not affect users

with the SUPER privilege or, from MariaDB 10.5.2, the CONNECTION ADMIN privilege.

Commandline: --max-user-connections=#

Scope: Global, Session

Dynamic: Yes, (except when globally set to 0 or -1)

Data Type: numeric

Default Value: 0

Range: -1 to 4294967295

max_write_lock_count

Description: Read lock requests will be permitted for processing after this many write locks. Applies only to storage

engines that use table level locks (thr_lock), so no effect with InnoDB or Archive.

Commandline: --max-write-lock-count=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 4294967295

Range: 0-4294967295

metadata_locks_cache_size

Description: Size of the metadata locks cache, used for reducing the need to create and destroy synchronization

objects. It is particularly helpful on systems where this process is inefficient, such as Windows XP.

Commandline: --metadata-locks-cache-size=#

Scope: Global

2243/4161

Dynamic: No

Data Type: numeric

Default Value: 1024

Range: 1 to 1048576

metadata_locks_hash_instances

Description: Number of hashes used by the set of metadata locks. The metadata locks are partitioned into separate

hashes in order to reduce contention.

Commandline: --metadata-locks-hash-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8

Range: 1 to 1024

min_examined_row_limit

Description: If a query examines more than this number of rows, it is logged to the slow query log. If set to 0 , the

default, no row limit is used. From MariaDB 10.11.0, this is an alias for log_slow_min_examined_row_limit.

Commandline: --min-examined-row-limit=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0-4294967295

mrr_buffer_size

Description: Size of buffer to use when using multi-range read with range access. See Multi Range Read

optimization for more information.

Commandline: --mrr-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 262144

Range 8192 to 2147483648

multi_range_count

Description: Ignored. Use mrr_buffer_size instead.

Commandline: --multi-range-count=#

Default Value: 256

Removed: MariaDB 10.5.1

mysql56_temporal_format

Description: If set (the default), MariaDB uses the MySQL 5.6 low level formats for TIME, DATETIME and

TIMESTAMP instead of the MariaDB 5.3 version. The version MySQL introduced in 5.6 requires more storage, but

potentially allows negative dates and has some advantages in replication. There should be no reason to revert to the

old MariaDB 5.3 microsecond format. See also MDEV-10723 .

Commandline: --mysql56-temporal-format

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

named_pipe

2244/4161

https://jira.mariadb.org/browse/MDEV-10723

Description: On Windows systems, determines whether connections over named pipes are permitted.

Commandline: --named-pipe

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

net_buffer_length

Description: The starting size, in bytes, for the connection and thread buffers for each client thread. The size can

grow to max_allowed_packet. This variable's session value is read-only. Can be set to the expected length of client

statements if memory is a limitation.

Commandline: --net-buffer-length=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16384

Range: 1024 to 1048576

net_read_timeout

Description: Time in seconds the server will wait for a client connection to send more data before aborting the read.

See also net_write_timeout and slave_net_timeout

Commandline: --net-read-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 30

Range: 1 upwards

net_retry_count

Description: Permit this many retries before aborting when attempting to read or write on a communication port. On

FreeBSD systems should be set higher as threads are sent internal interrupts..

Commandline: --net-retry-count=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 1 to 4294967295

net_write_timeout

Description: Time in seconds to wait on writing a block to a connection before aborting the write. See also

net_read_timeout and slave_net_timeout.

Commandline: --net-write-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 60

Range: 1 upwards

note_verbosity

Description: Verbosity level for note-warnings given to the user. Options are added in a comma-delimited string,

except for all , which sets all options. See also Notes when an index cannot be used . Be aware that if the old

sql_notes variable is 0, one will not get any notes. Setting note_verbosity to "" is the recommended way to disable

notes.

basic All old notes.

unusable_keys Give warnings for unusable keys for SELECT, DELETE and UPDATE.

2245/4161

https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/

explain Give warnings for unusable keys for EXPLAIN.

all Enables all above options. This has to be given alone.

Commandline: note-verbosity=value1[,value2...]

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value: basic,explain

Valid Values: basic,explain,unusable_keys or all .

Introduced: MariaDB 10.6.16

old

Description: Disabled by default, enabling it reverts index hints to those used before MySQL 5.1.17. Enabling may

lead to replication errors. Deprecated and replaced by old_mode from MariaDB 10.9.

Commandline: --old

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.9

old_alter_table

Description: From MariaDB 10.3.7 , an alias for alter_algorithm. Prior to that, if set to 1 (0 is default), MariaDB

reverts to the non-optimized, pre-MySQL 5.1, method of processing ALTER TABLE statements. A temporary table is

created, the data is copied over, and then the temporary table is renamed to the original.

Commandline: --old-alter-table

Scope: Global, Session

Dynamic: Yes

Data Type: enumerated (>=MariaDB 10.3.7), boolean (<= MariaDB 10.3.6)

Default Value: See alter_algorithm (>= MariaDB 10.3.7), 0 (<= MariaDB 10.3.6)

Valid Values: See alter_algorithm for the full list.

Deprecated: MariaDB 10.3.7 (superceded by alter_algorithm)

Removed: MariaDB 11.2.0

old_mode

Description: Used for getting MariaDB to emulate behavior from an old version of MySQL or MariaDB. See OLD

Mode. Fully replaces the old variable from MariaDB 10.9. Non-default OLD_MODE options are by design deprecated

and will eventually be removed.

Commandline: --old-mode

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: UTF8_IS_UTF8MB3 (>= MariaDB 10.6) (empty string) (<= MariaDB 10.5)

Valid Values: See OLD Mode for the full list.

old_passwords

Description: If set to 1 (0 is default), MariaDB reverts to using the mysql_old_password authentication plugin

by default for newly created users and passwords, instead of the mysql_native_password authentication plugin.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

open_files_limit

Description: The number of file descriptors available to MariaDB. If you are getting the Too many open files

error, then you should increase this limit. If set to 0, then MariaDB will calculate a limit based on the following:

2246/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

MAX(max_connections*5, max_connections +table_open_cache*2)

MariaDB sets the limit with setrlimit . MariaDB cannot set this to exceed the hard limit imposed by the

operating system. Therefore, you may also need to change the hard limit. There are a few ways to do so.

If you are using mysqld_safe to start mariadbd , then see the instructions at mysqld_safe: Configuring the

Open Files Limit.

If you are using systemd to start mysqld , then see the instructions at systemd: Configuring the Open Files

Limit.

Otherwise, you can change the hard limit for the mysql user account by modifying

/etc/security/limits.conf . See Configuring Linux for MariaDB: Configuring the Open Files Limit for

more details.

Commandline: --open-files-limit=count

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: Autosized (see description)

Range: 0 to 4294967295

optimizer_extra_pruning_depth

Description:If the optimizer needs to enumerate a join prefix of this size or larger, then it will try aggressively prune

away the search space.

Commandline: --optimizer-extra-pruning-depthl[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 8

Range: 0 to 62

Introduced: MariaDB 10.10.1

optimizer_max_sel_args

Description: The maximum number of SEL_ARG objects created when optimizing a range. If more objects would be

needed, the range will not be used by the optimizer.

Commandline: --optimizer-max-sel-args=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16000

Range: 0 to 4294967295

Introduced: MariaDB 10.6.16

optimizer_max_sel_arg_weight

Description: The maximum weight of the SEL_ARG graph. Set to 0 for no limit.

Commandline: --optimizer-max-sel-arg-weight=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 32000

Range: 0 to 18446744073709551615

Introduced: MariaDB 10.5.9

optimizer_prune_level

Description:Controls the heuristic(s) applied during query optimization to prune less-promising partial plans from the

optimizer search space.

0 : heuristics are disabled and an exhaustive search is performed

1 : the optimizer will use heuristics to prune less-promising partial plans from the optimizer search space

2 : tables using EQ_REF will be joined together as 'one entity' and the different combinations of these tables

will not be considered (from MariaDB 10.10)

2247/4161

https://linux.die.net/man/2/setrlimit
https://linux.die.net/man/5/limits.conf

Commandline: --optimizer-prune-level[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 2 (>= MariaDB 10.10), 1 (<= MariaDB 10.9)

optimizer_search_depth

Description: Maximum search depth by the query optimizer. Smaller values lead to less time spent on execution

plans, but potentially less optimal results. If set to 0 , MariaDB will automatically choose a reasonable value. Since

the better results from more optimal planning usually offset the longer time spent on planning, this is set as high as

possible by default. 63 is a valid value, but its effects (switching to the original find_best search) are deprecated.

Commandline: --optimizer-search-depth[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 62

Range: 0 to 63

optimizer_selectivity_sampling_limit

Description: Controls number of record samples to check condition selectivity. Only used if

optimizer_use_condition_selectivity > 4.

Commandline: optimizer-selectivity-sampling-limit[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 10 upwards

optimizer_switch

Description: A series of flags for controlling the query optimizer. See Optimizer Switch for defaults, and a

comparison to MySQL.

Commandline: --optimizer-switch=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Valid Values:

condition_pushdown_for_derived={on|off}

condition_pushdown_for_subquery={on|off} (>=MariaDB 10.4.0)

condition_pushdown_from_having={on|off} (>=MariaDB 10.4.3)

cset_narrowing={on|off} - see Charset Narrowing Optimization (>= MariaDB 10.6.16, MariaDB 10.11.6,

MariaDB 11.0.4, MariaDB 11.1.3 and MariaDB 11.2.2)

default - set all optimizations to their default values.

derived_merge={on|off} - see Derived table merge optimization

derived_with_keys={on|off} - see Derived table with key optimization

engine_condition_pushdown={on|off} . Deprecated in MariaDB 10.1.1 as engine condition pushdown

is now automatically enabled for all engines that support it.

exists_to_in={on|off} - see EXISTS-to-IN optimization

extended_keys={on|off} - see Extended Keys

firstmatch={on|off} - see First Match Strategy

hash_join_cardinality={on|off} - see hash_join_cardinality-optimizer_switch-flag (>= MariaDB

11.0.2, MariaDB 10.11.3, MariaDB 10.6.13)

index_condition_pushdown={on|off} - see Index Condition Pushdown

index_merge={on|off}

index_merge_intersection={on|off}

index_merge_sort_intersection={on|off} - more details

index_merge_sort_union={on|off}

index_merge_union={on|off}

in_to_exists={on|off} - see IN-TO-EXISTS transformation

2248/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/

join_cache_bka={on|off} - see Block-Based Join Algorithms

join_cache_hashed={on|off} - see Block-Based Join Algorithms

join_cache_incremental={on|off} - see Block-Based Join Algorithms

loosescan={on|off} - see LooseScan strategy

materialization={on|off} - Semi-join and non semi-join materialization.

mrr={on|off} - see Multi Range Read optimization

mrr_cost_based={on|off} - see Multi Range Read optimization

mrr_sort_keys={on|off} - see Multi Range Read optimization

not_null_range_scan={on|off} - see not_null_range_scan optimization (>= MariaDB 10.5.0)

optimize_join_buffer_size={on|off} - see Block-Based Join Algorithms

orderby_uses_equalities={on|off} - if not set, the optimizer ignores equality propagation. See MDEV-

8989 .

outer_join_with_cache={on|off} - see Block-Based Join Algorithms

partial_match_rowid_merge={on|off} - see Non-semi-join subquery optimizations

partial_match_table_scan={on|off} - see Non-semi-join subquery optimizations

rowid_filter={on|off} - see Rowid Filtering Optimization (>= MariaDB 10.4.3)

sargable_casefold={on|off} (>= MariaDB 11.3.0)

semijoin={on|off} - see Semi-join subquery optimizations

semijoin_with_cache={on|off} - see Block-Based Join Algorithms

split_materialized={on|off}

subquery_cache={on|off} - see subquery cache.

table_elimination={on|off} - see Table Elimination User Interface

optimizer_trace

Description: Controls tracing of the optimizer: optimizer_trace=option=val[,option=val...], where option is one of

{enabled} and val is one of {on, off, default}

Commandline: --optimizer-trace=value

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: enabled=off

Valid Values: enabled={on|off|default}

Introduced: MariaDB 10.4.3

optimizer_trace_max_mem_size

Description: Limits the memory used while tracing a query by specifying the maximum allowed cumulated size, in

bytes, of stored optimizer traces.

Commandline: --optimizer-trace-max-mem-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1048576

Range: 1 to 18446744073709551615

Introduced: MariaDB 10.4.3

optimizer_use_condition_selectivity

Description: Controls which statistics can be used by the optimizer when looking for the best query execution plan.

1 Use selectivity of predicates as in MariaDB 5.5.

2 Use selectivity of all range predicates supported by indexes.

3 Use selectivity of all range predicates estimated without histogram.

4 Use selectivity of all range predicates estimated with histogram.

5 Additionally use selectivity of certain non-range predicates calculated on record sample.

Commandline: --optimizer-use-condition-selectivity=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 4 (>= MariaDB 10.4.1), 1 (<= MariaDB 10.4.0)

Range: 1 to 5

2249/4161

https://jira.mariadb.org/browse/MDEV-8989

pid_file

Description: Full path of the process ID file.

Commandline: --pid-file=file_name

Scope: Global

Dynamic: No

Data Type: file name

plugin_dir

Description: Path to the plugin directory. For security reasons, either make sure this directory can only be read by

the server, or set secure_file_priv.

Commandline: --plugin-dir=path

Scope: Global

Dynamic: No

Data Type: directory name

Default Value: BASEDIR/lib/plugin

plugin_maturity

Description: The lowest acceptable plugin maturity. MariaDB will not load plugins less mature than the specified

level.

Commandline: --plugin-maturity=level

Scope: Global

Dynamic: No

Type: enum

Default Value: One less than the server maturity (>= MariaDB 10.3.3), unknown (<= MariaDB 10.3.2)

Valid Values: unknown , experimental , alpha , beta , gamma , stable

port

Description: Port to listen for TCP/IP connections. If set to 0 , will default to, in order of preference, my.cnf, the

MYSQL_TCP_PORT environment variable, /etc/services, built-in default (3306).

Commandline: --port=# , -P

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 3306

Range: 0 to 65535

preload_buffer_size

Description: Size in bytes of the buffer allocated when indexes are preloaded.

Commandline: --preload-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 32768

Range: 1024 to 1073741824

profiling

Description: If set to 1 (0 is default), statement profiling will be enabled. See SHOW PROFILES() and SHOW

PROFILE().

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

2250/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

profiling_history_size

Description: Number of statements about which profiling information is maintained. If set to 0 , no profiles are

stored. See SHOW PROFILES.

Commandline: --profiling-history-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 15

Range: 0 to 100

progress_report_time

Description: Time in seconds between sending progress reports to the client for time-consuming statements. If set

to 0 , progress reporting will be disabled.

Commandline: --progress-report-time=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: 0 to 4294967295

protocol_version

Description: The version of the client/server protocol used by the MariaDB server.

Commandline: None

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 0 to 4294967295

proxy_protocol_networks

Description: Enable proxy protocol for these source networks. The syntax is a comma separated list of IPv4 and

IPv6 networks. If the network doesn't contain a mask, it is considered to be a single host. "*" represents all networks

and must be the only directive on the line. String "localhost" represents non-TCP local connections (Unix domain

socket, Windows named pipe or shared memory). See Proxy Protocol Support .

Commandline: --proxy-protocol-networks=value

Scope: Global

Dynamic: Yes (>= MariaDB 10.3.6), No (<= MariaDB 10.3.5)

Data Type: string

Default Value: (empty)

Introduced: MariaDB 10.3.1

proxy_user

Description: Set to the proxy user account name if the current client is a proxy, else NULL .

Scope: Session

Dynamic: No

Data Type: string

pseudo_slave_mode

Description: For internal use by the server.

Scope: Session

Dynamic: Yes

Data Type: numeric

Default Value: OFF

2251/4161

https://mariadb.com/kb/en/proxy-protocol-support/
https://mariadb.com/kb/en/proxy-protocol-support/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

pseudo_thread_id

Description: For internal use only.

Scope: Session

Dynamic: Yes

Data Type: numeric

query_alloc_block_size

Description: Size in bytes of the extra blocks allocated during query parsing and execution (after

query_prealloc_size is used up).

Commandline: --query-alloc-block-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16384

Range - 32 bit: 1024 to 4294967295

Range - 64 bit: 1024 to 18446744073709547520

query_cache_limit

Description: Size in bytes for which results larger than this are not stored in the query cache.

Commandline: --query-cache-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1048576 (1MB)

Range: 0 to 4294967295

query_cache_min_res_unit

Description: Minimum size in bytes of the blocks allocated for query cache results.

Commandline: --query-cache-min-res-unit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4096 (4KB)

Range - 32 bit: 1024 to 4294967295

Range - 64 bit: 1024 to 18446744073709547520

query_cache_size

Description: Size in bytes available to the query cache. About 40KB is needed for query cache structures, so setting

a size lower than this will result in a warning. 0 , the default before MariaDB 10.1.7 , effectively disables the query

cache.

Warning: Starting from MariaDB 10.1.7 , query_cache_type is automatically set to ON if the server is started with the

query_cache_size set to a non-zero (and non-default) value. This will happen even if query_cache_type is explicitly set

to OFF in the configuration.

Commandline: --query-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1M (although frequently given a default value in some setups)

Valid Values: 0 upwards in units of 1024.

query_cache_strip_comments

2252/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

Description: If set to 1 (0 is default), the server will strip any comments from the query before searching to see if it

exists in the query cache. Multiple space, line feeds, tab and other white space characters will also be removed.

Commandline: query-cache-strip-comments

Scope: Session, Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

query_cache_type

Description: If set to 0 , the query cache is disabled (although a buffer of query_cache_size bytes is still allocated).

If set to 1 all SELECT queries will be cached unless SQL_NO_CACHE is specified. If set to 2 (or DEMAND), only

queries with the SQL CACHE clause will be cached. Note that if the server is started with the query cache disabled, it

cannot be enabled at runtime.

Warning: Starting from MariaDB 10.1.7 , query_cache_type is automatically set to ON if the server is started with the

query_cache_size set to a non-zero (and non-default) value. This will happen even if query_cache_type is explicitly set

to OFF in the configuration.

Commandline: --query-cache-type=#

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value: OFF

Valid Values: 0 or OFF , 1 or ON , 2 or DEMAND

query_cache_wlock_invalidate

Description: If set to 0 , the default, results present in the query cache will be returned even if there's a write lock on

the table. If set to 1 , the client will first have to wait for the lock to be released.

Commandline: --query-cache-wlock-invalidate

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

query_prealloc_size

Description: Size in bytes of the persistent buffer for query parsing and execution, allocated on connect and freed on

disconnect. Increasing may be useful if complex queries are being run, as this will reduce the need for more memory

allocations during query operation. See also query_alloc_block_size.

Commandline: --query-prealloc-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 24576

Range: 1024 to 4294967295

rand_seed1

Description: rand_seed1 and rand_seed2 facilitate replication of the RAND() function. The master passes the

value of these to the slaves so that the random number generator is seeded in the same way, and generates the

same value, on the slave as on the master. Until MariaDB 10.1.4 , the variable value could not be viewed, with the

SHOW VARIABLES output always displaying zero.

Commandline: None

Scope: Session

Dynamic: Yes

Data Type: numeric

Default Value: Varies

Range: 0 to 18446744073709551615

2253/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

rand_seed2

Description: See rand_seed1.

range_alloc_block_size

Description: Size in bytes of blocks allocated during range optimization. The unit size in 1024.

Commandline: --range-alloc-block-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 4096

Range - 32 bit: 4096 to 4294967295

Range - 64 bit: 4096 to 18446744073709547520

read_buffer_size

Description: Each thread performing a sequential scan (for MyISAM, Aria and MERGE tables) allocates a buffer of

this size in bytes for each table scanned. Increase if you perform many sequential scans. If not in a multiple of 4KB,

will be rounded down to the nearest multiple. Also used in ORDER BY's for caching indexes in a temporary file (not

temporary table), for caching results of nested queries, for bulk inserts into partitions, and to determine the memory

block size of MEMORY tables.

Commandline: --read-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 131072

Range: 8200 to 2147479552

read_only

Description: When set to 1 (0 is default), no updates are permitted except from users with the SUPER privilege or,

from MariaDB 10.5.2, the READ ONLY ADMIN privilege, or replica servers updating from a primary. The read_only

variable is useful for replica servers to ensure no updates are accidentally made outside of what are performed on the

primary. Inserting rows to log tables, updates to temporary tables and OPTIMIZE TABLE or ANALYZE TABLE

statements are excluded from this limitation. If read_only is set to 1 , then the SET PASSWORD statement is

limited only to users with the SUPER privilege (<= MariaDB 10.5.1) or READ ONLY ADMIN privilege (>= MariaDB

10.5.2). Attempting to set this variable to 1 will fail if the current session has table locks or transactions pending,

while if other sessions hold table locks, the statement will wait until these locks are released before completing. While

the attempt to set read_only is waiting, other requests for table locks or transactions will also wait until

read_only has been set. See Read-Only Replicas for more. From MariaDB 10.5.2, the READ_ONLY ADMIN

privilege will allow users granted that privilege to perform writes, even if the read_only variable is set. In earlier

versions, and until MariaDB 10.11.0, users with the SUPER can perform writes while this variable is set.

Commandline: --read-only

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

read_rnd_buffer_size

Description: Size in bytes of the buffer used when reading rows from a MyISAM table in sorted order after a key

sort. Larger values improve ORDER BY performance, although rather increase the size by SESSION where the need

arises to avoid excessive memory use.

Commandline: --read-rnd-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 262144

Range: 8200 to 2147483647

2254/4161

redirect_url

Description: URL of another server to redirect clients to. Empty string means no redirection.

Commandline: --redirect_url=val

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: Empty

Introduced: MariaDB 11.3.0

-

-

require_secure_transport

Description: When this option is enabled, connections attempted using insecure transport will be rejected. Secure

transports are SSL/TLS, Unix sockets or named pipes. Note that per-account requirements take precedence.

Commandline: --require-secure-transport[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.5.2

rowid_merge_buff_size

Description: The maximum size in bytes of the memory available to the Rowid-merge strategy. See Non-semi-join

subquery optimizations for more information.

Commandline: --rowid-merge-buff-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 8388608

Range: 0 to 2147483647

rpl_recovery_rank

Description: Unused.

Removed: MariaDB 10.1.2

safe_show_database

Description: This variable was removed in MariaDB 5.5, and has been replaced by the more flexible SHOW

DATABASES privilege.

Commandline: --safe-show-database (until MySQL 4.1.1)

Scope: Global

Dynamic: Yes

Data Type: boolean

Removed: MariaDB 5.5

secure_auth

Description: Connections will be blocked if they use the the mysql_old_password authentication plugin. The

server will also fail to start if the privilege tables are in the old, pre-MySQL 4.1 format. secure_auth=0 was

deprecated in MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3.

Commandline: --secure-auth

Scope: Global

Dynamic: Yes

2255/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Data Type: boolean

Default Value: ON

secure_file_priv

Description: LOAD DATA, SELECT ... INTO and LOAD FILE() will only work with files in the specified path. If not

set, the default, or set to empty string, the statements will work with any files that can be accessed.

Commandline: --secure-file-priv=path

Scope: Global

Dynamic: No

Data Type: path name

Default Value: None

secure_timestamp

Description: Restricts direct setting of a session timestamp. Possible levels are:

YES - timestamp cannot deviate from the system clock. Intended to prevent tampering with system versioning

history. Should not be used on replicas, as when a value based on the timestamp is inserted in statement

mode, discrepancies can occur.

REPLICATION - replication thread can adjust timestamp to match the primary's

SUPER - a user with this privilege and a replication thread can adjust timestamp

NO - historical behavior, anyone can modify session timestamp

Commandline: --secure-timestamp=value

Scope: Global

Dynamic: No

Data Type: enum

Default Value: NO

session_track_schema

Description: Whether to track changes to the default schema within the current session.

Commandline: --session-track-schema={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

session_track_state_change

Description: Whether to track changes to the session state.

Commandline: --session-track-state-change={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

session_track_system_variables

Description: Comma-separated list of session system variables for which to track changes. For compatibility with

MySQL defaults, this variable should be set to "autocommit, character_set_client, character_set_connection,

character_set_results, time_zone". The * character tracks all session variables.

Commandline: --session-track-system-variables=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value:

>= MariaDB 11.3:

autocommit,character_set_client,character_set_connection,character_set_results,redirect_url,time_zone

<= MariaDB 11.2: autocommit, character_set_client, character_set_connection,

character_set_results, time_zone

2256/4161

session_track_transaction_info

Description: Track changes to the transaction attributes. OFF to disable; STATE to track just transaction state (Is

there an active transaction? Does it have any data? etc.); CHARACTERISTICS to track transaction state and report

all statements needed to start a transaction with the same characteristics (isolation level, read only/read

write,snapshot - but not any work done / data modified within the transaction).

Commandline: --session-track-transaction-info=value

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: OFF

Valid Values: OFF , STATE , CHARACTERISTICS

shared_memory

Description: Windows only, determines whether the server permits shared memory connections. See also

shared_memory_base_name.

Scope: Global

Dynamic: No

shared_memory_base_name

Description: Windows only, specifies the name of the shared memory to use for shared memory connection. Mainly

used when running more than one instance on the same physical machine. By default the name is MYSQL and is

case sensitive. See also shared_memory.

Scope: Global

Dynamic: No

Data Type: string

Default Value: MYSQL

skip_external_locking

Description: If this system variable is set, then some kinds of external table locks will be disabled for some storage

engines.

If this system variable is set, then the MyISAM storage engine will not use file-based locks. Otherwise, it will

use the fcntl() function with the F_SETLK option to get file-based locks on Unix, and it will use the

LockFileEx() function to get file-based locks on Windows.

If this system variable is set, then the Aria storage engine will not lock a table when it decrements the table's in-

file counter that keeps track of how many connections currently have the table open. See MDEV-19393 for

more information.

Commandline: --skip-external-locking

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 1

skip_grant_tables

Description: Start without grant tables. This gives all users FULL ACCESS to all tables. Before MariaDB 10.10,

available as an option only. Use mariadb-admin flush-privileges, mariadb-admin reload or FLUSH PRIVILEGES to

resume using the grant tables.

Commandline: --skip-grant-tables

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.10

skip_name_resolve
2257/4161

https://linux.die.net/man/2/fcntl
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-lockfileex
https://jira.mariadb.org/browse/MDEV-19393

Description: If set to 1 (0 is the default), only IP addresses are used for connections. Host names are not resolved.

All host values in the GRANT tables must be IP addresses (or localhost).

Commandline: --skip-name-resolve

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

skip_networking

Description: If set to 1, (0 is the default), the server does not listen for TCP/IP connections. All interaction with the

server will be through socket files (Unix) or named pipes or shared memory (Windows). It's recommended to use this

option if only local clients are permitted to connect to the server.

Commandline: --skip-networking

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

skip_show_database

Description: If set to 1, (0 is the default), only users with the SHOW DATABASES privilege can use the SHOW

DATABASES statement to see all database names.

Commandline: --skip-show-database

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

slow_launch_time

Description: Time in seconds. If a thread takes longer than this to launch, the slow_launch_threads server

status variable is incremented.

Commandline: --slow-launch-time=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2

slow_query_log

Description: If set to 0, the default unless the --slow-query-log option is used, the slow query log is disabled, while if

set to 1 (both global and session variables), the slow query log is enabled. From MariaDB 10.11.0, an alias for

log_slow_query.

Commandline: --slow-query-log

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Data Type: boolean

Default Value: 0

See also: See log_output to see how log files are written. If that variable is set to NONE , no logs will be written even

if slow_query_log is set to 1 .

slow_query_log_file

Description: Name of the slow query log file. From MariaDB 10.11, an alias for log_slow_query_file.

Commandline: --slow-query-log-file=file_name

Scope: Global

Dynamic: Yes

Data Type: file name

2258/4161

Default Value: host_name-slow.log

socket

Description: On Unix-like systems, this is the name of the socket file used for local client connections, by default

/tmp/mysql.sock , often changed by the distribution, for example /var/lib/mysql/mysql.sock . On Windows,

this is the name of the named pipe used for local client connections, by default MySQL . On Windows, this is not

case-sensitive.

Commandline: --socket=name

Scope: Global

Dynamic: No

Data Type: file name

Default Value: /tmp/mysql.sock (Unix), MySQL (Windows)

sort_buffer_size

Description: Each session performing a sort allocates a buffer with this amount of memory. Not specific to any

storage engine. If the status variable sort_merge_passes is too high, you may need to look at improving your query

indexes, or increasing this. Consider reducing where there are many small sorts, such as OLTP, and increasing

where needed by session. 16k is a suggested minimum.

Commandline: --sort-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: number

Default Value: 2M (2097152) (some distributions increase the default)

sql_auto_is_null

Description: If set to 1, the query SELECT * FROM table_name WHERE auto_increment_column IS NULL will

return an auto-increment that has just been successfully inserted, the same as the LAST_INSERT_ID() function.

Some ODBC programs make use of this IS NULL comparison.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

sql_big_selects

Description: If set to 0, MariaDB will not perform large SELECTs. See max_join_size for details. If max_join_size is

set to anything but DEFAULT, sql_big_selects is automatically set to 0. If sql_big_selects is again set, max_join_size

will be ignored.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

sql_big_tables

Description: Old variable, which if set to 1, allows large result sets by saving all temporary sets to disk, avoiding

'table full' errors. No longer needed, as the server now handles this automatically.

This is a synonym for big_tables .

Commandline: --sql-big-tables

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

Removed: MariaDB 10.0

2259/4161

sql_buffer_result

Description: If set to 1 (0 is default), results from SELECT statements are always placed into temporary tables. This

can help the server when it takes a long time to send the results to the client by allowing the table locks to be freed

early.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

sql_if_exists

Description: If set to 1, adds an implicit IF EXISTS to ALTER, RENAME and DROP of TABLES, VIEWS,

FUNCTIONS and PACKAGES. This variable is mainly used in replication to tag DDLs that can be ignored on the

slave if the target table doesn't exist.

Commandline: --sql-if-exists[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.5.2

sql_log_off

Description: If set to 1 (0 is the default), no logging to the general query log is done for the client. Only clients with

the SUPER privilege can update this variable.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

sql_log_update

Description: Removed. Use sql_log_bin instead.

Removed: MariaDB/MySQL 5.5

sql_low_priority_updates

Description: If set to 1 (0 is the default), for storage engines that use only table-level locking (Aria, MyISAM,

MEMORY and MERGE), all INSERTs, UPDATEs, DELETEs and LOCK TABLE WRITEs will wait until there are no

more SELECTs or LOCK TABLE READs pending on the relevant tables. Set this to 1 if reads are prioritized over

writes.

This is a synonym for low_priority_updates .

Commandline: --sql-low-priority-updates

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

Removed: MariaDB 10.0

sql_max_join_size

Description: Synonym for max_join_size, the preferred name.

Deprecated: MariaDB 5.5

Removed: MariaDB 10.0

sql_mode

Description: Sets the SQL Mode. Multiple modes can be set, separated by a comma.

2260/4161

Commandline: --sql-mode=value[,value[,value...]]

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value:

STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

Valid Values: See SQL Mode for the full list.

sql_notes

Description: If set to 1, the default, warning_count is incremented each time a Note warning is encountered. If set to

0, Note warnings are not recorded. mariadb-dump has outputs to set this variable to 0 so that no unnecessary

increments occur when data is reloaded. See also note_verbosity, which defines which notes should be given. The

recommended way, as of MariaDB 10.6.16, to disable notes is to set note_verbosity to "".

Commandline: None

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

sql_quote_show_create

Description: If set to 1, the default, the server will quote identifiers for SHOW CREATE DATABASE, SHOW

CREATE TABLE and SHOW CREATE VIEW statements. Quoting is disabled if set to 0. Enable to ensure replication

works when identifiers require quoting.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

sql_safe_updates

Description: If set to 1, UPDATEs and DELETEs must be executed by using an index (simply mentioning an indexed

column in a WHERE clause is not enough, optimizer must actually use it) or they must mention an indexed column

and specify a LIMIT clause. Otherwise a statement will be aborted. Prevents the common mistake of accidentally

deleting or updating every row in a table. Until MariaDB 10.3.11 , could not be set as a command-line option or in

my.cnf.

Commandline: --sql-safe-updates[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

sql_select_limit

Description: Maximum number of rows that can be returned from a SELECT query. Default is the maximum number

of rows permitted per table by the server, usually 2 -1 or 2 -1. Can be restored to the default value after being

changed by assigning it a value of DEFAULT.

Commandline: None

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 18446744073709551615

sql_warnings

Description: If set to 1, single-row INSERTs will produce a string containing warning information if a warning occurs.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

32 64

2261/4161

https://mariadb.com/kb/en/mariadb-10311-release-notes/

Default Value: OFF (0)

storage_engine

Description: See default_storage_engine.

Deprecated: MariaDB 5.5

standard_compliant_cte

Description: Allow only standard-compliant common table expressions. Prior to MariaDB 10.2.4 , this variable was

named standards_compliant_cte .

Commandline: --standard-compliant-cte={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.2.2

stored_program_cache

Description: Limit to the number of stored routines held in the stored procedures and stored functions caches. Each

time a stored routine is executed, this limit is first checked, and if the number held in the cache exceeds this, that

cache is flushed and memory freed.

Commandline: --stored-program-cache=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 256

Range: 256 to 524288

strict_password_validation

Description: When password validation plugins are enabled, reject passwords that cannot be validated (passwords

specified as a hash). This excludes direct updates to the privilege tables.

Commandline: --strict-password-validation

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

sync_frm

Description: If set to 1, the default, each time a non-temporary table is created, its .frm definition file is synced to

disk. Fractionally slower, but safer in case of a crash.

Commandline: --sync-frm

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: TRUE

system_time_zone

Description: The system time zone is determined when the server starts. The system time zone is usually read

from the operating system's environment but can be overridden by setting the 'TZ' environment variable before

starting the server. See Time Zones: System Time Zone for the various ways to change the system time zone. This

variable is not the same as the time_zone system variable, which is the variable that actually controls a session's

active time zone. The system time zone is used for a session when time_zone is set to the special value SYSTEM .

Scope: Global

Dynamic: No

2262/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/#system-time-zone

Data Type: string

table_definition_cache

Description: Number of table definitions that can be cached. Table definitions are taken from the .frm files, and if

there are a large number of tables increasing the cache size can speed up table opening. Unlike the

table_open_cache, as the table_definition_cache doesn't use file descriptors, and is much smaller.

Commandline: --table-definition-cache=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 400

Range:

400 to 2097152 (>= MariaDB 10.4.2, MariaDB 10.3.13 , MariaDB 10.2.22 , MariaDB 10.1.38)

400 to 524288 (<= MariaDB 10.4.1, MariaDB 10.3.12 , MariaDB 10.2.21 , MariaDB 10.1.37)

table_lock_wait_timeout

Description: Unused, and removed.

Commandline: --table-lock-wait-timeout=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 50

Range: 1 to 1073741824

Removed: MariaDB 5.5

table_open_cache

Description: Maximum number of open tables cached in one table cache instance. See Optimizing

table_open_cache for suggestions on optimizing. Increasing table_open_cache increases the number of file

descriptors required.

Commandline: --table-open-cache=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2000

Range:

1 to 1048576 (1024K)

table_open_cache_instances

Description: This system variable specifies the maximum number of table cache instances. MariaDB Server initially

creates just a single instance. However, whenever it detects contention on the existing instances, it will automatically

create a new instance. When the number of instances has been increased due to contention, it does not decrease

again. The default value of this system variable is 8 , which is expected to handle up to 100 CPU cores. If your

system is larger than this, then you may benefit from increasing the value of this system variable.

Depending on the ratio of actual available file handles, and table_open_cache size, the max. instance count

may be auto adjusted to a lower value on server startup.

The implementation and behavior of this feature is different than the same feature in MySQL 5.6.

See Optimizing table_open_cache: Automatic Creation of New Table Open Cache Instances for more

information.

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8 (>= MariaDB 10.2.2)

Range: 1 to 64

Introduced: MariaDB 10.2.2

table_type
2263/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10221-release-notes/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

Description: Removed and replaced by storage_engine. Use default_storage_engine instead.

tcp_keepalive_interval

Description: The interval, in seconds, between when successive keep-alive packets are sent if no acknowledgement

is received. If set to 0, the system dependent default is used.

Commandline: --tcp-keepalive-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483

Introduced: MariaDB 10.3.3

tcp_keepalive_probes

Description: The number of unacknowledged probes to send before considering the connection dead and notifying

the application layer. If set to 0, a system dependent default is used.

Commandline: --tcp-keepalive-probes=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483

Introduced: MariaDB 10.3.3

tcp_keepalive_time

Description: Timeout, in seconds, with no activity until the first TCP keep-alive packet is sent. If set to 0, a system

dependent default is used.

Commandline: --tcp-keepalive-time=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483

Introduced: MariaDB 10.3.3

tcp_nodelay

Description: Set the TCP_NODELAY option (disable Nagle's algorithm) on socket.

Commandline: --tcp-nodelay={0|1}

Scope: Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

Introduced: MariaDB 10.4.0

thread_cache_size

Description: Number of threads server caches for re-use. If this limit hasn't been reached, when a client

disconnects, its threads are put into the cache, and re-used where possible. In MariaDB 10.2.0 and newer the

threads are freed after 5 minutes of idle time. Normally this setting has little effect, as the other aspects of the thread

implementation are more important, but increasing it can help servers with high volumes of connections per second

so that most can use a cached, rather than a new, thread. The cache miss rate can be calculated as the server status

variables threads_created/connections. If the thread pool is active, thread_cache_size is ignored. If

thread_cache_size is set to greater than the value of max_connections, thread_cache_size will be set to the

max_connections value.

Commandline: --thread-cache-size=#

Scope: Global

2264/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/

Dynamic: Yes

Data Type: numeric

Default Value: 256 (adjusted if thread pool is active)

Range: 0 to 16384

thread_concurrency

Description: Allows applications to give the system a hint about the desired number of threads. Specific to Solaris

only, invokes thr_setconcurrency(). Deprecated and has no effect from MariaDB 5.5.

Commandline: --thread-concurrency=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 1 to 512

Deprecated: MariaDB 5.5

Removed: MariaDB 10.5.1

thread_stack

Description: Stack size for each thread. If set too small, limits recursion depth of stored procedures and complexity

of SQL statements the server can handle in memory. Also affects limits in the crash-me test.

Commandline: --thread-stack=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value:

299008

Range: 131072 to 18446744073709551615

time_format

Description: Unused.

Removed: MariaDB 11.3.0

time_zone

Description: The global value determines the default time zone for sessions that connect. The session value

determines the session's active time zone . When it is set to SYSTEM , the session's time zone is determined by the

system_time_zone system variable.

Commandline: --default-time-zone=string

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: SYSTEM

timed_mutexes

Description: Determines whether InnoDB mutexes are timed. OFF , the default, disables mutex timing, while ON

enables it. See also SHOW ENGINE for more on mutex statistics. Deprecated and has no effect.

Commandline: --timed-mutexes

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 5.5.39

Removed: MariaDB 10.5.1

2265/4161

https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/time-zones/
https://mariadb.com/kb/en/mariadb-5539-release-notes/

timestamp

Description: Sets the time for the client. This will affect the result returned by the NOW() function, not the

SYSDATE() function, unless the server is started with the --sysdate-is-now option, in which case SYSDATE becomes

an alias of NOW, and will also be affected. Also used to get the original timestamp when restoring rows from the

binary log.

Scope: Session

Dynamic: Yes

Valid Values: timestamp_value (Unix epoch timestamp, not MariaDB timestamp), DEFAULT

tmp_disk_table_size

Description: Max size for data for an internal temporary on-disk MyISAM or Aria table. These tables are created as

part of complex queries when the result doesn't fit into the memory engine. You can set this variable if you want to

limit the size of temporary tables created in your temporary directory tmpdir.

Commandline: --tmp-disk-table-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 18446744073709551615 (max unsigned integer, no limit)

Range: 1024 to 18446744073709551615

Introduced: MariaDB 10.2.7

tmp_memory_table_size

Description: An alias for tmp_table_size.

Commandline: --tmp-memory-table-size=#

Introduced: MariaDB 10.2.7

tmp_table_size

Description: The largest size for temporary tables in memory (not MEMORY tables) although if

max_heap_table_size is smaller the lower limit will apply. You can see if it's necessary to increase by comparing the

status variables Created_tmp_disk_tables and Created_tmp_tables to see how many temporary tables out of

the total created needed to be converted to disk. Often complex GROUP BY queries are responsible for exceeding

the limit. Defaults may be different on some systems, see for example Differences in MariaDB in Debian. From

MariaDB 10.2.7 , tmp_memory_table_size is an alias.

Commandline: --tmp-table-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16777216 (16MB)

Range:

1024 to 4294967295 (< MariaDB 10.5)

0 to 4294967295 (>= MariaDB 10.5.0)

tmpdir

Description: Directory for storing temporary tables and files. Can specify a list (separated by semicolons in

Windows, and colons in Unix) that will then be used in round-robin fashion. This can be used for load balancing

across several disks. Note that if the server is a replication replica, and slave_load_tmpdir, which overrides tmpdir

for replicas, is not set, you should not set tmpdir to a directory that is cleared when the machine restarts, or else

replication may fail.

Commandline: --tmpdir=path or -t path

Scope: Global

Dynamic: No

Type: directory name/s

Default:

$TMPDIR (environment variable) if set

otherwise $TEMP if set and on Windows

otherwise $TMP if set and on Windows

2266/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/

otherwise P_tmpdir ("/tmp") or C:\TEMP (unless overridden during buid time)

transaction_alloc_block_size

Description: Size in bytes to increase the memory pool available to each transaction when the available pool is not

large enough. See transaction_prealloc_size.

Commandline: --transaction-alloc-block-size=#

Scope: Global, Session

Dynamic: Yes

Type: numeric

Default Value: 8192

Range: 1024 to 4294967295

Block Size: 1024

transaction_isolation

Description: The transaction isolation level. See also SET TRANSACTION ISOLATION LEVEL. Introduced in

MariaDB 11.1.1 to replace the tx_isolation system variable and align the option and the system variable name.

Commandline: --transaction-isolation=name

Scope: Global, Session

Dynamic: Yes

Type: enumeration

Default Value: REPEATABLE-READ

Valid Values: READ-UNCOMMITTED , READ-COMMITTED , REPEATABLE-READ , SERIALIZABLE

Introduced: MariaDB 11.1.1

transaction_prealloc_size

Description: Initial size of a memory pool available to each transaction for various memory allocations. If the memory

pool is not large enough for an allocation, it is increased by transaction_alloc_block_size bytes, and truncated back to

transaction_prealloc_size bytes when the transaction is completed. If set large enough to contain all statements in a

transaction, extra malloc() calls are avoided.

Commandline: --transaction-prealloc-size=#

Scope: Global, Session

Dynamic: Yes

Type: numeric

Default Value: 4096

Range: 1024 to 4294967295

Block Size: 1024

transaction_read_only

Description: Default transaction access mode. If set to OFF , the default, access is read/write. If set to ON , access

is read-only. The SET TRANSACTION statement can also change the value of this variable. See SET TRANSACTION

and START TRANSACTION.

Commandline: --transaction-read-only=#

Scope: Global, Session

Dynamic: Yes

Type: boolean

Default Value: OFF

Introduced: MariaDB 11.1

tx_isolation

Description: The transaction isolation level. Setting this session variable via set @@tx_isolation= will take effect

for only the subsequent transaction in the current session, much like SET TRANSACTION ISOLATION LEVEL. To set

for a session, use SET SESSION tx_isolation or SET @@session.tx_isolation . See MDEV-31751 . See

also SET TRANSACTION ISOLATION LEVEL. In MariaDB 11.1, this system variable is deprecated and replaced by

transaction_isolation.

Commandline: --transaction-isolation=name

2267/4161

https://jira.mariadb.org/browse/MDEV-31751

Scope: Global, Session

Dynamic: Yes

Type: enumeration

Default Value: REPEATABLE-READ

Valid Values: READ-UNCOMMITTED , READ-COMMITTED , REPEATABLE-READ , SERIALIZABLE

Deprecated: MariaDB 11.1

tx_read_only

Description: Default transaction access mode. If set to OFF , the default, access is read/write. If set to ON , access

is read-only. The SET TRANSACTION statement can also change the value of this variable. See SET TRANSACTION

and START TRANSACTION. In MariaDB 11.1, this system variable is deprecated and replaced by

transaction_read_only.

Commandline: --transaction-read-only=#

Scope: Global, Session

Dynamic: Yes

Type: boolean

Default Value: OFF

Deprecated: MariaDB 11.1

unique_checks

Description: If set to 0, storage engines can (but are not required to) assume that duplicate keys are not present in

input data. If set to 0, inserting duplicates into a UNIQUE index can succeed, causing the table to become corrupted.

Set to 0 to speed up imports of large tables to InnoDB.

Scope: Global, Session

Dynamic: Yes

Type: boolean

Default Value: 1

updatable_views_with_limit

Description: Determines whether view updates can be made with an UPDATE or DELETE statement with a LIMIT

clause if the view does not contain all primary or not null unique key columns from the underlying table. 0 prohibits

this, while 1 permits it while issuing a warning (the default).

Commandline: --updatable-views-with-limit=#

Scope: Global, Session

Dynamic: Yes

Type: boolean

Default Value: 1

use_stat_tables

Description: Controls the use of engine-independent table statistics.

never : The optimizer will not use data from statistics tables.

complementary : The optimizer uses data from statistics tables if the same kind of data is not provided by the

storage engine.

preferably : Prefer the data from statistics tables, if it's not available there, use the data from the storage

engine.

complementary_for_queries : Same as complementary , but for queries only (to avoid needlessly

collecting for ANALYZE TABLE). From MariaDB 10.4.1.

preferably_for_queries : Same as preferably , but for queries only (to avoid needlessly collecting for

ANALYZE TABLE). From MariaDB 10.4.1.

Commandline: --use-stat-tables=mode

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: preferably_for_queries (>= MariaDB 10.4.1), never (<= MariaDB 10.4.0)

version
2268/4161

Description: Server version number. It may also include a suffix with configuration or build information. -debug

indicates debugging support was enabled on the server, and -log indicates at least one of the binary log, general

log or slow query log are enabled, for example 10.0.1-MariaDB-mariadb1precise-log . Can be set at startup in

order to fake the server version.

Commandline: -V , --version[=name]

Scope: Global

Dynamic: No

Type: string

version_comment

Description: Value of the COMPILATION_COMMENT option specified by CMake when building MariaDB, for

example mariadb.org binary distribution .

Scope: Global

Dynamic: No

Type: string

version_compile_machine

Description: The machine type or architecture MariaDB was built on, for example i686 .

Scope: Global

Dynamic: No

Type: string

version_compile_os

Description: Operating system that MariaDB was built on, for example debian-linux-gnu .

Scope: Global

Dynamic: No

Type: string

version_malloc_library

Description: Version of the used malloc library.

Commandline: No

Scope: Global

Dynamic: No

Type: string

version_source_revision

Description: Source control revision id for MariaDB source code, enabling one to see exactly which version of the

source was used for a build.

Commandline: None

Scope: Global

Dynamic: No

Type: string

Introduced: MariaDB 10.3.2

wait_timeout

Description: Time in seconds that the server waits for a connection to become active before closing it. The session

value is initialized when a thread starts up from either the global value, if the connection is non-interactive, or from the

interactive_timeout value, if the connection is interactive.

Commandline: --wait-timeout=#

Scope: Global, Session

Dynamic: Yes

Type: numeric

Default Value: 28800

2269/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/

Range: (Windows): 1 to 2147483

Range: (Other): 1 to 31536000

warning_count

Description: Read-only variable indicating the number of warnings, errors and notes resulting from the most recent

statement that generated messages. See SHOW WARNINGS for more. Note warnings will only be recorded if

sql_notes is true (the default).

Scope: Session

Dynamic: No

Type: numeric

2.7.3 OLD_MODE
The old_mode system variable was introduced in MariaDB 5.5.35 to replace the old variable with a new one with better

granularity.

Contents
1. Modes

1. COMPAT_5_1_CHECKSUM

2. IGNORE_INDEX_ONLY_FOR_JOIN

3. LOCK_ALTER_TABLE_COPY

4. NO_DUP_KEY_WARNINGS_WITH_IGNORE

5. NO_NULL_COLLATION_IDS

6. NO_PROGRESS_INFO

7. UTF8_IS_UTF8MB3

8. ZERO_DATE_TIME_CAST

2. OLD_MODE and Stored Programs

3. Examples

MariaDB supports several different modes which allow you to tune it to suit your needs.

The most important ways for doing this are with SQL_MODE and OLD_MODE .

SQL_MODE is used for getting MariaDB to emulate behavior from other SQL servers, while OLD_MODE is used for

emulating behavior from older MariaDB or MySQL versions.

OLD_MODE is a string with different options separated by commas (' , ') without spaces. The options are case insensitive.

Normally OLD_MODE should be empty. It's mainly used to get old behavior when switching to MariaDB or to a new major

version of MariaDB, until you have time to fix your application.

Between major versions of MariaDB various options supported by OLD_MODE may be removed. This is intentional as we

assume that the application will be fixed to conform with the new MariaDB behavior between releases.

In other words, OLD_MODE options are by design deprecated from the day they were added and will eventually be removed

as any other deprecated feature .

You can check the variable's local and global value with:

SELECT @@OLD_MODE, @@GLOBAL.OLD_MODE;

You can set the OLD_MODE

either from the command line (option --old-mode) or by setting the old_mode system variable.

Non-default old mode features are deprecated by design, and from MariaDB 11.3, a warning will be issued when set.

Modes
The different values of OLD_MODE are:

COMPAT_5_1_CHECKSUM

From MariaDB 10.9, the --old option is deprecated. This option allows behaviour of the --old option for enabling the old-style

checksum for CHECKSUM TABLE that MySQL 5.1 supports

2270/4161

https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-feature-deprecation-policy/

IGNORE_INDEX_ONLY_FOR_JOIN

From MariaDB 10.9, the --old option is deprecated. This option allows behaviour of the --old option for disabling the index

only for joins, but allow it for ORDER BY.

LOCK_ALTER_TABLE_COPY

From MariaDB 11.2. The non-locking copy ALTER introduced in MDEV-16329 should be beneficial in the vast majority of

cases, but scenarios can exist which significantly impact performance. For example, RBR on tables without a primary key.

When non-locking ALTER is performed on such a table, and DML affecting a large number of records is run in parallel, the

ALTER can become extremely slow, and further DML can also be affected. If there is a chance of such scenarios (and no

possibility of improving the schema by immediately adding primary keys), ALTER should be performed with the explicit

LOCK=SHARED clause. If this is also impossible, then LOCK_ALTER_TABLE_COPY flag should be added to the

old_mode variable until the schema can be improved.

NO_DUP_KEY_WARNINGS_WITH_IGNORE

Don't print duplicate key warnings when using INSERT IGNORE.

NO_NULL_COLLATION_IDS

A compatibility setting to support connectors (in particular MySQL Connector/NET) that give an exception when collation ids

returned by SHOW COLLATION are NULL. It is automatically set when a MySQL Connector/NET connection is

determined. From MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3.

NO_PROGRESS_INFO

Don't show progress information in SHOW PROCESSLIST.

UTF8_IS_UTF8MB3

From MariaDB 10.6.1, the main name of the previous 3 byte utf character set has been changed to utf8mb3 . If set, the

default, utf8 is an alias for utf8mb3 . If not set, utf8 would be an alias for utf8mb4 .

ZERO_DATE_TIME_CAST

When a TIME value is cast to a DATETIME, the date part will be 0000-00-00 , not CURRENT_DATE (as dictated by the

SQL standard).

OLD_MODE and Stored Programs
In contrast to SQL_MODE, stored programs use the current user's OLD_MODE value.

Changes to OLD_MODE are not sent to replicas.

Examples
This example shows how to get a readable list of enabled OLD_MODE flags:

SELECT REPLACE(@@OLD_MODE, ',', '\n');

+---+

| REPLACE(@@OLD_MODE, ',', '\n') |

+---+

| NO_DUP_KEY_WARNINGS_WITH_IGNORE |

| NO_PROGRESS_INFO |

+---+

Adding a new flag:

SET @@OLD_MODE = CONCAT(@@OLD_MODE, ',NO_PROGRESS_INFO');

If the specified flag is already ON, the above example has no effect but does not produce an error.

2271/4161

https://jira.mariadb.org/browse/MDEV-16329
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

How to unset a flag:

SET @@OLD_MODE = REPLACE(@@OLD_MODE, 'NO_PROGRESS_INFO', '');

How to check if a flag is set:

SELECT @@OLD_MODE LIKE '%NO_PROGRESS_INFO';

+------------------------------------+

| @@OLD_MODE LIKE '%NO_PROGESS_INFO' |

+------------------------------------+

| 1 |

+------------------------------------+

From MariaDB 11.3:

SET @@OLD_MODE = CONCAT(@@OLD_MODE, ',NO_PROGRESS_INFO');

Query OK, 0 rows affected, 1 warning (0.000 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1287 | 'NO_PROGRESS_INFO' is deprecated and will be removed in a future release |

+---------+------+--+

2.7.4 SQL_MODE

2272/4161

Contents
1. Setting SQL_MODE

1. Defaults

2. SQL_MODE Values

1. ALLOW_INVALID_DATES

2. ANSI

3. ANSI_QUOTES

4. DB2

5. EMPTY_STRING_IS_NULL

6. ERROR_FOR_DIVISION_BY_ZERO

7. HIGH_NOT_PRECEDENCE

8. IGNORE_BAD_TABLE_OPTIONS

9. IGNORE_SPACE

10. MAXDB

11. MSSQL

12. MYSQL323

13. MYSQL40

14. NO_AUTO_CREATE_USER

15. NO_AUTO_VALUE_ON_ZERO

16. NO_BACKSLASH_ESCAPES

17. NO_DIR_IN_CREATE

18. NO_ENGINE_SUBSTITUTION

19. NO_FIELD_OPTIONS

20. NO_KEY_OPTIONS

21. NO_TABLE_OPTIONS

22. NO_UNSIGNED_SUBTRACTION

23. NO_ZERO_DATE

24. NO_ZERO_IN_DATE

25. ONLY_FULL_GROUP_BY

26. ORACLE

27. PAD_CHAR_TO_FULL_LENGTH

28. PIPES_AS_CONCAT

29. POSTGRESQL

30. REAL_AS_FLOAT

31. SIMULTANEOUS_ASSIGNMENT

32. STRICT_ALL_TABLES

33. STRICT_TRANS_TABLES

34. TIME_ROUND_FRACTIONAL

35. TRADITIONAL

3. Strict Mode

4. SQL_MODE and Stored Programs

5. Examples

MariaDB supports several different modes which allow you to tune it to suit your needs.

The most important ways for doing this are using SQL_MODE (controlled by the sql_mode system variable) and OLD_MODE

(the old_mode system variable). SQL_MODE is used for getting MariaDB to emulate behavior from other SQL servers, while

OLD_MODE is used for emulating behavior from older MariaDB or MySQL versions.

SQL_MODE is a string with different options separated by commas (' , ') without spaces. The options are case insensitive.

You can check the local and global value of it with:

SELECT @@SQL_MODE, @@GLOBAL.SQL_MODE;

Setting SQL_MODE

Defaults

From version Default sql_mode setting

MariaDB 10.2.4 STRICT_TRANS_TABLES, ERROR_FOR_DIVISION_BY_ZERO , NO_AUTO_CREATE_USER,

NO_ENGINE_SUBSTITUTION

MariaDB 10.1.7
NO_ENGINE_SUBSTITUTION, NO_AUTO_CREATE_USER

2273/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

<= MariaDB

10.1.6
No value

You can set the SQL_MODE

either from the command line (the --sql-mode option) or by setting the sql_mode system variable.

SET sql_mode = 'modes';

SET GLOBAL sql_mode = 'modes';

The session value only affects the current client, and can be changed by the client when required. To set the global value,

the SUPER privilege is required, and the change affects any clients that connect from that point on.

SQL_MODE Values
The different SQL_MODE values are:

ALLOW_INVALID_DATES

Allow any day between 1-31 in the day part. This is convenient when you want to read in all (including wrong data) into the

database and then manipulate it there.

ANSI

Changes the SQL syntax to be closer to ANSI SQL.

Sets: REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.

It also adds a restriction: an error will be returned if a subquery uses an aggregating function with a reference to a column

from an outer query in a way that cannot be resolved.

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

ANSI_QUOTES

Changes " to be treated as ` , the identifier quote character. This may break old MariaDB applications which assume that

" is used as a string quote character.

DB2

Same as: PIPES_AS_CONCAT, ANSI_QUOTES , IGNORE_SPACE, DB2, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,

NO_FIELD_OPTIONS

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

EMPTY_STRING_IS_NULL

Oracle-compatibility option that translates Item_string created in the parser to Item_null, and translates binding an empty

string as prepared statement parameters to binding NULL. For example, SELECT '' IS NULL returns TRUE, INSERT

INTO t1 VALUES ('') inserts NULL. Since MariaDB 10.3.3

ERROR_FOR_DIVISION_BY_ZERO

If not set, division by zero returns NULL. If set returns an error if one tries to update a column with 1/0 and returns a warning

as well. Also see MDEV-8319 . Default since MariaDB 10.2.4 .

HIGH_NOT_PRECEDENCE

Compatibility option for MySQL 5.0.1 and before; This changes NOT a BETWEEN b AND c to be parsed as (NOT a)

BETWEEN b AND c

IGNORE_BAD_TABLE_OPTIONS

If this is set generate a warning (not an error) for wrong table option in CREATE TABLE. Also, since 10.0.13, do not

comment out these wrong table options in SHOW CREATE TABLE.

IGNORE_SPACE

2274/4161

https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://jira.mariadb.org/browse/MDEV-8319
https://mariadb.com/kb/en/mariadb-1024-release-notes/

Allow one to have spaces (including tab characters and new line characters) between function name and '('. The drawback

is that this causes built in functions to become reserved words.

MAXDB

Same as: PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, MAXDB, NO_KEY_OPTIONS,

NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

Also has the effect of silently converting TIMESTAMP fields into DATETIME fields when created or modified.

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

MSSQL

Additionally implies the following: PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,

NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

Additionally from MariaDB 10.4.5, implements a limited subset of Microsoft SQL Server's language. See

SQL_MODE=MSSQL for more.

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

MYSQL323

Same as: NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

MYSQL40

Same as: NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

NO_AUTO_CREATE_USER

Don't automatically create users with GRANT unless authentication information is specified. If none is provided, will produce

a 1133 error: "Can't find any matching row in the user table". Default since MariaDB 10.1.7 .

NO_AUTO_VALUE_ON_ZERO

If set, don't generate an AUTO_INCREMENT on INSERT of zero in an AUTO_INCREMENT column, or when adding an

AUTO_INCREMENT attribute with the ALTER TABLE statement. Normally both zero and NULL generate new

AUTO_INCREMENT values.

NO_BACKSLASH_ESCAPES

Disables using the backslash character \ as an escape character within strings, making it equivalent to an ordinary

character.

NO_DIR_IN_CREATE

Ignore all INDEX DIRECTORY and DATA DIRECTORY directives when creating a table. Can be useful on slave replication

servers.

NO_ENGINE_SUBSTITUTION

If not set, if the available storage engine specified by a CREATE TABLE is not available, a warning is given and the default

storage engine is used instead. If set, generate a 1286 error when creating a table if the specified storage engine is not

available. See also enforce_storage_engine. Default since MariaDB 10.1.7 .

NO_FIELD_OPTIONS

Remove MariaDB-specific column options from the output of SHOW CREATE TABLE. This is also used by the portability

mode of mariadb-dump.

NO_KEY_OPTIONS

Remove MariaDB-specific index options from the output of SHOW CREATE TABLE. This is also used by the portability

mode of mariadb-dump.

NO_TABLE_OPTIONS
2275/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

Remove MariaDB-specific table options from the output of SHOW CREATE TABLE. This is also used by the portability

mode of mariadb-dump.

NO_UNSIGNED_SUBTRACTION

When enabled, subtraction results are signed even if the operands are unsigned.

NO_ZERO_DATE

Don't allow '0000-00-00' as a valid date in strict mode (produce a 1525 error). Zero dates can be inserted with IGNORE. If

not in strict mode, a warning is generated.

NO_ZERO_IN_DATE

Don't allow dates where the year is not zero but the month or day parts of the date are zero (produce a 1525 error). For

example, with this set, '0000-00-00' is allowed, but '1970-00-10' or '1929-01-00' are not. If the ignore option is used, MariaDB

will insert '0000-00-00' for those types of dates. If not in strict mode, a warning is generated instead.

ONLY_FULL_GROUP_BY

For SELECT ... GROUP BY queries, disallow SELECTing columns which are not referred to in the GROUP BY clause,

unless they are passed to an aggregate function like COUNT() or MAX(). Produce a 1055 error.

ORACLE

In all versions of MariaDB up to MariaDB 10.2, this sets sql_mode that is equivalent to: PIPES_AS_CONCAT,

ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS,

NO_AUTO_CREATE_USER

From MariaDB 10.3, this mode also sets SIMULTANEOUS_ASSIGNMENT and configures the server to understand a large

subset of Oracle's PL/SQL language instead of MariaDB's traditional syntax for stored routines. See SQL_MODE=ORACLE

From MariaDB 10.3.

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

PAD_CHAR_TO_FULL_LENGTH

Trailing spaces in CHAR columns are by default trimmed upon retrieval. With PAD_CHAR_TO_FULL_LENGTH enabled, no

trimming occurs. Does not apply to VARCHARs.

PIPES_AS_CONCAT

Allows using the pipe character (ASCII 124) as string concatenation operator. This means that "A" || "B" can be used in

place of CONCAT("A", "B") .

POSTGRESQL

Same as: PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, POSTGRESQL, NO_KEY_OPTIONS,

NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

If set, SHOW CREATE TABLE output will not display MariaDB-specific table attributes.

REAL_AS_FLOAT

REAL is a synonym for FLOAT rather than DOUBLE.

SIMULTANEOUS_ASSIGNMENT

Setting this makes the SET part of the UPDATE statement evaluate all assignments simultaneously, not left-to-right. From

MariaDB 10.3.5 .

STRICT_ALL_TABLES

Strict mode. Statements with invalid or missing data are aborted and rolled back. For a non-transactional storage engine

with a statement affecting multiple rows, this may mean a partial insert or update if the error is found in a row beyond the

first.

2276/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/

STRICT_TRANS_TABLES

Strict mode. Statements with invalid or missing data are aborted and rolled back, except that for non-transactional storage

engines and statements affecting multiple rows where the invalid or missing data is not the first row, MariaDB will convert the

invalid value to the closest valid value, or, if a value is missing, insert the column default value. Default since MariaDB

10.2.4 .

TIME_ROUND_FRACTIONAL

With this mode unset, MariaDB truncates fractional seconds when changing precision to smaller. When set, MariaDB will

round when converting to TIME, DATETIME and TIMESTAMP, and truncate when converting to DATE. Since MariaDB

10.4.1

TRADITIONAL

Makes MariaDB work like a traditional SQL server. Same as: STRICT_TRANS_TABLES, STRICT_ALL_TABLES,

NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_ENGINE_SUBSTITUTION,

NO_AUTO_CREATE_USER.

Strict Mode
A mode where at least one of STRICT_TRANS_TABLES or STRICT_ALL_TABLES is enabled is called strict mode.

With strict mode set (default from MariaDB 10.2.4), statements that modify tables (either transactional for

STRICT_TRANS_TABLES or all for STRICT_ALL_TABLES) will fail, and an error will be returned instead. The IGNORE

keyword can be used when strict mode is set to convert the error to a warning.

With strict mode not set (default in version <= MariaDB 10.2.3), MariaDB will automatically adjust invalid values, for

example, truncating strings that are too long, or adjusting numeric values that are out of range, and produce a warning.

Statements that don't modify data will return a warning when adjusted regardless of mode.

SQL_MODE and Stored Programs
Stored programs and views always use the SQL_MODE that was active when they were created. This means that users can

safely change session or global SQL_MODE; the stored programs they use will still work as usual.

It is possible to change session SQL_MODE within a stored program. In this case, the new SQL_MODE will be in effect

only in the body of the current stored program. If it calls some stored procedures, they will not be affected by the change.

Some Information Schema tables (such as ROUTINES) and SHOW CREATE statements such as SHOW CREATE

PROCEDURE show the SQL_MODE used by the stored programs.

Examples
This example shows how to get a readable list of enabled SQL_MODE flags:

SELECT REPLACE(@@SQL_MODE, ',', '\n');

+---+

| REPLACE(@@SQL_MODE, ',', '\n') |

+---+

| STRICT_TRANS_TABLES

NO_ZERO_IN_DATE

NO_ZERO_DATE

NO_ENGINE_SUBSTITUTION |

+---+

Adding a new flag:

SET @@SQL_MODE = CONCAT(@@SQL_MODE, ',NO_ENGINE_SUBSTITUTION');

If the specified flag is already ON, the above example has no effect but does not produce an error.

How to unset a flag:

SET @@SQL_MODE = REPLACE(@@SQL_MODE, 'NO_ENGINE_SUBSTITUTION', '');

2277/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

How to check if a flag is set:

SELECT @@SQL_MODE LIKE '%NO_ZERO_DATE%';

+----------------------------------+

| @@SQL_MODE LIKE '%NO_ZERO_DATE%' |

+----------------------------------+

| 1 |

+----------------------------------+

Without and with strict mode:

CREATE TABLE strict (s CHAR(5), n TINYINT);

INSERT INTO strict VALUES ('MariaDB', '128');

Query OK, 1 row affected, 2 warnings (0.14 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1265 | Data truncated for column 's' at row 1 |

| Warning | 1264 | Out of range value for column 'n' at row 1 |

+---------+------+--+

2 rows in set (0.00 sec)

SELECT * FROM strict;

+-------+------+

| s | n |

+-------+------+

| Maria | 127 |

+-------+------+

SET sql_mode='STRICT_TRANS_TABLES';

INSERT INTO strict VALUES ('MariaDB', '128');

ERROR 1406 (22001): Data too long for column 's' at row 1

Overriding strict mode with the IGNORE keyword:

INSERT IGNORE INTO strict VALUES ('MariaDB', '128');

Query OK, 1 row affected, 2 warnings (0.15 sec)

2.1.14.2.14 SQL_MODE-MSSQL

2.8 Copying Tables Between Different MariaDB
Databases and MariaDB Servers

Contents
1. Copying Tables When the MariaDB Server is Down

2. Copying Tables Live From a Running MariaDB Server

3. An Efficient Way to Give Someone Else Access to a Read Only Table

4. Copying InnoDB's Transportable Tablespaces

5. Importing Tables

With MariaDB it's very easy to copy tables between different MariaDB databases and different MariaDB servers. This works

for tables created with the Archive, Aria, CSV, InnoDB, MyISAM, MERGE, and XtraDB engines.

The normal procedures to copy a table is:

FLUSH TABLES db_name.table_name FOR EXPORT

Copy the relevant files associated with the table

UNLOCK TABLES;

2278/4161

The table files can be found in datadir/databasename (you can execute SELECT @@datadir to find the correct directory).

When copying the files, you should copy all files with the same table_name + various extensions. For example, for an Aria

table of name foo, you will have files foo.frm, foo.MAI, foo.MAD and possibly foo.TRG if you have triggers.

If one wants to distribute a table to a user that doesn't need write access to the table and one wants to minimize the storage

size of the table, the recommended engine to use is Aria or MyISAM as one can pack the table with aria_pack or

myisampack respectively to make it notablly smaller. MyISAM is the most portable format as it's not dependent on whether

the server settings are different. Aria and InnoDB require the same block size on both servers.

Copying Tables When the MariaDB Server is Down
The following storage engines support export without FLUSH TABLES ... FOR EXPORT , assuming the source server is

down and the receiving server is not accessing the files during the copy.

Engine Comment

Archive

Aria
Requires clean shutdown. Table will automatically be fixed on the receiving server if aria_chk --zerofill

was not run. If aria_chk --zerofill is run, then the table is immediately usable without any delays

CSV

MyISAM

MERGE
.MRG files can be copied even while server is running as the file only contains a list of tables that are part of

merge.

Copying Tables Live From a Running MariaDB Server
For all of the above storage engines (Archive, Aria, CSV, MyISAM and MERGE), one can copy tables even from a live

server under the following circumstances:

You have done a FLUSH TABLES or FLUSH TABLE table_name for the specific table.

The server is not accessing the tables during the copy process.

The advantage of FLUSH TABLES table_name FOR EXPORT is that the table is read locked until UNLOCK TABLES is

executed.

Warning: If you do the above live copy, you are doing this on your own risk as if you do something wrong, the copied table

is very likely to be corrupted. The original table will of course be fine.

An Efficient Way to Give Someone Else Access to a
Read Only Table
If you want to give a user access to some data in a table for the user to use in their MariaDB server, you can do the

following:

First let's create the table we want to export. To speed up things, we create this without any indexes. We use

TRANSACTIONAL=0

ROW_FORMAT=DYNAMIC for Aria to use the smallest possible row format.

CREATE TABLE new_table ... ENGINE=ARIA TRANSACTIONAL=0;

ALTER TABLE new_table DISABLE_KEYS;

Fill the table with data:

INSERT INTO new_table SELECT * ...

FLUSH TABLE new_table WITH READ LOCK;

Copy table data to some external location, like /tmp with something

like cp /my/data/test/new_table.* /tmp/

UNLOCK TABLES;

Then we pack it and generate the indexes. We use a big sort buffer to speed up generating the index.

2279/4161

file:///lock-tables-and-unlock-tables

> ls -l /tmp/new_table.*

-rw-rw---- 1 mysql my 42396148 Sep 21 17:58 /tmp/new_table.MAD

-rw-rw---- 1 mysql my 8192 Sep 21 17:58 /tmp/new_table.MAI

-rw-rw---- 1 mysql my 1039 Sep 21 17:58 /tmp/new_table.frm

> aria_pack /tmp/new_table

Compressing /tmp/new_table.MAD: (922666 records)

- Calculating statistics

- Compressing file

46.07%

> aria_chk -rq --ignore-control-file --sort_buffer_size=1G /tmp/new_table

Recreating table '/tmp/new_table'

- check record delete-chain

- recovering (with sort) Aria-table '/tmp/new_table'

Data records: 922666

- Fixing index 1

State updated

> ls -l /tmp/new_table.*

-rw-rw---- 1 mysql my 26271608 Sep 21 17:58 /tmp/new_table.MAD

-rw-rw---- 1 mysql my 10207232 Sep 21 17:58 /tmp/new_table.MAI

-rw-rw---- 1 mysql my 1039 Sep 21 17:58 /tmp/new_table.frm

The procedure for MyISAM tables is identical, except that myisamchk doesn't have the --ignore-control-file option.

Copying InnoDB's Transportable Tablespaces
InnoDB's file-per-table tablespaces are transportable, which means that you can copy a file-per-table tablespace from one

MariaDB Server to another server. See Copying Transportable Tablespaces for more information.

Importing Tables
Tables that use most storage engines are immediately usable when their files are copied to the new datadir .

However, this is not true for tables that use InnoDB. InnoDB tables have to be imported with ALTER TABLE ... IMPORT

TABLESPACE. See Copying Transportable Tablespaces for more information.

3 High Availability & Performance Tuning
Information on replication, clustering, and multi-master solutions for MariaDB, as well as performance tuning.

MariaDB Replication

Documentation on standard primary and replica replication.

MariaDB Galera Cluster

MariaDB Galera Cluster is a virtually synchronous multi-master cluster.

Optimization and Tuning

Using indexes, writing better queries and adjusting variables for better performance.

Connection Redirection Mechanism in the MariaDB Client/Server Protocol

Connection Redirection Mechanism in the MariaDB Client/Server Protocol.

There are 2 related questions .

3.1 MariaDB Replication

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Replication is a feature allowing the contents of one or more primary servers to be mirrored on one or more replica servers.

2280/4161

https://mariadb.com/kb/en/replication-cluster-multi-master/+questions/
https://jira.mariadb.org/browse/MDEV-18777

Replication Overview

Allow the contents of one or more primary servers to be mirrored on one or more replicas.

Replication Commands

List of replication-related commands.

Setting Up Replication

Getting replication working involves steps on both the primary server/s and the replica server/s.

Setting up a Replica with Mariabackup

Setting up a replica with Mariabackup.

Read-Only Replicas

Making replicas read-only.

Replication as a Backup Solution

Replication can be used to support the backup strategy.

Multi-Source Replication

Using replication with many masters.

Replication Threads

Types of threads that are used to enable replication.

Global Transaction ID

Improved replication using global transaction IDs.

Parallel Replication

Executing queries replicated from the primary in parallel on the replica.

Replication and Binary Log System Variables

Replication and binary log system variables.

Replication and Binary Log Status Variables

Replication and binary log status variables.

Binary Log

Contains a record of all changes to the databases, both data and structure

Unsafe Statements for Statement-based Replication

Statements that are not safe for statement-based replication.

Replication and Foreign Keys

Cascading deletes or updates based on foreign key relations are not written to the binary log

Relay Log

Event log created by the replica from the primary binary log.

Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT

Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT.

Group Commit for the Binary Log

Optimization when the server is run with innodb_flush_logs_at_trx_commit or sync_binlog.

Selectively Skipping Replication of Binlog Events

@@skip_replication and --replicate-events-marked-for-skip.

Binlog Event Checksums

Including a checksum in binlog events.

Binlog Event Checksum Interoperability

Replicating between servers with differing binlog checksum availability

1

22

1

6

4

6

9

9

2

3

2281/4161

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/

Annotate_rows_log_event

Annotate_rows events accompany row events and describe the query which caused the row event.

Row-based Replication With No Primary Key

MariaDB improves on row-based replication of tables with no primary key

Replication Filters

Replication filters allow users to configure replicas to intentionally skip certain events.

Running Triggers on the Replica for Row-based Events

Running triggers on the replica for row-based events.

Semisynchronous Replication

Semisynchronous replication.

Using MariaDB Replication with MariaDB Galera Cluster

Information on using MariaDB replication with MariaDB Galera Cluster.

Delayed Replication

Specify that a replica should lag behind the primary by (at least) a specified amount of time.

Replication When the Primary and Replica Have Different Table Definitions

Slave and the primary table definitions can differ while replicating.

Restricting Speed of Reading Binlog from Primary by a Replica

The read_binlog_speed_limit option can be used to reduce load on the primary.

Changing a Replica to Become the Primary

How to change a replica to primary and old primary as a replica for the new primary.

Replication with Secure Connections

Enabling TLS encryption in transit for MariaDB replication.

Obsolete Replication Information

This section is for replication-related items that are obsolete

There are 23 related questions .

1

4

1

1

1

1

5

3.1.1 Replication Overview
Contents
1. Replication Uses

2. Common Replication Setups

1. Standard Replication

2. Ring Replication

3. Star Replication

4. Multi-Source Replication

3. Cross-Version Replication Compatibility

Replication is a feature allowing the contents of one or more servers (called primaries) to be mirrored on one or more

servers (called replicas).

You can exert control over which data to replicate. All databases, one or more databases, or tables within a database can

each be selectively replicated.

The main mechanism used in replication is the binary log. If binary logging is enabled, all updates to the database (data

manipulation and data definition) are written into the binary log as binlog events. Replicas read the binary log from each

primary in order to access the data to replicate. A relay log is created on the replica, using the same format as the binary

log, and this is used to perform the replication. Old relay log files are removed when no longer needed.

A replica server keeps track of the position in the primary's binlog of the last event applied on the replica. This allows the

replica server to re-connect and resume from where it left off after replication has been temporarily stopped. It also allows a

replica to disconnect, be cloned and then have the new replica resume replication from the same primary.

2282/4161

https://mariadb.com/kb/en/obsolete-replication-information/
https://mariadb.com/kb/en/standard-replication/+questions/

Primaries and replicas do not need to be in constant communication with each other. It's quite possible to take servers

offline or disconnect from the network, and when they come back, replication will continue where it left off.

Replication Uses
Replication is used in a number of common scenarios. Uses include:

Scalability. By having one or more replicas, reads can be spread over multiple servers, reducing the load on the

primary. The most common scenario for a high-read, low-write environment is to have one primary, where all the

writes occur, replicating to multiple replicas, which handle most of the reads.

Data analysis. Analyzing data may have too much of an impact on a primary server, and this can similarly be handled

on a replica, while the primary continues unaffected by the extra load.

Backup assistance. Backups can more easily be run if a server is not actively changing the data. A common scenario

is to replicate the data to a replica, which is then disconnected from the primary with the data in a stable state.

Backup is then performed from this server. See Replication as a Backup Solution.

Distribution of data. Instead of being connected to a remote primary, it's possible to replicate the data locally and work

from this data instead.

Common Replication Setups

Standard Replication

Provides infinite read scale out.

Provides high-availability by upgrading replica to primary.

Ring Replication

2283/4161

Provides read and write scaling.

Doesn9t handle conflicts.

If one primary fails, replication stops.

Star Replication

Provides read and write scaling.

Doesn9t handle conflicts.

Have to use replication filters to avoid duplication of data.

Multi-Source Replication

2284/4161

Allows you to combine data from different sources.

Different domains executed independently in parallel on all replicas.

Cross-Version Replication Compatibility
The following table describes replication compatibility between different MariaDB Server versions. In general, the replica

should always be at least equivalent in version to the primary:

Primary³ MariaDB 10.3 MariaDB 10.4 MariaDB 10.5 MariaDB 10.6 MariaDB 10.11

Replica ³

MariaDB 10.3 ' � � � �

MariaDB 10.4 ' ' � � �

MariaDB 10.5 ' ' ' � �

MariaDB 10.6 ' ' ' ' �

MariaDB 10.11 ' ' ' ' '

': This combination is supported.

�: This combination is not supported.

For replication compatibility details between MariaDB and MySQL, see MariaDB versus MySQL - Compatibility: Replication

Compatibility.

1.1.1.2.5 Replication Commands

3.1.3 Setting Up Replication

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

2285/4161

https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Setting up a Replication Slave with Mariabackup

2. Versions

3. Configuring the Master

1. Example Enabling Replication for MariaDB

2. Example Enabling Replication for MySQL

4. Settings to Check

5. Configuring the Slave

6. Getting the Master's Binary Log Co-ordinates

7. Start the Slave

1. Use Global Transaction Id (GTID)

8. Replicating from MySQL Master to MariaDB Slave

Getting replication working involves steps on both the master server/s and steps on the slave server/s.

MariaDB 10.0 introduced replication with global transaction IDs. These have a number of benefits, and it is generally

recommended to use this feature from MariaDB 10.0.

Setting up a Replication Slave with Mariabackup
If you would like to use Mariabackup to set up a replication slave, then you might find the information at Setting up a

Replication Slave with Mariabackup helpful.

Versions
In general, when replicating across different versions of MariaDB, it is best that the master is an older version than the slave.

MariaDB versions are usually backward compatible, while of course older versions cannot always be forward compatible.

See also Replicating from MySQL Master to MariaDB Slave.

Configuring the Master
Enable binary logging if it's not already enabled. See Activating the Binary Log and Binary log formats for details.

Give the master a unique server_id. All slaves must also be given a server_id. This can be a number from 1 to 2 -1,

and must be unique for each server in the replicating group.

Specify a unique name for your replication logs with --log-basename. If this is not specified your host name will be

used and there will be problems if the hostname ever changes.

Slaves will need permission to connect and start replicating from a server. Usually this is done by creating a

dedicated slave user, and granting that user permission only to replicate (REPLICATION SLAVE permission).

Example Enabling Replication for MariaDB

Add the following into your my.cnf file and restart the database.

[mariadb]

log-bin

server_id=1

log-basename=master1

binlog-format=mixed

The server id is a unique number for each MariaDB/MySQL server in your network. binlog-format specifies how your

statements are logged. This mainly affects the size of the binary log that is sent between the Master and the Slaves.

Then execute the following SQL with the mysql command line client:

CREATE USER 'replication_user'@'%' IDENTIFIED BY 'bigs3cret';

GRANT REPLICATION SLAVE ON *.* TO 'replication_user'@'%';

Example Enabling Replication for MySQL

If you want to enable replication from MySQL to MariaDB, you can do it in almost the same way as between MariaDB

servers. The main difference is that MySQL doesn't support log-basename .

32

2286/4161

[mysqld]

log-bin

server_id=1

Settings to Check
There are a number of options that may impact or break replication. Check the following settings to avoid problems.

skip-networking. If skip-networking=1 , the server will limit connections to localhost only, and prevent all remote

slaves from connecting.

bind-address. Similarly, if the address the server listens for TCP/IP connections is 127.0.0.1 (localhost), remote

slaves connections will fail.

Configuring the Slave
Give the slave a unique server_id. All servers, whether masters or slaves, are given a server_id. This can be a

number from 1 to 2 -1, and must be unique for each server in the replicating group. The server will need to be

restarted in order for a change in this option to take effect.

Getting the Master's Binary Log Co-ordinates
Now you need prevent any changes to the data while you view the binary log position. You'll use this to tell the slave at

exactly which point it should start replicating from.

On the master, flush and lock all tables by running FLUSH TABLES WITH READ LOCK . Keep this session running -

exiting it will release the lock.

Get the current position in the binary log by running SHOW MASTER STATUS :

SHOW MASTER STATUS;

+--------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------------+----------+--------------+------------------+

| master1-bin.000096 | 568 | | |

+--------------------+----------+--------------+------------------+

Record the File and Position details. If binary logging has just been enabled, these will be blank.

Now, with the lock still in place, copy the data from the master to the slave. See Backup, Restore and Import for

details on how to do this.

Note for live databases: You just need to make a local copy of the data, you don't need to keep the master locked

until the slave has imported the data.

Once the data has been copied, you can release the lock on the master by running UNLOCK TABLES.

UNLOCK TABLES;

Start the Slave
Once the data has been imported, you are ready to start replicating. Begin by running a CHANGE MASTER TO,

making sure that MASTER_LOG_FILE matches the file and MASTER_LOG_POS the position returned by the earlier

SHOW MASTER STATUS. For example:

CHANGE MASTER TO

 MASTER_HOST='master.domain.com',

 MASTER_USER='replication_user',

 MASTER_PASSWORD='bigs3cret',

 MASTER_PORT=3306,

 MASTER_LOG_FILE='master1-bin.000096',

 MASTER_LOG_POS=568,

 MASTER_CONNECT_RETRY=10;

If you are starting a slave against a fresh master that was configured for replication from the start, then you don't have to

specify MASTER_LOG_FILE and MASTER_LOG_POS .

Use Global Transaction Id (GTID)

32

MariaDB starting with 10.0 2287/4161

MariaDB 10.0 introduced global transaction IDs (GTIDs) for replication. It is generally recommended to use (GTIDs)

from MariaDB 10.0, as this has a number of benefits. All that is needed is to add the MASTER_USE_GTID option to the

CHANGE MASTER statement, for example:

CHANGE MASTER TO MASTER_USE_GTID = slave_pos

See Global Transaction ID for a full description.

Now start the slave with the START SLAVE command:

START SLAVE;

Check that the replication is working by executing the SHOW SLAVE STATUS command:

SHOW SLAVE STATUS \G

If replication is working correctly, both the values of Slave_IO_Running and Slave_SQL_Running should be

Yes :

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Replicating from MySQL Master to MariaDB Slave
Replicating from MySQL 5.5 to MariaDB 5.5+ should just work. When using a MariaDB 10.2+ as a slave, it may be

necessary to set binlog_checksum to NONE.

Replicating from MySQL 5.6 without GTID to MariaDB 10+ should work.

Replication from MySQL 5.6 with GTID, binlog_rows_query_log_events and ignorable events works starting from

MariaDB 10.0.22 and MariaDB 10.1.8 . In this case MariaDB will remove the MySQL GTIDs and other unneeded

events and instead adds its own GTIDs.

MariaDB starting with 10.0

2.3.4.7 Setting up a Replica with Mariabackup

3.1.5 Read-Only Replicas
Contents
1. Older MariaDB Versions

A common replication setup is to have the replicas read-only to ensure that no one accidentally updates them. If the replica

has binary logging enabled and gtid_strict_mode is used, then any update that causes changes to the binary log will stop

replication.

When the variable read_only is set to 1, no updates are permitted except from users with the SUPER privilege (<=

MariaDB 10.5.1) or READ ONLY ADMIN privilege (>= MariaDB 10.5.2) or replica servers updating from a primary. Inserting

rows to log tables, updates to temporary tables and OPTIMIZE TABLE or ANALYZE TABLE statements on temporary tables

are excluded from this limitation.

If read_only is set to 1, then the SET PASSWORD statement is limited only to users with the SUPER privilege (<= MariaDB

10.5.1) or READ ONLY ADMIN privilege (>= MariaDB 10.5.2).

Attempting to set the read_only variable to 1 will fail if the current session has table locks or transactions pending.

The statement will wait for other sessions that hold table locks. While the attempt to set read_only is waiting, other requests

for table locks or transactions will also wait until read_only has been set.

From MariaDB 10.3.19 , some issues related to read only replicas are fixed:

CREATE, DROP, ALTER, INSERT and DELETE of temporary tables are not logged to binary log, even in statement

or mixed mode. With earlier MariaDB versions, one can avoid the problem with temporary tables by using

binlog_format=ROW in which cases temporary tables are never logged.

Changes to temporary tables created during read_only will not be logged even after read_only mode is disabled

(for example if the replica is promoted to a primary).

The admin statements ANALYZE, CHECK, OPTIMIZE and REPAIR will not be logged to the binary log under read-

only.
2288/4161

https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-10319-release-notes/

Older MariaDB Versions

If you are using an older MariaDB version with read-only replicas and binary logging enabled on the replica, and you need to

do some changes but don't want to have them logged to the binary log, the easiest way to avoid the logging is to disable

binary logging while running as root during maintenance:

set sql_log_bin=0;

alter table test engine=rocksdb;

The above changes the test table on the replica to rocksdb without registering the change in the binary log.

3.1.6 Replication as a Backup Solution
Replication can be used to support the backup strategy.

Replication alone is not sufficient for backup. It assists in protecting against hardware failure on the primary server, but

does not protect against data loss. An accidental or malicious DROP DATABASE or TRUNCATE TABLE statement will be

replicated onto the replica as well. Care needs to be taken to prevent data getting out of sync between the primary and

the replica.

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Replication is most commonly used to support backups as follows:

A primary server replicates to a replica

Backups are then run off the replica without any impact on the primary.

Backups can have a significant effect on a server, and a high-availability primary may not be able to be stopped, locked or

simply handle the extra load of a backup. Running the backup from a replica has the advantage of being able to shutdown

or lock the replica and perform a backup without any impact on the primary server.

Note that when backing up off a replica server, it is important to ensure that the servers keep the data in sync. See for

example Replication and Foreign Keys for a situation when identical statements can result in different data on a replica and

a primary.

3.1.7 Multi-Source Replication

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. New Syntax

2. Replication Variables for Multi-Source

3. New Files

4. Other Things

5. replicate-... Variables

6. Typical Use Cases

7. Limitations

8. Incompatibilities with MariaDB/MySQL 5.5

Multi-source replication means that one server has many primaries from which it replicates.

2289/4161

https://jira.mariadb.org/browse/MDEV-18777
https://jira.mariadb.org/browse/MDEV-18777

New Syntax
You specify which primary connection you want to work with by either specifying the connection name in the command or

setting default_master_connection to the connection you want to work with.

The connection name may include any characters and should be less than 64 characters. Connection names are compared

without regard to case (case insensitive). You should preferably keep the connection name short as it will be used as a

suffix for relay logs and primary info index files.

The new syntax introduced to handle many connections:

CHANGE MASTER ['connection_name'] TO This creates or modifies a connection to a primary.

FLUSH RELAY LOGS ['connection_name']

MASTER_POS_WAIT(....,['connection_name'])

RESET SLAVE ['connection_name'] [ALL] . This is used to reset a replica's replication position or to remove a

replica permanently.

SHOW RELAYLOG ['connection_name'] EVENTS

SHOW SLAVE ['connection_name'] STATUS

SHOW ALL SLAVES STATUS

START SLAVE ['connection_name'...]]

START ALL SLAVES ...

STOP SLAVE ['connection_name'] ...

STOP ALL SLAVES ...

The original old-style connection is an empty string '' . You don't have to use this connection if you don't want to.

You create new primary connections with CHANGE MASTER.

You delete the connection permanently with RESET SLAVE 'connection_name' ALL.

Replication Variables for Multi-Source
The new replication variable default_master_connection specifies which connection will be used for commands and

variables if you don't specify a connection. By default this is '' (the default connection name).

The following replication variables are local for the connection. (In other words, they show the value for the

@@default_master_connection connection). We are working on making all the important ones local for the connection.

Type Name Description

Variable max_relay_log_size Max size of relay log. Is set at startup to max_binlog_size if 0

Variable replicate_do_db

Tell the replica to restrict replication to updates of tables whose names appear in

the comma-separated list. For statement-based replication, only the default

database (that is, the one selected by USE) is considered, not any explicitly

mentioned tables in the query. For row-based replication, the actual names of

table(s) being updated are checked.

Variable replicate_do_table Tells the replica to restrict replication to tables in the comma-separated list

Variable replicate_ignore_db

Tell the replica to restrict replication to updates of tables whose names do not

appear in the comma-separated list. For statement-based replication, only the

default database (that is, the one selected by USE) is considered, not any explicitly

mentioned tables in the query. For row-based replication, the actual names of

table(s) being updated are checked.

2290/4161

Variable replicate_ignore_table
Tells the replica thread to not replicate any statement that updates the specified

table, even if any other tables might be updated by the same statement.

Variable replicate_rewrite_db

From MariaDB 10.11. Allows one to configure a replica to rewrite database names.

It uses the format primary_database->replica_database. If a replica encounters a

binary log event in which the default database (i.e. the one selected by the USE

statement) is primary_database, then the replica will apply the event in

replica_database instead.

Variable replicate_wild_do_table
Tells the replica thread to restrict replication to statements where any of the

updated tables match the specified database and table name patterns.

Variable replicate_wild_ignore_table
Tells the replica thread to not replicate to the tables that match the given wildcard

pattern.

Status Slave_heartbeat_period How often to request a heartbeat packet from the primary (in seconds).

Status Slave_received_heartbeats How many heartbeats we have got from the primary.

Status Slave_running

Shows if the replica is running. YES means that the sql thread and the IO thread

are active. No means either one is not running. '' means that

@@default_master_connection doesn't exist.

Variable Sql_slave_skip_counter
How many entries in the replication log that should be skipped (mainly used in

case of errors in the log).

You can access all of the above variables with either SESSION or GLOBAL .

Note that in contrast to MySQL, all variables always show the correct active value!

Example:

set @@default_master_connection='';

show status like 'Slave_running';

set @@default_master_connection='other_connection';

show status like 'Slave_running';

If @@default_master_connection contains a non existing name, you will get a warning.

All other primary-related variables are global and affect either only the '' connections or all connections. For example,

Slave_retried_transactions now shows the total number of retried transactions over all replicas.

If you need to set gtid_slave_pos you need to set this for all primaries at the same time.

New status variables:

Name Description

Com_start_all_slaves Number of executed START ALL SLAVES commands.

Com_start_slave Number of executed START SLAVE commands. This replaces Com_slave_start .

Com_stop_slave Number of executed STOP SLAVE commands. This replaces Com_slave_stop .

Com_stop_all_slaves Number of executed STOP ALL SLAVES commands.

SHOW ALL SLAVES STATUS has the following new columns:

Name Description

Connection_name Name of the primary connection. This is the first variable.

Slave_SQL_State State of SQL thread.

Retried_transactions Number of retried transactions for this connection.

Max_relay_log_size Max relay log size for this connection.

Executed_log_entries How many log entries the replica has executed.

Slave_received_heartbeats How many heartbeats we have got from the primary.

Slave_heartbeat_period How often to request a heartbeat packet from the primary (in seconds).

New Files
2291/4161

The basic principle of the new files used by multi source replication is that they have the same name as the original relay log

files suffixed with connection_name before the extension. The main exception is the file that holds all connection is

named as the normal master-info-file with a multi- prefix.

When you are using multi source, the following new files are created:

Name Description

multi-master-info-file
The master-info-file (normally master.info) with a multi- prefix. This

contains all primary connections in use.

master-info-file -

connection_name .extension

Contains the current primary position for what's applied to in the replica. Extension is

normally .info

relay-log -

connection_name .xxxxx

The relay-log name with a connection_name suffix. The xxxxx is the relay log number.

This contains the replication data read from the primary.

relay-log-index -

connection_name .extension

 Contains the name of the active relay-log -connection_name .xxxxx files.

Extension is normally .index

relay-log-info-file -

connection_name .extension
Contains the current primary position for the relay log. Extension is normally .info

When creating the file, the connection name is converted to lower case and all special characters in the connection name

are converted, the same way as MySQL table names are converted. This is done to make the file name portable across

different systems.

Hint:

Instead of specifying names for mysqld with --relay-log, --relay-log-index, --general-log-file, --slow-query-log-file, --log-bin

and --log-bin-index, you can just specify --log-basename and all the other variables are set with this as a prefix.

Other Things
All error messages from a replica with a connection name, that are written to the error log, are prefixed with Master

'connection_name': . This makes it easy to see from where an error originated.

Errors ER_MASTER_INFO and WARN_NO_MASTER_INFO now includes connection_name.

There is no conflict resolution. The assumption is that there are no conflicts in data between the different primaries.

All executed commands are stored in the normal binary log (nothing new here).

If the server variable log_warnings > 1 then you will get some information in the log about how the multi-master-

info file is updated (mainly for debugging).

The output of SHOW ALL SLAVES STATUS has one more column than SHOW SLAVE STATUS , since it includes the

connection_name column.

RESET SLAVE now deletes all relay-log files.

replicate-... Variables
One can set the values for the replicate-... variables from the command line or in my.cnf for a given

connection by prefixing the variable with the connection name.

If one doesn't use any connection name prefix for a replicate.. variable, then the value will be used as the default

value for all connections that don't have a value set for this variable.

Example:

mysqld --main_connection.replicate_do_db=main_database --replicate_do_db=other_database

The have sets the replicate_do_db variable to main_database for the connection named main_connection . All

other connections will use the value other_database .

One can also use this syntax to set replicate-rewrite-db for a given connection.

Typical Use Cases
You are partitioning your data over many primaries and would like to get it all together on one machine to do analytical

queries on all data.

You have many databases spread over many MariaDB/MySQL servers and would like to have all of them on one

machine as an extra backup.

In a Galera cluster the default replication filter rules like replicate-do-db do not apply to replication connections,

2292/4161

but also to Galera write set applier threads. By using a named multi-primary replication connection instead, even

when replicating from just one primary into the cluster, the primary-replica replication rules can be kept separate from

the Galera intra-node replication traffic.

Limitations
Each active connection will create 2 threads (as is normal for MariaDB replication).

You should ensure that all primaries have different server-id 's. If you don't do this, you will get into trouble if you

try to replicate from the multi-source replica back to your primaries.

One can change max_relay_log_size for any active connection, but new connections will always use the server

startup value for max_relay_log_size , which can't be changed at runtime.

Option innodb-recovery-update-relay-log (xtradb feature to store and restore relay log position for replicas) only works

for the default connection ''. As this option is not really safe and can easily cause loss of data if you use storage

engines other than InnoDB, we don't recommend this option be used.

slave_net_timeout affects all connections. We don't check anymore if it's less than Slave_heartbeat_period, as this

doesn't make sense in a multi-source setup.

Incompatibilities with MariaDB/MySQL 5.5
max_relay_log_size is now (almost) a normal variable and not automatically changed if max_binlog_size is changed.

To keep things compatible with old config files, we set it to max_binlog_size at startup if its value is 0.

You can now access replication variables that depend on the active connection with either GLOBAL or SESSION .

We only write information about relay log positions for recovery if innodb-recovery-update-relay-log is set.

Slave_retried_transactions now shows the total count of retried transactions over all replicas.

The status variable Com_slave_start is replaced with Com_start_slave.

The status variable Com_slave_stop is replaced with Com_stop_slave.

FLUSH RELAY LOGS are not replicated anymore. This is not safe as connection names may be different on the

replica.

3.1.8 Replication Threads

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Threads on the Primary

1. Binary Log Dump Thread

1. Binary Log Dump Threads and the Shutdown Process

2. ACK Receiver Thread

2. Threads on the Replica

1. Replica I/O Thread

1. Binary Log Position

2. Replica SQL Thread

1. Relay Log Position

2. Binary Log Position

3. GTID Position

3. Worker Threads

MariaDB's replication implementation requires several types of threads.

Threads on the Primary
The primary usually only has one type of replication-related thread: the binary log dump thread.

If semisynchronous replication is enabled, then the primary also has an ACK receiver thread.

Binary Log Dump Thread

The binary log dump thread runs on the primary and dumps the binary log to the replica. This thread can be identified by

running the SHOW PROCESSLIST statement and finding the thread where the thread command is "Binlog Dump" .

2293/4161

https://jira.mariadb.org/browse/MDEV-18777

The primary creates a separate binary log dump thread for each replica connected to the primary. You can identify which

replicas are connected to the primary by executing the SHOW SLAVE HOSTS statement.

Binary Log Dump Threads and the Shutdown Process

When a primary server is shutdown and it goes through the normal shutdown process, the primary kills client threads in

random order. By default, the primary also considers its binary log dump threads to be regular client threads. As a

consequence, the binary log dump threads can be killed while client threads still exist, and this means that data can be

written on the primary during a normal shutdown that won't be replicated. This is true even if semi-synchronous replication is

being used. Data is not lost, it is stored in the primary server's binary log. The replicas on reconnection, after the primary

server restarts, will resume at the exact position they where killed off during the primary shutdown. No data is lost.

In MariaDB 10.4 and later, this problem can be solved by shutting down the server using either the mariadb-admin utility or

the SHUTDOWN command, and providing a special option.

For example, this problem can be solved by shutting down the server with the mariadb-admin utility and by providing the --

wait-for-all-slaves option to the utility and by executing the shutdown command with the utility:

mariadb-admin --wait-for-all-slaves shutdown

Or this problem can be solved by shutting down the server with the SHUTDOWN command and by providing the WAIT FOR

ALL SLAVES option to the command:

SHUTDOWN WAIT FOR ALL SLAVES;

When one of these special options is provided, the server only kills its binary log dump threads after all client threads have

been killed, and it only completes the shutdown after the last binary log has been sent to all connected replicas.

In MariaDB 10.4 and later, it is still not possible to enable this behavior by default. This means that this behavior is currently

inaccessible when shutting down the server using tools like systemd or sysVinit.

In MariaDB 10.3 and before, it is recommended to manually switchover replicas to a new primary before shutting down the

old primary.

ACK Receiver Thread

When semisynchronous replication is enabled, semisynchronous replicas send acknowledgements (ACKs) to their primary

to confirm that they have received some transaction. The primary creates an ACK receiver thread to receive these ACKs.

Threads on the Replica
The replica has three types of replication-related threads: the replica I/O thread, the replica SQL thread, and worker threads,

which are only applicable when parallel replication is in use.

When multi-source replication is in use, each independent replication connection has its own replica threads of each type.

Replica I/O Thread

The replica's I/O thread receives the binary log events from the primary and writes them to its relay log.

Binary Log Position

The binary log position of the replica's I/O thread can be checked by executing the SHOW SLAVE STATUS statement. It

will be shown as the Master_Log_File and Read_Master_Log_Pos columns.

The binary log position of the replica's I/O thread can be set by setting the MASTER_LOG_FILE and MASTER_LOG_POS

options with the CHANGE MASTER statement.

The binary log position of the replica's I/O thread and the values of most other CHANGE MASTER options are written to

either the default master.info file or the file that is configured by the master_info_file option. The replica's I/O thread

keeps this binary log position updated as it downloads events only when the MASTER_USE_GTID option is set to NO .

Otherwise the file is not updated on a per event basis. See CHANGE MASTER TO: Option Persistence for more

information.

Replica SQL Thread

The replica's SQL thread reads events from the relay log. What it does with them depends on whether parallel replication is

2294/4161

in use. If parallel replication is not in use, then the SQL thread applies the events to its local copy of the data. If parallel

replication is in use, then the SQL thread hands off the events to its worker threads to apply in parallel.

Relay Log Position

The relay log position of the replica's SQL thread can be checked by executing the SHOW SLAVE STATUS statement. It

will be shown as the Relay_Log_File and Relay_Log_Pos columns.

The relay log position of the replica's SQL thread can be set by setting the RELAY_LOG_FILE and RELAY_LOG_POS

options with the CHANGE MASTER statement.

The relay log position of the replica's SQL thread is written to either the default relay-log.info file or the file that is

configured by the relay_log_info_file system variable. The replica's SQL thread keeps this relay log position updated as it

applies events. See CHANGE MASTER TO: Option Persistence for more information.

Binary Log Position

The corresponding binary log position of the current relay log position of the replica's SQL thread can be checked by

executing the SHOW SLAVE STATUS statement. It will be shown as the Relay_Master_Log_File and

Exec_Master_Log_Pos columns.

GTID Position

If the replica is replicating binary log events that contain GTIDs, then the replica's's SQL thread will write every GTID that it

applies to the mysql.gtid_slave_pos table. This GTID can be inspected and modified through the gtid_slave_pos system

variable.

If the replica has the log_slave_updates system variable enabled and if the replica has the binary log enabled, then every

write by the replica's SQL thread will also go into the replica's binary log. This means that GTIDs of replicated transactions

would be reflected in the value of the gtid_binlog_pos system variable.

See CHANGE MASTER TO: GTID Persistence for more information.

Worker Threads

When parallel replication is in use, then the SQL thread hands off the events to its worker threads to apply in parallel.

3.1.9 Global Transaction ID

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

2295/4161

https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Overview

2. Benefits

3. Implementation

1. The Domain ID

4. Using Global Transaction IDs

1. Using current_pos vs. slave_pos

2. Using GTIDs with Parallel Replication

3. Using GTIDs with MariaDB Galera Cluster

5. Setting up a New Replica Server with Global Transaction ID

1. Setting up a New Replica with an Empty Server

2. Setting up a New Replica From a Backup

1. Setting up a New Replica with Mariabackup

2. Setting up a New Replica with mariadb-dump

3. Switching An Existing Old-Style Replica To Use GTID.

6. Changing a Replica to Replicate From a Different Primary

7. Use With Multi-Source Replication and Other Multi-Primary Setups

1. Multiple Redundant Replication Paths

2. Deleting Unused Domains

8. Additional Syntax For Global Transaction ID

1. CHANGE MASTER

2. START SLAVE UNTIL master_gtid_pos=xxx

1. SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS

1. Example

3. BINLOG_GTID_POS().

4. MASTER_GTID_WAIT

9. Binlog Indexing

10. System Variables

1. binlog_gtid_index

2. binlog_gtid_index_page_size

3. binlog_gtid_index_span_min

4. gtid_slave_pos

5. gtid_binlog_pos

6. gtid_binlog_state

7. gtid_current_pos

8. gtid_strict_mode

9. gtid_domain_id

10. last_gtid

11. server_id

12. gtid_seq_no

13. gtid_ignore_duplicates

14. gtid_pos_auto_engines

15. gtid_cleanup_batch_size

Note that MariaDB and MySQL have different GTID implementations, and that these are not compatible with each

other. MariaDB can be a replica for a MySQL primary but MySQL cannot be a replica for a MariaDB primary.

Overview
MariaDB replication in general works as follows (see Replication overview for more information):

On a master server, all updates to the database (DML and DDL) are written into the binary log as binlog events. A replica

server connects to the primary and reads the binlog events, then applies the events locally to replicate the same changes as

done on the primary. A server can be both a primary and a replica at the same time, and it is thus possible for binlog events

to replicated through multiple levels of servers.

A replica server keeps track of the position in the primary's binlog of the last event applied on the replica. This allows the

replica server to re-connect and resume from where it left off after replication has been temporarily stopped. It also allows a

replica to disconnect, be cloned and then have the new replica resume replication from the same primary.

Global transaction ID introduces a new event attached to each event group in the binlog. (An event group is a collection of

events that are always applied as a unit. They are best thought of as a "transaction", though they also include non-

transactional DML statements, as well as DDL). As an event group is replicated from primary server to replica server, the

global transaction ID is preserved. Since the ID is globally unique across the entire group of servers, this makes it easy to

uniquely identify the same binlog events on different servers that replicate each other.

2296/4161

Benefits
Using global transaction ID provides two main benefits:

1. Easy to change a replica server to connect to and replicate from a different primary server.

The replica remembers the global transaction ID of the last event group applied from the old primary. This makes it easy to

know where to resume replication on the new primary, since the global transaction IDs are known throughout the entire

replication hierarchy. This is not the case when using old-style replication; in this case the replica knows only the specific file

name and offset of the old primary server of the last event applied. There is no simple way to guess from this the correct file

name and offset on a new primary.

2. The state of the replica is recorded in a crash-safe way.

The replica keeps track of its current position (the global transaction ID of the last transaction applied) in the

mysql.gtid_slave_pos system table. If this table is using a transactional storage engine (such as InnoDB, which is the

default), then updates to the state are done in the same transaction as the updates to the data. This makes the state crash-

safe; if the replica server crashes, crash recovery on restart will make sure that the recorded replication position matches

the changes that were actually replicated. This is not the case for old-style replication, where the state is recorded in a file

relay-log.info, which is updated independently of the actual data changes and can easily get out of sync if the replica server

crashes. (This works for DML to transactional tables; non-transactional tables and DDL in general are not crash-safe in

MariaDB.)

Because of these two benefits, it is generally recommended to use global transaction ID for any replication setups based on

MariaDB 10.0.2 or later. However, old-style replication continues to work as always, so there is no pressing need to

change existing setups. Global transaction ID integrates smoothly with old-style replication, and the two can be used freely

together in the same replication hierarchy. There is no special configuration needed of the server to start using global

transaction ID. However, it must be explicitly set for a replica server with the appropriate CHANGE MASTER option; by

default old-style replication is used by a replication replica, to maintain backwards compatibility.

Implementation
A global transaction ID, or GTID for short, consists of three numbers separated with dashes '-'. For example:

0-1-10

The first number 0 is the domain ID, which is specific for global transaction ID (more on this below). It is a 32-bit

unsigned integer.

The second number is the server ID, the same as is also used in old-style replication. It is a 32-bit unsigned integer.

The third number is the sequence number. This is a 64-bit unsigned integer that is monotonically increasing for each

new event group logged into the binlog.

The server ID is set to the server ID of the server where the event group is first logged into the binlog. The sequence

number is increased on a server for every event group logged. Since server IDs must be unique for every server, this makes

the (server_id, sequence_number) pair, and hence the whole GTID, globally unique.

Using a 64-bit number provides ample range that there should be no risk of it overflowing in the foreseeable future.

However, one should not artificially (by setting gtid_seq_no) inject a GTID with a very high sequence number close to the

limit of 64-bit.

The Domain ID

When events are replicated from a primary server to a replica server, the events are always logged into the replica's binlog

in the same order that they were read from the primary's binlog. Thus, if there is only ever a single primary server receiving

(non-replication) updates at a time, then the binlog order will be identical on every server in the replication hierarchy.

This consistent binlog order is used by the replica to keep track of its current position in the replication. Basically, the replica

remembers the GTID of the last event group replicated from the primary. When reconnecting to a primary, whether the

same one or a new one, it sends this GTID position to the primary, and the primary starts sending events from the first event

after the corresponding event group.

However, if user updates are done independently on multiple servers at the same time, then in general it is not possible for

binlog order to be identical across all servers. This can happen when using multi-source replication, with multi-primary ring

topologies, or just if manual updates are done on a replica that is replicating from active primary. If the binlog order is

different on the new primary from the order on the old primary, then it is not sufficient for the replica to keep track of a single

GTID to completely record the current state.

The domain ID, the first component of the GTID, is used to handle this.

In general, the binlog is not a single ordered stream. Rather, it consists of a number of different streams, each one identified

by its own domain ID. Within each stream, GTIDs always have the same order in every server binlog. However, different

streams can be interleaved in different ways on different servers.
2297/4161

https://mariadb.com/kb/en/mariadb-1002-release-notes/

A replica server then keeps track of its replication position by recording the last GTID applied within each replication stream.

When connecting to a new primary, the replica can start replication from a different point in the binlog for each domain ID.

For more details on using multi-primary setups and multiple domain IDs, see Use with multi-source replication and other

multi-primary setups.

Simple replication setups only have a single primary being updated by the application at any one time. In such setups, there

is only a single replication stream needed. Then domain ID can be ignored, and left as the default of 0 on all servers.

Using Global Transaction IDs
Global transaction ID is enabled automatically. Each event group logged to the binlog receives a GTID event, as can be

seen with mariadb-binlog or SHOW BINLOG EVENTS.

The replica automatically keeps track of the GTID of the last applied event group, as can be seen from the gtid_slave_pos

variable:

SELECT @@GLOBAL.gtid_slave_pos

0-1-1

When a replica connects to a primary, it can use either global transaction ID or old-style filename/offset to decide where in

the primary binlogs to start replicating from. To use global transaction ID, use the CHANGE MASTER master_use_gtid

option:

CHANGE MASTER TO master_use_gtid = { slave_pos | current_pos | no }

A replica is configured to use GTID by CHANGE MASTER TO master_use_gtid=slave_pos . When the replica connects to

the primary, it will start replication at the position of the last GTID replicated to the replica, which can be seen in the variable

gtid_slave_pos. Since GTIDs are the same across all replication servers, the replica can then be pointed to a different

primary, and the correct position will be determined automatically.

But suppose that we set up two servers A and B and let A be the primary and B the replica. It runs for a while. Then at some

point we take down A, and B becomes the new primary. Then later we want to add A back, this time as a replica.

Since A was never a replica before, it does not have any prior replicated GTIDs, and gtid_slave_pos will be empty. To allow

A to be added as a replica automatically, master_use_gtid=current_pos can be used. This will connect using the value

of the variable gtid_current_pos instead of gtid_slave_pos, which also takes into account GTIDs written into the binlog when

the server was a primary.

When using master_use_gtid=current_pos there is no need to consider whether a server was a primary or a replica

prior to using CHANGE MASTER. But care must be taken not to inject extra transactions into the binlog on the replica server

that are not intended to be replicated to other servers. If such an extra transaction is the most recent when the replica starts,

it will be used as the starting point of replication. This will probably fail because that transaction is not present on the

primary. To avoid local changes on a replica server to go into the binlog, set sql_log_bin to 0.

If it is undesirable that changes to the binlog on the replica affects the GTID replication position, then

master_use_gtid=slave_pos should be used. Then the replica will always connect to the primary at the position of the

last replicated GTID. This may avoid some surprises for users that expect behavior consistent with traditional replication,

where the replication position is never changed by local changes done on a server.

When GTID strict mode is enabled (by setting @@GLOBAL.gtid_strict_mode to 1), it is normally best to use

current_pos . In strict mode, extra transactions on the primary are disallowed.

If a replica is configured with the binlog disabled, current_pos and slave_pos are equivalent.

Even when a replica is configured to connect with the old-style binlog filename and offset (CHANGE MASTER TO

master_log_file=..., master_log_pos=...), it will still keep track of the current GTID position in

@@GLOBAL.gtid_slave_pos . This means that an existing replica previously configured and running can be changed to

connect with GTID (to the same or a new master) simply with:

CHANGE MASTER TO master_use_gtid = slave_pos

The replica remembers that master_use_gtid=slave_pos|master_pos was specified and will use it also for subsequent

connects, until it is explicitly changed by specifying master_log_file/pos=... or master_use_gtid=no . The current

value can be seen as the field Using_Gtid of SHOW SLAVE STATUS:

SHOW SLAVE STATUS\G

...

Using_Gtid: Slave_pos

The replica server internally uses the mysql.gtid_slave_pos table to store the GTID position (and so preserve the value of

2298/4161

@@GLOBAL.gtid_slave_pos across server restarts). After upgrading a server to 10.0, it is necessary to run

mysql_upgrade (as always) to get the table created.

In order to be crash-safe, this table must use a transactional storage engine such as InnoDB. When MariaDB is first installed

(or upgraded to 10.0.2+) the table is created using the default storage engine - which itself defaults to InnoDB. If there is a

need to change the storage engine for this table (to make it transactional on a system configured with MyISAM as the

default storage engine, for example), use ALTER TABLE:

ALTER TABLE mysql.gtid_slave_pos ENGINE = InnoDB

The mysql.gtid_slave_pos table should not be modified in any other way. In particular, do not try to update the rows in the

table to change the replica's idea of the current GTID position; instead use

SET GLOBAL gtid_slave_pos = '0-1-1'

Starting from MariaDB 10.3.1 , the server variable gtid_pos_auto_engines can preferably be set to make the server handle

this automatically. See the description of the mysql.gtid_slave_pos table for details.

Using current_pos vs. slave_pos

When setting the MASTER_USE_GTID replication parameter, you have the option of enabling Global Transaction IDs to

use either the current_pos or slave_pos values.

Using the value current_pos causes the replica to set its position based on the gtid_current_pos system variable, which

is a union of gtid_binlog_pos and gtid_slave_pos. Using the value slave_pos causes the replica to instead set its position

based on the gtid_slave_pos system variable.

You may run into issues when you use the value current_pos if you write any local transactions on the replica. For

instance, if you issue an INSERT statement or otherwise write to a table while the replica threads are stopped, then new

local GTIDs may be generated in gtid_binlog_pos, which will affect the replica's value of gtid_current_pos. This may cause

errors when the replica threads are restarted, since the local GTIDs will be absent from the primary.

You can correct this issue by setting the MASTER_USE_GTID replication parameter to slave_pos instead of

current_pos . For example:

CHANGE MASTER TO MASTER_USE_GTID = slave_pos;

START SLAVE;

Using GTIDs with Parallel Replication

If parallel replication is in use, then events that were logged with GTIDs with different gtid_domain_id values can be applied

in parallel in an out-of-order manner.

Using GTIDs with MariaDB Galera Cluster

Starting with MariaDB 10.1.4 , MariaDB Galera Cluster has limited support for GTIDs. See Using MariaDB GTIDs with

MariaDB Galera Cluster for more information.

Setting up a New Replica Server with Global Transaction
ID
Setting up a new replica server with global transaction ID is not much different from setting up an old-style replica. The basic

steps are:

1. Setup the new server and load it with the initial data.

2. Start the replica replicating from the appropriate point in the primary's binlog.

Setting up a New Replica with an Empty Server

The simplest way for testing purposes is probably to setup a new, empty replica server and replicate all of the primary's

binlogs from the start (this is usually not feasible in a realistic production setup, as the initial binlog files will probably have

been purged or take too long to apply).

The replica server is installed in the normal way. By default, the GTID position for a newly installed server is empty, which

makes the replica replicate from the start of the primary's binlogs. But if the replica was used for other purposes before, the

initial position can be explicitly set to empty first:

SET GLOBAL gtid_slave_pos = "";

2299/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

Next, point the replica to the master with CHANGE MASTER. Specify master_host etc. as usual. But instead of specifying

master_log_file and master_log_pos manually, use master_use_gtid=current_pos (or slave_pos to have GTID do it

automatically:

CHANGE MASTER TO master_host="127.0.0.1", master_port=3310, master_user="root",

master_use_gtid=current_pos;

START SLAVE;

Setting up a New Replica From a Backup

The normal way to set up a new replication replica is to take a backup from an existing server (either a primary or replica in

the replication topology), and then restore that backup on the server acting as the new replica, and the configure it to start

replicating from the appropriate position in the primary's binary log.

It is important that the position at which replication is started corresponds exactly to the state of the data at the point in time

that the backup was taken. Otherwise, the replica can end up with different data than the primary because of missing or

duplicated transactions. Of course, if there are no writes to the server being backed up during the backup process, then a

simple SHOW MASTER STATUS will give the correct position.

See the description of the specific backup tool to determine how to get the binary log position that corresponds to the

backup.

Once the current binary log position for the backup has been obtained, in the form of a binary log file name and position, the

corresponding GTID position can be obtained from BINLOG_GTID_POS() on the server that was backed up:

SELECT BINLOG_GTID_POS("master-bin.000001", 600);

The new replica can then start replicating from the primary by setting the correct value for gtid_slave_pos, and then

executing CHANGE MASTER with the relevant values for the primary, and then starting the replica threads by executing

START SLAVE. For example:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO master_host="127.0.0.1", master_port=3310, master_user="root",

master_use_gtid=slave_pos;

START SLAVE;

This method is particularly useful when setting up a new replica from a backup of the primary. Remember to ensure that the

value of server_id configured on the new replica is different from that of any other server in the replication topology.

If the backup was taken of an existing replica server, then the new replica should already have the correct GTID position

stored in the mysql.gtid_slave_pos table. This is assuming that this table was backed up and that it was backed up in a

consistent manner with changes to other tables. In this case, there is no need to explicitly look up the GTID position on the

old server and set it on the new replica - it will be already correctly loaded from the mysql.gtid_slave_pos table. This

however does not work if the backup was taken from the primary - because then the current GTID position is contained in

the binary log, not in the mysql.gtid_slave_pos table or any other table.

Setting up a New Replica with Mariabackup

A new replica can easily be set up with Mariabackup, which is a fork of Percona XtraBackup . See Setting up a Replica

with Mariabackup for more information.

Setting up a New Replica with mariadb-dump

A new replica can also be set up with mariadb-dump.

mariadb-dump automatically includes the GTID position as a comment in the backup file if either the --master-data or --

dump-slave option is used. It also automatically includes the commands to set gtid_slave_pos and execute CHANGE

MASTER in the backup file if the --gtid option is used with either the --master-data or --dump-slave option.

Switching An Existing Old-Style Replica To Use GTID.

If there is already an existing replica running using old-style binlog filename/offset position, then this can be changed to use

GTID directly. This can be useful for upgrades for example, or where there are already tools to setup new replica using old-

style binlog positions.

When a replica connects to a primary using old-style binlog positions, and the primary supports GTID (i.e. is MariaDB 10.0.2

 or later), then the replica automatically downloads the GTID position at connect and updates it during replication. Thus,

once a replica has connected to the GTID-aware primary at least once, it can be switched to using GTID without any other

2300/4161

https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/mariadb-1002-release-notes/

actions needed;

STOP SLAVE;

CHANGE MASTER TO master_host="127.0.0.1", master_port=3310, master_user="root",

master_use_gtid=current_pos;

START SLAVE;

(A later version will probably add a way to setup the replica so that it will connect with old-style binlog file/offset the first time,

and automatically switch to using GTID on subsequent connects.)

Changing a Replica to Replicate From a Different Primary
Once replication is running with GTID (master_use_gtid=current_pos|slave_pos), the replica can be pointed to a new

primary simply by specifying in CHANGE MASTER the new master_host (and if required master_port, master_user, and

master_password):

STOP SLAVE;

CHANGE MASTER TO master_host='127.0.0.1', master_port=3312;

START SLAVE;

The replica has a record of the GTID of the last applied transaction from the old primary, and since GTIDs are identical

across all servers in a replication hierarchy, the replica will just continue from the appropriate point in the new primary's

binlog.

It is important to understand how this change of primary work. The binlog is an ordered stream of events (or multiple

streams, one per replication domain, (see Use with multi-source replication and other multi-primary setups). Events within

the stream are always applied in the same order on every replica that replicates it. The MariaDB GTID relies on this

ordering, so that it is sufficient to remember just a single point within the stream. Since event order is the same on every

server, switching to the point of the same GTID in the binlog of another server will give the same result.

This translates into some responsibility for the user. The MariaDB GTID replication is fully asynchronous, and fully flexible in

how it can be configured. This makes it possible to use it in ways where the assumption that binlog sequence is the same on

all servers is violated. In such cases, when changing primary, GTID will still attempt to continue at the point of current GTID

in the new binlog.

The most common way that binlog sequence gets different between servers is when the user/DBA does updates directly on

a replica server (and these updates are written into the replica's binlog). This results in events in the replica's binlog that are

not present on the primary or any other replicas. This can be avoided by setting the session variable sql_log_bin false while

doing such updates, so they do not go into the binlog.

It is normally best to avoid any differences in binlogs between servers. That being said, MariaDB replication is designed for

maximum flexibility, and there can be valid reasons for introducing such differences from time to time. It this case, it just

needs to be understood that the GTID position is a single point in each binlog stream (one per replication domain), and how

this affects the users particular setup.

Differences can also occur when two primary are active at the same time in a replication hierarchy. This happens when

using a multi-primary ring. But it can also occur in a simple primary-replica setup, during switch to a new primary, if changes

on the old primary is not allowed to fully replicate to all replica servers before switching primary. Normally, to switch primary,

first writes to the old primary should be stopped, then one should wait for all changes to be replicated to the new primary,

and only then should writes begin on the new primary. Deliberately using multiple active primary is also supported, this is

described in the next section.

The GTID strict mode can be used to enforce identical binlogs across servers. When it is enabled, most actions that would

cause differences are rejected with an error.

Use With Multi-Source Replication and Other Multi-
Primary Setups
MariaDB global transaction ID supports having multiple primarys active at the same time. Typically this happens with either

multi-source replication or multi-primary ring setups.

In such setups, each active primary must be configured with its own distinct replication domain ID, gtid_domain_id. The

binlog will then in effect consists of multiple independent streams, one per active primary. Within one replication domain,

binlog order is always the same on every server. But two different streams can be interleaved differently in different server

binlogs.

The GTID position of a given replica is then not a single GTID. Rather, it becomes the GTID of the last event group applied

for each value of domain ID, in effect the position reached in each binlog stream. When the replica connects to a primary, it

can continue from one stream in a different binlog position than another stream. Since order within one stream is consistent
2301/4161

across all servers, this is sufficient to always be able to continue replication at the correct point in any new primary

server(s).

Domain IDs are assigned by the DBA, according to the need of the application. The default value of

@@GLOBAL.gtid_domain_id is 0. This is appropriate for most replication setups, where only a single primary is active at a

time. The MariaDB server will never by itself introduce new domain_id values into the binlog.

When using multi-source replication, where a single replica connects to multiple primaries at the same time, each such

primary should be configured with its own distinct domain ID.

Similarly, in a multi-primary ring topology, where all primary in the ring are updated by the application concurrently (with

some mechanism to avoid conflicts), a distinct domain ID should be configured for each server (In a multi-primary ring where

the application is careful to only do updates on one primary at a time, a single domain ID is sufficient).

Normally, a replica server should not receive direct updates (as this creates binlog differences compared to the primary).

Thus it does not matter what value of gtid_domain_id is set on a replica, though it may make sense to make it the same as

the primary (if not using multi-primary) to make it easy to promote the replica as a new primary. Of course, if a replica is

itself an active primary, as in a multi-primary ring topology, the domain ID should be set according to the server's role as

active primary.

Note that domain ID and server ID are distinct concepts. It is possible to use a different domain ID on each server, but this is

normally not desirable. It makes the current GTID position (@@global.gtid_slave_pos) more complicated to understand and

work with, and loses the concept of a single ordered binlog stream across all servers. It is recommended only to configure

as many domain IDs as there are primary servers actively being updated by the application at the same time.

It is not an error in itself to configure domain IDs incorrectly (for example, not configuring them at all). For example, this will

be typical in an upgrade scenario where a multi-primary ring using 5.5 is upgraded to 10.0. The ring will continue to work as

before even though everything is configured to use the default domain ID 0. It is even possible to use GTID for replication

between the servers. However, care must be taken when switching a replica to a different primary. If the binlog order

between the old and the new primary differs, then a single GTID position to start replication from in the new primary's binlog

may not be sufficient.

Multiple Redundant Replication Paths

Using GTID with multi-source replication, it is possible to set up multiple redundant replication paths. For example:

 M1 <-> M2

 M1 -> S1

 M1 -> S2

 M2 -> S1

 M2 -> S2

Here, M1 and M2 are setup in a master-master ring. S1 and S2 both replicate from each of M1 and M2. Each event

generated on M1 will now arrive twice at S1, through the paths M1->S1 and M1->M2->S1. This way, if the network

connection between M1 and S1 is broken, the replication can continue uninterrupted through the alternate path through M2.

Note that this is an advanced setup, and good familiarity with MariaDB replication is recommended to successfully operate

it.

The option --gtid-ignore-duplicates must be enabled to use multiple redundant replication paths. This is necessary to avoid

each event being applied twice on the replica as it arrives through each path. The GTID of every event will be compared

against the sequence number of the current GTID replica position (within each domain), and will be skipped if less than or

equal. Thus it is required that sequence numbers are strictly increasing within each domain for --gtid-ignore-duplicates to

function correctly, and setting --gtid-strict-mode=1 to help enforce this is recommended.

The --gtid-ignore-duplicates options also relaxes the requirement for connection to the master. In the above example, when

S1 connects to M2, it may connect at a GTID position from M1 that has not yet been applied on M2.

When --gtid-ignore-duplicates is enabled, the connection will be allowed, and S1 will start receiving events from M2 once the

GTID has been replicated from M1 to M2. This can also be used to use replication filters in parts of a replication topology, to

allow a replica to connect to a GTID position which was filtered on a master. When --gtid-ignore-duplicates is enabled, the

connecting replica will start receiving events from the master at the first GTID sequence number that is larger than the

connect-position.

Deleting Unused Domains

FLUSH BINARY LOGS DELETE_DOMAIN_ID=(list-of-domains) can be used to discard obsolete GTID domains from the

server's binary log state. In order for this to be successful, no event group from the listed GTID domains can be present in

existing binary log files. If some still exist, then they must be purged prior to executing this command.

If the command completes successfully, then it also rotates the binary log.

The old domains will still appear in gtid_io_pos. To get rid of these, you can stop the replica and execute on the replica:
2302/4161

SET gtid_slave_pos="<position with domains removed>"

Additional Syntax For Global Transaction ID

CHANGE MASTER

CHANGE MASTER has an option, master_use_gtid=[current_pos|slave_pos|no] . When enabled (set to

current_pos or slave_pos), the replica will connect to the master using the GTID position. When disabled (set to "no"), the

old-style binlog filename/offset position is used to decide where to start replicating when connecting. Unlike in the old-style,

when GTID is enabled, the values of the MASTER_LOG_FILE and MASTER_LOG_POS options are not updated per

received event in master_info_file file.

The value of master_use_gtid is saved across server restarts (in master.info). The current value can be seen as the field

Using_Gtid in the output of SHOW SLAVE STATUS.

For a detailed look at the difference between the current_pos and slave_pos options, see Using global transaction IDs

START SLAVE UNTIL master_gtid_pos=xxx

When starting replication with START SLAVE, it is possible to request the replica to run only until a specific GTID position is

reached. Once that position is reached, the replica will stop.

The syntax for this is:

 START SLAVE UNTIL master_gtid_pos = <GTID position>

The replica will start replication from the current GTID position, run up to and including the event with the GTID specified,

and then stop. Note that this stops both the IO thread and the SQL thread (unlike START SLAVE UNTIL

MASTER_LOG_FILE/MASTER_LOG_POS, which stops only the SQL thread).

If multiple GTIDs are specified, then they must be with distinct replication domain ID, for example:

 START SLAVE UNTIL master_gtid_pos = "1-11-100,2-21-50"

With multiple domains in the UNTIL condition, each domain runs only up to and including the specified position, so it is

possible for different domains to stop at different places in the binlog (each domain will resume from the stopped position

when the replica is started the next time).

Not specifying a replication domain at all in the UNTIL condition means that the domain is stopped immediately, nothing is

replicated from that domain. In particular, specifying the empty string will stop the replica immediately.

When using START SLAVE UNTIL master_gtid_pos = XXX , if the UNTIL position is present in the primary's binlog then

it is permissible for the start position to be missing on the primary. In this case, replication for the associated domains stop

immediately.

Both replica threads must be already stopped when using UNTIL master_gtid_pos, otherwise an error occurs. It is also an

error if the replica is not configured to use GTID (CHANGE MASTER TO master_use_gtid=current_pos|slave_pos).

And both threads must be started at the same time, the IO_THREAD or SQL_THREAD options can not be used to start only

one of them.

START SLAVE UNTIL master_gtid_pos=XXX is particularly useful for promoting a new primary among a set of replicas

when the old master goes away and replicas may have reached different positions in the old primary's binlog. The new

primary needs to be ahead of all the other replicas to avoid losing events. This can be achieved by picking one server, say

S1, and replicating any missing events from each other server S2, S3, ..., Sn:

 CHANGE MASTER TO master_host="S2";

 START SLAVE UNTIL master_gtid_pos = "<S2 GTID position>";

 ...

 CHANGE MASTER TO master_host="Sn";

 START SLAVE UNTIL master_gtid_pos = "<Sn GTID position>";

Once this is completed, S1 will have all events present on any of the servers. It can now be selected as the new primary,

and all the other servers set to replicate from it.

SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS

MariaDB 11.3 extended the START SLAVE UNTIL command with the options SQL_BEFORE_GTIDS and

SQL_AFTER_GTIDS to allow control of whether the replica stops before or after a provided GTID state. Its syntax is:

MariaDB starting with 11.3.0

2303/4161

https://mariadb.com/kb/en/mariadb-1130-release-notes/

START SLAVE UNTIL (SQL_BEFORE_GTIDS|SQL_AFTER_GTIDS)="<gtid_list>"

When providing SQL_BEFORE_GTIDS==<gtid_list>=, the replica will execute all transactions up to the first GTID found

in the provided list, and stop immediately. In contrast to the default behavior of UNTIL, this will execute transactions

from all domains on the primary until the replica stops due to seeing a GTID on the list.

START SLAVE UNTIL SQL_AFTER_GTIDS==<gtid_list>= is an alias to the default behavior of START SLAVE UNTIL

master_gtid_pos==<gtid_list>=. That is, the replica will only execute transactions originating from domain ids provided in

the list, and will stop once all transactions provided in the UNTIL list have all been executed.

Example

If a primary server has a binary log consisting of the following GTIDs:

0-1-1

1-1-1

0-1-2

1-1-2

0-1-3

1-1-3

If a fresh replica (i.e. one with an empty GTID position, @@gtid_slave_pos='') is started with SQL_BEFORE_GTIDS , i.e.

START SLAVE UNTIL SQL_BEFORE_GTIDS==1-1-2= , the resulting gtid_slave_pos of the replica will be <0-1-2,1-1-1=.

This is because the replica will execute all events until it sees the transaction with GTID 1-1-2 and immediately stop

without executing it.

However, if a replica is started with SQL_AFTER_GTIDS , i.e. START SLAVE UNTIL SQL_AFTER_GTIDS==1-1-2= then

the resulting gtid_slave_pos of the replica will be <1-1-2=. This is because it will only execute events from domain 1 until

it has executed the provided GTID.

BINLOG_GTID_POS().

The BINLOG_GTID_POS() function takes as input an old-style binary log position in the form of a file name and a file offset.

It looks up the position in the current binlog, and returns a string representation of the corresponding GTID position. If the

position is not found in the current binlog, NULL is returned.

MASTER_GTID_WAIT

The MASTER_GTID_WAIT function is useful in replication for controlling primary/replica synchronization, and blocks until

the replica has read and applied all updates up to the specified position in the primary log. See MASTER_GTID_WAIT for

details.

Binlog Indexing

Prior to MariaDB 11.4, when a replica connects, MariaDB needs to scan binlog files from the beginning in order to find

the place to start replicating. If replica reconnects are frequent, this can be slow.

MariaDB 11.4 introduces indexing on the binlog files, allowing GTIDs to be quickly found. This also detects if old-style

replication tries to connect at an incorrect file offset (eg. in the middle of an event), avoiding sending potentially

corrupted events.

The feature is enabled by default. The size of the binlog index file (.idx) is generally less than 1% the size of the

binlog, so should not have any negative impacts and should not normally need tuning. However, the feature can be

disabled or managed with the following system variables:

binlog_gtid_index - enable/disable the feature

binlog_gtid_index_page_size - adjust the size of the pages

binlog_gtid_index_span_min - adjust the sparseness of the index

There are two status variables that can be used to monitor the effectiveness of the index:

binlog_gtid_index_hit - incremented for each successful lookup in a GTID index.

binlog_gtid_index_miss - incremented when a GTID index lookup is not possible, which indicates that the index

file is missing (eg. binlog written by old server version without GTID index support), or corrupt.

System Variables

MariaDB starting with 11.4

2304/4161

binlog_gtid_index

Enables/disables binlog indexing.

binlog_gtid_index_page_size

Adjusts the size of the pages

binlog_gtid_index_span_min

Adjusts the sparseness of the index

gtid_slave_pos

This system variable contains the GTID of the last transaction applied to the database by the server's replica threads for

each replication domain. This system variable's value is automatically updated whenever a replica thread applies an event

group. This system variable's value can also be manually changed by users, so that the user can change the GTID position

of the replica threads.

When using multi-source replication, the same GTID position is shared by all replica connections. In this case, different

primaries should use different replication domains by configuring different gtid_domain_id values. If one primary was using a

gtid_domain_id value of 1 , and if another primary was using a gtid_domain_id value of 2 , then any replicas replicating

from both primaries would have GTIDs with both gtid_domain_id values in gtid_slave_pos .

This system variable's value can be manually changed by executing SET GLOBAL, but all replica threads to be stopped

with STOP SLAVE first. For example:

STOP ALL SLAVES;

SET GLOBAL gtid_slave_pos = "1-10-100,2-20-500";

START ALL SLAVES;

This system variable's value can be reset by manually changing its value to the empty string. For example:

SET GLOBAL gtid_slave_pos = '';

The GTID position defined by gtid_slave_pos can be used as a replica's starting replication position by setting

MASTER_USE_GTID=slave_pos when the replica is configured with the CHANGE MASTER TO statement. As an

alternative, the gtid_current_pos system variable can also be used as a replica's starting replication position.

If a user sets the value of the gtid_slave_pos system variable, and gtid_binlog_pos contains later GTIDs for certain

replication domains, then gtid_current_pos will contain the GTIDs from gtid_binlog_pos for those replication domains. To

protect users in this scenario, if a user sets the gtid_slave_pos system variable to a GTID position that is behind the

GTID position in gtid_binlog_pos, then the server will give the user a warning.

This can help protect the user when the replica is configured to use gtid_current_pos as its replication position. This can also

help protect the user when a server has been rolled back to restart replication from an earlier point in time, but the user has

forgotten to reset gtid_binlog_pos with RESET MASTER.

The mysql.gtid_slave_pos system table is used to store the contents of global.gtid_slave_pos and preserve it over restarts.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: string

Default: Null

gtid_binlog_pos

This variable is the GTID of the last event group written to the binary log, for each replication domain.

Note that when the binlog is empty (such as on a fresh install or after RESET MASTER), there are no event groups written

in any replication domain, so in this case the value of gtid_binlog_pos will be the empty string.

The value is read-only, but it is updated whenever a DML or DDL statement is written to the binary log. The value can be

reset by executing RESET MASTER, which will also delete all binary logs. However, note that RESET MASTER does not

also reset gtid_slave_pos. Since gtid_current_pos is the union of gtid_slave_pos and gtid_binlog_pos , that means that

new GTIDs added to gtid_binlog_pos can lag behind those in gtid_current_pos if gtid_slave_pos contains GTIDs in the

same domain with higher sequence numbers. If you want to reset gtid_current_pos for a specific GTID domain in cases like

2305/4161

this, then you will also have to change gtid_slave_pos in addition to executing RESET MASTER. See gtid_slave_pos for

notes on how to change its value.

Commandline: None

Scope: Global

Dynamic: Read-only

Data Type: string

Default: Null

gtid_binlog_state

The variable gtid_binlog_state holds the internal state of the binlog. The state consists of the last GTID ever logged to the

binary log for every combination of domain_id and server_id. This information is used by the primary to determine whether a

given GTID has been logged to the binlog in the past, even if it has later been deleted due to binlog purge. For each

domain_id, the last entry in @@gtid_binlog_state is the last GTID logged into binlog, ie. this is the value that appears in

@@gtid_binlog_pos.

Normally this internal state is not needed by users, as @@gtid_binlog_pos is more useful in most cases. The main usage of

@@gtid_binlog_state is to restore the state of the binlog after RESET MASTER (or equivalently if the binlog files are lost). If

the value of @@gtid_binlog_state is saved before RESET MASTER and restored afterwards, the primary will retain

information about past history, same as if PURGE BINARY LOGS had been used (of course the actual events in the binary

logs are still deleted).

Note that to set the value of @@gtid_binlog_state, the binary log must be empty, that is it must not contain any GTID events

and the previous value of @@gtid_binlog_state must be the empty string. If not, then RESET MASTER must be used first to

erase the binary log first.

The value of @@gtid_binlog_state is preserved by the server across restarts by writing a file MASTER-BIN.state, where

MASTER-BIN is the base name of the binlog set with the --log-bin option. This file is written at server shutdown, and re-read

at next server start. (In case of a server crash, the data in the MASTER-BIN.state is not correct, and the server instead

recovers the correct value during binlog crash recovery by scanning the binlog files and recording each GTID found).

For completeness, note that setting @@gtid_binlog_state internally executes a RESET MASTER. This is normally not

noticeable as it can only be changed when the binlog is empty of GTID events. However, if executed e.g. immediately after

upgrading to MariaDB 10, it is possible that the binlog is non-empty but without any GTID events, in which case all such

events will be deleted, just as if RESET MASTER had been run.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: string

Default: Null

gtid_current_pos

This system variable contains the GTID of the last transaction applied to the database for each replication domain.

The value of this system variable is constructed from the values of the gtid_binlog_pos and gtid_slave_pos system

variables. It gets GTIDs of transactions executed locally from the value of the gtid_binlog_pos system variable. It gets

GTIDs of replicated transactions from the value of the gtid_slave_pos system variable.

For each replication domain, if the server_id of the corresponding GTID in gtid_binlog_pos is equal to the servers own

server_id, and the sequence number is higher than the corresponding GTID in gtid_slave_pos, then the GTID from

gtid_binlog_pos will be used. Otherwise the GTID from gtid_slave_pos will be used for that domain.

GTIDs from gtid_binlog_pos in which the server_id of the GTID is not equal to the server's own server_id are effectively

ignored. If gtid_binlog_pos contains a GTID for a given replication domain, but the server_id of the GTID is not equal to the

server's own server_id, and gtid_slave_pos does not contain a GTID for that given replication domain, then

gtid_current_pos will not contain any GTID for that replication domain.

Thus, gtid_current_pos contains the most recent GTID executed on the server, whether this was done as a primary or

as a replica.

The GTID position defined by gtid_current_pos can be used as a replica's starting replication position by setting

MASTER_USE_GTID=current_pos when the replica is configured with the CHANGE MASTER TO statement. As an

alternative, the gtid_slave_pos system variable can also be used as a replica's starting replication position.

The value of gtid_current_pos is read-only, but it is updated whenever a transaction is written to the binary log and/or

replicated by a replica thread, and that transaction's GTID is considered newer than the current GTID for that domain. See

above for the rules on how to determine if a GTID would be considered newer.

2306/4161

If you need to reset the value, see the notes on resetting gtid_slave_pos and gtid_binlog_pos, since gtid_current_pos is

formed from the values of those variables.

Commandline: None

Scope: Global

Dynamic: Read-only

Data Type: string

Default: Null

gtid_strict_mode

The GTID strict mode is an optional setting that can be used to help the DBA enforce a strict discipline about keeping

binlogs identical across multiple servers replicating using global transaction ID.

When GTID strict mode is enabled, some additional errors are enabled for situations that could otherwise cause differences

between binlogs on different servers in a replication hierarchy:

1. If a replica server tries to replicate a GTID with a sequence number lower than what is already in the binlog for that

replication domain, the SQL thread stops with an error (this indicates an extra transaction in the replica binlog not

present on the primary).

2. Similarly, an attempt to manually binlog a GTID with a lower sequence number (by setting

@@SESSION.gtid_seq_no) is rejected with an error.

3. If the replica tries to connect starting at a GTID that is missing in the primary's binlog, this is an error in GTID strict

mode even if a GTID exists with a higher sequence number (this indicates a GTID on the replica missing on the

primary). Note that this error is controlled by the setting of GTID strict mode on the connecting replica server.

GTID mode is off by default; this is needed to preserve backwards compatibility with existing replication setups (older

versions of the server did not enforce any strict mode for binlog order). Global transaction ID is designed to work correctly

even when strict mode is not enabled. However, with strict mode enforced, the semantics is simpler and thus easier to

understand, because binlog order is always identical across servers and sequence numbers are always strictly increasing

within each replication domain. This can also make automated scripting of large replication setups easier to implement

correctly.

When GTID strict mode is enabled, the replica will stop with an error when a problem is encountered. This allows the DBA to

become aware of the problem and take corrective actions to avoid similar issues in the future. One way to recover from

such an error is to temporarily disable GTID strict mode on the offending replica, to be able to replicate past the problem

point (perhaps using START SLAVE UNTIL master_gtid_pos=XXX).

Commandline: --gtid-strict-mode[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default: Off

gtid_domain_id

Description: This variable is used to decide which replication domain new GTIDs are logged in for a primary server.

See Use with multi-source replication and other multi-primary setups for details. This variable can also be set on the

session level by a user with the SUPER privilege. This is used by mariadb-binlog to preserve the domain ID of GTID

events.

Commandline: --gtid-domain-id=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric (32-bit unsigned integer)

Default Value: 0

Range: 0 to 4294967295

last_gtid

Description: Holds the GTID that was assigned to the last transaction, or statement that was logged to the binary

log. If the binary log is disabled, or if no transaction or statement was executed in the session yet, then the value is an

empty string.

Scope: Session

Dynamic: Read-only

Data Type: string

2307/4161

server_id

Description: Server_id can be set on the session level to change which server_id value is logged in binlog events

(both GTID and other events). This is used by mariadb-binlog to preserve the server ID of GTID events.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric (32-bit unsigned integer)

gtid_seq_no

Description: gtid_seq_no can be set on the session level to change which sequence number is logged in the

following GTID event. The variable, along with @@gtid_domain_id and @@server_id, is typically used by mariadb-

binlog to set up the gtid value of the transaction being decoded into the output.

Commandline: None

Scope: Session

Dynamic: Yes

Data Type: numeric (64-bit unsigned integer)

Default: Null

gtid_ignore_duplicates

Description: When set, different primary connections in multi-source replication are allowed to receive and process

event groups with the same GTID (when using GTID mode). Only one will be applied, any others will be ignored.

Within a given replication domain, just the sequence number will be used to decide whether a given GTID has been

already applied; this means it is the responsibility of the user to ensure that GTID sequence numbers are strictly

increasing. With gtid_ignore_duplicates=OFF, a duplicate event based on domain id and sequence number, will be

executed. When --gtid-ignore-duplicate is set, a replica is allowed to connect at a GTID position that does not exist on

the primary. The replica will start receiving events once a GTID with a higher sequence number is available on the

primary (within that domain). This can be used to allow a replica to connect at a GTID position that was filtered on the

primary, eg. using --replicate-ignore-table. See also Multiple Redundant Replication Paths

Commandline: --gtid-ignore-duplicates=#

Scope: Global

Dynamic: Yes

Data Type: boolean

Default: OFF

gtid_pos_auto_engines

This variable is used to enable multiple versions of the mysql.gtid_slave_pos table, one for each transactional storage

engine in use. This can improve replication performance if a server is using multiple different storage engines in different

transactions.

The value is a list of engine names, separated by commas (','). Replication of transactions using these engines will

automatically create new versions of the mysql.gtid_slave_pos table in the same engine and use that for future transactions

(table creation takes place in a background thread). This avoids introducing a cross-engine transaction to update the GTID

position. Only transactional storage engines are supported for gtid_pos_auto_engines (this currently means InnoDB,

TokuDB , or MyRocks).

The variable can be changed dynamically, but replica SQL threads should be stopped when changing it, and it will take

effect when the replicas are running again.

When setting the variable on the command line or in a configuration file, it is possible to specify engines that are not enabled

in the server. The server will then still start if, for example, that engine is no longer used. Attempting to set a non-enabled

engine dynamically in a running server (with SET GLOBAL gtid_pos_auto_engines) will still result in an error.

Removing a storage engine from the variable will have no effect once the new tables have been created - as long as these

tables are detected, they will be used.

Commandline: --gtid-pos-auto-engines=value

Scope: Global

Dynamic: Yes

Data Type: string (comma-separated list of engine names)

Default: empty

2308/4161

https://mariadb.com/kb/en/tokudb/

gtid_cleanup_batch_size

Description: Normally does not need tuning. How many old rows must accumulate in the mysql.gtid_slave_pos table

before a background job will be run to delete them. Can be increased to reduce number of commits if using many

different engines with gtid_pos_auto_engines, or to reduce CPU overhead if using a huge number of different

gtid_domain_ids. Can be decreased to reduce number of old rows in the table.

Commandline: --gtid-cleanup-batch-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default: 64

Range: 0 to 2147483647

Introduced: MariaDB 10.4.1

3.1.10 Parallel Replication

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Parallel Replication Overview

2. How to Enable Parallel Replica

3. Configuring the Replica Parallel Mode

1. In-Order Parallel Replication

1. Optimistic Mode of In-Order Parallel Replication

2. Aggressive Mode of In-Order Parallel Replication

3. Conservative Mode of In-Order Parallel Replication

4. Minimal Mode of In-Order Parallel Replication

2. Out-of-Order Parallel Replication

4. Checking Worker Thread Status in SHOW PROCESSLIST

5. Expected Performance Gain

6. Configuring the Maximum Size of the Parallel Replica Queue

7. Configuration Variable slave_domain_parallel_threads

8. Implementation Details

Some writes, replicated from the primary can be executed in parallel (simultaneously) on the replica. Note that for parallel

replication to work, both the primary and replica need to be MariaDB 10.0.5 or later.

Parallel Replication Overview
MariaDB replication in general takes place in three parts:

Replication events are read from the primary by the IO thread and queued in the relay log.

Replication events are fetched one at a time by the SQL thread from the relay log

Each event is applied on the replica to replicate all changes done on the primary.

Before MariaDB 10, the third step was also performed by the SQL thread; this meant that only one event could execute at a

time, and replication was essentially single-threaded. Since MariaDB 10, the third step can optionally be performed by a pool

of separate replication worker threads, and thereby potentially increase replication performance by applying multiple events

in parallel.

How to Enable Parallel Replica
To enable, specify slave-parallel-threads=# in your my.cnf file as an argument to mysql. Parallel replication can in addition

be disabled on a per-multi-source connection by setting @@connection_name.slave-parallel-mode to "none".

The value (#) of slave_parallel_threads specifies how many threads will be created in a pool of worker threads used to

apply events in parallel for *all* your replicas (this includes multi-source replication). If the value is zero, then no worker

threads are created, and old-style replication is used where events are applied inside the SQL thread. Usually the value, if

non-zero, should be at least two times the number of multi-source primary connections used. It makes little sense to use

only a single worker thread for one connection; this will incur some overhead in inter-thread communication between the

SQL thread and the worker thread, but with just a single worker thread events can not be applied in parallel anyway.
2309/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1005-release-notes/

slave-parallel-threads=# is a dynamic variable that can be changed without restarting mysqld. All replicas

connections must however be stopped when changing the value.

Configuring the Replica Parallel Mode
Parallel replication can be in-order or out-of-order:

In-order executes transactions in parallel, but orders the commit step of the transactions to happen in the exact same

order as on the primary. Transactions are only executed in parallel to the extent that this can be automatically verified

to be possible without any conflicts. This means that the use of parallelism is completely transparent to the

application.

Out-of-order can execute and commit transactions in different order on the replica than originally on the primary. This

means that the application must be tolerant to seeing updates occur in different order. The application is also

responsible for ensuring that there are no conflicts between transactions that are replicated out-of-order. Out-of-order

is only used in GTID mode and only when explicitly enabled by the application, using the replication domain that is

part of the GTID.

In-Order Parallel Replication

Optimistic Mode of In-Order Parallel Replication

Optimistic mode of in-order parallel replication provides a lot of opportunities for parallel apply on the replica while still

preserving exact transaction semantics from the point of view of applications. It is the default mode from MariaDB 10.5.1.

Optimistic mode of in-order parallel replication can be configured by setting the slave_parallel_mode system variable to

optimistic on the replica.

Any transactional DML (INSERT/UPDATE/DELETE) is allowed to run in parallel, up to the limit of

@@slave_domain_parallel_threads. This may cause conflicts on the replica, eg. if two transactions try to modify the same

row. Any such conflict is detected, and the latter of the two transactions is rolled back, allowing the former to proceed. The

latter transaction is then re-tried once the former has completed.

The term "optimistic" is used for this mode, because the server optimistically assumes that few conflicts will occur, and that

the extra work spent rolling back and retrying conflicting transactions is justified from the gain from running most transactions

in parallel.

There are a few heuristics to try to avoid needless conflicts. If a transaction executed a row lock wait on the primary, it will

not be run in parallel on the replica. Transactions can also be marked explicitly as potentially conflicting on the primary, by

setting the variable @@skip_parallel_replication. More such heuristics may be added in later MariaDB versions. There is a

further --slave-parallel-mode called "aggressive", where these heuristics are disabled, allowing even more transactions to be

applied in parallel.

Non-transactional DML and DDL is not safe to optimistically apply in parallel, as it cannot be rolled back in case of conflicts.

Thus, in optimistic mode, non-transactional (such as MyISAM) updates are not applied in parallel with earlier events (it is

however possible to apply a MyISAM update in parallel with a later InnoDB update). DDL statements are not applied in

parallel with any other transactions, earlier or later.

The different kind of transactions can be identified in the output of mariadb-binlog. For example:

#150324 13:06:26 server id 1 end_log_pos 6881 GTID 0-1-42 ddl

...

#150324 13:06:26 server id 1 end_log_pos 7816 GTID 0-1-47

...

#150324 13:06:26 server id 1 end_log_pos 8177 GTID 0-1-49 trans

/*!100101 SET @@session.skip_parallel_replication=1*//*!*/;

...

#150324 13:06:26 server id 1 end_log_pos 9836 GTID 0-1-59 trans waited

GTID 0-1-42 is marked as being DDL. GTID 0-1-47 is marked as being non-transactional DML, while GTID 0-1-49 is

transactional DML (seen on the "trans" keyword). GTID 0-1-49 was additionally run with @@skip_parallel_replication set on

the primary. GTID 0-1-59 is transactional DML that had a row lock wait when run on the primary (the "waited" keyword).

Aggressive Mode of In-Order Parallel Replication

Aggressive mode of in-order parallel replication is very similar to optimistic mode. The main difference is that the replica

does not consider whether transactions conflicted on the primary when deciding whether to apply the transactions in

parallel.

Aggressive mode of in-order parallel replication can be configured by setting the slave_parallel_mode system variable to

2310/4161

aggressive on the replica.

Conservative Mode of In-Order Parallel Replication

Conservative mode of in-order parallel replication uses the group commit on the primary to discover potential for parallel

apply of events on the replica. If two transactions commit together in a group commit on the primary, they are written into the

binlog with the same commit id. Such events are certain to not conflict with each other, and they can be scheduled by the

parallel replication to run in different worker threads.

Conservative mode of in-order parallel replication is the default mode until MariaDB 10.5.0, but it can also be configured by

setting the slave_parallel_mode system variable to conservative on the replica.

Two transactions that were committed separately on the primary can potentially conflict (eg. modify the same row of a table).

Thus, the worker that applies the second transaction will not start immediately, but wait until the first transaction begins the

commit step; at this point it is safe to start the second transaction, as it can no longer disrupt the execution of the first one.

Here is example output from mariadb-binlog that shows how GTID events are marked with commit id. The GTID 0-1-47 has

no commit id, and can not run in parallel. The GTIDs 0-1-48 and 0-1-49 have the same commit id 630, and can thus

replicate in parallel with one another on a replica:

#150324 12:54:24 server id 1 end_log_pos 20052 GTID 0-1-47 trans

...

#150324 12:54:24 server id 1 end_log_pos 20212 GTID 0-1-48 cid=630 trans

...

#150324 12:54:24 server id 1 end_log_pos 20372 GTID 0-1-49 cid=630 trans

In either case, when the two transactions reach the point where the low-level commit happens and commit order is

determined, the two commits are sequenced to happen in the same order as on the primary, so that operation is transparent

to applications.

The opportunities for parallel replication on replicas can be highly increased if more transactions are committed in a group

commit on the primary. This can be tuned using the binlog_commit_wait_count and binlog_commit_wait_usec variables. If

for example the application can tolerate up to 50 milliseconds extra delay for transactions on the primary, one can set

binlog_commit_wait_usec=50000 and binlog_commit_wait_count=20 to get up to 20 transactions at a time

available for replication in parallel. Care must however be taken to not set binlog_commit_wait_usec too high, as this

could cause significant slowdown for applications that run a lot of small transactions serially one after the other.

Note that even if there is no parallelism available from the primary group commit, there is still an opportunity for speedup

from in-order parallel replication, since the actual commit steps of different transactions can run in parallel. This can be

particularly effective on a replica with binlog enabled (log_slave_updates=1), and more so if replica is configured to be

crash-safe (sync_binlog=1 and innodb_flush_log_at_trx_commit=1), as this makes group commit possible on the replica.

Minimal Mode of In-Order Parallel Replication

Minimal mode of in-order parallel replication onlyallows the commit step of transactions to be applied in parallel; all other

steps are applied serially.

Minimal mode of in-order parallel replication can be configured by setting the slave_parallel_mode system variable to

minimal on the replica.

Out-of-Order Parallel Replication

Out-of-order parallel replication happens (only) when using GTID mode, when GTIDs with different replication domains are

used. The replication domain is set by the DBA/application using the variable gtid_domain_id .

Two transactions having GTIDs with different domain_id are scheduled to different worker threads by parallel replication,

and are allowed to execute completely independently from each other. It is the responsibility of the application to only set

different domain_ids for transactions that are truly independent, and are guaranteed to not conflict with each other. The

application must also be able to work correctly even though the transactions with different domain_id are seen as

committing in different order between the replica and the primary, and between different replicas.

Out-of-order parallel replication can potentially give more performance gain than in-order parallel replication, since the

application can explicitly give more opportunities for running transactions in parallel than what the server can determine on

its own automatically.

One simple but effective usage is to run long-running statements, such as ALTER TABLE, in a separate replication domain.

This allows replication of other transactions to proceed uninterrupted:

2311/4161

SET SESSION gtid_domain_id=1

ALTER TABLE t ADD INDEX myidx(b)

SET SESSION gtid_domain_id=0

Normally, a long-running ALTER TABLE or other query will stall all following transactions, causing the replica to become

behind the primary as least as long time as it takes to run the long-running query. By using out-of-order parallel replication

by setting the replication domain id, this can be avoided. The DBA/application must ensure that no conflicting transactions

will be replicated while the ALTER TABLE runs.

Another common opportunity for out-of-order parallel replication comes in connection with multi-source replication. Suppose

we have two different primaries M1 and M2, and we are using multi-source replication to have S1 as a replica of both M1

and M2. S1 will apply events received from M1 in parallel with events received from M2. If we now have a third-level replica

S2 that replicates from S1 as primary, we want S2 to also be able to apply events that originated on M1 in parallel with

events that originated on M2. This can be achieved with out-of-order parallel replication, by setting gtid_domain_id

different on M1 and M2.

Note that there are no special restrictions on what operations can be replicated in parallel using out-of-order; such

operations can be on the same database/schema or even on the same table. The only restriction is that the operations must

not conflict, that is they must be able to be applied in any order and still end up with the same result.

When using out-of-order parallel replication, the current replica position in the primary's binlog becomes multi-dimensional -

each replication domain can have reached a different point in the primary binlog at any one time. The current position can be

seen from the variable gtid_slave_pos . When the replica is stopped, restarted, or switched to replicate from a different

primary using CHANGE MASTER, MariaDB automatically handles restarting each replication domain at the appropriate

point in the binlog.

Out-of-order parallel replication is disabled when --slave-parallel-mode=minimal (or none).

Checking Worker Thread Status in SHOW
PROCESSLIST
The worker threads will be listed as "system user" in SHOW PROCESSLIST. Their state will show the query they are

currently working on, or it can show one of these:

"Waiting for work from main SQL threads". This means that the worker thread is idle, no work is available for it at the

moment.

"Waiting for prior transaction to start commit before starting next transaction". This means that the previous batch of

transactions that committed together on the primary primary has to complete first. This worker thread is waiting for

that to happen before it can start working on the following batch.

"Waiting for prior transaction to commit". This means that the transaction has been executed by the worker thread. In

order to ensure in-order commit, the worker thread is waiting to commit until the previous transaction is ready to

commit before it.

Expected Performance Gain
Here is an article showing up to ten times improvement when using parallel replication:

http://kristiannielsen.livejournal.com/18435.html .

Configuring the Maximum Size of the Parallel Replica
Queue
The slave_parallel_max_queued system variable can be used to configure the maximum size of the parallel replica queue.

This system variable is only meaningful when parallel replication is configured (i.e. when slave_parallel_threads > 0).

When parallel replication is used, the SQL thread will read ahead in the relay logs, queueing events in memory while looking

for opportunities for executing events in parallel. The slave_parallel_max_queued system variable sets a limit for how much

memory it will use for this.

The configured value of the slave_parallel_max_queued system variable is actually allocated for each worker thread, so the

total allocation is actually equivalent to the following:

slave_parallel_max_queued * slave_parallel_threads

If this value is set too high, and the replica is far (eg. gigabytes of binlog) behind the primary, then the SQL thread can

quickly read all of that and fill up memory with huge amounts of binlog events faster than the worker threads can consume

them.

2312/4161

http://kristiannielsen.livejournal.com/18435.html

On the other hand, if set too low, the SQL thread might not have sufficient space for queuing enough events to keep the

worker threads busy, which could reduce performance. In this case, the SQL thread will have the thread state that states

Waiting for room in worker thread event queue . For example:

+----+-------------+-----------+------+---------+--------+-----------------------------------

------------+------------------+----------+

| Id | User | Host | db | Command | Time | State

| Info | Progress |

+----+-------------+-----------+------+---------+--------+-----------------------------------

------------+------------------+----------+

| 3 | system user | | NULL | Connect | 139 | closing tables

| NULL | 0.000 |

| 4 | system user | | NULL | Connect | 139 | Waiting for work from SQL thread

| NULL | 0.000 |

| 6 | system user | | NULL | Connect | 264274 | Waiting for master to send event

| NULL | 0.000 |

| 10 | root | localhost | NULL | Sleep | 43 |

| NULL | 0.000 |

| 21 | system user | | NULL | Connect | 45 | Waiting for room in worker thread

event queue | NULL | 0.000 |

| 54 | root | localhost | NULL | Query | 0 | init

| SHOW PROCESSLIST | 0.000 |

+----+-------------+-----------+------+---------+--------+-----------------------------------

------------+------------------+----------+

The slave_parallel_max_queued system variable does not define a hard limit, since the binary log events that are currently

executing always need to be held in-memory. This means that at least two events per worker thread can always be queued

in-memory, regardless of the value of slave_parallel_threads.

Usually, the slave_parallel_threads system variable should be set large enough that the SQL thread is able to read far

enough ahead in the binary log to exploit all possible parallelism. In normal operation, the replica will hopefully not be too far

behind, so there will not be a need to queue much data in-memory. The slave_parallel_max_queued system variable could

be set fairly high (eg. a few hundred kilobytes) to not limit throughtput. It should just be set low enough that total allocation

of the parallel replica queue will not cause the server to run out of memory.

Configuration Variable slave_domain_parallel_threads
The pool of replication worker threads is shared among all multi-source primary connections, and among all replication

domains that can replicate in parallel using out-of-order.

If one primary connection or replication domain is currently processing a long-running query, it is possible that it will allocate

all the worker threads in the pool, only to have them wait for the long-running query to complete, stalling any other primary

connection or replication domain, which will have to wait for a worker thread to become free.

This can be avoided by setting slave_domain_parallel_threads to a number that is lower than slave_parallel_threads .

When set different from zero, each replication domain in one primary connection can reserve at most that many worker

threads at any one time, leaving the rest (up to the value of slave_parallel_threads) free for other primary connections or

replication domains to use in parallel.

The slave_domain_parallel_threads variable is dynamic and can be changed without restarting the server; all replicas

must be stopped while changing it, though.

Implementation Details
The implementation is described in MDEV-4506 .

3.1.11 Replication and Binary Log System
Variables

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. auto_increment_increment

2. auto_increment_offset 2313/4161

https://jira.mariadb.org/browse/MDEV-4506
https://jira.mariadb.org/browse/MDEV-18777

2. auto_increment_offset

3. binlog_alter_two_phase

4. binlog_annotate_row_events

5. binlog_do_db

6. binlog_cache_size

7. binlog_checksum

8. binlog_commit_wait_count

9. binlog_commit_wait_usec

10. binlog_direct_non_transactional_updates

11. binlog_expire_logs_seconds

12. binlog_file_cache_size

13. binlog_format

14. binlog_gtid_index

15. binlog_gtid_index_page_size

16. binlog_gtid_index_span_min

17. binlog_ignore_db

18. binlog_optimize_thread_scheduling

19. binlog_row_event_max_size

20. binlog_row_image

21. binlog_row_metadata

22. binlog_stmt_cache_size

23. default_master_connection

24. encrypt_binlog

25. expire_logs_days

26. gtid_binlog_pos

27. gtid_binlog_state

28. gtid_current_pos

29. gtid_domain_id

30. gtid_seq_no

31. gtid_slave_pos

32. gtid_strict_mode

33. gtid_pos_auto_engines

34. init_slave

35. last_gtid

36. log_bin

37. log_bin_basename

38. log_bin_compress

39. log_bin_compress_min_len

40. log_bin_index

41. log_bin_trust_function_creators

42. log_slow_slave_statements

43. log_slave_updates

44. master_verify_checksum

45. max_binlog_cache_size

46. max_binlog_size

47. max_binlog_stmt_cache_size

48. max_binlog_total_size

49. max_relay_log_size

50. read_binlog_speed_limit

51. relay_log

52. relay_log_basename

53. relay_log_index

54. relay_log_info_file

55. relay_log_purge

56. relay_log_recovery

57. relay_log_space_limit

58. replicate_annotate_row_events

59. replicate_do_db

60. replicate_do_table

61. replicate_events_marked_for_skip

62. replicate_ignore_db

63. replicate_ignore_table

64. replicate_rewrite_db

65. replicate_wild_do_table

66. replicate_wild_ignore_table

67. report_host

68. report_password

69. report_port
2314/4161

69. report_port

70. report_user

71. server_id

72. skip_parallel_replication

73. skip_replication

74. slave_compressed_protocol

75. slave_connections_needed_for_purge

76. slave_ddl_exec_mode

77. slave_domain_parallel_threads

78. slave_exec_mode

79. slave_load_tmpdir

80. slave_max_allowed_packet

81. slave_max_statement_time

82. slave_net_timeout

83. slave_parallel_max_queued

84. slave_parallel_mode

85. slave_parallel_threads

86. slave_parallel_workers

87. slave_run_triggers_for_rbr

88. slave_skip_errors

89. slave_sql_verify_checksum

90. slave_transaction_retries

91. slave_transaction_retry_errors

92. slave_transaction_retry_interval

93. slave_type_conversions

94. sql_log_bin

95. sql_slave_skip_counter

96. sync_binlog

97. sync_master_info

98. sync_relay_log

99. sync_relay_log_info

This page lists system variables that are related to binary logging and replication.

See Server System Variables for a complete list of system variables and instructions on setting them, as well as System

variables for global transaction ID.

Also see mariadbd replication options for related options that are not system variables (such as binlog_do_db and

binlog_ignore_db).

See also the Full list of MariaDB options, system and status variables.

auto_increment_increment

Description: The increment for all AUTO_INCREMENT values on the server, by default 1 . Intended for use in

primary-to-primary replication.

Commandline: --auto-increment-increment[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 65535

auto_increment_offset

Description: The offset for all AUTO_INCREMENT values on the server, by default 1 . Intended for use in primary-

to-primary replication. Should be not be larger than auto_increment_increment. See

AUTO_INCREMENT#Replication.

Commandline: --auto-increment-offset[=#]

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 65535

binlog_alter_two_phase

2315/4161

Description: When set, split ALTER at binary logging into two statements: START ALTER and COMMIT/ROLLBACK

ALTER. The ON setting is recommended for long-running ALTER-table so it could start on replica before its actual

execution on primary.

Commandline: --binlog-alter-two-phase[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.8.1

binlog_annotate_row_events

Description: This option tells the primary to write annotate_rows_events to the binary log.

Commandline: --binlog-annotate-row-events[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value:

ON (>= MariaDB 10.2.4)

OFF (<= MariaDB 10.2.3)

binlog_do_db

Description: This option allows you to configure a replication primary to write statements and transactions affecting

databases that match a specified name into its binary log. Since the filtered statements or transactions will not be

present in the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

Until MariaDB 11.2.0, only available as an option, not a system variable. This option can not be set

dynamically.

When setting it on the command-line or in a server option group in an option file, the option does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the option multiple

times.

See Replication Filters for more information.

Commandline: --binlog-do-db=#

Scope: Global

Dynamic: No

Data Type: string

Default Value: NULL

Introduced: MariaDB 11.2.0 (as a system variable)

binlog_cache_size

Description: If the binary log is active, this variable determines the size in bytes, per-connection, of the cache

holding a record of binary log changes during a transaction. A separate variable, binlog_stmt_cache_size, sets the

upper limit for the statement cache. The binlog_cache_disk_use and binlog_cache_use server status variables will

indicate whether this variable needs to be increased (you want a low ratio of binlog_cache_disk_use to

binlog_cache_use).

Commandline: --binlog-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 32768

Range - 32 bit: 4096 to 4294967295

Range - 64 bit: 4096 to 18446744073709547520

binlog_checksum

Description: Specifies the type of BINLOG_CHECKSUM_ALG for log events in the binary log.

Commandline:

--binlog-checksum=name

--binlog-checksum=[0|1]

Scope: Global
2316/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

Dynamic: Yes

Data Type: string

Default Value:

CRC32 (>= MariaDB 10.2.1)

NONE (<= MariaDB 10.2.0)

Valid Values: NONE (0), CRC32 (1)

binlog_commit_wait_count

Description: Configures the behavior of group commit for the binary log, which can help increase transaction

throughput and is used to enable conservative mode of in-order parallel replication . With group commit for the binary

log, the server can delay flushing a committed transaction into binary log until the given number of transactions are

ready to be flushed as a group. The delay will however not be longer than the value set by binlog_commit_wait_usec.

The default value of 0 means that no delay is introduced. Setting this value can reduce I/O on the binary log and give

an increased opportunity for parallel apply on the replica when conservative mode of in-order parallel replication is

enabled, but too high a value will decrease the transaction throughput. By monitoring the status variable

binlog_group_commit_trigger_count (>=MariaDB 10.1.5) it is possible to see how often this is occurring.

Starting with MariaDB 10.0.18 and MariaDB 10.1.4 : If the server detects that one of the committing transactions

T1 holds an InnoDB row lock that another transaction T2 is waiting for, then the commit will complete immediately

without further delay. This helps avoid losing throughput when many transactions need conflicting locks. This often

makes it safe to use this option without losing throughput on a replica with conservative mode of in-order parallel

replication, provided the value of slave_parallel_threads is sufficiently high.

Commandline: --binlog-commit-wait-count=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

binlog_commit_wait_usec

Description: Configures the behavior of group commit for the binary log, which can help increase transaction

throughput and is used to enable conservative mode of in-order parallel replication . With group commit for the binary

log, the server can delay flushing a committed transaction into binary log until the transaction has waited the

configured number of microseconds. By monitoring the status variable binlog_group_commit_trigger_timeout

(>=MariaDB 10.1.5) it is possible to see how often group commits are made due to binlog_commit_wait_usec .

As soon as the number of pending commits reaches binlog_commit_wait_count, the wait will be terminated, though.

Thus, this setting only takes effect if binlog_commit_wait_count is non-zero.

Commandline: --binlog-commit-wait-usec#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100000

Range: 0 to 18446744073709551615

binlog_direct_non_transactional_updates

Description: Replication inconsistencies can occur due when a transaction updates both transactional and non-

transactional tables and the updates to the non-transactional tables are visible before being written to the binary log.

This is because, to preserve causality, the non-transactional statements are written to the transaction cache, which is

only flushed on commit. Setting binlog_direct_non_transactional_updates to 1 (0 is default) will cause non-

transactional tables to be written straight to the binary log, rather than the transaction cache. This setting has no effect

when row-based binary logging is used, as it requires statement-based logging. See binlog_format. Use with care,

and only in situations where no dependencies exist between the non-transactional and transactional tables, for

example INSERTing into a non-transactional table based upon the results of a SELECT from a transactional table.

Commandline: --binlog-direct-non-transactional-updates[=value]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF (0)

2317/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/

binlog_expire_logs_seconds

Description: If non-zero, binary logs will be purged after binlog_expire_logs_seconds seconds. Possible

purges happen at startup and at binary log rotation. From MariaDB 10.6.1, binlog_expire_logs_seconds and

expire_logs_days are forms of aliases, such that changes to one automatically reflect in the other.

Commandline: --binlog-expire-logs-seconds=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Introduced: MariaDB 10.6.1

binlog_file_cache_size

Description: Size of in-memory cache that is allocated when reading binary log and relay log files.

Commandline: --binlog-file-cache-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 16384

Range: 8192 to 18446744073709551615

Introduced: MariaDB 10.3.3

binlog_format

Description: Determines whether replication is row-based, statement-based or mixed. Statement-based was the

default until MariaDB 10.2.3 . Be careful of changing the binary log format when a replication environment is

already running. See Binary Log Formats. Starting from MariaDB 10.0.22 a replica will apply any events it gets from

the primary, regardless of the binary log format. binlog_format only applies to normal (not replicated) updates.

Commandline: --binlog-format=format

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value:

MIXED (>= MariaDB 10.2.4)

STATEMENT (<= MariaDB 10.2.3)

Valid Values: ROW , STATEMENT or MIXED

binlog_gtid_index

Description: Enable the creation of a GTID index for every binlog file, and the use of such index for speeding up

GTID lookup in the binlog. See Binlog indexing.

Commandline: --binlog-gtid-index{=0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 11.4

binlog_gtid_index_page_size

Description: Page size to use for the binlog GTID index. See Binlog indexing.

Commandline: --binlog-gtid-index-page-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4096

Range: 64 to 16777216

Introduced: MariaDB 11.4

2318/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

binlog_gtid_index_span_min

Description: Control sparseness of the binlog GTID index. If set to N, at most one index record will be added for

every N bytes of binlog file written, to reduce the size of the index. Normally does not need tuning. See Binlog

indexing.

Commandline: --binlog-gtid-index-span-min=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 65536

Range: 1 to 1073741824

Introduced: MariaDB 11.4

binlog_ignore_db

Description: This option allows you to configure a replication primary to not write statements and transactions

affecting databases that match a specified name into its binary log. Since the filtered statements or transactions will

not be present in the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

Until MariaDB 11.2.0, only available as an option, not a system variable. This option can not be set

dynamically.

When setting it on the command-line or in a server option group in an option file, the option does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the option multiple

times.

See Replication Filters for more information.

Commandline: --binlog-ignore-db=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: NULL

Introduced: MariaDB 11.2.0

binlog_optimize_thread_scheduling

Description: Run fast part of group commit in a single thread, to optimize kernel thread scheduling. On by default.

Disable to run each transaction in group commit in its own thread, which can be slower at very high concurrency. This

option is mostly for testing one algorithm versus another, and it should not normally be necessary to change it.

Commandline: --binlog-optimize-thread-scheduling or --skip-binlog-optimize-thread-scheduling

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

binlog_row_event_max_size

Description: The maximum size of a row-based binary log event in bytes. Rows will be grouped into events smaller

than this size if possible. The value has to be a multiple of 256. Until MariaDB 11.2.0, only available as an option, not

a system variable.

Commandline: --binlog-row-event-max-size=val

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 8192

Range: 256 to 4294967040 (in multiples of 256)

Introduced: MariaDB 11.2.0

binlog_row_image

Description: Controls the logging format in row-based replication. In row-based replication (the variable has no effect

with statement-based replication), each row change event contains an image for matching against when choosing the

row to be updated, and another image containing the changes. Before the introduction of this variable, all columns
2319/4161

were logged for both of these images. In certain circumstances, this is not necessary, and memory, disk and network

resources can be saved by partial logging. Note that to safely change this setting from the default, the table being

replicated to must contain identical primary key definitions, and columns must be present, in the same order, and use

the same data types as the original table. If these conditions are not met, matches may not be correctly determined

and updates and deletes may diverge on the replica, with no warnings or errors returned.

FULL : All columns in the before and after image are logged. This is the default, and the only behavior in earlier

versions.

NOBLOB : mariadbd avoids logging blob and text columns whenever possible (eg, blob column was not

changed or is not part of primary key).

MINIMAL : A PK equivalent (PK columns or full row if there is no PK in the table) is logged in the before image,

and only changed columns are logged in the after image.

FULL_NODUP : All columns are logged in the before image, but only changed columns or all columns of

inserted record are logged in the after image. This is essentially the same as FULL , but takes less space.

From MariaDB 11.4.

Commandline: --binlog-row-image=value

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: FULL

Valid Values:

<= MariaDB 11.3: FULL , NOBLOB or MINIMAL

>= MariaDB 11.4: FULL , NOBLOB , MINIMAL or FULL_NODUP

binlog_row_metadata

Description: Controls the format used for binlog metadata logging.

NO_LOG : No metadata is logged (default).

MINIMAL : Only metadata required by a replica is logged.

FULL : All metadata is logged.

Commandline: --binlog-row-metadata=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: NO_LOG

Valid Values: NO_LOG , MINIMAL , FULL

Introduced: MariaDB 10.5.0

binlog_stmt_cache_size

Description: If the binary log is active, this variable determines the size in bytes of the cache holding a record of

binary log changes outside of a transaction. The variable binlog_cache_size, determines the cache size for binary log

statements inside a transaction. The binlog_stmt_cache_disk_use and binlog_stmt_cache_use server status

variables will indicate whether this variable needs to be increased (you want a low ratio of

binlog_stmt_cache_disk_use to binlog_stmt_cache_use).

Commandline: --binlog-stmt-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 32768

Range - 32 bit: 4096 to 4294967295

Range - 64 bit: 4096 to 18446744073709547520

default_master_connection

Description: In multi-source replication, specifies which connection will be used for commands and variables if you

don't specify a connection.

Commandline: None

Scope: Session

Dynamic: Yes

Data Type: string

Default Value: '' (empty string)

2320/4161

encrypt_binlog

Description: Encrypt binary logs (including relay logs). See Data at Rest Encryption and Encrypting Binary Logs.

Commandline: --encrypt-binlog[={0|1}]

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

expire_logs_days

Description: Number of days after which the binary log can be automatically removed. By default 0, or no automatic

removal. When using replication, should always be set higher than the maximum lag by any replica. Removals take

place when the server starts up, when the binary log is flushed, when the next binary log is created after the previous

one reaches the maximum size, or when running PURGE BINARY LOGS . Units are whole days (integer) until

MariaDB 10.6.0, or 1/1000000 precision (double) from MariaDB 10.6.1.

Starting from MariaDB 10.6.1, expire_logs_days and binlog_expire_logs_seconds are forms of aliases, such that

changes to one automatically reflect in the other.

Commandline: --expire-logs-days=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0.000000 (>= MariaDB 10.6.1), 0 (<= MariaDB 10.6.0)

Range: 0 to 99

init_slave

Description: Similar to init_connect, but the string contains one or more SQL statements, separated by semicolons,

that will be executed by a replica server each time the SQL thread starts. These statements are only executed after

the acknowledgement is sent to the replica and START SLAVE completes.

Commandline: --init-slave=name

Scope: Global

Dynamic: Yes

Data Type: string

Related variables: init_connect

log_bin

Description: Whether binary logging is enabled or not. If the --log-bin option is used, log_bin will be set to ON,

otherwise it will be OFF. If no name option is given for --log-bin , datadir/'log-basename'-bin or

'datadir'/mysql-bin will be used (the latter if --log-basename is not specified). We strongly recommend you use

either --log-basename or specify a filename to ensure that replication doesn't stop if the real hostname of the

computer changes. The name option can optionally include an absolute path. If no path is specified, the log will be

written to the data directory. The name can optionally include the file extension; it will be stripped and only the file

basename will be used.

Commandline: --log-bin[=name]

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Related variables: sql_log_bin

log_bin_basename

Description: The full path of the binary log file names, excluding the extension. Its value is derived from the rules

specified in log_bin system variable. This is a read-only variable only, there is no corresponding configuration file

setting or command line option by the same name, use log_bin to set the basename path instead.

Commandline: No commandline option

Scope: Global

Dynamic: No

Data Type: string

2321/4161

https://mariadb.com/kb/en/sql-commands-purge-logs/

Default Value: None

Dynamic: No

log_bin_compress

Description: Whether or not the binary log can be compressed. 0 (the default) means no compression. See

Compressing Events to Reduce Size of the Binary Log.

Commandline: --log-bin-compress

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

log_bin_compress_min_len

Description: Minimum length of sql statement (in statement mode) or record (in row mode) that can be compressed.

See Compressing Events to Reduce Size of the Binary Log.

Commandline: --log-bin-compress-min-len

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 256

Range: 10 to 1024

log_bin_index

Description: File that holds the names for last binlog files.

Commandline: --log-bin-index=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: None

log_bin_trust_function_creators

Description: Functions and triggers can be dangerous when used with replication. Certain types of functions and

triggers may have unintended consequences when the statements are applied on a replica. For that reason, there are

some restrictions on the creation of functions and triggers when the binary log is enabled by default, such as:

When log_bin_trust_function_creators is OFF and log_bin is ON , CREATE FUNCTION and ALTER

FUNCTION statements will trigger an error if the function is defined with any of the NOT DETERMINISTIC ,

CONTAINS SQL or MODIFIES SQL DATA characteristics.

This means that when log_bin_trust_function_creators is OFF and log_bin is ON , CREATE

FUNCTION and ALTER FUNCTION statements will only succeed if the function is defined with any of the

DETERMINISTIC , NO SQL , or READS SQL DATA characteristics.

When log_bin_trust_function_creators is OFF and log_bin is ON , the SUPER privilege is also

required to execute the following statements:

CREATE FUNCTION

CREATE TRIGGER

DROP TRIGGER

Setting log_bin_trust_function_creators to ON removes these requirements around functions

characteristics and the SUPER privileges.

See Binary Logging of Stored Routines for more information.

Commandline: --log-bin-trust-function-creators[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

log_slow_slave_statements

2322/4161

Description: Log slow statements executed by replica thread to the slow log if it is open. Before MariaDB 10.1.13 ,

this was only available as a mariadbd option, not a server variable.

Commandline: --log-slow-slave-statements

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

ON (>= MariaDB 10.2.4)

OFF (<= MariaDB 10.2.3)

log_slave_updates

Description: If set to 0 , the default, updates on a replica received from a primary during replication are not logged

in the replica's binary log. If set to 1 , they are. The replica's binary log needs to be enabled for this to have an effect.

Set to 1 if you want to daisy-chain the replicas.

Commandline: --log-slave-updates

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

master_verify_checksum

Description: Verify binlog checksums when reading events from the binlog on the primary.

Commandline: --master-verify-checksum=[0|1]

Scope: Global

Access Type: Can be changed dynamically

Data Type: bool

Default Value: OFF (0)

max_binlog_cache_size

Description: Restricts the size in bytes used to cache a multi-transactional query. If more bytes are required, a

Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage error

is generated. If the value is changed, current sessions are unaffected, only sessions started subsequently. See

max_binlog_stmt_cache_size and binlog_cache_size.

Commandline: --max-binlog-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 18446744073709547520

Range: 4096 to 18446744073709547520

max_binlog_size

Description: If the binary log exceeds this size after a write, the server rotates it by closing it and opening a new

binary log. Single transactions will always be stored in the same binary log, so the server will wait for open

transactions to complete before rotating. This figure also applies to the size of relay logs if max_relay_log_size is set

to zero.

Commandline: --max-binlog-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1073741824 (1GB)

Range: 4096 to 1073741824 (4KB to 1GB)

max_binlog_stmt_cache_size

Description: Restricts the size used to cache non-transactional statements. See max_binlog_cache_size and

binlog_stmt_cache_size.

2323/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

Commandline: --max-binlog-stmt-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 18446744073709547520 (64 bit), 4294963200 (32 bit)

Range: 4096 to 18446744073709547520

max_binlog_total_size

Description: Maximum space to use for all binary logs. Extra logs are deleted on server start, log rotation, FLUSH

LOGS or when writing to binlog. Default is 0, which means no size restrictions. See also

slave_connections_needed_for_purge.

Commandline: --max-binlog-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

Introduced: MariaDB 11.4.0

max_relay_log_size

Description: Replica will rotate its relay log if it exceeds this size after a write. If set to 0, the max_binlog_size setting

is used instead. Previously global only, since the implementation of multi-source replication, it can be set per session

as well.

Commandline: --max-relay-log-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 , or 4096 to 1073741824 (4KB to 1GB)

read_binlog_speed_limit

Description: Used to restrict the speed at which a replica can read the binlog from the primary. This can be used to

reduce the load on a primary if many replicas need to download large amounts of old binlog files at the same time.

The network traffic will be restricted to the specified number of kilobytes per second.

Commandline: --read-binlog-speed-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0 (no limit)

Range: 0 to 18446744073709551615

relay_log

Description: Relay log basename. If not set, the basename of the files will be hostname-relay-bin .

Commandline: --relay-log=file_name

Scope: Global

Dynamic: No

Data Type: filename

Default Value: '' (none)

relay_log_basename

Description: The full path of the relay log file names, excluding the extension. Its value is derived from the relay-log

variable value.

Commandline: No commandline option

Scope: Global

Dynamic: No

2324/4161

Data Type: string

Default Value: None

Dynamic: No

relay_log_index

Description: Name and location of the relay log index file, the file that keeps a list of the last relay logs. Defaults to

hostname-relay-bin.index.

Commandline: --relay-log-index=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: None

relay_log_info_file

Description: Name and location of the file where the RELAY_LOG_FILE and RELAY_LOG_POS options (i.e. the relay

log position) for the CHANGE MASTER statement are written. The replica's SQL thread keeps this relay log position

updated as it applies events.

See CHANGE MASTER TO: Option Persistence for more information.

Commandline: --relay-log-info-file=file_name

Scope: Global

Dynamic: No

Data Type: string

Default Value: relay-log.info

relay_log_purge

Description: If set to 1 (the default), relay logs will be purged as soon as they are no longer necessary.

Commandline: --relay-log-purge={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Note: In MySQL and in MariaDB before version 10.0.8 this variable was silently changed if you did CHANGE

MASTER.

relay_log_recovery

Description: If set to 1 (0 is default), on startup the replica will drop all relay logs that haven't yet been processed,

and retrieve relay logs from the primary. Can be useful after the replica has crashed to prevent the processing of

corrupt relay logs. relay_log_recovery should always be set together with relay_log_purge. Setting relay-log-

recovery=1 with relay-log-purge=0 can cause the relay log to be read from files that were not purged, leading

to data inconsistencies.

Commandline: --relay-log-recovery

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

relay_log_space_limit

Description: Specifies the maximum space to be used for the relay logs. The IO thread will stop until the SQL thread

has cleared the backlog. By default 0 , or no limit.

Commandline: --relay-log-space-limit=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range - 32 bit: 0 to 4294967295

2325/4161

Range - 64 bit: 0 to 18446744073709547520

replicate_annotate_row_events

Description: Tells the replica to reproduce annotate_rows_events received from the primary in its own binary log.

This option is sensible only when used in tandem with the log_slave_updates option.

Commandline: --replicate-annotate-row-events

Scope: Global

Dynamic: No

Data Type: boolean

Default Value:

ON (>= MariaDB 10.2.4)

OFF (<= MariaDB 10.2.3)

replicate_do_db

Description: This system variable allows you to configure a replica to apply statements and transactions affecting

databases that match a specified name.

This system variable will not work with cross-database updates with statement-based logging. See the

Statement-Based Logging section for more information.

When setting it dynamically with SET GLOBAL , the system variable accepts a comma-separated list of filters.

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-do-db=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

replicate_do_table

Description: This system variable allows you to configure a replica to apply statements and transactions that affect

tables that match a specified name. The table name is specified in the format: dbname.tablename .

This system variable will not work with cross-database updates with statement-based logging. See the

Statement-Based Logging section for more information.

When setting it dynamically with SET GLOBAL , the system variable accepts a comma-separated list of filters.

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-do-table=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

replicate_events_marked_for_skip

Description: Tells the replica whether to replicate events that are marked with the @@skip_replication flag. See

Selectively skipping replication of binlog events for more information.

Commandline: --replicate-events-marked-for-skip

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: replicate

Valid Values: REPLICATE , FILTER_ON_SLAVE , FILTER_ON_MASTER

replicate_ignore_db
2326/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

Description: This system variable allows you to configure a replica to ignore statements and transactions affecting

databases that match a specified name.

This system variable will not work with cross-database updates with statement-based logging. See the

Statement-Based Logging section for more information.

When setting it dynamically with SET GLOBAL , the system variable accepts a comma-separated list of filters.

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-ignore-db=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

replicate_ignore_table

Description: This system variable allows you to configure a replica to ignore statements and transactions that affect

tables that match a specified name. The table name is specified in the format: dbname.tablename .

This system variable will not work with cross-database updates with statement-based logging. See the

Statement-Based Logging section for more information.

When setting it dynamically with SET GLOBAL , the system variable accepts a comma-separated list of filters.

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-ignore-table=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

replicate_rewrite_db

Description: This option allows you to configure a replica to rewrite database names. It uses the format

primary_database->replica_database . If a replica encounters a binary log event in which the default database

(i.e. the one selected by the USE statement) is primary_database , then the replica will apply the event in

replica_database instead.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

This option only affects statements that involve tables. This option does not affect statements involving the

database itself, such as CREATE DATABASE, ALTER DATABASE, and DROP DATABASE.

When setting it on the command-line or in a server option group in an option file, the option does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the option multiple

times.

See Replication Filters for more information.

Before MariaDB 10.11, replicate_rewrite_db was not available as a system variable, only as a mariadbd

option, and could not be set dynamically. From MariaDB 10.11 it is available as a dynamic system variable

Commandline: --replicate-rewrite-db=primary_database->replica_database

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

Introduced: MariaDB 10.11.0

replicate_wild_do_table

Description: This system variable allows you to configure a replica to apply statements and transactions that affect

tables that match a specified wildcard pattern. The wildcard pattern uses the same semantics as the LIKE operator.

This system variable will work with cross-database updates with statement-based logging. See the Statement-

Based Logging section for more information.

When setting it dynamically with SET GLOBAL , the system variable accepts a comma-separated list of filters.

2327/4161

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-wild-do-table=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

replicate_wild_ignore_table

Description: This system variable allows you to configure a replica to ignore statements and transactions that affect

tables that match a specified wildcard pattern. The wildcard pattern uses the same semantics as the LIKE operator.

This system variable will work with cross-database updates with statement-based logging. See the Statement-

Based Logging section for more information.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it on the command-line or in a server option group in an option file, the system variable does not

accept a comma-separated list. If you would like to specify multiple filters, then you need to specify the system

variable multiple times.

See Replication Filters for more information.

Commandline: --replicate-wild-ignore-table=name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: '' (empty)

report_host

Description: The host name or IP address the replica reports to the primary when it registers. If left unset, the replica

will not register itself. Reported by SHOW SLAVE HOSTS. Note that it is not sufficient for the primary to simply read

the IP of the replica from the socket once the replica connects. Due to NAT and other routing issues, that IP may not

be valid for connecting to the replica from the primary or other hosts.

Commandline: --report-host=host_name

Scope: Global

Dynamic: No

Data Type: string

report_password

Description: Replica password reported to the primary when it registers. Reported by SHOW SLAVE HOSTS if --

show-slave-auth-info is set. This password has no connection with user privileges or with the replication user

account password.

Commandline: --report-password=password

Scope: Global

Dynamic: No

Data Type: string

report_port

Description: The commandline option sets the TCP/IP port for connecting to the replica that will be reported to the

replicating primary during the replica's registration. Viewing the variable will show this value.

Commandline: --report-port=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 65535

report_user
2328/4161

Description: Replica's account user name reported to the primary when it registers. Reported by SHOW SLAVE

HOSTS if --show-slave-auth-info is set. This username has no connection with user privileges or with the

replication user account.

Commandline: --report-user=name

Scope: Global

Dynamic: No

Data Type: string

server_id

Description: This system variable is used with MariaDB replication to identify unique primary and replica servers in a

topology. This system variable is also used with the binary log to determine which server a specific transaction

originated on.

When MariaDB replication is used with standalone MariaDB Server, each server in the replication topology

must have a unique server_id value.

When MariaDB replication is used with MariaDB Galera Cluster, see Using MariaDB Replication with MariaDB

Galera Cluster: Setting server_id on Cluster Nodes for more information on how to set the server_id values.

In MariaDB 10.2.1 and below, the default server_id value is 0 . If a replica's server_id value is 0 ,

then all primary's will refuse its connection attempts. If a primary's server_id value is 0 , then it will refuse

all replica connection attempts.

Commandline: --server-id =#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 4294967295

skip_parallel_replication

Description: If set when a transaction is written to the binlog, parallel apply of that transaction will be avoided on a

replica where slave_parallel_mode is not aggressive . Can be used to avoid unnecessary rollback and retry for

transactions that are likely to cause a conflict if replicated in parallel. See parallel replication.

Commandline: None

Scope: Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

skip_replication

Description: Changes are logged into the binary log with the @@skip_replication flag set. Such events will not be

replicated by replica that run with --replicate-events-marked-for-skip set different from its default of

REPLICATE . See Selectively skipping replication of binlog events for more information.

Commandline: None

Scope: Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

slave_compressed_protocol

Description: If set to 1 (0 is the default), will use compression for the replica/primary protocol if both primary and

replica support this.

Commandline: --slave-compressed-protocol

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

2329/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/

slave_connections_needed_for_purge

Description: Minimum number of connected replicas required for automatic binary log purge with

max_binlog_total_size, binlog_expire_logs_seconds or expire_logs_days.

Commandline: --max-binlog-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 18446744073709551615

Introduced: MariaDB 11.4.0

slave_ddl_exec_mode

Description: Modes for how replication of DDL events should be executed. Legal values are STRICT and

IDEMPOTENT (default). In IDEMPOTENT mode, the replica will not stop for failed DDL operations that would not cause

a difference between the primary and the replica. In particular CREATE TABLE is treated as CREATE OR REPLACE

TABLE and DROP TABLE is treated as DROP TABLE IF EXISTS .

Commandline: --slave-ddl-exec-mode=name

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: IDEMPOTENT

Valid Values: IDEMPOTENT , STRICT

slave_domain_parallel_threads

Description: When set to a non-zero value, each replication domain in one primary connection can reserve at most

that many worker threads at any one time, leaving the rest (up to the value of slave_parallel_threads) free for other

primary connections or replication domains to use in parallel. See Parallel Replication for details.

Commandline: --slave-domain-parallel-threads=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Valid Values: 0 to 16383

slave_exec_mode

Description: Determines the mode used for replication error checking and conflict resolution. STRICT mode is the

default, and catches all errors and conflicts. IDEMPOTENT mode suppresses duplicate key or no key errors, which

can be useful in certain replication scenarios, such as when there are multiple primaries, or circular replication.

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: IDEMPOTENT (NDB), STRICT (All)

Valid Values: IDEMPOTENT , STRICT

slave_load_tmpdir

Description: Directory where the replica stores temporary files for replicating LOAD DATA INFILE statements. If not

set, the replica will use tmpdir. Should be set to a disk-based directory that will survive restarts, or else replication

may fail.

Commandline: --slave-load-tmpdir=path

Scope: Global

Dynamic: No

Data Type: file name

Default Value: /tmp

slave_max_allowed_packet
2330/4161

Description: Maximum packet size in bytes for replica SQL and I/O threads. This value overrides

max_allowed_packet for replication purposes. Set in multiples of 1024 (the minimum) up to 1GB

Commandline: --slave-max-allowed-packet=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1073741824

Range: 1024 to 1073741824

slave_max_statement_time

Description: A query that has taken more than this in seconds to run on the replica will be aborted. The argument will

be treated as a decimal value with microsecond precision. A value of 0 (default) means no timeout.

Commandline: --slave-max-statement-time=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0.000000

Range: 0 to 31536000

Introduced: MariaDB 10.10

slave_net_timeout

Description: Time in seconds for the replica to wait for more data from the primary before considering the connection

broken, after which it will abort the read and attempt to reconnect. The retry interval is determined by the

MASTER_CONNECT_RETRY open for the CHANGE MASTER statement, while the maximum number of

reconnection attempts is set by the master-retry-count option. The first reconnect attempt takes place immediately.

Commandline: --slave-net-timeout=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

60 (1 minute)

Range: 1 to 31536000

slave_parallel_max_queued

Description: When parallel_replication is used, the SQL thread will read ahead in the relay logs, queueing events in

memory while looking for opportunities for executing events in parallel. This system variable sets a limit for how much

memory it will use for this.

The configured value of this system variable is actually allocated for each worker thread, so the total allocation

is actually equivalent to the following:

slave_parallel_max_queued * slave_parallel_threads

This system variable is only meaningful when parallel replication is configured (i.e. when

slave_parallel_threads > 0).

See Parallel Replication: Configuring the Maximum Size of the Parallel Slave Queue for more information.

Commandline: --slave-parallel-max-queued=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 131072

Range: 0 to 2147483647

slave_parallel_mode

Description: Controls what transactions are applied in parallel when using parallel replication.

optimistic : tries to apply most transactional DML in parallel, and handles any conflicts with rollback and

retry. See optimistic mode.

conservative : limits parallelism in an effort to avoid any conflicts. See conservative mode.

aggressive : tries to maximize the parallelism, possibly at the cost of increased conflict rate.

minimal : only parallelizes the commit steps of transactions.

2331/4161

none disables parallel apply completely.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: optimistic (>= MariaDB 10.5.1), conservative (<= MariaDB 10.5.0)

Valid Values: conservative , optimistic , none , aggressive and minimal

slave_parallel_threads

Description: This system variable is used to configure parallel replication.

If this system variable is set to a value greater than 0 , then its value will determine how many replica worker

threads will be created to apply binary log events in parallel.

If this system variable is set to 0 (which is the default value), then no replica worker threads will be created.

Instead, when replication is enabled, binary log events are applied by the replica's SQL thread.

The replica threads must be stopped in order to change this option's value dynamically.

Events that were logged with GTIDs with different gtid_domain_id values can be applied in parallel in an

out-of-order manner. Each gtid_domain_id can use the number of threads configured by

slave_domain_parallel_threads .

Events that were group-committed on the primary can be applied in parallel in an in-order manner, and the

specific behavior can be configured by setting slave_parallel_mode .

Commandline: --slave-parallel-threads=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 16383

slave_parallel_workers

Description: Alias for slave_parallel_threads.

Commandline: --slave-parallel-workers=#

slave_run_triggers_for_rbr

Description: See Running triggers on the slave for Row-based events for a description and use-case for this setting.

Commandline: --slave-run-triggers-for-rbr=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: NO

Valid Values: NO , YES , LOGGING , or ENFORCE (>= MariaDB 10.5.2)

slave_skip_errors

Description: When an error occurs on the replica, replication usually halts. This option permits a list of error codes

to ignore, and for which replication will continue. This option should never be needed in normal use, and careless use

could lead to replica that are out of sync with primary's. Error codes are in the format of the number from the replica

error log. Using all as an option permits the replica the keep replicating no matter what error it encounters, an

option you would never normally need in production and which could rapidly lead to data inconsistencies. A count of

these is kept in slave_skipped_errors.

Commandline: --slave-skip-errors=[error_code1,error_code2,...|all|ddl_exist_errors]

Scope: Global

Dynamic: No

Data Type: string

Default Value: OFF

Valid Values: [list of error codes] , ALL , OFF

slave_sql_verify_checksum

2332/4161

https://mariadb.com/kb/en/mariadb-error-codes/

Description: Verify binlog checksums when the replica SQL thread reads events from the relay log.

Commandline: --slave-sql-verify-checksum=[0|1]

Scope: Global

Access Type: Can be changed dynamically

Data Type: bool

Default Value: ON (1)

slave_transaction_retries

Description: Number of times a replication replica retries to execute an SQL thread after it fails due to InnDB

deadlock or by exceeding the transaction execution time limit. If after this number of tries the SQL thread has still

failed to execute, the replica will stop with an error. See also the innodb_lock_wait_timeout system variable.

Commandline: --slave-transaction-retries=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range - 32 bit: 0 to 4294967295

Range - 64 bit: 0 to 18446744073709547520

slave_transaction_retry_errors

Description: When an error occurs during a transaction on the replica, replication usually halts. By default,

transactions that caused a deadlock or elapsed lock wait timeout will be retried. One can add other errors to the the

list of errors that should be retried by adding a comma-separated list of error numbers to this variable. This is

particularly useful in some Spider setups. Some recommended errors to retry for Spider are

1158,1159,1160,1161,1429,2013,12701.(From MariaDB 10.4.5, these are in the default value)

Commandline: --slave-transaction_retry-errors=[error_code1,error_code2,...]

Scope: Global

Dynamic: No

Data Type: string

Default Value:

1158,1159,1160,1161,1205,1213,1429,2013,12701 (>= MariaDB 10.4.5)

1213,1205 (>= MariaDB 10.3.3)

Valid Values: comma-separated list of error codes

Introduced: MariaDB 10.3.3

slave_transaction_retry_interval

Description: Interval in seconds for the replica SQL thread to retry a failed transaction due to a deadlock, elapsed

lock wait timeout or an error listed in slave_transaction_retry_errors. The interval is calculated as

max(slave_transaction_retry_interval, min(retry_count, 5)) .

Commandline: --slave-transaction-retry-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 3600

Introduced: MariaDB 10.3.3

slave_type_conversions

Description: Determines the type conversion mode on the replica when using row-based replication, including

replications in MariaDB Galera cluster. Multiple options can be set, delimited by commas. If left empty, the default,

type conversions are disallowed. The variable is dynamic and a change in its value takes effect immediately. This

variable tells the server what to do if the table definition is different between the primary and replica (for example a

column is 'int' on the primary and 'bigint' on the replica).

ALL_NON_LOSSY means that all safe conversions (no data loss) are allowed.

ALL_LOSSY means that all lossy conversions are allowed (for example 'bigint' to 'int'). This, however, does not

imply that safe conversions (non-lossy) are allowed as well. In order to allow all conversions, one needs to

allow both lossy as well as non-lossy conversions by setting this variable to ALL_NON_LOSSY,ALL_LOSSY.

2333/4161

https://mariadb.com/kb/en/mariadb-error-codes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Empty (default) means that the server should give an error and replication should stop if the table definition is

different between the primary and replica.

Commandline: --slave-type-conversions=set

Scope: Global

Dynamic: Yes

Data Type: set

Default Value: Empty variable

Valid Values: ALL_LOSSY , ALL_NON_LOSSY , empty

sql_log_bin

Description: If set to 0 (1 is the default), no logging to the binary log is done for the client. Only clients with the

SUPER privilege can update this variable. Does not affect the replication of events in a Galera cluster.

Scope: Session

Dynamic: Yes

Data Type: boolean

Default Value: 1

sql_slave_skip_counter

Description: Number of events that a replica skips from the primary. If this would cause the replica to begin in the

middle of an event group, the replica will instead begin from the beginning of the next event group. See SET GLOBAL

sql_slave_skip_counter.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

sync_binlog

Description: MariaDB will synchronize its binary log file to disk after this many events. The default is 0, in which

case the operating system handles flushing the file to disk. 1 is the safest, but slowest, choice, since the file is flushed

after each write. If autocommit is enabled, there is one write per statement, otherwise there's one write per

transaction. If the disk has cache backed by battery, synchronization will be fast and a more conservative number can

be chosen.

Commandline: --sync-binlog=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

sync_master_info

Description: A replication replica will synchronize its master.info file to disk after this many events. If set to 0, the

operating system handles flushing the file to disk.

Commandline: --sync-master-info=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10000

sync_relay_log

Description: The MariaDB server will synchronize its relay log to disk after this many writes to the log. The default

until MariaDB 10.1.7 was 0, in which case the operating system handles flushing the file to disk. 1 is the safest, but

slowest, choice, since the file is flushed after each write. If autocommit is enabled, there is one write per statement,

otherwise there's one write per transaction. If the disk has cache backed by battery, synchronization will be fast and a

more conservative number can be chosen.

Commandline: --sync-relay-log=#

2334/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10000

sync_relay_log_info

Description: A replication replica will synchronize its relay-log.info file to disk after this many transactions. The

default until MariaDB 10.1.7 was 0, in which case the operating system handles flushing the file to disk. 1 is the

most secure choice, because at most one event could be lost in the event of a crash, but it's also the slowest.

Commandline: --sync-relay-log-info=#

Scope: Global,

Dynamic: Yes

Data Type: numeric

Default Value: 10000

Range: 0 to 4294967295

3.1.12 Replication and Binary Log Status
Variables

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

2335/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Binlog_bytes_written

2. Binlog_cache_disk_use

3. Binlog_cache_use

4. Binlog_commits

5. Binlog_group_commit_trigger_count

6. Binlog_group_commit_trigger_lock_wait

7. Binlog_group_commit_trigger_timeout

8. Binlog_group_commits

9. Binlog_gtid_index_hit

10. Binlog_gtid_index_miss

11. Binlog_snapshot_file

12. Binlog_snapshot_position

13. Binlog_stmt_cache_disk_use

14. Binlog_stmt_cache_use

15. Com_change_master

16. Com_show_binlog_status

17. Com_show_master_status

18. Com_show_new_master

19. Com_show_slave_hosts

20. Com_show_slave_status

21. Com_slave_start

22. Com_slave_stop

23. Com_start_all_slaves

24. Com_start_slave

25. Com_stop_all_slaves

26. Com_stop_slave

27. Master_gtid_wait_count

28. Master_gtid_wait_time

29. Master_gtid_wait_timeouts

30. Rpl_status

31. Rpl_transactions_multi_engine

32. Slave_connections

33. Slave_heartbeat_period

34. Slave_open_temp_tables

35. Slave_received_heartbeats

36. Slave_retried_transactions

37. Slave_running

38. Slave_skipped_errors

39. Slaves_connected

40. Slaves_running

41. Transactions_gtid_foreign_engine

42. Transactions_multi_engine

The following status variables are useful in binary logging and replication. See Server Status Variables for a complete list of

status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Binlog_bytes_written

Description: The number of bytes written to the binary log.

Scope: Global

Data Type: numeric

Binlog_cache_disk_use

Description: Number of transactions which used a temporary disk cache because they could not fit in the regular

binary log cache, being larger than binlog_cache_size. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Binlog_cache_use

Description: Number of transaction which used the regular binary log cache, being smaller than binlog_cache_size.
2336/4161

The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Binlog_commits

Description: Total number of transactions committed to the binary log.

Scope: Global

Data Type: numeric

Binlog_group_commit_trigger_count

Description: Total number of group commits triggered because of the number of binary log commits in the group

reached the limit set by the variable binlog_commit_wait_count. See Group commit for the binary log.

Scope: Global

Data Type: numeric

Binlog_group_commit_trigger_lock_wait

Description: Total number of group commits triggered because a binary log commit was being delayed because of a

lock wait where the lock was held by a prior binary log commit. When this happens the later binary log commit is

placed in the next group commit. See Group commit for the binary log.

Scope: Global

Data Type: numeric

Binlog_group_commit_trigger_timeout

Description: Total number of group commits triggered because of the time since the first binary log commit reached

the limit set by the variable binlog_commit_wait_usec. See Group commit for the binary log.

Scope: Global

Data Type: numeric

Binlog_group_commits

Description: Total number of group commits done to the binary log. See Group commit for the binary log.

Scope: Global

Data Type: numeric

Binlog_gtid_index_hit

Description: Incremented for each successful lookup in a GTID index.

Scope: Global

Data Type: numeric

Introduced: MariaDB 11.4

 Binlog_gtid_index_miss

Description: Incremented when a GTID index lookup is not possible, which indicates that the index file is missing

(eg. binlog written by old server version without GTID index support), or corrupt.

Scope: Global

Data Type: numeric

Introduced: MariaDB 11.4

Binlog_snapshot_file

Description: The binary log file. Unlike SHOW MASTER STATUS, can be queried in a transactionally consistent

way, irrespective of which other transactions have been committed since the snapshot was taken. See

2337/4161

Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT .

Scope: Global

Data Type: string

Binlog_snapshot_position

Description: The binary log position. Unlike SHOW MASTER STATUS, can be queried in a transactionally

consistent way, irrespective of which other transactions have been committed since the snapshot was taken. See

Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT .

Scope: Global

Data Type: numeric

Binlog_stmt_cache_disk_use

Description: Number of non-transaction statements which used a temporary disk cache because they could not fit in

the regular binary log cache, being larger than binlog_stmt_cache_size. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Binlog_stmt_cache_use

Description: Number of non-transaction statement which used the regular binary log cache, being smaller than

binlog_stmt_cache_size. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Com_change_master

Description: Number of CHANGE MASTER TO statements executed.

Scope: Global, Session

Data Type: numeric

Com_show_binlog_status

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.2

Com_show_master_status

Description: Number of SHOW MASTER STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.5.2

Com_show_new_master

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

Com_show_slave_hosts

Description: Number of SHOW SLAVE HOSTS commands executed.

2338/4161

https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/
https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/

Scope: Global, Session

Data Type: numeric

Com_show_slave_status

Description: Number of SHOW SLAVE STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Com_slave_start

Description: Number of START SLAVE commands executed. Removed in MariaDB 10.0, see Com_start_slave.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.0

Com_slave_stop

Description: Number of STOP SLAVE commands executed. Removed in MariaDB 10.0, see Com_stop_slave.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.0

Com_start_all_slaves

Description: Number of START ALL SLAVES commands executed.

Scope: Global, Session

Data Type: numeric

Com_start_slave

Description: Number of START SLAVE commands executed. Replaces the old Com_slave_start.

Scope: Global, Session

Data Type: numeric

Com_stop_all_slaves

Description: Number of STOP ALL SLAVES commands executed.

Scope: Global, Session

Data Type: numeric

Com_stop_slave

Description: Number of STOP SLAVE commands executed. Replaces the old Com_slave_stop.

Scope: Global, Session

Data Type: numeric

Master_gtid_wait_count

Description: Number of times MASTER_GTID_WAIT called.

Scope: Global, Session

Data Type: numeric

Master_gtid_wait_time

Description: Total number of time spent in MASTER_GTID_WAIT.
2339/4161

Scope: Global, Session

Data Type: numeric

Master_gtid_wait_timeouts

Description: Number of timeouts occurring in MASTER_GTID_WAIT.

Scope: Global, Session

Data Type: numeric

Rpl_status

Description: For showing the status of fail-safe replication. Removed in MySQL 5.6, still present in MariaDB 10.0.

Rpl_transactions_multi_engine

Description: Number of replicated transactions that involved changes in multiple (transactional) storage engines,

before considering the update of mysql.gtid_slave_pos . These are transactions that were already cross-engine,

independent of the GTID position update introduced by replication. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.1

Slave_connections

Description: Number of REGISTER_SLAVE attempts. In practice the number of times slaves has tried to connect to

the master.

Scope: Global

Data Type: numeric

Slave_heartbeat_period

Description: Time in seconds that a heartbeat packet is requested from the master by a slave.

Scope: Global

Data Type: numeric

Slave_open_temp_tables

Description: Number of temporary tables the slave has open.

Scope: Global

Data Type: numeric

Slave_received_heartbeats

Description: Number of heartbeats the slave has received from the master.

Scope: Global

Data Type: numeric

Slave_retried_transactions

Description: Number of times the slave has retried transactions since the server started. The global value can be

flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

2340/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/

Slave_running

Description: Whether the default connection slave is running (both I/O and SQL threads are running) or not.

Scope: Global

Data Type: numeric

Slave_skipped_errors

Description: The number of times a slave has skipped errors defined by slave-skip-errors.

Scope: Global

Data Type: numeric

Slaves_connected

Description: Number of slaves connected.

Scope: Global

Data Type: numeric

Slaves_running

Description: Number of slave SQL threads running.

Scope: Global

Data Type: numeric

Transactions_gtid_foreign_engine

Description: Number of replicated transactions where the update of the gtid_slave_pos table had to choose a

storage engine that did not otherwise participate in the transaction. This can indicate that setting

gtid_pos_auto_engines might be useful. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.1

Transactions_multi_engine

Description: Number of transactions that changed data in multiple (transactional) storage engines. If this is

significantly larger than Rpl_transactions_multi_engine, it indicates that setting gtid_pos_auto_engines could reduce

the need for cross-engine transactions. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.1

3.1.13 Binary Log
The binary log contains a record of all changes to the databases, both data and structure. It consists of a set of binary log

files and an index.

It is necessary for replication, and can also be used to restore data after a backup.

Overview of the Binary Log

The binary log contains a record of all changes to the databases

Activating the Binary Log

Activating the Binary Log.

Using and Maintaining the Binary Log

Using and maintaining the binary log.2

2341/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/gtid_pos_auto_engines
https://mariadb.com/kb/en/mariadb-1031-release-notes/

Binary Log Formats

The three binary logging formats.

Binary Logging of Stored Routines

Stored routines require extra consideration when binary logging.

SHOW BINARY LOGS

SHOW BINARY LOGS lists all binary logs on the server.

PURGE BINARY LOGS

PURGE BINARY LOGS removes all binary logs from the server, prior to the provided date or log file.

SHOW BINLOG EVENTS

Show events in the binary log.

SHOW MASTER STATUS

Status information about the binary log.

Binlog Event Checksums

Including a checksum in binlog events.

Binlog Event Checksum Interoperability

Replicating between servers with differing binlog checksum availability

Group Commit for the Binary Log

Optimization when the server is run with innodb_flush_logs_at_trx_commit or sync_binlog.

mariadb-binlog

mariadb-binlog utility for processing binary log files.

Transaction Coordinator Log

The transaction coordinator log (tc_log) is used to coordinate transactions...

Compressing Events to Reduce Size of the Binary Log

Binlog events can be compressed to save space on disk and in network transfers.

Encrypting Binary Logs

Data-at-rest encryption for binary logs and relay logs.

Flashback

Rollback instances/databases/tables to an old snapshot.

Relay Log

Event log created by the replica from the primary binary log.

Replication and Binary Log System Variables

Replication and binary log system variables.

There are 5 related questions .

3

2

9

3.1.13.1 Overview of the Binary Log
The binary log contains a record of all changes to the databases, both data and structure, as well as how long each

statement took to execute. It consists of a set of binary log files and an index.

This means that statements such as CREATE, ALTER, INSERT, UPDATE and DELETE will be logged, but statements that

have no effect on the data, such as SELECT and SHOW, will not be logged. If you want to log these (at a cost in

performance), use the general query log.

If a statement may potentially have an effect, but doesn't, such as an UPDATE or DELETE that returns no rows, it will still be

logged (this applies to the default statement-based logging, not to row-based logging - see Binary Log Formats).

The purpose of the binary log is to allow replication, where data is sent from one or more masters to one or more slave

2342/4161

https://mariadb.com/kb/en/binary-log/+questions/

servers based on the contents of the binary log, as well as assisting in backup operations.

A MariaDB server with the binary log enabled will run slightly more slowly.

It is important to protect the binary log, as it may contain sensitive information, including passwords.

Binary logs are stored in a binary, not plain text, format, and so are not viewable with a regular editor. However, MariaDB

includes mariadb-binlog, a commandline tool for plain text processing of binary logs.

3.1.13.2 Activating the Binary Log
Contents
1. Binary Log Format

To enable binary logging, start the server with the --log-bin[=name] option.

If you specify a filename with an extension (for example .log), the extension will be silently ignored.

If you don't provide a name (which can, optionally, include an absolute path), the default will be datadir/log-basename-

bin , datadir/mysql-bin or datadir/mariadb-bin (the latter two if --log-basename is not specified, and dependent

on server version). Datadir is determined by the value of the datadir system variable.

We strongly recommend you use either --log-basename or specify a filename to ensure that replication doesn't stop if the

hostname of the computer changes.

The directory storing the binary logs will contain a binary log index, as well as the individual binary log files.

The binary log files will have a series of numbers as filename extensions. Each additional binary log will increment the

extension number, so the oldest binary logs will have lower numbers, the most recent, higher numbers.

A new binary log, with a new extension, is created every time the server starts, the logs are flushed, or the maximum size is

reached (determined by max_binlog_size).

The binary log index file contains a master list of all the binary logs, in order. From MariaDB 11.4, if GTID binlog indexing is

enabled (the default), an additional index file (.idx) is present.

A sample listing from a directory containing the binary logs:

shell> ls -l

total 100

...

-rw-rw---- 1 mysql adm 2098 Apr 19 00:46 mariadb-bin.000079

-rw-rw---- 1 mysql adm 332 Apr 19 00:56 mariadb-bin.000080

-rw-rw---- 1 mysql adm 347 Apr 19 07:36 mariadb-bin.000081

-rw-rw---- 1 mysql adm 306 Apr 20 07:15 mariadb-bin.000082

-rw-rw---- 1 mysql adm 332 Apr 20 07:41 mariadb-bin.000083

-rw-rw---- 1 mysql adm 373 Apr 21 07:56 mariadb-bin.000084

-rw-rw---- 1 mysql adm 347 Apr 21 09:09 mariadb-bin.000085

-rw-rw---- 1 mysql adm 398 Apr 21 21:24 mariadb-bin.000086

-rw-rw---- 1 mysql adm 816 Apr 21 17:05 mariadb-bin.index

The binary log index file will by default have the same name as the individual binary logs, with the extension .index. You can

specify an alternative name with the --log-bin-index[=filename] option.

Clients with the SUPER privilege (or, from MariaDB 10.5.2, the BINLOG ADMIN privilege, can disable and re-enable the

binary log for the current session by setting the sql_log_bin variable.

SET sql_log_bin = 0;

SET sql_log_bin = 1;

Binary Log Format
There are three formats for the binary log. The default is mixed logging, which is a mix of statement-based and row-based

logging. See Binary Log Formats for a full discussion.

3.1.13.3 Using and Maintaining the Binary Log

2343/4161

Contents
1. Purging Log Files

1. Examples

2. Safely Purging Binary Log Files While Replicating

2. Binary Log Format

3. Selectively Logging to the Binary Log

1. Examples

4. Effects of Full Disk Errors on Binary Logging

See Overview of the Binary Log for a general overview of what the binary log is, and Activating the Binary Log for how to

make sure it's running on your system.

For details on using the binary log for replication, see the Replication section.

Purging Log Files
To delete all binary log files on the server, run the RESET MASTER command. To delete all binary logs before a certain

datetime, or up to a certain number, use PURGE BINARY LOGS .

If a replica is active but has yet to read from a binary log file you attempt to delete, the statement will fail with an error.

However, if the replica is not connected and has yet to read from a log file you delete, the file will be deleted, but the

replica will be unable to continue replicating once it connects again.

Log files can also be removed automatically with the expire_logs_days system variable. This is set to 0 by default (no

removal), but can be set to a time, in days, after which a binary log file will be automatically removed. Log files will only be

checked for being older than expire_logs_days upon log rotation, so if your binary log only fills up slowly and does not reach

max_binlog_size on a daily basis, you may see older log files still being kept. You can also force log rotation, and so expiry

deletes, by running FLUSH BINARY LOGS on a regular basis. Always set expire_logs_days higher than any possible

replica lag.

From MariaDB 10.6, the binlog_expire_logs_seconds variable allows more precise control over binlog deletion, and takes

precedence if both are non-zero.

If the binary log index file has been removed, or incorrectly manually edited, all of the above forms of purging log files

will fail. The .index file is a plain text file, and can be manually recreated or edited so that it lists only the binary log files

that are present, in numeric/age order.

Examples

PURGE BINARY LOGS TO 'mariadb-bin.000063';

PURGE BINARY LOGS BEFORE '2013-04-22 09:55:22';

Safely Purging Binary Log Files While Replicating

To be sure replication is not broken while deleting log files, perform the following steps:

Get a listing of binary log files on the primary by running SHOW BINARY LOGS.

Go to each replica server and run SHOW SLAVE STATUS to check which binary log file each replica is currently

reading.

Find the earliest log file still being read by a replica. No log files before this one will be needed.

If you wish, make a backup of the log files to be deleted

Purge all log files before (not including) the file identified above.

Binary Log Format
There are three formats for the binary log. The default is statement-based logging, while row-based logging and a mix of the

two formats are also possible. See Binary Log Formats for a full discussion.

Selectively Logging to the Binary Log

2344/4161

https://mariadb.com/kb/en/sql-commands-purge-logs/

By default, all changes to data or data structure are logged. This behavior can be changed by starting the server with the -

-binlog-ignore-db=database_name or --binlog-do-db=database_name options.

--binlog-ignore-db=database_name specified a database to ignore for logging purposes, while --binlog-do-

db=database_name will not log any statements unless they apply to the specified database.

Neither option accepts comma-delimited lists of multiple databases as an option, since a database name can contain a

comma. To apply to multiple databases, use the option multiple times.

--binlog-ignore-db=database_name behaves differently depending on whether statement-based or row-based logging

is used. For statement-based logging, the server will not log any statement where the default database is database_name.

The default database is set with the USE statement.

Similarly, --binlog-do-db=database_name also behaves differently depending on whether statement-based or row-

based logging is used.

For statement-based logging, the server will only log statement where the default database is database_name. The default

database is set with the USE statement.

For row-based logging, the server will log any updates to any tables in the named database/s, irrespective of the current

database.

Examples

Assume the server has started with the option --binlog-ignore-db=employees . The following example is logged if

statement-based logging is used, and is not logged with row-based logging.

USE customers;

UPDATE employees.details SET bonus=bonus*1.2;

This is because statement-based logging examines the default database, in this case, customers . Since customers is

not specified in the ignore list, the statement will be logged. If row-based logging is used, the example will not be logged as

updates are written to the tables in the employees database.

Assume instead the server started with the option --binlog-do-db=employees . The following example is not logged if

statement-based logging is used, and is logged with row-based logging.

USE customers;

UPDATE employees.details SET bonus=bonus*1.2;

This is again because statement-based logging examines the default database, in this case, customers . Since

customers is not specified in the do list, the statement will not be logged. If row-based logging is used, the example will be

logged as updates are written to the tables in the employees database.

Effects of Full Disk Errors on Binary Logging
If MariaDB encounters a full disk error while trying to write to a binary log file, then it will keep retrying the write every 60

seconds. Log messages will get written to the error log every 600 seconds. For example:

2018-11-27 2:46:46 140278181563136 [Warning] mysqld: Disk is full writing '/var/lib/mariadb-

bin.00001' (Errcode: 28 "No space left on device"). Waiting for someone to free space... (Expect

up to 60 secs delay for server to continue after freeing disk space)

2018-11-27 2:46:46 140278181563136 [Warning] mysqld: Retry in 60 secs. Message reprinted in 600

secs

However, if MariaDB encounters a full disk error while trying to open a new binary log file, then it will disable binary logging

entirely. A log message like the following will be written to the error log:

2018-11-27 3:30:49 140278181563136 [ERROR] Could not open '/var/lib/mariadb-bin.00002 for

logging (error 28). Turning logging off for the whole duration of the MySQL server process. To

turn it on again: fix the cause, shutdown the MySQL server and restart it.

2018-11-27 3:30:49 140278181563136 [ERROR] mysqld: Error writing file '(null)' (errno: 9 "Bad

file descriptor")

2018-11-27 3:30:49 140278181563136 [ERROR] mysqld: Error writing file '(null)' (errno: 28 "No

space left on device")

2345/4161

3.1.13.4 Binary Log Formats
Contents
1. Supported Binary Log Formats

1. Statement-Based Logging

2. Mixed Logging

3. Row-Based Logging

2. Compression of the Binary Log

3. Configuring the Binary Log Format

4. Effect of the Binary Log Format on Replicas

5. The mysql Database

Supported Binary Log Formats
There are three supported formats for binary log events:

Statement-Based Logging

Row-Based Logging

Mixed Logging

Regardless of the format, binary log events are always stored in a binary format, rather than in plain text. MariaDB includes

the mariadb-binlog utility that can be used to output binary log events in a human-readable format.

You may want to set the binary log format in the following cases:

If you execute single statements that update many rows, then statement-based logging will be more efficient than row-

based logging for the replica to download.

If you execute many statements that don't affect any rows, then row-based logging will be more efficient than

statement-based logging for the replica to download.

If you execute statements that take a long time to complete, but they ultimately only insert, update, or delete a few

rows in the table, then row-based logging will be more efficient than statement-based logging for the replica to apply.

The default is mixed logging which is replication-safe and requires less storage space than row logging.

The storage engine API also allows storage engines to set or limit the logging format, which helps reduce errors with

replicating between primaries and replicas with different storage engines.

Statement-Based Logging

In MariaDB 10.2.3 and before, statement-based logging was the default. Mixed logging is now the default.

When statement-based logging is enabled, statements are logged to the binary log exactly as they were executed.

Temporary tables created on the primary will also be created on the replica. This mode is only recommended where one

needs to keep the binary log as small as possible, the primary and replica have identical data (including using the same

storage engines for all tables), and all functions being used are deterministic (repeatable with the same arguments).

Statements and tables using timestamps or auto_increment are safe to use with statement-based logging.

This mode can be enabled by setting the binlog_format system variable to STATEMENT .

In certain cases when it would be impossible to execute the statement on the replica, the server will switch to row-based

logging for the statement. Some cases of this are:

When replication has been changed from row-based to statement-based and a statement uses data from a temporary

table created during row-based mode. In this case, the temporary tables are not stored on the replica, so row logging

is the only alternative.

ALTER TABLE of a table using a storage engine that stores data remotely, such as the S3 storage engine, to another

storage engine.

One is using SEQUENCEs in the statement or the CREATE TABLE definition.

In certain cases, a statement may not be deterministic, and therefore not safe for replication. If MariaDB determines that an

unsafe statement has been executed, then it will issue a warning. For example:

[Warning] Unsafe statement written to the binary log using statement format since

 BINLOG_FORMAT = STATEMENT. The statement is unsafe because it uses a LIMIT clause. This

 is unsafe because the set of rows included cannot be predicted.

See Unsafe Statements for Statement-based Replication for more information.

If you need to execute non-deterministic statements, then it is safer to use mixed logging or row-based.

2346/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

Mixed Logging

Mixed logging is the default binary log format.

When mixed logging is enabled, the server uses a combination of statement-based logging and row-based logging.

Statement-based logging is used where possible, but when the server determines a statement may not be safe for

statement-based logging, it will use row-based logging instead. See Unsafe Statements for Statement-based Replication:

Unsafe Statements for a list of unsafe statements.

During one transaction, some statements may be logged with row logging while others are logged with statement-based

logging.

This mode can be enabled by setting the binlog_format system variable to MIXED .

Row-Based Logging

When row-based logging is enabled, DML statements are not logged to the binary log. Instead, each insert, update, or

delete performed by the statement for each row is logged to the binary log separately. DDL statements are still logged to the

binary log.

Row-based logging uses more storage than the other log formats but is the safest to use. In practice mixed logging should

be as safe.

If one wants to be able to see the original query that was logged, one can enable annotated rows events , that is shown

with mariadb-binlog, with --binlog-annotate-row-events. This option is on by default.

This mode can be enabled by setting the binlog_format system variable to ROW .

Compression of the Binary Log
Compression of the binary log can be used with any of the binary log formats, but the best results come from using mixed or

row-based logging. You can enable compression by using the --log_bin_compress startup option.

Configuring the Binary Log Format
The format for binary log events can be configured by setting the binlog_format system variable. If you have the SUPER

privilege, then you can change it dynamically with SET GLOBAL. For example:

SET GLOBAL binlog_format='ROW';

You can also change it dynamically for just a specific session with SET SESSION. For example:

SET SESSION binlog_format='ROW';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

binlog_format=ROW

Be careful when changing the binary log format when using replication. When you change the binary log format on a

server, it only changes the format for that server. Changing the binary log format on a primary has no effect on the

replica's binary log format. This can cause replication to give inconsistent results or to fail.

Be careful changing the binary log format dynamically when the server is a replica and parallel replication is enabled. If

you change the global value dynamically, then that does not also affect the session values of any currently running

threads. This can cause problems with parallel replication, because the worker threads will remain running even after

STOP SLAVE is executed. This can be worked around by resetting the slave_parallel_threads system variable. For

example:

STOP SLAVE;

SET GLOBAL slave_parallel_threads=0;

SET GLOBAL binlog_format='ROW';

SET GLOBAL slave_parallel_threads=4;

START SLAVE

2347/4161

https://mariadb.com/kb/en/annotate_rows_event/

Effect of the Binary Log Format on Replicas
In MariaDB 10.0.22 and later, a replica will apply any events it gets from the primary, regardless of the binary log format.

The binlog_format system variable only applies to normal (not replicated) updates.

If you are running MySQL or an older MariaDB than 10.0.22, you should be aware of that if you are running the replica

in binlog_format=STATEMENT mode, the replica will stop if the primary is used with binlog_format set to

anything else than STATEMENT .

The binary log format is upwards-compatible. This means replication should always work if the replica is the same or a

newer version of MariaDB than the primary.

The mysql Database
Statements that affect the mysql database can be logged in a different way to that expected.

If the mysql database is edited directly, logging is performed as expected according to the binlog_format. Statements that

directly edit the mysql database include INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA INFILE, SELECT, and

TRUNCATE TABLE.

If the mysql database is edited indirectly, statement logging is used regardless of binlog_format setting. Statements editing

the mysql database indirectly include GRANT, REVOKE, SET PASSWORD, RENAME USER, ALTER, DROP and

CREATE (except for the situation described below).

CREATE TABLE ... SELECT can use a combination of logging formats. The CREATE TABLE portion of the statement is

logged using statement-based logging, while the SELECT portion is logged according to the value of binlog_format .

3.1.13.5 Binary Logging of Stored Routines
Contents
1. How MariaDB Handles Statement-Based Binary Logging of Routines

1. Examples

Binary logging can be row-based, statement-based, or a mix of the two. See Binary Log Formats for more details on the

formats. If logging is statement-based, it is possible that a statement will have different effects on the master and on the

slave.

Stored routines are particularly prone to this, for two main reasons:

stored routines can be non-deterministic, in other words non-repeatable, and therefore have different results each

time they are run.

the slave thread executing the stored routine on the slave holds full privileges, while this may not be the case when

the routine was run on the master.

The problems with replication will only occur with statement-based logging. If row-based logging is used, since changes are

made to rows based on the master's rows, there is no possibility of the slave and master getting out of sync.

By default, with row-based replication, triggers run on the master, and the effects of their executions are replicated to the

slaves. However, starting from MariaDB 10.1.1 , it is possible to run triggers on the slaves. See Running triggers on the

slave for Row-based events.

How MariaDB Handles Statement-Based Binary Logging
of Routines
If the following criteria are met, then there are some limitations on whether stored routines can be created:

The binary log is enabled, and the binlog_format system variable is set to STATEMENT . See Binary Log Formats

for more information.

The log_bin_trust_function_creators is set to OFF , which is the default value.

If the above criteria are met, then the following limitations apply:

When a stored function is created, it must be declared as either DETERMINISTIC , NO SQL or READS SQL DATA , or

else an error will occur. MariaDB cannot check whether a function is deterministic, and relies on the correct definition
2348/4161

https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

being used.

To create or modify a stored function, a user requires the SUPER privilege as well as the regular privileges. See

Stored Routine Privileges for these details.

Triggers work in the same way, except that they are always assumed to be deterministic for logging purposes, even if

this is obviously not the case, such as when they use the UUID function.

Triggers can also update data. The slave uses the DEFINER attribute to determine which user is taken to have

created the trigger.

Note that the above limitations do no apply to stored procedures or to events.

Examples

A deterministic function:

DELIMITER //

CREATE FUNCTION trust_me(x INT)

RETURNS INT

DETERMINISTIC

READS SQL DATA

BEGIN

 RETURN (x);

END //

DELIMITER ;

A non-deterministic function, since it uses the UUID_SHORT function:

DELIMITER //

CREATE FUNCTION dont_trust_me()

RETURNS INT

BEGIN

 RETURN UUID_SHORT();

END //

DELIMITER ;

1.1.1.2.8.5 SHOW BINARY LOGS

1.1.1.2.11 PURGE BINARY LOGS

1.1.1.2.8.6 SHOW BINLOG EVENTS

1.1.1.2.5.8 SHOW MASTER STATUS

3.1.19 Binlog Event Checksums

3.1.13.11 Binlog Event Checksum
Interoperability

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

The introduction of checksums on binlog events changes the format that events are stored in binary log files and sent over

the network to replicas. This raises the question on what happens when replicating between different versions of the server,

where one server is a newer version that has the binlog checksum feature implemented, while the other server is an older

version that does not know about binlog checksums.

When checksums are disabled on the primary (or the primary has the old version with no checksums implemented), there is

2349/4161

https://jira.mariadb.org/browse/MDEV-18777

no problem. In this case the binlog format is backwards compatible, and replication works fine.

When the primary is a newer version with checksums enabled in the binlog, but the replica is an old version that does not

understand checksums, replication will fail. The primary will disconnect the replica with an error, and also log a warning in

its own error log. This prevents sending events to the replica that it will be unable to interpret correctly, but means that binlog

checksums can not be used with older replicas. (With the recommended upgrade path, where replicas are upgraded before

primaries, this is not a problem of course).

Replicating from a new MySQL primary with checksums enabled to a new MariaDB which also understands checksums

works, and the MariaDB replica will verify checksums on replicated events.

There is however a problem when a newer MySQL replica replicates against a newer MariaDB primary with checksums

enabled. The replica server looks at the primary server version to know whether events include checksums or not, and

MySQL has not yet been updated to learn that MariaDB does this already from version 5.3.0 (as of the time of writing,

MySQL 5.6.2). Thus, if MariaDB at least version 5.3.0 but less that 5.6.1 is used as a primary with binlog checksums

enabled, a MySQL replica will interpret the received events incorrectly as it does not realise the last part of the events is the

checksum. So replication will fail with an error about corrupt events or even silent corruption of replicated data in unlucky

cases. This requires changes to the MySQL server to fix.

Here is a summary table of the status of replication between different combination of primary and replica servers and

checksum enabled/disabled:

OLD: MySQL <5.6.1 or MariaDB < 5.3.0 with no checksum capabilities

NEW-MARIA: MariaDB >= 5.3.0 with checksum capabilities

NEW-MYSQL: MySQL >= 5.6.1 with checksum capabilities

Primary mariadb-

lbinlog

Replica /

enabled?
Checksums Status

OLD OLD - Ok

OLD NEW-MARIA - Ok

OLD MYSQL - Ok

NEW-MARIA OLD No Ok

NEW-MARIA OLD Yes Primary will refuse with error

NEW-MARIA NEW-MARIA Yes/No Ok

NEW-MARIA NEW-MYSQL No Ok

NEW-MARIA NEW-MYSQL Yes
Fail. Requires changes in MySQL, otherwise it will not realise MariaDB < 5.6.1 does checksums

and will be confused.

NEW-MYSQL OLD No Ok

NEW-MYSQL OLD Yes Primary will refuse with error

NEW-MYSQL NEW-MARIA Yes/No Ok

NEW-MYSQL NEW-MYSQL Yes/No Ok

Checksums and mariadb-binlog
When using the mariadb-binlog client program, there are similar issues.

A version of mariadb-binlog which understands checksums can read binlog files from either old or new servers, with or

without checksums enabled.

An old version of mariadb-binlog can read binlog files produced by a new server version if checksums were disabled

when the log was produced. Old versions of mariadb-binlog reading a new binlog file containing checksums will be

confused, and output will be garbled, with the added checksums being interpreted as extra garbage at the end of query

strings and similar entries. No error will be reported in this case, just wrong output.

A version of mysqlbinlog (the MySQL equivalent to mariadb-binlog and the old MariaDB name for the binary) from

MySQL >= 5.6.1 will have similar problems as a replica until this is fixed in MySQL. When reading a binlog file with

checksums produced by MariaDB >= 5.3.0 but < 5.6.1, it will not realise that checksums are included, and will produce

garbled output just like an old version of mysqlbinlog . The MariaDB version of mariadb-binlog can read binlog files

produced by either MySQL or MariaDB just fine.

3.1.13.12 Group Commit for the Binary Log

2350/4161

Contents
1. Overview

2. Durability

1. Durable InnoDB Data and Binary Logs

2. Non-Durable InnoDB Data

3. Non-Durable Binary Logs

4. Non-Durable InnoDB Data and Binary Logs

3. Amortizing Disk Flush Costs

4. Changing Group Commit Frequency

5. Measuring Group Commit Ratio

6. Use of Group Commit with Parallel Replication

7. Effects of Group Commit on InnoDB Performance

8. Status Variables

Overview
The server supports group commit. This is an important optimization that helps MariaDB reduce the number of expensive

disk operations that are performed.

Durability
In ACID terminology, the "D" stands for durability. In order to ensure durability with group commit,

innodb_flush_log_at_trx_commit=1 and/or sync_binlog=1 should be set. These settings are needed to ensure that if the

server crashes, then any transaction that was committed prior to the time of crash will still be present in the database after

crash recovery.

Durable InnoDB Data and Binary Logs

Setting both innodb_flush_log_at_trx_commit=1 and sync_binlog=1 provides the most durability and the best guarantee of

replication consistency after a crash.

Non-Durable InnoDB Data

If sync_binlog=1 is set, but innodb_flush_log_at_trx_commit is not set to 1 or 3 , then it is possible after a crash to end up

in a state where a transaction present in a server's binary log is missing from the server's InnoDB redo log. If the server is a

replication master, then that means that the server can become inconsistent with its slaves, since the slaves may have

replicated transactions from the master's binary log that are no longer present in the master's local InnoDB data.

Non-Durable Binary Logs

If innodb_flush_log_at_trx_commit is set to 1 or 3 , but sync_binlog=1 is not set, then it is possible after a crash to end up

in a state where a transaction present in a server's InnoDB redo log is missing from the server's binary log. If the server is a

replication master, then that also means that the server can become inconsistent with its slaves, since the server's slaves

would not be able to replicate the missing transactions from the server's binary log.

Non-Durable InnoDB Data and Binary Logs

Setting innodb_flush_log_at_trx_commit=1 when sync_binlog=1 is not set can also cause the transaction to be missing from

the server's InnoDB redo log due to some optimizations added in those versions. In that case, it is recommended to always

set sync_binlog=1. If you can't do that, then it is recommended to set innodb_flush_log_at_trx_commit to 3 , rather than 1 .

See Non-durable Binary Log Settings for more information.

Amortizing Disk Flush Costs
After every transaction COMMIT, the server normally has to flush any changes the transaction made to the InnoDB redo log

and the binary log to disk (i.e. by calling system calls such as fsync() or fdatasync() or similar). This helps ensure

that the data changes made by the transaction are stored durably on the disk. Disk flushing is a time-consuming operation,

and can easily impose limits on throughput in terms of the number of transactions-per-second (TPS) which can be

committed.

The idea with group commit is to amortize the costs of each flush to disk over multiple commits from multiple parallel

transactions. For example, if there are 10 transactions trying to commit in parallel, then we can force all of them to be

flushed disk at once with a single system call, rather than do one system call for each commit. This can greatly reduce the

2351/4161

need for flush operations, and can consequently greatly improve the throughput of transactions-per-second (TPS).

However, to see the positive effects of group commit, the workload must have sufficient parallelism. A good rule of thumb is

that at least three parallel transactions are needed for group commit to be effective. For example, while the first transaction

is waiting for its flush operation to complete, the other two transactions will queue up waiting for their turn to flush their

changes to disk. When the first transaction is done, a single system call can be used to flush the two queued-up

transactions, saving in this case one of the three system calls.

In addition to sufficient parallelism, it is also necessary to have enough transactions per second wanting to commit that the

flush operations are a bottleneck. If no such bottleneck exists (i.e. transactions never or rarely need to wait for the flush of

another to complete), then group commit will provide little to no improvement.

Changing Group Commit Frequency
The frequency of group commits can be changed by configuring the binlog_commit_wait_usec and

binlog_commit_wait_count system variables.

Measuring Group Commit Ratio
Two status variables are available for checking how effective group commit is at reducing flush overhead. These are the

Binlog_commits and Binlog_group_commits status variables. We can obtain those values with the following query:

SHOW GLOBAL STATUS WHERE Variable_name IN('Binlog_commits', 'Binlog_group_commits');

Binlog_commits is the total number of transactions committed to the binary log.

Binlog_group_commits is the total number of groups committed to the binary log. As explained in the previous sections of

this page, a group commit is when a group of transactions is flushed to the binary log together by sharing a single flush

system call. When sync_binlog=1 is set, then this is also the total number of flush system calls executed in the process of

flushing commits to the binary log.

Thus the extent to which group commit is effective at reducing the number of flush system calls on the binary log can be

determined by the ratio between these two status variables. Binlog_commits will always be as equal to or greater than

Binlog_group_commits. The greater the difference is between these status variables, the more effective group commit was

at reducing flush overhead.

To calculate the group commit ratio, we actually need the values of these status variables from two snapshots. Then we can

calculate the ratio with the following formula:

transactions/group commit = (Binlog_commits (snapshot2) - Binlog_commits

(snapshot1))/(Binlog_group_commits (snapshot2) - Binlog_group_commits (snapshot1))

For example, if we had the following first snapshot:

SHOW GLOBAL STATUS WHERE Variable_name IN('Binlog_commits', 'Binlog_group_commits');

+----------------------+-------+

| Variable_name | Value |

+----------------------+-------+

| Binlog_commits | 120 |

| Binlog_group_commits | 120 |

+----------------------+-------+

2 rows in set (0.00 sec)

And the following second snapshot:

SHOW GLOBAL STATUS WHERE Variable_name IN('Binlog_commits', 'Binlog_group_commits');

+----------------------+-------+

| Variable_name | Value |

+----------------------+-------+

| Binlog_commits | 220 |

| Binlog_group_commits | 145 |

+----------------------+-------+

2 rows in set (0.00 sec)

Then we would have:

transactions/group commit = (220 - 120) / (145 - 120) = 100 / 25 = 4 transactions/group commit

If your group commit ratio is too close to 1, then it may help to change your group commit frequency.

2352/4161

Use of Group Commit with Parallel Replication
Group commit is also used to enable conservative mode of in-order parallel replication .

Effects of Group Commit on InnoDB Performance
When both innodb_flush_log_at_trx_commit=1 (the default) is set and the binary log is enabled, there is now one less sync

to disk inside InnoDB during commit (2 syncs shared between a group of transactions instead of 3). See Binary Log Group

Commit and InnoDB Flushing Performance for more information.

Status Variables
Binlog_commits is the total number of transactions committed to the binary log.

Binlog_group_commits is the total number of groups committed to the binary log.

Binlog_group_commit_trigger_count is the total number of group commits triggered because of the number of binary log

commits in the group reached the limit set by the system variable binlog_commit_wait_count.

Binlog_group_commit_trigger_lock_wait is the total number of group commits triggered because a binary log commit was

being delayed because of a lock wait where the lock was held by a prior binary log commit. When this happens the later

binary log commit is placed in the next group commit.

Binlog_group_commit_trigger_timeout is the total number of group commits triggered because of the time since the first

binary log commit reached the limit set by the system variable binlog_commit_wait_usec.

To query these variables, use a statement such as:

SHOW GLOBAL STATUS LIKE 'Binlog_%commit%';

1.3.16 mariadb-binlog

2.4.11 Transaction Coordinator Log

3.1.13.15 Compressing Events to Reduce Size
of the Binary Log
Selected events in the binary log can be optionally compressed, to save space in the binary log on disk and in network

transfers.

The events that can be compressed are the events that normally can be of a significant size: Query events (for DDL and

DML in statement-based replication), and row events (for DML in row-based replication).

Compression is fully transparent. Events are compressed on the primary before being written into the binary log, and are

uncompressed by the I/O thread on the replica before being written into the relay log. The mariadb-binlog command will

likewise uncompress events for its output.

Currently, the zlib compression algorithm is used to compress events.

Compression will have the most impact when events are of a non-negligible size, as each event is compressed individually.

For example, batch INSERT statements that insert many rows or large values, or row-based events that touch a number of

rows in one query.

The log_bin_compress option is used to enable compression of events. Only events with data (query text or row data)

above a certain size are compressed; the limit is set with the log_bin_compress_min_len option.

2.2.1.1.2.4 Encrypting Binary Logs

3.1.13.17 Flashback

2353/4161

Contents
1. Arguments

2. Example

3. Common Use Case

Flashback is a feature that allows instances, databases or tables to be rolled back to an old snapshot.

Flashback is currently supported only over DML statements (INSERT, DELETE, UPDATE). An upcoming version of

MariaDB will add support for flashback over DDL statements (DROP, TRUNCATE, ALTER, etc.) by copying or moving the

current table to a reserved and hidden database, and then copying or moving back when using flashback. See MDEV-10571

.

Flashback is achieved in MariaDB Server using existing support for full image format binary logs

(binlog_row_image=FULL), so it supports all engines.

The real work of Flashback is done by mariadb-binlog with --flashback . This causes events to be translated: INSERT to

DELETE, DELETE to INSERT, and for UPDATEs, the before and after images are swapped.

When executing mariadb-binlog with --flashback , the Flashback events will be stored in memory. You should make

sure your server has enough memory for this feature.

Arguments
mariadb-binlog has the option --flashback or -B that will let it work in flashback mode.

mariadbd has the option --flashback that enables the binary log and sets binlog_format=ROW . It is not mandatory

to use this option if you have already enabled those options directly.

Do not use -v -vv options, as this adds verbose information to the binary log which can cause problems when

importing. See MDEV-12066 and MDEV-12067 .

Example
With a table "mytable" in database "test", you can compare the output with --flashback and without.

 mariadb-binlog /var/lib/mysql/mysql-bin.000001 -vv -d test -T mytable \

 --start-datetime="2013-03-27 14:54:00" > review.sql

 mariadb-binlog /var/lib/mysql/mysql-bin.000001 -vv -d test -T mytable \

 --start-datetime="2013-03-27 14:54:00" --flashback > flashback.sql

If you know the exact position, --start-position can be used instead of --start-datetime .

Then, by importing the output file (mariadb < flashback.sql), you can flash your database/table back to the specified

time or position.

Common Use Case
A common use case for Flashback is the following scenario:

You have one primary and two replicas, one started with --flashback (i.e. with binary logging enabled, using

binlog_format=ROW, and binlog_row_image=FULL).

Something goes wrong on the primary (like a wrong update or delete) and you would like to revert to a state of the

database (or just a table) at a certain point in time.

Remove the flashback-enabled replica from replication.

Invoke mariadb-binlog to find the exact log position of the first offending operation after the state you want to revert to.

Run mariadb-binlog --flashback --start-position=xyz | mariadb to pipe the output of mariadb-

binlog directly to the mariadb client, or save the output to a file and then direct the file to the command-line client.

3.1.13.18 Relay Log

2354/4161

https://jira.mariadb.org/browse/MDEV-10571
https://jira.mariadb.org/browse/MDEV-12066
https://jira.mariadb.org/browse/MDEV-12067

Contents
1. Creating Relay Log Files

2. Relay Log Names

3. Viewing Relay Logs

4. Removing Old Relay Logs

The relay log is a set of log files created by a replica during replication.

It's the same format as the binary log, containing a record of events that affect the data or structure; thus, mariadb-binlog

can be used to display its contents. It consists of a set of relay log files and an index file containing a list of all relay log files.

Events are read from the primary's binary log and written to the replica's relay log. They are then performed on the replica.

Old relay log files are automatically removed once they are no longer needed.

Creating Relay Log Files
New relay log files are created by the replica at the following times:

when the IO thread starts

when the logs are flushed, with FLUSH LOGS or mariadb-admin flush-logs.

when the maximum size, determined by the max_relay_log_size system variable, has been reached

Relay Log Names
By default, the relay log will be given a name host_name-relay-bin.nnnnnn , with host_name referring to the server's

host name, and #nnnnnn the sequence number.

This will cause problems if the replica's host name changes, returning the error Failed to open the relay log and

Could not find target log during relay log initialization . To prevent this, you can specify the relay log file

name by setting the relay_log and relay_log_index system variables.

If you need to overcome this issue while replication is already underway,you can stop the replica, prepend the old relay log

index file to the new relay log index file, and restart the replica.

For example:

shell> cat NEW_relay_log_name.index >> OLD_relay_log_name.index

shell> mv OLD_relay_log_name.index NEW_relay_log_name.index

Viewing Relay Logs
The SHOW RELAYLOG EVENTS shows events in the relay log, and, since relay log files are the same format as binary log

files, they can be read with the mariadb-binlog utility.

Removing Old Relay Logs
Old relay logs are automatically removed once all events have been implemented on the replica, and the relay log file is no

longer needed. This behavior can be changed by adjusting the relay_log_purge system variable from its default of 1 to 0 ,

in which case the relay logs will be left on the server.

Relay logs are also removed by the CHANGE MASTER statement unless a relay log option is used.

One can also flush the logs with the FLUSH RELAY LOGS commands.

If the relay logs are taking up too much space on the replica, the relay_log_space_limit system variable can be set to limit

the size. The IO thread will stop until the SQL thread has cleared the backlog. By default there is no limit.

3.1.11 Replication and Binary Log System Variables

3.1.14 Unsafe Statements for Statement-based
Replication

2355/4161

Contents
1. Unsafe Statements

2. Safe Statements

3. Isolation Levels

A safe statement is generally deterministic; in other words the statement will always produce the same result. For example,

an INSERT statement producing a random number will most likely produce a different result on the primary than on the

replica, and so cannot be replicated safely.

When an unsafe statement is run, the current binary logging format determines how the server responds.

If the binary logging format is statement-based (the default until MariaDB 10.2.3), unsafe statements generate a

warning and are logged normally.

If the binary logging format is mixed (the default from MariaDB 10.2.4), unsafe statements are logged using the

row-based format, while safe statements use the statement-based format.

If the binary logging format is row-based, all statements are logged normally, and the distinction between safe and

unsafe is not made.

MariaDB tries to detect unsafe statements. When an unsafe statement is issued, a warning similar to the following is

produced:

Note (Code 1592): Unsafe statement written to the binary log using statement format since

 BINLOG_FORMAT = STATEMENT. The statement is unsafe because it uses a LIMIT clause. This

 is unsafe because the set of rows included cannot be predicted.

MariaDB also issues this warning for some classes of statements that are safe.

Unsafe Statements
The following statements are regarded as unsafe:

INSERT ... ON DUPLICATE KEY UPDATE statements upon tables with multiple primary or unique keys, as the order

that the keys are checked in, and which affect the rows chosen to update, is not deterministic. Before MariaDB 5.5.24

, these statements were not regarded as unsafe. In MariaDB 10.0 this warning has been removed as we always

check keys in the same order on the primary and replica if the primary and replica are using the same storage engine.

INSERT-DELAYED. These statements are inserted in an indeterminate order.

INSERTs on tables with a composite primary key that has an AUTO_INCREMENT column that isn't the first column of

the composite key.

When a table has an AUTO_INCREMENT column and a trigger or stored procedure executes an UPDATE statement

against the table. Before MariaDB 5.5, all updates on tables with an AUTO_INCREMENT column were considered

unsafe, as the order that the rows were updated could differ across servers.

UPDATE statements that use LIMIT, since the order of the returned rows is unspecified. This applies even to

statements using an ORDER BY clause, which are deterministic (a known bug). However, since MariaDB 10.0.11 ,

LIMIT 0 is an exception to this rule (see MDEV-6170), and these statements are safe for replication.

When using a user-defined function.

Statements using using any of the following functions, which can return different results on the replica:

CURRENT_ROLE()

CURRENT_USER()

FOUND_ROWS()

GET_LOCK()

IS_FREE_LOCK()

IS_USED_LOCK()

JSON_TABLE()

LOAD_FILE()

MASTER_POS_WAIT()

RAND()

RANDOM_BYTES()

RELEASE_ALL_LOCKS()

RELEASE_LOCK()

ROW_COUNT()

SESSION_USER()

SLEEP()

SYSDATE()

SYSTEM_USER()

USER()

UUID()

UUID_SHORT().

Statements which refer to log tables, since these may differ across servers.

2356/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-5524-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://jira.mariadb.org/browse/MDEV-6170

Statements which refer to self-logging tables. Statements following a read or write to a self-logging table within a

transaction are also considered unsafe.

Statements which refer to system variables (there are a few exceptions).

LOAD DATA INFILE statements (since MariaDB 5.5).

Non-transactional reads or writes that execute after transactional reads within a transaction.

If row-based logging is used for a statement, and the session executing the statement has any temporary tables, row-

based logging is used for the remaining statements until the temporary table is dropped. This is because temporary

tables can't use row-based logging, so if it is used due to one of the above conditions, all subsequent statements

using that table are unsafe. The server deals with this situation by treating all statements in the session as unsafe for

statement-based logging until the temporary table is dropped.

Safe Statements
The following statements are not deterministic, but are considered safe for binary logging and replication:

CONNECTION_ID()

CURDATE()

CURRENT_DATE()

CURRENT_TIME()

CURRENT_TIMESTAMP()

CURTIME()

LAST_INSERT_ID()

LOCALTIME()

LOCALTIMESTAMP()

NOW()

UNIX_TIMESTAMP()

UTC_DATE()

UTC_TIME()

UTC_TIMESTAMP()

Isolation Levels
Even when using safe statements, not all transaction isolation levels are safe with statement-based or mixed binary logging.

The REPEATABLE READ and SERIALIZABLE isolation levels can only be used with the row-based format.

This restriction does not apply if only non-transactional storage engines are used.

3.1.15 Replication and Foreign Keys

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Replication is based upon the binary log. However, cascading deletes or updates based on foreign key relations are an

internal mechanism, and are not written to the binary log.

Because of this, an identical statement run on the master and the slave may result in different outcomes if the foreign key

relations are not identical on both master and slave This could be the case if the storage engine on one supports cascading

deletes (e.g. InnoDB) and the storage engine on the other does not (e.g. MyISAM), or the one has specified a foreign key

relation, and the other hasn't.

Take the following example:

CREATE TABLE employees (

 x INT PRIMARY KEY,

 name VARCHAR(10)

) ENGINE = InnoDB;

CREATE TABLE children (

 y INT PRIMARY KEY,

 f INT,

 name VARCHAR(10),

 FOREIGN KEY fk (f) REFERENCES employees (x)

 ON DELETE CASCADE

) ENGINE = InnoDB;

2357/4161

https://jira.mariadb.org/browse/MDEV-18777

The slave, however, has been set up without InnoDB support, and defaults to MyISAM, so the foreign key restrictions are

not in place.

INSERT INTO employees VALUES (1, 'Yaser'), (2, 'Prune');

INSERT INTO children VALUES (1, 1, 'Haruna'), (2, 1, 'Hera'), (3, 2, 'Eva');

At this point, the slave and the master are in sync:

SELECT * FROM employees;

+---+-------+

| x | name |

+---+-------+

| 1 | Yaser |

| 2 | Prune |

+---+-------+

2 rows in set (0.00 sec)

SELECT * FROM children;

+---+------+--------+

| y | f | name |

+---+------+--------+

| 1 | 1 | Haruna |

| 2 | 1 | Hera |

| 3 | 2 | Eva |

+---+------+--------+

However, after:

DELETE FROM employees WHERE x=1;

there are different outcomes on the slave and the master.

On the master, the cascading deletes have taken effect:

SELECT * FROM children;

+---+------+------+

| y | f | name |

+---+------+------+

| 3 | 2 | Eva |

+---+------+------+

On the slave, the cascading deletes did not take effect:

SELECT * FROM children;

+---+------+--------+

| y | f | name |

+---+------+--------+

| 1 | 1 | Haruna |

| 2 | 1 | Hera |

| 3 | 2 | Eva |

+---+------+--------+

3.1.13.18 Relay Log

3.1.13.12 Group Commit for the Binary Log

3.1.18 Selectively Skipping Replication of Binlog
Events

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

2358/4161

https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Primary Session Variable: skip_replication

2. Replica Option: --replicate-events-marked-for-skip

3. skip_replication and sql_log_bin

4. skip_replication and the Binlog

Normally, all changes that are logged as events in the binary log are also replicated to all replicas (though still subject to

filtering by replicate-do-db, replicate-ignore-db, and similar options). However, sometimes it may be desirable to have

certain events be logged into the binlog, but not be replicated to all or a subset of replicas, where the distinction between

events that should be replicated or not is under the control of the application making the changes.

This could be useful if an application does some replication external to the server outside of the built-in replication, or if it

has some data that should not be replicated for whatever reason.

This is possible with the following system variables.

Primary Session Variable: skip_replication
When the skip_replication variable is set to true, changes are logged into the binary log with the flag

@@skip_replication set. Such events will not be replicated by replicas that run with --replicate-events-marked-

for-skip set different from its default of REPLICATE .

Variable Name skip_replication

Scope Session only

Access Type Dynamic

Data Type bool

Default Value OFF

The skip_replication option only has effect if binary logging is enabled and sql_log_bin is true.

Attempting to change @@skip_replication in the middle of a transaction will fail; this is to avoid getting half of a

transaction replicated while the other half is not replicated. Be sure to end any current transaction with COMMIT / ROLLBACK

before changing the variable.

Replica Option: --replicate-events-marked-for-skip
The replicate_events_marked_for_skip option tells the replica whether to replicate events that are marked with the

@@skip_replication flag. Default is REPLICATE , to ensure that all changes are replicated to the replica. If set to

FILTER_ON_SLAVE , events so marked will be skipped on the replica and not replicated. If set to FILTER_ON_MASTER , the

filtering will be done on the primary, saving on network bandwidth as the events will not be received by the replica at all.

Variable Name replicate_events_marked_for_skip

Scope Global

Access Type Dynamic

Data Type enum: REPLICATE | FILTER_ON_SLAVE | FILTER_ON_MASTER

Default Value REPLICATE

Note: replicate_events_marked_for_skip is a dynamic variable (it can be changed without restarting the server),

however the replica threads must be stopped when it is changed, otherwise an error will be thrown.

When events are filtered due to @@skip_replication , the filtering happens on the primary side; in other words, the event

is never sent to the replica. If many events are filtered like this, a replica can sit a long time without receiving any events

from the primary. This is not a problem in itself, but must be kept in mind when inquiring on the replica about events that are

filtered. For example START SLAVE UNTIL <some position> will stop when the first event that is not filtered is

encountered at the given position or beyond. If the event at the given position is filtered, then the replica thread will only stop

when the next non-filtered event is encountered. In effect, if an event is filtered, to the replica it appears that it was never

written to the binlog on the primary.

Note that when events are filtered for a replica, the data in the database will be different on the replica and on the primary. It

is the responsibility of the application to replicate the data outside of the built-in replication or otherwise ensure consistency

of operation. If this is not done, it is possible for replication to encounter, for example, UNIQUE contraint violations or

2359/4161

https://mariadb.com/kb/en/constraint_type-unique-constraint/

other problems which will cause replication to stop and require manual intervention to fix.

The session variable @@skip_replication can be changed without requiring special privileges. This makes it possible for

normal applications to control it without requiring SUPER privileges. But it must be kept in mind when using replicas with --

replicate-events-marked-for-skip set different from REPLICATE , as it allows any connection to do changes that are

not replicated.

skip_replication and sql_log_bin
@@sql_log_bin and @@skip_replication are somewhat related, as they can both be used to prevent a change on the

primary from being replicated to the replica. The difference is that with @@skip_replication , changes are still written into

the binlog, and replication of the events is only skipped on replicas that explicitly are configured to do so, with --

replicate-events-marked-for-skip different from REPLICATE . With @@sql_log_bin , events are not logged into the

binlog, and so are not replicated by any replica.

skip_replication and the Binlog
When events in the binlog are marked with the @@skip_replication flag, the flag will be preserved if the events are

dumped by the mariadb-binlog program and re-applied against a server with the mariadb client program. Similarly, the

BINLOG statement will preserve the flag from the event being replayed. And a replica which runs with --log-slave-

updates and does not filter events (--replicate-events-marked-for-skip=REPLICATE) will also preserve the flag in

the events logged into the binlog on the replica.

3.1.19 Binlog Event Checksums

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

MariaDB includes a feature to include a checksum in binary log events.

Checksums are enabled with the binlog_checksum option. Until MariaDB 10.2.1 , this was disabled by default. From

MariaDB 10.2.1 , the option is set to CRC32 .

The variable can be changed dynamically without restarting the server. Setting the variable in any way (even to the existing

value) forces a rotation of the binary log (the intention is to avoid having a single binlog where some events are

checksummed and others are not).

When checksums are enabled, replicas will check events received over the network for checksum errors, and will stop with

an error if a corrupt event is detected.

In addition, the server can be configured to verify checksums in two other places.

One is when reading events from the binlog on the primary, for example when sending events to a replica or for something

like SHOW BINLOG EVENTS. This is controlled by option master_verify_checksum, and is thus used to detect file system

corruption of the binlog files.

The other is when the replica SQL thread reads events from the relay log. This is controlled by the

slave_sql_verify_checksum option, and is used to detect file system corruption of replica relay log files.

From MariaDB 11.4, binlog checksums are computed when writing events into the statement or transaction caches,

where before this was done when the caches were copied to the real binlog file. This moves the checksum computation

outside of holding LOCK_log, improving scalability. See MDEV-31273 .

master_verify_checksum

Description: Verify binlog checksums when reading events from the binlog on the primary.

Commandline: --master_verify_checksum=[0|1]

Scope: Global

Access Type: Can be changed dynamically

Data Type: bool

Default Value: OFF (0)

slave_sql_verify_checksum

MariaDB starting with 11.4

2360/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://jira.mariadb.org/browse/MDEV-31273

Description: Verify binlog checksums when the replica SQL thread reads events from the relay log.

Commandline: --slave_sql_verify_checksum=[0|1]

Scope: Global

Access Type: Can be changed dynamically

Data Type: bool

Default Value: ON (1)

The mariadb-binlog client program by default does not verify checksums when reading a binlog file, however it can be

instructed to do so with the option verify-binlog-checksum :

Variable Name: verify-binlog-checksum

Data Type: bool

Default Value: OFF

1.3.16.3 Annotate_rows_log_event

3.1.21 Row-based Replication With No Primary
Key

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

MariaDB improves on row-based replication (see binary log formats) of tables which have no primary key but do have some

other index. This is based in part on the original Percona patch "row_based_replication_without_primary_key.patch", with

some additional fixes and enhancements.

When row-based replication is used with UPDATE or DELETE, the slave needs to locate each replicated row based on the

value in columns. If the table contains at least one index, an index lookup will be used (otherwise a table scan is needed for

each row, which is extremely inefficient for all but the smallest table and generally to be avoided).

In MariaDB, the slave will try to choose a good index among any available:

The primary key is used, if there is one.

Else, the first unique index without NULL-able columns is used, if there is one.

Else, a choice is made among any normal indexes on the table (e.g. a FULLTEXT index is not considered).

The choice of which of several non-unique indexes to use is based on the cardinality of indexes; the one that is most

selective (has the smallest average number of rows per distinct tuple of column values) is preferred. Note that for this choice

to be effective, for most storage engines (like MyISAM, InnoDB) it is necessary to make sure ANALYZE TABLE has been

run on the slave, otherwise statistics about index cardinality will not be available. In the absence of index cardinality, the first

unique index will be chosen, if any, else the first non-unique index.

Prior to MariaDB 5.3, the slave would always choose the first index without considering cardinality. The slave could even

choose an unusable index (like FULLTEXT) if no other index was available (MySQL Bug #58997), causing row-based

replication to break in this case; this was also fixed in MariaDB 5.3.

3.1.22 Replication Filters

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

2361/4161

https://jira.mariadb.org/browse/MDEV-18777
http://bugs.mysql.com/bug.php?id=58997
https://jira.mariadb.org/browse/MDEV-18777

Contents
1. Binary Log Filters for Replication Primaries

1. Binary Log Filter Options

1. binlog_do_db

2. binlog_ignore_db

2. Replication Filters for Replicas

1. Replication Filter Options

1. replicate_rewrite_db

2. replicate_do_db

3. replicate_ignore_db

4. replicate_do_table

5. replicate_ignore_table

6. replicate_wild_do_table

7. replicate_wild_ignore_table

8. Configuring Replication Filter Options with Multi-Source Replication

1. Setting Replication Filter Options Dynamically with Multi-Source Replication

2. Setting Replication Filter Options in Option Files with Multi-Source Replication

2. CHANGE MASTER Options

1. IGNORE_SERVER_IDS

2. DO_DOMAIN_IDS

3. IGNORE_DOMAIN_IDS

3. Replication Filters and Binary Log Formats

1. Statement-Based Logging

2. Row-Based Logging

4. Replication Filters and Galera Cluster

Replication filters allow users to configure replicas to intentionally skip certain events.

Binary Log Filters for Replication Primaries
MariaDB provides options that can be used on a replication primary to restrict local changes to specific databases from

getting written to the binary log, which also determines whether any replicas replicate those changes.

Binary Log Filter Options

The following options are available, and they are evaluated in the order that they are listed below. If there are conflicting

settings, binlog_do_db prevails. Before MariaDB 11.2.0, they are only available as options; from MariaDB 11.2.0 they are

also available as system variables.

binlog_do_db

The binlog_do_db option allows you to configure a replication primary to write statements and transactions affecting

databases that match a specified name into its binary log. Since the filtered statements or transactions will not be present in

the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based Logging

section for more information.

This option can not be set dynamically.

When setting it on the command-line or in a server option group in an option file, the option does not accept a comma-

separated list. If you would like to specify multiple filters, then you need to specify the option multiple times. For example:

[mariadb]

...

binlog_do_db=db1

binlog_do_db=db2

This will tell the primary to do the following:

Write statements and transactions affecting the database named db1 into the binary log.

Write statements and transactions affecting the database named db2 into the binary log.

Don't write statements and transactions affecting any other databases into the binary log.

binlog_ignore_db

The binlog_ignore_db option allows you to configure a replication primary to not write statements and transactions affecting

2362/4161

databases that match a specified name into its binary log. Since the filtered statements or transactions will not be present in

the binary log, its replicas will not be able to replicate them.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based Logging

section for more information.

This option can not be set dynamically.

When setting it on the command-line or in a server option group in an option file, the option does not accept a comma-

separated list. If you would like to specify multiple filters, then you need to specify the option multiple times. For example:

[mariadb]

...

binlog_ignore_db=db1

binlog_ignore_db=db2

This will tell the primary to do the following:

Don't write statements and transactions affecting the database named db1 into the binary log.

Don't write statements and transactions affecting the database named db2 into the binary log.

Write statements and transactions affecting any other databases into the binary log.

The binlog_ignore_db option is effectively ignored if the binlog_do_db option is set, so those two options should not be

set together.

Replication Filters for Replicas
MariaDB provides options and system variables that can be used on used on a replicas to filter events replicated in the

binary log.

Replication Filter Options

The following options and system variables are available, and they are evaluated in the order that they are listed below. If

there are conflicting settings, the respective replicate_do_ prevails.

replicate_rewrite_db

The replicate_rewrite_db option (and, from MariaDB 10.11, system variable), allows you to configure a replica to rewrite

database names. It uses the format primary_database->replica_database . If a replica encounters a binary log event

in which the default database (i.e. the one selected by the USE statement) is primary_database , then the replica will

apply the event in replica_database instead.

This option will not work with cross-database updates with statement-based logging. See the Statement-Based Logging

section for more information.

This option only affects statements that involve tables. This option does not affect statements involving the database itself,

such as CREATE DATABASE, ALTER DATABASE, and DROP DATABASE.

This option's rewrites are evaluated before any other replication filters configured by the replicate_* system variables.

Statements that use table names qualified with database names do not work with other replication filters such as

replicate_do_table.

Until MariaDB 10.11, this option could not be set dynamically.

When setting it on the command-line or in a server option group in an option file, the option does not accept a comma-

separated list. If you would like to specify multiple filters, then you need to specify the option multiple times. For example:

[mariadb]

...

replicate_rewrite_db=db1->db3

replicate_rewrite_db=db2->db4

This will tell the replica to do the following:

If a binary log event is encountered in which the default database was db1, then apply the event in db3 instead.

If a binary log event is encountered in which the default database was db2, then apply the event in db4 instead.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

2363/4161

replicate_do_db

The replicate_do_db system variable allows you to configure a replica to apply statements and transactions affecting

databases that match a specified name.

This system variable will not work with cross-database updates with statement-based logging or when using mixed-based

logging and the statement is logged statement based. For statement-based replication, only the default database (that is,

the one selected by USE) is considered, not any explicitly mentioned tables in the query. See the Statement-Based Logging

section for more information.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database names that contain commas. If you need to specify

database names that contain commas, then you will need to specify them by either providing the command-line options or

configuring them in a server option group in an option file when the server is started .

When setting it dynamically, the replica threads must be stopped. For example:

STOP SLAVE;

SET GLOBAL replicate_do_db='db1,db2';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

[mariadb]

...

replicate_do_db=db1

replicate_do_db=db2

This will tell the replica to do the following:

Replicate statements and transactions affecting the database named db1.

Replicate statements and transactions affecting the database named db2.

Ignore statements and transactions affecting any other databases.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

replicate_ignore_db

The replicate_ignore_db system variable allows you to configure a replica to ignore statements and transactions affecting

databases that match a specified name.

This system variable will not work with cross-database updates with statement-based logging or when using mixed-based

logging and the statement is logged statement based. For statement-based replication, only the default database (that is,

the one selected by USE) is considered, not any explicitly mentioned tables in the query. See the Statement-Based Logging

section for more information.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database names that contain commas. If you need to specify names

or patterns that contain commas, then you will need to specify them by either providing the command-line options or

configuring them in a server option group in an option file when the server is started .

When setting it dynamically, the replica threads must be stopped. For example:

STOP SLAVE;

SET GLOBAL replicate_ignore_db='db1,db2';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

[mariadb]

...

replicate_ignore_db=db1

replicate_ignore_db=db2

2364/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

This will tell the replica to do the following:

Ignore statements and transactions affecting databases named db1.

Ignore statements and transactions affecting databases named db2.

Replicate statements and transactions affecting any other databases.

The replicate_ignore_db system variable is effectively ignored if the replicate_do_db system variable is set, so those

two system variables should not be set together.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

replicate_do_table

The replicate_do_table system variable allows you to configure a replica to apply statements and transactions that affect

tables that match a specified name. The table name is specified in the format: dbname.tablename .

This system variable will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

This option only affects statements that involve tables. This option does not affect statements involving the database itself,

such as CREATE DATABASE, ALTER DATABASE, and DROP DATABASE.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database or table names or patterns that contain commas. If you

need to specify database or table names that contain commas, then you will need to specify them by either providing the

command-line options or configuring them in a server option group in an option file when the server is started .

When setting it dynamically, the replica threads must be stopped. For example:

STOP SLAVE;

SET GLOBAL replicate_do_table='db1.tab,db2.tab';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

[mariadb]

...

replicate_do_table=db1.tab

replicate_do_table=db2.tab

This will tell the replica to do the following:

Replicate statements and transactions affecting tables in databases named db1 and which are named tab.

Replicate statements and transactions affecting tables in databases named db2 and which are named tab.

Ignore statements and transactions affecting any other tables.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

replicate_ignore_table

The replicate_ignore_table system variable allows you to configure a replica to ignore statements and transactions that

affect tables that match a specified name. The table name is specified in the format: dbname.tablename .

This system variable will not work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database or table names that contain commas. If you need to

specify database or table names that contain commas, then you will need to specify them by either providing the command-

line options or configuring them in a server option group in an option file when the server is started .

When setting it dynamically, the replica threads must be stopped. For example:

2365/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

STOP SLAVE;

SET GLOBAL replicate_ignore_table='db1.tab,db2.tab';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

[mariadb]

...

replicate_ignore_table=db1.tab

replicate_ignore_table=db2.tab

This will tell the replica to do the following:

Ignore statements and transactions affecting tables in databases named db1 and which are named tab.

Ignore statements and transactions affecting tables in databases named db2 and which are named tab.

Replicate statements and transactions affecting any other tables.

The replicate_ignore_table system variable is effectively ignored if either the replicate_do_table system variable or the

replicate_wild_do_table system variable is set, so the replicate_ignore_table system variable should not be used with

those two system variables.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

replicate_wild_do_table

The replicate_wild_do_table system variable allows you to configure a replica to apply statements and transactions that

affect tables that match a specified wildcard pattern.

The wildcard pattern uses the same semantics as the LIKE operator. This means that the the following characters have a

special meaning:

_ - The _ character matches any single character.

% - The % character matches zero or more characters.

\ - The \ character is used to escape the other special characters in cases where you need the literal character.

This system variable will work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

The system variable does filter databases, tables, views and triggers.

The system variable does not filter stored procedures, stored functions, and events. The replicate_do_db system variable

will need to be used to filter those.

If the table name pattern for a filter is just specified as % , then all tables in the database will be matched. In this case, the

filter will also affect certain database-level statements, such as CREATE DATABASE, ALTER DATABASE and DROP

DATABASE.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database or table names or patterns that contain commas. If you

need to specify database or table names or patterns that contain commas, then you will need to specify them by either

providing the command-line options or configuring them in a server option group in an option file when the server is started

.

When setting it dynamically, the replica threads must be stopped. For example:

STOP SLAVE;

SET GLOBAL replicate_wild_do_table='db%.tab%,app1.%';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

2366/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

[mariadb]

...

replicate_wild_do_table=db%.tab%

replicate_wild_do_table=app1.%

This will tell the replica to do the following:

Replicate statements and transactions affecting tables in databases that start with db and whose table names start

with tab.

Replicate statements and transactions affecting the database named app1.

Ignore statements and transactions affecting any other tables and databases.

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

replicate_wild_ignore_table

The replicate_wild_ignore_table system variable allows you to configure a replica to ignore statements and transactions that

affect tables that match a specified wildcard pattern.

The wildcard pattern uses the same semantics as the LIKE operator. This means that the the following characters have a

special meaning:

_ - The _ character matches any single character.

% - The % character matches zero or more characters.

\ - The \ character is used to escape the other special characters in cases where you need the literal character.

This system variable will work with cross-database updates with statement-based logging. See the Statement-Based

Logging section for more information.

The system variable does filter databases, tables, views and triggers.

The system variable does not filter stored procedures, stored functions, and events. The replicate_ignore_db system

variable will need to be used to filter those.

If the table name pattern for a filter is just specified as % , then all tables in the database will be matched. In this case, the

filter will also affect certain database-level statements, such as CREATE DATABASE, ALTER DATABASE and DROP

DATABASE.

When setting it dynamically with SET GLOBAL, the system variable accepts a comma-separated list of filters.

When setting it dynamically, it is not possible to specify database or table names or patterns that contain commas. If you

need to specify database or table names or patterns that contain commas, then you will need to specify them by either

providing the command-line options or configuring them in a server option group in an option file when the server is started

.

When setting it dynamically, the replica threads must be stopped. For example:

STOP SLAVE;

SET GLOBAL replicate_wild_ignore_table='db%.tab%,app1.%';

START SLAVE;

When setting it on the command-line or in a server option group in an option file, the system variable does not accept a

comma-separated list. If you would like to specify multiple filters, then you need to specify the system variable multiple

times. For example:

[mariadb]

...

replicate_wild_ignore_table=db%.tab%

replicate_wild_ignore_table=app1.%

This will tell the replica to do the following:

Ignore statements and transactions affecting tables in databases that start with db and whose table names start with

tab.

Ignore statements and transactions affecting all the tables in the database named app1.

Replicate statements and transactions affecting any other tables and databases.

The replicate_ignore_table system variable is effectively ignored if either the replicate_do_table system variable or the

replicate_wild_do_table system variable is set, so the replicate_ignore_table system variable should not be used with

those two system variables.

2367/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

See Configuring Replication Filter Options with Multi-Source Replication for how to configure this system variable with multi-

source replication.

Configuring Replication Filter Options with Multi-Source Replication

How you configure replication filters with multi-source replication depends on whether you are configuring them dynamically

or whether you are configuring them in a server option group in an option file.

Setting Replication Filter Options Dynamically with Multi-Source Replication

The usage of dynamic replication filters changes somewhat when multi-source replication is in use. By default, the variables

are addressed to the default connection, so in a multi-source environment, the required connection needs to be specified.

There are two ways to do this.

Prefixing the Replication Filter Option with the Connection Name

One way to change a replication filter for a multi-source connection is to explicitly specify the name when changing the filter.

For example:

STOP SLAVE 'gandalf';

SET GLOBAL gandalf.replicate_do_table='database1.table1,database1.table2,database1.table3';

START SLAVE 'gandalf';

Changing the Default Connection

Alternatively, the default connection can be changed by setting the default_master_connection system variable, and then

the replication filter can be changed in the usual fashion. For example:

SET default_master_connection = 'gandalf';

STOP SLAVE;

SET GLOBAL replicate_do_table='database1.table1,database1.table2,database1.table3';

START SLAVE;

Setting Replication Filter Options in Option Files with Multi-Source Replication

If you are using multi-source replication and if you would like to make this filter persist server restarts by adding it to a server

option group in an option file, then the option file can also include the connection name that each filter would apply to. For

example:

[mariadb]

...

gandalf.replicate_do_db=database1

saruman.replicate_do_db=database2

CHANGE MASTER Options

The CHANGE MASTER statement has a few options that can be used to filter certain types of binary log events.

IGNORE_SERVER_IDS

The IGNORE_SERVER_IDS option for CHANGE MASTER can be used to configure a replica to ignore binary log events that

originated from certain servers. Filtered binary log events will not get logged to the replica9s relay log, and they will not be

applied by the replica.

DO_DOMAIN_IDS

The DO_DOMAIN_IDS option for CHANGE MASTER can be used to configure a replica to only apply binary log events if the

transaction's GTID is in a specific gtid_domain_id value. Filtered binary log events will not get logged to the replica9s relay

log, and they will not be applied by the replica.

IGNORE_DOMAIN_IDS

The IGNORE_DOMAIN_IDS option for CHANGE MASTER can be used to configure a replica to ignore binary log events if

the transaction's GTID is in a specific gtid_domain_id value. Filtered binary log events will not get logged to the replica9s

relay log, and they will not be applied by the replica.

Replication Filters and Binary Log Formats
2368/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/binary_log

The way that a replication filter is interpreted can depend on the binary log format.

Statement-Based Logging

When an event is logged in its statement-based format, many replication filters that affect a database will test the filter

against the default database (i.e. the one selected by the USE statement). This applies to the following replication filters:

binlog_do_db

binlog_ignore_db

replicate_rewrite_db

replicate_do_db

replicate_ignore_db

When an event is logged in its statement-based format, many replication filters that affect a table will test the filter against

the table in the default database (i.e. the one selected by the USE statement). This applies to the following replication filters:

replicate_do_table

replicate_ignore_table

This means that cross-database updates not work with replication filters and statement-based binary logging. For example,

if replicate_do_table=db2.tab were set, then the following would not replicate with statement-based binary logging:

USE db1;

INSERT INTO db2.tab VALUES (1);

If you need to be able to support cross-database updates with replication filters and statement-based binary logging, then

you should use the following replication filters:

replicate_wild_do_table

replicate_wild_ignore_table

Row-Based Logging

When an event is logged in its row-based format, many replication filters that affect a database will test the filter against the

database that is actually affected by the event.

Similarly, when an event is logged in its row-based format, many replication filters that affect a table will test the filter against

the table in the the database that is actually affected by the event.

This means that cross-database updates work with replication filters and statement-based binary logging.

Keep in mind that DDL statements are always logged to the binary log in statement-based format, even when the

binlog_format system variable is set to ROW . This means that the notes mentioned in Statement-Based Logging

always apply to DDL.

Replication Filters and Galera Cluster
When using Galera cluster, replication filters should be used with caution. See Configuring MariaDB Galera Cluster:

Replication Filters for more details.

3.1.23 Running Triggers on the Replica for Row-
based Events

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. When to Use slave_run_triggers_for_rbr

1. Background

2. Target Usecase

2. Preventing Multiple Trigger Invocations

MariaDB can force the replica thread to run triggers for row-based binlog events.

2369/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/replicate_do_table%253Ddb2.tab
https://jira.mariadb.org/browse/MDEV-18777

The setting is controlled by the slave_run_triggers_for_rbr global variable. It can be also specified as a command-line option

or in my.cnf.

Possible values are:

Value Meaning

NO

(Default)
Don't invoke triggers for row-based events

YES Invoke triggers for row-based events, don't log their effect into the binary log

LOGGING Invoke triggers for row-based events, and log their effect into the binary log

ENFORCE
From MariaDB 10.5.2 only. Triggers will always be run on the replica, even if there are triggers on the master.

ENFORCE implies LOGGING.

Note that if you just want to use triggers together with replication, you most likely don't need this option. Read

below for details.

When to Use slave_run_triggers_for_rbr

Background

Normally, MariaDB's replication system can replicate trigger actions automatically.

When one uses statement-based replication, the binary log contains SQL statements. Replica server(s) execute the

SQL statements. Triggers are run on the master and on each replica, independently.

When one uses row-based replication, the binary log contains row changes. It will have both the changes made by

the statement itself, and the changes made by the triggers that were invoked by the statement. Replica server(s) do

not need to run triggers for row changes they are applying.

Target Usecase

One may want to have a setup where a replica has triggers that are not present on the master (Suppose the replica needs

to update summary tables or perform some other ETL-like process).

If one uses statement-based replication, they can just create the required triggers on the replica. The replica will run the

statements from the binary log, which will cause the triggers to be invoked.

However, there are cases where you have to use row-based replication. It could be because the master runs non-

deterministic statements, or the master could be a node in a Galera cluster. In that case, you would want row-based events

to invoke triggers on the replica. This is what the slave_run_triggers_for_rbr option is for. Setting the option to YES

will cause the SQL replica thread to invoke triggers for row-based events; setting it to LOGGING will also cause the changes

made by the triggers to be written into the binary log.

The following triggers are invoked:

Update_row_event runs an UPDATE trigger

Delete_row_event runs a DELETE trigger

Write_row_event runs an INSERT trigger. Additionally it runs a DELETE trigger if there was a conflicting row that had

to be deleted.

Preventing Multiple Trigger Invocations
There is a basic protection against triggers being invoked both on the master and replica. If the master modifies a table that

has triggers, it will produce row-based binlog events with the "triggers were invoked for this event" flag. The replica will not

invoke any triggers for flagged events.

3.1.24 Semisynchronous Replication

2370/4161

Contents
1. Description

2. Installing the Plugin

3. Uninstalling the Plugin

4. Enabling Semisynchronous Replication

1. Enabling Semisynchronous Replication on the Primary

2. Enabling Semisynchronous Replication on the Replica

5. Configuring the Primary Timeout

6. Configuring the Primary Wait Point

7. Versions

8. System Variables

1. rpl_semi_sync_master_enabled

2. rpl_semi_sync_master_timeout

3. rpl_semi_sync_master_trace_level

4. rpl_semi_sync_master_wait_no_slave

5. rpl_semi_sync_master_wait_point

6. rpl_semi_sync_slave_delay_master

7. rpl_semi_sync_slave_enabled

8. rpl_semi_sync_slave_kill_conn_timeout

9. rpl_semi_sync_slave_trace_level

9. Options

1. rpl_semi_sync_master

2. rpl_semi_sync_slave

10. Status Variables

Description
Standard MariaDB replication is asynchronous, but MariaDB also provides a semisynchronous replication option.

With regular asynchronous replication, replicas request events from the primary's binary log whenever the replicas are

ready. The primary does not wait for a replica to confirm that an event has been received.

With fully synchronous replication, all replicas are required to respond that they have received the events. See Galera

Cluster.

Semisynchronous replication waits for just one replica to acknowledge that it has received and logged the events.

Semisynchronous replication therefore comes with some negative performance impact, but increased data integrity. Since

the delay is based on the roundtrip time to the replica and back, this delay is minimized for servers in close proximity over

fast networks.

In MariaDB 10.3 and later, semisynchronous replication is built into the server, and is no longer a plugin so it can be

enabled immediately in those versions. This removes some overhead and improves performance. See MDEV-13073 for

more information.

In MariaDB 10.2 and before, semisynchronous replication requires the user to install a plugin on both the primary and the

replica before it can be enabled.

Installing the Plugin

In MariaDB 10.3.3 and later, the Semisynchronous Replication feature is built into MariaDB server and is no longer

provided by a plugin. This means that installing the plugin is not supported on those versions. In MariaDB 10.3.3

 and later, you can skip right to Enabling Semisynchronous Replication.

The semisynchronous replication plugin is actually two different plugins--one for the primary, and one for the replica. Shared

libraries for both plugins are included with MariaDB. Although the plugins' shared libraries distributed with MariaDB by

default, the plugin is not actually installed by MariaDB by default prior to MariaDB 10.3.3 . There are two methods that can

be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN.

For example, if it's a primary:

INSTALL SONAME 'semisync_master';

Or if it's a replica:

MariaDB starting with 10.3.3

2371/4161

https://jira.mariadb.org/browse/MDEV-13073
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

INSTALL SONAME 'semisync_slave';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file.

For example, if it's a primary:

[mariadb]

...

plugin_load_add = semisync_master

Or if it's a replica:

[mariadb]

...

plugin_load_add = semisync_slave

Uninstalling the Plugin

In MariaDB 10.3.3 and later, the Semisynchronous Replication feature is built into MariaDB server and is no longer

provided by a plugin. This means that uninstalling the plugin is not supported on those versions.

You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN.

For example, if it's a primary:

UNINSTALL SONAME 'semisync_master';

Or if it's a replica:

UNINSTALL SONAME 'semisync_slave';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Enabling Semisynchronous Replication
Semisynchronous replication can be enabled by setting the relevant system variables on the primary and the replica.

If a server needs to be able to switch between acting as a primary and a replica, then you can enable both the primary and

replica system variables on the server. For example, you might need to do this if MariaDB MaxScale is being used to

enable auto-failover or switchover with MariaDB Monitor .

Enabling Semisynchronous Replication on the Primary

Semisynchronous replication can be enabled on the primary by setting the rpl_semi_sync_master_enabled system variable

to ON . It can be set dynamically with SET GLOBAL. For example:

SET GLOBAL rpl_semi_sync_master_enabled=ON;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

rpl_semi_sync_master_enabled=ON

Enabling Semisynchronous Replication on the Replica

Semisynchronous replication can be enabled on the replica by setting the rpl_semi_sync_slave_enabled system variable to

ON . It can be set dynamically with SET GLOBAL. For example:

MariaDB starting with 10.3.3

2372/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/maxscale/
https://mariadb.com/kb/en/mariadb-maxscale-23-mariadb-monitor/#cluster-manipulation-operations
https://mariadb.com/kb/en/mariadb-maxscale-23-mariadb-monitor/

SET GLOBAL rpl_semi_sync_slave_enabled=ON;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

rpl_semi_sync_slave_enabled=ON

When switching between semisynchronous replication and asynchronous replication on a replica with replica IO threads

already running, the replica I/O thread will need to be restarted. For example:

STOP SLAVE IO_THREAD;

START SLAVE IO_THREAD;

If this is not done, then the replica IO thread will continue to use the previous setting.

Configuring the Primary Timeout
In semisynchronous replication, only after the events have been written to the relay log and flushed does the replica

acknowledge receipt of a transaction's events. If the replica does not acknowledge the transaction before a certain amount

of time has passed, then a timeout occurs and the primary switches to asynchronous replication. This will be reflected in the

primary's error log with messages like the following:

[Warning] Timeout waiting for reply of binlog (file: mariadb-1-bin.000002, pos: 538), semi-sync

up to file , position 0.

[Note] Semi-sync replication switched OFF.

When this occurs, the Rpl_semi_sync_master_status status variable will be switched to OFF .

When at least one semisynchronous replica catches up, semisynchronous replication is resumed. This will be reflected in

the primary's error log with messages like the following:

[Note] Semi-sync replication switched ON with replica (server_id: 184137206) at (mariadb-1-

bin.000002, 215076)

When this occurs, the Rpl_semi_sync_master_status status variable will be switched to ON .

The number of times that semisynchronous replication has been switched off can be checked by looking at the value of the

Rpl_semi_sync_master_no_times status variable.

If you see a lot of timeouts like this in your environment, then you may want to change the timeout period. The timeout

period can be changed by setting the rpl_semi_sync_master_timeout system variable. It can be set dynamically with SET

GLOBAL. For example:

SET GLOBAL rpl_semi_sync_master_timeout=20000;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

rpl_semi_sync_master_timeout=20000

To determine a good value for the rpl_semi_sync_master_timeout system variable, you may want to look at the values of

the Rpl_semi_sync_master_net_avg_wait_time and Rpl_semi_sync_master_tx_avg_wait_time status variables.

Configuring the Primary Wait Point
In semisynchronous replication, there are two potential points at which the primary can wait for the replica acknowledge the

receipt of a transaction's events. These two wait points have different advantages and disadvantages.

The wait point is configured by the rpl_semi_sync_master_wait_point system variable. The supported values are:

AFTER_SYNC

AFTER_COMMIT

It can be set dynamically with SET GLOBAL. For example:
2373/4161

SET GLOBAL rpl_semi_sync_master_wait_point='AFTER_SYNC';

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

rpl_semi_sync_master_wait_point=AFTER_SYNC

When this variable is set to AFTER_SYNC , the primary performs the following steps:

1. Prepares the transaction in the storage engine.

2. Syncs the transaction to the binary log.

3. Waits for acknowledgement from the replica.

4. Commits the transaction to the storage engine.

5. Returns an acknowledgement to the client.

The effects of the AFTER_SYNC wait point are:

All clients see the same data on the primary at the same time; after acknowledgement by the replica and after being

committed to the storage engine on the primary.

If the primary crashes, then failover should be lossless, because all transactions committed on the primary would

have been replicated to the replica.

However, if the primary crashes, then its binary log may also contain events for transactions that were prepared by

the storage engine and written to the binary log, but that were never actually committed by the storage engine. As part

of the server's automatic crash recovery process, the server may recover these prepared transactions when the

server is restarted. This could cause the "old" crashed primary to become inconsistent with its former replicas when

they have been reconfigured to replace the old primary with a new one. The old primary in such a scenario can be re-

introduced only as a semisync slave. The server post-crash recovery of the server configured with

rpl_semi_sync_slave_enabled = ON ensures through MDEV-21117 that the server will not have extra

transactions. The reconfigured as semisync replica server's binlog gets truncated to discard transactions proven not

to be committed, in any of their branches if they are multi-engine. Truncation does not occur though when there exists

a non-transactional group of events beyond the truncation position in which case recovery reports an error. When the

semisync replica recovery can't be carried out, the crashed primary may need to be rebuilt.

When this variable is set to AFTER_COMMIT , the primary performs the following steps:

1. Prepares the transaction in the storage engine.

2. Syncs the transaction to the binary log.

3. Commits the transaction to the storage engine.

4. Waits for acknowledgement from the replica.

5. Returns an acknowledgement to the client.

The effects of the AFTER_COMMIT wait point are:

Other clients may see the committed transaction before the committing client.

If the primary crashes, then failover may involve some data loss, because the primary may have committed

transactions that had not yet been acknowledged by the replicas.

Versions

Version Status Introduced

N/A N/A MariaDB 10.3.3

1.0 Stable MariaDB 10.1.13

1.0 Gamma MariaDB 10.0.13

1.0 Unknown MariaDB 10.0.11

1.0 N/A MariaDB 5.5

System Variables

rpl_semi_sync_master_enabled

Description: Set to ON to enable semi-synchronous replication primary. Disabled by default.

2374/4161

https://jira.mariadb.org/browse/MDEV-21117
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10013-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/

Commandline: --rpl-semi-sync-master-enabled[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rpl_semi_sync_master_timeout

Description: The timeout value, in milliseconds, for semi-synchronous replication in the primary. If this timeout is

exceeded in waiting on a commit for acknowledgement from a replica, the primary will revert to asynchronous

replication.

When a timeout occurs, the Rpl_semi_sync_master_status status variable will also be switched to OFF .

See Configuring the Primary Timeout for more information.

Commandline: --rpl-semi-sync-master-timeout[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10000 (10 seconds)

Range: 0 to 18446744073709551615

rpl_semi_sync_master_trace_level

Description: The tracing level for semi-sync replication. Four levels are defined:

1 : General level, including for example time function failures.

16 : More detailed level, with more verbose information.

32 : Net wait level, including more information about network waits.

64 : Function level, including information about function entries and exits.

Commandline: --rpl-semi-sync-master-trace-level[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 32

Range: 0 to 18446744073709551615

rpl_semi_sync_master_wait_no_slave

Description: If set to ON , the default, the replica count (recorded by Rpl_semi_sync_master_clients) may drop to

zero, and the primary will still wait for the timeout period. If set to OFF , the primary will revert to asynchronous

replication as soon as the replica count drops to zero.

Commandline: --rpl-semi-sync-master-wait-no-slave[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

rpl_semi_sync_master_wait_point

Description: Whether the transaction should wait for semi-sync acknowledgement after having synced the binlog

(AFTER_SYNC), or after having committed in storage engine (AFTER_COMMIT , the default).

When this variable is set to AFTER_SYNC , the primary performs the following steps:

1. Prepares the transaction in the storage engine.

2. Syncs the transaction to the binary log.

3. Waits for acknowledgement from the replica.

4. Commits the transaction to the storage engine.

5. Returns an acknowledgement to the client.

When this variable is set to AFTER_COMMIT , the primary performs the following steps:

1. Prepares the transaction in the storage engine.

2. Syncs the transaction to the binary log.

3. Commits the transaction to the storage engine.

4. Waits for acknowledgement from the replica.

5. Returns an acknowledgement to the client.

2375/4161

In MariaDB 10.1.2 and before, this system variable does not exist. However, in those versions, the primary

waits for the acknowledgement from replicas at a point that is equivalent to AFTER_COMMIT .

See Configuring the Primary Wait Point for more information.

Commandline: --rpl-semi-sync-master-wait-point=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: AFTER_COMMIT

Valid Values: AFTER_SYNC , AFTER_COMMIT

Introduced: MariaDB 10.1.3

rpl_semi_sync_slave_delay_master

Description: Only write primary info file when ack is needed.

Commandline: --rpl-semi-sync-slave-delay-master[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.3

rpl_semi_sync_slave_enabled

Description: Set to ON to enable semi-synchronous replication replica. Disabled by default.

Commandline: --rpl-semi-sync-slave-enabled[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rpl_semi_sync_slave_kill_conn_timeout

Description: Timeout for the mysql connection used to kill the replica io_thread's connection on primary. This timeout

comes into play when stop slave is executed.

Commandline: --rpl-semi-sync-slave-kill-conn-timeout[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: 0 to 4294967295

Introduced: MariaDB 10.3.3

rpl_semi_sync_slave_trace_level

Description: The tracing level for semi-sync replication. The levels are the same as for

rpl_semi_sync_master_trace_level.

Commandline: --rpl-semi-sync-slave-trace_level[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 32

Range: 0 to 18446744073709551615

Options

rpl_semi_sync_master

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:
2376/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --rpl-semi-sync-master=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

Removed: MariaDB 10.3.3

rpl_semi_sync_slave

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --rpl-semi-sync-slave=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

Removed: MariaDB 10.3.3

Status Variables
For a list of status variables added when the plugin is installed, see Semisynchronous Replication Plugin Status Variables.

3.1.25 Using MariaDB Replication with MariaDB
Galera Cluster

Using MariaDB Replication with MariaDB Galera Cluster

Information on using MariaDB replication with MariaDB Galera Cluster.

Using MariaDB GTIDs with MariaDB Galera Cluster

Information on using MariaDB's GTIDs with MariaDB Galera Cluster.

Configuring MariaDB Replication between MariaDB Galera Cluster and MariaDB
Server

Information on configuring replication between MariaDB Galera Cluster and MariaDB Server.

Configuring MariaDB Replication between Two MariaDB Galera Clusters

Information on configuring replication between two MariaDB Galera Clusters.

There are 1 related questions .

1

2

1

3.1.25.1 Using MariaDB Replication with
2377/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/using-mariadb-replication-with-mariadb-galera-cluster/+questions/

MariaDB Galera Cluster
Contents
1. Tutorials

2. Configuring a Cluster Node as a Replication Master

3. Configuring a Cluster Node as a Replication Slave

4. Replication Filters

5. Setting server_id on Cluster Nodes

1. Setting the Same server_id on Each Cluster Node

2. Setting a Different server_id on Each Cluster Node

MariaDB replication and MariaDB Galera Cluster can be used together. However, there are some things that have to be

taken into account.

Tutorials
If you want to use MariaDB replication and MariaDB Galera Cluster together, then the following tutorials may be useful:

Configuring MariaDB Replication between MariaDB Galera Cluster and MariaDB Server

Configuring MariaDB Replication between Two MariaDB Galera Clusters

Configuring a Cluster Node as a Replication Master
If a Galera Cluster node is also a replication master, then some additional configuration may be needed.

Like with MariaDB replication, write sets that are received by a node with Galera Cluster's certification-based replication are

not written to the binary log by default.

If the node is a replication master, then its replication slaves only replicate transactions which are in the binary log, so this

means that the transactions that correspond to Galera Cluster write-sets would not be replicated by any replication slaves

by default. If you would like a node to write its replicated write sets to the binary log, then you will have to set

log_slave_updates=ON . If the node has any replication slaves, then this would also allow those slaves to replicate the

transactions that corresponded to those write sets.

See Configuring MariaDB Galera Cluster: Writing Replicated Write Sets to the Binary Log for more information.

Configuring a Cluster Node as a Replication Slave
If a Galera Cluster node is also a replication slave, then some additional configuration may be needed.

If the node is a replication slave, then the node's slave SQL thread will be applying transactions that it replicates from its

replication master. Transactions applied by the slave SQL thread will only generate Galera Cluster write-sets if the node has

log_slave_updates=ON set. Therefore, in order to replicate these transactions to the rest of the nodes in the cluster,

log_slave_updates=ON must be set.

If the node is a replication slave, then it is probably also a good idea to enable wsrep_restart_slave . When this is

enabled, the node will restart its slave threads whenever it rejoins the cluster.

Replication Filters
Both MariaDB replication and MariaDB Galera Cluster support replication filters, so extra caution must be taken when using

all of these features together. See Configuring MariaDB Galera Cluster: Replication Filters for more details on how MariaDB

Galera Cluster interprets replication filters.

Setting server_id on Cluster Nodes

Setting the Same server_id on Each Cluster Node

It is most common to set server_id to the same value on each node in a given cluster. Since MariaDB Galera Cluster

uses a virtually synchronous certification-based replication, all nodes should have the same data, so in a logical sense, a

cluster can be considered in many cases a single logical server for purposes related to MariaDB replication. The binary logs

of each cluster node might even contain roughly the same transactions and GTIDs if log_slave_updates=ON is set and if

wsrep GTID mode is enabled and if non-Galera transactions are not being executed on any nodes.

2378/4161

Setting a Different server_id on Each Cluster Node

There are cases when it might make sense to set a different server_id value on each node in a given cluster. For

example, if log_slave_updates=OFF is set and if another cluster or a standard MariaDB Server is using multi-source

replication to replicate transactions from each cluster node individually, then it would be required to set a different

server_id value on each node for this to work.

Keep in mind that if replication is set up in a scenario where each cluster node has a different server_id value, and if the

replication topology is set up in such a way that a cluster node can replicate the same transactions through Galera and

through MariaDB replication, then you may need to configure the cluster node to ignore these transactions when setting up

MariaDB replication. You can do so by setting IGNORE_SERVER_IDS to the server IDs of all nodes in the same cluster

when executing CHANGE MASTER TO . For example, this might be required when circular replication is set up between two

separate clusters, and each cluster node as a different server_id value, and each cluster has log_slave_updates=ON

set.

3.1.25.2 Using MariaDB GTIDs with MariaDB
Galera Cluster

Contents
1. GTID Support for Write Sets Replicated by Galera Cluster

1. Wsrep GTID Mode

1. Enabling Wsrep GTID Mode

2. Known Problems with Wsrep GTID Mode

2. GTIDs for Transactions Applied by Slave Thread

MariaDB's global transaction IDs (GTIDs) are very useful when used with MariaDB replication, which is primarily what that

feature was developed for. Galera Cluster , on the other hand, was developed by Codership for all MySQL and MariaDB

variants, and the initial development of the technology pre-dated MariaDB's GTID implementation. As a side effect, MariaDB

Galera Cluster (at least until MariaDB 10.5.1) only partially supports MariaDB's GTID implementation.

GTID Support for Write Sets Replicated by Galera Cluster
Galera Cluster has its own certification-based replication method that is substantially different from MariaDB replication.

However, it would still be beneficial if MariaDB Galera Cluster was able to associate a Galera Cluster write set with a GTID

that is globally unique, but that is also consistent for that write set on each cluster node.

Before MariaDB 10.5.1, MariaDB Galera Cluster did not replicate the original GTID with the write set except in cases where

the transaction was originally applied by a slave SQL thread. Each node independently generated its own GTID for each

write set in most cases. See MDEV-20720 .

Wsrep GTID Mode

MariaDB supports wsrep_gtid_mode.

MariaDB has a feature called wsrep GTID mode. When this mode is enabled, MariaDB uses some tricks to try to associate

each Galera Cluster write set with a GTID that is globally unique, but that is also consistent for that write set on each cluster

node. These tricks work in some cases, but GTIDs can still become inconsistent among cluster nodes.

Enabling Wsrep GTID Mode

Several things need to be configured for wsrep GTID mode to work, such as:

wsrep_gtid_mode=ON needs to be set on all nodes in the cluster.

wsrep_gtid_domain_id needs to be set to the same value on all nodes in a given cluster, so that each cluster

node uses the same domain when assigning GTIDs for Galera Cluster's write sets. When replicating between two

clusters, each cluster should have this set to a different value, so that each cluster uses different domains when

assigning GTIDs for their write sets.

log_slave_updates needs to be enabled on all nodes in the cluster. See MDEV-9855 .

log_bin needs to be set to the same path on all nodes in the cluster. See MDEV-9856 .

And as an extra safety measure:

gtid_domain_id should be set to a different value on all nodes in a given cluster, and each of these values should

be different than the configured wsrep_gtid_domain_id value. This is to prevent a node from using the same

2379/4161

http://galeracluster.com/
https://jira.mariadb.org/browse/MDEV-20720
https://jira.mariadb.org/browse/MDEV-9855
https://jira.mariadb.org/browse/MDEV-9856

domain used for Galera Cluster's write sets when assigning GTIDs for non-Galera transactions, such as DDL

executed with wsrep_sst_method=RSU set or DML executed with wsrep_on=OFF set.

For information on setting server_id , see Using MariaDB Replication with MariaDB Galera Cluster: Setting server_id on

Cluster Nodes.

Known Problems with Wsrep GTID Mode

Until MariaDB 10.5.1, there were known cases where GTIDs could become inconsistent across the cluster nodes.

A known issue (fixed in MariaDB 10.5.1) is:

Implicitly dropped temporary tables can make GTIDs inconsistent. See MDEV-14153 and MDEV-20720 .

This does not necessarily imply that wsrep GTID mode works perfectly in all other situations. If you discover any other

issues with it, please report a bug.

GTIDs for Transactions Applied by Slave Thread

If a Galera Cluster node is also a replication slave, then that node's slave SQL thread will be applying transactions that it

replicates from its replication master. If the node has log_slave_updates=ON set, then each transaction that the slave

SQL thread applies will also generate a Galera Cluster write set that is replicated to the rest of the nodes in the cluster.

In MariaDB 10.1.30 and earlier, the node acting as slave would apply the transaction with the original GTID that it

received from the master, and the other Galera Cluster nodes would generate their own GTIDs for the transaction when they

replicated the write set.

In MariaDB 10.1.31 and later, the node acting as slave will include the transaction's original Gtid_Log_Event in the

replicated write set, so all nodes should associate the write set with its original GTID. See MDEV-13431 about that.

3.1.25.3 Configuring MariaDB Replication
between MariaDB Galera Cluster and MariaDB
Server

Contents
1. Configuring the Cluster

1. Configuring Wsrep GTID Mode

2. Configuring the Replica

3. Setting up Replication

1. Start the Cluster

2. Backup the Database on the Cluster's Primary Node and Prepare It

3. Copy the Backup to the Replica

4. Restore the Backup on the Second Cluster's Replica

5. Start the New Replica

6. Create a Replication User on the Cluster's Primary

7. Start Replication on the New Replica

1. GTIDs

2. File and Position

8. Check the Status of the New Replica

4. Setting up Circular Replication

1. Create a Replication User on the MariaDB Server Primary

2. Start Circular Replication on the Cluster

1. GTIDs

2. File and Position

3. Check the Status of the Circular Replication

MariaDB replication can be used to replicate between MariaDB Galera Cluster and MariaDB Server. This article will discuss

how to do that.

Configuring the Cluster
Before we set up replication, we need to ensure that the cluster is configured properly. This involves the following steps:

Set log_slave_updates=ON on all nodes in the cluster. See Configuring MariaDB Galera Cluster: Writing

Replicated Write Sets to the Binary Log and Using MariaDB Replication with MariaDB Galera Cluster: Configuring a

Cluster Node as a Replication Master for more information on why this is important. This is also needed to enable

2380/4161

https://jira.mariadb.org/browse/MDEV-14153
https://jira.mariadb.org/browse/MDEV-20720
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://jira.mariadb.org/browse/MDEV-13431

wsrep GTID mode.

Set server_id to the same value on all nodes in the cluster. See Using MariaDB Replication with MariaDB Galera

Cluster: Setting server_id on Cluster Nodes for more information on what this means.

Configuring Wsrep GTID Mode

If you want to use GTID replication, then you also need to configure some things to enable wsrep GTID mode. For example:

wsrep_gtid_mode=ON needs to be set on all nodes in the cluster.

wsrep_gtid_domain_id needs to be set to the same value on all nodes in the cluster, so that each cluster node

uses the same domain when assigning GTIDs for Galera Cluster's write sets.

log_slave_updates needs to be enabled on all nodes in the cluster. See MDEV-9855 about that.

log_bin needs to be set to the same path on all nodes in the cluster. See MDEV-9856 about that.

And as an extra safety measure:

gtid_domain_id should be set to a different value on all nodes in a given cluster, and each of these values should be

different than the configured wsrep_gtid_domain_id value. This is to prevent a node from using the same domain

used for Galera Cluster's write sets when assigning GTIDs for non-Galera transactions, such as DDL executed with

wsrep_sst_method=RSU set or DML executed with wsrep_on=OFF set.

Configuring the Replica
Before we set up replication, we also need to ensure that the MariaDB Server replica is configured properly. This involves

the following steps:

Set server_id to a different value than the one that the cluster nodes are using.

Set gtid_domain_id to a value that is different than the wsrep_gtid_domain_id and gtid_domain_id values that the

cluster nodes are using.

Set log_bin and log_slave_updates=ON if you want the replica to log the transactions that it replicates.

Setting up Replication
Our process to set up replication is going to be similar to the process described at Setting up a Replication Slave with

Mariabackup, but it will be modified a bit to work in this context.

Start the Cluster

The very first step is to start the nodes in the first cluster. The first node will have to be bootstrapped. The other nodes can

be started normally .

Once the nodes are started, you need to pick a specific node that will act as the replication primary for the MariaDB Server.

Backup the Database on the Cluster's Primary Node and Prepare It

The first step is to simply take and prepare a fresh full backup of the node that you have chosen to be the replication

primary. For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

And then you would prepare the backup as you normally would. For example:

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup/

Copy the Backup to the Replica

Once the backup is done and prepared, you can copy it to the MariaDB Server that will be acting as replica. For example:

$ rsync -avrP /var/mariadb/backup dc2-dbserver1:/var/mariadb/backup

2381/4161

https://jira.mariadb.org/browse/MDEV-9855
https://jira.mariadb.org/browse/MDEV-9856
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Restore the Backup on the Second Cluster's Replica

At this point, you can restore the backup to the datadir, as you normally would. For example:

$ mariabackup --copy-back \

 --target-dir=/var/mariadb/backup/

And adjusting file permissions, if necessary:

$ chown -R mysql:mysql /var/lib/mysql/

Start the New Replica

Now that the backup has been restored to the MariaDB Server replica, you can start the MariaDB Server process .

Create a Replication User on the Cluster's Primary

Before the MariaDB Server replica can begin replicating from the cluster's primary, you need to create a user account on the

primary that the replica can use to connect, and you need to grant the user account the REPLICATION SLAVE privilege. For

example:

CREATE USER 'repl'@'dc2-dbserver1' IDENTIFIED BY 'password';

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'dc2-dbserver1';

Start Replication on the New Replica

At this point, you need to get the replication coordinates of the primary from the original backup.

The coordinates will be in the xtrabackup_binlog_info file.

Mariabackup dumps replication coordinates in two forms: GTID strings and binary log file and position coordinates, like the

ones you would normally see from SHOW MASTER STATUS output. In this case, it is probably better to use the GTID

coordinates.

For example:

mariadb-bin.000096 568 0-1-2

Regardless of the coordinates you use, you will have to set up the primary connection using CHANGE MASTER TO and

then start the replication threads with START SLAVE.

GTIDs

If you want to use GTIDs, then you will have to first set gtid_slave_pos to the GTID coordinates that we pulled from the

xtrabackup_binlog_info file, and we would set MASTER_USE_GTID=slave_pos in the CHANGE MASTER TO command.

For example:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO

 MASTER_HOST="c1dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_USE_GTID=slave_pos;

START SLAVE;

File and Position

If you want to use the binary log file and position coordinates, then you would set MASTER_LOG_FILE and

MASTER_LOG_POS in the CHANGE MASTER TO command to the file and position coordinates that we pulled the

xtrabackup_binlog_info file. For example:

2382/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

CHANGE MASTER TO

 MASTER_HOST="c1dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_LOG_FILE='mariadb-bin.000096',

 MASTER_LOG_POS=568,

START SLAVE;

Check the Status of the New Replica

You should be done setting up the replica now, so you should check its status with SHOW SLAVE STATUS. For example:

SHOW SLAVE STATUS\G

Now that the MariaDB Server is up, ensure that it does not start accepting writes yet if you want to set up circular replication

between the cluster and the MariaDB Server.

Setting up Circular Replication
You can also set up circular replication between the cluster and MariaDB Server, which means that the MariaDB Server

replicates from the cluster, and the cluster also replicates from the MariaDB Server.

Create a Replication User on the MariaDB Server Primary

Before circular replication can begin, you also need to create a user account on the MariaDB Server, since it will be acting

as replication primary to the cluster's replica, and you need to grant the user account the REPLICATION SLAVE privilege.

For example:

CREATE USER 'repl'@'c1dbserver1' IDENTIFIED BY 'password';

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'c1dbserver1';

Start Circular Replication on the Cluster

How this is done would depend on whether you want to use the GTID coordinates or the binary log file and position

coordinates.

Regardless, you need to ensure that the second cluster is not accepting any writes other than those that it replicates from

the cluster at this stage.

GTIDs

To get the GTID coordinates on the MariaDB Server you can check gtid_current_pos by executing:

SHOW GLOBAL VARIABLES LIKE 'gtid_current_pos';

Then on the node acting as replica in the cluster, you can set up replication by setting gtid_slave_pos to the GTID that was

returned and then executing CHANGE MASTER TO:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO

 MASTER_HOST="c2dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_USE_GTID=slave_pos;

START SLAVE;

File and Position

To get the binary log file and position coordinates on the MariaDB Server, you can execute SHOW MASTER STATUS:

SHOW MASTER STATUS

2383/4161

Then on the node acting as replica in the cluster, you would set master_log_file and master_log_pos in the

CHANGE MASTER TO command. For example:

CHANGE MASTER TO

 MASTER_HOST="c2dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_LOG_FILE='mariadb-bin.000096',

 MASTER_LOG_POS=568;

START SLAVE;

Check the Status of the Circular Replication

You should be done setting up the circular replication on the node in the first cluster now, so you should check its status with

SHOW SLAVE STATUS. For example:

SHOW SLAVE STATUS\G

3.1.25.4 Configuring MariaDB Replication
between Two MariaDB Galera Clusters

Contents
1. Configuring the Clusters

1. Configuring Wsrep GTID Mode

2. Setting up Replication

1. Start the First Cluster

2. Backup the Database on the First Cluster's Primary Node and Prepare It

3. Copy the Backup to the Second Cluster's Replica

4. Restore the Backup on the Second Cluster's Replica

5. Bootstrap the Second Cluster's Replica

6. Create a Replication User on the First Cluster's Primary

7. Start Replication on the Second Cluster's Replica

1. GTIDs

2. File and Position

8. Check the Status of the Second Cluster's Replica

9. Start the Second Cluster

3. Setting up Circular Replication

1. Create a Replication User on the Second Cluster's Primary

2. Start Circular Replication on the First Cluster

1. GTIDs

2. File and Position

3. Check the Status of the Circular Replication

MariaDB replication can be used to replication between two MariaDB Galera Clusters. This article will discuss how to do

that.

Configuring the Clusters
Before we set up replication, we need to ensure that the clusters are configured properly. This involves the following steps:

Set log_slave_updates=ON on all nodes in both clusters. See Configuring MariaDB Galera Cluster: Writing

Replicated Write Sets to the Binary Log and Using MariaDB Replication with MariaDB Galera Cluster: Configuring a

Cluster Node as a Replication Master for more information on why this is important. This is also needed to enable

wsrep GTID mode.

Set server_id to the same value on all nodes in a given cluster, but be sure to use a different value in each cluster.

See Using MariaDB Replication with MariaDB Galera Cluster: Setting server_id on Cluster Nodes for more

information on what this means.

Configuring Wsrep GTID Mode

If you want to use GTID replication, then you also need to configure some things to enable wsrep GTID mode. For example:

2384/4161

wsrep_gtid_mode=ON needs to be set on all nodes in each cluster.

wsrep_gtid_domain_id needs to be set to the same value on all nodes in a given cluster, so that each cluster

node uses the same domain when assigning GTIDs for Galera Cluster's write sets. Each cluster should have this set

to a different value, so that each cluster uses different domains when assigning GTIDs for their write sets.

log_slave_updates needs to be enabled on all nodes in the cluster. See MDEV-9855 about that.

log_bin needs to be set to the same path on all nodes in the cluster. See MDEV-9856 about that.

And as an extra safety measure:

gtid_domain_id should be set to a different value on all nodes in a given cluster, and each of these values should

be different than the configured wsrep_gtid_domain_id value. This is to prevent a node from using the same

domain used for Galera Cluster's write sets when assigning GTIDs for non-Galera transactions, such as DDL

executed with wsrep_sst_method=RSU set or DML executed with wsrep_on=OFF set.

Setting up Replication
Our process to set up replication is going to be similar to the process described at Setting up a Replication Slave with

Mariabackup, but it will be modified a bit to work in this context.

Start the First Cluster

The very first step is to start the nodes in the first cluster. The first node will have to be bootstrapped. The other nodes can

be started normally .

Once the nodes are started, you need to pick a specific node that will act as the replication primary for the second cluster.

Backup the Database on the First Cluster's Primary Node and Prepare It

The first step is to simply take and prepare a fresh full backup of the node that you have chosen to be the replication

primary. For example:

$ mariabackup --backup \

 --target-dir=/var/mariadb/backup/ \

 --user=mariabackup --password=mypassword

And then you would prepare the backup as you normally would. For example:

$ mariabackup --prepare \

 --target-dir=/var/mariadb/backup/

Copy the Backup to the Second Cluster's Replica

Once the backup is done and prepared, you can copy it to the node in the second cluster that will be acting as replica. For

example:

$ rsync -avrP /var/mariadb/backup c2dbserver:/var/mariadb/backup

Restore the Backup on the Second Cluster's Replica

At this point, you can restore the backup to the datadir, as you normally would. For example:

$ mariabackup --copy-back \

 --target-dir=/var/mariadb/backup/

And adjusting file permissions, if necessary:

$ chown -R mysql:mysql /var/lib/mysql/

Bootstrap the Second Cluster's Replica

Now that the backup has been restored to the second cluster's replica, you can start the server by bootstrapping the node.

2385/4161

https://jira.mariadb.org/browse/MDEV-9855
https://jira.mariadb.org/browse/MDEV-9856
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Create a Replication User on the First Cluster's Primary

Before the second cluster's replica can begin replicating from the first cluster's primary, you need to create a user account

on the primary that the replica can use to connect, and you need to grant the user account the REPLICATION SLAVE

privilege. For example:

CREATE USER 'repl'@'c2dbserver1' IDENTIFIED BY 'password';

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'c2dbserver1';

Start Replication on the Second Cluster's Replica

At this point, you need to get the replication coordinates of the primary from the original backup.

The coordinates will be in the xtrabackup_binlog_info file.

Mariabackup dumps replication coordinates in two forms: GTID strings and binary log file and position coordinates, like the

ones you would normally see from SHOW MASTER STATUS output. In this case, it is probably better to use the GTID

coordinates.

For example:

mariadb-bin.000096 568 0-1-2

Regardless of the coordinates you use, you will have to set up the primary connection using CHANGE MASTER TO and

then start the replication threads with START SLAVE.

GTIDs

If you want to use GTIDs, then you will have to first set gtid_slave_pos to the GTID coordinates that we pulled from the

xtrabackup_binlog_info file, and we would set MASTER_USE_GTID=slave_pos in the CHANGE MASTER TO command.

For example:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO

 MASTER_HOST="c1dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_USE_GTID=slave_pos;

START SLAVE;

File and Position

If you want to use the binary log file and position coordinates, then you would set MASTER_LOG_FILE and

MASTER_LOG_POS in the CHANGE MASTER TO command to the file and position coordinates that we pulled the

xtrabackup_binlog_info file. For example:

CHANGE MASTER TO

 MASTER_HOST="c1dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_LOG_FILE='mariadb-bin.000096',

 MASTER_LOG_POS=568,

START SLAVE;

Check the Status of the Second Cluster's Replica

You should be done setting up the replica now, so you should check its status with SHOW SLAVE STATUS. For example:

SHOW SLAVE STATUS\G

Start the Second Cluster

If the replica is replicating normally, then the next step would be to start the MariaDB Server process on the other nodes in

the second cluster.

2386/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Now that the second cluster is up, ensure that it does not start accepting writes yet if you want to set up circular replication

between the two clusters.

Setting up Circular Replication
You can also set up circular replication between the two clusters, which means that the second cluster replicates from the

first cluster, and the first cluster also replicates from the second cluster.

Create a Replication User on the Second Cluster's Primary

Before circular replication can begin, you also need to create a user account on the second cluster's primary that the first

cluster's replica can use to connect, and you need to grant the user account the REPLICATION SLAVE privilege. For

example:

CREATE USER 'repl'@'c1dbserver1' IDENTIFIED BY 'password';

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'c1dbserver1';

Start Circular Replication on the First Cluster

How this is done would depend on whether you want to use the GTID coordinates or the binary log file and position

coordinates.

Regardless, you need to ensure that the second cluster is not accepting any writes other than those that it replicates from

the first cluster at this stage.

GTIDs

To get the GTID coordinates on the second cluster, you can check gtid_current_pos by executing:

SHOW GLOBAL VARIABLES LIKE 'gtid_current_pos';

Then on the first cluster, you can set up replication by setting gtid_slave_pos to the GTID that was returned and then

executing CHANGE MASTER TO:

SET GLOBAL gtid_slave_pos = "0-1-2";

CHANGE MASTER TO

 MASTER_HOST="c2dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_USE_GTID=slave_pos;

START SLAVE;

File and Position

To get the binary log file and position coordinates on the second cluster, you can execute SHOW MASTER STATUS:

SHOW MASTER STATUS

Then on the first cluster, you would set master_log_file and master_log_pos in the CHANGE MASTER TO

command. For example:

CHANGE MASTER TO

 MASTER_HOST="c2dbserver1",

 MASTER_PORT=3310,

 MASTER_USER="repl",

 MASTER_PASSWORD="password",

 MASTER_LOG_FILE='mariadb-bin.000096',

 MASTER_LOG_POS=568;

START SLAVE;

Check the Status of the Circular Replication

You should be done setting up the circular replication on the node in the first cluster now, so you should check its status with

SHOW SLAVE STATUS. For example:

2387/4161

SHOW SLAVE STATUS\G

3.1.26 Delayed Replication

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Delayed replication allows specifying that a replica should lag behind the primary by (at least) a specified amount of time

(specified in seconds). Before executing an event, the replica will first wait, if necessary, until the given time has passed

since the event was created on the primary. The result is that the replica will reflect the state of the primary some time back

in the past.

The default is zero, or no delay, and the maximum value is 2147483647, or about 68 years.

Delayed replication is enabled using the MASTER_DELAY option to CHANGE MASTER:

 CHANGE MASTER TO master_delay=3600;

A zero delay disables delayed replication. The replica must be stopped when changing the delay value.

Three fields in SHOW SLAVE STATUS are associated with delayed replication:

1. SQL_Delay: This is the value specified by MASTER_DELAY in CHANGE MASTER (or 0 if none).

2. SQL_Remaining_Delay. When the replica is delaying the execution of an event due to MASTER_DELAY, this is the

number of seconds of delay remaining before the event will be applied. Otherwise, the value is NULL.

3. Slave_SQL_Running_State. This shows the state of the SQL driver threads, same as in SHOW PROCESSLIST.

When the replica is delaying the execution of an event due to MASTER_DELAY, this fields displays: "Waiting until

MASTER_DELAY seconds after master executed event".

When using older versions prior to MariaDB 10.2.3 , a 3rd party tool called pt-slave-delay can be used. It is part of the

Percona Toolkit. Note that pt-slave-delay does not support MariaDB multi-channel replication syntax.

3.1.27 Replication When the Primary and
Replica Have Different Table Definitions

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Different Column Definitions - Attribute Promotion and Demotion

1. Statement-Based Replication

2. Row-Based Replication

1. Supported Conversions

2. Different Number or Order of Columns

1. Row-Based

2. Statement-Based

While replication is usually meant to take place between primaries and replicas with the same table definitions and this is

recommended, in certain cases replication can still take place even if the definitions are identical.

Tables on the replica and the primary do not need to have the same definition in order for replication to take place. There

can be differing numbers of columns, or differing data definitions and, in certain cases, replication can still proceed.

Different Column Definitions - Attribute Promotion and
Demotion
It is possible in some cases to replicate to a replica that has a column of a different type on the replica and the primary. This

process is called attribute promotion (to a larger type) or attribute demotion (to a smaller type).

2388/4161

https://jira.mariadb.org/browse/MDEV-18777
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://www.percona.com/doc/percona-toolkit/LATEST/pt-slave-delay.html
https://jira.mariadb.org/browse/MDEV-18777

The conditions differ depending on whether statement-based or row-based replication is used.

Statement-Based Replication

When using statement-based replication, generally, if a statement can run successfully on the replica, it will be replicated. If

a column definition is the same or a larger type on the replica than on the primary, it can replicate successfully. For example

a column defined as VARCHAR(10) will successfully be replicated on a replica with a definition of VARCHAR(12) .

Replicating to a replica where the column is defined as smaller than on the primary can also work. For example, given the

following table definitions:

Master:

DESC r;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | tinyint(4) | YES | | NULL | |

| v | varchar(10) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

Slave

DESC r;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | tinyint(4) | YES | | NULL | |

| v | varchar(8) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

the statement

INSERT INTO r VALUES (6,'hi');

would successfully replicate because the value inserted into the v field can successfully be inserted on both the primary

and the smaller replica equivalent.

However, the following statement would fail:

INSERT INTO r VALUES (7,'abcdefghi')

In this case, the value fits in the primary definition, but is too long for the replica field, and so replication will fail.

SHOW SLAVE STATUS\G

*************************** 1. row ***************************

...

Slave_IO_Running: Yes

Slave_SQL_Running: No

...

Last_Errno: 1406

Last_Error: Error 'Data too long for column 'v' at row 1' on query.

 Default database: 'test'. Query: 'INSERT INTO r VALUES (7,'abcdefghi')'

...

Row-Based Replication

When using row-based replication, the value of the slave_type_conversions variable is important. The default value of this

variable is empty, in which case MariaDB will not perform attribute promotion or demotion. If the column definitions do not

match, replication will stop. If set to ALL_NON_LOSSY , safe replication is permitted. If set to ALL_LOSSY as well, replication

will be permitted even if data loss takes place.

For example:

Master:

2389/4161

DESC r;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| id | smallint(6) | YES | | NULL | |

| v | varchar(10) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

Slave:

SHOW VARIABLES LIKE 'slave_ty%';

+------------------------+-------+

| Variable_name | Value |

+------------------------+-------+

| slave_type_conversions | |

+------------------------+-------+

 DESC r;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| id | tinyint(4) | YES | | NULL | |

| v | varchar(1) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

The following query will fail:

INSERT INTO r VALUES (3,'c');

SHOW SLAVE STATUS\G;

...

Slave_IO_Running: Yes

Slave_SQL_Running: No

...

Last_Errno: 1677

Last_Error: Column 0 of table 'test.r' cannot be converted from

 type 'smallint' to type 'tinyint(4)'

...

By changing the value of the slave_type_conversions, replication can proceed:

SET GLOBAL slave_type_conversions='ALL_NON_LOSSY,ALL_LOSSY';

START SLAVE;

SHOW SLAVE STATUS\G;

*************************** 1. row ***************************

...

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

...

Supported Conversions

Between TINYINT, SMALLINT, MEDIUMINT, INT and BIGINT. If lossy conversion is supported, the value from the

primary will be converted to the maximum or minimum permitted on the replica, which non-lossy conversions require

the replica column to be large enough. For example, SMALLINT UNSIGNED can be converted to MEDIUMINT, but

not SMALLINT SIGNED.

Different Number or Order of Columns
Replication can also take place when the primary and replica have a different number of columns if the following criteria are

met:

columns must be in the same order on the primary and replica

common columns must be defined with the same data type

2390/4161

extra columns must be defined after the common columns

Row-Based

The following example replicates incorrectly (replication proceeds, but the data is corrupted), as the columns are not in the

same order.

Master:

CREATE OR REPLACE TABLE r (i1 INT, i2 INT);

Slave:

ALTER TABLE r ADD i3 INT AFTER i1;

Master:

INSERT INTO r (i1,i2) VALUES (1,1);

SELECT * FROM r;

+------+------+

| i1 | i2 |

+------+------+

| 1 | 1 |

+------+------+

Slave:

SELECT * FROM r;

+------+------+------+

| i1 | i3 | i2 |

+------+------+------+

| 1 | 1 | NULL |

+------+------+------+

Statement-Based

Using statement-based replication, the same example may work, even though the columns are not in the same order.

Master:

CREATE OR REPLACE TABLE r (i1 INT, i2 INT);

Slave:

ALTER TABLE r ADD i3 INT AFTER i1;

Master:

INSERT INTO r (i1,i2) VALUES (1,1);

SELECT * FROM r;

+------+------+

| i1 | i2 |

+------+------+

| 1 | 1 |

+------+------+

Slave:

 SELECT * FROM r;

+------+------+------+

| i1 | i3 | i2 |

+------+------+------+

| 1 | NULL | 1 |

+------+------+------+

2391/4161

3.1.28 Restricting Speed of Reading Binlog from
Primary by a Replica
When a replica starts after being stopped for some time, or a new replica starts that was created from a backup from some

time back, a lot of old binlog events may need to be downloaded from the primary. If this happens from many replicas

simultaneously, it can put a lot of load on the primary.

The read_binlog_speed_limit option can be used to reduce such load, by limiting the speed at which events are

downloaded. The limit is given as maximum kilobytes per second to download on one replica connection.

With this option set, the replication I/O thread will limit the rate of download. Since the I/O thread is often much faster to

download events than the SQL thread is at applying them, an appropriate value for read_binlog_speed_limit may reduce

load spikes on the primary without much limit in the speed of the replica.

The option read_binlog_speed_limit is available starting from MariaDB 10.2.3 .

read_binlog_speed_limit

Description: Maximum speed(KB/s) to read binlog from primary.

Commandline: --read-binlog-speed-limit[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Introduced: MariaDB 10.2.3

3.1.29 Changing a Replica to Become the
Primary

The terms master and slave have historically been used in replication, and MariaDB has begun the process of adding

primary and replica synonyms. The old terms will continue to be used to maintain backward compatibility - see MDEV-

18777 to follow progress on this effort.

Contents
1. Stopping the Original Master.

1. Manually Take Down the Primary

2. Preparing the Replica to be a Primary

3. Reconnect Other Replicas to the New Primary

4. Changing the Old Primary to be a Replica

5. Moving Applications to Use New Primary

This article describes how to change a replica to become a primary and optionally to set the old primary as a replica for the

new primary.

A typical scenario of when this is useful is if you have set up a new version of MariaDB as a replica, for example for testing,

and want to upgrade your primary to the new version.

In MariaDB replication, a replica should be of a version same or newer than the primary. Because of this, one should first

upgrades all replicas to the latest version before changing a replica to be a primary. In some cases one can have a replica

to be of an older version than the primary, as long as one doesn't execute on the primary any SQL commands that the

replica doesn't understand. This is however not guaranteed between all major MariaDB versions.

Note that in the examples below, [connection_name] is used as the name of the connection. If you are not using named

connections you can ignore this.

Stopping the Original Master.

First one needs to take down the original primary in such a way that the replica has all information on the primary.

If you are using Semisynchronous Replication you can just stop the server with the SHUTDOWN command as the replicas

should be automatically up to date.

2392/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://jira.mariadb.org/browse/MDEV-18777

If you are using MariaDB MaxScale proxy , then you can use MaxScale to handle the whole process of taking down the

primary and replacing it with one of the replicas.

If neither of the above is true, you have to do this step manually:

Manually Take Down the Primary

First we have to set the primary to read only to ensure that there are no new updates on the primary:

FLUSH TABLES WITH READ LOCK;

Note that you should not disconnect this session as otherwise the read lock will disappear and you have to start from the

beginning.

Then you should check the current position of the primary:

SHOW MASTER STATUS;

+--------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------------+----------+--------------+------------------+

| mariadb-bin.000003 | 343 | | |

+--------------------+----------+--------------+------------------+

SELECT @@global.gtid_binlog_pos;

+--------------------------+

| @@global.gtid_binlog_pos |

+--------------------------+

| 0-1-2 |

+--------------------------+

And wait until you have the same position on the replica: (The following should be excepted on the replica)

SHOW SLAVE [connection_name] STATUS;

+-------------------+-------------------+

Master_Log_File | narttu-bin.000003 +

Read_Master_Log_Pos | 343 +

Exec_Master_Log_Pos | 343 +

...

Gtid_IO_Pos 0-1-2 +

+-------------------+-------------------+

The most important information to watch are Master_Log_File and Exec_Master_Log_Pos as when this matches the

primary, it signals that all transactions has been committed on the replica.

Note that Gtid_IO_Pos on replica can contain many different positions separated with ',' if the replica has been connected

to many different primaries. What is important is that all the sequences that are on the primary is also on the replica.

When replica is up to date, you can then take the PRIMARY down. This should be on the same connection where you

executed FLUSH TABLES WITH READ LOCK.

SHUTDOWN;

Preparing the Replica to be a Primary

Stop all old connections to the old primary(s) and reset read only mode, if you had it enabled. You also want to save the

values of SHOW MASTER STATUS and gtid_binlog_pos , as you may need these to setup new replicas.

STOP ALL SLAVES;

RESET SLAVE ALL;

SHOW MASTER STATUS;

SELECT @@global.gtid_binlog_pos;

SET @@global.read_only=0;

Reconnect Other Replicas to the New Primary

On the other replicas you have point them to the new primary (the replica you promoted to a primary).

2393/4161

https://mariadb.com/kb/en/maxscale/
https://mariadb.com/resources/blog/mariadb-maxscale-2-2-introducing-failover-switchover-and-automatic-rejoin

STOP SLAVE [connection_name];

CHANGE MASTER [connection_name] TO MASTER_HOST="new_master_name",

MASTER_PORT=3306, MASTER_USER='root', MASTER_USE_GTID=current_pos,

MASTER_LOG_FILE="XXX", MASTER_LOG_POS=XXX;

START SLAVE;

The XXX values for MASTER_LOG_FILE and MASTER_LOG_POS should be the values you got from the SHOW MASTER

STATUS command you did when you finished setting up the replica.

Changing the Old Primary to be a Replica

Now you can upgrade the new primary to a newer version of MariaDB and then follow the same procedure to connect it as

a replica.

When starting the original primary, it's good to start the mysqld executable with the --with-skip-slave-start and --

read-only options to ensure that no old replica configurations could cause any conflicts.

For the same reason it's also good to execute the following commands on the old primary (same as for other replicas, but

with some extra security). The read_only option below is there to ensure that old applications doesn't by accident try to

update the old primary by mistake. It only affects normal connections to the replica, not changes from the new primary.

set @@global.read_only=1;

STOP ALL SLAVES;

RESET MASTER;

RESET SLAVE ALL;

CHANGE MASTER [connection_name] TO MASTER_HOST="new_master_name",

MASTER_PORT=3306, MASTER_USER='root', MASTER_USE_GTID=current_pos,

MASTER_LOG_FILE="XXX", MASTER_LOG_POS=XXX;

START SLAVE;

Moving Applications to Use New Primary

You should now point your applications to use the new primary. If you are using the MariaDB MaxScale proxy , then you

don't have to do this step as MaxScale will take care of sending write request to the new primary.

2.2.1.1.1.4 Replication with Secure Connections

3.2 MariaDB Galera Cluster
MariaDB Galera Cluster is a virtually synchronous multi-master cluster that runs on Linux only. It has been a standard part of

the server since MariaDB 10.1.

What is MariaDB Galera Cluster?

Basic information on MariaDB Galera Cluster.

About Galera Replication

About Galera replication.

Galera Use Cases

Common use cases for Galera replication.

MariaDB Galera Cluster - Known Limitations

Describing the known limitations of MariaDB Galera Cluster.

Tips on Converting to Galera

Best/required practices when using Galera for High-availability

Getting Started with MariaDB Galera Cluster

Synchronous multi-master cluster for Linux supporting InnoDB storage engines.

Configuring MariaDB Galera Cluster

Details on how to configure MariaDB Galera Cluster.

10

28

3

14

1

2394/4161

https://mariadb.com/kb/en/maxscale/

State Snapshot Transfers (SSTs) in Galera Cluster

In an SST, the cluster provisions nodes by transferring a full data copy from one node to another.

Galera Cluster Status Variables

Galera Cluster status variables.

Galera Cluster System Variables

Listing and description of Galera Cluster system variables.

Building the Galera wsrep Package on Ubuntu and Debian

Short how-to on building the galera package on Debian

Building the Galera wsrep Package on Fedora

Short how-to on building the galera package on Fedora

Installing Galera from Source

Building Galera from source.

Galera Test Repositories

To facilitate development and QA, we have created some test repos for the Galera wsrep provider.

wsrep_provider_options

Galera options set with the wsrep_provider_options variable.

Galera Cluster Address

Galera URLs

Galera Load Balancer

A load balancer specifically designed for Galera Cluster

MariaDB Galera Cluster Releases

Galera Cluster release notes and changelogs.

Upgrading Galera Cluster

Upgrading MariaDB Galera Cluster.

Using MariaDB Replication with MariaDB Galera Cluster

Information on using MariaDB replication with MariaDB Galera Cluster.

Securing Communications in Galera Cluster

Enabling TLS encryption in transit for Galera Cluster.

Installing MariaDB Galera on IBM Cloud

Get MariaDB Galera on IBM Cloud You should have an IBM Cloud account, oth...

There are 41 related questions .

6

4

3

3.2.1 What is MariaDB Galera Cluster?

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Alternate download from mariadb.org

2395/4161

https://mariadb.com/kb/en/mariadb-galera-cluster-releases/
https://mariadb.com/kb/en/galera-cluster/+questions/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/

Contents
1. About

2. Features

3. Benefits

4. Galera Versions

1. Galera 4 Versions

2. Galera 3 Versions

About

MariaDB Galera Cluster is a virtually synchronous multi-primary cluster for MariaDB. It is available on Linux only, and only

supports the InnoDB storage engine (although there is experimental support for MyISAM and, from MariaDB 10.6, Aria. See

the wsrep_replicate_myisam system variable, or, from MariaDB 10.6, the wsrep_mode system variable).

Features
Virtually synchronous replication

Active-active multi-primary topology

Read and write to any cluster node

Automatic membership control, failed nodes drop from the cluster

Automatic node joining

True parallel replication, on row level

Direct client connections, native MariaDB look & feel

Benefits
The above features yield several benefits for a DBMS clustering solution, including:

No replica lag

No lost transactions

Read scalability

Smaller client latencies

The Getting Started with MariaDB Galera Cluster page has instructions on how to get up and running with MariaDB Galera

Cluster.

A great resource for Galera users is Codership on Google Groups (codership-team 'at' googlegroups

(dot) com) - If you use Galera it is recommended you subscribe.

Galera Versions
MariaDB Galera Cluster is powered by:

MariaDB Server.

The Galera wsrep provider library .

The functionality of MariaDB Galera Cluster can be obtained by installing the standard MariaDB Server packages and the

Galera wsrep provider library package. The following Galera version corresponds to each MariaDB Server version:

In MariaDB 10.4 and later, MariaDB Galera Cluster uses Galera 4. This means that the wsrep API version is 26 and

the Galera wsrep provider library is version 4.X.

In MariaDB 10.3 and before, MariaDB Galera Cluster uses Galera 3. This means that the wsrep API is version 25 and

2396/4161

https://groups.google.com/forum/?fromgroups#!forum/codership-team
https://github.com/codership/galera/
https://github.com/codership/galera/
https://github.com/codership/galera/

the Galera wsrep provider library is version 3.X.

See Deciphering Galera Version Numbers for more information about how to interpret these version numbers.

Galera 4 Versions

The following table lists each version of the Galera 4 wsrep provider, and it lists which version of MariaDB each one was first

released in. If you would like to install Galera 4 using yum, apt, or zypper, then the package is called galera-4 .

Galera Version Released in MariaDB Version

26.4.16 11.2.2, 11.1.3, 11.0.4, 10.11.6, 10.10.7, 10.6.16, 10.5.23, 10.4.32

26.4.14 10.10.3, 10.9.5, 10.8.7 , 10.7.8 , 10.6.12, 10.5.19, 10.4.28

26.4.13 10.10.2, 10.9.4, 10.8.6 , 10.7.7 , 10.6.11, 10.5.18, 10.4.27

26.4.12 10.10.1, 10.9.2 , 10.8.4 , 10.7.5 , 10.6.9, 10.5.17, 10.4.26

26.4.11 10.8.1 , 10.7.2 , 10.6.6, 10.5.14, 10.4.22

26.4.9 10.6.4, 10.5.12, 10.4.21

26.4.8 10.6.1, 10.5.10, 10.4.19

26.4.7 10.5.9, 10.4.18

26.4.6 10.5.7, 10.4.16

26.4.5 10.5.4, 10.4.14

26.4.4 10.5.1, 10.4.13

26.4.3 10.5.0, 10.4.9

26.4.2 10.4.4

26.4.1 10.4.3

26.4.0 10.4.2

Galera 3 Versions

The following table lists each version of the Galera 3 wsrep provider, and it lists which version of MariaDB each one was first

released in. If you would like to install Galera 3 using yum, apt, or zypper, then the package is called galera .

Galera

Version
Released in MariaDB Version

25.3.37 MariaDB 10.3.36

25.3.35 MariaDB 10.3.33 , MariaDB 10.2.42

25.3.34 MariaDB 10.3.31 , MariaDB 10.2.40

25.3.33 MariaDB 10.3.29 , MariaDB 10.2.38

25.3.32 MariaDB 10.3.28 , MariaDB 10.2.37

25.3.31 MariaDB 10.3.26 , MariaDB 10.2.35 , MariaDB 10.1.48

25.3.30 MariaDB 10.3.25 , MariaDB 10.2.34 , MariaDB 10.1.47

25.3.29 MariaDB 10.3.23 , MariaDB 10.2.32 , MariaDB 10.1.45

25.3.28 MariaDB 10.3.19 , MariaDB 10.2.28 , MariaDB 10.1.42

25.3.27 MariaDB 10.3.18 , MariaDB 10.2.27

25.3.26 MariaDB 10.3.14 , MariaDB 10.2.23 , MariaDB 10.1.39

25.3.25
MariaDB 10.3.12 , MariaDB 10.2.20 , MariaDB 10.1.38 , MariaDB Galera Cluster 10.0.38 , MariaDB

Galera Cluster 5.5.63

25.3.24
MariaDB 10.4.0, MariaDB 10.3.10 , MariaDB 10.2.18 , MariaDB 10.1.37 , MariaDB Galera Cluster

10.0.37 , MariaDB Galera Cluster 5.5.62

25.3.23
MariaDB 10.3.5 , MariaDB 10.2.13 , MariaDB 10.1.32 , MariaDB Galera Cluster 10.0.35 , MariaDB

Galera Cluster 5.5.60

2397/4161

https://github.com/codership/galera/
https://galeracluster.com/library/documentation/versioning-information.html/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
https://mariadb.com/kb/en/mariadb-10336-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10331-release-notes/
https://mariadb.com/kb/en/mariadb-10240-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-10228-release-notes/
https://mariadb.com/kb/en/mariadb-10142-release-notes/
https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10227-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10220-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10038-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5563-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10037-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5562-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10035-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5560-release-notes/

25.3.22
MariaDB 10.3.3 , MariaDB 10.2.11 , MariaDB 10.1.29 , MariaDB Galera Cluster 10.0.33 , MariaDB

Galera Cluster 5.5.59

25.3.21 N/A

25.3.20
MariaDB 10.3.1 , MariaDB 10.2.6 , MariaDB 10.1.23 , MariaDB Galera Cluster 10.0.31 , MariaDB

Galera Cluster 5.5.56

25.3.19
MariaDB 10.3.0 , MariaDB 10.2.3 , MariaDB 10.1.20 , MariaDB Galera Cluster 10.0.29 , MariaDB

Galera Cluster 5.5.54

25.3.18 MariaDB 10.2.2 , MariaDB 10.1.18 , MariaDB Galera Cluster 10.0.28 , MariaDB Galera Cluster 5.5.53

25.3.17 MariaDB 10.1.17 , MariaDB Galera Cluster 10.0.27 , MariaDB Galera Cluster 5.5.51

25.3.16 N/A

25.3.15 MariaDB 10.2.0 , MariaDB 10.1.13 , MariaDB Galera Cluster 10.0.25 , MariaDB Galera Cluster 5.5.49

25.3.14 MariaDB 10.1.12 , MariaDB Galera Cluster 10.0.24 , MariaDB Galera Cluster 5.5.48

25.3.12 MariaDB 10.1.11

25.3.11 N/A

25.3.10 N/A

25.3.9 MariaDB 10.1.3 , MariaDB Galera Cluster 10.0.17 , MariaDB Galera Cluster 5.5.42

25.3.8 N/A

25.3.7 N/A

25.3.6 N/A

25.3.5 MariaDB 10.1.1 , MariaDB Galera Cluster 10.0.10 , MariaDB Galera Cluster 5.5.37

25.3.4 N/A

25.3.3 N/A

25.3.2 MariaDB Galera Cluster 10.0.7 , MariaDB Galera Cluster 5.5.35

3.2.2 About Galera Replication
Contents
1. Synchronous vs. Asynchronous Replication

2. Certification-Based Replication Method

3. Generic Replication Library

4. Galera Slave Threads

5. Streaming Replication

6. Group Commits

In MariaDB Cluster, the Server replicates a transaction at commit time by broadcasting the write set associated with the

transaction to every node in the cluster. The client connects directly to the DBMS and experiences behavior that is similar to

native MariaDB in most cases. The wsrep API (write set replication API) defines the interface between Galera replication

and MariaDB.

Synchronous vs. Asynchronous Replication
The basic difference between synchronous and asynchronous replication is that "synchronous" replication guarantees that if

a change happened on one node in the cluster, then the change will happen on other nodes in the cluster "synchronously",

or at the same time. "Asynchronous" replication gives no guarantees about the delay between applying changes on "master"

node and the propagation of changes to "slave" nodes. The delay with "asynchronous" replication can be short or long. This

also implies that if master node crashes in an "asynchronous" replication topology, then some of the latest changes may be

lost.

Theoretically, synchronous replication has a number of advantages over asynchronous replication:

Clusters utilizing synchronous replication are always highly available. If one of the nodes crashed, then there would

be no data loss. Additionally, all cluster nodes are always consistent.

Clusters utilizing synchronous replication allow transactions to be executed on all nodes in parallel.

Clusters utilizing synchronous replication can guarantee causality across the whole cluster. This means that if a

SELECT is executed on one cluster node after a transaction is executed on a cluster node, it should see the effects of

2398/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10033-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5559-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-10123-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10031-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5556-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-10120-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10029-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5554-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10028-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5553-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5551-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10025-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5549-release-notes/
https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10024-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10017-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5542-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10010-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5537-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-1007-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5535-release-notes/

that transaction.

However, in practice, synchronous database replication has traditionally been implemented via the so-called "2-phase

commit" or distributed locking which proved to be very slow. Low performance and complexity of implementation of

synchronous replication led to a situation where asynchronous replication remains the dominant means for database

performance scalability and availability. Widely adopted open-source databases such as MySQL or PostgreSQL offer only

asynchronous or semi-synchronous replication solutions.

Galera's replication is not completely synchronous. It is sometimes called virtually synchronous replication.

Certification-Based Replication Method
An alternative approach to synchronous replication that uses Group Communication and transaction ordering techniques

was suggested by a number of researchers. For example:

Database State Machine Approach

Don't Be Lazy, Be Consistent

Prototype implementations have shown a lot of promise. We combined our experience in synchronous database replication

and the latest research in the field to create the Galera Replication library and the wsrep API.

Galera replication is a highly transparent, scalable, and virtually synchronous replication solution for database

clustering to achieve high availability and improved performance. Galera-based clusters are:

Highly available

Highly transparent

Highly scalable (near linear scalability may be reached depending on the application)

Generic Replication Library
Galera replication functionality is implemented as a shared library and can be linked with any transaction processing system

which implements the wsrep API hooks.

The Galera replication library is a protocol stack providing functionality for preparing, replicating and applying of transaction

write sets. It consists of:

wsrep API specifies the interface 4 responsibilities for DBMS and replication provider

wsrep hooks is the wsrep integration in the DBMS engine.

Galera provider implements the wsrep API for Galera library

certification layer takes care of preparing write sets and performing certification

replication manages replication protocol and provides total ordering capabilities

GCS framework provides plugin architecture for group communication systems

many gcs implementations can be adapted, we have experimented with spread and our in-house implementations:

vsbes and gemini

Many components in the Galera replication library were redesigned and improved with the introduction of MariaDB 10.4,

which includes Galera 4.

Galera Slave Threads
Although the Galera provider certifies the write set associated with a transaction at commit time on each node in the

cluster, this write set is not necessarily applied on that cluster node immediately. Instead, the write set is placed in the

cluster node's receive queue on the node, and it is eventually applied by one of the cluster node's Galera slave thread.

The number of Galera slave threads can be configured with the wsrep_slave_threads system variable.

The Galera slave threads are able to determine which write sets are safe to apply in parallel. However, if your cluster nodes

seem to have frequent consistency problems, then setting the value to 1 will probably fix the problem.

When a cluster node's state, as seen by wsrep_local_state_comment, is JOINED , then increasing the number of slave

threads may help the cluster node catch up with the cluster more quickly. In this case, it may be useful to set the number of

threads to twice the number of CPUs on the system.

Streaming Replication

Streaming replication was introduced in Galera 4, and so is only available from MariaDB 10.4.

In older versions of MariaDB Cluster there was a 2GB limit on the size of the transaction you could run. The node waits on

MariaDB starting with 10.4

2399/4161

http://library.epfl.ch/theses/?nr=2090
http://www.cs.mcgill.ca/~kemme/papers/vldb00.html

the transaction commit before performing replication and certification. With large transactions, long running writes, and

changes to huge data-sets, there was a greater possibility of a conflict forcing rollback on an expensive operation.

Using Streaming replication, the node breaks huge transactions up into smaller and more manageable fragments, it then

replicates these fragments to the cluster as it works instead of waiting for the commit. Once certified, the fragment can no

longer be aborted by conflicting transactions. As this can have performance consequences both during execution and in the

event of rollback, it is recommended that you only use it with large transactions that are unlikely to experience conflict.

For more information on Streaming Replication, see the Galera documentation.

Group Commits

Group Commit support for MariaDB Cluster was introduced in Galera 4, and so is only available from MariaDB 10.4.

In MariaDB Group Commit, groups of transactions are flushed together to disk to improve performance. Prior to MariaDB

10.4, this feature was not available in MariaDB Cluster as it interfered with the global-ordering of transactions for replication.

Beginning in 10.4, MariaDB Cluster can take advantage of Group Commit.

For more information on Group Commit, see the Galera documentation.

MariaDB starting with 10.4

3.2.3 Galera Use Cases
Here are some common use cases for Galera replication:

Read

Master

Traditional MariaDB master-slave topology, but with Galera all "slave" nodes are capable masters at all times

- it is just the application that treats them as slaves. Galera replication can guarantee zero slave lag for such

installations and, due to parallel slave applying, much better throughput for the cluster.

WAN

Clustering

Synchronous replication works fine over the WAN network. There will be a delay, which is proportional to the

network round trip time (RTT), but it only affects the commit operation.

Disaster

Recover

Disaster recovery is a sub-class of WAN replication. Here one data center is passive and only receives

replication events, but does not process any client transactions. Such a remote data center will be up to date

at all times and no data loss can happen. During recovery, the spare site is just nominated as primary and

application can continue as normal with a minimal fail over delay.

Latency

Eraser

With WAN replication topology, cluster nodes can be located close to clients. Therefore all read & write

operations will be super fast with the local node connection. The RTT related delay will be experienced only

at commit time, and even then it can be generally accepted by end user, usually the kill-joy for end user

experiences is the slow browsing response time, and read operations are as fast as they possibly can be.

3.2.4 MariaDB Galera Cluster - Known
Limitations
This article contains information on known problems and limitations of MariaDB Galera Cluster.

Limitations from codership.com:
Currently replication works only with the InnoDB storage engine. Any writes to tables of other types, including system

(mysql.*) tables are not replicated (this limitation excludes DDL statements such as CREATE USER, which implicitly

modify the mysql.* tables 4 those are replicated). There is however experimental support for MyISAM - see the

wsrep_replicate_myisam system variable)

Unsupported explicit locking include LOCK TABLES, FLUSH TABLES {explicit table list} WITH READ LOCK,

(GET_LOCK(), RELEASE_LOCK(),&). Using transactions properly should be able to overcome these limitations.

Global locking operators like FLUSH TABLES WITH READ LOCK are supported.

All tables should have a primary key (multi-column primary keys are supported). DELETE operations are

unsupported on tables without a primary key. Also, rows in tables without a primary key may appear in a different

order on different nodes.

The general query log and the slow query log cannot be directed to a table. If you enable these logs, then you must

forward the log to a file by setting log_output=FILE .

XA transactions are not supported.

2400/4161

https://galeracluster.com/library/documentation/streaming-replication.html
https://galeracluster.com/library/kb/group-commit.html

Transaction size. While Galera does not explicitly limit the transaction size, a writeset is processed as a single

memory-resident buffer and as a result, extremely large transactions (e.g. LOAD DATA) may adversely affect node

performance. To avoid that, the wsrep_max_ws_rows and wsrep_max_ws_size system variables limit transaction

rows to 128K and the transaction size to 2Gb by default. If necessary, users may want to increase those limits.

Future versions will add support for transaction fragmentation.

Other observations, in no particular order:
If you are using mysqldump for state transfer, and it failed for whatever reason (e.g. you do not have the database

account it attempts to connect with, or it does not have necessary permissions), you will see an SQL SYNTAX error in

the server error log. Don't let it fool you, this is just a fancy way to deliver a message (the pseudo-statement inside of

the bogus SQL will actually contain the error message).

Do not use transactions of any essential size. Just to insert 100K rows, the server might require additional 200-300

Mb. In a less fortunate scenario it can be 1.5 Gb for 500K rows, or 3.5 Gb for 1M rows. See MDEV-466 for some

numbers (you'll see that it's closed, but it's not closed because it was fixed).

Locking is lax when DDL is involved. For example, if your DML transaction uses a table, and a parallel DDL statement

is started, in the normal MySQL setup it would have waited for the metadata lock, but in Galera context it will be

executed right away. It happens even if you are running a single node, as long as you configured it as a cluster node.

See also MDEV-468 . This behavior might cause various side-effects, the consequences have not been investigated

yet. Try to avoid such parallelism.

Do not rely on auto-increment values to be sequential. Galera uses a mechanism based on autoincrement increment

to produce unique non-conflicting sequences, so on every single node the sequence will have gaps. See

http://codership.blogspot.com/2009/02/managing-auto-increments-with-multi.html

A command may fail with ER_UNKNOWN_COM_ERROR producing 'WSREP has not yet prepared node for application

use' (or 'Unknown command' in older versions) error message. It happens when a cluster is suspected to be split and

the node is in a smaller part 4 for example, during a network glitch, when nodes temporarily lose each other. It can

also occur during state transfer. The node takes this measure to prevent data inconsistency. Its usually a temporary

state which can be detected by checking wsrep_ready value. The node, however, allows SHOW and SET command

during this period.

After a temporary split, if the 'good' part of the cluster was still reachable and its state was modified,

resynchronization occurs. As a part of it, nodes of the 'bad' part of the cluster drop all client connections. It might be

quite unexpected, especially if the client was idle and did not even know anything wrong was happening. Please also

note that after the connection to the isolated node is restored, if there is a flow on the node, it takes a long time for it

to synchronize, during which the "good" node says that the cluster is already of the normal size and synced, while the

rejoining node says it's only joined (but not synced). The connections keep getting 'unknown command'. It should

pass eventually.

While binlog_format is checked on startup and can only be ROW (see Binary Log Formats), it can be changed at

runtime. Do NOT change binlog_format at runtime, it is likely not only cause replication failure, but make all other

nodes crash.

If you are using rsync for state transfer, and a node crashes before the state transfer is over, rsync process might

hang forever, occupying the port and not allowing to restart the node. The problem will show up as 'port in use' in the

server error log. Find the orphan rsync process and kill it manually.

Performance: by design performance of the cluster cannot be higher than performance of the slowest node; however,

even if you have only one node, its performance can be considerably lower comparing to running the same server in

a standalone mode (without wsrep provider). It is particularly true for big enough transactions (even those which are

well within current limitations on transaction size quoted above).

Windows is not supported.

Replication filters: When using Galera cluster, replication filters should be used with caution. See Configuring

MariaDB Galera Cluster: Replication Filters for more details. See also MDEV-421 and MDEV-6229 .

Flashback isn't supported in Galera due to incompatible binary log format.

FLUSH PRIVILEGES is not replicated.

The query cache needed to be disabled by setting query_cache_size=0 prior to MariaDB Galera Cluster 5.5.40,

MariaDB Galera Cluster 10.0.14, and MariaDB 10.1.2 ..

In an asynchronous replication setup where a master replicates to a galera node acting as slave, parallel replication

(slave-parallel-threads > 1) on slave is currently not supported (see MDEV-6860).

The disk-based Galera gcache is not encrypted (MDEV-8072).

Nodes may have different table definitions, especially temporarily during rolling schema upgrade operations, but the

same schema compatibility restrictions apply as they do for ROW based replication

2401/4161

https://jira.mariadb.org/browse/MDEV-466
https://jira.mariadb.org/browse/MDEV-468
http://codership.blogspot.com/2009/02/managing-auto-increments-with-multi.html
https://jira.mariadb.org/browse/MDEV-421
https://jira.mariadb.org/browse/MDEV-6229
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-6860
https://galeracluster.com/library/documentation/state-transfer.html#write-set-cache-gcache
https://jira.mariadb.org/browse/MDEV-8072

3.2.5 Tips on Converting to Galera
Contents
1. Galera is available in many places

2. Overview of cross-colo writing

3. AUTO_INCREMENT

4. InnoDB only

5. Check after COMMIT

6. Always have PRIMARY KEY

7. Transaction "size"

8. Critical reads

9. MyISAM and MEMORY

10. Replicating GRANTs

11. ALTERs

12. Single "Master" Configuration

13. DBA tricks

14. Variables that may need to be different

15. Miscellany

16. GTIDs

17. How many nodes to have in a cluster

18. Postlog

These topics will be discussed in more detail below.

Dear Schema Designer:

InnoDB only, always have PK.

Dear Developer:

Check for errors, even after COMMIT.

Moderate sized transactions.

Don't make assumptions about AUTO_INCREMENT values.

Handling of "critical reads" is quite different (arguably better).

Read/Write split is not necessary, but is still advised in case the underlying structure changes in the future.

Dear DBA:

Building the machines is quite different. (Not covered here)

ALTERs are handled differently.

TRIGGERs and EVENTs may need checking.

Tricks in replication (eg, BLACKHOLE) may not work.

Several variables need to be set differently.

Galera is available in many places
Galera's High Availability replication is available via:

MariaDB 10.1 and later

Percona XtraDB Cluster

Codership's Galera Cluster for MySQL

Overview of cross-colo writing
(This overview is valid even for same-datacenter nodes, but the issues of latency vanish.)

Cross-colo latency is an 'different' than with traditional replication, but not necessarily better or worse with Galera. The

latency happens at a very different time for Galera.

In 'traditional' replication, these steps occur:

Client talks to Master. If Client and Master are in different colos, this has a latency hit.

Each SQL to Master is another latency hit, including(?) the COMMIT (unless using autocommit).

Replication to Slave(s) is asynchronous, so this does not impact the client writing to the Master.

Since replication is asynchronous, a Client (same or subsequent) cannot be guaranteed to see that data on the

Slave. This is a "critical read". The async Replication delay forces apps to take some evasive action.

In Galera-based replication:

Client talks to any Master -- possibly with cross-colo latency. Or you could arrange to have Galera nodes co-located

with clients to avoid this latency.

2402/4161

At COMMIT time (or end of statement, in case of autocommit=1), galera makes one roundtrip to other nodes.

The COMMIT usually succeeds, but could fail if some other node is messing with the same rows. (Galera retries on

autocommit failures.)

Failure of the COMMIT is reported to the Client, who should simply replay the SQL statements from the BEGIN.

Later, the whole transaction will be applied (with possibility of conflict) on the other nodes.

Critical Read -- details below

For an N-statement transaction: In a typical 'traditional' replication setup:

0 or N (N+2?) latency hits, depending on whether the Client is co-located with the Master.

Replication latencies and delays lead to issues with "Critical Reads".

In Galera:

0 latency hits (assuming Client is 'near' some node)

1 latency hit for the COMMIT.

0 (usually) for Critical Read (details below)

Bottom line: Depending on where your Clients are, and whether you clump statements into BEGIN...COMMIT transacitons,

Galera may be faster or slower than traditional replication in a WAN topology.

AUTO_INCREMENT
By using wsrep_auto_increment_control = ON, the values of auto_increment_increment and auto_increment_offset will be

automatically adjusted as nodes come/go.

If you are building a Galera cluster by starting with one node as a Slave to an existing non-Galera system, and if you have

multi-row INSERTs that depend on AUTO_INCREMENTs, the read this Percona blog

Bottom line: There may be gaps in AUTO_INCREMENT values. Consecutive rows, even on one connection, will not have

consecutive ids.

Beware of Proxies that try to implement a "read/write split". In some situations, a reference to LAST_INSERT_ID() will be

sent to a "Slave".

InnoDB only
For effective replication of data, you must use only InnoDB. This eliminates

FULLTEXT index (until 5.6)

SPATIAL index

MyISAM's PK as second column

You can use MyISAM and MEMORY for data that does not need to be replicated.

Also, you should use "START TRANSACTION READONLY" wherever appropriate.

Check after COMMIT
Check for errors after issuing COMMIT. A "deadlock" can occur due to writes on other node(s).

Possible exception (could be useful for legacy code without such checks): Treat the system as single-Master, plus Slaves.

By writing only to one node, COMMIT should always succeed(?)

What about autocommit = 1? wsrep_retry_autocommit tells Galera to retry if a single statement that is autocommited N

times. So, there is still a chance (very slim) of getting a deadlock on such a statement. The default setting of "1" retry is

probably good.

Always have PRIMARY KEY
"Row Based Replication" will be used; this requires a PK on every table.

A non-replicated table (eg, MyISAM) does not have to have a PK.

Transaction "size"
(This section assumes you have Galera nodes in multiple colos.) Because of some of the issues discussed, it is wise to

group your write statements into moderate sized BEGIN...COMMIT transactions. There is one latency hit per COMMIT or

autocommit. So, combining statements will decrease those hits. On the other hand, it is unwise (for other reasons) to make

huge transactions, such as inserting/modifying millions of rows in a single transaction.

2403/4161

To deal with failure on COMMIT, design your code so you can redo the SQL statements in the transaction without messing

up other data. For example, move "normalization" statements out of the main transaction; there is arguably no compelling

reason to roll them back if the main code rolls back.

In any case, doing what is "right" for the business logic overrides other considerations.

Galera's tx_isolation is between Serializable and Repeatable Read. tx_isolation variable is ignored.

Set wsrep_log_conflicts to get errors put in the regular MySQL mysqld.err.

XA transactions cannot be supported. (Galera is already doing a form of XA in order to do its thing.)

Critical reads
Here is a 'simple' (but not 'free') way to assure that a read-after-write, even from a different connection, will see the updated

data.

SET SESSION wsrep_sync_wait = 1; SELECT ... SET SESSION wsrep_sync_wait = 0;

For non-SELECTs, use a different bit set for the first select. (TBD: Would 0xffff always work?) (Before Galera 3.6, it was

wsrep_causal_reads = ON.) Doc for wsrep_sync_wait

This setting stalls the SELECT until all current updates have been applied to the node. That is sufficient to guarantee that a

previous write will be visible. The time cost is usually zero. However, a large UPDATE could lead to a delay. Because of

RBR and parallel application, delays are likely to be less than on traditional replication. Zaitsev's blog

It may be more practical (for a web app) to simply set wsrep_sync_wait right after connecting.

MyISAM and MEMORY
As said above, use InnoDB only. However, here is more info on the MyISAM (and hence FULLTEXT, SPATIAL, etc) issues.

MyISAM and MEMORY tables are not replicated.

Having MyISAM not replicated can be a big benefit -- You can "CREATE TEMPORARY TABLE ... ENGINE=MyISAM" and

have it exist on only one node. RBR assures that any data transferred from that temp table into a 'real' table can still be

replicated.

Replicating GRANTs
GRANTs and related operations act on the MyISAM tables in the database `mysql`. The GRANT statements will(?) be

replicated, but the underlying tables will not.

ALTERs
Many DDL changes on Galera can be achieved without downtime, even if they take a long time.

RSU vs TOI :

Rolling Schema Upgrade (RSU): manually execute the DDL on each node in the cluster. The node will desync while

executing the DDL.

Total Order Isolation (TOI): Galera automatically replicates the DDL to each node in the cluster, and it synchronizes

each node so that the statement is executed at same time (in the replication sequence) on all nodes.

Caution: Since there is no way to synchronize the clients with the DDL, you must make sure that the clients are happy with

either the old or the new schema. Otherwise, you will probably need to take down the entire cluster while simultaneously

switching over both the schema and the client code.

Fast DDL operations can usually be executed in TOI mode:

DDL operations that support the NOCOPY and INSTANT algorithms are usually very fast.

DDL operations that support the INPLACE algorithm may be fast or slow, depending on whether the table needs to

be rebuilt.

DDL operations that only support the COPY algorithm are usually very slow.

For a list of which operations support which algorithms, see InnoDB Online DDL.

If you need to use RSU mode, then do the following separately for each node:

SET SESSION wsrep_OSU_method='RSU';

ALTER TABLE tab <alter options here>;

SET SESSION wsrep_OSU_method='TOI';

2404/4161

https://galeracluster.com/documentation-webpages/documentation/schema-upgrades.html

More discussion of RSU procedures

Single "Master" Configuration
You can 'simulate' Master + Slaves by having clients write only to one node.

No need to check for errors after COMMIT.

Lose the latency benefits.

DBA tricks
Remove node from cluster; back it up; put it back in. Syncup is automatic.

Remove node from cluster; use it for testing, etc; put it back in. Syncup is automatic.

Rolling hardware/software upgrade: Remove; upgrade; put back in. Repeat.

Variables that may need to be different
auto_increment_increment - If you are writing to multiple nodes, and you use AUTO_INCREMENT, then

auto_increment_increment will automatically be equal the current number of nodes.

binlog-do/ignore-db - Do not use.

binlog_format - ROW is required for Galera.

innodb_autoinc_lock_mode - 2

innodb_doublewrite - ON: When an IST occurs, want there to be no torn pages? (With FusionIO or other drives that

guarantee atomicity, OFF is better.)

innodb_flush_log_at_trx_commit - 2 or 0. IST or SST will recover from loss if you have 1.

query_cache_size - 0

query_cache_type - 0: The Query cache cannot be used in a Galera context.

wsrep_auto_increment_control - Normally want ON

wsrep_on - ON

wsrep_provider_options - Various settings may need tuning if you are using a WAN.

wsrep_slave_threads - use for parallel replication

wsrep_sync_wait (previously wsrep_causal_reads) - used transiently to dealing with "critical reads".

Miscellany
Until recently, FOREIGN KEYs were buggy.

LOAD DATA is auto-chunked. That is, it is passed to other nodes piecemeal, not all at once.

MariaDB's known issues with Galera

DROP USER may not replicate?

A slight difference in ROLLBACK for conflict: InnoDB rolls back smaller transaction; Galera rolls back last.

Slide Deck for Galera

SET GLOBAL wsrep_debug = 1; leads to a lot of debug info in the error log.

Large UPDATEs / DELETEs should be broken up. This admonition is valid for all databases, but there are additional issues

in Galera.

WAN: May need to increase (from the defaults) wsrep_provider_options = evs...

MySQL/Perona 5.6 or MariaDB 10 is recommended when going to Galera.

Cluster limitations Slide show

GTIDs
See Using MariaDB GTIDs with MariaDB Galera Cluster.

How many nodes to have in a cluster
If all the servers are in the same 'vulnerability zone' -- eg, rack or data center -- Have an odd number (at least 3) of nodes.

When spanning colos, you need 3 (or more) data centers in order to be 'always' up, even during a colo failure. With only 2

data centers, Galera can automatically recover from one colo outage, but not the other. (You pick which.)

2405/4161

http://www.severalnines.com/blog/online-schema-upgrade-mysql-galera-cluster-using-rsu-method
http://www.slideshare.net/skysql/mariadb-galera-cluster-simple-transparent-highly-available
https://www.percona.com/files/presentations/percona-live/nyc-2012/PLNY12-galera-cluster-best-practices.pdf

If you use 3 or 4 colos, these number of nodes per colo are safe:

3 nodes: 1+1+1 (1 node in each of 3 colos)

4 nodes: 1+1+1+1 (4 nodes won't work in 3 colos)

5 nodes: 2+2+1, 2+1+1+1 (5 nodes spread 'evenly' across the colos)

6 nodes: 2+2+2, 2+2+1+1

7 nodes: 3+2+2, 3+3+1, 2+2+2+1, 3+2+1+1 There may be a way to "weight" the nodes differently; that would allow a

few more configurations. With "weighting", give each colo the same weight; then subdivide the weight within each

colo evenly. Four nodes in 3 colos: (1/6+1/6) + 1/3 + 1/3 That way, any single colo failure cannot lead to "split brain".

Postlog
Posted 2013; VARIABLES: 2015; Refreshed Feb. 2016

3.2.6 Getting Started with MariaDB Galera
Cluster

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

The current versions of the Galera wsrep provider library are 26.4.13 for Galera 4 and 25.3.37 for

Galera 3.

For convenience, packages containing these libraries are included in the MariaDB YUM and APT repositories .

Currently, MariaDB Galera Cluster only supports the InnoDB storage engine (although there is experimental support

for MyISAM and, from MariaDB 10.6, Aria).

A great resource for Galera users is the mailing list run by the developers at Codership. It can be found at Codership

on Google Groups . If you use Galera, then it is recommended you subscribe.

Alternate download from mariadb.org

2406/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/repositories/
https://groups.google.com/forum/?fromgroups#!forum/codership-team

Contents
1. Galera Cluster Support in MariaDB Server

2. Prerequisites

1. Swap Size Requirements

2. Limitations

3. Installing MariaDB Galera Cluster

1. Installing MariaDB Galera Cluster with a Package Manager

1. Installing MariaDB Galera Cluster with yum/dnf

2. Installing MariaDB Galera Cluster with apt-get

3. Installing MariaDB Galera Cluster with zypper

2. Installing MariaDB Galera Cluster with a Binary Tarball

3. Installing MariaDB Galera Cluster from Source

4. Configuring MariaDB Galera Cluster

5. Bootstrapping a New Cluster

1. Systemd and Bootstrapping

2. SysVinit and Bootstrapping

6. Adding Another Node to a Cluster

7. Restarting the Cluster

1. Determining the Most Advanced Node

1. Systemd and Galera Recovery

8. State Snapshot Transfers (SSTs)

9. Incremental State Transfers (ISTs)

10. Data at Rest Encryption

11. Monitoring

1. Status Variables

2. Cluster Change Notifications

12. Footnotes

Galera Cluster Support in MariaDB Server
MariaDB Galera Cluster is powered by:

MariaDB Server.

The MySQL-wsrep patch for MySQL Server and MariaDB Server developed by Codership . The patch currently

supports only Unix-like operating systems.

The Galera wsrep provider library .

In MariaDB 10.1 and later, the MySQL-wsrep patch has been merged into MariaDB Server. This means that the

functionality of MariaDB Galera Cluster can be obtained by installing the standard MariaDB Server packages and the Galera

wsrep provider library package. The following Galera version corresponds to each MariaDB Server version:

In MariaDB 10.4 and later, MariaDB Galera Cluster uses Galera 4. This means that the MySQL-wsrep patch is

version 26 and the Galera wsrep provider library is version 4.

In MariaDB 10.3 and before, MariaDB Galera Cluster uses Galera 3. This means that the MySQL-wsrep patch is

version 25 and the Galera wsrep provider library is version 3.

See Deciphering Galera Version Numbers for more information about how to interpret these version numbers.

See What is MariaDB Galera Cluster?: Galera Versions for more information about which specific Galera version is included

in each release of MariaDB Server.

In supported builds, Galera Cluster functionality can be enabled by setting some configuration options that are mentioned

below. Galera Cluster functionality is not enabled in a standard MariaDB Server installation unless explicitly enabled with

these configuration options.

Prerequisites

Swap Size Requirements

During normal operation a MariaDB Galera node does not consume much more memory than a regular MariaDB server.

Additional memory is consumed for the certification index and uncommitted writesets, but normally this should not be

noticeable in a typical application. There is one exception though:

1. Writeset caching during state transfer. When a node is receiving a state transfer it cannot process and apply

incoming writesets because it has no state to apply them to yet. Depending on a state transfer mechanism (e.g.

mysqldump) the node that sends the state transfer may not be able to apply writesets as well. Thus they need to

cache those writesets for a catch-up phase. Currently the writesets are cached in memory and, if the system runs out

of memory either the state transfer will fail or the cluster will block waiting for the state transfer to end.

2407/4161

https://github.com/codership/mysql-wsrep
http://www.codership.com
https://github.com/codership/galera/
https://github.com/codership/mysql-wsrep
https://github.com/codership/galera/
https://github.com/codership/mysql-wsrep
https://github.com/codership/galera/
https://github.com/codership/mysql-wsrep
https://github.com/codership/galera/
https://mariadb.com/resources/blog/deciphering-galera-version-numbers/

To control memory usage for writeset caching, check the Galera parameters : gcs.recv_q_hard_limit ,

gcs.recv_q_soft_limit , and gcs.max_throttle .

Limitations

Before using MariaDB Galera Cluster, we would recommend reading through the known limitations, so you can be sure that

it is appropriate for your application.

Installing MariaDB Galera Cluster
To use MariaDB Galera Cluster, there are two primary packages that you need to install:

1. A MariaDB Server version that supports Galera Cluster.

2. The Galera wsrep provider library.

As mentioned in the previous section, in MariaDB 10.1 and above, Galera Cluster support is actually included in the

standard MariaDB Server packages. That means that installing MariaDB Galera Cluster package is the same as installing

standard MariaDB Server package in those versions. However, you will also have to install an additional package to obtain

the Galera wsrep provider library.

Some SST methods may also require additional packages to be installed. The mariabackup SST method is generally the

best option for large clusters that expect a lot of load.

Installing MariaDB Galera Cluster with a Package Manager

MariaDB Galera Cluster can be installed via a package manager on Linux. In order to do so, your system needs to be

configured to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

Installing MariaDB Galera Cluster with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

packages from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been

replaced by dnf , which is the next major version of yum . However, yum commands still work on many systems that use

dnf .

To install MariaDB Galera Cluster with yum or dnf , follow the instructions at Installing MariaDB Galera Cluster with yum.

Installing MariaDB Galera Cluster with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB packages

from MariaDB's repository using apt-get .

To install MariaDB Galera Cluster with apt-get , follow the instructions at Installing MariaDB Galera Cluster with apt-get.

Installing MariaDB Galera Cluster with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM packages

from MariaDB's repository using zypper .

To install MariaDB Galera Cluster with zypper , follow the instructions at Installing MariaDB Galera Cluster with ZYpp.

Installing MariaDB Galera Cluster with a Binary Tarball

To install MariaDB Galera Cluster with a binary tarball, follow the instructions at Installing MariaDB Binary Tarballs.

To make the location of the libgalera_smm.so library in binary tarballs more similar to its location in other packages,

the library is now found at lib/galera/libgalera_smm.so in the binary tarballs, and there is a symbolic link in the

lib directory that points to it.

MariaDB Galera Cluster starting with 10.0.24

2408/4161

https://galeracluster.com/library/documentation/galera-parameters.html
https://downloads.mariadb.org/mariadb/repositories/
https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get

Installing MariaDB Galera Cluster from Source

To install MariaDB Galera Cluster by compiling it from source, you will have to compile both MariaDB Server and the Galera

wsrep provider library. For some information on how to do this, see the pages at Installing Galera From Source. The pages

at Compiling MariaDB From Source and Galera Cluster Documentation: Building Galera Cluster for MySQL may also be

helpful.

Configuring MariaDB Galera Cluster
A number of options need to be set in order for Galera Cluster to work when using MariaDB. See Configuring MariaDB

Galera Cluster for more information.

Bootstrapping a New Cluster
To first node of a new cluster needs to be bootstrapped by starting mariadbd on that node with the option --wsrep-new-

cluster option. This option tells the node that there is no existing cluster to connect to. The node will create a new UUID

to identify the new cluster.

Do not use the --wsrep-new-cluster option when connecting to an existing cluster. Restarting the node with this option set

will cause the node to create new UUID to identify the cluster again, and the node won't reconnect to the old cluster. See the

next section about how to reconnect to an existing cluster.

For example, if you were manually starting mariadbd on a node, then you could bootstrap it by executing the following:

$ mariadbd --wsrep-new-cluster

However, keep in mind that most users are not going to be starting mariadbd manually. Instead, most users will use a

service manager to start mariadbd. See the following sections on how to bootstrap a node with the most common service

managers.

Systemd and Bootstrapping

On operating systems that use systemd, a node can be bootstrapped in the following way:

$ galera_new_cluster

This wrapper uses systemd to run mariadbd with the --wsrep-new-cluster option.

If you are using the systemd service that supports the systemd service's method for interacting with multiple MariaDB Server

processes, then you can bootstrap a specific instance by specifying the instance name as a suffix. For example:

$ galera_new_cluster mariadb@node1

Systemd support and the galera_new_cluster script were added in MariaDB 10.1.

SysVinit and Bootstrapping

On operating systems that use sysVinit, a node can be bootstrapped in the following way:

$ service mysql bootstrap

This runs mariadbd with the --wsrep-new-cluster option.

Adding Another Node to a Cluster
Once you have a cluster running and you want to add/reconnect another node to it, you must supply an address of one or

more of the existing cluster members in the wsrep_cluster_address option. For example, if the first node of the cluster

has the address 192.168.0.1, then you could add a second node to the cluster by setting the following option in a server

option group in an option file:

2409/4161

https://galeracluster.com/library/documentation/install-mysql-src.html#building-galera-cluster-for-mysql
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

[mariadb]

...

wsrep_cluster_address=gcomm://192.168.0.1 # DNS names work as well, IP is preferred for performance

The new node only needs to connect to one of the existing cluster nodes. Once it connects to one of the existing cluster

nodes, it will be able to see all of the nodes in the cluster. However, it is generally better to list all nodes of the cluster in

wsrep_cluster_address , so that any node can join a cluster by connecting to any of the other cluster nodes, even if one

or more of the cluster nodes are down. It is even OK to list a node's own IP address in wsrep_cluster_address , since

Galera Cluster is smart enough to ignore it.

Once all members agree on the membership, the cluster's state will be exchanged. If the new node's state is different from

that of the cluster, then it will request an IST or SST to make itself consistent with the other nodes.

Restarting the Cluster
If you shut down all nodes at the same time, then you have effectively terminated the cluster. Of course, the cluster's data

still exists, but the running cluster no longer exists. When this happens, you'll need to bootstrap the cluster again.

If the cluster is not bootstrapped and mariadbd on the first node is just started normally , then the node willl try to connect

to at least one of the nodes listed in the wsrep_cluster_address option. If no nodes are currently running, then this will

fail. Bootstrapping the first node solves this problem.

Determining the Most Advanced Node

In some cases Galera will refuse to bootstrap a node if it detects that it might not be the most advanced node in the cluster.

Galera makes this determination if the node was not the last one in the cluster to be shut down or if the node crashed. In

those cases, manual intervention is needed.

If you know for sure which node is the most advanced you can edit the grastate.dat file in the datadir . You can set

safe_to_bootstrap=1 on the most advanced node.

You can determine which node is the most advanced by checking grastate.dat on each node and looking for the node

with the highest seqno . If the node crashed and seqno=-1 , then you can find the most advanced node by recovering the

seqno on each node with the wsrep_recover option. For example:

$ mariadbd --wsrep_recover

Systemd and Galera Recovery

On operating systems that use systemd , the position of a node can be recovered by running the galera_recovery

script. For example:

$ galera_recovery

If you are using the systemd service that supports the systemd service's method for interacting with multiple MariaDB

Server processes, then you can recover the position of a specific instance by specifying the instance name as a suffix. For

example:

$ galera_recovery mariadb@node1

The galera_recovery script recovers the position of a node by running mariadbd with the wsrep_recover option.

When the galera_recovery script runs mariadbd, it does not write to the error log. Instead, it redirects mariadbd log

output to a file named with the format /tmp/wsrep_recovery.XXXXXX , where XXXXXX is replaced with random

characters.

When Galera is enabled, MariaDB's systemd service automatically runs the galera_recovery script prior to starting

MariaDB, so that MariaDB starts with the proper Galera position.

Support for systemd and the galera_recovery script were added in MariaDB 10.1.

State Snapshot Transfers (SSTs)
In a State Snapshot Transfer (SST), the cluster provisions nodes by transferring a full data copy from one node to another.

2410/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

When a new node joins the cluster, the new node initiates a State Snapshot Transfer to synchronize its data with a node

that is already part of the cluster.

See Introduction to State Snapshot Transfers (SSTs) for more information.

Incremental State Transfers (ISTs)
In an Incremental State Transfer (SST), the cluster provisions nodes by transferring a node's missing writesets from one

node to another. When a new node joins the cluster, the new node initiates a Incremental State Transfer to synchronize its

data with a node that is already part of the cluster.

If a node has only been out of a cluster for a little while, then an IST is generally faster than an SST.

Data at Rest Encryption
In MariaDB 10.1 and above, MariaDB Galera Cluster supports Data at Rest Encryption. See SSTs and Data at Rest

Encryption for some disclaimers on how SSTs are affected when encryption is configured.

Some data still cannot be encrypted:

The disk-based Galera gcache is not encrypted (MDEV-8072).

Monitoring

Status Variables

Galera Cluster's status variables can be queried with the standard SHOW STATUS command. For example:

SHOW GLOBAL STATUS LIKE 'wsrep_%';

Cluster Change Notifications

The cluster nodes can be configured to invoke a command when cluster membership or node status changes. This

mechanism can also be used to communicate the event to some external monitoring agent. This is configured by setting

wsrep_notify_cmd . See Galera Cluster documentation: Notification Command for more information.

3.2.7 Configuring MariaDB Galera Cluster
Contents
1. Mandatory Options

2. Performance-related Options

3. Writing Replicated Write Sets to the Binary Log

4. Replication Filters

5. Network Ports

6. Mutiple Galera Cluster Instances on One Server

A number of options need to be set in order for Galera Cluster to work when using MariaDB. These should be set in the

MariaDB option file.

Mandatory Options
Several options are mandatory, which means that they *must* be set in order for Galera Cluster to be enabled or to work

properly with MariaDB. The mandatory options are:

wsrep_provider 4 Path to the Galera library

wsrep_cluster_address 4 See Galera Cluster address format and usage

binlog_format=ROW 4 See Binary Log Formats

wsrep_on=ON 4 Enable wsrep replication

default_storage_engine=InnoDB 4 This is the default value, or alternately wsrep_replicate_myisam=1

(before MariaDB 10.6) or galera-cluster-system-

variables/#wsrep_mode=REPLICATE_ARIA,REPLICATE_MYISAM (MariaDB 10.6 and later)

innodb_doublewrite=1 4 This is the default value, and should not be changed.

2411/4161

https://galeracluster.com/library/documentation/state-transfer.html#write-set-cache-gcache
https://jira.mariadb.org/browse/MDEV-8072
https://galeracluster.com/library/documentation/notification-cmd.html

Performance-related Options
These are optional optimizations that can be made to improve performance.

innodb_flush_log_at_trx_commit=0 4 This is not usually recommended in the case of standard MariaDB.

However, it is a bit safer with Galera Cluster, since inconsistencies can always be fixed by recovering from another

node.

Writing Replicated Write Sets to the Binary Log
Like with MariaDB replication, write sets that are received by a node with Galera Cluster's certification-based replication are

not written to the binary log by default. If you would like a node to write its replicated write sets to the binary log, then you

will have to set log_slave_updates=ON . This is especially helpful if the node is a replication master. See Using MariaDB

Replication with MariaDB Galera Cluster: Configuring a Cluster Node as a Replication Master .

Replication Filters
Like with MariaDB replication, replication filters can be used to filter write sets from being replicated by Galera Cluster's

certification-based replication. However, they should be used with caution because they may not work as you'd expect.

The following replication filters are honored for InnoDB DML, but not DDL:

binlog_do_db

binlog_ignore_db

replicate_wild_do_table

replicate_wild_ignore_table

The following replication filters are honored for DML and DDL for tables that use both the InnoDB and MyISAM storage

engines:

replicate_do_table

replicate_ignore_table

However, it should be kept in mind that if replication filters cause inconsistencies that lead to replication errors, then nodes

may abort.

See also MDEV-421 and MDEV-6229 .

Network Ports
Galera Cluster needs access to the following ports:

Standard MariaDB Port (default: 3306) - For MySQL client connections and State Snapshot Transfers that use the

mysqldump method. This can be changed by setting port .

Galera Replication Port (default: 4567) - For Galera Cluster replication traffic, multicast replication uses both UDP

transport and TCP on this port. Can be changed by setting wsrep_node_address .

Galera Replication Listening Interface (default: 0.0.0.0:4567) needs to be set using gmcast.listen_addr, either

in wsrep_provider_options: wsrep_provider_options='gmcast.listen_addr=tcp://<IP_ADDR>:

<PORT>;'

or in wsrep_cluster_address

IST Port (default: 4568) - For Incremental State Transfers. Can be changed by setting ist.recv_addr in

wsrep_provider_options .

SST Port (default: 4444) - For all State Snapshot Transfer methods other than mysqldump . Can be changed by

setting wsrep_sst_receive_address .

Mutiple Galera Cluster Instances on One Server
If you want to run multiple Galera Cluster instances on one server, then you can do so by starting each instance with

mysqld_multi , or if you are using systemd, then you can use the relevant systemd method for interacting with multiple

MariaDB instances.

You need to ensure that each instance is configured with a different datadir .

You also need to ensure that each instance is configured with different network ports.

3.2.8 State Snapshot Transfers (SSTs) in
2412/4161

https://mariadb.com/kb/en/library/using-mariadb-replication-with-mariadb-galera-cluster-using-mariadb-replica/#configuring-a-cluster-node-as-a-replication-master
https://jira.mariadb.org/browse/MDEV-421
https://jira.mariadb.org/browse/MDEV-6229
http://galeracluster.com/library/documentation/galera-parameters.html#ist-recv-addr

Galera Cluster
Introduction to State Snapshot Transfers (SSTs)

In an SST, the cluster provisions nodes by transferring a full data copy from one node to another.

mariabackup SST Method

The mariabackup SST method uses the Mariabackup utility for performing SSTs.

Manual SST of Galera Cluster Node With Mariabackup

It can be helpful to perform a "manual SST" with Mariabackup when Galera's normal SSTs fail.

xtrabackup-v2 SST Method

The xtrabackup-v2 SST method uses the Percona XtraBackup utility for performing SSTs.

Manual SST of Galera Cluster Node With Percona XtraBackup

It can be helpful to perform a "manual SST" with Xtrabackup when Galera's normal SSTs fail.

5

1

1

3.2.8.1 Introduction to State Snapshot Transfers
(SSTs)

Contents
1. Types of SSTs

2. SST Methods

1. mariabackup

2. rsync / rsync_wan

3. mysqldump

4. xtrabackup-v2

5. xtrabackup

3. Authentication

4. SSTs and Systemd

5. SST Failure

6. SSTs and Data at Rest Encryption

7. Minimal Cluster Size

8. Manual SSTs

9. Known Issues

1. mysqld_multi

In a State Snapshot Transfer (SST), the cluster provisions nodes by transferring a full data copy from one node to another.

When a new node joins the cluster, the new node initiates a State Snapshot Transfer to synchronize its data with a node

that is already part of the cluster.

Types of SSTs
There are two conceptually different ways to transfer a state from one MariaDB server to another:

1. Logical

The only SST method of this type is the mysqldump SST method, which actually uses the mysqldump utility to get a

logical dump of the donor. This SST method requires the joiner node to be fully initialized and ready to accept connections

before the transfer. This method is, by definition, blocking, in that it blocks the donor node from modifying its own state for

the duration of the transfer. It is also the slowest of all, and that might be an issue in a cluster with a lot of load.

2. Physical

SST methods of this type physically copy the data files from the donor node to the joiner node. This requires that the joiner

node is initialized after the transfer. The mariabackup SST method and a few other SST methods fall into this category.

These SST methods are much faster than the mysqldump SST method, but they have certain limitations. For example,

they can be used only on server startup and the joiner node must be configured very similarly to the donor node (e.g.

innodb_file_per_table should be the same and so on). Some of the SST methods in this category are non-blocking on the

donor node, meaning that the donor node is still able to process queries while donating the SST (e.g. the mariabackup

SST method is non-blocking).

SST Methods
2413/4161

SST methods are supported via a scriptable interface. New SST methods could potentially be developed by creating new

SST scripts. The scripts usually have names of the form wsrep_sst_<method> where <method> is one of the SST

methods listed below.

You can choose your SST method by setting the wsrep_sst_method system variable. It can be changed dynamically with

SET GLOBAL on the node that you intend to be a SST donor. For example:

SET GLOBAL wsrep_sst_method='mariabackup';

It can also be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_method = mariabackup

For an SST to work properly, the donor and joiner node must use the same SST method. Therefore, it is recommended to

set wsrep_sst_method to the same value on all nodes, since any node will usually be a donor or joiner node at some

point.

MariaDB Galera Cluster comes with the following built-in SST methods:

mariabackup

This SST method uses the Mariabackup utility for performing SSTs. It is one of the two non-locking methods. This is the

recommended SST method if you require the ability to run queries on the donor node during the SST. Note that if you use

the mariabackup SST method, then you also need to have socat installed on the server. This is needed to stream the

backup from the donor to the joiner. This is a limitation inherited from the xtrabackup-v2 SST method.

This SST method supports GTID.

This SST method supports Data at Rest Encryption.

This SST method is available from MariaDB 10.1.26 and MariaDB 10.2.10 .

With this SST method, it is impossible to upgrade the cluster between some major versions; see MDEV-27437 .

See mariabackup SST method for more information.

rsync / rsync_wan

rsync is the default method. This method uses the rsync utility to create a snapshot of the donor node. rsync

should be available by default on all modern Linux distributions. The donor node is blocked with a read lock during the SST.

This is the fastest SST method, especially for large datasets since it copies binary data. Because of that, this is the

recommended SST method if you do not need to allow the donor node to execute queries during the SST.

The rsync method runs rsync in --whole-file mode, assuming that nodes are connected by fast local network links

so that the default delta transfer mode would consume more processing time than it may save on data transfer bandwidth.

When having a distributed cluster with slow links between nodes, the rsync_wan method runs rsync in the default delta

transfer mode, which may reduce data transfer time substantially when an older datadir state is already present on the joiner

node. Both methods are actually implemented by the same script, wsrep_sst_rsync_wan is just a symlink to the

wsrep_sst_rsync script and the actual rsync mode to use is determined by the name the script was called by.

This SST method supports GTID.

This SST method supports Data at Rest Encryption.

The rsync SST method does not support tables created with the DATA DIRECTORY or INDEX DIRECTORY clause. Use

the mariabackup SST method as an alternative to support this feature.

Use of this SST method could result in data corruption when using innodb_use_native_aio (the default) if the donor is

older than MariaDB 10.3.35 , MariaDB 10.4.25, MariaDB 10.5.16, MariaDB 10.6.8, or MariaDB 10.7.4 ; see MDEV-

25975 . Starting with those donor versions, wsrep_sst_method=rsync is a reliable way to upgrade the cluster to a

newer major version.

As of MariaDB 10.1.36 , MariaDB 10.2.18 , and MariaDB 10.3.10 , stunnel can be used to encrypt data over

the wire. Be sure to have stunnel installed. You will also need to generate certificates and keys. See the stunnel

documentation for information on how to do that. Once you have the keys, you will need to add the tkey and tcert

options to the [sst] option group in your MariaDB configuration file, such as:

2414/4161

https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://jira.mariadb.org/browse/MDEV-27437
http://www.samba.org/rsync/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://jira.mariadb.org/browse/MDEV-25975
https://mariadb.com/kb/en/mariadb-10136-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://www.stunnel.org
https://www.stunnel.org/howto.html

[sst]

tkey = /etc/my.cnf.d/certificates/client-key.pem

tcert = /etc/my.cnf.d/certificates/client-cert.pem

You also need to run the certificate directory through openssl rehash .

mysqldump

This SST method runs mysqldump on the donor node and pipes the output to the mariadb client connected to the joiner

node. The mysqldump SST method needs a username/password pair set in the wsrep_sst_auth variable in order to get the

dump. The donor node is blocked with a read lock during the SST. This is the slowest SST method.

This SST method supports GTID.

This SST method supports Data at Rest Encryption.

xtrabackup-v2

In MariaDB 10.1 and later, Mariabackup is the recommended backup method to use instead of Percona XtraBackup.

In MariaDB 10.3, Percona XtraBackup is not supported. See Percona XtraBackup Overview: Compatibility with

MariaDB for more information.

In MariaDB 10.2 and MariaDB 10.1, Percona XtraBackup is only partially supported. See Percona XtraBackup

Overview: Compatibility with MariaDB for more information.

This SST method uses the Percona XtraBackup utility for performing SSTs. It is one of the two non-blocking methods.

Note that if you use the xtrabackup-v2 SST method, you also need to have socat installed on the server. Since

Percona XtraBackup is a third party product, this SST method requires an additional installation some additional

configuration. Please refer to Percona's xtrabackup SST documentation for information from the vendor.

This SST method does not support GTID.

This SST method does not support Data at Rest Encryption.

This SST method is available from MariaDB Galera Cluster 5.5.37 and MariaDB Galera Cluster 10.0.10.

See xtrabackup-v2 SST method for more information.

xtrabackup

In MariaDB 10.1 and later, Mariabackup is the recommended backup method to use instead of Percona XtraBackup.

In MariaDB 10.3, Percona XtraBackup is not supported. See Percona XtraBackup Overview: Compatibility with

MariaDB for more information.

In MariaDB 10.2 and MariaDB 10.1, Percona XtraBackup is only partially supported. See Percona XtraBackup

Overview: Compatibility with MariaDB for more information.

This SST method is an older SST method that uses the Percona XtraBackup utility for performing SSTs. The

xtrabackup-v2 SST method should be used instead of the xtrabackup SST method starting from MariaDB 5.5.33 .

This SST method does not support GTID.

This SST method does not support Data at Rest Encryption.

Authentication

2415/4161

https://www.openssl.org/docs/man1.1.0/apps/rehash.html
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
http://www.percona.com/doc/percona-xtradb-cluster/5.7/manual/xtrabackup_sst.html
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/mariadb-5533-release-notes/

All SST methods except rsync require authentication via username and password. You can tell the client what username

and password to use by setting the wsrep_sst_auth system variable. It can be changed dynamically with SET GLOBAL

on the node that you intend to be a SST donor. For example:

SET GLOBAL wsrep_sst_auth = 'mariabackup:password';

It can also be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_auth = mariabackup:password

Some authentication plugins do not require a password. For example, the unix_socket and gssapi authentication

plugins do not require a password. If you are using a user account that does not require a password in order to log in, then

you can just leave the password component of wsrep_sst_auth empty. For example:

[mariadb]

...

wsrep_sst_auth = mariabackup:

See the relevant description or page for each SST method to find out what privileges need to be granted to the user and

whether the privileges are needed on the donor node or joiner node for that method.

SSTs and Systemd
MariaDB's systemd unit file has a default startup timeout of about 90 seconds on most systems. If an SST takes longer

than this default startup timeout on a joiner node, then systemd will assume that mysqld has failed to startup, which

causes systemd to kill the mysqld process on the joiner node. To work around this, you can reconfigure the MariaDB

systemd unit to have an infinite timeout, such as by executing one of the following commands:

If you are using systemd 228 or older, then you can execute the following to set an infinite timeout:

sudo tee /etc/systemd/system/mariadb.service.d/timeoutstartsec.conf <<EOF

[Service]

TimeoutStartSec=0

EOF

sudo systemctl daemon-reload

Systemd 229 added the infinity option , so if you are using systemd 229 or later, then you can execute the following to

set an infinite timeout:

sudo tee /etc/systemd/system/mariadb.service.d/timeoutstartsec.conf <<EOF

[Service]

TimeoutStartSec=infinity

EOF

sudo systemctl daemon-reload

See Configuring the Systemd Service Timeout for more details.

Note that systemd 236 added the EXTEND_TIMEOUT_USEC environment variable that allows services to extend the

startup timeout during long-running processes. Starting with MariaDB 10.1.35 , MariaDB 10.2.17 , and MariaDB 10.3.8

, on systems with systemd versions that support it, MariaDB uses this feature to extend the startup timeout during long

SSTs. Therefore, if you are using systemd 236 or later, then you should not need to manually override

TimeoutStartSec , even if your SSTs run for longer than the configured value. See MDEV-15607 for more information.

SST Failure
An SST failure generally renders the joiner node unusable. Therefore, when an SST failure is detected, the joiner node will

abort.

Restarting a node after a mysqldump SST failure may require manual restoration of the administrative tables.

2416/4161

https://lists.freedesktop.org/archives/systemd-devel/2016-February/035748.html
https://lists.freedesktop.org/archives/systemd-devel/2017-December/039996.html
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://jira.mariadb.org/browse/MDEV-15607

SSTs and Data at Rest Encryption
Look at the description of each SST method to determine which methods support Data at Rest Encryption.

For logical SST methods like mysqldump , each node should be able to have different encryption keys. For physical SST

methods, all nodes need to have the same encryption keys, since the donor node will copy encrypted data files to the joiner

node, and the joiner node will need to be able to decrypt them.

Minimal Cluster Size
In order to avoid a split-brain condition, the minimum recommended number of nodes in a cluster is 3.

When using an SST method that blocks the donor, there is yet another reason to require a minimum of 3 nodes. In a 3-

node cluster, if one node is acting as an SST joiner and one other node is acting as an SST donor, then there is still one

more node to continue executing queries.

Manual SSTs
In some cases, if Galera Cluster's automatic SSTs repeatedly fail, then it can be helpful to perform a "manual SST". See the

following pages on how to do that:

Manual SST of Galera Cluster node with Mariabackup

Manual SST of Galera Cluster node with Percona XtraBackup

Known Issues

mysqld_multi

SST scripts can't currently read the [mysqldN] option groups in option files that are read by instances managed by

mysqld_multi .

See MDEV-18863 for more information.

2.3.4.13 mariabackup SST Method

3.2.8.3 Manual SST of Galera Cluster Node
With Mariabackup

Contents
1. Process

Sometimes it can be helpful to perform a "manual SST" when Galera's normal SSTs fail. This can be especially useful when

the cluster's datadir is very large, since a normal SST can take a long time to fail in that case.

A manual SST essentially consists of taking a backup of the donor, loading the backup on the joiner, and then manually

editing the cluster state on the joiner node. This page will show how to perform this process with Mariabackup.

Process
Check that the donor and joiner nodes have the same Mariabackup version.

mariabackup --version

Create backup directory on donor.

MYSQL_BACKUP_DIR=/mysql_backup

mkdir $MYSQL_BACKUP_DIR

Take a full backup the of the donor node with mariabackup . The --galera-info option should also be provided,

so that the node's cluster state is also backed up.

2417/4161

https://jira.mariadb.org/browse/MDEV-18863

DB_USER=sstuser

DB_USER_PASS=password

mariabackup --backup --galera-info \

 --target-dir=$MYSQL_BACKUP_DIR \

 --user=$DB_USER \

 --password=$DB_USER_PASS

Verify that the MariaDB Server process is stopped on the joiner node. This will depend on your service manager .

For example, on systemd systems, you can execute::

systemctl status mariadb

Create the backup directory on the joiner node.

MYSQL_BACKUP_DIR=/mysql_backup

mkdir $MYSQL_BACKUP_DIR

Copy the backup from the donor node to the joiner node.

OS_USER=dba

JOINER_HOST=dbserver2.mariadb.com

rsync -av $MYSQL_BACKUP_DIR/* ${OS_USER}@${JOINER_HOST}:${MYSQL_BACKUP_DIR}

Prepare the backup on the joiner node.

mariabackup --prepare \

 --target-dir=$MYSQL_BACKUP_DIR

Get the Galera Cluster version ID from the donor node's grastate.dat file.

MYSQL_DATADIR=/var/lib/mysql

cat $MYSQL_DATADIR/grastate.dat | grep version

For example, a very common version number is "2.1".

Get the node's cluster state from the xtrabackup_galera_info file in the backup that was copied to the joiner

node.

cat $MYSQL_BACKUP_DIR/xtrabackup_galera_info

The file contains the values of the wsrep_local_state_uuid and wsrep_last_committed status variables.

The values are written in the following format:

wsrep_local_state_uuid:wsrep_last_committed

For example:

d38587ce-246c-11e5-bcce-6bbd0831cc0f:1352215

Create a grastate.dat file in the backup directory of the joiner node. The Galera Cluster version ID, the cluster

uuid, and the seqno from previous steps will be used to fill in the relevant fields.

For example, with the example values from the last two steps, we could do:

sudo tee $MYSQL_BACKUP_DIR/grastate.dat <<EOF

GALERA saved state

version: 2.1

uuid: d38587ce-246c-11e5-bcce-6bbd0831cc0f

seqno: 1352215

safe_to_bootstrap: 0

EOF

Remove the existing contents of the datadir on the joiner node.

2418/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

MYSQL_DATADIR=/var/lib/mysql

rm -Rf $MYSQL_DATADIR/*

Copy the contents of the backup directory to the datadir the on joiner node.

mariabackup --copy-back \

 --target-dir=$MYSQL_BACKUP_DIR

Make sure the permissions of the datadir are correct on the joiner node.

chown -R mysql:mysql $MYSQL_DATADIR/

Start the MariaDB Server process on the joiner node. This will depend on your service manager .

For example, on systemd systems, you can execute::

systemctl start mariadb

Watch the MariaDB error log on the joiner node and verify that the node does not need to perform a normal SSTs due

to the manual SST.

tail -f /var/log/mysql/mysqld.log

3.2.8.4 xtrabackup-v2 SST Method
Contents
1. Choosing Percona XtraBackup for SSTs

2. Authentication and Privileges

1. Passwordless Authentication - Unix Socket

2. Passwordless Authentication - GSSAPI

3. Choosing a Donor Node

4. Socat Dependency

1. Installing Socat on RHEL/CentOS

5. TLS

1. TLS Using OpenSSL Encryption Built into Socat

2. TLS Using OpenSSL Encryption with Galera-compatible Certificates and Keys

3. TLS Using OpenSSL Encryption with MariaDB-compatible Certificates and Keys

6. Logs

1. Logging to SST Logs

2. Logging to Syslog

7. Performing SSTs with IPv6 Addresses

8. Manual SST with Percona XtraBackup

In MariaDB 10.1 and later, Mariabackup is the recommended backup method to use instead of Percona XtraBackup.

In MariaDB 10.3, Percona XtraBackup is not supported. See Percona XtraBackup Overview: Compatibility with

MariaDB for more information.

In MariaDB 10.2 and MariaDB 10.1, Percona XtraBackup is only partially supported. See Percona XtraBackup

Overview: Compatibility with MariaDB for more information.

The xtrabackup-v2 SST method uses the Percona XtraBackup utility for performing SSTs. It is one of the methods that

does not block the donor node.

Note that if you use the xtrabackup-v2 SST method, then you also need to have socat installed on the server. This is

needed to stream the backup from the donor node to the joiner node.

Since Percona XtraBackup is a third party product, it may require additional installation and additional configuration.

Please refer to Percona's xtrabackup SST documentation for information from the vendor.

2419/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
http://www.percona.com/doc/percona-xtradb-cluster/5.5/manual/xtrabackup_sst.html

Choosing Percona XtraBackup for SSTs
To use the xtrabackup-v2 SST method, you must set the wsrep_sst_method=xtrabackup-v2 on both the donor and

joiner node. It can be changed dynamically with SET GLOBAL on the node that you intend to be a SST donor. For example:

SET GLOBAL wsrep_sst_method='xtrabackup-v2';

It can be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_method = xtrabackup-v2

For an SST to work properly, the donor and joiner node must use the same SST method. Therefore, it is recommended to

set wsrep_sst_method to the same value on all nodes, since any node will usually be a donor or joiner node at some

point.

Authentication and Privileges
To use the xtrabackup-v2 SST method, Percona XtraBackup needs to be able to authenticate locally on the donor

node, so that it can create a backup to stream to the joiner. You can tell the donor node what username and password to

use by setting the wsrep_sst_auth system variable. It can be changed dynamically with SET GLOBAL on the node that

you intend to be a SST donor. For example:

SET GLOBAL wsrep_sst_auth = 'xtrabackup:mypassword';

It can also be set in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_auth = xtrabackup:mypassword

Some authentication plugins do not require a password. For example, the unix_socket and gssapi authentication

plugins do not require a password. If you are using a user account that does not require a password in order to log in, then

you can just leave the password component of wsrep_sst_auth empty. For example:

[mariadb]

...

wsrep_sst_auth = xtrabackup:

The user account that performs the backup for the SST needs to have the same privileges as Percona XtraBackup , which

are the RELOAD , PROCESS , LOCK TABLES and REPLICATION CLIENT global privileges. To be safe, you should ensure

that these privileges are set on each node in your cluster. Percona XtraBackup connects locally on the donor node to

perform the backup, so the following user should be sufficient:

CREATE USER 'xtrabackup'@'localhost' IDENTIFIED BY 'mypassword';

GRANT RELOAD, PROCESS, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'xtrabackup'@'localhost';

Passwordless Authentication - Unix Socket

It is possible to use the unix_socket authentication plugin for the user account that performs SSTs. This would provide

the benefit of not needing to configure a plain-text password in wsrep_sst_auth .

The user account would have to have the same name as the operating system user account that is running the mysqld

process. On many systems, this is the user account configured as the user option, and it tends to default to mysql .

For example, if the unix_socket authentication plugin is already installed, then you could execute the following to create

the user account:

CREATE USER 'mysql'@'localhost' IDENTIFIED VIA unix_socket;

GRANT RELOAD, PROCESS, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'mysql'@'localhost';

And then to configure wsrep_sst_auth , you could set the following in a server option group in an option file prior to

2420/4161

https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/
https://mariadb.com/kb/en/percona-xtrabackup-overview/#authentication-and-privileges
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/

starting up a node:

[mariadb]

...

wsrep_sst_auth = mysql:

Passwordless Authentication - GSSAPI

It is possible to use the gssapi authentication plugin for the user account that performs SSTs. This would provide the

benefit of not needing to configure a plain-text password in wsrep_sst_auth .

The following steps would need to be done beforehand:

You need a KDC running MIT Kerberos or Microsoft Active Directory .

You will need to create a keytab file for the MariaDB server.

You will need to install the package containing the gssapi authentication plugin.

You will need to install the plugin in MariaDB, so that the gssapi authentication plugin is available to use.

You will need to configure the plugin.

You will need to create a user account that authenticates with the gssapi authentication plugin, so that the user

account can be used for SSTs. This user account will need to correspond with a user account that exists on the

backend KDC.

For example, you could execute the following to create the user account in MariaDB:

CREATE USER 'xtrabackup'@'localhost' IDENTIFIED VIA gssapi;

GRANT RELOAD, PROCESS, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'xtrabackup'@'localhost';

And then to configure wsrep_sst_auth , you could set the following in a server option group in an option file prior to

starting up a node:

[mariadb]

...

wsrep_sst_auth = xtrabackup:

Choosing a Donor Node
When Percona XtraBackup is used to create the backup for the SST on the donor node, XtraBackup briefly requires a

system-wide lock at the end of the backup. This is done with FLUSH TABLES WITH READ LOCK .

If a specific node in your cluster is acting as the primary node by receiving all of the application's write traffic, then this node

should not usually be used as the donor node, because the system-wide lock could interfere with the application. In this

case, you can define one or more preferred donor nodes by setting the wsrep_sst_donor system variable.

For example, let's say that we have a 5-node cluster with the nodes node1 , node2 , node3 , node4 , and node5 , and

let's say that node1 is acting as the primary node.The preferred donor nodes for node2 could be configured by setting the

following in a server option group in an option file prior to starting up a node:

[mariadb]

...

wsrep_sst_donor=node3,node4,node5,

The trailing comma tells the server to allow any other node as donor when the preferred donors are not available. Therefore,

if node1 is the only node left in the cluster, the trailing comma allows it to be used as the donor node.

Socat Dependency
During the SST process, the donor node uses socat to stream the backup to the joiner node. Then the joiner node

prepares the backup before restoring it. The socat utility must be installed on both the donor node and the joiner node in

order for this to work. Otherwise, the MariaDB error log will contain an error like:

WSREP_SST: [ERROR] socat not found in path:

/usr/sbin:/sbin:/usr//bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin (20180122

14:55:32.993)

Installing Socat on RHEL/CentOS
2421/4161

http://web.mit.edu/Kerberos/krb5-1.12/doc/index.html
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
http://www.dest-unreach.org/socat/doc/socat.html

On RHEL/CentOS, socat can be installed from the Extra Packages for Enterprise Linux (EPEL) repository.

TLS
This SST method supports three different TLS methods. The specific method can be selected by setting the encrypt

option in the [sst] section of the MariaDB configuration file. The options are:

TLS using OpenSSL encryption built into socat (encrypt=2)

TLS using OpenSSL encryption with Galera-compatible certificates and keys (encrypt=3)

TLS using OpenSSL encryption with MariaDB-compatible certificates and keys (encrypt=4)

Note that encrypt=1 refers to a TLS encryption method that has been deprecated and removed.

TLS Using OpenSSL Encryption Built into Socat

To generate keys compatible with this encryption method, you can follow these directions .

For example:

First, generate the keys and certificates:

FILENAME=sst

openssl genrsa -out $FILENAME.key 1024

openssl req -new -key $FILENAME.key -x509 -days 3653 -out $FILENAME.crt

cat $FILENAME.key $FILENAME.crt >$FILENAME.pem

chmod 600 $FILENAME.key $FILENAME.pem

On some systems, you may also have to add dhparams to the certificate:

openssl dhparam -out dhparams.pem 2048

cat dhparams.pem >> sst.pem

Then, copy the certificate and keys to all nodes in the cluster.

Then, configure the following on all nodes in the cluster:

[sst]

encrypt=2

tca=/etc/my.cnf.d/certificates/sst.crt

tcert=/etc/my.cnf.d/certificates/sst.pem

But replace the paths with whatever is relevant on your system.

This should allow your SSTs to be encrypted.

TLS Using OpenSSL Encryption with Galera-compatible Certificates
and Keys

To generate keys compatible with this encryption method, you can follow these directions .

For example:

First, generate the keys and certificates:

CA

openssl genrsa 2048 > ca-key.pem

openssl req -new -x509 -nodes -days 365000 \

-key ca-key.pem -out ca-cert.pem

server1

openssl req -newkey rsa:2048 -days 365000 \

-nodes -keyout server1-key.pem -out server1-req.pem

openssl rsa -in server1-key.pem -out server1-key.pem

openssl x509 -req -in server1-req.pem -days 365000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 \

-out server1-cert.pem

Then, copy the certificate and keys to all nodes in the cluster.

2422/4161

https://fedoraproject.org/wiki/EPEL
http://www.dest-unreach.org/socat/doc/socat-openssltunnel.html
https://galeracluster.com/library/documentation/ssl-sst.html#ssl-xtrabackup

Then, configure the following on all nodes in the cluster:

[sst]

encrypt=3

tkey=/etc/my.cnf.d/certificates/server1-key.pem

tcert=/etc/my.cnf.d/certificates/server1-cert.pem

But replace the paths with whatever is relevant on your system.

This should allow your SSTs to be encrypted.

TLS Using OpenSSL Encryption with MariaDB-compatible Certificates
and Keys

To generate keys compatible with this encryption method, you can follow these directions.

For example:

First, generate the keys and certificates:

CA

openssl genrsa 2048 > ca-key.pem

openssl req -new -x509 -nodes -days 365000 \

-key ca-key.pem -out ca-cert.pem

server1

openssl req -newkey rsa:2048 -days 365000 \

-nodes -keyout server1-key.pem -out server1-req.pem

openssl rsa -in server1-key.pem -out server1-key.pem

openssl x509 -req -in server1-req.pem -days 365000 \

-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 \

-out server1-cert.pem

Then, copy the certificate and keys to all nodes in the cluster.

Then, configure the following on all nodes in the cluster:

[sst]

encrypt=4

ssl-ca=/etc/my.cnf.d/certificates/ca-cert.pem

ssl-cert=/etc/my.cnf.d/certificates/server1-cert.pem

ssl-key=/etc/my.cnf.d/certificates/server1-key.pem

But replace the paths with whatever is relevant on your system.

This should allow your SSTs to be encrypted.

Logs
The xtrabackup-v2 SST method has its own logging outside of the MariaDB Server logging.

Logging to SST Logs

By default, on the donor node, it logs to innobackup.backup.log . This log file is located in the datadir .

By default, on the joiner node, it logs to innobackup.prepare.log and innobackup.move.log . These log files are

located in the .sst directory, which is a hidden directory inside the datadir .

These log files are overwritten by each subsequent SST, so if an SST fails, it is best to copy them somewhere safe before

starting another SST, so that the log files can be analyzed. See MDEV-17973 about that.

Logging to Syslog

You can redirect the SST logs to the syslog instead by setting the following in the [sst] option group in an option file:

[sst]

sst-syslog=1

2423/4161

https://jira.mariadb.org/browse/MDEV-17973

You can also redirect the SST logs to the syslog by setting the following in the [mysqld_safe] option group in an option

file:

[mysqld_safe]

syslog

Performing SSTs with IPv6 Addresses
If you are performing Percona XtraBackup SSTs with IPv6 addresses, then the socat utility needs to be passed the

pf=ip6 option. This can be done by setting the sockopt option in the [sst] option group in an option file. For example:

[sst]

sockopt=",pf=ip6"

See MDEV-18797 for more information.

Manual SST with Percona XtraBackup
In some cases, if Galera Cluster's automatic SSTs repeatedly fail, then it can be helpful to perform a "manual SST". See the

following page on how to do that:

Manual SST of Galera Cluster node with Percona XtraBackup

3.2.8.5 Manual SST of Galera Cluster Node
With Percona XtraBackup

Contents
1. Process

Mariabackup should be used instead of XtraBackup on all supported releases. See manual SST with Mariabackup.

In MariaDB 10.1 and later, Mariabackup is the recommended backup method to use instead of Percona XtraBackup.

In MariaDB 10.3, Percona XtraBackup is not supported. See Percona XtraBackup Overview: Compatibility with

MariaDB for more information.

In MariaDB 10.2 and MariaDB 10.1, Percona XtraBackup is only partially supported. See Percona XtraBackup

Overview: Compatibility with MariaDB for more information.

Sometimes it can be helpful to perform a "manual SST" when Galera's normal SSTs fail. This can be especially useful when

the cluster's datadir is very large, since a normal SST can take a long time to fail in that case.

A manual SST essentially consists of taking a backup of the donor, loading the backup on the joiner, and then manually

editing the cluster state on the joiner node. This page will show how to perform this process with Percona XtraBackup .

Process
Check that the donor and joiner nodes have the same XtraBackup version.

innobackupex --version

Create backup directory on donor.

MYSQL_BACKUP_DIR=/mysql_backup

mkdir $MYSQL_BACKUP_DIR

2424/4161

https://jira.mariadb.org/browse/MDEV-18797
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/percona-xtrabackup-overview/#compatibility-with-mariadb
https://mariadb.com/kb/en/backup-restore-and-import-clients-percona-xtrabackup/

Take a full backup the of the donor node with innobackupex . The --galera-info option should also be

provided, so that the node's cluster state is also backed up.

DB_USER=sstuser

DB_USER_PASS=password

innobackupex --user=$DB_USER --password=$DB_USER_PASS --galera-info --no-timestamp $MYSQL_BACKUP_DIR

Verify that the MariaDB Server process is stopped on the joiner node. This will depend on your service manager .

For example, on systemd systems, you can execute::

systemctl status mariadb

Create the backup directory on the joiner node.

MYSQL_BACKUP_DIR=/mysql_backup

mkdir $MYSQL_BACKUP_DIR

Copy the backup from the donor node to the joiner node.

OS_USER=dba

JOINER_HOST=dbserver2.mariadb.com

rsync -av $MYSQL_BACKUP_DIR/* ${OS_USER}@${JOINER_HOST}:${MYSQL_BACKUP_DIR}

Prepare the backup on the joiner node.

innobackupex --apply-log $MYSQL_BACKUP_DIR

Get the Galera Cluster version ID from the donor node's grastate.dat file.

MYSQL_DATADIR=/var/lib/mysql

cat $MYSQL_DATADIR/grastate.dat | grep version

For example, a very common version number is "2.1".

Get the node's cluster state from the --xtrabackup_galera_info file in the backup that was copied to the

joiner node.

cat $MYSQL_BACKUP_DIR/xtrabackup_galera_info

Example output:

d38587ce-246c-11e5-bcce-6bbd0831cc0f:1352215

This output is in the format:

uuid:seqno

Create a grastate.dat file in the backup directory of the joiner node. The Galera Cluster version ID, the cluster

uuid, and the seqno from previous steps will be used to fill in the relevant fields.

For example, with the example values from the last two steps, we could do:

sudo tee $MYSQL_BACKUP_DIR/grastate.dat <<EOF

GALERA saved state

version: 2.1

uuid: d38587ce-246c-11e5-bcce-6bbd0831cc0f

seqno: 1352215

safe_to_bootstrap: 0

EOF

Remove the existing contents of the datadir on the joiner node.

2425/4161

https://www.percona.com/doc/percona-xtrabackup/2.4/howtos/recipes_ibkx_local.html
https://www.percona.com/doc/percona-xtrabackup/2.4/innobackupex/innobackupex_option_reference.html#cmdoption-innobackupex-galera-info
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://www.percona.com/doc/percona-xtrabackup/2.4/howtos/recipes_ibkx_local.html#prepare-the-backup
https://www.percona.com/doc/percona-xtrabackup/2.4/innobackupex/innobackupex_option_reference.html#cmdoption-innobackupex-galera-info

MYSQL_DATADIR=/var/lib/mysql

rm -Rf $MYSQL_DATADIR/*

Copy the contents of the backup directory to the datadir the on joiner node.

cp -R $MYSQL_BACKUP_DIR/* $MYSQL_DATADIR/

Make sure the permissions of the datadir are correct on the joiner node.

chown -R mysql:mysql $MYSQL_DATADIR/

Start the MariaDB Server process on the joiner node. This will depend on your service manager .

For example, on systemd systems, you can execute::

systemctl start mariadb

Watch the MariaDB error log on the joiner node and verify that the node does not need to perform a normal SSTs due

to the manual SST.

tail -f /var/log/mysql/mysqld.log

3.2.9 Galera Cluster Status Variables

2426/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

Contents
1. Viewing Galera Cluster Status Variables

2. List of Galera Cluster status variables

1. wsrep_applier_thread_count

2. wsrep_apply_oooe

3. wsrep_apply_oool

4. wsrep_apply_window

5. wsrep_cert_deps_distance

6. wsrep_cert_index_size

7. wsrep_cert_interval

8. wsrep_cluster_capabilities

9. wsrep_cluster_conf_id

10. wsrep_cluster_size

11. wsrep_cluster_state_uuid

12. wsrep_cluster_status

13. wsrep_cluster_weight

14. wsrep_commit_oooe

15. wsrep_commit_oool

16. wsrep_commit_window

17. wsrep_connected

18. wsrep_desync_count

19. wsrep_evs_delayed

20. wsrep_evs_evict_list

21. wsrep_evs_repl_latency

22. wsrep_evs_state

23. wsrep_flow_control_paused

24. wsrep_flow_control_paused_ns

25. wsrep_flow_control_recv

26. wsrep_flow_control_sent

27. wsrep_gcomm_uuid

28. wsrep_incoming_addresses

29. wsrep_last_committed

30. wsrep_local_bf_aborts

31. wsrep_local_cached_downto

32. wsrep_local_cert_failures

33. wsrep_local_commits

34. wsrep_local_index

35. wsrep_local_recv_queue

36. wsrep_local_recv_queue_avg

37. wsrep_local_recv_queue_max

38. wsrep_local_recv_queue_min

39. wsrep_local_replays

40. wsrep_local_send_queue

41. wsrep_local_send_queue_avg

42. wsrep_local_send_queue_max

43. wsrep_local_send_queue_min

44. wsrep_local_state

45. wsrep_local_state_comment

46. wsrep_local_state_uuid

47. wsrep_open_connections

48. wsrep_open_transactions

49. wsrep_protocol_version

50. wsrep_provider_name

51. wsrep_provider_vendor

52. wsrep_provider_version

53. wsrep_ready

54. wsrep_received

55. wsrep_received_bytes

56. wsrep_repl_data_bytes

57. wsrep_repl_keys

58. wsrep_repl_keys_bytes

59. wsrep_repl_other_bytes

60. wsrep_replicated

61. wsrep_replicated_bytes

62. wsrep_rollbacker_thread_count

63. wsrep_thread_count

2427/4161

Viewing Galera Cluster Status Variables
Galera status variables can be viewed with the SHOW STATUS statement.

SHOW STATUS LIKE 'wsrep%';

See also the Full list of MariaDB options, system and status variables.

List of Galera Cluster status variables
MariaDB Galera Cluster has the following status variables:

wsrep_applier_thread_count

Description: Stores current number of applier threads to make clear how many slave threads of this type there are.

Introduced: MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

wsrep_apply_oooe

Description: How often writesets have been applied out of order, an indicators of parallelization efficiency.

wsrep_apply_oool

Description: How often writesets with a higher sequence number were applied before ones with a lower sequence

number, implying slow writesets.

wsrep_apply_window

Description: Average distance between highest and lowest concurrently applied seqno.

wsrep_cert_deps_distance

Description: Average distance between the highest and the lowest sequence numbers that can possibly be applied

in parallel, or the potential degree of parallelization.

wsrep_cert_index_size

Description: The number of entries in the certification index.

wsrep_cert_interval

Description: Average number of transactions received while a transaction replicates.

wsrep_cluster_capabilities

Description:

wsrep_cluster_conf_id

Description: Total number of cluster membership changes that have taken place.

wsrep_cluster_size

Description: Number of nodes currently in the cluster.

2428/4161

https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/

wsrep_cluster_state_uuid

Description: UUID state of the cluster. If it matches the value in wsrep_local_state_uuid, the local and cluster nodes

are in sync.

wsrep_cluster_status

Description: Cluster component status. Possible values are PRIMARY (primary group configuration, quorum

present), NON_PRIMARY (non-primary group configuration, quorum lost) or DISCONNECTED (not connected to group,

retrying).

wsrep_cluster_weight

Description: The total weight of the current members in the cluster. The value is counted as a sum of of pc.weight of

the nodes in the current Primary Component.

wsrep_commit_oooe

Description: How often a transaction was committed out of order.

wsrep_commit_oool

Description: No meaning.

wsrep_commit_window

Description: Average distance between highest and lowest concurrently committed seqno.

wsrep_connected

Description: Whether or not MariaDB is connected to the wsrep provider. Possible values are ON or OFF .

wsrep_desync_count

Description: Returns the number of operations in progress that require the node to temporarily desync from the

cluster.

wsrep_evs_delayed

Description: Provides a comma separated list of all the nodes this node has registered on its delayed list.

wsrep_evs_evict_list

Description: Lists the UUID9s of all nodes evicted from the cluster. Evicted nodes cannot rejoin the cluster until you

restart their mysqld processes.

wsrep_evs_repl_latency

Description: This status variable provides figures for the replication latency on group communication. It measures

latency (in seconds) from the time point when a message is sent out to the time point when a message is received. As

replication is a group operation, this essentially gives you the slowest ACK and longest RTT in the cluster. Format is

min/avg/+max/stddev

2429/4161

wsrep_evs_state

Description: Shows the internal state of the EVS Protocol.

wsrep_flow_control_paused

Description: The fraction of time since the last FLUSH STATUS command that replication was paused due to flow

control.

wsrep_flow_control_paused_ns

Description: The total time spent in a paused state measured in nanoseconds.

wsrep_flow_control_recv

Description: Number of FC_PAUSE events received as well as sent since the most recent status query.

wsrep_flow_control_sent

Description: Number of FC_PAUSE events sent since the most recent status query

wsrep_gcomm_uuid

Description: The UUID assigned to the node.

wsrep_incoming_addresses

Description: Comma-separated list of incoming server addresses in the cluster component.

wsrep_last_committed

Description: Sequence number of the most recently committed transaction.

wsrep_local_bf_aborts

Description: Total number of local transactions aborted by slave transactions while being executed

wsrep_local_cached_downto

Description: The lowest sequence number, or seqno, in the write-set cache (GCache).

wsrep_local_cert_failures

Description: Total number of local transactions that failed the certification test.

wsrep_local_commits

Description: Total number of local transactions committed on the node.

wsrep_local_index

Description: The node's index in the cluster. The index is zero-based.

2430/4161

wsrep_local_recv_queue

Description: Current length of the receive queue, which is the number of writesets waiting to be applied.

wsrep_local_recv_queue_avg

Description: Average length of the receive queue since the most recent status query. If this value is noticeably larger

than zero, the node is likely to be overloaded, and cannot apply the writesets as quickly as they arrive, resulting in

replication throttling.

wsrep_local_recv_queue_max

Description: The maximum length of the recv queue since the last FLUSH STATUS command.

wsrep_local_recv_queue_min

Description: The minimum length of the recv queue since the last FLUSH STATUS command.

wsrep_local_replays

Description: Total number of transaction replays due to asymmetric lock granularity.

wsrep_local_send_queue

Description: Current length of the send queue, which is the number of writesets waiting to be sent.

wsrep_local_send_queue_avg

Description: Average length of the send queue since the most recent status query. If this value is noticeably larger

than zero, there is most likely network throughput or replication throttling issues.

wsrep_local_send_queue_max

Description: The maximum length of the send queue since the last FLUSH STATUS command.

wsrep_local_send_queue_min

Description: The minimum length of the send queue since the last FLUSH STATUS command.

wsrep_local_state

Description: Internal Galera Cluster FSM state number.

wsrep_local_state_comment

Description: Human-readable explanation of the state.

wsrep_local_state_uuid

Description: The node's UUID state. If it matches the value in wsrep_cluster_state_uuid, the local and cluster nodes

are in sync.

2431/4161

wsrep_open_connections

Description: The number of open connection objects inside the wsrep provider.

wsrep_open_transactions

Description: The number of locally running transactions which have been registered inside the wsrep provider. This

means transactions which have made operations which have caused write set population to happen. Transactions

which are read only are not counted.

wsrep_protocol_version

Description: The wsrep protocol version being used.

wsrep_provider_name

Description: The name of the provider. The default is "Galera".

wsrep_provider_vendor

Description: The vendor string.

wsrep_provider_version

Description: The version number of the Galera wsrep provider

wsrep_ready

Description: Whether or not the Galera wsrep provider is ready. Possible values are ON or OFF

wsrep_received

Description: Total number of writesets received from other nodes.

wsrep_received_bytes

Description: Total size in bytes of all writesets received from other nodes.

wsrep_repl_data_bytes

Description: Total size of data replicated.

wsrep_repl_keys

Description: Total number of keys replicated.

wsrep_repl_keys_bytes

Description: Total size of keys replicated.

wsrep_repl_other_bytes

Description: Total size of other bits replicated.
2432/4161

wsrep_replicated

Description: Total number of writesets replicated to other nodes.

wsrep_replicated_bytes

Description: Total size in bytes of all writesets replicated to other nodes.

wsrep_rollbacker_thread_count

Description: Stores current number of rollbacker threads to make clear how many slave threads of this type there

are.

Introduced: MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

wsrep_thread_count

Description: Total number of wsrep (applier/rollbacker) threads.

3.2.10 Galera Cluster System Variables

2433/4161

https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/

Contents
1. wsrep_allowlist

2. wsrep_auto_increment_control

3. wsrep_causal_reads

4. wsrep_certification_rules

5. wsrep_certify_nonPK

6. wsrep_cluster_address

7. wsrep_cluster_name

8. wsrep_convert_LOCK_to_trx

9. wsrep_data_home_dir

10. wsrep_dbug_option

11. wsrep_debug

12. wsrep_desync

13. wsrep_dirty_reads

14. wsrep_drupal_282555_workaround

15. wsrep_forced_binlog_format

16. wsrep_gtid_domain_id

17. wsrep_gtid_mode

18. wsrep_gtid_seq_no

19. wsrep_ignore_apply_errors

20. wsrep_load_data_splitting

21. wsrep_log_conflicts

22. wsrep_max_ws_rows

23. wsrep_max_ws_size

24. wsrep_mode

25. wsrep_mysql_replication_bundle

26. wsrep_node_address

27. wsrep_node_incoming_address

28. wsrep_node_name

29. wsrep_notify_cmd

30. wsrep_on

31. wsrep_OSU_method

32. wsrep_patch_version

33. wsrep_provider

34. wsrep_provider_options

35. wsrep_recover

36. wsrep_reject_queries

37. wsrep_replicate_myisam

38. wsrep_restart_slave

39. wsrep_retry_autocommit

40. wsrep_slave_FK_checks

41. wsrep_slave_threads

42. wsrep_slave_UK_checks

43. wsrep_sr_store

44. wsrep_sst_auth

45. wsrep_sst_donor

46. wsrep_sst_donor_rejects_queries

47. wsrep_sst_method

48. wsrep_sst_receive_address

49. wsrep_start_position

50. wsrep_status_file

51. wsrep_strict_ddl

52. wsrep_sync_wait

53. wsrep_trx_fragment_size

54. wsrep_trx_fragment_unit

This page documents system variables related to Galera Cluster. For options that are not system variables, see Galera

Options.

See Server System Variables for a complete list of system variables and instructions on setting them.

Also see the Full list of MariaDB options, system and status variables.

wsrep_allowlist

Description: Allowed IP addresses, comma delimited.

Commandline: --wsrep-allowlist=value1[,value2...]

Scope: Global
2434/4161

Dynamic: No

Data Type: String

Default Value: None

Introduced: MariaDB 10.10

wsrep_auto_increment_control

Description: If set to 1 (the default), will automatically adjust the auto_increment_increment and

auto_increment_offset variables according to the size of the cluster, and when the cluster size changes. This avoids

replication conflicts due to auto_increment. In a primary-replica environment, can be set to OFF .

Commandline: --wsrep-auto-increment-control[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: ON

wsrep_causal_reads

Description: If set to ON (OFF is default), enforces read-committed characteristics across the cluster. In the case

that a primary applies an event more quickly than a replica, the two could briefly be out-of-sync. With this variable set

to ON , the replica will wait for the event to be applied before processing further queries. Setting to ON also results in

larger read latencies. Deprecated by wsrep_sync_wait=1.

Commandline: --wsrep-causal-reads[={0|1}]

Scope: Session

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

Deprecated: MariaDB 10.1.3

Removed: MariaDB 11.3.0

wsrep_certification_rules

Description: Certification rules to use in the cluster. Possible values are:

strict : Stricter rules that could result in more certification failures. For example with foreign keys,

certification failure could result if different nodes receive non-conflicting insertions at about the same time that

point to the same row in a parent table

optimized : relaxed rules that allow more concurrency and cause less certification failures.

Commandline: --wsrep-certifcation-rules

Scope: Global

Dynamic: Yes

Data Type: Enumeration

Default Value: strict

Valid Values: strict , optimized

Introduced: MariaDB 10.4.3, MariazDB 10.3.13, MariaDB 10.2.22 , MariaDB 10.1.38

wsrep_certify_nonPK

Description: When set to ON (the default), Galera will still certify transactions for tables with no primary key.

However, this can still cause undefined behavior in some circumstances. It is recommended to define primary keys

for every InnoDB table when using Galera.

Commandline: --wsrep-certify-nonPK[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: ON

wsrep_cluster_address

Description: The addresses of cluster nodes to connect to when starting up.

Good practice is to specify all possible cluster nodes, in the form gcomm://<node1 or ip:port>,<node2 or

2435/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/

ip2:port>,<node3 or ip3:port> .

Specifying an empty ip (gcomm://) will cause the node to start a new cluster (which should not be done in the

my.cnf file, as after each restart the server will not rejoin the current cluster).

The variable can be changed at runtime in some configurations, and will result in the node closing the

connection to any current cluster, and connecting to the new address.

If specifying a port, note that this is the Galera port, not the MariaDB port.

For example:

gcomm://192.168.0.1,192.168.0.2,192.168.0.3

gcomm://192.168.0.1:1234,192.168.0.2:1234,192.168.0.3:1234?

gmcast.listen_addr=tcp://0.0.0.0:1234

See also gmcast.listen_addr

Commandline: --wsrep-cluster-address=value

Scope: Global

Dynamic: No

Data Type: String

wsrep_cluster_name

Description: The name of the cluster. Nodes cannot connect to clusters with a different name, so needs to be

identical on all nodes in the same cluster. The variable can be set dynamically, but note that doing so may be unsafe

and cause an outage, and that the wsrep provider is unloaded and loaded.

Commandline: --wsrep-cluster-name=value

Scope: Global

Dynamic: Yes

Data Type: String

Default Value: my_wsrep_cluster

wsrep_convert_LOCK_to_trx

Description: Converts LOCK/UNLOCK TABLES statements to BEGIN and COMMIT. Used mainly for getting older

applications to work with a multi-primary setup, use carefully, as can result in extremely large writesets.

Commandline: --wsrep-convert-LOCK-to-trx[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_data_home_dir

Description: Directory where wsrep provider will store its internal files.

Commandline: --wsrep-data-home-dir=value

Scope: Global

Dynamic: No

Data Type: String

Default Value: The datadir variable value.

wsrep_dbug_option

Description: Unused. The mechanism to pass the DBUG options to the wsrep provider hasn't been implemented.

Commandline: --wsrep-dbug-option=value

Scope: Global

Dynamic: Yes

Data Type: String

wsrep_debug

Description: WSREP debug level logging. Before MariaDB 10.4.3 was a boolean, which when set to ON (OFF was

default), ensured debug messages would be logged to the error log as well. Before MariaDB 10.6.1, DDL logging was

only logged on the originating node. From MariaDB 10.6.1, it is logged on other nodes as well.

Commandline: --wsrep-debug[={0|1}]

2436/4161

Scope: Global

Dynamic: Yes

Data Type: Enumeration (>= MariaDB 10.4.3), Boolean (<= MariaDB 10.4.2)

Default Value: NONE (>= MariaDB 10.4.3), OFF (<= MariaDB 10.4.2)

Valid Values: (>= MariaDB 10.4.3) NONE , SERVER , TRANSACTION , STREAMING , CLIENT

wsrep_desync

Description: When a node receives more write-sets than it can apply, the transactions are placed in a received

queue. If the node's received queue has too many write-sets waiting to be applied (as defined by the gcs.fc_limit

WSREP provider option), then the node would usually engage Flow Control. However, when this option is set to ON ,

Flow Control will be disabled for the desynced node. The desynced node works through the received queue until it

reaches a more manageable size. The desynced node continues to receive write-sets from the other nodes in the

cluster. The other nodes in the cluster do not wait for the desynced node to catch up, so the desynced node can fall

even further behind the other nodes in the cluster. You can check if a node is desynced by checking if the

wsrep_local_state_comment status variable is equal to Donor/Desynced .

Commandline: --wsrep-desync[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_dirty_reads

Description: By default, when not synchronized with the group (wsrep_ready=OFF) a node will reject all queries

other than SET and SHOW. If wsrep_dirty_reads is set to 1 , queries which do not change data, like SELECT

queries (dirty reads), creating of prepare statement, etc. will be accepted by the node.

Commandline: --wsrep-dirty-reads[={0|1}]

Scope: Global,Session

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

Valid Values: ON , OFF

wsrep_drupal_282555_workaround

Description: If set to ON , a workaround for Drupal/MySQL/InnoDB bug #282555 is enabled. This is a bug where,

in some cases, when inserting a DEFAULT value into an AUTO_INCREMENT column, a duplicate key error may be

returned.

Commandline: --wsrep-drupal-282555-workaround[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_forced_binlog_format

Description: A binary log format that will override any session binlog format settings.

Commandline: --wsrep-forced-binlog-format=value

Scope: Global

Dynamic: Yes

Default Value: NONE

Data Type: Enum

Valid Values: STATEMENT , ROW , MIXED or NONE (which resets the forced binlog format state).

wsrep_gtid_domain_id

Description: This system variable defines the GTID domain ID that is used for wsrep GTID mode.

When wsrep_gtid_mode is set to ON , wsrep_gtid_domain_id is used in place of gtid_domain_id for

all Galera Cluster write sets.

2437/4161

https://www.drupal.org/node/282555

When wsrep_gtid_mode is set to OFF , wsrep_gtid_domain_id is simply ignored to allow for backward

compatibility.

There are some additional requirements that need to be met in order for this mode to generate consistent

GTIDs. For more information, see Using MariaDB GTIDs with MariaDB Galera Cluster.

Commandline: --wsrep-gtid-domain-id=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

wsrep_gtid_mode

Description: Wsrep GTID mode attempts to keep GTIDs consistent for Galera Cluster write sets on all cluster nodes.

GTID state is initially copied to a joiner node during an SST. If you are planning to use Galera Cluster with MariaDB

replication, then wsrep GTID mode can be helpful.

When wsrep_gtid_mode is set to ON , wsrep_gtid_domain_id is used in place of gtid_domain_id for

all Galera Cluster write sets.

When wsrep_gtid_mode is set to OFF , wsrep_gtid_domain_id is simply ignored to allow for backward

compatibility.

There are some additional requirements that need to be met in order for this mode to generate consistent

GTIDs. For more information, see Using MariaDB GTIDs with MariaDB Galera Cluster.

Commandline: --wsrep-gtid-mode[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

wsrep_gtid_seq_no

Description: Internal server usage, manually set WSREP GTID seqno.

Commandline: None

Scope: Session only

Dynamic: Yes

Data Type: numeric

Range: 0 to 18446744073709551615

Introduced: MariaDB 10.5.1

wsrep_ignore_apply_errors

Description: Bitmask determining whether errors are ignored, or reported back to the provider.

0: No errors are skipped.

1: Ignore some DDL errors (DROP DATABASE, DROP TABLE, DROP INDEX, ALTER TABLE).

2: Skip DML errors (Only ignores DELETE errors).

4: Ignore all DDL errors.

Commandline: --wsrep-ignore-apply-errors

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value: 7

Range: 0 to 7

Introduced: MariaDB 10.4.2

wsrep_load_data_splitting

Description: If set to ON (the default for MariaDB 10.4.2 and before), LOAD DATA INFILE supports big data files by

introducing transaction splitting. The setting has been deprecated in Galera 4, and defaults to OFF from MariaDB

10.4.3.

Commandline: --wsrep-load-data-splitting[={0|1}]

Scope: Global

Dynamic: Yes

2438/4161

Data Type: Boolean

Default Value: OFF (>= MariaDB 10.4.3), ON (<= MariaDB 10.4.2)

wsrep_log_conflicts

Description: If set to ON (OFF is default), details of conflicting MDL as well as InnoDB locks in the cluster will be

logged.

Commandline: --wsrep-log-conflicts[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_max_ws_rows

Description: Maximum permitted number of rows per writeset. Before MariaDB Galera 10.0.27 and MariaDB

10.1.17 this variable was ignored internally and had no effect on the node. From MariaDB Galera 10.0.27 and

MariaDB 10.1.17 support for this variable has been added and in order to be backward compatible the default

value has been changed to 0 , which essentially allows writesets to be any size.

Commandline: --wsrep-max-ws-rows=#

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value:

0 (>= MariaDB Galera 10.0.27 , MariaDB 10.1.17)

131072 (<= MariaDB Galera 10.0.26 , MariaDB 10.1.16)

Range: 0 to 1048576

wsrep_max_ws_size

Description: Maximum permitted size in bytes per writeset. Writesets exceeding this will be rejected. Note that

versions from and before MariaDB 10.1.17 and MariaDB Galera 10.0.27 permitted the maximum to be set

beyond 2GB, which was rejected by Galera.

Commandline: --wsrep-max-ws-size=#

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value:

2147483647 (2GB, >= MariaDB Galera 10.0.27 , MariaDB 10.1.17)

1073741824 (1GB, <= MariaDB Galera 10.0.26 , MariaDB 10.1.16)

Range: 1024 to 2147483647

wsrep_mode

Description: Turns on WSREP features which are not part of default behavior.

BINLOG_ROW_FORMAT_ONLY: Only ROW binlog format is supported.

DISALLOW_LOCAL_GTID: Nodes can have GTIDs for local transactions in a number of scenarios. If

DISALLOW_LOCAL_GTID is set, these operations produce an error ERROR HY000: Galera replication not

supported. Scenarios include:

A DDL statement is executed with wsrep_OSU_method=RSU set.

A DML statement writes to a non-InnoDB table.

A DML statement writes to an InnoDB table with wsrep_on=OFF set.

REPLICATE_ARIA: Whether or not DML updates for Aria tables will be replicated. This functionality is

experimental and should not be relied upon in production systems.

REPLICATE_MYISAM: Whether or not DML updates for MyISAM tables will be replicated. This functionality is

experimental and should not be relied upon in production systems.

REQUIRED_PRIMARY_KEY: Table should have PRIMARY KEY defined.

STRICT_REPLICATION: Same as the old wsrep_strict_ddl setting.

Commandline: --wsrep-mode=value

Scope: Global

Dynamic: Yes

2439/4161

https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10116-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10116-release-notes/

Data Type: Enumeration

Default Value: (Empty)

Valid Values: BINLOG_ROW_FORMAT_ONLY , DISALLOW_LOCAL_GTID , REQUIRED_PRIMARY_KEY ,

REPLICATE_ARIA , REPLICATE_MYISAM and STRICT_REPLICATION

Introduced: MariaDB 10.6.0

wsrep_mysql_replication_bundle

Description: Determines the number of replication events that are grouped together. Experimental implementation

aimed to assist with bottlenecks when a single replica faces a large commit time delay. If set to 0 (the default), there

is no grouping.

Commandline: --wsrep-mysql-replication-bundle=#

Scope: Global

Dynamic: No

Data Type: Numeric

Default Value: 0

Range: 0 to 1000

wsrep_node_address

Description: Specifies the node's network address, in the format ip address[:port] . As of MariaDB 10.1.8 ,

supports IPv6. The default behavior is for the node to pull the address of the first network interface on the system and

the default Galera port. This autoguessing can be unreliable, particularly in the following cases:

cloud deployments

container deployments

servers with multiple network interfaces.

servers running multiple nodes.

network address translation (NAT).

clusters with nodes in more than one region.

See also wsrep_provider_options -> gmcast.listen_addr

Commandline: --wsrep-node-address=value

Scope: Global

Dynamic: No

Data Type: String

Default Value: Primary network address, usually eth0 with a default port of 4567, or 0.0.0.0 if no IP address.

wsrep_node_incoming_address

Description: This is the address from which the node listens for client connections. If an address is not specified or

it's set to AUTO (default), mysqld uses either --bind-address or --wsrep-node-address, or tries to get one from the list

of available network interfaces, in the same order. See also wsrep_provider_options -> gmcast.listen_addr.

Commandline: --wsrep-node-incoming-address=value

Scope: Global

Dynamic: No

Data Type: String

Default Value: AUTO

wsrep_node_name

Description: Name of this node. This name can be used in wsrep_sst_donor as a preferred donor. Note that multiple

nodes in a cluster can have the same name.

Commandline: --wsrep-node-name=value

Scope: Global

Dynamic: Yes

Data Type: String

Default Value: The server's hostname.

wsrep_notify_cmd

Description: Command to be executed each time the node state or the cluster membership changes. Can be used

2440/4161

https://mariadb.com/kb/en/mariadb-1018-release-notes/

for raising an alarm, configuring load balancers and so on. See the Codership Notification Script page for more

details.

Commandline: --wsrep-notify-command=value

Scope: Global

Dynamic:

No (>= MariaDB 10.5.9, MariaDB 10.4.18, MariaDB 10.3.28 , MariaDB 10.2.37)

Yes (<= MariaDB 10.5.8, MariaDB 10.4.17, MariaDB 10.3.27 , MariaDB 10.2.36)

Data Type: String

Default Value: Empty

wsrep_on

Description: Whether or not wsrep replication is enabled. If the global value is set to OFF (the default since

MariaDB 10.1), it is not possible to load the provider and join the node in the cluster. If only the session value is set to

OFF , the operations from that particular session are not replicated in the cluster, but other sessions and applier

threads will continue as normal. The session value of the variable does not affect the node's membership and thus,

regardless of its value, the node keeps receiving updates from other nodes in the cluster. Before MariaDB 10.1, even

though this variable is ON by default, its value gets automatically adjusted based on whether mandatory

configurations to turn on Galera replication have been specified. Since MariaDB 10.1, it is set to OFF by default and

must be turned on to enable Galera replication.

Commandline: --wsrep-on[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: Boolean

Default Value: OFF (>= MariaDB 10.1), ON (<= MariaDB Galera Cluster 10.0),

Valid Values: ON , OFF

wsrep_OSU_method

Description: Online schema upgrade method. The default is TOI , specifying the setting without the optional

parameter will set to RSU .

TOI : Total Order Isolation. In each cluster node, DDL is processed in the same order regarding other

transactions, guaranteeing data consistency. However, affected parts of the database will be locked for the

whole cluster.

RSU : Rolling Schema Upgrade. DDL processing is only done locally on the node, and the user needs perform

the changes manually on each node. The node is desynced from the rest of the cluster while the processing

takes place to avoid the blocking other nodes. Schema changes must be backwards compatible in the same

way as for ROW based replication to avoid breaking replication when the DDL processing is complete on the

single node, and replication recommences.

Commandline: --wsrep-OSU-method[=value]

Scope: Global, Session

Dynamic: Yes

Data Type: Enum

Default Value: TOI

Valid Values: TOI , RSU

wsrep_patch_version

Description: Wsrep patch version, for example wsrep_25.10 .

Commandline: None

Scope: Global

Dynamic: No

Data Type: String

Default Value: None

wsrep_provider

Description: Location of the wsrep library, usually /usr/lib/libgalera_smm.so on Debian and Ubuntu, and

/usr/lib64/libgalera_smm.so on Red Hat/CentOS.

Commandline: --wsrep-provider=value

Scope: Global

2441/4161

https://galeracluster.com/library/documentation/notification-cmd.html
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10327-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/

No (>= MariaDB 10.5.9, MariaDB 10.4.18, MariaDB 10.3.28 , MariaDB 10.2.37)

Yes (<= MariaDB 10.5.8, MariaDB 10.4.17, MariaDB 10.3.27 , MariaDB 10.2.36)

Data Type: String

Default Value: None

wsrep_provider_options

Description: Semicolon (;) separated list of wsrep options (see wsrep_provider_options).

Commandline: --wsrep-provider-options=value

Scope: Global

Dynamic: No

Data Type: String

Default Value: Empty

wsrep_recover

Description: If set to ON when the server starts, the server will recover the sequence number of the most recent

write set applied by Galera, and it will be output to stderr , which is usually redirected to the error log. At that point,

the server will exit. This sequence number can be provided to the wsrep_start_position system variable.

Commandline: --wsrep-recover[={0|1}]

Scope: Global

Dynamic: No

Data Type: Boolean

Default Value: OFF

wsrep_reject_queries

Description: Variable to set to reject queries from client connections, useful for maintenance. The node continues to

apply write-sets, but an Error 1047: Unknown command error is generated by a client query.

NONE - Not set. Queries will be processed as normal.

ALL - All queries from client connections will be rejected, but existing client connections will be maintained.

ALL_KILL All queries from client connections will be rejected, and existing client connections, including the

current one, will be immediately killed.

Commandline: --wsrep-reject-queries[=value]

Scope: Global

Dynamic: Yes

Data Type: Enum

Default Value: NONE

Valid Values: NONE , ALL , ALL_KILL

Introduced: MariaDB 10.3.6 , MariaDB 10.2.14 , MariaDB 10.1.32

wsrep_replicate_myisam

Description: Whether or not DML updates for MyISAM tables will be replicated. This functionality is still experimental

and should not be relied upon in production systems. Deprecated in MariaDB 10.6, and removed in MariaDB 10.7,

use wsrep_mode instead.

Commandline: --wsrep-replicate-myisam[={0|1}]

Scope: Global

Dynamic: Yes

Default Value: OFF

Data Type: Boolean

Valid Values: ON , OFF

Deprecated: MariaDB 10.6.0

Removed: MariaDB 10.7.0

wsrep_restart_slave

Description: If set to ON, the replica is restarted automatically, when node joins back to cluster.

Commandline: --wsrep-restart-slave[={0|1}]

Scope: Global

2442/4161

https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10327-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

Dynamic: Yes

Default Value: OFF

Data Type: Boolean

wsrep_retry_autocommit

Description: Number of times autocommited queries will be retried due to cluster-wide conflicts before returning an

error to the client. If set to 0 , no retries will be attempted, while a value of 1 (the default) or more specifies the

number of retries attempted. Can be useful to assist applications using autocommit to avoid deadlocks.

Commandline: --wsrep-retry-autocommit=value

Scope: Global

Dynamic: No

Data Type: Numeric

Default Value: 1

Range: 0 to 10000

wsrep_slave_FK_checks

Description: If set to ON (the default), the applier replica thread performs foreign key constraint checks.

Commandline: --wsrep-slave-FK-checks[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: ON

wsrep_slave_threads

Description: Number of replica threads used to apply Galera write sets in parallel. The Galera replica threads are

able to determine which write sets are safe to apply in parallel. However, if your cluster nodes seem to have frequent

consistency problems, then setting the value to 1 will probably fix the problem. See About Galera Replication:

Galera Replica Threads for more information.

Commandline: --wsrep-slave-threads= #

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value: 1

Range: 1 to 512

wsrep_slave_UK_checks

Description: If set to ON, the applier replica thread performs secondary index uniqueness checks.

Commandline: --wsrep-slave-UK-checks[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_sr_store

Description: Storage for streaming replication fragments.

Commandline: --wsrep-sr-store=val

Scope: Global

Dynamic: No

Data Type: Enum

Default Value: table

Valid Values: table , none

Introduced: MariaDB 10.4.2

wsrep_sst_auth
2443/4161

Description: Username and password of the user to use for replication. Unused if wsrep_sst_method is set to

rsync , while for other methods it should be in the format <user>:<password> . The contents are masked in logs

and when querying the value with SHOW VARIABLES. See Introduction to State Snapshot Transfers (SSTs) for

more information.

Commandline: --wsrep-sst-auth=value

Scope: Global

Dynamic: Yes

Data Type: String

Default Value: (Empty)

wsrep_sst_donor

Description: Comma-separated list (from 5.5.33) or name (as per wsrep_node_name) of the servers as donors, or

the source of the state transfer, in order of preference. The donor-selection algorithm, in general, prefers a donor

capable of transferring only the missing transactions (IST) to the joiner node, instead of the complete state (SST).

Thus, it starts by looking for an IST-capable node in the given donor list followed by rest of the nodes in the cluster. In

case multiple candidate nodes are found outside the specified donor list, the node in the same segment

(gmcast.segment) as the joiner is preferred. If none of the existing nodes in the cluster can serve the missing

transactions through IST, the algorithm moves on to look for a suitable node to transfer the entire state (SST). It first

looks at the nodes specified in the donor list (irrespective of their segment). If no suitable donor is still found, the rest

of the donor nodes are checked for suitability only if the donor list has a "terminating-comma". Note that a stateless

node (the Galera arbitrator) can never be a donor. See Introduction to State Snapshot Transfers (SSTs) for more

information. [NOTE] Although the variable is dynamic, the node will not use the new value unless the node requiring

SST or IST disconnects from the cluster. To force this, set wsrep_cluster_address to an empty string and back to the

nodes list. After setting this variable dynamically, on startup the value from the configuration file will be used again.

Commandline: --wsrep-sst-donor=value

Scope: Global

Dynamic: Yes (read note above)

Data Type: String

Default Value:

wsrep_sst_donor_rejects_queries

Description: If set to ON (OFF is default), the donor node will reject incoming queries, returning an UNKNOWN

COMMAND error code. Can be used for informing load balancers that a node is unavailable.

Commandline: --wsrep-sst-donor-rejects-queries[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: Boolean

Default Value: OFF

wsrep_sst_method

Description: Method used for taking the state snapshot transfer (SST). See Introduction to State Snapshot Transfers

(SSTs): SST Methods for more information.

Commandline: --wsrep-sst-method=value

Scope: Global

Dynamic: Yes

Data Type: String

Default Value: rsync

Valid Values: rsync , mysqldump , xtrabackup , xtrabackup-v2 , mariabackup

wsrep_sst_receive_address

Description: This is the address where other nodes (donor) in the cluster connect to in order to send the state-

transfer updates. If an address is not specified or its set to AUTO (default), mysqld uses --wsrep_node_address's

value as the receiving address. However, if --wsrep_node_address is not set, it uses address from either --bind-

address or tries to get one from the list of available network interfaces, in the same order. Note: setting it to

localhost will make it impossible for nodes running on other hosts to reach this node. See Introduction to State

Snapshot Transfers (SSTs) for more information.

Commandline: --wsrep-sst-receive-address=value

Scope: Global
2444/4161

Dynamic: Yes

Data Type: String

Default Value: AUTO

wsrep_start_position

Description: The start position that the node should use in the format: UUID:seq_no . The proper value to use for

this position can be recovered with wsrep_recover .

Commandline: --wsrep-start-position=value

Scope: Global

Dynamic: Yes

Data Type: String

Default Value: 00000000-0000-0000-0000-000000000000:-1

wsrep_status_file

Description: wsrep status output filename.

Commandline: --wsrep-status-file=value

Scope: Global

Dynamic: No

Data Type: String

Default Value: None

Introduced: MariaDB 10.9

wsrep_strict_ddl

Description: If set, reject DDL statements on affected tables not supporting Galera replication. This is done by

checking if the table is InnoDB, which is the only table currently fully supporting Galera replication. MyISAM tables will

not trigger the error if the experimental wsrep_replicate_myisam setting is ON . If set, should be set on all tables in the

cluster. Affected DDL statements include:

CREATE TABLE (e.g. CREATE TABLE t1(a int) engine=Aria)

ALTER TABLE

TRUNCATE TABLE

CREATE VIEW

CREATE TRIGGER

CREATE INDEX

DROP INDEX

RENAME TABLE

DROP TABLE

Statements in procedures, events, and functions are permitted as the affected tables are only known at execution.

Furthermore, the various USER, ROLE, SERVER and DATABASE statements are also allowed as they do not have

an affected table. Deprecated in MariaDB 10.6.0 and removed in MariaDB 10.7. Use

wsrep_mode=STRICT_REPLICATION instead.

Commandline: --wsrep-strict-ddl[={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.5.1

Deprecated: MariaDB 10.6.0

Removed: MariaDB 10.7.0

wsrep_sync_wait

Description: Setting this variable ensures causality checks will take place before executing an operation of the type

specified by the value, ensuring that the statement is executed on a fully synced node. While the check is taking

place, new queries are blocked on the node to allow the server to catch up with all updates made in the cluster up to

the point where the check was begun. Once reached, the original query is executed on the node. This can result in

higher latency. Note that when wsrep_dirty_reads is ON, values of wsrep_sync_wait become irrelevant. Sample

usage (for a critical read that must have the most up-to-date data) SET SESSION wsrep_sync_wait=1; SELECT

...; SET SESSION wsrep_sync_wait=0;

2445/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/

0 - Disabled (default)

1 - READ (SELECT and BEGIN/START TRANSACTION). Up until MariaDB 10.2.8 , MariaDB 10.1.26 ,

MariaDB Galera 10.0.31 and MariaDB Galera 5.5.56 , also SHOW). This is the same as

wsrep_causal_reads=1.

2 - UPDATE and DELETE;

3 - READ, UPDATE and DELETE;

4 - INSERT and REPLACE;

5 - READ, INSERT and REPLACE;

6 - UPDATE, DELETE, INSERT and REPLACE;

7 - READ, UPDATE, DELETE, INSERT and REPLACE;

8 - SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera 10.0.32 , MariaDB Galera 5.5.57

)

9 - READ and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera 10.0.32 , MariaDB

Galera 5.5.57)

10 - UPDATE, DELETE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera 10.0.32 ,

MariaDB Galera 5.5.57)

11 - READ, UPDATE, DELETE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera

10.0.32 , MariaDB Galera 5.5.57)

12 - INSERT, REPLACE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera 10.0.32

, MariaDB Galera 5.5.57)

13 - READ, INSERT, REPLACE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 , MariaDB Galera

10.0.32 , MariaDB Galera 5.5.57)

14 - UPDATE, DELETE, INSERT, REPLACE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27 ,

MariaDB Galera 10.0.32 , MariaDB Galera 5.5.57)

15 - READ, UPDATE, DELETE, INSERT, REPLACE and SHOW (from MariaDB 10.2.9 , MariaDB 10.1.27

, MariaDB Galera 10.0.32 , MariaDB Galera 5.5.57)

Commandline: --wsrep-sync-wait= #

Scope: Session

Dynamic: Yes

Data Type: Numeric

Default Value: 0

Range:

0 to 15

wsrep_trx_fragment_size

Description: Size of transaction fragments for streaming replication (measured in units as specified by

wsrep_trx_fragment_unit)

Commandline: --wsrep-trx-fragment-size= #

Scope: Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483647

Introduced: MariaDB 10.4.2

wsrep_trx_fragment_unit

Description: Unit for streaming replication transaction fragments' size:

bytes : transaction9s binlog events buffer size in bytes

rows : number of rows affected by the transaction

statements : number of SQL statements executed in the multi-statement transaction

Commandline: --wsrep-trx-fragment-unit=value

Scope: Session

Dynamic: Yes

Data Type: enum

Default Value: bytes

Valid Values: bytes , rows or statements

Introduced: MariaDB 10.4.2

2446/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10031-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5556-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10032-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5557-release-notes/

3.2.11 Building the Galera wsrep Package on
Ubuntu and Debian
The instructions on this page were used to create the galera package on the Ubuntu and Debian Linux distributions. This

package contains the wsrep provider for MariaDB Galera Cluster.

Starting with MariaDB Galera Cluster 5.5.35, the version of the wsrep provider is 25.3.5. We also provide 25.2.9 for those

that need or want it.

Prior to that, the wsrep version was 23.2.7.

1. Install prerequisites:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get -y install check debhelper libasio-dev libboost-dev libboost-program-options-

dev libssl-dev scons

2. Clone galera.git from github.com/mariadb and checkout mariadb-3.x banch:

git init repo

cd repo

git clone -b mariadb-3.x https://github.com/MariaDB/galera.git

3. Build the packages by executing build.sh under scripts/ directory with -p switch:

cd galera

./scripts/build.sh -p

When finished, you will have the Debian packages for galera library and arbitrator in the parent directory.

Running galera test suite
If you want to run the galera test suite (mysql-test-run --suite=galera), you need to install the galera library as

either /usr/lib/galera/libgalera_smm.so or /usr/lib64/galera/libgalera_smm.so

MariaDB Galera Cluster starting with 5.5.35

3.2.12 Building the Galera wsrep Package on
Fedora
The instructions on this page were used to create the galera package on the Fedora Linux distribution. This package

contains the wsrep provider for MariaDB Galera Cluster.

The following table lists each version of the Galera 4 wsrep provider, and it lists which version of MariaDB each one was first

released in. If you would like to install Galera 4 using yum, apt, or zypper, then the package is called galera-4 .

Galera Version Released in MariaDB Version

26.4.16 11.2.2, 11.1.3, 11.0.4, 10.11.6, 10.10.7, 10.6.16, 10.5.23, 10.4.32

26.4.14 10.10.3, 10.9.5, 10.8.7 , 10.7.8 , 10.6.12, 10.5.19, 10.4.28

26.4.13 10.10.2, 10.9.4, 10.8.6 , 10.7.7 , 10.6.11, 10.5.18, 10.4.27

26.4.12 10.10.1, 10.9.2 , 10.8.4 , 10.7.5 , 10.6.9, 10.5.17, 10.4.26

26.4.11 10.8.1 , 10.7.2 , 10.6.6, 10.5.14, 10.4.22

26.4.9 10.6.4, 10.5.12, 10.4.21

26.4.8 10.6.1, 10.5.10, 10.4.19

26.4.7 10.5.9, 10.4.18

26.4.6 10.5.7, 10.4.16

26.4.5 10.5.4, 10.4.14

2447/4161

https://github.com/mariadb/galera
https://github.com/mariadb
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/

26.4.4 10.5.1, 10.4.13

26.4.3 10.5.0, 10.4.9

26.4.2 10.4.4

26.4.1 10.4.3

26.4.0 10.4.2

The following table lists each version of the Galera 3 wsrep provider, and it lists which version of MariaDB each one was first

released in. If you would like to install Galera 3 using yum, apt, or zypper, then the package is called galera .

Galera

Version
Released in MariaDB Version

25.3.37 MariaDB 10.3.36

25.3.35 MariaDB 10.3.33 , MariaDB 10.2.42

25.3.34 MariaDB 10.3.31 , MariaDB 10.2.40

25.3.33 MariaDB 10.3.29 , MariaDB 10.2.38

25.3.32 MariaDB 10.3.28 , MariaDB 10.2.37

25.3.31 MariaDB 10.3.26 , MariaDB 10.2.35 , MariaDB 10.1.48

25.3.30 MariaDB 10.3.25 , MariaDB 10.2.34 , MariaDB 10.1.47

25.3.29 MariaDB 10.3.23 , MariaDB 10.2.32 , MariaDB 10.1.45

25.3.28 MariaDB 10.3.19 , MariaDB 10.2.28 , MariaDB 10.1.42

25.3.27 MariaDB 10.3.18 , MariaDB 10.2.27

25.3.26 MariaDB 10.3.14 , MariaDB 10.2.23 , MariaDB 10.1.39

25.3.25
MariaDB 10.3.12 , MariaDB 10.2.20 , MariaDB 10.1.38 , MariaDB Galera Cluster 10.0.38 , MariaDB

Galera Cluster 5.5.63

25.3.24
MariaDB 10.4.0, MariaDB 10.3.10 , MariaDB 10.2.18 , MariaDB 10.1.37 , MariaDB Galera Cluster

10.0.37 , MariaDB Galera Cluster 5.5.62

25.3.23
MariaDB 10.3.5 , MariaDB 10.2.13 , MariaDB 10.1.32 , MariaDB Galera Cluster 10.0.35 , MariaDB

Galera Cluster 5.5.60

25.3.22
MariaDB 10.3.3 , MariaDB 10.2.11 , MariaDB 10.1.29 , MariaDB Galera Cluster 10.0.33 , MariaDB

Galera Cluster 5.5.59

25.3.21 N/A

25.3.20
MariaDB 10.3.1 , MariaDB 10.2.6 , MariaDB 10.1.23 , MariaDB Galera Cluster 10.0.31 , MariaDB

Galera Cluster 5.5.56

25.3.19
MariaDB 10.3.0 , MariaDB 10.2.3 , MariaDB 10.1.20 , MariaDB Galera Cluster 10.0.29 , MariaDB

Galera Cluster 5.5.54

25.3.18 MariaDB 10.2.2 , MariaDB 10.1.18 , MariaDB Galera Cluster 10.0.28 , MariaDB Galera Cluster 5.5.53

25.3.17 MariaDB 10.1.17 , MariaDB Galera Cluster 10.0.27 , MariaDB Galera Cluster 5.5.51

25.3.16 N/A

25.3.15 MariaDB 10.2.0 , MariaDB 10.1.13 , MariaDB Galera Cluster 10.0.25 , MariaDB Galera Cluster 5.5.49

25.3.14 MariaDB 10.1.12 , MariaDB Galera Cluster 10.0.24 , MariaDB Galera Cluster 5.5.48

25.3.12 MariaDB 10.1.11

25.3.11 N/A

25.3.10 N/A

25.3.9 MariaDB 10.1.3 , MariaDB Galera Cluster 10.0.17 , MariaDB Galera Cluster 5.5.42

25.3.8 N/A

25.3.7 N/A

25.3.6 N/A

2448/4161

https://mariadb.com/kb/en/mariadb-10336-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10331-release-notes/
https://mariadb.com/kb/en/mariadb-10240-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-10228-release-notes/
https://mariadb.com/kb/en/mariadb-10142-release-notes/
https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10227-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10220-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10038-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5563-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10037-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5562-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10035-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5560-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10033-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5559-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-10123-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10031-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5556-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-10120-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10029-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5554-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10028-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5553-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5551-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10025-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5549-release-notes/
https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10024-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10017-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5542-release-notes/

25.3.5 MariaDB 10.1.1 , MariaDB Galera Cluster 10.0.10 , MariaDB Galera Cluster 5.5.37

25.3.4 N/A

25.3.3 N/A

25.3.2 MariaDB Galera Cluster 10.0.7 , MariaDB Galera Cluster 5.5.35

The following table lists each version of the Galera 2 wsrep provider, and it lists which version of MariaDB each one was first

released in.

Galera Version Released in MariaDB Galera Cluster Version

25.2.9 10.0.10 , 5.5.37

25.2.8 10.0.7 , 5.5.35

23.2.7 5.5.34

For convenience, a galera package containing the preferred wsrep provider is included in the MariaDB YUM and APT

repositories (the preferred versions are bolded in the table above).

See also Deciphering Galera Version Numbers .

1. Install the prerequisites:

sudo yum update

sudo yum -y install boost-devel check-devel glibc-devel openssl-devel scons

2. Clone galera.git from github.com/mariadb and checkout mariadb-3.x banch:

git init repo

cd repo

git clone -b mariadb-3.x https://github.com/MariaDB/galera.git

3. Build the packages by executing build.sh under scripts/ directory with -p switch:

cd galera

./scripts/build.sh -p

When finished, you will have an RPM package containing galera library, arbitrator and related files in the current directory.

Note: The same set of instructions can be applied to other RPM based platforms to generate galera package.

3.2.13 Installing Galera from Source
Contents
1. Preparation

1. MariaDB Database Server with wsrep API

2. Building

1. Building the Database Server

3. Preparation

1. Galera Replication Plugin

4. Building

1. Building the Galera Provider

5. Configuration

There are binary installation packages available for RPM and Debian-based distributions, which will pull in all required

Galera dependencies.

If these are not available, you will need to build Galera from source.

Starting from MariaDB 10.1, the wsrep API for Galera Cluster is included by default. Follow the usual compiling-

mariadb-from-source instructions

MariaDB 10.0 and below are no longer supported. The instructions below have only historical significance.

MariaDB starting with 10.1

MariaDB until 10.0

2449/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10010-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5537-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-1007-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5535-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10010-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5537-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-1007-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5535-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5534-release-notes/
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/blog/deciphering-galera-version-numbers
https://github.com/mariadb/galera
https://github.com/mariadb

Preparation
make cannot manage dependencies for the build process, so the following packages need to be installed first:

RPM-based:

yum-builddep MariaDB-server

Debian-based:

apt-get build-dep mariadb-server

If running on an alternative system, or the commands are available, the following packages are required. You will need

to check the repositories for the correct package names on your distribution - these may differ between distributions, or

require additional packages:

MariaDB Database Server with wsrep API

Git, CMake (on Fedora, both cmake and cmake-fedora are required), GCC and GCC-C++, Automake, Autoconf,

and Bison, as well as development releases of libaio and ncurses.

Building
You can use Git to download the source code, as MariaDB source code is available through GitHub. Clone the

repository:

git clone https://github.com/mariadb/server mariadb

1. Checkout the branch (e.g. 10.0-galera or 5.5-galera), for example:

cd mariadb

git checkout 10.0-galera

Building the Database Server

The standard and Galera cluster database servers are the same, except that for Galera Cluster, the wsrep API patch is

included. Enable the patch with the CMake configuration options WITH_WSREP and

WITH_INNODB_DISALLOW_WRITES . To build the database server, run the following commands:

cmake -DWITH_WSREP=ON -DWITH_INNODB_DISALLOW_WRITES=ON .

make

make install

There are also some build scripts in the BUILD/ directory which may be more convenient to use. For example, the

following pre-configures the build options discussed above:

./BUILD/compile-pentium64-wsrep

There are several others as well, so you can select the most convenient.

Besides the server with the Galera support, you will also need a galera provider.

Preparation
make cannot manage dependencies itself, so the following packages need to be installed first:

apt-get install -y scons check

If running on an alternative system, or the commands are available, the following packages are required. You will need to

check the repositories for the correct package names on your distribution - these may differ between distributions, or require

additional packages:

Galera Replication Plugin

SCons, as well as development releases of Boost (libboost_program_options, libboost_headers1), Check and

OpenSSL.

2450/4161

Building
Run:

git clone -b mariadb-4.x https://github.com/MariaDB/galera.git

If you are using MariaDB 10.3 or earlier, you should checkout mariadb-3.x instead.

After this, the source files for the Galera provider will be in the galera directory.

Building the Galera Provider

The Galera Replication Plugin both implements the wsrep API and operates as the database server's wsrep Provider. To

build, cd into the galera/ directory and do:

git submodule init

git submodule update

./scripts/build.sh

mkdir /usr/lib64/galera

cp libgalera_smm.so /usr/lib64/galera

The path to libgalera_smm.so needs to be defined in the my.cnf configuration file.

Building Galera Replication Plugin from source on FreeBSD runs into issues due to Linux dependencies. To overcome

these, either install the binary package: pkg install galera , or use the ports build available at

/usr/ports/databases/galera .

Configuration
After building, a number of other steps are necessary:

Create the database server user and group:

 groupadd mysql

 useradd -g mysql mysql

Install the database (the path may be different if you specified CMAKE_INSTALL_PREFIX):

 cd /usr/local/mysql

 ./scripts/mariadb-install-db --user=mysql

If you want to install the database in a location other than /usr/local/mysql/data , use the --basedir or --datadir options.

Change the user and group permissions for the base directory.

 chown -R mysql /usr/local/mysql

 chgrp -R mysql /usr/local/mysql

Create a system unit for the database server.

cp /usr/local/mysql/supported-files/mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

chkconfig --add mysql

Galera Cluster can now be started using the service command, and is set to start at boot.

3.2.14 Galera Test Repositories
To facilitate development and QA, we have created some test repositories for the Galera wsrep provider.

These are test repositories. There will be periods when they do not work at all, or work incorrectly, or possibly cause

earthquakes, typhoons, and tornadoes. You have been warned.

2451/4161

Galera Test Repositories for YUM
Replace ${dist}

in the code below for the YUM-based distribution you are testing. Valid distributions are:

centos5-amd64

centos5-x86

centos6-amd64

centos6-x86

centos7-amd64

rhel5-amd64

rhel5-x86

rhel6-amd64

rhel6-x86

rhel6-ppc64

rhel7-amd64

rhel7-ppc64

rhel7-ppc64le

fedora22-amd64

fedora22-x86

fedora23-amd64

fedora23-x86

fedora24-amd64

fedora24-x86

opensuse13-amd64

opensuse13-x86

sles11-amd64

sles11-x86

sles12-amd64

sles12-ppc64le

Place this code block in a file at /etc/yum.repos.d/galera.repo

[galera-test]

name = galera-test

baseurl = http://yum.mariadb.org/galera/repo/rpm/${dist}

gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB

gpgcheck=1

Galera Test Repositories for APT
Replace ${dist}

in the code below for the APT-based distribution you are testing. Valid ones are:

wheezy

jessie

sid

precise

trusty

xenial

run the following command:

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 0xcbcb082a1bb943db 0xF1656F24C74CD1D8

Add the following line to your /etc/apt/sources.list file:

deb http://yum.mariadb.org/galera/repo/deb ${dist} main

3.2.15 wsrep_provider_options
Contents
1. wsrep_provider_options

1. base_dir

2. base_host

3. base_port
2452/4161

3. base_port

4. cert.log_conflicts

5. cert.optimistic_pa

6. debug

7. evs.auto_evict

8. evs.causal_keepalive_period

9. evs.debug_log_mask

10. evs.delay_margin

11. evs.delayed_keep_period

12. evs.evict

13. evs.inactive_check_period

14. evs.inactive_timeout

15. evs.info_log_mask

16. evs.install_timeout

17. evs.join_retrans_period

18. evs.keepalive_period

19. evs.max_install_timeouts

20. evs.send_window

21. evs.stats_report_period

22. evs.suspect_timeout

23. evs.use_aggregate

24. evs.user_send_window

25. evs.version

26. evs.view_forget_timeout

27. gcache.dir

28. gcache.keep_pages_size

29. gcache.mem_size

30. gcache.name

31. gcache.page_size

32. gcache.recover

33. gcache.size

34. gcomm.thread_prio

35. gcs.fc_debug

36. gcs.fc_factor

37. gcs.fc_limit

38. gcs.fc_master_slave

39. gcs.fc_single_primary

40. gcs.max_packet_size

41. gcs.max_throttle

42. gcs.recv_q_hard_limit

43. gcs.recv_q_soft_limit

44. gcs.sync_donor

45. gmcast.listen_addr

46. gmcast.mcast_addr

47. gmcast.mcast_ttl

48. gmcast.peer_timeout

49. gmcast.segment

50. gmcast.time_wait

51. gmcast.version

52. ist.recv_addr

53. ist.recv_bind

54. pc.announce_timeout

55. pc.checksum

56. pc.ignore_quorum

57. pc.ignore_sb

58. pc.linger

59. pc.npvo

60. pc.recovery

61. pc.version

62. pc.wait_prim

63. pc.wait_prim_timeout

64. pc.weight

65. protonet.backend

66. protonet.version

67. repl.causal_read_timeout

68. repl.commit_order

69. repl.key_format

70. repl.max_ws_size

71. repl.proto_max 2453/4161

71. repl.proto_max

72. socket.checksum

73. socket.dynamic

74. socket.recv_buf_size

75. socket.send_buf_size

76. socket.ssl

77. socket.ssl_ca

78. socket.ssl_cert

79. socket.ssl_cipher

80. socket.ssl_compression

81. socket.ssl_key

82. socket.ssl_password_file

wsrep_provider_options
The following options can be set as part of the Galera wsrep_provider_options variable. Dynamic options can be changed

while the server is running.

Options need to be provided as a semicolon (;) separated list on a single line. Options that are not explicitly set are set to

their default value.

Note that before Galera 3, the repl tag was named replicator .

base_dir

Description: Specifies the data directory

base_host

Description: For internal use. Should not be manually set.

Default: 127.0.0.1 (detected network address)

base_port

Description: For internal use. Should not be manually set.

Default: 4567

cert.log_conflicts

Description: Certification failure log details.

Dynamic: Yes

Default: no

cert.optimistic_pa

Description: Controls parallel application of actions on the replica. If set, the full range of parallelization as

determined by the certification algorithm is permitted. If not set, the parallel applying window will not exceed that seen

on the primary, and applying will start no sooner than after all actions it has seen on the master are committed.

Dynamic: Yes

Default: yes

debug

Description: Enable debugging.

Dynamic: Yes

Default: no

evs.auto_evict

Description: Number of entries the node permits for a given delayed node before triggering the Auto Eviction

2454/4161

protocol. An entry is added to a delayed list for each delayed response from a node. If set to 0 , the default, the Auto

Eviction protocol is disabled for this node. See Auto Eviction for more.

Dynamic: No

Default: 0

evs.causal_keepalive_period

Description: Used by the developers only, and not manually serviceable.

Dynamic: No

Default: The evs.keepalive_period.

evs.debug_log_mask

Description: Controls EVS debug logging. Only effective when wsrep_debug is on.

Dynamic: Yes

Default: 0x1

evs.delay_margin

Description: Time that response times can be delayed before this node adds an entry to the delayed list. See

evs.auto_evict. Must be set to a higher value than the round-trip delay time between nodes.

Dynamic: No

Default: PT1S

evs.delayed_keep_period

Description: Time that this node requires a previously delayed node to remain responsive before being removed

from the delayed list. See evs.auto_evict.

Dynamic: No

Default: PT30S

evs.evict

Description: When set to the gcomm UUID of a node, that node is evicted from the cluster. When set to an empty

string, the eviction list is cleared on the node where it is set. See evs.auto_evict.

Dynamic: No

Default: Empty string

evs.inactive_check_period

Description: Frequency of checks for peer inactivity (looking for nodes with delayed responses), after which nodes

may be added to the delayed list, and later evicted.

Dynamic: No

Default: PT0.5S

evs.inactive_timeout

Description: Time limit that a node can be inactive before being pronounced as dead.

Dynamic: No

Default: PT15S

evs.info_log_mask

Description: Controls extra EVS info logging. Bits:

0x1 3 extra view change information

0x2 3 extra state change information

0x4 3 statistics

2455/4161

https://galeracluster.com/library/documentation/auto-eviction.html

0x8 3 profiling (only available in builds with profiling enabled)

Dynamic: No

Default: 0

evs.install_timeout

Description: Timeout on waits for install message acknowledgments. Replaces evs.consensus_timeout.

Dynamic: Yes

Default: PT7.5S

evs.join_retrans_period

Description: Time period for how often retransmission of EVS join messages when forming cluster membership

should occur.

Dynamic: Yes

Default: PT1S

evs.keepalive_period

Description: How often keepalive signals should be transmitted when there's no other traffic.

Dynamic: Yes

Default: PT1S

evs.max_install_timeouts

Description: Number of membership install rounds to attempt before timing out. The total rounds will be this value

plus two.

Dynamic: No

Default: 3

evs.send_window

Description: Maximum number of packets that can be replicated at a time, Must be more than

evs.user_send_window, which applies to data packets only (double is recommended). In WAN environments can be

set much higher than the default, for example 512 .

Dynamic: Yes

Default: 4

evs.stats_report_period

Description: Reporting period for EVS statistics.

Dynamic: No

Default: PT1M

evs.suspect_timeout

Description: A node will be suspected to be dead after this period of inactivity. If all nodes agree, the node is

dropped from the cluster before evs.inactive_timeout is reached.

Dynamic: No

Default: PT5S

evs.use_aggregate

Description: If set to true (the default), small packets will be aggregated into one where possible.

Dynamic: No

Default: true

2456/4161

evs.user_send_window

Description: Maximum number of data packets that can be replicated at a time. Must be smaller than

evs.send_window (half is recommended). In WAN environments can be set much higher than the default, for example

512 .

Dynamic: Yes

Default: 2

evs.version

Description: EVS protocol version. Defaults to 0 for backward compatibility. Certain EVS features (e.g. auto

eviction) require more recent versions.

Dynamic: No

Default: 0

evs.view_forget_timeout

Description: Time after which past views will be dropped from the view history.

Dynamic: No

Default: P1D

gcache.dir

Description: Directory where GCache files are placed.

Dynamic: No

Default: The working directory

gcache.keep_pages_size

Description: Total size of the page storage pages for caching. One page is always present if only page storage is

enabled.

Dynamic: No

Default: 0

gcache.mem_size

Description: Maximum size of size of the malloc() store for setups that have spare RAM.

Dynamic: No

Default: 0

gcache.name

Description: Gcache ring buffer storage file name. By default placed in the working directory, changing to another

location or partition can reduce disk IO.

Dynamic: No

Default: ./galera.cache ---

gcache.page_size

Description: Size of the page storage page files. These are prefixed by gcache.page . Can be set to as large as

the disk can handle.

Dynamic: No

Default: 128M

gcache.recover

Description: Whether or not gcache recovery takes place when the node starts up. If it is possible to recover gcache,

the node can then provide IST to other joining nodes, which assists when the whole cluster is restarted.

2457/4161

Dynamic: No

Default: no

Introduced: MariaDB 10.1.20 , MariaDB Galera 10.0.29 , MariaDB Galera 5.5.54

gcache.size

Description: Gcache ring buffer storage size (the space the node uses for caching write sets), preallocated on

startup.

Dynamic: No

Default: 128M

gcomm.thread_prio

Description: Gcomm thread policy and priority (in the format policy:priority . Priority is an integer, while policy

can be one of:

fifo : First-in, first-out scheduling. Always preempt other, batch or idle threads and can only be preempted by

other fifo threads of a higher priority or blocked by an I/O request.

rr : Round-robin scheduling. Always preempt other, batch or idle threads. Runs for a fixed period of time after

which the thread is stopped and moved to the end of the list, being replaced by another round-robin thread with

the same priority. Otherwise runs until preempted by other rr threads of a higher priority or blocked by an I/O

request.

other : Default scheduling on Linux. Threads run until preempted by a thread of a higher priority or a superior

scheduling designation, or blocked by an I/O request.

Dynamic: No

Default: Empty string

gcs.fc_debug

Description: If set to a value greater than zero (the default), debug statistics about SST flow control will be posted

each time after the specified number of writesets.

Dynamic: No

Default: 0

gcs.fc_factor

Description:Fraction below gcs.fc_limit which if the recv queue drops below, replication resumes.

Dynamic: Yes

Default: 1.0

gcs.fc_limit

Description: If the recv queue exceeds this many writesets, replication is paused. Can increase greatly in master-

slave setups. Replication will resume again according to the gcs.fc_factor setting.

Dynamic: Yes

Default: 16

gcs.fc_master_slave

Description: Whether to assume that the cluster only contains one master. Deprecated since Galera 4.10 (MariaDB

10.8.1 , MariaDB 10.7.2 , MariaDB 10.6.6, MariaDB 10.5.14, MariaDB 10.4.22) - see gcs.fc_single_primary

Dynamic: No

Default: no

gcs.fc_single_primary

Description: Defines whether there is more than one source of replication. As the number of nodes in the cluster

grows, the larger the calculated gcs.fc_limit gets. At the same time, the number of writes from the nodes increases.

When this parameter value is set to NO (multi-primary), the gcs.fc_limit parameter is dynamically modified to give

more margin for each node to be a bit further behind applying writes. The gcs.fc_limit parameter is modified by the

2458/4161

https://mariadb.com/kb/en/mariadb-10120-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10029-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5554-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/

square root of the cluster size, that is, in a four-node cluster it is two times higher than the base value. This is done to

compensate for the increasing replication rate noise.

Dynamic: No

Default: no

gcs.max_packet_size

Description: Maximum packet size, after which writesets become fragmented.

Dynamic: No

Default: 64500

gcs.max_throttle

Description: How much we can throttle replication rate during state transfer (to avoid running out of memory). Set it

to 0.0 if stopping replication is acceptable for the sake of completing state transfer.

Dynamic: No

Default: 0.25

gcs.recv_q_hard_limit

Description: Maximum size of the recv queue. If exceeded, the server aborts. Half of available RAM plus swap is a

recommended size.

Dynamic: No

Default: LLONG_MAX

gcs.recv_q_soft_limit

Description: Fraction of gcs.recv_q_hard_limit after which replication rate is throttled. The rate of throttling increases

linearly from zero (the regular, varying rate of replication) at and below csrecv_q_soft_limit to one (full throttling)

at gcs.recv_q_hard_limit

Dynamic: No

Default: 0.25

gcs.sync_donor

Description: Whether or not the rest of the cluster should stay in sync with the donor. If set to YES (NO is default),

if the donor is blocked by state transfer, the whole cluster is also blocked.

Dynamic: No

Default: no

gmcast.listen_addr

Description: Address Galera listens for connections from other nodes. Can be used to override the default port to

listen, which is obtained from the connection address.

Dynamic: No

Default: tcp://0.0.0.0:4567

gmcast.mcast_addr

Description: Not set by default, but if set, UDP multicast will be used for replication. Must be identical on all

nodes.For example, gmcast.mcast_addr=239.192.0.11

Dynamic: No

Default: None

gmcast.mcast_ttl

Description: Multicast packet TTL (time to live) value.

2459/4161

Dynamic: No

Default: 1

gmcast.peer_timeout

Description: Connection timeout for initiating message relaying.

Dynamic: No

Default: PT3S

gmcast.segment

Description: Defines the segment to which the node belongs. By default, all nodes are placed in the same segment

(0). Usually, you would place all nodes in the same datacenter in the same segment. Galera protocol traffic is only

redirected to one node in each segment, and then relayed to other nodes in that same segment, which saves cross-

datacenter network traffic at the expense of some extra latency. State transfers are also, preferably but not

exclusively, taken from the same segment. If there are no nodes available in the same segment, state transfer will be

taken from a node in another segment.

Dynamic: No

Default: 0

Range: 0 to 255

gmcast.time_wait

Description: Waiting time before allowing a peer that was declared outside of the stable view to reconnect.

Dynamic: No

Default: PT5S

gmcast.version

Description: Deprecated option. Gmcast version.

Dynamic: No

Default: 0

ist.recv_addr

Description: Address for listening for Incremental State Transfer.

Dynamic: No

Default: <address>:<port+1> from wsrep_node_address

ist.recv_bind

Description:

Dynamic: No

Default: Empty string

Introduced: MariaDB 10.1.17 , MariaDB Galera 10.0.27 , MariaDB Galera 5.5.51

pc.announce_timeout

Description: Period of time for which cluster joining announcements are sent every 1/2 second.

Dynamic: No

Default: PT3S

pc.checksum

Description: For debug purposes, by default false (true in earlier releases), indicates whether to checksum

replicated messages on PC level. Safe to turn off.

Dynamic: No

2460/4161

https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-10027-release-notes/
https://mariadb.com/kb/en/mariadb-galera-cluster-5551-release-notes/

Default: false

pc.ignore_quorum

Description: Whether to ignore quorum calculations, for example when a master splits from several slaves, it will

remain in operation if set to true (false is default). Use with care however, as in master-slave setups, slaves

will not automatically reconnect to the master if set.

Dynamic: Yes

Default: false

pc.ignore_sb

Description: Whether to permit updates to be processed even in the case of split brain (when a node is

disconnected from its remaining peers). Safe in master-slave setups, but could lead to data inconsistency in a multi-

master setup.

Dynamic: Yes

Default: false

pc.linger

Description: Time that the PC protocol waits for EVS termination.

Dynamic: No

Default: PT20S

pc.npvo

Description: If set to true (false is default), when there are primary component conficts, the most recent

component will override the older.

Dynamic: No

Default: false

pc.recovery

Description: If set to true (the default), the Primary Component state is stored on disk and in the case of a full

cluster crash (e.g power outages), automatic recovery is then possible. Subsequent graceful full cluster restarts will

require explicit bootstrapping for a new Primary Component.

Dynamic: No

Default: true

pc.version

Description: Deprecated option. PC protocol version.

Dynamic: No

Default: 0

pc.wait_prim

Description: When set to true , the default, the node will wait for a primary component for the period of time

specified by pc.wait_prim_timeout. Used to bring up non-primary components and make them primary using

pc.bootstrap.

Dynamic: No

Default: true

pc.wait_prim_timeout

Description: Ttime to wait for a primary component. See pc.wait_prim.

Dynamic: No

2461/4161

Default: PT30S

pc.weight

Description: Node weight, used for quorum calculation. See the Codership article Weighted Quorum .

Dynamic: Yes

Default: 1

protonet.backend

Description: Deprecated option. Transport backend to use. Only ASIO is supported currently.

Dynamic: No

Default: asio

protonet.version

Description: Deprecated option. Protonet version.

Dynamic: No

Default: 0

repl.causal_read_timeout

Description: Timeout period for causal reads.

Dynamic: Yes

Default: PT30S

repl.commit_order

Description: Whether or not out-of-order committing is permitted, and under what conditions. By default it is not

permitted, but setting this can improve parallel performance.

0 BYPASS: No commit order monitoring is done (useful for measuring the performance penalty).

1 OOOC: Out-of-order committing is permitted for all transactions.

2 LOCAL_OOOC: Out-of-order committing is permitted for local transactions only.

3 NO_OOOC: Out-of-order committing is not permitted at all.

Dynamic: No

Default: 3

repl.key_format

Description: Format for key replication. Can be one of:

FLAT8 - shorter key with a higher probability of false positives when matching

FLAT16 - longer key with a lower probability of false positives when matching

FLAT8A - shorter key with a higher probability of false positives when matching, includes annotations for

debug purposes

FLAT16A - longer key with a lower probability of false positives when matching, includes annotations for

debug purposes

Dynamic: Yes

Default: FLAT8

repl.max_ws_size

Description:

Dynamic:

Default: 2147483647

repl.proto_max

2462/4161

https://galeracluster.com/library/documentation/weighted-quorum.html#weighted-quorum

Description:

Dynamic:

Default: 9

socket.checksum

Description: Method used for generating checksum. Note: If Galera 25.2.x and 25.3.x are both being used in the

cluster, MariaDB with Galera 25.3.x must be started with wsrep_provider_options='socket.checksum=1' in

order to make it backward compatible with Galera v2. Galera wsrep providers other than 25.3.x or 25.2.x are not

supported.

Dynamic: No

Default: 2

socket.dynamic

Description: Allow both encrypted and unencrypted connections between nodes. Typically this should be set to

false (the default), when set to true encrypted connections will still be preferred, but will fall back to unencrypted

connections when encryption is not possible, e.g. not enabled on all nodes yet. Needs to be true on all nodes when

wanting to enable or disable encryption via a rolling restart. As this can't be changed at runtime a rolling restart to

enable or disable encryption may need three restarts per node in total: one to enable socket.dynamic on each

node, one to change the actual encryption settings on each node, and a final round to change socket.dynamic

back to false .

Dynamic: No

Default: false

Introduced: MariaDB 10.4.19, MariaDB 10.5.10, MariaDB 10.6.0

socket.recv_buf_size

Description: Size in bytes of the receive buffer used on the network sockets between nodes, passed on to the kernel

via the SO_RCVBUF socket option.

Dynamic: No

Default:

>= MariaDB 10.3.23 , MariaDB 10.2.32 , MariaDB 10.1.45 : Auto

< MariaDB 10.3.22 : MariaDB 10.2.31 , MariaDB 10.1.44 : 212992

socket.send_buf_size

Description: Size in bytes of the send buffer used on the network sockets between nodes, passed on to the kernel

via the SO_SNDBUF socket option.

Dynamic: No

Default:: Auto

Introduced: MariaDB 10.3.23 , MariaDB 10.2.32 , MariaDB 10.1.45

socket.ssl

Description: Explicitly enables TLS usage by the wsrep Provider.

Dynamic: No

Default: NO

socket.ssl_ca

Description: Path to Certificate Authority (CA) file. Implicitly enables the socket.ssl option.

Dynamic: No

socket.ssl_cert

Description: Path to TLS certificate. Implicitly enables the socket.ssl option.

Dynamic: No

2463/4161

https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10231-release-notes/
https://mariadb.com/kb/en/mariadb-10144-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/

socket.ssl_cipher

Description: TLS cipher to use. Implicitly enables the socket.ssl option. Since MariaDB 10.2.18 defaults to the

value of the ssl_cipher system variable.

Dynamic: No

Default: system default, before MariaDB 10.2.18 defaults to AES128-SHA .

socket.ssl_compression

Description: Compression to use on TLS connections. Implicitly enables the socket.ssl option.

Dynamic: No

socket.ssl_key

Description: Path to TLS key file. Implicitly enables the socket.ssl option.

Dynamic: No

socket.ssl_password_file

Description: Path to password file to use in TLS connections. Implicitly enables the socket.ssl option.

Dynamic: No

3.2.16 Galera Cluster Address
URL's in Galera take a particular format:

<schema>://<cluster_address>[?option1=value1[&option2=value2]]

Contents
1. Schema

2. Cluster address

3. Option list

4. Port

Schema
gcomm - This is the option to use for a working implementation.

dummy - Used for running tests and profiling, does not do any actual replication, and all following parameters are

ignored.

Cluster address
The cluster address shouldn't be empty like gcomm:// . This should never be hardcoded into any configuration files.

To connect the node to an existing cluster, the cluster address should contain the address of any member of the

cluster you want to join.

The cluster address can also contain a comma-separated list of multiple members of the cluster. It is good practice to

list all possible members of the cluster, for example gcomm:<node1 name or ip>,<node2 name or ip2>,<node3

name or ip> . Alternately if multicast is use put the multicast address instead of the list of nodes. Each member

address or multicast address can specify <node name or ip>:<port> if a non-default port is used.

Option list
The wsrep_provider_options variable is used to set a list of options. These parameters can also be provided (and

overridden) as part of the URL. Unlike options provided in a configuration file, they will not endure, and need to be

resubmitted with each connection.

A useful option to set is pc.wait_prim=no to ensure the server will start running even if it can't determine a primary node.

2464/4161

https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

This is useful if all members go down at the same time.

Port
By default, gcomm listens on all interfaces. The port is either provided in the cluster address, or will default to 4567 if not

set.

3.2.17 Galera Load Balancer
Galera Load Balancer is a simple Load Balancer specifically designed for Galera Cluster. Like Galera, it only runs on Linux.

Galera Load Balancer is developed and mantained by Codership. Documentation is available on fromdual.com .

Galera Load Balancer is inspired by pen, which is a generic TCP load balancer. However, since pen is a generic TCP

connections load balancer, the techniques it uses are not well-suited to the particular use case of database servers. Galera

Load Balancer is optimized for this type of workload.

Several balancing policies are supported. Each node can be assigned a different weight. Nodes with a higher weight are

preferred. Depending on the selected policy, other nodes can even be ignored, until the preferred nodes crash.

A lightweight daemon called glbd receives the connections from clients and it redirects them to nodes. No specific client

exists for this demo: a generic TCP client, like nc, can be used to send administrative commands and read the usage

statistics.

2.1.3.12 Upgrading Galera Cluster

3.1.25 Using MariaDB Replication with MariaDB Galera
Cluster

2.2.1.1.1.5 Securing Communications in Galera Cluster

3.2.21 Installing MariaDB Galera on IBM Cloud
Contents
1. Step 1 provision Kubernetes Cluster

2. Step 2 deploy IBM Cloud Block Storage plug-in

3. Step 3 deploy MariaDB Galera

4. Verify MariaDB Galera installation

Get MariaDB Galera on IBM Cloud

You should have an IBM Cloud account, otherwise you can register here . At the end of the tutorial you will have a cluster

with MariaDB up and running. IBM Cloud uses Bitnami charts to deploy MariaDB Galera on with helm

1. We will provision a new Kubernetes Cluster for you if, you already have one skip to step 2

2. We will deploy the IBM Cloud Block Storage plug-in, if already have it skip to step 3

3. MariaDB Galera deployment

Step 1 provision Kubernetes Cluster
Click the Catalog button on the top

Select Service from the catalog

Search for Kubernetes Service and click on it

2465/4161

http://www.fromdual.com/galera-load-balancer-documentation
https://cloud.ibm.com/registration

You are now at the Kubernetes deployment page, you need to specify some details about the cluster

Choose a plan standard or free, the free plan only has one worker node and no subnet, to provision a standard

cluster, you will need to upgrade you account to Pay-As-You-Go

To upgrade to a Pay-As-You-Go account, complete the following steps:

In the console, go to Manage > Account.

Select Account settings, and click Add credit card.

Enter your payment information, click Next, and submit your information

Choose classic or VPC, read the docs and choose the most suitable type for yourself

Now choose your location settings, for more information please visit Locations

Choose Geography (continent)

Choose Single or Multizone, in single zone your data is only kept in on datacenter, on the other hand with Multizone

2466/4161

https://cloud.ibm.com/docs/containers?topic=containers-infrastructure_providers
https://cloud.ibm.com/docs/containers?topic=containers-regions-and-zones#zones

it is distributed to multiple zones, thus safer in an unforseen zone failure

Choose a Worker Zone if using Single zones or Metro if Multizone

If you wish to use Multizone please set up your account with VRF or enable Vlan spanning

If at your current location selection, there is no available Virtual LAN, a new Vlan will be created for you

Choose a Worker node setup or use the preselected one, set Worker node amount per zone

Choose Master Service Endpoint, In VRF-enabled accounts, you can choose private-only to make your master

accessible on the private network or via VPN tunnel. Choose public-only to make your master publicly accessible.

When you have a VRF-enabled account, your cluster is set up by default to use both private and public endpoints.

For more information visit endpoints .

Give cluster a name

2467/4161

https://cloud.ibm.com/docs/dl?topic=dl-overview-of-virtual-routing-and-forwarding-vrf-on-ibm-cloud
https://cloud.ibm.com/docs/vlans?topic=vlans-vlan-spanning#vlan-spanning
https://cloud.ibm.com/docs/account?topic=account-service-endpoints-overview

Give desired tags to your cluster, for more information visit tags

Click create

Wait for you cluster to be provisioned

Your cluster is ready for usage

Step 2 deploy IBM Cloud Block Storage plug-in

2468/4161

https://cloud.ibm.com/docs/account?topic=account-tag

The Block Storage plug-in is a persistent, high-performance iSCSI storage that you can add to your apps by using

Kubernetes Persistent Volumes (PVs).

Click the Catalog button on the top

Select Software from the catalog

Search for IBM Cloud Block Storage plug-in and click on it

On the application page Click in the dot next to the cluster, you wish to use

Click on Enter or Select Namespace and choose the default Namespace or use a custom one (if you get error

please wait 30 minutes for the cluster to finalize)

Give a name to this workspace

Click install and wait for the deployment

2469/4161

Step 3 deploy MariaDB Galera
We will deploy MariaDB on our cluster

Click the Catalog button on the top

Select Software from the catalog

Search for MariaDB and click on it

On the application page Click in the dot next to the cluster, you wish to use

Click on Enter or Select Namespace and choose the default Namespace or use a custom one

2470/4161

Give a unique name to workspace, which you can easily recognize

Select which resource group you want to use, it's for access controll and billing purposes. For more information

please visit resource groups

2471/4161

https://cloud.ibm.com/docs/account?topic=account-account_setup#bp_resourcegroups

Give tags to your MariaDB Galera, for more information visit tags

Click on Parameters with default values, You can set deployment values or use the default ones

2472/4161

https://cloud.ibm.com/docs/account?topic=account-tag

Please set the MariaDB Galera root password in the parameters

After finishing everything, tick the box next to the agreements and click install

The MariaDB Galera workspace will start installing, wait a couple of minutes

Your MariaDB Galera workspace has been successfully deployed

Verify MariaDB Galera installation
Go to Resources in your browser

Click on Clusters

Click on your Cluster

2473/4161

http://cloud.ibm.com/resources

Now you are at you clusters overview, here Click on Actions and Web terminal from the dropdown menu

Click install - wait couple of minutes

Click on Actions

Click Web terminal --> a terminal will open up

Type in the terminal, please change NAMESPACE to the namespace you choose at the deployment setup:

2474/4161

$ kubectl get ns

$ kubectl get pod -n NAMESPACE -o wide

$ kubectl get service -n NAMESPACE

Enter your pod with bash , please replace PODNAME with your mariadb pod's name

$ kubectl exec --stdin --tty PODNAME -n NAMESPACE -- /bin/bash

After you are in your pod , please verify that mariadb is running on your pods cluster. Please enter the root password

after the prompt

mysql -u root -p -e "SHOW STATUS LIKE 'wsrep_cluster_size'"

You have succesfully deployed MariaDB Galera on IBM Cloud!

3.3 Optimization and Tuning
Articles on how to get the most out of MariaDB, including new features.

Hardware Optimization

Better performance with hardware improvements

Operating System Optimizations

Optimizations at the OS level

Optimization and Indexes

Using indexes to improve query performance

Query Optimizations

Getting queries running more optimally

Optimizing Tables

Different ways to optimize tables and data on disk

2475/4161

MariaDB Memory Allocation

Basic issues in RAM allocation for MariaDB.

System Variables

Understanding, optimizing and tuning the server system variables

Buffers, Caches and Threads

Buffering, caching, thread pool to improve performance

Optimizing Data Structure

Designing the most optimal schemas, tables, and columns

MariaDB Internal Optimizations

Different optimizations strategies done internally in MariaDB

Benchmarking

Various benchmark results for MariaDB.

Compression

Types of compression in MariaDB

There are 11 related questions .

3

3.3.1 Hardware Optimization
Better hardware is one of the easiest ways to improve performance.

As a general rule of thumb, hardware should be improved in the following order:

Memory
Memory is the most important factor as it allows you to adjust the Server System Variables. More memory means larger key

and table caches can be stored in memory so that disk access, an order of magnitude slower, is reduced.

Simply adding more memory may not result in drastic improvements if the server variables are not set to make use of the

extra available memory.

Using more RAM slots on the motherboard increases the bus frequency, and there will be more latency between the RAM

and the CPU. So, using the highest RAM size per slot is preferable.

Disks
Fast disk access is critical, as ultimately it's where the data resides. The key figure is the disk seek time, a measurement of

how fast the physical disk can move to access the data, so choose disks with as low a seek time as possible.

You can also add dedicated disks for temporary files and transaction logs.

Fast Ethernet

CPU
Although hardware bottlenecks often fall elsewhere, faster processors allow calculations to be performed more quickly, and

the results sent back to the client more quickly. Besides processor speed, the processor's bus speed and cache size are

also important factors to consider.

3.3.2 Operating System Optimizations
Between the hardware and MariaDB sits the operating system, and there are a number of optimizations that can be made at

this level

2476/4161

https://mariadb.com/kb/en/benchmarking/
https://mariadb.com/kb/en/optimization-and-tuning/+questions/

Configuring Linux for MariaDB

Linux kernel settings IO scheduler For optimal IO performance running a da...

Configuring Swappiness

Setting Linux swappiness.

Filesystem Optimizations

Which filesystem is best? The filesystem is not the most important aspect ...

There are 1 related questions .

2

2.1.7.2 Configuring Linux for MariaDB

2.1.7.4 Configuring Swappiness

3.3.2.3 Filesystem Optimizations
Contents
1. Which filesystem is best?

2. Disabling access time

Which filesystem is best?
The filesystem is not the most important aspect of MariaDB performance. Far more important are available RAM, drive

speed, the system variable settings (see Hardware Optimization and System Variables).

Optimizing the filesystem can however in some cases make a noticeable difference. Currently, the best Linux filesystems

are generally regarded as ext4, XFS and Btrfs. They are all included in the mainline Linux kernel, and are widely supported

and available on most Linux distributions. Red Hat though regards Brtfs as a technology preview, not yet ready for

production systems.

The following theoretical file size and filesystem size limits apply to the three filesystems:

ext4 XFS Brtfs

Max file size 16TB 8EB 16EB

Max filesystem size 1 EB 8EB 16EB

Each has unique characteristics that are worth understanding to get the most from.

Disabling access time
It's unlikely you'll need to record file access time on a database server, and mounting your filesystem with this disabled can

give an easy improvement in performance. To do so, use the noatime option.

If you want to keep access time for log files or other system files, these can be stored on a separate drive.

3.3.3 Optimization and Indexes
A critical way to improve table performance is by creating indexes on key columns.

The Essentials of an Index

Explains the basics of a table index.

Getting Started with Indexes

Extensive tutorial on creating indexes for tables.

Full-Text Indexes

MariaDB has support for full-text indexing and searching.

6

2477/4161

https://mariadb.com/kb/en/operating-system-optimizations/+questions/

ANALYZE TABLE

Store key distributions for a table.

Building the best INDEX for a given SELECT

Cookbook for Creating Indexes

Compound (Composite) Indexes

Compound indexes plus other insights into the mysteries of indexing

EXPLAIN

EXPLAIN returns information about index usage, as well as being a synonym for DESCRIBE.

Foreign Keys

Foreign keys can be used to enforce data integrity.

Ignored Indexes

Indexes that are not used by the optimizer.

Index Statistics

Index statistics and the query optimizer.

Latitude/Longitude Indexing

Efficiently finding the nearest 10 pizza parlors in a huge database

Primary Keys with Nullable Columns

SQL standards in dealing with multi-part primary keys with nullable columns.

SHOW EXPLAIN

Shows an execution plan for a running query.

SPATIAL INDEX

An index type used for geometric columns.

Storage Engine Index Types

The permitted index_types for each storage engine.

There are 4 related questions .

4

1

3

5

1

6.2.6 The Essentials of an Index

3.3.3.2 Getting Started with Indexes
Contents
1. Primary Key

1. Finding Tables Without Primary Keys

2. Unique Index

3. Plain Indexes

4. Full-Text Indexes

5. Choosing Indexes

6. Viewing Indexes

7. When to Remove an Index

For a very basic overview, see The Essentials of an Index.

There are four main kinds of indexes; primary keys (unique and not null), unique indexes (unique and can be null), plain

indexes (not necessarily unique) and full-text indexes (for full-text searching).

The terms 'KEY' and 'INDEX' are generally used interchangeably, and statements should work with either keyword.

Primary Key

2478/4161

https://mariadb.com/kb/en/optimization-and-indexes/+questions/

A primary key is unique and can never be null. It will always identify only one record, and each record must be represented.

Each table can only have one primary key.

In InnoDB tables, all indexes contain the primary key as a suffix. Thus, when using this storage engine, keeping the primary

key as small as possible is particularly important. If a primary key does not exist and there are no UNIQUE indexes, InnoDB

creates a 6-bytes clustered index which is invisible to the user.

Many tables use a numeric ID field as a primary key. The AUTO_INCREMENT attribute can be used to generate a unique

identity for new rows, and is commonly-used with primary keys.

Primary keys are usually added when the table is created with the CREATE TABLE statement. For example, the following

creates a primary key on the ID field. Note that the ID field had to be defined as NOT NULL, otherwise the index could not

have been created.

CREATE TABLE `Employees` (

 `ID` TINYINT(3) UNSIGNED NOT NULL AUTO_INCREMENT,

 `First_Name` VARCHAR(25) NOT NULL,

 `Last_Name` VARCHAR(25) NOT NULL,

 `Position` VARCHAR(25) NOT NULL,

 `Home_Address` VARCHAR(50) NOT NULL,

 `Home_Phone` VARCHAR(12) NOT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=Aria;

You cannot create a primary key with the CREATE INDEX command. If you do want to add one after the table has already

been created, use ALTER TABLE, for example:

ALTER TABLE Employees ADD PRIMARY KEY(ID);

Finding Tables Without Primary Keys

Tables in the information_schema database can be queried to find tables that do not have primary keys. For example,

here is a query using the TABLES and KEY_COLUMN_USAGE tables that can be used:

SELECT t.TABLE_SCHEMA, t.TABLE_NAME

FROM information_schema.TABLES AS t

LEFT JOIN information_schema.KEY_COLUMN_USAGE AS c

ON t.TABLE_SCHEMA = c.CONSTRAINT_SCHEMA

 AND t.TABLE_NAME = c.TABLE_NAME

 AND c.CONSTRAINT_NAME = 'PRIMARY'

WHERE t.TABLE_SCHEMA != 'information_schema'

 AND t.TABLE_SCHEMA != 'performance_schema'

 AND t.TABLE_SCHEMA != 'mysql'

 AND c.CONSTRAINT_NAME IS NULL;

Unique Index
A Unique Index must be unique, but it can have columns that may be NULL. So each key value identifies only one record,

but not each record needs to be represented.

Unique, if index type is not specified, is normally a BTREE index that can also be used by the optimizer to find rows. If

the key is longer than the max key length for the used storage engine and the storage engine supports long unique

index, a HASH key will be created. This enables MariaDB to enforce uniqueness for any type or number of columns.

For example, to create a unique key on the Employee_Code field, as well as a primary key, use:

CREATE TABLE `Employees` (

 `ID` TINYINT(3) UNSIGNED NOT NULL,

 `First_Name` VARCHAR(25) NOT NULL,

 `Last_Name` VARCHAR(25) NOT NULL,

 `Position` VARCHAR(25) NOT NULL,

 `Home_Address` VARCHAR(50) NOT NULL,

 `Home_Phone` VARCHAR(12) NOT NULL,

 `Employee_Code` VARCHAR(25) NOT NULL,

 PRIMARY KEY (`ID`),

 UNIQUE KEY (`Employee_Code`)

) ENGINE=Aria;

MariaDB starting with 10.5

2479/4161

Unique keys can also be added after the table is created with the CREATE INDEX command, or with the ALTER TABLE

command, for example:

ALTER TABLE Employees ADD UNIQUE `EmpCode`(`Employee_Code`);

and

CREATE UNIQUE INDEX HomePhone ON Employees(Home_Phone);

Indexes can contain more than one column. MariaDB is able to use one or more columns on the leftmost part of the index, if

it cannot use the whole index. (except for the HASH index type).

Take another example:

CREATE TABLE t1 (a INT NOT NULL, b INT, UNIQUE (a,b));

INSERT INTO t1 values (1,1), (2,2);

SELECT * FROM t1;

+---+------+

| a | b |

+---+------+

| 1 | 1 |

| 2 | 2 |

+---+------+

Since the index is defined as unique over both columns a and b, the following row is valid, as while neither a nor b are

unique on their own, the combination is unique:

INSERT INTO t1 values (2,1);

SELECT * FROM t1;

+---+------+

| a | b |

+---+------+

| 1 | 1 |

| 2 | 1 |

| 2 | 2 |

+---+------+

The fact that a UNIQUE constraint can be NULL is often overlooked. In SQL any NULL is never equal to anything, not even

to another NULL . Consequently, a UNIQUE constraint will not prevent one from storing duplicate rows if they contain null

values:

INSERT INTO t1 values (3,NULL), (3, NULL);

SELECT * FROM t1;

+---+------+

| a | b |

+---+------+

| 1 | 1 |

| 2 | 1 |

| 2 | 2 |

| 3 | NULL |

| 3 | NULL |

+---+------+

Indeed, in SQL two last rows, even if identical, are not equal to each other:

SELECT (3, NULL) = (3, NULL);

+---------------------- +

| (3, NULL) = (3, NULL) |

+---------------------- +

| 0 |

+---------------------- +

In MariaDB you can combine this with virtual columns to enforce uniqueness over a subset of rows in a table:

2480/4161

create table Table_1 (

 user_name varchar(10),

 status enum('Active', 'On-Hold', 'Deleted'),

 del char(0) as (if(status in ('Active', 'On-Hold'),'', NULL)) persistent,

 unique(user_name,del)

)

This table structure ensures that all active or on-hold users have distinct names, but as soon as a user is deleted, his name

is no longer part of the uniqueness constraint, and another user may get the same name.

If a unique index consists of a column where trailing pad characters are stripped or ignored, inserts into that column where

values differ only by the number of trailing pad characters will result in a duplicate-key error.

For some engines, like InnoDB, UNIQUE can be used with any type of columns or any number of columns.

create table t1 (a int primary key,

b blob,

c1 varchar(1000),

c2 varchar(1000),

c3 varchar(1000),

c4 varchar(1000),

c5 varchar(1000),

c6 varchar(1000),

c7 varchar(1000),

c8 varchar(1000),

c9 varchar(1000),

unique key `b` (b),

unique key `all_c` (c1,c2,c3,c4,c6,c7,c8,c9)) engine=myisam;

If the key length is longer than the max key length supported by the engine, a HASH key will be created. This can be

seen with SHOW CREATE TABLE table_name or SHOW INDEX FROM table_name :

show create table t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `a` int(11) NOT NULL,

 `b` blob DEFAULT NULL,

 `c1` varchar(1000) DEFAULT NULL,

 `c2` varchar(1000) DEFAULT NULL,

 `c3` varchar(1000) DEFAULT NULL,

 `c4` varchar(1000) DEFAULT NULL,

 `c5` varchar(1000) DEFAULT NULL,

 `c6` varchar(1000) DEFAULT NULL,

 `c7` varchar(1000) DEFAULT NULL,

 `c8` varchar(1000) DEFAULT NULL,

 `c9` varchar(1000) DEFAULT NULL,

 PRIMARY KEY (`a`),

 UNIQUE KEY `b` (`b`) USING HASH,

 UNIQUE KEY `all_c` (`c1`,`c2`,`c3`,`c4`,`c6`,`c7`,`c8`,`c9`) USING HASH

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci

Plain Indexes
Indexes do not necessarily need to be unique. For example:

MariaDB starting with 10.5

2481/4161

CREATE TABLE t2 (a INT NOT NULL, b INT, INDEX (a,b));

INSERT INTO t2 values (1,1), (2,2), (2,2);

SELECT * FROM t2;

+---+------+

| a | b |

+---+------+

| 1 | 1 |

| 2 | 2 |

| 2 | 2 |

+---+------+

Full-Text Indexes
Full-text indexes support full-text indexing and searching. See the Full-Text Indexes section.

Choosing Indexes
In general you should only add indexes to match the queries your application uses. Any extra will waste resources. In an

application with very small tables, indexes will not make much difference but as soon as your tables are larger than your

buffer sizes the indexes will start to speed things up dramatically.

Using the EXPLAIN statement on your queries can help you decide which columns need indexing.

If you query contains something like LIKE '%word%' , without a fulltext index you are using a full table scan every time,

which is very slow.

If your table has a large number of reads and writes, consider using delayed writes. This uses the db engine in a "batch"

write mode, which cuts down on disk io, therefore increasing performance.

Use the CREATE INDEX command to create an index.

If you are building a large table then for best performance add the index after the table is populated with data. This is to

increase the insert performance and remove the index overhead during inserts.

Viewing Indexes
You can view which indexes are present on a table, as well as details about them, with the SHOW INDEX statement.

If you want to know how to re-create an index, run SHOW CREATE TABLE .

When to Remove an Index
If an index is rarely used (or not used at all) then remove it to increase INSERT, and UPDATE performance.

If user statistics are enabled, the Information Schema INDEX_STATISTICS table stores the index usage.

If the slow query log is enabled and the log_queries_not_using_indexes server system variable is ON , the queries

which do not use indexes are logged.

The initial version of this article was copied, with permission, from http://hashmysql.org/wiki/Proper_Indexing_Strategy on 2012-10-30.

3.3.3.3 Full-Text Indexes
MariaDB has support for full-text indexing and searching.

Full-Text Index Overview

Full-text indexing and searching overview.

Full-Text Index Stopwords

Default list of full-text stopwords used by MATCH...AGAINST.

MATCH AGAINST

Perform a fulltext search on a fulltext index.

12

2482/4161

http://hashmysql.org/wiki/Proper_Indexing_Strategy

myisam_ftdump

A tool for displaying information on MyISAM FULLTEXT indexes.

3.3.3.3.1 Full-Text Index Overview
Contents
1. Excluded Results

2. Relevance

3. Types of Full-Text search

1. IN NATURAL LANGUAGE MODE

2. IN BOOLEAN MODE

3. WITH QUERY EXPANSION

4. Examples

MariaDB has support for full-text indexing and searching:

A full-text index in MariaDB is an index of type FULLTEXT, and it allows more options when searching for portions of

text from a field.

Full-text indexes can be used only with MyISAM, Aria, InnoDB and Mroonga tables, and can be created only for

CHAR, VARCHAR, or TEXT columns.

Partitioned tables cannot contain fulltext indexes, even if the storage engine supports them.

A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or added later

using ALTER TABLE or CREATE INDEX.

For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then create the

index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-separated list that names

the columns to be searched. AGAINST takes a string to search for, and an optional modifier that indicates what type of

search to perform. The search string must be a literal string, not a variable or a column name.

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

Excluded Results
Partial words are excluded.

Words less than 4 (MyISAM) or 3 (InnoDB) characters in length will not be stored in the fulltext index. This value can

be adjusted by changing the ft_min_word_length system variable (or, for InnoDB, innodb_ft_min_token_size).

Words longer than 84 characters in length will also not be stored in the fulltext index. This values can be adjusted by

changing the ft_max_word_length system variable (or, for InnoDB, innodb_ft_max_token_size).

Stopwords are a list of common words such as "once" or "then" that do not reflect in the search results unless IN

BOOLEAN MODE is used. The stopword list for MyISAM/Aria tables and InnoDB tables can differ. See stopwords for

details and a full list, as well as for details on how to change the default list.

For MyISAM/Aria fulltext indexes only, if a word appears in more than half the rows, it is also excluded from the

results of a fulltext search.

For InnoDB indexes, only committed rows appear - modifications from the current transaction do not apply.

Relevance
MariaDB calculates a relevance for each result, based on a number of factors, including the number of words in the index,

the number of unique words in a row, the total number of words in both the index and the result, and the weight of the word.

In English, 'cool' will be weighted less than 'dandy', at least at present! The relevance can be returned as part of a query

simply by using the MATCH function in the field list.

Types of Full-Text search

IN NATURAL LANGUAGE MODE

IN NATURAL LANGUAGE MODE is the default type of full-text search, and the keywords can be omitted. There are no

special operators, and searches consist of one or more comma-separated keywords.

Searches are returned in descending order of relevance.

IN BOOLEAN MODE
2483/4161

Boolean search permits the use of a number of special operators:

Operator Description

+ The word is mandatory in all rows returned.

- The word cannot appear in any row returned.

< The word that follows has a lower relevance than other words, although rows containing it will still match

> The word that follows has a higher relevance than other words.

() Used to group words into subexpressions.

~

The word following contributes negatively to the relevance of the row (which is different to the '-' operator,

which specifically excludes the word, or the '<' operator, which still causes the word to contribute positively to

the relevance of the row.

* The wildcard, indicating zero or more characters. It can only appear at the end of a word.

" Anything enclosed in the double quotes is taken as a whole (so you can match phrases, for example).

Searches are not returned in order of relevance, and nor does the 50% limit apply. Stopwords and word minimum and

maximum lengths still apply as usual.

WITH QUERY EXPANSION

A query expansion search is a modification of a natural language search. The search string is used to perform a regular

natural language search. Then, words from the most relevant rows returned by the search are added to the search string

and the search is done again. The query returns the rows from the second search. The IN NATURAL LANGUAGE MODE

WITH QUERY EXPANSION or WITH QUERY EXPANSION modifier specifies a query expansion search. It can be useful

when relying on implied knowledge within the data, for example that MariaDB is a database.

Examples
Creating a table, and performing a basic search:

CREATE TABLE ft_myisam(copy TEXT,FULLTEXT(copy)) ENGINE=MyISAM;

INSERT INTO ft_myisam(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'), ('Who ate everybody up');

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('wicked');

+--------------------------+

| copy |

+--------------------------+

| There was a wicked witch |

+--------------------------+

Multiple words:

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('wicked,witch');

+---------------------------------+

| copy |

+---------------------------------+

| There was a wicked witch |

+---------------------------------+

Since 'Once' is a stopword, no result is returned:

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('Once');

Empty set (0.00 sec)

Inserting the word 'wicked' into more than half the rows excludes it from the results:

INSERT INTO ft_myisam(copy) VALUES ('Once upon a wicked time'),

 ('There was a wicked wicked witch'), ('Who ate everybody wicked up');

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('wicked');

Empty set (0.00 sec)

2484/4161

Using IN BOOLEAN MODE to overcome the 50% limitation:

SELECT * FROM ft_myisam WHERE MATCH(copy) AGAINST('wicked' IN BOOLEAN MODE);

+---------------------------------+

| copy |

+---------------------------------+

| There was a wicked witch |

| Once upon a wicked time |

| There was a wicked wicked witch |

| Who ate everybody wicked up |

+---------------------------------+

Returning the relevance:

SELECT copy,MATCH(copy) AGAINST('witch') AS relevance

 FROM ft_myisam WHERE MATCH(copy) AGAINST('witch');

+---------------------------------+--------------------+

| copy | relevance |

+---------------------------------+--------------------+

| There was a wicked witch | 0.6775632500648499 |

| There was a wicked wicked witch | 0.5031757950782776 |

+---------------------------------+--------------------+

WITH QUERY EXPANSION. In the following example, 'MariaDB' is always associated with the word 'database', so it is

returned when query expansion is used, even though not explicitly requested.

CREATE TABLE ft2(copy TEXT,FULLTEXT(copy)) ENGINE=MyISAM;

INSERT INTO ft2(copy) VALUES

 ('MySQL vs MariaDB database'),

 ('Oracle vs MariaDB database'),

 ('PostgreSQL vs MariaDB database'),

 ('MariaDB overview'),

 ('Foreign keys'),

 ('Primary keys'),

 ('Indexes'),

 ('Transactions'),

 ('Triggers');

SELECT * FROM ft2 WHERE MATCH(copy) AGAINST('database');

+--------------------------------+

| copy |

+--------------------------------+

| MySQL vs MariaDB database |

| Oracle vs MariaDB database |

| PostgreSQL vs MariaDB database |

+--------------------------------+

3 rows in set (0.00 sec)

SELECT * FROM ft2 WHERE MATCH(copy) AGAINST('database' WITH QUERY EXPANSION);

+--------------------------------+

| copy |

+--------------------------------+

| MySQL vs MariaDB database |

| Oracle vs MariaDB database |

| PostgreSQL vs MariaDB database |

| MariaDB overview |

+--------------------------------+

4 rows in set (0.00 sec)

Partial word matching with IN BOOLEAN MODE:

SELECT * FROM ft2 WHERE MATCH(copy) AGAINST('Maria*' IN BOOLEAN MODE);

+--------------------------------+

| copy |

+--------------------------------+

| MySQL vs MariaDB database |

| Oracle vs MariaDB database |

| PostgreSQL vs MariaDB database |

| MariaDB overview |

+--------------------------------+

2485/4161

Using boolean operators

SELECT * FROM ft2 WHERE MATCH(copy) AGAINST('+MariaDB -database'

 IN BOOLEAN MODE);

+------------------+

| copy |

+------------------+

| MariaDB overview |

+------------------+

3.3.3.3.2 Full-Text Index Stopwords
Contents
1. MyISAM Stopwords

2. InnoDB Stopwords

Stopwords are used to provide a list of commonly-used words that can be ignored for the purposes of Full-text-indexes.

Full-text indexes built in MyISAM and InnoDB have different stopword lists by default.

MyISAM Stopwords
For full-text indexes on MyISAM tables, by default, the list is built from the file storage/myisam/ft_static.c , and

searched using the server's character set and collation. The ft_stopword_file system variable allows the default list to be

overridden with words from another file, or for stopwords to be ignored altogether.

If the stopword list is changed, any existing full-text indexes need to be rebuilt

The following table shows the default list of stopwords, although you should always treat storage/myisam/ft_static.c

as the definitive list. See the Fulltext Index Overview for more details, and Full-text-indexes for related articles.

a's able about above

according accordingly across actually

after afterwards again against

ain't all allow allows

almost alone along already

also although always am

among amongst an and

another any anybody anyhow

anyone anything anyway anyways

anywhere apart appear appreciate

appropriate are aren't around

as aside ask asking

associated at available away

awfully be became because

become becomes becoming been

before beforehand behind being

believe below beside besides

best better between beyond

both brief but by

c'mon c's came can

can't cannot cant cause

causes certain certainly changes

clearly co com come

2486/4161

comes concerning consequently consider

considering contain containing contains

corresponding could couldn't course

currently definitely described despite

did didn't different do

does doesn't doing don't

done down downwards during

each edu eg eight

either else elsewhere enough

entirely especially et etc

even ever every everybody

everyone everything everywhere ex

exactly example except far

few fifth first five

followed following follows for

former formerly forth four

from further furthermore get

gets getting given gives

go goes going gone

got gotten greetings had

hadn't happens hardly has

hasn't have haven't having

he he's hello help

hence her here here's

hereafter hereby herein hereupon

hers herself hi him

himself his hither hopefully

how howbeit however i'd

i'll i'm i've ie

if ignored immediate in

inasmuch inc indeed indicate

indicated indicates inner insofar

instead into inward is

isn't it it'd it'll

it's its itself just

keep keeps kept know

knows known last lately

later latter latterly least

less lest let let's

like liked likely little

look looking looks ltd

mainly many may maybe

me mean meanwhile merely

2487/4161

might more moreover most

mostly much must my

myself name namely nd

near nearly necessary need

needs neither never nevertheless

new next nine no

nobody non none noone

nor normally not nothing

novel now nowhere obviously

of off often oh

ok okay old on

once one ones only

onto or other others

otherwise ought our ours

ourselves out outside over

overall own particular particularly

per perhaps placed please

plus possible presumably probably

provides que quite qv

rather rd re really

reasonably regarding regardless regards

relatively respectively right said

same saw say saying

says second secondly see

seeing seem seemed seeming

seems seen self selves

sensible sent serious seriously

seven several shall she

should shouldn't since six

so some somebody somehow

someone something sometime sometimes

somewhat somewhere soon sorry

specified specify specifying still

sub such sup sure

t's take taken tell

tends th than thank

thanks thanx that that's

thats the their theirs

them themselves then thence

there there's thereafter thereby

therefore therein theres thereupon

these they they'd they'll

they're they've think third

2488/4161

this thorough thoroughly those

though three through throughout

thru thus to together

too took toward towards

tried tries truly try

trying twice two un

under unfortunately unless unlikely

until unto up upon

us use used useful

uses using usually value

various very via viz

vs want wants was

wasn't way we we'd

we'll we're we've welcome

well went were weren't

what what's whatever when

whence whenever where where's

whereafter whereas whereby wherein

whereupon wherever whether which

while whither who who's

whoever whole whom whose

why will willing wish

with within without won't

wonder would wouldn't yes

yet you you'd you'll

you're you've your yours

yourself yourselves zero

InnoDB Stopwords
Stopwords on full-text indexes are only enabled if the innodb_ft_enable_stopword system variable is set (by default it is) at

the time the index was created.

The stopword list is determined as follows:

If the innodb_ft_user_stopword_table system variable is set, that table is used as a stopword list.

If innodb_ft_user_stopword_table is not set, the table set by innodb_ft_server_stopword_table is used.

If neither variable is set, the built-in list is used, which can be viewed by querying the

INNODB_FT_DEFAULT_STOPWORD table in the Information Schema.

In the first two cases, the specified table must exist at the time the system variable is set and the full-text index created. It

must be an InnoDB table with a single column, a VARCHAR named VALUE.

The default InnoDB stopword list differs from the default MyISAM list, being much shorter, and contains the following words:

a about an are

as at be by

com de en for

from how i in

is it la of

2489/4161

on or that the

this to was what

when where who will

with und the www

1.2.2.36 MATCH AGAINST

1.3.8.6 myisam_ftdump

1.1.1.2.1.2 ANALYZE TABLE

3.3.3.5 Building the best INDEX for a given
SELECT

Contents
1. The problem

2. Algorithm

3. Digression

4. First, some examples

5. Algorithm, step 1 (WHERE "column = const")

6. Algorithm, step 2

7. Algorithm, step 2a (one range)

8. Algorithm, step 2b (GROUP BY)

9. Algorithm, step 2c (ORDER BY)

10. Algorithm end

11. Limitations

12. Flags and low cardinality

13. "Covering" indexes

14. Redundant/excessive indexes

15. Optimizer picks ORDER BY

16. OR

17. TEXT / BLOB

18. Dates

19. EXPLAIN Key_len

20. IN

21. Explode/Implode

22. Many-to-many mapping table

23. Subqueries and UNIONs

24. JOINs

25. PARTITIONing

26. FULLTEXT

27. Signs of a Newbie

28. Speeding up wp_postmeta

29. Postlog

The problem
You have a SELECT and you want to build the best INDEX for it. This blog is a "cookbook" on how to do that task.

A short algorithm that works for many simpler SELECTs and helps in complex queries.

Examples of the algorithm, plus digressions into exceptions and variants

Finally a long list of "other cases".

The hope is that a newbie can quickly get up to speed, and his/her INDEXes will no longer smack of "newbie".

Many edge cases are explained, so even an expert may find something useful here.

Algorithm
Here's the way to approach creating an INDEX, given a SELECT. Follow the steps below, gathering columns to put in the

INDEX in order. When the steps give out, you usually have the 'perfect' index.
2490/4161

1. Given a WHERE with a bunch of expressions connected by AND: Include the columns (if any), in any order, that are

compared to a constant and not hidden in a function. 2. You get one more chance to add to the INDEX; do the first of these

that applies:

2a. One column used in a 'range' -- BETWEEN, '>', LIKE w/o leading wildcard, etc.

2b. All columns, in order, of the GROUP BY.

2c. All columns, in order, of the ORDER BY if there is no mixing of ASC and DESC.

Digression
This blog assumes you know the basic idea behind having an INDEX. Here is a refresher on some of the key points.

Virtually all INDEXes in MySQL are structured as BTrees BTrees allow very efficient for

Given a key, find the corresponding row(s);

"Range scans" -- That is start at one value for the key and repeatedly find the "next" (or "previous") row.

A PRIMARY KEY is a UNIQUE KEY; a UNIQUE KEY is an INDEX. ("KEY" == "INDEX".)

InnoDB "clusters" the PRIMARY KEY with the data. Hence, given the value of the PK ("PRIMARY KEY"), after drilling down

the BTree to find the index entry, you have all the columns of the row when you get there. A "secondary key" (any UNIQUE

or INDEX other than the PK) in InnoDB first drills down the BTree for the secondary index, where it finds a copy of the PK.

Then it drills down the PK to find the row.

Every InnoDB table has a PRIMARY KEY. While there is a default if you do not specify one, it is best to explicitly provide a

PK.

For completeness: MyISAM works differently. All indexes (including the PK) are in separate BTrees. The leaf node of such

BTrees have a pointer (usually a byte offset) into the data file.

All discussion here assumes InnoDB tables, however most statements apply to other Engines.

First, some examples
Think of a list of names, sorted by last_name, then first_name. You have undoubtedly seen such lists, and they often have

other information such as address and phone number. Suppose you wanted to look me up. If you remember my full name

('James' and 'Rick'), it is easy to find my entry. If you remembered only my last name ('James') and first initial ('R'). You

would quickly zoom in on the Jameses and find the Rs in them. There, you might remember 'Rick' and ignore 'Ronald'. But,

suppose you remembered my first name ('Rick') and only my last initial ('J'). Now you are in trouble. You would be scanning

all the Js -- Jones, Rick; Johnson, Rick; Jamison, Rick; etc, etc. That's much less efficient.

Those equate to

 INDEX(last_name, first_name) -- the order of the list.

 WHERE last_name = 'James' AND first_name = 'Rick' -- best case

 WHERE last_name = 'James' AND first_name LIKE 'R%' -- pretty good

 WHERE last_name LIKE 'J%' AND first_name = 'Rick' -- pretty bad

Think about this example as I talk about "=" versus "range" in the Algorithm, below.

Algorithm, step 1 (WHERE "column = const")
WHERE aaa = 123 AND ... : an INDEX starting with aaa is good.

WHERE aaa = 123 AND bbb = 456 AND ... : an INDEX starting with aaa and bbb is good. In this case, it does

not matter whether aaa or bbb comes first in the INDEX.

xxx IS NULL : this acts like "= const" for this discussion.

WHERE t1.aa = 123 AND t2.bb = 456 -- You must only consider columns in the current table.

Note that the expression must be of the form of `column_name` = (constant). These do not apply to this step in the

Algorithm: DATE(dt) = '...', LOWER(s) = '...', CAST(s ...) = '...', x='...' COLLATE...

(If there are no "=" parts AND'd in the WHERE clause, move on to step 2 without any columns in your putative INDEX.)

Algorithm, step 2
Find the first of 2a / 2b / 2c that applies; use it; then quit. If none apply, then you are through gathering columns for the index.

In some cases it is optimal to do step 1 (all equals) plus step 2c (ORDER BY).

2491/4161

Algorithm, step 2a (one range)
A "range" shows up as

aaa >= 123 -- any of <, <=, >=, >; but not <>, !=

aaa BETWEEN 22 AND 44

sss LIKE 'blah%' -- but not sss LIKE '%blah'

xxx IS NOT NULL Add the column in the range to your putative INDEX.

If there are more parts to the WHERE clause, you must stop now.

Complete examples (assume nothing else comes after the snippet)

WHERE aaa >= 123 AND bbb = 1 ó INDEX(bbb, aaa) (WHERE order does not matter; INDEX order does)

WHERE aaa >= 123 ó INDEX(aaa)

WHERE aaa >= 123 AND ccc > 'xyz' ó INDEX(aaa) or INDEX(ccc) (only one range)

WHERE aaa >= 123 ORDER BY aaa ó INDEX(aaa) -- Bonus: The ORDER BY will use the INDEX.

WHERE aaa >= 123 ORDER BY aaa ó INDEX(aaa) DESC -- Same Bonus.

Algorithm, step 2b (GROUP BY)
If there is a GROUP BY, all the columns of the GROUP BY should now be added, in the specified order, to the INDEX you

are building. (I do not know what happens if one of the columns is already in the INDEX.)

If you are GROUPing BY an expression (including function calls), you cannot use the GROUP BY; stop.

Complete examples (assume nothing else comes after the snippet)

WHERE aaa = 123 AND bbb = 1 GROUP BY ccc ó INDEX(bbb, aaa, ccc) or INDEX(aaa, bbb, ccc) (='s

first, in any order; then the GROUP BY)

WHERE aaa >= 123 GROUP BY xxx ó INDEX(aaa) (You should have stopped with Step 2a)

GROUP BY x,y ó INDEX(x,y) (no WHERE)

WHERE aaa = 123 GROUP BY xxx, (a+b) ó INDEX(aaa) -- expression in GROUP BY, so no use including even

xxx.

Algorithm, step 2c (ORDER BY)
If there is a ORDER BY, all the columns of the ORDER BY should now be added, in the specified order, to the INDEX you

are building.

If there are multiple columns in the ORDER BY, and there is a mixture of ASC and DESC, do not add the ORDER BY

columns; they won't help; stop.

If you are ORDERing BY an expression (including function calls), you cannot use the ORDER BY; stop.

Complete examples (assume nothing else comes after the snippet)

WHERE aaa = 123 GROUP BY ccc ORDER BY ddd ó INDEX(aaa, ccc) -- should have stopped with Step 2b

WHERE aaa = 123 GROUP BY ccc ORDER BY ccc ó INDEX(aaa, ccc) -- the ccc will be used for both GROUP

BY and ORDER BY

WHERE aaa = 123 ORDER BY xxx ASC, yyy DESC ó INDEX(aaa) -- mixture of ASC and DESC.

The following are especially good. Normally a LIMIT cannot be applied until after lots of rows are gathered and then sorted

according to the ORDER BY. But, if the INDEX gets all they way through the ORDER BY, only (OFFSET + LIMIT) rows

need to be gathered. So, in these cases, you win the lottery with your new index:

WHERE aaa = 123 GROUP BY ccc ORDER BY ccc LIMIT 10 ó INDEX(aaa, ccc)

WHERE aaa = 123 ORDER BY ccc LIMIT 10 ó INDEX(aaa, ccc)

ORDER BY ccc LIMIT 10 ó INDEX(ccc)

WHERE ccc > 432 ORDER BY ccc LIMIT 10 ó INDEX(ccc) -- This "range" is compatible with ORDER BY

(It does not make much sense to have a LIMIT without an ORDER BY, so I do not discuss that case.)

Algorithm end
You have collected a few columns; put them in INDEX and ADD that to the table. That will often produce a "good" index for

the SELECT you have. Below are some other suggestions that may be relevant.

An example of the Algorithm being 'wrong':

2492/4161

 SELECT ... FROM t WHERE flag = true;

This would (according to the Algorithm) call for INDEX(flag). However, indexing a column that has two (or a small number

of) values is almost always useless. This is called 'low cardinality'. The Optimizer would prefer to do a table scan than to

bounce between the index BTree and the data.

On the other hand, the Algorithm is 'right' with

 SELECT ... FROM t WHERE flag = true AND date >= '2015-01-01';

That would call for a compound index starting with a flag: INDEX(flag, date). Such an index is likely to be very beneficial.

And it is likely to be more beneficial than INDEX(date).

If your resulting INDEX include column(s) that are likely to be UPDATEd, note that the UPDATE will have extra work to

remove a 'row' from one place in the INDEX's BTree and insert a 'row' back into the BTree. For example:

INDEX(x)

UPDATE t SET x = ... WHERE ...;

There are too many variables to say whether it is better to keep the index or to toss it.

In this case, shortening the index may may be beneficial:

INDEX(z, x)

UPDATE t SET x = ... WHERE ...;

Changing to INDEX(z) would make for less work for the UPDATE, but might hurt some SELECT. It depends on the

frequency of each, plus many more factors.

Limitations
(There are exceptions to some of these.)

You may not create an index bigger than 3KB.

You may not include a column that equates to bigger than some value (767 bytes -- VARCHAR(255) CHARACTER

SET utf8).

You can deal with big fields using "prefix" indexing; but see below.

You should not have more than 5 columns in an index. (This is just a Rule of Thumb; nothing prevents having more.)

You should not have redundant indexes. (See below.)

Flags and low cardinality
INDEX(flag) is almost never useful if `flag` has very few values. More specifically, when you say WHERE flag = 1 and "1"

occurs more than 20% of the time, such an index will be shunned. The Optimizer would prefer to scan the table instead of

bouncing back and forth between the index and the data for more than 20% of the rows.

("20%" is really somewhere between 10% and 30%, depending on the phase of the moon.)

"Covering" indexes
A "Covering" index is an index that contains all the columns in the SELECT. It is special in that the SELECT can be

completed by looking only at the INDEX BTree. (Since InnoDB's PRIMARY KEY is clustered with the data, "covering" is of

no benefit when considering at the PRIMARY KEY.)

Mini-cookbook: 1. Gather the list of column(s) according to the "Algorithm", above. 2. Add to the end of the list the rest of

the columns seen in the SELECT, in any order.

Examples:

SELECT x FROM t WHERE y = 5; ó INDEX(y,x) -- The algorithm said just INDEX(y)

SELECT x,z FROM t WHERE y = 5 AND q = 7; ó INDEX(y,q,x,z) -- y and q in either order (Algorithm), then x

and z in either order (covering).

SELECT x FROM t WHERE y > 5 AND q > 7; ó INDEX(y,q,x) -- y or q first (that's as far as the Algorithm

goes), then the other two fields afterwards.

The speedup you get might be minor, or it might be spectacular; it is hard to predict.

But...
2493/4161

It is not wise to build an index with lots of columns. Let's cut it off at 5 (Rule of Thumb).

Prefix indexes cannot 'cover', so don't use them anywhere in a 'covering' index.

There are limits (3KB?) on how 'wide' an index can be, so "covering" may not be possible.

Redundant/excessive indexes
INDEX(a,b) can find anything that INDEX(a) could find. So you don't need both. Get rid of the shorter one.

If you have lots of SELECTs and they generate lots of INDEXes, this may cause a different problem. Each index must be

updated (sooner or later) for each INSERT. More indexes ó slower INSERTs. Limit the number of indexes on a table to

about 6 (Rule of Thumb).

Notice in the cookbook how it says "in any order" in a few places. If, for example, you have both of these (in different

SELECTs):

WHERE a=1 AND b=2 begs for either INDEX(a,b) or INDEX(b,a)

WHERE a>1 AND b=2 begs only for INDEX(b,a) Include only INDEX(b,a) since it handles both cases with only one

INDEX.

Suppose you have a lot of indexes, including (a,b,c,dd) and (a,b,c,ee). Those are getting rather long. Consider either picking

one of them, or having simply (a,b,c). Sometimes the selectivity of (a,b,c) is so good that tacking on 'dd' or 'ee' does make

enough difference to matter.

Optimizer picks ORDER BY
The main cookbook skips over an important optimization that is sometimes used. The optimizer will sometimes ignore the

WHERE and, instead, use an INDEX that matches the ORDER BY. This, of course, needs to be a perfect match -- all

columns, in the same order. And all ASC or all DESC.

This becomes especially beneficial if there is a LIMIT.

But there is a problem. There could be two situations, and the Optimizer is sometimes not smart enough to see which case

applies:

If the WHERE does very little filtering, fetching the rows in ORDER BY order avoids a sort and has little wasted effort

(because of 'little filtering'). Using the INDEX matching the ORDER BY is better in this case.

If the WHERE does a lot of filtering, the ORDER BY is wasting a lot of time fetching rows only to filter them out. Using

an INDEX matching the WHERE clause is better.

What should you do? If you think the "little filtering" is likely, then create an index with the ORDER BY columns in order and

hope that the Optimizer uses it when it should.

OR
Cases...

WHERE a=1 OR a=2 -- This is turned into WHERE a IN (1,2) and optimized that way.

WHERE a=1 OR b=2 usually cannot be optimized.

WHERE x.a=1 OR y.b=2 This is even worse because of using two different tables.

A workaround is to use UNION. Each part of the UNION is optimized separately. For the second case:

 (SELECT ... WHERE a=1) -- and have INDEX(a)

 UNION DISTINCT -- "DISTINCT" is assuming you need to get rid of dups

 (SELECT ... WHERE b=2) -- and have INDEX(b)

 GROUP BY ... ORDER BY ... -- whatever you had at the end of the original query

Now the query can take good advantage of two different indexes. Note: "Index merge" might kick in on the original query,

but it is not necessarily any faster than the UNION. Sister blog on compound indexes, including 'Index Merge'

The third case (OR across 2 tables) is similar to the second.

If you originally had a LIMIT, UNION gets complicated. If you started with ORDER BY z LIMIT 190, 10, then the UNION

needs to be

 (SELECT ... LIMIT 200) -- Note: OFFSET 0, LIMIT 190+10

 UNION DISTINCT -- (or ALL)

 (SELECT ... LIMIT 200)

 LIMIT 190, 10 -- Same as originally

2494/4161

TEXT / BLOB
You cannot directly index a TEXT or BLOB or large VARCHAR or large BINARY column. However, you can use a "prefix"

index: INDEX(foo(20)). This says to index the first 20 characters of `foo`. But... It is rarely useful.

Example of a prefix index:

 INDEX(last_name(2), first_name)

The index for me would contain 'Ja', 'Rick'. That's not useful for distinguishing between 'Jamison', 'Jackson', 'James', etc., so

the index is so close to useless that the optimizer often ignores it.

Probably never do UNIQUE(foo(20)) because this applies a uniqueness constraint on the first 20 characters of the column,

not the whole column!

More on prefix indexing

Dates
DATE, DATETIME, etc. are tricky to compare against.

Some tempting, but inefficient, techniques:

date_col LIKE '2016-01%' -- must convert date_col to a string, so acts like a function LEFT(date_col, 4) =

'2016-01' -- hiding the column in function DATE(date_col) = 2016 -- hiding the column in function

All must do a full scan. (On the other hand, it can handy to use GROUP BY LEFT(date_col, 7) for monthly grouping, but that

is not an INDEX issue.)

This is efficient, and can use an index:

 date_col >= '2016-01-01'

 AND date_col < '2016-01-01' + INTERVAL 3 MONTH

This case works because both right-hand values are converted to constants, then it is a "range". I like the design pattern

with INTERVAL because it avoids computing the last day of the month. And it avoids tacking on '23:59:59', which is wrong if

you have microsecond times. (And other cases.)

EXPLAIN Key_len
Perform EXPLAIN SELECT... (and EXPLAIN FORMAT=JSON SELECT... if you have 5.6.5). Look at the Key that it chose,

and the Key_len. From those you can deduce how many columns of the index are being used for filtering. (JSON makes it

easier to get the answer.) From that you can decide whether it is using as much of the INDEX as you thought. Caveat:

Key_len only covers the WHERE part of the action; the non-JSON output won't easily say whether GROUP BY or ORDER

BY was handled by the index.

IN
IN (1,99,3) is sometimes optimized as efficiently as "=", but not always. Older versions of MySQL did not optimize it as

well as newer versions. (5.6 is possibly the main turning point.)

IN (SELECT ...)

From version 4.1 through 5.5, IN (SELECT ...) was very poorly optimized. The SELECT was effectively re-evaluated every

time. Often it can be transformed into a JOIN, which works much faster. Heres is a pattern to follow:

2495/4161

http://dev.mysql.com/doc/refman/5.6/en/create-index.html

SELECT ...

 FROM a

 WHERE test_a

 AND x IN (

 SELECT x

 FROM b

 WHERE test_b

);

ó

SELECT ...

 FROM a

 JOIN b USING(x)

 WHERE test_a

 AND test_b;

The SELECT expressions will need "a." prefixing the column names.

Alas, there are cases where the pattern is hard to follow.

5.6 does some optimizing, but probably not as good as the JOIN.

If there is a JOIN or GROUP BY or ORDER BY LIMIT in the subquery, that complicates the JOIN in new format. So, it might

be better to use this pattern:

SELECT ...

 FROM a

 WHERE test_a

 AND x IN (SELECT x FROM ...);

ó

SELECT ...

 FROM a

 JOIN (SELECT x FROM ...) b

 USING(x)

 WHERE test_a;

Caveat: If you end up with two subqueries JOINed together, note that neither has any indexes, hence performance can be

very bad. (5.6 improves on it by dynamically creating indexes for subqueries.)

There is work going on in MariaDB and Oracle 5.7, in relation to "NOT IN", "NOT EXISTS", and "LEFT JOIN..IS NULL"; here

is an old discussion on the topic So, what I say here may not be the final word.

Explode/Implode
When you have a JOIN and a GROUP BY, you may have the situation where the JOIN exploded more rows than the original

query (due to many:many), but you wanted only one row from the original table, so you added the GROUP BY to implode

back to the desired set of rows.

This explode + implode, itself, is costly. It would be better to avoid them if possible.

Sometimes the following will work.

Using DISTINCT or GROUP BY to counteract the explosion

SELECT DISTINCT

 a.*,

 b.y

 FROM a

 JOIN b

ó

SELECT a.*,

 (SELECT GROUP_CONCAT(b.y) FROM b WHERE b.x = a.x) AS ys

 FROM a

When using second table just to check for existence:

2496/4161

SELECT a.*

 FROM a

 JOIN b ON b.x = a.x

 GROUP BY a.id

ó

SELECT a.*,

 FROM a

 WHERE EXISTS (SELECT * FROM b WHERE b.x = a.x)

Another variant

Many-to-many mapping table
Do it this way.

 CREATE TABLE XtoY (

 # No surrogate id for this table

 x_id MEDIUMINT UNSIGNED NOT NULL, -- For JOINing to one table

 y_id MEDIUMINT UNSIGNED NOT NULL, -- For JOINing to the other table

 # Include other fields specific to the 'relation'

 PRIMARY KEY(x_id, y_id), -- When starting with X

 INDEX (y_id, x_id) -- When starting with Y

) ENGINE=InnoDB;

Notes:

Lack of an AUTO_INCREMENT id for this table -- The PK given is the 'natural' PK; there is no good reason for a

surrogate.

"MEDIUMINT" -- This is a reminder that all INTs should be made as small as is safe (smaller ó faster). Of course the

declaration here must match the definition in the table being linked to.

"UNSIGNED" -- Nearly all INTs may as well be declared non-negative

"NOT NULL" -- Well, that's true, isn't it?

"InnoDB" -- More effecient than MyISAM because of the way the PRIMARY KEY is clustered with the data in InnoDB.

"INDEX(y_id, x_id)" -- The PRIMARY KEY makes it efficient to go one direction; this index makes the other direction

efficient. No need to say UNIQUE; that would be extra effort on INSERTs.

In the secondary index, saying justINDEX(y_id) would work because it would implicit include x_id. But I would rather

make it more obvious that I am hoping for a 'covering' index.

To conditionally INSERT new links, use IODKU

Note that if you had an AUTO_INCREMENT in this table, IODKU would "burn" ids quite rapidly.

Subqueries and UNIONs
Each subquery SELECT and each SELECT in a UNION can be considered separately for finding the optimal INDEX.

Exception: In a "correlated" ("dependent") subquery, the part of the WHERE that depends on the outside table is not easily

factored into the INDEX generation. (Cop out!)

JOINs
The first step is to decide what order the optimizer will go through the tables. If you cannot figure it out, then you may need

to be pessimistic and create two indexes for each table -- one assuming the table will be used first, one assiming that it will

come later in the table order.

The optimizer usually starts with one table and extracts the data needed from it. As it finds a useful (that is, matches the

WHERE clause, if any) row, it reaches into the 'next' table. This is called NLJ ("Nested Loop Join"). The process of filtering

and reaching to the next table continues through the rest of the tables.

The optimizer usually picks the "first" table based on these hints:

STRAIGHT_JOIN forces the the table order.

The WHERE clause limits which rows needed (whether indexed or not).

The table to the "left" in a LEFT JOIN usually comes before the "right" table. (By looking at the table definitions, the

optimizer may decide that "LEFT" is irrelevant.)

The current INDEXes will encourage an order.

etc.

Running EXPLAIN tells you the table order that the Optimizer is very likely to use today. After adding a new INDEX, the

2497/4161

http://dba.stackexchange.com/questions/115059/mysql-query-causing-high-cpu-and-taking-forever-to-execute/115120#115120
http://dev.mysql.com/doc/refman/5.6/en/insert-on-duplicate.html

optimizer may pick a different table order. You should anticipate the order changing, guess at what order makes the most

sense, and build the INDEXes accordingly. Then rerun EXPLAIN to see if the Optimizer's brain was on the same wavelength

you were on.

You should build the INDEX for the "first" table based on any parts of the WHERE, GROUP BY, and ORDER BY clauses

that are relevant to it. If a GROUP/ORDER BY mentions a different table, you should ignore that clause.

The second (and subsequent) table will be reached into based on the ON clause. (Instead of using commajoin, please write

JOINs with the JOIN keyword and ON clause!) In addition, there could be parts of the WHERE clause that are relevant.

GROUP/ORDER BY are not to be considered in writing the optimal INDEX for subsequent tables.

PARTITIONing
PARTITIONing is rarely a substitute for a good INDEX.

PARTITION BY RANGE is a technique that is sometimes useful when indexing fails to be good enough. In a two-

dimensional situation such as nearness in a geographical sense, one dimension can partially be handled by partition

pruning; then the other dimension can be handled by a regular index (preferrably the PRIMARY KEY). This goes into more

detail: Find nearest 10 pizza parlors .

FULLTEXT
FULLTEXT is now implemented in InnoDB as well as MyISAM. It provides a way to search for "words" in TEXT columns.

This is much faster (when it is applicable) than col LIKE '%word%'.

 WHERE x = 1

 AND MATCH (...) AGAINST (...)

always(?) uses the FULLTEXT index first. That is, the whole Algorithm is invalidated when one of the ANDs is a MATCH.

Signs of a Newbie
No "compound" (aka "composite") indexes

No PRIMARY KEY

Redundant indexes (especially blatant is PRIMARY KEY(id), KEY(id))

Most or all columns individually indexes ("But I indexed everything")

"Commajoin" -- That is FROM a, b WHERE a.x=b.x instead of FROM a JOIN b ON a.x=b.x

Speeding up wp_postmeta
The published table (see Wikipedia) is

 CREATE TABLE wp_postmeta (

 meta_id bigint(20) unsigned NOT NULL AUTO_INCREMENT,

 post_id bigint(20) unsigned NOT NULL DEFAULT '0',

 meta_key varchar(255) DEFAULT NULL,

 meta_value longtext,

 PRIMARY KEY (meta_id),

 KEY post_id (post_id),

 KEY meta_key (meta_key)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

The problems:

The AUTO_INCREMENT provides no benefit; in fact it slows down most queries and clutters disk.

Much better is PRIMARY KEY(post_id, meta_key) -- clustered, handles both parts of usual JOIN.

BIGINT is overkill, but that can't be fixed without changing other tables.

VARCHAR(255) can be a problem in 5.6 with utf8mb4; see workarounds below.

When would `meta_key` or `meta_value` ever be NULL?

The solutions:

2498/4161

https://mariadb.com/kb/en/mariadb/partition-maintenance/

 CREATE TABLE wp_postmeta (

 post_id BIGINT UNSIGNED NOT NULL,

 meta_key VARCHAR(255) NOT NULL,

 meta_value LONGTEXT NOT NULL,

 PRIMARY KEY(post_id, meta_key),

 INDEX(meta_key)

) ENGINE=InnoDB;

Postlog
Initial posting: March, 2015; Refreshed Feb, 2016; Add DATE June, 2016; Add WP example May, 2017.

The tips in this document apply to MySQL, MariaDB, and Percona.

3.3.3.6 Compound (Composite) Indexes

A mini-lesson in "compound indexes" ("composite
indexes")
This document starts out trivial and perhaps boring, but builds up to more interesting information, perhaps things you did not

realize about how MariaDB and MySQL indexing works.

This also explains EXPLAIN (to some extent).

(Most of this applies to other databases, too.)

The query to discuss
The question is "When was Andrew Johnson president of the US?".

The available table `Presidents` looks like:

+-----+------------+----------------+-----------+

| seq | last_name | first_name | term |

+-----+------------+----------------+-----------+

| 1 | Washington | George | 1789-1797 |

| 2 | Adams | John | 1797-1801 |

...

| 7 | Jackson | Andrew | 1829-1837 |

...

| 17 | Johnson | Andrew | 1865-1869 |

...

| 36 | Johnson | Lyndon B. | 1963-1969 |

...

("Andrew Johnson" was picked for this lesson because of the duplicates.)

What index(es) would be best for that question? More specifically, what would be best for

 SELECT term

 FROM Presidents

 WHERE last_name = 'Johnson'

 AND first_name = 'Andrew';

Some INDEXes to try...

No indexes

INDEX(first_name), INDEX(last_name) (two separate indexes)

"Index Merge Intersect"

INDEX(last_name, first_name) (a "compound" index)

INDEX(last_name, first_name, term) (a "covering" index)

Variants

No indexes

2499/4161

Well, I am fudging a little here. I have a PRIMARY KEY on `seq`, but that has no advantage on the query we are studying.

SHOW CREATE TABLE Presidents \G

CREATE TABLE `presidents` (

 `seq` tinyint(3) unsigned NOT NULL AUTO_INCREMENT,

 `last_name` varchar(30) NOT NULL,

 `first_name` varchar(30) NOT NULL,

 `term` varchar(9) NOT NULL,

 PRIMARY KEY (`seq`)

) ENGINE=InnoDB AUTO_INCREMENT=45 DEFAULT CHARSET=utf8

EXPLAIN SELECT term

 FROM Presidents

 WHERE last_name = 'Johnson'

 AND first_name = 'Andrew';

+----+-------------+------------+------+---------------+------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+------+---------------+------+---------+------+------+-------------+

| 1 | SIMPLE | Presidents | ALL | NULL | NULL | NULL | NULL | 44 | Using where |

+----+-------------+------------+------+---------------+------+---------+------+------+-------------+

Or, using the other form of display: EXPLAIN ... \G

 id: 1

 select_type: SIMPLE

 table: Presidents

 type: ALL <-- Implies table scan

possible_keys: NULL

 key: NULL <-- Implies that no index is useful, hence table scan

 key_len: NULL

 ref: NULL

 rows: 44 <-- That's about how many rows in the table, so table scan

 Extra: Using where

Implementation Details
First, let's describe how InnoDB stores and uses indexes.

The data and the PRIMARY KEY are "clustered" together in on BTree.

A BTree lookup is quite fast and efficient. For a million-row table there might be 3 levels of BTree, and the top two

levels are probably cached.

Each secondary index is in another BTree, with the PRIMARY KEY at the leaf.

Fetching 'consecutive' (according to the index) items from a BTree is very efficient because they are stored

consecutively.

For the sake of simplicity, we can count each BTree lookup as 1 unit of work, and ignore scans for consecutive items.

This approximates the number of disk hits for a large table in a busy system.

For MyISAM, the PRIMARY KEY is not stored with the data, so think of it as being a secondary key (over-simplified).

INDEX(first_name), INDEX(last_name)
The novice, once he learns about indexing, decides to index lots of columns, one at a time. But...

MariaDB rarely uses more than one index at a time in a query. So, it will analyze the possible indexes.

first_name -- there are 2 possible rows (one BTree lookup, then scan consecutively)

last_name -- there are 2 possible rows Let's say it picks last_name. Here are the steps for doing the SELECT: 1.

Using INDEX(last_name), find 2 index entries with last_name = 'Johnson'. 2. Get the PRIMARY KEY (implicitly added

to each secondary index in InnoDB); get (17, 36). 3. Reach into the data using seq = (17, 36) to get the rows for

Andrew Johnson and Lyndon B. Johnson. 4. Use the rest of the WHERE clause filter out all but the desired row. 5.

Deliver the answer (1865-1869).

2500/4161

EXPLAIN SELECT term

 FROM Presidents

 WHERE last_name = 'Johnson'

 AND first_name = 'Andrew' \G

 select_type: SIMPLE

 table: Presidents

 type: ref

possible_keys: last_name, first_name

 key: last_name

 key_len: 92 <-- VARCHAR(30) utf8 may need 2+3*30 bytes

 ref: const

 rows: 2 <-- Two 'Johnson's

 Extra: Using where

"Index Merge Intersect"
OK, so you get really smart and decide that MariaDB should be smart enough to use both name indexes to get the answer.

This is called "Intersect". 1. Using INDEX(last_name), find 2 index entries with last_name = 'Johnson'; get (7, 17) 2. Using

INDEX(first_name), find 2 index entries with first_name = 'Andrew'; get (17, 36) 3. "And" the two lists together (7,17) &

(17,36) = (17) 4. Reach into the data using seq = (17) to get the row for Andrew Johnson. 5. Deliver the answer (1865-

1869).

 id: 1

 select_type: SIMPLE

 table: Presidents

 type: index_merge

possible_keys: first_name,last_name

 key: first_name,last_name

 key_len: 92,92

 ref: NULL

 rows: 1

 Extra: Using intersect(first_name,last_name); Using where

The EXPLAIN fails to give the gory details of how many rows collected from each index, etc.

INDEX(last_name, first_name)
This is called a "compound" or "composite" index since it has more than one column. 1. Drill down the BTree for the index to

get to exactly the index row for Johnson+Andrew; get seq = (17). 2. Reach into the data using seq = (17) to get the row for

Andrew Johnson. 3. Deliver the answer (1865-1869). This is much better. In fact this is usually the "best".

 ALTER TABLE Presidents

 (drop old indexes and...)

 ADD INDEX compound(last_name, first_name);

 id: 1

 select_type: SIMPLE

 table: Presidents

 type: ref

possible_keys: compound

 key: compound

 key_len: 184 <-- The length of both fields

 ref: const,const <-- The WHERE clause gave constants for both

 rows: 1 <-- Goodie! It homed in on the one row.

 Extra: Using where

"Covering": INDEX(last_name, first_name, term)
Surprise! We can actually do a little better. A "Covering" index is one in which _all_ of the fields of the SELECT are found in

the index. It has the added bonus of not having to reach into the "data" to finish the task. 1. Drill down the BTree for the

index to get to exactly the index row for Johnson+Andrew; get seq = (17). 2. Deliver the answer (1865-1869). The "data"

BTree is not touched; this is an improvement over "compound".

2501/4161

 ... ADD INDEX covering(last_name, first_name, term);

 id: 1

 select_type: SIMPLE

 table: Presidents

 type: ref

possible_keys: covering

 key: covering

 key_len: 184

 ref: const,const

 rows: 1

 Extra: Using where; Using index <-- Note

Everything is similar to using "compound", except for the addition of "Using index".

Variants
What would happen if you shuffled the fields in the WHERE clause? Answer: The order of ANDed things does not

matter.

What would happen if you shuffled the fields in the INDEX? Answer: It may make a huge difference. More in a

minute.

What if there are extra fields on the the end? Answer: Minimal harm; possibly a lot of good (eg, 'covering').

Reduncancy? That is, what if you have both of these: INDEX(a), INDEX(a,b)? Answer: Reduncy costs something on

INSERTs; it is rarely useful for SELECTs.

Prefix? That is, INDEX(last_name(5). first_name(5)) Answer: Don't bother; it rarely helps, and often hurts. (The details

are another topic.)

More examples:

 INDEX(last, first)

 ... WHERE last = '...' -- good (even though `first` is unused)

 ... WHERE first = '...' -- index is useless

 INDEX(first, last), INDEX(last, first)

 ... WHERE first = '...' -- 1st index is used

 ... WHERE last = '...' -- 2nd index is used

 ... WHERE first = '...' AND last = '...' -- either could be used equally well

 INDEX(last, first)

 Both of these are handled by that one INDEX:

 ... WHERE last = '...'

 ... WHERE last = '...' AND first = '...'

 INDEX(last), INDEX(last, first)

 In light of the above example, don't bother including INDEX(last).

Postlog
Refreshed -- Oct, 2012; more links -- Nov 2016

1.1.1.2.2.4 EXPLAIN

3.3.3.8 Foreign Keys
Contents
1. Overview

2. Syntax

3. Constraints

4. Metadata

5. Limitations

6. Examples

1. REFERENCES

2502/4161

Overview
A foreign key is a constraint which can be used to enforce data integrity. It is composed by a column (or a set of columns)

in a table called the child table, which references to a column (or a set of columns) in a table called the parent table. If

foreign keys are used, MariaDB performs some checks to enforce that some integrity rules are always enforced. For a more

exhaustive explanation, see Relational databases: Foreign Keys.

Foreign keys can only be used with storage engines that support them. The default InnoDB and the obsolete PBXT

support foreign keys.

Partitioned tables cannot contain foreign keys, and cannot be referenced by a foreign key.

Syntax

Note: Until MariaDB 10.4, MariaDB accepts the shortcut format with a REFERENCES clause only in ALTER TABLE

and CREATE TABLE statements, but that syntax does nothing. For example:

CREATE TABLE b(for_key INT REFERENCES a(not_key));

MariaDB simply parses it without returning any error or warning, for compatibility with other DBMS's. However, only the

syntax described below creates foreign keys.

From MariaDB 10.5, MariaDB will attempt to apply the constraint. See the Examples below.

Foreign keys are created with CREATE TABLE or ALTER TABLE. The definition must follow this syntax:

[CONSTRAINT [symbol]] FOREIGN KEY

 [index_name] (index_col_name, ...)

 REFERENCES tbl_name (index_col_name,...)

 [ON DELETE reference_option]

 [ON UPDATE reference_option]

reference_option:

 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

The symbol clause, if specified, is used in error messages and must be unique in the database.

The columns in the child table must be a BTREE (not HASH, RTREE, or FULLTEXT 4 see SHOW INDEX) index, or the

leftmost part of a BTREE index. Index prefixes are not supported (thus, TEXT and BLOB columns cannot be used as

foreign keys). If MariaDB automatically creates an index for the foreign key (because it does not exist and is not explicitly

created), its name will be index_name .

The referenced columns in the parent table must be a an index or a prefix of an index.

The foreign key columns and the referenced columns must be of the same type, or similar types. For integer types, the size

and sign must also be the same.

Both the foreign key columns and the referenced columns can be PERSISTENT columns. However, the ON UPDATE

CASCADE, ON UPDATE SET NULL, ON DELETE SET NULL clauses are not allowed in this case.

The parent and the child table must use the same storage engine, and must not be TEMPORARY or partitioned tables. They

can be the same table.

Constraints
If a foreign keys exists, each row in the child table must match a row in the parent table. Multiple child rows can match the

same parent row. A child row matches a parent row if all its foreign key values are identical to a parent row's values in the

parent table. However, if at least one of the foreign key values is NULL , the row has no parents, but it is still allowed.

MariaDB performs certain checks to guarantee that the data integrity is enforced:

Trying to insert non-matching rows (or update matching rows in a way that makes them non-matching rows) in the

child table produces a 1452 error (SQLSTATE '23000').

When a row in the parent table is deleted and at least one child row exists, MariaDB performs an action which

depends on the ON DELETE clause of the foreign key.

When a value in the column referenced by a foreign key changes and at least one child row exists, MariaDB performs

an action which depends on the ON UPDATE clause of the foreign key.

Trying to drop a table that is referenced by a foreign key produces a 1217 error (SQLSTATE '23000').

A TRUNCATE TABLE against a table containing one or more foreign keys is executed as a DELETE without
2503/4161

https://mariadb.com/kb/en/pbxt/

WHERE, so that the foreign keys are enforced for each row.

The allowed actions for ON DELETE and ON UPDATE are:

RESTRICT : The change on the parent table is prevented. The statement terminates with a 1451 error (SQLSTATE

'2300'). This is the default behavior for both ON DELETE and ON UPDATE .

NO ACTION : Synonym for RESTRICT .

CASCADE : The change is allowed and propagates on the child table. For example, if a parent row is deleted, the child

row is also deleted; if a parent row's ID changes, the child row's ID will also change.

SET NULL : The change is allowed, and the child row's foreign key columns are set to NULL .

SET DEFAULT : Only worked with PBXT. Similar to SET NULL , but the foreign key columns were set to their default

values. If default values do not exist, an error is produced.

The delete or update operations triggered by foreign keys do not activate triggers and are not counted in the Com_delete

and Com_update status variables.

Foreign key constraints can be disabled by setting the foreign_key_checks server system variable to 0. This speeds up the

insertion of large quantities of data.

Metadata
The Information Schema REFERENTIAL_CONSTRAINTS table contains information about foreign keys. The individual

columns are listed in the KEY_COLUMN_USAGE table.

The InnoDB-specific Information Schema tables also contain information about the InnoDB foreign keys. The foreign key

information is stored in the INNODB_SYS_FOREIGN . Data about the individual columns are stored in

INNODB_SYS_FOREIGN_COLS .

The most human-readable way to get information about a table's foreign keys sometimes is the SHOW CREATE TABLE

statement.

Limitations
Foreign keys have the following limitations in MariaDB:

Currently, foreign keys are only supported by InnoDB.

Cannot be used with views.

The SET DEFAULT action is not supported.

Foreign keys actions do not activate triggers.

If ON UPDATE CASCADE recurses to update the same table it has previously updated during the cascade, it acts

like RESTRICT.

Examples
Let's see an example. We will create an author table and a book table. Both tables have a primary key called id .

book also has a foreign key composed by a field called author_id , which refers to the author primary key. The

foreign key constraint name is optional, but we'll specify it because we want it to appear in error messages:

fk_book_author .

CREATE TABLE author (

 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(100) NOT NULL

) ENGINE = InnoDB;

CREATE TABLE book (

 id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 title VARCHAR(200) NOT NULL,

 author_id SMALLINT UNSIGNED NOT NULL,

 CONSTRAINT `fk_book_author`

 FOREIGN KEY (author_id) REFERENCES author (id)

 ON DELETE CASCADE

 ON UPDATE RESTRICT

) ENGINE = InnoDB;

Now, if we try to insert a book with a non-existing author, we will get an error:

2504/4161

INSERT INTO book (title, author_id) VALUES ('Necronomicon', 1);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails

 (`test`.`book`, CONSTRAINT `fk_book_author` FOREIGN KEY (`author_id`)

 REFERENCES `author` (`id`) ON DELETE CASCADE)

The error is very descriptive.

Now, let's try to properly insert two authors and their books:

INSERT INTO author (name) VALUES ('Abdul Alhazred');

INSERT INTO book (title, author_id) VALUES ('Necronomicon', LAST_INSERT_ID());

INSERT INTO author (name) VALUES ('H.P. Lovecraft');

INSERT INTO book (title, author_id) VALUES

 ('The call of Cthulhu', LAST_INSERT_ID()),

 ('The colour out of space', LAST_INSERT_ID());

It worked!

Now, let's delete the second author. When we created the foreign key, we specified ON DELETE CASCADE . This should

propagate the deletion, and make the deleted author's books disappear:

DELETE FROM author WHERE name = 'H.P. Lovecraft';

SELECT * FROM book;

+----+--------------+-----------+

| id | title | author_id |

+----+--------------+-----------+

| 3 | Necronomicon | 1 |

+----+--------------+-----------+

We also specified ON UPDATE RESTRICT . This should prevent us from modifying an author's id (the column referenced

by the foreign key) if a child row exists:

UPDATE author SET id = 10 WHERE id = 1;

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails

 (`test`.`book`, CONSTRAINT `fk_book_author` FOREIGN KEY (`author_id`)

 REFERENCES `author` (`id`) ON DELETE CASCADE)

REFERENCES

Until MariaDB 10.4

2505/4161

CREATE TABLE a(a_key INT primary key, not_key INT);

CREATE TABLE b(for_key INT REFERENCES a(not_key));

SHOW CREATE TABLE b;

+-------+--+

| Table | Create Table |

+-------+--+

| b | CREATE TABLE `b` (

 `for_key` int(11) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-------+--+

INSERT INTO a VALUES (1,10);

Query OK, 1 row affected (0.005 sec)

INSERT INTO b VALUES (10);

Query OK, 1 row affected (0.004 sec)

INSERT INTO b VALUES (1);

Query OK, 1 row affected (0.004 sec)

SELECT * FROM b;

+---------+

| for_key |

+---------+

| 10 |

| 1 |

+---------+

From MariaDB 10.5

CREATE TABLE a(a_key INT primary key, not_key INT);

CREATE TABLE b(for_key INT REFERENCES a(not_key));

ERROR 1005 (HY000): Can't create table `test`.`b`

 (errno: 150 "Foreign key constraint is incorrectly formed")

CREATE TABLE c(for_key INT REFERENCES a(a_key));

SHOW CREATE TABLE c;

+-------+--+

| Table | Create Table |

+-------+--+

| c | CREATE TABLE `c` (

 `for_key` int(11) DEFAULT NULL,

 KEY `for_key` (`for_key`),

 CONSTRAINT `c_ibfk_1` FOREIGN KEY (`for_key`) REFERENCES `a` (`a_key`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |

+-------+--+

INSERT INTO a VALUES (1,10);

Query OK, 1 row affected (0.004 sec)

INSERT INTO c VALUES (10);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails

 (`test`.`c`, CONSTRAINT `c_ibfk_1` FOREIGN KEY (`for_key`) REFERENCES `a` (`a_key`))

INSERT INTO c VALUES (1);

Query OK, 1 row affected (0.004 sec)

SELECT * FROM c;

+---------+

| for_key |

+---------+

| 1 |

+---------+

3.3.3.9 Ignored Indexes
MariaDB starting with 10.6.0

2506/4161

Ignored indexes were added in MariaDB 10.6.

Ignored indexes are indexes that are visible and maintained, but which are not used by the optimizer. MySQL 8 has a similar

feature which they call "invisible indexes".

Syntax
By default, an index is not ignored. One can mark existing index as ignored (or not ignored) with an ALTER TABLE

statement:

ALTER TABLE table_name ALTER {KEY|INDEX} [IF EXISTS] key_name [NOT] IGNORED;

It is also possible to specify IGNORED attribute when creating an index with a CREATE TABLE, or CREATE INDEX

statement:

CREATE TABLE table_name (

 ...

 INDEX index_name (...) [NOT] IGNORED

 ...

CREATE INDEX index_name (...) [NOT] IGNORED ON tbl_name (...);

table's primary key cannot be ignored. This applies to both explicitly defined primary key, as well as implicit primary key - if

there is no explicit primary key defined but the table has a unique key containing only NOT NULL columns, the first of such

keys becomes the implicitly defined primary key.

Handling for ignored indexes
The optimizer will treats ignored indexes as if they didn't exist. They will not be used in the query plans, or as a source of

statistical information. Also, an attempt to use an ignored index in a USE INDEX , FORCE INDEX , or IGNORE INDEX hint

will result in an error - the same what would have if one used a name of a non-existent index.

Information about whether or not indexes are ignored can be viewed in the IGNORED column in the Information Schema

STATISTICS table or the SHOW INDEX statement.

Intended Usage
The primary use case is as follows: a DBA sees an index that seems to have little or no usage and considers whether to

remove it. Dropping the index is a risk as it may still be needed in a few cases. For example, the optimizer may rely on the

estimates provided by the index without using the index in query plans. If dropping an index causes an issue, it will take a

while to re-create the index. On the other hand, marking the index as ignored (or not ignored) is instant, so the suggested

workflow is:

1. Mark the index as ignored

2. Check if everything continues to work

3. If not, mark the index as not ignored.

4. If everything continues to work, one can safely drop the index.

Examples

CREATE TABLE t1 (id INT PRIMARY KEY, b INT, KEY k1(b) IGNORED);

CREATE OR REPLACE TABLE t1 (id INT PRIMARY KEY, b INT, KEY k1(b));

ALTER TABLE t1 ALTER INDEX k1 IGNORED;

CREATE OR REPLACE TABLE t1 (id INT PRIMARY KEY, b INT);

CREATE INDEX k1 ON t1(b) IGNORED;

MariaDB starting with 10.6.0

2507/4161

SELECT * FROM INFORMATION_SCHEMA.STATISTICS WHERE TABLE_NAME = 't1'\G

*************************** 1. row ***************************

TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: t1

 NON_UNIQUE: 0

 INDEX_SCHEMA: test

 INDEX_NAME: PRIMARY

 SEQ_IN_INDEX: 1

 COLUMN_NAME: id

 COLLATION: A

 CARDINALITY: 0

 SUB_PART: NULL

 PACKED: NULL

 NULLABLE:

 INDEX_TYPE: BTREE

 COMMENT:

INDEX_COMMENT:

 IGNORED: NO

*************************** 2. row ***************************

TABLE_CATALOG: def

 TABLE_SCHEMA: test

 TABLE_NAME: t1

 NON_UNIQUE: 1

 INDEX_SCHEMA: test

 INDEX_NAME: k1

 SEQ_IN_INDEX: 1

 COLUMN_NAME: b

 COLLATION: A

 CARDINALITY: 0

 SUB_PART: NULL

 PACKED: NULL

 NULLABLE: YES

 INDEX_TYPE: BTREE

 COMMENT:

INDEX_COMMENT:

 IGNORED: YES

SHOW INDEXES FROM t1\G

*************************** 1. row ***************************

 Table: t1

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 1

 Column_name: id

 Collation: A

 Cardinality: 0

 Sub_part: NULL

 Packed: NULL

 Null:

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: NO

*************************** 2. row ***************************

 Table: t1

 Non_unique: 1

 Key_name: k1

 Seq_in_index: 1

 Column_name: b

 Collation: A

 Cardinality: 0

 Sub_part: NULL

 Packed: NULL

 Null: YES

 Index_type: BTREE

 Comment:

Index_comment:

 Ignored: YES

The optimizer does not make use of an index when it is ignored, while if the index is not ignored (the default), the optimizer

will consider it in the optimizer plan, as shown in the EXPLAIN output.

2508/4161

CREATE OR REPLACE TABLE t1 (id INT PRIMARY KEY, b INT, KEY k1(b) IGNORED);

EXPLAIN SELECT * FROM t1 ORDER BY b;

+------+-------------+-------+------+---------------+------+---------+------+------+----------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+------+-------------+-------+------+---------------+------+---------+------+------+----------------+

| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 1 | Using filesort

+------+-------------+-------+------+---------------+------+---------+------+------+----------------+

ALTER TABLE t1 ALTER INDEX k1 NOT IGNORED;

EXPLAIN SELECT * FROM t1 ORDER BY b;

+------+-------------+-------+-------+---------------+------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+-------+-------+---------------+------+---------+------+------+-------------+

| 1 | SIMPLE | t1 | index | NULL | k1 | 5 | NULL | 1 | Using index |

+------+-------------+-------+-------+---------------+------+---------+------+------+-------------+

3.3.3.10 Index Statistics
Contents
1. How Index Statistics Help the Query Optimizer

2. Value Groups

3. Dealing with NULLs

4. Null-Safe and Regular Comparisons

5. Engine-Independent Statistics

6. Histogram-Based Statistics

How Index Statistics Help the Query Optimizer
The MariaDB query optimizer decides how best to execute each query based largely on the details of the indexes involved.

The index statistics help inform these decisions. Imagine yourself choosing whether to look up a number in a phone book,

or in your personal address book. You'd choose the personal phone book if at all possible, as it would (usually!) contain far

fewer records and be quicker to search.

Now imagine getting to your personal address book and finding it has twice the number of entries as the phone book. Your

search would be slower. The same process applies to the query optimizer, so having access to up-to-date and accurate

statistics is critical.

Value Groups
The statistics are mainly based on groups of index elements of the same value. In a primary key, every index is unique, so

every group size is one. In a non-unique index, you may have multiple keys with the same value. A worst-case example

would be having large groups with the same value, for example an index on a boolean field.

MariaDB makes heavy use of the average group size statistic. For example, if there are 100 rows, and twenty groups with

the same index values, the average group size would be five.

However, averages can be skewed by extremes, and the usual culprit is NULL values. The row of 100 may have 19 groups

with an average size of 1, while the other 81 values are all NULL. MariaDB may think five is a good average size and

choose to use that index, and then end up having to read through 81 rows with identical keys, taking longer than an

alternative.

Dealing with NULLs
There are three main approaches to the problem of NULLs. NULL index values can be treated as a single group

(nulls_equal). This is usually fine, but if you have large numbers of NULLs the average group size is slanted higher, and the

optimizer may miss using the index for ref accesses when it would be useful. This is the default used by XtraDB/InnoDB and

MyISAM. Nulls_unequal is the opposite approach, with each NULL forming its own group of one. Conversely, the average

group size is slanted lower, and the optimizer may use the index for ref accesses when not suitable. This is the default used

by the Aria storage engine. A third options sees NULL's ignored altogether from index group calculations.

The default approaches can be changed by setting the aria_stats_method, myisam_stats_method and

innodb_stats_method server variables.

2509/4161

Null-Safe and Regular Comparisons
The comparison operator used plays an important role. If two values are compared with <=> (see the null-safe-equal

comparison operator), and both are null, 1 is returned. If the same values are compared with = (see the equal comparison

operator) null is returned. For example:

SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;

+---------+---------------+------------+

| 1 <=> 1 | NULL <=> NULL | 1 <=> NULL |

+---------+---------------+------------+

| 1 | 1 | 0 |

+---------+---------------+------------+

SELECT 1 = 1, NULL = NULL, 1 = NULL;

+-------+-------------+----------+

| 1 = 1 | NULL = NULL | 1 = NULL |

+-------+-------------+----------+

| 1 | NULL | NULL |

+-------+-------------+----------+

Engine-Independent Statistics
MariaDB 10.0.1 introduced a way to gather statistics independently of the storage engine. See Engine-independent table

statistics.

Histogram-Based Statistics
Histogram-Based Statistics were introduced in MariaDB 10.0.2 , and are collected by default from MariaDB 10.4.3.

3.3.3.11 Latitude/Longitude Indexing
Contents
1. The problem

2. A solution -- first, the principles

3. Representation choices

4. GCDist -- compute "great circle distance"

5. Required table structure

6. The algorithm

7. Performance

8. Discussion of reference code

9. Reference code, assuming deg*10000 and 'miles'

10. Postlog

The problem
You want to find the nearest 10 pizza parlors, but you cannot figure out how to do it efficiently in your huge database.

Database indexes are good at one-dimensional indexing, but poor at two-dimensions.

You might have tried

INDEX(lat), INDEX(lon) -- but the optimizer used only one

INDEX(lat,lon) -- but it still had to work too hard

Sometimes you ended up with a full table scan -- Yuck.

WHERE SQRT(...)< ... -- No chance of using any index.

WHERE lat BETWEEN ... AND lng BETWEEN... -- This has some chance of using such indexes.

The goal is to look only at records "close", in both directions, to the target lat/lng.

A solution -- first, the principles

2510/4161

https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1002-release-notes/

PARTITIONs in MariaDB and MySQL sort of give you a way to have two clustered indexes. So, if we could slice up

(partition) the globe in one dimension and use ordinary indexing in the other dimension, maybe we can get something

approximating a 2D index. This 2D approach keeps the number of disk hits significantly lower than 1D approaches, thereby

speeding up "find nearest" queries.

It works. Not perfectly, but better than the alternatives.

What to PARTITION on? It seems like latitude or longitude would be a good idea. Note that longitudes vary in width, from 69

miles (111 km) at the equator, to 0 at the poles. So, latitude seems like a better choice.

How many PARTITIONs? It does not matter a lot. Some thoughts:

90 partitions - 2 degrees each. (I don't like tables with too many partitions; 90 seems like plenty.)

50-100 - evenly populated. (This requires code. For 2.7M placenames, 85 partitions varied from 0.5 degrees to very

wide partitions at the poles.)

Don't have more than 100 partitions, there are inefficiencies in the partition implementation.

How to PARTITION? Well, MariaDB and MySQL are very picky. So FLOAT/DOUBLE are out. DECIMAL is out. So, we are

stuck with some kludge. Essentially, we need to convert Lat/Lng to some size of INT and use PARTITION BY RANGE.

Representation choices
To get to a datatype that can be used in PARTITION, you need to "scale" the latitude and longitude. (Consider only the

*INTs; the other datatypes are included for comparison)

 Datatype Bytes resolution

 ------------------ ----- --------------------------------

 Deg*100 (SMALLINT) 4 1570 m 1.0 mi Cities

 DECIMAL(4,2)/(5,2) 5 1570 m 1.0 mi Cities

 SMALLINT scaled 4 682 m 0.4 mi Cities

 Deg*10000 (MEDIUMINT) 6 16 m 52 ft Houses/Businesses

 DECIMAL(6,4)/(7,4) 7 16 m 52 ft Houses/Businesses

 MEDIUMINT scaled 6 2.7 m 8.8 ft

 FLOAT 8 1.7 m 5.6 ft

 DECIMAL(8,6)/(9,6) 9 16cm 1/2 ft Friends in a mall

 Deg*10000000 (INT) 8 16mm 5/8 in Marbles

 DOUBLE 16 3.5nm ... Fleas on a dog

(Sorted by resolution)

What these mean...

Deg*100 (SMALLINT) -- you take the lat/lng, multiply by 100, round, and store into a SMALLINT. That will take 2 bytes for

each dimension, for a total of 4 bytes. Two items might be 1570 meters apart, but register as having the same latitude and

longitude.

DECIMAL(4,2) for latitude and DECIMAL(5,2) for longitude will take 2+3 bytes and have no better resolution than Deg*100.

SMALLINT scaled -- Convert latitude into a SMALLINT SIGNED by doing (degrees / 90 * 32767) and rounding; longitude by

(degrees / 180 * 32767).

FLOAT has 24 significant bits; DOUBLE has 53. (They don't work with PARTITIONing but are included for completeness.

Often people use DOUBLE without realizing how much an overkill it is, and how much space it takes.)

Sure, you could do DEG*1000 and other "in between" cases, but there is no advantage. DEG*1000 takes as much space as

DEG*10000, but has less resolution.

So, go down the list to see how much resolution you need, then pick an encoding you are comfortable with. However, since

we are about to use latitude as a "partition key", it must be limited to one of the INTs. For the sample code, I will use

Deg*10000 (MEDIUMINT).

GCDist -- compute "great circle distance"
GCDist is a helper FUNCTION that correctly computes the distance between two points on the globe.

The code has been benchmarked at about 20 microseconds per call on a 2011-vintage PC. If you had to check a million

points, that would take 20 seconds -- far too much for a web application. So, one goal of the Procedure that uses it will be to

minimize the usage of this function. With the code presented here, the function need be called only a few dozen or few

hundred times, except in pathological cases.

Sure, you could use the Pythagorean formula. And it would work for most applications. But it does not take extra effort to do

the GC. Furthermore, GC works across a pole and across the dateline. And, a Pythagorean function is not that much faster.

For efficiency, GCDist understands the scaling you picked and has that stuff hardcoded. I am picking "Deg*10000", so the
2511/4161

function expects 350000 for representing 35 degrees. If you choose a different scaling, you will need to change the code.

GCDist() takes 4 scaled DOUBLEs -- lat1, lon1, lat2, lon2 -- and returns a scaled number of "degrees" representing the

distance.

The table of representation choices says 52 feet of resolution for Deg*10000 and DECIMAL(x,4). Here is how it was

calculated: To measuring a diagonal between lat/lng (0,0) and (0.0001,00001) (one 'unit in the last place'): GCDist(0,0,1,1) *

69.172 / 10000 * 5280 = 51.65, where

69.172 miles/degree of latitude

10000 units per degree for the scaling chosen

5280 feet / mile.

(No, this function does not compensate for the Earth being an oblate spheroid, etc.)

Required table structure
There will be one table (plus normalization tables as needed). The one table must be partitioned and indexed as indicated

below.

Fields and indexes

PARTITION BY RANGE(lat)

lat -- scaled latitude (see above)

lon -- scaled longitude

PRIMARY KEY(lon, lat, ...) -- lon must be first; something must be added to make it UNIQUE

id -- (optional) you may need to identify the rows for your purposes; AUTO_INCREMENT if you like

INDEX(id) -- if `id` is AUTO_INCREMENT, then this plain INDEX (not UNIQUE, not PRIMARY KEY) is necessary

ENGINE=InnoDB -- so the PRIMARY KEY will be "clustered"

Other indexes -- keep to a minimum (this is a general performance rule for large tables)

For most of this discussion, lat is assumed to be MEDIUMINT -- scaled from -90 to +90 by multiplying by 10000. Similarly

for lon and -180 to +180.

The PRIMARY KEY must

start with `lon` since the algorithm needs the "clustering" that InnoDB will provide, and

include `lat` somewhere, since it is the PARTITION key, and

contain something to make the key UNIQUE (lon+lat is unlikely to be sufficient).

The FindNearest PROCEDURE will do multiple SELECTs something like this:

 WHERE lat BETWEEN @my_lat - @dlat

 AND @my_lat + @dlat -- PARTITION Pruning and bounding box

 AND lon BETWEEN @my_lon - @dlon

 AND @my_lon + @dlon -- first part of PK

 AND condition -- filter out non-pizza parlors

The query planner will

Do PARTITION "pruning" based on the latitude; then

Within a PARTITION (which is effectively a table), use lon do a 'clustered' range scan; then

Use the "condition" to filter down to the rows you desire, plus recheck lat. This design leads to very few disk blocks

needing to be read, which is the main goal of the design.

Note that this does not even call GCDist. That comes in the last pass when the ORDER BY and LIMIT are used.

The stored procedure has a loop. At least two SELECTs will be executed, but with proper tuning; usually no more than about

6 SELECTs will be performed. Because of searching by the PRIMARY KEY, each SELECT hits only one block, sometimes

more, of the table. Counting the number of blocks hit is a crude, but effective way, of comparing the performance of multiple

designs. By comparison, a full table scan will probably touch thousands of blocks. A simple INDEX(lat) probably leads to

hitting hundreds of blocks.

Filtering... An argument to the FindNearest procedure includes a boolean expression ("condition") for a WHERE clause. If

you don't need any filtering, pass in "1". To avoid "SQL injection", do not let web users put arbitrary expressions; instead,

construct the "condition" from inputs they provide, thereby making sure it is safe.

The algorithm
The algorithm is embodied in a stored procedure because of its complexity.

You feed it a starting width for a "square" and a number of items to find.

It builds a "square" around where you are.

2512/4161

A SELECT is performed to see how many items are in the square.

Loop, doubling the width of the square, until enough items are found.

Now, a 'last' SELECT is performed to get the exact distances, sort them (ORDER BY) and LIMIT to the desired

number.

If spanning a pole or the dateline, a more complex SELECT is used.

The next section ("Performance") should make this a bit clearer as it walks through some examples.

Performance
Because of all the variations, it is hard to get a meaningful benchmark. So, here is some hand-waving instead.

Each SELECT is constrained by a "square" defined by a latitude range and a longitude range. (See the WHERE clause

mentioned above, or in the sample code below.) Because of the way longitude lines warp, the longitude range of the

"square" will be more degrees than the latitude range. Let's say the latitude partitioning is 3 degrees wide in the area where

you are searching. That is over 200 miles (over 300km), so you are very likely to have a latitude range smaller than the

partition width. Still, if you are reaching from the edge of a latitude stripe, the square could span two partitions. After partition

pruning down to one (sometimes more) partition, the query is then constrained by a longitude range. (Remember, the

PRIMARY KEY starts with `lon`.) If an InnoDB data block contains 100 rows (a handy Rule of Thumb), the select will touch

one (or a few) block. If the square spans two (or more) partitions, then the same logic applies to each partition.

So, scanning the square will involve as little as one block; rarely more than a few blocks. The number of blocks is mostly

independent of the dataset size.

The primary use case for this algorithm is when the data is significantly larger than will fit into cache (the buffer_pool).

Hence, the main goal is to minimize the number of disk hits.

Now let's look at some edge cases, and argue that the number of blocks is still better (usually) than with traditional indexing

techniques.

What if you are looking for Starbucks in a dense city? There would be dozens, maybe hundreds per square mile. If you start

the guess at 100 miles, the SELECTs would be hitting lots of blocks -- not efficient. In this case, the "starting distance"

should be small, say, 2 miles. Let's say your app wants the closest 10 stores. In this example, you would probably find more

than 10 Starbucks within 2 miles in 1 InnoDB block in one partition. Even though there is a second SELECT to finish off the

query, it would be hitting the same block. Total: One block hit == cheap.

Let's say you start with a 5 mile square. Since there are upwards of 200 Starbucks within a 5-miles radius in some dense

cities of the world, that might imply 300 in our "square". That maps to about 4 disk blocks, and a modest amount of CPU to

chew through the 300 records. Still not bad.

Now, suppose you are on an ocean liner somewhere in the Pacific. And there is one Starbucks onboard, but you are looking

for the nearest 10. If you again start with 2 miles, it will take several iterations to find 10 sites. But, let's walk through it

anyway. The first probe will hit one partition (maybe 2), and find just one hit. The second probe doubles the width of the

square; 4 miles will still give you one hit -- the same hit in the same block, which is now cached, so we won't count it as a

second disk I/O. Eventually the square will be wide enough to span multiple partitions. Each extra partition will be one new

disk hit to discover no sites in the square. Finally, the square will hit Chile or Hawaii or Fiji and find some more sites,

perhaps enough to stop the iteration. Since the main criteria in determining the number of disk hits is the number of

partitions hit, we do not want to split the world into too many partitions. If there are, say, 40 partitions, then I have just

described a case where there might be 20 disk hits.

2-degree partitions might be good for a global table of stores or restaurants. A 5-mile starting distance might be good when

filtering for Starbucks. 20 miles might be better for a department store.

Now, let's discuss the 'last' SELECT, wherein the square is expanded by SQRT(2) and it uses the Great Circle formula to

precisely order the N results. The SQRT(2) is in case that the N items were all at the corners of the 'square'. Growing the

square by this much allows us to catch any other sites that were just outside the old square.

First, note that this 'last' SELECT is hitting the same block(s) that the iteration hit, plus possibly hitting some more blocks. It

is hard to predict how many extra blocks might be hit. Here's a pathological case. You are in the middle of a desert; the

square grows and grows. Eventually it finds N sites. There is a big city just outside the final square from the iterating. Now

the 'last' SELECT kicks in, and it includes lots of sites in this big city. "Lots of sites" --> lots of blocks --> lots of disk hits.

Discussion of reference code
Here's the gist of the stored procedure FindNearest().

Make a guess at how close to "me" to look.

See how many items are in a 'square' around me, after filtering.

If not enough, repeat, doubling the width of the square.

After finding enough, or giving up because we are looking "too far", make one last pass to get all the data, ORDERed

and LIMITed

2513/4161

Note that the loop merely uses 'squares' of lat/lng ranges. This is crude, but works well with the partitioning and indexing,

and avoids calling to GCDist (until the last step). In the sample code, I picked 15 miles as starting value. Adjusting this will

have some impact on the Procedure's performance, but the impact will vary with the use cases. A rough way to set the

radius is to guess what will find the desired LIMIT about half the time. (This value is hardcoded in the PROCEDURE.)

Parameters passed into FindNearest():

your Latitude -- -90..90 (not scaled -- see hardcoded conversion in PROCEDURE)

your Longitude -- -180..180 (not scaled)

Start distance -- (miles or km) -- see discussion below

Max distance -- in miles or km -- see hardcoded conversion in PROCEDURE

Limit -- maximum number of items to return

Condition -- something to put after 'AND' (more discussion above)

The function will find the nearest items, up to Limit that meet the Condition. But it will give up at Max distance. (If you are at

the South Pole, why bother searching very far for the tenth pizza parlor?)

Because of the "scaling", "hardcoding", "Condition", the table name, etc, this PROCEDURE is not truly generic; the code

must be modified for each application. Yes, I could have designed it to pass all that stuff in. But what a mess.

The "_start_dist" gives some control over the performance. Making this too small leads to extra iterations; too big leads to

more rows being checked. If you choose to tune the Stored Procedure, do the following. "SELECT @iterations" after calling

the SP for a number of typical values. If the value is usually 1, then decrease _start_dist. If it is usually 2 or more, then

increase it.

Timing: Under 10ms for "typical" usage; any dataset size. Slower for pathological cases (low min distance, high max

distance, crossing dateline, bad filtering, cold cache, etc)

End-cases:

By using GC distance, not Pythagoras, distances are 'correct' even near poles.

Poles -- Even if the "nearest" is almost 360 degrees away (longitude), it can find it.

Dateline -- There is a small, 'contained', piece of code for crossing the Dateline. Example: you are at +179 deg

longitude, and the nearest item is at -179.

The procedure returns one resultset, SELECT *, distance.

Only rows that meet your Condition, within Max distance are returned

At most Limit rows are returned

The rows will be ordered, "closest" first.

"dist" will be in miles or km (based on a hardcoded constant in the SP)

Reference code, assuming deg*10000 and 'miles'
This version is based on scaling "Deg*10000 (MEDIUMINT)".

DELIMITER //

drop function if exists GCDist //

CREATE FUNCTION GCDist (

 _lat1 DOUBLE, -- Scaled Degrees north for one point

 _lon1 DOUBLE, -- Scaled Degrees west for one point

 _lat2 DOUBLE, -- other point

 _lon2 DOUBLE

) RETURNS DOUBLE

 DETERMINISTIC

 CONTAINS SQL -- SQL but does not read or write

 SQL SECURITY INVOKER -- No special privileges granted

-- Input is a pair of latitudes/longitudes multiplied by 10000.

-- For example, the south pole has latitude -900000.

-- Multiply output by .0069172 to get miles between the two points

-- or by .0111325 to get kilometers

BEGIN

 -- Hardcoded constant:

 DECLARE _deg2rad DOUBLE DEFAULT PI()/1800000; -- For scaled by 1e4 to MEDIUMINT

 DECLARE _rlat1 DOUBLE DEFAULT _deg2rad * _lat1;

 DECLARE _rlat2 DOUBLE DEFAULT _deg2rad * _lat2;

 -- compute as if earth's radius = 1.0

 DECLARE _rlond DOUBLE DEFAULT _deg2rad * (_lon1 - _lon2);

 DECLARE _m DOUBLE DEFAULT COS(_rlat2);

 DECLARE _x DOUBLE DEFAULT COS(_rlat1) - _m * COS(_rlond);

 DECLARE _y DOUBLE DEFAULT _m * SIN(_rlond);

 DECLARE _z DOUBLE DEFAULT SIN(_rlat1) - SIN(_rlat2);

 DECLARE _n DOUBLE DEFAULT SQRT(

 _x * _x +
2514/4161

 _x * _x +

 _y * _y +

 _z * _z);

 RETURN 2 * ASIN(_n / 2) / _deg2rad; -- again--scaled degrees

END;

//

DELIMITER ;

DELIMITER //

-- FindNearest (about my 6th approach)

drop procedure if exists FindNearest6 //

CREATE

PROCEDURE FindNearest (

 IN _my_lat DOUBLE, -- Latitude of me [-90..90] (not scaled)

 IN _my_lon DOUBLE, -- Longitude [-180..180]

 IN _START_dist DOUBLE, -- Starting estimate of how far to search: miles or km

 IN _max_dist DOUBLE, -- Limit how far to search: miles or km

 IN _limit INT, -- How many items to try to get

 IN _condition VARCHAR(1111) -- will be ANDed in a WHERE clause

)

 DETERMINISTIC

BEGIN

 -- lat and lng are in degrees -90..+90 and -180..+180

 -- All computations done in Latitude degrees.

 -- Thing to tailor

 -- *Locations* -- the table

 -- Scaling of lat, lon; here using *10000 in MEDIUMINT

 -- Table name

 -- miles versus km.

 -- Hardcoded constant:

 DECLARE _deg2rad DOUBLE DEFAULT PI()/1800000; -- For scaled by 1e4 to MEDIUMINT

 -- Cannot use params in PREPARE, so switch to @variables:

 -- Hardcoded constant:

 SET @my_lat := _my_lat * 10000,

 @my_lon := _my_lon * 10000,

 @deg2dist := 0.0069172, -- 69.172 for miles; 111.325 for km *** (mi vs km)

 @start_deg := _start_dist / @deg2dist, -- Start with this radius first (eg, 15 miles)

 @max_deg := _max_dist / @deg2dist,

 @cutoff := @max_deg / SQRT(2), -- (slightly pessimistic)

 @dlat := @start_deg, -- note: must stay positive

 @lon2lat := COS(_deg2rad * @my_lat),

 @iterations := 0; -- just debugging

 -- Loop through, expanding search

 -- Search a 'square', repeat with bigger square until find enough rows

 -- If the inital probe found _limit rows, then probably the first

 -- iteration here will find the desired data.

 -- Hardcoded table name:

 -- This is the "first SELECT":

 SET @sql = CONCAT(

 "SELECT COUNT(*) INTO @near_ct

 FROM Locations

 WHERE lat BETWEEN @my_lat - @dlat

 AND @my_lat + @dlat -- PARTITION Pruning and bounding box

 AND lon BETWEEN @my_lon - @dlon

 AND @my_lon + @dlon -- first part of PK

 AND ", _condition);

 PREPARE _sql FROM @sql;

 MainLoop: LOOP

 SET @iterations := @iterations + 1;

 -- The main probe: Search a 'square'

 SET @dlon := ABS(@dlat / @lon2lat); -- good enough for now -- note: must stay

positive

 -- Hardcoded constants:

 SET @dlon := IF(ABS(@my_lat) + @dlat >= 900000, 3600001, @dlon); -- near a Pole

 EXECUTE _sql;

 IF (@near_ct >= _limit OR -- Found enough

 @dlat >= @cutoff) THEN -- Give up (too far)

 LEAVE MainLoop;

 END IF;

 -- Expand 'square':

 SET @dlat := LEAST(2 * @dlat, @cutoff); -- Double the radius to search

 END LOOP MainLoop;

 DEALLOCATE PREPARE _sql; 2515/4161

 DEALLOCATE PREPARE _sql;

 -- Out of loop because found _limit items, or going too far.

 -- Expand range by about 1.4 (but not past _max_dist),

 -- then fetch details on nearest 10.

 -- Hardcoded constant:

 SET @dlat := IF(@dlat >= @max_deg OR @dlon >= 1800000,

 @max_deg,

 GCDist(ABS(@my_lat), @my_lon,

 ABS(@my_lat) - @dlat, @my_lon - @dlon));

 -- ABS: go toward equator to find farthest corner (also avoids poles)

 -- Dateline: not a problem (see GCDist code)

 -- Reach for longitude line at right angle:

 -- sin(dlon)*cos(lat) = sin(dlat)

 -- Hardcoded constant:

 SET @dlon := IFNULL(ASIN(SIN(_deg2rad * @dlat) /

 COS(_deg2rad * @my_lat))

 / _deg2rad -- precise

 , 3600001); -- must be too near a pole

 -- This is the "last SELECT":

 -- Hardcoded constants:

 IF (ABS(@my_lon) + @dlon < 1800000 OR -- Usual case - not crossing dateline

 ABS(@my_lat) + @dlat < 900000) THEN -- crossing pole, so dateline not an issue

 -- Hardcoded table name:

 SET @sql = CONCAT(

 "SELECT *,

 @deg2dist * GCDist(@my_lat, @my_lon, lat, lon) AS dist

 FROM Locations

 WHERE lat BETWEEN @my_lat - @dlat

 AND @my_lat + @dlat -- PARTITION Pruning and bounding box

 AND lon BETWEEN @my_lon - @dlon

 AND @my_lon + @dlon -- first part of PK

 AND ", _condition, "

 HAVING dist <= ", _max_dist, "

 ORDER BY dist

 LIMIT ", _limit

);

 ELSE

 -- Hardcoded constants and table name:

 -- Circle crosses dateline, do two SELECTs, one for each side

 SET @west_lon := IF(@my_lon < 0, @my_lon, @my_lon - 3600000);

 SET @east_lon := @west_lon + 3600000;

 -- One of those will be beyond +/- 180; this gets points beyond the dateline

 SET @sql = CONCAT(

 "(SELECT *,

 @deg2dist * GCDist(@my_lat, @west_lon, lat, lon) AS dist

 FROM Locations

 WHERE lat BETWEEN @my_lat - @dlat

 AND @my_lat + @dlat -- PARTITION Pruning and bounding box

 AND lon BETWEEN @west_lon - @dlon

 AND @west_lon + @dlon -- first part of PK

 AND ", _condition, "

 HAVING dist <= ", _max_dist, ")

 UNION ALL

 (SELECT *,

 @deg2dist * GCDist(@my_lat, @east_lon, lat, lon) AS dist

 FROM Locations

 WHERE lat BETWEEN @my_lat - @dlat

 AND @my_lat + @dlat -- PARTITION Pruning and bounding box

 AND lon BETWEEN @east_lon - @dlon

 AND @east_lon + @dlon -- first part of PK

 AND ", _condition, "

 HAVING dist <= ", _max_dist, ")

 ORDER BY dist

 LIMIT ", _limit

);

 END IF;

 PREPARE _sql FROM @sql;

 EXECUTE _sql;

 DEALLOCATE PREPARE _sql;

END;

// 2516/4161

//

DELIMITER ;

<<code>>

== Sample

Find the 5 cities with non-zero population (out of 3 million) nearest to (+35.15, -90.15).

Start with a 10-mile bounding box and give up at 100 miles.

<<code>>

CALL FindNearestLL(35.15, -90.05, 10, 100, 5, 'population > 0');

+---------+--------+---------+---------+--------------+--------------+-------+------------+--

------------+---------------------+------------------------+

| id | lat | lon | country | ascii_city | city | state | population |

@gcd_ct := 0 | dist | @gcd_ct := @gcd_ct + 1 |

+---------+--------+---------+---------+--------------+--------------+-------+------------+--

------------+---------------------+------------------------+

| 3023545 | 351494 | -900489 | us | memphis | Memphis | TN | 641608 |

0 | 0.07478733189367963 | 3 |

| 2917711 | 351464 | -901844 | us | west memphis | West Memphis | AR | 28065 |

0 | 7.605683607627499 | 2 |

| 2916457 | 352144 | -901964 | us | marion | Marion | AR | 9227 |

0 | 9.3994963998986 | 1 |

| 3020923 | 352044 | -898739 | us | bartlett | Bartlett | TN | 43264 |

0 | 10.643941157860604 | 7 |

| 2974644 | 349889 | -900125 | us | southaven | Southaven | MS | 38578 |

0 | 11.344042217329935 | 5 |

+---------+--------+---------+---------+--------------+--------------+-------+------------+--

------------+---------------------+------------------------+

5 rows in set (0.00 sec)

Query OK, 0 rows affected (0.04 sec)

SELECT COUNT(*) FROM ll_table;

+----------+

| COUNT(*) |

+----------+

| 3173958 |

+----------+

1 row in set (5.04 sec)

FLUSH STATUS;

CALL...

SHOW SESSION STATUS LIKE 'Handler%';

show session status like 'Handler%';

+----------------------------+-------+

| Variable_name | Value |

+----------------------------+-------+

| Handler_read_first | 1 |

| Handler_read_key | 3 |

| Handler_read_next | 1307 | -- some index, some tmp, but far less than 3 million.

| Handler_read_rnd | 5 |

| Handler_read_rnd_next | 13 |

| Handler_write | 12 | -- it needed a tmp

+----------------------------+-------+

Postlog
There is a "Haversine" algorithm that is twice as fast as the GCDist function here. But it has a fatal flaw of sometimes

returning NULL for the distance between a point and itself. (This is because of computing a number slightly bigger than 1.0,

then trying to take the ACOS of it.)

3.3.3.12 Primary Keys with Nullable Columns
MariaDB deals with primary keys over nullable columns according to the SQL standards.

Take the following table structure:

2517/4161

CREATE TABLE t1(

 c1 INT NOT NULL AUTO_INCREMENT,

 c2 INT NULL DEFAULT NULL,

 PRIMARY KEY(c1,c2)

);

Column c2 is part of a primary key, and thus it cannot be NULL.

Before MariaDB 10.1.7 , MariaDB (as well as versions of MySQL before MySQL 5.7) would silently convert it into a NOT

NULL column with a default value of 0.

Since MariaDB 10.1.7 , the column is converted to NOT NULL, but without a default value. If we then attempt to insert a

record without explicitly setting c2, a warning (or, in strict mode, an error), will be thrown, for example:

INSERT INTO t1() VALUES();

Query OK, 1 row affected, 1 warning (0.00 sec)

Warning (Code 1364): Field 'c2' doesn't have a default value

SELECT * FROM t1;

+----+----+

| c1 | c2 |

+----+----+

| 1 | 0 |

+----+----+

MySQL, since 5.7, will abort such a CREATE TABLE with an error.

The MariaDB 10.1.7 behavior adheres to the SQL 2003 standard.

SQL-2003, Part II, <Foundation= says:

11.7 <unique constraint definition>

Syntax Rules

&

5) If the <unique specification> specifies PRIMARY KEY, then for each <column name> in the explicit or implicit <unique

column list> for which NOT NULL is not specified, NOT NULL is implicit in the <column definition>.

Essentially this means that all PRIMARY KEY columns are automatically converted to NOT NULL. Furthermore:

11.5 <default clause>

General Rules

&

3) When a site S is set to its default value,

&

b) If the data descriptor for the site includes a <default option>, then S is set to the value specified by that <default option>.

&

e) Otherwise, S is set to the null value.

There is no concept of <no default value= in the standard. Instead, a column always has an implicit default value of NULL.

On insertion it might however fail the NOT NULL constraint. MariaDB and MySQL instead mark such a column as <not

having a default value=. The end result is the same 4 a value must be specified explicitly or an INSERT will fail.

MariaDB since 10.1.7 behaves in a standard compatible manner 4 being part of a PRIMARY KEY, the nullable column

gets an automatic NOT NULL constraint, on insertion one must specify a value for such a column. MariaDB before 10.1.7

was automatically assigning a default value of 0 4 this behavior was non-standard. Issuing an error at CREATE TABLE

time is also non-standard.

1.1.1.2.2.7 SHOW EXPLAIN

1.1.3.15 Spatial Index

3.3.3.15 Storage Engine Index Types

2518/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

Contents
1. B-tree Indexes

2. Hash Indexes

3. R-tree Indexes

This refers to the index_type definition when creating an index, i.e. BTREE, HASH or RTREE.

For more information on general types of indexes, such as primary keys, unique indexes etc, go to Getting Started with

Indexes.

Storage Engine Permitted Indexes

Aria BTREE, RTREE

MyISAM BTREE, RTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

BTREE is generally the default index type. For MEMORY tables, HASH is the default. TokuDB uses a particular data

structure called fractal trees, which is optimized for data that do not entirely fit memory.

Understanding the B-tree and hash data structures can help predict how different queries perform on different storage

engines that use these data structures in their indexes, particularly for the MEMORY storage engine that lets you choose B-

tree or hash indexes. B-Tree Index Characteristics

B-tree Indexes
B-tree indexes are used for column comparisons using the >, >=, =, >=, < or BETWEEN operators, as well as for LIKE

comparisons that begin with a constant.

For example, the query SELECT * FROM Employees WHERE First_Name LIKE 'Maria%'; can make use of a B-tree

index, while SELECT * FROM Employees WHERE First_Name LIKE '%aria'; cannot.

B-tree indexes also permit leftmost prefixing for searching of rows.

If the number or rows doesn't change, hash indexes occupy a fixed amount of memory, which is lower than the memory

occupied by BTREE indexes.

Hash Indexes
Hash indexes, in contrast, can only be used for equality comparisons, so those using the = or <=> operators. They cannot

be used for ordering, and provide no information to the optimizer on how many rows exist between two values.

Hash indexes do not permit leftmost prefixing - only the whole index can be used.

R-tree Indexes
See SPATIAL for more information.

3.3.4 Query Optimizations
Different query optimizations and how you can use and tune them to get better performance.

Index Hints: How to Force Query Plans

Using hints to get the optimizer to use another query plan.

Subquery Optimizations

Articles about subquery optimizations in MariaDB.

Optimization Strategies

Various optimization strategies used by the query optimizer.

Optimizations for Derived Tables

Optimizations for derived tables, or subqueries in the FROM clause

1

2519/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/spatial/

Table Elimination

Resolving queries without accessing some of the tables the query refers to

Statistics for Optimizing Queries

Different statistics provided by MariaDB to help you optimize your queries

Filesort with Small LIMIT Optimization

Filesort with small LIMIT optimization.

LIMIT ROWS EXAMINED

Means to terminate execution of SELECTs that examine too many rows.

index_merge sort_intersection

Operation to allow the use of index_merge in a broader number of cases.

MariaDB 5.3 Optimizer Debugging

MariaDB 5.3's optimizer debugging patch

optimizer_switch

Server variable for enabling specific optimizations.

How to Quickly Insert Data Into MariaDB

Techniques for inserting data quickly into MariaDB.

Index Condition Pushdown

Index Condition Pushdown optimization.

Query Limits and Timeouts

Different methods MariaDB provides to limit/timeout a query.

Aborting Statements that Exceed a Certain Time to Execute

Aborting statements that take longer than a certain time to execute.

Partition Pruning and Selection

Partition pruning is when the optimizer knows which partitions are relevant for the query.

Big DELETEs

How to DELETE lots of rows from a large table

Charset Narrowing Optimization

Handles equality comparisons like utf8mb3_key_column=utf8mb4_expression.

Data Sampling: Techniques for Efficiently Finding a Random Row

Fetching random rows from a table (beyond ORDER BY RAND())

Data Warehousing High Speed Ingestion

Ingesting lots of data and performance is bottlenecked in the INSERT area. What to do?

Data Warehousing Summary Tables

Creation and maintenance of summary tables

Data Warehousing Techniques

Improving performance for data-warehouse-like tables

Equality propagation optimization

Basic idea Consider a query with a WHERE clause: WHERE col1=col2 AND ... t...

FORCE INDEX

Similar to USE INDEX, but tells the optimizer to regard a table scan as very expensive.

Groupwise Max in MariaDB

Finding the largest row for each group.

1

3

5

9

1

3

2520/4161

https://mariadb.com/kb/en/mariadb-53-optimizer-debugging/

GUID/UUID Performance

GUID/UUID performance (type 1 only).

hash_join_cardinality optimizer_switch Flag

MariaDB starting with 10.6.13...

IGNORE INDEX

Tell the optimizer to not consider a particular index.

not_null_range_scan Optimization

Enables constructing range scans from NOT NULL conditions inferred from the WHERE clause.

Optimizing for "Latest News"-style Queries

Optimizing the schema and code for "Latest News"-style queries

Pagination Optimization

Pagination, not with OFFSET, LIMIT

Pivoting in MariaDB

Pivoting data so a linear list of values with two keys becomes a spreadsheet-like array.

Rollup Unique User Counts

Technique for counting unique users

Rowid Filtering Optimization

Rowid filtering is an optimization available from MariaDB 10.4.

Sargable DATE and YEAR

DATE and YEAR conditions that can be efficiently used by the optimizer.

Sargable UPPER

Starting from MariaDB 11.3, expressions in the form UPPER(key_col) = expr ...

USE INDEX

Find rows in the table using only one of the named indexes.

There are 2 related questions .

4

1

3.3.4.1 Index Hints: How to Force Query Plans
Contents
1. Setting up the World Example Database

2. Forcing Join Order

3. Forcing Usage of a Specific Index for the WHERE Clause

1. USE INDEX: Use a Limited Set of Indexes

2. IGNORE INDEX: Don't Use a Particular Index

3. FORCE INDEX: Forcing an Index

4. Index Prefixes

4. Forcing an Index to be Used for ORDER BY or GROUP BY

1. Help the Optimizer Optimize GROUP BY and ORDER BY

2. Forcing/Disallowing TemporaryTables to be Used for GROUP BY:

5. Forcing Usage of Temporary Tables

6. Optimizer Switch

The optimizer is largely cost-based and will try to choose the optimal plan for any query. However in some cases it does not

have enough information to choose a perfect plan and in these cases you may have to provide hints to force the optimizer to

use another plan.

You can examine the query plan for a SELECT by writing EXPLAIN before the statement. SHOW EXPLAIN shows the

output of a running query. In some cases, its output can be closer to reality than EXPLAIN .

For the following queries, we will use the world database for the examples.

2521/4161

https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://mariadb.com/kb/en/query-optimizations/+questions/

Setting up the World Example Database
Download it from ftp://ftp.askmonty.org/public/world.sql.gz

Install it with:

mariadb-admin create world

zcat world.sql.gz | ../client/mysql world

or

mariadb-admin create world

gunzip world.sql.gz

../client/mysql world < world.sql

Forcing Join Order
You can force the join order by using STRAIGHT_JOIN either in the SELECT or JOIN part.

The simplest way to force the join order is to put the tables in the correct order in the FROM clause and use SELECT

STRAIGHT_JOIN like so:

SELECT STRAIGHT_JOIN SUM(City.Population) FROM Country,City WHERE

City.CountryCode=Country.Code AND Country.HeadOfState="Volodymyr Zelenskyy";

If you only want to force the join order for a few tables, use STRAIGHT_JOIN in the FROM clause. When this is done, only

tables connected with STRAIGHT_JOIN will have their order forced. For example:

SELECT SUM(City.Population) FROM Country STRAIGHT_JOIN City WHERE

City.CountryCode=Country.Code AND Country.HeadOfState="Volodymyr Zelenskyy";

In both of the above cases Country will be scanned first and for each matching country (one in this case) all rows in City

will be checked for a match. As there is only one matching country this will be faster than the original query.

The output of EXPLAIN for the above cases is:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE Country ALL PRIMARY NULL NULL NULL 239 Using where

1 SIMPLE City ALL NULL NULL NULL NULL 4079
Using where; Using join buffer (flat,

BNL join)

This is one of the few cases where ALL is ok, as the scan of the Country table will only find one matching row.

Forcing Usage of a Specific Index for the WHERE Clause
In some cases the optimizer may choose a non-optimal index or it may choose to not use an index at all, even if some index

could theoretically be used.

In these cases you have the option to either tell the optimizer to only use a limited set of indexes, ignore one or more

indexes, or force the usage of some particular index.

USE INDEX: Use a Limited Set of Indexes

You can limit which indexes are considered with the USE INDEX option.

USE INDEX [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

The default is ' FOR JOIN ', which means that the hint only affects how the WHERE clause is optimized.

USE INDEX is used after the table name in the FROM clause.

Example:

2522/4161

ftp://ftp.askmonty.org/public/world.sql.gz

CREATE INDEX Name ON City (Name);

CREATE INDEX CountryCode ON City (Countrycode);

EXPLAIN SELECT Name FROM City USE INDEX (CountryCode)

WHERE name="Helsingborg" AND countrycode="SWE";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ref CountryCode CountryCode 3 const 14 Using where

If we had not used USE INDEX, the Name index would have been in possible keys .

IGNORE INDEX: Don't Use a Particular Index

You can tell the optimizer to not consider some particular index with the IGNORE INDEX option.

IGNORE INDEX [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

This is used after the table name in the FROM clause:

CREATE INDEX Name ON City (Name);

CREATE INDEX CountryCode ON City (Countrycode);

EXPLAIN SELECT Name FROM City IGNORE INDEX (Name)

WHERE name="Helsingborg" AND countrycode="SWE";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ref CountryCode CountryCode 3 const 14 Using where

The benefit of using IGNORE_INDEX instead of USE_INDEX is that it will not disable a new index which you may add later.

Also see Ignored Indexes for an option to specify in the index definition that indexes should be ignored.

FORCE INDEX: Forcing an Index

Forcing an index to be used is mostly useful when the optimizer decides to do a table scan even if you know that using an

index would be better. (The optimizer could decide to do a table scan even if there is an available index when it believes that

most or all rows will match and it can avoid the overhead of using the index).

CREATE INDEX Name ON City (Name);

EXPLAIN SELECT Name,CountryCode FROM City FORCE INDEX (Name)

WHERE name>="A" and CountryCode >="A";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City range Name Name 35 NULL 4079 Using where

FORCE_INDEX works by only considering the given indexes (like with USE_INDEX) but in addition it tells the optimizer to

regard a table scan as something very expensive. However if none of the 'forced' indexes can be used, then a table scan will

be used anyway.

Index Prefixes

When using index hints (USE, FORCE or IGNORE INDEX), the index name value can also be an unambiguous prefix of an

index name.

Forcing an Index to be Used for ORDER BY or GROUP
BY
The optimizer will try to use indexes to resolve ORDER BY and GROUP BY.

2523/4161

You can use USE INDEX, IGNORE INDEX and FORCE INDEX as in the WHERE clause above to ensure that some specific

index used:

USE INDEX [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

This is used after the table name in the FROM clause.

Example:

CREATE INDEX Name ON City (Name);

EXPLAIN SELECT Name,Count(*) FROM City

FORCE INDEX FOR GROUP BY (Name)

WHERE population >= 10000000 GROUP BY Name;

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City index NULL Name 35 NULL 4079 Using where

Without the FORCE INDEX option we would have ' Using where; Using temporary; Using filesort ' in the 'Extra'

column, which means that the optimizer would created a temporary table and sort it.

Help the Optimizer Optimize GROUP BY and ORDER BY

The optimizer uses several strategies to optimize GROUP BY and ORDER BY:

Resolve with an index:

Scan the table in index order and output data as we go. (This only works if the ORDER BY / GROUP BY can

be resolved by an index after constant propagation is done).

Filesort:

Scan the table to be sorted and collect the sort keys in a temporary file.

Sort the keys + reference to row (with filesort)

Scan the table in sorted order

Use a temporary table for ORDER BY:

Create a temporary (in memory) table for the 'to-be-sorted' data. (If this gets bigger than

max_heap_table_size or contains blobs then an Aria or MyISAM disk based table will be used)

Sort the keys + reference to row (with filesort)

Scan the table in sorted order

A temporary table will always be used if the fields which will be sorted are not from the first table in the JOIN order.

Use a temporary table for GROUP BY:

Create a temporary table to hold the GROUP BY result with an index that matches the GROUP BY fields.

Produce a result row

If a row with the GROUP BY key exists in the temporary table, add the new result row to it. If not, create a new

row.

Before sending the results to the user, sort the rows with filesort to get the results in the GROUP BY order.

Forcing/Disallowing TemporaryTables to be Used for GROUP BY:

Using an in-memory table (as described above) is usually the fastest option for GROUP BY if the result set is small. It is not

optimal if the result set is very big. You can tell the optimizer this by using SELECT SQL_SMALL_RESULT or SELECT

SQL_BIG_RESULT .

For example:

EXPLAIN SELECT SQL_SMALL_RESULT Name,Count(*) AS Cities FROM City GROUP BY Name HAVING Cities > 2;

produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ALL NULL NULL NULL NULL 4079 Using temporary; Using filesort

while:

2524/4161

EXPLAIN SELECT SQL_BIG_RESULT Name,Count(*) AS Cities FROM City

GROUP BY Name HAVING Cities > 2;

produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ALL NULL NULL NULL NULL 4079 Using filesort

The difference is that with SQL_SMALL_RESULT a temporary table is used.

Forcing Usage of Temporary Tables
In some cases you may want to force the use of a temporary table for the result to free up the table/row locks for the used

tables as quickly as possible.

You can do this with the SQL_BUFFER_RESULT option:

CREATE INDEX Name ON City (Name);

EXPLAIN SELECT SQL_BUFFER_RESULT Name,Count(*) AS Cities FROM City

GROUP BY Name HAVING Cities > 2;

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City index NULL Name 35 NULL 4079 Using index; Using temporary

Without SQL_BUFFER_RESULT , the above query would not use a temporary table for the result set.

Optimizer Switch
In MariaDB 5.3 we added an optimizer switch which allows you to specify which algorithms will be considered when

optimizing a query.

See the optimizer section for more information about the different algorithms which are used.

3.3.4.2 Subquery Optimizations
Articles about subquery optimizations in MariaDB.

Subquery Optimizations Map

Map showing types of subqueries and the optimizer strategies available to handle them

Semi-join Subquery Optimizations

MariaDB has a set of optimizations specifically targeted at semi-join subqueries.

Table Pullout Optimization

Table pullout is an optimization for Semi-join subqueries.

Non-semi-join Subquery Optimizations

Alternative strategies for IN-subqueries that cannot be flattened into semi-joins

Subquery Cache

Subquery cache for optimizing the evaluation of correlated subqueries.

Condition Pushdown Into IN subqueries

This article describes Condition Pushdown into IN subqueries as implemented...

Conversion of Big IN Predicates Into Subqueries

The optimizer will convert big IN predicates into subqueries.

EXISTS-to-IN Optimization

Optimizations for IN subqueries.

1

2525/4161

Optimizing GROUP BY and DISTINCT Clauses in Subqueries

MariaDB removes DISTINCT and GROUP BY without HAVING in certain cases

3.3.4.2.1 Subquery Optimizations Map
Below is a map showing all types of subqueries allowed in the SQL language, and the optimizer strategies available to

handle them.

Uncolored areas represent different kinds of subqueries, for example:

Subqueries that have form x IN (SELECT ...)

Subqueries that are in the FROM clause

.. and so forth

The size of each uncolored area roughly corresponds to how important (i.e. frequently used) that kind of subquery is.

For example, x IN (SELECT ...) queries are the most important, and EXISTS (SELECT ...) are relatively

unimportant.

Colored areas represent optimizations/execution strategies that are applied to handle various kinds of subqueries.

The color of optimization indicates which version of MySQL/MariaDB it was available in (see legend below)

Some things are not on the map:

MariaDB doesn't evaluate expensive subqueries when doing optimization (this means, EXPLAIN is always fast).

MySQL 5.6 has made a progress in this regard but its optimizer will still evaluate certain kinds of subqueries (for

example, scalar-context subqueries used in range predicates)

Links to pages about individual optimizations:
IN->EXISTS

Subquery Caching

Semi-join optimizations

Table pullout

FirstMatch

Materialization, +scan, +lookup

LooseScan

DuplicateWeedout execution strategy

Non-semi-join Materialization (including NULL-aware and partial matching)

Derived table optimizations

2526/4161

Derived table merge

Derived table with keys

3.3.4.2.2 Semi-join Subquery Optimizations
Contents
1. What is a Semi-Join Subquery

1. Difference from Inner Joins

2. Semi-Join Optimizations in MariaDB

MariaDB has a set of optimizations specifically targeted at semi-join subqueries.

What is a Semi-Join Subquery
A semi-join subquery has a form of

SELECT ... FROM outer_tables WHERE expr IN (SELECT ... FROM inner_tables ...) AND ...

that is, the subquery is an IN-subquery and it is located in the WHERE clause. The most important part here is

with semi-join subquery, we're only interested in records of outer_tables that have matches in the subquery

Let's see why this is important. Consider a semi-join subquery:

select * from Country

where

 Continent='Europe' and

 Country.Code in (select City.country

 from City

 where City.Population>1*1000*1000);

One can execute it "naturally", by starting from countries in Europe and checking if they have populous Cities:

The semi-join property also allows "backwards" execution: we can start from big cities, and check which countries they are

in:

To contrast, let's change the subquery to be non-semi-join:

select * from Country

where

 Country.Continent='Europe' and

 (Country.Code in (select City.country

 from City where City.Population>1*1000*1000)

 or Country.SurfaceArea > 100*1000 -- Added this part

);

It is still possible to start from countries, and then check

if a country has any big cities

if it has a large surface area:

2527/4161

The opposite, city-to-country way is not possible. This is not a semi-join.

Difference from Inner Joins

Semi-join operations are similar to regular relational joins. There is a difference though: with semi-joins, you don't care how

many matches an inner table has for an outer row. In the above countries-with-big-cities example, Germany will be returned

once, even if it has three cities with populations of more than one million each.

Semi-Join Optimizations in MariaDB
MariaDB uses semi-join optimizations to run IN subqueries.The optimizations are enabled by default. You can disable them

by turning off their optimizer_switch like so:

SET optimizer_switch='semijoin=off'

MariaDB has five different semi-join execution strategies:

Table pullout optimization

FirstMatch execution strategy

Semi-join Materialization execution strategy

LooseScan execution strategy

DuplicateWeedout execution strategy

3.3.4.2.3 Table Pullout Optimization
Contents
1. The idea of Table Pullout

2. Table pullout in action

3. Table pullout fact sheet

4. Controlling table pullout

Table pullout is an optimization for Semi-join subqueries.

The idea of Table Pullout
Sometimes, a subquery can be re-written as a join. For example:

select *

from City

where City.Country in (select Country.Code

 from Country

 where Country.Population < 100*1000);

If we know that there can be, at most, one country with with a given value of Country.Code (we can tell that if we see that

table Country has a primary key or unique index over that column), we can re-write this query as:

select City.*

from

 City, Country

where

 City.Country=Country.Code AND Country.Population < 100*1000;

2528/4161

Table pullout in action
If one runs EXPLAIN for the above query in MySQL 5.1-5.6 or MariaDB 5.1-5.2, they'll get this plan:

MySQL [world]> explain select * from City where City.Country in (select Country.Code from

Country where Country.Population < 100*1000);

+----+--------------------+---------+-----------------+--------------------+---------+-------

--+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len

| ref | rows | Extra |

+----+--------------------+---------+-----------------+--------------------+---------+-------

--+------+------+-------------+

| 1 | PRIMARY | City | ALL | NULL | NULL | NULL

| NULL | 4079 | Using where |

| 2 | DEPENDENT SUBQUERY | Country | unique_subquery | PRIMARY,Population | PRIMARY | 3

| func | 1 | Using where |

+----+--------------------+---------+-----------------+--------------------+---------+-------

--+------+------+-------------+

2 rows in set (0.00 sec)

It shows that the optimizer is going to do a full scan on table City , and for each city it will do a lookup in table Country .

If one runs the same query in MariaDB 5.3, they will get this plan:

MariaDB [world]> explain select * from City where City.Country in (select Country.Code from

Country where Country.Population < 100*1000);

+----+-------------+---------+-------+--------------------+------------+---------+-----------

---------+------+-----------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+---------+-------+--------------------+------------+---------+-----------

---------+------+-----------------------+

| 1 | PRIMARY | Country | range | PRIMARY,Population | Population | 4 | NULL

| 37 | Using index condition |

| 1 | PRIMARY | City | ref | Country | Country | 3 |

world.Country.Code | 18 | |

+----+-------------+---------+-------+--------------------+------------+---------+-----------

---------+------+-----------------------+

2 rows in set (0.00 sec)

The interesting parts are:

Both tables have select_type=PRIMARY , and id=1 as if they were in one join.

The `Country` table is first, followed by the `City` table.

Indeed, if one runs EXPLAIN EXTENDED; SHOW WARNINGS, they will see that the subquery is gone and it was replaced

with a join:

MariaDB [world]> show warnings\G

*************************** 1. row ***************************

 Level: Note

 Code: 1003

Message: select `world`.`City`.`ID` AS `ID`,`world`.`City`.`Name` AS

`Name`,`world`.`City`.`Country` AS `Country`,`world`.`City`.`Population` AS

`Population`

 from `world`.`City` join `world`.`Country` where

((`world`.`City`.`Country` = `world`.`Country`.`Code`) and (`world`.`Country`.

`Population` < (100 * 1000)))

1 row in set (0.00 sec)

Changing the subquery into a join allows feeding the join to the join optimizer, which can make a choice between two

possible join orders:

1. City -> Country

2. Country -> City

as opposed to the single choice of

2529/4161

1. City->Country

which we had before the optimization.

In the above example, the choice produces a better query plan. Without pullout, the query plan with a subquery would read

(4079 + 1*4079)=8158 table records. With table pullout, the join plan would read (37 + 37 * 18) = 703 rows. Not all

row reads are equal, but generally, reading 10 times fewer table records is faster.

Table pullout fact sheet
Table pullout is possible only in semi-join subqueries.

Table pullout is based on UNIQUE / PRIMARY key definitions.

Doing table pullout does not cut off any possible query plans, so MariaDB will always try to pull out as much as

possible.

Table pullout is able to pull individual tables out of subqueries to their parent selects. If all tables in a subquery have

been pulled out, the subquery (i.e. its semi-join) is removed completely.

One common bit of advice for optimizing MySQL has been "If possible, rewrite your subqueries as joins". Table

pullout does exactly that, so manual rewrites are no longer necessary.

Controlling table pullout
There is no separate @@optimizer_switch flag for table pullout. Table pullout can be disabled by switching off all semi-join

optimizations with SET @@optimizer_switch='semijoin=off' command.

3.3.4.2.4 Non-semi-join Subquery Optimizations
Contents
1. Applicability

1. Subquery in a disjunction (OR)

2. Negated subquery predicate (NOT IN)

3. Subquery in the SELECT or HAVING clause

4. Subquery with a UNION

2. Materialization for non-correlated IN-subqueries

1. Materialization basics

2. NULL-aware efficient execution

3. Limitations

3. The IN-TO-EXISTS transformation

4. Performance discussion

1. Example speedup over MySQL 5.x and MariaDB 5.1/5.2

2. Performance guidelines

5. Optimizer control

Certain kinds of IN-subqueries cannot be flattened into semi-joins. These subqueries can be both correlated or non-

correlated. In order to provide consistent performance in all cases, MariaDB provides several alternative strategies for these

types of subqueries. Whenever several strategies are possible, the optimizer chooses the optimal one based on cost

estimates.

The two primary non-semi-join strategies are materialization (also called outside-in materialization), and in-to-exists

transformation. Materialization is applicable only for non-correlated subqueries, while in-to-exist can be used both for

correlated and non-correlated subqueries.

Applicability
An IN subquery cannot be flattened into a semi-join in the following cases. The examples below use the World database

from the MariaDB regression test suite.

Subquery in a disjunction (OR)

The subquery is located directly or indirectly under an OR operation in the WHERE clause of the outer query.

Query pattern:

SELECT ... FROM ... WHERE (expr1, ..., exprN) [NOT] IN (SELECT ...) OR expr;

2530/4161

Example:

SELECT Name FROM Country

WHERE (Code IN (select Country from City where City.Population > 100000) OR

 Name LIKE 'L%') AND

 surfacearea > 1000000;

Negated subquery predicate (NOT IN)

The subquery predicate itself is negated.

Query pattern:

SELECT ... FROM ... WHERE ... (expr1, ..., exprN) NOT IN (SELECT ...) ...;

Example:

SELECT Country.Name

FROM Country, CountryLanguage

WHERE Code NOT IN (SELECT Country FROM CountryLanguage WHERE Language = 'English')

 AND CountryLanguage.Language = 'French'

 AND Code = Country;

Subquery in the SELECT or HAVING clause

The subquery is located in the SELECT or HAVING clauses of the outer query.

Query pattern:

SELECT field1, ..., (SELECT ...) WHERE ...;

SELECT ... WHERE ... HAVING (SELECT ...);

Example:

select Name, City.id in (select capital from Country where capital is not null) as is_capital

from City

where City.population > 10000000;

Subquery with a UNION

The subquery itself is a UNION, while the IN predicate may be anywhere in the query where IN is allowed.

Query pattern:

... [NOT] IN (SELECT ... UNION SELECT ...)

Example:

SELECT * from City where (Name, 91) IN

(SELECT Name, round(Population/1000) FROM City WHERE Country = "IND" AND Population > 2500000

UNION

 SELECT Name, round(Population/1000) FROM City WHERE Country = "IND" AND Population < 100000);

Materialization for non-correlated IN-subqueries

Materialization basics

The basic idea of subquery materialization is to execute the subquery and store its result in an internal temporary table

indexed on all its columns. Naturally, this is possible only when the subquery is non-correlated. The IN predicate tests

whether its left operand is present in the subquery result. Therefore it is not necessary to store duplicate subquery result

rows in the temporary table. Storing only unique subquery rows provides two benefits - the size of the temporary table is

smaller, and the index on all its columns can be unique.

If the size of the temporary table is less than the tmp_table_size system variable, the table is a hash-indexed in-memory

HEAP table. In the rare cases when the subquery result exceeds this limit, the temporary table is stored on disk in an ARIA

2531/4161

or MyISAM B-tree indexed table (ARIA is the default).

Subquery materialization happens on demand during the first execution of the IN predicate. Once the subquery is

materialized, the IN predicate is evaluated very efficiently by index lookups of the outer expression into the unique index of

the materialized temporary table. If there is a match, IN is TRUE, otherwise IN is FALSE.

NULL-aware efficient execution

An IN predicate may produce a NULL result if there is a NULL value in either of its arguments. Depending on its location in

a query, a NULL predicate value is equivalent to FALSE. These are the cases when substituting NULL with FALSE would

reject exactly the same result rows. A NULL result of IN is indistinguishable from a FALSE if the IN predicate is:

not negated,

not a function argument,

inside a WHERE or ON clause.

In all these cases the evaluation of IN is performed as described in the previous paragraph via index lookups into the

materialized subquery. In all remaining cases when NULL cannot be substituted with FALSE, it is not possible to use index

lookups. This is not a limitation in the server, but a consequence of the NULL semantics in the ANSI SQL standard.

Suppose an IN predicate is evaluated as

NULL IN (select

not_null_col from t1)

, that is, the left operand of IN is a NULL value, and there are no NULLs in the subquery. In this case the value of IN is

neither FALSE, nor TRUE. Instead it is NULL. If we were to perform an index lookup with the NULL as a key, such a value

would not be found in not_null_col, and the IN predicate would incorrectly produce a FALSE.

In general, an NULL value on either side of an IN acts as a "wildcard" that matches any value, and if a match exists, the

result of IN is NULL. Consider the following example:

If the left argument of IN is the row: (7, NULL, 9)

, and the result of the right subquery operand of IN is the table:

(7, 8, 10)

(6, NULL, NULL)

(7, 11, 9)

The the IN predicate matches the row (7, 11, 9)

, and the result of IN is NULL. Matches where the differing values on either side of the IN arguments are matched by a

NULL in the other IN argument, are called partial matches.

In order to efficiently compute the result of an IN predicate in the presence of NULLs, MariaDB implements two special

algorithms for partial matching, described here in detail .

Rowid-merge partial matching

This technique is used when the number of rows in the subquery result is above a certain limit. The technique creates

special indexes on some of the columns of the temporary table, and merges them by alternative scanning of each

index thus performing an operation similar to set-intersection.

Table scan partial matching

This algorithm is used for very small tables when the overhead of the rowid-merge algorithm is not justifiable. Then

the server simply scans the materialized subquery, and checks for partial matches. Since this strategy doesn't need

any in-memory buffers, it is also used when there is not enough memory to hold the indexes of the rowid-merge

strategy.

Limitations

In principle the subquery materialization strategy is universal, however, due to some technical limitations in the MariaDB

server, there are few cases when the server cannot apply this optimization.

BLOB fields

Either the left operand of an IN predicate refers to a BLOB field, or the subquery selects one or more BLOBs.

Incomparable fields

TODO

In the above cases, the server reverts to the IN-TO-EXISTS transformation.

2532/4161

http://askmonty.org/worklog/Server-Sprint/?tid=68

The IN-TO-EXISTS transformation
This optimization is the only subquery execution strategy that existed in older versions of MariaDB and MySQL prior to

MariaDB 5.3. We have made various changes and fixed a number of bugs in this code as well, but in essence it remains the

same.

Performance discussion

Example speedup over MySQL 5.x and MariaDB 5.1/5.2

Depending on the query and data, either of the two strategies described here may result in orders of magnitude

better/worse plan than the other strategy.

Older versions of MariaDB and any current MySQL version (including MySQL 5.5, and MySQL 5.6 DMR as of July 2011)

implement only the IN-TO-EXISTS transformation. As illustrated below, this strategy is inferior in many common cases to

subquery materialization.

Consider the following query over the data of the DBT3 benchmark scale 10. Find customers with top balance in their

nations:

SELECT * FROM part

WHERE p_partkey IN

 (SELECT l_partkey FROM lineitem

 WHERE l_shipdate between '1997-01-01' and '1997-02-01')

ORDER BY p_retailprice DESC LIMIT 10;

The times to run this query is as follows:

Execution time in MariaDB 5.2/MySQL 5.x (any MySQL): > 1 h

The query takes more than one hour (we didn't wait longer), which makes it impractical to use subqueries in such

cases. The EXPLAIN below shows that the subquery was transformed into a correlated one, which indicates an IN-

TO-EXISTS transformation.

+--+------------------+--------+--------------+-------------------+----+------+--------------

-------------+

|id|select_type |table |type |key |ref |rows |Extra

|

+--+------------------+--------+--------------+-------------------+----+------+--------------

-------------+

| 1|PRIMARY |part |ALL |NULL |NULL|199755|Using where;

Using filesort|

| 2|DEPENDENT SUBQUERY|lineitem|index_subquery|i_l_suppkey_partkey|func| 14|Using where

|

+--+------------------+--------+--------------+-------------------+----+------+--------------

-------------+

Execution time in MariaDB 5.3: 43 sec

In MariaDB 5.3 it takes less than a minute to run the same query. The EXPLAIN shows that the subquery remains

uncorrelated, which is an indication that it is being executed via subquery materialization.

+--+------------+-----------+------+------------------+----+------+-------------------------------+

|id|select_type |table |type |key |ref |rows |Extra |

+--+------------+-----------+------+------------------+----+------+-------------------------------+

| 1|PRIMARY |part |ALL |NULL |NULL|199755|Using temporary; Using filesort|

| 1|PRIMARY |<subquery2>|eq_ref|distinct_key |func| 1| |

| 2|MATERIALIZED|lineitem |range |l_shipdate_partkey|NULL|160060|Using where; Using index |

+--+------------+-----------+------+------------------+----+------+-------------------------------+

The speedup here is practically infinite, because both MySQL and older MariaDB versions cannot complete the query in any

reasonable time.

In order to show the benefits of partial matching we extended the customer table from the DBT3 benchmark with two extra

columns:

c_pref_nationkey - preferred nation to buy from,

c_pref_brand - preferred brand.

Both columns are prefixed with the percent NULL values in the column, that is, c_pref_nationkey_05 contains 5% NULL

2533/4161

values.

Consider the query "Find all customers that didn't buy from a preferred country, and from a preferred brand withing some

date ranges":

SELECT count(*)

FROM customer

WHERE (c_custkey, c_pref_nationkey_05, c_pref_brand_05) NOT IN

 (SELECT o_custkey, s_nationkey, p_brand

 FROM orders, supplier, part, lineitem

 WHERE l_orderkey = o_orderkey and

 l_suppkey = s_suppkey and

 l_partkey = p_partkey and

 p_retailprice < 1200 and

 l_shipdate >= '1996-04-01' and l_shipdate < '1996-04-05' and

 o_orderdate >= '1996-04-01' and o_orderdate < '1996-04-05');

Execution time in MariaDB 5.2/MySQL 5.x (any MySQL): 40 sec

Execution time in MariaDB 5.3: 2 sec

The speedup for this query is 20 times.

Performance guidelines

TODO

Optimizer control
In certain cases it may be necessary to override the choice of the optimizer. Typically this is needed for benchmarking or

testing purposes, or to mimic the behavior of an older version of the server, or if the optimizer made a poor choice.

All the above strategies can be controlled via the following switches in optimizer_switch system variable.

materialization=on/off

In some very special cases, even if materialization was forced, the optimizer may still revert to the IN-TO-EXISTS

strategy if materialization is not applicable. In the cases when materialization requres partial matching (because of the

presense of NULL values), there are two subordinate switches that control the two partial matching strategies:

partial_match_rowid_merge=on/off

This switch controls the Rowid-merge strategy. In addition to this switch, the system variable

rowid_merge_buff_size controls the maximum memory available to the Rowid-merge strategy.

partial_match_table_scan=on/off

Controls the alternative partial match strategy that performs matching via a table scan.

in_to_exists=on/off

This switch controls the IN-TO-EXISTS transformation.

tmp_table_size and max_heap_table_size system variables

The tmp_table_size system variable sets the upper limit for internal MEMORY temporary tables. If an internal

temporary table exceeds this size, it is converted automatically into a Aria or MyISAM table on disk with a B-tree

index. Notice however, that a MEMORY table cannot be larger than max_heap_table_size.

The two main optimizer switches - materialization and in_to_exists cannot be simultaneously off. If both are set to off, the

server will issue an error.

3.3.4.2.5 Subquery Cache
Contents
1. Administration

2. Visibility

3. Implementation

4. Performance Impact

1. Example 1

2. Example 2

3. Example 3

4. Example 4

The goal of the subquery cache is to optimize the evaluation of correlated subqueries by storing results together with

correlation parameters in a cache and avoiding re-execution of the subquery in cases where the result is already in the

cache.

2534/4161

Administration
The cache is on by default. One can switch it off using the optimizer_switch subquery_cache setting, like so:

SET optimizer_switch='subquery_cache=off';

The efficiency of the subquery cache is visible in 2 statistical variables:

Subquery_cache_hit - Global counter for all subquery cache hits.

Subquery_cache_miss - Global counter for all subquery cache misses.

The session variables tmp_table_size and max_heap_table_size influence the size of in-memory temporary tables in the

table used for caching. It cannot grow more than the minimum of the above variables values (see the Implementation

section for details).

Visibility
Your usage of the cache is visible in EXTENDED EXPLAIN output (warnings) as "<expr_cache><//list of

parameters//>(//cached expression//)" . For example:

EXPLAIN EXTENDED SELECT * FROM t1 WHERE a IN (SELECT b FROM t2);

+----+--------------------+-------+------+---------------+------+---------+------+------+----

------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

filtered | Extra |

+----+--------------------+-------+------+---------------+------+---------+------+------+----

------+-------------+

| 1 | PRIMARY | t1 | ALL | NULL | NULL | NULL | NULL | 2 |

100.00 | Using where |

| 2 | DEPENDENT SUBQUERY | t2 | ALL | NULL | NULL | NULL | NULL | 2 |

100.00 | Using where |

+----+--------------------+-------+------+---------------+------+---------+------+------+----

------+-------------+

2 rows in set, 1 warning (0.00 sec)

SHOW WARNINGS;

+-------+------+---

----------------------------------+

| Level | Code | Message

|

+-------+------+---

----------------------------------+

| Note | 1003 | SELECT `test`.`t1`.`a` AS `a` from `test`.`t1` WHERE <expr_cache>

<`test`.`t1`.`a`>(<in_optimizer>(`test`.`t1`.`a`,<exists>(SELECT 1 FROM `test`.`t2` WHERE

(<cache>(`test`.`t1`.`a`) = `test`.`t2`.`b`)))) |

+-------+------+---

----------------------------------+

1 row in set (0.00 sec)

In the example above the presence of "<expr_cache><`test`.`t1`.`a`>(...)" is how you know you are using the

subquery cache.

Implementation
Every subquery cache creates a temporary table where the results and all parameters are stored. It has a unique index over

all parameters. First the cache is created in a MEMORY table (if doing this is impossible the cache becomes disabled for

that expression). When the table grows up to the minimum of tmp_table_size and max_heap_table_size , the hit rate

will be checked:

if the hit rate is really small (<0.2) the cache will be disabled.

if the hit rate is moderate (<0.7) the table will be cleaned (all records deleted) to keep the table in memory

if the hit rate is high the table will be converted to a disk table (for 5.3.0 it can only be converted to a disk table).

hit rate = hit / (hit + miss)

2535/4161

Performance Impact
Here are some examples that show the performance impact of the subquery cache (these tests were made on a 2.53 GHz

Intel Core 2 Duo MacBook Pro with dbt-3 scale 1 data set).

example cache on cache off gain hit miss hit rate

1 1.01sec 1 hour 31 min 43.33sec 5445x 149975 25 99.98%

2 0.21sec 1.41sec 6.71x 6285 220 96.6%

3 2.54sec 2.55sec 1.00044x 151 461 24.67%

4 1.87sec 1.95sec 0.96x 0 23026 0%

Example 1

Dataset from DBT-3 benchmark, a query to find customers with balance near top in their nation:

select count(*) from customer

where

 c_acctbal > 0.8 * (select max(c_acctbal)

 from customer C

 where C.c_nationkey=customer.c_nationkey

 group by c_nationkey);

Example 2

DBT-3 benchmark, Query #17

select sum(l_extendedprice) / 7.0 as avg_yearly

from lineitem, part

where

 p_partkey = l_partkey and

 p_brand = 'Brand#42' and p_container = 'JUMBO BAG' and

 l_quantity < (select 0.2 * avg(l_quantity) from lineitem

 where l_partkey = p_partkey);

Example 3

DBT-3 benchmark, Query #2

select

 s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment

from

 part, supplier, partsupp, nation, region

where

 p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 33

 and p_type like '%STEEL' and s_nationkey = n_nationkey

 and n_regionkey = r_regionkey and r_name = 'MIDDLE EAST'

 and ps_supplycost = (

 select

 min(ps_supplycost)

 from

 partsupp, supplier, nation, region

 where

 p_partkey = ps_partkey and s_suppkey = ps_suppkey

 and s_nationkey = n_nationkey and n_regionkey = r_regionkey

 and r_name = 'MIDDLE EAST'

)

order by

 s_acctbal desc, n_name, s_name, p_partkey;

Example 4

DBT-3 benchmark, Query #20

2536/4161

select

 s_name, s_address

from

 supplier, nation

where

 s_suppkey in (

 select

 distinct (ps_suppkey)

 from

 partsupp, part

 where

 ps_partkey=p_partkey

 and p_name like 'indian%'

 and ps_availqty > (

 select

 0.5 * sum(l_quantity)

 from

 lineitem

 where

 l_partkey = ps_partkey

 and l_suppkey = ps_suppkey

 and l_shipdate >= '1995-01-01'

 and l_shipdate < date_ADD('1995-01-01',interval 1 year)

)

)

 and s_nationkey = n_nationkey and n_name = 'JAPAN'

order by

 s_name;

3.3.4.2.6 Condition Pushdown Into IN
subqueries
This article describes Condition Pushdown into IN subqueries as implemented in MDEV-12387 .

optimizer_switch flag name: condition_pushdown_for_subquery .

3.3.4.2.7 Conversion of Big IN Predicates Into
Subqueries
Starting from MariaDB 10.3, the optimizer converts certain big IN predicates into IN subqueries.

That is, an IN predicate in the form

column [NOT] IN (const1, const2,)

is converted into an equivalent IN-subquery:

column [NOT] IN (select ... from temporary_table)

which opens new opportunities for the query optimizer.

The conversion happens if the following conditions are met:

the IN list has more than 1000 elements (One can control it through the in_predicate_conversion_threshold

parameter).

the [NOT] IN condition is at the top level of the WHERE/ON clause.

Controlling the Optimization
The optimization is on by default. MariaDB 10.3.18 (and debug builds prior to that) introduced the

in_predicate_conversion_threshold variable. Set to 0 to disable the optimization.

Benefits of the Optimization

2537/4161

https://jira.mariadb.org/browse/MDEV-12387
https://mariadb.com/kb/en/mariadb-10318-release-notes/

If column is a key-prefix, MariaDB optimizer will process the condition

column [NOT] IN (const1, const2,)

by trying to construct a range access. If the list is large, the analysis may take a lot of memory and CPU time. The problem

gets worse when column is a part of a multi-column index and the query has conditions on other parts of the index.

Conversion of IN predicates into a subqueries bypass the range analysis, which means the query optimization phase will

use less CPU and memory.

Possible disadvantages of the conversion are are:

The optimization may convert 'IN LIST elements' key accesses to a table scan (if there is no other usable index for

the table)

The estimates for the number of rows matching the IN (...) are less precise.

3.3.4.2.8 EXISTS-to-IN Optimization
Contents
1. Trivially-correlated EXISTS subqueries

2. Semi-join EXISTS subqueries

3. Handling of NULL values

4. Control

5. Limitations

MySQL (including MySQL 5.6) has only one execution strategy for EXISTS subqueries. The strategy is essentially the

straightforward, "naive" execution, without any rewrites.

MariaDB 5.3 introduced a rich set of optimizations for IN subqueries. Since then, it makes sense to convert an EXISTS

subquery into an IN so that the new optimizations can be used.

EXISTS will be converted into IN in two cases:

1. Trivially correlated EXISTS subqueries

2. Semi-join EXISTS

We will now describe these two cases in detail

Trivially-correlated EXISTS subqueries
Often, EXISTS subquery is correlated, but the correlation is trivial. The subquery has form

EXISTS (SELECT ... FROM ... WHERE outer_col= inner_col AND inner_where)

and "outer_col" is the only place where the subquery refers to outside fields. In this case, the subquery can be re-written into

uncorrelated IN:

outer_col IN (SELECT inner_col FROM ... WHERE inner_where)

(NULL values require some special handling, see below). For uncorrelated IN subqueries, MariaDB is able a cost-based

choice between two execution strategies:

IN-to-EXISTS (basically, convert back into EXISTS)

Materialization

That is, converting trivially-correlated EXISTS into uncorrelated IN gives query optimizer an option to use Materialization

strategy for the subquery.

Currently, EXISTS->IN conversion works only for subqueries that are at top level of the WHERE clause, or are under NOT

operation which is directly at top level of the WHERE clause.

Semi-join EXISTS subqueries
If EXISTS subquery is an AND-part of the WHERE clause:

SELECT ... FROM outer_tables WHERE EXISTS (SELECT ...) AND ...

2538/4161

then it satisfies the main property of semi-join subqueries:

with semi-join subquery, we're only interested in records of outer_tables that have matches in the subquery

Semi-join optimizer offers a rich set of execution strategies for both correlated and uncorrelated subqueries. The set

includes FirstMatch strategy which is an equivalent of how EXISTS suqueries are executed, so we do not lose any

opportunities when converting an EXISTS subquery into a semi-join.

In theory, it makes sense to convert all kinds of EXISTS subqueries: convert both correlated and uncorrelated ones, convert

irrespectively of whether the subquery has inner=outer equality.

In practice, the subquery will be converted only if it has inner=outer equality. Both correlated and uncorrelated subqueries

are converted.

Handling of NULL values
TODO: rephrase this:

IN has complicated NULL-semantics. NOT EXISTS doesn't.

EXISTS-to-IN adds IS NOT NULL before the subquery predicate, when required

Control
The optimization is controlled by the exists_to_in flag in optimizer_switch. Before MariaDB 10.0.12 , the optimization

was OFF by default. Since MariaDB 10.0.12 , it has been ON by default.

Limitations
EXISTS-to-IN doesn't handle

subqueries that have GROUP BY, aggregate functions, or HAVING clause

subqueries are UNIONs

a number of degenerate edge cases

3.3.4.2.9 Optimizing GROUP BY and DISTINCT
Clauses in Subqueries
A DISTINCT clause and a GROUP BY without a corresponding HAVING clause have no meaning in

IN/ALL/ANY/SOME/EXISTS subqueries. The reason is that IN/ALL/ANY/SOME/EXISTS only check if an outer row satisfies

some condition with respect to all or any row in the subquery result. Therefore is doesn't matter if the subquery has

duplicate result rows or not - if some condition is true for some row of the subquery, this condition will be true for all

duplicates of this row. Notice that GROUP BY without a corresponding HAVING clause is equivalent to a DISTINCT.

MariaDB 5.3 and later versions automatically remove DISTINCT and GROUP BY without HAVING if these clauses appear

in an IN/ALL/ANY/SOME/EXISTS subquery. For instance:

select * from t1

where t1.a > ALL(select distinct b from t2 where t2.c > 100)

is transformed to:

select * from t1

where t1.a > ALL(select b from t2 where t2.c > 100)

Removing these unnecessary clauses allows the optimizer to find more efficient query plans because it doesn't need to take

care of post-processing the subquery result to satisfy DISTINCT / GROUP BY.

3.3.4.3 Optimization Strategies
Various optimization strategies used by the query optimizer.

DuplicateWeedout Strategy

DuplicateWeedout is an execution strategy for Semi-join subqueries.

2539/4161

https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-10012-release-notes/

FirstMatch Strategy

FirstMatch is an execution strategy for Semi-join subqueries

LooseScan Strategy

LooseScan is an execution strategy for Semi-join subqueries

Semi-join Materialization Strategy

Semi-join Materialization is a subquery materialization used for Semi-join subqueries.

Improvements to ORDER BY Optimization

Several Improvements to the ORDER BY Optimizer in Version 10.1 of MariaDB.

3.3.4.3.1 DuplicateWeedout Strategy
DuplicateWeedout is an execution strategy for Semi-join subqueries.

Contents
1. The idea

2. DuplicateWeedout in action

3. Factsheet

The idea
The idea is to run the semi-join (a query with uses WHERE X IN (SELECT Y FROM ...)) as if it were a regular inner join,

and then eliminate the duplicate record combinations using a temporary table.

Suppose, you have a query where you're looking for countries which have more than 33% percent of their population in one

big city:

select *

from Country

where

 Country.code IN (select City.Country

 from City

 where

 City.Population > 0.33 * Country.Population and

 City.Population > 1*1000*1000);

First, we run a regular inner join between the City and Country tables:

The Inner join produces duplicates. We have Germany three times, because it has three big cities. Now, lets put

DuplicateWeedout into the picture:

Here one can see that a temporary table with a primary key was used to avoid producing multiple records with 'Germany'.

DuplicateWeedout in action
2540/4161

The Start temporary and End temporary from the last diagram are shown in the EXPLAIN output:

explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 0.33 * Country.Population

 and City.Population > 1*1000*1000)\G

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: City

 type: range

possible_keys: Population,Country

 key: Population

 key_len: 4

 ref: NULL

 rows: 238

 Extra: Using index condition; Start temporary

*************************** 2. row ***************************

 id: 1

 select_type: PRIMARY

 table: Country

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 3

 ref: world.City.Country

 rows: 1

 Extra: Using where; End temporary

2 rows in set (0.00 sec)

This query will read 238 rows from the City table, and for each of them will make a primary key lookup in the Country

table, which gives another 238 rows. This gives a total of 476 rows, and you need to add 238 lookups in the temporary table

(which are typically *much* cheaper since the temporary table is in-memory).

If we run the same EXPLAIN in MySQL, we'll get:

explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 0.33 * Country.Population

 and City.Population > 1*1000*1000)\G

*************************** 1. row ***************************

 id: 1

 select_type: PRIMARY

 table: Country

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 239

 Extra: Using where

*************************** 2. row ***************************

 id: 2

 select_type: DEPENDENT SUBQUERY

 table: City

 type: index_subquery

possible_keys: Population,Country

 key: Country

 key_len: 3

 ref: func

 rows: 18

 Extra: Using where

2 rows in set (0.00 sec)

This plan will read (239 + 239*18) = 4541 rows, which is much slower.

Factsheet
DuplicateWeedout is shown as "Start temporary/End temporary" in EXPLAIN .

The strategy can handle correlated subqueries.

But it cannot be applied if the subquery has meaningful GROUP BY and/or aggregate functions.

DuplicateWeedout allows the optimizer to freely mix a subquery's tables and the parent select's tables.

2541/4161

There is no separate @@optimizer_switch flag for DuplicateWeedout . The strategy can be disabled by switching

off all semi-join optimizations with SET @@optimizer_switch='optimizer_semijoin=off' command.

3.3.4.3.2 FirstMatch Strategy
Contents
1. The idea

2. FirstMatch in action

3. Difference between FirstMatch and IN->EXISTS

4. FirstMatch factsheet

FirstMatch is an execution strategy for Semi-join subqueries.

The idea
It is very similar to how IN/EXISTS subqueries were executed in MySQL 5.x.

Let's take the usual example of a search for countries with big cities:

select * from Country

where Country.code IN (select City.Country

 from City

 where City.Population > 1*1000*1000)

 and Country.continent='Europe'

Suppose, our execution plan is to find countries in Europe, and then, for each found country, check if it has any big cities.

Regular inner join execution will look as follows:

Since Germany has two big cities (in this diagram), it will be put into the query output twice. This is not correct, SELECT ...

FROM Country should not produce the same country record twice. The FirstMatch strategy avoids the production of

duplicates by short-cutting execution as soon as the first genuine match is found:

Note that the short-cutting has to take place after "Using where" has been applied. It would have been wrong to short-cut

after we found Trier.

FirstMatch in action
The EXPLAIN for the above query will look as follows:

2542/4161

MariaDB [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 1*1000*1000)

 and Country.continent='Europe';

+----+-------------+---------+------+--------------------+-----------+---------+-------------

-------+------+----------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+---------+------+--------------------+-----------+---------+-------------

-------+------+----------------------------------+

| 1 | PRIMARY | Country | ref | PRIMARY,continent | continent | 17 | const

| 60 | Using index condition |

| 1 | PRIMARY | City | ref | Population,Country | Country | 3 |

world.Country.Code | 18 | Using where; FirstMatch(Country) |

+----+-------------+---------+------+--------------------+-----------+---------+-------------

-------+------+----------------------------------+

2 rows in set (0.00 sec)

FirstMatch(Country) in the Extra column means that as soon as we have produced one matching record combination,

short-cut the execution and jump back to the Country table.

FirstMatch 's query plan is very similar to one you would get in MySQL:

MySQL [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 1*1000*1000)

 and Country.continent='Europe';

+----+--------------------+---------+----------------+--------------------+-----------+------

---+-------+------+------------------------------------+

| id | select_type | table | type | possible_keys | key |

key_len | ref | rows | Extra |

+----+--------------------+---------+----------------+--------------------+-----------+------

---+-------+------+------------------------------------+

| 1 | PRIMARY | Country | ref | continent | continent | 17

| const | 60 | Using index condition; Using where |

| 2 | DEPENDENT SUBQUERY | City | index_subquery | Population,Country | Country | 3

| func | 18 | Using where |

+----+--------------------+---------+----------------+--------------------+-----------+------

---+-------+------+------------------------------------+

2 rows in set (0.01 sec)

and these two particular query plans will execute in the same time.

Difference between FirstMatch and IN->EXISTS
The general idea behind the FirstMatch strategy is the same as the one behind the IN->EXISTS transformation,

however, FirstMatch has several advantages:

Equality propagation works across semi-join bounds, but not subquery bounds. Therefore, converting a subquery to

semi-join and using FirstMatch can still give a better execution plan. (TODO example)

There is only one way to apply the IN->EXISTS strategy and MySQL will do it unconditionally. With FirstMatch ,

the optimizer can make a choice between whether it should run the FirstMatch strategy as soon as all tables used

in the subquery are in the join prefix, or at some later point in time. (TODO: example)

FirstMatch factsheet
The FirstMatch strategy works by executing the subquery and short-cutting its execution as soon as the first match

is found.

This means, subquery tables must be after all of the parent select's tables that are referred from the subquery

predicate.

EXPLAIN shows FirstMatch as " FirstMatch(tableN) ".

The strategy can handle correlated subqueries.

But it cannot be applied if the subquery has meaningful GROUP BY and/or aggregate functions.

Use of the FirstMatch strategy is controlled with the firstmatch=on|off flag in the optimizer_switch variable.

3.3.4.3.3 LooseScan Strategy
2543/4161

LooseScan is an execution strategy for Semi-join subqueries.

Contents
1. The idea

2. LooseScan in action

3. Factsheet

The idea
We will demonstrate the LooseScan strategy by example. Suppose, we're looking for countries that have satellites. We can

get them using the following query (for the sake of simplicity we ignore satellites that are owned by consortiums of multiple

countries):

select * from Country

where

 Country.code in (select country_code from Satellite)

Suppose, there is an index on Satellite.country_code . If we use that index, we will get satellites in the order of their

owner country:

The LooseScan strategy doesn't really need ordering, what it needs is grouping. In the above figure, satellites are grouped

by country. For instance, all satellites owned by Australia come together, without being mixed with satellites of other

countries. This makes it easy to select just one satellite from each group, which you can join with its country and get a list of

countries without duplicates:

LooseScan in action
The EXPLAIN output for the above query looks as follows:

2544/4161

MariaDB [world]> explain select * from Country where Country.code in

 (select country_code from Satellite);

+----+-------------+-----------+--------+---------------+--------------+---------+-----------

-------------------+------+-------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+-----------+--------+---------------+--------------+---------+-----------

-------------------+------+-------------------------------------+

| 1 | PRIMARY | Satellite | index | country_code | country_code | 9 | NULL

| 932 | Using where; Using index; LooseScan |

| 1 | PRIMARY | Country | eq_ref | PRIMARY | PRIMARY | 3 |

world.Satellite.country_code | 1 | Using index condition |

+----+-------------+-----------+--------+---------------+--------------+---------+-----------

-------------------+------+-------------------------------------+

Factsheet
LooseScan avoids the production of duplicate record combinations by putting the subquery table first and using its

index to select one record from multiple duplicates

Hence, in order for LooseScan to be applicable, the subquery should look like:

expr IN (SELECT tbl.keypart1 FROM tbl ...)

or

expr IN (SELECT tbl.keypart2 FROM tbl WHERE tbl.keypart1=const AND ...)

LooseScan can handle correlated subqueries

LooseScan can be switched off by setting the loosescan=off flag in the optimizer_switch variable.

3.3.4.3.4 Semi-join Materialization Strategy
Contents
1. The idea

2. Semi-join materialization in action

1. Materialization-Scan

2. Materialization-Lookup

3. Subqueries with grouping

4. Factsheet

Semi-join Materialization is a special kind of subquery materialization used for Semi-join subqueries. It actually includes two

strategies:

Materialization/lookup

Materialization/scan

The idea
Consider a query that finds countries in Europe which have big cities:

select * from Country

where Country.code IN (select City.Country

 from City

 where City.Population > 7*1000*1000)

 and Country.continent='Europe'

The subquery is uncorrelated, that is, we can run it independently of the upper query. The idea of semi-join materialization is

to do just that, and fill a temporary table with possible values of the City.country field of big cities, and then do a join with

countries in Europe:

2545/4161

The join can be done in two directions:

1. From the materialized table to countries in Europe

2. From countries in Europe to the materialized table

The first way involves doing a full scan on the materialized table, so we call it "Materialization-scan".

If you run a join from Countries to the materialized table, the cheapest way to find a match in the materialized table is to

make a lookup on its primary key (it has one: we used it to remove duplicates). Because of that, we call the strategy

"Materialization-lookup".

Semi-join materialization in action

Materialization-Scan

If we chose to look for cities with a population greater than 7 million, the optimizer will use Materialization-Scan and

EXPLAIN will show this:

MariaDB [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 7*1000*1000);

+----+--------------+-------------+--------+--------------------+------------+---------+-----

---------------+------+-----------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+--------------+-------------+--------+--------------------+------------+---------+-----

---------------+------+-----------------------+

| 1 | PRIMARY | <subquery2> | ALL | distinct_key | NULL | NULL | NULL

| 15 | |

| 1 | PRIMARY | Country | eq_ref | PRIMARY | PRIMARY | 3 |

world.City.Country | 1 | |

| 2 | MATERIALIZED | City | range | Population,Country | Population | 4 | NULL

| 15 | Using index condition |

+----+--------------+-------------+--------+--------------------+------------+---------+-----

---------------+------+-----------------------+

3 rows in set (0.01 sec)

Here, you can see:

There are still two SELECT s (look for columns with id=1 and id=2)

The second select (with id=2) has select_type=MATERIALIZED . This means it will be executed and its results will

be stored in a temporary table with a unique key over all columns. The unique key is there to prevent the table from

containing any duplicate records.

The first select received the table name <subquery2> . This is the table that we got as a result of the

materialization of the select with id=2 .

The optimizer chose to do a full scan over the materialized table, so this is an example of a use of the Materialization-Scan

strategy.

As for execution costs, we're going to read 15 rows from table City, write 15 rows to materialized table, read them back (the

optimizer assumes there won't be any duplicates), and then do 15 eq_ref accesses to table Country. In total, we'll do 45

reads and 15 writes.

By comparison, if you run the EXPLAIN in MySQL, you'll get this:

2546/4161

MySQL [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 7*1000*1000);

+----+--------------------+---------+-------+--------------------+------------+---------+----

--+------+------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+--------------------+---------+-------+--------------------+------------+---------+----

--+------+------------------------------------+

| 1 | PRIMARY | Country | ALL | NULL | NULL | NULL | NULL

| 239 | Using where |

| 2 | DEPENDENT SUBQUERY | City | range | Population,Country | Population | 4 | NULL

| 15 | Using index condition; Using where |

+----+--------------------+---------+-------+--------------------+------------+---------+----

--+------+------------------------------------+

...which is a plan to do (239 + 239*15) = 3824 table reads.

Materialization-Lookup

Let's modify the query slightly and look for countries which have cities with a population over one millon (instead of seven):

MariaDB [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 1*1000*1000) ;

+----+--------------+-------------+--------+--------------------+--------------+---------+---

---+------+-----------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+--------------+-------------+--------+--------------------+--------------+---------+---

---+------+-----------------------+

| 1 | PRIMARY | Country | ALL | PRIMARY | NULL | NULL |

NULL | 239 | |

| 1 | PRIMARY | <subquery2> | eq_ref | distinct_key | distinct_key | 3 |

func | 1 | |

| 2 | MATERIALIZED | City | range | Population,Country | Population | 4 |

NULL | 238 | Using index condition |

+----+--------------+-------------+--------+--------------------+--------------+---------+---

---+------+-----------------------+

3 rows in set (0.00 sec)

The EXPLAIN output is similar to the one which used Materialization-scan, except that:

the <subquery2> table is accessed with the eq_ref access method

the access uses an index named distinct_key

This means that the optimizer is planning to do index lookups into the materialized table. In other words, we're going to use

the Materialization-lookup strategy.

In MySQL (or with optimizer_switch='semijoin=off,materialization=off'), one will get this EXPLAIN :

MySQL [world]> explain select * from Country where Country.code IN

 (select City.Country from City where City.Population > 1*1000*1000) ;

+----+--------------------+---------+----------------+--------------------+---------+--------

-+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len

| ref | rows | Extra |

+----+--------------------+---------+----------------+--------------------+---------+--------

-+------+------+-------------+

| 1 | PRIMARY | Country | ALL | NULL | NULL | NULL

| NULL | 239 | Using where |

| 2 | DEPENDENT SUBQUERY | City | index_subquery | Population,Country | Country | 3 |

func | 18 | Using where |

+----+--------------------+---------+----------------+--------------------+---------+--------

-+------+------+-------------+

One can see that both plans will do a full scan on the Country table. For the second step, MariaDB will fill the materialized

table (238 rows read from table City and written to the temporary table) and then do a unique key lookup for each record in

table Country , which works out to 238 unique key lookups. In total, the second step will cost (239+238) = 477 reads

and 238 temp.table writes.

MySQL's plan for the second step is to read 18 rows using an index on City.Country for each record it receives for table

2547/4161

Country . This works out to a cost of (18*239) = 4302 reads. Had there been fewer subquery invocations, this plan

would have been better than the one with Materialization. By the way, MariaDB has an option to use such a query plan, too

(see FirstMatch Strategy), but it did not choose it.

Subqueries with grouping
MariaDB is able to use Semi-join materialization strategy when the subquery has grouping (other semi-join strategies are not

applicable in this case).

This allows for efficient execution of queries that search for the best/last element in a certain group.

For example, let's find cities that have the biggest population on their continent:

explain

select * from City

where City.Population in (select max(City.Population) from City, Country

 where City.Country=Country.Code

 group by Continent)

+------+--------------+-------------+------+---------------+------------+---------+----------

------------------------+------+-----------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+------+--------------+-------------+------+---------------+------------+---------+----------

------------------------+------+-----------------+

| 1 | PRIMARY | <subquery2> | ALL | distinct_key | NULL | NULL | NULL

| 239 | |

| 1 | PRIMARY | City | ref | Population | Population | 4 |

<subquery2>.max(City.Population) | 1 | |

| 2 | MATERIALIZED | Country | ALL | PRIMARY | NULL | NULL | NULL

| 239 | Using temporary |

| 2 | MATERIALIZED | City | ref | Country | Country | 3 |

world.Country.Code | 18 | |

+------+--------------+-------------+------+---------------+------------+---------+----------

------------------------+------+-----------------+

4 rows in set (0.00 sec)

the cities are:

+------+-------------------+---------+------------+

| ID | Name | Country | Population |

+------+-------------------+---------+------------+

| 1024 | Mumbai (Bombay) | IND | 10500000 |

| 3580 | Moscow | RUS | 8389200 |

| 2454 | Macao | MAC | 437500 |

| 608 | Cairo | EGY | 6789479 |

| 2515 | Ciudad de México | MEX | 8591309 |

| 206 | São Paulo | BRA | 9968485 |

| 130 | Sydney | AUS | 3276207 |

+------+-------------------+---------+------------+

Factsheet
Semi-join materialization

Can be used for uncorrelated IN-subqueries. The subselect may use grouping and/or aggregate functions.

Is shown in EXPLAIN as type=MATERIALIZED for the subquery, and a line with table=<subqueryN> in the

parent subquery.

Is enabled when one has both materialization=on and semijoin=on in the optimizer_switch variable.

The materialization=on|off flag is shared with Non-semijoin materialization.

3.3.4.3.5 Improvements to ORDER BY
Optimization

MariaDB 10.1 includes several improvements to the ORDER BY optimizer.

MariaDB starting with 10.1

2548/4161

The fixes were made as a response to complaints by MariaDB customers, so they fix real-world optimization problems. The

fixes are a bit hard to describe (as the ORDER BY optimizer is complicated), but here's a short description:

The ORDER BY optimizer in MariaDB 10.1:

Doesn9t make stupid choices when several multi-part keys and potential range accesses are present (MDEV-6402).

This also fixes MySQL Bug#12113 .

Always uses <range= and (not full <index= scan) when it switches to an index to satisfy ORDER BY & LIMIT (MDEV-

6657).

Tries hard to be smart and use cost/number of records estimates from other parts of the optimizer (MDEV-6384 ,

MDEV-465).

This change also fixes MySQL Bug#36817 .

Takes full advantage of InnoDB9s Extended Keys feature when checking if filesort() can be skipped (MDEV-6796).

Extra optimizations
Starting from MariaDB 10.1.15

The ORDER BY optimizer takes multiple-equalities into account (MDEV-8989). This optimization is not enabled by

default in MariaDB 10.1. You need to explicitly switch it ON by setting the optimizer_switch system variable, as

follows:

optimizer_switch='orderby_uses_equalities=on'

Setting the switch ON is considered safe. It is off by default in MariaDB 10.1 in order to avoid changing query plans in a

stable release. It is on by default from MariaDB 10.2

Comparison with MySQL 5.7
In MySQL 5.7 changelog , one can find this passage:

Make switching of index due to small limit cost-based (WL#6986) : We have made the decision in make_join_select()

of whether to switch to a new index in order to support "ORDER BY ... LIMIT N" cost-based. This work fixes

Bug#73837.

MariaDB is not using Oracle's fix (we believe make_join_select is not the right place to do ORDER BY optimization), but

the effect is the same: this case is covered by MariaDB 10.1's optimizer.

3.3.4.4 Optimizations for Derived Tables
Derived tables are subqueries in the FROM clause. Prior to MariaDB 5.3/MySQL 5.6, they were too slow to be usable. In

MariaDB 5.3/MySQL 5.6, there are two optimizations which provide adequate performance:

Condition Pushdown into Derived Table Optimization

If a query uses a derived table (or a view), the first action that the que...

Derived Table Merge Optimization

MariaDB 5.3 introduced the derived table merge optimization.

Derived Table with Key Optimization

Since MariaDB 5.3, the optimizer can create an index and use it for joins with other tables.

Lateral Derived Optimization

Lateral Derived optimization, also referred to as "Split Grouping Optimization".

3.3.4.4.1 Condition Pushdown into Derived
Table Optimization

Contents
1. Introduction to Condition Pushdown

2. Condition Pushdown Properties

If a query uses a derived table (or a view), the first action that the query optimizer will attempt is to apply the derived-table-

merge-optimization and merge the derived table into its parent select. However, that optimization is only applicable when

2549/4161

https://jira.mariadb.org/browse/MDEV-6402
http://bugs.mysql.com/bug.php?id=12113
https://jira.mariadb.org/browse/MDEV-6657
https://jira.mariadb.org/browse/MDEV-6384
https://jira.mariadb.org/browse/MDEV-465
http://bugs.mysql.com/bug.php?id=36817
https://jira.mariadb.org/browse/MDEV-6796
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://jira.mariadb.org/browse/MDEV-8989
http://mysqlserverteam.com/whats-new-in-mysql-5-7-generally-available/
http://askmonty.org/worklog/?tid=6986

the select inside the derived table has a join as the top-level operation. If it has a GROUP-BY, DISTINCT, or uses window

functions, then derived-table-merge-optimization is not applicable.

In that case, the Condition Pushdown optimization is applicable.

Introduction to Condition Pushdown
Consider an example

create view OCT_TOTALS as

select

 customer_id,

 SUM(amount) as TOTAL_AMT

from orders

where order_date BETWEEN '2017-10-01' and '2017-10-31'

group by customer_id;

select * from OCT_TOTALS where customer_id=1

The naive way to execute the above is to

1. Compute the OCT_TOTALS contents (for all customers).

2. The, select the line with customer_id=1

This is obviously inefficient, if there are 1000 customers, then one will be doing up to 1000 times more work than necessary.

However, the optimizer can take the condition customer_id=1 and push it down into the OCT_TOTALS view.

(TODO: elaborate here)

Condition Pushdown Properties
Condition Pushdown has been available since MariaDB 10.2.

The Jira task for it was MDEV-9197 .

The optimization is enabled by default. One can disable it by setting @@optimizer_switch flag

condition_pushdown_for_derived to OFF.

3.3.4.4.2 Derived Table Merge Optimization
Contents
1. Background

2. Derived table merge in action

3. Factsheet

Background
Users of "big" database systems are used to using FROM subqueries as a way to structure their queries. For example, if

one's first thought was to select cities with population greater than 10,000 people, and then that from these cities to select

those that are located in Germany, one could write this SQL:

SELECT *

FROM

 (SELECT * FROM City WHERE Population > 10*1000) AS big_city

WHERE

 big_city.Country='DEU'

For MySQL, using such syntax was taboo. If you run EXPLAIN for this query, you can see why:

2550/4161

https://jira.mariadb.org/browse/MDEV-9197

mysql> EXPLAIN SELECT * FROM (SELECT * FROM City WHERE Population > 1*1000)

 AS big_city WHERE big_city.Country='DEU' ;

+----+-------------+------------+------+---------------+------+---------+------+------+------

-------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|

+----+-------------+------------+------+---------------+------+---------+------+------+------

-------+

| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 4068 | Using

where |

| 2 | DERIVED | City | ALL | Population | NULL | NULL | NULL | 4079 | Using

where |

+----+-------------+------------+------+---------------+------+---------+------+------+------

-------+

2 rows in set (0.60 sec)

It plans to do the following actions:

From left to right:

1. Execute the subquery: (SELECT * FROM City WHERE Population > 1*1000) , exactly as it was written in the

query.

2. Put result of the subquery into a temporary table.

3. Read back, and apply a WHERE condition from the upper select, big_city.Country='DEU'

Executing a subquery like this is very inefficient, because the highly-selective condition from the parent select,

(Country='DEU') is not used when scanning the base table City . We read too many records from the City table, and

then we have to write them into a temporary table and read them back again, before finally filtering them out.

Derived table merge in action
If one runs this query in MariaDB/MySQL 5.6, they get this:

MariaDB [world]> EXPLAIN SELECT * FROM (SELECT * FROM City WHERE Population > 1*1000)

 AS big_city WHERE big_city.Country='DEU';

+----+-------------+-------+------+--------------------+---------+---------+-------+------+--

----------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

Extra |

+----+-------------+-------+------+--------------------+---------+---------+-------+------+--

----------------------------------+

| 1 | SIMPLE | City | ref | Population,Country | Country | 3 | const | 90 |

Using index condition; Using where |

+----+-------------+-------+------+--------------------+---------+---------+-------+------+--

----------------------------------+

1 row in set (0.00 sec)

From the above, one can see that:

1. The output has only one line. This means that the subquery has been merged into the top-level SELECT .

2. Table City is accessed through an index on the Country column. Apparently, the Country='DEU' condition was

used to construct ref access on the table.

2551/4161

3. The query will read about 90 rows, which is a big improvement over the 4079 row reads plus 4068 temporary table

reads/writes we had before.

Factsheet
Derived tables (subqueries in the FROM clause) can be merged into their parent select when they have no grouping,

aggregates, or ORDER BY ... LIMIT clauses. These requirements are the same as requirements for VIEW s to

allow algorithm=merge .

The optimization is enabled by default. It can be disabled with:

set @@optimizer_switch='derived_merge=OFF'

Versions of MySQL and MariaDB which do not have support for this optimization will execute subqueries even when

running EXPLAIN . This can result in a well-known problem (see e.g. MySQL Bug #44802) of EXPLAIN

statements taking a very long time. Starting from MariaDB 5.3+ and MySQL 5.6+ EXPLAIN commands execute

instantly, regardless of the derived_merge setting.

3.3.4.4.3 Derived Table with Key Optimization
Contents
1. The idea

2. Example

3. Factsheet

The idea
If a derived table cannot be merged into its parent SELECT, it will be materialized in a temporary table, and then parent

select will treat it as a regular base table.

Before MariaDB 5.3/MySQL 5.6, the temporary table would never have any indexes, and the only way to read records from

it would be a full table scan. Starting from the mentioned versions of the server, the optimizer has an option to create an

index and use it for joins with other tables.

Example
Consider a query: we want to find countries in Europe, that have more than one million people living in cities. This is

accomplished with this query:

select *

from

 Country,

 (select

 sum(City.Population) as urban_population,

 City.Country

 from City

 group by City.Country

 having

 urban_population > 1*1000*1000

) as cities_in_country

where

 Country.Code=cities_in_country.Country and Country.Continent='Europe';

The EXPLAIN output for it will show:

2552/4161

http://bugs.mysql.com/bug.php?id=44802

+----+-------------+------------+------+-------------------+-----------+---------+-----------

---------+------+---------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+------------+------+-------------------+-----------+---------+-----------

---------+------+---------------------------------+

| 1 | PRIMARY | Country | ref | PRIMARY,continent | continent | 17 | const

| 60 | Using index condition |

| 1 | PRIMARY | <derived2> | ref | key0 | key0 | 3 |

world.Country.Code | 17 | |

| 2 | DERIVED | City | ALL | NULL | NULL | NULL | NULL

| 4079 | Using temporary; Using filesort |

+----+-------------+------------+------+-------------------+-----------+---------+-----------

---------+------+---------------------------------+

One can see here that

table <derived2> is accessed through key0 .

ref column shows world.Country.Code

if we look that up in the original query, we find the equality that was used to construct ref access:

Country.Code=cities_in_country.Country .

Factsheet
The idea of "derived table with key" optimization is to let the materialized derived table have one key which is used for

joins with other tables.

The optimization is applied then the derived table could not be merged into its parent SELECT

which happens when the derived table doesn't meet criteria for mergeable VIEW

The optimization is ON by default, it can be switched off like so:

set optimizer_switch='derived_with_keys=off'

3.3.4.4.4 Lateral Derived Optimization
Contents
1. Description

2. Controlling the Optimization

3. References

MariaDB supports the Lateral Derived optimization, also referred to as "Split Grouping Optimization" or "Split Materialized

Optimization" in some sources.

Description
The optimization's use case is

The query uses a derived table (or a VIEW, or a non-recursive CTE)

The derived table/View/CTE has a GROUP BY operation as its top-level operation

The query only needs data from a few GROUP BY groups

An example of this: consider a VIEW that computes totals for each customer in October:

create view OCT_TOTALS as

select

 customer_id,

 SUM(amount) as TOTAL_AMT

from orders

where

 order_date BETWEEN '2017-10-01' and '2017-10-31'

group by

 customer_id;

And a query that does a join with the customer table to get October totals for "Customer#1" and Customer#2:

2553/4161

select *

from

 customer, OCT_TOTALS

where

 customer.customer_id=OCT_TOTALS.customer_id and

 customer.customer_name IN ('Customer#1', 'Customer#2')

Before Lateral Derived optimization, MariaDB would execute the query as follows:

1. Materialize the view OCT_TOTALS. This essentially computes OCT_TOTALS for all customers.

2. Join it with table customer.

The EXPLAIN would look like so:

+------+-------------+------------+-------+---------------+-----------+---------+------------

---------------+-------+--------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+------+-------------+------------+-------+---------------+-----------+---------+------------

---------------+-------+--------------------------+

| 1 | PRIMARY | customer | range | PRIMARY,name | name | 103 | NULL

| 2 | Using where; Using index |

| 1 | PRIMARY | <derived2> | ref | key0 | key0 | 4 |

test.customer.customer_id | 36 | |

| 2 | DERIVED | orders | index | NULL | o_cust_id | 4 | NULL

| 36738 | Using where |

+------+-------------+------------+-------+---------------+-----------+---------+------------

---------------+-------+--------------------------+

It is obvious that Step #1 is very inefficient: we compute totals for all customers in the database, while we will only need

them for two customers. (If there are 1000 customers, we are doing 500x more work than needed here)

Lateral Derived optimization addresses this case. It turns the computation of OCT_TOTALS into what SQL Standard refers

to as "LATERAL subquery": a subquery that may have dependencies on the outside tables. This allows pushing the equality

customer.customer_id=OCT_TOTALS.customer_id down into the derived table/view, where it can be used to limit the

computation to compute totals only for the customer of interest.

The query plan will look as follows:

1. Scan table customer and find customer_id for Customer#1 and Customer#2.

2. For each customer_id, compute the October totals, for this specific customer.

The EXPLAIN output will look like so:

+------+-----------------+------------+-------+---------------+-----------+---------+--------

-------------------+------+--------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+------+-----------------+------------+-------+---------------+-----------+---------+--------

-------------------+------+--------------------------+

| 1 | PRIMARY | customer | range | PRIMARY,name | name | 103 | NULL

| 2 | Using where; Using index |

| 1 | PRIMARY | <derived2> | ref | key0 | key0 | 4 |

test.customer.customer_id | 2 | |

| 2 | LATERAL DERIVED | orders | ref | o_cust_id | o_cust_id | 4 |

test.customer.customer_id | 1 | Using where |

+------+-----------------+------------+-------+---------------+-----------+---------+--------

-------------------+------+--------------------------+

Note the line with id=2 : select_type is LATERAL DERIVED . And table customer uses ref access referring to

customer.customer_id , which is normally not allowed for derived tables.

In EXPLAIN FORMAT=JSON output, the optimization is shown like so:

...

 "table": {

 "table_name": "<derived2>",

 "access_type": "ref",

...

 "materialized": {

 "lateral": 1,

2554/4161

Note the "lateral": 1 member.

Controlling the Optimization
Lateral Derived is enabled by default, the optimizer will make a cost-based decision whether the optimization should be

used.

If you need to disable the optimization, it has an optimizer_switch flag. It can be disabled like so:

set optimizer_switch='split_materialized=off'

References
Jira task: https://jira.mariadb.org/browse/MDEV-13369

Commit: https://github.com/MariaDB/server/commit/b14e2b044b

3.3.4.5 Table Elimination
Articles about Table Elimination, the idea that it is sometimes possible to resolve a query without accessing some of the

tables the query refers to.

What is Table Elimination?

Resolving a query without accessing some of the tables that the query refers to.

Table Elimination in MariaDB

Table elimination in the MariaDB optimizer.

Table Elimination User Interface

Table Elimination User Interface and EXPLAIN.

Table Elimination in Other Databases

Table Elimination in SQL Server and Oracle.

Table Elimination External Resources

an example of how to do this in MariaDB

There are 2 related questions .

3.3.4.5.1 What is Table Elimination?
The basic idea behind table elimination is that sometimes it is possible to resolve a query without even accessing some of

the tables that the query refers to. One can invent many kinds of such cases, but in Table Elimination we targeted only a

certain class of SQL constructs that one ends up writing when they are querying highly-normalized data.

The sample queries were drawn from <Anchor Modeling=, a database modeling technique which takes normalization to the

extreme. The slides at the anchor modeling website have an in-depth explanation of Anchor modeling and its merits,

but the part that's important for table elimination can be shown with an example.

Suppose the database stores information about actors, together with their names, birthdays, and ratings, where ratings can

change over time:

According to anchor modeling, each attribute should go into its own table:

the 'anchor' table which only has a synthetic primary key:

2555/4161

https://jira.mariadb.org/browse/MDEV-13369
https://github.com/MariaDB/server/commit/b14e2b044b
https://mariadb.com/kb/en/table-elimination/+questions/
http://www.anchormodeling.com/tiedostot/SU_KTH_Course_Presentation.pdf
http://www.anchormodeling.com

create table ac_anchor(AC_ID int primary key);

a table for the 'name' attribute:

create table ac_name(AC_ID int, ACNAM_name char(N),

 primary key(AC_ID));

a table for the 'birthdate' attribute:

create table ac_dob(AC_ID int,

 ACDOB_birthdate date,

 primary key(AC_ID));

a table for the 8rating9 attribute, which is historized:

create table ac_rating(AC_ID int,

 ACRAT_rating int,

 ACRAT_fromdate date,

 primary key(AC_ID, ACRAT_fromdate));

With this approach it becomes easy to add/change/remove attributes, but this comes at a cost of added complexity in

querying the data: in order to answer the simplest, select-star question of displaying actors and their current ratings one has

to write outer joins:

Display actors, with their names and current ratings:

select

 ac_anchor.AC_ID, ACNAM_Name, ACDOB_birthdate, ACRAT_rating

from

 ac_anchor

 left join ac_name on ac_anchor.AC_ID=ac_name.AC_ID

 left join ac_dob on ac_anchor.AC_ID=ac_dob.AC_ID

 left join ac_rating on (ac_anchor.AC_ID=ac_rating.AC_ID and

 ac_rating.ACRAT_fromdate =

 (select max(sub.ACRAT_fromdate)

 from ac_rating sub where sub.AC_ID = ac_rating.AC_ID))

We don't want to write the joins every time we need to access an actor's properties, so we9ll create a view:

create view actors as

 select ac_anchor.AC_ID, ACNAM_Name, ACDOB_birthdate, ACRAT_rating

 from <see the select above>

This will allow us to access the data as if it was stored in a regular way:

select ACRAT_rating from actors where ACNAM_name='Gary Oldman'

And this is where table elimination will be needed.

3.3.4.5.2 Table Elimination in MariaDB
The first thing the MariaDB optimizer does is to merge the VIEW definition into the query to obtain:

select ACRAT_rating

from

 ac_anchor

 left join ac_name on ac_anchor.AC_ID=ac_name.AC_ID

 left join ac_dob on ac_anchor.AC_ID=ac_dob.AC_ID

 left join ac_rating on (ac_anchor.AC_ID=ac_rating.AC_ID and

 ac_rating.ACRAT_fromdate =

 (select max(sub.ACRAT_fromdate)

 from ac_rating sub where sub.AC_ID = ac_rating.AC_ID))

where

 ACNAM_name='Gary Oldman'

2556/4161

It's important to realize that the obtained query has a useless part:

left join ac_dob on ac_dob.AC_ID=... will produce exactly one matching record:

primary key(ac_dob.AC_ID) guarantees that there will be at most one match for any value of

ac_anchor.AC_ID ,

and if there won't be a match, LEFT JOIN will generate a NULL-complemented <row=

and we don't care what the matching record is, as table ac_dob is not used anywhere else in the query.

This means that the left join ac_dob on ... part can be removed from the query and this is what Table Elimination

module does. The detection logic is rather smart, for example it would be able to remove the left join ac_rating on

... part as well, together with the subquery (in the above example it won't be removed because ac_rating used in the

selection list of the query). The Table Elimination module can also handle nested outer joins and multi-table outer joins.

3.3.4.5.3 Table Elimination User Interface
One can check that table elimination is working by looking at the output of EXPLAIN [EXTENDED] and not finding there the

tables that were eliminated:

explain select ACRAT_rating from actors where ACNAM_name=9Gary Oldman9;

+----+--------------------+-----------+--------+---------------+---------+---------+---------

-------------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+--------------------+-----------+--------+---------------+---------+---------+---------

-------------+------+-------------+

| 1 | PRIMARY | ac_anchor | index | PRIMARY | PRIMARY | 4 | NULL

| 2 | Using index |

| 1 | PRIMARY | ac_name | eq_ref | PRIMARY | PRIMARY | 4 |

test.ac_anchor.AC_ID | 1 | Using where |

| 1 | PRIMARY | ac_rating | ref | PRIMARY | PRIMARY | 4 |

test.ac_anchor.AC_ID | 1 | |

| 3 | DEPENDENT SUBQUERY | sub | ref | PRIMARY | PRIMARY | 4 |

test.ac_rating.AC_ID | 1 | Using index |

+----+--------------------+-----------+--------+---------------+---------+---------+---------

-------------+------+-------------+

Note that ac_dob table is not in the output. Now let's try getting birthdate instead:

explain select ACDOB_birthdate from actors where ACNAM_name=9Gary Oldman9;

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

| 1 | PRIMARY | ac_anchor | index | PRIMARY | PRIMARY | 4 | NULL

| 2 | Using index |

| 1 | PRIMARY | ac_name | eq_ref | PRIMARY | PRIMARY | 4 |

test.ac_anchor.AC_ID | 1 | Using where |

| 1 | PRIMARY | ac_dob | eq_ref | PRIMARY | PRIMARY | 4 |

test.ac_anchor.AC_ID | 1 | |

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

3 rows in set (0.01 sec)

The ac_dob table is there while ac_rating and the subquery are gone. Now, if we just want to check the name of the

actor:

2557/4161

explain select count(*) from actors where ACNAM_name=9Gary Oldman9;

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref

| rows | Extra |

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

| 1 | PRIMARY | ac_anchor | index | PRIMARY | PRIMARY | 4 | NULL

| 2 | Using index |

| 1 | PRIMARY | ac_name | eq_ref | PRIMARY | PRIMARY | 4 |

test.ac_anchor.AC_ID | 1 | Using where |

+----+-------------+-----------+--------+---------------+---------+---------+----------------

------+------+-------------+

2 rows in set (0.01 sec)

In this case it will eliminate both the ac_dob and ac_rating tables.

Removing tables from a query does not make the query slower, and it does not cut off any optimization opportunities, so

table elimination is unconditional and there are no plans on having any kind of query hints for it.

For debugging purposes there is a table_elimination=on|off switch in debug builds of the server.

3.3.4.5.4 Table Elimination in Other Databases
In addition to MariaDB, Table Elimination is found in both Microsoft SQL Server 2005/2008 and Oracle 11g. Of the two,

Microsoft SQL Server 2005/2008 seems to have the most advanced implementation. Oracle 11g has been confirmed to use

table elimination but not to the same extent.

To compare the two, we will look at the following query:

select

 A.colA

from

 tableA A

left outer join

 tableB B

on

 B.id = A.id;

When using A as the left table we ensure that the query will return at least as many rows as there are in that table. For rows

where the join condition (B.id = A.id) is not met the selected column (A.colA) will still contain its original value. The not seen

B.* row would contain all NULL:s.

However, the result set could actually contain more rows than what is found in tableA if there are duplicates of the column

B.id in tableB. If A contains a row [1, "val1"] and B the rows [1, "other1a"],[1, "other1b"] then two rows will match in the join

condition. The only way to know what the result will look like is to actually touch both tables during execution.

Instead, let's say tableB contains rows that make it possible to place a unique constraint on the column B.id, for example,

which is often the case with a primary key. In this situation we know that we will get exactly as many rows as there are in

tableA, since joining with tableB cannot introduce any duplicates. Furthermore, as in the example query, if we do not select

any columns from tableB, touching that table during execution is unnecessary. We can remove the whole join operation

from the execution plan.

Both SQL Server 2005/2008 and Oracle 11g deploy table elimination in the case described above. Let us look at a more

advanced query, where Oracle fails.

2558/4161

select

 A.colA

from

 tableA A

left outer join

 tableB B

on

 B.id = A.id

and

 B.fromDate = (

 select

 max(sub.fromDate)

 from

 tableB sub

 where

 sub.id = A.id

);

In this example we have added another join condition, which ensures that we only pick the matching row from tableB having

the latest fromDate. In this case tableB will contain duplicates of the column B.id, so in order to ensure uniqueness the

primary key has to contain the fromDate column as well. In other words the primary key of tableB is (B.id, B.fromDate).

Furthermore, since the subselect ensures that we only pick the latest B.fromDate for a given B.id we know that at most one

row will match the join condition. We will again have the situation where joining with tableB cannot affect the number of rows

in the result set. Since we do not select any columns from tableB, the whole join operation can be eliminated from the

execution plan.

SQL Server 2005/2008 will deploy table elimination in this situation as well. We have not found a way to make Oracle 11g

use it for this type of query. Queries like these arise in two situations. Either when you have a denormalized model

consisting of a fact table with several related dimension tables, or when you have a highly normalized model where each

attribute is stored in its own table. The example with the subselect is common whenever you store historized/versioned

data.

3.3.4.5.5 Table Elimination External Resources
an example of how to do this in MariaDB

3.3.4.6 Statistics for Optimizing Queries
Different statistics provided by MariaDB to help you optimize your queries

Engine-Independent Table Statistics

Table statistics independent of the storage engine.

Histogram-Based Statistics

Histogram-based statistics can improve the optimizer query plan in certain situations.

Index Statistics

Index statistics and the query optimizer.

InnoDB Persistent Statistics

InnoDB persistent statistics are stored on disk, leading to more consistent query plans.

Slow Query Log Extended Statistics

The slow query log makes extended statistics available.

User Statistics

User Statistics.

1

4

3.3.4.6.1 Engine-Independent Table Statistics

The engine-independent table statistics feature was first implemented in MariaDB 10.0.1 and was first enabled for

queries by default in MariaDB 10.4.

MariaDB starting with 10.4

2559/4161

http://www.anchormodeling.com/?page_id=303
https://mariadb.com/kb/en/mariadb-1001-release-notes/

Contents
1. Introduction

2. Collecting Statistics with the ANALYZE TABLE Statement

1. Collecting Statistics for Specific Columns or Indexes

2. Examples of Statistics Collection

3. Manual Updates to Statistics Tables

Introduction
Before MariaDB 10.0, the MySQL/MariaDB optimizer relied on storage engines (e.g. InnoDB) to provide statistics for the

query optimizer. This approach worked; however it had some deficiencies:

Storage engines provided poor statistics (this was fixed to some degree with the introduction of Persistent Statistics).

The statistics were supplied through the MySQL Storage Engine Interface, which puts a lot of restrictions on what

kind of data is supplied (for example, there is no way to get any data about value distribution in a non-indexed

column)

There was little control of the statistics. There was no way to "pin" current statistic values, or provide some values on

your own, etc.

Engine-independent table statistics lift these limitations.

Statistics are stored in regular tables in the mysql database.

it is possible for a DBA to read and update the values.

More data is collected/used.

Statistics are stored in three tables, mysql.table_stats, mysql.column_stats and mysql.index_stats.

Use or update of data from these tables is controlled by use_stat_tables variable. Possible values are listed below:

Value Meaning

'never' The optimizer doesn't use data from statistics tables. Default for MariaDB 10.4.0 and below.

'complementary'
The optimizer uses data from statistics tables if the same kind of data is not provided by the

storage engine.

'preferably'
Prefer the data from statistics tables, if it's not available there, use the data from the

storage engine.

'complementary_for_queries'
Same as complementary , but for queries only (to avoid needlessly collecting for

ANALYZE TABLE). From MariaDB 10.4.1.

'preferably_for_queries'
Same as preferably , but for queries only (to avoid needlessly collecting for ANALYZE

TABLE). Available and default from MariaDB 10.4.1.

Collecting Statistics with the ANALYZE TABLE Statement
The ANALYZE TABLE statement can be used to collect table statistics. For example:

ANALYZE TABLE table_name;

When the ANALYZE TABLE statement is executed, MariaDB makes a call to the table's storage engine, and the storage

engine collects its own statistics for the table. The specific behavior depends on the storage engine. For InnoDB, see

InnoDB Persistent Statistics for more information.

When the ANALYZE TABLE statement is executed, MariaDB may also collect engine-independent statistics for the table.

The specific behavior depends on the value of the use_stat_tables system variable. Engine-independent statistics will only

be collected by the ANALYZE TABLE statement if one of the following is true:

The use_stat_tables system variable is set to complementary or preferably .

The ANALYZE TABLE statement includes the PERSISTENT FOR clause.

In MariaDB 10.4 and later, the use_stat_tables system variable is set to preferably_for_queries by default. With

this value, engine-independent statistics are used by default, but they are not collected by default. If you want to use

engine-independent statistics with the default configuration, then you will have to collect them by executing the

ANALYZE TABLE statement and by specifying the PERSISTENT FOR clause. It is recommended to collect engine-

independent statistics on as-needed basis, so typically one will not have engine-independent statistics for all indexes/all

columns.

MariaDB starting with 10.4

2560/4161

Engine-independent statistics are collected by doing full table and full index scans, and this process can be quite

expensive.

Collecting Statistics for Specific Columns or Indexes

The syntax for the ANALYZE TABLE statement has been extended with the PERSISTENT FOR clause. This clause allows

one to collect engine-independent statistics only for particular columns or indexes. This clause also allows one to collect

engine-independent statistics, regardless of the value of the use_stat_tables system variable. For example:

ANALYZE TABLE table_name PERSISTENT FOR ALL;

Statistics for columns using the BLOB and TEXT data types are not collected. If a column using one of these types is

explicitly specified, then a warning is returned.

Examples of Statistics Collection

-- update all engine-independent statistics for all columns and indexes

ANALYZE TABLE tbl PERSISTENT FOR ALL;

-- update specific columns and indexes:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS (col1,col2,...) INDEXES (idx1,idx2,...);

-- empty lists are allowed:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS (col1,col2,...) INDEXES ();

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS () INDEXES (idx1,idx2,...);

-- the following will only update mysql.table_stats fields:

ANALYZE TABLE tbl PERSISTENT FOR COLUMNS () INDEXES ();

-- when use_stat_tables is set to 'COMPLEMENTARY' or 'PREFERABLY',

-- a simple ANALYZE TABLE collects engine-independent statistics for all columns and indexes.

SET SESSION use_stat_tables='COMPLEMENTARY';

ANALYZE TABLE tbl;

Manual Updates to Statistics Tables
Statistics are stored in three tables, mysql.table_stats, mysql.column_stats and mysql.index_stats.

It is possible to update statistics tables manually. One should modify the table(s) with regular INSERT/UPDATE/DELETE

statements. Statistics data will be re-read when the tables are re-opened. One way to force all tables to be re-opened is to

issue FLUSH TABLES command.

A few scenarios where one might need to update statistics tables manually:

Deleting the statistics. Currently, the ANALYZE TABLE command will collect the statistics, but there is no special

command to delete statistics.

Running ANALYZE on a different server. ANALYZE TABLE does a full table scan, which can put too much load on

the server. It is possible to run ANALYZE on the slave, and then take the data from statistics tables on the slave and

apply it on the master.

In some cases, knowledge of the database allows one to compute statistics manually in a more efficient way than

ANALYZE does. One can compute the statistics manually and put it into the database.

3.3.4.6.2 Histogram-Based Statistics

Histograms are collected by default from MariaDB 10.4.3.

MariaDB starting with 10.4.3

2561/4161

Contents
1. System Variables

1. histogram_size

2. histogram_type

3. optimizer_use_condition_selectivity

2. Example

Histogram-based statistics are a mechanism to improve the query plan chosen by the optimizer in certain situations. Before

their introduction, all conditions on non-indexed columns were ignored when searching for the best execution plan.

Histograms can be collected for both indexed and non-indexed columns, and are made available to the optimizer.

Histogram statistics are stored in the mysql.column_stats table, which stores data for engine-independent table statistics,

and so are essentially a subset of engine-independent table statistics.

Consider this example, using the following query:

SELECT * FROM t1,t2 WHERE t1.a=t2.a and t2.b BETWEEN 1 AND 3;

Let's assume that

table t1 contains 100 records

table t2 contains 1000 records

there is a primary index on t1(a)

there is a secondary index on t2(a)

there is no index defined on column t2.b

the selectivity of the condition t2.b BETWEEN (1,3) is high (~ 1%)

Before histograms were introduced, the optimizer would choose the plan that:

accesses t1 using a table scan

accesses t2 using index t2(a)

checks the condition t2.b BETWEEN 1 AND 3

This plan examines all rows of both tables and performs 100 index look-ups.

With histograms available, the optimizer can choose the following, more efficient plan:

accesses table t2 in a table scan

checks the condition t2.b BETWEEN 1 AND 3

accesses t1 using index t1(a)

This plan also examine all rows from t2, but it performs only 10 look-ups to access 10 rows of table t1.

System Variables
There are a number of system variables that affect histograms.

histogram_size

The histogram_size variable determines the size, in bytes, from 0 to 255, used for a histogram. This is effectively the

number of bins for histogram_type=SINGLE_PREC_HB or number of bins/2 for histogram_type=DOUBLE_PREC_HB . If it

is set to 0 (the default for MariaDB 10.4.2 and below), no histograms are created when running an ANALYZE TABLE.

histogram_type

The histogram_type variable determines whether single precision (SINGLE_PREC_HB) or double precision

(DOUBLE_PREC_HB) height-balanced histograms are created. From MariaDB 10.4.3, double precision is the default. For

MariaDB 10.4.2 and below, single precision is the default.

From MariaDB 10.8, JSON_HB , JSON-format histograms, are accepted.

optimizer_use_condition_selectivity

The optimizer_use_condition_selectivity controls which statistics can be used by the optimizer when looking for the best

query execution plan.

1 Use selectivity of predicates as in MariaDB 5.5.

2 Use selectivity of all range predicates supported by indexes.

3 Use selectivity of all range predicates estimated without histogram.

2562/4161

4 Use selectivity of all range predicates estimated with histogram.

5 Additionally use selectivity of certain non-range predicates calculated on record sample.

From MariaDB 10.4.1, the default is 4 . Until MariaDB 10.4.0, the default is 1 .

3.3.3.10 Index Statistics

3.3.4.6.4 InnoDB Persistent Statistics
Before MariaDB 10.0, InnoDB statistics were not stored on disk, meaning that on server restarts the statistics would need to

be recalculated, which is both needless computation, as well as leading to inconsistent query plans.

There are a number of variables that control persistent statistics:

innodb_stats_persistent - when set (the default) enables InnoDB persistent statistics.

innodb_stats_auto_recalc - when set (the default), persistent statistics are automatically recalculated when the table

changes significantly (more than 10% of the rows)

innodb_stats_persistent_sample_pages - Number of index pages sampled (default 20) when estimating cardinality

and statistics for indexed columns. Increasing this value will increases index statistics accuracy, but use more I/O

resources when running ANALYZE TABLE.

These settings can be overwritten on a per-table basis by use of the STATS_PERSISTENT, STATS_AUTO_RECALC and

STATS_SAMPLE_PAGES clauses in a CREATE TABLE or ALTER TABLE statement.

Details of the statistics are stored in two system tables in the mysql database:

innodb_table_stats

innodb_index_stats

3.3.4.6.5 Slow Query Log Extended Statistics
Contents
1. Overview

2. Session Variables

1. log_slow_verbosity

2. log_slow_filter

3. log_slow_rate_limit

4. log_slow_max_warnings

3. Credits

Overview
Added extra logging to slow log of 'Thread_id, Schema, Query Cache hit, Rows sent and Rows examined'

Added optional logging to slow log, through log_slow_verbosity, of query plan statistics

Added new session variables log_slow_rate_limit, log_slow_verbosity, log_slow_filter

Added log-slow-file as synonym for 'slow-log-file', as most slow-log variables starts with 'log-slow'

Added log-slow-time as synonym for long-query-time.

Session Variables

log_slow_verbosity

You can set the verbosity of what's logged to the slow query log by setting the the log_slow_verbosity variable to a

combination of the following values:

All (From MariaDB 10.6.16)

Enable all verbosity options.

Query_plan

For select queries, log information about the query plan. This includes "Full_scan", "Full_join", "Tmp_table",

"Tmp_table_on_disk", "Filesort", "Filesort_on_disk" and number of "Merge_passes during sorting"

explain

EXPLAIN output is logged in the slow query log. See explain-in-the-slow-query-log for details.

Innodb (From MariaDB 10.6.15. Before that this option did nothing)

Kept for compatibility. Same as engine .

engine (From MariaDB 10.6.15)

2563/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/the-mysql-database-table

Writes statistics from the storage engine. This includes:

Option Description Engine

Pages_accessed Number of pages accessed from page buffer (innodb-buffer-pool / key cache) InnoDB

Pages_updated Number of pages updated in memory InnoDB

Pages_read_time Milliseconds spend reading pages from storage InnoDB

Old_rows_read Number of retrieval of old versions of rows in the engine (versioning) InnoDB

Engine_time Milliseconds spent inside engine calls (read_row / read_next_row etc) All

Warnings (From MariaDB 10.6.16)

Print all errors, warnings and notes related to statement, up to log_slow_max_warnings lines.

full .

Old shortcut to enable all the verbosity options

The default value for log_slow_verbosity is ' ', to be compatible with MySQL 5.1.

The possible values for log_slow_verbosity are innodb,query_plan,explain,engine,warnings .

Multiple options are separated by ','.

log_slow_verbosity is not supported when log_output='TABLE'.

In the future we will add more engine statistics and also support for other engines.

log_slow_filter

You can define which queries to log to the slow query log by setting the variable log_slow_filter to a combination of the

following values:

admin

Log administrative statements (create, optimize, drop etc...)

filesort

Log statement if it uses filesort

filesort_on_disk

Log statement if it uses filesort that needs temporary tables on disk

full_join

Log statements that doesn't uses indexes to join tables

full_scan

Log statements that uses full table scans

query_cache

Log statements that are resolved by the query cache

query_cache_miss

Log statements that are not resolved by the query cache

tmp_table

Log statements that uses in memory temporary tables

tmp_table_on_disk

Log statements that uses temporary tables on disk

Multiple options are separated by ','. If you don't specify any options everything will be logged.

log_slow_rate_limit

The log_slow_rate_limit variable limits logging to the slow query log by not logging every query (only one query /

log_slow_rate_limit is logged). This is mostly useful when debugging and you get too much information to the slow query log.

Note that in any case, only queries that takes longer than log_slow_time or long_query_time' are logged (as before).

log_slow_max_warnings

If one enables the warning option for log_slow_verbosity , all notes and warnings for a slow query will also be

added to the slow query log. This is very usable when one has enabled warnings for Notes when an index cannot be

used . log_slow_max_warnings limits the number of warnings printed to the slow query log per query. The default

value is 10.

MariaDB starting with 10.6.16

2564/4161

https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/

Credits
Part of this addition is based on the microslow patch from Percona .

3.3.4.6.6 User Statistics
The User Statistics feature was first released in MariaDB 5.2.0 , and moved to the userstat plugin in MariaDB 10.1.1 .

The userstat plugin creates the USER_STATISTICS, CLIENT_STATISTICS, the INDEX_STATISTICS, and the

TABLE_STATISTICS tables in the INFORMATION_SCHEMA database. As an alternative to these tables, the plugin also

adds the SHOW USER_STATISTICS, the SHOW CLIENT_STATISTICS, the SHOW INDEX_STATISTICS, and the SHOW

TABLE_STATISTICS statements.

These tables and commands can be used to understand the server activity better and to identify the sources of your

database's load.

The plugin also adds the FLUSH USER_STATISTICS, FLUSH CLIENT_STATISTICS, FLUSH INDEX_STATISTICS, and

FLUSH TABLE_STATISTICS statements.

The MariaDB implementation of this plugin is based on the userstatv2 patch from Percona and Ourdelta. The original

code comes from Google (Mark Callaghan's team) with additional work from Percona, Ourdelta, and Weldon Whipple. The

MariaDB implementation provides the same functionality as the userstatv2 patch but a lot of changes have been made to

make it faster and to better fit the MariaDB infrastructure.

Contents
1. How it Works

2. Enabling the Plugin

3. Using the Plugin

1. Using the Information Schema Table

2. Using the SHOW Statements

3. Flushing Plugin Data

4. Versions

1. USER_STATISTICS

2. CLIENT_STATISTICS

3. INDEX_STATISTICS

4. TABLE_STATISTICS

5. System Variables

1. userstat

How it Works
The userstat plugin works by keeping several hash tables in memory. All variables are incremented while the query is

running. At the end of each statement the global values are updated.

Enabling the Plugin
By default statistics are not collected. This is to ensure that statistics collection does not cause any extra load on the server

unless desired.

Set the userstat=ON system variable in a relevant server option group in an option file to enable the plugin. For example:

[mariadb]

...

userstat = 1

The value can also be changed dynamically. For example:

SET GLOBAL userstat=1;

Using the Plugin

Using the Information Schema Table

The userstat plugin creates the USER_STATISTICS, CLIENT_STATISTICS, the INDEX_STATISTICS, and the

TABLE_STATISTICS tables in the INFORMATION_SCHEMA database.

2565/4161

http://www.percona.com/percona-builds/Percona-SQL-5.0/Percona-SQL-5.0-5.0.87-b20/patches/microslow_innodb.patch
http://www.percona.com/
https://mariadb.com/kb/en/mariadb-520-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
http://www.percona.com/docs/wiki/patches:userstatv2

SELECT * FROM INFORMATION_SCHEMA.USER_STATISTICS\G

*************************** 1. row ***************************

 USER: root

 TOTAL_CONNECTIONS: 1

CONCURRENT_CONNECTIONS: 0

 CONNECTED_TIME: 297

 BUSY_TIME: 0.001725

 CPU_TIME: 0.001982

 BYTES_RECEIVED: 388

 BYTES_SENT: 2327

 BINLOG_BYTES_WRITTEN: 0

 ROWS_READ: 0

 ROWS_SENT: 12

 ROWS_DELETED: 0

 ROWS_INSERTED: 13

 ROWS_UPDATED: 0

 SELECT_COMMANDS: 4

 UPDATE_COMMANDS: 0

 OTHER_COMMANDS: 3

 COMMIT_TRANSACTIONS: 0

 ROLLBACK_TRANSACTIONS: 0

 DENIED_CONNECTIONS: 0

 LOST_CONNECTIONS: 0

 ACCESS_DENIED: 0

 EMPTY_QUERIES: 1

SELECT * FROM INFORMATION_SCHEMA.CLIENT_STATISTICS\G

*************************** 1. row ***************************

 CLIENT: localhost

 TOTAL_CONNECTIONS: 3

CONCURRENT_CONNECTIONS: 0

 CONNECTED_TIME: 4883

 BUSY_TIME: 0.009722

 CPU_TIME: 0.0102131

 BYTES_RECEIVED: 841

 BYTES_SENT: 13897

 BINLOG_BYTES_WRITTEN: 0

 ROWS_READ: 0

 ROWS_SENT: 214

 ROWS_DELETED: 0

 ROWS_INSERTED: 207

 ROWS_UPDATED: 0

 SELECT_COMMANDS: 10

 UPDATE_COMMANDS: 0

 OTHER_COMMANDS: 13

 COMMIT_TRANSACTIONS: 0

 ROLLBACK_TRANSACTIONS: 0

 DENIED_CONNECTIONS: 0

 LOST_CONNECTIONS: 0

 ACCESS_DENIED: 0

 EMPTY_QUERIES: 1

1 row in set (0.00 sec)

SELECT * FROM INFORMATION_SCHEMA.INDEX_STATISTICS WHERE TABLE_NAME = "author";

+--------------+------------+------------+-----------+

| TABLE_SCHEMA | TABLE_NAME | INDEX_NAME | ROWS_READ |

+--------------+------------+------------+-----------+

| books | author | by_name | 15 |

+--------------+------------+------------+-----------+

SELECT * FROM INFORMATION_SCHEMA.TABLE_STATISTICS WHERE TABLE_NAME='user';

+--------------+------------+-----------+--------------+------------------------+

| TABLE_SCHEMA | TABLE_NAME | ROWS_READ | ROWS_CHANGED | ROWS_CHANGED_X_INDEXES |

+--------------+------------+-----------+--------------+------------------------+

| mysql | user | 5 | 2 | 2 |

+--------------+------------+-----------+--------------+------------------------+

Using the SHOW Statements

2566/4161

As an alternative to the INFORMATION_SCHEMA tables, the userstat plugin also adds the SHOW USER_STATISTICS,

the SHOW CLIENT_STATISTICS, the SHOW INDEX_STATISTICS, and the SHOW TABLE_STATISTICS statements.

These commands are another way to display the information stored in the information schema tables. WHERE clauses are

accepted. LIKE clauses are accepted but ignored.

SHOW USER_STATISTICS

SHOW CLIENT_STATISTICS

SHOW INDEX_STATISTICS

SHOW TABLE_STATISTICS

Flushing Plugin Data

The userstat plugin also adds the FLUSH USER_STATISTICS, FLUSH CLIENT_STATISTICS, FLUSH

INDEX_STATISTICS, and FLUSH TABLE_STATISTICS statements, which discard the information stored in the specified

information schema table.

FLUSH USER_STATISTICS

FLUSH CLIENT_STATISTICS

FLUSH INDEX_STATISTICS

FLUSH TABLE_STATISTICS

Versions

USER_STATISTICS

Version Status Introduced

2.0 Stable MariaDB 10.1.18

2.0 Gamma MariaDB 10.1.1

CLIENT_STATISTICS

Version Status Introduced

2.0 Stable MariaDB 10.1.13

2.0 Gamma MariaDB 10.1.1

INDEX_STATISTICS

Version Status Introduced

2.0 Stable MariaDB 10.1.13

2.0 Gamma MariaDB 10.1.1

TABLE_STATISTICS

Version Status Introduced

2.0 Stable MariaDB 10.1.18

2.0 Gamma MariaDB 10.1.1

System Variables

userstat

Description: If set to 1 , user statistics will be activated.

Commandline: --userstat=1

Scope: Global

Dynamic: Yes

2567/4161

https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

Data Type: boolean

Default Value: OFF

3.3.4.7 MIN/MAX optimization
Contents
1. Min/Max optimization without GROUP BY

2. Min/Max optimization with GROUP BY

Min/Max optimization without GROUP BY
MariaDB and MySQL can optimize the MIN() and MAX() functions to be a single row lookup in the following cases:

There is only one table used in the SELECT .

You only have constants, MIN() and MAX() in the SELECT part.

The argument to MIN() and MAX() is a simple column reference that is part of a key.

There is no WHERE clause or the WHERE is used with a constant for all prefix parts of the key before the argument to

MIN() / MAX() .

If the argument is used in the WHERE clause, it can be be compared to a constant with < or <= in case of MAX()

and with > or >= in case of MIN() .

Here are some examples to clarify this. In this case we assume there is an index on columns (a,b,c)

SELECT MIN(a),MAX(a) from t1

SELECT MIN(b) FROM t1 WHERE a=const

SELECT MIN(b),MAX(b) FROM t1 WHERE a=const

SELECT MAX(c) FROM t1 WHERE a=const AND b=const

SELECT MAX(b) FROM t1 WHERE a=const AND b<const

SELECT MIN(b) FROM t1 WHERE a=const AND b>const

SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const

SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const

Instead of a=const the condition a IS NULL can be used.

The above optimization also works for subqueries:

SELECT x from t2 where y= (SELECT MIN(b) FROM t1 WHERE a=const)

Cross joins, where there is no join condition for a table, can also be optimized to a few key lookups:

select min(t1.key_part_1), max(t2.key_part_1) from t1, t2

Min/Max optimization with GROUP BY
MariaDB and MySQL support loose index scan, which can speed up certain GROUP BY queries. The basic idea is that when

scanning a BTREE index (the most common index type for the MariaDB storage engines) we can jump over identical values

for any prefix of a key and thus speed up the scan significantly.

Loose scan is possible in the following cases:

The query uses only one table.

The GROUP BY part only uses indexed columns in the same order as in the index.

The only aggregated functions in the SELECT part are MIN() and MAX() functions and all of them using the same

column which is the next index part after the used GROUP BY columns.

Partial indexed columns cannot be used (like only indexing 10 characters of a VARCHAR(20) column).

Loose scan will apply for your query if EXPLAIN shows Using index for group-by in the Extra column. In this case

the optimizer will do only one extra row fetch to calculate the value for MIN() or MAX() for every unique key prefix.

The following examples assume that the table t1 has an index on (a,b,c) .

SELECT a, b, MIN(c),MAX(c) FROM t1 GROUP BY a,b

2568/4161

3.3.4.8 Filesort with Small LIMIT Optimization
Contents
1. Optimization Description

2. Optimization Visibility in MariaDB

1. Status Variable

2. Slow Query Log

Optimization Description
When n is sufficiently small, the optimizer will use a priority queue for sorting. Before the optimization's porting to

MariaDB 10.0, the alternative was, roughly speaking, to sort the entire output and then pick only first n rows.

Optimization Visibility in MariaDB
There are two ways to check whether filesort has used a priority queue.

Status Variable

The first way is to check the Sort_priority_queue_sorts status variable. It shows the number of times that sorting was done

through a priority queue. (The total number of times sorting was done is a sum Sort_range and Sort_scan).

Slow Query Log

The second way is to check the slow query log. When one uses Extended statistics in the slow query log and specifies

log_slow_verbosity=query_plan, slow query log entries look like this

Time: 140714 18:30:39

User@Host: root[root] @ localhost []

Thread_id: 3 Schema: test QC_hit: No

Query_time: 0.053857 Lock_time: 0.000188 Rows_sent: 11 Rows_examined: 100011

Full_scan: Yes Full_join: No Tmp_table: No Tmp_table_on_disk: No

Filesort: Yes Filesort_on_disk: No Merge_passes: 0 Priority_queue: Yes

SET timestamp=1405348239;SET timestamp=1405348239;

select * from t1 where col1 between 10 and 20 order by col2 limit 100;

Note the "Priority_queue: Yes" on the last comment line. (pt-query-digest is able to parse slow query logs with the

Priority_queue field)

As for EXPLAIN , it will give no indication whether filesort uses priority queue or the generic quicksort and merge algorithm.

Using filesort will be shown in both cases, by both MariaDB and MySQL.

3.3.4.9 LIMIT ROWS EXAMINED

Syntax

SELECT ... FROM ... WHERE ...

[group_clause] [order_clause]

LIMIT [[offset,] row_count] ROWS EXAMINED rows_limit;

Similar to the parameters of LIMIT , rows_limit can be both a prepared statement parameter, or a stored program

parameter.

Description
The purpose of this optimization is to provide the means to terminate the execution of SELECT statements which examine

too many rows, and thus use too many resources. This is achieved through an extension of the LIMIT clause 4 LIMIT

ROWS EXAMINED number_of_rows . Whenever possible the semantics of LIMIT ROWS EXAMINED is the same as that of

normal LIMIT (for instance for aggregate functions).

The LIMIT ROWS EXAMINED clause is taken into account by the query engine only during query execution. Thus the clause

2569/4161

http://en.wikipedia.org/wiki/Priority_queue

is ignored in the following cases:

If a query is EXPLAIN -ed.

During query optimization.

During auxiliary operations such as writing to system tables (e.g. logs).

The clause is not applicable to DELETE or UPDATE statements, and if used in those statements produces a syntax error.

The effects of this clause are as follows:

The server counts the number of read, inserted, modified, and deleted rows during query execution. This takes into

account the use of temporary tables, and sorting for intermediate query operations.

Once the counter exceeds the value specified in the LIMIT ROWS EXAMINED clause, query execution is terminated

as soon as possible.

The effects of terminating the query because of LIMIT ROWS EXAMINED are as follows:

The result of the query is a subset of the complete query, depending on when the query engine detected that

the limit was reached. The result may be empty if no result rows could be computed before reaching the limit.

A warning is generated of the form: "Query execution was interrupted. The query examined at least 100 rows,

which exceeds LIMIT ROWS EXAMINED (20). The query result may be incomplete."

If query processing was interrupted during filesort, an error is returned in addition to the warning.

If a UNION was interrupted during execution of one of its queries, the last step of the UNION is still executed in

order to produce a partial result.

Depending on the join and other execution strategies used for a query, the same query may produce no result

at all, or a different subset of the complete result when terminated due to LIMIT ROWS EXAMINED.

If the query contains a GROUP BY clause, the last group where the limit was reached will be discarded.

The LIMIT ROWS EXAMINED clause cannot be specified on a per-subquery basis. There can be only one LIMIT ROWS

EXAMINED clause for the whole SELECT statement. If a SELECT statement contains several subqueries with LIMIT ROWS

EXAMINED , the one that is parsed last is taken into account.

Examples
A simple example of the clause is:

SELECT * from t1, t2 LIMIT 10 ROWS EXAMINED 10000;

The LIMIT ROWS EXAMINED clause is global for the whole statement.

If a composite query (such as UNION , or query with derived tables or with subqueries) contains more than one LIMIT

ROWS EXAMINED , the last one parsed is taken into account. In this manner either the last or the outermost one is taken into

account. For instance, in the query:

SELECT * FROM t1

WHERE c1 IN (SELECT * FROM t2 WHERE c2 > ' ' LIMIT ROWS EXAMINED 0)

LIMIT ROWS EXAMINED 11;

The limit that is taken into account is 11, not 0.

3.3.4.10 Block-Based Join Algorithms
Contents
1. Block Nested Loop Join

1. How Block Nested Loop Join Works

2. More Efficient Usage of Join Buffer Space

3. Incremental Join Buffers

4. Using Join Buffers for Simple Outer Joins and Semi-joins

2. Block Hash Join

1. How Block Hash Join Works

3. Batch Key Access Join

1. How Batch Keys Access Join Works

2. Interaction of BKA Join With the MRR Functions

4. Managing Usage of Block-Based Join Algorithms

1. Size of Join Buffers

2. Related MRR Settings

In the versions of MariaDB/MySQL before 5.3 only one block-based join algorithm was implemented: the Block Nested

Loops (BNL) join algorithm which could only be used for inner joins.

2570/4161

MariaDB 5.3 enhanced the implementation of BNL joins and provides a variety of block-based join algorithms that can be

used for inner joins, outer joins, and semi-joins. Block-based join algorithms in MariaDB employ a join buffer to accumulate

records of the first join operand before they start looking for matches in the second join operand.

This page documents the various block-based join algorithms.

Block Nested Loop (BNL) join

Block Nested Loop Hash (BNLH) join

Block Index join known as Batch Key Access (BKA) join

Block Index Hash join known as Batch Key Access Hash (BKAH) join

Block Nested Loop Join
The major difference between the implementation of BNL join in MariaDB 5.3 compared to earlier versions of

MariaDB/MySQL is that the former uses a new format for records written into join buffers. This new format allows:

More efficient use of buffer space for null field values and field values of flexible length types (like the varchar type)

Support for so-called incremental join buffers saving buffer space for multi-way joins

Use of the algorithm for outer joins and semi-joins

How Block Nested Loop Join Works

The algorithm performs a join operation of tables t1 and t2 according to the following schema.

The records of the first operand are written into the join buffer one by one until the buffer is full.

The records of the second operand are read from the base/temporary table one by one. For every read record r2 of table t2

the join buffer is scanned, and, for any record r1 from the buffer such that r2 matches r1 the concatenation of the interesting

fields of r1 and r2 is sent to the result stream of the corresponding partial join.

To read the records of t2 a full table scan, a full index scan or a range index scan is performed. Only the records that meet

the condition pushed to table t2 are checked for a match of the records from the join buffer.

When the scan of the table t2 is finished a new portion of the records of the first operand fills the buffer and matches for

these records are looked for in t2.

The buffer refills and scans of the second operand that look for matches in the join buffer are performed again and again

until the records of first operand are exhausted.

In total the algorithm scans the second operand as many times as many refills of the join buffer occur.

More Efficient Usage of Join Buffer Space

No join buffer space is used for null field values.

Any field value of a flexible length type is not padded by 0 up to the maximal field size anymore.

Incremental Join Buffers

If we have a query with a join of three tables t1, t2, t3 such that table t1 is joined with table t2 and the result of this join

operation is joined with table t3 then two join buffers can be used to execute the query. The first join buffer B1 is used to

store the records comprising interesting fields of table t1, while the second join buffer B2 contains the records with fields

from the partial join of t1 and t2. The interesting fields of any record r1 from B1 are copied into B2 for any record record r1,r2

from the partial join of t1 and t2. One could suggest storing in B2 just a pointer to the position of the r1 fields in B1 together

with the interesting fields from t2. So for any record r2 matching the record r1 the buffer B2 would contain a reference to the

fields of r1 in B1 and the fields of r2. In this case the buffer B2 is called incremental. Incremental buffers allow to avoid

copying field values from one buffer into another. They also allow to save a significant amount of buffer space if for a record

from t1 several matches from t2 are expected.

Using Join Buffers for Simple Outer Joins and Semi-joins

If a join buffer is used for a simple left outer join of tables t1 and t1 t1 LEFT JOIN t2 ON P(t1,t2) then each record r1 stored

in the buffer is provided with a match flag. Initially this flag is set off. As soon as the first match for r1 is found this flag is set

on. When all matching candidates from t2 have been check, the record the join buffer are scanned and for those of them

that still have there match flags off null-complemented rows are generated. The same match flag is used for any record in

the join buffer is a semi-join operation t1 SEMI JOIN t2 ON P(t1,t2) is performed with a block based join algorithm. When

this match flag is set to on for a record r1 in the buffer no matches from table t2 for record r1 are looked for anymore.

Block Hash Join
Block based hash join algorithm is a new option to be used for join operations in MariaDB 5.3. It can be employed in the

cases when there are equi-join sub-condition for the joined tables, in the other words when equalities of the form t2.f1=

2571/4161

e1(t1),...,t2.fn=en(t1) can be extracted from the full join condition. As any block based join algorithm this one used a join

buffer filled with the records of the first operand and looks through the records of the second operand to find matches for the

records in the buffer.

How Block Hash Join Works

For each refill of the join buffer and each record r1 from it the algorithm builds a hash table with the keys constructed over

the values e1(r1),...en(r1). Then the records of t2 are looked through. For each record r2 from t2 that the condition pushed

to the table t2 a hash key over the fields r2.f1,..., r2.fn is calculated to probe into the hash table. The probing returns those

records from the buffer to which r2 matches. As for BNL join algorithm this algorithm scans the second operand as many

time as many refills of the buffer occur. Yet it has to look only through the records of one bucket in the hash table when

looking for the records to which a record from t2 matches, not through all records in the join buffer as BNL join algorithm

does. The implementation of this algorithm in MariaDB builds the hash table with hash keys at the very end of the join

buffer. That's why the number of records written into the buffer at one refill is less then for BNL join algorithms. However a

much shorter list of possible matching candidates makes this the block hash join algorithm usually much faster then BNL

join.

Batch Key Access Join
Batch Keys Access join algorithm performs index look-ups when looking for possible matching candidates provided by the

second join operand. With this respect the algorithm behave itself as the regular join algorithm. Yet BKA performs index

look-ups for a batch of the records from the join buffer. For conventional database engines like InnoDB/MyISAM it allows to

fetch matching candidates in an optimal way. For the engines with remote data store such as FederateX/Spider the

algorithm allows to save on transfers between the MySQL node and the data store nodes.

How Batch Keys Access Join Works

The implementation of the algorithm in 5.3 heavily exploits the multi-range-read interface and its properties. The interface

hides the actual mechanism of fetching possible candidates for matching records from the table to be joined. As any block

based join algorithm the BKA join repeatedly fills the join buffer with records of the first operand and for each refill it finds

records from the join table that could match the records in the buffer. To find such records it asks the MRR interface to

perform index look-ups with the keys constructed over all records from the buffer. Together with each key the interface

receives a return address - a reference to the record over which this key has been constructed. The actual implementation

functions of the MRR interface organize and optimize somehow the process of fetching the records of the joined table by

the received keys. Each fetched record r2 is appended with the return address associated with the key by which the record

has been found and the result is passed to the BKA join procedure. The procedure takes the record r1 from the join buffer

by the return address, joins it with r2 and checks the join condition. If the condition is evaluated to true the joined records is

sent to the result stream of the join operation. So for each record returned by the MRR interface only one record from the

join buffer is accessed. The number of records from table t2 fetched by the BKA join is exactly the same as for the regular

nested loops join algorithm. Yet BKA join allows to optimize the order in which the records are fetched.

Interaction of BKA Join With the MRR Functions

BKA join interacts with the MRR functions respecting the following contract. The join procedure calls the MRR function

multi_range_read_init passing it the callback functions that allows to initialize reading keys for the records in the join buffer

and to iterate over these keys. It also passes the parameters of the buffer for MRR needs allocated within the join buffer

space. Then BKA join repeatedly calls the MRR function multi_range_read_next. The function works as an iterator function

over the records fetched by index look-ups with the keys produced by a callback function set in the call of

multi_range_read_init. A call of the function multi_range_read_next returns the next fetched record through the dedicated

record buffer, and the associated reference to the matched record from the join buffer as the output parameter of the

function.

Managing Usage of Block-Based Join Algorithms
Currently 4 different types of block-based join algorithms are supported. For a particular join operation each of them can be

employed with a regular (flat) join buffer or with an incremental join buffer.

Three optimizer switches - join_cache_incremental , join_cache_hashed , join_cache_bka 3 and the system

variable join_cache_level control which of the 8 variants of the block-based algorithms will be used for join operations.

If join_cache_bka is off then BKA and BKAH join algorithms are not allowed. If join_cache_hashed is off then BNLH

and BKAH join algorithms are not allowed. If join_cache_incremental is off then no incremental variants of the block-

based join algorithms are allowed.

By default the switches join_cache_incremental , join_cache_hashed , join_cache_bka are set to 'on'. However it

2572/4161

does not mean that by default any of block-based join algorithms is allowed to be used. All of them are allowed only if the

system variable join_cache_level is set to 8. This variable can take an integer value in the interval from 0 to 8.

If the value is set to 0 no block-based algorithm can be used for a join operation. The values from 1 to 8 correspond to the

following variants of block-based join algorithms :

1 3 Flat BNL

2 3 Incremental BNL

3 3 Flat BNLH

4 3 Incremental BNLH

5 3 Flat BKA

6 3 Incremental BKA

7 3 Flat BKAH

8 3 Incremental BKAH

If the value of join_cache_level is set to N, any of block-based algorithms with the level greater than N is disallowed.

So if join_cache_level is set to 5, no usage of BKAH is allowed and usage of incremental BKA is not allowed either while

usage of all remaining variants are controlled by the settings of the optimizer switches join_cache_incremental ,

join_cache_hashed , join_cache_bka .

By default join_cache_level is set to 2. In other words only usage of flat or incremental BNL is allowed.

By default block-based algorithms can be used only for regular (inner) join operations. To allow them for outer join

operations (left outer joins and right outer joins) the optimizer switch outer_join_with_cache has to be set to 'on'.

Setting the optimizer switch semijoin_with_cache to 'on' allows using these algorithms for semi-join operations.

Currently, only incremental variants of the block-based join algorithms can be used for nested outer joins and nested semi-

joins.

Size of Join Buffers

The maximum size of join buffers used by block-based algorithms is controlled by setting the join_buffer_size system

variable. This value must be large enough in order for the join buffer employed for a join operation to contain all relevant

fields for at least one joined record.

MariaDB 5.3 introduced the system variable join_buffer_space_limit that limits the total memory used for join buffers in a

query.

To optimize the usage of the join buffers within the limit set by join_buffer_space_limit , one should use the optimizer

switch optimize_join_buffer_size=on . When this flag is set to 'off' (default until MariaDB 10.4.2), the size of the used

join buffer is taken directly from the join_buffer_size system variable. When this flag is set to 'on' (default from MariaDB

10.4.3) then the size of the buffer depends on the estimated number of rows in the partial join whose records are to be

stored in the buffer.

Related MRR Settings

To use BKA/BKAH join algorithms for InnoDB/MyISAM, one must set the optimizer switch mrr to 'on'. When using these

algorithms for InnoDB/MyISAM the overall performance of the join operations can be dramatically improved if the optimizer

switch mrr_sort_keys is set 'on'.

3.3.4.11 index_merge sort_intersection
Prior to MariaDB 5.3, the index_merge access method supported union , sort-union , and intersection

operations. Starting from MariaDB 5.3, the sort-intersection operation is also supported. This allows the use of

index_merge in a broader number of cases.

This feature is disabled by default. To enable it, turn on the optimizer switch index_merge_sort_intersection like so:

SET optimizer_switch='index_merge_sort_intersection=on'

Limitations of index_merge/intersection
Prior to MariaDB 5.3, the index_merge access method had one intersection strategy called intersection . That

strategy can only be used when merged index scans produced rowid-ordered streams. In practice this means that an

intersection could only be constructed from equality (=) conditions.

For example, the following query will use intersection :

2573/4161

MySQL [ontime]> EXPLAIN SELECT AVG(arrdelay) FROM ontime WHERE depdel15=1 AND OriginState

='CA';

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+---+

|id|select_type|table |type |possible_keys |key |key_len|ref |rows

|Extra |

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+---+

| 1|SIMPLE |ontime|index_merge|OriginState,DepDel15|OriginState,DepDel15|3,5

|NULL|76952|Using intersect(OriginState,DepDel15);Using where|

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+---+

but if you replace OriginState ='CA' with OriginState IN ('CA', 'GB') (which matches the same number of

records), then intersection is not usable anymore:

MySQL [ontime]> explain select avg(arrdelay) from ontime where depdel15=1 and OriginState IN

('CA', 'GB');

+--+-----------+------+----+--------------------+--------+-------+-----+-----+-----------+

|id|select_type|table |type|possible_keys |key |key_len|ref |rows |Extra |

+--+-----------+------+----+--------------------+--------+-------+-----+-----+-----------+

| 1|SIMPLE |ontime|ref |OriginState,DepDel15|DepDel15|5 |const|36926|Using where|

+--+-----------+------+----+--------------------+--------+-------+-----+-----+-----------+

The latter query would also run 5.x times slower (from 2.2 to 10.8 seconds) in our experiments.

How index_merge/sort_intersection improves the
situation
In MariaDB 5.3, when index_merge_sort_intersection is enabled, index_merge intersection plans can be

constructed from non-equality conditions:

MySQL [ontime]> explain select avg(arrdelay) from ontime where depdel15=1 and OriginState IN

('CA', 'GB');

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+--+

|id|select_type|table |type |possible_keys |key |key_len|ref |rows

|Extra |

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+--+

| 1|SIMPLE |ontime|index_merge|OriginState,DepDel15|DepDel15,OriginState|5,3

|NULL|60754|Using sort_intersect(DepDel15,OriginState); Using where |

+--+-----------+------+-----------+--------------------+--------------------+-------+----+---

--+--+

In our tests, this query ran in 3.2 seconds, which is not as good as the case with two equalities, but still much better than

10.8 seconds we were getting without sort_intersect .

The sort_intersect strategy has higher overhead than intersect but is able to handle a broader set of WHERE

conditions.

2574/4161

When to Use
index_merge/sort_intersection works best on tables with lots of records and where intersections are sufficiently large

(but still small enough to make a full table scan overkill).

The benefit is expected to be bigger for io-bound loads.

3.3.4.12 optimizer_switch
Contents
1. Syntax

2. Available Flags

3. Defaults

optimizer_switch is a server variable that one can use to enable/disable specific optimizations.

Syntax
To set or unset the various optimizations, use the following syntax:

SET [GLOBAL|SESSION] optimizer_switch='cmd[,cmd]...';

The cmd takes the following format:

Syntax Description

default Reset all optimizations to their default values.

optimization_name=default Set the specified optimization to its default value.

optimization_name=on Enable the specified optimization.

optimization_name=off Disable the specified optimization.

There is no need to list all flags - only those that are specified in the command will be affected.

Available Flags
Below is a list of all optimizer_switch flags available in MariaDB:

Flag and MariaDB default Supported in MariaDB since

condition_pushdown_for_derived=on MariaDB 10.2.2

condition_pushdown_for_subquery=on MariaDB 10.4.0

2575/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

condition_pushdown_from_having=on MariaDB 10.4.3

cset_narrowing=off
MariaDB 10.6.16, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3 and

MariaDB 11.2.2

derived_merge=on MariaDB 5.3

derived_with_keys=on MariaDB 5.3

default MariaDB 5.1

engine_condition_pushdown=off MariaDB 5.5 (deprecated in MariaDB 10.1, removed in MariaDB 11.3)

exists_to_in=on MariaDB 10.0

extended_keys=on MariaDB 5.5.21

firstmatch=on MariaDB 5.3

index_condition_pushdown=on MariaDB 5.3

hash_join_cardinality=off MariaDB 10.6.13 (MDEV-30812)

index_merge=on MariaDB 5.1

index_merge_intersection=on MariaDB 5.1

index_merge_sort_intersection=off MariaDB 5.3

index_merge_sort_union=on MariaDB 5.1

index_merge_union=on# MariaDB 5.1

in_to_exists=on MariaDB 5.3

join_cache_bka=on MariaDB 5.3

join_cache_hashed=on MariaDB 5.3

join_cache_incremental=on MariaDB 5.3

loosescan=on MariaDB 5.3

materialization=on (semi-join, non-

semi-join)
MariaDB 5.3

mrr=off MariaDB 5.3

mrr_cost_based=off MariaDB 5.3

mrr_sort_keys=off MariaDB 5.3

not_null_range_scan=off MariaDB 10.5

optimize_join_buffer_size=on MariaDB 5.3

orderby_uses_equalities=on MariaDB 10.1.15

outer_join_with_cache=on MariaDB 5.3

partial_match_rowid_merge=on MariaDB 5.3

partial_match_table_scan=on MariaDB 5.3

rowid_filter=on MariaDB 10.4.3

sargable_casefold=on MariaDB 11.3.0

semijoin=on MariaDB 5.3

semijoin_with_cache=on MariaDB 5.3

split_materialized=on MariaDB 10.3.4

subquery_cache=on MariaDB 5.3

table_elimination=on MariaDB 5.1

1. ± replaced split_grouping_derived , introduced in MariaDB 10.3.1

Defaults

[1]

2576/4161

https://mariadb.com/kb/en/mariadb-5521-release-notes/
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://jira.mariadb.org/browse/MDEV-13369
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://github.com/MariaDB/server/commit/b14e2b044b
https://mariadb.com/kb/en/mariadb-1031-release-notes/

From

version Default optimizer_switch setting

MariaDB

11.3.1

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, index_condition_pushdown=on, derived_merge=on,

derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on, semijoin=on,

partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on, condition_pushdown_from_having=on, not_null_range_scan=off, hash_join_cardinality=on,

cset_narrowing=off, sargable_casefold=on

MariaDB

10.6.16,

MariaDB

10.11.6,

MariaDB

11.0.4,

MariaDB

11.1.3

and

MariaDB

11.2.2

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, index_condition_pushdown=on, derived_merge=on,

derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on, semijoin=on,

partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on, condition_pushdown_from_having=on, not_null_range_scan=off, hash_join_cardinality=on,

cset_narrowing=off

MariaDB

11.0.2

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, engine_condition_pushdown=off, index_condition_pushdown=on,

derived_merge=on, derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on,

semijoin=on, partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on,condition_pushdown_from_having=on, not_null_range_scan=off, hash_join_cardinality=on

MariaDB

10.6.13,

MariaDB

10.11.3

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, engine_condition_pushdown=off, index_condition_pushdown=on,

derived_merge=on, derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on,

semijoin=on, partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on,condition_pushdown_from_having=on, not_null_range_scan=off, hash_join_cardinality=off

MariaDB

10.5.0

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, engine_condition_pushdown=off, index_condition_pushdown=on,

derived_merge=on, derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on,

semijoin=on, partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on,condition_pushdown_from_having=on, not_null_range_scan=off

MariaDB

10.4.3

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, engine_condition_pushdown=off, index_condition_pushdown=on,

derived_merge=on, derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on,

semijoin=on, partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=on,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on,

rowid_filter=on,condition_pushdown_from_having=on

2577/4161

MariaDB

10.4.0

index_merge=on, index_merge_union=on, index_merge_sort_union=on, index_merge_intersection=on,

index_merge_sort_intersection=off, engine_condition_pushdown=off, index_condition_pushdown=on,

derived_merge=on, derived_with_keys=on, firstmatch=on, loosescan=on, materialization=on, in_to_exists=on,

semijoin=on, partial_match_rowid_merge=on, partial_match_table_scan=on, subquery_cache=on, mrr=off,

mrr_cost_based=off, mrr_sort_keys=off, outer_join_with_cache=on, semijoin_with_cache=on,

join_cache_incremental=on, join_cache_hashed=on, join_cache_bka=on, optimize_join_buffer_size=off,

table_elimination=on, extended_keys=on, exists_to_in=on, orderby_uses_equalities=on,

condition_pushdown_for_derived=on, split_materialized=on, condition_pushdown_for_subquery=on

3.3.4.13 Extended Keys

Syntax
Enable:

set optimizer_switch='extended_keys=on';

Disable:

set optimizer_switch='extended_keys=off';

Description
Extended Keys is an optimization set with the optimizer_switch system variable, which makes use of existing components of

InnoDB keys to generate more efficient execution plans. Using these components in many cases allows the server to

generate execution plans which employ index-only look-ups. It is set by default.

Extended keys can be used with:

ref and eq-ref accesses

range scans

index-merge scans

loose scans

min/max optimizations

Examples
An example of how extended keys could be employed for a query built over a DBT-3/TPC-H database with one added

index defined on p_retailprice :

select o_orderkey

from part, lineitem, orders

where p_retailprice > 2095 and o_orderdate='1992-07-01'

 and o_orderkey=l_orderkey and p_partkey=l_partkey;

The above query asks for the orderkeys of the orders placed on 1992-07-01 which contain parts with a retail price greater

than $2095.

Using Extended Keys, the query could be executed by the following execution plan:

1. Scan the entries of the index i_p_retailprice where p_retailprice>2095 and read p_partkey values from

the extended keys.

2. For each value p_partkey make an index look-up into the table lineitem employing index i_l_partkey and fetch

the values of l_orderkey from the extended index.

3. For each fetched value of l_orderkey , append it to the date '1992-07-01' and use the resulting key for an index

look-up by index i_o_orderdate to fetch the values of o_orderkey from the found index entries.

All access methods of this plan do not touch table rows, which results in much better performance.

Here is the explain output for the above query:

2578/4161

http://www.tpc.org/tpch/specs.asp

MariaDB [dbt3sf10]> explain

 -> select o_orderkey

 -> from part, lineitem, orders

 -> where p_retailprice > 2095 and o_orderdate='1992-07-01'

 -> and o_orderkey=l_orderkey and p_partkey=l_partkey\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: part

 type: range

possible_keys: PRIMARY,i_p_retailprice

 key: i_p_retailprice

 key_len: 9

 ref: NULL

 rows: 100

 Extra: Using where; Using index

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: lineitem

 type: ref

possible_keys: PRIMARY,i_l_suppkey_partkey,i_l_partkey,i_l_orderkey,i_l_orderkey_quantity

 key: i_l_partkey

 key_len: 5

 ref: dbt3sf10.part.p_partkey

 rows: 15

 Extra: Using index

*************************** 3. row ***************************

 id: 1

 select_type: SIMPLE

 table: orders

 type: ref

possible_keys: PRIMARY,i_o_orderdate

 key: i_o_orderdate

 key_len: 8

 ref: const,dbt3sf10.lineitem.l_orderkey

 rows: 1

 Extra: Using index

3 rows in set (0.00 sec)

3.3.4.14 How to Quickly Insert Data Into
MariaDB

Contents
1. Background

2. Disabling Keys

3. Loading Text Files

1. mariadb-import

4. Inserting Data with INSERT Statements

1. Using Big Transactions

2. Multi-Value Inserts

5. Inserting Data Into Several Tables at Once

6. Server Variables That Can be Used to Tune Insert Speed

This article describes different techniques for inserting data quickly into MariaDB.

Background
When inserting new data into MariaDB, the things that take time are: (in order of importance):

Syncing data to disk (as part of the end of transactions)

Adding new keys. The larger the index, the more time it takes to keep keys updated.

Checking against foreign keys (if they exist).

Adding rows to the storage engine.

Sending data to the server.

The following describes the different techniques (again, in order of importance) you can use to quickly insert data into a

table.
2579/4161

Disabling Keys
You can temporarily disable updating of non unique indexes. This is mostly useful when there are zero (or very few) rows in

the table into which you are inserting data.

ALTER TABLE table_name DISABLE KEYS;

BEGIN;

... inserting data with INSERT or LOAD DATA

COMMIT;

ALTER TABLE table_name ENABLE KEYS;

In many storage engines (at least MyISAM and Aria), ENABLE KEYS works by scanning through the row data and collecting

keys, sorting them, and then creating the index blocks. This is an order of magnitude faster than creating the index one row

at a time and it also uses less key buffer memory.

Note: When you insert into an empty table with INSERT or LOAD DATA, MariaDB automatically does an DISABLE

KEYS before and an ENABLE KEYS afterwards.

When inserting big amounts of data, integrity checks are sensibly time-consuming. It is possible to disable the UNIQUE

indexes and the foreign keys checks using the unique_checks and the foreign_key_checks system variables:

SET @@session.unique_checks = 0;

SET @@session.foreign_key_checks = 0;

For InnoDB tables, the AUTO_INCREMENT lock mode can be temporarily set to 2, which is the fastest setting:

SET @@global.innodb_autoinc_lock_mode = 2;

Also, if the table has INSERT triggers or PERSISTENT columns, you may want to drop them, insert all data, and recreate

them.

Loading Text Files
The fastest way to insert data into MariaDB is through the LOAD DATA INFILE command.

The simplest form of the command is:

LOAD DATA INFILE 'file_name' INTO TABLE table_name;

You can also read a file locally on the machine where the client is running by using:

LOAD DATA LOCAL INFILE 'file_name' INTO TABLE table_name;

This is not as fast as reading the file on the server side, but the difference is not that big.

LOAD DATA INFILE is very fast because:

1. there is no parsing of SQL.

2. data is read in big blocks.

3. if the table is empty at the beginning of the operation, all non unique indexes are disabled during the operation.

4. the engine is told to cache rows first and then insert them in big blocks (At least MyISAM and Aria support this).

5. for empty tables, some transactional engines (like Aria) do not log the inserted data in the transaction log because

one can rollback the operation by just doing a TRUNCATE on the table.

Because of the above speed advantages there are many cases, when you need to insert many rows at a time, where it may

be faster to create a file locally, add the rows there, and then use LOAD DATA INFILE to load them; compared to using

INSERT to insert the rows.

You will also get progress reporting for LOAD DATA INFILE .

mariadb-import

You can import many files in parallel with mariadb-import (mysqlimport before MariaDB 10.5). For example:

2580/4161

mariadb-import --use-threads=10 database text-file-name [text-file-name...]

Internally mariadb-import uses LOAD DATA INFILE to read in the data.

Inserting Data with INSERT Statements

Using Big Transactions

When doing many inserts in a row, you should wrap them with BEGIN / END to avoid doing a full transaction (which

includes a disk sync) for every row. For example, doing a begin/end every 1000 inserts will speed up your inserts by almost

1000 times.

BEGIN;

INSERT ...

INSERT ...

END;

BEGIN;

INSERT ...

INSERT ...

END;

...

The reason why you may want to have many BEGIN/END statements instead of just one is that the former will use up less

transaction log space.

Multi-Value Inserts

You can insert many rows at once with multi-value row inserts:

INSERT INTO table_name values(1,"row 1"),(2, "row 2"),...;

The limit for how much data you can have in one statement is controlled by the max_allowed_packet server variable.

Inserting Data Into Several Tables at Once
If you need to insert data into several tables at once, the best way to do so is to enable multi-row statements and send many

inserts to the server at once:

INSERT INTO table_name_1 (auto_increment_key, data) VALUES (NULL,"row 1");

INSERT INTO table_name_2 (auto_increment, reference, data) values (NULL, LAST_INSERT_ID(), "row 2");

LAST_INSERT_ID() is a function that returns the last auto_increment value inserted.

By default, the command line mariadb client will send the above as multiple statements.

To test this in the mariadb client you have to do:

delimiter ;;

select 1; select 2;;

delimiter ;

Note: for multi-query statements to work, your client must specify the CLIENT_MULTI_STATEMENTS flag to

mysql_real_connect() .

Server Variables That Can be Used to Tune Insert Speed

Option Description

innodb_buffer_pool_size Increase this if you have many indexes in InnoDB/XtraDB tables

2581/4161

key_buffer_size Increase this if you have many indexes in MyISAM tables

max_allowed_packet Increase this to allow bigger multi-insert statements

read_buffer_size Read block size when reading a file with LOAD DATA

See Server System Variables for the full list of server variables.

3.3.4.15 Index Condition Pushdown
Contents
1. The Idea Behind Index Condition Pushdown

2. Example Speedup

3. Status Variables

4. Index condition pushdown and virtual column indexes.

Index Condition Pushdown is an optimization that is applied for access methods that access table data through indexes:

range , ref , eq_ref , ref_or_null , and Batched Key Access.

The idea is to check part of the WHERE condition that refers to index fields (we call it Pushed Index Condition) as soon as

we've accessed the index. If the Pushed Index Condition is not satisfied, we won't need to read the whole table record.

Index Condition Pushdown is on by default. To disable it, set its optimizer_switch flag like so:

SET optimizer_switch='index_condition_pushdown=off'

When Index Condition Pushdown is used, EXPLAIN will show "Using index condition":

MariaDB [test]> explain select * from tbl where key_col1 between 10 and 11 and key_col2 like

'%foo%';

+----+-------------+-------+-------+---------------+----------+---------+------+------+------

-----------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|

+----+-------------+-------+-------+---------------+----------+---------+------+------+------

-----------------+

| 1 | SIMPLE | tbl | range | key_col1 | key_col1 | 5 | NULL | 2 | Using

index condition |

+----+-------------+-------+-------+---------------+----------+---------+------+------+------

-----------------+

The Idea Behind Index Condition Pushdown
In disk-based storage engines, making an index lookup is done in two steps, like shown on the picture:

2582/4161

Index Condition Pushdown optimization tries to cut down the number of full record reads by checking whether index records

satisfy part of the WHERE condition that can be checked for them:

How much speed will be gained depends on - How many records will be filtered out - How expensive it was to read them

The former depends on the query and the dataset. The latter is generally bigger when table records are on disk and/or are

big, especially when they have blobs.

Example Speedup
I used DBT-3 benchmark data, with scale factor=1. Since the benchmark defines very few indexes, we've added a multi-

column index (index condition pushdown is usually useful with multi-column indexes: the first component(s) is what index

access is done for, the subsequent have columns that we read and check conditions on).

alter table lineitem add index s_r (l_shipdate, l_receiptdate);

The query was to find big (l_quantity > 40) orders that were made in January 1993 that took more than 25 days to ship:

select count(*) from lineitem

where

 l_shipdate between '1993-01-01' and '1993-02-01' and

 datediff(l_receiptdate,l_shipdate) > 25 and

 l_quantity > 40;

EXPLAIN without Index Condition Pushdown:

-+----------+-------+----------------------+-----+---------+------+--------+-------------+

 | table | type | possible_keys | key | key_len | ref | rows | Extra |

-+----------+-------+----------------------+-----+---------+------+--------+-------------+

 | lineitem | range | s_r | s_r | 4 | NULL | 152064 | Using where |

-+----------+-------+----------------------+-----+---------+------+--------+-------------+

with Index Condition Pushdown:

-+-----------+-------+---------------+-----+---------+------+--------+-----------------------

-------------+

 | table | type | possible_keys | key | key_len | ref | rows | Extra

|

-+-----------+-------+---------------+-----+---------+------+--------+-----------------------

-------------+

 | lineitem | range | s_r | s_r | 4 | NULL | 152064 | Using index condition;

Using where |

-+-----------+-------+---------------+-----+---------+------+--------+-----------------------

-------------+

2583/4161

The speedup was:

Cold buffer pool: from 5 min down to 1 min

Hot buffer pool: from 0.19 sec down to 0.07 sec

Status Variables
There are two server status variables:

Variable name Meaning

Handler_icp_attempts Number of times pushed index condition was checked.

Handler_icp_match Number of times the condition was matched.

That way, the value Handler_icp_attempts - Handler_icp_match shows the number records that the server did not

have to read because of Index Condition Pushdown.

Index condition pushdown and virtual column indexes.
Currently, virtual column indexes can't be used for index condition pushdown. Instead, a generated column can be made

declared STORED. Then, index condition pushdown will be possible.

3.3.4.16 Query Limits and Timeouts
This article describes the different methods MariaDB provides to limit/timeout a query:

Contents
1. LIMIT

2. LIMIT ROWS EXAMINED

3. sql_safe_updates

4. sql_select_limit

5. max_join_size

6. max_statement_time

LIMIT

SELECT ... LIMIT row_count

or

SELECT ... LIMIT offset, row_count

or

SELECT ... LIMIT row_count OFFSET offset

The LIMIT clause restricts the number of returned rows.

LIMIT ROWS EXAMINED

SELECT ... LIMIT ROWS EXAMINED rows_limit;

Stops the query after 'rows_limit' number of rows have been examined.

sql_safe_updates
If the sql_safe_updates variable is set, one can't execute an UPDATE or DELETE statement unless one specifies a key

constraint in the WHERE clause or provide a LIMIT clause (or both).

SET @@SQL_SAFE_UPDATES=1

UPDATE tbl_name SET not_key_column=val;

-> ERROR 1175 (HY000): You are using safe update mode

 and you tried to update a table without a WHERE that uses a KEY column

sql_select_limit
2584/4161

sql_select_limit acts as an automatic LIMIT row_count to any SELECT query.

SET @@SQL_SELECT_LIMIT=1000

SELECT * from big_table;

The above is the same as:

SELECT * from big_table LIMIT 1000;

max_join_size
If the max_join_size variable (also called sql_max_join_size) is set, then it will limit any SELECT statements that

probably need to examine more than MAX_JOIN_SIZE rows.

SET @@MAX_JOIN_SIZE=1000;

SELECT count(null_column) from big_table;

->ERROR 1104 (42000): The SELECT would examine more than MAX_JOIN_SIZE rows;

 check your WHERE and use SET SQL_BIG_SELECTS=1 or SET MAX_JOIN_SIZE=# if the SELECT is okay

max_statement_time
If the max_statement_time variable is set, any query (excluding stored procedures) taking longer than the value of

max_statement_time (specified in seconds) to execute will be aborted. This can be set globally, by session, as well as

per user and per query. See Aborting statements that take longer than a certain time to execute.

3.3.4.17 Aborting Statements that Exceed a
Certain Time to Execute

Contents
1. Overview

2. User max_statement_time

3. Per-query max_statement_time

4. Limitations

5. Differences Between the MariaDB and MySQL Implementations

Overview
MariaDB 10.1.1 introduced the max_statement_time system variable. When set to a non-zero value, any queries taking

longer than this time in seconds will be aborted. The default is zero, and no limits are then applied. The aborted query has

no effect on any larger transaction or connection contexts. The variable is of type double, thus you can use subsecond

timeout. For example you can use value 0.01 for 10 milliseconds timeout.

The value can be set globally or per session, as well as per user or per query (see below). Replicas are not affected by this

variable, however from MariaDB 10.10, there is slave_max_statement_time which serves the same purpose on replicas

only.

An associated status variable, max_statement_time_exceeded, stores the number of queries that have exceeded the

execution time specified by max_statement_time, and a MAX_STATEMENT_TIME_EXCEEDED column was added to the

CLIENT_STATISTICS and USER STATISTICS Information Schema tables.

The feature was based upon a patch by Davi Arnaut.

User max_statement_time
max_statement_time can be stored per user with the GRANT ... MAX_STATEMENT_TIME syntax.

Per-query max_statement_time
By using max_statement_time in conjunction with SET STATEMENT, it is possible to limit the execution time of individual

queries. For example:

2585/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/

SET STATEMENT max_statement_time=100 FOR

 SELECT field1 FROM table_name ORDER BY field1;

Limitations
max_statement_time does not work in embedded servers.

max_statement_time does not work for COMMIT statements in a Galera cluster (see MDEV-18673 for discussion).

Differences Between the MariaDB and MySQL
Implementations
MySQL 5.7.4 introduced similar functionality, but the MariaDB implementation differs in a number of ways.

The MySQL version of max_statement_time (max_execution_time) is defined in millseconds, not seconds

MySQL's implementation can only kill SELECTs, while MariaDB's can kill any queries (excluding stored procedures).

MariaDB only introduced the max_statement_time_exceeded status variable, while MySQL also introduced a number

of other variables which were not seen as necessary in MariaDB.

The SELECT MAX_STATEMENT_TIME = N ... syntax is not valid in MariaDB. In MariaDB one should use SET

STATEMENT MAX_STATEMENT_TIME=N FOR... .

2.5.3 Partition Pruning and Selection

3.3.4.19 Big DELETEs
Contents
1. The problem

2. Why it is a problem

3. InnoDB and undo

4. PARTITION

5. Deleting in chunks

6. InnoDB chunking recommendation

7. Iterating through a compound key

8. Reclaiming the disk space

9. Deleting more than half a table

10. Non-deterministic replication

11. Replication and KILL

12. SBR vs RBR; Galera

13. Postlog

The problem
How to DELETE lots of rows from a large table? Here is an example of purging items older than 30 days:

DELETE FROM tbl WHERE

 ts < CURRENT_DATE() - INTERVAL 30 DAY

If there are millions of rows in the table, this statement may take minutes, maybe hours.

Any suggestions on how to speed this up?

Why it is a problem
MyISAM will lock the table during the entire operation, thereby nothing else can be done with the table.

InnoDB won't lock the table, but it will chew up a lot of resources, leading to sluggishness.

InnoDB has to write the undo information to its transaction logs; this significantly increases the I/O required.

Replication, being asynchronous, will effectively be delayed (on Slaves) while the DELETE is running.

InnoDB and undo
To be ready for a crash, a transactional engine such as InnoDB will record what it is doing to a log file. To make that

2586/4161

https://jira.mariadb.org/browse/MDEV-18673

somewhat less costly, the log file is sequentially written. If the log files you have (there are usually 2) fill up because the

delete is really big, then the undo information spills into the actual data blocks, leading to even more I/O.

Deleting in chunks avoids some of this excess overhead.

Limited benchmarking of total delete elapsed time show two observations:

Total delete time approximately doubles above some 'chunk' size (as opposed to below that threshold). I do not have

a formula relating the log file size with the threshold cutoff.

Chunk size below several hundred rows is slower. This is probably because the overhead of starting/ending each

chunk dominates the timing.

Solutions

PARTITION -- Requires some careful setup, but is excellent for purging a time-base series.

DELETE in chunks -- Carefully walk through the table N rows at a time.

PARTITION
The idea here is to have a sliding window of partitions. Let's say you need to purge news articles after 30 days. The

"partition key" would be the datetime (or timestamp) that is to be used for purging, and the PARTITIONs would be "range".

Every night, a cron job would come along and build a new partition for the next day, and drop the oldest partition.

Dropping a partition is essentially instantaneous, much faster than deleting that many rows. However, you must design the

table so that the entire partition can be dropped. That is, you cannot have some items living longer than others.

PARTITION tables have a lot of restrictions, some are rather weird. You can either have no UNIQUE (or PRIMARY) key on

the table, or every UNIQUE key must include the partition key. In this use case, the partition key is the datetime. It should

not be the first part of the PRIMARY KEY (if you have a PRIMARY KEY).

You can PARTITION InnoDB or MyISAM tables.

Since two news articles could have the same timestamp, you cannot assume the partition key is sufficient for uniqueness of

the PRIMARY KEY, so you need to find something else to help with that.

Reference implementation for Partition maintenance

MariaDB docs on PARTITION

Deleting in chunks
Although the discussion in this section talks about DELETE, it can be used for any other "chunking", such as, say, UPDATE,

or SELECT plus some complex processing.

(This discussion applies to both MyISAM and InnoDB.)

When deleting in chunks, be sure to avoid doing a table scan. The code below is good at that; it scans no more than 1001

rows in any one query. (The 1000 is tunable.)

Assuming you have news articles that need to be purged, and you have a schema something like

 CREATE TABLE tbl

 id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 ts TIMESTAMP,

 ...

 PRIMARY KEY(id)

Then, this pseudo-code is a good way to delete the rows older than 30 days:

 @a = 0

 LOOP

 DELETE FROM tbl

 WHERE id BETWEEN @a AND @a+999

 AND ts < DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)

 SET @a = @a + 1000

 sleep 1 -- be a nice guy

 UNTIL end of table

Notes (Most of these caveats will be covered later):

It uses the PK instead of the secondary key. This gives much better locality of disk hits, especially for InnoDB.

You could (should?) do something to avoid walking through recent days but doing nothing. Caution -- the code for this

could be costly.

2587/4161

The 1000 should be tweaked so that the DELETE usually takes under, say, one second.

No INDEX on ts is needed. (This helps INSERTs a little.)

If your PRIMARY KEY is compound, the code gets messier.

This code will not work without a numeric PRIMARY or UNIQUE key.

Read on, we'll develop messier code to deal with most of these caveats.

If there are big gaps in `id` values (and there will after the first purge), then

 @a = SELECT MIN(id) FROM tbl

 LOOP

 SELECT @z := id FROM tbl WHERE id >= @a ORDER BY id LIMIT 1000,1

 If @z is null

 exit LOOP -- last chunk

 DELETE FROM tbl

 WHERE id >= @a

 AND id < @z

 AND ts < DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)

 SET @a = @z

 sleep 1 -- be a nice guy, especially in replication

 ENDLOOP

 # Last chunk:

 DELETE FROM tbl

 WHERE id >= @a

 AND ts < DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)

That code works whether id is numeric or character, and it mostly works even if id is not UNIQUE. With a non-unique key,

the risk is that you could be caught in a loop whenever @z==@a. That can be detected and fixed thus:

 ...

 SELECT @z := id FROM tbl WHERE id >= @a ORDER BY id LIMIT 1000,1

 If @z == @a

 SELECT @z := id FROM tbl WHERE id > @a ORDER BY id LIMIT 1

 ...

The drawback is that there could be more than 1000 items with a single id. In most practical cases, that is unlikely.

If you do not have a primary (or unique) key defined on the table, and you have an INDEX on ts, then consider

 LOOP

 DELETE FROM tbl

 WHERE ts < DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY)

 ORDER BY ts -- to use the index, and to make it deterministic

 LIMIT 1000

 UNTIL no rows deleted

This technique is NOT recommended because the LIMIT leads to a warning on replication about it being non-deterministic

(discussed below).

InnoDB chunking recommendation
Have a 'reasonable' size for innodb_log_file_size.

Use AUTOCOMMIT=1 for the session doing the deletions.

Pick about 1000 rows for the chunk size.

Adjust the row count down if asynchronous replication (Statement Based) causes too much delay on the Slaves or

hogs the table too much.

Iterating through a compound key
To perform the chunked deletes recommended above, you need a way to walk through the PRIMARY KEY. This can be

difficult if the PK has more than one column in it.

To efficiently to do compound 'greater than':

Assume that you left off at ($g, $s) (and have handled that row):

2588/4161

 INDEX(Genus, species)

 SELECT/DELETE ...

 WHERE Genus >= '$g' AND (species > '$s' OR Genus > '$g')

 ORDER BY Genus, species

 LIMIT ...

Addenda: The above AND/OR works well in older versions of MySQL; this works better in MariaDB and newer versions of

MySQL:

 WHERE (Genus = '$g' AND species > '$s') OR Genus > '$g')

A caution about using @variables for strings. If, instead of '$g', you use @g, you need to be careful to make sure that @g

has the same CHARACTER SET and COLLATION as `Genus`, else there could be a charset/collation conversion on the fly

that prevents the use of the INDEX. Using the INDEX is vital for performance. It may require a COLLATE clause on SET

NAMES and/or the @g in the SELECT.

Reclaiming the disk space
This is costly. (Switch to the PARTITION solution if practical.)

MyISAM leaves gaps in the table (.MYD file); OPTIMIZE TABLE will reclaim the freed space after a big delete. But it may

take a long time and lock the table.

InnoDB is block-structured, organized in a BTree on the PRIMARY KEY. An isolated deleted row leaves a block less full. A

lot of deleted rows can lead to coalescing of adjacent blocks. (Blocks are normally 16KB - see innodb_page_size.)

In InnoDB, there is no practical way to reclaim the freed space from ibdata1, other than to reuse the freed blocks eventually.

The only option with innodb_file_per_table = 0 is to dump ALL tables, remove ibdata*, restart, and reload. That is rarely

worth the effort and time.

InnoDB, even with innodb_file_per_table = 1, won't give space back to the OS, but at least it is only one table to rebuild

with. In this case, something like this should work:

 CREATE TABLE new LIKE main;

 INSERT INTO new SELECT * FROM main; -- This could take a long time

 RENAME TABLE main TO old, new TO main; -- Atomic swap

 DROP TABLE old; -- Space freed up here

You do need enough disk space for both copies. You must not write to the table during the process.

Deleting more than half a table
The following technique can be used for any combination of

Deleting a large portion of the table more efficiently

Add PARTITIONing

Converting to innodb_file_per_table = ON

Defragmenting

This can be done by chunking, or (if practical) all at once:

 -- Optional: SET GLOBAL innodb_file_per_table = ON;

 CREATE TABLE New LIKE Main;

 -- Optional: ALTER TABLE New ADD PARTITION BY RANGE ...;

 -- Do this INSERT..SELECT all at once, or with chunking:

 INSERT INTO New

 SELECT * FROM Main

 WHERE ...; -- just the rows you want to keep

 RENAME TABLE main TO Old, New TO Main;

 DROP TABLE Old; -- Space freed up here

Notes:

You do need enough disk space for both copies.

You must not write to the table during the process. (Changes to Main may not be reflected in New.)

Non-deterministic replication
2589/4161

Any UPDATE, DELETE, etc with LIMIT that is replicated to slaves (via Statement Based Replication) may cause

inconsistencies between the Master and Slaves. This is because the actual order of the records discovered for

updating/deleting may be different on the slave, thereby leading to a different subset being modified. To be safe, add

ORDER BY to such statements. Moreover, be sure the ORDER BY is deterministic -- that is, the fields/expressions in the

ORDER BY are unique.

An example of an ORDER BY that does not quite work: Assume there are multiple rows for each 'date':

 DELETE * FROM tbl ORDER BY date LIMIT 111

Given that id is the PRIMARY KEY (or UNIQUE), this will be safe:

 DELETE * FROM tbl ORDER BY date, id LIMIT 111

Unfortunately, even with the ORDER BY, MySQL has a deficiency that leads to a bogus warning in mysqld.err. See

Spurious "Statement is not safe to log in statement format." warnings

Some of the above code avoids this spurious warning by doing

 SELECT @z := ... LIMIT 1000,1; -- not replicated

 DELETE ... BETWEEN @a AND @z; -- deterministic

That pair of statements guarantees no more than 1000 rows are touched, not the whole table.

Replication and KILL
If you KILL a DELETE (or any? query) on the master in the middle of its execution, what will be replicated?

If it is InnoDB, the query should be rolled back. (Exceptions??)

In MyISAM, rows are DELETEd as the statement is executed, and there is no provision for ROLLBACK. Some of the rows

will be deleted, some won't. You probably have no clue of how much was deleted. In a single server, simply run the delete

again. The delete is put into the binlog, but with error 1317. Since replication is supposed to keep the master and slave in

sync, and since it has no clue of how to do that, replication stops and waits for manual intervention. In a HA (High Available)

system using replication, this is a minor disaster. Meanwhile, you need to go to each slave(s) and verify that it is stuck for

this reason, then do

 SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;

 START SLAVE;

Then (presumably) re-executing the DELETE will finish the aborted task.

(That is yet another reason to move all your tables from MyISAM to InnoDB.)

SBR vs RBR; Galera
TBD -- "Row Based Replication" may impact this discussion.

Postlog
The tips in this document apply to MySQL, MariaDB, and Percona.

3.3.4.20 Charset Narrowing Optimization
The Charset Narrowing optimization handles equality comparisons like:

utf8mb3_key_column=utf8mb4_expression

It enables the optimizer to construct ref access to utf8mb3_key_column based on this equality. The optimization

supports comparisons of columns that use utf8mb3_general_ci to expressions that use utf8mb4_general_ci .

The optimization was introduced in MariaDB 10.6.16, MariaDB 10.10.7, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3

and MariaDB 11.2.2, where it is OFF by default.

2590/4161

Description
MariaDB supports both the UTF8MB3 and UTF8MB4 character sets. It is possible to construct join queries that compare

values in UTF8MB3 to UTF8MB4.

Suppose, we have the table 'users that uses UTF8MB3:

create table users (

 user_name_mb4 varchar(100) collate utf8mb4_general_ci,

 ...

);

and table orders that uses UTF8MB4:

create table orders (

 user_name_mb3 varchar(100) collate utf8mb3_general_ci,

 ...,

 INDEX idx1(user_name_mb3)

);

One can join users to orders on user_name:

select * from orders, users where orders.user_name_mb3=users.user_name_mb4;

Internally the optimizer will handle the equality by converting the UTF8MB3 value into UTF8MB4 and then doing the

comparison. One can see the call to CONVERT in EXPLAIN FORMAT=JSON output or Optimizer Trace:

convert(orders.user_name_mb3 using utf8mb4) = users.user_name_mb4

This produces the expected result but the query optimizer is not able to use the index over orders.user_name_mb3 to find

matches for values of users.user_name_mb4 .

The EXPLAIN of the above query looks like this:

explain select * from orders, users where orders.user_name_mb3=users.user_name_mb4;

+------+-------------+--------+------+---------------+------+---------+------+-------+---+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+--------+------+---------------+------+---------+------+-------+---+

| 1 | SIMPLE | users | ALL | NULL | NULL | NULL | NULL | 1000 | |

| 1 | SIMPLE | orders | ALL | NULL | NULL | NULL | NULL | 10330 | Using where; Using join buffer (flat, BNL join) |

+------+-------------+--------+------+---------------+------+---------+------+-------+---+

The Charset Narrowing optimization enables the optimizer to perform the comparison between UTF8MB3 and UTF8MB4

values by "narrowing" the value in UTF8MB4 to UTF8MB3. The CONVERT call is no longer needed, and the optimizer is

able to use the equality to construct ref access:

set optimizer_switch='cset_narrowing=on';

explain select * from orders, users where orders.user_name_mb3=users.user_name_mb4;

+------+-------------+--------+------+---------------+------+---------+---------------------+------+-----------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+--------+------+---------------+------+---------+---------------------+------+-----------------------+

| 1 | SIMPLE | users | ALL | NULL | NULL | NULL | NULL | 1000 | Using where |

| 1 | SIMPLE | orders | ref | idx1 | idx1 | 303 | users.user_name_mb4 | 1 | Using index condition |

+------+-------------+--------+------+---------------+------+---------+---------------------+------+-----------------------+

Controlling the Optimization
The optimization is controlled by an optimizer_switch flag. Specify:

set optimizer_switch='cset_narrowing=on';

to enable the optimization.

2591/4161

References
MDEV-32113 : utf8mb3_key_col=utf8mb4_value cannot be used for ref access

Blog post: Making <tbl.utf8mb3_key_column=utf8mb4_expr= sargable

3.3.4.21 Data Sampling: Techniques for
Efficiently Finding a Random Row

Contents
1. Fetching random rows from a table (beyond ORDER BY RAND())

1. The problem

2. Metrics

3. Case: Consecutive AUTO_INCREMENT without gaps, 1 row returned

4. Case: Consecutive AUTO_INCREMENT without gaps, 10 rows

5. Case: AUTO_INCREMENT with gaps, 1 or more rows returned

6. Case: Extra FLOAT column for randomizing

7. Case: UUID or MD5 column

Fetching random rows from a table (beyond ORDER BY
RAND())

The problem

One would like to do "SELECT ... ORDER BY RAND() LIMIT 10" to get 10 rows at random. But this is slow. The optimizer

does

Fetch all the rows -- this is costly

Append RAND() to the rows

Sort the rows -- also costly

Pick the first 10.

All the algorithms given below are "fast", but most introduce flaws:

Bias -- some rows are more like to be fetched than others.

Repetitions -- If two random sets contain the same row, they are likely to contain other dups.

Sometimes failing to fetch the desired number of rows.

"Fast" means avoiding reading all the rows. There are many techniques that require a full table scan, or at least an index

scan. They are not acceptable for this list. There is even a technique that averages half a scan; it is relegated to a footnote.

Metrics

Here's a way to measure performance without having a big table.

 FLUSH STATUS;

 SELECT ...;

 SHOW SESSION STATUS LIKE 'Handler%';

If some of the "Handler" numbers look like the number of rows in the table, then there was a table scan.

None of the queries presented here need a full table (or index) scan. Each has a time proportional to the number of rows

returned.

Virtually all published algorithms involve a table scan. The previously published version of this blog had, embarrassingly,

several algorithms that had table scans.

Sometimes the scan can be avoided via a subquery. For example, the first of these will do a table scan; the second will not.

SELECT * FROM RandTest AS a

 WHERE id = FLOOR(@min + (@max - @min + 1) * RAND()); -- BAD: table scan

SELECT *

 FROM RandTest AS a

 JOIN (

 SELECT FLOOR(@min + (@max - @min + 1) * RAND()) AS id -- Good; single eval.

) b USING (id);

2592/4161

https://jira.mariadb.org/browse/MDEV-32113
https://petrunia.net/2023/10/11/making-tbl-utf8mb3_key_columnutf8mb4_expr-sargable/

Case: Consecutive AUTO_INCREMENT without gaps, 1 row returned

Requirement: AUTO_INCREMENT id

Requirement: No gaps in id

 SELECT r.*

 FROM (

 SELECT FLOOR(mm.min_id + (mm.max_id - mm.min_id + 1) * RAND()) AS id

 FROM (

 SELECT MIN(id) AS min_id,

 MAX(id) AS max_id

 FROM RandTest

) AS mm

) AS init

 JOIN RandTest AS r ON r.id = init.id;

(Of course, you might be able to simplify this. For example, min_id is likely to be 1. Or precalculate limits into @min and

@max.)

Case: Consecutive AUTO_INCREMENT without gaps, 10 rows

Requirement: AUTO_INCREMENT id

Requirement: No gaps in id

Flaw: Sometimes delivers fewer than 10 rows

 -- First select is one-time:

 SELECT @min := MIN(id),

 @max := MAX(id)

 FROM RandTest;

 SELECT DISTINCT *

 FROM RandTest AS a

 JOIN (

 SELECT FLOOR(@min + (@max - @min + 1) * RAND()) AS id

 FROM RandTest

 LIMIT 11 -- more than 10 (to compensate for dups)

) b USING (id)

 LIMIT 10; -- the desired number of rows

The FLOOR expression could lead to duplicates, hence the inflated inner LIMIT. There could (rarely) be so many duplicates

that the inflated LIMIT leads to fewer than the desired 10 different rows. One approach to that Flaw is to rerun the query if it

delivers too few rows.

A variant:

 SELECT r.*

 FROM (

 SELECT FLOOR(mm.min_id + (mm.max_id - mm.min_id + 1) * RAND()) AS id

 FROM (

 SELECT MIN(id) AS min_id,

 MAX(id) AS max_id

 FROM RandTest

) AS mm

 JOIN (SELECT id dummy FROM RandTest LIMIT 11) z

) AS init

 JOIN RandTest AS r ON r.id = init.id

 LIMIT 10;

Again, ugly but fast, regardless of table size.

Case: AUTO_INCREMENT with gaps, 1 or more rows returned

Requirement: AUTO_INCREMENT, possibly with gaps due to DELETEs, etc

Flaw: Only semi-random (rows do not have an equal chance of being picked), but it does partially compensate for the

gaps

Flaw: The first and last few rows of the table are less likely to be delivered.

This gets 50 "consecutive" ids (possibly with gaps), then delivers a random 10 of them.

2593/4161

-- First select is one-time:

SELECT @min := MIN(id),

 @max := MAX(id)

 FROM RandTest;

SELECT a.*

 FROM RandTest a

 JOIN (SELECT id FROM

 (SELECT id

 FROM (SELECT @min + (@max - @min + 1 - 50) * RAND()

 AS start FROM DUAL) AS init

 JOIN RandTest y

 WHERE y.id > init.start

 ORDER BY y.id

 LIMIT 50 -- Inflated to deal with gaps

) z ORDER BY RAND()

 LIMIT 10 -- number of rows desired (change to 1 if looking for a single row)

) r ON a.id = r.id;

Yes, it is complex, but yes, it is fast, regardless of the table size.

Case: Extra FLOAT column for randomizing

(Unfinished: need to check these.)

Assuming `rnd` is a FLOAT (or DOUBLE) populated with RAND() and INDEXed:

Requirement: extra, indexed, FLOAT column

Flaw: Fetches 10 adjacent rows (according to `rnd`), hence not good randomness

Flaw: Near 'end' of table, can't find 10 rows.

 SELECT r.*

 FROM (SELECT RAND() AS start FROM DUAL) init

 JOIN RandTest r

 WHERE r.rnd >= init.start

 ORDER BY r.rnd

 LIMIT 10;

These two variants attempt to resolve the end-of-table flaw:

 SELECT r.*

 FROM (SELECT RAND() * (SELECT rnd

 FROM RandTest

 ORDER BY rnd DESC

 LIMIT 10,1) AS start

) AS init

 JOIN RandTest r

 WHERE r.rnd > init.start

 ORDER BY r.rnd

 LIMIT 10;

 SELECT @start := RAND(),

 @cutoff := CAST(1.1 * 10 + 5 AS DECIMAL(20,8)) / TABLE_ROWS

 FROM information_schema.TABLES

 WHERE TABLE_SCHEMA = 'dbname'

 AND TABLE_NAME = 'RandTest'; -- 0.0030

 SELECT d.*

 FROM (

 SELECT a.id

 FROM RandTest a

 WHERE rnd BETWEEN @start AND @start + @cutoff

) sample

 JOIN RandTest d USING (id)

 ORDER BY rand()

 LIMIT 10;

Case: UUID or MD5 column

Requirement: UUID/GUID/MD5/SHA1 column exists and is indexed.

2594/4161

Similar code/benefits/flaws to AUTO_INCREMENT with gaps.

Needs 7 random HEX digits:

RIGHT(HEX((1<<24) * (1+RAND())), 6)

can be used as a `start` for adapting a gapped AUTO_INCREMENT case. If the field is BINARY instead of hex, then

UNHEX(RIGHT(HEX((1<<24) * (1+RAND())), 6))

3.3.4.22 Data Warehousing High Speed
Ingestion

Contents
1. The problem

2. Overview of solution

3. Injection speed

4. Normalization

5. Flip-flop staging

6. Engine choice

7. Summarization

8. Replication Issues

9. Sharding

10. Push me vs pull me

The problem
You are ingesting lots of data. Performance is bottlenecked in the INSERT area.

This will be couched in terms of Data Warehousing, with a huge `Fact` table and Summary (aggregation) tables.

Overview of solution
Have a separate staging table.

Inserts go into `Staging`.

Normalization and Summarization reads Staging, not Fact.

After normalizing, the data is copied from Staging to Fact.

`Staging` is one (or more) tables in which the data lives only long enough to be handed off to Normalization, Summary, and

the Fact tables.

Since we are probably talking about a billion-row table, shrinking the width of the Fact table by normalizing (as mentioned

here). Changing an INT to a MEDIUMINT will save a GB. Replacing a string by an id (normalizing) saves many GB. This

helps disk space and cacheability, hence speed.

Injection speed
Some variations:

Big dump of data once an hour, versus continual stream of records.

The input stream could be single-threaded or multi-threaded.

You might have 3rd party software tying your hands.

Generally the fastest injection rate can be achieved by "staging" the INSERTs in some way, then batch processing the

staged records. This blog discusses various techniques for staging and batch processing.

Normalization
Let's say your Input has a VARCHAR `host_name` column, but you need to turn that into a smaller MEDIUMINT `host_id` in

the Fact table. The "Normalization" table, as I call it, looks something like

2595/4161

CREATE TABLE Hosts (

 host_id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,

 host_name VARCHAR(99) NOT NULL,

 PRIMARY KEY (host_id), -- for mapping one direction

 INDEX(host_name, host_id) -- for mapping the other direction

) ENGINE=InnoDB; -- InnoDB works best for Many:Many mapping table

Here's how you can use `Staging` as an efficient way achieve the swap from name to id.

Staging has two fields (for this normalization example):

 host_name VARCHAR(99) NOT NULL, -- Comes from the insertion proces

 host_id MEDIUMINT UNSIGNED NULL, -- NULL to start with; see code below

Meawhile, the Fact table has:

 host_id MEDIUMINT UNSIGNED NOT NULL,

SQL #1 (of 2):

 # This should not be in the main transaction, and it should be done with autocommit = ON

 # In fact, it could lead to strange errors if this were part

 # of the main transaction and it ROLLBACKed.

 INSERT IGNORE INTO Hosts (host_name)

 SELECT DISTINCT s.host_name

 FROM Staging AS s

 LEFT JOIN Hosts AS n ON n.host_name = s.host_name

 WHERE n.host_id IS NULL;

By isolating this as its own transaction, we get it finished in a hurry, thereby minimizing blocking. By saying IGNORE, we

don't care if other threads are 'simultaneously' inserting the same host_names.

There is a subtle reason for the LEFT JOIN. If, instead, it were INSERT IGNORE..SELECT DISTINCT, then the INSERT

would preallocate auto_increment ids for as many rows as the SELECT provides. This is very likely to "burn" a lot of ids,

thereby leading to overflowing MEDIUMINT unnecessarily. The LEFT JOIN leads to finding just the new ids that are needed

(except for the rare possibility of a 'simultaneous' insert by another thread). More rationale: Mapping table

SQL #2:

 # Also not in the main transaction, and it should be with autocommit = ON

 # This multi-table UPDATE sets the ids in Staging:

 UPDATE Hosts AS n

 JOIN Staging AS s ON s.host_name = n host_name

 SET s.host_id = n.host_id

This gets the IDs, whether already existing, set by another thread, or set by SQL #1.

If the size of `Staging` changes depending on the busy versus idle times of the day, this pair of SQL statements has another

comforting feature. The more rows in `Staging`, the more efficient the SQL runs, thereby helping compensate for the "busy"

times.

The companion Data Warehouse article folds SQL #2 into the INSERT INTO Fact. But you may need host_id for further

normalization steps and/or Summarization steps, so this explicit UPDATE shown here is often better.

Flip-flop staging
The simple way to stage is to ingest for a while, then batch-process what is in `Staging`. But that leads to new records piling

up waiting to be staged. To avoid that issue, have 2 processes:

one process (or set of processes) for INSERTing into `Staging`;

one process (or set of processes) to do the batch processing (normalization, summarization).

To keep the processes from stepping on each other, we have a pair of staging tables:

`Staging` is being INSERTed into;

`StageProcess` is one being processed for normalization, summarization, and moving to the Fact table. A separate

process does the processing, then swaps the tables:

2596/4161

 DROP TABLE StageProcess;

 CREATE TABLE StageProcess LIKE Staging;

 RENAME TABLE Staging TO tmp, StageProcess TO Staging, tmp TO StageProcess;

This may not seem like the shortest way to do it, but has these features:

The DROP + CREATE might be faster than TRUNCATE, which is the desired effect.

The RENAME is atomic, so the INSERT process(es) never find that `Staging` is missing.

A variant on the 2-table flip-flop is to have a separate `Staging` table for each Insertion process. The Processing process

would run around to each Staging in turn.

A variant on that would be to have a separate processing process for each Insertion process.

The choice depends on which is faster (insertion or processing). There are tradeoffs; a single processing thread avoids

some locks, but lacks some parallelism.

Engine choice
`Fact` table -- InnoDB, if for no other reason than that a system crash would not need a REPAIR TABLE. (REPAIRing a

billion-row MyISAM table can take hours or days.)

Normalization tables -- InnoDB, primarily because it can be done efficiently with 2 indexes, whereas, MyISAM would need 4

to achieve the same efficiency.

`Staging` -- Lots of options here.

If you have multiple Inserters and a single Staging table, InnoDB is desirable due to row-level, not table-level, locking.

MEMORY may be the fastest and it avoids I/O. This is good for a single staging table.

For multiple Inserters, a separate Staging table for each Inserter is desired.

For multiple Inserters into a single Staging table, InnoDB may be faster. (MEMORY does table-level locking.)

With one non-InnoDB Staging table per Inserter, using an explicit LOCK TABLE avoids repeated implicit locks on

each INSERT.

But, if you are doing LOCK TABLE and the Processing thread is separate, an UNLOCK is necessary periodically to

let the RENAME grab the table.

"Batch INSERTs" (100-1000 rows per SQL) eliminates much of the issues of the above bullet items.

Confused? Lost? There are enough variations in applications that make it impractical to predict what is best. Or, simply

good enough. Your ingestion rate may be low enough that you don't hit the brick walls that I am helping you avoid.

Should you do "CREATE TEMPORARY TABLE"? Probably not. Consider `Staging` as part of the data flow, not to be

DROPped.

Summarization
This is mostly covered here: Summary Tables

Summarize from the Staging table instead of the Fact table.

Replication Issues
Row Based Replication (RBR) is probably the best option.

The following allows you to keep more of the Ingestion process in the Master, thereby not bogging down the Slave(s) with

writes to the Staging table.

RBR

`Staging` is in a separate database

That database is not replicated (binlog-ignore-db on Master)

In the Processing steps, USE that database, reach into the main db via syntax like "MainDb.Hosts". (Otherwise, the

binlog-ignore-db does the wrong thing.)

That way

Writes to `Staging` are not replicated.

Normalization sends only the few updates to the normalization tables.

Summarization sends only the updates to the summary tables.

Flip-flop does not replicate the DROP, CREATE or RENAME.

Sharding
2597/4161

You could possibly spread the data you are trying ingest across multiple machines in a predictable way (sharding on hash,

range, etc). Running "reports" on a sharded Fact table is a challenge unto itself. On the other hand, Summary Tables rarely

get too big to manage on a single machine.

For now, Sharding is beyond the scope of this blog.

Push me vs pull me
I have implicitly assumed the data is being pushed into the database. If, instead, you are "pulling" data from some source(s),

then there are some different considerations.

Case 1: An hourly upload; run via cron

1. Grab the upload, parse it 2. Put it into the Staging table 3. Normalize -- each SQL in its own transaction (autocommit) 4.

BEGIN 5. Summarize 6. Copy from Staging to Fact. 7. COMMIT

If you need parallelism in Summarization, you will have to sacrifice the transactional integrity of steps 4-7.

Caution: If these steps add up to more than an hour, you are in deep dodo.

Case 2: You are polling for the data

It is probably reasonable to have multiple processes doing this, so it will be detailed about locking.

0. Create a Staging table for this polling processor. Loop: 1. With some locked mechanism, decide which 'thing' to poll. 2.

Poll for the data, pull it in, parse it. (Potentially polling and parsing are significantly costly) 3. Put it into the process-specific

Staging table 4. Normalize -- each SQL in its own transaction (autocommit) 5. BEGIN 6. Summarize 7. Copy from Staging

to Fact. 8. COMMIT 9. Declare that you are finished with this 'thing' (see step 1) EndLoop.

iblog_file_size should be larger than the change in the STATUS "Innodb_os_log_written" across the BEGIN...COMMIT

transaction (for either Case).

3.3.4.23 Data Warehousing Summary Tables
Contents
1. Preface

2. Summary tables for data warehouse "reports"

3. General structure of a summary table

4. Example

5. When to augment the summary table(s)?

6. Summarizing while Inserting (one row at a time)

7. Summarizing periodically vs as-needed

8. Summarizing while batch inserting

9. Summarizing when using a staging table

10. Summary table: PK or not?

11. Averages, etc.

12. Staging table

13. Extreme design

14. "Left Off"

15. Flip-flop staging

16. Multiple summary tables

17. Games on summary tables

Preface
This document discusses the creation and maintenance of "Summary Tables". It is a companion to the document on Data

Warehousing Techniques.

The basic terminology ("Fact Table", "Normalization", etc) is covered in that document.

Summary tables for data warehouse "reports"
Summary tables are a performance necessity for large tables. MariaDB and MySQL do not provide any automated way to

create such, so I am providing techniques here.

(Other vendors provide something similar with "materialized views".)

When you have millions or billions of rows, it takes a long time to summarize the data to present counts, totals, averages,

etc, in a size that is readily digestible by humans. By computing and saving subtotals as the data comes in, one can make

"reports" run much faster. (I have seen 10x to 1000x speedups.) The subtotals go into a "summary table". This document

2598/4161

guides you on efficiency in both creating and using such tables.

General structure of a summary table
A summary table includes two sets of columns:

Main KEY: date + some dimension(s)

Subtotals: COUNT(*), SUM(...), ...; but not AVG()

The "date" might be a DATE (a 3-byte native datatype), or an hour, or some other time interval. A 3-byte MEDIUMINT

UNSIGNED 'hour' can be derived from a DATETIME or TIMESTAMP via

 FLOOR(UNIX_TIMESTAMP(dt) / 3600)

 FROM_UNIXTIME(hour * 3600)

The "dimensions" (a DW term) are some of the columns of the "Fact" table. Examples: Country, Make, Product, Category,

Host Non-dimension examples: Sales, Quantity, TimeSpent

There would be one or more indexes, usually starting with some dimensions and ending with the date field. By ending with

the date, one can efficiently get a range of days/weeks/etc. even when each row summarizes only one day.

There will typically be a "few" summary tables. Often one summary table can serve multiple purposes sufficiently efficiently.

As a rule of thumb, a summary table will have one-tenth the number of rows as the Fact table. (This number is very loose.)

Example
Let's talk about a large chain of car dealerships. The Fact table has all the sales with columns such as datetime,

salesman_id, city, price, customer_id, make, model, model_year. One Summary table might focus on sales:

 PRIMARY KEY(city, datetime),

 Aggregations: ct, sum_price

 # Core of INSERT..SELECT:

 DATE(datetime) AS date, city, COUNT(*) AS ct, SUM(price) AS sum_price

 # Reporting average price for last month, broken down by city:

 SELECT city,

 SUM(sum_price) / SUM(ct) AS 'AveragePrice'

 FROM SalesSummary

 WHERE datetime BETWEEN ...

 GROUP BY city;

 # Monthly sales, nationwide, from same summary table:

 SELECT MONTH(datetime) AS 'Month',

 SUM(ct) AS 'TotalSalesCount'

 SUM(sum_price) AS 'TotalDollars'

 FROM SalesSummary

 WHERE datetime BETWEEN ...

 GROUP BY MONTH(datetime);

 # This might benefit from a secondary INDEX(datetime)

When to augment the summary table(s)?
"Augment" in this section means to add new rows into the summary table or increment the counts in existing rows.

Plan A: "While inserting" rows into the Fact table, augment the summary table(s). This is simple, and workable for a smaller

DW database (under 10 Fact table rows per second). For larger DW databases, Plan A likely to be too costly to be practical.

Plan B: "Periodically", via cron or an EVENT.

Plan C: "As needed". That is, when someone asks for a report, the code first updates the summary tables that will be

needed.

Plan D: "Hybrid" of B and C. C, by itself, can led to long delays for the report. By also doing B, those delays can be kept low.

Plan E: (This is not advised.) "Rebuild" the entire summary table from the entire Fact table. The cost of this is prohibitive for

large tables. However, Plan E may be needed when you decide to change the columns of a Summary Table, or discover a

flaw in the computations. To lessen the impact of an entire build, adapt the chunking techniques in Deleting in chunks .

Plan F: "Staging table". This is primarily for very high speed ingestion. It is mentioned briefly in this blog, and discussed

more thoroughly in the companion blog: High Speed Ingestion
2599/4161

Summarizing while Inserting (one row at a time)

 INSERT INTO Fact ...;

 INSERT INTO Summary (..., ct, foo, ...) VALUES (..., 1, foo, ...)

 ON DUPLICATE KEY UPDATE ct = ct+1, sum_foo = sum_foo + VALUES(foo), ...;

IODKU (Insert On Duplicate Key Update) will update an existing row or create a new row. It knows which to do based on the

Summary table's PRIMARY KEY.

Caution: This approach is costly, and will not scale to an ingestion rate of over, say, 10 rows per second (Or maybe

50/second on SSDs). More discussion later.

Summarizing periodically vs as-needed
If your reports need to be up-to-the-second, you need "as needed" or "hybrid". If your reports have less urgency (eg, weekly

reports that don't include 'today'), then "periodically" might be best.

For a daily summaries, augmenting the summary tables could be done right after midnight. But, beware of data coming

"late".

For both "periodic" and "as needed", you need a definitive way of keeping track of where you "left off".

Case 1: You insert into the Fact table first and it has an AUTO_INCREMENT id: Grab MAX(id) as the upper bound for

summarizing and put it either into some other secure place (an extra table), or put it into the row(s) in the Summary table as

you insert them. (Caveat: AUTO_INCREMENT ids do not work well in multi-master, including Galera, setups.)

Case 2: If you are using a 'staging' table, there is no issue. (More on staging tables later.)

Summarizing while batch inserting
This applies to multi-row (batch) INSERT and LOAD DATA.

The Fact table needs an AUTO_INCREMENT id, and you need to be able to find the exact range of ids inserted. (This may

be impractical in any multi-master setup.)

Then perform bulk summarization using

 FROM Fact

 WHERE id BETWEEN min_id and max_id

Summarizing when using a staging table
Load the data (via INSERTs or LOAD DATA) en masse into a "staging table". Then perform batch summarization from the

Staging table. And batch copy from the Staging table to the Fact table. Note that the Staging table is handy for batching

"normalization" during ingestion. See also [[data-warehousing-high-speed-ingestion|High Speed Ingestion

Summary table: PK or not?
Let's say your summary table has a DATE, `dy`, and a dimension, `foo`. The question is: Should (foo, dy) be the PRIMARY

KEY? Or a non-UNIQUE index?

Case 1: PRIMARY KEY (foo, dy) and summarization is in lock step with, say, changes in `dy`.

This case is clean and simple -- until you get to endcases. How will you handle the case of data arriving 'late'? Maybe you

will need to recalculate some chunks of data? If so, how?

Case 2: (foo, dy) is a non-UNIQUE INDEX.

This case is clean and simple, but it can clutter the summary table because multiple rows can occur for a given (foo, dy) pair.

The report will always have to SUM() up values because it cannot assume there is only one row, even when it is reporting

on a single `foo` for a single `dy`. This forced-SUM is not really bad -- you should do it anyway; that way all your reports are

written with one pattern.

Case 3: PRIMARY KEY (foo, dy) and summarization can happen anytime.

Since you should be using InnoDB, there needs to be an explicit PRIMARY KEY. One approach when you do not have a

'natural' PK is this:

2600/4161

 id INT UNSIGNED AUTO_INCREMENT NOT NULL,

 ...

 PRIMARY KEY(foo, dy, id), -- `id` added to make unique

 INDEX(id) -- sufficient to keep AUTO_INCREMENT happy

This case pushes the complexity onto the summarization by doing a IODKU.

Advice? Avoid Case 1; too messy. Case 2 is ok if the extra rows are not too common. Case 3 may be the closest to "once

size fits all".

Averages, etc.
When summarizing, include COUNT(*) AS ct and SUM(foo) AS sum_foo . When reporting, the "average" is computed

as SUM(sum_foo) / SUM(ct). That is mathematically correct.

Exception... Let's say you are looking at weather temperatures. And you monitoring station gets the temp periodically, but

unreliably. That is, the number of readings for a day varies. Further, you decide that the easiest way to compensate for the

inconsistency is to do something like: Compute the avg temp for each day, then average those across the month (or other

timeframe).

Formula for Standard Deviation:

 SQRT(SUM(sum_foo2)/SUM(ct) - POWER(SUM(sum_foo)/SUM(ct), 2))

Where sum_foo2 is SUM(foo * foo) from the summary table. sum_foo and sum_foo2 should be FLOAT. FLOAT gives you

about 7 significant digits, which is more than enough for things like average and standard deviation. FLOAT occupies 4

bytes. DOUBLE would give you more precision, but occupies 8 bytes. INT and BIGINT are not practical because they may

lead to complaints about overflow.

Staging table
The idea here is to first load a set of Fact records into a "staging table", with the following characteristics (at least):

The table is repeatedly populated and truncated

Inserts could be individual or batched, and from one or many clients

SELECTs will be table scans, so no indexes needed

Inserting will be fast (InnoDB may be the fastest)

Normalization can be done in bulk, hence efficiently

Copying to the Fact table will be fast

Summarization can be done in bulk, hence efficiently

"Bursty" ingestion is smoothed by this process

Flip-flop a pair of Staging tables

If you have bulk inserts (Batch INSERT or LOAD DATA) then consider doing the normalization and summarization

immediately after each bulk insert.

More details: High Speed Ingestion

Extreme design
Here is a more complex way to design the system, with the goal of even more scaling.

Use master-slave setup: ingest into master; report from slave(s).

Feed ingestion through a staging table (as described above)

Single-source of data: ENGINE=MEMORY; multiple sources: InnoDB

binlog_format = ROW

Use binlog_ignore_db to avoid replicating staging -- necessitating putting it in a separate database.

Do the summarization from Staging

Load Fact via INSERT INTO Fact ... SELECT FROM Staging ...

Explanation and comments:

ROW + ignore_db avoids replicating Staging, yet replicates the INSERTs based on it. Hence, it lightens the write load

on the Slaves

If using MEMORY, remember that it is volatile -- recover from a crash by starting the ingestion over.

To aid with debugging, TRUNCATE or re-CREATE Staging at the start of the next cycle.

Staging needs no indexes -- all operations read all rows from it.

Stats on the system that this 'extreme design' came from: Fact Table: 450GB, 100M rows/day (batch of 4M/hour), 60 day
2601/4161

retention (60+24 partitions), 75B/row, 7 summary tables, under 10 minutes to ingest and summarize the hourly batch. The

INSERT..SELECT handled over 20K rows/sec going into the Fact table. Spinning drives (not SSD) with RAID-10.

"Left Off"
One technique involves summarizing some of the data, then recording where you "left off", so that next time, you can start

there. There are some subtle issues with "left off" that you should be cautious of.

If you use a DATETIME or TIMESTAMP as "left off", beware of multiple rows with the same value.

Plan A: Use a compound "left off" (eg, TIMESTAMP + ID). This is messy, error prone, etc.

Plan B: WHERE ts >= $left_off AND ts < $max_ts -- avoids dups, but has other problems (below)

Separate threads could COMMIT TIMESTAMPs out of order.

If you use an AUTO_INCREMENT as "left off" beware of:

In InnoDB, separate threads could COMMIT ids in the 'wrong' order.

Multi-master (including Galera and InnoDB Cluster), could lead to ordering issues.

So, nothing works, at least not in a multi-threaded environment?

If you can live with an occasional hiccup (skipped record), then maybe this is 'not a problem' for you.

The "Flip-Flop Staging" is a safe alternative, optionally combined with the "Extreme Design".

Flip-flop staging
If you have many threads simultaneously INSERTing into one staging table, then here is an efficient way to handle a large

load: Have a process that flips that staging table with another, identical, staging table, and performs bulk normalization, Fact

insertion, and bulk summarization.

The flipping step uses a fast, atomic, RENAME.

Here is a sketch of the code:

 # Prep for flip:

 CREATE TABLE new LIKE Staging;

 # Swap (flip) Staging tables:

 RENAME TABLE Staging TO old, new TO Staging;

 # Normalize new `foo`s:

 # (autocommit = 1)

 INSERT IGNORE INTO Foos SELECT fpp FROM old LEFT JOIN Foos ...

 # Prep for possible deadlocks, etc

 while...

 START TRANSACTION;

 # Add to Fact:

 INSERT INTO Fact ... FROM old JOIN Foos ...

 # Summarize:

 INSERT INTO Summary ... FROM old ... GROUP BY ...

 COMMIT;

 end-while

 # Cleanup:

 DROP TABLE old;

Meanwhile, ingestion can continue writing to `Staging`. The ingestion INSERTs will conflict with the RENAME, but will be

resolved gracefully and silently and quickly.

How fast should you flip-flop? Probably the best scheme is to

Have a job that flip-flops in a tight loop (no delay, or a small delay, between iterations), and

Have a CRON that serves only as a "keep-alive" to restart the job if it dies.

If Staging is 'big', an iteration will take longer, but run more efficiently. Hence, it is self-regulating.

In a Galera (or InnoDB Cluster?) environment, each node could be receiving input. If can afford to loose a few rows, have

`Staging` be a non-replicated MEMORY table. Otherwise, have one `Staging` per node and be InnoDB; it will be more

secure, but slower and not without problems. In particular, if a node dies completely, you somehow need to process its

2602/4161

`Staging` table.

Multiple summary tables
Look at the reports you will need.

Design a summary table for each.

Then look at the summary tables -- you are likely to find some similarities.

Merge similar ones.

To look at what a report needs, look at the WHERE clause that would provide the data. Some examples, assuming data

about service records for automobiles: The GROUP BY to gives a clue of what the report might be about.

1. WHERE make = ? AND model_year = ? GROUP BY service_date, service_type 2. WHERE make = ? AND model = ?

GROUP BY service_date, service_type 3. WHERE service_type = ? GROUP BY make, model, service_date 4. WHERE

service_date between ? and ? GROUP BY make, model, model_year

You need to allow for 'ad hoc' queries? Well, look at all the ad hoc queries -- they all have a date range, plus nail down one

or two other things. (I rarely see something as ugly as '%CL%' for nailing down another dimension.) So, start by thinking of

date plus one or two other dimensions as the 'key' into a new summary table. Then comes the question of what data might

be desired -- counts, sums, etc. Eventually you have a small set of summary tables. Then build a front end to allow them to

pick only from those possibilities. It should encourage use of the existing summary tables, not not be truly 'open ended'.

Later, another 'requirement' may surface. So, build another summary table. Of course, it may take a day to initially populate

it.

Games on summary tables
Does one ever need to summarize a summary table? Yes, but only in extreme situations. Usually a 'weekly' report can be

derived from a 'daily' summary table; building a separate weekly summary table not being worth the effort.

Would one ever PARTITION a Summary Table? Yes, in extreme situations, such as the table being large, and

Need to purge old data (unlikely), or

Recent' data is usually requested, and the index(es) fail to prevent table scans (rare). ("Partition pruning" to the

rescue.)

3.3.4.24 Data Warehousing Techniques
Contents
1. Preface

2. Terminology

3. Fact table

4. Why keep the Fact table?

5. Batching the load of the Fact table

6. Batched INSERT Statement

7. Normalization (Dimension) table

8. Batched normalization

9. Too many choices?

10. Purging old data

11. Master / slave

12. Sharding

13. How fast? How big?

14. How fast?

15. Not so fast?

16. References

Preface
This document discusses techniques for improving performance for data-warehouse-like tables in MariaDB and MySQL.

How to load large tables.

Normalization.

Developing 'summary tables' to make 'reports' efficient.

Purging old data.

Details on summary tables is covered in the companion document: Summary Tables.

2603/4161

Terminology
This list mirrors "Data Warehouse" terminology.

Fact table -- The one huge table with the 'raw' data.

Summary table -- a redundant table of summarized data that could -- use for efficiency

Dimension -- columns that identify aspects of the dataset (region, country, user, SKU, zipcode, ...)

Normalization table (dimension table) -- mapping between strings an ids; used for space and speed.

Normalization -- The process of building the mapping ('New York City' <-> 123)

Fact table
Techniques that should be applied to the huge Fact table.

id INT/BIGINT UNSIGNED NOT NULL AUTO_INCREMENT

PRIMARY KEY (id)

Probably no other INDEXes

Accessed only via id

All VARCHARs are "normalized"; ids are stored instead

ENGINE = InnoDB

All "reports" use summary tables, not the Fact table

Summary tables may be populated from ranges of id (other techniques described below)

There are exceptions where the Fact table must be accessed to retrieve multiple rows. However, you should minimize the

number of INDEXes on the table because they are likely to be costly on INSERT.

Why keep the Fact table?
Once you have built the Summary table(s), there is not much need for the Fact table. One option that you should seriously

consider is to not have a Fact table. Or, at least, you could purge old data from it sooner than you purge the Summary

tables. Maybe even keep the Summary tables forever.

Case 1: You need to find the raw data involved in some event. But how will you find those row(s)? This is where a

secondary index may be required.

If a secondary index is bigger than can be cached in RAM, and if the column(s) being indexed is random, then each row

inserted may cause a disk hit to update the index. This limits insert speed to something like 100 rows per second (on

ordinary disks). Multiple random indexes slow down insertion further. RAID striping and/or SSDs speed up insertion. Write

caching helps, but only for bursts.

Case 2: You need some event, but you did not plan ahead with the optimal INDEX. Well, if the data is PARTITIONed on

date, so even if you have a clue of when the event occurred, "partition pruning" will keep the query from being too terribly

slow.

Case 3: Over time, the application is likely to need new 'reports', which may lead to a new Summary table. At this point, it

would be handy to scan through the old data to fill up the new table.

Case 4: You find a flaw in the summarization, and need to rebuild an existing Summary table.

Cases 3 and 4 both need the "raw" data. But they don't necessarily need the data sitting in a database table. It could be in

the pre-database format (such as log files). So, consider not building the Fact table, but simply keep the raw data,

comressed, on some file system.

Batching the load of the Fact table
When talking about billions of rows in the Fact table, it is essentially mandatory that you "batch" the inserts. There are two

main ways:

INSERT INTO Fact (.,.,.) VALUES (.,.,.), (.,.,.), ...; -- "Batch insert"

LOAD DATA ...;

A third way is to INSERT or LOAD into a Staging table, then

INSERT INTO Fact SELECT * FROM Staging; This INSERT..SELECT allows you to do other things, such as

normalization. More later.

Batched INSERT Statement
Chunk size should usually be 100-1000 rows.

2604/4161

100-1000 an insert will run 10 times as fast as single-row inserts.

Beyond 100, you may be interfering replication and SELECTs.

Beyond 1000, you are into diminishing returns -- virtually no further performance gains.

Don't go past, say, 1MB for the constructed INSERT statement. This deals with packet sizes, etc. (1MB is unlikely to

be hit for a Fact table.) Decide whether your application should lean toward the 100 or the 1000.

If your data is coming in continually, and you are adding a batching layer, let's do some math. Compute your ingestion rate -

- R rows per second.

If R < 10 (= 1M/day = 300M/year) -- single-row INSERTs would probably work fine (that is, batching is optional)

If R < 100 (3B records per year) -- secondary indexes on Fact table may be ok

If R < 1000 (100M records/day) -- avoid secondary indexes on Fact table.

If R > 1000 -- Batching may not work. Decide how long (S seconds) you can stall loading the data in order to collect a

batch of rows.

If S < 0.1s -- May not be able to keep up

If batching seems viable, then design the batching layer to gather for S seconds or 100-1000 rows, whichever comes first.

(Note: Similar math applies to rapid UPDATEs of a table.)

Normalization (Dimension) table
Normalization is important in Data Warehouse applications because it significantly cuts down on the disk footprint and

improves performance. There are other reasons for normalizing, but space is the important one for DW.

Here is a typical pattern for a Dimension table:

 CREATE TABLE Emails (

 email_id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT, -- don't make bigger than needed

 email VARCHAR(...) NOT NULL,

 PRIMARY KEY (email), -- for looking up one way

 INDEX(email_id) -- for looking up the other way (UNIQUE is not needed)

) ENGINE = InnoDB; -- to get clustering

Notes:

MEDIUMINT is 3 bytes with UNSIGNED range of 0..16M; pick SMALLINT, INT, etc, based on a conservative

estimate of how many 'foo's you will eventually have.

datatype sizes

There may be more than one VARCHAR in the table. Example: For cities, you might have City and Country.

InnoDB is better than MyISAM because of way the two keys are structured.

The secondary key is effectively (email_id, email), hence 'covering' for certain queries.

It is OK to not specify an AUTO_INCREMENT to be UNIQUE.

Batched normalization
I bring this up as a separate topic because of some of the subtle issues that can happen.

You may be tempted to do

 INSERT IGNORE INTO Foos

 SELECT DISTINCT foo FROM Staging; -- not wise

It has the problem of "burning" AUTO_INCREMENT ids. This is because MariaDB pre-allocates ids before getting to

"IGNORE". That could rapidly increase the AUTO_INCREMENT values beyond what you expected.

Better is this...

 INSERT IGNORE INTO Foos

 SELECT DISTINCT foo

 FROM Staging

 LEFT JOIN Foos ON Foos.foo = Staging.foo

 WHERE Foos.foo_id IS NULL;

Notes:

The LEFT JOIN .. IS NULL finds the `foo`s that are not yet in Foos.

This INSERT..SELECT must not be done inside the transaction with the rest of the processing. Otherwise, you add to

deadlock risks, leading to burned ids.

IGNORE is used in case you are doing the INSERT from multiple processes simultaneously.

2605/4161

Once that INSERT is done, this will find all the foo_ids it needs:

 INSERT INTO Fact (..., foo_id, ...)

 SELECT ..., Foos.foo_id, ...

 FROM Staging

 JOIN Foos ON Foos.foo = Staging.foo;

An advantage of "Batched Normalization" is that you can summarize directly from the Staging table. Two approaches:

Case 1: PRIMARY KEY (dy, foo) and summarization is in lock step with, say, changes in `dy`.

This approach can have troubles if new data arrives after you have summarized the day's data.

 INSERT INTO Summary (dy, foo, ct, blah_total)

 SELECT DATE(dt) as dy, foo,

 COUNT(*) as ct, SUM(blah) as blah_total)

 FROM Staging

 GROUP BY 1, 2;

Case 2: (dy, foo) is a non-UNIQUE INDEX.

Same code as Case 1.

By having the index be non-UNIQUE, delayed data simply shows up as extra rows.

You need to take care to avoid summarizing the data twice. (The id on the Fact table may be a good tool for that.)

Case 3: PRIMARY KEY (dy, foo) and summarization can happen anytime.

 INSERT INTO Summary (dy, foo, ct, blah_total)

 ON DUPLICATE KEY UPDATE

 ct = ct + VALUE(ct),

 blah_total = blah_total + VALUE(bt)

 SELECT DATE(dt) as dy, foo,

 COUNT(*) as ct, SUM(blah) as bt)

 FROM Staging

 GROUP BY 1, 2;

Too many choices?
This document lists a number of ways to do things. Your situation may lead to one approach being more/less acceptable.

But, if you are thinking "Just tell me what to do!", then here:

Batch load the raw data into a temporary table (`Staging`).

Normalize from `Staging` -- use code in Case 3.

INSERT .. SELECT to move the data from `Staging` into the Fact table

Summarize from `Staging` to Summary table(s) via IODKU (Insert ... On Duplicate Key Update).

Drop the Staging

Those techniques should perform well and scale well in most cases. As you develop your situation, you may discover why I

described alternative solutions.

Purging old data
Typically the Fact table is PARTITION BY RANGE (10-60 ranges of days/weeks/etc) and needs purging (DROP

PARTITION) periodically. This discusses a safe/clean way to design the partitioning and do the DROPs: Purging

PARTITIONs

Master / slave
For "read scaling", backup, and failover, use master-slave replication or something fancier. Do ingestion only on a single

active master; it replicate to the slave(s). Generate reports on the slave(s).

Sharding
"Sharding" is the splitting of data across multiple servers. (In contrast, replication and Galera have the same data on all

servers, requiring all data to be written to all servers.)

With the non-sharding techniques described here, terabyte(s) of data can be handled by a single machine. Tens of

terabytes probably requires sharding.
2606/4161

Sharding is beyond the scope of this document.

How fast? How big?
With the techniques described here, you may be able to achieve the following performance numbers. I say "may" because

every data warehouse situation is different, and you may require performance-hurting deviations from what I describe here. I

give multiple options for some aspects; these may cover some of your deviations.

One big performance killer is UUID/GUID keys. Since they are very 'random', updates of them (at scale) are limited to 1 row

= 1 disk hit. Plain disks can handle only 100 hits/second. RAID and/or SSD can increase that to something like 1000

hits/sec. Huge amounts of RAM (for caching the random index) are a costly solution. It is possible to turn type-1 UUIDs into

roughly-chronological keys, thereby mittigating the performance problems if the UUIDs are written/read with some

chronological clustering. UUID discussion

Hardware, etc:

Single SATA drive: 100 IOPs (Input/Output operations per second)

RAID with N physical drives -- 100*N IOPs (roughly)

SSD -- 5 times as fast as rotating media (in this context)

Batch INSERT -- 100-1000 rows is 10 times as fast as INSERTing 1 row at a time (see above)

Purge "old" data -- Do not use DELETE or TRUNCATE, design so you can use DROP PARTITION (see above)

Think of each INDEX (except the PRIMARY KEY on InnoDB) as a separate table

Consider access patterns of each table/index: random vs at-the-end vs something in between

"Count the disk hits" -- back-of-envelope performance analysis

Random accesses to a table/index -- count each as a disk hit.

At-the-end accesses (INSERT chronologically or with AUTO_INCREMENT; range SELECT) -- count as zero hits.

In between (hot/popular ids, etc) -- count as something in between

For INSERTs, do the analysis on each index; add them up.

For SELECTs, do the analysis on the one index used, plus the table. (Use of 2 indexes is rare.) Insert cost, based on

datatype of first column in an index:

AUTO_INCREMENT -- essentially 0 IOPs

DATETIME, TIMESTAMP -- essentially 0 for 'current' times

UUID/GUID -- 1 per insert (terrible)

Others -- depends on their patterns SELECT cost gets a little tricky:

Range on PRIMARY KEY -- think of it as getting 100 rows per disk hit.

IN on PRIMARY KEY -- 1 disk hit per item in IN

"=" -- 1 hit (for 1 row)

Secondary key -- First compute the hits for the index, then...

Think of each row as needing 1 disk hit.

However, if the rows are likely to be 'near' each other (based on the PRIMARY KEY), then it could be < 1 disk hit/row.

More on Count the Disk Hits

How fast?
Look at your data; compute raw rows per second (or hour or day or year). There are about 30M seconds in a year; 86,400

seconds per day. Inserting 30 rows per second becomes a billion rows per year.

10 rows per second is about all you can expect from an ordinary machine (after allowing for various overheads). If you have

less than that, you don't have many worries, but still you should probably create Summary tables. If more than 10/sec, then

batching, etc, becomes vital. Even on spiffy hardware, 100/sec is about all you can expect without utilizing the techniques

here.

Not so fast?
Let's say your insert rate is only one-tenth of your disk IOPs (eg, 10 rows/sec vs 100 IOPs). Also, let's say your data is not

"bursty"; that is, the data comes in somewhat soothly throughout the day.

Note that 10 rows/sec (300M/year) implies maybe 30GB for data + indexes + normalization tables + summary tables for 1

year. I would call this "not so big".

Still, the normalization and summarization are important. Normalization keeps the data from being, say, twice as big.

Summarization speeds up the reports by orders of magnitude.

Let's design and analyse a "simple ingestion scheme" for 10 rows/second, without 'batching'.

2607/4161

 # Normalize:

 $foo_id = SELECT foo_id FROM Foos WHERE foo = $foo;

 if no $foo_id, then

 INSERT IGNORE INTO Foos ...

 # Inserts:

 BEGIN;

 INSERT INTO Fact ...;

 INSERT INTO Summary ... ON DUPLICATE KEY UPDATE ...;

 COMMIT;

 # (plus code to deal with errors on INSERTs or COMMIT)

Depending on the number and randomness of your indexes, etc, 10 Fact rows may (or may not) take less than 100 IOPs.

Also, note that as the data grows over time, random indexes will become less and less likely to be cached. That is, even if

runs fine with 1 year's worth of data, it may be in trouble with 2 year's worth.

For those reasons, I started this discussion with a wide margin (10 rows versus 100 IOPs).

References
sec. 3.3.2: Dimensional Model and "Star schema"

Summary Tables

3.3.4.25 Equality propagation optimization
Contents
1. Basic idea

2. Identity and comparison substitution

3. Place in query optimization

1. Interplay with ORDER BY optimization

4. Optimizer trace

5. More details

Basic idea
Consider a query with a WHERE clause:

WHERE col1=col2 AND ...

the WHERE clause will compute to true only if col1=col2 . This means that in the rest of the WHERE clause occurrences

of col1 can be substituted with col2 (with some limitations which are discussed in the next section). This allows the

optimizer to infer additional restrictions.

For example:

WHERE col1=col2 AND col1=123

allows to infer a new equality: col2=123

WHERE col1=col2 AND col1 < 10

allows to infer that col2<10 .

Identity and comparison substitution
There are some limitations to where one can do the substitution, though.

The first and obvious example is the string datatype and collations. Most commonly-used collations in SQL are "case-

insensitive", that is 'A'='a' . Also, most collations have a "PAD SPACE" attribute, which means that comparison ignores

the spaces at the end of the value, 'a'='a ' .

Now, consider a query:

2608/4161

http://www.redbooks.ibm.com/redbooks/pdfs/sg247138.pdf

INSERT INTO t1 (col1, col2) VALUES ('ab', 'ab ');

SELECT * FROM t1 WHERE col1=col2 AND LENGTH(col1)=2

Here, col1=col2 , the values are "equal". At the same time LENGTH(col1)=2 , while LENGTH(col2)=4 , which means

one can't perform the substiution for the argument of LENGTH(...).

It's not only collations. There are similar phenomena when equality compares columns of different datatypes. The exact

criteria of when thy happen are rather convoluted.

The take-away is: sometimes, X=Y does not mean that one can replace any reference to X with Y. What one CAN do

is still replace the occurrence in the comparisons < , > , >= , <= , etc.

This is how we get two kinds of substitution:

Identity substitution: X=Y, and any occurrence of X can be replaced with Y.

Comparison substitution: X=Y, and an occurrence of X in a comparison (X<Z) can be replaced with Y (Y<Z).

Place in query optimization
(A draft description): Let's look at how Equality Propagation is integrated with the rest of the query optimization process.

First, multiple-equalities are built (TODO example from optimizer trace)

If multiple-equality includes a constant, fields are substituted with a constant if possible.

From this point, all optimizations like range optimization, ref access, etc make use of multiple equalities: when they

see a reference to tableX.columnY somewhere, they also look at all the columns that tableX.columnY is equal to.

After the join order is picked, the optimizer walks through the WHERE clause and substitutes each field reference

with the "best" one - the one that can be checked as soon as possible.

Then, the parts of the WHERE condition are attached to the tables where they can be checked.

Interplay with ORDER BY optimization

Consider a query:

SELECT ... FROM ... WHERE col1=col2 ORDER BY col2

Suppose, there is an INDEX(col1) . MariaDB optimizer is able to figure out that it can use an index on col1 (or sort by

the value of col1) in order to resolve ORDER BY col2 .

Optimizer trace
Look at these elements:

condition_processing

attaching_conditions_to_tables

More details
Equality propagation doesn't just happen at the top of the WHERE clause. It is done "at all levels" where a level is:

A top level of the WHERE clause.

If the WHERE clause has an OR clause, each branch of the OR clause.

The top level of any ON expression

(the same as above about OR-levels)

3.3.4.26 FORCE INDEX
Contents
1. Description

2. Example

1. Index Prefixes

Description
Forcing an index to be used is mostly useful when the optimizer decides to do a table scan even if you know that using an

2609/4161

index would be better. (The optimizer could decide to do a table scan even if there is an available index when it believes that

most or all rows will match and it can avoid the overhead of using the index).

FORCE INDEX works by only considering the given indexes (like with USE_INDEX) but in addition it tells the optimizer to

regard a table scan as something very expensive. However if none of the 'forced' indexes can be used, then a table scan will

be used anyway.

FORCE INDEX cannot force an ignored index to be used - it will be treated as if it doesn't exist.

Example

CREATE INDEX Name ON City (Name);

EXPLAIN SELECT Name,CountryCode FROM City FORCE INDEX (Name)

WHERE name>="A" and CountryCode >="A";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City range Name Name 35 NULL 4079 Using where

Index Prefixes

When using index hints (USE, FORCE or IGNORE INDEX), the index name value can also be an unambiguous prefix of an

index name.

3.3.4.27 Groupwise Max in MariaDB
Contents
1. The problem

2. Sample data

3. Duplicate max

4. Using an uncorrelated subquery

5. Using @variables

6. The duds

7. Top-N in each group

8. Top-n in each group, take II

9. Top-n using MyISAM

10. Windowing functions

11. Postlog

The problem
You want to find the largest row in each group of rows. An example is looking for the largest city in each state. While it is

easy to find the MAX(population) ... GROUP BY state, it is hard to find the name of the `city` associated with that

`population`. Alas, MySQL and MariaDB do not have any syntax to provide the solution directly.

This article is under construction, mostly for cleanup. The content is reasonably accurate during construction.

The article presents two "good" solutions. They differ in ways that make neither of them 'perfect'; you should try both and

weigh the pros and cons.

Also, a few "bad" solutions will be presented, together with why they were rejected.

MySQL manual gives 3 solutions; only the "Uncorrelated" one is "good", the other two are "bad".

Sample data
To show how the various coding attempts work, I have devised this simple task: Find the largest city in each Canadian

province. Here's a sample of the source data (5493 rows):

2610/4161

+------------------+----------------+------------+

| province | city | population |

+------------------+----------------+------------+

| Saskatchewan | Rosetown | 2309 |

| British Columbia | Chilliwack | 51942 |

| Nova Scotia | Yarmouth | 7500 |

| Alberta | Grande Prairie | 41463 |

| Quebec | Sorel | 33591 |

| Ontario | Moose Factory | 2060 |

| Ontario | Bracebridge | 8238 |

| British Columbia | Nanaimo | 84906 |

| Manitoba | Neepawa | 3151 |

| Alberta | Grimshaw | 2560 |

| Saskatchewan | Carnduff | 950 |

...

Here's the desired output (13 rows):

+---------------------------+---------------+------------+

| province | city | population |

+---------------------------+---------------+------------+

| Alberta | Calgary | 968475 |

| British Columbia | Vancouver | 1837970 |

| Manitoba | Winnipeg | 632069 |

| New Brunswick | Saint John | 87857 |

| Newfoundland and Labrador | Corner Brook | 18693 |

| Northwest Territories | Yellowknife | 15866 |

| Nova Scotia | Halifax | 266012 |

| Nunavut | Iqaluit | 6124 |

| Ontario | Toronto | 4612187 |

| Prince Edward Island | Charlottetown | 42403 |

| Quebec | Montreal | 3268513 |

| Saskatchewan | Saskatoon | 198957 |

| Yukon | Whitehorse | 19616 |

+---------------------------+---------------+------------+

Duplicate max
One thing to consider is whether you want -- or do not want -- to see multiple rows for tied winners. For the dataset being

used here, that would imply that the two largest cities in a province had identical populations. For this case, a duplicate

would be unlikely. But there are many groupwise-max use cases where duplictes are likely.

The two best algorithms differ in whether they show duplicates.

Using an uncorrelated subquery
Characteristics:

Superior performance or medium performance

It will show duplicates

Needs an extra index

Probably requires 5.6

If all goes well, it will run in O(M) where M is the number of output rows.

An 'uncorrelated subquery':

SELECT c1.province, c1.city, c1.population

 FROM Canada AS c1

 JOIN

 (SELECT province, MAX(population) AS population

 FROM Canada

 GROUP BY province

) AS c2 USING (province, population)

 ORDER BY c1.province;

But this also 'requires' an extra index: INDEX(province, population). In addition, MySQL has not always been able to use

that index effectively, hence the "requires 5.6". (I am not sure of the actual version.)

Without that extra index, you would need 5.6, which has the ability to create indexes for subqueries. This is indicated by

2611/4161

<auto_key0> in the EXPLAIN. Even so, the performance is worse with the auto-generated index than with the manually

generated one.

With neither the extra index, nor 5.6, this 'solution' would belong in 'The Duds' because it would run in O(N*N) time.

Using @variables
Characteristics:

Good performance

Does not show duplicates (picks one to show)

Consistent O(N) run time (N = number of input rows)

Only one scan of the data

SELECT

 province, city, population -- The desired columns

 FROM

 (SELECT @prev := '') init

 JOIN

 (SELECT province != @prev AS first, -- `province` is the 'GROUP BY'

 @prev := province, -- The 'GROUP BY'

 province, city, population -- Also the desired columns

 FROM Canada -- The table

 ORDER BY

 province, -- The 'GROUP BY'

 population DESC -- ASC for MIN(population), DESC for MAX

) x

 WHERE first

 ORDER BY province; -- Whatever you like

For your application, change the lines with comments.

The duds
* 'correlated subquery' (from MySQL doc):

SELECT province, city, population

 FROM Canada AS c1

 WHERE population =

 (SELECT MAX(c2.population)

 FROM Canada AS c2

 WHERE c2.province= c1.province

)

 ORDER BY province;

O(N*N) (that is, terrible) performance

* LEFT JOIN (from MySQL doc):

SELECT c1.province, c1.city, c1.population

 FROM Canada AS c1

 LEFT JOIN Canada AS c2 ON c2.province = c1.province

 AND c2.population > c1.population

 WHERE c2.province IS NULL

 ORDER BY province;

Medium performance (2N-3N, depending on join_buffer_size).

For O(N*N) time,... It will take one second to do a groupwise-max on a few thousand rows; a million rows could take hours.

Top-N in each group
This is a variant on "groupwise-max" wherein you desire the largest (or smallest) N items in each group. Do these

substitutions for your use case:

province --> your 'GROUP BY'

Canada --> your table

3 --> how many of each group to show

population --> your numeric field for determining "Top-N"

2612/4161

city --> more field(s) you want to show

Change the SELECT and ORDER BY if you desire

DESC to get the 'largest'; ASC for the 'smallest'

SELECT

 province, n, city, population

 FROM

 (SELECT @prev := '', @n := 0) init

 JOIN

 (SELECT @n := if(province != @prev, 1, @n + 1) AS n,

 @prev := province,

 province, city, population

 FROM Canada

 ORDER BY

 province ASC,

 population DESC

) x

 WHERE n <= 3

 ORDER BY province, n;

Output:

+---------------------------+------+------------------+------------+

| province | n | city | population |

+---------------------------+------+------------------+------------+

| Alberta | 1 | Calgary | 968475 |

| Alberta | 2 | Edmonton | 822319 |

| Alberta | 3 | Red Deer | 73595 |

| British Columbia | 1 | Vancouver | 1837970 |

| British Columbia | 2 | Victoria | 289625 |

| British Columbia | 3 | Abbotsford | 151685 |

| Manitoba | 1 | ...

The performance of this is O(N), actually about 3N, where N is the number of source rows.

EXPLAIN EXTENDED gives

+----+-------------+------------+--------+---------------+------+---------+------+------+----

------+----------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

filtered | Extra |

+----+-------------+------------+--------+---------------+------+---------+------+------+----

------+----------------+

| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 |

100.00 | Using filesort |

| 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 5484 |

100.00 | Using where |

| 3 | DERIVED | Canada | ALL | NULL | NULL | NULL | NULL | 5484 |

100.00 | Using filesort |

| 2 | DERIVED | NULL | NULL | NULL | NULL | NULL | NULL | NULL |

NULL | No tables used |

+----+-------------+------------+--------+---------------+------+---------+------+------+----

------+----------------+

Explanation, shown in the same order as the EXPLAIN, but numbered chronologically: 3. Get the subquery id=2 (init) 4.

Scan the the output from subquery id=3 (x) 2. Subquery id=3 -- the table scan of Canada 1. Subquery id=2 -- `init` for

simply initializing the two @variables Yes, it took two sorts, though probably in RAM.

Main Handler values:

| Handler_read_rnd | 39 |

| Handler_read_rnd_next | 10971 |

| Handler_write | 5485 | -- #rows in Canada (+1)

Top-n in each group, take II
This variant is faster than the previous, but depends on `city` being unique across the dataset. (from openark.org)

2613/4161

 SELECT province, city, population

 FROM Canada

 JOIN

 (SELECT GROUP_CONCAT(top_in_province) AS top_cities

 FROM

 (SELECT SUBSTRING_INDEX(

 GROUP_CONCAT(city ORDER BY population DESC),

 ',', 3) AS top_in_province

 FROM Canada

 GROUP BY province

) AS x

) AS y

 WHERE FIND_IN_SET(city, top_cities)

 ORDER BY province, population DESC;

Output. Note how there can be more than 3 cities per province:

| Alberta | Calgary | 968475 |

| Alberta | Edmonton | 822319 |

| Alberta | Red Deer | 73595 |

| British Columbia | Vancouver | 1837970 |

| British Columbia | Victoria | 289625 |

| British Columbia | Abbotsford | 151685 |

| British Columbia | Sydney | 0 | -- Nova Scotia's second largest is Sydney

| Manitoba | Winnipeg | 632069 |

Main Handler values:

| Handler_read_next | 5484 | -- table size

| Handler_read_rnd_next | 5500 | -- table size + number of provinces

| Handler_write | 14 | -- number of provinces (+1)

Top-n using MyISAM
(This does not need your table to be MyISAM, but it does need MyISAM tmp table for its 2-column PRIMARY KEY feature.)

See previous section for what changes to make for your use case.

2614/4161

 -- build tmp table to get numbering

 -- (Assumes auto_increment_increment = 1)

 CREATE TEMPORARY TABLE t (

 nth MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(province, nth)

) ENGINE=MyISAM

 SELECT province, NULL AS nth, city, population

 FROM Canada

 ORDER BY population DESC;

 -- Output the biggest 3 cities in each province:

 SELECT province, nth, city, population

 FROM t

 WHERE nth <= 3

 ORDER BY province, nth;

+---------------------------+-----+------------------+------------+

| province | nth | city | population |

+---------------------------+-----+------------------+------------+

| Alberta | 1 | Calgary | 968475 |

| Alberta | 2 | Edmonton | 822319 |

| Alberta | 3 | Red Deer | 73595 |

| British Columbia | 1 | Vancouver | 1837970 |

| British Columbia | 2 | Victoria | 289625 |

| British Columbia | 3 | Abbotsford | 151685 |

| Manitoba | ...

SELECT for CREATE:

+----+-------------+--------+------+---------------+------+---------+------+------+----------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+--------+------+---------------+------+---------+------+------+----------------+

| 1 | SIMPLE | Canada | ALL | NULL | NULL | NULL | NULL | 5484 | Using filesort |

+----+-------------+--------+------+---------------+------+---------+------+------+----------------+

Other SELECT:

+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+

| 1 | SIMPLE | t | index | NULL | PRIMARY | 104 | NULL | 22 | Using where |

+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+

The main handler values (total of all operations):

| Handler_read_rnd_next | 10970 |

| Handler_write | 5484 | -- number of rows in Canada (write tmp table)

Both "Top-n" formulations probably take about the same amount of time.

Windowing functions
Hot off the press from Percona Live... MariaDB 10.2 has "windowing functions", which make "groupwise max" much more

straightforward.

The code:

TBD

Postlog
Developed an first posted, Feb, 2015; Add MyISAM approach: July, 2015; Openark's method added: Apr, 2016; Windowing:

Apr 2016

I did not include the technique(s) using GROUP_CONCAT. They are useful in some situations with small datasets. They

can be found in the references below.

3.3.4.28 GUID/UUID Performance

2615/4161

Contents
1. The problem

2. Why it is a problem

3. Second problem

4. Combining the problems and crafting a solution

5. Code to do it

6. TokuDB

7. Wrapup

8. Postlog

The problem
GUIDs/UUIDs (Globally/Universally Unique Identifiers) are very random. Therefore, INSERTing into an index means jumping

around a lot. Once the index is too big to be cached, most INSERTs involve a disk hit. Even on a beefy system, this limits

you to a few hundred INSERTs per second.

MariaDB's UUID function.

This blog is mostly eliminated in MySQL 8.0 with the advent of the following function: UUID_TO_BIN(str, swap_flag) .

Why it is a problem
A 'standard' GUID/UUID is composed of the time, machine identification and some other stuff. The combination should be

unique, even without coordination between different computers that could be generating UUIDs simultaneously.

The top part of the GUID/UUID is the bottom part of the current time. The top part is the primary part of what would be used

for placing the value in an ordered list (INDEX). This cycles in about 7.16 minutes.

Some math... If the index is small enough to be cached in RAM, each insert into the index is CPU only, with the writes being

delayed and batched. If the index is 20 times as big as can be cached, then 19 out of 20 inserts will be a cache miss. (This

math applies to any "random" index.)

Second problem
36 characters is bulky. If you are using that as a PRIMARY KEY in InnoDB and you have secondary keys, remember that

each secondary key has an implicit copy of the PK, thereby making it bulky.

It is tempting to declare the UUID VARCHAR(36). And, since you probably are thinking globally, so you have CHARACTER

SET utf8 (or utf8mb4). For utf8:

2 - Overhead for VAR

36 - chars

3 (or 4) bytes per character for utf8 (or utf8mb4) So, max length = 2+3*36 = 110 (or 146) bytes. For temp tables 108

(or 144) is actually used if a MEMORY table is used.

To compress

utf8 is unnecessary (ascii would do); but this is obviated by the next two steps

Toss dashes

UNHEX Now it will fit in 16 bytes: BINARY(16)

Combining the problems and crafting a solution
But first, a caveat. This solution only works for "Time based" / "Version 1" UUIDs They are recognizable by the "1" at the

beginning of the third clump.

The manual's sample: 6ccd780c-baba-1026-9564-0040f4311e29 . A more current value (after a few years): 49ea2de3-

17a2-11e2-8346-001eecac3efa . Notice how the 3rd part has slowly changed over time? Let's data is rearranged, thus:

 1026-baba-6ccd780c-9564-0040f4311e29

 11e2-17a2-49ea2de3-8346-001eecac3efa

 11e2-17ac-106762a5-8346-001eecac3efa -- after a few more minutes

Now we have a number that increases nicely over time. Multiple sources won't be quite in time order, but they will be close.

The "hot" spot for inserting into an INDEX(uuid) will be rather narrow, thereby making it quite cacheable and efficient.

If your SELECTs tend to be for "recent" uuids, then they, too, will be easily cached. If, on the other hand, your SELECTs

often reach for old uuids, they will be random and not well cached. Still, improving the INSERTs will help the system overall.

2616/4161

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid-to-bin
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb/memory-storage-engine
https://en.wikipedia.org/wiki/Universally_unique_identifier

Code to do it
Let's make Stored Functions to do the messy work of the two actions:

Rearrange fields

Convert to/from BINARY(16)

 DELIMITER //

 CREATE FUNCTION UuidToBin(_uuid BINARY(36))

 RETURNS BINARY(16)

 LANGUAGE SQL DETERMINISTIC CONTAINS SQL SQL SECURITY INVOKER

 RETURN

 UNHEX(CONCAT(

 SUBSTR(_uuid, 15, 4),

 SUBSTR(_uuid, 10, 4),

 SUBSTR(_uuid, 1, 8),

 SUBSTR(_uuid, 20, 4),

 SUBSTR(_uuid, 25)));

 //

 CREATE FUNCTION UuidFromBin(_bin BINARY(16))

 RETURNS BINARY(36)

 LANGUAGE SQL DETERMINISTIC CONTAINS SQL SQL SECURITY INVOKER

 RETURN

 LCASE(CONCAT_WS('-',

 HEX(SUBSTR(_bin, 5, 4)),

 HEX(SUBSTR(_bin, 3, 2)),

 HEX(SUBSTR(_bin, 1, 2)),

 HEX(SUBSTR(_bin, 9, 2)),

 HEX(SUBSTR(_bin, 11))

));

 //

 DELIMITER ;

Then you would do things like

 -- Letting MySQL create the UUID:

 INSERT INTO t (uuid, ...) VALUES (UuidToBin(UUID()), ...);

 -- Creating the UUID elsewhere:

 INSERT INTO t (uuid, ...) VALUES (UuidToBin(?), ...);

 -- Retrieving (point query using uuid):

 SELECT ... FROM t WHERE uuid = UuidToBin(?);

 -- Retrieving (other):

 SELECT UuidFromBin(uuid), ... FROM t ...;

Do not flip the WHERE; this will be inefficent because it won't use INDEX(uuid):

 WHERE UuidFromBin(uuid) = '1026-baba-6ccd780c-9564-0040f4311e29' -- NO

TokuDB

TokuDB has been deprecated by its upstream maintainer. It is disabled from MariaDB 10.5 and has been been

removed in MariaDB 10.6 - MDEV-19780 . We recommend MyRocks as a long-term migration path.

TokuDB is a viable engine if you must have UUIDs (even non-type-1) in a huge table. TokuDB is available in MariaDB as

a 'standard' engine, making the barrier to entry very low. There are a small number of differences between InnoDB and

TokuDB; I will not go into them here.

Tokudb, with its <fractal= indexing strategy builds the indexes in stages. In contrast, InnoDB inserts index entries

<immediately= 4 actually that indexing is buffered by most of the size of the buffer_pool. To elaborate&

When adding a record to an InnoDB table, here are (roughly) the steps performed to write the data (and PK) and secondary

indexes to disk. (I leave out logging, provision for rollback, etc.) First the PRIMARY KEY and data:

Check for UNIQUEness constraints
2617/4161

https://jira.mariadb.org/browse/MDEV-19780
https://mariadb.com/kb/en/tokudb/

Fetch the BTree block (normally 16KB) that should contain the row (based on the PRIMARY KEY).

Insert the row (overflow typically occurs 1% of the time; this leads to a block split).

Leave the page <dirty= in the buffer_pool, hoping that more rows are added before it is bumped out of cache

(buffer_pool).. Note that for AUTO_INCREMENT and TIMESTAMP-based PKs, the <last= block in the data will be

updated repeatedly before splitting; hence, this delayed write adds greatly to the efficiency. OTOH, a UUID will be

very random; when the table is big enough, the block will almost always be flushed before a second insert occurs in

that block. <3 This is the inefficiency in UUIDs. Now for any secondary keys:

All the steps are the same, since an index is essentially a "table" except that the "data" is a copy of the PRIMARY

KEY.

UNIQUEness must be checked immediately 4 cannot delay the read.

There are (I think) some other "delays" that avoid some I/O.

Tokudb, on the other hand, does something like

Write data/index partially sorted records to disk before finding out exactly where it belongs.

In the background, combine these partially digested blocks. Repeat as needed.

Eventually move the info into the real table/indexes.

If you are familiar with how sort-merge works, consider the parallels to Tokudb. Each "sort" does some work of ordering

things; each "merge" is quite efficient.

To summarize:

In the extreme (data/index much larger than buffer_pool), InnoDB must read-modify-write one 16KB disk block for

each UUID entry.

Tokudb makes each I/O "count" by merging several UUIDs for each disk block. (Yeah, Toku rereads blocks, but it

comes out ahead in the long run.)

Tokudb excels when the table is really big, which implies high ingestion rate.

Wrapup
This shows three thing for speeding up usage of GUIDs/UUIDs:

Shrink footprint (Smaller -> more cacheable -> faster).

Rearrange uuid to make a "hot spot" to improve cachability.

Use TokuDB (MyRocks shares some architectural traits which may also be beneficial in handling UUIDs, but this is

hypothetical and hasn't been tested)

Note that the benefit of the "hot spot" is only partial:

Chronologically ordered (or approximately ordered) INSERTs benefit; random ones don't.

SELECTs/UPDATEs by "recent" uuids benefit; old ones don't benefit.

Postlog
Thanks to Trey for some of the ideas here.

The tips in this document apply to MySQL, MariaDB, and Percona.

Written Oct, 2012. Added TokuDB, Jan, 2015.

3.3.4.29 IGNORE INDEX

Syntax

IGNORE INDEX [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

Contents
1. Syntax

2. Description

1. Index Prefixes

3. Example

Description
You can tell the optimizer to not consider a particular index with the IGNORE INDEX option.

2618/4161

The benefit of using IGNORE_INDEX instead of USE_INDEX is that it will not disable a new index which you may add later.

Also see Ignored Indexes for an option to specify in the index definition that indexes should be ignored.

Index Prefixes

When using index hints (USE, FORCE or IGNORE INDEX), the index name value can also be an unambiguous prefix of an

index name.

Example
This is used after the table name in the FROM clause:

CREATE INDEX Name ON City (Name);

CREATE INDEX CountryCode ON City (Countrycode);

EXPLAIN SELECT Name FROM City IGNORE INDEX (Name)

WHERE name="Helsingborg" AND countrycode="SWE";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ref CountryCode CountryCode 3 const 14 Using where

3.3.4.30 not_null_range_scan Optimization
Contents
1. Description

2. Controlling the Optimization

3. Optimizer Trace

The NOT NULL range scan optimization enables the optimizer to construct range scans from NOT NULL conditions that it

was able to infer from the WHERE clause.

The optimization appeared in MariaDB 10.5.0. It is not enabled by default; one needs to set an optimizer_switch flag to

enable it.

Description
A basic (but slightly artificial) example:

create table items (

 price decimal(8,2),

 weight decimal(8,2),

 ...

 index(weight)

);

-- Find items that cost more than 1000 $currency_units per kg:

set optimizer_switch='not_null_range_scan=on';

explain

select * from items where items.price > items.weight / 1000;

The WHERE condition in this form cannot be used for range scans. However, one can infer that it will reject rows that NULL

for weight . That is, infer an additional condition that

weight IS NOT NULL

and pass it to the range optimizer. The range optimizer can, in turn, evaluate whether it makes sense to construct range

access from the condition:

2619/4161

+------+-------------+-------+-------+---------------+--------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+-------+-------+---------------+--------+---------+------+------+-------------+

| 1 | SIMPLE | items | range | NULL | weight | 5 | NULL | 1 | Using where |

+------+-------------+-------+-------+---------------+--------+---------+------+------+-------------+

Here's another example that's more complex but is based on a real-world query. Consider a join query

-- Find orders that were returned

select * from current_orders as O, order_returns as RET

where

 O.return_id= RET.id;

Here, the optimizer can infer the condition "return_id IS NOT NULL". If most of the orders are not returned (and so have

NULL for return_id), one can use range access to scan only those orders that had a return.

Controlling the Optimization
The optimization is not enabled by default. One can enable it like so

 set optimizer_switch='not_null_range_scan=on';

Optimizer Trace
TODO.

3.3.4.31 Optimizing for "Latest News"-style
Queries

Contents
1. The problem space

2. The performance issues

3. The solution

4. The queries

5. Why it works

The problem space
Let's say you have "news articles" (rows in a table) and want a web page showing the latest ten articles about a particular

topic.

Variants on "topic":

Category

Tag

Provider (of news article)

Manufacturer (of item for sale)

Ticker (financial stock)

Variants on "news article"

Item for sale

Blog comment

Blog thread

Variants on "latest"

Publication date (unix_timestamp)

Most popular (keep the count)

Most emailed (keep the count)

Manual ranking (1..10 -- 'top ten')

Variants on "10" - there is nothing sacred about "10" in this discussion.

2620/4161

The performance issues
Currently you have a table (or a column) that relates the topic to the article. The SELECT statement to find the latest 10

articles has grown in complexity, and performance is poor. You have focused on what index to add, but nothing seems to

work.

If there are multiple topics for each article, you need a many-to-many table.

You have a flag "is_deleted" that needs filtering on.

You want to "paginate" the list (ten articles per page, for as many pages as necessary).

The solution
First, let me give you the solution, then I will elaborate on why it works well.

One new table called, say, Lists.

Lists has _exactly_ 3 columns: topic, article_id, sequence

Lists has _exactly_ 2 indexes: PRIMARY KEY(topic, sequence, article_id), INDEX(article_id)

Only viewable articles are in Lists. (This avoids the filtering on "is_deleted", etc)

Lists is InnoDB. (This gets "clustering".)

"sequence" is typically the date of the article, but could be some other ordering.

"topic" should probably be normalized, but that is not critical to this discussion.

"article_id" is a link to the bulky row in another table(s) that provide all the details about the article.

The queries
Find the latest 10 articles for a topic:

SELECT a.*

 FROM Articles a

 JOIN Lists s ON s.article_id = a.article_id

 WHERE s.topic = ?

 ORDER BY s.sequence DESC

 LIMIT 10;

You must not have any WHERE condition touching columns in Articles.

When you mark an article for deletion; you must remove it from Lists:

DELETE FROM Lists

 WHERE article_id = ?;

I emphasize "must" because flags and other filtering is often the root of performance issues.

Why it works
By now, you may have discovered why it works.

The big goal is to minimize the disk hits. Let's itemize how few disk hits are needed. When finding the latest articles with

'normal' code, you will probably find that it is doing significant scans of the Articles table, failing to quickly home in on the 10

rows you want. With this design, there is only one extra disk hit:

1 disk hit: 10 adjacent, narrow, rows in Lists -- probably in a single "block".

10 disk hits: The 10 articles. (These hits are unavoidable, but may be cached.) The PRIMARY KEY, and using

InnoDB, makes these quite efficient.

OK, you pay for this by removing things that you should avoid.

1 disk hit: INDEX(article_id) - finding a few ids

A few more disk hits to DELETE rows from Lists. This is a small price to pay -- and you are not paying it while the

user is waiting for the page to render.

3.3.4.32 Pagination Optimization

2621/4161

Contents
1. The Desire

2. The Problem

3. Other Bugs

4. What to Do?

5. Implementation -- Getting Rid of OFFSET

6. Implementation -- "Left Off"

7. Implementation -- Links Beyond [Next]

8. A Reasonable Set of Links

9. Why it Works

10. "Items 11-20 Out of 12345"

11. Complex WHERE, or JOIN

12. How Much Faster?

13. What is Lost

14. Postlog

The Desire
You have a website with news articles, or a blog, or some other thing with a list of things that might be too long for a single

page. So, you decide to break it into chunks of, say, 10 items and provide a [Next] button to go the next "page".

You spot OFFSET and LIMIT in MariaDB and decide that is the obvious way to do it.

 SELECT *

 FROM items

 WHERE messy_filtering

 ORDER BY date DESC

 OFFSET $M LIMIT $N

Note that the problem requirement needs a [Next] link on each page so that the user can 'page' through the data. He does

not really need "GoTo Page #". Jump to the [First] or [Last] page may be useful.

The Problem
All is well -- until you have 50,000 items in a list. And someone tries to walk through all 5000 pages. That 'someone' could

be a search engine crawler.

Where's the problem? Performance. Your web page is doing "SELECT ... OFFSET 49990 LIMIT 10" (or the equivalent

"LIMIT 49990,10"). MariaDB has to find all 50,000 rows, step over the first 49,990, then deliver the 10 for that distant page.

If it is a crawler ('spider') that read all the pages, then it actually touched about 125,000,000 items to read all 5,000 pages.

Reading the entire table, just to get a distant page, can be so much I/O that it can cause timeouts on the web page. Or it can

interfere with other activity, causing other things to be slow.

Other Bugs
In addition to a performance problem, ...

If an item is inserted or deleted between the time you look at one page and the next, you could miss an item, or see

an item duplicated.

The pages are not easily bookmarked or sent to someone else because the contents shift over time.

The WHERE clause and the ORDER BY may even make it so that all 50,000 items have to be read, just to find the 10

items for page 1!

What to Do?
Hardware? No, that's just a bandaid. The data will continue to grow and even the new hardware won't handle it.

Better INDEX? No. You must get away from reading the entire table to get the 5000th page.

Build another table saying where the pages start? Get real! That would be a maintenance nightmare, and expensive.

Bottom line: Don't use OFFSET; instead remember where you "left off".

2622/4161

First page (latest 10 items):

 SELECT ... WHERE ... ORDER BY id DESC LIMIT 10

Next page (second 10):

 SELECT ... WHERE ... AND id < $left_off ORDER BY id DESC LIMIT 10

With INDEX(id), this suddenly becomes very efficient.

Implementation -- Getting Rid of OFFSET
You are probably doing this now: ORDER BY datetime DESC LIMIT 49990,10 You probably have some unique id on the

table. This can probably be used for "left off".

Currently, the [Next] button probably has a url something like ?topic=xyz&page=4999&limit=10 The 'topic' (or 'tag' or

'provider' or 'user' or etc) says which set of items are being displayed. The product of page*limit gives the OFFSET. (The

"limit=10" might be in the url, or might be hard-coded; this choice is not relevant to this discussion.)

The new variant would be ?topic=xyz&id=12345&limit=10. (Note: the 12345 is not computable from 4999.) By using

INDEX(topic, id) you can efficiently say

 WHERE topic = 'xyz'

 AND id >= 1234

 ORDER BY id

 LIMIT 10

That will hit only 10 rows. This is a huge improvement for later pages. Now for more details.

Implementation -- "Left Off"
What if there are exactly 10 rows left when you display the current page? It would make the UI nice if you grayed out the

[Next] button, wouldn't it. (Or you could suppress the button all together.)

How to do that? Instead of LIMIT 10, use LIMIT 11. That will give you the 10 items needed for the current page, plus an

indication of whether there is another page. And the id for that page.

So, take the 11th id for the [Next] button: Next

Implementation -- Links Beyond [Next]
Let's extend the 11 trick to also find the next 5 pages and build links for them.

Plan A is to say LIMIT 51. If you are on page 12, that would give you links for pages 13 (using 11th id) through pages 17

(51st).

Plan B is to do two queries, one to get the 10 items for the current page, the other to get the next 41 ids (LIMIT 10, 41) for

the next 5 pages.

Which plan to pick? It depends on many things, so benchmark.

A Reasonable Set of Links
Reaching forward and backward by 5 pages is not too much work. It would take two separate queries to find the ids in both

directions. Also, having links that take you to the First and Last pages would be easy to do. No id is needed; they can be

something like

 First

 Last

The UI would recognize those, then generate a SELECT with something like

 WHERE topic = 'xyz'

 ORDER BY id ASC -- ASC for First; DESC for Last

 LIMIT 10

The last items would be delivered in reverse order. Either deal with that in the UI, or make the SELECT more complex:

2623/4161

 (SELECT ...

 WHERE topic = 'xyz'

 ORDER BY id DESC

 LIMIT 10

) ORDER BY id ASC

Let's say you are on page 12 of lots of pages. It could show these links:

 [First] ... [7] [8] [9] [10] [11] 12 [13] [14] [15] [16] [17] ... [Last]

where the ellipsis is really used. Some end cases:

Page one of three:

 First [2] [3]

Page one of many:

 First [2] [3] [4] [5] ... [Last]

Page two of many:

 [First] 2 [3] [4] [5] ... [Last]

If you jump to the Last page, you don't know what page number it is.

So, the best you can do is perhaps:

 [First] ... [Prev] Last

Why it Works
The goal is to touch only the relevant rows, not all the rows leading up to the desired rows. This is nicely achieved, except

for building links to the "next 5 pages". That may (or may not) be efficiently resolved by the simple SELECT id, discussed

above. The reason that may not be efficient deals with the WHERE clause.

Let's discuss the optimal and suboptimal indexes.

For this discussion, I am assuming

The datetime field might have duplicates -- this can cause troubles

The id field is unique

The id field is close enough to datetime-ordered to be used instead of datetime.

Very efficient -- it does all the work in the index:

 INDEX(topic, id)

 WHERE topic = 'xyz'

 AND id >= 876

 ORDER BY id ASC

 LIMIT 10,41

<</code??

That will hit 51 consecutive index entries, 0 data rows.

Inefficient -- it must reach into the data:

<<code>>

 INDEX(topic, id)

 WHERE topic = 'xyz'

 AND id >= 876

 AND is_deleted = 0

 ORDER BY id ASC

 LIMIT 10,41

That will hit at least 51 consecutive index entries, plus at least 51 _randomly_ located data rows.

Efficient -- back to the previous degree of efficiency:

 INDEX(topic, is_deleted, id)

 WHERE topic = 'xyz'

 AND id >= 876

 AND is_deleted = 0

 ORDER BY id ASC

 LIMIT 10,41

Note how all the '=' parts of the WHERE come first; then comes both the '>=' and 'ORDER BY', both on id. This means that

the INDEX can be used for all the WHERE, plus the ORDER BY.

2624/4161

"Items 11-20 Out of 12345"
You lose the "out of" except when the count is small. Instead, say something like

 Items 11-20 out of Many

Alternatively... Only a few searches will have too many items to count. Keep another table with the search criteria and a

count. This count can be computed daily (or hourly) by some background script. When discovering that the topic is a busy

one, look it up in the table to get

 Items 11-20 out of about 49,000

The background script would round the count off.

The quick way to get an _estimated_ number of rows for an InnoDB table is

 SELECT table_rows

 FROM information_schema.TABLES

 WHERE TABLE_SCHEMA = 'database_name'

 AND TABLE_NAME = 'table_name'

However, it does not allow for the WHERE clause that you probably have.

Complex WHERE, or JOIN
If the search criteria cannot be confined to an INDEX in a single table, this technique is doomed. I have another paper that

discusses "Lists", which solves that (which extra development work), and even improves on what is discussed here.

How Much Faster?
This depends on

How many rows (total)

Whether the WHERE clause prevented the efficient use of the ORDER BY

Whether the data is bigger than the cache. This last one kicks in when building one page requires reading more data

from disk can be cached. At that point, the problem goes from being CPU-bound to being I/O-bound. This is likely to

suddenly slow down the loading of a pages by a factor of 10.

What is Lost
Cannot "jump to Page N", for an arbitrary N. Why do you want to do that?

Walking backward from the end does not know the page numbers.

The code is more complex.

Postlog
Designed about 2007; posted 2012.

3.3.4.33 Pivoting in MariaDB
Contents
1. The problem

2. A solution

3. Reference code for solution

4. Variants

5. Postlog

The problem
You want to "pivot" the data so that a linear list of values with two keys becomes a spreadsheet-like array. See examples,

below.

2625/4161

A solution
The best solution is probably to do it in some form of client code (PHP, etc). MySQL and MariaDB do not have a syntax for

SELECT that will do the work for you. The code provided here uses a stored procedure to generate code to pivot the data,

and then runs the code.

You can edit the SQL generated by the stored procedure to tweak the output in a variety of ways. Or you can tweak the

stored procedure to generate what you would prefer.

Reference code for solution
'Source' this into the mysql commandline tool:

DELIMITER //

DROP PROCEDURE IF EXISTS Pivot //

CREATE PROCEDURE Pivot(

 IN tbl_name VARCHAR(99), -- table name (or db.tbl)

 IN base_cols VARCHAR(99), -- column(s) on the left, separated by commas

 IN pivot_col VARCHAR(64), -- name of column to put across the top

 IN tally_col VARCHAR(64), -- name of column to SUM up

 IN where_clause VARCHAR(99), -- empty string or "WHERE ..."

 IN order_by VARCHAR(99) -- empty string or "ORDER BY ..."; usually the base_cols

)

 DETERMINISTIC

 SQL SECURITY INVOKER

BEGIN

 -- Find the distinct values

 -- Build the SUM()s

 SET @subq = CONCAT('SELECT DISTINCT ', pivot_col, ' AS val ',

 ' FROM ', tbl_name, ' ', where_clause, ' ORDER BY 1');

 -- select @subq;

 SET @cc1 = "CONCAT('SUM(IF(&p = ', &v, ', &t, 0)) AS ', &v)";

 SET @cc2 = REPLACE(@cc1, '&p', pivot_col);

 SET @cc3 = REPLACE(@cc2, '&t', tally_col);

 -- select @cc2, @cc3;

 SET @qval = CONCAT("'\"', val, '\"'");

 -- select @qval;

 SET @cc4 = REPLACE(@cc3, '&v', @qval);

 -- select @cc4;

 SET SESSION group_concat_max_len = 10000; -- just in case

 SET @stmt = CONCAT(

 'SELECT GROUP_CONCAT(', @cc4, ' SEPARATOR ",\n") INTO @sums',

 ' FROM (', @subq, ') AS top');

 select @stmt;

 PREPARE _sql FROM @stmt;

 EXECUTE _sql; -- Intermediate step: build SQL for columns

 DEALLOCATE PREPARE _sql;

 -- Construct the query and perform it

 SET @stmt2 = CONCAT(

 'SELECT ',

 base_cols, ',\n',

 @sums,

 ',\n SUM(', tally_col, ') AS Total'

 '\n FROM ', tbl_name, ' ',

 where_clause,

 ' GROUP BY ', base_cols,

 '\n WITH ROLLUP',

 '\n', order_by

);

 select @stmt2; -- The statement that generates the result

 PREPARE _sql FROM @stmt2;

 EXECUTE _sql; -- The resulting pivot table ouput

 DEALLOCATE PREPARE _sql;

 -- For debugging / tweaking, SELECT the various @variables after CALLing.

END;

//

DELIMITER ;

Then do a CALL, like in the examples, below.

2626/4161

Variants
I thought about having several extra options for variations, but decided that would be too messy. Instead, here are

instructions for implementing the variations, either by capturing the SELECT that was output by the Stored Procedure, or by

modifying the SP, itself.

The data is strings (not numeric) -- Remove "SUM" (but keep the expression); remove the SUM...AS TOTAL line.

If you want blank output instead of 0 -- Currently the code says "SUM(IF(... 0))"; change the 0 to NULL, then wrap the

SUM: IFNULL(SUM(...), ''). Note that this will distinguish between a zero total (showing '0') and no data (blank).

Fancier output -- Use PHP/VB/Java/etc.

No Totals at the bottom -- Remove the WITH ROLLUP line from the SELECT.

No Total for each row -- Remove the SUM...AS Total line from the SELECT.

Change the order of the columns -- Modify the ORDER BY 1 ('1' meaning first column) in the SELECT DISTINCT in

the SP.

Example: ORDER BY FIND_IN_SET(DAYOFWEEK(...), 'Sun,Mon,Tue,Wed,Thu,Fri,Sat')

Notes about "base_cols":

Multiple columns on the left, such as an ID and its meaning -- This is already handled by allowing base_cols to be a

commalist like 'id, meaning'

You cannot call the SP with "foo AS 'blah'" in hopes of changing the labels, but you could edit the SELECT to achieve

that goal.

Notes about the "Totals":

If "base_cols" is more than one column, WITH ROLLUP will be subtotals as well as a grand total.

NULL shows up in the Totals row in the "base_cols" column; this can be changed via something like IFNULL(...,

'Totals').

Example 1 - Population vs Latitude in US

2627/4161

-- Sample input:

+-------+----------------------+---------+------------+

| state | city | lat | population |

+-------+----------------------+---------+------------+

| AK | Anchorage | 61.2181 | 276263 |

| AK | Juneau | 58.3019 | 31796 |

| WA | Monroe | 47.8556 | 15554 |

| WA | Spanaway | 47.1042 | 25045 |

| PR | Arecibo | 18.4744 | 49189 |

| MT | Kalispell | 48.1958 | 18018 |

| AL | Anniston | 33.6597 | 23423 |

| AL | Scottsboro | 34.6722 | 14737 |

| HI | Kaneohe | 21.4181 | 35424 |

| PR | Candelaria | 18.4061 | 17632 |

...

-- Call the Stored Procedure:

CALL Pivot('World.US', 'state', '5*FLOOR(lat/5)', 'population', '', '');

-- SQL generated by the SP:

SELECT state,

SUM(IF(5*FLOOR(lat/5) = "15", population, 0)) AS "15",

SUM(IF(5*FLOOR(lat/5) = "20", population, 0)) AS "20",

SUM(IF(5*FLOOR(lat/5) = "25", population, 0)) AS "25",

SUM(IF(5*FLOOR(lat/5) = "30", population, 0)) AS "30",

SUM(IF(5*FLOOR(lat/5) = "35", population, 0)) AS "35",

SUM(IF(5*FLOOR(lat/5) = "40", population, 0)) AS "40",

SUM(IF(5*FLOOR(lat/5) = "45", population, 0)) AS "45",

SUM(IF(5*FLOOR(lat/5) = "55", population, 0)) AS "55",

SUM(IF(5*FLOOR(lat/5) = "60", population, 0)) AS "60",

SUM(IF(5*FLOOR(lat/5) = "70", population, 0)) AS "70",

 SUM(population) AS Total

 FROM World.US GROUP BY state

 WITH ROLLUP

-- Output from that SQL (also comes out of the SP):

+-------+---------+--------+----------+----------+----------+----------+---------+-------+---

-----+------+-----------+

| state | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 55 | 60

| 70 | Total |

+-------+---------+--------+----------+----------+----------+----------+---------+-------+---

-----+------+-----------+

| AK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60607 |

360765 | 4336 | 425708 |

| AL | 0 | 0 | 0 | 1995225 | 0 | 0 | 0 | 0 |

0 | 0 | 1995225 |

| AR | 0 | 0 | 0 | 595537 | 617361 | 0 | 0 | 0 |

0 | 0 | 1212898 |

| AZ | 0 | 0 | 0 | 4708346 | 129989 | 0 | 0 | 0 |

0 | 0 | 4838335 |

...

| FL | 0 | 34706 | 9096223 | 1440916 | 0 | 0 | 0 | 0 |

0 | 0 | 10571845 |

| GA | 0 | 0 | 0 | 2823939 | 0 | 0 | 0 | 0 |

0 | 0 | 2823939 |

| HI | 43050 | 752983 | 0 | 0 | 0 | 0 | 0 | 0 |

0 | 0 | 796033 |

...

| WY | 0 | 0 | 0 | 0 | 0 | 277480 | 0 | 0 |

0 | 0 | 277480 |

| NULL | 1792991 | 787689 | 16227033 | 44213344 | 47460670 | 61110822 | 7105143 | 60607 |

360765 | 4336 | 179123400 |

+-------+---------+--------+----------+----------+----------+----------+---------+-------+---

-----+------+-----------+

Notice how Alaska (AK) has populations in high latitudes and Hawaii (HI) in low latitudes.

Example 2 - Home Solar Power Generation

This give the power (KWh) generated by hour and month for 2012.

2628/4161

-- Sample input:

+---------------------+------+

| ts | enwh |

+---------------------+------+

| 2012-06-06 11:00:00 | 523 |

| 2012-06-06 11:05:00 | 526 |

| 2012-06-06 11:10:00 | 529 |

| 2012-06-06 11:15:00 | 533 |

| 2012-06-06 11:20:00 | 537 |

| 2012-06-06 11:25:00 | 540 |

| 2012-06-06 11:30:00 | 542 |

| 2012-06-06 11:35:00 | 543 |

Note that it is a reading in watts for each 5 minutes.

So, summing is needed to get the breakdown by month and hour.

-- Invoke the SP:

CALL Pivot('details', -- Table

 'MONTH(ts)', -- `base_cols`, to put on left; SUM up over the month

 'HOUR(ts)', -- `pivot_col` to put across the top; SUM up entries across the hour

 'enwh/1000', -- The data -- watts converted to KWh

 "WHERE ts >= '2012-01-01' AND ts < '2012-01-01' + INTERVAL 1 year", -- Limit to one

year

 ''); -- assumes that the months stay in order

-- The SQL generated:

SELECT MONTH(ts),

SUM(IF(HOUR(ts) = "5", enwh/1000, 0)) AS "5",

SUM(IF(HOUR(ts) = "6", enwh/1000, 0)) AS "6",

SUM(IF(HOUR(ts) = "7", enwh/1000, 0)) AS "7",

SUM(IF(HOUR(ts) = "8", enwh/1000, 0)) AS "8",

SUM(IF(HOUR(ts) = "9", enwh/1000, 0)) AS "9",

SUM(IF(HOUR(ts) = "10", enwh/1000, 0)) AS "10",

SUM(IF(HOUR(ts) = "11", enwh/1000, 0)) AS "11",

SUM(IF(HOUR(ts) = "12", enwh/1000, 0)) AS "12",

SUM(IF(HOUR(ts) = "13", enwh/1000, 0)) AS "13",

SUM(IF(HOUR(ts) = "14", enwh/1000, 0)) AS "14",

SUM(IF(HOUR(ts) = "15", enwh/1000, 0)) AS "15",

SUM(IF(HOUR(ts) = "16", enwh/1000, 0)) AS "16",

SUM(IF(HOUR(ts) = "17", enwh/1000, 0)) AS "17",

SUM(IF(HOUR(ts) = "18", enwh/1000, 0)) AS "18",

SUM(IF(HOUR(ts) = "19", enwh/1000, 0)) AS "19",

SUM(IF(HOUR(ts) = "20", enwh/1000, 0)) AS "20",

 SUM(enwh/1000) AS Total

 FROM details WHERE ts >= '2012-01-01' AND ts < '2012-01-01' + INTERVAL 1 year GROUP BY

MONTH(ts)

 WITH ROLLUP

-- That generated decimal places that I did like:

| MONTH(ts) | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

| 13 | 14

 | 15 | 16 | 17 | 18 | 19 | 20 | Total |

+-----------+--------+---------+----------+----------+-----------+-----------+-----------+---

--------+-----------+------

-----+-----------+----------+----------+----------+---------+--------+------------+

| 1 | 0.0000 | 0.0000 | 1.8510 | 21.1620 | 52.3190 | 73.0420 | 89.3220 |

97.0190 | 88.9720 | 75.

4970 | 50.9270 | 12.5130 | 0.5990 | 0.0000 | 0.0000 | 0.0000 | 563.2230 |

| 2 | 0.0000 | 0.0460 | 5.9560 | 35.6330 | 72.4710 | 96.5130 | 112.7770 |

126.0850 | 117.1540 | 96.

7160 | 72.5900 | 33.6230 | 4.7650 | 0.0040 | 0.0000 | 0.0000 | 774.3330 |

Other variations made the math go wrong. (Note that there is no CAST to FLOAT.)

While I was at it, I gave an alias to change "MONTH(ts)" to just "Month".

So, I edited the SQL to this and ran it:

2629/4161

SELECT MONTH(ts) AS 'Month',

ROUND(SUM(IF(HOUR(ts) = "5", enwh, 0))/1000) AS "5",

...

ROUND(SUM(IF(HOUR(ts) = "20", enwh, 0))/1000) AS "20",

 ROUND(SUM(enwh)/1000) AS Total

 FROM details WHERE ts >= '2012-01-01' AND ts < '2012-01-01' + INTERVAL 1 year

 GROUP BY MONTH(ts)

 WITH ROLLUP;

-- Which gave cleaner output:

+-------+------+------+------+------+------+------+------+------+------+------+------+------

+------+------+------+------+-------+

| Month | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

17 | 18 | 19 | 20 | Total |

+-------+------+------+------+------+------+------+------+------+------+------+------+------

+------+------+------+------+-------+

| 1 | 0 | 0 | 2 | 21 | 52 | 73 | 89 | 97 | 89 | 75 | 51 | 13 |

1 | 0 | 0 | 0 | 563 |

| 2 | 0 | 0 | 6 | 36 | 72 | 97 | 113 | 126 | 117 | 97 | 73 | 34 |

5 | 0 | 0 | 0 | 774 |

| 3 | 0 | 0 | 9 | 46 | 75 | 105 | 121 | 122 | 128 | 126 | 105 | 71 |

33 | 10 | 0 | 0 | 952 |

| 4 | 0 | 1 | 14 | 63 | 111 | 146 | 171 | 179 | 177 | 158 | 141 | 105 |

65 | 26 | 3 | 0 | 1360 |

| 5 | 0 | 4 | 21 | 78 | 128 | 162 | 185 | 199 | 196 | 187 | 166 | 130 |

81 | 36 | 8 | 0 | 1581 |

| 6 | 0 | 4 | 17 | 71 | 132 | 163 | 182 | 191 | 193 | 182 | 161 | 132 |

89 | 43 | 10 | 1 | 1572 |

| 7 | 0 | 3 | 17 | 57 | 121 | 160 | 185 | 197 | 199 | 189 | 168 | 137 |

92 | 44 | 11 | 1 | 1581 |

| 8 | 0 | 1 | 11 | 48 | 104 | 149 | 171 | 183 | 187 | 179 | 156 | 121 |

76 | 32 | 5 | 0 | 1421 |

| 9 | 0 | 0 | 6 | 32 | 77 | 127 | 151 | 160 | 159 | 148 | 124 | 93 |

47 | 12 | 1 | 0 | 1137 |

| 10 | 0 | 0 | 1 | 16 | 54 | 85 | 107 | 115 | 119 | 106 | 85 | 56 |

17 | 2 | 0 | 0 | 763 |

| 11 | 0 | 0 | 5 | 30 | 57 | 70 | 84 | 83 | 76 | 64 | 35 | 8 |

1 | 0 | 0 | 0 | 512 |

| 12 | 0 | 0 | 2 | 17 | 39 | 54 | 67 | 75 | 64 | 58 | 31 | 4 |

0 | 0 | 0 | 0 | 411 |

| NULL | 0 | 13 | 112 | 516 | 1023 | 1392 | 1628 | 1728 | 1703 | 1570 | 1294 | 902 |

506 | 203 | 38 | 2 | 12629 |

+-------+------+------+------+------+------+------+------+------+------+------+------+------

+------+------+------+------+-------+

Midday in the summer is the best time for solar panels, as you would expect. 1-2pm in July was the best.

Postlog
Posted, Feb. 2015

3.3.4.34 Rollup Unique User Counts
Contents
1. The Problem

2. The solution

3. Inflating the BIT_COUNT

4. How good is it?

5. Postlog

The Problem
The normal way to count "Unique Users" is to take large log files, sort by userid, dedup, and count. This requires a rather

large amount of processing. Furthermore, the count derived cannot be rolled up. That is, daily counts cannot be added to

get weekly counts -- some users will be counted multiple times.

So, the problem is to store the counts is such a way as to allow rolling up.

2630/4161

The solution
Let's think about what we can do with a hash of the userid. The hash could map to a bit in a bit string. A BIT_COUNT of the

bit string would give the 1-bits, representing the number of users. But that bit string would have to be huge. What if we could

use shorter bit strings? Then different userids would be folded into the same bit. Let's assume we can solve that.

Meanwhile, what about the rollup? The daily bit strings can be OR'd together to get a similar bit string for the week.

We have now figured out how to do the rollup, but have created another problem -- the counts are too low.

Inflating the BIT_COUNT
A sufficiently random hash (eg MD5) will fold userids into the same bits with a predictable frequency. We need to figure this

out, and work backwards. That is, given that X percent of the bits are set, we need a formula that says approximately how

many userids were used to get those bits.

I simulated the problem by generating random hashes and calculated the number of bits that would be set. Then, with the

help of Eureqa software, I derived the formula:

Y = 0.5456*X + 0.6543*tan(1.39*X*X*X)

How good is it?
The formula is reasonably precise. It is usually within 1% of the correct value; rarely off by 2%.

Of course, if virtually all the bits are set, the forumla can't be very precise. Hence, you need to plan to have the bit strings big

enough to handle the expected number of Uniques. In practice, you can use less than 1 bit per Unique. This would be a

huge space savings over trying to save all the userids.

Another suggestion... If you are rolling up over a big span of time (eg hourly -> monthly), the bit strings must all be the same

length, and the monthly string must be big enough to handle the expected count. This is likely to lead to very sparse hourly

bit strings. Hence, it may be prudent to compress the hourly stings.

Postlog
Invented Nov, 2013; published Apr, 2014

Future: Rick is working on actual code (Sep, 2016) It is complicated by bit-wise operations being limited to BIGINT.

However, with MySQL 8.0 (freshly released), the desired bit-wise operations can be applied to BLOB, greatly simplifying my

code. I hope to publish the pre-8.0 code soon; 8.0 code later.

3.3.4.35 Rowid Filtering Optimization
Contents
1. Example

2. Details

3. Control

The target use case for rowid filtering is as follows:

a table uses ref access on index IDX1

but it also has a fairly restrictive range predicate on another index IDX2.

In this case, it is advantageous to:

Do an index-only scan on index IDX2 and collect rowids of index records into a data structure that allows filtering (let's

call it $FILTER).

When doing ref access on IDX1, check $FILTER before reading the full record.

Example
Consider a query

2631/4161

SELECT ...

FROM orders JOIN lineitem ON o_orderkey=l_orderkey

WHERE

 l_shipdate BETWEEN '1997-01-01' AND '1997-01-31' AND

 o_totalprice between 200000 and 230000;

Suppose the condition on l_shipdate is very restrictive, which means lineitem table should go first in the join order. Then,

the optimizer can use o_orderkey=l_orderkey equality to do an index lookup to get the order the line item is from. On

the other hand o_totalprice between ... can also be rather selective.

With filtering, the query plan would be:

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: lineitem

 type: range

possible_keys: PRIMARY,i_l_shipdate,i_l_orderkey,i_l_orderkey_quantity

 key: i_l_shipdate

 key_len: 4

 ref: NULL

 rows: 98

 Extra: Using index condition

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: orders

 type: eq_ref|filter

possible_keys: PRIMARY,i_o_totalprice

 key: PRIMARY|i_o_totalprice

 key_len: 4|9

 ref: dbt3_s001.lineitem.l_orderkey

 rows: 1 (5%)

 Extra: Using where; Using rowid filter

Note that table orders has "Using rowid filter". The type column has "|filter" , the key column shows the index that

is used to construct the filter. rows column shows the expected filter selectivity, it is 5%.

ANALYZE FORMAT=JSON output for table orders will show

 "table": {

 "table_name": "orders",

 "access_type": "eq_ref",

 "possible_keys": ["PRIMARY", "i_o_totalprice"],

 "key": "PRIMARY",

 "key_length": "4",

 "used_key_parts": ["o_orderkey"],

 "ref": ["dbt3_s001.lineitem.l_orderkey"],

 "rowid_filter": {

 "range": {

 "key": "i_o_totalprice",

 "used_key_parts": ["o_totalprice"]

 },

 "rows": 69,

 "selectivity_pct": 4.6,

 "r_rows": 71,

 "r_selectivity_pct": 10.417,

 "r_buffer_size": 53,

 "r_filling_time_ms": 0.0716

 }

Note the rowid_filter element. It has a range element inside it. selectivity_pct is the expected selectivity,

accompanied by the r_selectivity_pct showing the actual observed selectivity.

Details
The optimizer makes a cost-based decision about when the filter should be used.

The filter data structure is currently an ordered array of rowids. (a Bloom filter would be better here and will probably

be introduced in the future versions).

2632/4161

The optimization needs to be supported by the storage engine. At the moment, it is supported by InnoDB and

MyISAM. It is not supported in partitioned tables.

Control
Rowid filtering can be switched on/off using rowid_filter flag in the optimizer_switch variable. By default, the

optimization is enabled.

3.3.4.36 Sargable DATE and YEAR
Starting from MariaDB 11.1, conditions in the form

YEAR(indexed_date_col) CMP const_value

DATE(indexed_date_col) CMP const_value

are sargable, provided that

CMP is any of = , <=> , < , <= , > , >= .

indexed_date_col has a type of DATE , DATETIME or TIMESTAMP and is a part of some index.

One can swap the left and right hand sides of the equality: const_value CMP {DATE|YEAR}(indexed_date_col) is also

handled.

Sargable here means that the optimizer is able to use such conditions to construct access methods, estimate their

selectivity, or use them to perform partition pruning.

Implementation
Internally, the optimizer rewrites the condition to an equivalent condition which doesn't use YEAR or DATE functions.

For example, YEAR(date_col)=2023 is rewritten into date_col between '2023-01-01' and '2023-12-31' .

Similarly, DATE(datetime_col) <= '2023-06-01' is rewritten into datetime_col <= '2023-06-01 23:59:59' .

Controlling the Optimization
The optimization is always ON, there is no Optimizer Switch flag to control it.

Optimizer Trace
The rewrite is logged as date_conds_into_sargable transformation. Example:

 {

 "transformation": "date_conds_into_sargable",

 "before": "cast(t1.datetime_col as date) <= '2023-06-01'",

 "after": "t1.datetime_col <= '2023-06-01 23:59:59'"

 },

References
MDEV-8320 : Allow index usage for DATE(datetime_column) = const

3.3.4.37 Sargable UPPER
Starting from MariaDB 11.3, expressions in the form

UPPER(key_col) = expr

UPPER(key_col) IN (constant-list)

are sargable if key_col uses either the utf8mb3_general_ci or utf8mb4_general_ci collation.

UCASE is a synonym for UPPER so is covered as well.

2633/4161

https://jira.mariadb.org/browse/MDEV-8320

Sargable means that the optimizer is able to use such conditions to construct access methods, estimate their selectivity, or

perform partition pruning.

Example

create table t1 (

 key1 varchar(32) collate utf8mb4_general_ci,

 ...

 key(key1)

);

explain select * from t1 where UPPER(key1)='ABC'

+------+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+------+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+

| 1 | SIMPLE | t1 | ref | key1 | key1 | 131 | const | 1 | Using where;

+------+-------------+-------+------+---------------+------+---------+-------+------+--------------------------+

Note that ref access is used.

An example with join:

explain select * from t0,t1 where upper(t1.key1)=t0.col;

+------+-------------+-------+------+---------------+------+---------+-------------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+------+-------------+-------+------+---------------+------+---------+-------------+------+-------------+

| 1 | SIMPLE | t0 | ALL | NULL | NULL | NULL | NULL | 10 | Using where

| 1 | SIMPLE | t1 | ref | key1 | key1 | 131 | test.t0.col | 1 | Using index

+------+-------------+-------+------+---------------+------+---------+-------------+------+-------------+

Here, the optimizer was able to construct ref access.

Controlling the Optimization
The optimizer_switch variable has the flag sargable_casefold to turn the optimization on and off. The default is ON.

Optimizer Trace
The optimization is implemented as a rewrite for a query's WHERE/ON conditions. It uses the

sargable_casefold_removal object name in the trace:

 "join_optimization": {

 "select_id": 1,

 "steps": [

 {

 "sargable_casefold_removal": {

 "before": "ucase(t1.key1) = t0.col",

 "after": "t1.key1 = t0.col"

 }

 },

References
MDEV-31496 : Make optimizer handle UCASE(varchar_col)=...

An analog for LCASE is not possible. See MDEV-31955 : Make optimizer handle LCASE(varchar_col)=... for details.

3.3.4.38 USE INDEX
You can limit which indexes are considered with the USE INDEX option.

2634/4161

https://jira.mariadb.org/browse/MDEV-31496
https://jira.mariadb.org/browse/MDEV-31955

Syntax

USE INDEX [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])

Contents
1. Syntax

2. Description

1. Index Prefixes

3. Example

Description
The default is 'FOR JOIN', which means that the hint only affects how the WHERE clause is optimized.

USE INDEX is used after the table name in the FROM clause.

USE INDEX cannot use an ignored index - it will be treated as if it doesn't exist.

Index Prefixes

When using index hints (USE, FORCE or IGNORE INDEX), the index name value can also be an unambiguous prefix of an

index name.

Example

CREATE INDEX Name ON City (Name);

CREATE INDEX CountryCode ON City (Countrycode);

EXPLAIN SELECT Name FROM City USE INDEX (CountryCode)

WHERE name="Helsingborg" AND countrycode="SWE";

This produces:

id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE City ref CountryCode CountryCode 3 const 14 Using where

If we had not used USE INDEX, the Name index would have been in possible keys.

3.3.5 Optimizing Tables
Different ways to optimize tables and data on disk

OPTIMIZE TABLE

Reclaim unused space and defragment data.

ANALYZE TABLE

Store key distributions for a table.

Choosing the Right Storage Engine

Quickly choose the most suitable storage engine for your needs.

Converting Tables from MyISAM to InnoDB

Issues when converting tables from MyISAM to InnoDB.

Histogram-Based Statistics

Histogram-based statistics can improve the optimizer query plan in certain situations.

Defragmenting InnoDB Tablespaces

MariaDB 10.1.1 introduced a feature to defragment InnoDB tablespaces.

Entity-Attribute-Value Implementation

A common, poorly performing, design pattern (EAV); plus an alternative

6

4

2

2

2635/4161

IP Range Table Performance

IP Range Table Performance Improvements

There are 1 related questions .

1.1.1.2.1.11 OPTIMIZE TABLE

1.1.1.2.1.2 ANALYZE TABLE

5.3.1 Choosing the Right Storage Engine

5.3.23 Converting Tables from MyISAM to InnoDB

3.3.4.6.2 Histogram-Based Statistics

3.3.5.6 Defragmenting InnoDB Tablespaces
Contents
1. Overview

2. InnoDB Defragmentation

1. System Variables

2. Status Variables

3. Example

Overview
When rows are deleted from an InnoDB table, the rows are simply marked as deleted and not physically deleted. The free

space is not returned to the operating system for re-use.

The purge thread will physically delete index keys and rows, but the free space introduced is still not returned to operating

system. This can lead to gaps in the pages. If you have variable length rows, new rows may be larger than old rows and

cannot make use of the available space.

You can run OPTIMIZE TABLE or ALTER TABLE <table> ENGINE=InnoDB to reconstruct the table. Unfortunately running

OPTIMIZE TABLE against an InnoDB table stored in the shared table-space file ibdata1 does two things:

Makes the table9s data and indexes contiguous inside ibdata1 .

Increases the size of ibdata1 because the contiguous data and index pages are appended to ibdata1 .

InnoDB Defragmentation

The feature described below has been deprecated in MariaDB 11.0 and was removed in MariaDB 11.1.0. See MDEV-

30544 and MDEV-30545 .

MariaDB 10.1 merged Facebook's defragmentation code prepared for MariaDB by Matt, Seong Uck Lee from Kakao. The

only major difference to Facebook's code and Matt9s patch is that MariaDB does not introduce new literals to SQL and

makes no changes to the server code. Instead, OPTIMIZE TABLE is used and all code changes are inside the

InnoDB/XtraDB storage engines.

The behaviour of OPTIMIZE TABLE is unchanged by default, and to enable this new feature, you need to set the

innodb_defragment system variable to 1 .

[mysqld]

...

innodb-defragment=1

No new tables are created and there is no need to copy data from old tables to new tables. Instead, this feature loads n

pages (determined by innodb-defragment-n-pages) and tries to move records so that pages would be full of records and

2636/4161

https://mariadb.com/kb/en/optimizing-tables/+questions/
https://jira.mariadb.org/browse/MDEV-30544
https://jira.mariadb.org/browse/MDEV-30545

then frees pages that are fully empty after the operation.

Note that tablespace files (including ibdata1) will not shrink as the result of defragmentation, but one will get better memory

utilization in the InnoDB buffer pool as there are fewer data pages in use.

A number of new system and status variables for controlling and monitoring the feature are introduced.

System Variables

innodb_defragment: Enable InnoDB defragmentation.

innodb_defragment_n_pages: Number of pages considered at once when merging multiple pages to defragment.

innodb_defragment_stats_accuracy: Number of defragment stats changes there are before the stats are written to

persistent storage.

innodb_defragment_fill_factor_n_recs: Number of records of space that defragmentation should leave on the page.

innodb_defragment_fill_factor: Indicates how full defragmentation should fill a page.

innodb_defragment_frequency: Maximum times per second for defragmenting a single index.

Status Variables

Innodb_defragment_compression_failures: Number of defragment re-compression failures

Innodb_defragment_failures: Number of defragment failures.

Innodb_defragment_count: Number of defragment operations.

Example

set @@global.innodb_file_per_table = 1;

set @@global.innodb_defragment_n_pages = 32;

set @@global.innodb_defragment_fill_factor = 0.95;

CREATE TABLE tb_defragment (

pk1 bigint(20) NOT NULL,

pk2 bigint(20) NOT NULL,

fd4 text,

fd5 varchar(50) DEFAULT NULL,

PRIMARY KEY (pk1),

KEY ix1 (pk2)

) ENGINE=InnoDB;

delimiter //

create procedure innodb_insert_proc (repeat_count int)

begin

 declare current_num int;

 set current_num = 0;

 while current_num < repeat_count do

 INSERT INTO tb_defragment VALUES (current_num, 1, REPEAT('Abcdefg', 20),

REPEAT('12345',5));

 INSERT INTO tb_defragment VALUES (current_num+1, 2, REPEAT('HIJKLM', 20),

REPEAT('67890',5));

 INSERT INTO tb_defragment VALUES (current_num+2, 3, REPEAT('HIJKLM', 20),

REPEAT('67890',5));

 INSERT INTO tb_defragment VALUES (current_num+3, 4, REPEAT('HIJKLM', 20),

REPEAT('67890',5));

 set current_num = current_num + 4;

 end while;

end//

delimiter ;

commit;

set autocommit=0;

call innodb_insert_proc(50000);

commit;

set autocommit=1;

After these CREATE and INSERT operations, the following information can be seen from the INFORMATION SCHEMA:

2637/4161

select count(*) as Value from information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name = 'PRIMARY';

Value

313

select count(*) as Value from information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name = 'ix1';

Value

72

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_pages_freed');

count(stat_value)

0

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_page_split');

count(stat_value)

0

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_leaf_pages_defrag');

count(stat_value)

0

SELECT table_name, data_free/1024/1024 AS data_free_MB, table_rows FROM

information_schema.tables

 WHERE engine LIKE 'InnoDB' and table_name like '%tb_defragment%';

table_name data_free_MB table_rows

tb_defragment 4.00000000 50051

SELECT table_name, index_name, sum(number_records), sum(data_size) FROM

information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name like 'PRIMARY';

table_name index_name sum(number_records) sum(data_size)

`test`.`tb_defragment` PRIMARY 25873 4739939

SELECT table_name, index_name, sum(number_records), sum(data_size) FROM

information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name like 'ix1';

table_name index_name sum(number_records) sum(data_size)

`test`.`tb_defragment` ix1 50071 1051775

Deleting three-quarters of the records, leaving gaps, and then optimizing:

delete from tb_defragment where pk2 between 2 and 4;

optimize table tb_defragment;

Table Op Msg_type Msg_text

test.tb_defragment optimize status OK

show status like '%innodb_def%';

Variable_name Value

Innodb_defragment_compression_failures 0

Innodb_defragment_failures 1

Innodb_defragment_count 4

Now some pages have been freed, and some merged:

2638/4161

select count(*) as Value from information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name = 'PRIMARY';

Value

0

select count(*) as Value from information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name = 'ix1';

Value

0

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_pages_freed');

count(stat_value)

2

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_page_split');

count(stat_value)

2

select count(stat_value) from mysql.innodb_index_stats

 where table_name like '%tb_defragment%' and stat_name in ('n_leaf_pages_defrag');

count(stat_value)

2

SELECT table_name, data_free/1024/1024 AS data_free_MB, table_rows FROM

information_schema.tables

 WHERE engine LIKE 'InnoDB';

table_name data_free_MB table_rows

innodb_index_stats 0.00000000 8

innodb_table_stats 0.00000000 0

tb_defragment 4.00000000 12431

SELECT table_name, index_name, sum(number_records), sum(data_size) FROM

information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name like 'PRIMARY';

table_name index_name sum(number_records) sum(data_size)

`test`.`tb_defragment` PRIMARY 690 102145

SELECT table_name, index_name, sum(number_records), sum(data_size) FROM

information_schema.innodb_buffer_page

 where table_name like '%tb_defragment%' and index_name like 'ix1';

table_name index_name sum(number_records) sum(data_size)

`test`.`tb_defragment` ix1 5295 111263

See Defragmenting unused space on InnoDB tablespace on the Mariadb.org blog for more details.

3.3.5.7 Entity-Attribute-Value Implementation
Contents
1. The desires

2. Bad solution

3. The problems

4. A solution

5. But what about the ad hoc queries?

6. Why it works

7. Details on the BLOB/JSON

8. Conclusions

9. Postlog

The desires
Open-ended set of "attributes" (key=value) for each "entity". That is, the list of attributes is not known at development

time, and will grow in the future. (This makes one column per attribute impractical.)

"ad hoc" queries testing attributes.

Attribute values come in different types (numbers, strings, dates, etc.)

Scale to lots of entities, yet perform well.

It goes by various names

2639/4161

https://blog.mariadb.org/defragmenting-unused-space-on-innodb-tablespace/

EAV -- Entity - Attribute - Value

key-value

RDF -- This is a flavor of EAV

MariaDB has dynamic columns that look something like the solution below, with the added advantage of being able to

index the columns otherwise hidden in the blob. (There are caveats.)

MySQL 5.7 Has JSON datatype, plus functions to access parts

MongoDB, CouchDB -- and others -- Not SQL-based.

Bad solution
Table with 3 columns: entity_id, key, value

The "value" is a string, or maybe multiple columns depending on datatype or other kludges.

a JOIN b ON a.entity=b.entity AND b.key='x' JOIN c ON ... WHERE a.value=... AND b.value=...

The problems
The SELECTs get messy -- multiple JOINs

Datatype issues -- It's clumsy to be putting numbers into strings

Numbers stored in VARCHAR do not compare 'correctly', especially for range tests.

Bulky.

Dedupping the values is clumsy.

A solution
Decide which columns need to be searched/sorted by SQL queries. No, you don't need all the columns to be searchable or

sortable. Certain columns are frequently used for selection; identify these. You probably won't use all of them in all queries,

but you will use some of them in every query.

The solution uses one table for all the EAV stuff. The columns include the searchable fields plus one BLOB. Searchable

fields are declared appropriately (INT, TIMESTAMP, etc). The BLOB contains JSON-encoding of all the extra fields.

The table should be InnoDB, hence it should have a PRIMARY KEY. The entitity_id is the 'natural' PK. Add a small number

of other indexes (often 'composite') on the searchable fields. PARTITIONing is unlikely to be of any use, unless the Entities

should purged after some time. (Example: News Articles)

But what about the ad hoc queries?
You have included the most important fields to search on -- date, category, etc. These should filter the data down

significantly. When you also need to filter on something more obscure, that will be handled differently. The application code

will look at the BLOB for that; more on this later.

Why it works
You are not really going to search on more than a few fields.

The disk footprint is smaller; Smaller --> More cacheable --> Faster

It needs no JOINs

The indexes are useful

The one table has one row per entity, and can grow as needed. (EAV needs many rows per entity.)

Performance is as good as the indexes you have on the 'searchable fields'.

Optionally, you can duplicate the indexed fields in the BLOB.

Values missing from 'searchable fields' would need to be NULL (or whatever), and the code would need to deal with

such.

Details on the BLOB/JSON
Build the extra (or all) key-value pairs in a hash (associative array) in your application. Encode it. COMPRESS it.

Insert that string into the BLOB.

JSON is recommended, but not mandatory; it is simpler than XML. Other serializations (eg, YAML) could be used.

COMPRESS the JSON and put it into a BLOB (or MEDIUMBLOB) instead of a TEXT field. Compression gives about

3x shrinkage.

When SELECTing, UNCOMPRESS the blob. Decode the string into a hash. You are now ready to interrogate/display

any of the extra fields.

If you choose to use the JSON features of MariaDB or 5.7, you will have to forgo the compression feature described.

2640/4161

MySQL 5.7.8's JSON native JSON datatype uses a binary format for more efficient access.

Conclusions
Schema is reasonably compact (compression, real datatypes, less redundancy, etc, than EAV)

Queries are fast (since you have picked 'good' indexes)

Expandable (JSON is happy to have new fields)

Compatible (No 3rd party products, just supported products)

Range tests work (unlike storing INTs in VARCHARs)

(Drawback) Cannot use the non-indexed attributes in WHERE or ORDER BY clauses, must deal with that in the app.

(MySQL 5.7 partially alleviates this.)

Postlog
Posted Jan, 2014; Refreshed Feb, 2016.

MariaDB's Dynamic Columns

MySQL 5.7's JSON

This looks very promising; I will need to do more research to see how much of this article is obviated by it: Using MySQL as

a Document Store in 5.7 , more DocStore discussion

If you insist on EAV, set optimizer_search_depth=1.

3.3.5.8 IP Range Table Performance
Contents
1. The situation

2. The problem

3. The solution

4. Performance

5. Design decisions

6. Details

7. Reference implementation of IPv4

8. Reference implementation of IPv6

9. Postlog

The situation
Your data includes a large set of non-overlapping 'ranges'. These could be IP addresses, datetimes (show times for a single

station), zipcodes, etc.

You have pairs of start and end values; one 'item' belongs to each such 'range'. So, instinctively, you create a table with

start and end of the range, plus info about the item. Your queries involve a WHERE clause that compares for being between

the start and end values.

The problem
Once you get a large set of items, performance degrades. You play with the indexes, but find nothing that works well. The

indexes fail to lead to optimal functioning because the database does not understand that the ranges are non-overlapping.

The solution
I will present a solution that enforces the fact that items cannot have overlapping ranges. The solution builds a table to take

advantage of that, then uses Stored Routines to get around the clumsiness imposed by it.

Performance
The instinctive solution often leads to scanning half the table to do just about anything, such as finding the item containing

an 'address'. In complexity terms, this is Order(N).

The solution here can usually get the desired information by fetching a single row, or a small number of rows. It is Order(1).

In a large table, "counting the disk hits" is the important part of performance. Since InnoDB is used, and the PRIMARY KEY

(clustered) is used, most operations hit only 1 block.
2641/4161

https://dev.mysql.com/doc/refman/5.7/en/json.html
http://dev.mysql.com/doc/refman/5.7/en/document-store.html
http://mysqlserverteam.com/mysql-5-7-12-part-6-mysql-document-store-a-new-chapter-in-the-mysql-story/

Finding the 'block' where a given IP address lives:

For start of block: One single-row fetch using the PRIMARY KEY

For end of block: Ditto. The record containing this will be 'adjacent' to the other record.

For allocating or freeing a block:

2-7 SQL statements, hitting the clustered PRIMARY KEY for the rows containing and immediately adjacent to the

block.

One SQL statement is a DELETE; if hits as many rows as are needed for the block.

The other statements hit one row each.

Design decisions
This is crucial to the design and its performance:

Having just one address in the row. These were alternative designs; they seemed to be no better, and possibly worse:

That one address could have been the 'end' address.

The routine parameters for a 'block' could have be start of this block and start of next block.

The IPv4 parameters could have been dotted quads; I chose to keep the reference implemetation simpler instead.

The IPv6 parameters are 32-digit hex because it was the simpler that BINARY(16) or IPv5 for a reference

implementation.

The interesting work is in the Ips, not the second table, so I focus on it. The inconvenience of JOINing to the second table is

small compared to the performance gains.

Details
Two, not one, tables will be used. The first table (`Ips` in the reference implementations) is carefully designed to be optimal

for all the basic operations needed. The second table contains other infomation about the 'owner' of each 'item'. In the

reference implementations `owner` is an id used to JOIN the two tables. This discussion centers around `Ips` and how to

efficiently map IP(s) to/from owner(s). The second table has "PRIMARY KEY(owner)".

In addition to the two-table schema, there are a set of Stored Routines to encapsulate the necessary code.

One row of Ips represents one 'item' by specifying the starting IP address and the 'owner'. The next row gives the starting IP

address of the next "address block", thereby indirectly providing the ending address for the current block.

This lack of explicitly stating the "end address" leads to some clumsiness. The stored routines hide it from the user.

A special owner (indicated by '0') is reserved for "free" or "not-owned" blocks. Hence, sparse allocation of address blocks is

no problem. Also, the 'free' owner is handled no differently than real owners, so there are no extra Stored Routines for such.

Links below give "reference" implementations for IPv4 and IPv6. You will need to make changes for non-IP situations, and

may need to make changes even for IP situations.

These are the main stored routines provided:

IpIncr, IpDecr -- for adding/subtracting 1

IpStore -- for allocating/freeing a range

IpOwner, IpRangeOwners, IpFindRanges, Owner2IpStarts, Owner2IpRanges -- for lookups

IpNext, IpEnd -- IP of start of next block, or end of current block

None of the provided routines JOIN to the other table; you may wish to develop custom queries based on the given

reference Stored Procedures.

The Ips table's size is proportional to the number of blocks. A million 'owned' blocks may be 20-50MB. This varies due to

number of 'free' gaps (between zero and the number of owned blocks)

datatypes used for `ip` and `owner`

InnoDB overhead Even 100M blocks is quite manageable in today's hardware. Once things are cached, most

operations would take only a few milliseconds. A trillion blocks would work, but most operations would hit the disk a

few times -- only a few times.

Reference implementation of IPv4
This specific to IPv4 (32 bit, a la '196.168.1.255'). It can handle anywhere from 'nothing assigned' (1 row) to 'everything

assigned' (4B rows) 'equally' well. That is, to ask the question "who owns '11.22.33.44'" is equally efficient regardless of

how many blocks of IP addresses exist in the table. (OK, caching, disk hits, etc may make a slight difference.) The one

function that can vary is the one that reassigns a range to a new owner. Its speed is a function of how many existing ranges

need to be consumed, since those rows will be DELETEd. (It helps that they are, by schema design, 'clustered'.)

Notes on the Reference implementation for IPv4 :

2642/4161

http://mysql.rjweb.org/doc.php/ipv4.sql

Externally, the user may use the dotted quad notation (11.22.33.44), but needs to convert to INT UNSIGNED for

calling the Stored Procs.

The user is responsible for converting to/from the calling datatype (INT UNSIGNED) when accessing the stored

routine; suggest INET_ATON/INET_NTOA.

The internal datatype for addresses is the same as the calling datatype (INT UNSIGNED).

Adding and subtracting 1 (simple arithmetic).

The datatype of an 'owner' (MEDIUMINT UNSIGNED: 0..16M) -- adjust if needed.

The address "Off the end" (255.255.255.255+1 - represented as NULL).

The table is initialized to one row: (ip=0, owner=0), meaning "all addresses are free See the comments in the code for

more details.

(The reference implementation does not handle CDRs. Such should be easy to add on, by first turning it into an IP range.)

Reference implementation of IPv6
The code for handling IP address is more complex, but the overall structure is the same as for IPv4. Launch into it only if

you need IPv6.

Notes on the reference implementation for IPv6 :

Externally, IPv6 has a complex string, VARCHAR(39) CHARACTER SET ASCII. The Stored Procedure IpStr2Hex() is

provided.

The user is responsible for converting to/from the calling datatype (BINARY(16)) when accessing the stored routine;

suggest INET6_ATON/INET6_NTOA.

The internal datatype for addresses is the same as the calling datatype (BINARY(16)).

Communication with the Stored routines is via 32-char hex strings.

Inside the Procedures, and in the Ips table, an address is stored as BINARY(16) for efficiency. HEX() and UNHEX()

are used at the boundaries.

Adding/subtracting 1 is rather complex (see the code).

The datatype of an 'owner' (MEDIUMINT UNSIGNED: 0..16M); 'free' is represented by 0. You may need a bigger

datatype.

The address "Off the end" (ffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff+1 is represented by NULL).

The table is initialized to one row: (UNHEX('00000000000000000000000000000000'), 0), meaning "all addresses are

free.

You may need to decide on a canonical representation of IPv4 in IPv6. See the comments in the code for more

details.

The INET6* functions were first available in MySQL 5.6.3 and MariaDB 10.0.3

Adapting to a different non-IP 'address range' data

The external datatype for an 'address' should be whatever is convenient for the application.

The datatype for the 'address' in the table must be ordered, and should be as compact as possible.

You must write the Stored functions (IpIncr, IpDecr) for incrementing/decrementing an 'address'.

An 'owner' is an id of your choosing, but smaller is better.

A special value (such as 0 or '') must be provided for 'free'.

The table must be initialized to one row: (SmallestAddress, Free)

"Owner" needs a special value to represent "not owned". The reference implementations use "=" and "!=" to compare two

'owners'. Numeric values and strings work nicely with those operators; NULL does not. Hence, please do not use NULL for

"not owned".

Since the datatypes are pervasive in the stored routines, adapting a reference implementation to a different concept of

'address' would require multiple minor changes.

The code enforces that consecutive blocks never have the same 'owner', so the table is of 'minimal' size. Your application

can assume that such is always the case.

Postlog
Original writing -- Oct, 2012; Notes on INET6 functions -- May, 2015.

3.3.6 MariaDB Memory Allocation

2643/4161

http://mysql.rjweb.org/doc.php/ipv6.sql
https://mariadb.com/kb/en/mariadb-1003-release-notes/

Contents
1. Allocating RAM for MariaDB - The Short Answer

2. How to troubleshoot out-of-memory issues

3. What is the Key Buffer?

4. What is the Buffer Pool?

5. Another Algorithm

6. Query Memory Allocation

7. Mutex Bottleneck

8. HyperThreading and Multiple Cores (CPUs)

9. 32-bit OS and MariaDB

10. 64-bit OS with 32-bit MariaDB

11. 64-bit OS and MariaDB

12. table_open_cache

13. Query Cache

14. thread_cache_size

15. Binary Logs

16. Swappiness

17. NUMA

18. Huge Pages

19. ENGINE=MEMORY

20. How to Set Variables

21. Web Server

22. Tools

23. MySQL 5.7

24. Postlog

Allocating RAM for MariaDB - The Short Answer
If only using MyISAM, set key_buffer_size to 20% of available RAM. (Plus innodb_buffer_pool_size=0)

If only using InnoDB, set innodb_buffer_pool_size to 70% of available RAM. (Plus key_buffer_size = 10M, small, but not

zero.)

Rule of thumb for tuning:

Start with released copy of my.cnf / my.ini.

Change key_buffer_size and innodb_buffer_pool_size according to engine usage and RAM.

Slow queries can usually be 'fixed' via indexes, schema changes, or SELECT changes, not by tuning.

Don't get carried away with the query cache until you understand what it can and cannot do.

Don't change anything else unless you run into trouble (eg, max connections).

Be sure the changes are under the [mysqld] section, not some other section.

The 20%/70% assumes you have at least 4GB of RAM. If you have a tiny antique, or a tiny VM, then those percentages are

too high.

Now for the gory details.

How to troubleshoot out-of-memory issues
If the MariaDB server is crashing because of 'out-of-memory' then it is probably wrongly configured.

There are two kind of buffers in MariaDB:

Global ones that are only allocated once during the lifetime of the server:

Storage engine buffers (innodb_buffer_pool_size, key_buffer_size, aria_pagecache_buffer_size, etc)

Query cache query_cache_size.

Global caches onces that grow and shrink dynamically on demand up to max limit:

max_user_connections

table_open_cache

table_definition_cache

thread_cache_size

Local buffers that are allocated on demand whenever needed

Internal ones used during engine index creation (myisam_sort_buffer_size, aria_sort_buffer_size).

Internal buffers for storing blobs.

Some storage engine will keep a temporary cache to store the largest blob seen so far when scanning a

table. This will be freed at end of query. Note that temporary blob storage is not included in the memory

information in information_schema.processlist but only in the total memory used (show global status

like "memory_used").

2644/4161

Buffers and caches used during query execution:

Variable Description

join_buffer_size
Used when no keys can be used to find a row in next table

mrr_buffer_size Size of buffer to use when using multi-range read with range access

net_buffer_length Max size of network packet

read_buffer_size Used by some storage engines when doing bulk insert

sort_buffer_size When doing ORDER BY or GROUP BY

max_heap_table_size Used to store temporary tables in memory. See Optimizing memory tables

If any variables in the last group is very large and you have a lot of simultaneous users that are executing queries that are

using these buffers then you can run into trouble.

In a default MariaDB installation the default of most of the above variables are quite small to ensure that one does not run

out of memory.

You can check which variables that have been changed in your setup by executing the following sql statement. If you are

running into out-of-memory issues, it is very likely that the problematic variable is in this list!

select information_schema.system_variables.variable_name,

information_schema.system_variables.default_value,

global_variables.variable_value from

information_schema.system_variables,information_schema.global_variables where

system_variables.variable_name=global_variables.variable_name and

system_variables.default_value <> global_variables.variable_value and

system_variables.default_value <> 0

What is the Key Buffer?
MyISAM does two different things for caching.

Index blocks (1KB each, BTree structured, from .MYI file) live in the "key buffer".

Data block caching (from .MYD file) is left to the OS, so be sure to leave a bunch of free space for this. Caveat: Some

flavors of OS always claim to be using over 90%, even when there is really lots of free space.

SHOW GLOBAL STATUS LIKE 'Key%';

then calculate Key_read_requests / Key_reads. If it is high (say, over 10), then the key buffer is big enough, otherwise you

should adjust the key_buffer_size value.

What is the Buffer Pool?
InnoDB does all its caching in a the buffer pool, whose size is controlled by innodb_buffer_pool_size. By default it contains

16KB data and index blocks from the open tables (see innodb_page_size), plus some maintenance overhead.

From MariaDB 5.5, multiple buffer pools are permitted; this can help because there is one mutex per pool, thereby relieving

some of the mutex bottleneck.

More on InnoDB tuning

Another Algorithm
This will set the main cache settings to the minimum; it could be important to systems with lots of other processes and/or

RAM is 2GB or smaller.

Do SHOW TABLE STATUS for all the tables in all the databases.

Add up Index_length for all the MyISAM tables. Set key_buffer_size no larger than that size.

Add up Data_length + Index_length for all the InnoDB tables. Set innodb_buffer_pool_size to no more than 110% of that

total.

If that leads to swapping, cut both settings back. Suggest cutting them down proportionately.

Run this to see the values for your system. (If you have a lot of tables, it can take minute(s).)

2645/4161

http://www.mysqlperformanceblog.com/2007/11/01/innodb-performance-optimization-basics/

SELECT ENGINE,

 ROUND(SUM(data_length) /1024/1024, 1) AS "Data MB",

 ROUND(SUM(index_length)/1024/1024, 1) AS "Index MB",

 ROUND(SUM(data_length + index_length)/1024/1024, 1) AS "Total MB",

 COUNT(*) "Num Tables"

 FROM INFORMATION_SCHEMA.TABLES

 WHERE table_schema not in ("information_schema", "PERFORMANCE_SCHEMA", "SYS_SCHEMA", "ndbinfo")

 GROUP BY ENGINE;

Query Memory Allocation
There are two variables that dictates how memory are allocated by MariaDB while parsing and executing a query.

query_prealloc_size defines the standard buffer for memory used for query execution and query_alloc_block_size that is

size of memory blocks if query_prealloc_size was not big enough. Getting these variables right will reduce memory

fragmentation in the server.

Mutex Bottleneck
MySQL was designed in the days of single-CPU machines, and designed to be easily ported to many different

architectures. Unfortunately, that lead to some sloppiness in how to interlock actions. There are a small number (too small)

of "mutexes" to gain access to several critical processes. Of note:

MyISAM's key_buffer

The Query Cache

InnoDB's buffer_pool With multi-core boxes, the mutex problem is causing performance problems. In general, past 4-8

cores, MySQL gets slower, not faster. MySQL 5.5 and Percona's XtraDB made that somewhat better in InnoDB; the

practical limit for cores is more like 32, and performance tends plateaus after that rather than declining. 5.6 claims to

scale up to about 48 cores.

HyperThreading and Multiple Cores (CPUs)
Short answers (for older versions of MySQL and MariaDB):

Turn off HyperThreading

Turn off any cores beyond 8

HyperThreading is mostly a thing of the past, so this section may not apply.

HyperThreading is great for marketing, lousy for performance. It involves having two processing units sharing a single

hardware cache. If both units are doing the same thing, the cache will be reasonably useful. If the units are doing different

things, they will be clobbering each other's cache entries.

Furthermore MySQL is not great on using multiple cores. So, if you turn off HT, the remaining cores run a little faster.

- 32-bit OS and MariaDB
First, the OS (and the hardware?) may conspire to not let you use all 4GB, if that is what you have. If you have more than

4GB of RAM, the excess beyond 4GB is _totally_ inaccessable and unusable on a 32-bit OS.

Secondly, the OS probably has a limit on how much RAM it will allow any process to use.

Example: FreeBSD's maxdsiz, which defaults to 512MB.

Example:

$ ulimit -a

...

max memory size (kbytes, -m) 524288

So, once you have determined how much RAM is available to mysqld, then apply the 20%/70%, but round down some.

If you get an error like [ERROR] /usr/libexec/mysqld: Out of memory (Needed xxx bytes) , it probably means that

MySQL exceeded what the OS is willing to give it. Decrease the cache settings.

- 64-bit OS with 32-bit MariaDB
The OS is not limited by 4GB, but MariaDB is.

2646/4161

If you have at least 4GB of RAM, then maybe these would be good:

key_buffer_size = 20% of _all_ of RAM, but not more than 3G

innodb_buffer_pool_size = 3G

You should probably upgrade MariaDB to 64-bit.

- 64-bit OS and MariaDB
MyISAM only: key_buffer_size: Use about 20% of RAM. Set (in my.cnf / my.ini) innodb_buffer_pool_size=0 = 0.

InnoDB only: innodb_buffer_pool_size=0 = 70% of RAM. If you have lots of RAM and are using 5.5 (or later), then consider

having multiple pools. Recommend 1-16 innodb_buffer_pool_instances, such that each one is no smaller than 1GB. (Sorry,

no metric on how much this will help; probably not a lot.)

Meanwhile, set key_buffer_size = 20M (tiny, but non-zero)

If you have a mixture of engines, lower both numbers.

max_connections, thread_stack Each "thread" takes some amount of RAM. This used to be about 200KB; 100 threads

would be 20MB, not a significant size. If you have max_connections = 1000, then you are talking about 200MB, maybe

more. Having that many connections probably implies other issues that should be addressed.

In 5.6 (or MariaDB 5.5), optional thread pooling interacts with max_connections. This is a more advanced topic.

Thread stack overrun rarely happens. If it does, do something like thread_stack=256K

More on max_connections, wait_timeout, connection pooling, etc

table_open_cache
(In older versions this was called table_cache)

The OS has some limit on the number of open files it will let a process have. Each table needs 1 to 3 open files. Each

PARTITION is effectively a table. Most operations on a partitioned table open _all_ partitions.

In *nix, ulimit tells you what the file limit is. The maximum value is in the tens of thousands, but sometimes it is set to only

1024. This limits you to about 300 tables. More discussion on ulimit

(This paragraph is in disputed.) On the other side, the table cache is (was) inefficiently implemented -- lookups were done

with a linear scan. Hence, setting table_cache in the thousands could actually slow down mysql. (Benchmarks have shown

this.)

You can see how well your system is performing via SHOW GLOBAL STATUS; and computing the opens/second via

Opened_files / Uptime If this is more than, say, 5, table_open_cache should be increased. If it is less than, say, 1, you might

get improvement by decreasing table_open_cache.

From MariaDB 10.1, table_open_cache defaults to 2000.

Query Cache
Short answer: query_cache_type = OFF and query_cache_size = 0

The Query Cache (QC) is effectively a hash mapping SELECT statements to resultsets.

Long answer... There are many aspects of the "Query cache"; many are negative.

Novice Alert! The QC is totally unrelated to the key_buffer and buffer_pool.

When it is useful, the QC is blazingly fast. It would not be hard to create a benchmark that runs 1000x faster.

There is a single mutex controlling the QC.

The QC, unless it is OFF & 0, is consulted for _every_ SELECT.

Yes, the mutex is hit even if query_cache_type = DEMAND (2).

Any change to a query (even adding a space) leads (potentially) to a different entry in the QC.

If my.cnf says type=ON and you later turn it OFF, it is not fully OFF. Ref: https://bugs.mysql.com/bug.php?id=60696

"Pruning" is costly and frequent:

When _any_ write happens on a table, _all_ entries in the QC for _that_ table are removed.

It happens even on a readonly Slave.

Purges are performed with a linear algorithm, so a large QC (even 200MB) can be noticeably slow.

To see how well your QC is performing, SHOW GLOBAL STATUS LIKE 'Qc%'; then compute the read hit rate: Qcache_hits

/ Qcache_inserts If it is over, say, 5, the QC might be worth keeping.

If you decide the QC is right for you, then I recommend

2647/4161

http://www.mysqlperformanceblog.com/2013/11/28/mysql-error-too-many-connections/
https://bugs.mysql.com/bug.php?id=60696

query_cache_size = no more than 50M

query_cache_type = DEMAND

SQL_CACHE or SQL_NO_CACHE in all SELECTs, based on which queries are likely to benefit from caching.

Why to turn off the QC

Discussion about size

thread_cache_size
It is not necessary to tune thread_cache_size from MariaDB 10.2.0 . Previously, it was minor tunable variable. Zero will

slow down thread (connection) creation. A small (say, 10), non-zero number is good. The setting has essentially no impact

on RAM usage.

It is the number of extra processes to hang onto. It does not restrict the number of threads; max_connections does.

Binary Logs
If you have turned on binary logging (via log_bin) for replication and/or point-in-time recovery, the system will create binary

logs forever. That is, they can slowly fill up the disk. Suggest setting expire_logs_days = 14 to keep only 14 days' worth of

logs.

Swappiness
RHEL, in its infinite wisdom, decided to let you control how aggressively the OS will pre-emptively swap RAM. This is good

in general, but lousy for MariaDB.

MariaDB would love for RAM allocations to be reasonably stable -- the caches are (mostly) pre-allocated; the threads, etc,

are (mostly) of limited scope. ANY swapping is likely to severely hurt performance of MariaDB.

With a high value for swappiness, you lose some RAM because the OS is trying to keep a lot of space free for future

allocations (that MySQL is not likely to need).

With swappiness = 0, the OS will probably crash rather than swap. I would rather have MariaDB limping than die. The latest

recommendation is swappiness = 1. (2015)

More confirmation

Somewhere in between (say, 5?) might be a good value for a MariaDB-only server.

NUMA
OK, it's time to complicate the architecture of how a CPU talks to RAM. NUMA (Non-Uniform Memory Access) enters the

picture. Each CPU (or maybe socket with several cores) has a part of the RAM hanging off each. This leads to memory

access being faster for local RAM, but slower (tens of cycles slower) for RAM hanging off other CPUs.

Then the OS enters the picture. In at least one case (RHEL?), two things seem to be done:

OS allocations are pinned to the 'first' CPU's RAM.]

Other allocations go by default to the first CPU until it is full.

Now for the problem.

The OS and MariaDB have allocated all the 'first' RAM.

MariaDB has allocated some of the second RAM.

The OS needs to allocate something. Ouch -- it is out of room in the one CPU where it is willing to allocate its stuff, so

it swaps out some of MariaDB. Bad.

dmesg | grep -i numa # to see if you have numa

Probable solution: Configure the BIOS to "interleave" the RAM allocations. This should prevent the premature swapping, at

the cost of off-CPU RAM accesses half the time. Well, you have the costly accesses anyway, since you really want to use all

of RAM. Older MySQL versions: numactl --interleave=all. Or: innodb_numa_interleave=1

Another possible solution: Turn numa off (if the OS has a way of doing that)

Overall performance loss/gain: A few percent.

Huge Pages
This is another hardware performance gimmick.

2648/4161

http://dba.stackexchange.com/a/136814/1876
https://haydenjames.io/mysql-query-cache-size-performance/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
http://www.mysqlperformanceblog.com/2014/04/28/oom-relation-vm-swappiness0-new-kernel/

For a CPU to access RAM, especially mapping a 64-bit address to somewhere in, say, 128GB or 'real' RAM, the TLB is

used. (TLB = Translation Lookup Buffer.) Think of the TLB as a hardware associative memory lookup table; given a 64-bit

virtual address, what is the real address.

Because it is an associative memory of finite size, sometimes there will be "misses" that require reaching into real RAM to

resolve the lookup. This is costly, so should be avoided.

Normally, RAM is 'paged' in 4KB pieces; the TLB actually maps the top (64-12) bits into a specific page. Then the bottom 12

bits of the virtual address are carried over intact.

For example, 128GB of RAM broken 4KB pages means 32M page-table entries. This is a lot, and probably far exceeds the

capacity of the TLB. So, enter the "Huge page" trick.

With the help of both the hardware and the OS, it is possible to have some of RAM in huge pages, of say 4MB (instead of

4KB). This leads to far fewer TLB entries, but it means the unit of paging is 4MB for such parts of RAM. Hence, huge pages

tend to be non-pagable.

Now RAM is broken into pagable and non pagable parts; what parts can reasonably be non pagable? In MariaDB, the

Innodb Buffer Pool is a perfect candidate. So, by correctly configuring these, InnoDB can run a little faster:

Huge pages enabled

Tell the OS to allocate the right amount (namely to match the buffer_pool)

Tell MariaDB to use huge pages

innodb memory usage vs swap

That thread has more details on what to look for and what to set.

Overall performance gain: A few percent. Yawn. Too much hassle for too little benefit.

Jumbo Pages? Turn off.

ENGINE=MEMORY
The Memory Storage Engine is a little-used alternative to MyISAM and InnoDB. The data is not persistent, so it has limited

uses. The size of a MEMORY table is limited to max_heap_table_size, which defaults to 16MB. I mention it in case you

have changed the value to something huge; this would stealing from other possible uses of RAM.

How to Set Variables
In the text file my.cnf (my.ini on Windows), add or modify a line to say something like

innodb_buffer_pool_size = 5G

That is, VARIABLE name, "=", and a value. Some abbreviations are allowed, such as M for million (1048576), G for billion.

For the server to see it, the settings must be in the "[mysqld]" section of the file.

The settings in my.cnf or my.ini will not take effect until you restart the server.

Most settings can be changed on the live system by connecting as user root (or other user with SUPER privilege) and doing

something like

SET @@global.key_buffer_size = 77000000;

Note: No M or G suffix is allowed here.

To see the setting a global VARIABLE do something like

SHOW GLOBAL VARIABLES LIKE "key_buffer_size";

+-----------------+----------+

| Variable_name | Value |

+-----------------+----------+

| key_buffer_size | 76996608 |

+-----------------+----------+

Note that this particular setting was rounded down to some multiple that MariaDB liked.

You may want to do both (SET, and modify my.cnf) in order to make the change immediately and have it so that the next

restart (for whatever reason) will again get the value.

Web Server

2649/4161

http://forums.mysql.com/read.php?22,384707,385002

A web server like Apache runs multiple threads. If each thread opens a connection to MariaDB, you could run out of

connections. Make sure MaxClients (or equivalent) is set to some civilized number (under 50).

Tools
MySQLTuner

TUNING-PRIMER

There are several tools that advise on memory. One misleading entry they come up with

Maximum possible memory usage: 31.3G (266% of installed RAM)

Don't let it scare you -- the formulas used are excessively conservative. They assume all of max_connections are in use and

active, and doing something memory-intensive.

Total fragmented tables: 23 This implies that OPTIMIZE TABLE _might_ help. I suggest it for tables with either a high

percentage of "free space" (see SHOW TABLE STATUS) or where you know you do a lot of DELETEs and/or UPDATEs.

Still, don't bother to OPTIMIZE too often. Once a month might suffice.

MySQL 5.7
5.7 stores a lot more information in RAM, leading to the footprint being perhaps half a GB more than 5.6. See Memory

increase in 5.7 .

Postlog
Created 2010; Refreshed Oct, 2012, Jan, 2014

The tips in this document apply to MySQL, MariaDB, and Percona.

3.3.7 System Variables
System and Status Variables Added By Major Release

Lists of status and system variables added in MariaDB major releases.

Full List of MariaDB Options, System and Status Variables

Complete alphabetical list of all MariaDB options as well as system and status variables.

Server Status Variables

List and description of the Server Status Variables.

Server System Variables

List of system variables.

Aria Status Variables

Aria-related server status variables.

Aria System Variables

Aria-related system variables.

Cassandra Status Variables

Cassandra-related status variables

Cassandra System Variables

Cassandra system variables

CONNECT System Variables

System variables related to the CONNECT storage engine.

Galera Cluster Status Variables

Galera Cluster status variables.

Galera Cluster System Variables

Listing and description of Galera Cluster system variables.

2

9

6

2650/4161

https://blogs.oracle.com/svetasmirnova/entry/memory_summary_tables_in_performance
https://mariadb.com/kb/en/cassandra-status-variables/
https://mariadb.com/kb/en/cassandra-system-variables/

InnoDB Server Status Variables

List and description of InnoDB status variables.

InnoDB System Variables

List and description of InnoDB-related server system variables.

MariaDB Audit Plugin Options and System Variables

Description of Server_Audit plugin options and system variables.

MariaDB Audit Plugin - Status Variables

Server Audit plugin status variables

Mroonga Status Variables

Mroonga-related status variables.

Mroonga System Variables

Mroonga-related system variables.

MyISAM System Variables

MyISAM system variables.

MyRocks Status Variables

MyRocks-related status variables.

MyRocks System Variables

MyRocks server system variables.

OQGRAPH System and Status Variables

List and description of OQGRAPH system and status variables.

Performance Schema Status Variables

Performance Schema status variables.

Performance Schema System Variables

Performance Schema system variables.

Replication and Binary Log Status Variables

Replication and binary log status variables.

Replication and Binary Log System Variables

Replication and binary log system variables.

Semisynchronous Replication Plugin Status Variables

Semisynchronous Replication plugin status variables

Semisynchronous Replication

Semisynchronous replication.

Sphinx Status Variables

Sphinx status variables.

Spider Status Variables

Spider server status variables.

Spider System Variables

System variables for the Spider storage engine.

SQL Error Log System Variables and Options

SQL_ERROR_LOG plugin-related system variables and options.

SSL/TLS Status Variables

List and description of Transport Layer Security (TLS)-related status variables.

2

1

2

1

9

1

2651/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/

SSL/TLS System Variables

List and description of Transport Layer Security (TLS)-related system variables.

Thread Pool System and Status Variables

System and status variables related to the MariaDB thread pool.

TokuDB Status Variables

TokuDB status variables

TokuDB System Variables

TokuDB System Variables

MariaDB Optimization for MySQL Users

MariaDB contains many new options and optimizations which, for compatibilit...

InnoDB Buffer Pool

The most important memory buffer used by InnoDB.

InnoDB Change Buffering

Buffering INSERT, UPDATE and DELETE statements for greater efficiency.

Optimizing table_open_cache

Adjusting table_open_cache to improve performance.

Optimizing key_buffer_size

Optimizing index buffers with key_buffer_size

Segmented Key Cache

Collection of structures for regular MyISAM key caches

Big Query Settings

Recommended settings for large, IO-bound queries

Sample my.cnf Files

Place holder for sample my.cnf files, customized for different memory size ...

Handling Too Many Connections

Dealing with the 'Too many connections' error

System Variable Differences between MariaDB and MySQL

Comparison of variable differences between major versions of MariaDB and MySQL.

MariaDB Memory Allocation

Basic issues in RAM allocation for MariaDB.

Setting Innodb Buffer Pool Size Dynamically

The InnoDB Buffer Pool size can be set dynamically.

There are 3 related questions .

2

1

2

3

2

3

3.3.7.1 System and Status Variables Added By
Major Release

System Variables Added in MariaDB 11.4

List of system variables that were added in the MariaDB 11.4 series.

System Variables Added in MariaDB 11.3

List of system variables that were added in the MariaDB 11.3 series.

2652/4161

https://mariadb.com/kb/en/tokudb-status-variables/
https://mariadb.com/kb/en/tokudb-system-variables/
https://mariadb.com/kb/en/system-variables/+questions/

System Variables Added in MariaDB 11.2

List of system variables that were added in the MariaDB 11.2 series.

System Variables Added in MariaDB 11.1

List of system variables that were added in the MariaDB 11.1 series.

System Variables Added in MariaDB 11.0

List of system variables that were added in the MariaDB 11.0 series.

Status Variables Added in MariaDB 11.0

List of status variables that were added in the MariaDB 11.0 series.

System Variables Added in MariaDB 10.11

List of system variables that were added in the MariaDB 10.11 series.

System Variables Added in MariaDB 10.10

List of system variables that were added in the MariaDB 10.10 series.

System Variables Added in MariaDB 10.6

List of system variables that were added in the MariaDB 10.6 series.

Status Variables Added in MariaDB 10.6

List of status variables that were added in the MariaDB 10.6 series.

System Variables Added in MariaDB 10.5

List of system variables that were added in the MariaDB 10.5 series.

Status Variables Added in MariaDB 10.5

List of status variables that were added in the MariaDB 10.5 series.

System Variables Added in MariaDB 10.4

List of system variables that were added in the MariaDB 10.4 series.

Status Variables Added in MariaDB 10.4

List of status variables that were added in the MariaDB 10.4 series.

System and Status Variables Added By Major Unmaintained Release

Lists of status and system variables added in unmaintained MariaDB major releases.

3.3.7.1.1 System Variables Added in MariaDB
11.4
This is a list of system variables that have been added in the MariaDB 11.4 series.

Variable Added

binlog_gtid_index MariaDB 11.4.0

binlog_gtid_index_page_size MariaDB 11.4.0

binlog_index_span_min MariaDB 11.4.0

max_binlog_total_size MariaDB 11.4.0

slave_connections_needed_for_purge MariaDB 11.4.0

3.3.7.1.2 System Variables Added in MariaDB
11.3
This is a list of system variables that have been added in the MariaDB 11.3 series.

Variable Added

2653/4161

https://mariadb.com/kb/en/system-variables-added-in-mariadb-10-10/
https://mariadb.com/kb/en/system-variables-added-in-mariadb-10-6/
https://mariadb.com/kb/en/system-variables-added-in-mariadb-10-5/
https://mariadb.com/kb/en/system-variables-added-in-mariadb-10-4/
https://mariadb.com/kb/en/system-and-status-variables-added-by-major-unmaintained-release/

innodb_truncate_temporary_tablespace_now MariaDB 11.3.0

redirect_url MariaDB 11.3.0

3.3.7.1.3 System Variables Added in MariaDB
11.2
This is a list of system variables that have been added in the MariaDB 11.2 series.

Variable Added

binlog_do_db MariaDB 11.2.0

binlog_ignore_db MariaDB 11.2.0

binlog_row_event_max_size MariaDB 11.2.0

block_encryption_mode MariaDB 11.2.0

character_set_collations MariaDB 11.2.1

3.3.7.1.4 System Variables Added in MariaDB
11.1
This is a list of system variables that have been added in the MariaDB 11.1 series.

Variable Added

transaction_isolation MariaDB 11.1.0

transaction_read_only MariaDB 11.1.0

3.3.7.1.5 System Variables Added in MariaDB
11.0
This is a list of system variables that have been added in the MariaDB 11.0 series.

Variable Added

innodb_data_file_buffering MariaDB 11.0.1

innodb_data_file_write_through MariaDB 11.0.1

innodb_log_file_write_through MariaDB 11.0.1

For system variables that have been removed or deprecated, see Upgrading from MariaDB 10.11 to MariaDB 11.0.

3.3.7.1.6 Status Variables Added in MariaDB
11.0
This is a list of status variables that were added in the MariaDB 11.0 series.

Variable Added

max_used_connections_time MariaDB 11.0.2

3.3.7.1.7 System Variables Added in MariaDB
10.11
This is a list of system variables that have been added in the MariaDB 10.11 series.

Variable Added

2654/4161

log_slow_min_examined_row_limit MariaDB 10.11.0

log_slow_query MariaDB 10.11.0

log_slow_query_file MariaDB 10.11.1

log_slow_query_time MariaDB 10.11.0

replicate_rewrite_db MariaDB 10.11.0

system_versioning_insert_history MariaDB 10.11.0

For system variables that have been removed or deprecated, see Upgrading from MariaDB 10.6 to MariaDB 10.11.

3.3.7.1.8 System Variables Added in MariaDB
10.6
This is a list of system variables that have been added in the MariaDB 10.6 series. The list does not include variables that

are not part of the default release.

Variable Added

binlog_expire_logs_seconds MariaDB 10.6.0

innodb_deadlock_report MariaDB 10.6.0

innodb_read_only_compressed MariaDB 10.6.0

note_verbosity MariaDB 10.6.16

optimizer_adjust_secondary_key_costs MariaDB 10.6.17

wsrep_mode MariaDB 10.6.0

For system variables that have been removed or deprecated, see Upgrading from MariaDB 10.5 to MariaDB 10.6 .

3.3.7.1.9 Status Variables Added in MariaDB
10.6
This is a list of status variables that were added in the MariaDB 10.6 series.

Variable Added

Innodb_buffer_pool_pages_lru_freed MariaDB 10.6.0

resultset_metadata_skipped MariaDB 10.6.0

3.3.7.1.10 System Variables Added in MariaDB
10.5
This is a list of system variables that have been added in the MariaDB 10.5 series. The list does not include variables that

are not part of the default release.

Variable Added

binlog_row_metadata MariaDB 10.5.0

innodb_instant_alter_column_allowed MariaDB 10.5.3

innodb_lru_flush_size MariaDB 10.5.7

innodb_max_purge_lag_wait MariaDB 10.5.7

optimizer_max_sel_arg_weight MariaDB 10.5.9

performance_schema_events_transactions_history_long_size MariaDB 10.5.2

performance_schema_events_transactions_history_size MariaDB 10.5.2

performance_schema_max_index_stat MariaDB 10.5.2

2655/4161

https://mariadb.com/kb/en/optimizer_adjust_secondary_key_costs/
https://mariadb.com/kb/en/upgrading-from-mariadb-10-5-to-mariadb-10-6/

performance_schema_max_memory_classes MariaDB 10.5.2

performance_schema_max_metadata_locks MariaDB 10.5.2

performance_schema_max_prepared_statement_instances MariaDB 10.5.2

performance_schema_max_program_instances MariaDB 10.5.2

performance_schema_max_sql_text_length MariaDB 10.5.2

performance_schema_max_statement_stack MariaDB 10.5.2

performance_schema_max_table_lock_stat MariaDB 10.5.2

require_secure_transport MariaDB 10.5.2

s3_access_key MariaDB 10.5

s3_block_size MariaDB 10.5

s3_bucket MariaDB 10.5

s3_debug MariaDB 10.5

s3_host_name MariaDB 10.5

s3_pagecache_age_threshold MariaDB 10.5

s3_pagecache_buffer_size MariaDB 10.5

s3_pagecache_division_limit MariaDB 10.5

s3_pagecache_file_hash_size MariaDB 10.5

s3_protocol_version MariaDB 10.5

s3_region MariaDB 10.5

s3_secret_key MariaDB 10.5

sql_if_exists MariaDB 10.5.2

thread_pool_dedicated_listener MariaDB 10.5.0

thread_pool_exact_stats MariaDB 10.5.0

For system variables that have been removed or deprecated, see Upgrading from MariaDB 10.4 to MariaDB 10.5.

3.3.7.1.11 Status Variables Added in MariaDB
10.5
This is a list of status variables that were added in the MariaDB 10.5 series.

Variable Added

Innodb_adaptive_hash_hash_searches MariaDB 10.5.0

Innodb_adaptive_hash_non_hash_searches MariaDB 10.5.0

Innodb_background_log_sync MariaDB 10.5.0

Innodb_buffer_pool_pages_made_not_young MariaDB 10.5.0

Innodb_buffer_pool_pages_made_young MariaDB 10.5.0

Innodb_buffer_pool_pages_old MariaDB 10.5.0

Innodb_buffer_pool_pages_LRU_flushed MariaDB 10.5.0

Innodb_buffered_aio_submitted MariaDB 10.5.0

Innodb_checkpoint_age MariaDB 10.5.0

Innodb_checkpoint_max_age MariaDB 10.5.0

Innodb_deadlocks MariaDB 10.5.0

Innodb_ibuf_discarded_delete_marks MariaDB 10.5.0

Innodb_ibuf_discarded_deletes MariaDB 10.5.0

2656/4161

Innodb_ibuf_discarded_inserts MariaDB 10.5.0

Innodb_ibuf_free_list MariaDB 10.5.0

Innodb_ibuf_merged_delete_marks MariaDB 10.5.0

Innodb_ibuf_merged_deletes MariaDB 10.5.0

Innodb_ibuf_merged_inserts MariaDB 10.5.0

Innodb_ibuf_merges MariaDB 10.5.0

Innodb_ibuf_segment_size MariaDB 10.5.0

Innodb_ibuf_size MariaDB 10.5.0

Innodb_lsn_current MariaDB 10.5.0

Innodb_lsn_flushed MariaDB 10.5.0

Innodb_lsn_last_checkpoint MariaDB 10.5.0

Innodb_master_thread_active_loops MariaDB 10.5.0

Innodb_master_thread_idle_loops MariaDB 10.5.0

Innodb_max_trx_id MariaDB 10.5.0

Innodb_mem_adaptive_hash MariaDB 10.5.0

Innodb_mem_dictionary MariaDB 10.5.0

performance_schema_index_stat_lost MariaDB 10.5.2

performance_schema_memory_classes_lost MariaDB 10.5.2

performance_schema_metadata_lock_lost MariaDB 10.5.2

performance_schema_nested_statement_lost MariaDB 10.5.2

performance_schema_prepared_statements_lost MariaDB 10.5.2

performance_schema_program_lost MariaDB 10.5.2

performance_schema_table_lock_stat_lost MariaDB 10.5.2

S3_pagecache_blocks_not_flushed MariaDB 10.5

S3_pagecache_blocks_unused MariaDB 10.5

S3_pagecache_blocks_used MariaDB 10.5

S3_pagecache_reads MariaDB 10.5

3.3.7.1.12 System Variables Added in MariaDB
10.4
This is a list of system variables that have been added in the MariaDB 10.4 series. The list does not include variables that

are not part of the default release.

Variable Added

analyze_sample_percentage MariaDB 10.4.3

default_password_lifetime MariaDB 10.4.3

disconnect_on_expired_password MariaDB 10.4.3

gtid_cleanup_batch_size MariaDB 10.4.1

innodb_encrypt_temporary_ables MariaDB 10.4.7

innodb_instant_alter_column_allowed MariaDB 10.4.13

max_password_errors MariaDB 10.4.2

optimizer_trace MariaDB 10.4.3

optimizer_trace_max_mem_size MariaDB 10.4.3

tcp_nodelay MariaDB 10.4.0

2657/4161

tls_version MariaDB 10.4.6

wsrep_certification_rules MariaDB 10.4.3

wsrep_trx_fragment_size MariaDB 10.4.2

wsrep_trx_fragment_unit MariaDB 10.4.2

For system variables that have been removed or deprecated, see Upgrading from MariaDB 10.3 to MariaDB 10.4.

3.3.7.1.13 Status Variables Added in MariaDB
10.4
This is a list of status variables that were added in the MariaDB 10.4 series.

Variable Added

Aborted_connects_preauth MariaDB 10.4.5

Com_backup MariaDB 10.4.1

Com_backup_lock MariaDB 10.4.2

Feature_application_time_periods MariaDB 10.4.5

wsrep_applier_thread_count MariaDB 10.4.7

wsrep_rollbacker_thread_count MariaDB 10.4.7

2.7.1 Full List of MariaDB Options, System and Status
Variables

3.3.7.3 Server Status Variables
Contents
1. List of Server Status Variables

1. Aborted_clients

2. Aborted_connects

3. Aborted_connects_preauth

4. Access_denied_errors

5. Acl_column_grants

6. Acl_database_grants

7. Acl_function_grants

8. Acl_package_body_grants

9. Acl_package_spec_grants

10. Acl_procedure_grants

11. Acl_proxy_users

12. Acl_role_grants

13. Acl_roles

14. Acl_table_grants

15. Acl_users

16. Aria_pagecache_blocks_not_flushed

17. Aria_pagecache_blocks_unused

18. Aria_pagecache_blocks_used

19. Aria_pagecache_read_requests

20. Aria_pagecache_reads

21. Aria_pagecache_write_requests

22. Aria_pagecache_writes

23. Aria_transaction_log_syncs

24. Binlog_bytes_written

25. Binlog_cache_disk_use

26. Binlog_commits

27. Binlog_group_commit_trigger_count

28. Binlog_group_commit_trigger_lock_wait

29. Binlog_group_commit_trigger_timeout
2658/4161

29. Binlog_group_commit_trigger_timeout

30. Binlog_group_commits

31. Binlog_snapshot_file

32. Binlog_snapshot_position

33. Binlog_stmt_cache_disk_use

34. Binlog_stmt_cache_use

35. Busy_time

36. Bytes_received

37. Bytes_sent

38. Cassandra_multiget_keys_scanned

39. Cassandra_multiget_reads

40. Cassandra_multiget_rows_read

41. Cassandra_row_inserts

42. Cassandra_row_insert_batches

43. Cassandra_timeout_exceptions

44. Cassandra_unavailable_exceptions

45. Column_compressions

46. Column_decompressions

47. Com_admin_commands

48. Com_alter_db

49. Com_alter_db_upgrade

50. Com_alter_event

51. Com_alter_function

52. Com_alter_procedure

53. Com_alter_sequence

54. Com_alter_server

55. Com_alter_table

56. Com_alter_tablespace

57. Com_alter_user

58. Com_analyze

59. Com_assign_to_keycache

60. Com_backup

61. Com_backup_lock

62. Com_backup_table

63. Com_begin

64. Com_binlog

65. Com_call_procedure

66. Com_change_db

67. Com_change_master

68. Com_check

69. Com_checksum

70. Com_commit

71. Com_compound_sql

72. Com_create_db

73. Com_create_event

74. Com_create_function

75. Com_create_index

76. Com_create_package

77. Com_create_package_body

78. Com_create_procedure

79. Com_create_role

80. Com_create_sequence

81. Com_create_server

82. Com_create_table

83. Com_create_temporary_table

84. Com_create_trigger

85. Com_create_udf

86. Com_create_user

87. Com_create_view

88. Com_dealloc_sql

89. Com_delete

90. Com_delete_multi

91. Com_do

92. Com_drop_db

93. Com_drop_event

94. Com_drop_function

95. Com_drop_index

96. Com_drop_package
2659/4161

https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_keys_scanned
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_reads
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_multiget_rows_read
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_row_inserts
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_row_insert_batches
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_timeout_exceptions
https://mariadb.com/kb/en/cassandra-status-variables/#cassandra_unavailable_exceptions

97. Com_drop_package_body

98. Com_drop_procedure

99. Com_drop_role

100. Com_drop_sequence

101. Com_drop_server

102. Com_drop_table

103. Com_drop_temporary_table

104. Com_drop_trigger

105. Com_drop_user

106. Com_drop_view

107. Com_empty_query

108. Com_execute_immediate

109. Com_execute_sql

110. Com_flush

111. Com_get_diagnostics

112. Com_grant

113. Com_grant_role

114. Com_ha_close

115. Com_ha_open

116. Com_ha_read

117. Com_help

118. Com_insert

119. Com_insert_select

120. Com_install_plugin

121. Com_kill

122. Com_load

123. Com_load_master_data

124. Com_load_master_table

125. Com_multi

126. Com_lock_tables

127. Com_optimize

128. Com_preload_keys

129. Com_prepare_sql

130. Com_purge

131. Com_purge_before_date

132. Com_release_savepoint

133. Com_rename_table

134. Com_rename_user

135. Com_repair

136. Com_replace

137. Com_replace_select

138. Com_reset

139. Com_resignal

140. Com_restore_table

141. Com_revoke

142. Com_revoke_all

143. Com_revoke_grant

144. Com_rollback

145. Com_rollback_to_savepoint

146. Com_savepoint

147. Com_select

148. Com_set_option

149. Com_signal

150. Com_show_authors

151. Com_show_binlog_events

152. Com_show_binlogs

153. Com_show_charsets

154. Com_show_client_statistics

155. Com_show_collations

156. Com_show_column_types

157. Com_show_contributors

158. Com_show_create_db

159. Com_show_create_event

160. Com_show_create_func

161. Com_show_create_package

162. Com_show_create_package_body

163. Com_show_create_proc

164. Com_show_create_table 2660/4161

164. Com_show_create_table

165. Com_show_create_trigger

166. Com_show_create_user

167. Com_show_databases

168. Com_show_engine_logs

169. Com_show_engine_mutex

170. Com_show_engine_status

171. Com_show_events

172. Com_show_errors

173. Com_show_explain

174. Com_show_fields

175. Com_show_function_status

176. Com_show_generic

177. Com_show_grants

178. Com_show_keys

179. Com_show_index_statistics

180. com_show_master_status

181. com_show_new_master

182. Com_show_open_tables

183. Com_show_package_status

184. Com_show_package_body_status

185. Com_show_plugins

186. Com_show_privileges

187. Com_show_procedure_status

188. Com_show_processlist

189. Com_show_profile

190. Com_show_profiles

191. Com_show_relaylog_events

192. com_show_slave_hosts

193. com_show_slave_status

194. Com_show_status

195. Com_show_storage_engines

196. Com_show_table_statistics

197. Com_show_table_status

198. Com_show_tables

199. Com_show_triggers

200. Com_show_user_statistics

201. Com_show_variable

202. Com_show_warnings

203. Com_shutdown

204. Com_slave_start

205. Com_slave_stop

206. Com_start_all_slaves

207. Com_start_slave

208. Com_stmt_close

209. Com_stmt_execute

210. Com_stmt_fetch

211. Com_stmt_prepare

212. Com_stmt_reprepare

213. Com_stmt_reset

214. Com_stmt_send_long_data

215. Com_stop_all_slaves

216. Com_stop_slave

217. Com_truncate

218. Com_uninstall_plugin

219. Com_unlock_tables

220. Com_update

221. Com_update_multi

222. Com_xa_commit

223. Com_xa_end

224. Com_xa_prepare

225. Com_xa_recover

226. Com_xa_rollback

227. Com_xa_start

228. Compression

229. Connection_errors_accept

230. Connection_errors_internal

231. Connection_errors_max_connections
2661/4161

231. Connection_errors_max_connections

232. Connection_errors_peer_address

233. Connection_errors_select

234. Connection_errors_tcpwrap

235. Connections

236. Cpu_time

237. Created_tmp_disk_tables

238. Created_tmp_files

239. Created_tmp_tables

240. Delayed_errors

241. Delayed_insert_threads

242. Delayed_writes

243. Delete_scan

244. Empty_queries

245. Executed_events

246. Executed_triggers

247. Feature_application_time_periods

248. Feature_check_constraint

249. Feature_custom_aggregate_functions

250. Feature_delay_key_write

251. Feature_dynamic_columns

252. Feature_fulltext

253. Feature_gis

254. Feature_insert_returning

255. Feature_invisible_columns

256. Feature_json

257. Feature_locale

258. Feature_subquery

259. Feature_system_versioning

260. Feature_timezone

261. Feature_trigger

262. Feature_window_functions

263. Feature_xml

264. Flush_commands

265. Handler_commit

266. Handler_delete

267. Handler_discover

268. Handler_external_lock

269. Handler_icp_attempts

270. Handler_icp_match

271. Handler_mrr_init

272. Handler_mrr_key_refills

273. Handler_mrr_rowid_refills

274. Handler_prepare

275. Handler_read_first

276. Handler_read_key

277. Handler_read_last

278. Handler_read_next

279. Handler_read_prev

280. Handler_read_retry

281. Handler_read_rnd

282. Handler_read_rnd_deleted

283. Handler_read_rnd_next

284. Handler_rollback

285. Handler_savepoint

286. Handler_savepoint_rollback

287. Handler_tmp_delete

288. Handler_tmp_update

289. Handler_tmp_write

290. Handler_update

291. Handler_write

292. Innodb_adaptive_hash_cells

293. Innodb_adaptive_hash_hash_searches

294. Innodb_adaptive_hash_heap_buffers

295. Innodb_adaptive_hash_non_hash_searches

296. Innodb_available_undo_logs

297. Innodb_background_log_sync

298. Innodb_buffer_pool_bytes_data
2662/4161

299. Innodb_buffer_pool_bytes_dirty

300. Innodb_buffer_pool_dump_status

301. innodb_buffer_pool_load_incomplete

302. innodb_buffer_pool_load_status

303. Innodb_buffer_pool_pages_data

304. Innodb_buffer_pool_pages_dirty

305. Innodb_buffer_pool_pages_flushed

306. Innodb_buffer_pool_pages_LRU_flushed

307. Innodb_buffer_pool_pages_LRU_freed

308. Innodb_buffer_pool_pages_free

309. Innodb_buffer_pool_pages_made_not_young

310. Innodb_buffer_pool_pages_made_young

311. Innodb_buffer_pool_pages_misc

312. Innodb_buffer_pool_pages_old

313. Innodb_buffer_pool_pages_total

314. Innodb_buffer_pool_read_ahead_rnd

315. Innodb_buffer_pool_read_ahead

316. Innodb_buffer_pool_read_ahead_evicted

317. Innodb_buffer_pool_read_requests

318. Innodb_buffer_pool_reads

319. Innodb_buffer_pool_resize_status

320. Innodb_buffer_pool_wait_free

321. Innodb_buffer_pool_write_requests

322. Innodb_buffered_aio_submitted

323. Innodb_checkpoint_age

324. Innodb_checkpoint_max_age

325. Innodb_checkpoint_target_age

326. Innodb_current_row_locks

327. Innodb_data_fsyncs

328. Innodb_data_pending_fsyncs

329. Innodb_data_pending_reads

330. Innodb_data_pending_writes

331. Innodb_data_read

332. Innodb_data_reads

333. Innodb_data_writes

334. Innodb_data_written

335. Innodb_dblwr_pages_written

336. Innodb_dblwr_writes

337. Innodb_deadlocks

338. Innodb_defragment_compression_failures

339. Innodb_defragment_count

340. Innodb_defragment_failures

341. Innodb_dict_tables

342. Innodb_encryption_n_merge_blocks_decrypted

343. Innodb_encryption_n_merge_blocks_encrypted

344. Innodb_encryption_n_rowlog_blocks_decrypted

345. Innodb_encryption_n_rowlog_blocks_encrypted

346. Innodb_encryption_n_temp_blocks_decrypted

347. Innodb_encryption_n_temp_blocks_encrypted

348. Innodb_encryption_num_key_requests

349. Innodb_encryption_rotation_estimated_iops

350. Innodb_encryption_rotation_pages_flushed

351. Innodb_encryption_rotation_pages_modified

352. Innodb_encryption_rotation_pages_read_from_cache

353. Innodb_encryption_rotation_pages_read_from_disk

354. Innodb_have_atomic_builtins

355. Innodb_have_bzip2

356. Innodb_have_lz4

357. Innodb_have_lzma

358. Innodb_have_lzo

359. Innodb_have_snappy

360. Innodb_history_list_length

361. Innodb_ibuf_discarded_delete_marks

362. Innodb_ibuf_discarded_deletes

363. Innodb_ibuf_discarded_inserts

364. Innodb_ibuf_free_list

365. Innodb_ibuf_merged_delete_marks

366. Innodb_ibuf_merged_deletes 2663/4161

366. Innodb_ibuf_merged_deletes

367. Innodb_ibuf_merged_inserts

368. Innodb_ibuf_merges

369. Innodb_ibuf_segment_size

370. Innodb_ibuf_size

371. Innodb_instant_alter_column

372. Innodb_log_waits

373. Innodb_log_write_requests

374. Innodb_log_writes

375. Innodb_lsn_current

376. Innodb_lsn_flushed

377. Innodb_lsn_last_checkpoint

378. Innodb_master_thread_1_second_loops

379. Innodb_master_thread_10_second_loops

380. Innodb_master_thread_background_loops

381. Innodb_master_thread_main_flush_loops

382. Innodb_master_thread_sleeps

383. Innodb_max_trx_id

384. Innodb_mem_adaptive_hash

385. Innodb_mem_dictionary

386. Innodb_mem_total

387. Innodb_mutex_os_waits

388. Innodb_mutex_spin_rounds

389. Innodb_mutex_spin_waits

390. Innodb_num_index_pages_written

391. Innodb_num_non_index_pages_written

392. Innodb_num_open_files

393. Innodb_num_page_compressed_trim_op

394. Innodb_num_page_compressed_trim_op_saved

395. Innodb_num_pages_encrypted

396. Innodb_num_pages_page_compressed

397. Innodb_num_pages_page_compression_error

398. Innodb_num_pages_page_decompressed

399. Innodb_num_pages_page_decrypted

400. Innodb_num_pages_page_encryption_error

401. Innodb_oldest_view_low_limit_trx_id

402. Innodb_onlineddl_pct_progress

403. Innodb_onlineddl_rowlog_pct_used

404. Innodb_onlineddl_rowlog_rows

405. Innodb_os_log_fsyncs

406. Innodb_os_log_pending_fsyncs

407. Innodb_os_log_pending_writes

408. Innodb_os_log_written

409. Innodb_page_compression_saved

410. Innodb_page_compression_trim_sect512

411. Innodb_page_compression_trim_sect1024

412. Innodb_page_compression_trim_sect2048

413. Innodb_page_compression_trim_sect4096

414. Innodb_page_compression_trim_sect8192

415. Innodb_page_compression_trim_sect16384

416. Innodb_page_compression_trim_sect32768

417. Innodb_page_size

418. Innodb_pages_created

419. Innodb_pages_read

420. Innodb_pages_written

421. Innodb_purge_trx_id

422. Innodb_purge_undo_no

423. Innodb_row_lock_current_waits

424. Innodb_row_lock_numbers

425. Innodb_row_lock_time

426. Innodb_row_lock_time_avg

427. Innodb_row_lock_time_max

428. Innodb_row_lock_waits

429. Innodb_rows_deleted

430. Innodb_rows_inserted

431. Innodb_rows_read

432. Innodb_rows_updated

433. Innodb_s_lock_os_waits
2664/4161

433. Innodb_s_lock_os_waits

434. Innodb_s_lock_spin_rounds

435. Innodb_s_lock_spin_waits

436. Innodb_scrub_background_page_reorganizations

437. Innodb_scrub_background_page_split_failures_missing_index

438. Innodb_scrub_background_page_split_failures_out_of_filespace

439. Innodb_scrub_background_page_split_failures_underflow

440. Innodb_scrub_background_page_split_failures_unknown

441. Innodb_scrub_background_page_splits

442. Innodb_secondary_index_triggered_cluster_reads

443. Innodb_secondary_index_triggered_cluster_reads_avoided

444. Innodb_system_rows_deleted

445. Innodb_system_rows_inserted

446. Innodb_system_rows_read

447. Innodb_system_rows_updated

448. Innodb_truncated_status_writes

449. Innodb_undo_truncations

450. Innodb_x_lock_os_waits

451. Innodb_x_lock_spin_rounds

452. Innodb_x_lock_spin_waits

453. Key_blocks_not_flushed

454. Key_blocks_unused

455. Key_blocks_used

456. Key_blocks_warm

457. Key_read_requests

458. Key_reads

459. Key_write_requests

460. Key_writes

461. Last_query_cost

462. Maria_*

463. Master_gtid_wait_count

464. Master_gtid_wait_time

465. Master_gtid_wait_timeouts

466. Max_statement_time_exceeded

467. Max_used_connections

468. Max_used_connections_time

469. Memory_used

470. Memory_used_initial

471. Mroonga_count_skip

472. Mroonga_fast_order_limit

473. Not_flushed_delayed_rows

474. Open_files

475. Open_streams

476. Open_table_definitions

477. Open_tables

478. Opened_files

479. Opened_plugin_libraries

480. Opened_table_definitions

481. Opened_tables

482. Opened_views

483. Oqgraph_boost_version

484. Oqgraph_compat_mode

485. Oqgraph_verbose_debug

486. Performance_schema_accounts_lost

487. Performance_cond_classes_accounts_lost

488. Performance_schema_cond_instances_lost

489. Performance_schema_digest_lost

490. Performance_schema_file_classes_lost

491. Performance_schema_file_handles_lost

492. Performance_schema_file_instances_lost

493. Performance_schema_hosts_lost

494. Performance_schema_index_stat_lost

495. Performance_schema_locker_lost

496. Performance_schema_memory_classes_lost

497. Performance_metadata_lock_classes_lost

498. Performance_schema_mutex_classes_lost

499. Performance_schema_mutex_instances_lost

500. Performance_schema_nested_statement_lost

2665/4161

https://mariadb.com/kb/en/oqgraph-status-variables//#oqgraph_boost_version
https://mariadb.com/kb/en/oqgraph-status-variables//#oqgraph_compat_mode
https://mariadb.com/kb/en/oqgraph-status-variables//#oqgraph_verbose_debug

501. Performance_schema_prepared_statements_lost

502. Performance_schema_program_lost

503. Performance_schema_rwlock_classes_lost

504. Performance_schema_rwlock_instances_lost

505. Performance_schema_session_connect_attrs_lost

506. Performance_schema_socket_classes_lost

507. Performance_schema_socket_instances_lost

508. Performance_schema_stage_classes_lost

509. Performance_schema_statement_classes_lost

510. Performance_schema_table_handles_lost

511. Performance_schema_table_instances_lost

512. Performance_schema_table_lock_stat_lost

513. Performance_schema_thread_classes_lost

514. Performance_schema_thread_instances_lost

515. Performance_schema_users_lost

516. Prepared_stmt_count

517. Qcache_free_blocks

518. Qcache_free_memory

519. Qcache_hits

520. Qcache_inserts

521. Qcache_lowmem_prunes

522. Qcache_not_cached

523. Qcache_queries_in_cache

524. Qcache_total_blocks

525. Queries

526. Questions

527. Resultset_metadata_skipped

528. Rocksdb_block_cache_add

529. Rocksdb_block_cache_add_failures

530. Rocksdb_block_cache_bytes_read

531. Rocksdb_block_cache_bytes_write

532. Rocksdb_block_cache_data_add

533. Rocksdb_block_cache_data_bytes_insert

534. Rocksdb_block_cache_data_hit

535. Rocksdb_block_cache_data_miss

536. Rocksdb_block_cache_filter_add

537. Rocksdb_block_cache_filter_bytes_evict

538. Rocksdb_block_cache_filter_bytes_insert

539. Rocksdb_block_cache_filter_hit

540. Rocksdb_block_cache_filter_miss

541. Rocksdb_block_cache_hit

542. Rocksdb_block_cache_index_add

543. Rocksdb_block_cache_index_bytes_evict

544. Rocksdb_block_cache_index_bytes_insert

545. Rocksdb_block_cache_index_hit

546. Rocksdb_block_cache_index_miss

547. Rocksdb_block_cache_miss

548. Rocksdb_block_cachecompressed_hit

549. Rocksdb_block_cachecompressed_miss

550. Rocksdb_bloom_filter_full_positive

551. Rocksdb_bloom_filter_full_true_positive

552. Rocksdb_bloom_filter_prefix_checked

553. Rocksdb_bloom_filter_prefix_useful

554. Rocksdb_bloom_filter_useful

555. Rocksdb_bytes_read

556. Rocksdb_bytes_written

557. Rocksdb_compact_read_bytes

558. Rocksdb_compact_write_bytes

559. Rocksdb_compaction_key_drop_new

560. Rocksdb_compaction_key_drop_obsolete

561. Rocksdb_compaction_key_drop_user

562. Rocksdb_covered_secondary_key_lookups

563. Rocksdb_flush_write_bytes

564. Rocksdb_get_hit_l0

565. Rocksdb_get_hit_l1

566. Rocksdb_get_hit_l2_and_up

567. Rocksdb_getupdatessince_calls

568. Rocksdb_iter_bytes_read 2666/4161

568. Rocksdb_iter_bytes_read

569. Rocksdb_l0_num_files_stall_micros

570. Rocksdb_l0_slowdown_micros

571. Rocksdb_manual_compactions_processed

572. Rocksdb_manual_compactions_running

573. Rocksdb_memtable_compaction_micros

574. Rocksdb_memtable_hit

575. Rocksdb_memtable_miss

576. Rocksdb_memtable_total

577. Rocksdb_memtable_unflushed

578. Rocksdb_no_file_closes

579. Rocksdb_no_file_errors

580. Rocksdb_no_file_opens

581. Rocksdb_num_iterators

582. Rocksdb_number_block_not_compressed

583. Rocksdb_number_db_next

584. Rocksdb_number_db_next_found

585. Rocksdb_number_db_prev

586. Rocksdb_number_db_prev_found

587. Rocksdb_number_db_seek

588. Rocksdb_number_db_seek_found

589. Rocksdb_number_deletes_filtered

590. Rocksdb_number_keys_read

591. Rocksdb_number_keys_updated

592. Rocksdb_number_keys_written

593. Rocksdb_number_merge_failures

594. Rocksdb_number_multiget_bytes_read

595. Rocksdb_number_multiget_get

596. Rocksdb_number_multiget_keys_read

597. Rocksdb_number_reseeks_iteration

598. Rocksdb_number_sst_entry_delete

599. Rocksdb_number_sst_entry_merge

600. Rocksdb_number_sst_entry_other

601. Rocksdb_number_sst_entry_put

602. Rocksdb_number_sst_entry_singledelete

603. Rocksdb_number_superversion_acquires

604. Rocksdb_number_superversion_cleanups

605. Rocksdb_number_superversion_releases

606. Rocksdb_queries_point

607. Rocksdb_queries_range

608. Rocksdb_row_lock_deadlocks

609. Rocksdb_row_lock_wait_timeouts

610. Rocksdb_rows_deleted

611. Rocksdb_rows_deleted_blind

612. Rocksdb_rows_expired

613. Rocksdb_rows_filtered

614. Rocksdb_rows_inserted

615. Rocksdb_rows_read

616. Rocksdb_rows_updated

617. Rocksdb_snapshot_conflict_errors

618. Rocksdb_stall_l0_file_count_limit_slowdowns

619. Rocksdb_stall_l0_file_count_limit_stops

620. Rocksdb_stall_locked_l0_file_count_limit_slowdowns

621. Rocksdb_stall_locked_l0_file_count_limit_stops

622. Rocksdb_stall_memtable_limit_slowdowns

623. Rocksdb_stall_memtable_limit_stops

624. Rocksdb_stall_micros

625. Rocksdb_stall_pending_compaction_limit_slowdowns

626. Rocksdb_stall_pending_compaction_limit_stops

627. Rocksdb_stall_total_slowdowns

628. Rocksdb_stall_total_stops

629. Rocksdb_system_rows_deleted

630. Rocksdb_system_rows_inserted

631. Rocksdb_system_rows_read

632. Rocksdb_system_rows_updated

633. Rocksdb_wal_bytes

634. Rocksdb_wal_group_syncs

635. Rocksdb_wal_synced
2667/4161

635. Rocksdb_wal_synced

636. Rocksdb_write_other

637. Rocksdb_write_self

638. Rocksdb_write_timedout

639. Rocksdb_write_wal

640. Rows_read

641. Rows_sent

642. Rows_tmp_read

643. Rpl_semi_sync_master_clients

644. Rpl_semi_sync_master_net_avg_wait_time

645. Rpl_semi_sync_master_net_wait_time

646. Rpl_semi_sync_master_net_waits

647. Rpl_semi_sync_master_no_times

648. Rpl_semi_sync_master_no_tx

649. Rpl_semi_sync_master_status

650. Rpl_semi_sync_master_timefunc_failures

651. Rpl_semi_sync_master_tx_avg_wait_time

652. Rpl_semi_sync_master_tx_wait_time

653. Rpl_semi_sync_master_tx_waits

654. Rpl_semi_sync_master_wait_pos_backtraverse

655. Rpl_semi_sync_master_wait_sessions

656. Rpl_semi_sync_master_yes_tx

657. Rpl_semi_sync_slave_status

658. Rpl_status

659. Rpl_transactions_multi_engine

660. S3_pagecache_blocks_not_flushed

661. S3_pagecache_blocks_unused

662. S3_pagecache_blocks_used

663. S3_pagecache_read_requests

664. S3_pagecache_reads

665. Select_full_join

666. Select_full_range_join

667. Select_range

668. Select_range_check

669. Select_scan

670. Server_audit_active

671. Server_audit_current_log

672. Server_audit_last_error

673. Server_audit_writes_failed

674. Slave_connections

675. Slave_heartbeat_period

676. Slave_open_temp_tables

677. Slave_received_heartbeats

678. Slave_retried_transactions

679. Slave_running

680. Slave_skipped_errors

681. Slaves_connected

682. Slaves_running

683. Slow_launch_threads

684. Slow_queries

685. Sort_merge_passes

686. Sort_priority_queue_sorts

687. Sort_range

688. Sort_rows

689. Sort_scan

690. Sphinx_error

691. Sphinx_time

692. Sphinx_total

693. Sphinx_total_found

694. Sphinx_word_count

695. Sphinx_words

696. Spider_direct_aggregate

697. Spider_direct_delete

698. Spider_direct_order_limit

699. Spider_direct_update

700. Spider_direct_mon_table_cache_version

701. Spider_direct_mon_table_cache_version_req

702. Spider_parallel_search

703. Ssl_accept_renegotiates 2668/4161

703. Ssl_accept_renegotiates

704. Ssl_accepts

705. Ssl_callback_cache_hits

706. Ssl_cipher

707. Ssl_cipher_list

708. Ssl_client_connects

709. Ssl_connect_renegotiates

710. Ssl_ctx_verify_depth

711. Ssl_ctx_verify_mode

712. Ssl_default_timeout

713. Ssl_finished_accepts

714. Ssl_finished_connects

715. Ssl_server_not_after

716. Ssl_server_not_before

717. Ssl_session_cache_hits

718. Ssl_session_cache_misses

719. Ssl_session_cache_mode

720. Ssl_session_cache_overflows

721. Ssl_session_cache_size

722. Ssl_session_cache_timeouts

723. Ssl_sessions_reused

724. Ssl_used_session_cache_entries

725. Ssl_verify_depth

726. Ssl_verify_mode

727. Ssl_version

728. Subquery_cache_hit

729. Subquery_cache_miss

730. Syncs

731. Table_locks_immediate

732. Table_locks_waited

733. Table_open_cache_active_instances

734. Table_open_cache_hits

735. Table_open_cache_misses

736. Table_open_cache_overflows

737. Tc_log_max_pages_used

738. Tc_log_page_size

739. Tc_log_page_waits

740. Threadpool_idle_threads

741. Threadpool_threads

742. Threads_cached

743. Threads_connected

744. Threads_created

745. Threads_running

746. Tokudb_basement_deserialization_fixed_key

747. Tokudb_basement_deserialization_variable_key

748. Tokudb_basements_decompressed_for_write

749. Tokudb_basements_decompressed_prefetch

750. Tokudb_basements_decompressed_prelocked_range

751. Tokudb_basements_decompressed_target_query

752. Tokudb_basements_fetched_prefetch

753. Tokudb_basements_fetched_for_write

754. Tokudb_basements_fetched_for_write_bytes

755. Tokudb_basements_fetched_for_write_seconds

756. Tokudb_basements_fetched_prefetch_bytes

757. Tokudb_basements_fetched_prefetch_seconds

758. Tokudb_basements_fetched_prelocked_range

759. Tokudb_basements_fetched_prelocked_range_bytes

760. Tokudb_basements_fetched_prelocked_range_seconds

761. Tokudb_basements_fetched_target_query

762. Tokudb_basements_fetched_target_query_bytes

763. Tokudb_basements_fetched_target_query_seconds

764. Tokudb_broadcase_messages_injected_at_root

765. Tokudb_buffers_decompressed_for_write

766. Tokudb_buffers_decompressed_prefetch

767. Tokudb_buffers_decompressed_prelocked_range

768. Tokudb_buffers_decompressed_target_query

769. Tokudb_buffers_fetched_for_write

770. Tokudb_buffers_fetched_for_write_bytes
2669/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basement_deserialization_fixed_key
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basement_deserialization_variable_key
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_decompressed_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_for_write_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_prelocked_range_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_basements_fetched_target_query_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_broadcase_messages_injected_at_root
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_decompressed_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write

770. Tokudb_buffers_fetched_for_write_bytes

771. Tokudb_buffers_fetched_for_write_seconds

772. Tokudb_buffers_fetched_prefetch

773. Tokudb_buffers_fetched_prefetch_bytes

774. Tokudb_buffers_fetched_prefetch_seconds

775. Tokudb_buffers_fetched_prelocked_range

776. Tokudb_buffers_fetched_prelocked_range_bytes

777. Tokudb_buffers_fetched_prelocked_range_seconds

778. Tokudb_buffers_fetched_target_query

779. Tokudb_buffers_fetched_target_query_bytes

780. Tokudb_buffers_fetched_target_query_seconds

781. Tokudb_cachetable_cleaner_executions

782. Tokudb_cachetable_cleaner_iterations

783. Tokudb_cachetable_cleaner_period

784. Tokudb_cachetable_evictions

785. Tokudb_cachetable_long_wait_pressure_count

786. Tokudb_cachetable_long_wait_pressure_time

787. Tokudb_cachetable_miss

788. Tokudb_cachetable_miss_time

789. Tokudb_cachetable_prefetches

790. Tokudb_cachetable_size_cachepressure

791. Tokudb_cachetable_size_cloned

792. Tokudb_cachetable_size_current

793. Tokudb_cachetable_size_leaf

794. Tokudb_cachetable_size_limit

795. Tokudb_cachetable_size_nonleaf

796. Tokudb_cachetable_size_rollback

797. Tokudb_cachetable_size_writing

798. Tokudb_cachetable_wait_pressure_count

799. Tokudb_cachetable_wait_pressure_time

800. Tokudb_checkpoint_begin_time

801. Tokudb_checkpoint_duration

802. Tokudb_checkpoint_duration_last

803. Tokudb_checkpoint_failed

804. Tokudb_checkpoint_last_began

805. Tokudb_checkpoint_last_complete_began

806. Tokudb_checkpoint_last_complete_ended

807. Tokudb_checkpoint_long_begin_count

808. Tokudb_checkpoint_long_begin_time

809. Tokudb_checkpoint_period

810. Tokudb_checkpoint_taken

811. Tokudb_cursor_skip_deleted_leaf_entry

812. Tokudb_db_closes

813. Tokudb_db_open_current

814. Tokudb_db_open_max

815. Tokudb_db_opens

816. Tokudb_descriptor_set

817. Tokudb_dictionary_broadcast_updates

818. Tokudb_dictionary_updates

819. Tokudb_filesystem_fsync_num

820. Tokudb_filesystem_fsync_time

821. Tokudb_filesystem_long_fsync_num

822. Tokudb_filesystem_long_fsync_time

823. Tokudb_filesystem_threads_blocked_by_full_disk

824. Tokudb_leaf_compression_to_memory_seconds

825. Tokudb_leaf_decompression_to_memory_seconds

826. Tokudb_leaf_deserialization_to_memory_seconds

827. Tokudb_leaf_node_compression_ratio

828. Tokudb_leaf_node_full_evictions

829. Tokudb_leaf_node_full_evictions_bytes

830. Tokudb_leaf_node_partial_evictions

831. Tokudb_leaf_node_partial_evictions_bytes

832. Tokudb_leaf_nodes_created

833. Tokudb_leaf_nodes_destroyed

834. Tokudb_leaf_nodes_flushed_to_disk_checkpoint

835. Tokudb_leaf_nodes_flushed_to_disk_checkpoint_bytes

836. Tokudb_leaf_nodes_flushed_to_disk_checkpoint_seconds

837. Tokudb_leaf_nodes_flushed_to_disk_checkpoint_uncompressed_bytes
2670/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_for_write_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_prelocked_range_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_buffers_fetched_target_query_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_executions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_iterations
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_cleaner_period
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_long_wait_pressure_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_long_wait_pressure_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_miss
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_miss_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_prefetches
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_cachepressure
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_cloned
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_leaf
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_limit
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_nonleaf
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_rollback
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_size_writing
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_wait_pressure_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cachetable_wait_pressure_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_begin_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_duration
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_duration_last
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_failed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_began
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_complete_began
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_last_complete_ended
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_long_begin_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_long_begin_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_period
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_checkpoint_taken
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_cursor_skip_deleted_leaf_entry
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_closes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_open_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_open_max
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_db_opens
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_descriptor_set
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_dictionary_broadcast_updates
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_dictionary_updates
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_fsync_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_fsync_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_long_fsync_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_long_fsync_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_filesystem_threads_blocked_by_full_disk
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_compression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_decompression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_deserialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_full_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_full_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_partial_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_node_partial_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_destroyed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_checkpoint_uncompressed_bytes

837. Tokudb_leaf_nodes_flushed_to_disk_checkpoint_uncompressed_bytes

838. Tokudb_leaf_nodes_flushed_to_disk_not_checkpoint

839. Tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_bytes

840. Tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_seconds

841. Tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_uncompressed_bytes

842. Tokudb_leaf_serialization_to_memory_seconds

843. Tokudb_loader_num_created

844. Tokudb_loader_num_current

845. Tokudb_loader_num_max

846. Tokudb_locktree_escalation_num

847. Tokudb_locktree_escalation_seconds

848. Tokudb_locktree_latest_post_escalation_memory_size

849. Tokudb_locktree_long_wait_count

850. Tokudb_locktree_long_wait_escalation_count

851. Tokudb_locktree_long_wait_escalation_time

852. Tokudb_locktree_long_wait_time

853. Tokudb_locktree_memory_size

854. Tokudb_locktree_memory_size_limit

855. Tokudb_locktree_open_current

856. Tokudb_locktree_pending_lock_requests

857. Tokudb_locktree_sto_eligible_num

858. Tokudb_locktree_sto_ended_num

859. Tokudb_locktree_sto_ended_seconds

860. Tokudb_locktree_timeout_count

861. Tokudb_locktree_wait_count

862. Tokudb_locktree_wait_escalation_count

863. Tokudb_locktree_wait_escalation_time

864. Tokudb_locktree_wait_time

865. Tokudb_logger_wait_long

866. Tokudb_logger_writes

867. Tokudb_logger_writes_bytes

868. Tokudb_logger_writes_seconds

869. Tokudb_logger_writes_uncompressed_bytes

870. Tokudb_mem_estimated_maximum_memory_footprint

871. Tokudb_messages_flushed_from_h1_to_leaves_bytes

872. Tokudb_messages_ignored_by_leaf_due_to_msn

873. Tokudb_messages_in_trees_estimate_bytes

874. Tokudb_messages_injected_at_root

875. Tokudb_messages_injected_at_root_bytes

876. Tokudb_nonleaf_compression_to_memory_seconds

877. Tokudb_nonleaf_decompression_to_memory_seconds

878. Tokudb_nonleaf_deserialization_to_memory_seconds

879. Tokudb_nonleaf_node_compression_ratio

880. Tokudb_nonleaf_node_full_evictions

881. Tokudb_nonleaf_node_full_evictions_bytes

882. Tokudb_nonleaf_node_partial_evictions

883. Tokudb_nonleaf_node_partial_evictions_bytes

884. Tokudb_nonleaf_nodes_created

885. Tokudb_nonleaf_nodes_destroyed

886. Tokudb_nonleaf_nodes_flushed_checkpoint

887. Tokudb_nonleaf_nodes_flushed_checkpoint_bytes

888. Tokudb_nonleaf_nodes_flushed_checkpoint_seconds

889. Tokudb_nonleaf_nodes_flushed_checkpoint_uncompressed_bytes

890. Tokudb_nonleaf_nodes_flushed_not_checkpoint

891. Tokudb_nonleaf_nodes_flushed_not_checkpoint_bytes

892. Tokudb_nonleaf_nodes_flushed_not_checkpoint_seconds

893. Tokudb_nonleaf_nodes_flushed_not_checkpoint_uncompressed_bytes

894. Tokudb_nonleaf_serialization_to_memory_seconds

895. Tokudb_overall_node_compression_ratio

896. Tokudb_pivots_fetched_for_query

897. Tokudb_pivots_fetched_for_query_bytes

898. Tokudb_pivots_fetched_for_query_seconds

899. Tokudb_pivots_fetched_for_prefetch

900. Tokudb_pivots_fetched_for_prefetch_bytes

901. Tokudb_pivots_fetched_for_prefetch_seconds

902. Tokudb_pivots_fetched_for_write

903. Tokudb_pivots_fetched_for_write_bytes

904. Tokudb_pivots_fetched_for_write_seconds

905. Tokudb_promotion_h1_roots_injected_into 2671/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_not_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_nodes_flushed_to_disk_not_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_leaf_serialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_loader_num_max
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_escalation_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_escalation_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_latest_post_escalation_memory_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_escalation_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_escalation_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_long_wait_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_memory_size
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_memory_size_limit
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_open_current
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_pending_lock_requests
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_eligible_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_ended_num
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_sto_ended_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_timeout_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_escalation_count
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_escalation_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_locktree_wait_time
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_wait_long
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_logger_writes_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_mem_estimated_maximum_memory_footprint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_flushed_from_h1_to_leaves_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_ignored_by_leaf_due_to_msn
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_in_trees_estimate_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_injected_at_root
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_messages_injected_at_root_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_compression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_decompression_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_deserialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_full_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_full_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_partial_evictions
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_node_partial_evictions_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_created
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_destroyed
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_not_checkpoint
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_not_checkpoint_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_not_checkpoint_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_nodes_flushed_not_checkpoint_uncompressed_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_nonleaf_serialization_to_memory_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_overall_node_compression_ratio
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_query_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_prefetch_seconds
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write_bytes
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_pivots_fetched_for_write_seconds

905. Tokudb_promotion_h1_roots_injected_into

906. Tokudb_promotion_injections_at_depth_0

907. Tokudb_promotion_injections_at_depth_1

908. Tokudb_promotion_injections_at_depth_2

909. Tokudb_promotion_injections_at_depth_3

910. Tokudb_promotion_injections_lower_than_depth_3

911. Tokudb_promotion_leaf_roots_injected_into

912. Tokudb_promotion_roots_split

913. Tokudb_promotion_stopped_after_locking_child

914. Tokudb_promotion_stopped_at_height_1

915. Tokudb_promotion_stopped_child_not_fully_in_memory

916. Tokudb_promotion_stopped_child_locked_or_not_in_memory

917. Tokudb_promotion_stopped_nonempty_buffer

918. Tokudb_txn_aborts

919. Tokudb_txn_begin

920. Tokudb_txn_begin_read_only

921. Tokudb_txn_commits

922. Transactions_gtid_foreign_engine

923. Transactions_multi_engine

924. Update_scan

925. Uptime

926. Uptime_since_flush_status

927. wsrep

928. wsrep_applier_thread_count

929. wsrep_apply_oooe

930. wsrep_apply_oool

931. wsrep_cert_deps_distance

932. wsrep_cluster_capabilities

933. wsrep_cluster_conf_id

934. wsrep_cluster_size

935. wsrep_cluster_state_uuid

936. wsrep_cluster_status

937. wsrep_connected

938. wsrep_flow_control_paused

939. wsrep_flow_control_recv

940. wsrep_flow_control_sent

941. wsrep_last_committed

942. wsrep_local_bf_aborts

943. wsrep_local_cert_failures

944. wsrep_local_commits

945. wsrep_local_index

946. wsrep_local_recv_queue

947. wsrep_local_recv_queue_avg

948. wsrep_local_replays

949. wsrep_local_send_queue

950. wsrep_local_send_queue_avg

951. wsrep_local_state

952. wsrep_local_state_comment

953. wsrep_local_state_uuid

954. wsrep_protocol_version

955. wsrep_provider_name

956. wsrep_provider_vendor

957. wsrep_provider_version

958. wsrep_ready

959. wsrep_received

960. wsrep_received_bytes

961. wsrep_replicated

962. wsrep_replicated_bytes

963. wsrep_rollbacker_thread_count

964. wsrep_thread_count

The full list of status variables are listed in the contents on this page; most are described on this page, but some are

described elsewhere:

Aria Status Variables

Galera Status Variables

InnoDB Status Variables

Mroonga Status Variables

2672/4161

https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_h1_roots_injected_into
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_0
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_1
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_2
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_at_depth_3
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_injections_lower_than_depth_3
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_leaf_roots_injected_into
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_roots_split
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_after_locking_child
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_at_height_1
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_child_not_fully_in_memory
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_child_locked_or_not_in_memory
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_promotion_stopped_nonempty_buffer
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_aborts
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_begin
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_begin_read_only
https://mariadb.com/kb/en/tokudb-status-variables/#tokudb_txn_commits

MyRocks Status Variables

Performance Scheme Status Variables

Replication and Binary Log Status Variables

S3 Storage Engine Status Variables

Server_Audit Status Variables

Sphinx Status Variables

Spider Status Variables

TokuDB Status Variables

See also the Full list of MariaDB options, system and status variables.

Use the SHOW STATUS statement to view status variables. This information also can be obtained using the mariadb-admin

extended-status command, or by querying the Information Schema GLOBAL_STATUS and SESSION_STATUS tables.

Issuing a FLUSH STATUS will reset many status variables to zero.

List of Server Status Variables

Aborted_clients

Description: Number of aborted client connections. This can be due to the client not calling mysql_close() before

exiting, the client sleeping without issuing a request to the server for more seconds than specified by wait_timeout or

interactive_timeout, or by the client program ending in the midst of transferring data. The global value can be flushed

by FLUSH STATUS .

Scope: Global

Data Type: numeric

Aborted_connects

Description: Number of failed server connection attempts. This can be due to a client using an incorrect password, a

client not having privileges to connect to a database, a connection packet not containing the correct information, or if

it takes more than connect_timeout seconds to get a connect packet. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Aborted_connects_preauth

Description: Number of connection attempts that were aborted prior to authentication (regardless of whether or not

an error occured).

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.4.5

Access_denied_errors

Description: Number of access denied errors.

Scope: Global

Data Type: numeric

Acl_column_grants

Description: Number of column permissions granted (rows in the mysql.columns_priv table).

Scope: Global

Data Type: numeric

Acl_database_grants

Description: Number of database permissions granted (rows in the mysql.db table).

Scope: Global

Data Type: numeric

2673/4161

https://mariadb.com/kb/en/tokudb-status-variables/

Acl_function_grants

Description: Number of function permissions granted (rows in the mysql.procs_priv table with a routine type of

FUNCTION).

Scope: Global

Data Type: numeric

Acl_package_body_grants

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.5

Acl_package_spec_grants

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.5

Acl_procedure_grants

Description: Number of procedure permissions granted (rows in the mysql.procs_priv table with a routine type of

PROCEDURE).

Scope: Global

Data Type: numeric

Acl_proxy_users

Description: Number of proxy permissions granted (rows in the mysql.proxies_priv table).

Scope: Global

Data Type: numeric

Acl_role_grants

Description: Number of role permissions granted (rows in the mysql.roles_mapping table).

Scope: Global

Data Type: numeric

Acl_roles

Description: Number of roles (rows in the mysql.user table where is_role='Y').

Scope: Global

Data Type: numeric

Acl_table_grants

Description: Number of table permissions granted (rows in the mysql.tables_priv table).

Scope: Global

Data Type: numeric

Acl_users

Description: Number of users (rows in the mysql.user table where is_role='N').

Scope: Global
2674/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mysqlproxies_priv-table/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mysql.tables_priv-table

Data Type: numeric

Busy_time

Description: Cumulative time in seconds of activity on connections.

Scope: Global

Data Type: numeric

Bytes_received

Description: Total bytes received from all clients.

Scope: Global

Data Type: numeric

Bytes_sent

Description: Total bytes sent to all clients.

Scope: Global, Session

Data Type: numeric

Com_admin_commands

Description: Number of admin commands executed. These include table dumps, change users, binary log dumps,

shutdowns, pings and debugs.

Scope: Global, Session

Data Type: numeric

Com_alter_db

Description: Number of ALTER DATABASE commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_db_upgrade

Description: Number of ALTER DATABASE ... UPGRADE commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_event

Description: Number of ALTER EVENT commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_function

Description: Number of ALTER FUNCTION commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_procedure

Description: Number of ALTER PROCEDURE commands executed.

Scope: Global, Session

Data Type: numeric
2675/4161

Com_alter_sequence

Description: Number of ALTER SEQUENCE commands executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.1

Com_alter_server

Description: Number of ALTER SERVER commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_table

Description: Number of ALTER TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_alter_tablespace

Description: Number of ALTER TABLESPACE commands executed (unsupported by MariaDB).

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.7.0

Com_alter_user

Description: Number of ALTER USER commands executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.0

Com_analyze

Description: Number of ANALYZE commands executed.

Scope: Global, Session

Data Type: numeric

Com_assign_to_keycache

Description: Number of assign to keycache commands executed.

Scope: Global, Session

Data Type: numeric

Com_backup

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.4.1

Com_backup_lock

Description:

Scope: Global, Session

2676/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/

Data Type: numeric

Removed: MariaDB 10.4.2

Com_backup_table

Description: Removed in MariaDB 5.5. In older versions, Com_backup_table contains the number of BACKUP

TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

Com_begin

Description: Number of BEGIN or START TRANSACTION statements executed.

Scope: Global, Session

Data Type: numeric

Com_binlog

Description: Number of BINLOG commands executed.

Scope: Global, Session

Data Type: numeric

Com_call_procedure

Description: Number of CALL procedure_name statements executed.

Scope: Global, Session

Data Type: numeric

Com_change_db

Description: Number of USE database_name commands executed.

Scope: Global, Session

Data Type: numeric

Com_check

Description: Number of CHECK TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_checksum

Description: Number of CHECKSUM TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_commit

Description: Number of COMMIT commands executed. Differs from Handler_commit, which counts internal

commit statements.

Scope: Global, Session

Data Type: numeric

Com_compound_sql

2677/4161

https://mariadb.com/kb/en/backup-table-deprecated/
https://mariadb.com/kb/en/transactions-commit-statement/

Description: Number of compund sql statements.

Scope: Global, Session

Data Type: numeric

Com_create_db

Description: Number of CREATE DATABASE commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_event

Description: Number of CREATE EVENT commands executed. Differs from Executed_events in that it is

incremented when the CREATE EVENT is run, and not when the event executes.

Scope: Global, Session

Data Type: numeric

Com_create_function

Description: Number of CREATE FUNCTION commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_index

Description: Number of CREATE INDEX commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_package

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_create_package_body

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_create_procedure

Description: Number of CREATE PROCEDURE commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_role

Description: Number of CREATE ROLE commands executed.

Scope: Global, Session

Data Type: numeric

2678/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

Com_create_sequence

Description: Number of CREATE SEQUENCE commands executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.0

Com_create_server

Description: Number of CREATE SERVER commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_table

Description: Number of CREATE TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_temporary_table

Description: Number of CREATE TEMPORARY TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_trigger

Description: Number of CREATE TRIGGER commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_udf

Description: Number of CREATE UDF commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_user

Description: Number of CREATE USER commands executed.

Scope: Global, Session

Data Type: numeric

Com_create_view

Description: Number of CREATE VIEW commands executed.

Scope: Global, Session

Data Type: numeric

Com_dealloc_sql

Description: Number of DEALLOCATE commands executed.

Scope: Global, Session

Data Type: numeric

2679/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/deallocate-drop-prepared-statement/

Com_delete

Description: Number of DELETE commands executed. Differs from Handler_delete, which counts the number of

times rows have been deleted from tables.

Scope: Global, Session

Data Type: numeric

Com_delete_multi

Description: Number of multi-table DELETE commands executed.

Scope: Global, Session

Data Type: numeric

Com_do

Description: Number of DO commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_db

Description: Number of DROP DATABASE commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_event

Description: Number of DROP EVENT commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_function

Description: Number of DROP FUNCTION commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_index

Description: Number of DROP INDEX commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_package

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_drop_package_body

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

2680/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

Com_drop_procedure

Description: Number of DROP PROCEDURE commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_role

Description: Number of DROP ROLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_sequence

Description: Number of DROP SEQUENCE commands executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.0

Com_drop_server

Description: Number of DROP SERVER commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_table

Description: Number of DROP TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_temporary_table

Description: Number of DROP TEMPORARY TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_trigger

Description: Number of DROP TRIGGER commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_user

Description: Number of DROP USER commands executed.

Scope: Global, Session

Data Type: numeric

Com_drop_view

Description: Number of DROP VIEW commands executed.

Scope: Global, Session

Data Type: numeric

2681/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

Com_empty_query

Description: Number of queries to the server that do not produce SQL queries. An SQL query simply returning no

results does not increment Com_empty_query - see Empty_queries instead. An example of an empty query sent to

the server is mariadb --comments -e '-- sql comment'

Scope: Global, Session

Data Type: numeric

Com_execute_immediate

Description: Number of EXECUTE IMMEDIATE statements executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.3

Com_execute_sql

Description: Number of EXECUTE statements executed.

Scope: Global, Session

Data Type: numeric

Com_flush

Description: Number of FLUSH commands executed. This differs from Flush_commands, which also counts internal

server flush requests.

Scope: Global, Session

Data Type: numeric

Com_get_diagnostics

Description: Number of GET DIAGNOSTICS commands executed.

Scope: Global, Session

Data Type: numeric

Com_grant

Description: Number of GRANT commands executed.

Scope: Global, Session

Data Type: numeric

Com_grant_role

Description: Number of GRANT role commands executed.

Scope: Global, Session

Data Type: numeric

Com_ha_close

Description: Number of HANDLER table_name CLOSE commands executed.

Scope: Global, Session

Data Type: numeric

Com_ha_open

Description: Number of HANDLER table_name OPEN commands executed.

Scope: Global, Session

Data Type: numeric

2682/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/get-diagnostics/

Com_ha_read

Description: Number of HANDLER table_name READ commands executed.

Scope: Global, Session

Data Type: numeric

Com_help

Description: Number of HELP commands executed.

Scope: Global, Session

Data Type: numeric

Com_insert

Description: Number of INSERT commands executed.

Scope: Global, Session

Data Type: numeric

Com_insert_select

Description: Number of INSERT ... SELECT commands executed.

Scope: Global, Session

Data Type: numeric

Com_install_plugin

Description: Number of INSTALL PLUGIN commands executed.

Scope: Global, Session

Data Type: numeric

Com_kill

Description: Number of KILL commands executed.

Scope: Global, Session

Data Type: numeric

Com_load

Description: Number of LOAD commands executed.

Scope: Global, Session

Data Type: numeric

Com_load_master_data

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

Com_load_master_table

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

2683/4161

Com_multi

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.0

Com_lock_tables

Description: Number of [lock-tables|LOCK TABLES]] commands executed.

Scope: Global, Session

Data Type: numeric

Com_optimize

Description: Number of OPTIMIZE commands executed.

Scope: Global, Session

Data Type: numeric

Com_preload_keys

Description:

Scope: Global, Session

Data Type: numeric

Com_prepare_sql

Description: Number of PREPARE statements executed.

Scope: Global, Session

Data Type: numeric

Com_purge

Description: Number of PURGE commands executed.

Scope: Global, Session

Data Type: numeric

Com_purge_before_date

Description: Number of PURGE BEFORE commands executed.

Scope: Global, Session

Data Type: numeric

Com_release_savepoint

Description: Number of RELEASE SAVEPOINT commands executed.

Scope: Global, Session

Data Type: numeric

Com_rename_table

Description: Number of RENAME TABLE commands executed.

Scope: Global, Session

Data Type: numeric

2684/4161

https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/sql-commands-purge-logs/
https://mariadb.com/kb/en/sql-commands-purge-logs/

Com_rename_user

Description: Number of RENAME USER commands executed.

Scope: Global, Session

Data Type: numeric

Com_repair

Description: Number of REPAIR TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_replace

Description: Number of REPLACE commands executed.

Scope: Global, Session

Data Type: numeric

Com_replace_select

Description: Number of REPLACE ... SELECT commands executed.

Scope: Global, Session

Data Type: numeric

Com_reset

Description: Number of RESET commands executed.

Scope: Global, Session

Data Type: numeric

Com_resignal

Description: Number of RESIGNAL commands executed.

Scope: Global, Session

Data Type: numeric

Com_restore_table

Description: Removed in MariaDB 5.5. In older versions, Com_restore_table contains the number of RESTORE

TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

Com_revoke

Description: Number of REVOKE commands executed.

Scope: Global, Session

Data Type: numeric

Com_revoke_all

Description: Number of REVOKE ALL commands executed.

Scope: Global, Session

Data Type: numeric

2685/4161

https://mariadb.com/kb/en/restore-table-removed/

Com_revoke_grant

Description: Number of REVOKE role commands executed.

Scope: Global, Session

Data Type: numeric

Com_rollback

Description: Number of ROLLBACK commands executed. Differs from Handler_rollback, which is the number of

transaction rollback requests given to a storage engine.

Scope: Global, Session

Data Type: numeric

Com_rollback_to_savepoint

Description: Number of ROLLBACK ... TO SAVEPOINT commands executed.

Scope: Global, Session

Data Type: numeric

Com_savepoint

Description: Number of SAVEPOINT commands executed. Differs from Handler_savepoint, which is the number of

transaction savepoint creation requests.

Scope: Global, Session

Data Type: numeric

Com_select

Description: Number of SELECT commands executed. Also includes queries that make use of the query cache.

Scope: Global, Session

Data Type: numeric

Com_set_option

Description: Number of SET OPTION commands executed.

Scope: Global, Session

Data Type: numeric

Com_signal

Description: Number of SIGNAL statements executed.

Scope: Global, Session

Data Type: numeric

Com_show_authors

Description: Number of SHOW AUTHORS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_binlog_events

Description: Number of SHOW BINLOG EVENTS statements executed.

Scope: Global, Session

Data Type: numeric

2686/4161

Com_show_binlogs

Description: Number of SHOW BINARY LOGS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_charsets

Description: Number of SHOW CHARACTER SET commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_client_statistics

Description: Number of SHOW CLIENT STATISTICS commands executed. Removed in MariaDB 10.1.1 when

that statement was replaced by the generic SHOW information_schema_table .

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.1.1

Com_show_collations

Description: Number of SHOW COLLATION commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_column_types

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 5.5

Com_show_contributors

Description: Number of SHOW CONTRIBUTORS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_db

Description: Number of SHOW CREATE DATABASE commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_event

Description: Number of SHOW CREATE EVENT commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_func

Description: Number of SHOW CREATE FUNCTION commands executed.

Scope: Global, Session

Data Type: numeric

2687/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

Com_show_create_package

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_show_create_package_body

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_show_create_proc

Description: Number of SHOW CREATE PROCEDURE commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_table

Description: Number of SHOW CREATE TABLE commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_trigger

Description: Number of SHOW CREATE TRIGGER commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_create_user

Description: Number of SHOW CREATE USER commands executed.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.0

Com_show_databases

Description: Number of SHOW DATABASES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_engine_logs

Description: Number of SHOW ENGINE LOGS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_engine_mutex

Description: Number of SHOW ENGINE MUTEX commands executed.

Scope: Global, Session

Data Type: numeric

2688/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/

Com_show_engine_status

Description: Number of SHOW ENGINE STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_events

Description: Number of SHOW EVENTS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_errors

Description: Number of SHOW ERRORS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_explain

Description: Number of SHOW EXPLAIN commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_fields

Description: Number of SHOW COLUMNS or SHOW FIELDS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_function_status

Description: Number of SHOW FUNCTION STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_generic

Description: Number of generic SHOW commands executed, such as SHOW INDEX_STATISTICS and SHOW

TABLE_STATISTICS

Scope: Global, Session

Data Type: numeric

Com_show_grants

Description: Number of SHOW GRANTS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_keys

Description: Number of SHOW INDEX or SHOW KEYS commands executed.

Scope: Global, Session

Data Type: numeric

2689/4161

Com_show_index_statistics

Description: Number of SHOW INDEX_STATISTICS commands executed. Removed in MariaDB 10.1.1 when

that statement was replaced by the generic SHOW information_schema_table .

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.1.1

Com_show_open_tables

Description: Number of SHOW OPEN TABLES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_package_status

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_show_package_body_status

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.5

Com_show_plugins

Description: Number of SHOW PLUGINS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_privileges

Description: Number of SHOW PRIVILEGES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_procedure_status

Description: Number of SHOW PROCEDURE STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_processlist

Description: Number of SHOW PROCESSLIST commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_profile

Description: Number of SHOW PROFILE commands executed.

Scope: Global, Session

Data Type: numeric

2690/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/

Com_show_profiles

Description: Number of SHOW PROFILES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_relaylog_events

Description: Number of SHOW RELAYLOG EVENTS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_status

Description: Number of SHOW STATUS commands executed.

Scope: Global, Session

Data Type: numeric st

Com_show_storage_engines

Description: Number of SHOW STORAGE ENGINES - or SHOW ENGINES - commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_table_statistics

Description: Number of SHOW TABLE STATISTICS commands executed. Removed in MariaDB 10.1.1 when that

statement was replaced by the generic SHOW information_schema_table .

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.1.1

Com_show_table_status

Description: Number of SHOW TABLE STATUS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_tables

Description: Number of SHOW TABLES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_triggers

Description: Number of SHOW TRIGGERS commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_user_statistics

Description: Number of SHOW USER STATISTICS commands executed. Removed in MariaDB 10.1.1 when

that statement was replaced by the generic SHOW information_schema_table .

Scope: Global, Session

Data Type: numeric

2691/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/show-user_statistics/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

Removed: MariaDB 10.1.1

Com_show_variable

Description: Number of SHOW VARIABLES commands executed.

Scope: Global, Session

Data Type: numeric

Com_show_warnings

Description: Number of SHOW WARNINGS commands executed.

Scope: Global, Session

Data Type: numeric

Com_shutdown

Description: Number of SHUTDOWN commands executed.

Scope: Global, Session

Data Type: numeric

Com_stmt_close

Description: Number of prepared statements closed (deallocated or dropped).

Scope: Global, Session

Data Type: numeric

Com_stmt_execute

Description: Number of prepared statements executed.

Scope: Global, Session

Data Type: numeric

Com_stmt_fetch

Description: Number of prepared statements fetched.

Scope: Global, Session

Data Type: numeric

Com_stmt_prepare

Description: Number of prepared statements prepared.

Scope: Global, Session

Data Type: numeric

Com_stmt_reprepare

Description: Number of prepared statements reprepared.

Scope: Global, Session

Data Type: numeric

Com_stmt_reset

Description: Number of prepared statements where the data of a prepared statement which was accumulated in

chunks by sending long data has been reset.

Scope: Global, Session

Data Type: numeric

2692/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/deallocate-drop-prepared-statement/

Com_stmt_send_long_data

Description: Number of prepared statements where the parameter data has been sent in chunks (long data).

Scope: Global, Session

Data Type: numeric

Com_truncate

Description: Number of TRUNCATE commands executed.

Scope: Global, Session

Data Type: numeric

Com_uninstall_plugin

Description: Number of UNINSTALL PLUGIN commands executed.

Scope: Global, Session

Data Type: numeric

Com_unlock_tables

Description: Number of UNLOCK TABLES commands executed.

Scope: Global, Session

Data Type: numeric

Com_update

Description: Number of UPDATE commands executed.

Scope: Global, Session

Data Type: numeric

Com_update_multi

Description: Number of multi-table UPDATE commands executed.

Scope: Global, Session

Data Type: numeric

Com_xa_commit

Description: Number of XA statements committed.

Scope: Global, Session

Data Type: numeric

Com_xa_end

Description: Number of XA statements ended.

Scope: Global, Session

Data Type: numeric

Com_xa_prepare

Description: Number of XA statements prepared.

Scope: Global, Session

Data Type: numeric

2693/4161

Com_xa_recover

Description: Number of XA RECOVER statements executed.

Scope: Global, Session

Data Type: numeric

Com_xa_rollback

Description: Number of XA statements rolled back.

Scope: Global, Session

Data Type: numeric

Com_xa_start

Description: Number of XA statements started.

Scope: Global, Session

Data Type: numeric

Compression

Description: Whether client-server traffic is compressed.

Scope: Session

Data Type: boolean

Connection_errors_accept

Description: Number of errors that occurred during calls to accept() on the listening port. The global value can be

flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Connection_errors_internal

Description: Number of refused connections due to internal server errors, for example out of memory errors, or

failed thread starts. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Connection_errors_max_connections

Description: Number of refused connections due to the max_connections limit being reached. The global value can

be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Connection_errors_peer_address

Description: Number of errors while searching for the connecting client IP address. The global value can be flushed

by FLUSH STATUS .

Scope: Global

Data Type: numeric

Connection_errors_select

Description: Number of errors during calls to select() or poll() on the listening port. The client would not necessarily

have been rejected in these cases. The global value can be flushed by FLUSH STATUS .

Scope: Global

2694/4161

Data Type: numeric

Connection_errors_tcpwrap

Description: Number of connections the libwrap library refused. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Connections

Description: Number of connection attempts (both successful and unsuccessful)

Scope: Global

Data Type: numeric

Cpu_time

Description: Total CPU time used.

Scope: Global, Session

Data Type: numeric

Created_tmp_disk_tables

Description: Number of on-disk temporary tables created.

Scope: Global, Session

Data Type: numeric

Created_tmp_files

Description: Number of temporary files created. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Created_tmp_tables

Description: Number of in-memory temporary tables created.

Scope: Global

Data Type: numeric

Delayed_errors

Description: Number of errors which occurred while doing INSERT DELAYED. The global value can be flushed by

FLUSH STATUS .

Scope: Global

Data Type: numeric

Delayed_insert_threads

Description: Number of INSERT DELAYED threads.

Scope: Global

Data Type: numeric

Delayed_writes

Description: Number of INSERT DELAYED rows written. The global value can be flushed by FLUSH STATUS .

Scope: Global

2695/4161

Data Type: numeric

Delete_scan

Description: Number of DELETEs that required a full table scan.

Scope: Global

Data Type: numeric

Empty_queries

Description: Number of queries returning no results. Note this is not the same as Com_empty_query.

Scope: Global, Session

Data Type: numeric

Executed_events

Description: Number of times events created with CREATE EVENT have executed. This differs from

Com_create_event in that it is only incremented when the event has run, not when it executes.

Scope: Global, Session

Data Type: numeric

Executed_triggers

Description: Number of times triggers created with CREATE TRIGGER have executed. This differs from

Com_create_trigger in that it is only incremented when the trigger has run, not when it executes.

Scope: Global, Session

Data Type: numeric

Feature_application_time_periods

Description: Number of times a table created with periods has been opened.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.4.5

Feature_check_constraint

Description: Number of times constraints were checked. The global value can be flushed by FLUSH STATUS .

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.2

Feature_custom_aggregate_functions

Description: Number of queries which make use of custom aggregate functions.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.6

Feature_delay_key_write

Description: Number of tables opened that are using delay_key_write. The global value can be flushed by FLUSH

STATUS .

Scope: Global, Session

Data Type: numeric

2696/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/stored-aggregate-function
https://mariadb.com/kb/en/mariadb-1036-release-notes/

Feature_dynamic_columns

Description: Number of times the COLUMN_CREATE() function was used.

Scope: Global, Session

Data Type: numeric

Feature_fulltext

Description: Number of times the MATCH & AGAINST() function was used.

Scope: Global, Session

Data Type: numeric

Feature_gis

Description: Number of times a table with a any of the geometry columns was opened.

Scope: Global, Session

Data Type: numeric

Feature_insert_returning

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.5.0

Feature_invisible_columns

Description: Number of invisible columns in all opened tables.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.3

Feature_json

Description: Number of times JSON functionality has been used, such as one of the JSON functions. Does not

include the CONNECT engine JSON type, or EXPLAIN/ANALYZE FORMAT=JSON.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.7

Feature_locale

Description: Number of times the @@lc_messages variable was assigned into.

Scope: Global, Session

Data Type: numeric

Feature_subquery

Description: Number of subqueries (excluding subqueries in the FROM clause) used.

Scope: Global, Session

Data Type: numeric

Feature_system_versioning

Description: Number of times system versioning functionality has been used (opening a table WITH SYSTEM

VERSIONING).

Scope: Global, Session

2697/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Data Type: numeric

Introduced: MariaDB 10.3.7

Feature_timezone

Description: Number of times an explicit timezone (excluding UTC and SYSTEM) was specified.

Scope: Global, Session

Data Type: numeric

Feature_trigger

Description: Number of triggers loaded.

Scope: Global, Session

Data Type: numeric

Feature_window_functions

Description: Number of times window functions were used.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.2

Feature_xml

Description: Number of times XML functions (EXTRACTVALUE() and UPDATEXML()) were used.

Scope: Global, Session

Data Type: numeric

Flush_commands

Description: Number of FLUSH statements executed, as well as due to internal server flush requests. This differs

from Com_flush, which simply counts FLUSH statements, not internal server flush operations.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.5.1

Handler_commit

Description: Number of internal COMMIT requests. Differs from Com_commit, which counts the number of COMMIT

statements executed.

Scope: Global, Session

Data Type: numeric

Handler_delete

Description: Number of times rows have been deleted from tables. Differs from Com_delete, which counts DELETE

statements.

Scope: Global, Session

Data Type: numeric

Handler_discover

Description: Discovery is when the server asks the NDBCLUSTER storage engine if it knows about a table with a

given name. Handler_discover indicates the number of times that tables have been discovered in this way.

Scope: Global, Session

Data Type: numeric

2698/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

Handler_external_lock

Description: Incremented for each call to the external_lock() function, which generally occurs at the beginning and

end of access to a table instance.

Scope: Global, Session

Data Type: numeric

Handler_icp_attempts

Description: Number of times pushed index condition was checked. The smaller the ratio of Handler_icp_attempts to

Handler_icp_match the better the filtering. See Index Condition Pushdown.

Scope: Global, Session

Data Type: numeric

Handler_icp_match

Description: Number of times pushed index condition was matched. The smaller the ratio of Handler_icp_attempts

to Handler_icp_match the better the filtering. See See Index Condition Pushdown.

Scope: Global, Session

Data Type: numeric

Handler_mrr_init

Description: Counts how many MRR (multi-range read) scans were performed. See Multi Range Read optimization.

Scope: Global, Session

Data Type: numeric

Handler_mrr_key_refills

Description: Number of times key buffer was refilled (not counting the initial fill). A non-zero value indicates there

wasn't enough memory to do key sort-and-sweep passes in one go. See Multi Range Read optimization.

Scope: Global, Session

Data Type: numeric

Handler_mrr_rowid_refills

Description: Number of times rowid buffer was refilled (not counting the initial fill). A non-zero value indicates there

wasn't enough memory to do rowid sort-and-sweep passes in one go. See Multi Range Read optimization.

Scope: Global, Session

Data Type: numeric

Handler_prepare

Description: Number of two-phase commit prepares.

Scope: Global, Session

Data Type: numeric

Handler_read_first

Description: Number of requests to read the first row from an index. A high value indicates many full index scans,

e.g. SELECT a FROM table_name where a is an indexed column.

Scope: Global, Session

Data Type: numeric

Handler_read_key

Description: Number of row read requests based on an index value. A high value indicates indexes are regularly

2699/4161

being used, which is usually positive.

Scope: Global, Session

Data Type: numeric

Handler_read_last

Description: Number of requests to read the last row from an index. ORDER BY DESC results in a last-key request

followed by several previous-key requests.

Scope: Global, Session

Data Type: numeric

Handler_read_next

Description: Number of requests to read the next row from an index (in order). Increments when doing an index scan

or querying an index column with a range constraint.

Scope: Global, Session

Data Type: numeric

Handler_read_prev

Description: Number of requests to read the previous row from an index (in order). Mostly used with ORDER BY

DESC.

Scope: Global, Session

Data Type: numeric

Handler_read_retry

Description: Number of read retrys triggered by semi_consistent_read (InnoDB feature).

Scope: Global

Data Type: numeric

Handler_read_rnd

Description: Number of requests to read a row based on its position. If this value is high, you may not be using joins

that don't use indexes properly, or be doing many full table scans.

Scope: Global, Session

Data Type: numeric

Handler_read_rnd_deleted

Description: Number of requests to delete a row based on its position.

Scope: Global, Session

Data Type: numeric

Handler_read_rnd_next

Description: Number of requests to read the next row. A large number of these may indicate many table scans and

improperly used indexes.

Scope: Global, Session

Data Type: numeric

Handler_rollback

Description: Number of transaction rollback requests given to a storage engine. Differs from Com_rollback, which is

the number of ROLLBACK commands executed.

Scope: Global, Session

Data Type: numeric

2700/4161

Handler_savepoint

Description: Number of transaction savepoint creation requests. Differs from Com_savepoint which is the number of

SAVEPOINT commands executed.

Scope: Global, Session

Data Type: numeric

Handler_savepoint_rollback

Description: Number of requests to rollback to a transaction savepoint.

Scope: Global, Session

Data Type: numeric

Handler_tmp_delete

Description: Number of requests to delete a row in a temporary table.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.0

Handler_tmp_update

Description: Number of requests to update a row to a temporary table.

Scope: Global, Session

Data Type: numeric

Handler_tmp_write

Description: Number of requests to write a row to a temporary table.

Scope: Global, Session

Data Type: numeric

Handler_update

Description: Number of requests to update a row in a table. Since MariaDB 5.3, this no longer counts temporary

tables - see Handler_tmp_update.

Scope: Global, Session

Data Type: numeric

Handler_write

Description: Number of requests to write a row to a table. Since MariaDB 5.3, this no longer counts temporary tables

- see Handler_tmp_write.

Scope: Global, Session

Data Type: numeric

Key_blocks_not_flushed

Description: Number of key cache blocks which have been modified but not flushed to disk.

Scope: Global

Data Type: numeric

Key_blocks_unused

Description: Number of unused key cache blocks.

Scope: Global

2701/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

Data Type: numeric

Key_blocks_used

Description: Max number of key cache blocks which have been used simultaneously.

Scope: Global

Data Type: numeric

Key_blocks_warm

Description: Number of key cache blocks in the warm list.

Scope: Global

Data Type: numeric

Key_read_requests

Description: Number of key cache block read requests. See Optimizing key_buffer_size.

Scope: Global

Data Type: numeric

Key_reads

Description: Number of physical index block reads. See Optimizing key_buffer_size.

Scope: Global

Data Type: numeric

Key_write_requests

Description: Number of requests to write a block to the key cache.

Scope: Global

Data Type: numeric

Key_writes

Description: Number of key cache block write requests

Scope: Global

Data Type: numeric

Last_query_cost

Description: The most recent query optimizer query cost calculation. Can not be calculated for complex queries,

such as subqueries or UNION. It will be set to 0 for complex queries.

Scope: Session

Data Type: numeric

Maria_*

Description: When the Maria storage engine was renamed Aria, the Maria variables existing at the time were

renamed at the same time. See Aria Server Status Variables.

Max_statement_time_exceeded

Description: Number of queries that exceeded the execution time specified by max_statement_time. See Aborting

statements that take longer than a certain time to execute.

Data Type: numeric

2702/4161

Max_used_connections

Description: Max number of connections ever open at the same time. The global value can be flushed by FLUSH

STATUS.

Scope: Global

Data Type: numeric

Max_used_connections_time

Description: The time at which the last change of max_used_connections occured. The global value can be flushed

by FLUSH STATUS.

Scope: Global

Data Type: datetime

Introduced: MariaDB 11.0.2, MariaDB 11.1.1

Memory_used

Description: Global or per-connection memory usage, in bytes. This includes all per-connection memory allocations,

but excludes global allocations such as the key_buffer, innodb_buffer_pool etc.

Scope: Global, Session

Data Type: numeric

Memory_used_initial

Description: Amount of memory that was used when the server started to service the user connections.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.3

Not_flushed_delayed_rows

Description: Number of INSERT DELAYED rows waiting to be written.

Scope: Global

Data Type: numeric

Open_files

Description: Number of regular files currently opened by the server. Does not include sockets or pipes, or storage

engines using internal functions.

Scope: Global

Data Type: numeric

Open_streams

Description: Number of currently opened streams, usually log files.

Scope: Global

Data Type: numeric

Open_table_definitions

Description: Number of currently cached .frm files.

Scope: Global

Data Type: numeric

Open_tables

Description: Number of currently opened tables, excluding temporary tables.

2703/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

Scope: Global, Session

Data Type: numeric

Opened_files

Description: Number of files the server has opened.

Scope: Global

Data Type: numeric

Opened_plugin_libraries

Description: Number of shared libraries that the server has opened to load plugins.

Scope: Global

Data Type: numeric

Opened_table_definitions

Description: Number of .frm files that have been cached.

Scope: Global, Session

Data Type: numeric

Opened_tables

Description: Number of tables the server has opened.

Scope: Global, Session

Data Type: numeric

Opened_views

Description: Number of views the server has opened.

Scope: Global, Session

Data Type: numeric

Prepared_stmt_count

Description: Current number of prepared statements.

Scope: Global

Data Type: numeric

Qcache_free_blocks

Description: Number of free query cache memory blocks.

Scope: Global

Data Type: numeric

Qcache_free_memory

Description: Amount of free query cache memory.

Scope: Global

Data Type: numeric

Qcache_hits

Description: Number of requests served by the query cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric
2704/4161

Qcache_inserts

Description: Number of queries ever cached in the query cache. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Qcache_lowmem_prunes

Description: Number of pruning operations performed to remove old results to make space for new results in the

query cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Qcache_not_cached

Description: Number of queries that are uncacheable by the query cache, or use SQL_NO_CACHE. The global

value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Qcache_queries_in_cache

Description: Number of queries currently cached by the query cache.

Scope: Global

Data Type: numeric

Qcache_total_blocks

Description: Number of blocks used by the query cache.

Scope: Global

Data Type: numeric

Queries

Description: Number of statements executed by the server, excluding COM_PING and COM_STATISTICS. Differs

from Questions in that it also counts statements executed within stored programs.

Scope: Global, Session

Data Type: numeric

Questions

Description: Number of statements executed by the server, excluding COM_PING, COM_STATISTICS,

COM_STMT_PREPARE, COM_STMT_CLOSE, and COM_STMT_RESET statements. Differs from Queries in that it

doesn't count statements executed within stored programs.

Scope: Global, Session

Data Type: numeric

Resultset_metadata_skipped

Description: Number of times sending the metadata has been skipped. Metadata is not resent if metadata does not

change between prepare and execute of prepared statement, or between executes.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.6.0

2705/4161

Rows_read

Description: Number of requests to read a row (excluding temporary tables).

Scope: Global, Session

Data Type: numeric

Rows_sent

Description:

Scope: Global, Session

Data Type: numeric

Rows_tmp_read

Description: Number of requests to read a row in a temporary table.

Scope: Global, Session

Data Type: numeric

Select_full_join

Description: Number of joins which did not use an index. If not zero, you may need to check table indexes.

Scope: Global, Session

Data Type: numeric

Select_full_range_join

Description: Number of joins which used a range search of the first table.

Scope: Global, Session

Data Type: numeric

Select_range

Description: Number of joins which used a range on the first table.

Scope: Global, Session

Data Type: numeric

Select_range_check

Description: Number of joins without keys that check for key usage after each row. If not zero, you may need to

check table indexes.

Scope: Global, Session

Data Type: numeric

Select_scan

Description: Number of joins which used a full scan of the first table.

Scope: Global, Session

Data Type: numeric

Slow_launch_threads

Description: Number of threads which took longer than slow_launch_time to create. The global value can be flushed

by FLUSH STATUS .

Scope: Global, Session

Data Type: numeric

2706/4161

Slow_queries

Description: Number of queries which took longer than long_query_time to run. The slow query log does not need to

be active for this to be recorded.

Scope: Global, Session

Data Type: numeric

Sort_merge_passes

Description: Number of merge passes performed by the sort algorithm. If too high, you may need to look at

improving your query indexes, or increasing the sort_buffer_size.

Scope: Global, Session

Data Type: numeric

Sort_priority_queue_sorts

Description: The number of times that sorting was done through a priority queue. (The total number of times sorting

was done is a sum Sort_range and Sort_scan). See filesort with small LIMIT optimization.

Scope: Global, Session

Data Type: numeric

Sort_range

Description: Number of sorts which used a range.

Scope: Global, Session

Data Type: numeric

Sort_rows

Description: Number of rows sorted.

Scope: Global, Session

Data Type: numeric

Sort_scan

Description: Number of sorts which used a full table scan.

Scope: Global, Session

Data Type: numeric

Subquery_cache_hit

Description: Counter for all subquery cache hits. The global value can be flushed by FLUSH STATUS .

Scope: Global, Session

Data Type: numeric

Subquery_cache_miss

Description: Counter for all subquery cache misses. The global value can be flushed by FLUSH STATUS .

Scope: Global, Session

Data Type: numeric

Syncs

Description: Number of times my_sync() has been called, or the number of times the server has had to force data to

disk. Covers the binary log, .frm creation (if these operations are configured to sync) and some storage engines

(Archive, CSV, Aria), but not XtraDB/InnoDB).

Scope: Global, Session

2707/4161

Data Type: numeric

Table_locks_immediate

Description: Number of table locks which were completed immediately. The global value can be flushed by FLUSH

STATUS .

Scope: Global

Data Type: numeric

Table_locks_waited

Description: Number of table locks which had to wait. Indicates table lock contention. The global value can be

flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Table_open_cache_active_instances

Description: Number of active instances for open tables cache lookups.

Scope:

Data Type: numeric

Introduced: MariaDB 10.3.3

Table_open_cache_hits

Description: Number of hits for open tables cache lookups.

Scope:

Data Type: numeric

Introduced: MariaDB 10.3.3

Table_open_cache_misses

Description: Number of misses for open tables cache lookups.

Scope:

Data Type: numeric

Introduced: MariaDB 10.3.3

Table_open_cache_overflows

Description: Number of overflows for open tables cache lookups.

Scope:

Data Type: numeric

Introduced: MariaDB 10.3.3

Tc_log_max_pages_used

Description: Max number of pages used by the memory-mapped file-based transaction coordinator log. The global

value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Tc_log_page_size

Description: Page size of the memory-mapped file-based transaction coordinator log.

Scope: Global

Data Type: numeric

2708/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Tc_log_page_waits

Description: Number of times a two-phase commit was forced to wait for a free memory-mapped file-based

transaction coordinator log page. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Threads_cached

Description: Number of threads cached in the thread cache. This value will be zero if the thread pool is in use.

Scope: Global

Data Type: numeric

Threads_connected

Description: Number of clients connected to the server. See Handling Too Many Connections. The

Threads_connected name is inaccurate when the thread pool is in use, since each client connection does not

correspond to a dedicated thread in that case.

Scope: Global

Data Type: numeric

Threads_created

Description: Number of threads created to respond to client connections. If too large, look at increasing

thread_cache_size.

Scope: Global

Data Type: numeric

Threads_running

Description: Number of client connections that are actively running a command, and not just sleeping while waiting

to receive the next command to execute. Some internal system threads also count towards this status variable if they

would show up in the output of the SHOW PROCESSLIST statement.

In MariaDB 10.3.2 and before, a global counter was updated each time a client connection dispatched a

command. In these versions, the global and session status variable are always the same value.

In MariaDB 10.3.3 and later, the global counter has been removed as a performance improvement. Instead,

when the global status variable is queried, it is calculated dynamically by essentially adding up all the running

client connections as they would appear in SHOW PROCESSLIST output. A client connection is only considered

to be running if its thread COMMAND value is not equal to Sleep . When the session status variable is queried,

it always returns 1 .

Scope: Global

Data Type: numeric

Update_scan

Description: Number of updates that required a full table scan.

Scope: Global

Data Type: numeric

Uptime

Description: Number of seconds the server has been running.

Scope: Global

Data Type: numeric

Uptime_since_flush_status

Description: Number of seconds since the last FLUSH STATUS.

2709/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Scope: Global

Data Type: numeric

2.7.2 Server System Variables

5.3.4.5 Aria Status Variables

5.3.4.6 Aria System Variables

5.3.7.13 CONNECT System Variables

3.2.9 Galera Cluster Status Variables

3.2.10 Galera Cluster System Variables

5.3.2.5 InnoDB Server Status Variables

5.3.2.4 InnoDB System Variables

5.4.5.7 MariaDB Audit Plugin ÿ Status Variables

5.3.12.3 Mroonga Status Variables

5.3.12.4 Mroonga System Variables

5.3.13.2 MyISAM System Variables

5.3.14.5 MyRocks System Variables

5.3.14.6 MyRocks Status Variables

5.3.15.6 OQGRAPH System and Status Variables

1.1.1.2.9.2.3 Performance Schema Status Variables

1.1.1.2.9.2.4 Performance Schema System Variables

3.1.12 Replication and Binary Log Status Variables

3.1.11 Replication and Binary Log System Variables

3.3.7.23 Semisynchronous Replication Plugin
Status Variables

2710/4161

Contents
1. Rpl_semi_sync_master_clients

2. Rpl_semi_sync_master_net_avg_wait_time

3. Rpl_semi_sync_master_net_wait_time

4. Rpl_semi_sync_master_net_waits

5. Rpl_semi_sync_master_no_times

6. Rpl_semi_sync_master_no_tx

7. Rpl_semi_sync_master_status

8. Rpl_semi_sync_master_timefunc_failures

9. Rpl_semi_sync_master_tx_avg_wait_time

10. Rpl_semi_sync_master_tx_wait_time

11. Rpl_semi_sync_master_tx_waits

12. Rpl_semi_sync_master_wait_pos_backtraverse

13. Rpl_semi_sync_master_wait_sessions

14. Rpl_semi_sync_master_yes_tx

15. Rpl_semi_sync_slave_status

This page documents status variables related to the Semisynchronous Replication Plugin (which has been merged into the

main server from MariaDB 10.3.3). See Server Status Variables for a complete list of status variables that can be viewed

with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Rpl_semi_sync_master_clients

Description: Number of semisynchronous slaves.

Data Type: numeric

Rpl_semi_sync_master_net_avg_wait_time

Description: Average time the master waited for a slave to reply, in microseconds.

Data Type: numeric

Rpl_semi_sync_master_net_wait_time

Description: Total time the master waited for slave replies, in microseconds.

Data Type: numeric

Rpl_semi_sync_master_net_waits

Description: Total number of times the master waited for slave replies.

Data Type: numeric

Rpl_semi_sync_master_no_times

Description: Number of times the master turned off semisynchronous replication. The global value can be flushed by

FLUSH STATUS .

Data Type: numeric

Rpl_semi_sync_master_no_tx

Description: Number of commits that have not been successfully acknowledged by a slave. The global value can be

flushed by FLUSH STATUS .

Data Type: numeric

Rpl_semi_sync_master_status

Description: Whether or not semisynchronous replication is currently operating on the master. The value will be ON

if both the plugin has been enabled and a commit acknowledgment has occurred. It will be OFF if either the plugin

has not been enabled, or the master is replicating asynchronously due to a commit acknowledgment timeout.
2711/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

Data Type: boolean

Rpl_semi_sync_master_timefunc_failures

Description: Number of times the master failed when calling a time function, such as gettimeofday(). The global

value can be flushed by FLUSH STATUS .

Data Type: numeric

Rpl_semi_sync_master_tx_avg_wait_time

Description: Average time the master waited for each transaction, in microseconds.

Data Type: numeric

Rpl_semi_sync_master_tx_wait_time

Description: Total time the master waited for transactions, in microseconds.

Data Type: numeric

Rpl_semi_sync_master_tx_waits

Description: Total number of times the master waited for transactions.

Data Type: numeric

Rpl_semi_sync_master_wait_pos_backtraverse

Description: Total number of times the master waited for an event that had binary coordinates lower than previous

events waited for. Occurs if the order in which transactions start waiting for a reply is different from the order in which

their binary log events were written. The global value can be flushed by FLUSH STATUS .

Data Type: numeric

Rpl_semi_sync_master_wait_sessions

Description: Number of sessions that are currently waiting for slave replies.

Data Type: numeric

Rpl_semi_sync_master_yes_tx

Description: Number of commits that have been successfully acknowledged by a slave. The global value can be

flushed by FLUSH STATUS .

Data Type: numeric

Rpl_semi_sync_slave_status

Description: Whether or not semisynchronous replication is currently operating on the slave. ON if both semi-sync

has been enabled for the replica (i.e. by setting the variable rpl_semi_sync_slave_enabled to TRUE) and the slave

I/O thread is running.

Data Type: boolean

3.1.24 Semisynchronous Replication

3.3.7.25 Sphinx Status Variables

2712/4161

Contents
1. Sphinx_error

2. Sphinx_time

3. Sphinx_total

4. Sphinx_total_found

5. Sphinx_word_count

6. Sphinx_words

This page documents status variables related to the Sphinx storage engine. See Server Status Variables for a complete list

of status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Sphinx_error

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

Sphinx_time

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

Sphinx_total

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

Sphinx_total_found

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

Sphinx_word_count

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

Sphinx_words

Description: See SHOW ENGINE SPHINX STATUS.

Scope: Global, Session

Data Type: numeric

5.3.19.9 Spider Status Variables

3.3.7.27 Spider Server System Variables

3.3.7.28 SQL Error Log System Variables and
Options

2713/4161

Contents
1. Options

1. sql_error_log

2. System Variables

1. sql_error_log_filename

2. sql_error_log_rate

3. sql_error_log_rotate

4. sql_error_log_rotations

5. sql_error_log_size_limit

6. sql_error_log_warnings

7. sql_error_log_with_db_and_thread_info

This page documents system variables and options related to the SQL_Error_Log Plugin. See Server System Variables for

a complete list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

Options

sql_error_log

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --sql-error-log=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

System Variables

sql_error_log_filename

Description: The name (and optionally path) of the logfile containing the errors. Rotation will use a naming

convention such as sql_error_log_filename.001 . If no path is specified, the log file will be written to the data

directory.

Commandline: --sql-error-log-filename=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: sql_errors.log

sql_error_log_rate

Description: The logging sampling rate. Setting to 10 , for example, means that one in ten errors will be logged. If

set to zero, logging is disabled. The default, 1 , logs every error.

Commandline: --sql-error-log-rate=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

2714/4161

sql_error_log_rotate

Description: Setting to #1 forces log rotation.

Commandline: --sql-error-log-rate[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

sql_error_log_rotations

Description: Number of rotations before the log is removed. When rotated, the current log file is stored and a new,

empty, log is created. Any rotations older than this setting are removed.

Commandline: --sql-error-log-rotations=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 9

Range: 1 to 999

sql_error_log_size_limit

Description: The log file size limit in bytes. After reaching this size, the log file is rotated.

Commandline: --sql-error-log-size-limit=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1000000

Range: 100 to 9223372036854775807

sql_error_log_warnings

Description: If set, log warnings in addition to errors.

Commandline: --sql-error-log-warnings={0,1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.11.5

sql_error_log_with_db_and_thread_info

Description: If enabled, it prints the database name and the thread ID in the log in addition to already existing

columns.

Commandline: --sql-error-log-with-db-and-thread-info=value

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3

2.2.1.1.1.7 SSL/TLS Status Variables

2.2.1.1.1.6 SSL/TLS System Variables

3.3.7.31 Thread Pool System and Status
2715/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Variables
Contents
1. System variables

1. extra_max_connections

2. extra_port

3. thread_handling

4. thread_pool_dedicated_listener

5. thread_pool_exact_stats

6. thread_pool_idle_timeout

7. thread_pool_max_threads

8. thread_pool_min_threads

9. thread_pool_oversubscribe

10. thread_pool_prio_kickup_timer

11. thread_pool_priority

12. thread_pool_size

13. thread_pool_stall_limit

2. Status variables

1. Threadpool_idle_threads

2. Threadpool_threads

This article describes the system and status variables used by the MariaDB thread pool. For a full description, see Thread

Pool in MariaDB.

System variables

extra_max_connections

Description: The number of connections on the extra_port .

See Thread Pool in MariaDB: Configuring the Extra Port for more information.

Commandline: --extra-max-connections=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 100000

extra_port

Description: Extra port number to use for TCP connections in a one-thread-per-connection manner. If set to

0 , then no extra port is used.

See Thread Pool in MariaDB: Configuring the Extra Port for more information.

Commandline: --extra-port=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

thread_handling

Description: Determines how the server handles threads for client connections. In addition to threads for client

connections, this also applies to certain internal server threads, such as Galera slave threads. On Windows, if you

would like to use the thread pool, then you do not need to do anything, because the default for the thread_handling

system variable is already preset to pool-of-threads .

When the default one-thread-per-connection mode is enabled, the server uses one thread to handle

each client connection.

When the pool-of-threads mode is enabled, the server uses the thread pool for client connections.

When the no-threads mode is enabled, the server uses a single thread for all client connections, which is

really only usable for debugging.

Commandline: --thread-handling=name

Scope: Global

Dynamic: No

2716/4161

Data Type: enumeration

Default Value: one-thread-per-connection (non-Windows), pool-of-threads (Windows)

Valid Values: no-threads , one-thread-per-connection , pool-of-threads .

Documentation: Using the thread pool.

Notes: In MySQL, the thread pool is only available in MySQL Enterprise. In MariaDB it's available in all versions.

thread_pool_dedicated_listener

Description: If set to 1, then each group will have its own dedicated listener, and the listener thread will not pick up

work items. As a result, the queueing time in the Information Schema Threadpool_Queues and the actual queue size

in the Information Schema Threadpool_Groups table will be more exact, since IO requests are immediately dequeued

from poll, without delay.

This system variable is only meaningful on Unix.

Commandline: thread-pool-dedicated-listener={0|1}

Scope:

Dynamic:

Data Type: boolean

Default Value: 0

Introduced: MariaDB 10.5.0

thread_pool_exact_stats

Description: If set to 1, provides better queueing time statistics by using a high precision timestamp, at a small

performance cost, for the time when the connection was added to the queue. This timestamp helps calculate the

queuing time shown in the Information Schema Threadpool_Queues table.

This system variable is only meaningful on Unix.

Commandline: thread-pool-exact-stats={0|1}

Scope:

Dynamic:

Data Type: boolean

Default Value: 0

Introduced: MariaDB 10.5.0

thread_pool_idle_timeout

Description: The number of seconds before an idle worker thread exits. The default value is 60 . If there is currently

no work to do, how long should an idle thread wait before exiting?

This system variable is only meaningful on Unix.

The thread_pool_min_threads system variable is comparable for Windows.

Commandline: thread-pool-idle-timeout=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 60

Documentation: Using the thread pool.

thread_pool_max_threads

Description: The maximum number of threads in the thread pool. Once this limit is reached, no new threads will be

created in most cases.

On Unix, in rare cases, the actual number of threads can slightly exceed this, because each thread group

needs at least two threads (i.e. at least one worker thread and at least one listener thread) to prevent

deadlocks.

Scope:

Commandline: thread-pool-max-threads=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

65536 (>= MariaDB 10.2.4)

1000 (<= MariaDB 10.2.3 , >= MariaDB 10.1)

2717/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

500 (<= MariaDB 10.0)

Range: 1 to 65536

Documentation: Using the thread pool.

thread_pool_min_threads

Description: Minimum number of threads in the thread pool. In bursty environments, after a period of inactivity,

threads would normally be retired. When the next burst arrives, it would take time to reach the optimal level. Setting

this value higher than the default would prevent thread retirement even if inactive.

This system variable is only meaningful on Windows.

The thread_pool_idle_timeout system variable is comparable for Unix.

Commandline: thread-pool-min-threads=#

Data Type: numeric

Default Value: 1

Documentation: Using the thread pool.

thread_pool_oversubscribe

Description: Determines how many worker threads in a thread group can remain active at the same time once a

thread group is oversubscribed due to stalls. The default value is 3 . Usually, a thread group only has one active

worker thread at a time. However, the timer thread can add more active worker threads to a thread group if it detects

a stall. There are trade-offs to consider when deciding whether to allow only one thread per CPU to run at a time, or

whether to allow more than one thread per CPU to run at a time. Allowing only one thread per CPU means that the

thread can have unrestricted access to the CPU while its running, but it also means that there is additional overhead

from putting threads to sleep or waking them up more frequently. Allowing more than one thread per CPU means that

the threads have to share the CPU, but it also means that there is less overhead from putting threads to sleep or

waking them up.

See Thread Groups in the Unix Implementation of the Thread Pool: Thread Group Oversubscription for more

information.

This is primarily for internal use, and it is not meant to be changed for most users.

This system variable is only meaningful on Unix.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 3

Range: 1 to 65536

Documentation: Using the thread pool.

thread_pool_prio_kickup_timer

Description: Time in milliseconds before a dequeued low-priority statement is moved to the high-priority queue.

This system variable is only meaningful on Unix.

Commandline: thread-pool-kickup-timer=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1000

Range: 0 to 4294967295

Introduced: MariaDB 10.2.2

Documentation: Using the thread pool.

thread_pool_priority

Description: Thread pool priority. High-priority connections usually start executing earlier than low-priority. If set to

'auto' (the default), the actual priority (low or high) is determined by whether or not the connection is inside a

transaction.

Commandline: --thread-pool-priority=#

Scope: Global,Connection

Data Type: enum

Default Value: auto

Valid Values: high , low , auto .

2718/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

Introduced: MariaDB 10.2.2

Documentation: Using the thread pool.

thread_pool_size

Description: The number of thread groups in the thread pool, which determines how many statements can execute

simultaneously. The default value is the number of CPUs on the system. When setting this system variable's value at

system startup, the max value is 100000. However, it is not a good idea to set it that high. When setting this system

variable's value dynamically, the max value is either 128 or the value that was set at system startup--whichever value

is higher.

See Thread Groups in the Unix Implementation of the Thread Pool for more information.

This system variable is only meaningful on Unix.

Commandline: --thread-pool-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: Based on the number of processors (but see MDEV-7806).

Range: 1 to 128 (< MariaDB 5.5.37 , MariaDB 10.0.11), 1 to 100000 (>= MariaDB 5.5.37 , MariaDB

10.0.11)

Documentation: Using the thread pool.

thread_pool_stall_limit

Description: The number of milliseconds between each stall check performed by the timer thread. The default value

is 500 . Stall detection is used to prevent a single client connection from monopolizing a thread group. When the

timer thread detects that a thread group is stalled, it wakes up a sleeping worker thread in the thread group, if one is

available. If there isn't one, then it creates a new worker thread in the thread group. This temporarily allows several

client connections in the thread group to run in parallel. However, note that the timer thread will not create a new

worker thread if the number of threads in the thread pool is already greater than or equal to the maximum defined by

the thread_pool_max_threads variable, unless the thread group does not already have a listener thread.

See Thread Groups in the Unix Implementation of the Thread Pool: Thread Group Stalls for more information.

This system variable is only meaningful on Unix.

Note that if you are migrating from the MySQL Enterprise thread pool plugin, then the unit used in their

implementation is 10ms, not 1ms.

Commandline: --thread-pool-stall-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 500

Range: 10 to 4294967295 (< MariaDB 10.5), 1 to 4294967295 (>= MariaDB 10.5)

Documentation: Using the thread pool.

Status variables

Threadpool_idle_threads

Description: Number of inactive threads in the thread pool. Threads become inactive for various reasons, such as by

waiting for new work. However, an inactive thread is not necessarily one that has not been assigned work. Threads

are also considered inactive if they are being blocked while waiting on disk I/O, or while waiting on a lock, etc.

This status variable is only meaningful on Unix.

Scope: Global, Session

Data Type: numeric

Threadpool_threads

Description: Number of threads in the thread pool. In rare cases, this can be slightly higher than

thread_pool_max_threads , because each thread group needs at least two threads (i.e. at least one worker thread

and at least one listener thread) to prevent deadlocks.

Scope: Global, Session

Data Type: numeric

2719/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://jira.mariadb.org/browse/MDEV-7806
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/

3.3.7.32 MariaDB Optimization for MySQL
Users
MariaDB contains many new options and optimizations which, for compatibility or other reasons, are not enabled in the

default install. Enabling them helps you gain extra performance from the same hardware when upgrading from MySQL to

MariaDB. This article contains information on options and settings which you should enable, or at least look in to, when

making the switch.

aria-pagecache-buffer-size=##

If you are using a log of on-disk temporary tables, increase the above to as much as you can afford. See Aria Storage

Engine for more details.

key-cache-segments=8

If you use/have a lot of MyISAM files, increase the above to 4 or 8. See Segmented Key Cache and Segmented Key Cache

Performance for more information.

thread-handling=pool-of-threads

Threadpool is a great way to increase performance in situations where queries are relatively short and the load is CPU

bound (e.g. OLTP workloads). To enable it, add the above to your my.cnf file. See Threadpool in 5.5 for more information.

5.3.2.7 InnoDB Buffer Pool

5.3.2.8 InnoDB Change Buffering

3.3.7.35 Optimizing table_open_cache
table_open_cache can be a useful variable to adjust to improve performance.

Each concurrent session accessing the same table does so independently. This improves performance, although it comes

at a cost of extra memory usage.

table_open_cache indicates the maximum number of tables the server can keep open in any one table cache instance.

Ideally, you'd like this set so as to re-open a table as infrequently as possible.

However, note that this is not a hard limit. When the server needs to open a table, it evicts the least recently used closed

table from the cache, and adds the new table. If all tables are used, the server adds the new table and does not evict any

table. As soon as a table is not used anymore, it will be evicted from the list even if no table needs to be open, until the

number of open tables will be equal to table_open_cache

table_open_cache has defaulted to 2000 since MariaDB 10.1.7 . Before that, the default was 400.

You can view the current setting in the my.cnf file, or by running:

select @@table_open_cache;

+--------------------+

| @@table_open_cache |

+--------------------+

| 400 |

+--------------------+

To evaluate whether you could do with a higher table_open_cache, look at the number of opened tables, in conjunction with

the server uptime (Opened_tables and Uptime status variables):

show global status like 'opened_tables';

+---------------+--------+

| Variable_name | Value |

+---------------+--------+

| Opened_tables | 354858 |

+---------------+--------+

2720/4161

https://mariadb.com/kb/en/segmented-key-cache-performance/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

If the number of opened tables is increasing rapidly, you should look at increasing the table_open_cache value. Try to find a

value that sees a slow, or possibly even no, increase in the number of opened tables.

Make sure that your operating system can cope with the number of open file descriptors required by the

table_open_cache setting. If table_open_cache is set too high, MariaDB may start to refuse connections as the

operating system runs out of file descriptors. Also note that the MyISAM (and Aria?) storage engines need two file

descriptors per open table.

It's possible that the open_table_cache can even be reduced.

If your number of open_tables has not yet reached the table_open_cache_size, and the server has been up a while, you can

look at decreasing the value.

show global status like 'open_tables';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| Open_tables | 354 |

+---------------+-------+

The open table cache can be emptied with FLUSH TABLES or with the flush-tables or refresh mariadb-admin

commands.

Automatic Creation of New Table Open Cache Instances
MariaDB Server can create multiple instances of the table open cache. It initially creates just a single instance. However,

whenever it detects contention on the existing instances, it will automatically create a new instance. When the number of

instances has been increased due to contention, it does not decrease again.

When MariaDB Server creates a new instance, it prints a message like the following to the error log:

[Note] Detected table cache mutex contention at instance 1: 25% waits. Additional

 table cache instance activated. Number of instances after activation: 2.

The maximum number of instances is defined by the table_open_cache_instances system variable. The default value of the

table_open_cache_instances system variable is 8 , which is expected to handle up to 100 CPU cores. If your system is

larger than this, then you may benefit from increasing the value of this system variable.

Depending on the ratio of actual available file handles, and table_open_cache size, the max. instance count may be auto

adjusted to a lower value on server startup.

The implementation and behavior of this feature is different than the same feature in MySQL 5.6.

3.3.7.36 Optimizing key_buffer_size
key_buffer_size is a MyISAM variable which determines the size of the index buffers held in memory, which affects the

speed of index reads. Note that Aria tables by default make use of an alternative setting, aria-pagecache-buffer-size.

A good rule of thumb for servers consisting particularly of MyISAM tables is for about 25% or more of the available server

memory to be dedicated to the key buffer.

A good way to determine whether to adjust the value is to compare the key_read_requests value, which is the total value of

requests to read an index, and the key_reads values, the total number of requests that had to be read from disk.

The ratio of key_reads to key_read_requests should be as low as possible, 1:100 is the highest acceptable, 1:1000 is

better, and 1:10 is terrible.

The effective maximum size might be lower than what is set, depending on the server's available physical RAM and the per-

process limit determined by the operating system.

If you don't make use of MyISAM tables at all, you can set this to a very low value, such as 64K.

5.3.13.8 Segmented Key Cache

3.3.7.38 Big Query Settings
2721/4161

MariaDB 5.3 and beyond have a number of features that are targeted at big queries and so are disabled by default.

This page describes recommended settings for IO-bound queries that shovel through lots of records.

First, turn on Batched Key Access:

Turn on disk-ordered reads

optimizer_switch='mrr=on'

optimizer_switch='mrr_cost_based=off'

Turn on Batched Key Access (BKA)

join_cache_level = 6

Give BKA buffer space to operate on. Ideally, it should have enough space to fit all the data examined by the query.

Size limit for the whole join

join_buffer_space_limit = 300M

Limit for each individual table

join_buffer_size = 100M

Turn on index_merge/sort-intersection:

optimizer_switch='index_merge_sort_intersection=on'

If your queries examine big fraction of the tables (somewhere more than ~ 30%), turn on hash join:

Turn on both Hash Join and Batched Key Access

join_cache_level = 8

3.3.7.39 Sample my.cnf Files
Place holder for sample my.cnf files, customized for different memory size and storage engines. In addition, we'd like to

hear from you what works for you, so the knowledge can be crowd-sourced and shared.

3.3.7.40 Handling Too Many Connections
Systems that get too busy can return the too_many_connections error.

When the number of threads_connected exceeds the max_connections server variable, it's time to make a change.

Viewing the threads_connected status variable shows only the current number of connections, but it's more useful to see

what the value has peaked at, and this is shown by the max_used_connections status variable.

This error may be a symptom of slow queries and other bottlenecks, but if the system is running smoothly this can be

addressed by increasing the value of max_connections.

2.1.14.1.13 System Variable Differences between
MariaDB and MySQL

3.3.6 MariaDB Memory Allocation

3.3.7.43 Setting Innodb Buffer Pool Size
Dynamically
Resizing the buffer pool is performed in chunks determined by the size of the innodb_buffer_pool_chunk_size variable.

The resize operation waits until all active transactions and operations are completed, and new transactions and operations

that need to access the buffer pool must wait until the resize is complete (although when decreasing the size, access is

permitted when defragmenting and withdrawing pages).

Nested transactions may fail if started after the buffer pool resize has begun.

The new buffer pool size must be a multiple of innodb_buffer_pool_chunk_size * innodb_buffer_pool_instances (note that

2722/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/hash-join

innodb_buffer_pool_instances is ignored from MariaDB 10.5, and removed in MariaDB 10.6, as the buffer pool is no

longer split into multiple instances). If you attempt to set a different figure, the value is automatically adjusted to a multiple of

at least the attempted size. Note that adjusting the innodb_buffer_pool_chunk_size setting can result in a change in the

buffer pool size.

The number of chunks as calculated by innodb_buffer_pool_size / innodb_buffer_pool_chunk_size should not exceed 1000

in order to avoid performance issues.

A background thread performs the resizing operation. The Innodb_buffer_pool_resize_status status variable shows the

progress of the resizing operation, for example:

SHOW STATUS LIKE 'Innodb_buffer_pool_resize_status';

+----------------------------------+----------------------------------+

| Variable_name | Value |

+----------------------------------+----------------------------------+

| Innodb_buffer_pool_resize_status | Resizing also other hash tables. |

+----------------------------------+----------------------------------+

or

SHOW STATUS LIKE 'Innodb_buffer_pool_resize_status';

+----------------------------------+--+

| Variable_name | Value |

+----------------------------------+--+

| Innodb_buffer_pool_resize_status | Completed resizing buffer pool at 161103 16:26:54. |

+----------------------------------+--+

Progress is also logged in the error log.

3.3.8 Buffers, Caches and Threads
MariaDB makes use of a number of buffering, caching and threading techniques to improve performance.

Thread Pool

MariaDB thread pool

Thread States

Descriptions of the various thread states

InnoDB Buffer Pool

The most important memory buffer used by InnoDB.

InnoDB Change Buffering

Buffering INSERT, UPDATE and DELETE statements for greater efficiency.

Query Cache

Caching SELECT queries for better performance.

Segmented Key Cache

Collection of structures for regular MyISAM key caches

Subquery Cache

Subquery cache for optimizing the evaluation of correlated subqueries.

Thread Command Values

Thread command values from SHOW PROCESSLIST or Information Schema PROCESSLIST Table

There are 1 related questions .

2

3.3.8.1 Thread Pool
MariaDB 5.1 introduced a thread pool, while MariaDB 5.5 introduced an improved version.

2723/4161

https://mariadb.com/kb/en/buffers-caches-and-threads/+questions/

Thread Pool in MariaDB

Thread pool introduced in MariaDB 5.5.

Thread Groups in the Unix Implementation of the Thread Pool

On Unix, the thread pool divides up client connections into independent sets of threads.

Thread Pool System and Status Variables

System and status variables related to the MariaDB thread pool.

Thread Pool in MariaDB 5.1 - 5.3

The old thread pool introduced in MariaDB 5.1

There are 1 related questions .

6

1

3.3.8.2 Thread Pool in MariaDB
Contents
1. Problem That Thread Pools Solve

2. MariaDB Thread Pool Features

3. When to Use the Thread Pool

4. When the Thread Pool is Less Efficient

5. Configuring the Thread Pool

1. Configuring the Thread Pool on Unix

2. Configuring the Thread Pool on Windows

3. Configuring Priority Scheduling

4. Configuring the Extra Port

6. Monitoring Thread Pool Activity

7. Thread Groups in the Unix Implementation of the Thread Pool

8. Fixing a Blocked Thread Pool

9. MariaDB Thread Pool vs Oracle MySQL Enterprise Thread Pool

1. Similarities

2. Differences

10. MariaDB Thread Pool vs Percona Thread Pool

11. Thread Pool Internals

12. Running Benchmarks

13. Notes

Problem That Thread Pools Solve
The task of scalable server software (and a DBMS like MariaDB is an example of such software) is to maintain top

performance with an increasing number of clients. MySQL traditionally assigned a thread for every client connection, and as

the number of concurrent users grows this model shows performance drops. Many active threads are a performance killer,

because increasing the number of threads leads to extensive context switching, bad locality for CPU caches, and increased

contention for hot locks. An ideal solution that would help to reduce context switching is to maintain a lower number of

threads than the number of clients. But this number should not be too low either, since we also want to utilize CPUs to their

fullest, so ideally, there should be a single active thread for each CPU on the machine.

MariaDB Thread Pool Features
The current MariaDB thread pool was implemented in MariaDB 5.5. It replaced the legacy thread pool that was introduced in

MariaDB 5.1. The main drawback of the previous solution was that this pool was static3it had a fixed number of threads.

Static thread pools can have their merits, for some limited use cases, such as cases where callbacks executed by the

threads never block and do not depend on each other. For example, iimagine something like an echo server.

However, DBMS clients are more complicated. For example, a thread may depend on another thread's completion, and they

may block each other via locks and/or I/O. Thus it is very hard, and sometimes impossible, to predict how many threads

would be ideal or even sufficient to prevent deadlocks in every situation. MariaDB 5.5 implements a dynamic/adaptive pool

that itself takes care of creating new threads in times of high demand and retiring threads if they have nothing to do. This is

a complete reimplementation of the legacy pool-of-threads scheduler, with the following goals:

Make the pool dynamic, so that it will grow and shrink whenever required.

Minimize the amount of overhead that is required to maintain the thread pool itself.

Make the best use of underlying OS capabilities. For example, if a native thread pool implementation is available,

2724/4161

https://mariadb.com/kb/en/thread-pool/+questions/

then it should be used, and if not, then the best I/O multiplexing method should be used.

Limit the resources used by threads.

There are currently two different low-level implementations 3 depending on OS. One implementation is designed specifically

for Windows which utilizes a native CreateThreadpool API. The second implementation is primarily intended to be

used in Unix-like systems. Because the implementations are different, some system variables differ between Windows and

Unix.

When to Use the Thread Pool
Thread pools are most efficient in situations where queries are relatively short and the load is CPU-bound, such as in OLTP

workloads. If the workload is not CPU-bound, then you might still benefit from limiting the number of threads to save memory

for the database memory buffers.

When the Thread Pool is Less Efficient
There are special, rare cases where the thread pool is likely to be less efficient.

If you have a very bursty workload, then the thread pool may not work well for you. These tend to be workloads in

which there are long periods of inactivity followed by short periods of very high activity by many users. These also

tend to be workloads in which delays cannot be tolerated, so the throttling of thread creation that the thread pool uses

is not ideal. Even in this situation, performance can be improved by tweaking how often threads are retired. For

example, with thread_pool_idle_timeout on Unix, or with thread_pool_min_threads on Windows.

If you have many concurrent, long, non-yielding queries, then the thread pool may not work well for you. In this

context, a "non-yielding" query is one that never waits or which does not indicate waits to the thread pool. These

kinds of workloads are mostly used in data warehouse scenarios. Long-running, non-yielding queries will delay

execution of other queries. However, the thread pool has stall detection to prevent them from totally monopolizing the

thread pool. See Thread Groups in the Unix Implementation of the Thread Pool: Thread Group Stalls for more

information. Even when the whole thread pool is blocked by non-yielding queries, you can still connect to the server

through the extra-port TCP/IP port.

If you rely on the fact that simple queries always finish quickly, no matter how loaded your database server is, then

the thread pool may not work well for you. When the thread pool is enabled on a busy server, even simple queries

might be queued to be executed later. This means that even if the statement itself doesn't take much time to execute,

even a simple SELECT 1 , might take a bit longer when the thread pool is enabled than with one-thread-per-

connection if it gets queued.

Configuring the Thread Pool
The thread_handling system variable is the primary system variable that is used to configure the thread pool.

There are several other system variables as well, which are described in the sections below. Many of the system variables

documented below are dynamic, meaning that they can be changed with SET GLOBAL on a running server.

Generally, there is no need to tweak many of these system variables. The goal of the thread pool was to provide good

performance out-of-the box. However, the system variable values can be changed, and we intended to expose as many

knobs from the underlying implementation as we could. Feel free to tweak them as you see fit.

If you find any issues with any of the default behavior, then we encourage you to submit a bug report.

See Thread Pool System and Status Variables for the full list of the thread pool's system variables.

Configuring the Thread Pool on Unix

On Unix, if you would like to use the thread pool, then you can use the thread pool by setting the thread_handling

system variable to pool-of-threads in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

thread_handling=pool-of-threads

The following system variables can also be configured on Unix:

thread_pool_size 3 The number of thread groups in the thread pool, which determines how many statements can

execute simultaneously. The default value is the number of CPUs on the system. When setting this system variable's

value at system startup, the max value is 100000. However, it is not a good idea to set it that high. When setting this

system variable's value dynamically, the max value is either 128 or the value that was set at system startup--

2725/4161

https://docs.microsoft.com/en-us/windows/desktop/api/threadpoolapiset/nf-threadpoolapiset-createthreadpool

whichever value is higher. See Thread Groups in the Unix Implementation of the Thread Pool for more information.

thread_pool_max_threads 3 The maximum number of threads in the thread pool. Once this limit is reached, no

new threads will be created in most cases. In rare cases, the actual number of threads can slightly exceed this,

because each thread group needs at least two threads (i.e. at least one worker thread and at least one listener

thread) to prevent deadlocks. The default value in MariaDB 5.5 and MariaDB 10.0 is 500 . The default value in

MariaDB 10.1 is 1000 in MariaDB 10.1. The default value in MariaDB 10.2 and later is 65536 .

thread_pool_stall_limit 3 The number of milliseconds between each stall check performed by the timer thread.

The default value is 500 . Stall detection is used to prevent a single client connection from monopolizing a thread

group. When the timer thread detects that a thread group is stalled, it wakes up a sleeping worker thread in the

thread group, if one is available. If there isn't one, then it creates a new worker thread in the thread group. This

temporarily allows several client connections in the thread group to run in parallel. However, note that the timer

thread will not create a new worker thread if the number of threads in the thread pool is already greater than or equal

to the maximum defined by the thread_pool_max_threads variable, unless the thread group does not already

have a listener thread. See Thread Groups in the Unix Implementation of the Thread Pool: Thread Group Stalls for

more information.

thread_pool_oversubscribe 3 Determines how many worker threads in a thread group can remain active at the

same time once a thread group is oversubscribed due to stalls. The default value is 3 . Usually, a thread group only

has one active worker thread at a time. However, the timer thread can add more active worker threads to a thread

group if it detects a stall. There are trade-offs to consider when deciding whether to allow only one thread per CPU

to run at a time, or whether to allow more than one thread per CPU to run at a time. Allowing only one thread per

CPU means that the thread can have unrestricted access to the CPU while its running, but it also means that there is

additional overhead from putting threads to sleep or waking them up more frequently. Allowing more than one thread

per CPU means that the threads have to share the CPU, but it also means that there is less overhead from putting

threads to sleep or waking them up. This is primarily for internal use, and it is not meant to be changed for most

users. See Thread Groups in the Unix Implementation of the Thread Pool: Thread Group Oversubscription for more

information.

thread_pool_idle_timeout 3 The number of seconds before an idle worker thread exits. The default value is

60 . If there is currently no work to do, how long should an idle thread wait before exiting?

Configuring the Thread Pool on Windows

The Windows implementation of the thread pool uses a native thread pool created with the CreateThreadpool API.

On Windows, if you would like to use the thread pool, then you do not need to do anything, because the default for the

thread_handling system variable is already preset to pool-of-threads .

However, if you would like to use the old one thread per-connection behavior on Windows, then you can use use that by

setting the thread_handling system variable to one-thread-per-connection in a server option group in an option file

prior to starting up the server. For example:

[mariadb]

...

thread_handling=one-thread-per-connection

On older versions of Windows, such as XP and 2003, pool-of-threads is not implemented, and the server will

silently switch to using the legacy one-thread-per-connection method.

The native CreateThreadpool API allows applications to set the minimum and maximum number of threads in the

pool. The following system variables can be used to configure those values on Windows:

thread_pool_min_threads 3 The minimum number of threads in the pool. Default is 1. This applicable in a special

case of very <bursty= workloads. Imagine having longer periods of inactivity after periods of high activity. While the

thread pool is idle, Windows would decide to retire pool threads (based on experimentation, this seems to happen

after thread had been idle for 1 minute). Next time high load comes, it could take some milliseconds or seconds until

the thread pool size stabilizes again to optimal value. To avoid thread retirement, one could set the parameter to a

higher value.

thread_pool_max_threads 3 The maximum number of threads in the pool. Threads are not created when this

value is reached. The default from MariaDB 5.5 to MariaDB 10.0 is 500 (this has been increased to 1000 in MariaDB

10.1). This parameter can be used to prevent the creation of new threads if the pool can have short periods where

many or all clients are blocked (for example, with <FLUSH TABLES WITH READ LOCK=, high contention on row

locks, or similar). New threads are created if a blocking situation occurs (such as after a throttling interval), but

sometimes you want to cap the number of threads, if you9re familiar with the application and need to, for example,

save memory. If your application constantly pegs at 500 threads, it might be a strong indicator for high contention in
2726/4161

https://docs.microsoft.com/en-us/windows/desktop/api/threadpoolapiset/nf-threadpoolapiset-createthreadpool
https://docs.microsoft.com/en-us/windows/desktop/api/threadpoolapiset/nf-threadpoolapiset-createthreadpool

the application, and the thread pool does not help much.

Configuring Priority Scheduling

Starting with MariaDB 10.2.2 , it is possible to configure connection prioritization. The priority behavior is configured by the

thread_pool_priority system variable.

By default, if thread_pool_priority is set to auto , then queries would be given a higher priority, in case the current

connection is inside a transaction. This allows the running transaction to finish faster, and has the effect of lowering the

number of transactions running in parallel. The default setting will generally improve throughput for transactional workloads.

But it is also possible to explicitly set the priority for the current connection to either 'high' or 'low'.

There is also a mechanism in place to ensure that higher priority connections are not monopolizing the worker threads in

the pool (which would cause indefinite delays for low priority connections). On Unix, low priority connections are put into the

high priority queue after the timeout specified by the thread_pool_prio_kickup_timer system variable.

Configuring the Extra Port

MariaDB allows you to configure an extra port for administrative connections. This is primarily intended to be used in

situations where all threads in the thread pool are blocked, and you still need a way to access the server. However, it can

also be used to ensure that monitoring systems (including MaxScale's monitors) always have access to the system, even

when all connections on the main port are used. This extra port uses the old one-thread-per-connection thread

handling.

You can enable this and configure a specific port by setting the extra_port system variable.

You can configure a specific number of connections for this port by setting the extra_max_connections system variable.

These system variables can be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

extra_port = 8385

extra_max_connections = 10

Once you have the extra port configured, you can use the mariadb client with the -P option to connect to the port.

$ mariadb -u root -P 8385 -p

Monitoring Thread Pool Activity
Currently there are two status variables exposed to monitor pool activity.

Variable Description

Threadpool_threads

Number of threads in the thread pool. In rare cases, this can be slightly higher than

thread_pool_max_threads , because each thread group needs at least two threads

(i.e. at least one worker thread and at least one listener thread) to prevent deadlocks.

Threadpool_idle_threads

Number of inactive threads in the thread pool. Threads become inactive for various

reasons, such as by waiting for new work. However, an inactive thread is not necessarily

one that has not been assigned work. Threads are also considered inactive if they are

being blocked while waiting on disk I/O, or while waiting on a lock, etc. This status variable

is only meaningful on Unix.

Thread Groups in the Unix Implementation of the Thread
Pool
On Unix, the thread pool implementation uses objects called thread groups to divide up client connections into many

independent sets of threads. See Thread Groups in the Unix Implementation of the Thread Pool for more information.

Fixing a Blocked Thread Pool
When using global locks, even with a high value on the thread_pool_max_threads system variable, it is still possible to block

the entire pool.

2727/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

Imagine the case where a client performs FLUSH TABLES WITH READ LOCK then pauses. If then the number of other

clients connecting to the server to start write operations exceeds the maximum number of threads allowed in the pool, it can

block the Server. This makes it impossible to issue the UNLOCK TABLES statement. It can also block MaxScale from

monitoring the Server.

To mitigate the issue, MariaDB allows you to configure an extra port for administrative connections. See Configuring the

Extra Port for information on how to configure this.

Once you have the extra port configured, you can use the mariadb client with the -P option to connect to the port.

$ mariadb -u root -P 8385 -p

This ensures that your administrators can access the server in cases where the number of threads is already equal to the

configured value of the thread_pool_max_threads system variable, and all threads are blocked. It also ensures that

MaxScale can still access the server in such situations for monitoring information.

Once you are connected to the extra port, you can solve the issue by increasing the value on the thread_pool_max_threads

system variable, or by killing the offending connection, (that is, the connection that holds the global lock, which would be in

the sleep state).

MariaDB Thread Pool vs Oracle MySQL Enterprise
Thread Pool
Commercial editions of MySQL since 5.5 include an Oracle MySQL Enterprise thread pool implemented as a plugin, which

delivers similar functionality. A detailed discussion about the design of the feature is at Mikael Ronstrom's blog . Here is

the summary of similarities and differences, based on the above materials.

Similarities

On Unix, both MariaDB and Oracle MySQL Enterprise Threadpool will partition client connections into groups. The

thread_pool_size parameter thus has the same meaning for both MySQL and MariaDB.

Both implementations use similar schema checking for thread stalls, and both have the same parameter name for

thread_pool_stall_limit (though in MariaDB it is measured using millisecond units, not 10ms units like in Oracle

MySQL).

Differences

The Windows implementation is completely different 3 MariaDB's uses native Windows threadpooling, while Oracle's

implementation includes a convenience function WSAPoll() (provided for convenience to port Unix applications). As a

consequence of relying on WSAPoll(), Oracle's implementation will not work with named pipes and shared memory

connections.

MariaDB uses the most efficient I/O multiplexing facilities for each operating system: Windows (the I/O completion

port is used internally by the native threadpool), Linux (epoll), Solaris (event ports), FreeBSD and OSX (kevent).

Oracle uses optimized I/O multiplexing only on Linux, with epoll, and uses poll() otherwise.

Unlike Oracle MySQL Enterprise Threadpool, MariaDB's one is builtin, not a plugin.

MariaDB Thread Pool vs Percona Thread Pool
Percona's implementation is a port of the MariaDB's threadpool with some added features. In particular, Percona added

priority scheduling to its 5.5-5.7 releases. MariaDB 10.2 and Percona priority scheduling work in a similar fashion, but there

are some differences in details.

MariaDB's 10.2 thread_pool_priority=auto,high, low correspond to Percona's

thread_pool_high_prio_mode=transactions,statements,none

Percona has a thread_pool_high_prio_tickets connection variable to allow every nth low priority query to be put into

the high priority queue. MariaDB does not have corresponding settings.

MariaDB has a thread_pool_prio_kickup_timer setting, which Percona does not have.

Thread Pool Internals
Low-level implementation details are documented in the WL#246

2728/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/lock-and-unlock-tables
http://mikaelronstrom.blogspot.com/2011/10/mysql-thread-pool-summary.html
https://www.percona.com/doc/percona-server/5.7/performance/threadpool.html
https://web.archive.org/web/20160526152157/http://worklog.askmonty.org/worklog/Server-BackLog/?tid=246

Running Benchmarks
When running sysbench and maybe other benchmarks, that create many threads on the same machine as the server, it is

advisable to run benchmark driver and server on different CPUs to get the realistic results. Running lots of driver threads

and only several server threads on the same CPUs will have the effect that OS scheduler will schedule benchmark driver

threads to run with much higher probability than the server threads, that is driver will pre-empt the server. Use "taskset 3c"

on Linuxes, and "set /affinity" on Windows to separate benchmark driver and server CPUs, as the preferred method to fix

this situation.

A possible alternative on Unix (if taskset or a separate machine running the benchmark is not desired for some reason)

would be to increase thread_pool_size to make the server threads more "competitive" against the client threads.

When running sysbench, a good rule of thumb could be to give 1/4 of all CPUs to the sysbench, and 3/4 of CPUs to

mariadbd. It is also good idea to run sysbench and mariadbd on different NUMA nodes, if possible.

Notes
The thread_cache_size system variable is not used when the thread pool is used and the Threads_cached status variable

will have a value of 0.

3.3.8.3 Thread Groups in the Unix
Implementation of the Thread Pool

This article does not apply to the thread pool implementation on Windows. On Windows, MariaDB uses a native thread

pool created with the CreateThreadpool APl, which has its own methods to distribute threads between CPUs.

Contents
1. Distributing Client Connections Between Thread Groups

2. Types of Threads

1. Thread Group Threads

2. Global Threads

3. Thread Creation

1. Worker Thread Creation by Listener Thread

2. Thread Creation by Worker Threads during Waits

3. Listener Thread Creation by Timer Thread

4. Worker Thread Creation by Timer Thread during Stalls

5. Thread Creation Throttling

4. Thread Group Stalls

1. Thread Group Oversubscription

On Unix, the thread pool implementation uses objects called thread groups to divide up client connections into many

independent sets of threads. The thread_pool_size system variable defines the number of thread groups on a system.

Generally speaking, the goal of the thread group implementation is to have one running thread on each CPU on the system

at a time. Therefore, the default value of the thread_pool_size system variable is auto-sized to the number of CPUs on

the system.

When setting the thread_pool_size system variable's value at system startup, the max value is 100000 . However, it is

not a good idea to set it that high. When setting its value dynamically, the max value is either 128 or the value that was set

at system startup--whichever value is higher. It can be changed dynamically with SET GLOBAL . For example:

SET GLOBAL thread_pool_size=32;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

..

thread_handling=pool-of-threads

thread_pool_size=32

If you do not want MariaDB to use all CPUs on the system for some reason, then you can set it to a lower value than the

number of CPUs. For example, this would make sense if the MariaDB Server process is limited to certain CPUs with the

taskset utility on Linux.

2729/4161

https://docs.microsoft.com/en-us/windows/desktop/api/threadpoolapiset/nf-threadpoolapiset-createthreadpool
https://linux.die.net/man/1/taskset

If you set the value to the number of CPUs and if you find that the CPUs are still underutilized, then try increasing the value.

The thread_pool_size system variable tends to have the most visible performance effect. It is roughly equivalent to the

number of threads that can run at the same time. In this case, run means use CPU, rather than sleep or wait. If a client

connection needs to sleep or wait for some reason, then it wakes up another client connection in the thread group before it

does so.

One reason that CPU underutilization may occur in rare cases is that the thread pool is not always informed when a

thread is going to wait. For example, some waits, such as a page fault or a miss in the OS buffer cache, cannot be

detected by MariaDB. Prior to MariaDB 10.0, network I/O related waits could also be missed.

Distributing Client Connections Between Thread Groups
When a new client connection is created, its thread group is determined using the following calculation:

thread_group_id = connection_id % thread_pool_size

The connection_id value in the above calculation is the same monotonically increasing number that you can use to

identify connections in SHOW PROCESSLIST output or the information_schema.PROCESSLIST table.

This calculation should assign client connections to each thread group in a round-robin manner. In general, this should

result in an even distribution of client connections among thread groups.

Types of Threads

Thread Group Threads

Thread groups have two different kinds of threads: a listener thread and worker threads.

A thread group's worker threads actually perform work on behalf of client connections. A thread group can have

many worker threads, but usually, only one will be actively running at a time. This is not always the case. For

example, the thread group can become oversubscribed if the thread pool's timer thread detects that the thread

group is stalled. This is explained more in the sections below.

A thread group's listener thread listens for I/O events and distributes work to the worker threads. If it detects that

there is a request that needs to be worked on, then it can wake up a sleeping worker thread in the thread group, if

any exist. If the listener thread is the only thread in the thread group, then it can also create a new worker thread.

If there is only one request to handle, and if the thread_pool_dedicated_listener system variable is not

enabled, then the listener thread can also become a worker thread and handle the request itself. This helps

decrease the overhead that may be introduced by excessively waking up sleeping worker threads and excessively

creating new worker threads.

Global Threads

The thread pool has one global thread: a timer thread. The timer thread performs tasks, such as:

Checks each thread group for stalls.

Ensures that each thread group has a listener thread.

Thread Creation
A new thread is created in a thread group in the scenarios listed below.

In all of the scenarios below, the thread pool implementation prefers to wake up a sleeping worker thread that already

exists in the thread group, rather than to create a new thread.

Worker Thread Creation by Listener Thread

A thread group's listener thread can create a new worker thread when it has more client connection requests to

distribute, but no pre-existing worker threads are available to work on the requests. This can help to ensure that the thread

group always has enough threads to keep one worker thread active at a time.

A thread group's listener thread creates a new worker thread if all of the following conditions are met:

The listener thread receives a client connection request that needs to be worked on.

2730/4161

There are more client connection requests in the thread group's work queue that the listener thread still needs to

distribute to worker threads, so the listener thread should not become a worker thread.

There are no active worker threads in the thread group.

There are no sleeping worker threads in the thread group that the listener thread can wake up.

And one of the following conditions is also met:

The entire thread pool has fewer than thread_pool_max_threads .

There are fewer than two threads in the thread group. This is to guarantee that each thread group can have at

least two threads, even if thread_pool_max_threads has already been reached or exceeded.

Thread Creation by Worker Threads during Waits

A thread group's worker thread can create a new worker thread when the thread has to wait on something, and the thread

group has more client connection requests queued, but no pre-existing worker threads are available to work on them. This

can help to ensure that the thread group always has enough threads to keep one worker thread active at a time. For most

workloads, this tends to be the primary mechanism that creates new worker threads.

A thread group's worker thread creates a new thread if all of the following conditions are met:

The worker thread has to wait on some request. For example, it might be waiting on disk I/O, or it might be waiting on

a lock, or it might just be waiting for a query that called the SLEEP() function to finish.

There are no active worker threads in the thread group.

There are no sleeping worker threads in the thread group that the worker thread can wake up.

And one of the following conditions is also met:

The entire thread pool has fewer than thread_pool_max_threads .

There are fewer than two threads in the thread group. This is to guarantee that each thread group can have at

least two threads, even if thread_pool_max_threads has already been reached or exceeded.

And one of the following conditions is also met:

There are more client connection requests in the thread group's work queue that the listener thread still needs

to distribute to worker threads. In this case, the new thread is intended to be a worker thread.

There is currently no listener thread in the thread group. For example, if the

thread_pool_dedicated_listener system variable is not enabled, then the thread group's listener thread

can became a worker thread, so that it could handle some client connection request. In this case, the new

thread can become the thread group's listener thread.

Listener Thread Creation by Timer Thread

The thread pool's timer thread can create a new listener thread for a thread group when the thread group has more client

connection requests that need to be distributed, but the thread group does not currently have a listener thread to distribute

them. This can help to ensure that the thread group does not miss client connection requests because it has no listener

thread.

The thread pool's timer thread creates a new listener thread for a thread group if all of the following conditions are met:

The thread group has not handled any I/O events since the last check by the timer thread.

There is currently no listener thread in the thread group. For example, if the thread_pool_dedicated_listener

system variable is not enabled, then the thread group's listener thread can became a worker thread, so that it could

handle some client connection request. In this case, the new thread can become the thread group's listener thread.

There are no sleeping worker threads in the thread group that the timer thread can wake up.

And one of the following conditions is also met:

The entire thread pool has fewer than thread_pool_max_threads .

There are fewer than two threads in the thread group. This is to guarantee that each thread group can have at

least two threads, even if thread_pool_max_threads has already been reached or exceeded.

If the thread group already has active worker threads, then the following condition also needs to be met:

A worker thread has not been created for the thread group within the throttling interval.

Worker Thread Creation by Timer Thread during Stalls

The thread pool's timer thread can create a new worker thread for a thread group when the thread group is stalled. This

can help to ensure that a long query can't monopole its thread group.

The thread pool's timer thread creates a new worker thread for a thread group if all of the following conditions are met:

The timer thread thinks that the thread group is stalled. This means that the following conditions have been met:

There are more client connection requests in the thread group's work queue that the listener thread still needs

to distribute to worker threads.

No client connection requests have been allowed to be dequeued to run since the last stall check by the timer

thread.

There are no sleeping worker threads in the thread group that the timer thread can wake up.

2731/4161

And one of the following conditions is also met:

The entire thread pool has fewer than thread_pool_max_threads .

There are fewer than two threads in the thread group. This is to guarantee that each thread group can have at

least two threads, even if thread_pool_max_threads has already been reached or exceeded.

A worker thread has not been created for the thread group within the throttling interval.

Thread Creation Throttling

In some of the scenarios listed above, a thread is only created within a thread group if no new threads have been created

for the thread group within the throttling interval. The throttling interval depends on the number of threads that are already in

the thread group.

In MariaDB 10.5 and later, thread creation is not throttled until a thread group has more than 1 +

thread_pool_oversubscribe threads:

Number of Threads in Thread Group Throttling Interval (milliseconds)

0-(1 + thread_pool_oversubscribe) 0

4-7 50 * THROTTLING_FACTOR

8-15 100 * THROTTLING_FACTOR

16-65536 20 * THROTTLING_FACTOR

THROTTLING_FACTOR = (thread_pool_stall_limit / MAX (500,thread_pool_stall_limit))

In MariaDB 10.4 and before, thread creation is throttled when a thread group has more than 3 threads:

Number of Threads in Thread Group Throttling Interval (milliseconds)

0-3 0

4-7 50

8-15 100

16-65536 200

Thread Group Stalls
The thread pool has a feature that allows it to detect if a client connection is executing a long-running query that may be

monopolizing its thread group. If a client connection were to monopolize its thread group, then that could prevent other

client connections in the thread group from running their queries. In other words, the thread group would appear to be

stalled.

This stall detection feature is implemented by creating a timer thread that periodically checks if any of the thread groups

are stalled. There is only a single timer thread for the entire thread pool. The thread_pool_stall_limit system

variable defines the number of milliseconds between each stall check performed by the timer thread. The default value is

500 . It can be changed dynamically with SET GLOBAL . For example:

SET GLOBAL thread_pool_stall_limit=300;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

..

thread_handling=pool-of-threads

thread_pool_size=32

thread_pool_stall_limit=300

The timer thread considers a thread group to be stalled if the following is true:

There are more client connection requests in the thread group's work queue that the listener thread still needs to

distribute to worker threads.

No client connection requests have been allowed to be dequeued to run since the last stall check by the timer

thread.

MariaDB starting with 10.5

MariaDB until 10.4

2732/4161

This indicates that the one or more client connections currently using the active worker threads may be monopolizing the

thread group, and preventing the queued client connections from performing work. When the timer thread detects that a

thread group is stalled, it wakes up a sleeping worker thread in the thread group, if one is available. If there isn't one, then

it creates a new worker thread in the thread group. This temporarily allows several client connections in the thread group

to run in parallel.

The thread_pool_stall_limit system variable essentially defines the limit for what a "fast query" is. If a query

takes longer than thread_pool_stall_limit , then the thread pool is likely to think that it is too slow, and it will

either wake up a sleeping worker thread or create a new worker thread to let another client connection in the thread

group run a query in parallel.

In general, changing the value of the thread_pool_stall_limit system variable has the following effect:

Setting it to higher values can help avoid starting too many parallel threads if you expect a lot of client connections to

execute long-running queries.

Setting it to lower values can help prevent deadlocks.

Thread Group Oversubscription

If the timer thread were to detect a stall in a thread group, then it would either wake up a sleeping worker thread or create

a new worker thread in that thread group. At that point, the thread group would have multiple active worker threads. In

other words, the thread group would be oversubscribed.

You might expect that the thread pool would shutdown one of the worker threads when the stalled client connection

finished what it was doing, so that the thread group would only have one active worker thread again. However, this does

not always happen. Once a thread group is oversubscribed, the thread_pool_oversubscribe system variable defines

the upper limit for when worker threads start shutting down after they finish work for client connections. The default value is

3 . It can be changed dynamically with SET GLOBAL . For example:

SET GLOBAL thread_pool_oversubscribe=10;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

..

thread_handling=pool-of-threads

thread_pool_size=32

thread_pool_stall_limit=300

thread_pool_oversubscribe=10

To clarify, the thread_pool_oversubscribe system variable does not play any part in the creation of new worker

threads. The thread_pool_oversubscribe system variable is only used to determine how many worker threads

should remain active in a thread group, once a thread group is already oversubscribed due to stalls.

In general, the default value of 3 should be adequate for most users. Most users should not need to change the value of

the thread_pool_oversubscribe system variable.

3.3.7.31 Thread Pool System and Status Variables

3.3.8.5 Thread Pool in MariaDB 5.1 - 5.3
Contents
1. About pool of threads

2. Instructions

This article describes the old thread pool in MariaDB 5.1 - 5.3.

MariaDB 5.5 and later use an improved thread pool - see Thread pool in MariaDB.

About pool of threads

2733/4161

This is an extended version of the pool-of-threads code from MySQL 6.0. This allows you to use a limited set of threads to

handle all queries, instead of the old 'one-thread-per-connection' style. In recent times, its also been referred to as "thread

pool" or "thread pooling" as this feature (in a different implementation) is available in Enterprise editions of MySQL (not in

the Community edition).

This can be a very big win if most of your queries are short running queries and there are few table/row locks in your

system.

Instructions
To enable pool-of-threads you must first run configure with the --with-libevent option. (This is automatically done if you

use any 'max' scripts in the BUILD directory):

./configure --with-libevent

When starting mysqld with the pool of threads code you should use

mysqld --thread-handling=pool-of-threads --thread-pool-size=20

Default values are:

thread-handling= one-thread-per-connection

thread-pool-size= 20

One issue with pool-of-threads is that if all worker threads are doing work (like running long queries) or are locked by a

row/table lock no new connections can be established and you can't login and find out what's wrong or login and kill queries.

To help this, we have introduced two new options for mysqld; extra_port and extra_max_connections:

--extra-port=# (Default 0)

--extra-max-connections=# (Default 1)

If extra-port is <> 0 then you can connect max_connections number of normal threads + 1 extra SUPER user through the

'extra-port' TCP/IP port. These connections use the old one-thread-per-connection method.

To connect with through the extra port, use:

mysql --port='number-of-extra-port' --protocol=tcp

This allows you to freely use, on connection bases, the optimal connection/thread model.

3.3.9 Thread States
Thread states can be viewed with the STATE values listed by the SHOW PROCESSLIST statement or in the Information

Schema PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Slave_IO_State shown by SHOW SLAVE STATUS also shows slave-related thread states.

Delayed Insert Connection Thread States

Thread states related to the connection thread that processes INSERT DELAYED statements

Delayed Insert Handler Thread States

Thread states related to the handler thread that inserts the results of INSERT DELAYED statements

Event Scheduler Thread States

Thread states related to the Event Scheduler

General Thread States

Thread states

Master Thread States

Thread states related to replication master threads

Query Cache Thread States

Thread states related to the query cache

2734/4161

Slave Connection Thread States

Thread states related to slave connection threads

Slave I/O Thread States

Thread states related to replication slave I/O threads

Slave SQL Thread States

Thread states related to replication slave SQL threads.

3.3.9.1 Delayed Insert Connection Thread
States
This article documents thread states that are related to the connection thread that processes INSERT DELAYED

statements.

These correspond to the STATE values listed by the SHOW PROCESSLIST statement or in the Information Schema

PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Value Description

allocating

local table

Preparing to allocate rows to the delayed-insert handler thread. Follows from the got handler lock

state.

Creating

delayed

handler

Creating a handler for the delayed-inserts.

got handler

lock

Lock to access the delayed-insert handler thread has been received. Follows from the waiting for

handler lock state and before the allocating local table state.

got old table The initialization phase is over. Follows from the waiting for handler open state.

storing row

into queue
Adding new row to the list of rows to be inserted by the delayed-insert handler thread.

waiting for

delay_list
Initializing (trying to find the delayed-insert handler thread).

waiting for

handler insert
Waiting for new inserts, as all inserts have been processed.

waiting for

handler lock
Waiting for delayed insert-handler lock to access the delayed-insert handler thread.

waiting for

handler open

Waiting for the delayed-insert handler thread to initialize. Follows from the Creating delayed

handler state and before the got old table state.

3.3.9.2 Delayed Insert Handler Thread States
This article documents thread states that are related to the handler thread that inserts the results of INSERT DELAYED

statements.

These correspond to the STATE values listed by the SHOW PROCESSLIST statement or in the Information Schema

PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Value Description

insert About to insert rows into the table.

reschedule Sleeping in order to let other threads function, after inserting a number of rows into the table.

upgrading lock Attempting to get lock on the table in order to insert rows.

Waiting for INSERT Waiting for the delayed-insert connection thread to add rows to the queue.

3.3.9.3 Event Scheduler Thread States
This article documents thread states that are related to event scheduling and execution. These include the Event Scheduler

2735/4161

thread, threads that terminate the Event Scheduler, and threads for executing events.

These correspond to the STATE values listed by the SHOW PROCESSLIST statement or in the Information Schema

PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table

Value Description

Clearing Thread is terminating.

Initialized Thread has be initialized.

Waiting for next activation The event queue contains items, but the next activation is at some time in the future.

Waiting for scheduler to

stop
Waiting for the event scheduler to stop after issuing SET GLOBAL event_scheduler=OFF .

Waiting on empty queue Sleeping, as the event scheduler's queue is empty.

3.3.9.4 General Thread States
This article documents the major general thread states. More specific lists related to delayed inserts, replication, the query

cache and the event scheduler are listed in:

Event Scheduler Thread States

Query Cache Thread States

Master Thread States

Slave Connection Thread States

Slave I/O Thread States

Slave SQL Thread States

These correspond to the STATE values listed by the SHOW PROCESSLIST statement or in the Information Schema

PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table

Value Description

After create
The function that created (or tried to create) a table (temporary or non-temporary) has just

ended.

Analyzing Calculating table key distributions, such as when running an ANALYZE TABLE statement.

checking permissions Checking to see whether the permissions are adequate to perform the statement.

Checking table Checking the table.

cleaning up Preparing to reset state variables and free memory after executing a command.

closing tables
Flushing the changes to disk and closing the table. This state will only persist if the disk is

full or under extremely high load.

converting HEAP to Aria Converting an internal MEMORY temporary table into an on-disk Aria temporary table.

converting HEAP to MyISAM
Converting an internal MEMORY temporary table into an on-disk MyISAM temporary

table.

copy to tmp table
A new table has been created as part of an ALTER TABLE statement, and rows are about

to be copied into it.

Copying to group table
Sorting the rows by group and copying to a temporary table, which occurs when a

statement has different GROUP BY and ORDER BY criteria.

Copying to tmp table Copying to a temporary table in memory.

Copying to tmp table on disk Copying to a temporary table on disk, as the resultset is too large to fit into memory.

Creating index Processing an ALTER TABLE ... ENABLE KEYS for an Aria or MyISAM table.

Creating sort index Processing a SELECT statement resolved using an internal temporary table.

creating table Creating a table (temporary or non-temporary).

Creating tmp table Creating a temporary table (in memory or on-disk).

deleting from main table
Deleting from the first table in a multi-table delete, saving columns and offsets for use in

deleting from the other tables.

deleting from reference tables Deleting matched rows from secondary reference tables as part of a multi-table delete.

2736/4161

discard_or_import_tablespace
Processing an ALTER TABLE ... IMPORT TABLESPACE or ALTER TABLE ... DISCARD

TABLESPACE statement.

end
State before the final cleanup of an ALTER TABLE, CREATE VIEW, DELETE, INSERT,

SELECT, or UPDATE statement.

executing Executing a statement.

Execution of init_command Executing statements specified by the --init_command mariadb client option.

filling schema table A table in the information_schema database is being built.

freeing items
Freeing items from the query cache after executing a command. Usually followed by the

cleaning up state.

Flushing tables Executing a FLUSH TABLES statement and waiting for other threads to close their tables.

FULLTEXT initialization Preparing to run a full-text search

init
About to initialize an ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE statement.

Could be performaing query cache cleanup, or flushing the binary log or InnoDB log.

Killed
Thread will abort next time it checks the kill flag. Requires waiting for any locks to be

released.

Locked Query has been locked by another query.

logging slow query Writing statement to the slow query log.

NULL State used for SHOW PROCESSLIST.

login Connection thread has not yet been authenticated.

manage keys Enabling or disabling a table index.

Opening table[s]
Trying to open a table. Usually very quick unless the limit set by table_open_cache has

been reached, or an ALTER TABLE or LOCK TABLE is in progress.

optimizing Server is performing initial optimizations in for a query.

preparing State occurring during query optimization.

Purging old relay logs Relay logs that are no longer needed are being removed.

query end
Query has finished being processed, but items have not yet been freed (the freeing

items state.

Reading file Server is reading the file (for example during LOAD DATA INFILE).

Reading from net Server is reading a network packet.

Removing duplicates

Duplicated rows being removed before sending to the client. This happens when SELECT

DISTINCT is used in a way that the distinct operation could not be optimized at an earlier

point.

removing tmp table Removing an internal temporary table after processing a SELECT statement.

rename Renaming a table.

rename result table
Renaming a table that results from an ALTER TABLE statement having created a new

table.

Reopen tables
Table is being re-opened after thread obtained a lock but the underlying table structure

had changed, so the lock was released.

Repair by sorting
Indexes are being created with the use of a sort. Much faster than the related Repair

with keycache .

Repair done Multi-threaded repair has been completed.

Repair with keycache
Indexes are being created through the key cache, one-by-one. Much slower than the

related Repair by sorting .

Rolling back A transaction is being rolled back.

Saving state
New table state is being saved. For example, after, analyzing a MyISAM table, the key

distributions, rowcount etc. are saved to the .MYI file.

Searching rows for update
Finding matching rows before performing an UPDATE, which is needed when the

UPDATE would change the index used for the UPDATE

2737/4161

Sending data

Sending data to the client as part of processing a SELECT statement or other statements

that returns data like INSERT ... RETURNING . Often the longest-occurring state as it

also include all reading from tables and disk read activities. Where an aggregation or un-

indexed filtering occurs there is significantly more rows read than what is sent to the client.

setup Setting up an ALTER TABLE operation.

Sorting for group Sorting as part of a GROUP BY

Sorting for order Sorting as part of an ORDER BY

Sorting index Sorting index pages as part of a table optimization operation.

Sorting result Processing a SELECT statement using a non-temporary table.

statistics
Calculating statistics as part of deciding on a query execution plan. Usually a brief state

unless the server is disk-bound.

System lock

Requesting or waiting for an external lock for a specific table. The storage engine

determines what kind of external lock to use. For example, the MyISAM storage engine

uses file-based locks. However, MyISAM's external locks are disabled by default, due to

the default value of the skip_external_locking system variable. Transactional

storage engines such as InnoDB also register the transaction or statement with MariaDB's

transaction coordinator while in this thread state. See MDEV-19391 for more

information about that.

Table lock
About to request a table's internal lock after acquiring the table's external lock. This

thread state occurs after the System lock thread state.

update About to start updating table.

Updating Searching for and updating rows in a table.

updating main table
Updating the first table in a multi-table update, and saving columns and offsets for use in

the other tables.

updating reference tables Updating the secondary (reference) tables in a multi-table update

updating status

This state occurs after a query's execution is complete. If the query's execution time

exceeds long_query_time , then Slow_queries is incremented, and if the slow query

log is enabled, then the query is logged. If the SERVER_AUDIT plugin is enabled, then the

query is also logged into the audit log at this stage. If the userstats plugin is enabled,

then CPU statistics are also updated at this stage.

User lock
About to request or waiting for an advisory lock from a GET LOCK() call. For SHOW

PROFILE, means requesting a lock only.

User sleep A SLEEP() call has been invoked.

Waiting for commit lock

FLUSH TABLES WITH READ LOCK is waiting for a commit lock, or a statement resulting

in an explicit or implicit commit is waiting for a read lock to be released. This state was

called Waiting for all running commits to finish in earlier versions.

Waiting for global read lock Waiting for a global read lock.

Waiting for table level lock
External lock acquired,and internal lock about to be requested. Occurs after the System

lock state. In earlier versions, this was called Table lock .

Waiting for xx lock Waiting to obtain a lock of type xx .

Waiting on cond Waiting for an unspecified condition to occur.

Writing to net Writing a packet to the network.

3.3.9.5 Master Thread States
This article documents thread states that are related to replication master threads. These correspond to the STATE values

listed by the SHOW PROCESSLIST statement or in the Information Schema PROCESSLIST Table as well as the

PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Value Description

Finished reading one binlog; switching

to next binlog

After completing one binary log, the next is being opened for sending to the

slave.

2738/4161

https://jira.mariadb.org/browse/MDEV-19391

Master has sent all binlog to slave;

waiting for binlog to be updated

All events have been read from the binary logs and sent to the slave. Now

waiting for the binary log to be updated with new events.

Sending binlog event to slave An event has been read from the binary log, and is now being sent to the slave.

Waiting to finalize termination State that only occurs very briefly while the thread is terminating.

3.3.9.6 Query Cache Thread States
This article documents thread states that are related to the Query Cache. These correspond to the STATE values listed by

the SHOW PROCESSLIST statement or in the Information Schema PROCESSLIST Table as well as the

PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Value Description

checking privileges on cached query Checking whether the user has permission to access a result in the query cache.

checking query cache for query Checking whether the current query exists in the query cache.

invalidating query cache entries Marking query cache entries as invalid as the underlying tables have changed.

sending cached result to client A result found in the query cache is being sent to the client.

storing result in query cache Saving the the result of a query into the query cache.

Waiting for query cache lock Waiting to take a query cache lock.

3.3.9.7 Slave Connection Thread States
This article documents thread states that are related to connection threads that occur on a replication slave. These

correspond to the STATE values listed by the SHOW PROCESSLIST statement or in the Information Schema

PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the Performance Schema threads Table.

Value Description

Changing master Processing a CHANGE MASTER TO statement.

Killing slave Processing a STOP SLAVE statement.

Opening master dump table A table has been created from a master dump and is now being opened.

Reading master dump table

data

After the table created by a master dump (the Opening master dump table state) the

table is now being read.

Rebuilding the index on

master dump table

After the table created by a master dump has been opened and read (the Reading

master dump table data state), the index is built.

3.3.9.8 Slave I/O Thread States
This article documents thread states that are related to replication slave I/O threads. These correspond to the

Slave_IO_State shown by SHOW SLAVE STATUS and the STATE values listed by the SHOW PROCESSLIST

statement or in the Information Schema PROCESSLIST Table as well as the PROCESSLIST_STATE value listed in the

Performance Schema threads Table.

Value Description

Checking master

version

Checking the master's version, which only occurs very briefly after establishing a connection

with the master.

Connecting to master Attempting to connect to master.

Queueing master event

to the relay log

Event is being copied to the relay log after being read, where it can be processed by the SQL

thread.

Reconnecting after a

failed binlog dump

request

Attempting to reconnect to the master after a previously failed binary log dump request.

Reconnecting after a

failed master event read

Attempting to reconnect to the master after a previously failed request. After successfully

connecting, the state will change to Waiting for master to send event .

2739/4161

Registering slave on

master

Registering the slave on the master, which only occurs very briefly after establishing a

connection with the master.

Requesting binlog dump
Requesting the contents of the binary logs from the given log file name and position. Only

occurs very briefly after establishing a connection with the master.

Waiting for master to

send event

Waiting for binary log events to arrive after successfully connecting. If there are no new events

on the master, this state can persist for as many seconds as specified by the slave_net_timeout

system variable, after which the thread will reconnect.

Waiting for slave mutex

on exit
Waiting for slave mutex while the thread is stopping. Only occurs very briefly.

Waiting for the slave

SQL thread to free

enough relay log space.

Relay log has reached its maximum size, determined by relay_log_space_limit (no limit by

default), so waiting for the SQL thread to free up space by processing enough relay log events.

Waiting for master

update
State before connecting to master.

Waiting to reconnect

after a failed binlog

dump request

Waiting to reconnect after a binary log dump request has failed due to disconnection. The

length of time in this state is determined by the MASTER_CONNECT_RETRY clause of the

CHANGE MASTER TO statement.

Waiting to reconnect

after a failed master

event read

Sleeping while waiting to reconnect after a disconnection error. The time in seconds is

determined by the MASTER_CONNECT_RETRY clause of the CHANGE MASTER TO statement.

3.3.9.9 Slave SQL Thread States
This article documents thread states that are related to replication slave SQL threads. These correspond to the

Slave_SQL_State shown by SHOW SLAVE STATUS as well as the STATE values listed by the SHOW PROCESSLIST

statement and the Information Schema PROCESSLIST as well as the PROCESSLIST_STATE value listed in the

Performance Schema threads Table.

Value Description

Apply log event Log event is being applied.

Making temp file
Creating a temporary file containing the row data as part of a LOAD DATA

INFILE statement.

Reading event from the relay log Reading an event from the relay log in order to process the event.

Slave has read all relay log; waiting for the

slave I/O thread to update it

All relay log events have been processed, now waiting for the I/O thread to

write new events to the relay log.

Waiting for work from SQL thread
 In parallel replication the worker thread is waiting for more things from the

SQL thread.

Waiting for prior transaction to start commit

before starting next transaction

In parallel replication the worker thread is waiting for conflicting things to

end before starting executing.

Waiting for worker threads to be idle

 Happens in parallel replication when moving to a new binary log after a

master restart. All slave temporary files are deleted and worker threads are

restarted.

Waiting due to global read lock
In parallel replication when worker threads are waiting for a global read lock

to be released.

Waiting for worker threads to pause for

global read lock

FLUSH TABLES WITH READ LOCK is waiting for worker threads to finish

what they are doing.

Waiting while replication worker thread pool

is busy

Happens in parallel replication during a FLUSH TABLES WITH READ

LOCK or when changing number of parallel workers.

Waiting for other master connection to

process GTID received on multiple master

connections

 A worker thread noticed that there is already another thread executing the

same GTID from another connection and it's waiting for the other to

complete.

Waiting for slave mutex on exit Thread is stopping. Only occurs very briefly.

Waiting for the next event in relay log State before reading next event from the relay log.

2740/4161

5.3.2.7 InnoDB Buffer Pool

5.3.2.8 InnoDB Change Buffering

3.3.9.12 Query Cache
Contents
1. Setting Up the Query Cache

2. How the Query Cache Works

3. Queries Stored in the Query Cache

4. Limiting the Size of the Query Cache

5. Examining the Query Cache

6. Query Cache Fragmentation

7. Emptying and disabling the Query Cache

8. Limitations

9. LOCK TABLES and the Query Cache

10. Transactions and the Query Cache

11. Query Cache Internal Structure

12. Timeout and Mutex Contention

13. SQL_NO_CACHE and SQL_CACHE

The query cache stores results of SELECT queries so that if the identical query is received in future, the results can be

quickly returned.

This is extremely useful in high-read, low-write environments (such as most websites). It does not scale well in

environments with high throughput on multi-core machines, so it is disabled by default.

Note that the query cache cannot be enabled in certain environments. See Limitations.

Setting Up the Query Cache
Unless MariaDB has been specifically built without the query cache, the query cache will always be available, although

inactive. The have_query_cache server variable will show whether the query cache is available.

SHOW VARIABLES LIKE 'have_query_cache';

+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| have_query_cache | YES |

+------------------+-------+

If this is set to NO , you cannot enable the query cache unless you rebuild or reinstall a version of MariaDB with the cache

available.

To see if the cache is enabled, view the query_cache_type server variable. It is enabled by default in MariaDB versions up

to 10.1.6, but disabled starting with MariaDB 10.1.7 - if needed enable it by setting query_cache_type to 1 .

Although enabled in versions prior to MariaDB 10.1.7 , the query_cache_size is by default 0KB there, which effectively

disables the query cache. From 10.1.7 on the cache size defaults to 1MB. If needed set the cache to a size large enough

amount, for example:

SET GLOBAL query_cache_size = 1000000;

Starting from MariaDB 10.1.7 , query_cache_type is automatically set to ON if the server is started with the

query_cache_size set to a non-zero (and non-default) value.

See Limiting the size of the Query Cache below for details.

How the Query Cache Works
When the query cache is enabled and a new SELECT query is processed, the query cache is examined to see if the query

appears in the cache.

Queries are considered identical if they use the same database, same protocol version and same default character set.

2741/4161

https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/

Prepared statements are always considered as different to non-prepared statements, see Query cache internal structure for

more info.

If the identical query is not found in the cache, the query will be processed normally and then stored, along with its result set,

in the query cache. If the query is found in the cache, the results will be pulled from the cache, which is much quicker than

processing it normally.

Queries are examined in a case-sensitive manner, so :

SELECT * FROM t

Is different from :

select * from t

Comments are also considered and can make the queries differ, so :

/* retry */SELECT * FROM t

Is different from :

/* retry2 */SELECT * FROM t

See the query_cache_strip_comments server variable for an option to strip comments before searching.

Each time changes are made to the data in a table, all affected results in the query cache are cleared. It is not possible to

retrieve stale data from the query cache.

When the space allocated to query cache is exhausted, the oldest results will be dropped from the cache.

When using query_cache_type=ON , and the query specifies SQL_NO_CACHE (case-insensitive), the server will not cache

the query and will not fetch results from the query cache.

When using query_cache_type=DEMAND (after MDEV-6631 feature request) and the query specifies SQL_CACHE , the

server will cache the query.

One important point of MDEV-6631 is : switching between query_cache_type=ON and query_cache_type=DEMAND

can "turn off" query cache of old queries without the SQL_CACHE string, that's not yet defined if we should include another

query_cache_type (DEMAND_NO_PRUNE) value or not to allow use of old queries

Queries Stored in the Query Cache
If the query_cache_type system variable is set to 1 , or ON , all queries fitting the size constraints will be stored in the cache

unless they contain a SQL_NO_CACHE clause, or are of a nature that caching makes no sense, for example making use of a

function that returns the current time. Queries with SQL_NO_CACHE will not attempt to acquire query cache lock.

If any of the following functions are present in a query, it will not be cached. Queries with these functions are sometimes

called 'non-deterministic' - don't get confused with the use of this term in other contexts.

BENCHMARK() CONNECTION_ID()

CONVERT_TZ() CURDATE()

CURRENT_DATE() CURRENT_TIME()

CURRENT_TIMESTAMP() CURTIME()

DATABASE() ENCRYPT() (one parameter)

FOUND_ROWS() GET_LOCK()

LAST_INSERT_ID() LOAD_FILE()

MASTER_POS_WAIT() NOW()

RAND() RELEASE_LOCK()

SLEEP() SYSDATE()

UNIX_TIMESTAMP() (no parameters) USER()

UUID() UUID_SHORT()

A query will also not be added to the cache if:

2742/4161

https://jira.mariadb.org/browse/MDEV-6631
https://jira.mariadb.org/browse/MDEV-6631

It is of the form:

SELECT SQL_NO_CACHE ...

SELECT ... INTO OUTFILE ...

SELECT ... INTO DUMPFILE ...

SELECT ... FOR UPDATE

SELECT * FROM ... WHERE autoincrement_column IS NULL

SELECT ... LOCK IN SHARE MODE

It uses TEMPORARY table

It uses no tables at all

It generates a warning

The user has a column-level privilege on any table in the query

It accesses a table from INFORMATION_SCHEMA, mysql or the performance_schema database

It makes use of user or local variables

It makes use of stored functions

It makes use of user-defined functions

It is inside a transaction with the SERIALIZABLE isolation level

It is quering a table inside a transaction after the same table executed a query cache invalidation using INSERT,

UPDATE or DELETE

The query itself can also specify that it is not to be stored in the cache by using the SQL_NO_CACHE attribute. Query-level

control is an effective way to use the cache more optimally.

It is also possible to specify that no queries must be stored in the cache unless the query requires it. To do this, the

query_cache_type server variable must be set to 2 , or DEMAND . Then, only queries with the SQL_CACHE attribute are

cached.

Limiting the Size of the Query Cache
There are two main ways to limit the size of the query cache. First, the overall size in bytes is determined by the

query_cache_size server variable. About 40KB is needed for various query cache structures.

The query cache size is allocated in 1024 byte-blocks, thus it should be set to a multiple of 1024.

The query result is stored using a minimum block size of query_cache_min_res_unit. Check two conditions to use a good

value of this variable: Query cache insert result blocks with locks, each new block insert lock query cache, a small value will

increase locks and fragmentation and waste less memory for small results, a big value will increase memory use wasting

more memory for small results but it reduce locks. Test with your workload for fine tune this variable.

If the strict mode is enabled, setting the query cache size to an invalid value will cause an error. Otherwise, it will be set to

the nearest permitted value, and a warning will be triggered.

SHOW VARIABLES LIKE 'query_cache_size';

+------------------+----------+

| Variable_name | Value |

+------------------+----------+

| query_cache_size | 67108864 |

+------------------+----------+

SET GLOBAL query_cache_size = 8000000;

Query OK, 0 rows affected, 1 warning (0.03 sec)

SHOW VARIABLES LIKE 'query_cache_size';

+------------------+---------+

| Variable_name | Value |

+------------------+---------+

| query_cache_size | 7999488 |

+------------------+---------+

The ideal size of the query cache is very dependent on the specific needs of each system. Setting a value too small will

result in query results being dropped from the cache when they could potentially be re-used later. Setting a value too high

could result in reduced performance due to lock contention, as the query cache is locked during updates.

The second way to limit the cache is to have a maximum size for each set of query results. This prevents a single query

with a huge result set taking up most of the available memory and knocking a large number of smaller queries out of the

cache. This is determined by the query_cache_limit server variable.

If you attempt to set a query cache that is too small (the amount depends on the architecture), the resizing will fail and the

query cache will be set to zero, for example :

2743/4161

SET GLOBAL query_cache_size=40000;

Query OK, 0 rows affected, 2 warnings (0.03 sec)

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1292 | Truncated incorrect query_cache_size value: '40000' |

| Warning | 1282 | Query cache failed to set size 39936; new query cache size is 0 |

+---------+------+---+

Examining the Query Cache
A number of status variables provide information about the query cache.

SHOW STATUS LIKE 'Qcache%';

+-------------------------+----------+

| Variable_name | Value |

+-------------------------+----------+

| Qcache_free_blocks | 1158 |

| Qcache_free_memory | 3760784 |

| Qcache_hits | 31943398 |

| Qcache_inserts | 42998029 |

| Qcache_lowmem_prunes | 34695322 |

| Qcache_not_cached | 652482 |

| Qcache_queries_in_cache | 4628 |

| Qcache_total_blocks | 11123 |

+-------------------------+----------+

Qcache_inserts contains the number of queries added to the query cache, Qcache_hits contains the number of

queries that have made use of the query cache, while Qcache_lowmem_prunes contains the number of queries that were

dropped from the cache due to lack of memory.

The above example could indicate a poorly performing cache. More queries have been added, and more queries have been

dropped, than have actually been used.

Note that before MariaDB 5.5, queries returned from the query cache did not increment the Com_select status variable, so

to find the total number of valid queries run on the server, add Com_select to Qcache_hits. Starting from MariaDB 5.5,

results returned by the query cache count towards Com_select (see MDEV-4981).

The QUERY_CACHE_INFO plugin creates the QUERY_CACHE_INFO table in the INFORMATION_SCHEMA, allowing you

to examine the contents of the query cache.

Query Cache Fragmentation
The Query Cache uses blocks of variable length, and over time may become fragmented. A high Qcache_free_blocks

relative to Qcache_total_blocks may indicate fragmentation. FLUSH QUERY CACHE will defragment the query cache

without dropping any queries :

FLUSH QUERY CACHE;

After this, there will only be one free block :

SHOW STATUS LIKE 'Qcache%';

+-------------------------+----------+

| Variable_name | Value |

+-------------------------+----------+

| Qcache_free_blocks | 1 |

| Qcache_free_memory | 6101576 |

| Qcache_hits | 31981126 |

| Qcache_inserts | 43002404 |

| Qcache_lowmem_prunes | 34696486 |

| Qcache_not_cached | 655607 |

| Qcache_queries_in_cache | 4197 |

| Qcache_total_blocks | 8833 |

+-------------------------+----------+

2744/4161

https://jira.mariadb.org/browse/MDEV-4981

Emptying and disabling the Query Cache
To empty or clear all results from the query cache, use RESET QUERY CACHE. FLUSH TABLES will have the same effect.

Setting either query_cache_type or query_cache_size to 0 will disable the query cache, but to free up the most resources,

set both to 0 when you wish to disable caching.

Limitations
The query cache needs to be disabled in order to use OQGRAPH.

The query cache is not used by the Spider storage engine (amongst others).

The query cache also needs to be disabled for MariaDB Galera cluster versions prior to "5.5.40-galera", "10.0.14-

galera" and "10.1.2".

LOCK TABLES and the Query Cache
The query cache can be used when tables have a write lock (which may seem confusing since write locks should avoid table

reads). This behaviour can be changed by setting the query_cache_wlock_invalidate system variable to ON , in which case

each write lock will invalidate the table query cache. Setting to OFF , the default, means that cached queries can be returned

even when a table lock is being held. For example:

1> SELECT * FROM T1

+---+

| a |

+---+

| 1 |

+---+

-- Here the query is cached

-- From another connection execute:

2> LOCK TABLES T1 WRITE;

-- Expected result with: query_cache_wlock_invalidate = OFF

1> SELECT * FROM T1

+---+

| a |

+---+

| 1 |

+---+

-- read from query cache

-- Expected result with: query_cache_wlock_invalidate = ON

1> SELECT * FROM T1

-- Waiting Table Write Lock

Transactions and the Query Cache
The query cache handles transactions. Internally a flag (FLAGS_IN_TRANS) is set to 0 when a query was executed outside

a transaction, and to 1 when the query was inside a transaction (BEGIN / COMMIT / ROLLBACK). This flag is part of the

"query cache hash", in others words one query inside a transaction is different from a query outside a transaction.

Queries that change rows (INSERT / UPDATE / DELETE / TRUNCATE) inside a transaction will invalidate all queries from

the table, and turn off the query cache to the changed table. Transactions that don't end with COMMIT / ROLLBACK check

that even without COMMIT / ROLLBACK, the query cache is turned off to allow row level locking and consistency level.

Examples:

SELECT * FROM T1 <first insert to query cache, using FLAGS_IN_TRANS=0>

+---+

| a |

+---+

| 1 |

+---+

2745/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/begin

BEGIN;

SELECT * FROM T1 <first insert to query cache, using FLAGS_IN_TRANS=1>

+---+

| a |

+---+

| 1 |

+---+

SELECT * FROM T1 <result from query cache, using FLAGS_IN_TRANS=1>

+---+

| a |

+---+

| 1 |

+---+

INSERT INTO T1 VALUES(2); <invalidate queries from table T1 and disable query cache to table

T1>

SELECT * FROM T1 <don't use query cache, a normal query from innodb table>

+---+

| a |

+---+

| 1 |

| 2 |

+---+

SELECT * FROM T1 <don't use query cache, a normal query from innodb table>

+---+

| a |

+---+

| 1 |

| 2 |

+---+

COMMIT; <query cache is now turned on to T1 table>

SELECT * FROM T1 <first insert to query cache, using FLAGS_IN_TRANS=0>

+---+

| a |

+---+

| 1 |

+---+

SELECT * FROM T1 <result from query cache, using FLAGS_IN_TRANS=0>

+---+

| a |

+---+

| 1 |

+---+

Query Cache Internal Structure
Internally, each flag that can change a result using the same query is a different query. For example, using the latin1 charset

and using the utf8 charset with the same query are treated as different queries by the query cache.

Some fields that differentiate queries are (from "Query_cache_query_flags" internal structure) :

query (string)

current database schema name (string)

client long flag (0/1)

client protocol 4.1 (0/1)

protocol type (internal value)

more results exists (protocol flag)

2746/4161

in trans (inside transaction or not)

autocommit (autocommit session variable)

pkt_nr (protocol flag)

character set client (character_set_client session variable)

character set results (character_set_results session variable)

collation connection (collation_connection session variable)

limit (sql_select_limit session variable)

time zone (time_zone session variable)

sql_mode (sql_mode session variable)

max_sort_length (max_sort_length session variable)

group_concat_max_len (group_concat_max_len session variable)

default_week_format (default_week_format session variable)

div_precision_increment (div_precision_increment session variable)

lc_time_names (lc_time_names session variable)

More information can be found by viewing the source code (MariaDB 10.1) :

https://github.com/MariaDB/server/blob/10.1/sql/sql_cache.cc

https://github.com/MariaDB/server/blob/10.1/sql/sql_cache.h

Timeout and Mutex Contention
When searching for a query inside the query cache, a try_lock function waits with a timeout of 50ms. If the lock fails, the

query isn't executed via the query cache. This timeout is hard coded (MDEV-6766 include two variables to tune this

timeout).

From the sql_cache.cc, function "try_lock" using TIMEOUT :

 struct timespec waittime;

 set_timespec_nsec(waittime,(ulong)(50000000L)); /* Wait for 50 msec */

 int res= mysql_cond_timedwait(&COND_cache_status_changed,

 &structure_guard_mutex, &waittime);

 if (res == ETIMEDOUT)

 break;

When inserting a query inside the query cache or aborting a query cache insert (using the KILL command for example), a

try_lock function waits until the query cache returns; no timeout is used in this case.

When two processes execute the same query, only the last process stores the query result. All other processes increase

the Qcache_not_cached status variable.

SQL_NO_CACHE and SQL_CACHE
There are two aspects to the query cache: placing a query in the cache, and retrieving it from the cache.

1. Adding a query to the query cache. This is done automatically for cacheable queries (see (Queries Stored in the

Query Cache) when the query_cache_type system variable is set to 1 , or ON and the query contains no

SQL_NO_CACHE clause, or when the query_cache_type system variable is set to 2 , or DEMAND , and the query

contains the SQL_CACHE clause.

2. Retrieving a query from the cache. This is done after the server receives the query and before the query parser. In

this case one point should be considered:

When using SQL_NO_CACHE, it should be after the first SELECT hint, for example :

SELECT SQL_NO_CACHE FROM (SELECT SQL_CACHE ...) AS temp_table

instead of

SELECT SQL_CACHE FROM (SELECT SQL_NO_CACHE ...) AS temp_table

The second query will be checked. The query cache only checks if SQL_NO_CACHE/SQL_CACHE exists after the first

SELECT. (More info at MDEV-6631)

5.3.13.8 Segmented Key Cache

3.3.4.2.5 Subquery Cache
2747/4161

https://github.com/MariaDB/server/blob/10.1/sql/sql_cache.cc
https://github.com/MariaDB/server/blob/10.1/sql/sql_cache.h
https://jira.mariadb.org/browse/MDEV-6766
https://jira.mariadb.org/browse/MDEV-6631

3.3.9.15 Thread Command Values
A thread can have any of the following COMMAND values (displayed by the COMMAND field listed by the SHOW

PROCESSLIST statement or in the Information Schema PROCESSLIST Table, as well as the PROCESSLIST_COMMAND

value listed in the Performance Schema threads Table). These indicate the nature of the thread's activity.

Value Description

Binlog Dump Master thread for sending binary log contents to a slave.

Change user Executing a change user operation.

Close stmt Closing a prepared statement.

Connect Replication slave is connected to its master.

Connect Out Replication slave is in the process of connecting to its master.

Create DB Executing an operation to create a database.

Daemon Internal server thread rather than for servicing a client connection.

Debug Generating debug information.

Delayed insert A delayed-insert handler.

Drop DB Executing an operation to drop a database.

Error Error.

Execute Executing a prepared statement.

Fetch Fetching the results of an executed prepared statement.

Field List Retrieving table column information.

Init DB Selecting default database.

Kill Killing another thread.

Long Data Retrieving long data from the result of executing a prepared statement.

Ping Handling a server ping request.

Prepare Preparing a prepared statement.

Processlist Preparing processlist information about server threads.

Query Executing a statement.

Quit In the process of terminating the thread.

Refresh Flushing a table, logs or caches, or refreshing replication server or status variable information.

Register Slave Registering a slave server.

Reset stmt Resetting a prepared statement.

Set option Setting or resetting a client statement execution option.

Sleep Waiting for the client to send a new statement.

Shutdown Shutting down the server.

Statistics Preparing status information about the server.

Table Dump Sending the contents of a table to a slave.

Time Not used.

3.3.10 Optimizing Data Structure
Good database design is an important part of a well-run system. This section looks at some of the elements to consider.

Numeric vs String Fields

Choosing numeric over string fields

2748/4161

Optimizing MEMORY Tables

MEMORY tables are a good choice for data that needs to be accessed often, a...

Optimizing String and Character Fields

Optimizations when comparing string columns and VARCHAR vs BLOB

3.3.10.1 Numeric vs String Fields
A large numeric value is stored in far fewer bytes than the equivalent string value. It is therefore faster to move and compare

numeric data, so it's best to choose numeric columns for unique id's and other similar fields.

3.3.10.2 Optimizing MEMORY Tables
MEMORY tables are a good choice for data that needs to be accessed often, and is rarely updated. Being in memory, it's

not suitable for critical data or for storage, but if data can be moved to memory for reading without needing to be

regenerated often, if at all, it can provide a significant performance boost.

The MEMORY Storage Engine has a key feature in that it permits its indexes to be either B-tree or Hash. Choosing the best

index type can lead to better performance. See Storage Engine index types for more on the characteristics of each index

type.

3.3.10.3 Optimizing String and Character Fields

Comparing String Columns
When values from different columns are compared, the comparison runs more quickly when the columns are of the same

character set and collation. If they are different, the strings need to be converted while the query runs. So, where possible,

declare string columns using the same character set and collation when you may need to compare them.

VARCHAR vs BLOB
ORDER BY and GROUP BY clauses can generate temporary tables in memory (see MEMORY Storage Engine) if the

original table doesn't contain any BLOB fields. If a column is less than 8KB, you can make use of a Binary VARCHAR rather

than a BLOB.

3.3.11 MariaDB Internal Optimizations
Different optimizations strategies done internally in MariaDB

Binary Log Group Commit and InnoDB Flushing Performance

Improvement for group commit for InnoDB transactions with the binary log enabled.

Fair Choice Between Range and Index_merge Optimizations

index_merge is a method used by the optimizer to retrieve rows from a singl...

Improvements to ORDER BY Optimization

Several Improvements to the ORDER BY Optimizer in Version 10.1 of MariaDB.

Multi Range Read Optimization

An optimization for improving performance of IO-bound queries which scan many rows.

5.3.2.20 Binary Log Group Commit and InnoDB Flushing
Performance

3.3.11.2 Fair Choice Between Range and
Index_merge Optimizations

2749/4161

index_merge is a method used by the optimizer to retrieve rows from a single table using several index scans. The results

of the scans are then merged.

When using EXPLAIN, if index_merge is the plan chosen by the optimizer, it will show up in the "type" column. For

example:

MariaDB [ontime]> SELECT COUNT(*) FROM ontime;

+--------+

|count(*)|

+--------+

| 1578171|

+--------+

MySQL [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' OR Dest='SEA');

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

-------------------------+

|id|select_type|table |type |possible_keys|key |key_len|ref |rows |Extra

|

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

-------------------------+

| 1|SIMPLE |ontime|index_merge|Origin,Dest |Origin,Dest|6,6 |NULL|92800|Using union

(Origin,Dest); Using where|

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

-------------------------+

The "rows" column gives us a way to compare efficiency between index_merge and other plans.

It is sometimes necessary to discard index_merge in favor of a different plan to avoid a combinatorial explosion of possible

range and/or index_merge strategies. But, the old logic in MySQL for when index_merge was rejected caused some good

index_merge plans to not even be considered. Specifically, additional AND predicates in WHERE clauses could cause an

index_merge plan to be rejected in favor of a less efficient plan. The slowdown could be anywhere from 10x to over 100x.

Here are two examples (based on the previous query) using MySQL:

MySQL [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' OR Dest='SEA') AND

securitydelay=0;

+--+-----------+------+----+-------------------------+-------------+-------+-----+------+----

-------+

|id|select_type|table |type|possible_keys |key |key_len|ref |rows |Extra

|

+--+-----------+------+----+-------------------------+-------------+-------+-----+------+----

-------+

| 1|SIMPLE |ontime|ref |Origin,Dest,SecurityDelay|SecurityDelay|5 |const|791546|Using

where|

+--+-----------+------+----+-------------------------+-------------+-------+-----+------+----

-------+

MySQL [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' OR Dest='SEA') AND depdelay <

12*60;

+--+-----------+------+----+--------------------+----+-------+----+-------+-----------+

|id|select_type|table |type|possible_keys |key |key_len|ref |rows |Extra |

+--+-----------+------+----+--------------------+----+-------+----+-------+-----------+

| 1|SIMPLE |ontime|ALL |Origin,DepDelay,Dest|NULL|NULL |NULL|1583093|Using where|

+--+-----------+------+----+--------------------+----+-------+----+-------+-----------

In the above output, the "rows" column shows that the first is almost 10x less efficient and the second is over 15x less

efficient than index_merge .

Starting in MariaDB 5.3, the optimizer will delay discarding potential index_merge plans until the point where it is really

necessary. See MWL#24 for more information.

By not discarding potential index_merge plans until absolutely necessary, the two queries stay just as efficient as the

original:

2750/4161

http://askmonty.org/worklog/?tid=24

MariaDB [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' or Dest='SEA');

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

------------------------+

|id|select_type|table |type |possible_keys|key |key_len|ref |rows |Extra

|

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

------------------------+

| 1|SIMPLE |ontime|index_merge|Origin,Dest |Origin,Dest|6,6 |NULL|92800|Using

union(Origin,Dest); Using where|

+--+-----------+------+-----------+-------------+-----------+-------+----+-----+-------------

------------------------+

MariaDB [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' or Dest='SEA') AND

securitydelay=0;

+--+-----------+------+-----------+-------------------------+-----------+-------+----+-----+-

------------------------------------+

|id|select_type|table |type |possible_keys |key |key_len|ref |rows

|Extra |

+--+-----------+------+-----------+-------------------------+-----------+-------+----+-----+-

------------------------------------+

| 1|SIMPLE |ontime|index_merge|Origin,Dest,SecurityDelay|Origin,Dest|6,6

|NULL|92800|Using union(Origin,Dest); Using where|

+--+-----------+------+-----------+-------------------------+-----------+-------+----+-----+-

------------------------------------+

MariaDB [ontime]> EXPLAIN SELECT * FROM ontime WHERE (Origin='SEA' or Dest='SEA') AND depdelay

< 12*60;

+--+-----------+------+-----------+--------------------+-----------+-------+----+-----+------

-------------------------------+

|id|select_type|table |type |possible_keys |key |key_len|ref |rows |Extra

|

+--+-----------+------+-----------+--------------------+-----------+-------+----+-----+------

-------------------------------+

| 1|SIMPLE |ontime|index_merge|Origin,DepDelay,Dest|Origin,Dest|6,6 |NULL|92800|Using

union(Origin,Dest); Using where|

+--+-----------+------+-----------+--------------------+-----------+-------+----+-----+------

-------------------------------+

This new behavior is always on and there is no need to enable it. There are no known issues or gotchas with this new

optimization.

3.3.4.3.5 Improvements to ORDER BY Optimization

3.3.11.4 Multi Range Read Optimization
Contents
1. The Idea

1. Case 1: Rowid Sorting for Range Access

2. Case 2: Rowid Sorting for Batched Key Access

3. Case 3: Key Sorting for Batched Key Access

2. Buffer Space Management

1. Range Access

2. Batched Key Access

3. Status Variables

1. Effect on Other Status Variables

2. Why Using Multi Range Read Can Cause Higher Values in Status Variables

4. Multi Range Read Factsheet

5. Differences from MySQL

Multi Range Read is an optimization aimed at improving performance for IO-bound queries that need to scan lots of rows.

Multi Range Read can be used with

range access

ref and eq_ref access, when they are using Batched Key Access

as shown in this diagram:

2751/4161

The Idea

Case 1: Rowid Sorting for Range Access

Consider a range query:

explain select * from tbl where tbl.key1 between 1000 and 2000;

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

-------------+

| 1 | SIMPLE | tbl | range | key1 | key1 | 5 | NULL | 960 | Using

index condition |

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

-------------+

When this query is executed, disk IO access pattern will follow the red line in this figure:

Execution will hit the table rows in random places, as marked with the blue line/numbers in the figure.

When the table is sufficiently big, each table record read will need to actually go to disk (and be served from buffer pool or

OS cache), and query execution will be too slow to be practical. For example, a 10,000 RPM disk drive is able to make 167

seeks per second, so in the worst case, query execution will be capped at reading about 167 records per second.

SSD drives do not need to do disk seeks, so they will not be hurt as badly, however the performance will still be poor in

many cases.

Multi-Range-Read optimization aims to make disk access faster by sorting record read requests and then doing one ordered

disk sweep. If one enables Multi Range Read, EXPLAIN will show that a " Rowid-ordered scan " is used:

2752/4161

set optimizer_switch='mrr=on';

Query OK, 0 rows affected (0.06 sec)

explain select * from tbl where tbl.key1 between 1000 and 2000;

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

---------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

|

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

---------------------------------+

| 1 | SIMPLE | tbl | range | key1 | key1 | 5 | NULL | 960 | Using

index condition; Rowid-ordered scan |

+----+-------------+-------+-------+---------------+------+---------+------+------+----------

---------------------------------+

1 row in set (0.03 sec)

and the execution will proceed as follows:

Reading disk data sequentially is generally faster, because

Rotating drives do not have to move the head back and forth

One can take advantage of IO-prefetching done at various levels

Each disk page will be read exactly once, which means we won't rely on disk cache (or buffer pool) to save us from

reading the same page multiple times.

The above can make a huge difference on performance. There is also a catch, though:

If you're scanning small data ranges in a table that is sufficiently small so that it completely fits into the OS disk

cache, then you may observe that the only effect of MRR is that extra buffering/sorting adds some CPU overhead.

LIMIT n and ORDER BY ... LIMIT n queries with small values of n may become slower. The reason is that

MRR reads data in disk order, while ORDER BY ... LIMIT n wants first n records in index order.

Case 2: Rowid Sorting for Batched Key Access

Batched Key Access can benefit from rowid sorting in the same way as range access does. If one has a join that uses index

lookups:

explain select * from t1,t2 where t2.key1=t1.col1;

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

Extra |

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 1000 |

Using where |

| 1 | SIMPLE | t2 | ref | key1 | key1 | 5 | test.t1.col1 | 1 |

|

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

2 rows in set (0.00 sec)

Execution of this query will cause table t2 to be hit in random locations by lookups made through t2.key1=t1.col . If

2753/4161

you enable Multi Range and and Batched Key Access, you will get table t2 to be accessed using a Rowid-ordered

scan :

set optimizer_switch='mrr=on';

Query OK, 0 rows affected (0.06 sec)

set join_cache_level=6;

Query OK, 0 rows affected (0.00 sec)

explain select * from t1,t2 where t2.key1=t1.col1;

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

---+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

Extra |

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

---+

| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 1000 |

Using where |

| 1 | SIMPLE | t2 | ref | key1 | key1 | 5 | test.t1.col1 | 1 |

Using join buffer (flat, BKA join); Rowid-ordered scan |

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

---+

2 rows in set (0.00 sec)

The benefits will be similar to those listed for range access.

An additional source of speedup is this property: if there are multiple records in t1 that have the same value of t1.col1 ,

then regular Nested-Loops join will make multiple index lookups for the same value of t2.key1=t1.col1 . The lookups

may or may not hit the cache, depending on how big the join is. With Batched Key Access and Multi-Range Read, no

duplicate index lookups will be made.

Case 3: Key Sorting for Batched Key Access

Let us consider again the nested loop join example, with ref access on the second table:

explain select * from t1,t2 where t2.key1=t1.col1;

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows |

Extra |

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 1000 |

Using where |

| 1 | SIMPLE | t2 | ref | key1 | key1 | 5 | test.t1.col1 | 1 |

|

+----+-------------+-------+------+---------------+------+---------+--------------+------+---

----------+

Execution of this query plan will cause random hits to be made into the index t2.key1 , as shown in this picture:

2754/4161

In particular, on step #5 we'll read the same index page that we've read on step #2, and the page we've read on step #4 will

be re-read on step#6. If all pages you're accessing are in the cache (in the buffer pool, if you're using InnoDB, and in the key

cache, if you're using MyISAM), this is not a problem. However, if your hit ratio is poor and you're going to hit the disk, it

makes sense to sort the lookup keys, like shown in this figure:

This is roughly what Key-ordered scan optimization does. In EXPLAIN, it looks as follows:

2755/4161

set optimizer_switch='mrr=on,mrr_sort_keys=on';

Query OK, 0 rows affected (0.00 sec)

set join_cache_level=6;

Query OK, 0 rows affected (0.02 sec)

explain select * from t1,t2 where t2.key1=t1.col1\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: t1

 type: ALL

possible_keys: a

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 1000

 Extra: Using where

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: t2

 type: ref

possible_keys: key1

 key: key1

 key_len: 5

 ref: test.t1.col1

 rows: 1

 Extra: Using join buffer (flat, BKA join); Key-ordered Rowid-ordered scan

2 rows in set (0.00 sec)

((TODO: a note about why sweep-read over InnoDB's clustered primary index scan (which is, actually the whole InnoDB

table itself) will use Key-ordered scan algorithm, but not Rowid-ordered scan algorithm, even though conceptually

they are the same thing in this case))

Buffer Space Management
As was shown above, Multi Range Read requires sort buffers to operate. The size of the buffers is limited by system

variables. If MRR has to process more data than it can fit into its buffer, it will break the scan into multiple passes. The more

passes are made, the less is the speedup though, so one needs to balance between having too big buffers (which consume

lots of memory) and too small buffers (which limit the possible speedup).

Range Access

When MRR is used for range access, the size of its buffer is controlled by the mrr_buffer_size system variable. Its value

specifies how much space can be used for each table. For example, if there is a query which is a 10-way join and MRR is

used for each table, 10*@@mrr_buffer_size bytes may be used.

Batched Key Access

When Multi Range Read is used by Batched Key Access, then buffer space is managed by BKA code, which will

automatically provide a part of its buffer space to MRR. You can control the amount of space used by BKA by setting

join_buffer_size to limit how much memory BKA uses for each table, and

join_buffer_space_limit to limit the total amount of memory used by BKA in the join.

Status Variables
There are three status variables related to Multi Range Read:

Variable name Meaning

Handler_mrr_init Counts how many Multi Range Read scans were performed

Handler_mrr_key_refills Number of times key buffer was refilled (not counting the initial fill)

Handler_mrr_rowid_refills Number of times rowid buffer was refilled (not counting the initial fill)

Non-zero values of Handler_mrr_key_refills and/or Handler_mrr_rowid_refills mean that Multi Range Read

2756/4161

scan did not have enough memory and had to do multiple key/rowid sort-and-sweep passes. The greatest speedup is

achieved when Multi Range Read runs everything in one pass, if you see lots of refills it may be beneficial to increase sizes

of relevant buffers mrr_buffer_size join_buffer_size and join_buffer_space_limit

Effect on Other Status Variables

When a Multi Range Read scan makes an index lookup (or some other "basic" operation), the counter of the "basic"

operation, e.g. Handler_read_key, will also be incremented. This way, you can still see total number of index accesses,

including those made by MRR. Per-user/table/index statistics counters also include the row reads made by Multi Range

Read scans.

Why Using Multi Range Read Can Cause Higher Values in Status
Variables

Multi Range Read is used for scans that do full record reads (i.e., they are not "Index only" scans). A regular non-index-only

scan will read

1. an index record, to get a rowid of the table record

2. a table record Both actions will be done by making one call to the storage engine, so the effect of the call will be that

the relevan Handler_read_XXX counter will be incremented BY ONE, and Innodb_rows_read will be incremented

BY ONE.

Multi Range Read will make separate calls for steps #1 and #2, causing TWO increments to Handler_read_XXX counters

and TWO increments to Innodb_rows_read counter. To the uninformed, this looks as if Multi Range Read was making

things worse. Actually, it doesn't - the query will still read the same index/table records, and actually Multi Range Read may

give speedups because it reads data in disk order.

Multi Range Read Factsheet
Multi Range Read is used by

range access method for range scans.

Batched Key Access for joins

Multi Range Read can cause slowdowns for small queries over small tables, so it is disabled by default.

There are two strategies:

Rowid-ordered scan

Key-ordered scan

: and you can tell if either of them is used by checking the Extra column in EXPLAIN output.

There are three optimizer_switch flags you can switch ON:

mrr=on - enable MRR and rowid ordered scans

mrr_sort_keys=on - enable Key-ordered scans (you must also set mrr=on for this to have any effect)

mrr_cost_based=on - enable cost-based choice whether to use MRR. Currently not recommended, because

cost model is not sufficiently tuned yet.

Differences from MySQL
MySQL supports only Rowid ordered scan strategy, which it shows in EXPLAIN as Using MRR .

EXPLAIN in MySQL shows Using MRR , while in MariaDB it may show

Rowid-ordered scan

Key-ordered scan

Key-ordered Rowid-ordered scan

MariaDB uses mrr_buffer_size as a limit of MRR buffer size for range access, while MySQL uses

read_rnd_buffer_size.

MariaDB has three MRR counters: Handler_mrr_init, Handler_mrr_extra_rowid_sorts ,

Handler_mrr_extra_key_sorts , while MySQL has only Handler_mrr_init , and it will only count MRR scans

that were used by BKA. MRR scans used by range access are not counted.

3.3.12 Compression
There are a number of different kinds of compression in MariaDB

Encryption, Hashing and Compression Functions

Functions used for encryption, hashing and compression.

2757/4161

https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_rows_read
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/Batched_Key_Access

Storage-Engine Independent Column Compression

Storage-engine independent support for column compression.

InnoDB Page Compression

InnoDB page compression, which is more sophisticated than the COMPRESSED row format.

Compression Plugins

Five MariaDB compression libraries are available as plugins.

Compressing Events to Reduce Size of the Binary Log

Binlog events can be compressed to save space on disk and in network transfers.

InnoDB COMPRESSED Row Format

Similar to the COMPACT row format, but can store even more data on overflow pages.

ColumnStore Compression Mode

ColumnStore has the ability to compress data

23

3

2

1.2.8.2 Encryption, Hashing and Compression Functions

3.3.12.2 Storage-Engine Independent Column
Compression

Contents
1. Field Length Compatibility

2. New System Variables

1. column_compression_threshold

2. column_compression_zlib_level

3. column_compression_zlib_strategy

4. column_compression_zlib_wrap

3. New Status Variables

1. Column_compressions

2. Column_decompressions

4. Limitations

5. Comparison with InnoDB Page Compression

6. Examples

Storage-engine independent column compression enables TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB, TINYTEXT,

TEXT, MEDIUMTEXT, LONGTEXT, VARCHAR and VARBINARY columns to be compressed.

This is performed by means of a new COMPRESSED column attribute: COMPRESSED[=<compression_method>]

Currently the only supported compression method is zlib .

Field Length Compatibility

When using the COMPRESSED attribute, note that FIELD LENGTH is reduced by 1; for example, a BLOB has a length of

65535, while BLOB COMPRESSED has 65535-1. See MDEV-15592 .

New System Variables

column_compression_threshold

Description: Minimum column data length eligible for compression.

Commandline: --column-compression-threshold=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 0 to 4294967295

2758/4161

https://jira.mariadb.org/browse/MDEV-15592

column_compression_zlib_level

Description: zlib compression level (1 gives best speed, 9 gives best compression).

Commandline: --column-compression-zlib-level=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 6

Range: 1 to 9

column_compression_zlib_strategy

Description: The strategy parameter is used to tune the compression algorithm. Use the value DEFAULT_STRATEGY

for normal data, FILTERED for data produced by a filter (or predictor), HUFFMAN_ONLY to force Huffman encoding

only (no string match), or RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of

small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them

better. The effect of FILTERED is to force more Huffman coding and less string matching; it is somewhat

intermediate between DEFAULT_STRATEGY and HUFFMAN_ONLY . RLE is designed to be almost as fast as

HUFFMAN_ONLY , but give better compression for PNG image data. The strategy parameter only affects the

compression ratio but not the correctness of the compressed output even if it is not set appropriately. FIXED

prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications.

Commandline: --column-compression-zlib-strategy=#

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: DEFAULT_STRATEGY

Valid Values: DEFAULT_STRATEGY , FILTERED , HUFFMAN_ONLY , RLE , FIXED

column_compression_zlib_wrap

Description: If set to 1 (0 is default), generate zlib header and trailer and compute adler32 check value. It can be

used with storage engines that don't provide data integrity verification to detect data corruption.

Commandline: --column-compression-zlib-wrap{=0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

New Status Variables

Column_compressions

Description: Incremented each time field data is compressed.

Scope: Global, Session

Data Type: numeric

Column_decompressions

Description: Incremented each time field data is decompressed.

Scope: Global, Session

Data Type: numeric

Limitations

The only supported method currently is zlib.

The CSV storage engine stores data uncompressed on-disk even if the COMPRESSED attribute is present.

It is not possible to create indexes over compressed columns.

2759/4161

Comparison with InnoDB Page Compression

Storage-independent column compression is different to InnoDB Page Compression in a number of ways.

It is storage engine independent, while InnoDB page compression applies to InnoDB only.

By being specific to a column, one can access non-compressed fields without the decompression overhead.

Only zlib is available, while InnoDB page compression can offer alternative compression algorithms.

It is not recommended to use multiple forms of compression over the same data.

It is intended for compressing large blobs, while InnoDB page compression is suitable for a more general case.

Columns cannot be indexed, while with InnoDB page compression indexes are possible as usual.

Examples

CREATE TABLE cmp (i TEXT COMPRESSED);

CREATE TABLE cmp2 (i TEXT COMPRESSED=zlib);

5.3.2.21 InnoDB Page Compression

5.4.11.11 Compression Plugins

3.1.13.15 Compressing Events to Reduce Size of the
Binary Log

5.3.2.12.5 InnoDB COMPRESSED Row Format

3.3.12.7 ColumnStore Compression Mode
MariaDB ColumnStore has the ability to compress data and this is controlled through a compression mode. This

compression mode may be set as a default for the instance or set at the session level.

To set the compression mode at the session level, the following command is used. Once the session has ended, any

subsequent session will return to the default for the instance.

set infinidb_compression_type = n

where n is:

0) compression is turned off. Any subsequent table create statements run will have compression turned off for that

table unless any statement overrides have been performed. Any alter statements run to add a column will have

compression turned off for that column unless any statement override has been performed.

2) compression is turned on. Any subsequent table create statements run will have compression turned on for that

table unless any statement overrides have been performed. Any alter statements run to add a column will have

compression turned on for that column unless any statement override has been performed. ColumnStore uses snappy

compression in this mode.

3.4 Connection Redirection Mechanism in the
MariaDB Client/Server Protocol

A connection redirection mechanism was added in MariaDB 11.3.0 (MDEV-15935)

Redirection mechanisms are widely used in proxy-based scenarios.

Previously, when multiple servers shared one proxy, the proxy forwarded all packets between servers and clients. Thus, the

proxy added latency, consuming computing resources and impacting overall performance. For scenarios with many short

connections, such as WordPress, latency can be a critical issue.

With a redirection mechanism, much like HTTP redirects or Oracle redirected connections, clients get the servers9 address

from proxies and connect to servers transparently, without latency and without wasting resources.

MariaDB starting with 11.3

2760/4161

https://jira.mariadb.org/browse/MDEV-15935

Usage
Redirection is handled through a new system variable, redirect_url. The value defaults to an empty string, but can also

contain a connection string in the conventional format (in the style of a Connector/C etc. connection url).

This variable is appended to the default value of the session_track_system_variables system variable. If not empty, clients

will be redirected to the specified server.

Possible Use Cases
Always redirect all clients to a new location:

set @@global.redirect_url, start the server with --redirect-url=, or put it in my.cnf

redirect to a group of servers randomly

create a table with connection urls, one per row.

use an sql script that selects a random row from it and sets @@redirect_url to this value

specify this script in the --init-connect server parameter

dynamically redirect from the primary to one of the replicas

same as above, but use INFORMATION_SCHEMA.PROCESSLIST to get the list of active replicas.

Example

set global redirect_url="mysql://mariadb.org:12345";

Invalid formats are not permitted:

set global redirect_url="mysql://mariadb.org:";

ERROR 1231 (42000): Variable 'redirect_url' can't be set to the value of 'mysql://mariadb.org:'

4 Programming & Customizing MariaDB
Ways to add simple code to SQL statements, or create your own functions or stored procedures.

Programmatic & Compound Statements

Compound SQL statements for stored routines and in general.

Stored Routines

Stored procedures and functions.

Triggers & Events

Creating triggers and scheduled events within MariaDB.

Views

Stored queries for generating a virtual table.

User-Defined Functions

Extending MariaDB with custom functions.

There are 1 related questions .

1.1.1.6 Programmatic & Compound Statements

4.2 Stored Routines
Stored procedures and stored functions.

Stored Procedures

Routine invoked with a CALL statement.

2761/4161

https://mariadb.com/kb/en/programming-customizing-mariadb/+questions/

Stored Functions

Defined functions for use with SQL statements.

Stored Routine Statements

SQL statements related to creating and using stored routines.

Binary Logging of Stored Routines

Stored routines require extra consideration when binary logging.

Stored Routine Limitations

SQL statements not permitted in stored programs.

Stored Routine Privileges

Privileges associated with stored functions and stored procedures.

4.2.1 Stored Procedures
A stored procedure is a routine invoked with a CALL statement. It may have input parameters, output parameters and

parameters that are both input parameters and output parameters.

Stored Procedure Overview

A Stored Procedure is a routine invoked with a CALL statement.

Stored Routine Privileges

Privileges associated with stored functions and stored procedures.

CREATE PROCEDURE

Creates a stored procedure.

ALTER PROCEDURE

Change stored procedure characteristics.

DROP PROCEDURE

Drop stored procedure.

SHOW CREATE PROCEDURE

Shows the CREATE statement that creates the specific stored procedure.

SHOW PROCEDURE CODE

Display internal implementation of a stored procedure.

SHOW PROCEDURE STATUS

Stored procedure characteristics.

Binary Logging of Stored Routines

Stored routines require extra consideration when binary logging.

Information Schema ROUTINES Table

Stored procedures and stored functions information

SQL_MODE=ORACLE

MariaDB understands a subset of Oracle's PL/SQL language.

Stored Procedure Internals

Internal implementation of MariaDB stored procedures.

There are 3 related questions .

1

1

1

1

4.2.1.1 Stored Procedure Overview

2762/4161

https://mariadb.com/kb/en/stored-procedures/+questions/

Contents
1. Creating a Stored Procedure

2. Why use Stored Procedures?

3. Stored Procedure listings and definitions

4. Dropping and Updating a Stored Procedure

5. Permissions in Stored Procedures

A Stored Procedure is a routine invoked with a CALL statement. It may have input parameters, output parameters and

parameters that are both input parameters and output parameters.

Creating a Stored Procedure
Here's a skeleton example to see a stored procedure in action:

DELIMITER //

CREATE PROCEDURE Reset_animal_count()

 MODIFIES SQL DATA

 UPDATE animal_count SET animals = 0;

//

DELIMITER ;

First, the delimiter is changed, since the function definition will contain the regular semicolon delimiter. The procedure is

named Reset_animal_count . MODIFIES SQL DATA indicates that the procedure will perform a write action of sorts, and

modify data. It's for advisory purposes only. Finally, there's the actual SQL statement - an UPDATE.

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 101 |

+---------+

CALL Reset_animal_count();

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 0 |

+---------+

A more complex example, with input parameters, from an actual procedure used by banks:

CREATE PROCEDURE

 Withdraw /* Routine name */

 (parameter_amount DECIMAL(6,2), /* Parameter list */

 parameter_teller_id INTEGER,

 parameter_customer_id INTEGER)

 MODIFIES SQL DATA /* Data access clause */

 BEGIN /* Routine body */

 UPDATE Customers

 SET balance = balance - parameter_amount

 WHERE customer_id = parameter_customer_id;

 UPDATE Tellers

 SET cash_on_hand = cash_on_hand + parameter_amount

 WHERE teller_id = parameter_teller_id;

 INSERT INTO Transactions VALUES (

 parameter_customer_id,

 parameter_teller_id,

 parameter_amount);

 END;

See CREATE PROCEDURE for full syntax details.

Why use Stored Procedures?
2763/4161

Security is a key reason. Banks commonly use stored procedures so that applications and users don't have direct access to

the tables. Stored procedures are also useful in an environment where multiple languages and clients are all used to

perform the same operations.

Stored Procedure listings and definitions
To find which stored functions are running on the server, use SHOW PROCEDURE STATUS.

SHOW PROCEDURE STATUS\G

*************************** 1. row ***************************

 Db: test

 Name: Reset_animal_count

 Type: PROCEDURE

 Definer: root@localhost

 Modified: 2013-06-03 08:55:03

 Created: 2013-06-03 08:55:03

 Security_type: DEFINER

 Comment:

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

or query the routines table in the INFORMATION_SCHEMA database directly:

SELECT ROUTINE_NAME FROM INFORMATION_SCHEMA.ROUTINES

 WHERE ROUTINE_TYPE='PROCEDURE';

+--------------------+

| ROUTINE_NAME |

+--------------------+

| Reset_animal_count |

+--------------------+

To find out what the stored procedure does, use SHOW CREATE PROCEDURE.

SHOW CREATE PROCEDURE Reset_animal_count\G

*************************** 1. row ***************************

 Procedure: Reset_animal_count

 sql_mode:

 Create Procedure: CREATE DEFINER=`root`@`localhost` PROCEDURE `Reset_animal_count`()

 MODIFIES SQL DATA

UPDATE animal_count SET animals = 0

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

Dropping and Updating a Stored Procedure
To drop a stored procedure, use the DROP PROCEDURE statement.

DROP PROCEDURE Reset_animal_count();

To change the characteristics of a stored procedure, use ALTER PROCEDURE. However, you cannot change the

parameters or body of a stored procedure using this statement; to make such changes, you must drop and re-create the

procedure using CREATE OR REPLACE PROCEDURE (which retains existing privileges), or DROP PROCEDURE

followed CREATE PROCEDURE .

Permissions in Stored Procedures
See the article Stored Routine Privileges.

4.2.1.2 Stored Routine Privileges

2764/4161

Contents
1. Creating Stored Routines

2. Altering Stored Routines

3. Running Stored Routines

1. DEFINER Clause

2. SQL SECURITY Clause

4. Dropping Stored Routines

It's important to give careful thought to the privileges associated with stored functions and stored procedures. The following

is an explanation of how they work.

Creating Stored Routines
To create a stored routine, the CREATE ROUTINE privilege is needed. The SUPER privilege is required if a DEFINER

is declared that's not the creator's account (see DEFINER clause below). The SUPER privilege is also required if

statement-based binary logging is used. See Binary Logging of Stored Routines for more details.

Altering Stored Routines
To make changes to, or drop, a stored routine, the ALTER ROUTINE privilege is needed. The creator of a routine is

temporarily granted this privilege if they attempt to change or drop a routine they created, unless the

automatic_sp_privileges variable is set to 0 (it defaults to 1).

The SUPER privilege is also required if statement-based binary logging is used. See Binary Logging of Stored

Routines for more details.

Running Stored Routines
To run a stored routine, the EXECUTE privilege is needed. This is also temporarily granted to the creator if they

attempt to run their routine unless the automatic_sp_privileges variable is set to 0 .

The SQL SECURITY clause (by default DEFINER) specifies what privileges are used when a routine is called. If

SQL SECURITY is INVOKER , the function body will be evaluated using the privileges of the user calling the function.

If SQL SECURITY is DEFINER , the function body is always evaluated using the privileges of the definer account.

DEFINER is the default. Thus, by default, users who can access the database associated with the stored routine can

also run the routine, and potentially perform operations they wouldn't normally have permissions for.

The creator of a routine is the account that ran the CREATE FUNCTION or CREATE PROCEDURE statement,

regardless of whether a DEFINER is provided. The definer is by default the creator unless otherwise specified.

The server automatically changes the privileges in the mysql.proc table as required, but will not look out for manual

changes.

DEFINER Clause

If left out, the DEFINER is treated as the account that created the stored routine or view. If the account creating the routine

has the SUPER privilege, another account can be specified as the DEFINER .

SQL SECURITY Clause

This clause specifies the context the stored routine or view will run as. It can take two values - DEFINER or INVOKER .

DEFINER is the account specified as the DEFINER when the stored routine or view was created (see the section above).

INVOKER is the account invoking the routine or view.

As an example, let's assume a routine, created by a superuser who's specified as the DEFINER , deletes all records from a

table. If SQL SECURITY=DEFINER , anyone running the routine, regardless of whether they have delete privileges, will be

able to delete the records. If SQL SECURITY = INVOKER , the routine will only delete the records if the account invoking the

routine has permission to do so.

INVOKER is usually less risky, as a user cannot perform any operations they're normally unable to. However, it's not

uncommon for accounts to have relatively limited permissions, but be specifically granted access to routines, which are then

invoked in the DEFINER context.

Dropping Stored Routines
All privileges that are specific to a stored routine will be dropped when a DROP FUNCTION or DROP ROUTINE is run.

2765/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/drop-routine

However, if a CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE is used to drop and replace

and the routine, any privileges specific to that routine will not be dropped.

1.1.1.3.1.9 CREATE PROCEDURE

1.1.1.2.1.1.6 ALTER PROCEDURE

1.1.1.3.3.9 DROP PROCEDURE

1.1.1.2.8.17 SHOW CREATE PROCEDURE

1.1.1.2.8.42 SHOW PROCEDURE CODE

1.1.1.2.8.43 SHOW PROCEDURE STATUS

3.1.13.5 Binary Logging of Stored Routines

1.1.1.2.9.1.1.40 Information Schema ROUTINES Table

2.1.14.3.1 SQL_MODE=ORACLE

4.2.1.12 Stored Procedure Internals

2766/4161

Contents
1. Implementation Specification for Stored Procedures

1. How Parsing and Execution of Queries Work

2. How to Fit Stored Procedures into this Scheme

1. Overview of the Classes and Files for Stored Procedures

1. class sp_head (sp_head.{cc,h})

2. class sp_pcontext (sp_pcontext.{cc,h}

3. class sp_instr (sp_head.{cc,h})

4. class sp_rcontext (sp_rcontext.h)

5. class Item_splocal (Item.{cc,h})

6. Utility Functions (sp.{cc,h})

2. Parsing CREATE PROCEDURE

1. A Simple Example

3. Parsing CREATE FUNCTION

4. Storing, Caching, Dropping

5. CALLing a Procedure

6. USE database

7. Evaluating Items

8. Calling a FUNCTION

9. Detecting and Parsing a FUNCTION Invocation

10. Collecting FUNCTIONs to invoke

11. Parsing DROP PROCEDURE/FUNCTION

12. Condition and Handlers

1. Examples

13. Cursors

1. Example

14. The SP cache

15. Class and Function APIs

1. The parser context: sp_pcontext.h

2. Run-time context (call frame): sp_rcontext.h:

3. The procedure: sp_head.h:

4. Instructions

5. The base class

6. SET instruction

7. Unconditional jump

8. Conditional jump

9. Return a function value

10. Push a handler and jump

11. Pops handlers

12. Return from a CONTINUE handler

13. Push a CURSOR

14. Pop CURSORs

15. Open a CURSOR

16. Close a CURSOR

17. Fetch a row with CURSOR

18. Utility functions: sp.h

19. The cache: sp_cache.h

3. The mysql.proc schema

Implementation Specification for Stored Procedures

How Parsing and Execution of Queries Work

In order to execute a query, the function sql_parse.cc:mysql_parse() is called, which in turn calls the parser

(yyparse()) with an updated Lex structure as the result. mysql_parse() then calls mysql_execute_command() which

dispatches on the command code (in Lex) to the corresponding code for executing that particular query.

There are three structures involved in the execution of a query which are of interest to the stored procedure implementation:

Lex (mentioned above) is the "compiled" query, that is the output from the parser and what is then interpreted to do

the actual work. It constains an enum value (sql_command) which is the query type, and all the data collected by the

parser needed for the execution (table names, fields, values, etc).

THD is the "run-time" state of a connection, containing all that is needed for a particular client connection, and,

among other things, the Lex structure currently being executed.

Item_* : During parsing, all data is translated into "items", objects of the subclasses of "Item", such as Item_int ,

Item_real , Item_string , etc., for basic datatypes, and also various more specialized Item types for expressions

2767/4161

to be evaluated (Item_func objects).

How to Fit Stored Procedures into this Scheme

Overview of the Classes and Files for Stored Procedures

(More detailed APIs at the end of this page)

class sp_head (sp_head.{cc,h})

This contains, among other things, an array of "instructions" and the method for executing the procedure.

class sp_pcontext (sp_pcontext.{cc,h}

This is the parse context for the procedure. It's primarily used during parsing to keep track of local parameters, variables

and labels, but it's also used at CALL time to find the parameters mode (IN, OUT or INOUT) and type when setting up the

runtime context.

class sp_instr (sp_head.{cc,h})

This is the base class for "instructions", that is, what is generated by the parser. It turns out that we only need a minimum of

5 different sub classes:

sp_instr_stmt Execute a statement. This is the "call-out" any normal SQL statement, like a SELECT, INSERT etc. It

contains the Lex structure for the statement in question.

sp_instr_set Set the value of a local variable (or parameter)

sp_instr_jump An unconditional jump.

sp_instr_jump_if_not Jump if condition is not true. It turns out that the negative test is most convenient when

generating the code for the flow control constructs.

sp_instr_freturn Return a value from a FUNCTION and exit. For condition HANDLERs some special instructions are

also needed, see that section below.

class sp_rcontext (sp_rcontext.h)

This is the runtime context in the THD structure. It contains an array of items, the parameters and local variables for the

currently executing stored procedure. This means that variable value lookup is in runtime is constant time, a simple index

operation.

class Item_splocal (Item.{cc,h})

This is a subclass of Item. Its sole purpose is to hide the fact that the real Item is actually in the current frame (runtime

context). It contains the frame offset and defers all methods to the real Item in the frame. This is what the parser generates

for local variables.

Utility Functions (sp.{cc,h})

This contains functions for creating, dropping and finding a stored procedure in the mysql.proc table (or the internal cache).

Parsing CREATE PROCEDURE

When parsing a CREATE PROCEDURE the parser first initializes the sphead and spcont (runtime context) fields in the

Lex. The sql_command code for the result of parsing a is SQLCOM_CREATE_PROCEDURE .

The parsing of the parameter list and body is relatively straightforward:

Parameters: name, type and mode (IN/OUT/INOUT) is pushed to spcont

Declared local variables: Same as parameters (mode is then IN)

Local Variable references: If an identifier is found in in spcont , an Item_splocal is created with the variable's

frame index, otherwise an Item_field or Item_ref is created (as before).

Statements: The Lex in THD is replaced by a new Lex structure and the statement, is parsed as usual. A

sp_instr_stmt is created, containing the new Lex, and added to the instructions in sphead . Afterwards, the

procedure's Lex is restored in THD.

SET var: Setting a local variable generates a sp_instr_set instruction, containing the variable's frame offset, the

expression (an Item), and the type.

Flow control: Flow control constructs such as IF, WHILE, etc, generate a conditional and unconditional jumps in the

"obvious" way, but a few notes may be required:

Forward jumps: When jumping forward, the exact destination is not known at the time of the creation of the jump

instruction. The

2768/4161

1. sphead therefore contains a list of instruction-label pairs for

 each forward reference. When the position later is known, the

 instructions in the list are updated with the correct location.

Loop constructs have optional labels. If a loop doesn't have a label, an anonymous label is generated to simplify the

parsing.

There are two types of CASE. The "simple" case is implemented with an anonymous variable bound to the value to

be tested.

A Simple Example

Parsing the procedure:

 create procedure a(s char(16))

 begin

 declare x int;

 set x = 3;

 while x > 0 do

 set x = x-1;

 insert into db.tab values (x, s);

 end while;

 end

would generate the following structures:

 thd: | | _________

 | lex -+--->| | ___________________

 |______| | spcont -+------------------->| "s",in,char(16):0 |

 | sphead -+------ |("x",in,int :1)|

 |_________| | |___________________|

 ____V__________________

 | m_name: "a" |

 | m_defstr: "create ..."|

 | m_instr: ... |

 |_______________________|

Note that the contents of the spcont is changing during the parsing, at all times reflecting the state of the would-be

runtime frame. The m_instr is an array of instructions:

 Pos. Instruction

 0 sp_instr_set(1, '3')

 1 sp_instr_jump_if_not(5, 'x>0')

 2 sp_instr_set(1, 'x-1')

 3 sp_instr_stmt('insert into ...')

 4 sp_instr_jump(1)

 5 <end>

Here, '3', 'x>0', etc, represent the Items or Lex for the respective expressions or statements.

Parsing CREATE FUNCTION

Creating a function is essentially the same thing as for a PROCEDURE, with the addition that a FUNCTION has a return

type and a RETURN statement, but no OUT or INOUT parameters.

The main difference during parsing is that we store the result type in the sp_head. However, there are big differences when

it comes to invoking a FUNCTION. (See below.)

Storing, Caching, Dropping

As seen above, the entired definition string, including the "CREATE PROCEDURE" (or "FUNCTION") is kept. The

procedure definition string is stored in the table mysql.proc with the name and type as the key, the type being one of the

enum ("procedure","function").

A PROCEDURE is just stored in the mysql.proc table. A FUNCTION has an additional requirement. They will be called in

expressions with the same syntax as UDFs, so UDFs and stored FUNCTIONs share the namespace. Thus, we must make

sure that we do not have UDFs and FUNCTIONs with the same name (even if they are stored in different places).

This means that we can reparse the procedure as many time as we want. The first time, the resulting Lex is used to store

the procedure in the database (using the function sp.c:sp_create_procedure()).

2769/4161

The simplest way would be to just leave it at that, and re-read the procedure from the database each time it is called. (And in

fact, that's the way the earliest implementation will work.) However, this is not very efficient, and we can do better. The full

implementation should work like this:

1. Upon creation time, parse and store the procedure. Note that we still need to parse it to catch syntax errors, but we

can't check if called procedures exists for instance.

2. Upon first CALL, read from the database, parse it, and cache the resulting Lex in memory. This time we can do more

error checking.

3. Upon subsequent CALLs, use the cached Lex.

Note that this implies that the Lex structure with its sphead must be reentrant, that is, reusable and shareable between

different threads and calls. The runtime state for a procedure is kept in the sp_rcontext in THD.

The mechanisms of storing, finding, and dropping procedures are encapsulated in the files sp.{cc,h}.

CALLing a Procedure

A CALL is parsed just like any statement. The resulting Lex has the sql_command SQLCOM_CALL, the procedure's name

and the parameters are pushed to the Lex' value_list.

sql_parse.cc:mysql_execute_command() then uses sp.cc:sp_find() to get the sp_head for the procedure (which may have

been read from the database or fetched from the in-memory cache) and calls the sp_head's method execute(). Note: It's

important that substatements called by the procedure do not do send_ok(). Fortunately, there is a flag in THD->net to

disable this during CALLs. If a substatement fails, it will however send an error back to the client, so the CALL mechanism

must return immediately and without sending an error.

The sp_head::execute() method works as follows:

1. Keep a pointer to the old runtime context in THD (if any)

2. Create a new runtime context. The information about the required size is in sp_head's parse time context.

3. Push each parameter (from the CALL's Lex->value_list) to the new context. If it's an OUT or INOUT parameter, the

parameter's offset in the caller's frame is set in the new context as well.

4. For each instruction, call its execute() method. The result is a pointer to the next instruction to execute (or NULL) if an

error occurred.

5. On success, set the new values of the OUT and INOUT parameters in the caller's frame.

USE database

Before executing the instruction we also keeps the current default database (if any). If this was changed during execution

(i.e. a USE statement has been executed), we restore the current database to the original.

This is the most useful way to handle USE in procedures. If we didn't, the caller would find himself in a different database

after calling a function, which can be confusing. Restoring the database also gives full freedom to the procedure writer: - It's

possible to write "general" procedures that are independent of the actual database name. - It's possible to write procedures

that work on a particular database by calling USE, without having to use fully qualified table names everywhere (which

doesn't help if you want to call other, "general", procedures anyway).

Evaluating Items

There are three occasions where we need to evaluate an expression:

When SETing a variable

When CALLing a procedure

When testing an expression for a branch (in IF, WHILE, etc)

The semantics in stored procedures is "call-by-value", so we have to evaluate any "func" Items at the point of the CALL or

SET, otherwise we would get a kind of "lazy" evaluation with unexpected results with respect to OUT parameters for

instance. For this the support function, sp_head.cc:eval_func_item() is needed.

Calling a FUNCTION

Functions don't have an explicit call keyword like procedures. Instead, they appear in expressions with the conventional

syntax "fun(arg, ...)". The problem is that we already have User Defined Functions (UDFs) which are called the same way. A

UDF is detected by the lexical analyzer (not the parser!), in the find_keyword() function, and returns a UDF_*_FUNC or

UDA_*_SUM token with the udf_func object as the yylval.

So, stored functions must be handled in a similar way, and as a consequence, UDFs and functions must not have the same

name.

Detecting and Parsing a FUNCTION Invocation

2770/4161

The existence of UDFs are checked during the lexical analysis (in sql_lex.cc:find_keyword()). This has the drawback that

they must exist before they are referred to, which was ok before SPs existed, but then it becomes a problem. The first

implementation of SP FUNCTIONs will work the same way, but this should be fixed a.s.a.p. (This will required some

reworking of the way UDFs are handled, which is why it's not done from the start.) For the time being, a FUNCTION is

detected the same way, and returns the token SP_FUNC. During the parsing we only check for the *existence* of the

function, we don't parse it, since wa can't call the parser recursively.

When encountering a SP_FUNC with parameters in the expression parser, an instance of the new Item_func_sp class is

created. Unlike UDFs, we don't have different classes for different return types, since we at this point don't know the type.

Collecting FUNCTIONs to invoke

A FUNCTION differs from a PROCEDURE in one important aspect: Whereas a PROCEDURE is CALLed as statement by

itself, a FUNCTION is invoked "on-the-fly" during the execution of *another* statement. This makes things a lot more

complicated compared to CALL: - We can't read and parse the FUNCTION from the mysql.proc table at the point of

invocation; the server requires that all tables used are opened and locked at the beginning of the query execution. One

"obvious" solution would be to simply push "mysql.proc" to the list of tables used by the query, but this implies a "join" with

this table if the query is a select, so it doesn't work (and we can't exclude this table easily; since a privileged used might in

fact want to search the proc table). Another solution would of course be to allow the opening and closing of the mysql.proc

table during a query execution, but this it not possible at the present.

So, the solution is to collect the names of the referred FUNCTIONs during parsing in the lex. Then, before doing anything

else in mysql_execute_command() , read all functions from the database an keep them in the THD, where the function

sp_find_function() can find them during the execution. Note: Even with an in-memory cache, we must still make sure

that the functions are indeed read and cached at this point. The code that read and cache functions from the database must

also be invoked recursively for each read FUNCTION to make sure we have *all* the functions we need.

Parsing DROP PROCEDURE/FUNCTION

The procedure name is pushed to Lex->value_list. The sql_command code for the result of parsing a is

SQLCOM_DROP_PROCEDURE / SQLCOM_DROP_FUNCTION .

Dropping is done by simply getting the procedure with the sp_find() function and calling sp_drop() (both in sp.{cc,h}).

DROP PROCEDURE/DROP FUNCTION also supports the non-standard "IF EXISTS", analogous to other DROP

statements in MariaDB.

Condition and Handlers

Condition names are lexical entities and are kept in the parser context just like variables. But, condition are just "aliases" for

SQLSTATE strings, or mysqld error codes (which is a non-standard extension in MySQL), and are only used during parsing.

Handlers comes in three types, CONTINUE, EXIT and UNDO. The latter is like an EXIT handler with an implicit rollback,

and is currently not implemented. The EXIT handler jumps to the end of its BEGIN-END block when finished. The

CONTINUE handler returns to the statement following that which invoked the handler.

The handlers in effect at any point is part of each thread's runtime state, so we need to push and pop handlers in the

sp_rcontext during execution. We use special instructions for this: - sp_instr_hpush_jump Push a handler. The instruction

contains the necessary information, like which conditions we handle and the location of the handler. The jump takes us to

the location after the handler code. - sp_instr_hpop Pop the handlers of the current frame (which we are just leaving).

It might seems strange to jump past the handlers like that, but there's no extra cost in doing this, and for technical reasons

it's easiest for the parser to generate the handler instructions when they occur in the source.

When an error occurs, one of the error routines is called and an error message is normally sent back to the client

immediately. Catching a condition must be done in these error routines (there are quite a few) to prevent them from doing

this. We do this by calling a method in the THD's sp_rcontext (if there is one). If a handler is found, this is recorded in the

context and the routine returns without sending the error message. The execution loop (sp_head::execute()) checks for this

after each statement and invokes the handler that has been found. If several errors or warnings occurs during one

statement, only the first is caught, the rest are ignored.

Invoking and returning from a handler is trivial in the EXIT case. We simply jump to it, and it will have an sp_instr_jump as

its last instruction.

Calling and returning from a CONTINUE handler poses some special problems. Since we need to return to the point after its

invocation, we push the return location on a stack in the sp_rcontext (this is done by the execution loop). The handler then

ends with a special instruction, sp_instr_hreturn, which returns to this location.

CONTINUE handlers have one additional problem: They are parsed at the lexical level where they occur, so variable offsets

will assume that it's actually called at that level. However, a handler might be invoked from a sub-block where additional

local variables have been declared, which will then share the location of any local variables in the handler itself. So, when

calling a CONTINUE handler, we need to save any local variables above the handler's frame offset, and restore them upon

2771/4161

return. (This is not a problem for EXIT handlers, since they will leave the block anyway.) This is taken care of by the

execution loop and the sp_instr_hreturn instruction.

Examples

EXIT handler:

 begin

 declare x int default 0;

 begin

 declare exit handler for 'XXXXX' set x = 1;

 (statement1);

 (statement2);

 end;

 (statement3);

 end

 Pos. Instruction

 0 sp_instr_set(0, '0')

 1 sp_instr_hpush_jump(4, 1) # location and frame size

 2 sp_instr_set(0, '1')

 3 sp_instr_jump(6)

 4 sp_instr_stmt('statement1')

 5 sp_instr_stmt('statement2')

 6 sp_instr_hpop(1)

 7 sp_instr_stmt('statement3')

CONTINUE handler:

 create procedure hndlr1(val int)

 begin

 declare x int default 0;

 declare foo condition for 1146;

 declare continue handler for foo set x = 1;

 insert into t3 values ("hndlr1", val); # Non-existing table?

 if x>0 then

 insert into t1 values ("hndlr1", val); # This instead then

 end if;

 end|

 Pos. Instruction

 0 sp_instr_set(1, '0')

 1 sp_instr_hpush_jump(4, 2)

 2 sp_instr_set(1, '1')

 3 sp_instr_hreturn(2) # frame size

 4 sp_instr_stmt('insert ... t3 ...')

 5 sp_instr_jump_if_not(7, 'x>0')

 6 sp_instr_stmt('insert ... t1 ...')

 7 sp_instr_hpop(2)

Cursors

For stored procedures to be really useful, you want to have cursors. MySQL doesn't yet have "real" cursor support (with API

and ODBC support, allowing updating, arbitrary scrolling, etc), but a simple asensitive, non-scrolling, read-only cursor can

be implemented in SPs using the class Protocol_cursor. This class intecepts the creation and sending of results sets and

instead stores it in-memory, as MYSQL_FIELDS and MYSQL_ROWS (as in the client API).

To support this, we need the usual name binding support in sp_pcontext (similar to variables and conditions) to keep track

on declared cursor names, and a corresponding run-time mechanism in sp_rcontext. Cursors are lexically scoped like

everything with a body or BEGIN/END block, so they are pushed and poped as usual (see conditions and variables above).

The basic operations on a cursor are OPEN, FETCH and CLOSE, which will each have a corresponding instruction. In

addition, we need instructions to push a new cursor (this will encapsulate the LEX of the SELECT statement of the cursor),

and a pop instruction: - sp_instr_cpush Push a cursor to the sp_rcontext. This instruction contains the LEX for the select

statement - sp_instr_cpop Pop a number of cursors from the sp_rcontext. - sp_instr_copen Open a cursor: This will execute

the select and get the result set in a sepeate memroot. - sp_instr_cfetch Fetch the next row from the in-memory result set.

The instruction contains a list of the variables (frame offsets) to set. - sp_instr_cclose Free the result set.
2772/4161

A cursor is a separate class, sp_cursor (defined in sp_rcontex.h) which encapsulates the basic operations used by the

above instructions. This class contains the LEX, Protocol_cursor object, and its memroot, as well as the cursor's current

state. Compiling and executing is fairly straight-forward. sp_instr_copen is a subclass of sp_instr_stmt and uses its

mechanism to execute a substatement.

Example

 begin

 declare x int;

 declare c cursor for select a from t1;

 open c;

 fetch c into x;

 close c;

 end

 Pos. Instruction

 0 sp_instr_cpush('select a from ...')

 1 sp_instr_copen(0) # The 0'th cursor

 2 sp_instr_cfetch(0) # Contains the variable list

 3 sp_instr_cclose(0)

 4 sp_instr_cpop(1)

The SP cache

There are two ways to cache SPs:

1. one global cache, share by all threads/connections,

2. one cache per thread.

There are pros and cons with both methods:

1. Pros: Save memory, each SP only read from table once,

Cons: Needs locking (= serialization at access), requires thread-safe data structures,

2. Pros: Fast, no locking required (almost), limited thread-safe requirement,

Cons: Uses more memory, each SP read from table once per thread.

Unfortunately, we cannot use alternative 1 for the time being, as most of the data structures to be cached (lex and items) are

not reentrant and thread-safe. (Things are modified at execution, we have THD pointers stored everywhere, etc.) This

leaves us with alternative 2, one cache per thread; or actually two, since we keep FUNCTIONs and PROCEDUREs in

separate caches. This is not that terrible; the only case when it will perform significantly worse than a global cache is when

we have an application where new threads are connecting, calling a procedure, and disconnecting, over and over again.

The cache implementation itself is simple and straightforward, a hashtable wrapped in a class and a C API (see APIs

below).

There is however one issue with multiple caches: dropping and altering procedures. Normally, this should be a very rare

event in a running system; it's typically something you do during development and testing, so it's not unthinkable that we

would simply ignore the issue and let any threads running with a cached version of an SP keep doing so until its

disconnected. But assuming we want to keep the caches consistent with respect to drop and alter, it can be done:

1. A global counter is needed, initialized to 0 at start.

2. At each DROP or ALTER, increase the counter by one.

3. Each cache has its own copy of the counter, copied at the last read.

4. When looking up a name in the cache, first check if the global counter is larger than the local copy. If so, clear the

cache and return "not found", and update the local counter; otherwise, lookup as usual.

This minimizes the cost to a single brief lock for the access of an integer when operating normally. Only in the event of an

actual drop or alter, is the cache cleared. This may seem to be drastic, but since we assume that this is a rare event, it's not

a problem. It would of course be possible to have a much more fine-grained solution, keeping track of each SP, but the

overhead of doing so is not worth the effort.

Class and Function APIs

This is an outline of the key types. Some types and other details in the actual files have been omitted for readability.

The parser context: sp_pcontext.h

 typedef enum

 {

 sp_param_in,
2773/4161

 sp_param_in,

 sp_param_out,

 sp_param_inout

 } sp_param_mode_t;

 typedef struct

 {

 LEX_STRING name;

 enum enum_field_types type;

 sp_param_mode_t mode;

 uint offset; // Offset in current frame

 my_bool isset;

 } sp_pvar_t;

 typedef struct sp_cond_type

 {

 enum { number, state, warning, notfound, exception } type;

 char sqlstate[6];

 uint mysqlerr;

 } sp_cond_type_t;

 class sp_pcontext

 {

 sp_pcontext();

 // Return the maximum frame size

 uint max_framesize();

 // Return the current frame size

 uint current_framesize();

 // Return the number of parameters

 uint params();

 // Set the number of parameters to the current frame size

 void set_params();

 // Set type of the variable at offset 'i' in the frame

 void set_type(uint i, enum enum_field_types type);

 // Mark the i:th variable to "set" (i.e. having a value) with

 // 'val' true.

 void set_isset(uint i, my_bool val);

 // Push the variable 'name' to the frame.

 void push_var(LEX_STRING *name,

 enum enum_field_types type, sp_param_mode_t mode);

 // Pop 'num' variables from the frame.

 void pop_var(uint num = 1);

 // Find variable by name

 sp_pvar_t *find_pvar(LEX_STRING *name);

 // Find variable by index

 sp_pvar_t *find_pvar(uint i);

 // Push label 'name' of instruction index 'ip' to the label context

 sp_label_t *push_label(char *name, uint ip);

 // Find label 'name' in the context

 sp_label_t *find_label(char *name);

 // Return the last pushed label

 sp_label_t *last_label();

 // Return and remove the last pushed label.

 sp_label_t *pop_label();

 // Push a condition to the context

 void push_cond(LEX_STRING *name, sp_cond_type_t *val);

 // Pop a 'num' condition from the context

 void pop_cond(uint num);

 // Find a condition in the context
2774/4161

 // Find a condition in the context

 sp_cond_type_t *find_cond(LEX_STRING *name);

 // Increase the handler count

 void add_handler();

 // Returns the handler count

 uint handlers();

 // Push a cursor

 void push_cursor(LEX_STRING *name);

 // Find a cursor

 my_bool find_cursor(LEX_STRING *name, uint *poff);

 // Pop 'num' cursors

 void pop_cursor(uint num);

 // Return the number of cursors

 uint cursors();

 }

Run-time context (call frame): sp_rcontext.h:

 #define SP_HANDLER_NONE 0

 #define SP_HANDLER_EXIT 1

 #define SP_HANDLER_CONTINUE 2

 #define SP_HANDLER_UNDO 3

 typedef struct

 {

 struct sp_cond_type *cond;

 uint handler; // Location of handler

 int type;

 uint foffset; // Frame offset for the handlers declare level

 } sp_handler_t;

 class sp_rcontext

 {

 // 'fsize' is the max size of the context, 'hmax' the number of handlers,

 // 'cmax' the number of cursors

 sp_rcontext(uint fsize, uint hmax, , uint cmax);

 // Push value (parameter) 'i' to the frame

 void push_item(Item *i);

 // Set slot 'idx' to value 'i'

 void set_item(uint idx, Item *i);

 // Return the item in slot 'idx'

 Item *get_item(uint idx);

 // Set the "out" index 'oidx' for slot 'idx. If it's an IN slot,

 // use 'oidx' -1.

 void set_oindex(uint idx, int oidx);

 // Return the "out" index for slot 'idx'

 int get_oindex(uint idx);

 // Set the FUNCTION result

 void set_result(Item *i);

 // Get the FUNCTION result

 Item *get_result();

 // Push handler at location 'h' for condition 'cond'. 'f' is the

 // current variable frame size.

 void push_handler(sp_cond_type_t *cond, uint h, int type, uint f);

 // Pop 'count' handlers

 void pop_handlers(uint count);

 // Find a handler for this error. This sets the state for a found

 // handler in the context. If called repeatedly without clearing,

 // only the first call's state is kept. 2775/4161

 // only the first call's state is kept.

 int find_handler(uint sql_errno);

 // Returns 1 if a handler has been found, with '*ip' and '*fp' set

 // to the handler location and frame size respectively.

 int found_handler(uint *ip, uint *fp);

 // Clear the found handler state.

 void clear_handler();

 // Push a return address for a CONTINUE handler

 void push_hstack(uint ip);

 // Pop the CONTINUE handler return stack

 uint pop_hstack();

 // Save variables from frame index 'fp' and up.

 void save_variables(uint fp);

 // Restore saved variables from to frame index 'fp' and up.

 void restore_variables(uint fp);

 // Push a cursor for the statement (lex)

 void push_cursor(LEX *lex);

 // Pop 'count' cursors

 void pop_cursors(uint count);

 // Pop all cursors

 void pop_all_cursors();

 // Get the 'i'th cursor

 sp_cursor *get_cursor(uint i);

 }

The procedure: sp_head.h:

2776/4161

 #define TYPE_ENUM_FUNCTION 1

 #define TYPE_ENUM_PROCEDURE 2

 class sp_head

 {

 int m_type; // TYPE_ENUM_FUNCTION or TYPE_ENUM_PROCEDURE

 sp_head();

 void init(LEX_STRING *name, LEX *lex, LEX_STRING *comment, char suid);

 // Store this procedure in the database. This is a wrapper around

 // the function sp_create_procedure().

 int create(THD *);

 // Invoke a FUNCTION

 int

 execute_function(THD *thd, Item **args, uint argcount, Item **resp);

 // CALL a PROCEDURE

 int

 execute_procedure(THD *thd, List<Item> *args);

 // Add the instruction to this procedure.

 void add_instr(sp_instr *);

 // Returns the number of instructions.

 uint instructions();

 // Returns the last instruction

 sp_instr *last_instruction();

 // Resets lex in 'thd' and keeps a copy of the old one.

 void reset_lex(THD *);

 // Restores lex in 'thd' from our copy, but keeps some status from the

 // one in 'thd', like ptr, tables, fields, etc.

 void restore_lex(THD *);

 // Put the instruction on the backpatch list, associated with

 // the label.

 void push_backpatch(sp_instr *, struct sp_label *);

 // Update all instruction with this label in the backpatch list to

 // the current position.

 void backpatch(struct sp_label *);

 // Returns the SP name (with optional length in '*lenp').

 char *name(uint *lenp = 0);

 // Returns the result type for a function

 Item_result result();

 // Sets various attributes

 void sp_set_info(char *creator, uint creatorlen,

 longlong created, longlong modified,

 bool suid, char *comment, uint commentlen);

 }

Instructions

The base class

2777/4161

 class sp_instr

 {

 // 'ip' is the index of this instruction

 sp_instr(uint ip);

 // Execute this instrution.

 // '*nextp' will be set to the index of the next instruction

 // to execute. (For most instruction this will be the

 // instruction following this one.)

 // Returns 0 on success, non-zero if some error occurred.

 virtual int execute(THD *, uint *nextp)

 }

<<code>>

===== Statement instruction

<<code>>

 class sp_instr_stmt : public sp_instr

 {

 sp_instr_stmt(uint ip);

 int execute(THD *, uint *nextp);

 // Set the statement's Lex

 void set_lex(LEX *);

 // Return the statement's Lex

 LEX *get_lex();

 }

SET instruction

 class sp_instr_set : public sp_instr

 {

 // 'offset' is the variable's frame offset, 'val' the value,

 // and 'type' the variable type.

 sp_instr_set(uint ip,

 uint offset, Item *val, enum enum_field_types type);

 int execute(THD *, uint *nextp);

 }

Unconditional jump

 class sp_instr_jump : public sp_instr

 {

 // No destination, must be set.

 sp_instr_jump(uint ip);

 // 'dest' is the destination instruction index.

 sp_instr_jump(uint ip, uint dest);

 int execute(THD *, uint *nextp);

 // Set the destination instruction 'dest'.

 void set_destination(uint dest);

 }

Conditional jump

2778/4161

 class sp_instr_jump_if_not : public sp_instr_jump

 {

 // Jump if 'i' evaluates to false. Destination not set yet.

 sp_instr_jump_if_not(uint ip, Item *i);

 // Jump to 'dest' if 'i' evaluates to false.

 sp_instr_jump_if_not(uint ip, Item *i, uint dest)

 int execute(THD *, uint *nextp);

 }

Return a function value

 class sp_instr_freturn : public sp_instr

 {

 // Return the value 'val'

 sp_instr_freturn(uint ip, Item *val, enum enum_field_types type);

 int execute(THD *thd, uint *nextp);

 }

Push a handler and jump

 class sp_instr_hpush_jump : public sp_instr_jump

 {

 // Push handler of type 'htype', with current frame size 'fp'

 sp_instr_hpush_jump(uint ip, int htype, uint fp);

 int execute(THD *thd, uint *nextp);

 // Add condition for this handler

 void add_condition(struct sp_cond_type *cond);

 }

Pops handlers

 class sp_instr_hpop : public sp_instr

 {

 // Pop 'count' handlers

 sp_instr_hpop(uint ip, uint count);

 int execute(THD *thd, uint *nextp);

 }

Return from a CONTINUE handler

 class sp_instr_hreturn : public sp_instr

 {

 // Return from handler, and restore variables to 'fp'.

 sp_instr_hreturn(uint ip, uint fp);

 int execute(THD *thd, uint *nextp);

 }

Push a CURSOR

 class sp_instr_cpush : public sp_instr_stmt

 {

 // Push a cursor for statement 'lex'

 sp_instr_cpush(uint ip, LEX *lex)

 int execute(THD *thd, uint *nextp);

 }

Pop CURSORs

2779/4161

 class sp_instr_cpop : public sp_instr_stmt

 {

 // Pop 'count' cursors

 sp_instr_cpop(uint ip, uint count)

 int execute(THD *thd, uint *nextp);

 }

Open a CURSOR

 class sp_instr_copen : public sp_instr_stmt

 {

 // Open the 'c'th cursor

 sp_instr_copen(uint ip, uint c);

 int execute(THD *thd, uint *nextp);

 }

Close a CURSOR

 class sp_instr_cclose : public sp_instr

 {

 // Close the 'c'th cursor

 sp_instr_cclose(uint ip, uint c);

 int execute(THD *thd, uint *nextp);

 }

Fetch a row with CURSOR

 class sp_instr_cfetch : public sp_instr

 {

 // Fetch next with the 'c'th cursor

 sp_instr_cfetch(uint ip, uint c);

 int execute(THD *thd, uint *nextp);

 // Add a target variable for the fetch

 void add_to_varlist(struct sp_pvar *var);

 }

Utility functions: sp.h

2780/4161

 #define SP_OK 0

 #define SP_KEY_NOT_FOUND -1

 #define SP_OPEN_TABLE_FAILED -2

 #define SP_WRITE_ROW_FAILED -3

 #define SP_DELETE_ROW_FAILED -4

 #define SP_GET_FIELD_FAILED -5

 #define SP_PARSE_ERROR -6

 // Finds a stored procedure given its name. Returns NULL if not found.

 sp_head *sp_find_procedure(THD *, LEX_STRING *name);

 // Store the procedure 'name' in the database. 'def' is the complete

 // definition string ("create procedure ...").

 int sp_create_procedure(THD *,

 char *name, uint namelen,

 char *def, uint deflen,

 char *comment, uint commentlen, bool suid);

 // Drop the procedure 'name' from the database.

 int sp_drop_procedure(THD *, char *name, uint namelen);

 // Finds a stored function given its name. Returns NULL if not found.

 sp_head *sp_find_function(THD *, LEX_STRING *name);

 // Store the function 'name' in the database. 'def' is the complete

 // definition string ("create function ...").

 int sp_create_function(THD *,

 char *name, uint namelen,

 char *def, uint deflen,

 char *comment, uint commentlen, bool suid);

 // Drop the function 'name' from the database.

 int sp_drop_function(THD *, char *name, uint namelen);

The cache: sp_cache.h

 /* Initialize the SP caching once at startup */

 void sp_cache_init();

 /* Clear the cache *cp and set *cp to NULL */

 void sp_cache_clear(sp_cache **cp);

 /* Insert an SP to cache. If **cp points to NULL, it's set to a

 new cache */

 void sp_cache_insert(sp_cache **cp, sp_head *sp);

 /* Lookup an SP in cache */

 sp_head *sp_cache_lookup(sp_cache **cp, char *name, uint namelen);

 /* Remove an SP from cache */

 void sp_cache_remove(sp_cache **cp, sp_head *sp);

The mysql.proc schema

This is the mysql.proc table used in MariaDB 10.4:

2781/4161

CREATE TABLE `proc` (

 `db` char(64) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '',

 `name` char(64) NOT NULL DEFAULT '',

 `type` enum('FUNCTION','PROCEDURE','PACKAGE','PACKAGE BODY') NOT NULL,

 `specific_name` char(64) NOT NULL DEFAULT '',

 `language` enum('SQL') NOT NULL DEFAULT 'SQL',

 `sql_data_access` enum('CONTAINS_SQL','NO_SQL','READS_SQL_DATA','MODIFIES_SQL_DATA') NOT NULL

DEFAULT 'CONTAINS_SQL',

 `is_deterministic` enum('YES','NO') NOT NULL DEFAULT 'NO',

 `security_type` enum('INVOKER','DEFINER') NOT NULL DEFAULT 'DEFINER',

 `param_list` blob NOT NULL,

 `returns` longblob NOT NULL,

 `body` longblob NOT NULL,

 `definer` char(141) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '',

 `created` timestamp NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),

 `modified` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

 `sql_mode`

set('REAL_AS_FLOAT','PIPES_AS_CONCAT','ANSI_QUOTES','IGNORE_SPACE','IGNORE_BAD_TABLE_OPTIONS','

ONLY_FULL_GROUP_BY','NO_UNSIGNED_SUBTRACTION','NO_DIR_IN_CREATE','POSTGRESQL','ORACLE','MSSQL',

'DB2','MAXDB','NO_KEY_OPTIONS','NO_TABLE_OPTIONS','NO_FIELD_OPTIONS','MYSQL323','MYSQL40','ANSI

','NO_AUTO_VALUE_ON_ZERO','NO_BACKSLASH_ESCAPES','STRICT_TRANS_TABLES','STRICT_ALL_TABLES','NO_

ZERO_IN_DATE','NO_ZERO_DATE','INVALID_DATES','ERROR_FOR_DIVISION_BY_ZERO','TRADITIONAL','NO_AUT

O_CREATE_USER','HIGH_NOT_PRECEDENCE','NO_ENGINE_SUBSTITUTION','PAD_CHAR_TO_FULL_LENGTH','EMPTY_

STRING_IS_NULL','SIMULTANEOUS_ASSIGNMENT') NOT NULL DEFAULT '',

 `comment` text CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 `character_set_client` char(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL,

 `collation_connection` char(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL,

 `db_collation` char(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL,

 `body_utf8` longblob DEFAULT NULL,

 `aggregate` enum('NONE','GROUP') NOT NULL DEFAULT 'NONE',

 PRIMARY KEY (`db`,`name`,`type`)

) ENGINE=Aria DEFAULT CHARSET=utf8 PAGE_CHECKSUM=1 TRANSACTIONAL=1 COMMENT='Stored Procedures'

4.2.2 Stored Functions
A stored function is a defined function that is called from within an SQL statement like a regular function, and returns a single

value.

Stored Function Overview

Function called from within an SQL statement, returning a single value

Stored Routine Privileges

Privileges associated with stored functions and stored procedures.

CREATE FUNCTION

Creates a stored function.

ALTER FUNCTION

Change the characteristics of a stored function.

DROP FUNCTION

Drop a stored function.

SHOW CREATE FUNCTION

Shows the CREATE statement that creates the function.

SHOW FUNCTION STATUS

Stored function characteristics

SHOW FUNCTION CODE

Representation of the internal implementation of the stored function

Stored Aggregate Functions

Custom aggregate functions.

3

2782/4161

Binary Logging of Stored Routines

Stored routines require extra consideration when binary logging.

Stored Function Limitations

Restrictions applying to stored functions

Information Schema ROUTINES Table

Stored procedures and stored functions information

1

4.2.2.1 Stored Function Overview
Contents
1. Creating Stored Functions

2. Stored Function listings and definitions

3. Dropping and Updating Stored Functions

4. Permissions in Stored Functions

A Stored Function is a defined function that is called from within an SQL statement like a regular function, and returns a

single value.

Creating Stored Functions
Here's a skeleton example to see a stored function in action:

DELIMITER //

CREATE FUNCTION FortyTwo() RETURNS TINYINT DETERMINISTIC

BEGIN

 DECLARE x TINYINT;

 SET x = 42;

 RETURN x;

END

//

DELIMITER ;

First, the delimiter is changed, since the function definition will contain the regular semicolon delimiter. See Delimiters in the

mariadb client for more. Then the function is named FortyTwo and defined to return a tinyin . The DETERMINISTIC

keyword is not necessary in all cases (although if binary logging is on, leaving it out will throw an error), and is to help the

query optimizer choose a query plan. A deterministic function is one that, given the same arguments, will always return the

same result.

Next, the function body is placed between BEGIN and END statements. It declares a tinyint, X , which is simply set to 42,

and this is the result returned.

SELECT FortyTwo();

+------------+

| FortyTwo() |

+------------+

| 42 |

+------------+

Of course, a function that doesn't take any arguments is of little use. Here's a more complex example:

DELIMITER //

CREATE FUNCTION VatCents(price DECIMAL(10,2)) RETURNS INT DETERMINISTIC

BEGIN

 DECLARE x INT;

 SET x = price * 114;

 RETURN x;

END //

Query OK, 0 rows affected (0.04 sec)

DELIMITER ;

2783/4161

This function takes an argument, price which is defined as a DECIMAL, and returns an INT.

Take a look at the CREATE FUNCTION page for more details.

From MariaDB 10.3.3 , it is also possible to create stored aggregate functions.

Stored Function listings and definitions
To find which stored functions are running on the server, use SHOW FUNCTION STATUS.

SHOW FUNCTION STATUS\G

*************************** 1. row ***************************

 Db: test

 Name: VatCents

 Type: FUNCTION

 Definer: root@localhost

 Modified: 2013-06-01 12:40:31

 Created: 2013-06-01 12:40:31

 Security_type: DEFINER

 Comment:

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

1 row in set (0.00 sec)

or query the routines table in the INFORMATION_SCHEMA database directly:

SELECT ROUTINE_NAME FROM INFORMATION_SCHEMA.ROUTINES WHERE

 ROUTINE_TYPE='FUNCTION';

+--------------+

| ROUTINE_NAME |

+--------------+

| VatCents |

+--------------+

To find out what the stored function does, use SHOW CREATE FUNCTION.

SHOW CREATE FUNCTION VatCents\G

*************************** 1. row ***************************

 Function: VatCents

 sql_mode:

 Create Function: CREATE DEFINER=`root`@`localhost` FUNCTION `VatCents`(price

DECIMAL(10,2)) RETURNS int(11)

 DETERMINISTIC

BEGIN

 DECLARE x INT;

 SET x = price * 114;

 RETURN x;

END

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

Dropping and Updating Stored Functions
To drop a stored function, use the DROP FUNCTION statement.

DROP FUNCTION FortyTwo;

To change the characteristics of a stored function, use ALTER FUNCTION. Note that you cannot change the parameters or

body of a stored function using this statement; to make such changes, you must drop and re-create the function using

DROP FUNCTION and CREATE FUNCTION.

Permissions in Stored Functions
See the article Stored Routine Privileges.

2784/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/

4.2.1.2 Stored Routine Privileges

1.1.1.3.1.3 CREATE FUNCTION

1.1.1.2.1.1.4 ALTER FUNCTION

1.1.1.3.3.3 DROP FUNCTION

1.1.1.2.8.14 SHOW CREATE FUNCTION

1.1.1.2.8.30 SHOW FUNCTION STATUS

4.2.2.8 SHOW FUNCTION CODE

Syntax

SHOW FUNCTION CODE func_name

Description
SHOW FUNCTION CODE shows a representation of the internal implementation of the stored function.

It is similar to SHOW PROCEDURE CODE but for stored functions.

1.2.4.1 Stored Aggregate Functions

3.1.13.5 Binary Logging of Stored Routines

4.2.2.11 Stored Function Limitations
The following restrictions apply to stored functions.

All of the restrictions listed in Stored Routine Limitations.

Any statements that return a result set are not permitted. For example, a regular SELECTs is not permitted, but a

SELECT INTO is. A cursor and FETCH statement is permitted.

FLUSH statements are not permitted.

Statements that perform explicit or implicit commits or rollbacks are not permitted

Cannot be used recursively.

Cannot make changes to a table that is already in use (reading or writing) by the statement invoking the stored

function.

Cannot refer to a temporary table multiple times under different aliases, even in different statements.

ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT statement which are in a stored function cannot refer to a

savepoint which has been defined out of the current function.

Prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) cannot be used, and therefore nor can

statements be constructed as strings and then executed.

1.1.1.2.9.1.1.40 Information Schema ROUTINES Table

1.1.1.7 Stored Routine Statements

3.1.13.5 Binary Logging of Stored Routines

4.2.5 Stored Routine Limitations
2785/4161

https://mariadb.com/kb/en/deallocate-drop-prepared-statement/

The following SQL statements are not permitted inside any stored routines (stored functions, stored procedures, events or

triggers).

ALTER VIEW; you can use CREATE OR REPLACE VIEW instead.

LOAD DATA and LOAD TABLE .

CHANGE MASTER TO

INSERT DELAYED is permitted, but the statement is handled as a regular INSERT.

LOCK TABLES and UNLOCK TABLES.

References to local variables within prepared statements inside a stored routine (use user-defined variables instead).

BEGIN (WORK) is treated as the beginning of a BEGIN END block, not a transaction, so START TRANSACTION

needs to be used instead.

The number of permitted recursive calls is limited to max_sp_recursion_depth. If this variable is 0 (default), recursivity

is disabled. The limit does not apply to stored functions.

Most statements that are not permitted in prepared statements are not permitted in stored programs. See Prepare

Statement:Permitted statements for a list of statements that can be used. SIGNAL, RESIGNAL and GET

DIAGNOSTICS are exceptions, and may be used in stored routines.

There are also further limitations specific to the kind of stored routine.

Note that, if a stored program calls another stored program, the latter will inherit the caller's limitations. So, for example, if a

stored procedure is called by a stored function, that stored procedure will not be able to produce a result set, because

stored functions can't do this.

4.2.1.2 Stored Routine Privileges

4.3 Triggers & Events
Triggers

Set of statements that run when an event occurs on a table.

Event Scheduler

Named database objects containing SQL statements to be executed at a later stage.

4.3.1 Triggers
A trigger is a set of statements that run when an event occurs on a table.

Trigger Overview

Statements run when an event occurs on a table.

Binary Logging of Stored Routines

Stored routines require extra consideration when binary logging.

CREATE TRIGGER

Create a new trigger.

DROP TRIGGER

Drops a trigger.

Information Schema TRIGGERS Table

Information about triggers

Running Triggers on the Replica for Row-based Events

Running triggers on the replica for row-based events.

SHOW CREATE TRIGGER

Shows the CREATE TRIGGER statement that creates the trigger.

SHOW TRIGGERS

Shows currently-defined triggers

Trigger Limitations

Restrictions applying to triggers.

5

3

1

1

2786/4161

https://mariadb.com/kb/en/load-table-from-master/
https://mariadb.com/kb/en/get-diagnostics/

Triggers and Implicit Locks

Implicit locks due to triggers and LOCK TABLE

There are 4 related questions .

4.3.1.1 Trigger Overview
Contents
1. Events

2. Triggers and Errors

3. Creating a Trigger

4. Dropping Triggers

5. Triggers Metadata

6. More Complex Triggers

7. Trigger Errors

A trigger, as its name suggests, is a set of statements that run, or are triggered, when an event occurs on a table.

Events
The event can be an INSERT, an UPDATE or a DELETE. The trigger can be executed BEFORE or AFTER the event. Until

MariaDB 10.2.3 , a table could have only one trigger defined for each event/timing combination: for example, a table could

only have one BEFORE INSERT trigger.

The LOAD DATA INFILE and LOAD XML statements invoke INSERT triggers for each row that is being inserted.

The REPLACE statement is executed with the following workflow:

BEFORE INSERT;

BEFORE DELETE (only if a row is being deleted);

AFTER DELETE (only if a row is being deleted);

AFTER INSERT.

The INSERT ... ON DUPLICATE KEY UPDATE statement, when a row already exists, follows the following workflow:

BEFORE INSERT;

BEFORE UPDATE;

AFTER UPDATE.

Otherwise, it works like a normal INSERT statement.

Note that TRUNCATE TABLE does not activate any triggers.

Triggers and Errors
With non-transactional storage engines, if a BEFORE statement produces an error, the statement will not be executed.

Statements that affect multiple rows will fail before inserting the current row.

With transactional engines, triggers are executed in the same transaction as the statement that invoked them.

If a warning is issued with the SIGNAL or RESIGNAL statement (that is, an error with an SQLSTATE starting with '01'), it will

be treated like an error.

Creating a Trigger
Here's a simple example to demonstrate a trigger in action. Using these two tables as an example:

CREATE TABLE animals (id mediumint(9)

NOT NULL AUTO_INCREMENT,

name char(30) NOT NULL,

PRIMARY KEY (`id`));

CREATE TABLE animal_count (animals int);

INSERT INTO animal_count (animals) VALUES(0);

2787/4161

https://mariadb.com/kb/en/triggers/+questions/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

We want to increment a counter each time a new animal is added. Here's what the trigger will look like:

CREATE TRIGGER increment_animal

AFTER INSERT ON animals

FOR EACH ROW

UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

The trigger has:

a name (in this case increment_animal)

a trigger time (in this case after the specified trigger event)

a trigger event (an INSERT)

a table with which it is associated (animals)

a set of statements to run (here, just the one UPDATE statement)

AFTER INSERT specifies that the trigger will run after an INSERT . The trigger could also be set to run before, and the

statement causing the trigger could be a DELETE or an UPDATE as well.

The set of statements to run are the statements on the table of the trigger, therefore columns/values that change are always

just a column name or an expression like NEW.column_name . Table references of other tables must come from explicit

table references.

Now, if we insert a record into the animals table, the trigger will run, incrementing the animal_count table;

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 0 |

+---------+

INSERT INTO animals (name) VALUES('aardvark');

INSERT INTO animals (name) VALUES('baboon');

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 2 |

+---------+

For more details on the syntax, see CREATE TRIGGER.

Dropping Triggers
To drop a trigger, use the DROP TRIGGER statement. Triggers are also dropped if the table with which they are associated

is also dropped.

 DROP TRIGGER increment_animal;

Triggers Metadata
The Information Schema TRIGGERS Table stores information about triggers.

The SHOW TRIGGERS statement returns similar information.

The SHOW CREATE TRIGGER statement returns a CREATE TRIGGER statement that creates the given trigger.

More Complex Triggers
Triggers can consist of multiple statements enclosed by a BEGIN and END. If you're entering multiple statements on the

command line, you'll want to temporarily set a new delimiter so that you can use a semicolon to delimit the statements inside

your trigger. See Delimiters in the mariadb client for more.

2788/4161

DROP TABLE animals;

UPDATE animal_count SET animals=0;

CREATE TABLE animals (id mediumint(9) NOT NULL AUTO_INCREMENT,

name char(30) NOT NULL,

PRIMARY KEY (`id`))

ENGINE=InnoDB;

DELIMITER //

CREATE TRIGGER the_mooses_are_loose

AFTER INSERT ON animals

FOR EACH ROW

BEGIN

 IF NEW.name = 'Moose' THEN

 UPDATE animal_count SET animal_count.animals = animal_count.animals+100;

 ELSE

 UPDATE animal_count SET animal_count.animals = animal_count.animals+1;

 END IF;

END; //

DELIMITER ;

INSERT INTO animals (name) VALUES('Aardvark');

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 1 |

+---------+

INSERT INTO animals (name) VALUES('Moose');

SELECT * FROM animal_count;

+---------+

| animals |

+---------+

| 101 |

+---------+

Trigger Errors
If a trigger contains an error and the engine is transactional, or it is a BEFORE trigger, the trigger will not run, and will

prevent the original statement from running as well. If the engine is non-transactional, and it is an AFTER trigger, the trigger

will not run, but the original statement will.

Here, we'll drop the above examples, and then recreate the trigger with an error, a field that doesn't exist, first using the

default InnoDB, a transactional engine, and then again using MyISAM, a non-transactional engine.

DROP TABLE animals;

CREATE TABLE animals (id mediumint(9) NOT NULL AUTO_INCREMENT,

name char(30) NOT NULL,

PRIMARY KEY (`id`))

ENGINE=InnoDB;

CREATE TRIGGER increment_animal

AFTER INSERT ON animals

FOR EACH ROW

UPDATE animal_count SET animal_count.id = animal_count_id+1;

INSERT INTO animals (name) VALUES('aardvark');

ERROR 1054 (42S22): Unknown column 'animal_count.id' in 'field list'

SELECT * FROM animals;

Empty set (0.00 sec)

And now the identical procedure, but with a MyISAM table.

2789/4161

DROP TABLE animals;

CREATE TABLE animals (id mediumint(9) NOT NULL AUTO_INCREMENT,

name char(30) NOT NULL,

PRIMARY KEY (`id`))

ENGINE=MyISAM;

CREATE TRIGGER increment_animal

AFTER INSERT ON animals

FOR EACH ROW

UPDATE animal_count SET animal_count.id = animal_count_id+1;

INSERT INTO animals (name) VALUES('aardvark');

ERROR 1054 (42S22): Unknown column 'animal_count.id' in 'field list'

SELECT * FROM animals;

+----+----------+

| id | name |

+----+----------+

| 1 | aardvark |

+----+----------+

The following example shows how to use a trigger to validate data. The SIGNAL statement is used to intentionally produce

an error if the email field is not a valid email. As the example shows, in that case the new row is not inserted (because it is a

BEFORE trigger).

CREATE TABLE user (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 first_name CHAR(20),

 last_name CHAR(20),

 email CHAR(100)

)

 ENGINE = MyISAM;

DELIMITER //

CREATE TRIGGER bi_user

 BEFORE INSERT ON user

 FOR EACH ROW

BEGIN

 IF NEW.email NOT LIKE '_%@_%.__%' THEN

 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Email field is not valid';

 END IF;

END; //

DELIMITER ;

INSERT INTO user (first_name, last_name, email) VALUES ('John', 'Doe', 'john_doe.example.net');

ERROR 1644 (45000): Email field is not valid

SELECT * FROM user;

Empty set (0.00 sec)

3.1.13.5 Binary Logging of Stored Routines

1.1.1.3.1.15 CREATE TRIGGER

1.1.1.3.3.15 DROP TRIGGER

1.1.1.2.9.1.1.58 Information Schema TRIGGERS Table

3.1.23 Running Triggers on the Replica for Row-based
Events

1.1.1.2.8.20 SHOW CREATE TRIGGER

2790/4161

1.1.1.2.8.55 SHOW TRIGGERS

4.3.1.9 Trigger Limitations
Contents

The following restrictions apply to triggers.

All of the restrictions listed in Stored Routine Limitations.

All of the restrictions listed in Stored Function Limitations.

Until MariaDB 10.2.3 , each table can have only one trigger for each timing/event combination (ie: you can't define

two BEFORE INSERT triggers for the same table).

Triggers are always executed for each row. The standard FOR EACH STATEMENT option is not supported in MariaDB,

Triggers cannot operate on any tables in the mysql, information_schema or performance_schema database.

Cannot return a resultset.

The RETURN statement is not permitted, since triggers don't return any values. Use LEAVE to immediately exit a

trigger.

Triggers are not activated by foreign key actions.

If a trigger is loaded into cache, it is not automatically reloaded when the table metadata changes. In this case a

trigger can operate using the outdated metadata.

By default, with row-based replication, triggers run on the master, and the effects of their executions are replicated to

the slaves. However, starting from MariaDB 10.1.1 , it is possible to run triggers on the slaves. See Running triggers

on the slave for Row-based events.

4.3.1.10 Triggers and Implicit Locks
A trigger may reference multiple tables, and if a LOCK TABLES statement is used on one of the tables, other tables may at

the same time also implicitly be locked due to the trigger.

If the trigger only reads from the other table, that table will be read locked. If the trigger writes to the other table, it will be

write locked. If a table is read-locked for reading via LOCK TABLES , but needs to be write-locked because it could be

modified by a trigger, a write lock is taken.

All locks are acquired together when the LOCK TABLES statement is issued and they are released together on UNLOCK

TABLES .

Example

LOCK TABLE table1 WRITE

Assume table1 contains the following trigger:

CREATE TRIGGER trigger1 AFTER INSERT ON table1 FOR EACH ROW

BEGIN

 INSERT INTO table2 VALUES (1);

 UPDATE table3 SET writes = writes+1

 WHERE id = NEW.id AND EXISTS (SELECT id FROM table4);

END;

Not only is table1 write locked, table2 and table3 are also write locked, due to the possible INSERT and UPDATE ,

while table4 is read locked due to the SELECT .

4.3.2 Event Scheduler
Events are named database objects containing SQL statements that are to be executed at a later stage, either once off, or at

regular intervals.

Events Overview

Scheduled events.

Event Limitations

Restrictions applying to events

5

2791/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

CREATE EVENT

Create and schedule a new event.

ALTER EVENT

Change an existing event.

DROP EVENT

Removes an existing event.

Information Schema EVENTS Table

Server event information

SHOW EVENTS

Shows information about events

SHOW CREATE EVENT

Displays the CREATE EVENT statement that creates a given event.

Automating MariaDB Tasks with Events

Using MariaDB events for automating tasks.

mysql.event Table

Information about MariaDB events.

There are 2 related questions .

4.3.2.1 Events Overview
Contents
1. Creating Events

1. Example

2. Executing Events

3. Viewing Current Events

1. Example

4. Altering Events

1. Example

5. Dropping Events

1. Example

Events are named database objects containing SQL statements that are to be executed at a later stage, either once off, or

at regular intervals.

They function very similarly to the Windows Task Scheduler or Unix cron jobs.

Creating, modifying or deleting events requires the EVENT privilege.

Creating Events
Events are created with the CREATE EVENT statement.

Example

CREATE EVENT test_event

 ON SCHEDULE EVERY 1 MINUTE DO

 UPDATE test.t1 SET a = a + 1;

Executing Events
Events are only executed if the event scheduler is running. This is determined by the value of the event_scheduler system

variable, which needs to be set to On for the event scheduler to be running.

You can check if the Event scheduler is running with:
2792/4161

https://mariadb.com/kb/en/event-scheduler/+questions/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/stored-programs-and-views-event

SHOW PROCESSLIST;

+----+-----------------+-----------+------+---------+------+-----------------------------+---

---------------+----------+

| Id | User | Host | db | Command | Time | State |

Info | Progress |

+----+-----------------+-----------+------+---------+------+-----------------------------+---

---------------+----------+

| 40 | root | localhost | test | Sleep | 4687 | |

NULL | 0.000 |

| 41 | root | localhost | test | Query | 0 | init |

SHOW PROCESSLIST | 0.000 |

| 42 | event_scheduler | localhost | NULL | Daemon | 30 | Waiting for next activation | NULL

| 0.000 |

+----+-----------------+-----------+------+---------+------+-----------------------------+---

---------------+----------+

If the event scheduler is not running and event_scheduler has been set to OFF , use:

SET GLOBAL event_scheduler = ON;

to activate it. If event_scheduler has been set to Disabled , you cannot change the value at runtime. Changing the

value of the event_scheduler variable requires the SUPER privilege.

Since MariaDB 10.0.22 , setting the event_scheduler system variable will also try to reload the mysql.event table if it was

not properly loaded at startup.

Viewing Current Events
A list of current events can be obtained with the SHOW EVENTS statement. This only shows the event name and interval -

the full event details, including the SQL, can be seen by querying the Information Schema EVENTS table, or with SHOW

CREATE EVENT.

If an event is currently being executed, it can be seen by querying the Information Schema PROCESSLIST table, or with the

SHOW PROCESSLIST statement.

Example

SHOW EVENTS\G;

*************************** 1. row ***************************

 Db: test

 Name: test_event

 Definer: root@localhost

 Time zone: SYSTEM

 Type: RECURRING

 Execute at: NULL

 Interval value: 1

 Interval field: MINUTE

 Starts: 2013-05-20 13:46:56

 Ends: NULL

 Status: ENABLED

 Originator: 1

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

SHOW CREATE EVENT test_event\G

*************************** 1. row ***************************

 Event: test_event

 sql_mode:

 time_zone: SYSTEM

 Create Event: CREATE DEFINER=`root`@`localhost` EVENT `test_event` ON SCHEDULE EVERY 1

MINUTE STARTS '2013-05-20 13:46:56' ON COMPLETION NOT PRESERVE ENABLE DO UPDATE test.t1 SET a =

a + 1

character_set_client: utf8

collation_connection: utf8_general_ci

 Database Collation: latin1_swedish_ci

2793/4161

https://mariadb.com/kb/en/mariadb-10022-release-notes/

Altering Events
An event can be changed with the ALTER EVENT statement.

Example

ALTER EVENT test_event ON SCHEDULE EVERY '2:3' DAY_HOUR;

Dropping Events
Events are dropped with the DROP EVENT statement. Events are also also automatically dropped once they have run for

the final time according to their schedule, unless the ON COMPLETION PRESERVE clause has been specified.

Example

DROP EVENT test_event;

Query OK, 0 rows affected (0.00 sec)

4.3.2.2 Event Limitations
The following restrictions apply to Events.

All of the restrictions listed in Stored Routine Limitations.

Events cannot return a resultset.

Event names are case insensitive, so it's not possible to define two events in the same database if their case

insensitive names will match. This restriction has applied since MariaDB/MySQL 5.1.8. If you are upgrading from an

older version of MySQL, and have events that could clash, these events need to be renamed before the upgrade.

Events do not support dates beyond the maximum that can be represented in the Unix epoch (2038-01-19).

Events cannot be created, dropped or altered by another stored program, trigger or event.

Events cannot create, drop or alter stored programs or triggers

Event timings cannot be strictly predicted. The intervals MONTH, YEAR_MONTH, QUARTER and YEAR are all

resolved in months. All others are resolved in seconds. A delay of up to two seconds is possible in extreme cases,

and events scheduled to run at the same second cannot be executed in a given order. The LAST_EXECUTED column

in the INFORMATION_SCHEMA.EVENTS table will however always be accurate to within a second.

A new connection is used for each execution of statements within the body of an event, so the session counts for

server status variables such as Com_delete and Com_select will not reflect these.

Because the Event Scheduler depends on grant tables for its functionality, it is automatically disabled when the server

is running with --skip-grant-tables .

1.1.1.3.1.2 CREATE EVENT

1.1.1.2.1.1.3 ALTER EVENT

1.1.1.3.3.2 DROP EVENT

1.1.1.2.9.1.1.16 Information Schema EVENTS Table

1.1.1.2.8.28 SHOW EVENTS

1.1.1.2.8.13 SHOW CREATE EVENT

2.1.2.14.14 Automating MariaDB Tasks with Events

1.1.1.2.9.3.4 mysql.event Table

2794/4161

4.4 Views
Views are stored queries that act as a virtual table.

Creating & Using Views

A tutorial on creating and using views.

CREATE VIEW

Create or replace a view.

ALTER VIEW

Change a view definition.

DROP VIEW

Removes one or more views.

SHOW CREATE VIEW

Shows the CREATE VIEW statement that creates a view.

Inserting and Updating with Views

Views can be used for inserting or updating with certain limitations.

RENAME TABLE

Change a table's name.

View Algorithms

Optional ALGORITHM clause when creating views

Information Schema VIEWS Table

Information about views.

SHOW TABLES

List of non-temporary tables, views or sequences.

2

2

1

1

6.2.3 Creating & Using Views

1.1.1.3.1.17 CREATE VIEW

1.1.1.2.1.1.11 ALTER VIEW

1.1.1.3.3.17 DROP VIEW

1.1.1.2.8.22 SHOW CREATE VIEW

4.4.6 Inserting and Updating with Views
Contents
1. Updating with views

2. Inserting with views

3. Checking whether a view is updatable

4. WITH CHECK OPTION

5. Examples

A view can be used for inserting or updating. However, there are certain limitations.

Updating with views
A view cannot be used for updating if it uses any of the following:

ALGORITHM=TEMPTABLE (see View Algorithms)

2795/4161

HAVING

GROUP BY

DISTINCT

UNION

UNION ALL

An aggregate function, such as MAX(), MIN(), SUM() or COUNT()

subquery in the SELECT list

subquery in the WHERE clause referring to a table in the FROM clause

if it has no underlying table because it refers only to literal values

the FROM clause contains a non-updatdable view.

multiple references to any base table column

an outer join

an inner join where more than one table in the view definition is being updated

if there's a LIMIT clause, the view does not contain all primary or not null unique key columns from the underlying

table and the updatable_views_with_limit system variable is set to 0 .

Inserting with views
A view cannot be used for inserting if it fails any of the criteria for updating, and must also meet the following conditions:

the view contains all base table columns that don't have default values

no base table columns are present in view select list more than once

the view columns are all simple columns, and not derived in any way. The following are examples of derived columns

column_name + 25

LOWER(column_name)

(subquery)

9.5

column1 / column2

Checking whether a view is updatable
MariaDB stores an IS_UPDATABLE flag with each view, so it is always possible to see if MariaDB considers a view

updatable (although not necessarily insertable) by querying the IS_UPDATABLE column in the

INFORMATION_SCHEMA.VIEWS table.

WITH CHECK OPTION
The WITH CHECK OPTION clause is used to prevent updates or inserts to views unless the WHERE clause in the SELECT

statement is true.

There are two keywords that can be applied. WITH LOCAL CHECK OPTION restricts the CHECK OPTION to only the view

being defined, while WITH CASCADED CHECK OPTION checks all underlying views as well. CASCADED is treated as

default if neither keyword is given.

If a row is rejected because of the CHECK OPTION, an error similar to the following is produced:

ERROR 1369 (HY000): CHECK OPTION failed 'db_name.view_name'

A view with a WHERE which is always false (like WHERE 0) and WITH CHECK OPTION is similar to a BLACKHOLE table:

no row is ever inserted and no row is ever returned. An insertable view with a WHERE which is always false but no CHECK

OPTION is a view that accepts data but does not show them.

Examples

CREATE TABLE table1 (x INT);

CREATE VIEW view1 AS SELECT x, 99 AS y FROM table1;

Checking whether the view is updateable:

2796/4161

SELECT TABLE_NAME,IS_UPDATABLE FROM INFORMATION_SCHEMA.VIEWS;

+------------+--------------+

| TABLE_NAME | IS_UPDATABLE |

+------------+--------------+

| view1 | YES |

+------------+--------------+

This query works, as the view is updateable:

UPDATE view1 SET x = 5;

This query fails, since column y is a literal.

UPDATE view1 SET y = 5;

ERROR 1348 (HY000): Column 'y' is not updatable

Here are three views to demonstrate the WITH CHECK OPTION clause.

CREATE VIEW view_check1 AS SELECT * FROM table1 WHERE x < 100 WITH CHECK OPTION;

CREATE VIEW view_check2 AS SELECT * FROM view_check1 WHERE x > 10 WITH LOCAL CHECK OPTION;

CREATE VIEW view_check3 AS SELECT * FROM view_check1 WHERE x > 10 WITH CASCADED CHECK OPTION;

This insert succeeds, as view_check2 only checks the insert against view_check2 , and the WHERE clause evaluates to

true (150 is >10).

INSERT INTO view_check2 VALUES (150);

This insert fails, as view_check3 checks the insert against both view_check3 and the underlying views. The WHERE

clause for view_check1 evaluates as false (150 is >10 , but 150 is not <100), so the insert fails.

INSERT INTO view_check3 VALUES (150);

ERROR 1369 (HY000): CHECK OPTION failed 'test.view_check3'

1.1.1.2.1.12 RENAME TABLE

4.4.8 View Algorithms
Contents
1. Description

2. MERGE Limitations

3. MERGE Examples

1. Example 1

2. Example 2

Description
The CREATE VIEW statement accepts an optional ALGORITHM clause, an extension to standard SQL for Views.

It can contain one of three values: MERGE, TEMPTABLE or UNDEFINED, and affects how MariaDB will process the view.

With MERGE, the view definition and the related portion of the statement referring to the view are merged. If TEMPTABLE

is selected, the view results are stored in a temporary table.

MERGE is usually more efficient, and a view can only be updated with this algorithm. TEMPTABLE can be useful in certain

situations, as locks on the underlying tables can be released before the statement is finished processing.

If it's UNDEFINED (or the ALGORITHM clause is not used), MariaDB will choose what it thinks is the best algorithm. An

algorithm can also be UNDEFINED if its defined as MERGE, but the view requires a temporary table.

Views with definition ALGORITHM=MERGE or ALGORITHM=TEMPTABLE got accidentally swapped between

MariaDB and MySQL. When upgrading, you have to re-create views created with either of these definitions (see

2797/4161

MDEV-6916).

MERGE Limitations
A view cannot be of type ALGORITHM=MERGE if it uses any of the following:

HAVING

LIMIT

GROUP BY

DISTINCT

UNION

UNION ALL

An aggregate function, such as MAX(), MIN(), SUM() or COUNT()

subquery in the SELECT list

if it has no underlying table because it refers only to literal values

MERGE Examples

Example 1

Here's an example of how MariaDB handles a view with a MERGE algorithm. Take a view defined as follows:

CREATE ALGORITHM = MERGE VIEW view_name (view_field1, view_field2) AS

SELECT field1, field2 FROM table_name WHERE field3 > '2013-06-01';

Now, if we run a query on this view, as follows:

SELECT * FROM view_name;

to execute the view view_name becomes the underlying table, table_name , the * becomes the fields view_field1

and view_field2 , corresponding to field1 and field2 and the WHERE clause, WHERE field3 > 100 is added, so

the actual query executed is:

SELECT field1, field2 FROM table_name WHERE field3 > '2013-06-01'

Example 2

Given the same view as above, if we run the query:

SELECT * FROM view_name WHERE view_field < 8000;

everything occurs as it does in the previous example, but view_field < 8000 takes the corresponding field name and

becomes field1 < 8000 , connected with AND to the field3 > '2013-06-01' part of the query.

So the resulting query is:

SELECT field1, field2 FROM table_name WHERE (field3 > '2013-06-01') AND (field1 < 8000);

When connecting with AND , parentheses are added to make sure the correct precedence is used.

1.1.1.2.9.1.1.62 Information Schema VIEWS Table

1.1.1.2.8.53 SHOW TABLES

4.5 User-Defined Functions
A user-defined function (UDF) is a way to extend MariaDB with a new function that works like a native (built-in) MariaDB

function such as ABS() or CONCAT().

Statements making use of user-defined functions are not safe for replication.

2798/4161

https://jira.mariadb.org/browse/MDEV-6916

For an example, see sql/udf_example.cc in the source tree. For a collection of existing UDFs go to the UDF Repository

on GitHub .

There are alternative ways to add a new function: writing a native function, which requires modifying and compiling the

server source code; or writing a stored function.

Creating User-Defined Functions

How to create user-defined functions in C/C++.

User-Defined Functions Calling Sequences

Declaring the functions required in a user-defined function.

User-Defined Functions Security

MariaDB imposes a number of limitations on user-defined functions for security purposes.

CREATE FUNCTION UDF

Create a user-defined function.

DROP FUNCTION UDF

Drop a user-defined function.

mysql.func Table

User-defined function information

There are 2 related questions .

4.5.1 Creating User-Defined Functions
Contents
1. Simple Functions

1. x()

2. x_init()

3. x_deinit()

4. Description

2. Aggregate Functions

1. x_clear()

2. x_add()

3. x_remove()

4. Description

3. Examples

User-defined functions allow MariaDB to be extended with a new function that works like a native (built-in) MariaDB function

such as ABS() or CONCAT(). There are alternative ways to add a new function: writing a native function (which requires

modifying and compiling the server source code), or writing a stored function.

Statements making use of user-defined functions are not safe for replication.

Functions are written in C or C++, and to make use of them, the operating system must support dynamic loading.

Each new SQL function requires corresponding functions written in C/C++. In the list below, at least the main function - x() -

and one other, are required. x should be replaced by the name of the function you are creating.

All functions need to be thread-safe, so not global or static variables that change can be allocated. Memory is allocated in

x_init()/ and freed in x_deinit().

Simple Functions

x()

Required for all UDFs; this is where the results are calculated.

C/C++ type SQL type

char * STRING

2799/4161

https://github.com/orgs/mysqludf/repositories
https://mariadb.com/kb/en/user-defined-functions/+questions/

long long INTEGER

double REAL

DECIMAL functions return string values, and so should be written accordingly. It is not possible to create ROW functions.

x_init()

Initialization function for x(). Can be used for the following:

Check the number of arguments to X() (the SQL equivalent).

Verify the argument types, or to force arguments to be of a particular type after the function is called.

Specify whether the result can be NULL.

Specify the maximum result length.

For REAL functions, specify the maximum number of decimals for the result.

Allocate any required memory.

x_deinit()

De-initialization function for x(). Used to de-allocate memory that was allocated in x_init().

Description

Each time the SQL function X() is called:

MariaDB will first call the C/C++ initialization function, x_init(), assuming it exists. All setup will be performed, and if it

returns an error, the SQL statement is aborted and no further functions are called.

If there is no x_init() function, or it has been called and did not return an error, x() is then called once per row.

After all rows have finished processing, x_deinit() is called, if present, to clean up by de-allocating any memory that

was allocated in x_init().

See User-defined Functions Calling Sequences for more details on the functions.

Aggregate Functions
The following functions are required for aggregate functions, such as AVG() and SUM(). When using CREATE FUNCTION,

the AGGREGATE keyword is required.

x_clear()

Used to reset the current aggregate, but without inserting the argument as the initial aggregate value for the new group.

x_add()

Used to add the argument to the current aggregate.

x_remove()

Starting from MariaDB 10.4, improves the support of window functions (so it is not obligatory to add it) and should remove

the argument from the current aggregate.

Description

Each time the aggregate SQL function X() is called:

MariaDB will first call the C/C++ initialization function, x_init(), assuming it exists. All setup will be performed, and if it

returns an error, the SQL statement is aborted and no further functions are called.

If there is no x_init() function, or it has been called and did not return an error, x() is then called once per row.

After all rows have finished processing, x_deinit() is called, if present, to clean up by de-allocating any memory that

was allocated in x_init().

MariaDB will first call the C/C++ initialization function, x_init(), assuming it exists. All setup will be performed, and if it

returns an error, the SQL statement is aborted and no further functions are called.

The table is sorted according to the GROUP BY expression.

x_clear() is called for the first row of each new group.

x_add() is called once per row for each row in the same group.

x() is called when the group changes, or after the last row, to get the aggregate result.

2800/4161

The latter three steps are repeated until all rows have been processed.

After all rows have finished processing, x_deinit() is called, if present, to clean up by de-allocating any memory that

was allocated in x_init().

Examples
For an example, see sql/udf_example.cc in the source tree. For a collection of existing UDFs see

https://github.com/mysqludf .

4.5.2 User-Defined Functions Calling
Sequences

Contents
1. Simple Functions

1. x()

2. x_init()

3. x_deinit()

4. Description

2. Aggregate Functions

1. x_clear()

2. x_reset()

3. x_add()

4. x_remove()

The functions described in Creating User-defined Functions are expanded on this page. They are declared as follows:

Simple Functions

x()

If x() returns an integer, it is declared as follows:

long long x(UDF_INIT *initid, UDF_ARGS *args,

 char *is_null, char *error);

If x() returns a string (DECIMAL functions also return string values), it is declared as follows:

char *x(UDF_INIT *initid, UDF_ARGS *args,

 char *result, unsigned long *length,

 char *is_null, char *error);

If x() returns a real, it is declared as follows:

double x(UDF_INIT *initid, UDF_ARGS *args,

 char *is_null, char *error);

x_init()

my_bool x_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

x_deinit()

void x_deinit(UDF_INIT *initid);

Description

initid is a parameter passed to all three functions that points to a UDF_INIT structure, used for communicating information

between the functions. Its structure members are:

my_bool maybe_null
2801/4161

https://github.com/mysqludf

maybe_null should be set to 1 if x_init can return a NULL value, Defaults to 1 if any arguments are declared

maybe_null.

unsigned int decimals

Number of decimals after the decimal point. The default, if an explicit number of decimals is passed in the

arguments to the main function, is the maximum number of decimals, so if 9.5, 9.55 and 9.555 are passed to

the function, the default would be three (based on 9.555, the maximum). If there are no explicit number of

decimals, the default is set to 31, or one more than the maximum for the DOUBLE, FLOAT and DECIMAL

types. This default can be changed in the function to suit the actual calculation.

unsigned int max_length

Maximum length of the result. For integers, the default is 21. For strings, the length of the longest argument.

For reals, the default is 13 plus the number of decimals indicated by initid->decimals. The length includes any

signs or decimal points. Can also be set to 65KB or 16MB in order to return a BLOB. The memory remains

unallocated, but this is used to decide on the data type to use if the data needs to be temporarily stored.

char *ptr

A pointer for use as required by the function. Commonly, initid->ptr is used to communicate allocated memory,

with x_init() allocating the memory and assigning it to this pointer, x() using it, and x_deinit() de-allocating it.

my_bool const_item

Should be set to 1 in x_init() if x() always returns the same value, otherwise 0.

Aggregate Functions

x_clear()

x_clear() is a required function for aggregate functions, and is declared as follows:

void x_clear(UDF_INIT *initid, char *is_null, char *error);

It is called when the summary results need to be reset, that is at the beginning of each new group. but also to reset the

values when there were no matching rows.

is_null is set to point to CHAR(0) before calling x_clear().

In the case of an error, you can store the value to which the error argument points (a single-byte variable, not a string string

buffer) in the variable.

x_reset()

x_reset() is declared as follows:

void x_reset(UDF_INIT *initid, UDF_ARGS *args,

 char *is_null, char *error);

It is called on finding the first row in a new group. Should reset the summary variables, and then use UDF_ARGS as the first

value in the group's internal summary value. The function is not required if the UDF interface uses x_clear().

x_add()

x_add() is declared as follows:

void x_add(UDF_INIT *initid, UDF_ARGS *args,

 char *is_null, char *error);

It is called for all rows belonging to the same group, and should be used to add the value in UDF_ARGS to the internal

summary variable.

x_remove()

x_remove() was added in MariaDB 10.4 and is declared as follows (same as x_add()):

void x_remove(UDF_INIT* initid, UDF_ARGS* args,

 char* is_null, char *error);

It adds more efficient support of aggregate UDFs as window functions. x_remove() should "subtract" the row (reverse

x_add()). In MariaDB 10.4 aggregate UDFs will work as WINDOW functions without x_remove() but it will not be so efficient.

2802/4161

If x_remove() supported (defined) detected automatically.

4.5.3 User-Defined Functions Security
The MariaDB server imposes a number of limitations on user-defined functions for security purposes.

The INSERT privilege for the mysql database is required to run CREATE FUNCTION, as a record will be added to the

mysql.func-table.

The DELETE privilege for the mysql database is required to run DROP FUNCTION as the corresponding record will

be removed from the mysql.func-table.

UDF object files can only be placed in the plugin directory, as specified by the value of the plugin_dir system variable.

At least one symbol, beyond the required x() - corresponding to an SQL function X()) - is required. These can be

x_init(), x_deinit(), xxx_reset(), x_clear() and x_add() functions (see Creating User-defined Functions). The allow-

suspicious-udfs mariadbd option (by default unset) provides a workaround, permitting only one symbol to be used.

This is not recommended, as it opens the possibility of loading shared objects that are not legitimate user-defined

functions.

1.1.1.3.1.4 CREATE FUNCTION UDF

1.1.1.3.3.4 DROP FUNCTION UDF

1.1.1.2.9.3.5 mysql.func Table

5 Columns, Storage Engines, and Plugins
MariaDB allows for a variety of column data types, characters and collations.

Data Types

Data types for columns in MariaDB tables.

Character Sets and Collations

Setting character set and collation for a language.

Storage Engines

Various storage engines available for MariaDB.

Plugins

Documentation on MariaDB Server plugins.

5.1 Data Types
Data Types in MariaDB

Numeric Data Types

Numeric Data Type Overview

Overview and usage of the numeric data types.

TINYINT

Tiny integer, -128 to 127 signed.

BOOLEAN

Synonym for TINYINT(1).

SMALLINT

Small integer from -32768 to 32767 signed.

MEDIUMINT

Medium integer from -8388608 to 8388607 signed.

2803/4161

INT

Integer from -2147483648 to 2147483647 signed.

INTEGER

Synonym for INT

BIGINT

Large integer.

DECIMAL

A packed "exact" fixed-point number.

DEC, NUMERIC, FIXED

Synonyms for DECIMAL

NUMBER

Synonym for DECIMAL in Oracle mode.

FLOAT

Single-precision floating-point number

DOUBLE

Normal-size (double-precision) floating-point number

DOUBLE PRECISION

REAL and DOUBLE PRECISION are synonyms for DOUBLE.

BIT

Bit field type.

Floating-point Accuracy

Not all floating-point numbers can be stored with exact precision

INT1

A synonym for TINYINT.

INT2

Synonym for SMALLINT.

INT3

Synonym for MEDIUMINT.

INT4

Synonym for INT.

INT8

Synonym for BIGINT.

String Data Types

String Literals

Strings are sequences of characters and are enclosed with quotes.

BINARY

Fixed-length binary byte string.

BLOB

Binary large object up to 65,535 bytes.

BLOB and TEXT Data Types

Binary large object data types and the corresponding TEXT types.

2

1

1

4

2804/4161

CHAR

Fixed-length string.

CHAR BYTE

Alias for BINARY.

ENUM

Enumeration, or string object that can have one value chosen from a list of values.

INET4

For storage of IPv4 addresses.

INET6

For storage of IPv6 addresses.

JSON Data Type

Compatibility data type that is an alias for LONGTEXT.

MEDIUMBLOB

Medium binary large object up to 16,777,215 bytes.

MEDIUMTEXT

A TEXT column with a maximum length of 16,777,215 characters.

LONGBLOB

Long BLOB holding up to 4GB.

LONG and LONG VARCHAR

LONG and LONG VARCHAR are synonyms for MEDIUMTEXT.

LONGTEXT

A TEXT column with a maximum length of 4,294,967,295 characters.

ROW

Data type for stored procedure variables.

TEXT

A TEXT column with a maximum length of 65,535 characters.

TINYBLOB

Tiny binary large object up to 255 bytes.

TINYTEXT

A TEXT column with a maximum length of 255 characters.

VARBINARY

Variable-length binary byte string.

VARCHAR

Variable-length string.

SET Data Type

Set, or string object that can have 0 or more values chosen from a list of values.

UUID Data Type

Data type intended for the storage of UUID data.

Data Type Storage Requirements

Storage requirements for the various data types.

Supported Character Sets and Collations

MariaDB supports the following character sets and collations.

1

1

2

2

1

4

2

2805/4161

Character Sets and Collations

Setting character set and collation for a language.

Date and Time Data Types

DATE

The date type YYYY-MM-DD.

TIME

Time format HH:MM:SS.ssssss

DATETIME

Date and time combination displayed as YYYY-MM-DD HH:MM:SS.

TIMESTAMP

YYYY-MM-DD HH:MM:SS

YEAR Data Type

A four-digit year.

Future developments for temporal types

My current project is a forecasting application with dates going out to 263...

How to define a date in order to import an empty date from a CSV file?

I have a CSV file containing amongst other things a couple of date columns....

Which datatypes are supported by MariaDB

I would like to know which datatypes are supported by MariaDB. I'm asking s...

Other Data Types Articles

Geometry Types

Supported geometry types.

AUTO_INCREMENT

Automatic increment.

Data Type Storage Requirements

Storage requirements for the various data types.

AUTO_INCREMENT FAQ

Frequently-asked questions about auto_increment.

NULL Values

NULL represents an unknown value.

There are 8 related questions .

4

7

1

1

5

3

4

1

4

5.1.1 Numeric Data Types
Numeric Data Type Overview

Overview and usage of the numeric data types.

TINYINT

Tiny integer, -128 to 127 signed.

BOOLEAN

Synonym for TINYINT(1).

SMALLINT

Small integer from -32768 to 32767 signed.

2806/4161

https://mariadb.com/kb/en/future-developments-for-temporal-types/
https://mariadb.com/kb/en/how-to-define-a-date-in-order-to-import-an-empty-date-from-a-csv-file/
https://mariadb.com/kb/en/which-datatypes-are-supported-by-mariadb/
https://mariadb.com/kb/en/data-types/+questions/

MEDIUMINT

Medium integer from -8388608 to 8388607 signed.

INT

Integer from -2147483648 to 2147483647 signed.

INTEGER

Synonym for INT

BIGINT

Large integer.

DECIMAL

A packed "exact" fixed-point number.

DEC, NUMERIC, FIXED

Synonyms for DECIMAL

NUMBER

Synonym for DECIMAL in Oracle mode.

FLOAT

Single-precision floating-point number

DOUBLE

Normal-size (double-precision) floating-point number

DOUBLE PRECISION

REAL and DOUBLE PRECISION are synonyms for DOUBLE.

BIT

Bit field type.

Floating-point Accuracy

Not all floating-point numbers can be stored with exact precision

INT1

A synonym for TINYINT.

INT2

Synonym for SMALLINT.

INT3

Synonym for MEDIUMINT.

INT4

Synonym for INT.

INT8

Synonym for BIGINT.

2

5.1.1.1 Numeric Data Type Overview
Contents
1. SIGNED, UNSIGNED and ZEROFILL

1. Examples

2. Range

1. Examples

3. Auto_increment

There are a number of numeric data types:

TINYINT

BOOLEAN - Synonym for TINYINT(1)
2807/4161

INT1 - Synonym for TINYINT

SMALLINT

INT2 - Synonym for SMALLINT

MEDIUMINT

INT3 - Synonym for MEDIUMINT

INT, INTEGER

INT4 - Synonym for INT

BIGINT

INT8 - Synonym for BIGINT

DECIMAL, DEC, NUMERIC, FIXED

FLOAT

DOUBLE, DOUBLE PRECISION, REAL

BIT

See the specific articles for detailed information on each.

SIGNED, UNSIGNED and ZEROFILL
Most numeric types can be defined as SIGNED , UNSIGNED or ZEROFILL , for example:

TINYINT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

If SIGNED , or no attribute, is specified, a portion of the numeric type will be reserved for the sign (plus or minus). For

example, a TINYINT SIGNED can range from -128 to 127.

If UNSIGNED is specified, no portion of the numeric type is reserved for the sign, so for integer types range can be larger.

For example, a TINYINT UNSIGNED can range from 0 to 255. Floating point and fixed-point types also can be UNSIGNED ,

but this only prevents negative values from being stored and doesn't alter the range.

If ZEROFILL is specified, the column will be set to UNSIGNED and the spaces used by default to pad the field are replaced

with zeros. ZEROFILL is ignored in expressions or as part of a UNION. ZEROFILL is a non-standard MySQL and MariaDB

enhancement.

Note that although the preferred syntax indicates that the attributes are exclusive, more than one attribute can be specified.

Until MariaDB 10.2.7 (MDEV-8659), any combination of the attributes could be used in any order, with duplicates. In

this case:

the presence of ZEROFILL makes the column UNSIGNED ZEROFILL .

the presence of UNSIGNED makes the column UNSIGNED .

From MariaDB 10.2.8 , only the following combinations are supported:

SIGNED

UNSIGNED

ZEROFILL

UNSIGNED ZEROFILL

ZEROFILL UNSIGNED

The latter two should be replaced with simply ZEROFILL , but are still accepted by the parser.

Examples

CREATE TABLE zf (

 i1 TINYINT SIGNED,

 i2 TINYINT UNSIGNED,

 i3 TINYINT ZEROFILL

);

INSERT INTO zf VALUES (2,2,2);

SELECT * FROM zf;

+------+------+------+

| i1 | i2 | i3 |

+------+------+------+

| 2 | 2 | 002 |

+------+------+------+

2808/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://jira.mariadb.org/browse/MDEV-8659
https://mariadb.com/kb/en/mariadb-1028-release-notes/

Range
When attempting to add a value that is out of the valid range for the numeric type, MariaDB will react depending on the strict

SQL_MODE setting.

If strict_mode has been set (the default from MariaDB 10.2.4), MariaDB will return an error.

If strict_mode has not been set (the default until MariaDB 10.2.3), MariaDB will adjust the number to fit in the field,

returning a warning.

Examples

With strict_mode set:

SHOW VARIABLES LIKE 'sql_mode';

+---------------+--

---------------+

| Variable_name | Value

|

+---------------+--

---------------+

| sql_mode |

STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---------------+--

---------------+

CREATE TABLE ranges (i1 TINYINT, i2 SMALLINT, i3 TINYINT UNSIGNED);

INSERT INTO ranges VALUES (257,257,257);

ERROR 1264 (22003): Out of range value for column 'i1' at row 1

SELECT * FROM ranges;

Empty set (0.10 sec)

With strict_mode unset:

SHOW VARIABLES LIKE 'sql_mode%';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| sql_mode | |

+---------------+-------+

CREATE TABLE ranges (i1 TINYINT, i2 SMALLINT, i3 TINYINT UNSIGNED);

INSERT INTO ranges VALUES (257,257,257);

Query OK, 1 row affected, 2 warnings (0.00 sec)

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1264 | Out of range value for column 'i1' at row 1 |

| Warning | 1264 | Out of range value for column 'i3' at row 1 |

+---------+------+---+

2 rows in set (0.00 sec)

SELECT * FROM ranges;

+------+------+------+

| i1 | i2 | i3 |

+------+------+------+

| 127 | 257 | 255 |

+------+------+------+

Auto_increment
The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows. For more details, see

auto_increment.

2809/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

5.1.1.2 TINYINT

Syntax

TINYINT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Contents
1. Syntax

2. Description

3. Examples

Description
A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255. For details on the attributes, see

Numeric Data Type Overview.

INT1 is a synonym for TINYINT . BOOL and BOOLEAN are synonyms for TINYINT(1) .

Examples

CREATE TABLE tinyints (a TINYINT,b TINYINT UNSIGNED,c TINYINT ZEROFILL);

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO tinyints VALUES (-10,-10,-10);

ERROR 1264 (22003): Out of range value for column 'b' at row 1

INSERT INTO tinyints VALUES (-10,10,-10);

ERROR 1264 (22003): Out of range value for column 'c' at row 1

INSERT INTO tinyints VALUES (-10,10,10);

SELECT * FROM tinyints;

+------+------+------+

| a | b | c |

+------+------+------+

| -10 | 10 | 010 |

+------+------+------+

INSERT INTO tinyints VALUES (128,128,128);

ERROR 1264 (22003): Out of range value for column 'a' at row 1

INSERT INTO tinyints VALUES (127,128,128);

SELECT * FROM tinyints;

+------+------+------+

| a | b | c |

+------+------+------+

| -10 | 10 | 010 |

| 127 | 128 | 128 |

+------+------+------+

With strict_mode unset, the default until MariaDB 10.2.3 :

2810/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

INSERT INTO tinyints VALUES (-10,-10,-10);

Query OK, 1 row affected, 2 warnings (0.08 sec)

Warning (Code 1264): Out of range value for column 'b' at row 1

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO tinyints VALUES (-10,10,-10);

Query OK, 1 row affected, 1 warning (0.11 sec)

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO tinyints VALUES (-10,10,10);

SELECT * FROM tinyints;

+------+------+------+

| a | b | c |

+------+------+------+

| -10 | 0 | 000 |

| -10 | 10 | 000 |

| -10 | 10 | 010 |

+------+------+------+

INSERT INTO tinyints VALUES (128,128,128);

Query OK, 1 row affected, 1 warning (0.19 sec)

Warning (Code 1264): Out of range value for column 'a' at row 1

INSERT INTO tinyints VALUES (127,128,128);

SELECT * FROM tinyints;

+------+------+------+

| a | b | c |

+------+------+------+

| -10 | 0 | 000 |

| -10 | 10 | 000 |

| -10 | 10 | 010 |

| 127 | 128 | 128 |

| 127 | 128 | 128 |

+------+------+------+

5.1.1.3 BOOLEAN

Syntax

BOOL, BOOLEAN

Description
These types are synonyms for TINYINT(1). A value of zero is considered false. Non-zero values are considered true.

However, the values TRUE and FALSE are merely aliases for 1 and 0. See Boolean Literals, as well as the IS operator for

testing values against a boolean.

Examples

CREATE TABLE boo (i BOOLEAN);

DESC boo;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| i | tinyint(1) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

2811/4161

SELECT IF(0, 'true', 'false');

+------------------------+

| IF(0, 'true', 'false') |

+------------------------+

| false |

+------------------------+

SELECT IF(1, 'true', 'false');

+------------------------+

| IF(1, 'true', 'false') |

+------------------------+

| true |

+------------------------+

SELECT IF(2, 'true', 'false');

+------------------------+

| IF(2, 'true', 'false') |

+------------------------+

| true |

+------------------------+

TRUE and FALSE as aliases for 1 and 0:

SELECT IF(0 = FALSE, 'true', 'false');

+--------------------------------+

| IF(0 = FALSE, 'true', 'false') |

+--------------------------------+

| true |

+--------------------------------+

SELECT IF(1 = TRUE, 'true', 'false');

+-------------------------------+

| IF(1 = TRUE, 'true', 'false') |

+-------------------------------+

| true |

+-------------------------------+

SELECT IF(2 = TRUE, 'true', 'false');

+-------------------------------+

| IF(2 = TRUE, 'true', 'false') |

+-------------------------------+

| false |

+-------------------------------+

SELECT IF(2 = FALSE, 'true', 'false');

+--------------------------------+

| IF(2 = FALSE, 'true', 'false') |

+--------------------------------+

| false |

+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

5.1.1.4 SMALLINT

Syntax

SMALLINT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Description
A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

If a column has been set to ZEROFILL, all values will be prepended by zeros so that the SMALLINT value contains a

number of M digits.

2812/4161

Note: If the ZEROFILL attribute has been specified, the column will automatically become UNSIGNED.

INT2 is a synonym for SMALLINT .

For more details on the attributes, see Numeric Data Type Overview.

Examples

CREATE TABLE smallints (a SMALLINT,b SMALLINT UNSIGNED,c SMALLINT ZEROFILL);

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO smallints VALUES (-10,-10,-10);

ERROR 1264 (22003): Out of range value for column 'b' at row 1

INSERT INTO smallints VALUES (-10,10,-10);

ERROR 1264 (22003): Out of range value for column 'c' at row 1

INSERT INTO smallints VALUES (-10,10,10);

INSERT INTO smallints VALUES (32768,32768,32768);

ERROR 1264 (22003): Out of range value for column 'a' at row 1

INSERT INTO smallints VALUES (32767,32768,32768);

SELECT * FROM smallints;

+-------+-------+-------+

| a | b | c |

+-------+-------+-------+

| -10 | 10 | 00010 |

| 32767 | 32768 | 32768 |

+-------+-------+-------+

With strict_mode unset, the default until MariaDB 10.2.3 :

INSERT INTO smallints VALUES (-10,-10,-10);

Query OK, 1 row affected, 2 warnings (0.09 sec)

Warning (Code 1264): Out of range value for column 'b' at row 1

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO smallints VALUES (-10,10,-10);

Query OK, 1 row affected, 1 warning (0.08 sec)

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO smallints VALUES (-10,10,10);

INSERT INTO smallints VALUES (32768,32768,32768);

Query OK, 1 row affected, 1 warning (0.04 sec)

Warning (Code 1264): Out of range value for column 'a' at row 1

INSERT INTO smallints VALUES (32767,32768,32768);

SELECT * FROM smallints;

+-------+-------+-------+

| a | b | c |

+-------+-------+-------+

| -10 | 0 | 00000 |

| -10 | 10 | 00000 |

| -10 | 10 | 00010 |

| 32767 | 32768 | 32768 |

| 32767 | 32768 | 32768 |

+-------+-------+-------+

5.1.1.5 MEDIUMINT

Syntax

2813/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

MEDIUMINT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Description
A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to 16777215.

ZEROFILL pads the integer with zeroes and assumes UNSIGNED (even if UNSIGNED is not specified).

INT3 is a synonym for MEDIUMINT .

For details on the attributes, see Numeric Data Type Overview.

Examples

CREATE TABLE mediumints (a MEDIUMINT,b MEDIUMINT UNSIGNED,c MEDIUMINT ZEROFILL);

DESCRIBE mediumints;

+-------+--------------------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------------------------+------+-----+---------+-------+

| a | mediumint(9) | YES | | NULL | |

| b | mediumint(8) unsigned | YES | | NULL | |

| c | mediumint(8) unsigned zerofill | YES | | NULL | |

+-------+--------------------------------+------+-----+---------+-------+

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO mediumints VALUES (-10,-10,-10);

ERROR 1264 (22003): Out of range value for column 'b' at row 1

INSERT INTO mediumints VALUES (-10,10,-10);

ERROR 1264 (22003): Out of range value for column 'c' at row 1

INSERT INTO mediumints VALUES (-10,10,10);

INSERT INTO mediumints VALUES (8388608,8388608,8388608);

ERROR 1264 (22003): Out of range value for column 'a' at row 1

INSERT INTO mediumints VALUES (8388607,8388608,8388608);

SELECT * FROM mediumints;

+---------+---------+----------+

| a | b | c |

+---------+---------+----------+

| -10 | 10 | 00000010 |

| 8388607 | 8388608 | 08388608 |

+---------+---------+----------+

With strict_mode unset, the default until MariaDB 10.2.3 :

2814/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

INSERT INTO mediumints VALUES (-10,-10,-10);

Query OK, 1 row affected, 2 warnings (0.05 sec)

Warning (Code 1264): Out of range value for column 'b' at row 1

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO mediumints VALUES (-10,10,-10);

Query OK, 1 row affected, 1 warning (0.08 sec)

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO mediumints VALUES (-10,10,10);

INSERT INTO mediumints VALUES (8388608,8388608,8388608);

Query OK, 1 row affected, 1 warning (0.05 sec)

Warning (Code 1264): Out of range value for column 'a' at row 1

INSERT INTO mediumints VALUES (8388607,8388608,8388608);

SELECT * FROM mediumints;

+---------+---------+----------+

| a | b | c |

+---------+---------+----------+

| -10 | 0 | 00000000 |

| -10 | 0 | 00000000 |

| -10 | 10 | 00000000 |

| -10 | 10 | 00000010 |

| 8388607 | 8388608 | 08388608 |

| 8388607 | 8388608 | 08388608 |

+---------+---------+----------+

5.1.1.6 INT

Syntax

INT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

INTEGER[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Description
A normal-size integer. When marked UNSIGNED, it ranges from 0 to 4294967295, otherwise its range is -2147483648 to

2147483647 (SIGNED is the default). If a column has been set to ZEROFILL, all values will be prepended by zeros so that

the INT value contains a number of M digits. INTEGER is a synonym for INT.

Note: If the ZEROFILL attribute has been specified, the column will automatically become UNSIGNED.

INT4 is a synonym for INT .

For details on the attributes, see Numeric Data Type Overview.

Examples

CREATE TABLE ints (a INT,b INT UNSIGNED,c INT ZEROFILL);

With strict_mode set, the default from MariaDB 10.2.4 :

2815/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/

INSERT INTO ints VALUES (-10,-10,-10);

ERROR 1264 (22003): Out of range value for column 'b' at row 1

INSERT INTO ints VALUES (-10,10,-10);

ERROR 1264 (22003): Out of range value for column 'c' at row 1

INSERT INTO ints VALUES (-10,10,10);

INSERT INTO ints VALUES (2147483648,2147483648,2147483648);

ERROR 1264 (22003): Out of range value for column 'a' at row 1

INSERT INTO ints VALUES (2147483647,2147483648,2147483648);

SELECT * FROM ints;

+------------+------------+------------+

| a | b | c |

+------------+------------+------------+

| -10 | 10 | 0000000010 |

| 2147483647 | 2147483648 | 2147483648 |

+------------+------------+------------+

With strict_mode unset, the default until MariaDB 10.2.3 :

INSERT INTO ints VALUES (-10,-10,-10);

Query OK, 1 row affected, 2 warnings (0.10 sec)

Warning (Code 1264): Out of range value for column 'b' at row 1

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO ints VALUES (-10,10,-10);

Query OK, 1 row affected, 1 warning (0.08 sec)

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO ints VALUES (-10,10,10);

INSERT INTO ints VALUES (2147483648,2147483648,2147483648);

Query OK, 1 row affected, 1 warning (0.07 sec)

Warning (Code 1264): Out of range value for column 'a' at row 1

INSERT INTO ints VALUES (2147483647,2147483648,2147483648);

SELECT * FROM ints;

+------------+------------+------------+

| a | b | c |

+------------+------------+------------+

| -10 | 0 | 0000000000 |

| -10 | 10 | 0000000000 |

| -10 | 10 | 0000000010 |

| 2147483647 | 2147483648 | 2147483648 |

| 2147483647 | 2147483648 | 2147483648 |

+------------+------------+------------+

5.1.1.7 INTEGER

Syntax

INTEGER[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Description
This type is a synonym for INT.

5.1.1.8 BIGINT

Syntax
2816/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

Syntax

BIGINT[(M)] [SIGNED | UNSIGNED | ZEROFILL]

Description
A large integer. The signed range is -9223372036854775808 to 9223372036854775807 . The unsigned range is 0 to

18446744073709551615 .

If a column has been set to ZEROFILL, all values will be prepended by zeros so that the BIGINT value contains a number of

M digits.

Note: If the ZEROFILL attribute has been specified, the column will automatically become UNSIGNED.

For more details on the attributes, see Numeric Data Type Overview.

SERIAL is an alias for:

BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE

INT8 is a synonym for BIGINT .

Examples

CREATE TABLE bigints (a BIGINT,b BIGINT UNSIGNED,c BIGINT ZEROFILL);

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO bigints VALUES (-10,-10,-10);

ERROR 1264 (22003): Out of range value for column 'b' at row 1

INSERT INTO bigints VALUES (-10,10,-10);

ERROR 1264 (22003): Out of range value for column 'c' at row 1

INSERT INTO bigints VALUES (-10,10,10);

INSERT INTO bigints VALUES (9223372036854775808,9223372036854775808,9223372036854775808);

ERROR 1264 (22003): Out of range value for column 'a' at row 1

INSERT INTO bigints VALUES (9223372036854775807,9223372036854775808,9223372036854775808);

SELECT * FROM bigints;

+---------------------+---------------------+----------------------+

| a | b | c |

+---------------------+---------------------+----------------------+

| -10 | 10 | 00000000000000000010 |

| 9223372036854775807 | 9223372036854775808 | 09223372036854775808 |

+---------------------+---------------------+----------------------+

With strict_mode unset, the default until MariaDB 10.2.3 :

2817/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

INSERT INTO bigints VALUES (-10,-10,-10);

Query OK, 1 row affected, 2 warnings (0.08 sec)

Warning (Code 1264): Out of range value for column 'b' at row 1

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO bigints VALUES (-10,10,-10);

Query OK, 1 row affected, 1 warning (0.08 sec)

Warning (Code 1264): Out of range value for column 'c' at row 1

INSERT INTO bigints VALUES (-10,10,10);

INSERT INTO bigints VALUES (9223372036854775808,9223372036854775808,9223372036854775808);

Query OK, 1 row affected, 1 warning (0.07 sec)

Warning (Code 1264): Out of range value for column 'a' at row 1

INSERT INTO bigints VALUES (9223372036854775807,9223372036854775808,9223372036854775808);

SELECT * FROM bigints;

+---------------------+---------------------+----------------------+

| a | b | c |

+---------------------+---------------------+----------------------+

| -10 | 0 | 00000000000000000000 |

| -10 | 10 | 00000000000000000000 |

| -10 | 10 | 00000000000000000010 |

| 9223372036854775807 | 9223372036854775808 | 09223372036854775808 |

| 9223372036854775807 | 9223372036854775808 | 09223372036854775808 |

+---------------------+---------------------+----------------------+

5.1.1.9 DECIMAL

Syntax

DECIMAL[(M[,D])] [SIGNED | UNSIGNED | ZEROFILL]

Contents
1. Syntax

2. Description

3. Examples

Description
A packed "exact" fixed-point number. M is the total number of digits (the precision) and D is the number of digits after the

decimal point (the scale).

The decimal point and (for negative numbers) the "-" sign are not counted in M .

If D is 0 , values have no decimal point or fractional part and on INSERT the value will be rounded to the nearest

DECIMAL .

The maximum number of digits (M) for DECIMAL is 65.

The maximum number of supported decimals (D) is 30 before MariadB 10.2.1 and 38 afterwards.

If D is omitted, the default is 0 . If M is omitted, the default is 10 .

UNSIGNED , if specified, disallows negative values.

ZEROFILL , if specified, pads the number with zeros, up to the total number of digits specified by M .

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

For more details on the attributes, see Numeric Data Type Overview.

DEC , NUMERIC and FIXED are synonyms, as well as NUMBER in Oracle mode from MariaDB 10.3.

Examples

2818/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/

CREATE TABLE t1 (d DECIMAL UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES (1),(2),(3),(4.0),(5.2),(5.7);

Query OK, 6 rows affected, 2 warnings (0.16 sec)

Records: 6 Duplicates: 0 Warnings: 2

Note (Code 1265): Data truncated for column 'd' at row 5

Note (Code 1265): Data truncated for column 'd' at row 6

SELECT * FROM t1;

+------------+

| d |

+------------+

| 0000000001 |

| 0000000002 |

| 0000000003 |

| 0000000004 |

| 0000000005 |

| 0000000006 |

+------------+

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO t1 VALUES (-7);

ERROR 1264 (22003): Out of range value for column 'd' at row 1

With strict_mode unset, the default until MariaDB 10.2.3 :

INSERT INTO t1 VALUES (-7);

Query OK, 1 row affected, 1 warning (0.02 sec)

Warning (Code 1264): Out of range value for column 'd' at row 1

SELECT * FROM t1;

+------------+

| d |

+------------+

| 0000000001 |

| 0000000002 |

| 0000000003 |

| 0000000004 |

| 0000000005 |

| 0000000006 |

| 0000000000 |

+------------+

5.1.1.10 DEC, NUMERIC, FIXED

Syntax

DEC[(M[,D])] [SIGNED | UNSIGNED | ZEROFILL]

NUMERIC[(M[,D])] [SIGNED | UNSIGNED | ZEROFILL]

FIXED[(M[,D])] [SIGNED | UNSIGNED | ZEROFILL]

Description
These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other database systems.

5.1.1.11 NUMBER

NUMBER[(M[,D])] [SIGNED | UNSIGNED | ZEROFILL]

MariaDB starting with 10.3

2819/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

In Oracle mode from MariaDB 10.3, NUMBER is a synonym for DECIMAL.

5.1.1.12 FLOAT

Syntax

FLOAT[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

Contents
1. Syntax

2. Description

Description
A small (single-precision) floating-point number (see DOUBLE for a regular-size floating point number). Allowable values

are:

-3.402823466E+38 to -1.175494351E-38

0

1.175494351E-38 to 3.402823466E+38.

These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your

hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values are

stored to the limits allowed by the hardware. A single-precision floating-point number is accurate to approximately 7 decimal

places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MariaDB are done with double

precision. See Floating Point Accuracy.

For more details on the attributes, see Numeric Data Type Overview.

5.1.1.13 DOUBLE

Syntax

DOUBLE[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

DOUBLE PRECISION[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

REAL[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

Contents
1. Syntax

2. Description

3. Examples

Description
A normal-size (double-precision) floating-point number (see FLOAT for a single-precision floating-point number).

Allowable values are:

-1.7976931348623157E+308 to -2.2250738585072014E-308

0

2.2250738585072014E-308 to 1.7976931348623157E+308

These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your

hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values

are stored to the limits allowed by the hardware. A double-precision floating-point number is accurate to approximately 15

2820/4161

decimal places.

UNSIGNED , if specified, disallows negative values.

ZEROFILL , if specified, pads the number with zeros, up to the total number of digits specified by M .

REAL and DOUBLE PRECISION are synonyms, unless the REAL_AS_FLOAT SQL mode is enabled, in which case REAL

is a synonym for FLOAT rather than DOUBLE.

See Floating Point Accuracy for issues when using floating-point numbers.

For more details on the attributes, see Numeric Data Type Overview.

Examples

CREATE TABLE t1 (d DOUBLE(5,0) zerofill);

INSERT INTO t1 VALUES (1),(2),(3),(4);

SELECT * FROM t1;

+-------+

| d |

+-------+

| 00001 |

| 00002 |

| 00003 |

| 00004 |

+-------+

5.1.1.14 DOUBLE PRECISION

Syntax

DOUBLE PRECISION[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

REAL[(M,D)] [SIGNED | UNSIGNED | ZEROFILL]

Description
REAL and DOUBLE PRECISION are synonyms for DOUBLE.

Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL is a synonym for FLOAT rather than DOUBLE.

5.1.1.15 BIT

Syntax

BIT[(M)]

Description
A bit-field type. M indicates the number of bits per value, from 1 to 64 . The default is 1 if M is omitted.

Bit values can be inserted with b'value' notation, where value is the bit value in 0's and 1's.

Bit fields are automatically zero-padded from the left to the full length of the bit, so for example in a BIT(4) field, '10' is

equivalent to '0010'.

Bits are returned as binary, so to display them, either add 0, or use a function such as HEX, OCT or BIN to convert them.

Examples

2821/4161

CREATE TABLE b (b1 BIT(8));

With strict_mode set, the default from MariaDB 10.2.4 :

INSERT INTO b VALUES (b'11111111');

INSERT INTO b VALUES (b'01010101');

INSERT INTO b VALUES (b'1111111111111');

ERROR 1406 (22001): Data too long for column 'b1' at row 1

SELECT b1+0, HEX(b1), OCT(b1), BIN(b1) FROM b;

+------+---------+---------+----------+

| b1+0 | HEX(b1) | OCT(b1) | BIN(b1) |

+------+---------+---------+----------+

| 255 | FF | 377 | 11111111 |

| 85 | 55 | 125 | 1010101 |

+------+---------+---------+----------+

With strict_mode unset, the default until MariaDB 10.2.3 :

INSERT INTO b VALUES (b'11111111'),(b'01010101'),(b'1111111111111');

Query OK, 3 rows affected, 1 warning (0.10 sec)

Records: 3 Duplicates: 0 Warnings: 1

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1264 | Out of range value for column 'b1' at row 3 |

+---------+------+---+

SELECT b1+0, HEX(b1), OCT(b1), BIN(b1) FROM b;

+------+---------+---------+----------+

| b1+0 | HEX(b1) | OCT(b1) | BIN(b1) |

+------+---------+---------+----------+

| 255 | FF | 377 | 11111111 |

| 85 | 55 | 125 | 1010101 |

| 255 | FF | 377 | 11111111 |

+------+---------+---------+----------+

5.1.1.16 Floating-point Accuracy
Due to their nature, not all floating-point numbers can be stored with exact precision. Hardware architecture, the CPU or

even the compiler version and optimization level may affect the precision.

If you are comparing DOUBLEs or FLOATs with numeric decimals, it is not safe to use the equality operator.

Sometimes, changing a floating-point number from single-precision (FLOAT) to double-precision (DOUBLE) will fix the

problem.

Example
f1, f2 and f3 have seemingly identical values across each row, but due to floating point accuracy, the results may be

unexpected.

CREATE TABLE fpn (id INT, f1 FLOAT, f2 DOUBLE, f3 DECIMAL (10,3));

INSERT INTO fpn VALUES (1,2,2,2),(2,0.1,0.1,0.1);

SELECT * FROM fpn WHERE f1*f1 = f2*f2;

+------+------+------+-------+

| id | f1 | f2 | f3 |

+------+------+------+-------+

| 1 | 2 | 2 | 2.000 |

+------+------+------+-------+

The reason why only one instead of two rows was returned becomes clear when we see how the floating point squares

were evaluated.
2822/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

SELECT f1*f1, f2*f2, f3*f3 FROM fpn;

+----------------------+----------------------+----------+

| f1*f1 | f2*f2 | f3*f3 |

+----------------------+----------------------+----------+

| 4 | 4 | 4.000000 |

| 0.010000000298023226 | 0.010000000000000002 | 0.010000 |

+----------------------+----------------------+----------+

5.1.1.17 INT1
INT1 is a synonym for TINYINT.

CREATE TABLE t1 (x INT1);

DESC t1;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| x | tinyint(4) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

5.1.1.18 INT2
INT2 is a synonym for SMALLINT.

CREATE TABLE t1 (x INT2);

DESC t1;

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-------------+------+-----+---------+-------+

| x | smallint(6) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

5.1.1.19 INT3
INT3 is a synonym for MEDIUMINT.

CREATE TABLE t1 (x INT3);

DESC t1;

+-------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+-------+

| x | mediumint(9) | YES | | NULL | |

+-------+--------------+------+-----+---------+-------+

5.1.1.20 INT4
INT4 is a synonym for INT.

CREATE TABLE t1 (x INT4);

DESC t1;

+-------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------+------+-----+---------+-------+

| x | int(11) | YES | | NULL | |

+-------+---------+------+-----+---------+-------+

2823/4161

5.1.1.21 INT8
INT8 is a synonym for BIGINT.

CREATE TABLE t1 (x INT8);

DESC t1;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| x | bigint(20) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

5.1.2 String Data Types
String Literals

Strings are sequences of characters and are enclosed with quotes.

BINARY

Fixed-length binary byte string.

BLOB

Binary large object up to 65,535 bytes.

BLOB and TEXT Data Types

Binary large object data types and the corresponding TEXT types.

CHAR

Fixed-length string.

CHAR BYTE

Alias for BINARY.

ENUM

Enumeration, or string object that can have one value chosen from a list of values.

INET4

For storage of IPv4 addresses.

INET6

For storage of IPv6 addresses.

JSON Data Type

Compatibility data type that is an alias for LONGTEXT.

MEDIUMBLOB

Medium binary large object up to 16,777,215 bytes.

MEDIUMTEXT

A TEXT column with a maximum length of 16,777,215 characters.

LONGBLOB

Long BLOB holding up to 4GB.

LONG and LONG VARCHAR

LONG and LONG VARCHAR are synonyms for MEDIUMTEXT.

LONGTEXT

A TEXT column with a maximum length of 4,294,967,295 characters.

ROW

Data type for stored procedure variables.

1

1

4

1

1

2

2824/4161

TEXT

A TEXT column with a maximum length of 65,535 characters.

TINYBLOB

Tiny binary large object up to 255 bytes.

TINYTEXT

A TEXT column with a maximum length of 255 characters.

VARBINARY

Variable-length binary byte string.

VARCHAR

Variable-length string.

SET Data Type

Set, or string object that can have 0 or more values chosen from a list of values.

UUID Data Type

Data type intended for the storage of UUID data.

Data Type Storage Requirements

Storage requirements for the various data types.

Supported Character Sets and Collations

MariaDB supports the following character sets and collations.

Character Sets and Collations

Setting character set and collation for a language.

2

1

4

2

1.1.2.13 String Literals

5.1.2.2 BINARY

This page describes the BINARY data type. For details about the operator, see Binary Operator.

Syntax

BINARY(M)

Contents
1. Description

2. Examples

Description
The BINARY type is similar to the CHAR type, but stores binary byte strings rather than non-binary character strings. M

represents the column length in bytes.

It contains no character set, and comparison and sorting are based on the numeric value of the bytes.

If the maximum length is exceeded, and SQL strict mode is not enabled , the extra characters will be dropped with a

warning. If strict mode is enabled, an error will occur.

BINARY values are right-padded with 0x00 (the zero byte) to the specified length when inserted. The padding is not

removed on select, so this needs to be taken into account when sorting and comparing, where all bytes are significant. The

zero byte, 0x00 is less than a space for comparison purposes.

Examples
2825/4161

Inserting too many characters, first with strict mode off, then with it on:

CREATE TABLE bins (a BINARY(10));

INSERT INTO bins VALUES('12345678901');

Query OK, 1 row affected, 1 warning (0.04 sec)

SELECT * FROM bins;

+------------+

| a |

+------------+

| 1234567890 |

+------------+

SET sql_mode='STRICT_ALL_TABLES';

INSERT INTO bins VALUES('12345678901');

ERROR 1406 (22001): Data too long for column 'a' at row 1

Sorting is performed with the byte value:

TRUNCATE bins;

INSERT INTO bins VALUES('A'),('B'),('a'),('b');

SELECT * FROM bins ORDER BY a;

+------+

| a |

+------+

| A |

| B |

| a |

| b |

+------+

Using CAST to sort as a CHAR instead:

SELECT * FROM bins ORDER BY CAST(a AS CHAR);

+------+

| a |

+------+

| a |

| A |

| b |

| B |

+------+

The field is a BINARY(10), so padding of two '\0's are inserted, causing comparisons that don't take this into account to fail:

TRUNCATE bins;

INSERT INTO bins VALUES('12345678');

SELECT a = '12345678', a = '12345678\0\0' from bins;

+----------------+--------------------+

| a = '12345678' | a = '12345678\0\0' |

+----------------+--------------------+

| 0 | 1 |

+----------------+--------------------+

5.1.2.3 BLOB

Syntax

BLOB[(M)]

2826/4161

Contents
1. Syntax

2. Description

1. Indexing

2. Oracle Mode

Description
A BLOB column with a maximum length of 65,535 (2 - 1) bytes. Each BLOB value is stored using a two-byte length

prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MariaDB creates the column as the smallest BLOB type

large enough to hold values M bytes long.

BLOBS can also be used to store dynamic columns.

BLOB and TEXT columns can both be assigned a DEFAULT value.

Indexing

From MariaDB 10.4, it is possible to set a unique index on a column that uses the BLOB data type. In previous

releases this was not possible, as the index would only guarantee the uniqueness of a fixed number of characters.

Oracle Mode

In Oracle mode from MariaDB 10.3, BLOB is a synonym for LONGBLOB .

16

MariaDB starting with 10.4

5.1.2.4 BLOB and TEXT Data Types

Description
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are

TINYBLOB,

BLOB,

MEDIUMBLOB, and

LONGBLOB.

These differ only in the maximum length of the values they can hold.

The TEXT types are

TINYTEXT,

TEXT,

MEDIUMTEXT, and

LONGTEXT.

JSON (alias for LONGTEXT)

These correspond to the four BLOB types and have the same maximum lengths and storage requirements.

BLOB and TEXT columns can have a DEFAULT value.

From MariaDB 10.4, it is possible to set a unique index on columns that use the BLOB or TEXT data types.

MariaDB starting with 10.4.3

5.1.2.5 CHAR
This article covers the CHAR data type. See CHAR Function for the function.

Syntax

2827/4161

[NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

Contents
1. Syntax

2. Description

3. Examples

4. NO PAD Collations

Description
A fixed-length string that is always right-padded with spaces to the specified length when stored. M represents the column

length in characters. The range of M is 0 to 255 . If M is omitted, the length is 1 .

CHAR(0) columns can contain 2 values: an empty string or NULL. Such columns cannot be part of an index. The

CONNECT storage engine does not support CHAR(0).

Note: Trailing spaces are removed when CHAR values are retrieved unless the PAD_CHAR_TO_FULL_LENGTH SQL mode is

enabled.

Before MariaDB 10.2, all collations were of type PADSPACE, meaning that CHAR (as well as VARCHAR and TEXT) values

are compared without regard for trailing spaces. This does not apply to the LIKE pattern-matching operator, which takes into

account trailing spaces.

If a unique index consists of a column where trailing pad characters are stripped or ignored, inserts into that column where

values differ only by the number of trailing pad characters will result in a duplicate-key error.

Examples
Trailing spaces:

CREATE TABLE strtest (c CHAR(10));

INSERT INTO strtest VALUES('Maria ');

SELECT c='Maria',c='Maria ' FROM strtest;

+-----------+--------------+

| c='Maria' | c='Maria ' |

+-----------+--------------+

| 1 | 1 |

+-----------+--------------+

SELECT c LIKE 'Maria',c LIKE 'Maria ' FROM strtest;

+----------------+-------------------+

| c LIKE 'Maria' | c LIKE 'Maria ' |

+----------------+-------------------+

| 1 | 0 |

+----------------+-------------------+

NO PAD Collations
NO PAD collations regard trailing spaces as normal characters. You can get a list of all NO PAD collations by querying the

Information Schema Collations table, for example:

SELECT collation_name FROM information_schema.collations

 WHERE collation_name LIKE "%nopad%";

+------------------------------+

| collation_name |

+------------------------------+

| big5_chinese_nopad_ci |

| big5_nopad_bin |

...

5.1.2.6 CHAR BYTE

Description
2828/4161

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

5.1.2.7 ENUM

Syntax

ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]

Contents
1. Syntax

2. Description

1. NULL and empty values

2. Numeric index

3. Examples

Description
An enumeration. A string object that can have only one value, chosen from the list of values 'value1', 'value2', ..., NULL or

the special '' error value. In theory, an ENUM column can have a maximum of 65,535 distinct values; in practice, the real

maximum depends on many factors. ENUM values are represented internally as integers.

Trailing spaces are automatically stripped from ENUM values on table creation.

ENUMs require relatively little storage space compared to strings, either one or two bytes depending on the number of

enumeration values.

NULL and empty values

An ENUM can also contain NULL and empty values. If the ENUM column is declared to permit NULL values, NULL

becomes a valid value, as well as the default value (see below). If strict SQL Mode is not enabled, and an invalid value is

inserted into an ENUM, a special empty string, with an index value of zero (see Numeric index, below), is inserted, with a

warning. This may be confusing, because the empty string is also a possible value, and the only difference if that is this case

its index is not 0. Inserting will fail with an error if strict mode is active.

If a DEFAULT clause is missing, the default value will be:

NULL if the column is nullable;

otherwise, the first value in the enumeration.

Numeric index

ENUM values are indexed numerically in the order they are defined, and sorting will be performed in this numeric order. We

suggest not using ENUM to store numerals, as there is little to no storage space benefit, and it is easy to confuse the enum

integer with the enum numeral value by leaving out the quotes.

An ENUM defined as ENUM('apple','orange','pear') would have the following index values:

Index Value

NULL NULL

0 ''

1 'apple'

2 'orange'

3 'pear'

Examples

2829/4161

CREATE TABLE fruits (

 id INT NOT NULL auto_increment PRIMARY KEY,

 fruit ENUM('apple','orange','pear'),

 bushels INT);

DESCRIBE fruits;

+---------+-------------------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------+-------------------------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| fruit | enum('apple','orange','pear') | YES | | NULL | |

| bushels | int(11) | YES | | NULL | |

+---------+-------------------------------+------+-----+---------+----------------+

INSERT INTO fruits

 (fruit,bushels) VALUES

 ('pear',20),

 ('apple',100),

 ('orange',25);

INSERT INTO fruits

 (fruit,bushels) VALUES

 ('avocado',10);

ERROR 1265 (01000): Data truncated for column 'fruit' at row 1

SELECT * FROM fruits;

+----+--------+---------+

| id | fruit | bushels |

+----+--------+---------+

| 1 | pear | 20 |

| 2 | apple | 100 |

| 3 | orange | 25 |

+----+--------+---------+

Selecting by numeric index:

SELECT * FROM fruits WHERE fruit=2;

+----+--------+---------+

| id | fruit | bushels |

+----+--------+---------+

| 3 | orange | 25 |

+----+--------+---------+

Sorting is according to the index value:

CREATE TABLE enums (a ENUM('2','1'));

INSERT INTO enums VALUES ('1'),('2');

SELECT * FROM enums ORDER BY a ASC;

+------+

| a |

+------+

| 2 |

| 1 |

+------+

It's easy to get confused between returning the enum integer with the stored value, so we don't suggest using ENUM to

store numerals. The first example returns the 1st indexed field ('2' has an index value of 1, as it's defined first), while the

second example returns the string value '1'.

2830/4161

SELECT * FROM enums WHERE a=1;

+------+

| a |

+------+

| 2 |

+------+

SELECT * FROM enums WHERE a='1';

+------+

| a |

+------+

| 1 |

+------+

5.1.2.8 INET4

The INET4 data type was added in MariaDB 10.10.0

Syntax

INET4

Contents
1. Syntax

2. Description

3. Examples

Description
INET4 is a data type to store IPv4 addresses, as 4-byte binary strings.

From MariaDB 11.3.0, casting from INET4 data types to INET6 is permitted, allowing for example comparisons between the

two data types, and for INET 4 values to be inserted into INET6 columns.

Examples

CREATE OR REPLACE TABLE t1 (a INET4);

INSERT INTO t1 VALUES('0.0.0.0'), ('255.10.0.0'), ('255.255.255.255');

INSERT INTO t1 VALUES (0xa0000001);

INSERT INTO t1 VALUES (0xf0000000);

INSERT INTO t1 VALUES (0xff000001);

SELECT HEX(a), a FROM t1 ORDER BY a;

+----------+-----------------+

| HEX(a) | a |

+----------+-----------------+

| 00000000 | 0.0.0.0 |

| A0000001 | 160.0.0.1 |

| F0000000 | 240.0.0.0 |

| FF000001 | 255.0.0.1 |

| FF0A0000 | 255.10.0.0 |

| FFFFFFFF | 255.255.255.255 |

+----------+-----------------+

Casting from INET4 to INET6 is permitted, allowing direct inserts.

Before MariaDB 11.3:

MariaDB starting with 10.10.0

2831/4161

CREATE TABLE t1 (a INET6);

INSERT INTO t1 VALUES('0.0.0.0'), ('255.10.0.0'), ('255.255.255.255');

ERROR 1292 (22007): Incorrect inet6 value: '0.0.0.0' for column `test`.`t1`.`a` at row 1

From MariaDB 11.3:

CREATE TABLE t1 (a INET6);

INSERT INTO t1 VALUES('0.0.0.0'), ('255.10.0.0'), ('255.255.255.255');

Query OK, 3 rows affected (0.027 sec)

Comparisons are also permitted from MariaDB 11.3:

CREATE OR REPLACE TABLE t1 (i4 INET4, i6 INET6);

INSERT INTO t1 VALUES('10.10.10.10','::ffff:192.168.0.1');

SELECT LEAST(i4,i6) FROM t1;

+--------------------+

| LEAST(i4,i6) |

+--------------------+

| ::ffff:10.10.10.10 |

+--------------------+

5.1.2.9 INET6

The INET6 data type was added in MariaDB 10.5.0

Syntax

INET6

Contents
1. Syntax

2. Description

1. Retrieval

2. Casting

3. Comparisons

4. Mixing INET6 Values for Result

5. Functions and Operators

6. Prepared Statement Parameters

7. Migration between BINARY(16) and INET6

3. Examples

1. Comparison Examples

2. Mixing for Result Examples

3. Functions and Operators Examples

4. Prepared Statement Parameters Examples

5. Migration between BINARY(16) and INET6 Examples

6. Casting from INET4 to INET6

Description
The INET6 data type is intended for storage of IPv6 addresses, as well as IPv4 addresses assuming conventional

mapping of IPv4 addresses into IPv6 addresses.

Both short and long IPv6 notation are permitted, according to RFC-5952.

Values are stored as a 16-byte fixed length binary string, with most significant byte first.

Storage engines see INET6 as BINARY(16).

Clients see INET6 as CHAR(39) and get text representation on retrieval.

The IPv4-compatible notation is considered as deprecated. It is supported for compatibility with the INET6_ATON function,

MariaDB starting with 10.5.0

2832/4161

which also understands this format. It's recommended to use the mapped format to store IPv4 addresses in INET6.

When an IPv4 mapped (or compatible) value is stored in INET6, it still occupies 16 bytes:

Retrieval

On retrieval, in the client-server text protocol, INET6 values are converted to the short text representation, according to

RFC-5952, that is with all leading zeroes in each group removed and with consequent zero groups compressed.

Besides creating one's own stored function, there is no a way to retrieve an INET6 value using long text representation.

Casting

CAST from a character string to INET6 understands addresses in short or long text notation (including IPv4 mapped

and compatible addresses). NULL is returned if the format is not understood.

CAST from a binary string to INET6 requires a 16-byte string as an argument. NULL is returned if the argument

length is not equal to 16.

CAST from other data types to INET6 first converts data to a character string, then CAST from character string to

INET6 is applied.

CAST from INET6 to CHAR returns short text address notation.

CAST from INET6 to BINARY returns its 16-byte binary string representation.

CAST from INET6 to data types other than CHAR (e.g. SIGNED, UNSIGNED, TIME, etc) returns an error.

Comparisons

An INET6 expression can be compared to:

another INET6 expression

a character string expression with a text (short or long) address representation:

a 16-byte binary string expression:

Attempting to compare INET6 to an expression of any other data type returns an error.

Mixing INET6 Values for Result

An INET6 expression can be mixed for result (i.e. UNION, CASE..THEN, COALESCE etc) with:

another INET6 expression. The resulting data type is INET6.

a character string in text (short or long) address representation. The result data type is INET6. The character string

counterpart is automatically converted to INET6. If the string format is not understood, it's converted with a warning to

either NULL or to '::', depending on the NULL-ability of the result.

a 16-byte binary string. The resulting data type is INET6. The binary string counterpart is automatically converted to

INET6. If the length of the binary string is not equal to 16, it's converted with a warning to NULL or to '::' depending on

the NULL-ability of the result.

Attempts to mix INET6 for result with other data types will return an error.

Mixing INET6 with other data types for LEAST and GREATEST, when mixing for comparison and mixing for result are

involved at the same time, uses the same rules with mixing for result, described in the previous paragraphs.

Functions and Operators

HEX() with an INET6 argument returns a hexadecimal representation of the underlying 16-byte binary string

Arithmetic operators (+,-,*,/,MOD,DIV) are not supported for INET6. This may change in the future.

The INET6_ATON function now understands INET6 values as an argument

The prototypes of the IS_IPV4_COMPAT and IS_IPV4_MAPPED functions have changed from a BINARY(16) to a

INET6 ,

When the argument for these two functions is not INET6, automatic implicit CAST to INET6 is applied. As a

consequence, both functions now understand arguments in both text representation and binary(16) representation.

Before MariaDB 10.5.0, these functions understood only binary(16) representation.

Prepared Statement Parameters

INET6 understands both text and binary(16) address representation in prepared statement parameters

(PREPARE..EXECUTE and EXECUTE IMMEDIATE statements).

Migration between BINARY(16) and INET6

2833/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/case

Before MariaDB 10.5.0, you may have used BINARY(16) as a storage for IPv6 internet addresses, in combination with

INET6_ATON and INET6_NTOA to respectively insert and retrieve data.

From 10.5, you can ALTER BINARY(16) columns storing IPv6 addresses to INET6. After such an alter, there is no a need to

use INET6_ATON() and INET6_NTOA(). Addresses can be inserted and retrieved directly.

It is also possible to convert INET6 columns to BINARY(16) and continue using the data in combination with INET6_NTOA()

and INET6_ATON().

Examples

CREATE TABLE t1 (a INET6);

Inserting using short text address notation:

INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

Long text address notation:

INSERT INTO t1 VALUES ('2001:0db8:0000:0000:0000:ff00:0042:8329');

16-byte binary string notation:

INSERT INTO t1 VALUES (0x20010DB8000000000000FF0000428329);

INSERT INTO t1 VALUES (UNHEX('20010DB8000000000000FF0000428329'));

IPv4 addresses, using IPv4-mapped and IPv4-compatible notations:

INSERT INTO t1 VALUES ('::ffff:192.0.2.128'); -- mapped

INSERT INTO t1 VALUES ('::192.0.2.128'); -- compatible

SELECT * FROM t1;

+------------------------+

| a |

+------------------------+

| 2001:db8::ff00:42:8329 |

| 2001:db8::ff00:42:8329 |

| 2001:db8::ff00:42:8329 |

| 2001:db8::ff00:42:8329 |

| ::ffff:192.0.2.128 |

| ::192.0.2.128 |

+------------------------+

IPv4 mapped (or compatible) values still occupy 16 bytes:

CREATE OR REPLACE TABLE t1 (a INET6);

INSERT INTO t1 VALUES ('::ffff:192.0.2.128');

SELECT * FROM t1;

+--------------------+

| a |

+--------------------+

| ::ffff:192.0.2.128 |

+--------------------+

SELECT HEX(a) FROM t1;

+----------------------------------+

| HEX(a) |

+----------------------------------+

| 00000000000000000000FFFFC0000280 |

+----------------------------------+

Casting from INET6 to anything other than CHAR returns an error:

2834/4161

SELECT CAST(a AS DECIMAL) FROM t1;

ERROR 4079 (HY000): Illegal parameter data type inet6 for operation 'decimal_typecast'

Comparison Examples

Comparison with another INET6 expression:

 CREATE OR REPLACE TABLE t1 (a INET6);

 CREATE OR REPLACE TABLE t2 (a INET6);

 INSERT INTO t1 VALUES ('2001:db8::ff00:42:8328'),('2001:db8::ff00:42:8329');

 INSERT INTO t2 VALUES ('2001:db8::ff00:42:832a'),('2001:db8::ff00:42:8329');

 SELECT t1.* FROM t1,t2 WHERE t1.a=t2.a;

 +------------------------+

 | a |

 +------------------------+

 | 2001:db8::ff00:42:8329 |

 +------------------------+

With a character string expression with a text (short or long) address representation:

 CREATE OR REPLACE TABLE t1 (a INET6);

 INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

 SELECT * FROM t1 WHERE a='2001:db8::ff00:42:8329';

 +------------------------+

 | a |

 +------------------------+

 | 2001:db8::ff00:42:8329 |

 +------------------------+

With a 16-byte binary string expression:

 CREATE OR REPLACE TABLE t1 (a INET6);

 INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

 SELECT * FROM t1 WHERE a=X'20010DB8000000000000FF0000428329';

 +------------------------+

 | a |

 +------------------------+

 | 2001:db8::ff00:42:8329 |

 +------------------------+

With an expression of another data type:

SELECT * FROM t1 WHERE a=1;

ERROR 4078 (HY000): Illegal parameter data types inet6 and int for operation '='

Mixing for Result Examples

Mixed with another INET6 expression, returning an INET6 data type:

2835/4161

 CREATE OR REPLACE TABLE t1 (a INET6, b INET6);

 INSERT INTO t1 VALUES (NULL,'2001:db8::ff00:42:8329');

 SELECT a FROM t1 UNION SELECT b FROM t1;

 +------------------------+

 | a |

 +------------------------+

 | NULL |

 | 2001:db8::ff00:42:8329 |

 +------------------------+

 SELECT COALESCE(a, b) FROM t1;

 +------------------------+

 | COALESCE(a, b) |

 +------------------------+

 | 2001:db8::ff00:42:8329 |

 +------------------------+

Mixed with a character string in text (short or long) address representation:

 CREATE OR REPLACE TABLE t1 (a INET6, b VARCHAR(64));

 INSERT INTO t1 VALUES (NULL,'2001:db8::ff00:42:8328');

 INSERT INTO t1 VALUES (NULL,'2001:db8::ff00:42:832a garbage');

 SELECT COALESCE(a,b) FROM t1;

 +------------------------+

 | COALESCE(a,b) |

 +------------------------+

 | 2001:db8::ff00:42:8328 |

 | NULL |

 +------------------------+

 2 rows in set, 1 warning (0.001 sec)

 SHOW WARNINGS;

 +---------+------+---+

 | Level | Code | Message |

 +---------+------+---+

 | Warning | 1292 | Incorrect inet6 value: '2001:db8::ff00:42:832a garbage' |

 +---------+------+---+

Mixed with a 16-byte binary string:

 CREATE OR REPLACE TABLE t1 (a INET6, b VARBINARY(16));

 INSERT INTO t1 VALUES (NULL,CONCAT(0xFFFF,REPEAT(0x0000,6),0xFFFF));

 INSERT INTO t1 VALUES (NULL,0x00/*garbage*/);

 SELECT COALESCE(a,b) FROM t1;

 +---------------+

 | COALESCE(a,b) |

 +---------------+

 | ffff::ffff |

 | NULL |

 +---------------+

 2 rows in set, 1 warning (0.001 sec)

 SHOW WARNINGS;

 +---------+------+-------------------------------+

 | Level | Code | Message |

 +---------+------+-------------------------------+

 | Warning | 1292 | Incorrect inet6 value: '\x00' |

 +---------+------+-------------------------------+

Mixing with other data types:

SELECT CAST('ffff::ffff' AS INET6) UNION SELECT 1;

ERROR 4078 (HY000): Illegal parameter data types inet6 and int for operation 'UNION'

2836/4161

Functions and Operators Examples

HEX with an INET6 argument returning a hexadecimal representation:

 SELECT HEX(CAST('2001:db8::ff00:42:8329' AS INET6));

 +--+

 | HEX(CAST('2001:db8::ff00:42:8329' AS INET6)) |

 +--+

 | 20010DB8000000000000FF0000428329 |

 +--+

INET6_ATON now understands INET6 values as an argument:

 CREATE OR REPLACE TABLE t1 (a INET6);

 INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

 SELECT a, HEX(INET6_ATON(a)) FROM t1;

 +------------------------+----------------------------------+

 | a | HEX(INET6_ATON(a)) |

 +------------------------+----------------------------------+

 | 2001:db8::ff00:42:8329 | 20010DB8000000000000FF0000428329 |

 +------------------------+----------------------------------+

IS_IPV4_COMPAT and IS_IPV4_MAPPED prototype now a BINARY(16)) :

 CREATE OR REPLACE TABLE t1 (a INET6);

 INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

 INSERT INTO t1 VALUES ('::ffff:192.168.0.1');

 INSERT INTO t1 VALUES ('::192.168.0.1');

 SELECT a, IS_IPV4_MAPPED(a), IS_IPV4_COMPAT(a) FROM t1;

 +------------------------+-------------------+-------------------+

 | a | IS_IPV4_MAPPED(a) | IS_IPV4_COMPAT(a) |

 +------------------------+-------------------+-------------------+

 | 2001:db8::ff00:42:8329 | 0 | 0 |

 | ::ffff:192.168.0.1 | 1 | 0 |

 | ::192.168.0.1 | 0 | 1 |

 +------------------------+-------------------+-------------------+

Automatic implicit CAST to INET6:

2837/4161

 CREATE OR REPLACE TABLE t1 (

 a INET6,

 b VARCHAR(39) DEFAULT a

);

 INSERT INTO t1 (a) VALUES ('ffff::ffff'),('::ffff:192.168.0.1');

 SELECT a, IS_IPV4_MAPPED(a), b, IS_IPV4_MAPPED(b) FROM t1;

 +--------------------+-------------------+--------------------+-------------------+

 | a | IS_IPV4_MAPPED(a) | b | IS_IPV4_MAPPED(b) |

 +--------------------+-------------------+--------------------+-------------------+

 | ffff::ffff | 0 | ffff::ffff | 0 |

 | ::ffff:192.168.0.1 | 1 | ::ffff:192.168.0.1 | 1 |

 +--------------------+-------------------+--------------------+-------------------+

 CREATE OR REPLACE TABLE t1 (

 a INET6,

 b BINARY(16) DEFAULT UNHEX(HEX(a))

);

 INSERT INTO t1 (a) VALUES ('ffff::ffff'),('::ffff:192.168.0.1');

 SELECT a, IS_IPV4_MAPPED(a), HEX(b), IS_IPV4_MAPPED(b) FROM t1;

 +--------------------+-------------------+----------------------------------+-------------------+

 | a | IS_IPV4_MAPPED(a) | HEX(b) | IS_IPV4_MAPPED(b)

 +--------------------+-------------------+----------------------------------+-------------------+

 | ffff::ffff | 0 | FFFF000000000000000000000000FFFF | 0

 | ::ffff:192.168.0.1 | 1 | 00000000000000000000FFFFC0A80001 | 1

 +--------------------+-------------------+----------------------------------+-------------------+

Prepared Statement Parameters Examples

CREATE OR REPLACE TABLE t1 (a INET6);

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (?)' USING 'ffff::fffe';

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (?)' USING X'FFFF000000000000000000000000FFFF';

SELECT * FROM t1;

+------------+

| a |

+------------+

| ffff::fffe |

| ffff::ffff |

+------------+

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING 'ffff::fffe';

+------------+

| a |

+------------+

| ffff::fffe |

+------------+

EXECUTE IMMEDIATE 'SELECT * FROM t1 WHERE a=?' USING X'FFFF000000000000000000000000FFFF';

+------------+

| a |

+------------+

| ffff::ffff |

+------------+

Migration between BINARY(16) and INET6 Examples

Before MariaDB 10.5:

2838/4161

CREATE OR REPLACE TABLE t1 (a BINARY(16));

INSERT INTO t1 VALUES (INET6_ATON('ffff::ffff'));

SELECT INET6_NTOA(a) FROM t1;

+---------------+

| INET6_NTOA(a) |

+---------------+

| ffff::ffff |

+---------------+

Migrating to INET6, from MariaDB 10.5:

ALTER TABLE t1 MODIFY a INET6;

INSERT INTO t1 VALUES ('ffff::fffe');

SELECT * FROM t1;

+------------+

| a |

+------------+

| ffff::ffff |

| ffff::fffe |

+------------+

Migration from INET6 to BINARY(16):

CREATE OR REPLACE TABLE t1 (a INET6);

INSERT INTO t1 VALUES ('2001:db8::ff00:42:8329');

INSERT INTO t1 VALUES ('::ffff:192.168.0.1');

INSERT INTO t1 VALUES ('::192.168.0.1');

ALTER TABLE t1 MODIFY a BINARY(16);

SELECT INET6_NTOA(a) FROM t1;

+------------------------+

| INET6_NTOA(a) |

+------------------------+

| 2001:db8::ff00:42:8329 |

| ::ffff:192.168.0.1 |

| ::192.168.0.1 |

+------------------------+

Casting from INET4 to INET6

From MariaDB 11.3.0, casting from INET4 data types to INET6 is permitted, allowing INET4 values to be inserted into

INET6 columns.

Before MariaDB 11.3:

CREATE TABLE t1 (a INET6);

INSERT INTO t1 VALUES('0.0.0.0'), ('255.10.0.0'), ('255.255.255.255');

ERROR 1292 (22007): Incorrect inet6 value: '0.0.0.0' for column `test`.`t1`.`a` at row 1

From MariaDB 11.3:

CREATE TABLE t1 (a INET6);

INSERT INTO t1 VALUES('0.0.0.0'), ('255.10.0.0'), ('255.255.255.255');

Query OK, 3 rows affected (0.027 sec)

5.1.2.10 JSON Data Type
The JSON alias was added to make it possible to use JSON columns in statement based replication from MySQL to

MariaDB and to make it possible for MariaDB to read mysqldumps from MySQL.

2839/4161

Contents
1. Examples

2. Replicating JSON Data Between MySQL and MariaDB

3. Converting a MySQL TABLE with JSON Fields to MariaDB

4. Differences Between MySQL JSON Strings and MariaDB JSON Strings

JSON is an alias for LONGTEXT introduced for compatibility reasons with MySQL's JSON data type. MariaDB implements

this as a LONGTEXT rather, as the JSON data type contradicts the SQL standard, and MariaDB's benchmarks indicate that

performance is at least equivalent.

In order to ensure that a a valid json document is inserted, the JSON_VALID function can be used as a CHECK constraint.

This constraint is automatically included for types using the JSON alias from MariaDB 10.4.3.

Examples

CREATE TABLE t (j JSON);

DESC t;

+-------+----------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+----------+------+-----+---------+-------+

| j | longtext | YES | | NULL | |

+-------+----------+------+-----+---------+-------+

With validation:

CREATE TABLE t2 (

 j JSON

 CHECK (JSON_VALID(j))

);

INSERT INTO t2 VALUES ('invalid');

ERROR 4025 (23000): CONSTRAINT `j` failed for `test`.`t2`

INSERT INTO t2 VALUES ('{"id": 1, "name": "Monty"}');

Query OK, 1 row affected (0.13 sec)

Replicating JSON Data Between MySQL and MariaDB
The JSON type in MySQL stores the JSON object in a compact form, not as LONGTEXT as in MariaDB. This means that

row based replication will not work for JSON types from MySQL to MariaDB.

There are a a few different ways to solve this:

Use statement based replication.

Change the JSON column to type TEXT in MySQL

If you must use row-based replication and cannot change the MySQL master from JSON to TEXT, you can try to

introduce an intermediate MySQL slave and change the column type from JSON to TEXT on it. Then you replicate

from this intermediate slave to MariaDB.

Converting a MySQL TABLE with JSON Fields to
MariaDB
MariaDB can't directly access MySQL's JSON format.

There are a a few different ways to move the table to MariaDB:

From MariaDB 10.5.7, see the you can use the mysql_json plugin. See Making MariaDB understand MySQL JSON .

Change the JSON column to type TEXT in MySQL. After this, MariaDB can directly use the table without any need for

a dump and restore.

Use mysqldump to copy the table.

Differences Between MySQL JSON Strings and MariaDB
JSON Strings

2840/4161

https://mariadb.org/making-mariadb-understand-mysql-json/

In MySQL, JSON is an object and is compared according to json values . In MariaDB JSON strings are normal

strings and compared as strings. One exception is when using JSON_EXTRACT() in which case strings are

unescaped before comparison.

5.1.2.11 MEDIUMBLOB

Syntax

MEDIUMBLOB

Description
A BLOB column with a maximum length of 16,777,215 (2 - 1) bytes. Each MEDIUMBLOB value is stored using a three-

byte length prefix that indicates the number of bytes in the value.

24

5.1.2.12 MEDIUMTEXT

Syntax

MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

Description
A TEXT column with a maximum length of 16,777,215 (2 - 1) characters. The effective maximum length is less if the

value contains multi-byte characters. Each MEDIUMTEXT value is stored using a three-byte length prefix that indicates the

number of bytes in the value.

24

5.1.2.13 LONGBLOB

Syntax

LONGBLOB

Description
A BLOB column with a maximum length of 4,294,967,295 bytes or 4GB (2 - 1). The effective maximum length of

LONGBLOB columns depends on the configured maximum packet size in the client/server protocol and available memory.

Each LONGBLOB value is stored using a four-byte length prefix that indicates the number of bytes in the value.

Oracle Mode

In Oracle mode from MariaDB 10.3, BLOB is a synonym for LONGBLOB .

32

5.1.2.14 LONG and LONG VARCHAR
LONG and LONG VARCHAR are synonyms for MEDIUMTEXT.

2841/4161

https://dev.mysql.com/doc/refman/8.0/en/json.html#json-comparison

CREATE TABLE t1 (a LONG, b LONG VARCHAR);

DESC t1;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| a | mediumtext | YES | | NULL | |

| b | mediumtext | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

5.1.2.15 LONGTEXT

Syntax

LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

Contents
1. Syntax

2. Description

3. Oracle Mode

Description
A TEXT column with a maximum length of 4,294,967,295 or 4GB (2 - 1) characters. The effective maximum length is

less if the value contains multi-byte characters. The effective maximum length of LONGTEXT columns also depends on the

configured maximum packet size in the client/server protocol and available memory. Each LONGTEXT value is stored using

a four-byte length prefix that indicates the number of bytes in the value.

From MariaDB 10.2.7 , JSON is an alias for LONGTEXT. See JSON Data Type for details.

Oracle Mode
In Oracle mode from MariaDB 10.3, CLOB is a synonym for LONGTEXT .

32

5.1.2.16 ROW

Syntax

ROW (<field name> <data type> [{, <field name> <data type>}...])

Contents
1. Syntax

2. Description

3. Features

1. ROW fields as normal variables

2. ROW type variables as FETCH targets

3. ROW type variables as SELECT...INTO targets

4. Features not implemented

5. Examples

1. Declaring a ROW in a stored procedure

2. FETCH Examples

3. SELECT...INTO Examples

Description
ROW is a data type for stored procedure variables.

2842/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/

Features

ROW fields as normal variables

ROW fields (members) act as normal variables, and are able to appear in all query parts where a stored procedure variable

is allowed:

Assignment is using the := operator and the SET command:

a.x:= 10;

a.x:= b.x;

SET a.x= 10, a.y=20, a.z= b.z;

Passing to functions and operators:

SELECT f1(rec.a), rec.a<10;

Clauses (select list, WHERE, HAVING, LIMIT, etc...,):

SELECT var.a, t1.b FROM t1 WHERE t1.b=var.b LIMIT var.c;

INSERT values:

INSERT INTO t1 VALUES (rec.a, rec.b, rec.c);

SELECT .. INTO targets

SELECT a,b INTO rec.a, rec.b FROM t1 WHERE t1.id=10;

Dynamic SQL out parameters (EXECUTE and EXECUTE IMMEDIATE)

EXECUTE IMMEDIATE 'CALL proc_with_out_param(?)' USING rec.a;

ROW type variables as FETCH targets

ROW type variables are allowed as FETCH targets:

FETCH cur INTO rec;

where cur is a CURSOR and rec is a ROW type stored procedure variable.

Note, currently an attempt to use FETCH for a ROW type variable returns this error:

ERROR 1328 (HY000): Incorrect number of FETCH variables

FETCH from a cursor cur into a ROW variable rec works as follows:

The number of fields in cur must match the number of fields in rec . Otherwise, an error is reported.

Assignment is done from left to right. The first cursor field is assigned to the first variable field, the second cursor field

is assigned to the second variable field, etc.

Field names in rec are not important and can differ from field names in cur .

See FETCH Examples (below) for examples of using this with sql_mode=ORACLE and sql_mode=DEFAULT .

ROW type variables as SELECT...INTO targets

ROW type variables are allowed as SELECT..INTO targets with some differences depending on which sql_mode is in use.

When using sql_mode=ORACLE , table%ROWTYPE and cursor%ROWTYPE variables can be used as

SELECT...INTO targets.

2843/4161

Using multiple ROW variables in the SELECT..INTO list will report an error.

Using ROW variables with a different column count than in the SELECT..INTO list will report an error.

See SELECT...INTO Examples (below) for examples of using this with sql_mode=ORACLE and sql_mode=DEFAULT .

Features not implemented
The following features are planned, but not implemented yet:

Returning a ROW type expression from a stored function (see MDEV-12252). This will need some grammar

change to support field names after parentheses:

SELECT f1().x FROM DUAL;

Returning a ROW type expression from a built-in hybrid type function, such as CASE , IF , etc.

ROW of ROWs

Examples

Declaring a ROW in a stored procedure

DELIMITER $$

CREATE PROCEDURE p1()

BEGIN

 DECLARE r ROW (c1 INT, c2 VARCHAR(10));

 SET r.c1= 10;

 SET r.c2= 'test';

 INSERT INTO t1 VALUES (r.c1, r.c2);

END;

$$

DELIMITER ;

CALL p1();

FETCH Examples

A complete FETCH example for sql_mode=ORACLE :

DROP TABLE IF EXISTS t1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

INSERT INTO t1 VALUES (20,'b20');

INSERT INTO t1 VALUES (30,'b30');

SET sql_mode=oracle;

DROP PROCEDURE IF EXISTS p1;

DELIMITER $$

CREATE PROCEDURE p1 AS

 rec ROW(a INT, b VARCHAR(32));

 CURSOR c IS SELECT a,b FROM t1;

BEGIN

 OPEN c;

 LOOP

 FETCH c INTO rec;

 EXIT WHEN c%NOTFOUND;

 SELECT ('rec=(' || rec.a ||','|| rec.b||')');

 END LOOP;

 CLOSE c;

END;

$$

DELIMITER ;

CALL p1();

A complete FETCH example for sql_mode=DEFAULT :

2844/4161

https://jira.mariadb.org/browse/MDEV-12252

DROP TABLE IF EXISTS t1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

INSERT INTO t1 VALUES (20,'b20');

INSERT INTO t1 VALUES (30,'b30');

SET sql_mode=DEFAULT;

DROP PROCEDURE IF EXISTS p1;

DELIMITER $$

CREATE PROCEDURE p1()

BEGIN

 DECLARE done INT DEFAULT FALSE;

 DECLARE rec ROW(a INT, b VARCHAR(32));

 DECLARE c CURSOR FOR SELECT a,b FROM t1;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN c;

read_loop:

 LOOP

 FETCH c INTO rec;

 IF done THEN

 LEAVE read_loop;

 END IF;

 SELECT CONCAT('rec=(',rec.a,',',rec.b,')');

 END LOOP;

 CLOSE c;

END;

$$

DELIMITER ;

CALL p1();

SELECT...INTO Examples

A SELECT...INTO example for sql_mode=DEFAULT :

SET sql_mode=DEFAULT;

DROP TABLE IF EXISTS t1;

DROP PROCEDURE IF EXISTS p1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

DELIMITER $$

CREATE PROCEDURE p1()

BEGIN

 DECLARE rec1 ROW(a INT, b VARCHAR(32));

 SELECT * FROM t1 INTO rec1;

 SELECT rec1.a, rec1.b;

END;

$$

DELIMITER ;

CALL p1();

The above example returns:

+--------+--------+

| rec1.a | rec1.b |

+--------+--------+

| 10 | b10 |

+--------+--------+

A SELECT...INTO example for sql_mode=ORACLE :

2845/4161

SET sql_mode=ORACLE;

DROP TABLE IF EXISTS t1;

DROP PROCEDURE IF EXISTS p1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

DELIMITER $$

CREATE PROCEDURE p1 AS

 rec1 ROW(a INT, b VARCHAR(32));

BEGIN

 SELECT * FROM t1 INTO rec1;

 SELECT rec1.a, rec1.b;

END;

$$

DELIMITER ;

CALL p1();

The above example returns:

+--------+--------+

| rec1.a | rec1.b |

+--------+--------+

| 10 | b10 |

+--------+--------+

An example for sql_mode=ORACLE using table%ROWTYPE variables as SELECT..INTO targets:

SET sql_mode=ORACLE;

DROP TABLE IF EXISTS t1;

DROP PROCEDURE IF EXISTS p1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

DELIMITER $$

CREATE PROCEDURE p1 AS

 rec1 t1%ROWTYPE;

BEGIN

 SELECT * FROM t1 INTO rec1;

 SELECT rec1.a, rec1.b;

END;

$$

DELIMITER ;

CALL p1();

The above example returns:

+--------+--------+

| rec1.a | rec1.b |

+--------+--------+

| 10 | b10 |

+--------+--------+

An example for sql_mode=ORACLE using cursor%ROWTYPE variables as SELECT..INTO targets:

SET sql_mode=ORACLE;

DROP TABLE IF EXISTS t1;

DROP PROCEDURE IF EXISTS p1;

CREATE TABLE t1 (a INT, b VARCHAR(32));

INSERT INTO t1 VALUES (10,'b10');

DELIMITER $$

CREATE PROCEDURE p1 AS

 CURSOR cur1 IS SELECT * FROM t1;

 rec1 cur1%ROWTYPE;

BEGIN

 SELECT * FROM t1 INTO rec1;

 SELECT rec1.a, rec1.b;

END;

$$

DELIMITER ;

CALL p1();

2846/4161

The above example returns:

+--------+--------+

| rec1.a | rec1.b |

+--------+--------+

| 10 | b10 |

+--------+--------+

5.1.2.17 TEXT

Syntax

TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

Contents
1. Syntax

2. Description

3. Examples

4. Indexing

5. Difference between VARCHAR and TEXT

1. For Storage Engine Developers

Description
A TEXT column with a maximum length of 65,535 (2 - 1) characters. The effective maximum length is less if the

value contains multi-byte characters. Each TEXT value is stored using a two-byte length prefix that indicates the number of

bytes in the value. If you need a bigger storage, consider using MEDIUMTEXT instead.

An optional length M can be given for this type. If this is done, MariaDB creates the column as the smallest TEXT type

large enough to hold values M characters long.

Before MariaDB 10.2, all MariaDB collations were of type PADSPACE, meaning that TEXT (as well as VARCHAR and

CHAR values) are compared without regard for trailing spaces. This does not apply to the LIKE pattern-matching operator,

which takes into account trailing spaces.

Before MariaDB 10.2.1 , BLOB and TEXT columns could not be assigned a DEFAULT value. This restriction was lifted in

MariaDB 10.2.1 .

Examples
Trailing spaces:

CREATE TABLE strtest (d TEXT(10));

INSERT INTO strtest VALUES('Maria ');

SELECT d='Maria',d='Maria ' FROM strtest;

+-----------+--------------+

| d='Maria' | d='Maria ' |

+-----------+--------------+

| 1 | 1 |

+-----------+--------------+

SELECT d LIKE 'Maria',d LIKE 'Maria ' FROM strtest;

+----------------+-------------------+

| d LIKE 'Maria' | d LIKE 'Maria ' |

+----------------+-------------------+

| 0 | 1 |

+----------------+-------------------+

Indexing
TEXT columns can only be indexed over a specified length. This means that they cannot be used as the primary key of a

table norm until MariaDB 10.4, can a unique index be created on them.

16

MariaDB starting with 10.4 2847/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

Starting with MariaDB 10.4, a unique index can be created on a TEXT column.

Internally, this uses hash indexing to quickly check the values and if a hash collision is found, the actual stored values

are compared in order to retain the uniqueness.

Difference between VARCHAR and TEXT
VARCHAR columns can be fully indexed. TEXT columns can only be indexed over a specified length.

Using TEXT or BLOB in a SELECT query that uses temporary tables for storing intermediate results will force the

temporary table to be disk based (using the Aria storage engine instead of the memory storage engine, which is a bit

slower. This is not that bad as the Aria storage engine caches the rows in memory. To get the benefit of this, one

should ensure that the aria_pagecache_buffer_size variable is big enough to hold most of the row and index data for

temporary tables.

For Storage Engine Developers

Internally the full length of the VARCHAR column is allocated inside each TABLE objects record[] structure. As there

are three such buffers, each open table will allocate 3 times max-length-to-store-varchar bytes of memory.

TEXT and BLOB columns are stored with a pointer (4 or 8 bytes) + a 1-4 bytes length. The TEXT data is only stored

once. This means that internally TEXT uses less memory for each open table but instead has the additional overhead

that each TEXT object needs to be allocated and freed for each row access (with some caching in between).

MariaDB starting with 10.4

5.1.2.18 TINYBLOB

Syntax

TINYBLOB

Description
A BLOB column with a maximum length of 255 (2 - 1) bytes. Each TINYBLOB value is stored using a one-byte length prefix

that indicates the number of bytes in the value.

8

5.1.2.19 TINYTEXT

Syntax

TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

Description
A TEXT column with a maximum length of 255 (2 - 1) characters. The effective maximum length is less if the value

contains multi-byte characters. Each TINYTEXT value is stored using a one-byte length prefix that indicates the number of

bytes in the value.

8

5.1.2.20 VARBINARY

Syntax

VARBINARY(M)

2848/4161

Contents
1. Syntax

2. Description

1. Oracle Mode

3. Examples

Description
The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than non-binary character

strings. M represents the maximum column length in bytes.

It contains no character set, and comparison and sorting are based on the numeric value of the bytes.

If the maximum length is exceeded, and SQL strict mode is not enabled , the extra characters will be dropped with a

warning. If strict mode is enabled, an error will occur.

Unlike BINARY values, VARBINARYs are not right-padded when inserting.

Oracle Mode

In Oracle mode from MariaDB 10.3, RAW is a synonym for VARBINARY .

Examples
Inserting too many characters, first with strict mode off, then with it on:

CREATE TABLE varbins (a VARBINARY(10));

INSERT INTO varbins VALUES('12345678901');

Query OK, 1 row affected, 1 warning (0.04 sec)

SELECT * FROM varbins;

+------------+

| a |

+------------+

| 1234567890 |

+------------+

SET sql_mode='STRICT_ALL_TABLES';

INSERT INTO varbins VALUES('12345678901');

ERROR 1406 (22001): Data too long for column 'a' at row 1

Sorting is performed with the byte value:

TRUNCATE varbins;

INSERT INTO varbins VALUES('A'),('B'),('a'),('b');

SELECT * FROM varbins ORDER BY a;

+------+

| a |

+------+

| A |

| B |

| a |

| b |

+------+

Using CAST to sort as a CHAR instead:

2849/4161

SELECT * FROM varbins ORDER BY CAST(a AS CHAR);

+------+

| a |

+------+

| a |

| A |

| b |

| B |

+------+

5.1.2.21 VARCHAR

Syntax

[NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE collation_name]

Contents
1. Syntax

2. Description

3. Examples

4. Truncation

5. Difference Between VARCHAR and TEXT

6. Oracle Mode

1. For Storage Engine Developers

Description
A variable-length string. M represents the maximum column length in characters. The range of M is 0 to 65,532. The

effective maximum length of a VARCHAR is subject to the maximum row size and the character set used. For example, utf8

characters can require up to three bytes per character, so a VARCHAR column that uses the utf8 character set can be

declared to be a maximum of 21,844 characters.

Note: For the ColumnStore engine, M represents the maximum column length in bytes.

MariaDB stores VARCHAR values as a one-byte or two-byte length prefix plus data. The length prefix indicates the number

of bytes in the value. A VARCHAR column uses one length byte if values require no more than 255 bytes, two length bytes if

values may require more than 255 bytes.

MariaDB follows the standard SQL specification, and does not remove trailing spaces from VARCHAR values.

VARCHAR(0) columns can contain 2 values: an empty string or NULL. Such columns cannot be part of an index. The

CONNECT storage engine does not support VARCHAR(0).

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to define that a

VARCHAR column should use some predefined character set. MariaDB uses utf8 as this predefined character set, as does

MySQL 4.1 and up. NVARCHAR is shorthand for NATIONAL VARCHAR.

Before MariaDB 10.2, all MariaDB collations were of type PADSPACE , meaning that VARCHAR (as well as CHAR and TEXT

values) are compared without regard for trailing spaces. This does not apply to the LIKE pattern-matching operator, which

takes into account trailing spaces. From MariaDB 10.2, a number of NO PAD collations are available.

If a unique index consists of a column where trailing pad characters are stripped or ignored, inserts into that column where

values differ only by the number of trailing pad characters will result in a duplicate-key error.

Examples
The following are equivalent:

VARCHAR(30) CHARACTER SET utf8

NATIONAL VARCHAR(30)

NVARCHAR(30)

NCHAR VARCHAR(30)

NATIONAL CHARACTER VARYING(30)

NATIONAL CHAR VARYING(30)

2850/4161

https://mariadb.com/kb/en/columnstore/

Trailing spaces:

CREATE TABLE strtest (v VARCHAR(10));

INSERT INTO strtest VALUES('Maria ');

SELECT v='Maria',v='Maria ' FROM strtest;

+-----------+--------------+

| v='Maria' | v='Maria ' |

+-----------+--------------+

| 1 | 1 |

+-----------+--------------+

SELECT v LIKE 'Maria',v LIKE 'Maria ' FROM strtest;

+----------------+-------------------+

| v LIKE 'Maria' | v LIKE 'Maria ' |

+----------------+-------------------+

| 0 | 1 |

+----------------+-------------------+

Truncation
Depending on whether or not strict sql mode is set, you will either get a warning or an error if you try to insert a string

that is too long into a VARCHAR column. If the extra characters are spaces, the spaces that can't fit will be removed

and you will always get a warning, regardless of the sql mode setting.

Difference Between VARCHAR and TEXT
VARCHAR columns can be fully indexed. TEXT columns can only be indexed over a specified length.

Using TEXT or BLOB in a SELECT query that uses temporary tables for storing intermediate results will force the

temporary table to be disk based (using the Aria storage engine instead of the memory storage engine, which is a bit

slower. This is not that bad as the Aria storage engine caches the rows in memory. To get the benefit of this, one

should ensure that the aria_pagecache_buffer_size variable is big enough to hold most of the row and index data for

temporary tables.

Oracle Mode
In Oracle mode from MariaDB 10.3, VARCHAR2 is a synonym.

For Storage Engine Developers

Internally the full length of the VARCHAR column is allocated inside each TABLE objects record[] structure. As there

are three such buffers, each open table will allocate 3 times max-length-to-store-varchar bytes of memory.

TEXT and BLOB columns are stored with a pointer (4 or 8 bytes) + a 1-4 bytes length. The TEXT data is only stored

once. This means that internally TEXT uses less memory for each open table but instead has the additional overhead

that each TEXT object needs to be allocated and freed for each row access (with some caching in between).

5.1.2.22 SET Data Type

Syntax

SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]

Description
A set. A string object that can have zero or more values, each of which must be chosen from the list of values 'value1',

'value2', ... A SET column can have a maximum of 64 members. SET values are represented internally as integers.

SET values cannot contain commas.

If a SET contains duplicate values, an error will be returned if strict mode is enabled, or a warning if strict mode is not

enabled.

2851/4161

5.1.2.23 UUID Data Type

The UUID data type was added in MariaDB 10.7.

Syntax

UUID

Contents
1. Syntax

2. Description

1. Retrieval

2. Casting

3. Storage

3. Examples

Description
The UUID data type is intended for the storage of 128-bit UUID (Universally Unique Identifier) data. See the UUID function

page for more details on UUIDs themselves.

Retrieval

Data retrieved by this data type is in the string representation defined in RFC4122 .

Casting

String literals of hexadecimal characters and CHAR/VARCHAR/TEXT can be cast to the UUID data type. Likewise

hexadecimal literals, binary-literals, and BINARY/VARBINARY/BLOB types can also be cast to UUID.

The data type will not accept a short UUID generated with the UUID_SHORT function, but will accept a value without the -

character generated by the SYS_GUID function (or inserted directly). Hyphens can be partially omitted as well, or included

after any group of two digits.

The type does not accept UUIDs in braces, permitted by some implementations.

Storage

UUID are stored in an index friendly manner, the order of a UUID of llllllll-mmmm-Vhhh-vsss-nnnnnnnnnnnn is stored as:

nnnnnnnnnnnn-vsss-Vhhh-mmmm-llllllll

This provides a sorting order, assuming a UUIDv1 (node and timestamp) is used, of the node, followed by the timestamp.

The key aspect is the timestamps are sequential.

Starting from MariaDB 10.10.6 and MariaDB 10.11.5, taking into account that UUIDv7 and other versions are designed

around time ordering, UUIDs version >= 6 are now stored without byte-swapping, and UUIDs with version >=8 and

variant=0 are now considered invalid (as the standard expects)

Examples

CREATE TABLE t1 (id UUID);

Directly Inserting via string literals:

INSERT INTO t1 VALUES('123e4567-e89b-12d3-a456-426655440000');

Directly Inserting via hexadecimal literals:

MariaDB starting with 10.7

MariaDB starting with 10.10

2852/4161

https://datatracker.ietf.org/doc/html/rfc4122

INSERT INTO t1 VALUES (x'fffffffffffffffffffffffffffffffe');

Generating and inserting via the UUID function.

INSERT INTO t1 VALUES (UUID());

Retrieval:

SELECT * FROM t1;

+--------------------------------------+

| id |

+--------------------------------------+

| 123e4567-e89b-12d3-a456-426655440000 |

| ffffffff-ffff-ffff-ffff-fffffffffffe |

| 93aac041-1a14-11ec-ab4e-f859713e4be4 |

+--------------------------------------+

The UUID_SHORT function does not generate valid full-length UUID:

INSERT INTO t1 VALUES (UUID_SHORT());

ERROR 1292 (22007): Incorrect uuid value: '99440417627439104'

 for column `test`.`t1`.`id` at row 1

Accepting a value without the - character, either directly or generated by the SYS_GUID function:

INSERT INTO t1 VALUES (SYS_GUID());

SELECT * FROM t1;

+--------------------------------------+

| id |

+--------------------------------------+

| 123e4567-e89b-12d3-a456-426655440000 |

| ffffffff-ffff-ffff-ffff-fffffffffffe |

| 93aac041-1a14-11ec-ab4e-f859713e4be4 |

| ea0368d3-1a14-11ec-ab4e-f859713e4be4 |

+--------------------------------------+

SELECT SYS_GUID();

+----------------------------------+

| SYS_GUID() |

+----------------------------------+

| ff5b6bcc1a1411ecab4ef859713e4be4 |

+----------------------------------+

INSERT INTO t1 VALUES ('ff5b6bcc1a1411ecab4ef859713e4be4');

SELECT * FROM t1;

+--------------------------------------+

| id |

+--------------------------------------+

| 123e4567-e89b-12d3-a456-426655440000 |

| ffffffff-ffff-ffff-ffff-fffffffffffe |

| 93aac041-1a14-11ec-ab4e-f859713e4be4 |

| ea0368d3-1a14-11ec-ab4e-f859713e4be4 |

| ff5b6bcc-1a14-11ec-ab4e-f859713e4be4 |

+--------------------------------------+

Valid and invalid hyphen and brace usage:

2853/4161

TRUNCATE t1;

INSERT INTO t1 VALUES ('f8aa-ed66-1a1b-11ec-ab4e-f859-713e-4be4');

INSERT INTO t1 VALUES ('1b80667f1a1c-11ecab4ef859713e4be4');

INSERT INTO t1 VALUES ('2fd6c945-1a-1c-11ec-ab4e-f859713e4be4');

INSERT INTO t1 VALUES ('49-c9-f9-59-1a-1c-11ec-ab4e-f859713e4be4');

INSERT INTO t1 VALUES ('57-96-da-c1-1a-1c-11-ec-ab-4e-f8-59-71-3e-4b-e4');

INSERT INTO t1 VALUES ('6-eb74f8f-1a1c-11ec-ab4e-f859713e4be4');

INSERT INTO t1 VALUES ('{29bad136-1a1d-11ec-ab4e-f859713e4be4}');

ERROR 1292 (22007): Incorrect uuid value: '{29bad136-1a1d-11ec-ab4e-f859713e4be4}'

 for column `test`.`t1`.`id` at row 1

SELECT * FROM t1;

+--------------------------------------+

| id |

+--------------------------------------+

| f8aaed66-1a1b-11ec-ab4e-f859713e4be4 |

| 1b80667f-1a1c-11ec-ab4e-f859713e4be4 |

| 2fd6c945-1a1c-11ec-ab4e-f859713e4be4 |

| 49c9f959-1a1c-11ec-ab4e-f859713e4be4 |

| 5796dac1-1a1c-11ec-ab4e-f859713e4be4 |

| 6eb74f8f-1a1c-11ec-ab4e-f859713e4be4 |

+--------------------------------------+

5.1.2.24 Data Type Storage Requirements
Contents
1. Numeric Data Types

1. Decimal

2. String Data Types

1. Examples

3. Date and Time Data Types

1. Microseconds

1. MySQL 5.6+ and MariaDB 10.1+

2. MariaDB 5.3 - MariaDB 10.0

4. NULLs

The following tables indicate the approximate data storage requirements for each data type.

Numeric Data Types

Data Type Storage Requirement

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if p <= 24, otherwise 8 bytes

DOUBLE 8 bytes

DECIMAL See table below

BIT(M) (M+7)/8 bytes

Note that MEDIUMINT columns will require 4 bytes in memory (for example, in InnoDB buffer pool).

2854/4161

Decimal

Decimals are stored using a binary format, with the integer and the fraction stored separately. Each nine-digit multiple

requires 4 bytes, followed by a number of bytes for whatever remains, as follows:

Remaining digits Storage Requirement

0 0 bytes

1 1 byte

2 1 byte

3 2 bytes

4 2 bytes

5 3 bytes

6 3 bytes

7 4 bytes

8 4 bytes

String Data Types
In the descriptions below, M is the declared column length (in characters or in bytes), while len is the actual length in

bytes of the value.

Data Type Storage Requirement

ENUM 1 byte for up to 255 enum values, 2 bytes for 256 to 65,535 enum values

CHAR(M)
M × w bytes, where w is the number of bytes required for the maximum-length character in

the character set

BINARY(M) M bytes

VARCHAR(M),

VARBINARY(M)

len + 1 bytes if column is 0 3 255 bytes, len + 2 bytes if column may require more than 255

bytes

TINYBLOB, TINYTEXT len + 1 bytes

BLOB, TEXT len + 2 bytes

MEDIUMBLOB,

MEDIUMTEXT
len + 3 bytes

LONGBLOB, LONGTEXT len + 4 bytes

SET Given M members of the set, (M+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes

INET6 16 bytes

UUID 16 bytes

In some character sets, not all characters use the same number of bytes. utf8 encodes characters with one to three bytes

per character, while utf8mb4 requires one to four bytes per character.

When using field the COMPRESSED attribute, 1 byte is reserved for metadata. For example, VARCHAR(255) will use +2

bytes instead of +1.

Examples

Assuming a single-byte character-set:

Value CHAR(2) Storage Required VARCHAR(2) Storage Required

'' ' ' 2 bytes '' 1 byte

'1' '1 ' 2 bytes '1' 2 bytes

'12' '12' 2 bytes '12' 3 bytes

2855/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/uuid_datatype

Date and Time Data Types

Data Type Storage Requirement

DATE 3 bytes

TIME 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

YEAR 1 byte

Microseconds

MariaDB 5.3 and MySQL 5.6 introduced microseconds. The underlying storage implementations were different, but from

MariaDB 10.1, MariaDB defaults to the MySQL format (by means of the mysql56_temporal_format variable). Microseconds

have the following additional storage requirements:

MySQL 5.6+ and MariaDB 10.1+

Precision Storage Requirement

0 0 bytes

1,2 1 byte

3,4 2 bytes

5,6 3 bytes

MariaDB 5.3 - MariaDB 10.0

Precision Storage Requirement

0 0 bytes

1,2 1 byte

3,4,5 2 bytes

6 3 bytes

NULLs
For the InnoDB COMPACT, DYNAMIC and COMPRESSED row formats, a number of bytes will be allocated in the record

header for the nullable fields. If there are between 1 and 8 nullable fields, 1 such byte will be allocated. In the record payload

area, no space will be reserved for values that are NULL.

For the InnoDB REDUNDANT row format , the overhead is 1 bit in the record header (as a part of the 1-byte or 2-byte "end

of field" pointer). In that format, a NULL fixed-length field will consume the same amount of space as any NOT NULL value

in the record payload area. The motivation is that it is possible to update in place between NOT NULL and NULL values.

In other formats, NULL values usually require 1 bit in the data file, 1 byte in the index file.

5.1.2.25 Supported Character Sets and
Collations

Contents
1. Character Sets

2. Collations

3. Case Sensitivity

4. NO PAD Collations

5. Accent Insensitivity

6. Changes

2856/4161

Character Sets
You can see which character sets are available in a particular version by running the SHOW CHARACTER SET statement

or by querying the Information Schema CHARACTER_SETS Table.

From MariaDB 11.2, it is possible to change the default collation associated with a character set. See Changing Default

Collation

MariaDB supports the following character sets:

Charset Description Default collation Maxlen

armscii8 ARMSCII-8 Armenian armscii8_general_ci 1

ascii US ASCII ascii_general_ci 1

big5 Big5 Traditional Chinese big5_chinese_ci 2

binary Binary pseudo charset binary 1

cp1250 Windows Central European cp1250_general_ci 1

cp1251 Windows Cyrillic cp1251_general_ci 1

cp1256 Windows Arabic cp1256_general_ci 1

cp1257 Windows Baltic cp1257_general_ci 1

cp850 DOS West European cp850_general_ci 1

cp852 DOS Central European cp852_general_ci 1

cp866 DOS Russian cp866_general_ci 1

cp932 SJIS for Windows Japanese cp932_japanese_ci 2

dec8 DEC West European dec8_swedish_ci 1

eucjpms UJIS for Windows Japanese eucjpms_japanese_ci 3

euckr EUC-KR Korean euckr_korean_ci 2

gb2312 GB2312 Simplified Chinese gb2312_chinese_ci 2

gbk GBK Simplified Chinese gbk_chinese_ci 2

geostd8 GEOSTD8 Georgian geostd8_general_ci 1

greek ISO 8859-7 Greek greek_general_ci 1

hebrew ISO 8859-8 Hebrew hebrew_general_ci 1

hp8 HP West European hp8_english_ci 1

keybcs2 DOS Kamenicky Czech-Slovak keybcs2_general_ci 1

koi8r KOI8-R Relcom Russian koi8r_general_ci 1

koi8u KOI8-U Ukrainian koi8u_general_ci 1

latin1 cp1252 West European latin1_swedish_ci 1

latin2 ISO 8859-2 Central European latin2_general_ci 1

latin5 ISO 8859-9 Turkish latin5_turkish_ci 1

latin7 ISO 8859-13 Baltic latin7_general_ci 1

macce Mac Central European macce_general_ci 1

macroman Mac West European macroman_general_ci 1

sjis Shift-JIS Japanese sjis_japanese_ci 2

swe7 7bit Swedish swe7_swedish_ci 1

tis620 TIS620 Thai tis620_thai_ci 1

ucs2 UCS-2 Unicode ucs2_general_ci 2

ujis EUC-JP Japanese ujis_japanese_ci 3

utf8 UTF-8 Unicode utf8_general_ci 3/4 (see OLD_MODE)

2857/4161

utf16 UTF-16 Unicode utf16_general_ci 4

utf16le UTF-16LE Unicode utf16le_general_ci 4

utf32 UTF-32 Unicode utf32_general_ci 4

utf8mb3 UTF-8 Unicode utf8mb3_general_ci 3

utf8mb4 UTF-8 Unicode utf8mb4_general_ci 4

Note that the Mroonga Storage Engine only supports a limited number of character sets. See Mroonga available character

sets.

Collations
MariaDB supports the following collations:

show collation;

+--------------------------------+----------+------+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+--------------------------------+----------+------+---------+----------+---------+

| big5_chinese_ci | big5 | 1 | Yes | Yes | 1 |

| big5_bin | big5 | 84 | | Yes | 1 |

| big5_chinese_nopad_ci | big5 | 1025 | | Yes | 1 |

| big5_nopad_bin | big5 | 1108 | | Yes | 1 |

| dec8_swedish_ci | dec8 | 3 | Yes | Yes | 1 |

| dec8_bin | dec8 | 69 | | Yes | 1 |

| dec8_swedish_nopad_ci | dec8 | 1027 | | Yes | 1 |

| dec8_nopad_bin | dec8 | 1093 | | Yes | 1 |

| cp850_general_ci | cp850 | 4 | Yes | Yes | 1 |

| cp850_bin | cp850 | 80 | | Yes | 1 |

| cp850_general_nopad_ci | cp850 | 1028 | | Yes | 1 |

| cp850_nopad_bin | cp850 | 1104 | | Yes | 1 |

| hp8_english_ci | hp8 | 6 | Yes | Yes | 1 |

| hp8_bin | hp8 | 72 | | Yes | 1 |

| hp8_english_nopad_ci | hp8 | 1030 | | Yes | 1 |

| hp8_nopad_bin | hp8 | 1096 | | Yes | 1 |

| koi8r_general_ci | koi8r | 7 | Yes | Yes | 1 |

| koi8r_bin | koi8r | 74 | | Yes | 1 |

| koi8r_general_nopad_ci | koi8r | 1031 | | Yes | 1 |

| koi8r_nopad_bin | koi8r | 1098 | | Yes | 1 |

| latin1_german1_ci | latin1 | 5 | | Yes | 1 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |

| latin1_danish_ci | latin1 | 15 | | Yes | 1 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 1 |

| latin1_general_ci | latin1 | 48 | | Yes | 1 |

| latin1_general_cs | latin1 | 49 | | Yes | 1 |

| latin1_spanish_ci | latin1 | 94 | | Yes | 1 |

| latin1_swedish_nopad_ci | latin1 | 1032 | | Yes | 1 |

| latin1_nopad_bin | latin1 | 1071 | | Yes | 1 |

| latin2_czech_cs | latin2 | 2 | | Yes | 4 |

| latin2_general_ci | latin2 | 9 | Yes | Yes | 1 |

| latin2_hungarian_ci | latin2 | 21 | | Yes | 1 |

| latin2_croatian_ci | latin2 | 27 | | Yes | 1 |

| latin2_bin | latin2 | 77 | | Yes | 1 |

| latin2_general_nopad_ci | latin2 | 1033 | | Yes | 1 |

| latin2_nopad_bin | latin2 | 1101 | | Yes | 1 |

| swe7_swedish_ci | swe7 | 10 | Yes | Yes | 1 |

| swe7_bin | swe7 | 82 | | Yes | 1 |

| swe7_swedish_nopad_ci | swe7 | 1034 | | Yes | 1 |

| swe7_nopad_bin | swe7 | 1106 | | Yes | 1 |

| ascii_general_ci | ascii | 11 | Yes | Yes | 1 |

| ascii_bin | ascii | 65 | | Yes | 1 |

| ascii_general_nopad_ci | ascii | 1035 | | Yes | 1 |

| ascii_nopad_bin | ascii | 1089 | | Yes | 1 |

| ujis_japanese_ci | ujis | 12 | Yes | Yes | 1 |

| ujis_bin | ujis | 91 | | Yes | 1 |

| ujis_japanese_nopad_ci | ujis | 1036 | | Yes | 1 |

| ujis_nopad_bin | ujis | 1115 | | Yes | 1 |

| sjis_japanese_ci | sjis | 13 | Yes | Yes | 1 |

| sjis_bin | sjis | 88 | | Yes | 1 |

| sjis_japanese_nopad_ci | sjis | 1037 | | Yes | 1 |

| sjis_nopad_bin | sjis | 1112 | | Yes | 1 |
2858/4161

| hebrew_general_ci | hebrew | 16 | Yes | Yes | 1 |

| hebrew_bin | hebrew | 71 | | Yes | 1 |

| hebrew_general_nopad_ci | hebrew | 1040 | | Yes | 1 |

| hebrew_nopad_bin | hebrew | 1095 | | Yes | 1 |

| tis620_thai_ci | tis620 | 18 | Yes | Yes | 4 |

| tis620_bin | tis620 | 89 | | Yes | 1 |

| tis620_thai_nopad_ci | tis620 | 1042 | | Yes | 4 |

| tis620_nopad_bin | tis620 | 1113 | | Yes | 1 |

| euckr_korean_ci | euckr | 19 | Yes | Yes | 1 |

| euckr_bin | euckr | 85 | | Yes | 1 |

| euckr_korean_nopad_ci | euckr | 1043 | | Yes | 1 |

| euckr_nopad_bin | euckr | 1109 | | Yes | 1 |

| koi8u_general_ci | koi8u | 22 | Yes | Yes | 1 |

| koi8u_bin | koi8u | 75 | | Yes | 1 |

| koi8u_general_nopad_ci | koi8u | 1046 | | Yes | 1 |

| koi8u_nopad_bin | koi8u | 1099 | | Yes | 1 |

| gb2312_chinese_ci | gb2312 | 24 | Yes | Yes | 1 |

| gb2312_bin | gb2312 | 86 | | Yes | 1 |

| gb2312_chinese_nopad_ci | gb2312 | 1048 | | Yes | 1 |

| gb2312_nopad_bin | gb2312 | 1110 | | Yes | 1 |

| greek_general_ci | greek | 25 | Yes | Yes | 1 |

| greek_bin | greek | 70 | | Yes | 1 |

| greek_general_nopad_ci | greek | 1049 | | Yes | 1 |

| greek_nopad_bin | greek | 1094 | | Yes | 1 |

| cp1250_general_ci | cp1250 | 26 | Yes | Yes | 1 |

| cp1250_czech_cs | cp1250 | 34 | | Yes | 2 |

| cp1250_croatian_ci | cp1250 | 44 | | Yes | 1 |

| cp1250_bin | cp1250 | 66 | | Yes | 1 |

| cp1250_polish_ci | cp1250 | 99 | | Yes | 1 |

| cp1250_general_nopad_ci | cp1250 | 1050 | | Yes | 1 |

| cp1250_nopad_bin | cp1250 | 1090 | | Yes | 1 |

| gbk_chinese_ci | gbk | 28 | Yes | Yes | 1 |

| gbk_bin | gbk | 87 | | Yes | 1 |

| gbk_chinese_nopad_ci | gbk | 1052 | | Yes | 1 |

| gbk_nopad_bin | gbk | 1111 | | Yes | 1 |

| latin5_turkish_ci | latin5 | 30 | Yes | Yes | 1 |

| latin5_bin | latin5 | 78 | | Yes | 1 |

| latin5_turkish_nopad_ci | latin5 | 1054 | | Yes | 1 |

| latin5_nopad_bin | latin5 | 1102 | | Yes | 1 |

| armscii8_general_ci | armscii8 | 32 | Yes | Yes | 1 |

| armscii8_bin | armscii8 | 64 | | Yes | 1 |

| armscii8_general_nopad_ci | armscii8 | 1056 | | Yes | 1 |

| armscii8_nopad_bin | armscii8 | 1088 | | Yes | 1 |

| utf8mb3_general_ci | utf8mb3 | 33 | Yes | Yes | 1 |

| utf8mb3_bin | utf8mb3 | 83 | | Yes | 1 |

| utf8mb3_unicode_ci | utf8mb3 | 192 | | Yes | 8 |

| utf8mb3_icelandic_ci | utf8mb3 | 193 | | Yes | 8 |

| utf8mb3_latvian_ci | utf8mb3 | 194 | | Yes | 8 |

| utf8mb3_romanian_ci | utf8mb3 | 195 | | Yes | 8 |

| utf8mb3_slovenian_ci | utf8mb3 | 196 | | Yes | 8 |

| utf8mb3_polish_ci | utf8mb3 | 197 | | Yes | 8 |

| utf8mb3_estonian_ci | utf8mb3 | 198 | | Yes | 8 |

| utf8mb3_spanish_ci | utf8mb3 | 199 | | Yes | 8 |

| utf8mb3_swedish_ci | utf8mb3 | 200 | | Yes | 8 |

| utf8mb3_turkish_ci | utf8mb3 | 201 | | Yes | 8 |

| utf8mb3_czech_ci | utf8mb3 | 202 | | Yes | 8 |

| utf8mb3_danish_ci | utf8mb3 | 203 | | Yes | 8 |

| utf8mb3_lithuanian_ci | utf8mb3 | 204 | | Yes | 8 |

| utf8mb3_slovak_ci | utf8mb3 | 205 | | Yes | 8 |

| utf8mb3_spanish2_ci | utf8mb3 | 206 | | Yes | 8 |

| utf8mb3_roman_ci | utf8mb3 | 207 | | Yes | 8 |

| utf8mb3_persian_ci | utf8mb3 | 208 | | Yes | 8 |

| utf8mb3_esperanto_ci | utf8mb3 | 209 | | Yes | 8 |

| utf8mb3_hungarian_ci | utf8mb3 | 210 | | Yes | 8 |

| utf8mb3_sinhala_ci | utf8mb3 | 211 | | Yes | 8 |

| utf8mb3_german2_ci | utf8mb3 | 212 | | Yes | 8 |

| utf8mb3_croatian_mysql561_ci | utf8mb3 | 213 | | Yes | 8 |

| utf8mb3_unicode_520_ci | utf8mb3 | 214 | | Yes | 8 |

| utf8mb3_vietnamese_ci | utf8mb3 | 215 | | Yes | 8 |

| utf8mb3_general_mysql500_ci | utf8mb3 | 223 | | Yes | 1 |

| utf8mb3_croatian_ci | utf8mb3 | 576 | | Yes | 8 |

| utf8mb3_myanmar_ci | utf8mb3 | 577 | | Yes | 8 |

| utf8mb3_thai_520_w2 | utf8mb3 | 578 | | Yes | 4 |

| utf8mb3_general_nopad_ci | utf8mb3 | 1057 | | Yes | 1 |

| utf8mb3_nopad_bin | utf8mb3 | 1107 | | Yes | 1 |
2859/4161

| utf8mb3_nopad_bin | utf8mb3 | 1107 | | Yes | 1 |

| utf8mb3_unicode_nopad_ci | utf8mb3 | 1216 | | Yes | 8 |

| utf8mb3_unicode_520_nopad_ci | utf8mb3 | 1238 | | Yes | 8 |

| ucs2_general_ci | ucs2 | 35 | Yes | Yes | 1 |

| ucs2_bin | ucs2 | 90 | | Yes | 1 |

| ucs2_unicode_ci | ucs2 | 128 | | Yes | 8 |

| ucs2_icelandic_ci | ucs2 | 129 | | Yes | 8 |

| ucs2_latvian_ci | ucs2 | 130 | | Yes | 8 |

| ucs2_romanian_ci | ucs2 | 131 | | Yes | 8 |

| ucs2_slovenian_ci | ucs2 | 132 | | Yes | 8 |

| ucs2_polish_ci | ucs2 | 133 | | Yes | 8 |

| ucs2_estonian_ci | ucs2 | 134 | | Yes | 8 |

| ucs2_spanish_ci | ucs2 | 135 | | Yes | 8 |

| ucs2_swedish_ci | ucs2 | 136 | | Yes | 8 |

| ucs2_turkish_ci | ucs2 | 137 | | Yes | 8 |

| ucs2_czech_ci | ucs2 | 138 | | Yes | 8 |

| ucs2_danish_ci | ucs2 | 139 | | Yes | 8 |

| ucs2_lithuanian_ci | ucs2 | 140 | | Yes | 8 |

| ucs2_slovak_ci | ucs2 | 141 | | Yes | 8 |

| ucs2_spanish2_ci | ucs2 | 142 | | Yes | 8 |

| ucs2_roman_ci | ucs2 | 143 | | Yes | 8 |

| ucs2_persian_ci | ucs2 | 144 | | Yes | 8 |

| ucs2_esperanto_ci | ucs2 | 145 | | Yes | 8 |

| ucs2_hungarian_ci | ucs2 | 146 | | Yes | 8 |

| ucs2_sinhala_ci | ucs2 | 147 | | Yes | 8 |

| ucs2_german2_ci | ucs2 | 148 | | Yes | 8 |

| ucs2_croatian_mysql561_ci | ucs2 | 149 | | Yes | 8 |

| ucs2_unicode_520_ci | ucs2 | 150 | | Yes | 8 |

| ucs2_vietnamese_ci | ucs2 | 151 | | Yes | 8 |

| ucs2_general_mysql500_ci | ucs2 | 159 | | Yes | 1 |

| ucs2_croatian_ci | ucs2 | 640 | | Yes | 8 |

| ucs2_myanmar_ci | ucs2 | 641 | | Yes | 8 |

| ucs2_thai_520_w2 | ucs2 | 642 | | Yes | 4 |

| ucs2_general_nopad_ci | ucs2 | 1059 | | Yes | 1 |

| ucs2_nopad_bin | ucs2 | 1114 | | Yes | 1 |

| ucs2_unicode_nopad_ci | ucs2 | 1152 | | Yes | 8 |

| ucs2_unicode_520_nopad_ci | ucs2 | 1174 | | Yes | 8 |

| cp866_general_ci | cp866 | 36 | Yes | Yes | 1 |

| cp866_bin | cp866 | 68 | | Yes | 1 |

| cp866_general_nopad_ci | cp866 | 1060 | | Yes | 1 |

| cp866_nopad_bin | cp866 | 1092 | | Yes | 1 |

| keybcs2_general_ci | keybcs2 | 37 | Yes | Yes | 1 |

| keybcs2_bin | keybcs2 | 73 | | Yes | 1 |

| keybcs2_general_nopad_ci | keybcs2 | 1061 | | Yes | 1 |

| keybcs2_nopad_bin | keybcs2 | 1097 | | Yes | 1 |

| macce_general_ci | macce | 38 | Yes | Yes | 1 |

| macce_bin | macce | 43 | | Yes | 1 |

| macce_general_nopad_ci | macce | 1062 | | Yes | 1 |

| macce_nopad_bin | macce | 1067 | | Yes | 1 |

| macroman_general_ci | macroman | 39 | Yes | Yes | 1 |

| macroman_bin | macroman | 53 | | Yes | 1 |

| macroman_general_nopad_ci | macroman | 1063 | | Yes | 1 |

| macroman_nopad_bin | macroman | 1077 | | Yes | 1 |

| cp852_general_ci | cp852 | 40 | Yes | Yes | 1 |

| cp852_bin | cp852 | 81 | | Yes | 1 |

| cp852_general_nopad_ci | cp852 | 1064 | | Yes | 1 |

| cp852_nopad_bin | cp852 | 1105 | | Yes | 1 |

| latin7_estonian_cs | latin7 | 20 | | Yes | 1 |

| latin7_general_ci | latin7 | 41 | Yes | Yes | 1 |

| latin7_general_cs | latin7 | 42 | | Yes | 1 |

| latin7_bin | latin7 | 79 | | Yes | 1 |

| latin7_general_nopad_ci | latin7 | 1065 | | Yes | 1 |

| latin7_nopad_bin | latin7 | 1103 | | Yes | 1 |

| utf8mb4_general_ci | utf8mb4 | 45 | Yes | Yes | 1 |

| utf8mb4_bin | utf8mb4 | 46 | | Yes | 1 |

| utf8mb4_unicode_ci | utf8mb4 | 224 | | Yes | 8 |

| utf8mb4_icelandic_ci | utf8mb4 | 225 | | Yes | 8 |

| utf8mb4_latvian_ci | utf8mb4 | 226 | | Yes | 8 |

| utf8mb4_romanian_ci | utf8mb4 | 227 | | Yes | 8 |

| utf8mb4_slovenian_ci | utf8mb4 | 228 | | Yes | 8 |

| utf8mb4_polish_ci | utf8mb4 | 229 | | Yes | 8 |

| utf8mb4_estonian_ci | utf8mb4 | 230 | | Yes | 8 |

| utf8mb4_spanish_ci | utf8mb4 | 231 | | Yes | 8 |

| utf8mb4_swedish_ci | utf8mb4 | 232 | | Yes | 8 |

| utf8mb4_turkish_ci | utf8mb4 | 233 | | Yes | 8 |

| utf8mb4_czech_ci | utf8mb4 | 234 | | Yes | 8 |
2860/4161

| utf8mb4_czech_ci | utf8mb4 | 234 | | Yes | 8 |

| utf8mb4_danish_ci | utf8mb4 | 235 | | Yes | 8 |

| utf8mb4_lithuanian_ci | utf8mb4 | 236 | | Yes | 8 |

| utf8mb4_slovak_ci | utf8mb4 | 237 | | Yes | 8 |

| utf8mb4_spanish2_ci | utf8mb4 | 238 | | Yes | 8 |

| utf8mb4_roman_ci | utf8mb4 | 239 | | Yes | 8 |

| utf8mb4_persian_ci | utf8mb4 | 240 | | Yes | 8 |

| utf8mb4_esperanto_ci | utf8mb4 | 241 | | Yes | 8 |

| utf8mb4_hungarian_ci | utf8mb4 | 242 | | Yes | 8 |

| utf8mb4_sinhala_ci | utf8mb4 | 243 | | Yes | 8 |

| utf8mb4_german2_ci | utf8mb4 | 244 | | Yes | 8 |

| utf8mb4_croatian_mysql561_ci | utf8mb4 | 245 | | Yes | 8 |

| utf8mb4_unicode_520_ci | utf8mb4 | 246 | | Yes | 8 |

| utf8mb4_vietnamese_ci | utf8mb4 | 247 | | Yes | 8 |

| utf8mb4_croatian_ci | utf8mb4 | 608 | | Yes | 8 |

| utf8mb4_myanmar_ci | utf8mb4 | 609 | | Yes | 8 |

| utf8mb4_thai_520_w2 | utf8mb4 | 610 | | Yes | 4 |

| utf8mb4_general_nopad_ci | utf8mb4 | 1069 | | Yes | 1 |

| utf8mb4_nopad_bin | utf8mb4 | 1070 | | Yes | 1 |

| utf8mb4_unicode_nopad_ci | utf8mb4 | 1248 | | Yes | 8 |

| utf8mb4_unicode_520_nopad_ci | utf8mb4 | 1270 | | Yes | 8 |

| uca1400_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_icelandic_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_latvian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_romanian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovenian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_polish_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |
2861/4161

| uca1400_estonian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_estonian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_swedish_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_turkish_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_czech_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_danish_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_lithuanian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_slovak_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_spanish2_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_roman_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_ai_cs | NULL | NULL | NULL | Yes | 8 | 2862/4161

| uca1400_persian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_persian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_esperanto_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_hungarian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_sinhala_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_german2_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_vietnamese_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_as_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_nopad_ai_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_nopad_ai_cs | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_nopad_as_ci | NULL | NULL | NULL | Yes | 8 |

| uca1400_croatian_nopad_as_cs | NULL | NULL | NULL | Yes | 8 |

| cp1251_bulgarian_ci | cp1251 | 14 | | Yes | 1 |

| cp1251_ukrainian_ci | cp1251 | 23 | | Yes | 1 |

| cp1251_bin | cp1251 | 50 | | Yes | 1 |

| cp1251_general_ci | cp1251 | 51 | Yes | Yes | 1 |

| cp1251_general_cs | cp1251 | 52 | | Yes | 1 |

| cp1251_nopad_bin | cp1251 | 1074 | | Yes | 1 |

| cp1251_general_nopad_ci | cp1251 | 1075 | | Yes | 1 |

| utf16_general_ci | utf16 | 54 | Yes | Yes | 1 |

| utf16_bin | utf16 | 55 | | Yes | 1 |

| utf16_unicode_ci | utf16 | 101 | | Yes | 8 |

| utf16_icelandic_ci | utf16 | 102 | | Yes | 8 |

| utf16_latvian_ci | utf16 | 103 | | Yes | 8 |

| utf16_romanian_ci | utf16 | 104 | | Yes | 8 |

| utf16_slovenian_ci | utf16 | 105 | | Yes | 8 |

| utf16_polish_ci | utf16 | 106 | | Yes | 8 |

| utf16_estonian_ci | utf16 | 107 | | Yes | 8 |

| utf16_spanish_ci | utf16 | 108 | | Yes | 8 |

| utf16_swedish_ci | utf16 | 109 | | Yes | 8 |

| utf16_turkish_ci | utf16 | 110 | | Yes | 8 |

| utf16_czech_ci | utf16 | 111 | | Yes | 8 |

| utf16_danish_ci | utf16 | 112 | | Yes | 8 | 2863/4161

| utf16_danish_ci | utf16 | 112 | | Yes | 8 |

| utf16_lithuanian_ci | utf16 | 113 | | Yes | 8 |

| utf16_slovak_ci | utf16 | 114 | | Yes | 8 |

| utf16_spanish2_ci | utf16 | 115 | | Yes | 8 |

| utf16_roman_ci | utf16 | 116 | | Yes | 8 |

| utf16_persian_ci | utf16 | 117 | | Yes | 8 |

| utf16_esperanto_ci | utf16 | 118 | | Yes | 8 |

| utf16_hungarian_ci | utf16 | 119 | | Yes | 8 |

| utf16_sinhala_ci | utf16 | 120 | | Yes | 8 |

| utf16_german2_ci | utf16 | 121 | | Yes | 8 |

| utf16_croatian_mysql561_ci | utf16 | 122 | | Yes | 8 |

| utf16_unicode_520_ci | utf16 | 123 | | Yes | 8 |

| utf16_vietnamese_ci | utf16 | 124 | | Yes | 8 |

| utf16_croatian_ci | utf16 | 672 | | Yes | 8 |

| utf16_myanmar_ci | utf16 | 673 | | Yes | 8 |

| utf16_thai_520_w2 | utf16 | 674 | | Yes | 4 |

| utf16_general_nopad_ci | utf16 | 1078 | | Yes | 1 |

| utf16_nopad_bin | utf16 | 1079 | | Yes | 1 |

| utf16_unicode_nopad_ci | utf16 | 1125 | | Yes | 8 |

| utf16_unicode_520_nopad_ci | utf16 | 1147 | | Yes | 8 |

| utf16le_general_ci | utf16le | 56 | Yes | Yes | 1 |

| utf16le_bin | utf16le | 62 | | Yes | 1 |

| utf16le_general_nopad_ci | utf16le | 1080 | | Yes | 1 |

| utf16le_nopad_bin | utf16le | 1086 | | Yes | 1 |

| cp1256_general_ci | cp1256 | 57 | Yes | Yes | 1 |

| cp1256_bin | cp1256 | 67 | | Yes | 1 |

| cp1256_general_nopad_ci | cp1256 | 1081 | | Yes | 1 |

| cp1256_nopad_bin | cp1256 | 1091 | | Yes | 1 |

| cp1257_lithuanian_ci | cp1257 | 29 | | Yes | 1 |

| cp1257_bin | cp1257 | 58 | | Yes | 1 |

| cp1257_general_ci | cp1257 | 59 | Yes | Yes | 1 |

| cp1257_nopad_bin | cp1257 | 1082 | | Yes | 1 |

| cp1257_general_nopad_ci | cp1257 | 1083 | | Yes | 1 |

| utf32_general_ci | utf32 | 60 | Yes | Yes | 1 |

| utf32_bin | utf32 | 61 | | Yes | 1 |

| utf32_unicode_ci | utf32 | 160 | | Yes | 8 |

| utf32_icelandic_ci | utf32 | 161 | | Yes | 8 |

| utf32_latvian_ci | utf32 | 162 | | Yes | 8 |

| utf32_romanian_ci | utf32 | 163 | | Yes | 8 |

| utf32_slovenian_ci | utf32 | 164 | | Yes | 8 |

| utf32_polish_ci | utf32 | 165 | | Yes | 8 |

| utf32_estonian_ci | utf32 | 166 | | Yes | 8 |

| utf32_spanish_ci | utf32 | 167 | | Yes | 8 |

| utf32_swedish_ci | utf32 | 168 | | Yes | 8 |

| utf32_turkish_ci | utf32 | 169 | | Yes | 8 |

| utf32_czech_ci | utf32 | 170 | | Yes | 8 |

| utf32_danish_ci | utf32 | 171 | | Yes | 8 |

| utf32_lithuanian_ci | utf32 | 172 | | Yes | 8 |

| utf32_slovak_ci | utf32 | 173 | | Yes | 8 |

| utf32_spanish2_ci | utf32 | 174 | | Yes | 8 |

| utf32_roman_ci | utf32 | 175 | | Yes | 8 |

| utf32_persian_ci | utf32 | 176 | | Yes | 8 |

| utf32_esperanto_ci | utf32 | 177 | | Yes | 8 |

| utf32_hungarian_ci | utf32 | 178 | | Yes | 8 |

| utf32_sinhala_ci | utf32 | 179 | | Yes | 8 |

| utf32_german2_ci | utf32 | 180 | | Yes | 8 |

| utf32_croatian_mysql561_ci | utf32 | 181 | | Yes | 8 |

| utf32_unicode_520_ci | utf32 | 182 | | Yes | 8 |

| utf32_vietnamese_ci | utf32 | 183 | | Yes | 8 |

| utf32_croatian_ci | utf32 | 736 | | Yes | 8 |

| utf32_myanmar_ci | utf32 | 737 | | Yes | 8 |

| utf32_thai_520_w2 | utf32 | 738 | | Yes | 4 |

| utf32_general_nopad_ci | utf32 | 1084 | | Yes | 1 |

| utf32_nopad_bin | utf32 | 1085 | | Yes | 1 |

| utf32_unicode_nopad_ci | utf32 | 1184 | | Yes | 8 |

| utf32_unicode_520_nopad_ci | utf32 | 1206 | | Yes | 8 |

| binary | binary | 63 | Yes | Yes | 1 |

| geostd8_general_ci | geostd8 | 92 | Yes | Yes | 1 |

| geostd8_bin | geostd8 | 93 | | Yes | 1 |

| geostd8_general_nopad_ci | geostd8 | 1116 | | Yes | 1 |

| geostd8_nopad_bin | geostd8 | 1117 | | Yes | 1 |

| cp932_japanese_ci | cp932 | 95 | Yes | Yes | 1 |

| cp932_bin | cp932 | 96 | | Yes | 1 |

| cp932_japanese_nopad_ci | cp932 | 1119 | | Yes | 1 |

| cp932_nopad_bin | cp932 | 1120 | | Yes | 1 |
2864/4161

| eucjpms_japanese_ci | eucjpms | 97 | Yes | Yes | 1 |

| eucjpms_bin | eucjpms | 98 | | Yes | 1 |

| eucjpms_japanese_nopad_ci | eucjpms | 1121 | | Yes | 1 |

| eucjpms_nopad_bin | eucjpms | 1122 | | Yes | 1 |

+--------------------------------+----------+------+---------+----------+---------+

506 rows in set (0.002 sec)

This is from MariaDB 10.11.5 including the UCA-14.0.0 collations added in MariaDB 10.10.1.

Before MariaDB 10.6.1, the utf8mb3* collations listed above were named utf8* .

Case Sensitivity
A ' ci ' at the end of a collation name indicates the collation is case insensitive. A ' cs ' at the end of a collation name

indicates the collation is case sensitive.

NO PAD Collations
NO PAD collations regard trailing spaces as normal characters. You can get a list of all of these by querying the Information

Schema COLLATIONS Table as follows:

SELECT collation_name FROM information_schema.COLLATIONS

WHERE collation_name LIKE "%nopad%";

+------------------------------+

| collation_name |

+------------------------------+

| big5_chinese_nopad_ci |

| big5_nopad_bin |

...

Accent Insensitivity
An accent insensitive collation is one where the accented and unaccented versions of a letter are considered to be identical

for sorting purposes.

MariaDB 10.10 added the accent insensitivity flag, and new collations are marked with '_ai' or '_as' in the name to indicate

this, for example:

...

| uca1400_spanish2_ai_ci |

| uca1400_spanish2_ai_cs |

| uca1400_spanish2_as_ci |

| uca1400_spanish2_as_cs |

...

Changes
MariaDB 10.10 added 184 UCA-14.0.0 collations. Unicode-14.0.0 was released in September 2021. They contain

939 built-in contractions . Old collations based on UCA-4.0.0 and UCA-5.2.0 did not support built-in contractions.

This is a step towards better Unicode Collation Algorithm compliance. With built-in contractions, some languages (e.g.

Thai) won't need specific collations and will just work with the default "root" collation.

MariaDB 10.6.1 changed the utf8 character set by default to be an alias for utf8mb3 rather than the other way

around. It can be set to imply utf8mb4 by changing the value of the old_mode system variable.

MariaDB 10.2.2 added 88 NO PAD collations.

MariaDB 10.1.15 added the utf8_thai_520_w2 , utf8mb4_thai_520_w2 , ucs2_thai_520_w2 ,

utf16_thai_520_w2 and utf32_thai_520_w2 collations.

MariaDB 10.0.7 added the utf8_myanmar_ci , ucs2_myanmar_ci , utf8mb4_myanmar_ci ,

utf16_myanmar_ci and utf32_myanmar_ci collations.

MariaDB 10.0.5 added the utf8_german2_ci , utf8mb4_german2_ci , ucs2_german2_ci ,

utf16_german2_ci and utf32_german2_ci collations.

MariaDB 5.1.41 added a Croatian collation patch from Alexander Barkov to fix some problems with the Croatian

character set and LIKE queries. This patch added utf8_croatian_ci and ucs2_croatian_ci collations to

MariaDB.

2865/4161

http://www.unicode.org/Public/UCA/14.0.0/allkeys.txt
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-5141-release-notes/
http://www.collation-charts.org/

5.2 Character Sets and Collations

5.1.3 Date and Time Data Types
DATE

The date type YYYY-MM-DD.

TIME

Time format HH:MM:SS.ssssss

DATETIME

Date and time combination displayed as YYYY-MM-DD HH:MM:SS.

TIMESTAMP

YYYY-MM-DD HH:MM:SS

YEAR Data Type

A four-digit year.

There are 3 related questions .

4

7

5.1.3.1 DATE
Contents
1. Syntax

2. Description

1. Oracle Mode

3. Examples

Syntax

DATE

Description
A date. The supported range is ' 1000-01-01 ' to ' 9999-12-31 '. MariaDB displays DATE values in ' YYYY-MM-DD ' format,

but can be assigned dates in looser formats, including strings or numbers, as long as they make sense. These include a

short year, YY-MM-DD , no delimiters, YYMMDD , or any other acceptable delimiter, for example YYYY/MM/DD . For details,

see date and time literals.

' 0000-00-00 ' is a permitted special value (zero-date), unless the NO_ZERO_DATE SQL_MODE is used. Also, individual

components of a date can be set to 0 (for example: ' 2015-00-12 '), unless the NO_ZERO_IN_DATE SQL_MODE is used.

In many cases, the result of en expression involving a zero-date, or a date with zero-parts, is NULL . If the

ALLOW_INVALID_DATES SQL_MODE is enabled, if the day part is in the range between 1 and 31, the date does not

produce any error, even for months that have less than 31 days.

Oracle Mode

In Oracle mode from MariaDB 10.3, DATE with a time portion is a synonym for DATETIME. See also

mariadb_schema.

Examples

MariaDB starting with 10.3

2866/4161

https://mariadb.com/kb/en/date-and-time-data-types/+questions/

CREATE TABLE t1 (d DATE);

INSERT INTO t1 VALUES ("2010-01-12"), ("2011-2-28"), ('120314'),('13*04*21');

SELECT * FROM t1;

+------------+

| d |

+------------+

| 2010-01-12 |

| 2011-02-28 |

| 2012-03-14 |

| 2013-04-21 |

+------------+

5.1.3.2 TIME

Syntax

TIME [(<microsecond precision>)]

Contents
1. Syntax

2. Description

1. Internal Format

3. Examples

Description
A time. The range is '-838:59:59.999999' to '838:59:59.999999' . Microsecond precision can be from 0-6; if not

specified 0 is used. Microseconds have been available since MariaDB 5.3.

MariaDB displays TIME values in 'HH:MM:SS.ssssss' format, but allows assignment of times in looser formats, including

'D HH:MM:SS', 'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', 'SS', or 'HHMMSS', as well as permitting dropping of any leading

zeros when a delimiter is provided, for example '3:9:10'. For details, see date and time literals.

MariaDB 10.1.2 introduced the --mysql56-temporal-format option, on by default, which allows MariaDB to store TIMEs

using the same low-level format MySQL 5.6 uses.

Internal Format

In MariaDB 10.1.2 a new temporal format was introduced from MySQL 5.6 that alters how the TIME , DATETIME and

TIMESTAMP columns operate at lower levels. These changes allow these temporal data types to have fractional parts and

negative values. You can disable this feature using the mysql56_temporal_format system variable.

Tables that include TIMESTAMP values that were created on an older version of MariaDB or that were created while the

mysql56_temporal_format system variable was disabled continue to store data using the older data type format.

In order to update table columns from the older format to the newer format, execute an ALTER TABLE... MODIFY COLUMN

statement that changes the column to the *same* data type. This change may be needed if you want to export the table's

tablespace and import it onto a server that has mysql56_temporal_format=ON set (see MDEV-15225).

For instance, if you have a TIME column in your table:

SHOW VARIABLES LIKE 'mysql56_temporal_format';

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| mysql56_temporal_format | ON |

+-------------------------+-------+

ALTER TABLE example_table MODIFY ts_col TIME;

When MariaDB executes the ALTER TABLE statement, it converts the data from the older temporal format to the newer

one.

2867/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-15225

In the event that you have several tables and columns using temporal data types that you want to switch over to the new

format, make sure the system variable is enabled, then perform a dump and restore using mariadb-dump . The columns

using relevant temporal data types are restored using the new temporal format.

Starting from MariaDB 10.5.1 columns with old temporal formats are marked with a /* mariadb-5.3 */ comment in the

output of SHOW CREATE TABLE, SHOW COLUMNS, DESCRIBE statements, as well as in the COLUMN_TYPE column of

the INFORMATION_SCHEMA.COLUMNS Table.

SHOW CREATE TABLE mariadb5312_time\G

*************************** 1. row ***************************

 Table: mariadb5312_time

Create Table: CREATE TABLE `mariadb5312_time` (

 `t0` time /* mariadb-5.3 */ DEFAULT NULL,

 `t6` time(6) /* mariadb-5.3 */ DEFAULT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1

Note, columns with the current format are not marked with a comment.

Examples

INSERT INTO time VALUES ('90:00:00'), ('800:00:00'), (800), (22), (151413), ('9:6:3'), ('12 09');

SELECT * FROM time;

+-----------+

| t |

+-----------+

| 90:00:00 |

| 800:00:00 |

| 00:08:00 |

| 00:00:22 |

| 15:14:13 |

| 09:06:03 |

| 297:00:00 |

+-----------+

5.1.3.3 DATETIME
Contents
1. Syntax

2. Description

3. Supported Values

4. Oracle Mode

5. Internal Format

6. Examples

Syntax

DATETIME [(microsecond precision)]

Description
A date and time combination.

MariaDB displays DATETIME values in ' YYYY-MM-DD HH:MM:SS.ffffff ' format, but allows assignment of values to

DATETIME columns using either strings or numbers. For details, see date and time literals.

DATETIME columns also accept CURRENT_TIMESTAMP as the default value.

MariaDB 10.1.2 introduced the --mysql56-temporal-format option, on by default, which allows MariaDB to store

DATETMEs using the same low-level format MySQL 5.6 uses. For more information, see Internal Format, below.

For storage requirements, see Data Type Storage Requirements.

2868/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/

Supported Values
MariaDB stores values that use the DATETIME data type in a format that supports values between 1000-01-01

00:00:00.000000 and 9999-12-31 23:59:59.999999 .

MariaDB can also store microseconds with a precision between 0 and 6. If no microsecond precision is specified, then 0 is

used by default.

MariaDB also supports ' 0000-00-00 ' as a special zero-date value, unless NO_ZERO_DATE is specified in the

SQL_MODE. Similarly, individual components of a date can be set to 0 (for example: ' 2015-00-12 '), unless

NO_ZERO_IN_DATE is specified in the SQL_MODE. In many cases, the result of en expression involving a zero-date, or a

date with zero-parts, is NULL . If the ALLOW_INVALID_DATES SQL_MODE is enabled, if the day part is in the range

between 1 and 31, the date does not produce any error, even for months that have less than 31 days.

Oracle Mode

In Oracle mode from MariaDB 10.3, DATE with a time portion is a synonym for DATETIME . See also

mariadb_schema.

Internal Format
In MariaDB 10.1.2 a new temporal format was introduced from MySQL 5.6 that alters how the TIME , DATETIME and

TIMESTAMP columns operate at lower levels. These changes allow these temporal data types to have fractional parts and

negative values. You can disable this feature using the mysql56_temporal_format system variable.

Tables that include TIMESTAMP values that were created on an older version of MariaDB or that were created while the

mysql56_temporal_format system variable was disabled continue to store data using the older data type format.

In order to update table columns from the older format to the newer format, execute an ALTER TABLE... MODIFY COLUMN

statement that changes the column to the *same* data type. This change may be needed if you want to export the table's

tablespace and import it onto a server that has mysql56_temporal_format=ON set (see MDEV-15225).

For instance, if you have a DATETIME column in your table:

SHOW VARIABLES LIKE 'mysql56_temporal_format';

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| mysql56_temporal_format | ON |

+-------------------------+-------+

ALTER TABLE example_table MODIFY ts_col DATETIME;

When MariaDB executes the ALTER TABLE statement, it converts the data from the older temporal format to the newer

one.

In the event that you have several tables and columns using temporal data types that you want to switch over to the new

format, make sure the system variable is enabled, then perform a dump and restore using mysqldump . The columns using

relevant temporal data types are restored using the new temporal format.

Starting from MariaDB 10.5.1 columns with old temporal formats are marked with a /* mariadb-5.3 */ comment in the

output of SHOW CREATE TABLE, SHOW COLUMNS, DESCRIBE statements, as well as in the COLUMN_TYPE column of

the INFORMATION_SCHEMA.COLUMNS Table.

SHOW CREATE TABLE mariadb5312_datetime\G

*************************** 1. row ***************************

 Table: mariadb5312_datetime

Create Table: CREATE TABLE `mariadb5312_datetime` (

 `dt0` datetime /* mariadb-5.3 */ DEFAULT NULL,

 `dt6` datetime(6) /* mariadb-5.3 */ DEFAULT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1

Examples

MariaDB starting with 10.3

2869/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-15225

CREATE TABLE t1 (d DATETIME);

INSERT INTO t1 VALUES ("2011-03-11"), ("2012-04-19 13:08:22"),

 ("2013-07-18 13:44:22.123456");

SELECT * FROM t1;

+---------------------+

| d |

+---------------------+

| 2011-03-11 00:00:00 |

| 2012-04-19 13:08:22 |

| 2013-07-18 13:44:22 |

+---------------------+

CREATE TABLE t2 (d DATETIME(6));

INSERT INTO t2 VALUES ("2011-03-11"), ("2012-04-19 13:08:22"),

 ("2013-07-18 13:44:22.123456");

SELECT * FROM t2;

+----------------------------+

| d |

+----------------------------+

| 2011-03-11 00:00:00.000000 |

| 2012-04-19 13:08:22.000000 |

| 2013-07-18 13:44:22.123456 |

+----------------------------++

Strings used in datetime context are automatically converted to datetime(6). If you want to have a datetime without seconds,

you should use CONVERT(..,datetime).

SELECT CONVERT('2007-11-30 10:30:19',datetime);

+---+

| CONVERT('2007-11-30 10:30:19',datetime) |

+---+

| 2007-11-30 10:30:19 |

+---+

SELECT CONVERT('2007-11-30 10:30:19',datetime(6));

+--+

| CONVERT('2007-11-30 10:30:19',datetime(6)) |

+--+

| 2007-11-30 10:30:19.000000 |

+--+

5.1.3.4 TIMESTAMP

Syntax

TIMESTAMP [(<microsecond precision)]

Contents
1. Syntax

2. Description

3. Supported Values

4. Automatic Values

5. Time Zones

6. Limitations

7. SQL_MODE=MAXDB

8. Internal Format

9. Examples

Description

2870/4161

A timestamp in the format YYYY-MM-DD HH:MM:SS.ffffff .

The timestamp field is generally used to define at which moment in time a row was added or updated and by default will

automatically be assigned the current datetime when a record is inserted or updated. The automatic properties only apply to

the first TIMESTAMP in the record; subsequent TIMESTAMP columns will not be changed.

MariaDB includes the --mysql56-temporal-format option, on by default, which allows MariaDB to store TIMESTAMPs using

the same low-level format MySQL 5.6 uses.

For more information, see Internal Format.

Supported Values
MariaDB stores values that use the TIMESTAMP data type as the number of seconds since '1970-01-01 00:00:00' (UTC).

This means that the TIMESTAMP data type can hold values between '1970-01-01 00:00:01' (UTC) and '2038-01-19

03:14:07' (UTC) (MariaDB 11.3 and earlier, 32-bit platforms) or '2106-02-07 06:28:15 UTC' (from MariaDB 11.4.0, 64-bit

platforms only).

MariaDB can also store microseconds with a precision between 0 and 6. If no microsecond precision is specified, then 0 is

used by default.

Automatic Values
MariaDB has special behavior for the first column that uses the TIMESTAMP data type in a specific table when the system

variable explicit_defaults_for_timestamp is not set (which is the default until MariaDB 10.10). For the first column that uses

the TIMESTAMP data type in a specific table, MariaDB automatically assigns the following properties to the column:

DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP

This means that if the column is not explicitly assigned a value in an INSERT or UPDATE query, then MariaDB will

automatically initialize the column's value with the current date and time.

This automatic initialization for INSERT and UPDATE queries can also be explicitly enabled for a column that uses the

TIMESTAMP data type by specifying the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses

for the column. In these clauses, any synonym of CURRENT_TIMESTAMP is accepted, including CURRENT_TIMESTAMP() ,

NOW() , LOCALTIME , LOCALTIME() , LOCALTIMESTAMP , and LOCALTIMESTAMP() .

This automatic initialization for INSERT queries can also be explicitly disabled for a column that uses the TIMESTAMP

data type by specifying a constant DEFAULT value. For example, DEFAULT 0 .

This automatic initialization for UPDATE queries can also be explicitly disabled for a column that uses the TIMESTAMP

data type by specifying a DEFAULT clause for the column, but no ON UPDATE clause. If a DEFAULT clause is explicitly

specified for a column that uses the TIMESTAMP data type, but an ON UPDATE clause is not specified for the column, then

the timestamp value will not automatically change when an UPDATE statement is executed.

MariaDB also has special behavior if NULL is assigned to column that uses the TIMESTAMP data type. If the column is

assigned the NULL value in an INSERT or UPDATE query, then MariaDB will automatically initialize the column's value

with the current date and time. For details, see NULL values in MariaDB.

This automatic initialization for NULL values can also be explicitly disabled for a column that uses the TIMESTAMP data

type by specifying the NULL attribute for the column. In this case, if the column's value is set to NULL , then the column's

value will actually be set to NULL .

Time Zones
If a column uses the TIMESTAMP data type, then any inserted values are converted from the session's time zone to

Coordinated Universal Time (UTC) when stored, and converted back to the session's time zone when retrieved.

MariaDB validates TIMESTAMP literals against the session's time zone. For example, if a specific time range never occurred

in a specific time zone due to daylight savings time, then TIMESTAMP values within that range would be invalid for that time

zone.

MariaDB does not currently store any time zone identifier with the value of the TIMESTAMP data type. See MDEV-10018

for more information.

MariaDB does not currently support time zone literals that contain time zone identifiers. See MDEV-11829 for more

information.

2871/4161

https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/coordinated-universal-time/
https://mariadb.com/kb/en/coordinated-universal-time/
https://jira.mariadb.org/browse/MDEV-10018
https://jira.mariadb.org/browse/MDEV-11829

Limitations
Because the TIMESTAMP value is stored as Epoch Seconds, the timestamp value '1970-01-01 00:00:00' (UTC) is

reserved since the second #0 is used to represent '0000-00-00 00:00:00'.

In MariaDB 5.5 and before there could only be one TIMESTAMP column per table that had CURRENT_TIMESTAMP

defined as its default value. This limit has no longer applied since MariaDB 10.0.

SQL_MODE=MAXDB
If the SQL_MODE is set to MAXDB , TIMESTAMP fields will be silently converted to DATETIME.

Internal Format
In MariaDB 10.1.2 a new temporal format was introduced from MySQL 5.6 that alters how the TIME , DATETIME and

TIMESTAMP columns operate at lower levels. These changes allow these temporal data types to have fractional parts and

negative values. You can disable this feature using the mysql56_temporal_format system variable.

Tables that include TIMESTAMP values that were created on an older version of MariaDB or that were created while the

mysql56_temporal_format system variable was disabled continue to store data using the older data type format.

In order to update table columns from the older format to the newer format, execute an ALTER TABLE... MODIFY COLUMN

statement that changes the column to the *same* data type. This change may be needed if you want to export the table's

tablespace and import it onto a server that has mysql56_temporal_format=ON set (see MDEV-15225).

For instance, if you have a TIMESTAMP column in your table:

SHOW VARIABLES LIKE 'mysql56_temporal_format';

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| mysql56_temporal_format | ON |

+-------------------------+-------+

ALTER TABLE example_table MODIFY ts_col TIMESTAMP;

When MariaDB executes the ALTER TABLE statement, it converts the data from the older temporal format to the newer

one.

In the event that you have several tables and columns using temporal data types that you want to switch over to the new

format, make sure the system variable is enabled, then perform a dump and restore using mysqldump . The columns using

relevant temporal data types are restored using the new temporal format.

Starting from MariaDB 10.5.1 columns with old temporal formats are marked with a /* mariadb-5.3 */ comment in the

output of SHOW CREATE TABLE , SHOW COLUMNS , DESCRIBE statements, as well as in the COLUMN_TYPE column of the

INFORMATION_SCHEMA.COLUMNS Table .

SHOW CREATE TABLE mariadb5312_timestamp\G

*************************** 1. row ***************************

 Table: mariadb5312_timestamp

Create Table: CREATE TABLE `mariadb5312_timestamp` (

 `ts0` timestamp /* mariadb-5.3 */ NOT NULL DEFAULT current_timestamp() ON UPDATE current_timestamp(),

 `ts6` timestamp(6) /* mariadb-5.3 */ NOT NULL DEFAULT '0000-00-00 00:00:00.000000'

) ENGINE=MyISAM DEFAULT CHARSET=latin1

Note: Prior to MySQL 4.1 a different format for the TIMESTAMP datatype was used. This format is unsupported in

MariaDB 5.1 and upwards.

Examples

2872/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-15225

CREATE TABLE t (id INT, ts TIMESTAMP);

DESC t;

+-------+-----------+------+-----+-------------------+-----------------------------+

| Field | Type | Null | Key | Default | Extra |

+-------+-----------+------+-----+-------------------+-----------------------------+

| id | int(11) | YES | | NULL | |

| ts | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |

+-------+-----------+------+-----+-------------------+-----------------------------+

INSERT INTO t(id) VALUES (1),(2);

SELECT * FROM t;

+------+---------------------+

| id | ts |

+------+---------------------+

| 1 | 2013-07-22 12:50:05 |

| 2 | 2013-07-22 12:50:05 |

+------+---------------------+

INSERT INTO t VALUES (3,NULL),(4,'2001-07-22 12:12:12');

SELECT * FROM t;

+------+---------------------+

| id | ts |

+------+---------------------+

| 1 | 2013-07-22 12:50:05 |

| 2 | 2013-07-22 12:50:05 |

| 3 | 2013-07-22 12:51:56 |

| 4 | 2001-07-22 12:12:12 |

+------+---------------------+

Converting to Unix epoch:

SELECT ts, UNIX_TIMESTAMP(ts) FROM t;

+---------------------+--------------------+

| ts | UNIX_TIMESTAMP(ts) |

+---------------------+--------------------+

| 2013-07-22 12:50:05 | 1374490205 |

| 2013-07-22 12:50:05 | 1374490205 |

| 2013-07-22 12:51:56 | 1374490316 |

| 2001-07-22 12:12:12 | 995796732 |

+---------------------+--------------------+

Update also changes the timestamp:

UPDATE t set id=5 WHERE id=1;

SELECT * FROM t;

+------+---------------------+

| id | ts |

+------+---------------------+

| 5 | 2013-07-22 14:52:33 |

| 2 | 2013-07-22 12:50:05 |

| 3 | 2013-07-22 12:51:56 |

| 4 | 2001-07-22 12:12:12 |

+------+---------------------+

Default NULL:

2873/4161

CREATE TABLE t2 (id INT, ts TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP);

INSERT INTO t(id) VALUES (1),(2);

SELECT * FROM t2;

INSERT INTO t2(id) VALUES (1),(2);

SELECT * FROM t2;

+------+------+

| id | ts |

+------+------+

| 1 | NULL |

| 2 | NULL |

+------+------+

UPDATE t2 SET id=3 WHERE id=1;

SELECT * FROM t2;

+------+---------------------+

| id | ts |

+------+---------------------+

| 3 | 2013-07-22 15:32:22 |

| 2 | NULL |

+------+---------------------+

Only the first timestamp is automatically inserted and updated:

CREATE TABLE t3 (id INT, ts1 TIMESTAMP, ts2 TIMESTAMP);

INSERT INTO t3(id) VALUES (1),(2);

SELECT * FROM t3;

+------+---------------------+---------------------+

| id | ts1 | ts2 |

+------+---------------------+---------------------+

| 1 | 2013-07-22 15:35:07 | 0000-00-00 00:00:00 |

| 2 | 2013-07-22 15:35:07 | 0000-00-00 00:00:00 |

+------+---------------------+---------------------+

DESC t3;

+-------+-----------+------+-----+---------------------+-----------------------------+

| Field | Type | Null | Key | Default | Extra |

+-------+-----------+------+-----+---------------------+-----------------------------+

| id | int(11) | YES | | NULL | |

| ts1 | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |

| ts2 | timestamp | NO | | 0000-00-00 00:00:00 | |

+-------+-----------+------+-----+---------------------+-----------------------------+

Explicitly setting a timestamp with the CURRENT_TIMESTAMP function:

INSERT INTO t3(id,ts2) VALUES (3,CURRENT_TIMESTAMP());

SELECT * FROM t3;

+------+---------------------+---------------------+

| id | ts1 | ts2 |

+------+---------------------+---------------------+

| 1 | 2013-07-22 15:35:07 | 0000-00-00 00:00:00 |

| 2 | 2013-07-22 15:35:07 | 0000-00-00 00:00:00 |

| 3 | 2013-07-22 15:38:52 | 2013-07-22 15:38:52 |

+------+---------------------+---------------------+

Specifying the timestamp as NOT NULL:

CREATE TABLE t4 (id INT, ts TIMESTAMP NOT NULL);

INSERT INTO t4(id) VALUES (1);

SELECT SLEEP(1);

INSERT INTO t4(id,ts) VALUES (2,NULL);

SELECT * FROM t4;

2874/4161

5.1.3.5 YEAR Data Type

Syntax

YEAR[(4)]

Description
A year in two-digit or four-digit format. The default is four-digit format. Note that the two-digit format has been deprecated

since MariaDB 5.5.27 .

In four-digit format, the allowable values are 1901 to 2155, and 0000. In two-digit format, the allowable values are 70 to 69,

representing years from 1970 to 2069. MariaDB displays YEAR values in YYYY format, but allows you to assign values to

YEAR columns using either strings or numbers.

Inserting numeric zero has a different result for YEAR(4) and YEAR(2). For YEAR(2), the value 00 reflects the year 2000.

For YEAR(4), the value 0000 reflects the year zero. This only applies to numeric zero. String zero always reflects the year

2000.

Examples
Accepting a string or a number:

CREATE TABLE y(y YEAR);

INSERT INTO y VALUES (1990),('2012');

SELECT * FROM y;

+------+

| y |

+------+

| 1990 |

| 2012 |

+------+

With strict_mode set, the default from MariaDB 10.2.4 :

Out of range:

INSERT INTO y VALUES (1005),('3080');

ERROR 1264 (22003): Out of range value for column 'y' at row 1

INSERT INTO y VALUES ('2013-12-12');

ERROR 1265 (01000): Data truncated for column 'y' at row 1

SELECT * FROM y;

+------+

| y |

+------+

| 1990 |

| 2012 |

+------+

With strict_mode unset, the default until MariaDB 10.2.3 :

Out of range:

2875/4161

https://mariadb.com/kb/en/mariadb-5527-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

INSERT INTO y VALUES (1005),('3080');

Query OK, 2 rows affected, 2 warnings (0.05 sec)

Records: 2 Duplicates: 0 Warnings: 2

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1264 | Out of range value for column 'y' at row 1 |

| Warning | 1264 | Out of range value for column 'y' at row 2 |

+---------+------+--+

SELECT * FROM y;

+------+

| y |

+------+

| 1990 |

| 2012 |

| 0000 |

| 0000 |

+------+

Truncating:

INSERT INTO y VALUES ('2013-12-12');

Query OK, 1 row affected, 1 warning (0.05 sec)

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1265 | Data truncated for column 'y' at row 1 |

+---------+------+--+

SELECT * FROM y;

+------+

| y |

+------+

| 1990 |

| 2012 |

| 0000 |

| 0000 |

| 2013 |

+------+

Difference between YEAR(2) and YEAR(4), and string and numeric zero:

CREATE TABLE y2(y YEAR(4), y2 YEAR(2));

Query OK, 0 rows affected, 1 warning (0.40 sec)

Note (Code 1287): 'YEAR(2)' is deprecated and will be removed in a future release.

 Please use YEAR(4) instead

INSERT INTO y2 VALUES(0,0),('0','0');

SELECT YEAR(y),YEAR(y2) FROM y2;

+---------+----------+

| YEAR(y) | YEAR(y2) |

+---------+----------+

| 0 | 2000 |

| 2000 | 2000 |

+---------+----------+

1.1.3.3 Geometry Types

5.1.5 AUTO_INCREMENT

2876/4161

Contents
1. Description

2. Setting or Changing the Auto_Increment Value

3. InnoDB

4. Setting Explicit Values

5. Missing Values

6. Replication

7. CHECK Constraints, DEFAULT Values and Virtual Columns

8. Generating Auto_Increment Values When Adding the Attribute

Description
The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows. When you insert a new record to

the table (or upon adding an AUTO_INCREMENT attribute with the ALTER TABLE statement), and the auto_increment field

is NULL or DEFAULT (in the case of an INSERT), the value will automatically be incremented. This also applies to 0, unless

the NO_AUTO_VALUE_ON_ZERO SQL_MODE is enabled.

AUTO_INCREMENT columns start from 1 by default. The automatically generated value can never be lower than 0.

Each table can have only one AUTO_INCREMENT column. It must defined as a key (not necessarily the PRIMARY KEY or

UNIQUE key). In some storage engines (including the default InnoDB), if the key consists of multiple columns, the

AUTO_INCREMENT column must be the first column. Storage engines that permit the column to be placed elsewhere are

Aria, MyISAM, MERGE, Spider, TokuDB , BLACKHOLE, FederatedX and Federated .

CREATE TABLE animals (

 id MEDIUMINT NOT NULL AUTO_INCREMENT,

 name CHAR(30) NOT NULL,

 PRIMARY KEY (id)

);

INSERT INTO animals (name) VALUES

 ('dog'),('cat'),('penguin'),

 ('fox'),('whale'),('ostrich');

SELECT * FROM animals;

+----+---------+

| id | name |

+----+---------+

| 1 | dog |

| 2 | cat |

| 3 | penguin |

| 4 | fox |

| 5 | whale |

| 6 | ostrich |

+----+---------+

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE .

CREATE TABLE t (id SERIAL, c CHAR(1)) ENGINE=InnoDB;

SHOW CREATE TABLE t \G

*************************** 1. row ***************************

 Table: t

Create Table: CREATE TABLE `t` (

 `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,

 `c` char(1) DEFAULT NULL,

 UNIQUE KEY `id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Setting or Changing the Auto_Increment Value
You can use an ALTER TABLE statement to assign a new value to the auto_increment table option, or set the insert_id

server system variable to change the next AUTO_INCREMENT value inserted by the current session.

LAST_INSERT_ID() can be used to see the last AUTO_INCREMENT value inserted by the current session.

2877/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/federated-storage-engine/

ALTER TABLE animals AUTO_INCREMENT=8;

INSERT INTO animals (name) VALUES ('aardvark');

SELECT * FROM animals;

+----+-----------+

| id | name |

+----+-----------+

| 1 | dog |

| 2 | cat |

| 3 | penguin |

| 4 | fox |

| 5 | whale |

| 6 | ostrich |

| 8 | aardvark |

+----+-----------+

SET insert_id=12;

INSERT INTO animals (name) VALUES ('gorilla');

SELECT * FROM animals;

+----+-----------+

| id | name |

+----+-----------+

| 1 | dog |

| 2 | cat |

| 3 | penguin |

| 4 | fox |

| 5 | whale |

| 6 | ostrich |

| 8 | aardvark |

| 12 | gorilla |

+----+-----------+

InnoDB
AUTO_INCREMENT is persistent in InnoDB. Prior to MariaDB 10.2.3 , InnoDB used an auto-increment counter that was

stored in memory. When the server restarted, the counter was re-initialized to the highest value used in the table, which

canceled the effects of any AUTO_INCREMENT = N option in the table statements).

See also AUTO_INCREMENT Handling in InnoDB.

Setting Explicit Values
It is possible to specify a value for an AUTO_INCREMENT column. If the key is primary or unique, the value must not already

exist in the key.

If the new value is higher than the current maximum value, the AUTO_INCREMENT value is updated, so the next value will be

higher. If the new value is lower than the current maximum value, the AUTO_INCREMENT value remains unchanged.

The following example demonstrates these behaviors:

2878/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/

CREATE TABLE t (id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY) ENGINE = InnoDB;

INSERT INTO t VALUES (NULL);

SELECT id FROM t;

+----+

| id |

+----+

| 1 |

+----+

INSERT INTO t VALUES (10); -- higher value

SELECT id FROM t;

+----+

| id |

+----+

| 1 |

| 10 |

+----+

INSERT INTO t VALUES (2); -- lower value

INSERT INTO t VALUES (NULL); -- auto value

SELECT id FROM t;

+----+

| id |

+----+

| 1 |

| 2 |

| 10 |

| 11 |

+----+

The ARCHIVE storage engine does not allow to insert a value that is lower than the current maximum.

Missing Values
An AUTO_INCREMENT column normally has missing values. This happens because if a row is deleted, or an

AUTO_INCREMENT value is explicitly updated, old values are never re-used. The REPLACE statement also deletes a row,

and its value is wasted. With InnoDB, values can be reserved by a transaction; but if the transaction fails (for example,

because of a ROLLBACK) the reserved value will be lost.

Thus AUTO_INCREMENT values can be used to sort results in a chronological order, but not to create a numeric sequence.

Replication
To make master-master or Galera safe to use AUTO_INCREMENT one should use the system variables

auto_increment_increment and auto_increment_offset to generate unique values for each server.

2879/4161

SET @@auto_increment_increment=3;

SHOW VARIABLES LIKE 'auto_inc%';

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| auto_increment_increment | 3 |

| auto_increment_offset | 1 |

+--------------------------+-------+

CREATE TABLE t (c INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

INSERT INTO t VALUES (NULL), (NULL), (NULL);

SELECT * FROM t;

+---+

| c |

+---+

| 1 |

| 4 |

| 7 |

+---+

CREATE TABLE t2 (c INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

SET @@auto_increment_offset=2;

SHOW VARIABLES LIKE 'auto_inc%';

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| auto_increment_increment | 3 |

| auto_increment_offset | 2 |

+--------------------------+-------+

INSERT INTO t2 VALUES (NULL), (NULL), (NULL);

SELECT * FROM t2;

+---+

| c |

+---+

| 2 |

| 5 |

| 8 |

+---+

If auto_increment_offset is larger than auto_increment_increment , the value of auto_increment_offset is

ignored, and the offset reverts to the default of 1 instead:

2880/4161

SET @@auto_increment_offset=5;

SHOW VARIABLES LIKE 'auto_inc%';

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| auto_increment_increment | 3 |

| auto_increment_offset | 5 |

+--------------------------+-------+

CREATE TABLE t3 (c INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

INSERT INTO t3 VALUES (NULL), (NULL), (NULL);

SELECT * FROM t3;

+---+

| c |

+---+

| 1 |

| 4 |

| 5 |

+---+

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| auto_increment_increment | 3 |

| auto_increment_offset | 3 |

+--------------------------+-------+

INSERT INTO t4 VALUES (NULL), (NULL), (NULL);

SELECT * FROM t4;

+---+

| c |

+---+

| 3 |

| 6 |

| 9 |

+---+

CHECK Constraints, DEFAULT Values and Virtual
Columns
auto_increment columns are not permitted in CHECK constraints, DEFAULT value expressions and virtual columns. They

were permitted until MariaDB 10.2.6 , but did not work correctly. See MDEV-11117 .

Generating Auto_Increment Values When Adding the
Attribute

CREATE OR REPLACE TABLE t1 (a INT);

INSERT t1 VALUES (0),(0),(0);

ALTER TABLE t1 MODIFY a INT NOT NULL AUTO_INCREMENT PRIMARY KEY;

SELECT * FROM t1;

+---+

| a |

+---+

| 1 |

| 2 |

| 3 |

+---+

2881/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://jira.mariadb.org/browse/MDEV-11117

CREATE OR REPLACE TABLE t1 (a INT);

INSERT t1 VALUES (5),(0),(8),(0);

ALTER TABLE t1 MODIFY a INT NOT NULL AUTO_INCREMENT PRIMARY KEY;

SELECT * FROM t1;

+---+

| a |

+---+

| 5 |

| 6 |

| 8 |

| 9 |

+---+

If the NO_AUTO_VALUE_ON_ZERO SQL_MODE is set, zero values will not be automatically incremented:

SET SQL_MODE='no_auto_value_on_zero';

CREATE OR REPLACE TABLE t1 (a INT);

INSERT t1 VALUES (3), (0);

ALTER TABLE t1 MODIFY a INT NOT NULL AUTO_INCREMENT PRIMARY KEY;

SELECT * FROM t1;

+---+

| a |

+---+

| 0 |

| 3 |

+---+

5.1.2.24 Data Type Storage Requirements

5.1.7 AUTO_INCREMENT FAQ
Contents
1. How do I get the last inserted auto_increment value?

2. What if someone else inserts before I select my id?

3. How do I get the next value to be inserted?

4. How do I change what number auto_increment starts with?

5. How do I renumber rows once I've deleted some in the middle?

6. Can I do group-wise auto_increment?

7. How do I get the auto_increment value in a BEFORE INSERT trigger?

8. How do I assign two fields the same auto_increment value in one query?

9. Does the auto_increment field have to be primary key?

10. InnoDB and AUTO_INCREMENT

11. General Information To Read

12. Manual Notes

13. How to start a table with a set AUTO_INCREMENT value?

How do I get the last inserted auto_increment value?
Use the LAST_INSERT_ID() function:

SELECT LAST_INSERT_ID();

What if someone else inserts before I select my id?
LAST_INSERT_ID() is connection specific, so there is no problem from race conditions.

How do I get the next value to be inserted?
You don't. Insert, then find out what you did with LAST_INSERT_ID().

How do I change what number auto_increment starts

2882/4161

with?
ALTER TABLE yourTable AUTO_INCREMENT = x; 4 Next insert will contain x or MAX(autoField) + 1 , whichever is

higher

or

INSERT INTO yourTable (autoField) VALUES (x); 4 Next insert will contain x+1 or MAX(autoField) + 1 ,

whichever is higher

Issuing TRUNCATE TABLE will delete all the rows in the table, and will reset the auto_increment value to 0 in most cases

(some earlier versions mapped TRUNCATE to DELETE for InnoDB tables, meaning the auto_increment value would not be

reset).

How do I renumber rows once I've deleted some in the
middle?
Typically, you don't want to. Gaps are hardly ever a problem; if your application can't handle gaps in the sequence, you

probably should rethink your application.

Can I do group-wise auto_increment?
Yes, if you use the MyISAM engine.

How do I get the auto_increment value in a BEFORE
INSERT trigger?
You don't. It's only available after insert.

How do I assign two fields the same auto_increment
value in one query?
You can't, not even with an AFTER INSERT trigger. Insert, then go back and update using LAST_INSERT_ID() . Those two

statements could be wrapped into one stored procedure if you wish.

However, you can mimic this behavior with a BEFORE INSERT trigger and a second table to store the sequence position:

CREATE TABLE sequence (table_name VARCHAR(255), position INT UNSIGNED);

INSERT INTO sequence VALUES ('testTable', 0);

CREATE TABLE testTable (firstAuto INT UNSIGNED, secondAuto INT UNSIGNED);

DELIMITER //

CREATE TRIGGER testTable_BI BEFORE INSERT ON testTable FOR EACH ROW BEGIN

 UPDATE sequence SET position = LAST_INSERT_ID(position + 1) WHERE table_name = 'testTable';

 SET NEW.firstAuto = LAST_INSERT_ID();

 SET NEW.secondAuto = LAST_INSERT_ID();

END//

DELIMITER ;

INSERT INTO testTable VALUES (NULL, NULL), (NULL, NULL);

SELECT * FROM testTable;

+-----------+------------+

| firstAuto | secondAuto |

+-----------+------------+

| 1 | 1 |

| 2 | 2 |

+-----------+------------+

The same sequence table can maintain separate sequences for multiple tables (or separate sequences for different fields in

the same table) by adding extra rows.

Does the auto_increment field have to be primary key?
No, it only has to be indexed. It doesn't even have to be unique.

2883/4161

InnoDB and AUTO_INCREMENT
See AUTO_INCREMENT handling in InnoDB

General Information To Read
AUTO_INCREMENT

Manual Notes
There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a DEFAULT value. An

AUTO_INCREMENT column works properly only if it contains only positive values. Inserting a negative number is regarded as

inserting a very large positive number. This is done to avoid precision problems when numbers wrap over from positive to

negative and also to ensure that you do not accidentally get an AUTO_INCREMENT column that contains 0.

How to start a table with a set AUTO_INCREMENT
value?

CREATE TABLE autoinc_test (

 h INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,

 m INT UNSIGNED

) AUTO_INCREMENT = 100;

INSERT INTO autoinc_test (m) VALUES (1);

SELECT * FROM autoinc_test;

+-----+------+

| h | m |

+-----+------+

| 100 | 1 |

+-----+------+

5.1.8 NULL Values
Contents
1. Syntax

2. Comparison Operators

3. Ordering

4. Functions

5. AUTO_INCREMENT, TIMESTAMP and Virtual Columns

6. Inserting

1. Examples

7. Primary Keys and UNIQUE Indexes

8. Oracle Compatibility

NULL represents an unknown value. It is not an empty string (by default), or a zero value. These are all valid values, and are

not NULLs.

When a table is created or the format altered, columns can be specified as accepting NULL values, or not accepting them,

with the NULL and NOT NULL clauses respectively.

For example, a customer table could contain dates of birth. For some customers, this information is unknown, so the value

could be NULL.

The same system could allocate a customer ID for each customer record, and in this case a NULL value would not be

permitted.

CREATE TABLE customer (

 id INT NOT NULL,

 date_of_birth DATE NULL

...

)

2884/4161

User-defined variables are NULL until a value is explicitly assigned.

Stored routines parameters and local variables can always be set to NULL. If no DEFAULT value is specified for a local

variable, its initial value will be NULL. If no value is assigned to an OUT parameter in a stored procedure, NULL is assigned

at the end of the procedure.

Syntax
The case of NULL is not relevant. \N (uppercase) is an alias for NULL .

The IS operator accepts UNKNOWN as an alias for NULL , which is meant for boolean contexts.

Comparison Operators
NULL values cannot be used with most comparison operators. For example, =, >, >=, <=, <, or != cannot be used, as any

comparison with a NULL always returns a NULL value, never true (1) or false (0).

SELECT NULL = NULL;

+-------------+

| NULL = NULL |

+-------------+

| NULL |

+-------------+

SELECT 99 = NULL;

+-----------+

| 99 = NULL |

+-----------+

| NULL |

+-----------+

To overcome this, certain operators are specifically designed for use with NULL values. To cater for testing equality

between two values that may contain NULLs, there's <=>, NULL-safe equal.

SELECT 99 <=> NULL, NULL <=> NULL;

+-------------+---------------+

| 99 <=> NULL | NULL <=> NULL |

+-------------+---------------+

| 0 | 1 |

+-------------+---------------+

Other operators for working with NULLs include IS NULL and IS NOT NULL, ISNULL (for testing an expression) and

COALESCE (for returning the first non-NULL parameter).

Ordering
When you order by a field that may contain NULL values, any NULLs are considered to have the lowest value. So ordering

in DESC order will see the NULLs appearing last. To force NULLs to be regarded as highest values, one can add another

column which has a higher value when the main field is NULL. Example:

SELECT col1 FROM tab ORDER BY ISNULL(col1), col1;

Descending order, with NULLs first:

SELECT col1 FROM tab ORDER BY IF(col1 IS NULL, 0, 1), col1 DESC;

All NULL values are also regarded as equivalent for the purposes of the DISTINCT and GROUP BY clauses.

Functions
In most cases, functions will return NULL if any of the parameters are NULL. There are also functions specifically for

handling NULLs. These include IFNULL(), NULLIF() and COALESCE().

2885/4161

SELECT IFNULL(1,0);

+-------------+

| IFNULL(1,0) |

+-------------+

| 1 |

+-------------+

SELECT IFNULL(NULL,10);

+-----------------+

| IFNULL(NULL,10) |

+-----------------+

| 10 |

+-----------------+

SELECT COALESCE(NULL,NULL,1);

+-----------------------+

| COALESCE(NULL,NULL,1) |

+-----------------------+

| 1 |

+-----------------------+

Aggregate functions, such as SUM and AVG ignore NULLs.

CREATE TABLE t(x INT);

INSERT INTO t VALUES (1),(9),(NULL);

SELECT SUM(x) FROM t;

+--------+

| SUM(x) |

+--------+

| 10 |

+--------+

SELECT AVG(x) FROM t;

+--------+

| AVG(x) |

+--------+

| 5.0000 |

+--------+

The one exception is COUNT(*), which counts rows, and doesn't look at whether a value is NULL or not. Compare for

example, COUNT(x), which ignores the NULL, and COUNT(*), which counts it:

SELECT COUNT(x) FROM t;

+----------+

| COUNT(x) |

+----------+

| 2 |

+----------+

SELECT COUNT(*) FROM t;

+----------+

| COUNT(*) |

+----------+

| 3 |

+----------+

AUTO_INCREMENT, TIMESTAMP and Virtual Columns
MariaDB handles NULL values in a special way if the field is an AUTO_INCREMENT, a TIMESTAMP or a virtual column.

Inserting a NULL value into a numeric AUTO_INCREMENT column will result in the next number in the auto increment

sequence being inserted instead. This technique is frequently used with AUTO_INCREMENT fields, which are left to take

care of themselves.

2886/4161

CREATE TABLE t2(id INT PRIMARY KEY AUTO_INCREMENT, letter CHAR(1));

INSERT INTO t2(letter) VALUES ('a'),('b');

SELECT * FROM t2;

+----+--------+

| id | letter |

+----+--------+

| 1 | a |

| 2 | b |

+----+--------+

Similarly, if a NULL value is assigned to a TIMESTAMP field, the current date and time is assigned instead.

CREATE TABLE t3 (x INT, ts TIMESTAMP);

INSERT INTO t3(x) VALUES (1),(2);

After a pause,

INSERT INTO t3(x) VALUES (3);

SELECT* FROM t3;

+------+---------------------+

| x | ts |

+------+---------------------+

| 1 | 2013-09-05 10:14:18 |

| 2 | 2013-09-05 10:14:18 |

| 3 | 2013-09-05 10:14:29 |

+------+---------------------+

If a NULL is assigned to a VIRTUAL or PERSISTENT column, the default value is assigned instead.

CREATE TABLE virt (c INT, v INT AS (c+10) PERSISTENT) ENGINE=InnoDB;

INSERT INTO virt VALUES (1, NULL);

SELECT c, v FROM virt;

+------+------+

| c | v |

+------+------+

| 1 | 11 |

+------+------+

In all these special cases, NULL is equivalent to the DEFAULT keyword.

Inserting
If a NULL value is single-row inserted into a column declared as NOT NULL, an error will be returned. However, if the SQL

mode is not strict (default until MariaDB 10.2.3), if a NULL value is multi-row inserted into a column declared as NOT

NULL, the implicit default for the column type will be inserted (and NOT the default value in the table definition). The implicit

defaults are an empty string for string types, and the zero value for numeric, date and time types.

Since MariaDB 10.2.4 , by default both cases will result in an error.

Examples

CREATE TABLE nulltest (

 a INT(11),

 x VARCHAR(10) NOT NULL DEFAULT 'a',

 y INT(11) NOT NULL DEFAULT 23

);

Single-row insert:

2887/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/

INSERT INTO nulltest (a,x,y) VALUES (1,NULL,NULL);

ERROR 1048 (23000): Column 'x' cannot be null

Multi-row insert with SQL mode not strict (default until MariaDB 10.2.3):

show variables like 'sql_mode%';

+---------------+--+

| Variable_name | Value |

+---------------+--+

| sql_mode | NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION |

+---------------+--+

INSERT INTO nulltest (a,x,y) VALUES (1,NULL,NULL),(2,NULL,NULL);

Query OK, 2 rows affected, 4 warnings (0.08 sec)

Records: 2 Duplicates: 0 Warnings: 4

The specified defaults have not been used; rather, the implicit column type defaults have been inserted

SELECT * FROM nulltest;

+------+---+---+

| a | x | y |

+------+---+---+

| 1 | | 0 |

| 2 | | 0 |

+------+---+---+

Primary Keys and UNIQUE Indexes
UNIQUE indexes can contain multiple NULL values.

Primary keys are never nullable.

Oracle Compatibility
In Oracle mode, NULL can be used as a statement:

IF a=10 THEN NULL; ELSE NULL; END IF

In Oracle mode, CONCAT and the Logical OR operator || ignore NULL.

When setting sql_mode=EMPTY_STRING_IS_NULL, empty strings and NULLs are the same thing. For example:

SET sql_mode=EMPTY_STRING_IS_NULL;

SELECT '' IS NULL; -- returns TRUE

INSERT INTO t1 VALUES (''); -- inserts NULL

MariaDB starting with 10.3

5.2 Character Sets and Collations
Simply put, a character set defines how and which characters are stored to support a particular language or languages. A

collation, on the other hand, defines the order used when comparing strings (i.e. the position of any given character within the

alphabet of that language)

Character Set and Collation Overview

Introduction to character sets and collations.

Supported Character Sets and Collations

MariaDB supports the following character sets and collations.

Setting Character Sets and Collations

Changing from the default character set and collation.

2

4

2888/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/null

Unicode

Unicode support.

SHOW CHARACTER SET

Available character sets.

SHOW COLLATION

Supported collations.

Information Schema CHARACTER_SETS Table

Supported character sets.

Information Schema COLLATIONS Table

Supported collations.

Internationalization and Localization

Character sets, collations, time zones and locales.

SET CHARACTER SET

Maps all strings sent between the current client and the server with the given mapping.

SET NAMES

The character set used to send statements to the server, and results back to the client.

There are 6 related questions .

5.2.1 Character Set and Collation Overview
Contents
1. What Are Character Sets and Collations

2. Viewing Character Sets and Collations

3. Changing Character Sets and Collations

What Are Character Sets and Collations
A character set is a set of characters while a collation is the rules for comparing and sorting a particular character set.

For example, a subset of a character set could consist of the letters A , B and C . A default collation could define these as

appearing in an ascending order of A, B, C .

If we consider different case characters, more complexity is added. A binary collation would evaluate the characters A and

a differently, ordering them in a particular way. A case-insensitive collation would evaluate A and a equivalently, while

the German phone book collation evaluates the characters ue and ü equivalently.

A character set can have many collations associated with it, while each collation is only associated with one character set.

In MariaDB, the character set name is always part of the collation name. For example, the latin1_german1_ci collation

applies only to the latin1 character set. Each character set also has one default collation. The latin1 default collation

is latin1_swedish_ci .

As an example, by default, the character y comes between x and z , while in Lithuanian, it's sorted between i and k .

Similarly, the German phone book order is different to the German dictionary order, so while they share the same character

set, the collation is different.

Viewing Character Sets and Collations
In MariaDB, the default character set is latin1, and the default collation is latin1_swedish_ci (however this may differ in some

distros, see for example Differences in MariaDB in Debian). You can view a full list of character sets and collations

supported by MariaDB at Supported Character Sets and Collations, or see what's supported on your server with the SHOW

CHARACTER SET and SHOW COLLATION commands.

By default, A comes before Z , so the following evaluates to true:

2889/4161

https://mariadb.com/kb/en/character-sets/+questions/

 SELECT "A" < "Z";

+-----------+

| "A" < "Z" |

+-----------+

| 1 |

+-----------+

By default, comparisons are case-insensitive:

SELECT "A" < "a", "A" = "a";

+-----------+-----------+

| "A" < "a" | "A" = "a" |

+-----------+-----------+

| 0 | 1 |

+-----------+-----------+

Changing Character Sets and Collations
Character sets and collations can be set from the server level right down to the column level, as well as for client-server

communication.

For example, ue and ü are by default evaluated differently.

SELECT 'Mueller' = 'Müller';

+----------------------+

| 'Müller' = 'Mueller' |

+----------------------+

| 0 |

+----------------------+

By using the collation_connection system variable to change the connection character set to latin1_german2_ci , or

German phone book, the same two characters will evaluate as equivalent.

SET collation_connection = latin1_german2_ci;

SELECT 'Mueller' = 'Müller';

+-----------------------+

| 'Mueller' = 'Müller' |

+-----------------------+

| 1 |

+-----------------------+

See Setting Character Sets and Collations for more.

5.1.2.25 Supported Character Sets and Collations

5.2.3 Setting Character Sets and Collations
Contents
1. Server Level

2. Database Level

3. Table Level

4. Column Level

5. Filenames

6. Literals

1. Examples

2. N

7. Stored Programs and Views

8. Changing Default Collation

9. Example: Changing the Default Character Set To UTF-8

In MariaDB, the default character set is latin1, and the default collation is latin1_swedish_ci (however this may differ in some

distros, see for example Differences in MariaDB in Debian). Both character sets and collations can be specified from the

server right down to the column level, as well as for client-server connections. When changing a character set and not

2890/4161

specifying a collation, the default collation for the new character set is always used.

Character sets and collations always cascade down, so a column without a specified collation will look for the table default,

the table for the database, and the database for the server. It's therefore possible to have extremely fine-grained control over

all the character sets and collations used in your data.

Default collations for each character set can be viewed with the SHOW COLLATION statement, for example, to find the

default collation for the latin2 character set:

SHOW COLLATION LIKE 'latin2%';

+---------------------+---------+----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+---------------------+---------+----+---------+----------+---------+

| latin2_czech_cs | latin2 | 2 | | Yes | 4 |

| latin2_general_ci | latin2 | 9 | Yes | Yes | 1 |

| latin2_hungarian_ci | latin2 | 21 | | Yes | 1 |

| latin2_croatian_ci | latin2 | 27 | | Yes | 1 |

| latin2_bin | latin2 | 77 | | Yes | 1 |

+---------------------+---------+----+---------+----------+---------+

Server Level
The character_set_server system variable can be used to change the default server character set. It can be set both on

startup or dynamically, with the SET command:

SET character_set_server = 'latin2';

Similarly, the collation_server variable is used for setting the default server collation.

SET collation_server = 'latin2_czech_cs';

Database Level
The CREATE DATABASE and ALTER DATABASE statements have optional character set and collation clauses. If these

are left out, the server defaults are used.

CREATE DATABASE czech_slovak_names

 CHARACTER SET = 'keybcs2'

 COLLATE = 'keybcs2_bin';

ALTER DATABASE czech_slovak_names COLLATE = 'keybcs2_general_ci';

To determine the default character set used by a database, use:

SHOW CREATE DATABASE czech_slovak_names;

+--------------------+---

---------+

| Database | Create Database

|

+--------------------+---

---------+

| czech_slovak_names | CREATE DATABASE `czech_slovak_names` /*!40100 DEFAULT CHARACTER SET

keybcs2 */ |

+--------------------+---

---------+

or alternatively, for the character set and collation:

2891/4161

SELECT * FROM INFORMATION_SCHEMA.SCHEMATA;

+--------------+--------------------+----------------------------+------------------------+--

--------+

| CATALOG_NAME | SCHEMA_NAME | DEFAULT_CHARACTER_SET_NAME | DEFAULT_COLLATION_NAME |

SQL_PATH |

+--------------+--------------------+----------------------------+------------------------+--

--------+

| def | czech_slovak_names | keybcs2 | keybcs2_general_ci |

NULL |

| def | information_schema | utf8 | utf8_general_ci |

NULL |

| def | mysql | latin1 | latin1_swedish_ci |

NULL |

| def | performance_schema | utf8 | utf8_general_ci |

NULL |

| def | test | latin1 | latin1_swedish_ci |

NULL |

+--------------+--------------------+----------------------------+------------------------+--

--------+

It is also possible to specify only the collation, and, since each collation only applies to one character set, the associated

character set will automatically be specified.

CREATE DATABASE danish_names COLLATE 'utf8_danish_ci';

SHOW CREATE DATABASE danish_names;

+--------------+---

-----------------+

| Database | Create Database

|

+--------------+---

-----------------+

| danish_names | CREATE DATABASE `danish_names` /*!40100 DEFAULT CHARACTER SET utf8 COLLATE

utf8_danish_ci */ |

+--------------+---

-----------------+

Although there are character_set_database and collation_database system variables which can be set dynamically, these

are used for determining the character set and collation for the default database, and should only be set by the server.

Table Level
The CREATE TABLE and ALTER TABLE statements support optional character set and collation clauses, a MariaDB and

MySQL extension to standard SQL.

CREATE TABLE english_names (id INT, name VARCHAR(40))

 CHARACTER SET 'utf8'

 COLLATE 'utf8_icelandic_ci';

If neither character set nor collation is provided, the database default will be used. If only the character set is provided, the

default collation for that character set will be used . If only the collation is provided, the associated character set will be used.

See Supported Character Sets and Collations.

ALTER TABLE table_name

 CONVERT TO CHARACTER SET charset_name [COLLATE collation_name];

If no collation is provided, the collation will be set to the default collation for that character set. See Supported Character

Sets and Collations.

For VARCHAR or TEXT columns, CONVERT TO CHARACTER SET changes the data type if needed to ensure the new

column is long enough to store as many characters as the original column.

For example, an ascii TEXT column requires a single byte per character, so the column can hold up to 65,535 characters. If

the column is converted to utf8, 3 bytes can be required for each character, so the column will be converted to

MEDIUMTEXT to be able to hold the same number of characters.

CONVERT TO CHARACTER SET binary will convert CHAR, VARCHAR and TEXT columns to BINARY, VARBINARY and

BLOB respectively, and from that point will no longer have a character set, or be affected by future CONVERT TO

CHARACTER SET statements.

2892/4161

To avoid data type changes resulting from CONVERT TO CHARACTER SET , use MODIFY on the individual columns instead.

For example:

ALTER TABLE table_name MODIFY ascii_text_column TEXT CHARACTER SET utf8;

ALTER TABLE table_name MODIFY ascii_varchar_column VARCHAR(M) CHARACTER SET utf8;

Column Level
Character sets and collations can also be specified for columns that are character types CHAR, TEXT or VARCHAR. The

CREATE TABLE and ALTER TABLE statements support optional character set and collation clauses for this purpose -

unlike those at the table level, the column level definitions are standard SQL.

CREATE TABLE european_names (

 croatian_names VARCHAR(40) COLLATE 'cp1250_croatian_ci',

 greek_names VARCHAR(40) CHARACTER SET 'greek');

If neither collation nor character set is provided, the table default is used. If only the character set is specified, that character

set's default collation is used, while if only the collation is specified, the associated character set is used.

When using ALTER TABLE to change a column's character set, you need to ensure the character sets are compatible

with your data. MariaDB will map the data as best it can, but it's possible to lose data if care is not taken.

The SHOW CREATE TABLE statement or INFORMATION SCHEMA database can be used to determine column character

sets and collations.

SHOW CREATE TABLE european_names\G

*************************** 1. row ***************************

 Table: european_names

Create Table: CREATE TABLE `european_names` (

 `croatian_names` varchar(40) CHARACTER SET cp1250 COLLATE cp1250_croatian_ci DEFAULT NULL,

 `greek_names` varchar(40) CHARACTER SET greek DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_danish_ci

2893/4161

SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME LIKE 'european%'\G

*************************** 1. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: danish_names

 TABLE_NAME: european_names

 COLUMN_NAME: croatian_names

 ORDINAL_POSITION: 1

 COLUMN_DEFAULT: NULL

 IS_NULLABLE: YES

 DATA_TYPE: varchar

CHARACTER_MAXIMUM_LENGTH: 40

 CHARACTER_OCTET_LENGTH: 40

 NUMERIC_PRECISION: NULL

 NUMERIC_SCALE: NULL

 DATETIME_PRECISION: NULL

 CHARACTER_SET_NAME: cp1250

 COLLATION_NAME: cp1250_croatian_ci

 COLUMN_TYPE: varchar(40)

 COLUMN_KEY:

 EXTRA:

 PRIVILEGES: select,insert,update,references

 COLUMN_COMMENT:

*************************** 2. row ***************************

 TABLE_CATALOG: def

 TABLE_SCHEMA: danish_names

 TABLE_NAME: european_names

 COLUMN_NAME: greek_names

 ORDINAL_POSITION: 2

 COLUMN_DEFAULT: NULL

 IS_NULLABLE: YES

 DATA_TYPE: varchar

CHARACTER_MAXIMUM_LENGTH: 40

 CHARACTER_OCTET_LENGTH: 40

 NUMERIC_PRECISION: NULL

 NUMERIC_SCALE: NULL

 DATETIME_PRECISION: NULL

 CHARACTER_SET_NAME: greek

 COLLATION_NAME: greek_general_ci

 COLUMN_TYPE: varchar(40)

 COLUMN_KEY:

 EXTRA:

 PRIVILEGES: select,insert,update,references

 COLUMN_COMMENT:

Filenames
Since MariaDB 5.1, the character_set_filesystem system variable has controlled interpretation of file names that are given

as literal strings. This affects the following statements and functions:

SELECT INTO DUMPFILE

SELECT INTO OUTFILE

LOAD DATA INFILE

LOAD XML

LOAD_FILE()

Literals
By default, the character set and collation used for literals is determined by the character_set_connection and

collation_connection system variables. However, they can also be specified explicitly:

[_charset_name]'string' [COLLATE collation_name]

The character set of string literals that do not have a character set introducer is determined by the character_set_connection

system variable.

This query:

 SELECT CHARSET('a'), @@character_set_connection;

2894/4161

always returns the same character set name in both columns.

character_set_client and character_set_connection are normally (e.g. during handshake, or after a SET NAMES query) are

set to equal values. However, it's possible to set to different values.

Examples

Examples when setting @@character_set_client and @@character_set_connection to different values can be useful:

Example 1:

Suppose, we have a utf8 database with this table:

CREATE TABLE t1 (a VARCHAR(10)) CHARACTER SET utf8 COLLATE utf8_general_ci;

INSERT INTO t1 VALUES ('oe'),('ö');

Now we connect to it using "mysql.exe", which uses the DOS character set (cp850 on a West European machine), and want

to fetch all records that are equal to 'ö' according to the German phonebook rules.

It's possible with the following:

SET @@character_set_client=cp850, @@character_set_connection=utf8;

SELECT a FROM t1 WHERE a='ö' COLLATE utf8_german2_ci;

This will return:

+------+

| a |

+------+

| oe |

| ö |

+------+

It works as follows:

1. The client sends the query using cp850.

2. The server, when parsing the query, creates a utf8 string literal by converting 'ö' from @@character_set_client

(cp850) to @@character_set_connection (utf8)

3. The server applies the collation "utf8_german2_ci" to this string literal.

4. The server uses utf8_german2_ci for comparison.

Note, if we rewrite the script like this:

SET NAMES cp850;

SELECT a FROM t1 WHERE a='ö' COLLATE utf8_german2_ci;

we'll get an error:

ERROR 1253 (42000): COLLATION 'utf8_german2_ci' is not valid for CHARACTER SET 'cp850'

because:

on step #2, the literal is not converted to utf8 any more and is created using cp850.

on step #3, the server fails to apply utf8_german2_ci to an cp850 string literal.

Example 2:

Suppose we have a utf8 database and use "mysql.exe" from a West European machine again.

We can do this:

SET @@character_set_client=cp850, @@character_set_connection=utf8;

CREATE TABLE t2 AS SELECT 'ö';

It will create a table with a column of the type VARCHAR(1) CHARACTER SET utf8 .

Note, if we rewrite the query like this:

SET NAMES cp850;

CREATE TABLE t2 AS SELECT 'ö';

2895/4161

It will create a table with a column of the type VARCHAR(1) CHARACTER SET cp850 , which is probably not a good idea.

N

Also, N or n can be used as prefix to convert a literal into the National Character set (which in MariaDB is always utf8).

For example:

SELECT _latin2 'Müller';

+-----------+

| M�{ller |

+-----------+

| M�{ller |

+-----------+

SELECT CHARSET(N'a string');

+----------------------+

| CHARSET(N'a string') |

+----------------------+

| utf8 |

+----------------------+

SELECT 'Mueller' = 'Müller' COLLATE 'latin1_german2_ci';

+---+

| 'Mueller' = 'Müller' COLLATE 'latin1_german2_ci' |

+---+

| 1 |

+---+

Stored Programs and Views
The literals which occur in stored programs and views, by default, use the character set and collation which was specified

by the character_set_connection and collation_connection system variables when the stored program was created. These

values can be seen using the SHOW CREATE statements. To change the character sets used for literals in an existing

stored program, it is necessary to drop and recreate the stored program.

For stored routines parameters and return values, a character set and a collation can be specified via the CHARACTER

SET and COLLATE clauses. Before 5.5, specifying a collation was not supported.

The following example shows that the character set and collation are determined at the time of creation:

SET @@local.character_set_connection='latin1';

DELIMITER ||

CREATE PROCEDURE `test`.`x`()

BEGIN

 SELECT CHARSET('x');

END;

||

Query OK, 0 rows affected (0.00 sec)

DELIMITER ;

SET @@local.character_set_connection='utf8';

CALL `test`.`x`();

+--------------+

| CHARSET('x') |

+--------------+

| latin1 |

+--------------+

The following example shows how to specify a function parameters character set and collation:

2896/4161

CREATE FUNCTION `test`.`y`(`str` TEXT CHARACTER SET utf8 COLLATE utf8_bin)

 RETURNS TEXT CHARACTER SET latin1 COLLATE latin1_bin

BEGIN

 SET @param_coll = COLLATION(`str`);

 RETURN `str`;

END;

-- return value's collation:

SELECT COLLATION(`test`.`y`('Hello, planet!'));

+---+

| COLLATION(`test`.`y`('Hello, planet!')) |

+---+

| latin1_bin |

+---+

-- parameter's collation:

SELECT @param_coll;

+-------------+

| @param_coll |

+-------------+

| utf8_bin |

+-------------+

Changing Default Collation

From MariaDB 11.2, it is possible to change the default collation associated with a particular character set. The

character_set_collations system variable accepts a comma-delimited list of character sets and new default collations,

for example:

SET @@character_set_collations = 'utf8mb4=uca1400_ai_ci, latin2=latin2_hungarian_ci';

The new variable will take effect in all cases where a character set is explicitly or implicitly specified without an explicit

COLLATE clause, including but not limited to:

Column collation

Table collation

Database collation

CHAR(expr USING csname)

CONVERT(expr USING csname)

CAST(expr AS CHAR CHARACTER SET csname)

'' - character string literal

_utf8mb3'text' - a character string literal with an introducer

_utf8mb3 X'61' - a character string literal with an introducer with hex notation

_utf8mb3 0x61 - a character string literal with an introducer with hex hybrid notation

@@collation_connection after a SET NAMES without COLLATE

Example: Changing the Default Character Set To UTF-8
To change the default character set from latin1 to UTF-8, the following settings should be specified in the my.cnf

configuration file.

[mysql]

...

default-character-set=utf8mb4

...

[mysqld]

...

collation-server = utf8mb4_unicode_ci

init-connect='SET NAMES utf8mb4'

character-set-server = utf8mb4

...

Note that the default-character-set option is a client option, not a server option.

MariaDB starting with 11.2.1

2897/4161

5.2.4 Unicode
Unicode is a standard for encoding text across multiple writing systems. MariaDB supports a number of character sets for

storing Unicode data:

Character

Set
Description

ucs2
UCS-2, each character is represented by a 2-byte code with the most significant byte first. Fixed-length 16-bit

encoding.

utf8

Until MariaDB 10.5, this was a UTF-8 encoding using one to three bytes per character. Basic Latin letters,

numbers and punctuation use one byte. European and Middle East letters mostly fit into 2 bytes. Korean,

Chinese, and Japanese ideographs use 3-bytes. No supplementary characters are stored. From MariaDB

10.6, utf8 is an alias for utf8mb3 , but this can changed to ut8mb4 by changing the default value of the

old_mode system variable.

utf8mb3

UTF-8 encoding using one to three bytes per character. Basic Latin letters, numbers and punctuation use one

byte. European and Middle East letters mostly fit into 2 bytes. Korean, Chinese, and Japanese ideographs

use 3-bytes. No supplementary characters are stored. Until MariaDB 10.5, this was an alias for utf8 . From

MariaDB 10.6, utf8 is by default an alias for utf8mb3 , but this can changed to ut8mb4 by changing the

default value of the old_mode system variable.

utf8mb4 UTF-8 encoding the same as utf8mb3 but which stores supplementary characters in four bytes.

utf16 UTF-16, same as ucs2, but stores supplementary characters in 32 bits. 16 or 32-bits.

utf32 UTF-32, fixed-length 32-bit encoding.

1.1.1.2.8.7 SHOW CHARACTER SET

5.2.6 SHOW COLLATION

Syntax

SHOW COLLATION

 [LIKE 'pattern' | WHERE expr]

Contents
1. Syntax

2. Description

3. Examples

Description
The output from SHOW COLLATION includes all available collations. The LIKE clause, if present on its own, indicates which

collation names to match. The WHERE and LIKE clauses can be given to select rows using more general conditions, as

discussed in Extended SHOW.

The same information can be queried from the Information Schema COLLATIONS table.

See Setting Character Sets and Collations for details on specifying the collation at the server, database, table and column

levels.

Examples

2898/4161

SHOW COLLATION LIKE 'latin1%';

+-------------------------+---------+------+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+-------------------------+---------+------+---------+----------+---------+

| latin1_german1_ci | latin1 | 5 | | Yes | 1 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |

| latin1_danish_ci | latin1 | 15 | | Yes | 1 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 1 |

| latin1_general_ci | latin1 | 48 | | Yes | 1 |

| latin1_general_cs | latin1 | 49 | | Yes | 1 |

| latin1_spanish_ci | latin1 | 94 | | Yes | 1 |

| latin1_swedish_nopad_ci | latin1 | 1032 | | Yes | 1 |

| latin1_nopad_bin | latin1 | 1071 | | Yes | 1 |

+-------------------------+---------+------+---------+----------+---------+

SHOW COLLATION WHERE Sortlen LIKE '8' AND Charset LIKE 'utf8mb4';

+------------------------------+---------+------+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+------------------------------+---------+------+---------+----------+---------+

| utf8mb4_unicode_ci | utf8mb4 | 224 | | Yes | 8 |

| utf8mb4_icelandic_ci | utf8mb4 | 225 | | Yes | 8 |

| utf8mb4_latvian_ci | utf8mb4 | 226 | | Yes | 8 |

| utf8mb4_romanian_ci | utf8mb4 | 227 | | Yes | 8 |

| utf8mb4_slovenian_ci | utf8mb4 | 228 | | Yes | 8 |

| utf8mb4_polish_ci | utf8mb4 | 229 | | Yes | 8 |

| utf8mb4_estonian_ci | utf8mb4 | 230 | | Yes | 8 |

| utf8mb4_spanish_ci | utf8mb4 | 231 | | Yes | 8 |

| utf8mb4_swedish_ci | utf8mb4 | 232 | | Yes | 8 |

| utf8mb4_turkish_ci | utf8mb4 | 233 | | Yes | 8 |

| utf8mb4_czech_ci | utf8mb4 | 234 | | Yes | 8 |

| utf8mb4_danish_ci | utf8mb4 | 235 | | Yes | 8 |

| utf8mb4_lithuanian_ci | utf8mb4 | 236 | | Yes | 8 |

| utf8mb4_slovak_ci | utf8mb4 | 237 | | Yes | 8 |

| utf8mb4_spanish2_ci | utf8mb4 | 238 | | Yes | 8 |

| utf8mb4_roman_ci | utf8mb4 | 239 | | Yes | 8 |

| utf8mb4_persian_ci | utf8mb4 | 240 | | Yes | 8 |

| utf8mb4_esperanto_ci | utf8mb4 | 241 | | Yes | 8 |

| utf8mb4_hungarian_ci | utf8mb4 | 242 | | Yes | 8 |

| utf8mb4_sinhala_ci | utf8mb4 | 243 | | Yes | 8 |

| utf8mb4_german2_ci | utf8mb4 | 244 | | Yes | 8 |

| utf8mb4_croatian_mysql561_ci | utf8mb4 | 245 | | Yes | 8 |

| utf8mb4_unicode_520_ci | utf8mb4 | 246 | | Yes | 8 |

| utf8mb4_vietnamese_ci | utf8mb4 | 247 | | Yes | 8 |

| utf8mb4_croatian_ci | utf8mb4 | 608 | | Yes | 8 |

| utf8mb4_myanmar_ci | utf8mb4 | 609 | | Yes | 8 |

| utf8mb4_unicode_nopad_ci | utf8mb4 | 1248 | | Yes | 8 |

| utf8mb4_unicode_520_nopad_ci | utf8mb4 | 1270 | | Yes | 8 |

+------------------------------+---------+------+---------+----------+---------+

1.1.1.2.9.1.1.6 Information Schema CHARACTER_SETS
Table

1.1.1.2.9.1.1.10 Information Schema COLLATIONS Table

5.2.9 Internationalization and Localization
Server Locale

Server locale.

Time Zones

MariaDB time zones.

Setting the Language for Error Messages

Specifying the language for the server error messages.

3

2899/4161

https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/time-zones/

Coordinated Universal Time

Coordinated Universal Time.

Locales Plugin

List compiled-in locales.

mariadb-tzinfo-to-sql

Load time zones into the time zone tables.

2.4.3 Setting the Language for Error Messages

5.4.11.2 Locales plugin

1.3.40 mariadb-tzinfo-to-sql

1.1.1.2.7.2 SET CHARACTER SET

1.1.1.2.7.4 SET NAMES

5.3 Storage Engines
Information on storage engines available for MariaDB.

Choosing the Right Storage Engine

Quickly choose the most suitable storage engine for your needs.

InnoDB

The general-purpose InnoDB storage engine.

MariaDB ColumnStore

Uses a massively parallel architecture, ideal for systems that scale to petabytes of data.

Aria

Aria is a crash safe MyISAM and more.

Archive

Stores data in compressed (gzip) format.

BLACKHOLE

Storage engine that accepts data without storing it.

CONNECT

The CONNECT storage engine enables MariaDB to access external local or remote data.

CSV

Works with files stored in CSV (comma-separated-values) format.

FederatedX

Allows you to access tables in other MariaDB or MySQL servers.

MEMORY Storage Engine

Storage engine stored in memory rather than on disk.

MERGE

Allows you to access a collection of identical MyISAM tables as one.

Mroonga

Provides fast CJK-ready full text searching using column store.

2

1

9

2900/4161

https://mariadb.com/kb/en/coordinated-universal-time/

MyISAM

Non-transactional storage engine with good performance and small data footprint.

MyRocks

Adds RocksDB, an LSM database with a great compression ratio that is optimized for flash storage.

OQGRAPH

Open Query GRAPH computation engine for handling hierarchies (tree structures) and complex graphs.

S3 Storage Engine

A read-only storage engine that stores its data in Amazon S3.

Sequence Storage Engine

Allows ascending or descending sequences of numbers.

SphinxSE

Storage engine that talks to searchd to enable text searching.

Spider

Supports partitioning and xa transactions and allows tables of different in...

TokuDB

For use in high-performance and write-intensive environments.

Information Schema ENGINES Table

Storage engine information.

PERFORMANCE_SCHEMA Storage Engine

PERFORMANCE_SCHEMA storage engine, a mechanism for implementing the feature.

Legacy Storage Engines

Storage engines that are no longer maintained.

Storage Engine Development

Storage Engine Development.

Converting Tables from MyISAM to InnoDB

Issues when converting tables from MyISAM to InnoDB.

Machine Learning with MindsDB

A 3rd-party tool interfacing with MariaDB Server to provide Machine Learning capabilities.

There are 5 related questions .

5

2

2

5.3.1 Choosing the Right Storage Engine
Contents
1. Topic List

1. General Purpose

2. Scaling, Partitioning

3. Compression / Archive

4. Connecting to Other Data Sources

5. Search Optimized

6. Cache, Read-only

7. Other Specialized Storage Engines

2. Alphabetical List

A high-level overview of the main reasons for choosing a particular storage engine:

Topic List

2901/4161

https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/legacy-storage-engines/
https://mariadb.com/kb/en/storage-engines/+questions/

General Purpose

InnoDB is a good general transaction storage engine, and, from MariaDB 10.2, the best choice in most cases. It is the

default storage engine from MariaDB 10.2. For earlier releases, XtraDB was a performance enhanced fork of InnoDB

and is usually preferred.

Aria, MariaDB's more modern improvement on MyISAM, has a small footprint and allows for easy copying between

systems.

MyISAM has a small footprint and allows for easy copying between systems. MyISAM is MySQL's oldest storage

engine. There is usually little reason to use it except for legacy purposes. Aria is MariaDB's more modern

improvement.

XtraDB was the best choice in MariaDB 10.1 and earlier in the majority of cases. It was a performance-enhanced fork

of InnoDB and was MariaDB's default engine until MariaDB 10.1.

Scaling, Partitioning

When you want to split your database load on several servers or optimize for scaling. We also suggest looking at Galera, a

synchronous multi-master cluster.

Spider uses partitioning to provide data sharding through multiple servers.

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

The MERGE storage engine is a collection of identical MyISAM tables that can be used as one. "Identical" means that

all tables have identical column and index information.

TokuDB is a transactional storage engine which is optimized for workloads that do not fit in memory, and provides

a good compression ratio. TokuDB has been deprecated by its upstream developers, and is disabled in MariaDB

10.5, and removed in MariaDB 10.6

Compression / Archive

MyRocks enables greater compression than InnoDB, as well as less write amplification giving better endurance of

flash storage and improving overall throughput.

The Archive storage engine is, unsurprisingly, best used for archiving.

TokuDB is a transactional storage engine which is optimized for workloads that do not fit in memory, and provides

a good compression ratio. TokuDB has been deprecated by its upstream developers, and is disabled in MariaDB

10.5, and removed in MariaDB 10.6

Connecting to Other Data Sources

When you want to use data not stored in a MariaDB database.

CONNECT allows access to different kinds of text files and remote resources as if they were regular MariaDB tables.

The CSV storage engine can read and append to files stored in CSV (comma-separated-values) format. However,

since MariaDB 10.0, CONNECT is a better choice and is more flexibly able to read and write such files.

FederatedX uses libmysql to talk to the data source, the data source being a remote RDBMS. Currently, since

FederatedX only uses libmysql, it can only talk to another MySQL RDBMS.

CassandraSE is a storage engine allowing access to an older version of Apache Cassandra NoSQL DBMS. It was

relatively experimental, is no longer being actively developed and has been removed in MariaDB 10.6.

Search Optimized

Search engines optimized for search.

SphinxSE is used as a proxy to run statements on a remote Sphinx database server (mainly useful for advanced

fulltext searches).

Mroonga provides fast CJK-ready full text searching using column store.

Cache, Read-only

MEMORY does not write data on-disk (all rows are lost on crash) and is best-used for read-only caches of data from

other tables, or for temporary work areas. With the default InnoDB and other storage engines having good caching,

there is less need for this engine than in the past.

Other Specialized Storage Engines

S3 Storage Engine is a read-only storage engine that stores its data in Amazon S3.

Sequence allows the creation of ascending or descending sequences of numbers (positive integers) with a given

2902/4161

https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/cassandrase/

starting value, ending value and increment, creating virtual, ephemeral tables automatically when you need them.

The BLACKHOLE storage engine accepts data but does not store it and always returns an empty result. This can be

useful in replication environments, for example, if you want to run complex filtering rules on a slave without incurring

any overhead on a master.

OQGRAPH allows you to handle hierarchies (tree structures) and complex graphs (nodes having many connections

in several directions).

Alphabetical List
The Archive storage engine is, unsurprisingly, best used for archiving.

Aria, MariaDB's more modern improvement on MyISAM, has a small footprint and allows for easy copy between

systems.

The BLACKHOLE storage engine accepts data but does not store it and always returns an empty result. This can be

useful in replication environments, for example, if you want to run complex filtering rules on a slave without incurring

any overhead on a master.

CassandraSE is a storage engine allowing access to an older version of Apache Cassandra NoSQL DBMS. It was

relatively experimental, is no longer being actively developed and has been removed in MariaDB 10.6.

ColumnStore utilizes a massively parallel distributed data architecture and is designed for big data scaling to

process petabytes of data.

CONNECT allows access to different kinds of text files and remote resources as if they were regular MariaDB tables.

The CSV storage engine can read and append to files stored in CSV (comma-separated-values) format. However,

since MariaDB 10.0, CONNECT is a better choice and is more flexibly able to read and write such files.

FederatedX uses libmysql to talk to the data source, the data source being a remote RDBMS. Currently, since

FederatedX only uses libmysql, it can only talk to another MySQL RDBMS.

InnoDB is a good general transaction storage engine, and, from MariaDB 10.2, the best choice in most cases. It is the

default storage engine from MariaDB 10.2. For earlier releases, XtraDB was a performance enhanced fork of InnoDB

and is usually preferred.

The MERGE storage engine is a collection of identical MyISAM tables that can be used as one. "Identical" means that

all tables have identical column and index information.

MEMORY does not write data on-disk (all rows are lost on crash) and is best-used for read-only caches of data from

other tables, or for temporary work areas. With the default InnoDB and other storage engines having good caching,

there is less need for this engine than in the past.

Mroonga provides fast CJK-ready full text searching using column store.

MyISAM has a small footprint and allows for easy copying between systems. MyISAM is MySQL's oldest storage

engine. There is usually little reason to use it except for legacy purposes. Aria is MariaDB's more modern

improvement.

MyRocks enables greater compression than InnoDB, as well as less write amplification giving better endurance of

flash storage and improving overall throughput.

OQGRAPH allows you to handle hierarchies (tree structures) and complex graphs (nodes having many connections

in several directions).

S3 Storage Engine is a read-only storage engine that stores its data in Amazon S3.

Sequence allows the creation of ascending or descending sequences of numbers (positive integers) with a given

starting value, ending value and increment, creating virtual, ephemeral tables automatically when you need them.

SphinxSE is used as a proxy to run statements on a remote Sphinx database server (mainly useful for advanced

fulltext searches).

Spider uses partitioning to provide data sharding through multiple servers.

TokuDB is a transactional storage engine which is optimized for workloads that do not fit in memory, and provides

a good compression ratio. TokuDB has been deprecated by its upstream developers, and is disabled in MariaDB

10.5, and removed in MariaDB 10.6

XtraDB was the best choice in MariaDB 10.1 and earlier in the majority of cases. It was a performance-enhanced fork

of InnoDB and was MariaDB's default engine until MariaDB 10.1.

5.3.2 InnoDB
InnoDB is a general-purpose storage engine, and the default in MariaDB.

InnoDB Versions

From MariaDB 10.2, InnoDB is the default storage engine.

InnoDB Limitations

The InnoDB storage engine has the following limitations.

InnoDB Troubleshooting

Guidelines when troubleshooting problems with InnoDB .

1

2903/4161

https://mariadb.com/kb/en/cassandrase/
https://mariadb.com/kb/en/columnstore/
https://mariadb.com/kb/en/federatedx/
https://mariadb.com/kb/en/tokudb/

InnoDB System Variables

List and description of InnoDB-related server system variables.

InnoDB Server Status Variables

List and description of InnoDB status variables.

AUTO_INCREMENT Handling in InnoDB

AUTO_INCREMENT handling in InnoDB and the lock modes.

InnoDB Buffer Pool

The most important memory buffer used by InnoDB.

InnoDB Change Buffering

Buffering INSERT, UPDATE and DELETE statements for greater efficiency.

InnoDB Doublewrite Buffer

Buffer used for recovering from half-written pages.

InnoDB Tablespaces

Information on tablespaces in InnoDB, including an overview, system tablesp...

InnoDB File Format

Description of the file formats supported by InnoDB.

InnoDB Row Formats

InnoDB's row formats are REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED.

InnoDB Strict Mode

InnoD strict mode makes InnoDB more reliable.

InnoDB Redo Log

The redo log is used by InnoDB during crash recovery.

InnoDB Undo Log

InnoDB Undo log.

InnoDB Page Flushing

Configuring when and how InnoDB flushes dirty pages to disk.

InnoDB Purge

Purge process to remove old versions of a row from the undo log.

Information Schema InnoDB Tables

All InnoDB-specific Information Schema tables.

InnoDB Online DDL

InnoDB tables support online DDL in certain circumstances.

Binary Log Group Commit and InnoDB Flushing Performance

Improvement for group commit for InnoDB transactions with the binary log enabled.

InnoDB Page Compression

InnoDB page compression, which is more sophisticated than the COMPRESSED row format.

InnoDB Data Scrubbing

Ensuring data is completely removed when deleted.

InnoDB Lock Modes

InnoDB supports a number of lock modes to ensure that concurrent write operations never collide.

InnoDB Monitors

Standard Monitor, Lock Monitor, Tablespace Monitor and the Table Monitor.

1

2

3

2

1

2

23

2904/4161

InnoDB Encryption Overview

Data-at-rest encryption for tables that use the InnoDB storage engine.

InnoDB - Unmaintained

Articles that apply only to old, unmaintained versions of MariaDB.

There are 11 related questions .

5.3.2.1 InnoDB Versions

In MariaDB 10.3.7 and later, the InnoDB implementation has diverged substantially from the InnoDB in MySQL.

Therefore, in these versions, the InnoDB version is no longer associated with a MySQL release version.

In MariaDB 10.2 and later, the default InnoDB implementation is based on InnoDB from MySQL 5.7. See Why MariaDB

uses InnoDB instead of XtraDB from MariaDB 10.2 for more information.

In MariaDB 10.1 and before, the default InnoDB implementation is based on Percona's XtraDB. XtraDB is a

performance enhanced fork of InnoDB. For compatibility reasons, the system variables still retain their original innodb

prefixes. If the documentation says that something applies to InnoDB, then it usually also applies to the XtraDB fork,

unless explicitly stated otherwise. In these versions, it is still possible to use InnoDB instead of XtraDB. See Using

InnoDB instead of XtraDB for more information.

Divergences
Some examples of divergences between MariaDB's InnoDB and MySQL's InnoDB are:

MariaDB 10.1 (which is based on MySQL 5.6) included encryption and variable-size page compression before

MySQL 5.7 introduced them.

MariaDB 10.2 (based on MySQL 5.7) introduced persistent AUTO_INCREMENT (MDEV-6076) in a GA release

before MySQL 8.0.

MariaDB 10.3 (based on MySQL 5.7) introduced instant ADD COLUMN (MDEV-11369) before MySQL.

InnoDB Versions Included in MariaDB Releases

MariaDB 10.3

InnoDB Version Introduced

No longer reported MariaDB 10.3.7

InnoDB 5.7.20 MariaDB 10.3.3

InnoDB 5.7.19 MariaDB 10.3.1

InnoDB 5.7.14 MariaDB 10.3.0

MariaDB 10.2

InnoDB Version Introduced

InnoDB 5.7.29 MariaDB 10.2.33

InnoDB 5.7.23 MariaDB 10.2.17

InnoDB 5.7.22 MariaDB 10.2.15

InnoDB 5.7.21 MariaDB 10.2.13

MariaDB starting with 10.3.7

MariaDB starting with 10.2

MariaDB until 10.1

2905/4161

https://mariadb.com/kb/en/innodb-unmaintained/
https://mariadb.com/kb/en/innodb/+questions/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/why-does-mariadb-102-use-innodb-instead-of-xtradb/
https://mariadb.com/kb/en/using-innodb-instead-of-xtradb/
https://jira.mariadb.org/browse/MDEV-6076
https://jira.mariadb.org/browse/MDEV-11369
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/

InnoDB 5.7.20 MariaDB 10.2.10

InnoDB 5.7.19 MariaDB 10.2.8

InnoDB 5.7.18 MariaDB 10.2.7

InnoDB 5.7.14 MariaDB 10.2.2

MariaDB 10.1

InnoDB Version Introduced

InnoDB 5.6.49 MariaDB 10.1.46

InnoDB 5.6.47 MariaDB 10.1.44

InnoDB 5.6.44 MariaDB 10.1.39

InnoDB 5.6.42 MariaDB 10.1.37

InnoDB 5.6.39 MariaDB 10.1.31

InnoDB 5.6.37 MariaDB 10.1.26

InnoDB 5.6.36 MariaDB 10.1.24

InnoDB 5.6.35 MariaDB 10.1.21

InnoDB 5.6.33 MariaDB 10.1.18

InnoDB 5.6.32 MariaDB 10.1.17

InnoDB 5.6.31 MariaDB 10.1.16

InnoDB 5.6.30 MariaDB 10.1.14

InnoDB 5.6.29 MariaDB 10.1.12

MariaDB 10.0

InnoDB Version Introduced

InnoDB 5.6.43 MariaDB 10.0.38

InnoDB 5.6.42 MariaDB 10.0.37

InnoDB 5.6.40 MariaDB 10.0.35

InnoDB 5.6.39 MariaDB 10.0.34

InnoDB 5.6.38 MariaDB 10.0.33

InnoDB 5.6.37 MariaDB 10.0.32

InnoDB 5.6.36 MariaDB 10.0.31

InnoDB 5.6.35 MariaDB 10.0.29

InnoDB 5.6.33 MariaDB 10.0.28

InnoDB 5.6.32 MariaDB 10.0.27

InnoDB 5.6.31 MariaDB 10.0.26

InnoDB 5.6.30 MariaDB 10.0.25

InnoDB 5.6.29 MariaDB 10.0.24

InnoDB 5.6.28 MariaDB 10.0.23

InnoDB 5.6.27 MariaDB 10.0.22

InnoDB 5.6.26 MariaDB 10.0.21

InnoDB 5.6.25 MariaDB 10.0.20

InnoDB 5.6.24 MariaDB 10.0.18

InnoDB 5.6.23 MariaDB 10.0.17

InnoDB 5.6.22 MariaDB 10.0.16

2906/4161

https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10144-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-10116-release-notes/
https://mariadb.com/kb/en/mariadb-10114-release-notes/
https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-10038-release-notes/
https://mariadb.com/kb/en/mariadb-10037-release-notes/
https://mariadb.com/kb/en/mariadb-10035-release-notes/
https://mariadb.com/kb/en/mariadb-10034-release-notes/
https://mariadb.com/kb/en/mariadb-10033-release-notes/
https://mariadb.com/kb/en/mariadb-10032-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-10029-release-notes/
https://mariadb.com/kb/en/mariadb-10028-release-notes/
https://mariadb.com/kb/en/mariadb-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10025-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-10021-release-notes/
https://mariadb.com/kb/en/mariadb-10020-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10016-release-notes/

InnoDB 5.6.21 MariaDB 10.0.15

InnoDB 5.6.20 MariaDB 10.0.14

InnoDB 5.6.19 MariaDB 10.0.13

InnoDB 5.6.17 MariaDB 10.0.11

InnoDB 5.6.15 MariaDB 10.0.9

InnoDB 5.6.14 MariaDB 10.0.8

5.3.2.2 InnoDB Limitations
Contents
1. Limitations on Schema

2. Limitations on Size

1. Page Sizes

2. Large Prefix Size

3. Limitations on Tables

1. Table Analysis

2. Table Status

3. Auto-incrementing Columns

4. Transactions and Locks

The InnoDB storage engine has the following limitations.

Limitations on Schema
InnoDB tables can have a maximum of 1,017 columns. This includes virtual generated columns.

InnoDB tables can have a maximum of 64 secondary indexes.

A multicolumn index on InnoDB can use a maximum of 32 columns. If you attempt to create a multicolumn index that

uses more than 32 columns, MariaDB returns an Error 1070.

Limitations on Size
With the exception of variable-length columns (that is, VARBINARY, VARCHAR, BLOB and TEXT), rows in InnoDB

have a maximum length of roughly half the page size for 4KB, 8KB, 16KB and 32KB page sizes.

The maximum size for BLOB and TEXT columns is 4GB. This also applies to LONGBLOB and LONGTEXT.

MariaDB imposes a row-size limit of 65,535 bytes for the combined sizes of all columns. If the table contains BLOB or

TEXT columns, these only count for 9 - 12 bytes in this calculation, given that their content is stored separately.

32-bit operating systems have a maximum file size limit of 2GB. When working with large tables using this

architecture, configure InnoDB to use smaller data files.

The maximum size for the combined InnoDB log files is 512GB.

With tablespaces, the minimum size is 10MB, the maximum varies depending on the InnoDB Page Size.

InnoDB Page Size Maximum Tablespace Size

4KB 16TB

8KB 32TB

16KB 64TB

32KB 128TB

64KB 256TB

Page Sizes

Using the innodb_page_size system variable, you can configure the size in bytes for InnoDB pages. Pages default to 16KB.

There are certain limitations on how you use this variable.

MariaDB instances using one page size cannot use data files or log files from an instance using a different page size.

When using a Page Size of 4KB or 8KB, the maximum index key length is lowered proportionately.

InnoDB Page Size Index Key Length

2907/4161

https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10013-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1009-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/

4KB 768B

8KB 1536B

16KB 3072B

Large Prefix Size

Until MariaDB 10.3.1 , the innodb_large_prefix system variable enabled large prefix sizes. That is, when enabled (the

default from MariaDB 10.2), InnoDB uses 3072B index key prefixes for DYNAMIC and COMPRESSED row formats. When

disabled, it uses 787B key prefixes for tables of any row format. Using an index key that exceeds this limit throws an error.

From MariaDB 10.3.1 , InnoDB always uses large index key prefixes.

Limitations on Tables
InnoDB has the following table-specific limitations.

When you issue a DELETE statement, InnoDB doesn't regenerate the table, rather it deletes each row from the table

one by one.

When running MariaDB on Windows, InnoDB stores databases and tables in lowercase. When moving databases

and tables in a binary format from Windows to a Unix-like system or from a Unix system to Windows, you need to

rename these to use lowercase.

When using cascading foreign keys, operations in the cascade don't activate triggers.

Table Analysis

MariaDB supports the use of the ANALYZE TABLE SQL statement to analyze and store table key distribution. When

MariaDB executes this statement, it calculates index cardinality through random dives on index trees. This makes it fast, but

not always accurate as it does not check all rows. The data is only an estimate and repeated executions of this statement

may return different results.

In situations where accurate data from ANALYZE TABLE statements is important, enable the innodb_stats_persistent

system variable. Additionally, you can use the innodb_stats_transient_sample_pages system variable to change the

number of random dives it performs.

When running ANALYZE TABLE twice on a table in which statements or transactions are running, MariaDB blocks the

second ANALYZE TABLE until the statement or transaction is complete. This occurs because the statement or transaction

blocks the second ANALYZE TABLE statement from reloading the table definition, which it must do since the old one was

marked as obsolete after the first statement.

Table Status

Similar to the ANALYZE TABLE statement, SHOW TABLE STATUS statements do not provide accurate statistics for

InnoDB, except for the physical table size.

The InnoDB storage engine does not maintain internal row counts. Transactions isolate writes, which means that concurrent

transactions will not have the same row counts.

Auto-incrementing Columns

When defining an index on an auto-incrementing column, it must be defined in a way that allows the equivalent of

SELECT MAX(col) lookups on the table.

Restarting MariaDB may cause InnoDB to reuse old auto-increment values, such as in the case of a transaction that

was rolled back.

When auto-incrementing columns run out of values, INSERT statements generate duplicate-key errors.

Transactions and Locks
You can modify data on a maximum of 96 * 1023 concurrent transactions that generate undo records.

Of the 128 rollback segments, InnoDB assigns 32 to non-redo logs for transactions that modify temporary tables and

related objects, reducing the maximum number of concurrent data-modifying transactions to 96,000, from 128.000.

The limit is 32,000 concurrent transactions when all data-modifying transactions also modify temporary tables.

Issuing a LOCK TABLES statement sets two locks on each table when the innodb_table_locks system variable is

2908/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

enabled (the default).

When you commit or roll back a transaction, any locks set in the transaction are released. You don't need to issue

LOCK TABLES statements when the autocommit variable is enabled, as InnoDB would immediately release the table

locks.

5.3.2.3 InnoDB Troubleshooting
Guidelines when troubleshooting problems with InnoDB.

InnoDB Troubleshooting Overview

Overview of InnoDB errors experienced and steps to take.

InnoDB Data Dictionary Troubleshooting

Troubleshooting the InnoDB Data Dictionary.

InnoDB Recovery Modes

Modes for recovering from emergency situations in InnoDB.

Troubleshooting Row Size Too Large Errors with InnoDB

Fixing "Row size too large (> 8126). Changing some columns to TEXT or BLOB may help."

3

6

5.3.2.3.1 InnoDB Troubleshooting Overview
Contents

As with most errors, first take a look at the contents of the MariaDB error log. If dealing with a deadlock, setting the

innodb_print_all_deadlocks option (off by default) will output details of all deadlocks to the error log.

It can also help to enable the various InnoDB Monitors relating to the problem you are experiencing. There are four types:

the standard InnoDB monitor, the InnoDB Lock Monitor, InnoDB Tablespace Monitor and the InnoDB Table Monitor.

Running CHECK TABLE will help determine whether there are errors in the table.

For problems with the InnoDB Data Dictionary, see InnoDB Data Dictionary Troubleshooting.

5.3.2.3.2 InnoDB Data Dictionary
Troubleshooting

Contents
1. Can't Open File

2. Removing Orphan Intermediate Tables

Can't Open File
If InnoDB returns something like the following error:

ERROR 1016: Can't open file: 'x.ibd'. (errno: 1)

it may be that an orphan .frm file exists. Something like the following may also appear in the error log:

InnoDB: Cannot find table test/x from the internal data dictionary

InnoDB: of InnoDB though the .frm file for the table exists. Maybe you

InnoDB: have deleted and recreated InnoDB data files but have forgotten

InnoDB: to delete the corresponding .frm files of InnoDB tables?

If this is the case, as the text describes, delete the orphan .frm file on the filesystem.

Removing Orphan Intermediate Tables
An orphan intermediate table may prevent you from dropping the tablespace even if it is otherwise empty, and generally

takes up unnecessary space.

It may come about if MariaDB exits in the middle of an ALTER TABLE ... ALGORITHM=INPLACE operation. They will be

2909/4161

listed in the INFORMATION_SCHEMA.INNODB_SYS_TABLES table, and always start with an #sql-ib prefix. The

accompanying .frm file also begins with #sql- , but has a different name.

To identify orphan tables, run:

SELECT * FROM INFORMATION_SCHEMA.INNODB_SYS_TABLES WHERE NAME LIKE '%#sql%';

When innodb_file_per_table is set, the #sql-*.ibd file will also be visible in the database directory.

To remove an orphan intermediate table:

Rename the #sql-*.frm file (in the database directory) to match the base name of the orphan intermediate table,

for example:

mv #sql-36ab_2.frm #sql-ib87-856498050.frm

Drop the table, for example:

DROP TABLE `#mysql50##sql-ib87-856498050`;

5.3.2.3.3 InnoDB Recovery Modes
The InnoDB recovery mode is a mode used for recovering from emergency situations. You should ensure you have a

backup of your database before making changes in case you need to restore it. The innodb_force_recovery server system

variable sets the recovery mode. A mode of 0 is normal use, while the higher the mode, the more stringent the restrictions.

Higher modes incorporate all limitations of the lower modes.

The recovery mode should never be set to a value other than zero except in an emergency situation.

Please note that recovery mode does not repair corruption. The corrupted files remain corrupted regardless of

recovery mode. The sole purpose of recovery mode is to allow read access to the data, if at all possible.

Generally, it is best to start with a recovery mode of 1, and increase in single increments if needs be. With a recovery mode

< 4, only corrupted pages should be lost. With 4, secondary indexes could be corrupted. With 5, results could be

inconsistent and secondary indexes could be corrupted (even if they were not with 4). A value of 6 leaves pages in an

obsolete state, which might cause more corruption.

Until MariaDB 10.2.7 , mode 0 was the only mode permitting changes to the data. From MariaDB 10.2.7 , write

transactions are permitted with mode 3 or less.

To recover the tables, you can execute SELECTs to dump data, and DROP TABLE (when write transactions are permitted)

to remove corrupted tables.

The following modes are available:

Recovery Modes
Recovery mode behaviour differs per version (server/storage/innobase/include/srv0srv.h)

MariaDB 10.4 and before:

Mode Description

0
The default mode while InnoDB is running normally. Until MariaDB 10.2.7 , it was the only mode permitting

changes to the data. From MariaDB 10.2.7 , write transactions are permitted with innodb_force_recovery<=3.

1

(SRV_FORCE_IGNORE_CORRUPT) allows the the server to keep running even if corrupt pages are detected. It

does so by making redo log based recovery ignore certain errors, such as missing data files or corrupted data

pages. Any redo log for affected files or pages will be skipped. You can facilitate dumping tables by getting the

SELECT * FROM table_name statement to jump over corrupt indexes and pages.

2
(SRV_FORCE_NO_BACKGROUND) stops the master thread from running, preventing a crash that occurs during

a purge. No purge will be performed, so the undo logs will keep growing.

2910/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/

3

(SRV_FORCE_NO_TRX_UNDO) does not roll back transactions after the crash recovery. Does not affect rollback

of currently active transactions. Starting with MariaDB 10.2.7 , will also prevent some undo-generating

background tasks from running. These tasks could hit a lock wait due to the recovered incomplete transactions

whose rollback is being prevented.

4 (SRV_FORCE_NO_IBUF_MERGE) does not calculate tables statistics and prevents insert buffer merges.

5
(SRV_FORCE_NO_UNDO_LOG_SCAN) treats incomplete transactions as committed, and does not look at the

undo logs when starting.

6

(SRV_FORCE_NO_LOG_REDO) does not perform redo log roll-forward as part of recovery. Running queries that

require indexes are likely to fail with this mode active. However, if a table dump still causes a crash, you can try

using a SELECT * FROM tab ORDER BY primary_key DESC to dump all the data portion after the corrupted

part.

From MariaDB 10.5 to MariaDB 10.6.4:

Mode Description

0
The default mode while InnoDB is running normally. Write transactions are permitted with

innodb_force_recovery<=4.

1

(SRV_FORCE_IGNORE_CORRUPT) allows the the server to keep running even if corrupt pages are detected. It

does so by making redo log based recovery ignore certain errors, such as missing data files or corrupted data

pages. Any redo log for affected files or pages will be skipped. You can facilitate dumping tables by getting the

SELECT * FROM table_name statement to jump over corrupt indexes and pages.

2
(SRV_FORCE_NO_BACKGROUND) stops the master thread from running, preventing a crash that occurs during

a purge. No purge will be performed, so the undo logs will keep growing.

3

(SRV_FORCE_NO_TRX_UNDO) does not roll back transactions after the crash recovery. Does not affect rollback

of currently active transactions. Will also prevent some undo-generating background tasks from running. These

tasks could hit a lock wait due to the recovered incomplete transactions whose rollback is being prevented.

4 (SRV_FORCE_NO_IBUF_MERGE) The same as 3.

5
(SRV_FORCE_NO_UNDO_LOG_SCAN) treats incomplete transactions as committed, and does not look at the

undo logs when starting.

6

(SRV_FORCE_NO_LOG_REDO) does not perform redo log roll-forward as part of recovery. Running queries that

require indexes are likely to fail with this mode active. However, if a table dump still causes a crash, you can try

using a SELECT * FROM tab ORDER BY primary_key DESC to dump all the data portion after the corrupted

part.

From MariaDB 10.6.5

Mode Description

0
The default mode while InnoDB is running normally. Write transactions are permitted with

innodb_force_recovery<=4.

1

(SRV_FORCE_IGNORE_CORRUPT) allows the the server to keep running even if corrupt pages are detected. It

does so by making redo log based recovery ignore certain errors, such as missing data files or corrupted data

pages. Any redo log for affected files or pages will be skipped. You can facilitate dumping tables by getting the

SELECT * FROM table_name statement to jump over corrupt indexes and pages.

2
(SRV_FORCE_NO_BACKGROUND) stops the master thread from running, preventing a crash that occurs during

a purge. No purge will be performed, so the undo logs will keep growing.

3

(SRV_FORCE_NO_TRX_UNDO) does not roll back DML transactions after the crash recovery. Does not affect

rollback of currently active DML transactions. Will also prevent some undo-generating background tasks from

running. These tasks could hit a lock wait due to the recovered incomplete transactions whose rollback is being

prevented.

4

(SRV_FORCE_NO_DDL_UNDO) does not roll back transactions after the crash recovery. Does not affect rollback

of currently active transactions. Will also prevent some undo-generating background tasks from running. These

tasks could hit a lock wait due to the recovered incomplete transactions whose rollback is being prevented.

5

(SRV_FORCE_NO_UNDO_LOG_SCAN) treats incomplete transactions as committed, and does not look at the

undo logs when starting. Any DDL log for InnoDB tables will be essentially ignored by InnoDB, but the server will

start up

2911/4161

https://mariadb.com/kb/en/mariadb-1027-release-notes/

6

(SRV_FORCE_NO_LOG_REDO) does not perform redo log roll-forward as part of recovery. Running queries that

require indexes are likely to fail with this mode active. However, if a table dump still causes a crash, you can try

using a SELECT * FROM tab ORDER BY primary_key DESC to dump all the data portion after the corrupted

part.

Note also that XtraDB (<= MariaDB 10.2.6) by default will crash the server when it detects corrupted data in a single-table

tablespace. This behaviour can be changed - see the innodb_corrupt_table_action system variable.

Fixing Things
Try to set innodb_force_recovery to 1 and start mariadb. If that fails, try a value of "2". If a value of 2 works, then there is a

chance the only corruption you have experienced is within the innodb "undo logs". If that gets mariadb started, you should

be able to dump your database with mariadb-dump. You can verify any other issues with any tables by running mariadb-

check --all-databases.

If you were able to successfully dump your databases, or had previously known good backups, drop your database(s) from

the mariadb command line like "DROP DATABASE yourdatabase". Stop mariadb. Go to /var/lib/mysql (or whereever your

mysql data directory is located) and "rm -i ib*". Start mariadb, create the database(s) you dropped ("CREATE DATABASE

yourdatabase"), and then import your most recent dumps: "mysql < mydatabasedump.sql"

5.3.2.3.4 Troubleshooting Row Size Too Large
Errors with InnoDB
With InnoDB, users can see the following message as an error or warning:

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored

inline.

And they can also see the following message as an error or warning in the error log:

[Warning] InnoDB: Cannot add field col in table db1.tab because after adding it,

the row size is 8478 which is greater than maximum allowed size (8126) for a

record on index leaf page.

Contents
1. Example of the Problem

2. Root Cause of the Problem

3. Checking Existing Tables for the Problem

4. Finding All Tables That Currently Have the Problem

5. Solving the Problem

1. Converting the Table to the DYNAMIC Row Format

2. Fitting More Columns on Overflow Pages

1. Converting Some Columns to BLOB or TEXT

2. Increasing the Length of VARBINARY Columns

3. Increasing the Length of VARCHAR Columns

6. Working Around the Problem

1. Refactoring the Table into Multiple Tables

2. Refactoring Some Columns into JSON

3. Disabling InnoDB Strict Mode

These messages indicate that the table's definition allows rows that the table's InnoDB row format can't actually store.

These messages are raised in the following cases:

If InnoDB strict mode is enabled and if a DDL statement is executed that touches the table, such as CREATE TABLE

or ALTER TABLE, then InnoDB will raise an error with this message

If InnoDB strict mode is disabled and if a DDL statement is executed that touches the table, such as CREATE

TABLE or ALTER TABLE, then InnoDB will raise a warning with this message.

Regardless of whether InnoDB strict mode is enabled, if a DML statement is executed that attempts to write a row

that the table's InnoDB row format can't store, then InnoDB will raise an error with this message.

2912/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/

Example of the Problem
Here is an example of the problem:

SET GLOBAL innodb_default_row_format='dynamic';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 col1 varchar(40) NOT NULL,

 col2 varchar(40) NOT NULL,

 col3 varchar(40) NOT NULL,

 col4 varchar(40) NOT NULL,

 col5 varchar(40) NOT NULL,

 col6 varchar(40) NOT NULL,

 col7 varchar(40) NOT NULL,

 col8 varchar(40) NOT NULL,

 col9 varchar(40) NOT NULL,

 col10 varchar(40) NOT NULL,

 col11 varchar(40) NOT NULL,

 col12 varchar(40) NOT NULL,

 col13 varchar(40) NOT NULL,

 col14 varchar(40) NOT NULL,

 col15 varchar(40) NOT NULL,

 col16 varchar(40) NOT NULL,

 col17 varchar(40) NOT NULL,

 col18 varchar(40) NOT NULL,

 col19 varchar(40) NOT NULL,

 col20 varchar(40) NOT NULL,

 col21 varchar(40) NOT NULL,

 col22 varchar(40) NOT NULL,

 col23 varchar(40) NOT NULL,

 col24 varchar(40) NOT NULL,

 col25 varchar(40) NOT NULL,

 col26 varchar(40) NOT NULL,

 col27 varchar(40) NOT NULL,

 col28 varchar(40) NOT NULL,

 col29 varchar(40) NOT NULL,

 col30 varchar(40) NOT NULL,

 col31 varchar(40) NOT NULL,

 col32 varchar(40) NOT NULL,

 col33 varchar(40) NOT NULL,

 col34 varchar(40) NOT NULL,

 col35 varchar(40) NOT NULL,

 col36 varchar(40) NOT NULL,

 col37 varchar(40) NOT NULL,

 col38 varchar(40) NOT NULL,

 col39 varchar(40) NOT NULL,

 col40 varchar(40) NOT NULL,

 col41 varchar(40) NOT NULL,

 col42 varchar(40) NOT NULL,

 col43 varchar(40) NOT NULL,

 col44 varchar(40) NOT NULL,

 col45 varchar(40) NOT NULL,

 col46 varchar(40) NOT NULL,

 col47 varchar(40) NOT NULL,

 col48 varchar(40) NOT NULL,

 col49 varchar(40) NOT NULL,

 col50 varchar(40) NOT NULL,

 col51 varchar(40) NOT NULL,

 col52 varchar(40) NOT NULL,

 col53 varchar(40) NOT NULL,

 col54 varchar(40) NOT NULL,

 col55 varchar(40) NOT NULL,

 col56 varchar(40) NOT NULL,

 col57 varchar(40) NOT NULL,

 col58 varchar(40) NOT NULL,

 col59 varchar(40) NOT NULL,

 col60 varchar(40) NOT NULL,

 col61 varchar(40) NOT NULL,

 col62 varchar(40) NOT NULL,

 col63 varchar(40) NOT NULL,

 col64 varchar(40) NOT NULL,

 col65 varchar(40) NOT NULL,
2913/4161

 col65 varchar(40) NOT NULL,

 col66 varchar(40) NOT NULL,

 col67 varchar(40) NOT NULL,

 col68 varchar(40) NOT NULL,

 col69 varchar(40) NOT NULL,

 col70 varchar(40) NOT NULL,

 col71 varchar(40) NOT NULL,

 col72 varchar(40) NOT NULL,

 col73 varchar(40) NOT NULL,

 col74 varchar(40) NOT NULL,

 col75 varchar(40) NOT NULL,

 col76 varchar(40) NOT NULL,

 col77 varchar(40) NOT NULL,

 col78 varchar(40) NOT NULL,

 col79 varchar(40) NOT NULL,

 col80 varchar(40) NOT NULL,

 col81 varchar(40) NOT NULL,

 col82 varchar(40) NOT NULL,

 col83 varchar(40) NOT NULL,

 col84 varchar(40) NOT NULL,

 col85 varchar(40) NOT NULL,

 col86 varchar(40) NOT NULL,

 col87 varchar(40) NOT NULL,

 col88 varchar(40) NOT NULL,

 col89 varchar(40) NOT NULL,

 col90 varchar(40) NOT NULL,

 col91 varchar(40) NOT NULL,

 col92 varchar(40) NOT NULL,

 col93 varchar(40) NOT NULL,

 col94 varchar(40) NOT NULL,

 col95 varchar(40) NOT NULL,

 col96 varchar(40) NOT NULL,

 col97 varchar(40) NOT NULL,

 col98 varchar(40) NOT NULL,

 col99 varchar(40) NOT NULL,

 col100 varchar(40) NOT NULL,

 col101 varchar(40) NOT NULL,

 col102 varchar(40) NOT NULL,

 col103 varchar(40) NOT NULL,

 col104 varchar(40) NOT NULL,

 col105 varchar(40) NOT NULL,

 col106 varchar(40) NOT NULL,

 col107 varchar(40) NOT NULL,

 col108 varchar(40) NOT NULL,

 col109 varchar(40) NOT NULL,

 col110 varchar(40) NOT NULL,

 col111 varchar(40) NOT NULL,

 col112 varchar(40) NOT NULL,

 col113 varchar(40) NOT NULL,

 col114 varchar(40) NOT NULL,

 col115 varchar(40) NOT NULL,

 col116 varchar(40) NOT NULL,

 col117 varchar(40) NOT NULL,

 col118 varchar(40) NOT NULL,

 col119 varchar(40) NOT NULL,

 col120 varchar(40) NOT NULL,

 col121 varchar(40) NOT NULL,

 col122 varchar(40) NOT NULL,

 col123 varchar(40) NOT NULL,

 col124 varchar(40) NOT NULL,

 col125 varchar(40) NOT NULL,

 col126 varchar(40) NOT NULL,

 col127 varchar(40) NOT NULL,

 col128 varchar(40) NOT NULL,

 col129 varchar(40) NOT NULL,

 col130 varchar(40) NOT NULL,

 col131 varchar(40) NOT NULL,

 col132 varchar(40) NOT NULL,

 col133 varchar(40) NOT NULL,

 col134 varchar(40) NOT NULL,

 col135 varchar(40) NOT NULL,

 col136 varchar(40) NOT NULL,

 col137 varchar(40) NOT NULL,

 col138 varchar(40) NOT NULL,

 col139 varchar(40) NOT NULL,

 col140 varchar(40) NOT NULL,
2914/4161

 col140 varchar(40) NOT NULL,

 col141 varchar(40) NOT NULL,

 col142 varchar(40) NOT NULL,

 col143 varchar(40) NOT NULL,

 col144 varchar(40) NOT NULL,

 col145 varchar(40) NOT NULL,

 col146 varchar(40) NOT NULL,

 col147 varchar(40) NOT NULL,

 col148 varchar(40) NOT NULL,

 col149 varchar(40) NOT NULL,

 col150 varchar(40) NOT NULL,

 col151 varchar(40) NOT NULL,

 col152 varchar(40) NOT NULL,

 col153 varchar(40) NOT NULL,

 col154 varchar(40) NOT NULL,

 col155 varchar(40) NOT NULL,

 col156 varchar(40) NOT NULL,

 col157 varchar(40) NOT NULL,

 col158 varchar(40) NOT NULL,

 col159 varchar(40) NOT NULL,

 col160 varchar(40) NOT NULL,

 col161 varchar(40) NOT NULL,

 col162 varchar(40) NOT NULL,

 col163 varchar(40) NOT NULL,

 col164 varchar(40) NOT NULL,

 col165 varchar(40) NOT NULL,

 col166 varchar(40) NOT NULL,

 col167 varchar(40) NOT NULL,

 col168 varchar(40) NOT NULL,

 col169 varchar(40) NOT NULL,

 col170 varchar(40) NOT NULL,

 col171 varchar(40) NOT NULL,

 col172 varchar(40) NOT NULL,

 col173 varchar(40) NOT NULL,

 col174 varchar(40) NOT NULL,

 col175 varchar(40) NOT NULL,

 col176 varchar(40) NOT NULL,

 col177 varchar(40) NOT NULL,

 col178 varchar(40) NOT NULL,

 col179 varchar(40) NOT NULL,

 col180 varchar(40) NOT NULL,

 col181 varchar(40) NOT NULL,

 col182 varchar(40) NOT NULL,

 col183 varchar(40) NOT NULL,

 col184 varchar(40) NOT NULL,

 col185 varchar(40) NOT NULL,

 col186 varchar(40) NOT NULL,

 col187 varchar(40) NOT NULL,

 col188 varchar(40) NOT NULL,

 col189 varchar(40) NOT NULL,

 col190 varchar(40) NOT NULL,

 col191 varchar(40) NOT NULL,

 col192 varchar(40) NOT NULL,

 col193 varchar(40) NOT NULL,

 col194 varchar(40) NOT NULL,

 col195 varchar(40) NOT NULL,

 col196 varchar(40) NOT NULL,

 col197 varchar(40) NOT NULL,

 col198 varchar(40) NOT NULL,

 PRIMARY KEY (col1)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored inline.

Root Cause of the Problem
The root cause is that InnoDB has a maximum row size that is roughly equivalent to half of the value of the

innodb_page_size system variable. See InnoDB Row Formats Overview: Maximum Row Size for more information.

InnoDB's row formats work around this limit by storing certain kinds of variable-length columns on overflow pages. However,

different row formats can store different types of data on overflow pages. Some row formats can store more data in overflow

pages than others. For example, the DYNAMIC and COMPRESSED row formats can store the most data in overflow pages.

To learn how the various InnoDB row formats use overflow pages, see the following pages:

2915/4161

InnoDB REDUNDANT Row Format: Overflow Pages with the REDUNDANT Row Format

InnoDB COMPACT Row Format: Overflow Pages with the COMPACT Row Format

InnoDB DYNAMIC Row Format: Overflow Pages with the DYNAMIC Row Format

InnoDB COMPRESSED Row Format: Overflow Pages with the COMPRESSED Row Format

Checking Existing Tables for the Problem
InnoDB does not currently have an easy way to check all existing tables to determine which tables have this problem. See

MDEV-20400 for more information.

One method to check a single existing table for this problem is to enable InnoDB strict mode, and then try to create a

duplicate of the table with CREATE TABLE ... LIKE. If the table has this problem, then the operation will fail. For example:

SET SESSION innodb_strict_mode=ON;

CREATE TABLE tab_dup LIKE tab;

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored inline.

Finding All Tables That Currently Have the Problem
The following shell script will read through a MariaDB server to identify every table that has a row size definition that is too

large for its row format and the server's page size. It runs on most common distributions of Linux.

To run the script, copy the code below to a shell-script named rowsize.sh , make it executable with the command chmod

755 ./rowsize.sh , and invoke it with the following parameters:

./rowsize.sh host user password

When the script runs, it displays the name of the temporary database it creates, so that if the script is interrupted before

cleaning up, the database can be easily identified and removed manually.

As the script runs it will output one line reporting the database and tablename for each table it finds that has the oversize row

problem. If it finds none, it will print the following message: "No tables with rows size too big found."

In either case, the script prints one final line to announce when it's done: ./rowsize.sh done.

2916/4161

https://jira.mariadb.org/browse/MDEV-20400

#!/bin/bash

[-z "$3"] && echo "Usage: $0 host user password" >&2 && exit 1

dt="tmp_$RANDOM$RANDOM"

mysql -h $1 -u $2 -p$3 -ABNe "create database $dt;"

[$? -ne 0] && echo "Error: $0 terminating" >&2 exit 1

echo

echo "Created temporary database ${dt} on host $1"

echo

c=0

for d in $(mysql -h $1 -u $2 -p$3 -ABNe "show databases;" | egrep -iv

"information_schema|mysql|performance_schema|$dt")

do

 for t in $(mysql -h $1 -u $2 -p$3 -ABNe "show tables;" $d)

 do

 tc=$(mysql -h $1 -u $2 -p$3 -ABNe "show create table $t\\G" $d | egrep -iv "^*|^$t")

 echo $tc | grep -iq "ROW_FORMAT"

 if [$? -ne 0]

 then

 tf=$(mysql -h $1 -u $2 -p$3 -ABNe "select row_format from

information_schema.innodb_sys_tables where name = '${d}/${t}';")

 tc="$tc ROW_FORMAT=$tf"

 fi

 ef="/tmp/e$RANDOM$RANDOM"

 mysql -h $1 -u $2 -p$3 -ABNe "set innodb_strict_mode=1; set foreign_key_checks=0; ${tc};" $dt

>/dev/null 2>$ef

 [$? -ne 0] && cat $ef | grep -q "Row size too large" && echo "${d}.${t}" && let c++ ||

mysql -h $1 -u $2 -p$3 -ABNe "drop table if exists ${t};" $dt

 rm -f $ef

 done

done

mysql -h $1 -u $2 -p$3 -ABNe "set innodb_strict_mode=1; drop database $dt;"

[$c -eq 0] && echo "No tables with rows size too large found." || echo && echo "$c tables

found with row size too large."

echo

echo "$0 done."

Solving the Problem
There are several potential solutions available to solve this problem.

Converting the Table to the DYNAMIC Row Format

If the table is using either the REDUNDANT or the COMPACT row format, then one potential solution to this problem is to

convert the table to use the DYNAMIC row format instead.

If your tables were originally created on an older version of MariaDB or MySQL, then your table may be using one of

InnoDB's older row formats:

In MariaDB 10.1 and before, and in MySQL 5.6 and before, the COMPACT row format was the default row format.

In MySQL 4.1 and before, the REDUNDANT row format was the default row format.

The DYNAMIC row format can store more data on overflow pages than these older row formats, so this row format may

actually be able to store the table's data safely. See InnoDB DYNAMIC Row Format: Overflow Pages with the DYNAMIC

Row Format for more information.

Therefore, a potential solution to the Row size too large error is to convert the table to use the DYNAMIC row format. For

example:

ALTER TABLE tab ROW_FORMAT=DYNAMIC;

You can use the INNODB_SYS_TABLES table in the information_schema database to find all tables that use the

REDUNDANT or the COMPACT row formats. This is helpful if you would like to convert all of your tables that you still use

the older row formats to the DYNAMIC row format. For example, the following query can find those tables, while excluding

InnoDB's internal system tables:
2917/4161

SELECT NAME, ROW_FORMAT

FROM information_schema.INNODB_SYS_TABLES

WHERE ROW_FORMAT IN('Redundant', 'Compact')

AND NAME NOT IN('SYS_DATAFILES', 'SYS_FOREIGN', 'SYS_FOREIGN_COLS', 'SYS_TABLESPACES', 'SYS_VIRTUAL'

In MariaDB 10.2 and later, the DYNAMIC row format is the default row format. If your tables were originally created on one

of these newer versions, then they may already be using this row format. In that case, you may need to try the next solution.

Fitting More Columns on Overflow Pages

If the table is already using the DYNAMIC row format, then another potential solution to this problem is to change the table

schema, so that the row format can store more columns on overflow pages.

In order for InnoDB to store some variable-length columns on overflow pages, the length of those columns may need to be

increased.

Therefore, a counter-intuitive solution to the Row size too large error in a lot of cases is actually to increase the length of

some variable-length columns, so that InnoDB's row format can store them on overflow pages.

Some possible ways to change the table schema are listed below.

Converting Some Columns to BLOB or TEXT

For BLOB and TEXT columns, the DYNAMIC row format can store these columns on overflow pages. See InnoDB

DYNAMIC Row Format: Overflow Pages with the DYNAMIC Row Format for more information.

Therefore, a potential solution to the Row size too large error is to convert some columns to the BLOB or TEXT data types.

Increasing the Length of VARBINARY Columns

For VARBINARY columns, the DYNAMIC row format can only store these columns on overflow pages if the maximum

length of the column is 256 bytes or longer. See InnoDB DYNAMIC Row Format: Overflow Pages with the DYNAMIC Row

Format for more information.

Therefore, a potential solution to the Row size too large error is to ensure that all VARBINARY columns are at least as long

as varbinary(256) .

Increasing the Length of VARCHAR Columns

For VARCHAR columns, the DYNAMIC row format can only store these columns on overflow pages if the maximum length

of the column is 256 bytes or longer. See InnoDB DYNAMIC Row Format: Overflow Pages with the DYNAMIC Row Format

for more information.

The original table schema shown earlier on this page causes the Row size too large error, because all of the table's

VARCHAR columns are smaller than 256 bytes, which means that they have to be stored on the row's main data page.

Therefore, a potential solution to the Row size too large error is to ensure that all VARCHAR columns are at least as long as

256 bytes. The number of characters required to reach the 256 byte limit depends on the character set used by the column.

For example, when using InnoDB's DYNAMIC row format and a default character set of latin1 (which requires up to 1 byte

per character), the 256 byte limit means that a VARCHAR column will only be stored on overflow pages if it is at least as

large as a varchar(256) :

SET GLOBAL innodb_default_row_format='dynamic';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 col1 varchar(256) NOT NULL,

 col2 varchar(256) NOT NULL,

 col3 varchar(256) NOT NULL,

 col4 varchar(256) NOT NULL,

 col5 varchar(256) NOT NULL,

 col6 varchar(256) NOT NULL,

 col7 varchar(256) NOT NULL,

 col8 varchar(256) NOT NULL,

 col9 varchar(256) NOT NULL,

 col10 varchar(256) NOT NULL,

 col11 varchar(256) NOT NULL,

 col12 varchar(256) NOT NULL,

 col13 varchar(256) NOT NULL,

 col14 varchar(256) NOT NULL,

 col15 varchar(256) NOT NULL,
2918/4161

 col15 varchar(256) NOT NULL,

 col16 varchar(256) NOT NULL,

 col17 varchar(256) NOT NULL,

 col18 varchar(256) NOT NULL,

 col19 varchar(256) NOT NULL,

 col20 varchar(256) NOT NULL,

 col21 varchar(256) NOT NULL,

 col22 varchar(256) NOT NULL,

 col23 varchar(256) NOT NULL,

 col24 varchar(256) NOT NULL,

 col25 varchar(256) NOT NULL,

 col26 varchar(256) NOT NULL,

 col27 varchar(256) NOT NULL,

 col28 varchar(256) NOT NULL,

 col29 varchar(256) NOT NULL,

 col30 varchar(256) NOT NULL,

 col31 varchar(256) NOT NULL,

 col32 varchar(256) NOT NULL,

 col33 varchar(256) NOT NULL,

 col34 varchar(256) NOT NULL,

 col35 varchar(256) NOT NULL,

 col36 varchar(256) NOT NULL,

 col37 varchar(256) NOT NULL,

 col38 varchar(256) NOT NULL,

 col39 varchar(256) NOT NULL,

 col40 varchar(256) NOT NULL,

 col41 varchar(256) NOT NULL,

 col42 varchar(256) NOT NULL,

 col43 varchar(256) NOT NULL,

 col44 varchar(256) NOT NULL,

 col45 varchar(256) NOT NULL,

 col46 varchar(256) NOT NULL,

 col47 varchar(256) NOT NULL,

 col48 varchar(256) NOT NULL,

 col49 varchar(256) NOT NULL,

 col50 varchar(256) NOT NULL,

 col51 varchar(256) NOT NULL,

 col52 varchar(256) NOT NULL,

 col53 varchar(256) NOT NULL,

 col54 varchar(256) NOT NULL,

 col55 varchar(256) NOT NULL,

 col56 varchar(256) NOT NULL,

 col57 varchar(256) NOT NULL,

 col58 varchar(256) NOT NULL,

 col59 varchar(256) NOT NULL,

 col60 varchar(256) NOT NULL,

 col61 varchar(256) NOT NULL,

 col62 varchar(256) NOT NULL,

 col63 varchar(256) NOT NULL,

 col64 varchar(256) NOT NULL,

 col65 varchar(256) NOT NULL,

 col66 varchar(256) NOT NULL,

 col67 varchar(256) NOT NULL,

 col68 varchar(256) NOT NULL,

 col69 varchar(256) NOT NULL,

 col70 varchar(256) NOT NULL,

 col71 varchar(256) NOT NULL,

 col72 varchar(256) NOT NULL,

 col73 varchar(256) NOT NULL,

 col74 varchar(256) NOT NULL,

 col75 varchar(256) NOT NULL,

 col76 varchar(256) NOT NULL,

 col77 varchar(256) NOT NULL,

 col78 varchar(256) NOT NULL,

 col79 varchar(256) NOT NULL,

 col80 varchar(256) NOT NULL,

 col81 varchar(256) NOT NULL,

 col82 varchar(256) NOT NULL,

 col83 varchar(256) NOT NULL,

 col84 varchar(256) NOT NULL,

 col85 varchar(256) NOT NULL,

 col86 varchar(256) NOT NULL,

 col87 varchar(256) NOT NULL,

 col88 varchar(256) NOT NULL,

 col89 varchar(256) NOT NULL,

 col90 varchar(256) NOT NULL,
2919/4161

 col90 varchar(256) NOT NULL,

 col91 varchar(256) NOT NULL,

 col92 varchar(256) NOT NULL,

 col93 varchar(256) NOT NULL,

 col94 varchar(256) NOT NULL,

 col95 varchar(256) NOT NULL,

 col96 varchar(256) NOT NULL,

 col97 varchar(256) NOT NULL,

 col98 varchar(256) NOT NULL,

 col99 varchar(256) NOT NULL,

 col100 varchar(256) NOT NULL,

 col101 varchar(256) NOT NULL,

 col102 varchar(256) NOT NULL,

 col103 varchar(256) NOT NULL,

 col104 varchar(256) NOT NULL,

 col105 varchar(256) NOT NULL,

 col106 varchar(256) NOT NULL,

 col107 varchar(256) NOT NULL,

 col108 varchar(256) NOT NULL,

 col109 varchar(256) NOT NULL,

 col110 varchar(256) NOT NULL,

 col111 varchar(256) NOT NULL,

 col112 varchar(256) NOT NULL,

 col113 varchar(256) NOT NULL,

 col114 varchar(256) NOT NULL,

 col115 varchar(256) NOT NULL,

 col116 varchar(256) NOT NULL,

 col117 varchar(256) NOT NULL,

 col118 varchar(256) NOT NULL,

 col119 varchar(256) NOT NULL,

 col120 varchar(256) NOT NULL,

 col121 varchar(256) NOT NULL,

 col122 varchar(256) NOT NULL,

 col123 varchar(256) NOT NULL,

 col124 varchar(256) NOT NULL,

 col125 varchar(256) NOT NULL,

 col126 varchar(256) NOT NULL,

 col127 varchar(256) NOT NULL,

 col128 varchar(256) NOT NULL,

 col129 varchar(256) NOT NULL,

 col130 varchar(256) NOT NULL,

 col131 varchar(256) NOT NULL,

 col132 varchar(256) NOT NULL,

 col133 varchar(256) NOT NULL,

 col134 varchar(256) NOT NULL,

 col135 varchar(256) NOT NULL,

 col136 varchar(256) NOT NULL,

 col137 varchar(256) NOT NULL,

 col138 varchar(256) NOT NULL,

 col139 varchar(256) NOT NULL,

 col140 varchar(256) NOT NULL,

 col141 varchar(256) NOT NULL,

 col142 varchar(256) NOT NULL,

 col143 varchar(256) NOT NULL,

 col144 varchar(256) NOT NULL,

 col145 varchar(256) NOT NULL,

 col146 varchar(256) NOT NULL,

 col147 varchar(256) NOT NULL,

 col148 varchar(256) NOT NULL,

 col149 varchar(256) NOT NULL,

 col150 varchar(256) NOT NULL,

 col151 varchar(256) NOT NULL,

 col152 varchar(256) NOT NULL,

 col153 varchar(256) NOT NULL,

 col154 varchar(256) NOT NULL,

 col155 varchar(256) NOT NULL,

 col156 varchar(256) NOT NULL,

 col157 varchar(256) NOT NULL,

 col158 varchar(256) NOT NULL,

 col159 varchar(256) NOT NULL,

 col160 varchar(256) NOT NULL,

 col161 varchar(256) NOT NULL,

 col162 varchar(256) NOT NULL,

 col163 varchar(256) NOT NULL,

 col164 varchar(256) NOT NULL,

 col165 varchar(256) NOT NULL,
2920/4161

 col165 varchar(256) NOT NULL,

 col166 varchar(256) NOT NULL,

 col167 varchar(256) NOT NULL,

 col168 varchar(256) NOT NULL,

 col169 varchar(256) NOT NULL,

 col170 varchar(256) NOT NULL,

 col171 varchar(256) NOT NULL,

 col172 varchar(256) NOT NULL,

 col173 varchar(256) NOT NULL,

 col174 varchar(256) NOT NULL,

 col175 varchar(256) NOT NULL,

 col176 varchar(256) NOT NULL,

 col177 varchar(256) NOT NULL,

 col178 varchar(256) NOT NULL,

 col179 varchar(256) NOT NULL,

 col180 varchar(256) NOT NULL,

 col181 varchar(256) NOT NULL,

 col182 varchar(256) NOT NULL,

 col183 varchar(256) NOT NULL,

 col184 varchar(256) NOT NULL,

 col185 varchar(256) NOT NULL,

 col186 varchar(256) NOT NULL,

 col187 varchar(256) NOT NULL,

 col188 varchar(256) NOT NULL,

 col189 varchar(256) NOT NULL,

 col190 varchar(256) NOT NULL,

 col191 varchar(256) NOT NULL,

 col192 varchar(256) NOT NULL,

 col193 varchar(256) NOT NULL,

 col194 varchar(256) NOT NULL,

 col195 varchar(256) NOT NULL,

 col196 varchar(256) NOT NULL,

 col197 varchar(256) NOT NULL,

 col198 varchar(256) NOT NULL,

 PRIMARY KEY (col1)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

And when using InnoDB's DYNAMIC row format and a default character set of utf8 (which requires up to 3 bytes per

character), the 256 byte limit means that a VARCHAR column will only be stored on overflow pages if it is at least as large

as a varchar(86) :

SET GLOBAL innodb_default_row_format='dynamic';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 col1 varchar(86) NOT NULL,

 col2 varchar(86) NOT NULL,

 col3 varchar(86) NOT NULL,

 col4 varchar(86) NOT NULL,

 col5 varchar(86) NOT NULL,

 col6 varchar(86) NOT NULL,

 col7 varchar(86) NOT NULL,

 col8 varchar(86) NOT NULL,

 col9 varchar(86) NOT NULL,

 col10 varchar(86) NOT NULL,

 col11 varchar(86) NOT NULL,

 col12 varchar(86) NOT NULL,

 col13 varchar(86) NOT NULL,

 col14 varchar(86) NOT NULL,

 col15 varchar(86) NOT NULL,

 col16 varchar(86) NOT NULL,

 col17 varchar(86) NOT NULL,

 col18 varchar(86) NOT NULL,

 col19 varchar(86) NOT NULL,

 col20 varchar(86) NOT NULL,

 col21 varchar(86) NOT NULL,

 col22 varchar(86) NOT NULL,

 col23 varchar(86) NOT NULL,

 col24 varchar(86) NOT NULL,

 col25 varchar(86) NOT NULL,

 col26 varchar(86) NOT NULL,

 col27 varchar(86) NOT NULL,

 col28 varchar(86) NOT NULL,

 col29 varchar(86) NOT NULL,

 col30 varchar(86) NOT NULL,

 col31 varchar(86) NOT NULL, 2921/4161

 col31 varchar(86) NOT NULL,

 col32 varchar(86) NOT NULL,

 col33 varchar(86) NOT NULL,

 col34 varchar(86) NOT NULL,

 col35 varchar(86) NOT NULL,

 col36 varchar(86) NOT NULL,

 col37 varchar(86) NOT NULL,

 col38 varchar(86) NOT NULL,

 col39 varchar(86) NOT NULL,

 col40 varchar(86) NOT NULL,

 col41 varchar(86) NOT NULL,

 col42 varchar(86) NOT NULL,

 col43 varchar(86) NOT NULL,

 col44 varchar(86) NOT NULL,

 col45 varchar(86) NOT NULL,

 col46 varchar(86) NOT NULL,

 col47 varchar(86) NOT NULL,

 col48 varchar(86) NOT NULL,

 col49 varchar(86) NOT NULL,

 col50 varchar(86) NOT NULL,

 col51 varchar(86) NOT NULL,

 col52 varchar(86) NOT NULL,

 col53 varchar(86) NOT NULL,

 col54 varchar(86) NOT NULL,

 col55 varchar(86) NOT NULL,

 col56 varchar(86) NOT NULL,

 col57 varchar(86) NOT NULL,

 col58 varchar(86) NOT NULL,

 col59 varchar(86) NOT NULL,

 col60 varchar(86) NOT NULL,

 col61 varchar(86) NOT NULL,

 col62 varchar(86) NOT NULL,

 col63 varchar(86) NOT NULL,

 col64 varchar(86) NOT NULL,

 col65 varchar(86) NOT NULL,

 col66 varchar(86) NOT NULL,

 col67 varchar(86) NOT NULL,

 col68 varchar(86) NOT NULL,

 col69 varchar(86) NOT NULL,

 col70 varchar(86) NOT NULL,

 col71 varchar(86) NOT NULL,

 col72 varchar(86) NOT NULL,

 col73 varchar(86) NOT NULL,

 col74 varchar(86) NOT NULL,

 col75 varchar(86) NOT NULL,

 col76 varchar(86) NOT NULL,

 col77 varchar(86) NOT NULL,

 col78 varchar(86) NOT NULL,

 col79 varchar(86) NOT NULL,

 col80 varchar(86) NOT NULL,

 col81 varchar(86) NOT NULL,

 col82 varchar(86) NOT NULL,

 col83 varchar(86) NOT NULL,

 col84 varchar(86) NOT NULL,

 col85 varchar(86) NOT NULL,

 col86 varchar(86) NOT NULL,

 col87 varchar(86) NOT NULL,

 col88 varchar(86) NOT NULL,

 col89 varchar(86) NOT NULL,

 col90 varchar(86) NOT NULL,

 col91 varchar(86) NOT NULL,

 col92 varchar(86) NOT NULL,

 col93 varchar(86) NOT NULL,

 col94 varchar(86) NOT NULL,

 col95 varchar(86) NOT NULL,

 col96 varchar(86) NOT NULL,

 col97 varchar(86) NOT NULL,

 col98 varchar(86) NOT NULL,

 col99 varchar(86) NOT NULL,

 col100 varchar(86) NOT NULL,

 col101 varchar(86) NOT NULL,

 col102 varchar(86) NOT NULL,

 col103 varchar(86) NOT NULL,

 col104 varchar(86) NOT NULL,

 col105 varchar(86) NOT NULL,
2922/4161

 col106 varchar(86) NOT NULL,

 col107 varchar(86) NOT NULL,

 col108 varchar(86) NOT NULL,

 col109 varchar(86) NOT NULL,

 col110 varchar(86) NOT NULL,

 col111 varchar(86) NOT NULL,

 col112 varchar(86) NOT NULL,

 col113 varchar(86) NOT NULL,

 col114 varchar(86) NOT NULL,

 col115 varchar(86) NOT NULL,

 col116 varchar(86) NOT NULL,

 col117 varchar(86) NOT NULL,

 col118 varchar(86) NOT NULL,

 col119 varchar(86) NOT NULL,

 col120 varchar(86) NOT NULL,

 col121 varchar(86) NOT NULL,

 col122 varchar(86) NOT NULL,

 col123 varchar(86) NOT NULL,

 col124 varchar(86) NOT NULL,

 col125 varchar(86) NOT NULL,

 col126 varchar(86) NOT NULL,

 col127 varchar(86) NOT NULL,

 col128 varchar(86) NOT NULL,

 col129 varchar(86) NOT NULL,

 col130 varchar(86) NOT NULL,

 col131 varchar(86) NOT NULL,

 col132 varchar(86) NOT NULL,

 col133 varchar(86) NOT NULL,

 col134 varchar(86) NOT NULL,

 col135 varchar(86) NOT NULL,

 col136 varchar(86) NOT NULL,

 col137 varchar(86) NOT NULL,

 col138 varchar(86) NOT NULL,

 col139 varchar(86) NOT NULL,

 col140 varchar(86) NOT NULL,

 col141 varchar(86) NOT NULL,

 col142 varchar(86) NOT NULL,

 col143 varchar(86) NOT NULL,

 col144 varchar(86) NOT NULL,

 col145 varchar(86) NOT NULL,

 col146 varchar(86) NOT NULL,

 col147 varchar(86) NOT NULL,

 col148 varchar(86) NOT NULL,

 col149 varchar(86) NOT NULL,

 col150 varchar(86) NOT NULL,

 col151 varchar(86) NOT NULL,

 col152 varchar(86) NOT NULL,

 col153 varchar(86) NOT NULL,

 col154 varchar(86) NOT NULL,

 col155 varchar(86) NOT NULL,

 col156 varchar(86) NOT NULL,

 col157 varchar(86) NOT NULL,

 col158 varchar(86) NOT NULL,

 col159 varchar(86) NOT NULL,

 col160 varchar(86) NOT NULL,

 col161 varchar(86) NOT NULL,

 col162 varchar(86) NOT NULL,

 col163 varchar(86) NOT NULL,

 col164 varchar(86) NOT NULL,

 col165 varchar(86) NOT NULL,

 col166 varchar(86) NOT NULL,

 col167 varchar(86) NOT NULL,

 col168 varchar(86) NOT NULL,

 col169 varchar(86) NOT NULL,

 col170 varchar(86) NOT NULL,

 col171 varchar(86) NOT NULL,

 col172 varchar(86) NOT NULL,

 col173 varchar(86) NOT NULL,

 col174 varchar(86) NOT NULL,

 col175 varchar(86) NOT NULL,

 col176 varchar(86) NOT NULL,

 col177 varchar(86) NOT NULL,

 col178 varchar(86) NOT NULL,

 col179 varchar(86) NOT NULL,

 col180 varchar(86) NOT NULL,
2923/4161

 col180 varchar(86) NOT NULL,

 col181 varchar(86) NOT NULL,

 col182 varchar(86) NOT NULL,

 col183 varchar(86) NOT NULL,

 col184 varchar(86) NOT NULL,

 col185 varchar(86) NOT NULL,

 col186 varchar(86) NOT NULL,

 col187 varchar(86) NOT NULL,

 col188 varchar(86) NOT NULL,

 col189 varchar(86) NOT NULL,

 col190 varchar(86) NOT NULL,

 col191 varchar(86) NOT NULL,

 col192 varchar(86) NOT NULL,

 col193 varchar(86) NOT NULL,

 col194 varchar(86) NOT NULL,

 col195 varchar(86) NOT NULL,

 col196 varchar(86) NOT NULL,

 col197 varchar(86) NOT NULL,

 col198 varchar(86) NOT NULL,

 PRIMARY KEY (col1)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

And when using InnoDB's DYNAMIC row format and a default character set of utf8mb4 (which requires up to 4 bytes per

character), the 256 byte limit means that a VARCHAR column will only be stored on overflow pages if it is at least as large

as a varchar(64) :

SET GLOBAL innodb_default_row_format='dynamic';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 col1 varchar(64) NOT NULL,

 col2 varchar(64) NOT NULL,

 col3 varchar(64) NOT NULL,

 col4 varchar(64) NOT NULL,

 col5 varchar(64) NOT NULL,

 col6 varchar(64) NOT NULL,

 col7 varchar(64) NOT NULL,

 col8 varchar(64) NOT NULL,

 col9 varchar(64) NOT NULL,

 col10 varchar(64) NOT NULL,

 col11 varchar(64) NOT NULL,

 col12 varchar(64) NOT NULL,

 col13 varchar(64) NOT NULL,

 col14 varchar(64) NOT NULL,

 col15 varchar(64) NOT NULL,

 col16 varchar(64) NOT NULL,

 col17 varchar(64) NOT NULL,

 col18 varchar(64) NOT NULL,

 col19 varchar(64) NOT NULL,

 col20 varchar(64) NOT NULL,

 col21 varchar(64) NOT NULL,

 col22 varchar(64) NOT NULL,

 col23 varchar(64) NOT NULL,

 col24 varchar(64) NOT NULL,

 col25 varchar(64) NOT NULL,

 col26 varchar(64) NOT NULL,

 col27 varchar(64) NOT NULL,

 col28 varchar(64) NOT NULL,

 col29 varchar(64) NOT NULL,

 col30 varchar(64) NOT NULL,

 col31 varchar(64) NOT NULL,

 col32 varchar(64) NOT NULL,

 col33 varchar(64) NOT NULL,

 col34 varchar(64) NOT NULL,

 col35 varchar(64) NOT NULL,

 col36 varchar(64) NOT NULL,

 col37 varchar(64) NOT NULL,

 col38 varchar(64) NOT NULL,

 col39 varchar(64) NOT NULL,

 col40 varchar(64) NOT NULL,

 col41 varchar(64) NOT NULL,

 col42 varchar(64) NOT NULL,

 col43 varchar(64) NOT NULL,

 col44 varchar(64) NOT NULL,

 col45 varchar(64) NOT NULL,

 col46 varchar(64) NOT NULL,
2924/4161

 col46 varchar(64) NOT NULL,

 col47 varchar(64) NOT NULL,

 col48 varchar(64) NOT NULL,

 col49 varchar(64) NOT NULL,

 col50 varchar(64) NOT NULL,

 col51 varchar(64) NOT NULL,

 col52 varchar(64) NOT NULL,

 col53 varchar(64) NOT NULL,

 col54 varchar(64) NOT NULL,

 col55 varchar(64) NOT NULL,

 col56 varchar(64) NOT NULL,

 col57 varchar(64) NOT NULL,

 col58 varchar(64) NOT NULL,

 col59 varchar(64) NOT NULL,

 col60 varchar(64) NOT NULL,

 col61 varchar(64) NOT NULL,

 col62 varchar(64) NOT NULL,

 col63 varchar(64) NOT NULL,

 col64 varchar(64) NOT NULL,

 col65 varchar(64) NOT NULL,

 col66 varchar(64) NOT NULL,

 col67 varchar(64) NOT NULL,

 col68 varchar(64) NOT NULL,

 col69 varchar(64) NOT NULL,

 col70 varchar(64) NOT NULL,

 col71 varchar(64) NOT NULL,

 col72 varchar(64) NOT NULL,

 col73 varchar(64) NOT NULL,

 col74 varchar(64) NOT NULL,

 col75 varchar(64) NOT NULL,

 col76 varchar(64) NOT NULL,

 col77 varchar(64) NOT NULL,

 col78 varchar(64) NOT NULL,

 col79 varchar(64) NOT NULL,

 col80 varchar(64) NOT NULL,

 col81 varchar(64) NOT NULL,

 col82 varchar(64) NOT NULL,

 col83 varchar(64) NOT NULL,

 col84 varchar(64) NOT NULL,

 col85 varchar(64) NOT NULL,

 col86 varchar(64) NOT NULL,

 col87 varchar(64) NOT NULL,

 col88 varchar(64) NOT NULL,

 col89 varchar(64) NOT NULL,

 col90 varchar(64) NOT NULL,

 col91 varchar(64) NOT NULL,

 col92 varchar(64) NOT NULL,

 col93 varchar(64) NOT NULL,

 col94 varchar(64) NOT NULL,

 col95 varchar(64) NOT NULL,

 col96 varchar(64) NOT NULL,

 col97 varchar(64) NOT NULL,

 col98 varchar(64) NOT NULL,

 col99 varchar(64) NOT NULL,

 col100 varchar(64) NOT NULL,

 col101 varchar(64) NOT NULL,

 col102 varchar(64) NOT NULL,

 col103 varchar(64) NOT NULL,

 col104 varchar(64) NOT NULL,

 col105 varchar(64) NOT NULL,

 col106 varchar(64) NOT NULL,

 col107 varchar(64) NOT NULL,

 col108 varchar(64) NOT NULL,

 col109 varchar(64) NOT NULL,

 col110 varchar(64) NOT NULL,

 col111 varchar(64) NOT NULL,

 col112 varchar(64) NOT NULL,

 col113 varchar(64) NOT NULL,

 col114 varchar(64) NOT NULL,

 col115 varchar(64) NOT NULL,

 col116 varchar(64) NOT NULL,

 col117 varchar(64) NOT NULL,

 col118 varchar(64) NOT NULL,

 col119 varchar(64) NOT NULL,

 col120 varchar(64) NOT NULL,

 col121 varchar(64) NOT NULL, 2925/4161

 col121 varchar(64) NOT NULL,

 col122 varchar(64) NOT NULL,

 col123 varchar(64) NOT NULL,

 col124 varchar(64) NOT NULL,

 col125 varchar(64) NOT NULL,

 col126 varchar(64) NOT NULL,

 col127 varchar(64) NOT NULL,

 col128 varchar(64) NOT NULL,

 col129 varchar(64) NOT NULL,

 col130 varchar(64) NOT NULL,

 col131 varchar(64) NOT NULL,

 col132 varchar(64) NOT NULL,

 col133 varchar(64) NOT NULL,

 col134 varchar(64) NOT NULL,

 col135 varchar(64) NOT NULL,

 col136 varchar(64) NOT NULL,

 col137 varchar(64) NOT NULL,

 col138 varchar(64) NOT NULL,

 col139 varchar(64) NOT NULL,

 col140 varchar(64) NOT NULL,

 col141 varchar(64) NOT NULL,

 col142 varchar(64) NOT NULL,

 col143 varchar(64) NOT NULL,

 col144 varchar(64) NOT NULL,

 col145 varchar(64) NOT NULL,

 col146 varchar(64) NOT NULL,

 col147 varchar(64) NOT NULL,

 col148 varchar(64) NOT NULL,

 col149 varchar(64) NOT NULL,

 col150 varchar(64) NOT NULL,

 col151 varchar(64) NOT NULL,

 col152 varchar(64) NOT NULL,

 col153 varchar(64) NOT NULL,

 col154 varchar(64) NOT NULL,

 col155 varchar(64) NOT NULL,

 col156 varchar(64) NOT NULL,

 col157 varchar(64) NOT NULL,

 col158 varchar(64) NOT NULL,

 col159 varchar(64) NOT NULL,

 col160 varchar(64) NOT NULL,

 col161 varchar(64) NOT NULL,

 col162 varchar(64) NOT NULL,

 col163 varchar(64) NOT NULL,

 col164 varchar(64) NOT NULL,

 col165 varchar(64) NOT NULL,

 col166 varchar(64) NOT NULL,

 col167 varchar(64) NOT NULL,

 col168 varchar(64) NOT NULL,

 col169 varchar(64) NOT NULL,

 col170 varchar(64) NOT NULL,

 col171 varchar(64) NOT NULL,

 col172 varchar(64) NOT NULL,

 col173 varchar(64) NOT NULL,

 col174 varchar(64) NOT NULL,

 col175 varchar(64) NOT NULL,

 col176 varchar(64) NOT NULL,

 col177 varchar(64) NOT NULL,

 col178 varchar(64) NOT NULL,

 col179 varchar(64) NOT NULL,

 col180 varchar(64) NOT NULL,

 col181 varchar(64) NOT NULL,

 col182 varchar(64) NOT NULL,

 col183 varchar(64) NOT NULL,

 col184 varchar(64) NOT NULL,

 col185 varchar(64) NOT NULL,

 col186 varchar(64) NOT NULL,

 col187 varchar(64) NOT NULL,

 col188 varchar(64) NOT NULL,

 col189 varchar(64) NOT NULL,

 col190 varchar(64) NOT NULL,

 col191 varchar(64) NOT NULL,

 col192 varchar(64) NOT NULL,

 col193 varchar(64) NOT NULL,

 col194 varchar(64) NOT NULL,

 col195 varchar(64) NOT NULL,

2926/4161

 col196 varchar(64) NOT NULL,

 col197 varchar(64) NOT NULL,

 col198 varchar(64) NOT NULL,

 PRIMARY KEY (col1)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

Working Around the Problem
There are a few ways to work around this problem.

If you would like a solution for the problem instead of just working around it, then see the solutions mentioned in the previous

section.

Refactoring the Table into Multiple Tables

A safe workaround is to refactor the single wide table, so that its columns are spread among multiple tables.

This workaround can even work if your table is so wide that the previous solutions have failed to solve them problem for your

table.

Refactoring Some Columns into JSON

A safe workaround is to refactor some of the columns into a JSON document.

The JSON document can be queried and manipulated using MariaDB's JSON functions.

The JSON document can be stored in a column that uses one of the following data types:

TEXT: The maximum size of a TEXT column is 64 KB.

MEDIUMTEXT: The maximum size of a MEDIUMTEXT column is 16 MB.

LONGTEXT: The maximum size of a LONGTEXT column is 4 GB.

JSON: This is just an alias for the LONGTEXT data type.

This workaround can even work if your table is so wide that the previous solutions have failed to solve them problem for your

table.

Disabling InnoDB Strict Mode

An unsafe workaround is to disable InnoDB strict mode. InnoDB strict mode can be disabled by setting the

innodb_strict_mode system variable to OFF .

For example, even though the following table schema is too large for most InnoDB row formats to store, it can still be

created when InnoDB strict mode is disabled:

SET GLOBAL innodb_default_row_format='dynamic';

SET SESSION innodb_strict_mode=OFF;

CREATE OR REPLACE TABLE tab (

 col1 varchar(40) NOT NULL,

 col2 varchar(40) NOT NULL,

 col3 varchar(40) NOT NULL,

 col4 varchar(40) NOT NULL,

 col5 varchar(40) NOT NULL,

 col6 varchar(40) NOT NULL,

 col7 varchar(40) NOT NULL,

 col8 varchar(40) NOT NULL,

 col9 varchar(40) NOT NULL,

 col10 varchar(40) NOT NULL,

 col11 varchar(40) NOT NULL,

 col12 varchar(40) NOT NULL,

 col13 varchar(40) NOT NULL,

 col14 varchar(40) NOT NULL,

 col15 varchar(40) NOT NULL,

 col16 varchar(40) NOT NULL,

 col17 varchar(40) NOT NULL,

 col18 varchar(40) NOT NULL,

 col19 varchar(40) NOT NULL,

 col20 varchar(40) NOT NULL,

 col21 varchar(40) NOT NULL,

 col22 varchar(40) NOT NULL,

 col23 varchar(40) NOT NULL,

 col24 varchar(40) NOT NULL,

 col25 varchar(40) NOT NULL,
2927/4161

 col25 varchar(40) NOT NULL,

 col26 varchar(40) NOT NULL,

 col27 varchar(40) NOT NULL,

 col28 varchar(40) NOT NULL,

 col29 varchar(40) NOT NULL,

 col30 varchar(40) NOT NULL,

 col31 varchar(40) NOT NULL,

 col32 varchar(40) NOT NULL,

 col33 varchar(40) NOT NULL,

 col34 varchar(40) NOT NULL,

 col35 varchar(40) NOT NULL,

 col36 varchar(40) NOT NULL,

 col37 varchar(40) NOT NULL,

 col38 varchar(40) NOT NULL,

 col39 varchar(40) NOT NULL,

 col40 varchar(40) NOT NULL,

 col41 varchar(40) NOT NULL,

 col42 varchar(40) NOT NULL,

 col43 varchar(40) NOT NULL,

 col44 varchar(40) NOT NULL,

 col45 varchar(40) NOT NULL,

 col46 varchar(40) NOT NULL,

 col47 varchar(40) NOT NULL,

 col48 varchar(40) NOT NULL,

 col49 varchar(40) NOT NULL,

 col50 varchar(40) NOT NULL,

 col51 varchar(40) NOT NULL,

 col52 varchar(40) NOT NULL,

 col53 varchar(40) NOT NULL,

 col54 varchar(40) NOT NULL,

 col55 varchar(40) NOT NULL,

 col56 varchar(40) NOT NULL,

 col57 varchar(40) NOT NULL,

 col58 varchar(40) NOT NULL,

 col59 varchar(40) NOT NULL,

 col60 varchar(40) NOT NULL,

 col61 varchar(40) NOT NULL,

 col62 varchar(40) NOT NULL,

 col63 varchar(40) NOT NULL,

 col64 varchar(40) NOT NULL,

 col65 varchar(40) NOT NULL,

 col66 varchar(40) NOT NULL,

 col67 varchar(40) NOT NULL,

 col68 varchar(40) NOT NULL,

 col69 varchar(40) NOT NULL,

 col70 varchar(40) NOT NULL,

 col71 varchar(40) NOT NULL,

 col72 varchar(40) NOT NULL,

 col73 varchar(40) NOT NULL,

 col74 varchar(40) NOT NULL,

 col75 varchar(40) NOT NULL,

 col76 varchar(40) NOT NULL,

 col77 varchar(40) NOT NULL,

 col78 varchar(40) NOT NULL,

 col79 varchar(40) NOT NULL,

 col80 varchar(40) NOT NULL,

 col81 varchar(40) NOT NULL,

 col82 varchar(40) NOT NULL,

 col83 varchar(40) NOT NULL,

 col84 varchar(40) NOT NULL,

 col85 varchar(40) NOT NULL,

 col86 varchar(40) NOT NULL,

 col87 varchar(40) NOT NULL,

 col88 varchar(40) NOT NULL,

 col89 varchar(40) NOT NULL,

 col90 varchar(40) NOT NULL,

 col91 varchar(40) NOT NULL,

 col92 varchar(40) NOT NULL,

 col93 varchar(40) NOT NULL,

 col94 varchar(40) NOT NULL,

 col95 varchar(40) NOT NULL,

 col96 varchar(40) NOT NULL,

 col97 varchar(40) NOT NULL,

 col98 varchar(40) NOT NULL,

 col99 varchar(40) NOT NULL,

 col100 varchar(40) NOT NULL,
2928/4161

 col100 varchar(40) NOT NULL,

 col101 varchar(40) NOT NULL,

 col102 varchar(40) NOT NULL,

 col103 varchar(40) NOT NULL,

 col104 varchar(40) NOT NULL,

 col105 varchar(40) NOT NULL,

 col106 varchar(40) NOT NULL,

 col107 varchar(40) NOT NULL,

 col108 varchar(40) NOT NULL,

 col109 varchar(40) NOT NULL,

 col110 varchar(40) NOT NULL,

 col111 varchar(40) NOT NULL,

 col112 varchar(40) NOT NULL,

 col113 varchar(40) NOT NULL,

 col114 varchar(40) NOT NULL,

 col115 varchar(40) NOT NULL,

 col116 varchar(40) NOT NULL,

 col117 varchar(40) NOT NULL,

 col118 varchar(40) NOT NULL,

 col119 varchar(40) NOT NULL,

 col120 varchar(40) NOT NULL,

 col121 varchar(40) NOT NULL,

 col122 varchar(40) NOT NULL,

 col123 varchar(40) NOT NULL,

 col124 varchar(40) NOT NULL,

 col125 varchar(40) NOT NULL,

 col126 varchar(40) NOT NULL,

 col127 varchar(40) NOT NULL,

 col128 varchar(40) NOT NULL,

 col129 varchar(40) NOT NULL,

 col130 varchar(40) NOT NULL,

 col131 varchar(40) NOT NULL,

 col132 varchar(40) NOT NULL,

 col133 varchar(40) NOT NULL,

 col134 varchar(40) NOT NULL,

 col135 varchar(40) NOT NULL,

 col136 varchar(40) NOT NULL,

 col137 varchar(40) NOT NULL,

 col138 varchar(40) NOT NULL,

 col139 varchar(40) NOT NULL,

 col140 varchar(40) NOT NULL,

 col141 varchar(40) NOT NULL,

 col142 varchar(40) NOT NULL,

 col143 varchar(40) NOT NULL,

 col144 varchar(40) NOT NULL,

 col145 varchar(40) NOT NULL,

 col146 varchar(40) NOT NULL,

 col147 varchar(40) NOT NULL,

 col148 varchar(40) NOT NULL,

 col149 varchar(40) NOT NULL,

 col150 varchar(40) NOT NULL,

 col151 varchar(40) NOT NULL,

 col152 varchar(40) NOT NULL,

 col153 varchar(40) NOT NULL,

 col154 varchar(40) NOT NULL,

 col155 varchar(40) NOT NULL,

 col156 varchar(40) NOT NULL,

 col157 varchar(40) NOT NULL,

 col158 varchar(40) NOT NULL,

 col159 varchar(40) NOT NULL,

 col160 varchar(40) NOT NULL,

 col161 varchar(40) NOT NULL,

 col162 varchar(40) NOT NULL,

 col163 varchar(40) NOT NULL,

 col164 varchar(40) NOT NULL,

 col165 varchar(40) NOT NULL,

 col166 varchar(40) NOT NULL,

 col167 varchar(40) NOT NULL,

 col168 varchar(40) NOT NULL,

 col169 varchar(40) NOT NULL,

 col170 varchar(40) NOT NULL,

 col171 varchar(40) NOT NULL,

 col172 varchar(40) NOT NULL,

 col173 varchar(40) NOT NULL,

 col174 varchar(40) NOT NULL,

 col175 varchar(40) NOT NULL, 2929/4161

 col175 varchar(40) NOT NULL,

 col176 varchar(40) NOT NULL,

 col177 varchar(40) NOT NULL,

 col178 varchar(40) NOT NULL,

 col179 varchar(40) NOT NULL,

 col180 varchar(40) NOT NULL,

 col181 varchar(40) NOT NULL,

 col182 varchar(40) NOT NULL,

 col183 varchar(40) NOT NULL,

 col184 varchar(40) NOT NULL,

 col185 varchar(40) NOT NULL,

 col186 varchar(40) NOT NULL,

 col187 varchar(40) NOT NULL,

 col188 varchar(40) NOT NULL,

 col189 varchar(40) NOT NULL,

 col190 varchar(40) NOT NULL,

 col191 varchar(40) NOT NULL,

 col192 varchar(40) NOT NULL,

 col193 varchar(40) NOT NULL,

 col194 varchar(40) NOT NULL,

 col195 varchar(40) NOT NULL,

 col196 varchar(40) NOT NULL,

 col197 varchar(40) NOT NULL,

 col198 varchar(40) NOT NULL,

 PRIMARY KEY (col1)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

But as mentioned above, if InnoDB strict mode is disabled and if a DDL statement is executed, then InnoDB will still raise a

warning with this message. The SHOW WARNINGS statement can be used to view the warning. For example:

SHOW WARNINGS;

+---------+------+---

---+

| Level | Code | Message |

+---------+------+---

---+

| Warning | 139 | Row size too large (> 8126). Changing some columns to TEXT or BLOB may help.

In current row format, BLOB prefix of 0 bytes is stored inline. |

+---------+------+---

---+

1 row in set (0.000 sec)

As mentioned above, even though InnoDB is allowing the table to be created, there is still an opportunity for errors.

Regardless of whether InnoDB strict mode is enabled, if a DML statement is executed that attempts to write a row that the

table's InnoDB row format can't store, then InnoDB will raise an error with this message. This creates a somewhat unsafe

situation, because it means that the application has the chance to encounter an additional error while executing DML.

5.3.2.4 InnoDB System Variables
Contents
1. have_innodb

2. ignore_builtin_innodb

3. innodb_adaptive_checkpoint

4. innodb_adaptive_flushing

5. innodb_adaptive_flushing_lwm

6. innodb_adaptive_flushing_method

7. innodb_adaptive_hash_index

8. innodb_adaptive_hash_index_partitions

9. innodb_adaptive_hash_index_parts

10. innodb_adaptive_max_sleep_delay

11. innodb_additional_mem_pool_size

12. innodb_api_bk_commit_interval

13. innodb_api_disable_rowlock

14. innodb_api_enable_binlog

15. innodb_api_enable_mdl

16. innodb_api_trx_level

17. innodb_auto_lru_dump

18. innodb_autoextend_increment

19. innodb_autoinc_lock_mode
2930/4161

20. innodb_background_scrub_data_check_interval

21. innodb_background_scrub_data_compressed

22. innodb_background_scrub_data_interval

23. innodb_background_scrub_data_uncompressed

24. innodb_blocking_buffer_pool_restore

25. innodb_buf_dump_status_frequency

26. innodb_buffer_pool_chunk_size

27. innodb_buffer_pool_dump_at_shutdown

28. innodb_buffer_pool_dump_now

29. innodb_buffer_pool_dump_pct

30. innodb_buffer_pool_evict

31. innodb_buffer_pool_filename

32. innodb_buffer_pool_instances

33. innodb_buffer_pool_load_abort

34. innodb_buffer_pool_load_at_startup

35. innodb_buffer_pool_load_now

36. innodb_buffer_pool_load_pages_abort

37. innodb_buffer_pool_populate

38. innodb_buffer_pool_restore_at_startup

39. innodb_buffer_pool_shm_checksum

40. innodb_buffer_pool_shm_key

41. innodb_buffer_pool_size

42. innodb_change_buffer_dump

43. innodb_change_buffer_max_size

44. innodb_change_buffering

45. innodb_change_buffering_debug

46. innodb_checkpoint_age_target

47. innodb_checksum_algorithm

48. innodb_checksums

49. innodb_cleaner_lsn_age_factor

50. innodb_cmp_per_index_enabled

51. innodb_commit_concurrency

52. innodb_compression_algorithm

53. innodb_compression_default

54. innodb_compression_failure_threshold_pct

55. innodb_compression_level

56. innodb_compression_pad_pct_max

57. innodb_concurrency_tickets

58. innodb_corrupt_table_action

59. innodb_data_file_buffering

60. innodb_data_file_path

61. innodb_data_file_write_through

62. innodb_data_home_dir

63. innodb_deadlock_detect

64. innodb_deadlock_report

65. innodb_default_page_encryption_key

66. innodb_default_encryption_key_id

67. innodb_default_row_format

68. innodb_defragment

69. innodb_defragment_fill_factor

70. innodb_defragment_fill_factor_n_recs

71. innodb_defragment_frequency

72. innodb_defragment_n_pages

73. innodb_defragment_stats_accuracy

74. innodb_dict_size_limit

75. innodb_disable_sort_file_cache

76. innodb_disallow_writes

77. innodb_doublewrite

78. innodb_doublewrite_file

79. innodb_empty_free_list_algorithm

80. innodb_enable_unsafe_group_commit

81. innodb_encrypt_log

82. innodb_encrypt_tables

83. innodb_encrypt_temporary_tables

84. innodb_encryption_rotate_key_age

85. innodb_encryption_rotation_iops

86. innodb_encryption_threads

87. innodb_extra_rsegments 2931/4161

87. innodb_extra_rsegments

88. innodb_extra_undoslots

89. innodb_fake_changes

90. innodb_fast_checksum

91. innodb_fast_shutdown

92. innodb_fatal_semaphore_wait_threshold

93. innodb_file_format

94. innodb_file_format_check

95. innodb_file_format_max

96. innodb_file_per_table

97. innodb_fill_factor

98. innodb_flush_log_at_timeout

99. innodb_flush_log_at_trx_commit

100. innodb_flush_method

101. innodb_flush_neighbor_pages

102. innodb_flush_neighbors

103. innodb_flush_sync

104. innodb_flushing_avg_loops

105. innodb_force_load_corrupted

106. innodb_force_primary_key

107. innodb_force_recovery

108. innodb_foreground_preflush

109. innodb_ft_aux_table

110. innodb_ft_cache_size

111. innodb_ft_enable_diag_print

112. innodb_ft_enable_stopword

113. innodb_ft_max_token_size

114. innodb_ft_min_token_size

115. innodb_ft_num_word_optimize

116. innodb_ft_result_cache_limit

117. innodb_ft_server_stopword_table

118. innodb_ft_sort_pll_degree

119. innodb_ft_total_cache_size

120. innodb_ft_user_stopword_table

121. innodb_ibuf_accel_rate

122. innodb_ibuf_active_contract

123. innodb_ibuf_max_size

124. innodb_idle_flush_pct

125. innodb_immediate_scrub_data_uncompressed

126. innodb_import_table_from_xtrabackup

127. innodb_instant_alter_column_allowed

128. innodb_instrument_semaphores

129. innodb_io_capacity

130. innodb_io_capacity_max

131. innodb_kill_idle_transaction

132. innodb_large_prefix

133. innodb_lazy_drop_table

134. innodb_lock_schedule_algorithm

135. innodb_lock_wait_timeout

136. innodb_locking_fake_changes

137. innodb_locks_unsafe_for_binlog

138. innodb_log_arch_dir

139. innodb_log_arch_expire_sec

140. innodb_log_archive

141. innodb_log_block_size

142. innodb_log_buffer_size

143. innodb_log_checksum_algorithm

144. innodb_log_checksums

145. innodb_log_compressed_pages

146. innodb_log_file_buffering

147. innodb_log_file_size

148. innodb_log_file_write_through

149. innodb_log_files_in_group

150. innodb_log_group_home_dir

151. innodb_log_optimize_ddl

152. innodb_log_write_ahead_size

153. innodb_lru_flush_size

154. innodb_lru_scan_depth
2932/4161

154. innodb_lru_scan_depth

155. innodb_max_bitmap_file_size

156. innodb_max_changed_pages

157. innodb_max_dirty_pages_pct

158. innodb_max_dirty_pages_pct_lwm

159. innodb_max_purge_lag

160. innodb_max_purge_lag_delay

161. innodb_max_purge_lag_wait

162. innodb_max_undo_log_size

163. innodb_merge_sort_block_size

164. innodb_mirrored_log_groups

165. innodb_mtflush_threads

166. innodb_monitor_disable

167. innodb_monitor_enable

168. innodb_monitor_reset

169. innodb_monitor_reset_all

170. innodb_numa_interleave

171. innodb_old_blocks_pct

172. innodb_old_blocks_time

173. innodb_online_alter_log_max_size

174. innodb_open_files

175. innodb_optimize_fulltext_only

176. innodb_page_cleaners

177. innodb_page_size

178. innodb_pass_corrupt_table

179. innodb_prefix_index_cluster_optimization

180. innodb_print_all_deadlocks

181. innodb_purge_batch_size

182. innodb_purge_rseg_truncate_frequency

183. innodb_purge_threads

184. innodb_random_read_ahead

185. innodb_read_ahead

186. innodb_read_ahead_threshold

187. innodb_read_io_threads

188. innodb_read_only

189. innodb_read_only_compressed

190. innodb_recovery_stats

191. innodb_recovery_update_relay_log

192. innodb_replication_delay

193. innodb_rollback_on_timeout

194. innodb_rollback_segments

195. innodb_safe_truncate

196. innodb_scrub_log

197. innodb_scrub_log_interval

198. innodb_scrub_log_speed

199. innodb_sched_priority_cleaner

200. innodb_show_locks_held

201. innodb_show_verbose_locks

202. innodb_simulate_comp_failures

203. innodb_sort_buffer_size

204. innodb_spin_wait_delay

205. innodb_stats_auto_recalc

206. innodb_stats_auto_update

207. innodb_stats_include_delete_marked

208. innodb_stats_method

209. innodb_stats_modified_counter

210. innodb_stats_on_metadata

211. innodb_stats_persistent

212. innodb_stats_persistent_sample_pages

213. innodb_stats_sample_pages

214. innodb_stats_traditional

215. innodb_stats_transient_sample_pages

216. innodb_stats_update_need_lock

217. innodb_status_output

218. innodb_status_output_locks

219. innodb_strict_mode

220. innodb_support_xa

221. innodb_sync_array_size
2933/4161

222. innodb_sync_spin_loops

223. innodb_table_locks

224. innodb_thread_concurrency

225. innodb_thread_concurrency_timer_based

226. innodb_thread_sleep_delay

227. innodb_temp_data_file_path

228. innodb_tmpdir

229. innodb_track_changed_pages

230. innodb_track_redo_log_now

231. innodb_truncate_temporary_tablespace_now

232. innodb_undo_directory

233. innodb_undo_log_truncate

234. innodb_undo_logs

235. innodb_undo_tablespaces

236. innodb_use_atomic_writes

237. innodb_use_fallocate

238. innodb_use_global_flush_log_at_trx_commit

239. innodb_use_mtflush

240. innodb_use_native_aio

241. innodb_use_purge_thread

242. innodb_use_stacktrace

243. innodb_use_sys_malloc

244. innodb_use_sys_stats_table

245. innodb_use_trim

246. innodb_version

247. innodb_write_io_threads

This page documents system variables related to the InnoDB storage engine. For options that are not system variables, see

InnoDB Options.

See Server System Variables for a complete list of system variables and instructions on setting them.

Also see the Full list of MariaDB options, system and status variables.

have_innodb

Description: If the server supports InnoDB tables, will be set to YES , otherwise will be set to NO . Removed in

MariaDB 10.0, use the Information Schema PLUGINS table or SHOW ENGINES instead.

Scope: Global

Dynamic: No

Removed: MariaDB 10.0

ignore_builtin_innodb

Description: Setting this to 1 results in the built-in InnoDB storage engine being ignored. In some versions of

MariaDB, XtraDB is the default and is always present, so this variable is ignored and setting it results in a warning.

From MariaDB 10.0.1 to MariaDB 10.0.8 , when InnoDB was the default instead of XtraDB, this variable needed

to be set. Usually used in conjunction with the plugin-load=innodb=ha_innodb option to use the InnoDB plugin.

Commandline: --ignore-builtin-innodb

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

innodb_adaptive_checkpoint

Description: Replaced with innodb_adaptive_flushing_method. Controls adaptive checkpointing. InnoDB's fuzzy

checkpointing can cause stalls, as many dirty blocks are flushed at once as the checkpoint age nears the maximum.

Adaptive checkpointing aims for more consistent flushing, approximately modified age / maximum checkpoint

age . Can result in larger transaction log files

reflex Similar to innodb_max_dirty_pages_pct flushing but flushes blocks constantly and contiguously

based on the oldest modified age. If the age exceeds 1/2 of the maximum age capacity, flushing will be weak

contiguous. If the age exceeds 3/4, flushing will be strong. Strength can be adjusted by the variable

innodb_io_capacity.

estimate The default, and independent of innodb_io_capacity. If the oldest modified age exceeds 1/2 of the

2934/4161

https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/

maximum age capacity, blocks will be flushed every second at a rate determined by the number of modified

blocks, LSN progress speed and the average age of all modified blocks.

keep_average Attempts to keep the I/O rate constant by using a shorter loop cycle of one tenth of a second.

Designed for SSD cards.

Commandline: --innodb-adaptive-checkpoint=#

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: estimate

Valid Values: none or 0 , reflex or 1 , estimate or 2 , keep_average or 3

Removed: XtraDB 5.5 - replaced with innodb_adaptive_flushing_method

innodb_adaptive_flushing

Description: If set to 1 , the default, the server will dynamically adjust the flush rate of dirty pages in the InnoDB

buffer pool. This assists to reduce brief bursts of I/O activity. If set to 0 , adaptive flushing will only take place when

the limit specified by innodb_adaptive_flushing_lwm is reached.

Commandline: --innodb-adaptive-flushing={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_adaptive_flushing_lwm

Description: Adaptive flushing is enabled when this low water mark percentage of the InnoDB redo log capacity is

reached. Takes effect even if innodb_adaptive_flushing is disabled.

Commandline: --innodb-adaptive-flushing-lwm=#

Scope: Global

Dynamic: Yes

Data Type: double

Default Value: 10.000000

Range: 0 to 70

innodb_adaptive_flushing_method

Description: Determines the method of flushing dirty blocks from the InnoDB buffer pool. If set to native or 0 , the

original InnoDB method is used. The maximum checkpoint age is determined by the total length of all transaction log

files. When the checkpoint age reaches the maximum checkpoint age, blocks are flushed. This can cause lag if there

are many updates per second and many blocks with an almost identical age need to be flushed. If set to estimate

or 1 , the default, the oldest modified age will be compared with the maximum age capacity. If it's more than 1/4 of

this age, blocks are flushed every second. The number of blocks flushed is determined by the number of modified

blocks, the LSN progress speed and the average age of all modified blocks. It's therefore independent of the

innodb_io_capacity for the 1-second loop, but not entirely so for the 10-second loop. If set to keep_average or 2 ,

designed specifically for SSD cards, a shorter loop cycle is used in an attempt to keep the I/O rate constant.

Removed in MariaDB 10.0/XtraDB 5.6 and replaced with InnoDB flushing method from MySQL 5.6.

Commandline: innodb-adaptive-flushing-method=value

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: estimate

Valid Values: native or 0 , estimate or 1 , keep_average or 2

Removed: MariaDB 10.0 - replaced with InnoDB flushing method from MySQL 5.6

innodb_adaptive_hash_index

Description: If set to 1 , the default until MariaDB 10.5, the InnoDB hash index is enabled. Based on performance

testing (MDEV-17492), the InnoDB adaptive hash index helps performance in mostly read-only workloads, and

could slow down performance in other environments, especially DROP TABLE, TRUNCATE TABLE, ALTER TABLE,

or DROP INDEX operations.

Commandline: --innodb-adaptive-hash-index={0|1}

2935/4161

https://jira.mariadb.org/browse/MDEV-17492

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF (>= MariaDB 10.5), ON (<= MariaDB 10.4)

innodb_adaptive_hash_index_partitions

Description: Specifies the number of partitions for use in adaptive searching. If set to 1 , no extra partitions are

created. XtraDB-only. From MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB), this is an alias for

innodb_adaptive_hash_index_parts to allow for easier upgrades.

Commandline: innodb-adaptive-hash-index-partitions=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 1 to 64

innodb_adaptive_hash_index_parts

Description: Specifies the number of partitions for use in adaptive searching. If set to 1 , no extra partitions are

created.

Commandline: innodb-adaptive-hash-index-parts=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8

Range: 1 to 512

innodb_adaptive_max_sleep_delay

Description: Maximum time in microseconds to automatically adjust the innodb_thread_sleep_delay value to, based

on the workload. Useful in extremely busy systems with hundreds of thousands of simultaneous connections. 0

disables any limit. Deprecated and ignored from MariaDB 10.5.5.

Commandline: --innodb-adaptive-max-sleep-delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

0 (>= MariaDB 10.5.5)

150000 (<= MariaDB 10.5.4)

Range: 0 to 1000000

Introduced: MariaDB 10.0

Deprecated: MariaDB 10.5.5

Removed: MariaDB 10.6.0

innodb_additional_mem_pool_size

Description: Size in bytes of the InnoDB memory pool used for storing information about internal data structures.

Defaults to 8MB, if your application has many tables and a large structure, and this is exceeded, operating system

memory will be allocated and warning messages written to the error log, in which case you should increase this value.

Deprecated in MariaDB 10.0 and removed in MariaDB 10.2 along with InnoDB's internal memory allocator.

Commandline: --innodb-additional-mem-pool-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8388608

Range: 2097152 to 4294967295

Deprecated: MariaDB 10.0

Removed: MariaDB 10.2.2

2936/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

innodb_api_bk_commit_interval

Description: Time in seconds between auto-commits for idle connections using the InnoDB memcached interface

(not implemented in MariaDB).

Commandline: --innodb-api-bk-commit-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: 1 to 1073741824

Introduced: MariaDB 10.0

Removed: MariaDB 10.2.4

innodb_api_disable_rowlock

Description: For use with MySQL's memcached (not implemented in MariaDB)

Commandline: --innodb-api-disable-rowlock={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

Removed: MariaDB 10.2.4

innodb_api_enable_binlog

Description: For use with MySQL's memcached (not implemented in MariaDB)

Commandline: --innodb-api-enable-binlog={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

Removed: MariaDB 10.2.4

innodb_api_enable_mdl

Description: For use with MySQL's memcached (not implemented in MariaDB)

Commandline: --innodb-api-enable-mdl={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

Removed: MariaDB 10.2.4

innodb_api_trx_level

Description: For use with MySQL's memcached (not implemented in MariaDB)

Commandline: --innodb-api-trx-level=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Introduced: MariaDB 10.0

Removed: MariaDB 10.2.4

innodb_auto_lru_dump

Description: Renamed innodb_buffer_pool_restore_at_startup since XtraDB 5.5.10-20.1, which was in turn replaced

2937/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/

by innodb_buffer_pool_load_at_startup in MariaDB 10.0.

Commandline: --innodb-auto-lru-dump=#

Removed: XtraDB 5.5.10-20.1

innodb_autoextend_increment

Description: Size in MB to increment an auto-extending shared tablespace file when it becomes full. If

innodb_file_per_table was set to 1 , this setting does not apply to the resulting per-table tablespace files, which are

automatically extended in their own way.

Commandline: --innodb-autoextend-increment=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 64 (from MariaDB 10.0) 8 (before MariaDB 10.0),

Range: 1 to 1000

innodb_autoinc_lock_mode

Description: The lock mode that is used when generating AUTO_INCREMENT values for InnoDB tables.

Valid values are:

0 is the traditional lock mode.

1 is the consecutive lock mode.

2 is the interleaved lock mode.

In order to use Galera Cluster, the lock mode needs to be set to 2 .

See AUTO_INCREMENT Handling in InnoDB: AUTO_INCREMENT Lock Modes for more information.

Commandline: --innodb-autoinc-lock-mode=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 0 to 2

innodb_background_scrub_data_check_interval

Description: Check if spaces needs scrubbing every innodb_background_scrub_data_check_interval seconds. See

Data Scrubbing. Deprecated and ignored from MariaDB 10.5.2.

Commandline: --innodb-background-scrub-data-check-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 3600

Range: 1 to 4294967295

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_background_scrub_data_compressed

Description: Enable scrubbing of compressed data by background threads (same as encryption_threads). See Data

Scrubbing. Deprecated and ignored from MariaDB 10.5.2.

Commandline: --innodb-background-scrub-data-compressed={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_background_scrub_data_interval

Description: Scrub spaces that were last scrubbed longer than this number of seconds ago. See Data Scrubbing.

2938/4161

Deprecated and ignored from MariaDB 10.5.2.

Commandline: --innodb-background-scrub-data-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 604800

Range: 1 to 4294967295

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_background_scrub_data_uncompressed

Description: Enable scrubbing of uncompressed data by background threads (same as encryption_threads). See

Data Scrubbing. Deprecated and ignored from MariaDB 10.5.2.

Commandline: --innodb-background-scrub-data-uncompressed={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_blocking_buffer_pool_restore

Description: If set to 1 (0 is default), XtraDB will wait until the least-recently used (LRU) dump is completely

restored upon restart before reporting back to the server that it has successfully started up. Available with XtraDB

only, not InnoDB.

Commandline: innodb-blocking-buffer-pool-restore={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0.0

innodb_buf_dump_status_frequency

Description: Determines how often (as a percent) the buffer pool dump status should be printed in the logs. For

example, 10 means that the buffer pool dump status is printed when every 10% of the number of buffer pool pages

are dumped. The default is 0 (only start and end status is printed).

Commandline: --innodb-buf-dump-status-frequency=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 100

innodb_buffer_pool_chunk_size

Description: Chunk size used for dynamically resizing the buffer pool. Note that changing this setting can change the

size of the buffer pool. When large-pages is used this value is effectively rounded up to the next multiple of large-

page-size. See Setting Innodb Buffer Pool Size Dynamically. From MariaDB 10.8.0 , the variable is autosized based

on the buffer pool size.

Commandline: --innodb-buffer-pool-chunk-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value:

autosize (0) , resulting in innodb_buffer_pool_size/64, if large_pages round down to multiple of largest

page size, with 1MiB minimum (>= MariaDB 10.8.1)

134217728 (<= MariaDB 10.8.0)

Range:

2939/4161

https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/

0 , as autosize, and then 1048576 to 18446744073709551615 (>= MariaDB 10.8)

1048576 to innodb_buffer_pool_size/innodb_buffer_pool_instances (<= MariaDB 10.7)

innodb_buffer_pool_dump_at_shutdown

Description: Whether to record pages cached in the buffer pool on server shutdown, which reduces the length of the

warmup the next time the server starts. The related innodb_buffer_pool_load_at_startup specifies whether the buffer

pool is automatically warmed up at startup.

Commandline: --innodb-buffer-pool-dump-at-shutdown={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

ON

innodb_buffer_pool_dump_now

Description: Immediately records pages stored in the buffer pool. The related innodb_buffer_pool_load_now does

the reverse, and will immediately warm up the buffer pool.

Commandline: --innodb-buffer-pool-dump-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

innodb_buffer_pool_dump_pct

Description: Dump only the hottest N% of each buffer pool.

Commandline: --innodb-buffer-pool-dump-pct={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

25

Range: 1 to 100

innodb_buffer_pool_evict

Description: Evict pages from the buffer pool. If set to "uncompressed" then all uncompressed pages are evicted

from the buffer pool. Variable to be used only for testing. Only exists in DEBUG builds.

Commandline: --innodb-buffer-pool-evict=#

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: ""

Valid Values: "" or "uncompressed"

innodb_buffer_pool_filename

Description: The file that holds the buffer pool list of page numbers set by innodb_buffer_pool_dump_at_shutdown

and innodb_buffer_pool_dump_now.

Commandline: --innodb-buffer-pool-filename=file

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: ib_buffer_pool

Introduced: MariaDB 10.0

2940/4161

innodb_buffer_pool_instances

Description: If innodb_buffer_pool_size is set to more than 1GB, innodb_buffer_pool_instances divides the InnoDB

buffer pool into the specified number of instances. The default was 1 in MariaDB 5.5, but for large systems with buffer

pools of many gigabytes, many instances could help reduce contention concurrency through MariaDB 10.2. The

default is 8 in MariaDB 10 (except on Windows 32-bit, where it varies according to innodb_buffer_pool_size, or from

MariaDB 10.2.2 , where it is set to 1 if innodb_buffer_pool_size < 1GB). Each instance manages its own data

structures and takes an equal portion of the total buffer pool size, so for example if innodb_buffer_pool_size is 4GB

and innodb_buffer_pool_instances is set to 4, each instance will be 1GB. Each instance should ideally be at least

1GB in size. Starting with MariaDB 10.3, performance improvements intended to reduce the overhead of context-

switching between buffer pools changed the recommended number of innodb_buffer_pool_instances to one for every

128GB of buffer pool size. Based on these changes, the variable is deprecated and ignored from MariaDB 10.5.1,

where the buffer pool runs in a single instance regardless of size.

Commandline: --innodb-buffer-pool-instances=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: >= MariaDB 10.0.4 : 8 , 1 (>= MariaDB 10.2.2 if innodb_buffer_pool_size < 1GB), or dependent

on innodb_buffer_pool_size (Windows 32-bit)

Deprecated: MariaDB 10.5.1

Removed: MariaDB 10.6.0

innodb_buffer_pool_load_abort

Description: Aborts the process of restoring buffer pool contents started by innodb_buffer_pool_load_at_startup or

innodb_buffer_pool_load_now.

Commandline: --innodb-buffer-pool-load-abort={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_buffer_pool_load_at_startup

Description: Specifies whether the buffer pool is automatically warmed up when the server starts by loading the

pages held earlier. The related innodb_buffer_pool_dump_at_shutdown specifies whether pages are saved at

shutdown. If the buffer pool is large and taking a long time to load, increasing innodb_io_capacity at startup may help.

Commandline: --innodb-buffer-pool-load-at-startup={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value:

ON

innodb_buffer_pool_load_now

Description: Immediately warms up the buffer pool by loading the stored data pages. The related

innodb_buffer_pool_dump_now does the reverse, and immediately records pages stored in the buffer pool.

Commandline: --innodb-buffer-pool-load-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

innodb_buffer_pool_load_pages_abort

Description: Number of pages during a buffer pool load to process before signaling

innodb_buffer_pool_load_abort=1. Debug builds only.

Commandline: --innodb-buffer-pool-load-pages-abort=#

Scope: Global

Dynamic: Yes
2941/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

Data Type: numeric

Default Value: 9223372036854775807

Range: 1 to 9223372036854775807

Introduced: MariaDB 10.3

innodb_buffer_pool_populate

Description: When set to 1 (0 is default), XtraDB will preallocate pages in the buffer pool on starting up so that

NUMA allocation decisions are made while the buffer cache is still clean. XtraDB only. This option was made

ineffective in MariaDB 10.0.23 . Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses

InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-buffer-pool-populate={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.0.23

Removed: MariaDB 10.3.0

innodb_buffer_pool_restore_at_startup

Description: Time in seconds between automatic buffer pool dumps. If set to a non-zero value, XtraDB will also

perform an automatic restore of the buffer pool at startup. If set to 0 , automatic dumps are not performed, nor

automatic restores on startup. Replaced by innodb_buffer_pool_load_at_startup in MariaDB 10.0.

Commandline: innodb-buffer-pool-restore-at-startup

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range - 32 bit: 0 to 4294967295

Range - 64 bit: 0 to 18446744073709547520

Removed: MariaDB 10.0 - replaced by innodb_buffer_pool_load_at_startup

innodb_buffer_pool_shm_checksum

Description: Used with Percona's SHM buffer pool patch in XtraDB 5.5. Was shortly deprecated and removed in

XtraDB 5.6. XtraDB only.

Commandline: innodb-buffer-pool-shm-checksum={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Removed: MariaDB 10.0

innodb_buffer_pool_shm_key

Description: Used with Percona's SHM buffer pool patch in XtraDB 5.5. Later deprecated in XtraDB 5.5, and

removed in XtraDB 5.6.

Commandline: innodb-buffer-pool-shm-key={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

Removed: MariaDB 10.0

innodb_buffer_pool_size

Description: InnoDB buffer pool size in bytes. The primary value to adjust on a database server with

entirely/primarily InnoDB tables, can be set up to 80% of the total memory in these environments. See the InnoDB

Buffer Pool for more on setting this variable, and also Setting InnoDB Buffer Pool Size Dynamically if doing so

2942/4161

https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

dynamically.

Commandline: --innodb-buffer-pool-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 134217728 (128MiB)

Range:

Minimum: 5242880 (5MiB) for InnoDB Page Size <= 16k otherwise 25165824 (24MiB) for InnoDB Page

Size > 16k (for versions less than next line)

Minimium: 2MiB InnoDB Page Size = 4k, 3MiB InnoDB Page Size = 8k, 5MiB InnoDB Page Size = 16k,

10MiB InnoDB Page Size = 32k, 20MiB InnoDB Page Size = 64k, (>= MariaDB 10.2.42 , >= MariaDB

10.3.33 , >= MariaDB 10.4.23, >= MariaDB 10.5.14, >= MariaDB 10.6.6, >= MariaDB 10.7.2)

Minimum: 1GiB for innodb_buffer_pool_instances > 1 (<= MariaDB 10.7)

Maximium: 9223372036854775807 (8192PB) (all versions)

innodb_change_buffer_dump

Description: If set, causes the contents of the InnoDB change buffer to be dumped to the server error log at startup.

Only available in debug builds.

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.2.28 , MariaDB 10.3.19 , MariaDB 10.4.9

innodb_change_buffer_max_size

Description: Maximum size of the InnoDB Change Buffer as a percentage of the total buffer pool. The default is

25%, and this can be increased up to 50% for servers with high write activity, and lowered down to 0 for servers used

exclusively for reporting.

Commandline: --innodb-change-buffer-max-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 25

Range: 0 to 50

Introduced: MariaDB 10.0

Deprecated: MariaDB 10.9.0

Removed: MariaDB 11.0.0

innodb_change_buffering

Description: Sets how InnoDB change buffering is performed. See InnoDB Change Buffering for details on the

settings. Deprecated and ignored from MariaDB 10.9.0.

Commandline: --innodb-change-buffering=#

Scope: Global

Dynamic: Yes

Data Type: enumeration (>= MariaDB 10.3.7), string (<= MariaDB 10.3.6)

Default Value:

>= MariaDB 10.5.15, MariaDB 10.6.7, MariaDB 10.7.3 , MariaDB 10.8.2 : none

<= MariaDB 10.5.14, MariaDB 10.6.6, MariaDB 10.7.2 , MariaDB 10.8.1 : all

Valid Values: inserts , none , deletes , purges , changes , all

Deprecated: MariaDB 10.9.0

Removed: MariaDB 11.0.0

innodb_change_buffering_debug

Description: If set to 1 , an InnoDB Change Buffering debug flag is set. 1 forces all changes to the change buffer,

while 2 causes a crash at merge. 0 , the default, indicates no flag is set. Only available in debug builds.

Commandline: --innodb-change-buffering-debug=#

Scope: Global

2943/4161

https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-10228-release-notes/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1073-release-notes/
https://mariadb.com/kb/en/mariadb-1082-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2

innodb_checkpoint_age_target

Description: The maximum value of the checkpoint age. If set to 0 , has no effect. Removed in MariaDB

10.0/XtraDB 5.6 and replaced with InnoDB flushing method from MySQL 5.6.

Commandline: innodb-checkpoint-age-target=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 upwards

Removed: MariaDB 10.0 - replaced with InnoDB flushing method from MySQL 5.6.

innodb_checksum_algorithm

Description: Specifies how the InnoDB tablespace checksum is generated and verified.

innodb : Backwards compatible with earlier versions (<= MariaDB 5.5). Deprecated in MariaDB 10.3.29 ,

MariaDB 10.4.19, MariaDB 10.5.10 and removed in MariaDB 10.6. If really needed, data files can still be

converted with innochecksum.

crc32 : A newer, faster algorithm, but incompatible with earlier versions. Tablespace blocks will be converted

to the new format over time, meaning that a mix of checksums may be present.

full_crc32 and strict_full_crc32 : From MariaDB 10.4.3. Permits encryption to be supported over a

SPATIAL INDEX, which crc32 does not support. Newly-created data files will carry a flag that indicates that

all pages of the file will use a full CRC-32C checksum over the entire page contents (excluding the bytes where

the checksum is stored, at the very end of the page). Such files will always use that checksum, no matter what

parameter innodb_checksum_algorithm is assigned to. Even if innodb_checksum_algorithm is

modified later, the same checksum will continue to be used. A special flag will be set in the

FSP_SPACE_FLAGS in the first data page to indicate the new format of checksum and

encryption/page_compressed. ROW_FORMAT=COMPRESSED tables will only use the old format. These

tables do not support new features, such as larger innodb_page_size or instant ADD/DROP COLUMN. Also

cleans up the MariaDB tablespace flags - flags are reserved to store the page_compressed compression

algorithm, and to store the compressed payload length, so that checksum can be computed over the

compressed (and possibly encrypted) stream and can be validated without decrypting or decompressing the

page. In the full_crc32 format, there no longer are separate before-encryption and after-encryption checksums

for pages. The single checksum is computed on the page contents that is written to the file.See MDEV-12026

for details.

none : Writes a constant rather than calculate a checksum. Deprecated in MariaDB 10.3.29 , MariaDB

10.4.19, MariaDB 10.5.10 and removed in MariaDB 10.6 as was mostly used to disable the original, slow, page

checksum for benchmarking purposes.

strict_crc32 , strict_innodb and strict_none : The options are the same as the regular options, but

InnoDB will halt if it comes across a mix of checksum values. These are faster, as both new and old checksum

values are not required, but can only be used when setting up tablespaces for the first time.

Commandline: --innodb-checksum-algorithm=#

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value:

full_crc32 (>= MariaDB 10.5.0)

crc32 (>= MariaDB 10.2.2 to <= MariaDB 10.4)

innodb (<= MariaDB 10.2.1)

Valid Values:

>= MariaDB 10.6.0: crc32 , full_crc32 , strict_crc32 , strict_full_crc32

MariaDB 10.5, >= MariaDB 10.4.3: innodb , crc32 , full_crc32 , none , strict_innodb ,

strict_crc32 , strict_none , strict_full_crc32

<= MariaDB 10.4.2: innodb , crc32 , none , strict_innodb , strict_crc32 , strict_none

innodb_checksums

2944/4161

https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://jira.mariadb.org/browse/MDEV-12026
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

Description: By default, InnoDB performs checksum validation on all pages read from disk, which provides extra

fault tolerance. You would usually want this set to 1 in production environments, although setting it to 0 can provide

marginal performance improvements. Deprecated and functionality replaced by innodb_checksum_algorithm in

MariaDB 10.0, and should be removed to avoid conflicts. ON is equivalent to --

innodb_checksum_algorithm=innodb and OFF to --innodb_checksum_algorithm=none .

Commandline: --innodb-checksums , --skip-innodb-checksums

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.0

Removed: MariaDB 10.5.0

innodb_cleaner_lsn_age_factor

Description: XtraDB has enhanced page cleaner heuristics, and with these in place, the default InnoDB adaptive

flushing may be too aggressive. As a result, a new LSN age factor formula has been introduced, controlled by this

variable. The default setting, high_checkpoint , uses the new formula, while the alternative, legacy , uses the

original algorithm. XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB

as default instead of XtraDB) to allow for easier upgrades.

Commandline: --innodb-cleaner-lsn-age-factor=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value:

deprecated

Valid Values:

deprecated , high_checkpoint , legacy

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_cmp_per_index_enabled

Description: If set to ON (OFF is default), per-index compression statistics are stored in the

INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. These are expensive to record, so this setting should

only be changed with care, such as for performance tuning on development or replica servers.

Commandline: --innodb-cmp-per-index-enabled={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.0

innodb_commit_concurrency

Description: Limit to the number of transaction threads that can can commit simultaneously. 0, the default, imposes

no limit. While you can change from one positive limit to another at runtime, you cannot set this variable to 0, or

change it from 0, while the server is running. Deprecated and ignored from MariaDB 10.5.5.

Commandline: --innodb-commit-concurrency=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1000

Deprecated: MariaDB 10.5.5

Removed: MariaDB 10.6.0

innodb_compression_algorithm

Description: Compression algorithm used for InnoDB page compression. The supported values are:

none : Pages are not compressed.

2945/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

zlib : Pages are compressed using the bundled zlib compression algorithm.

lz4 : Pages are compressed using the lz4 compression algorithm.

lzo : Pages are compressed using the lzo compression algorithm.

lzma : Pages are compressed using the lzma compression algorithm.

bzip2 : Pages are compressed using the bzip2 compression algorithm.

snappy : Pages are compressed using the snappy algorithm.

On many distributions, MariaDB may not support all page compression algorithms by default. From MariaDB

10.7, libraries can be installed as a plugin. See Compression Plugins.

See InnoDB Page Compression: Configuring the InnoDB Page Compression Algorithm for more information.

Commandline: --innodb-compression-algorithm=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: zlib

Valid Values: none , zlib , lz4 , lzo , lzma , bzip2 or snappy

innodb_compression_default

Description: Whether or not InnoDB page compression is enabled by default for new tables.

The default value is OFF , which means new tables are not compressed.

See InnoDB Page Compression: Enabling InnoDB Page Compression by Default for more information.

Commandline: --innodb-compression-default={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_compression_failure_threshold_pct

Description: Specifies the percentage cutoff for expensive compression failures during updates to a table that uses

InnoDB page compression, after which free space is added to each new compressed page, dynamically adjusted up

to the level set by innodb_compression_pad_pct_max. Zero disables checking of compression efficiency and

adjusting padding.

See InnoDB Page Compression: Configuring the Failure Threshold and Padding for more information.

Commandline: --innodb-compression-failure-threshold-pct=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: 0 to 100

Introduced: MariaDB 10.0

innodb_compression_level

Description: Specifies the default level of compression for tables that use InnoDB page compression.

Only a subset of InnoDB page compression algorithms support compression levels. If an InnoDB page

compression algorithm does not support compression levels, then the compression level value is ignored.

The compression level can be set to any value between 1 and 9 . The default compression level is 6 . The

range goes from the fastest to the most compact, which means that 1 is the fastest and 9 is the most

compact.

See InnoDB Page Compression: Configuring the Default Compression Level for more information.

Commandline: --innodb-compression-level=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 6

Range: 1 to 9

Introduced: MariaDB 10.0

innodb_compression_pad_pct_max

2946/4161

https://www.zlib.net/
https://code.google.com/p/lz4/
http://www.oberhumer.com/opensource/lzo/
http://tukaani.org/xz/
http://www.bzip.org/
http://google.github.io/snappy/

Description: The maximum percentage of reserved free space within each compressed page for tables that use

InnoDB page compression. Reserved free space is used when the page's data is reorganized and might be

recompressed. Only used when innodb_compression_failure_threshold_pct is not zero, and the rate of compression

failures exceeds its setting.

See InnoDB Page Compression: Configuring the Failure Threshold and Padding for more information.

Commandline: --innodb-compression-pad-pct-max=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 50

Range: 0 to 75

Introduced: MariaDB 10.0

innodb_concurrency_tickets

Description: Number of times a newly-entered thread can enter and leave InnoDB until it is again subject to the

limitations of innodb_thread_concurrency and may possibly be queued. Deprecated and ignored from MariaDB

10.5.5.

Commandline: --innodb-concurrency-tickets=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

0 (>= MariaDB 10.5.5)

5000 (<= MariaDB 10.5.4)

Range: 1 to 18446744073709551615

Deprecated: MariaDB 10.5.5

Removed: MariaDB 10.6.0

innodb_corrupt_table_action

Description: What action to perform when a corrupt table is found. XtraDB only.

When set to assert , the default, XtraDB will intentionally crash the server when it detects corrupted data in a

single-table tablespace, with an assertion failure.

When set to warn , it will pass corruption as corrupt table instead of crashing, and disable all further I/O

(except for deletion) on the table file.

If set to salvage , read access is permitted, but corrupted pages are ignored. innodb_file_per_table must be

enabled for this option. Previously named innodb_pass_corrupt_table .

Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead of

XtraDB) to allow for easier upgrades.

Commandline: innodb-corrupt-table-action=value

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value:

assert (<= MariaDB 10.1)

deprecated (<= MariaDB 10.2.6)

Valid Values:

deprecated , assert , warn , salvage

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_data_file_buffering

Description: Whether to enable the file system cache for data files. Set to OFF by default, will be set to ON if

innodb_flush_method is set to fsync , littlesync , nosync , or (Windows specific) normal .

Commandline: --innodb-data-file-buffering={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.0.0

2947/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_data_file_path

Description: Individual InnoDB data files, paths and sizes. The value of innodb_data_home_dir is joined to each

path specified by innodb_data_file_path to get the full directory path. If innodb_data_home_dir is an empty string,

absolute paths can be specified here. A file size is specified with K for kilobytes, M for megabytes and G for

gigabytes, and whether or not to autoextend the data file is also specified.

Commandline: --innodb-data-file-path=name

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: ibdata1:12M:autoextend (from MariaDB 10.0), ibdata1:10M:autoextend (before MariaDB

10.0)

innodb_data_file_write_through

Description: Whether writes to InnoDB data files (including the temporary tablespace) are write through. Set to OFF

by default, will be set to ON if innodb_flush_method is set to O_DSYNC . On systems that support FUA it may make

sense to enable write-through, to avoid extra system calls.

Commandline: --innodb-data-file-write-through={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.0.0

innodb_data_home_dir

Description: Directory path for all InnoDB data files in the shared tablespace (assuming innodb_file_per_table is not

enabled). File-specific information can be added in innodb_data_file_path, as well as absolute paths if

innodb_data_home_dir is set to an empty string.

Commandline: --innodb-data-home-dir=path

Scope: Global

Dynamic: No

Data Type: directory name

Default Value: The MariaDB data directory

innodb_deadlock_detect

Description: By default, the InnoDB deadlock detector is enabled. If set to off, deadlock detection is disabled and

MariaDB will rely on innodb_lock_wait_timeout instead. This may be more efficient in systems with high concurrency

as deadlock detection can cause a bottleneck when a number of threads have to wait for the same lock.

Commandline: --innodb-deadlock-detect

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 1

innodb_deadlock_report

Description: How to report deadlocks (if innodb_deadlock_detect=ON).

off : Do not report any details of deadlocks.

basic : Report transactions and waiting locks.

full : Default. Report transactions, waiting locks and blocking locks.

Commandline: --innodb-deadlock-report=val

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: full

Valid Values: off , basic , full

Introduced: MariaDB 10.6.0

2948/4161

innodb_default_page_encryption_key

Description: Encryption key used for page encryption.

See Data-at-Rest Encryption and InnoDB Encryption Keys for more information.

Commandline: --innodb-default-page-encryption-key=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 255

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.1.4

innodb_default_encryption_key_id

Description: ID of encryption key used by default to encrypt InnoDB tablespaces.

See Data-at-Rest Encryption and InnoDB Encryption Keys for more information.

Commandline: --innodb-default-encryption-key-id=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 4294967295

innodb_default_row_format

Description: Specifies the default row format to be used for InnoDB tables. The compressed row format cannot be

set as the default.

See InnoDB Row Formats Overview: Default Row Format for more information.

Commandline: --innodb-default-row-format=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: dynamic

Valid Values: redundant , compact or dynamic

innodb_defragment

Description: When set to 1 (the default is 0), InnoDB defragmentation is enabled. When set to FALSE, all existing

defragmentation will be paused and new defragmentation commands will fail. Paused defragmentation commands will

resume when this variable is set to true again. See Defragmenting InnoDB Tablespaces.

Commandline: --innodb-defragment={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

innodb_defragment_fill_factor

Description:. Indicates how full defragmentation should fill a page. Together with

innodb_defragment_fill_factor_n_recs ensures defragmentation won9t pack the page too full and cause page split on

the next insert on every page. The variable indicating more defragmentation gain is the one effective. See

Defragmenting InnoDB Tablespaces.

Commandline: --innodb-defragment-fill-factor=#

Scope: Global

Dynamic: Yes

Data Type: double

Default Value: 0.9

2949/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

Range: 0.7 to 1

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

innodb_defragment_fill_factor_n_recs

Description: Number of records of space that defragmentation should leave on the page. This variable, together with

innodb_defragment_fill_factor, is introduced so defragmentation won't pack the page too full and cause page split on

the next insert on every page. The variable indicating more defragmentation gain is the one effective. See

Defragmenting InnoDB Tablespaces.

Commandline: --innodb-defragment-fill-factor-n-recs=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 20

Range: 1 to 100

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

innodb_defragment_frequency

Description: Maximum times per second for defragmenting a single index. This controls the number of times the

defragmentation thread can request X_LOCK on an index. The defragmentation thread will check whether

1/defragment_frequency (s) has passed since it last worked on this index, and put the index back in the queue if not

enough time has passed. The actual frequency can only be lower than this given number. See Defragmenting InnoDB

Tablespaces.

Commandline: --innodb-defragment-frequency=#

Scope: Global

Dynamic: Yes

Data Type: integer

Default Value: 40

Range: 1 to 1000

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

innodb_defragment_n_pages

Description: Number of pages considered at once when merging multiple pages to defragment. See Defragmenting

InnoDB Tablespaces.

Commandline: --innodb-defragment-n-pages=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 7

Range: 2 to 32

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

innodb_defragment_stats_accuracy

Description: Number of defragment stats changes there are before the stats are written to persistent storage.

Defaults to zero, meaning disable defragment stats tracking. See Defragmenting InnoDB Tablespaces.

Commandline: --innodb-defragment-stats-accuracy=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Deprecated: MariaDB 11.0.1

Removed: MariaDB 11.1.0

2950/4161

innodb_dict_size_limit

Description: Size in bytes of a soft limit the memory used by tables in the data dictionary. Once this limit is reached,

XtraDB will attempt to remove unused entries. If set to 0 , the default and standard InnoDB behavior, there is no limit

to memory usage. Removed in MariaDB 10.0/XtraDB 5.6 and replaced by MySQL 5.6's new table_definition_cache

implementation.

Commandline: innodb-dict-size-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Default Value - 32 bit: 2147483648

Default Value - 64 bit: 9223372036854775807

Removed: MariaDB 10.0 - replaced by MySQL 5.6's table_definition_cache implementation.

innodb_disable_sort_file_cache

Description: If set to 1 (0 is default), the operating system file system cache for merge-sort temporary files is

disabled.

Commandline: --innodb-disable-sort-file-cache={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_disallow_writes

Description: Tell InnoDB to stop any writes to disk.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.3.35 , MariaDB 10.4.25, MariaDB 10.5.16, MariaDB 10.6.8, MariaDB 10.7.4

innodb_doublewrite

Description: If set to 1 , the default, to improve fault tolerance InnoDB first stores data to a doublewrite buffer

before writing it to data file. Disabling will provide a marginal peformance improvement.

Commandline: --innodb-doublewrite , --skip-innodb-doublewrite

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

innodb_doublewrite_file

Description: The absolute or relative path and filename to a dedicated tablespace for the doublewrite buffer. In

heavy workloads, the doublewrite buffer can impact heavily on the server, and moving it to a different drive will reduce

contention on random reads. Since the doublewrite buffer is mostly sequential writes, a traditional HDD is a better

choice than SSD. This Percona XtraDB variable has not been ported to XtraDB 5.6.

Commandline: innodb-doublewrite-file=filename

Scope: Global

Dynamic: No

Data Type: filename

Default Value: NULL

Removed: MariaDB 10.0

innodb_empty_free_list_algorithm

2951/4161

https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/

Description: XtraDB 5.6.13-61 introduced an algorithm to assist with reducing mutex contention when the buffer pool

free list is empty, controlled by this variable. If set to backoff , the default until MariaDB 10.1.24 , the new

algorithm will be used. If set to legacy , the original InnoDB algorithm will be used. XtraDB only. Added as a

deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for

easier upgrades. See #1651657 for the reasons this was changed back to legacy in XtraDB 5.6.36-82.0. When

upgrading from 10.0 to 10.1 (>= 10.1.24), for large buffer pools the default will remain backoff , while for small ones

it will be changed to legacy .

Commandline: innodb-empty-free-list-algorithm=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value:

deprecated

Valid Values:

deprecated , backoff , legacy

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_enable_unsafe_group_commit

Description: Unneeded after XtraDB 1.0.5. If set to 0 , the default, InnoDB will keep transactions between the

transaction log and binary logs in the same order. Safer, but slower. If set to 1 , transactions can be group-

committed, but there is no guarantee of the order being kept, and a small risk of the two logs getting out of sync. In

write-intensive environments, can lead to a significant improvement in performance.

Commandline: --innodb-enable-unsafe-group-commit

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1

Removed: Not needed after XtraDB 1.0.5

innodb_encrypt_log

Description: Enables encryption of the InnoDB redo log. This also enables encryption of some temporary files

created internally by InnoDB, such as those used for merge sorts and row logs.

See Data-at-Rest Encryption and InnoDB / XtraDB Enabling Encryption: Enabling Encryption for Redo Log for

more information.

Commandline: --innodb-encrypt-log

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

innodb_encrypt_tables

Description: Enables automatic encryption of all InnoDB tablespaces.

OFF - Disables table encryption for all new and existing tables that have the ENCRYPTED table option set to

DEFAULT .

ON - Enables table encryption for all new and existing tables that have the ENCRYPTED table option set to

DEFAULT , but allows unencrypted tables to be created.

FORCE - Enables table encryption for all new and existing tables that have the ENCRYPTED table option set to

DEFAULT , and doesn't allow unencrypted tables to be created (CREATE TABLE ... ENCRYPTED=NO will fail).

See Data-at-Rest Encryption and InnoDB / XtraDB Enabling Encryption: Enabling Encryption for Automatically

Encrypted Tablespaces for more information.

Commandline: --innodb-encrypt-tables={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Valid Values: ON , OFF , FORCE

2952/4161

https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://bugs.launchpad.net/percona-server/+bug/1651657
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_encrypt_temporary_tables

Description: Enables automatic encryption of the InnoDB temporary tablespace.

See Data-at-Rest Encryption and InnoDB Enabling Encryption: Enabling Encryption for Temporary

Tablespaces for more information.

Commandline: --innodb-encrypt-temporary-tables={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Valid Values: ON , OFF

Introduced: MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

innodb_encryption_rotate_key_age

Description: Re-encrypt in background any page having a key older than this number of key versions. When setting

up encryption, this variable must be set to a non-zero value. Otherwise, when you enable encryption through

innodb_encrypt_tables MariaDB won't be able to automatically encrypt any unencrypted tables.

See Data-at-Rest Encryption and InnoDB Encryption Keys: Key Rotation for more information.

Commandline: --innodb-encryption-rotate-key-age=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 4294967295

innodb_encryption_rotation_iops

Description: Use this many iops for background key rotation operations performed by the background encryption

threads.

See Data-at-Rest Encryption and InnoDB Encryption Keys: Key Rotation for more information.

Commandline: --innodb-encryption-rotation_iops=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 0 to 4294967295

innodb_encryption_threads

Description: Number of background encryption threads threads performing background key rotation and scrubbing.

When setting up encryption, this variable must be set to a non-zero value. Otherwise, when you enable encryption

through innodb_encrypt_tables MariaDB won't be able to automatically encrypt any unencrypted tables.

Recommended never be set higher than 255.

See Data-at-Rest Encryption and InnoDB Background Encryption Threads for more information.

Commandline: --innodb-encryption-threads=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range:

0 to 4294967295 (<= MariaDB 10.1.45 , MariaDB 10.2.32 , MariaDB 10.3.23 , MariaDB 10.4.13,

MariaDB 10.5.3)

0 to 255 (>= MariaDB 10.1.46 , MariaDB 10.2.33 , MariaDB 10.3.24 , MariaDB 10.4.14, MariaDB

10.5.4)

innodb_extra_rsegments

Description: Removed in XtraDB 5.5 and replaced by innodb_rollback_segments. Usually there is one rollback

segment protected by single mutex, a source of contention in high write environments. This option specifies a number

of extra user rollback segments. Changing the default will make the data readable by XtraDB only, and is incompatible

2953/4161

https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/

with InnoDB. After modifying, the server must be slow-shutdown. If there is existing data, it must be dumped before

changing, and re-imported after the change has taken effect.

Commandline: --innodb-extra-rsegments=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 126

Removed: XtraDB 5.5 - replaced by innodb_rollback_segments

innodb_extra_undoslots

Description: Usually, InnoDB has 1024 undo slots in its rollback segment, so 1024 transactions can run in parallel.

New transactions will fail if all slots are used. Setting this variable to 1 expands the available undo slots to 4072. Not

recommended unless you get the Warning: cannot find a free slot for an undo log error in the error log,

as it makes data files unusable for ibbackup, or MariaDB servers not run with this option. See also undo log.

Commandline: --innodb-extra-undoslots={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: XtraDB 5.5

innodb_fake_changes

Description: From MariaDB 5.5 until MariaDB 10.1, XtraDB-only option that enables the fake changes feature. In

replication, setting up or restarting a replica can cause a replication reads to perform more slowly, as MariaDB is

single-threaded and needs to read the data before it can execute the queries. This can be speeded up by prefetching

threads to warm the server, replaying the statements and then rolling back at commit. This however has an overhead

from locking rows only then to undo changes at rollback. Fake changes attempts to reduce this overhead by reading

the rows for INSERT, UPDATE and DELETE statements but not updating them. The rollback is then very fast with

little or nothing to do. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default

instead of XtraDB) to allow for easier upgrades. Not present in MariaDB 10.3 and beyond.

Commandline: --innodb-fake-changes={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_fast_checksum

Description: Implements a more CPU efficient XtraDB checksum algorithm, useful for write-heavy loads with high

I/O. If set to 1 on a server with tables that have been created with it set to 0 , reads will be slower, so tables should

be recreated (dumped and reloaded). XtraDB will fail to start if set to 0 and there are tables created while set to 1 .

Replaced with innodb_checksum_algorithm in MariaDB 10.0/XtraDB 5.6.

Commandline: --innodb-fast-checksum={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0/XtraDB 5.6 - replaced with innodb_checksum_algorithm

innodb_fast_shutdown

Description: The shutdown mode.

0 - InnoDB performs a slow shutdown, including full purge (before MariaDB 10.3.6 , not always, due to

MDEV-13603) and change buffer merge. Can be very slow, even taking hours in extreme cases.

1 - the default, InnoDB performs a fast shutdown, not performing a full purge or an insert buffer merge.

2 , the InnoDB redo log is flushed and a cold shutdown takes place, similar to a crash. The resulting startup

2954/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://jira.mariadb.org/browse/MDEV-13603

then performs crash recovery. Extremely fast, in cases of emergency, but risks corruption. Not suitable for

upgrades between major versions!

3 (from MariaDB 10.3.6) - active transactions will not be rolled back, but all changed pages will be written to

data files. The active transactions will be rolled back by a background thread on a subsequent startup. The

fastest option that will not involve InnoDB redo log apply on subsequent startup. See MDEV-15832 .

Commandline: --innodb-fast-shutdown[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 3 (>= MariaDB 10.3.6), 0 to 2 (<= MariaDB 10.3.5)

innodb_fatal_semaphore_wait_threshold

Description: In MariaDB, the fatal semaphore timeout is configurable. This variable sets the maximum number of

seconds for semaphores to time out in InnoDB.

Commandline: --innodb-fatal-semaphore-wait-threshold=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 600

Range: 1 to 4294967295

innodb_file_format

Description: File format for new InnoDB tables. Can either be Antelope , the default and the original format, or

Barracuda , which supports compression. Note that this value is also used when a table is re-created with an

ALTER TABLE which requires a table copy. See XtraDB/InnoDB File Format for more on the file formats. Removed in

10.3.1 and restored as a deprecated and unused variable in 10.4.3 for compatibility purposes.

Commandline: --innodb-file-format=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value:

Barracuda

Valid Values: Antelope , Barracuda

Deprecated: MariaDB 10.2

Removed: MariaDB 10.3.1

Re-introduced: MariaDB 10.4.3 (for compatibility purposes)

Removed: MariaDB 10.6.0

innodb_file_format_check

Description: If set to 1 , the default, InnoDB checks the shared tablespace file format tag. If this is higher than the

current version supported by XtraDB/InnoDB (for example Barracuda when only Antelope is supported),

XtraDB/InnoDB will will not start. If it the value is not higher, XtraDB/InnoDB starts correctly and the

innodb_file_format_max value is set to this value. If innodb_file_format_check is set to 0 , no checking is performed.

See XtraDB/InnoDB File Format for more on the file formats.

Commandline: --innodb-file-format-check={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.2

Removed: MariaDB 10.3.1

innodb_file_format_max

Description: The highest XtraDB/InnoDB file format. This is set to the value of the file format tag in the shared

tablespace on startup (see innodb_file_format_check). If the server later creates a higher table format,

innodb_file_format_max is set to that value. See XtraDB/InnoDB File Format for more on the file formats.

2955/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://jira.mariadb.org/browse/MDEV-15832
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

Commandline: --innodb-file-format-max=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Antelope

Valid Values: Antelope , Barracuda

Deprecated: MariaDB 10.2

Removed: MariaDB 10.3.1

innodb_file_per_table

Description: If set to ON , then new InnoDB tables are created with their own InnoDB file-per-table tablespaces. If

set to OFF , then new tables are created in the InnoDB system tablespace instead. Page compression is only

available with file-per-table tablespaces. Note that this value is also used when a table is re-created with an ALTER

TABLE which requires a table copy. Deprecated in MariaDB 11.0 as there's no benefit to setting to OFF , the original

InnoDB default.

Commandline: --innodb-file-per-table

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 11.0.1

innodb_fill_factor

Description: Percentage of B-tree page filled during bulk insert (sorted index build). Used as a hint rather than an

absolute value. Setting to 70 , for example, reserves 30% of the space on each B-tree page for the index to grow in

future.

Commandline: --innodb-fill-factor=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 10 to 100

innodb_flush_log_at_timeout

Description: Interval in seconds to write and flush the InnoDB redo log. Before MariaDB 10, this was fixed at one

second, which is still the default, but this can now be changed. It's usually increased to reduce flushing and avoid

impacting performance of binary log group commit.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 2700

innodb_flush_log_at_trx_commit

Description: Set to 1 , along with sync_binlog=1 for the greatest level of fault tolerance. The value of

innodb_use_global_flush_log_at_trx_commit determines whether this variable can be reset with a SET statement or

not.

1 The default, the log buffer is written to the InnoDB redo log file and a flush to disk performed after each

transaction. This is required for full ACID compliance.

0 Nothing is done on commit; rather the log buffer is written and flushed to the InnoDB redo log once a

second. This gives better performance, but a server crash can erase the last second of transactions.

2 The log buffer is written to the InnoDB redo log after each commit, but flushing takes place every

innodb_flush_log_at_timeout seconds (by default once a second). Performance is slightly better, but a OS or

power outage can cause the last second's transactions to be lost.

3 Emulates MariaDB 5.5 group commit (3 syncs per group commit). See Binlog group commit and

innodb_flush_log_at_trx_commit . This option has not been working correctly since 10.2 and may be removed

in future, see https://github.com/MariaDB/server/pull/1873

2956/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/binlog-group-commit-and-innodb_flush_log_at_trx_commit/
https://github.com/MariaDB/server/pull/1873

Commandline: --innodb-flush-log-at-trx-commit[=#]

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: 1

Valid Values: 0 , 1 , 2 or 3

innodb_flush_method

Description: InnoDB flushing method. Windows always uses async_unbuffered and this variable then has no effect.

On Unix, before MariaDB 10.6.0, by default fsync() is used to flush data and logs. Adjusting this variable can give

performance improvements, but behavior differs widely on different filesystems, and changing from the default has

caused problems in some situations, so test and benchmark carefully before adjusting. In MariaDB, Windows

recognises and correctly handles the Unix methods, but if none are specified it uses own default - unbuffered write

(analog of O_DIRECT) + syncs (e.g FileFlushBuffers()) for all files.

O_DSYNC - O_DSYNC is used to open and flush logs, and fsync() to flush the data files.

O_DIRECT - O_DIRECT or directio(), is used to open data files, and fsync() to flush data and logs. Default on

Unix from MariaDB 10.6.0.

fsync - Default on Unix until MariaDB 10.5. Can be specified directly, but if the variable is unset on Unix,

fsync() will be used by default.

O_DIRECT_NO_FSYNC - introduced in MariaDB 10.0. Uses O_DIRECT during flushing I/O, but skips fsync()

afterwards. Not suitable for XFS filesystems. Generally not recommended over O_DIRECT, as does not get the

benefit of innodb_use_native_aio=ON.

ALL_O_DIRECT - introduced in MariaDB 5.5 and available with XtraDB only. Uses O_DIRECT for opening

both data and logs and fsync() to flush data but not logs. Use with large InnoDB files only, otherwise may cause

a performance degradation. Set innodb_log_block_size to 4096 on ext4 filesystems. This is the default log

block size on ext4 and will avoid unaligned AIO/DIO warnings.

unbuffered - Windows-only default

async_unbuffered - Windows-only, alias for unbuffered

normal - Windows-only, alias for fsync

littlesync - for internal testing only

nosync - for internal testing only

Deprecated in MariaDB 11.0 and replaced by four boolean dynamic variables that can be changed while the server is

running: innodb_log_file_buffering (disable O_DIRECT, added by MDEV-28766 in 10.8.4, 10.9.2),

innodb_data_file_buffering (disable O_DIRECT on data files), innodb_log_file_write_through (enable O_DSYNC on

the log), innodb_data_file_write_through (enable O_DSYNC on persistent data files)

From MariaDB 11.0, if set to one of the following values, then the values of the four boolean flags will be set as

follows:

O_DSYNC : innodb_log_file_write_through=ON, innodb_data_file_write_through=ON,

innodb_data_file_buffering=OFF, and (if supported) innodb_log_file_buffering=OFF.

fsync , littlesync , nosync , or (Microsoft Windows specific) normal :

innodb_log_file_write_through=OFF, innodb_data_file_write_through=OFF, and

innodb_data_file_buffering=ON.

Commandline: --innodb-flush-method=name

Scope: Global

Dynamic: No

Data Type: enumeration (>= MariaDB 10.3.7), string (<= MariaDB 10.3.6)

Default Value:

O_DIRECT (Unix, >= MariaDB 10.6.0)

fsync (Unix, >= MariaDB 10.3.7 , <= MariaDB 10.5)

Not set (<= MariaDB 10.3.6)

Valid Values:

Unix: fsync , O_DSYNC , littlesync , nosync . O_DIRECT , O_DIRECT_NO_FSYNC

Windows: unbuffered , async_unbuffered , normal

Deprecated: MariaDB 11.0

innodb_flush_neighbor_pages

Description: Determines whether, when dirty pages are flushed to the data file, neighboring pages in the data file are

flushed at the same time. If set to none , the feature is disabled. If set to area , the default, the standard InnoDB

behavior is used. For each page to be flushed, dirty neighboring pages are flushed too. If there's little head seek

delay, such as SSD or large enough write buffer, one of the other two options may be more efficient. If set to cont ,

2957/4161

https://jira.mariadb.org/browse/MDEV-28766
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/

for each page to be flushed, neighboring contiguous blocks are flushed at the same time. Being contiguous, a

sequential I/O is used, unlike the random I/O used in area . Replaced by innodb_flush_neighbors in MariaDB

10.0/XtraDB 5.6.

Commandline: innodb-flush-neighbor-pages=value

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: area

Valid Values: none or 0 , area or 1 , cont or 2

Removed: MariaDB 10.0/XtraDB 5.6 - replaced by innodb_flush_neighbors

innodb_flush_neighbors

Description: Determines whether flushing a page from the buffer pool will flush other dirty pages in the same group

of pages (extent). In high write environments, if flushing is not aggressive enough, it can fall behind resulting in higher

memory usage, or if flushing is too aggressive, cause excess I/O activity. SSD devices, with low seek times, would be

less likely to require dirty neighbor flushing to be set. Since MariaDB 10.4.4 an attempt is made under Windows and

Linux to determine SSD status which was exposed in information_schema.innodb_tablespaces_scrubbing_table.

This variable is ignored for table spaces that are detected as stored on SSD (and the 0 behavior applies).

1 : The default, flushes contiguous dirty pages in the same extent from the buffer pool.

0 : No other dirty pages are flushed.

2 : Flushes dirty pages in the same extent from the buffer pool.

Commandline: --innodb-flush-neighbors=#

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: 1

Valid Values: 0 , 1 , 2

innodb_flush_sync

Description: If set to ON , the default, the innodb_io_capacity setting is ignored for I/O bursts occuring at

checkpoints.

Commandline: --innodb-flush-sync={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_flushing_avg_loops

Description: Determines how quickly adaptive flushing will respond to changing workloads. The value is the number

of iterations that a previously calculated flushing state snapshot is kept. Increasing the value smooths and slows the

rate that the flushing operations change, while decreasing it causes flushing activity to spike quickly in response to

workload changes.

Commandline: --innodb-flushing-avg-loops=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 30

Range: 1 to 1000

innodb_force_load_corrupted

Description: Set to 0 by default, if set to 1 , InnoDB will be permitted to load tables marked as corrupt. Only use

this to recover data you can't recover any other way, or in troubleshooting. Always restore to 0 when the returning to

regular use. Given that MDEV-11412 in MariaDB 10.5.4 aims to allow any metadata for a missing or corrupted table

to be dropped, and given that MDEV-17567 and MDEV-25506 and related tasks made DDL operations crash-

safe, the parameter no longer serves any purpose and was removed in MariaDB 10.6.6.

Commandline: --innodb-force-load-corrupted

Scope: Global

2958/4161

https://jira.mariadb.org/browse/MDEV-11412
https://jira.mariadb.org/browse/MDEV-17567
https://jira.mariadb.org/browse/MDEV-25506

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.6.6

innodb_force_primary_key

Description: If set to 1 (0 is default) CREATE TABLEs without a primary or unique key where all keyparts are

NOT NULL will not be accepted, and will return an error.

Commandline: --innodb-force-primary-key

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_force_recovery

Description: InnoDB crash recovery mode. 0 is the default. The other modes are for recovery purposes only, and

no data can be changed while another mode is active. Some queries relying on indexes are also blocked. See

InnoDB Recovery Modes for more on mode specifics.

Commandline: --innodb-force-recovery=#

Scope: Global

Dynamic: No

Data Type: enumeration

Default Value: 0

Range: 0 to 6

innodb_foreground_preflush

Description: Before XtraDB 5.6.13-61.0, if the checkpoint age is in the sync preflush zone while a thread is writing to

the XtraDB redo log, it will try to advance the checkpoint by issuing a flush list flush batch if this is not already being

done. XtraDB has enhanced page cleaner tuning, and may already be performing furious flushing, resulting in the

flush simply adding unneeded mutex pressure. Instead, the thread now waits for the flushes to finish, and then has

two options, controlled by this variable. XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6

(which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

exponential_backoff - thread sleeps while it waits for the flush list flush to occur. The sleep time randomly

progressively increases, periodically reset to avoid runaway sleeps.

sync_preflush - thread issues a flush list batch, and waits for it to complete. This is the same as is used

when the page cleaner thread is not running.

Commandline: innodb-foreground-preflush=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value:

deprecated

Valid Values:

deprecated , exponential_backoff , sync_preflush

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_ft_aux_table

Description: Diagnostic variable intended only to be set at runtime. It specifies the qualified name (for example

test/ft_innodb) of an InnoDB table that has a FULLTEXT index, and after being set the

INFORMATION_SCHEMA tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE,

INNODB_FT_CONFIG, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED will contain search index

information for the specified table.

Commandline: --innodb-ft-aux-table=value

Scope: Global

Dynamic: Yes

Data Type: string

2959/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_ft_cache_size

Description: Cache size available for a parsed document while creating an InnoDB FULLTEXT index.

Commandline: --innodb-ft-cache-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8000000

innodb_ft_enable_diag_print

Description: If set to 1 , additional full-text search diagnostic output is enabled.

Commandline: --innodb-ft-enable-diag-print={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_ft_enable_stopword

Description: If set to 1 , the default, a set of stopwords is associated with an InnoDB FULLTEXT index when it is

created. The stopword list comes from the table set by the session variable innodb_ft_user_stopword_table, if set,

otherwise the global variable innodb_ft_server_stopword_table, if that is set, or the built-in list if neither variable is set.

Commandline: --innodb-ft-enable-stopword={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_ft_max_token_size

Description: Maximum length of words stored in an InnoDB FULLTEXT index. A larger limit will increase the size of

the index, slowing down queries, but permit longer words to be searched for. In most normal situations, longer words

are unlikely search terms.

Commandline: --innodb-ft-max-token-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 84

Range: 10 to 84

innodb_ft_min_token_size

Description: Minimum length of words stored in an InnoDB FULLTEXT index. A smaller limit will increase the size of

the index, slowing down queries, but permit shorter words to be searched for. For data stored in a Chinese, Japanese

or Korean character set, a value of 1 should be specified to preserve functionality.

Commandline: --innodb-ft-min-token-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 3

Range: 0 to 16

innodb_ft_num_word_optimize

Description: Number of words processed during each OPTIMIZE TABLE on an InnoDB FULLTEXT index. To ensure

all changes are incorporated, multiple OPTIMIZE TABLE statements could be run in case of a substantial change to

the index.

Commandline: --innodb-ft-num-word-optimize=#

2960/4161

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2000

Range: 1000 to 10000

innodb_ft_result_cache_limit

Description: Limit in bytes of the InnoDB FULLTEXT index query result cache per fulltext query. The latter stages of

the full-text search are handled in memory, and limiting this prevents excess memory usage. If the limit is exceeded,

the query returns an error.

Commandline: --innodb-ft-result-cache-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2000000000

Range: 1000000 to 18446744073709551615

innodb_ft_server_stopword_table

Description: Table name containing a list of stopwords to ignore when creating an InnoDB FULLTEXT index, in the

format db_name/table_name. The specified table must exist before this option is set, and must be an InnoDB table

with a single column, a VARCHAR named VALUE. See also innodb_ft_enable_stopword.

Commandline: --innodb-ft-server-stopword-table=db_name/table_name

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty

innodb_ft_sort_pll_degree

Description: Number of parallel threads used when building an InnoDB FULLTEXT index. See also

innodb_sort_buffer_size.

Commandline: --innodb-ft-sort-pll-degree=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 2

Range: 1 to 32

innodb_ft_total_cache_size

Description:Total memory allocated for the cache for all InnoDB FULLTEXT index tables. A force sync is triggered if

this limit is exceeded.

Commandline: --innodb-ft-total-cache-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 640000000

Range: 32000000 to 1600000000

Introduced: MariaDB 10.0.9

innodb_ft_user_stopword_table

Description: Table name containing a list of stopwords to ignore when creating an InnoDB FULLTEXT index, in the

format db_name/table_name. The specified table must exist before this option is set, and must be an InnoDB table

with a single column, a VARCHAR named VALUE. See also innodb_ft_enable_stopword.

Commandline: --innodb-ft-user-stopword-table=db_name/table_name

Scope: Session

Dynamic: Yes

2961/4161

https://mariadb.com/kb/en/mariadb-1009-release-notes/

Data Type: string

Default Value: Empty

innodb_ibuf_accel_rate

Description: Allows the insert buffer activity to be adjusted. The following formula is used: [real activity] = [default

activity] * (innodb_io_capacity/100) * (innodb_ibuf_accel_rate/100). As innodb_ibuf_accel_rate is increased

from its default value of 100 , the lowest setting, insert buffer activity is increased. See also innodb_io_capacity. This

Percona XtraDB variable has not been ported to XtraDB 5.6.

Commandline: innodb-ibuf-accel-rate=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 100 to 999999999

Removed: MariaDB 10.0

innodb_ibuf_active_contract

Description: Specifies whether the insert buffer can be processed before it's full. If set to 0 , the standard InnoDB

method is used, and the buffer is not processed until it's full. If set to 1 , the default, the insert buffer can be

processed before it is full. This Percona XtraDB variable has not been ported to XtraDB 5.6.

Commandline: innodb-ibuf-active-contract=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1

Removed: MariaDB 10.0

innodb_ibuf_max_size

Description: Maximum size in bytes of the insert buffer. Defaults to half the size of the buffer pool so you may want

to reduce if you have a very large buffer pool. If set to 0 , the insert buffer is disabled, which will cause all secondary

index updates to be performed synchronously, usually at a cost to performance. This Percona XtraDB variable has

not been ported to XtraDB 5.6.

Commandline: innodb-ibuf-max-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1/2 the size of the InnoDB buffer pool

Range: 0 to 1/2 the size of the InnoDB buffer pool

Removed: MariaDB 10.0

innodb_idle_flush_pct

Description: Up to what percentage of dirty pages should be flushed when innodb finds it has spare resources to do

so. Has had no effect since merging InnoDB 5.7 from mysql-5.7.9 (MariaDB 10.2.2). Deprecated in MariaDB

10.2.37 , MariaDB 10.3.28 , MariaDB 10.4.18 and removed in MariaDB 10.5.9.

Commandline: --innodb-idle-flush-pct=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 0 to 100

Deprecated: MariaDB 10.2.37 , MariaDB 10.3.28 , MariaDB 10.4.18

Removed: MariaDB 10.5.9

innodb_immediate_scrub_data_uncompressed

2962/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/

Description: Enable scrubbing of data. See Data Scrubbing.

Commandline: --innodb-immediate-scrub-data-uncompressed={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_import_table_from_xtrabackup

Description: If set to 1 , permits importing of .ibd files exported with the XtraBackup --export option. Previously

named innodb_expand_import . Removed in MariaDB 10.0/XtraDB 5.6 and replaced with MySQL 5.6's

transportable tablespaces.

Commandline: innodb-import-table-from-xtrabackup=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1

Removed: MariaDB 10.0

innodb_instant_alter_column_allowed

Description:

If a table is altered using ALGORITHM=INSTANT, it can force the table to use a non-canonical format: A

hidden metadata record at the start of the clustered index is used to store each column's DEFAULT value. This

makes it possible to add new columns that have default values without rebuilding the table. Starting with

MariaDB 10.4, a BLOB in the hidden metadata record is used to store column mappings. This makes it

possible to drop or reorder columns without rebuilding the table. This also makes it possible to add columns to

any position or drop columns from any position in the table without rebuilding the table. If a column is dropped

without rebuilding the table, old records will contain garbage in that column's former position, and new records

will be written with NULL values, empty strings, or dummy values.

This is generally not a problem. However, there may be cases where you want to avoid putting a table into this

format. For example, to ensure that future UPDATE operations after an ADD COLUMN will be performed in-

place, to reduce write amplification. (Instantly added columns are essentially always variable-length.) Also

avoid bugs similar to MDEV-19916 , or to be able to export tables to older versions of the server.

This variable has been introduced as a result, with the following values:

never (0): Do not allow instant add/drop/reorder, to maintain format compatibility with MariaDB 10.x and

MySQL 5.x. If the table (or partition) is not in the canonical format, then any ALTER TABLE (even one that does

not involve instant column operations) will force a table rebuild.

add_last (1, default in 10.3): Store a hidden metadata record that allows columns to be appended to the

table instantly (MDEV-11369). In 10.4 or later, if the table (or partition) is not in this format, then any ALTER

TABLE (even one that does not involve column changes) will force a table rebuild.

add_drop_reorder (2, default): From MariaDB 10.4 only. Like 'add_last', but allow the metadata record to

store a column map, to support instant add/drop/reorder of columns.

Commandline: --innodb-instant-alter-column-allowed=value

Scope: Global

Dynamic: Yes

Data Type: enum

Valid Values:

<= MariaDB 10.3: never , add_last

>= MariaDB 10.4: never , add_last , add_drop_reorder

Default Value:

<= MariaDB 10.3: add_last

>= MariaDB 10.4: add_drop_reorder

Introduced: MariaDB 10.3.23 , MariaDB 10.4.13, MariaDB 10.5.3

innodb_instrument_semaphores

Description: Enable semaphore request instrumentation. This could have some effect on performance but allows

better information on long semaphore wait problems.

Commandline: --innodb-instrument-semaphores={0|1}

Scope: Global

2963/4161

https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/
https://jira.mariadb.org/browse/MDEV-19916
https://jira.mariadb.org/browse/MDEV-11369
https://mariadb.com/kb/en/mariadb-10323-release-notes/

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.5 (treated as if OFF)

Removed: MariaDB 10.3.0

innodb_io_capacity

Description: Limit on I/O activity for InnoDB background tasks, including merging data from the insert buffer and

flushing pages. Should be set to around the number of I/O operations per second that system can handle, based on

the type of drive/s being used. You can also set it higher when the server starts to help with the extra workload at that

time, and then reduce for normal use. Ideally, opt for a lower setting, as at higher value data is removed from the

buffers too quickly, reducing the effectiveness of caching. See also innodb_flush_sync.

See InnoDB Page Flushing: Configuring the InnoDB I/O Capacity for more information.

Commandline: --innodb-io-capacity=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 200

Range: 100 to 18446744073709551615 (2 -1)

innodb_io_capacity_max

Description: Upper limit to which InnoDB can extend innodb_io_capacity in case of emergency. See InnoDB Page

Flushing: Configuring the InnoDB I/O Capacity for more information.

Commandline: --innodb-io-capacity-max=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2000 or twice innodb_io_capacity, whichever is higher.

Range : 100 to 18446744073709551615 (2 -1)

innodb_kill_idle_transaction

Description: Time in seconds before killing an idle XtraDB transaction. If set to 0 (the default), the feature is

disabled. Used to prevent accidental user locks. XtraDB only. Added as a deprecated and ignored option in MariaDB

10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_large_prefix

Description: If set to 1 , tables that use specific row formats are permitted to have index key prefixes up to 3072

bytes (for 16k pages, smaller otherwise). If not set, the limit is 767 bytes.

This applies to the DYNAMIC and COMPRESSED row formats.

Removed in 10.3.1 and restored as a deprecated and unused variable in 10.4.3 for compatibility purposes.

Commandline: --innodb-large-prefix

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

ON

Deprecated: MariaDB 10.2

Removed: MariaDB 10.3.1

Re-introduced: MariaDB 10.4.3 (for compatibility purposes)

Removed: MariaDB 10.6.0

64

64

2964/4161

https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/

innodb_lazy_drop_table

Description: Deprecated and removed in XtraDB 5.6. DROP TABLE processing can take a long time when

innodb_file_per_table is set to 1 and there's a large buffer pool. If innodb_lazy_drop_table is set to 1 (0 is

default), XtraDB attempts to optimize DROP TABLE processing by deferring the dropping of related pages from the

buffer pool until there is time, only initially marking them.

Commandline: innodb-lazy-drop-table={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

Deprecated: XtraDB 5.5.30-30.2

Removed: MariaDB 10.0.0

innodb_lock_schedule_algorithm

Description: Removed in MariaDB 10.6.0 due to problems with the VATS implementation (MDEV-16664).

Specifies the algorithm that InnoDB uses to decide which of the waiting transactions should be granted the lock once

it has been released. The possible values are: FCFS (First-Come-First-Served) where locks are granted in the order

they appear in the lock queue and VATS (Variance-Aware-Transaction-Scheduling) where locks are granted based

on the Eldest-Transaction-First heuristic. Note that VATS should not be used with Galera, and InnoDB will refuse to

start if VATS is used with Galera. It is also not recommended to set to VATS even in the general case (MDEV-16664

). From MariaDB 10.2.12 , the value was changed to FCFS and a warning produced when using Galera.

Commandline: --innodb-lock-schedule-algorithm=#

Scope: Global

Dynamic: No (>= MariaDB 10.2.12 , MariaDB 10.1.30), Yes (<= MariaDB 10.2.11 , MariaDB 10.1.29)

Data Type: enum

Valid Values: FCFS , VATS

Default Value: FCFS (MariaDB 10.3.9 , MariaDB 10.2.17), VATS (MariaDB 10.2.3), FCFS (MariaDB 10.1)

Deprecated: MariaDB 10.5.7, MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35

Removed: MariaDB 10.6.0

innodb_lock_wait_timeout

Description: Time in seconds that an InnoDB transaction waits for an InnoDB record lock (or table lock) before giving

up with the error ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction .

When this occurs, the statement (not transaction) is rolled back. The whole transaction can be rolled back if the

innodb_rollback_on_timeout option is used. Increase this for data warehousing applications or where other long-

running operations are common, or decrease for OLTP and other highly interactive applications. This setting does not

apply to deadlocks, which InnoDB detects immediately, rolling back a deadlocked transaction. 0 means no wait. See

WAIT and NOWAIT. Setting to 100000000 or more (from MariaDB 10.6.3, 100000000 is the maximum) means the

timeout is infinite.

Commandline: --innodb-lock-wait-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: INT UNSIGNED (>= MariaDB 10.6.3), BIGINT UNSIGNED (<= MariaDB 10.6.2)

Default Value: 50

Range:

0 to 100000000 (>= MariaDB 10.6.3)

0 to 1073741824 (>= MariaDB 10.3 to <= MariaDB 10.6.2)

innodb_locking_fake_changes

Description: From MariaDB 5.5 to MariaDB 10.1, XtraDB-only option that if set to OFF , fake transactions (see

innodb_fake_changes) don't take row locks. This is an experimental feature to attempt to deal with drawbacks in fake

changes blocking real locks. It is not safe for use in all environments. Added as a deprecated and ignored option in

MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: --innodb-locking-fake-changes

Scope: Global

Dynamic: Yes

Data Type: boolean

2965/4161

https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://jira.mariadb.org/browse/MDEV-16664
https://jira.mariadb.org/browse/MDEV-16664
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/

Default Value: ON

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_locks_unsafe_for_binlog

Description: Set to 0 by default, in which case XtraDB/InnoDB uses gap locking. If set to 1 , gap locking is

disabled for searches and index scans. Deprecated in MariaDB 10.0, and removed in MariaDB 10.5, use READ

COMMITTED transaction isolation level instead.

Commandline: --innodb-locks-unsafe-for-binlog

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.0

Removed: MariaDB 10.5.0

innodb_log_arch_dir

Description: The directory for XtraDB redo log archiving. XtraDB only. Added as a deprecated and ignored option in

MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: --innodb-log-arch-dir=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: ./

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_log_arch_expire_sec

Description: Time in seconds since the last change after which the archived XtraDB redo log should be deleted.

XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead

of XtraDB) to allow for easier upgrades.

Commandline: --innodb-log-arch-expire-sec=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_log_archive

Description: Whether or not XtraDB redo log archiving is enabled. XtraDB only. Added as a deprecated and ignored

option in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: --innodb-log-archive={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_log_block_size

Description: Size in bytes of the XtraDB redo log records. Generally 512 , the default, or 4096 , are the only two

useful values. If the server is restarted and this value is changed, all old log files need to be removed. Should be set

to 4096 for SSD cards or if innodb_flush_method is set to ALL_O_DIRECT on ext4 filesystems. XtraDB only. Added

as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow

2966/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/

for easier upgrades.

Commandline: innodb-log-block-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 512

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_log_buffer_size

Description: Size in bytes of the buffer for writing InnoDB redo log files to disk. Increasing this means larger

transactions can run without needing to perform disk I/O before committing.

Commandline: --innodb-log-buffer-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 16777216 (16MB)

Range: 262144 to 4294967295 (256KB to 4096MB)

innodb_log_checksum_algorithm

Description: Experimental feature (as of MariaDB 10.0.9), this variable specifies how to generate and verify

XtraDB redo log checksums. XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which

uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

none - No checksum. A constant value is instead written to logs, and no checksum validation is performed.

innodb - The default, and the original InnoDB algorithm. This is inefficient, but compatible with all MySQL,

MariaDB and Percona versions that don't support other checksum algorithms.

crc32 - CRC32© is used for log block checksums, which also permits recent CPUs to use hardware

acceleration (on SSE4.2 x86 machines and Power8 or later) for the checksums.

strict_* - Whether or not to accept checksums from other algorithms. If strict mode is used, checksums

blocks will be considered corrupt if they don't match the specified algorithm. Normally they are considered

corrupt only if no other algorithm matches.

Commandline: innodb-log-checksum-algorithm=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value:

deprecated (>= MariaDB 10.2.6)

innodb (<= MariaDB 10.1)

Valid Values:

deprecated , innodb , none , crc32 , strict_none , strict_innodb , strict_crc32 (>= MariaDB

10.2.6)

innodb , none , crc32 , strict_none , strict_innodb , strict_crc32 (<= MariaDB 10.1)

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_log_checksums

Description: If set to 1 , the CRC32C for Innodb or innodb_log_checksum_algorithm for XtraDB algorithm is

used for InnoDB redo log pages. If disabled, the checksum field contents are ignored. From MariaDB 10.5.0, the

variable is deprecated, and checksums are always calculated, as previously, the InnoDB redo log used the slow

innodb algorithm, but with hardware or SIMD assisted CRC-32C computation being available, there is no reason to

allow checksums to be disabled on the redo log.

Commandline: innodb-log-checksums={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.5.0

Removed: MariaDB 10.6.0

2967/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1009-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_log_compressed_pages

Description: Whether or not images of recompressed pages are stored in the InnoDB redo log. Deprecated and

ignored from MariaDB 10.5.3.

Commandline: --innodb-log-compressed-pages={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

ON

Deprecated: MariaDB 10.5.3

Removed: MariaDB 10.6.0

innodb_log_file_buffering

Description: Whether the file system cache for ib_logfile0 is enabled. In MariaDB 10.8.3 , MariaDB disabled the file

system cache on the InnoDB write-ahead log file (ib_logfile0) by default on Linux. With

innodb_flush_trx_log_at_commit=2 in particular, writing to the log via the file system cache typically improves

throughput, especially on slow storage or at a small number of concurrent transactions. For other values of

innodb_flush_log_at_trx_commit, direct writes were observed to be mostly but not always faster. Whether it pays off

to disable the file system cache on the log may depend on the type of storage, the workload, and the operating

system kernel version. If the server is started up with innodb_flush_log_at_trx_commit=2, the value will be changed to

ON . Will be set to OFF if innodb_flush_method is set to O_DSYNC . On Linux, when the physical block size cannot

be determined to be a power of 2 between 64 and 4096 bytes, the file system cache cannot be disabled, and

innodb_log_file_buffering=ON cannot be changed. Linux and Windows only.

Commandline: --innodb-log-file-buffering={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.8.4 , MariaDB 10.9.2

innodb_log_file_size

Description: Size in bytes of each InnoDB redo log file in the log group. The combined size can be no more than

512GB. Larger values mean less disk I/O due to less flushing checkpoint activity, but also slower recovery from a

crash. In MariaDB 10.5, crash recovery has been improved and shouldn't run out of memory, so the default has been

increased. It can safely be set higher to reduce checkpoint flushing, even larger than innodb_buffer_pool_size.

From MariaDB 10.9 the variable is dynamic, and the server no longer needs to be restarted for the resizing to take

place. Unless the log is located in a persistent memory file system (PMEM), an attempt to SET GLOBAL

innodb_log_file_size to less than innodb_log_buffer_size will be refused. Log resizing can be aborted by killing the

connection that is executing the SET GLOBAL statement.

Commandline: --innodb-log-file-size=#

Scope: Global

Dynamic: Yes (>= MariaDB 10.9), No (<= MariaDB 10.8)

Data Type: numeric

Default Value: 100663296 (96MB) (>= MariaDB 10.5), 50331648 (48MB) (<= MariaDB 10.4)

Range:

>= MariaDB 10.8.3 : 4194304 to 512GB (4MB to 512GB)

<= MariaDB 10.8.2 : 1048576 to 512GB (1MB to 512GB)

innodb_log_file_write_through

Description: Whether each write to ib_logfile0 is write through (disabling any caching, as in O_SYNC or O_DSYNC).

Set to OFF by default, will be set to ON if innodb_flush_method is set to O_DSYNC . On systems that support FUA it

may make sense to enable write-through, to avoid extra system calls.

Commandline: --innodb-log-file-write-through={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.0.0

2968/4161

https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1082-release-notes/

innodb_log_files_in_group

Description: Number of physical files in the InnoDB redo log. Deprecated and ignored from MariaDB 10.5.2

Commandline: --innodb-log-files-in-group=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1 (>= MariaDB 10.5), 2 (<= MariaDB 10.4)

Range: 1 to 100 (>= MariaDB 10.2.4)

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_log_group_home_dir

Description: Path to the InnoDB redo log files. If none is specified, innodb_log_files_in_group files named ib_logfile0

and so on, with a size of innodb_log_file_size are created in the data directory.

Commandline: --innodb-log-group-home-dir=path

Scope: Global

Dynamic: No

Data Type: directory name

innodb_log_optimize_ddl

Description: Whether InnoDB redo log activity should be reduced when natively creating indexes or rebuilding

tables. Reduced logging requires additional page flushing and interferes with Mariabackup. Enabling this may slow

down backup and cause delay due to page flushing. Deprecated and ignored from MariaDB 10.5.1. Deprecated (but

not ignored) from MariaDB 10.4.16, MariaDB 10.3.26 and MariaDB 10.2.35 .

Commandline: --innodb-log-optimize-ddl={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value:

OFF (>= MariaDB 10.5.1, MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35)

ON (<= MariaDB 10.5.0, MariaDB 10.4.15, MariaDB 10.3.25 , MariaDB 10.2.34)

Introduced: MariaDB 10.2.17 , MariaDB 10.3.9

Deprecated: MariaDB 10.5.1, MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35

Removed: MariaDB 10.6.0

innodb_log_write_ahead_size

Description: InnoDB redo log write ahead unit size to avoid read-on-write. Should match the OS cache block IO size.

Removed in MariaDB 10.8, and instead on Linux and Windows, the physical block size of the underlying storage is

detected and used.

Commandline: --innodb-log-write-ahead-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 8192

Range: 512 to innodb_page_size

Removed: MariaDB 10.8

innodb_lru_flush_size

Description: Number of pages to flush on LRU eviction.

Commandline: --innodb-lru-flush-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 32

Range: 1 to 18446744073709551615

Introduced: MariaDB 10.5.7

2969/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/

innodb_lru_scan_depth

Description: Specifies how far down the buffer pool least-recently used (LRU) list the cleaning thread should look for

dirty pages to flush. This process is performed once a second. In an I/O intensive-workload, can be increased if there

is spare I/O capacity, or decreased if in a write-intensive workload with little spare I/O capacity.

See InnoDB Page Flushing for more information.

Commandline: --innodb-lru-scan-depth=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

1536 (>= MariaDB 10.5.7)

1024 (<= MariaDB 10.5.6)

Range - 32bit: 100 to 2 -1

Range - 64bit: 100 to 2 -1

innodb_max_bitmap_file_size

Description: Limit in bytes of the changed page bitmap files. For faster incremental backup with Xtrabackup ,

XtraDB tracks pages with changes written to them according to the XtraDB redo log and writes the information to

special changed page bitmap files. These files are rotated when the server restarts or when this limit is reached.

XtraDB only. See also innodb_track_changed_pages and innodb_max_changed_pages.

Deprecated and ignored in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for

easier upgrades.

Commandline: innodb-max-bitmap-file-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4096 (4KB)

Range: 4096 (4KB) to 18446744073709551615 (16EB)

Deprecated: MariaDB 10.2.6

innodb_max_changed_pages

Description: Limit to the number of changed page bitmap files (stored in the Information Schema

INNODB_CHANGED_PAGES table). Zero is unlimited. See innodb_max_bitmap_file_size and

innodb_track_changed_pages. Previously named innodb_changed_pages_limit . XtraDB only.

Deprecated and ignored in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for

easier upgrades.

Commandline: innodb-max-changed-pages=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1000000

Range: 0 to 18446744073709551615

Deprecated: MariaDB 10.2.6

innodb_max_dirty_pages_pct

Description: Maximum percentage of unwritten (dirty) pages in the buffer pool.

See InnoDB Page Flushing for more information.

Commandline: --innodb-max-dirty-pages-pct=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

90.000000 (>= MariaDB 10.5.7)

75.000000 (<= MariaDB 10.5.6)

Range: 0 to 99.999

32

64

2970/4161

https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/

innodb_max_dirty_pages_pct_lwm

Description: Low water mark percentage of dirty pages that will enable preflushing to lower the dirty page ratio. The

value 0 (default) means 'refer to innodb_max_dirty_pages_pct'.

See InnoDB Page Flushing for more information.

Commandline: --innodb-max-dirty-pages-pct-lwm=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 99.999

innodb_max_purge_lag

Description: When purge operations are lagging on a busy server, setting innodb_max_purge_lag can help. By

default set to 0 , no lag, the figure is used to calculate a time lag for each INSERT, UPDATE, and DELETE when the

system is lagging. InnoDB keeps a list of transactions with delete-marked index records due to UPDATE and

DELETE statements. The length of this list is purge_lag , and the calculation, performed every ten seconds, is as

follows: ((purge_lag/innodb_max_purge_lag)×10)35 microseconds.

Commandline: --innodb-max-purge-lag=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

innodb_max_purge_lag_delay

Description: Maximum delay in milliseconds imposed by the innodb_max_purge_lag setting. If set to 0 , the default,

there is no maximum.

Commandline: --innodb-max-purge-lag-delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

innodb_max_purge_lag_wait

Description: Wait until History list length is below the specified limit.

Commandline: --innodb-max-purge-wait=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4294967295

Range: 0 to 4294967295

Introduced: MariaDB 10.5.7, MariaDB 10.4.16, MariaDB 10.3.26 , MariaDB 10.2.35

innodb_max_undo_log_size

Description: If an undo tablespace is larger than this, it will be marked for truncation if innodb_undo_log_truncate is

set.

Commandline: --innodb-max-undo-log-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

10485760

Range: 10485760 to 18446744073709551615

innodb_merge_sort_block_size
2971/4161

https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/

Description: Size in bytes of the block used for merge sorting in fast index creation. Replaced in MariaDB

10.0/XtraDB 5.6 by innodb_sort_buffer_size.

Commandline: innodb-merge-sort-block-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1048576 (1M)

Range: 1048576 (1M) to 1073741824 (1G)

Removed: MariaDB 10.0 - replaced by innodb_sort_buffer_size

innodb_mirrored_log_groups

Description: Unused. Restored as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as

default instead of XtraDB) to allow for easier upgrades.

Deprecated: MariaDB 10.0

Removed: MariaDB 10.2.2 - MariaDB 10.2.5

innodb_mtflush_threads

Description: Sets the number of threads to use in Multi-Threaded Flush operations. For more information, see

Fusion-io Multi-threaded Flush .

InnoDB's multi-thread flush feature was deprecated in MariaDB 10.2.9 and removed from MariaDB 10.3.2 .

In later versions of MariaDB, use innodb_page_cleaners system variable instead.

See InnoDB Page Flushing: Page Flushing with Multi-threaded Flush Threads for more information.

Commandline: --innodb-mtflush-threads=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8

Range: 1 to 64

Deprecated: MariaDB 10.2.9

Removed: MariaDB 10.3.2

innodb_monitor_disable

Description: Disables the specified counters in the INFORMATION_SCHEMA.INNODB_METRICS table.

Commandline: --innodb-monitor-disable=string

Scope: Global

Dynamic: Yes

Data Type: string

innodb_monitor_enable

Description: Enables the specified counters in the INFORMATION_SCHEMA.INNODB_METRICS table.

Commandline: --innodb-monitor-enable=string

Scope: Global

Dynamic: Yes

Data Type: string

innodb_monitor_reset

Description: Resets the count value of the specified counters in the INFORMATION_SCHEMA.INNODB_METRICS

table to zero.

Commandline: --innodb-monitor-reset=string

Scope: Global

Dynamic: Yes

Data Type: string

innodb_monitor_reset_all
2972/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/fusion-io-multi-threaded-flush/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

Description: Resets all values for the specified counters in the INFORMATION_SCHEMA.INNODB_METRICS table.

Commandline: ---innodb-monitor-reset-all=string

Scope: Global

Dynamic: Yes

Data Type: string

innodb_numa_interleave

Description: Whether or not to use the NUMA interleave memory policy to allocate the InnoDB buffer pool. Before

MariaDB 10.2.4 , required that MariaDB be compiled on a NUMA-enabled Linux system.

Commandline: innodb-numa-interleave={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.2.23 , MariaDB 10.3.14 , MariaDB 10.4.4

innodb_old_blocks_pct

Description: Percentage of the buffer pool to use for the old block sublist.

Commandline: --innodb-old-blocks-pct=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 37

Range: 5 to 95

innodb_old_blocks_time

Description: Time in milliseconds an inserted block must stay in the old sublist after its first access before it can be

moved to the new sublist. '0' means "no delay". Setting a non-zero value can help prevent full table scans clogging the

buffer pool. See also innodb_old_blocks_pct.

Commandline: --innodb-old-blocks-time=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1000

Range: 0 to 2 -1

innodb_online_alter_log_max_size

Description: The maximum size for temporary log files during online DDL (data and index structure changes). The

temporary log file is used for each table being altered, or index being created, to store data changes to the table while

the process is underway. The table is extended by innodb_sort_buffer_size up to the limit set by this variable. If this

limit is exceeded, the online DDL operation fails and all uncommitted changes are rolled back. A lower value reduces

the time a table could lock at the end of the operation to apply all the log's changes, but also increases the chance of

the online DDL changes failing.

Commandline: --innodb-online-alter-log-max-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 134217728

Range: 65536 to 2 -1

innodb_open_files

Description: Maximum .ibd files MariaDB can have open at the same time. Only applies to systems with multiple

XtraDB/InnoDB tablespaces, and is separate to the table cache and open_files_limit. The default, if

innodb_file_per_table is disabled, is 300 or the value of table_open_cache, whichever is higher. It will also auto-size

up to the default value if it is set to a value less than 10 .

32

64

2973/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/

Commandline: --innodb-open-files=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: autosized

Range: 10 to 4294967295

innodb_optimize_fulltext_only

Description: When set to 1 (0 is default), OPTIMIZE TABLE will only process InnoDB FULLTEXT index data. Only

intended for use during fulltext index maintenance.

Commandline: --innodb-optimize-fulltext-only={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_page_cleaners

Description: Number of page cleaner threads. The default is 4 , but the value will be set to the number of

innodb_buffer_pool_instances if this is lower. If set to 1 , only a single cleaner thread is used, as was the case until

MariaDB 10.2.1 . Cleaner threads flush dirty pages from the buffer pool, performing flush list and least-recently used

(LRU) flushing. Deprecated and ignored from MariaDB 10.5.1, as the original reasons for for splitting the buffer pool

have mostly gone away.

See InnoDB Page Flushing: Page Flushing with Multiple InnoDB Page Cleaner Threads for more information.

Commandline: --innodb-page-cleaners=#

Scope: Global

Dynamic: Yes (>= MariaDB 10.3.3), No (<= MariaDB 10.3.2)

Data Type: numeric

Default Value: 4 (or set to innodb_buffer_pool_instances if lower)

Range: 1 to 64

Deprecated: MariaDB 10.5.1

Removed: MariaDB 10.6.0

innodb_page_size

Description: Specifies the page size in bytes for all InnoDB tablespaces. The default, 16k , is suitable for most uses.

A smaller InnoDB page size might work more effectively in a situation with many small writes (OLTP), or with

SSD storage, which usually has smaller block sizes.

A larger InnoDB page size can provide a larger maximum row size.

InnoDB's page size can be as large as 64k for tables using the following row formats: DYNAMIC, COMPACT,

and REDUNDANT.

InnoDB's page size must still be 16k or less for tables using the COMPRESSED row format.

This system variable's value cannot be changed after the datadir has been initialized. InnoDB's page size is

set when a MariaDB instance starts, and it remains constant afterwards.

Commandline: --innodb-page-size=#

Scope: Global

Dynamic: No

Data Type: enumeration

Default Value: 16384

Valid Values: 4k or 4096 , 8k or 8192 , 16k or 16384 , 32k and 64k .

innodb_pass_corrupt_table

Removed: XtraDB 5.5 - renamed innodb_corrupt_table_action.

innodb_prefix_index_cluster_optimization

Description: Enable prefix optimization to sometimes avoid cluster index lookups. Deprecated and ignored from

MariaDB 10.10, as the optimization is now always enabled.

2974/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

Commandline: --innodb-prefix-index-cluster-optimization={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.10.1

innodb_print_all_deadlocks

Description: If set to 1 (0 is default), all XtraDB/InnoDB transaction deadlock information is written to the error log.

Commandline: --innodb-print-all-deadlocks={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_purge_batch_size

Description: Number of InnoDB undo log pages to purge in one batch from the history list. Together with

innodb_purge_threads has a small effect on tuning.

Commandline: --innodb-purge-batch-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value:

1000 (>= MariaDB 10.6.16, MariaDB 10.10.7, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3 MariaDB

11.2.2)

300 (<= MariaDB 10.6.15, MariaDB 10.10.6, MariaDB 10.11.5, MariaDB 11.0.3, MariaDB 11.1.2 MariaDB

11.2.1)

Range: 1 to 5000

innodb_purge_rseg_truncate_frequency

Description: Frequency with which undo records are purged. Set by default to every 128 times, reducing this

increases the frequency at which rollback segments are freed. See also innodb_undo_log_truncate. The motivation

for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages or truncating undo log

tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter operation because it will not

involve any log checkpoint, hence this is deprecated and ignored from MariaDB 10.6.16, MariaDB 10.10.7, MariaDB

10.11.6, MariaDB 11.0.4, MariaDB 11.1.3 and MariaDB 11.2.2. (MDEV-32050)

Commandline: -- innodb-purge-rseg-truncate-frequency=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 128

Range: 1 to 128

Deprecated: MariaDB 10.6.16, MariaDB 10.10.7, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3, MariaDB

11.2.2

innodb_purge_threads

Description: Number of background threads dedicated to InnoDB purge operations. The range is 1 to 32 . At least

one background thread is always used. Setting to a value greater than 1 creates that many separate purge threads.

This can improve efficiency in some cases, such as when performing DML operations on many tables. See also

innodb_purge_batch_size.

Commandline: --innodb-purge-threads=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 4

Range: 1 to 32

2975/4161

https://jira.mariadb.org/browse/MDEV-32050

innodb_random_read_ahead

Description: Originally, random read-ahead was always set as an optimization technique, but was removed in

MariaDB 5.5. innodb_random_read_ahead permits it to be re-instated if set to 1 (0) is default.

Commandline: --innodb-random-read-ahead={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_read_ahead

Description: If set to linear , the default, XtraDB/InnoDB will automatically fetch remaining pages if there are

enough within the same extent that can be accessed sequentially. If set to none , read-ahead is disabled. random

has been removed and is now ignored, while both sets to both linear and random . Also see

innodb_read_ahead_threshold for more control on read-aheads. Removed in MariaDB 10.0/XtraDB 5.6 and replaced

by MySQL 5.6's innodb_random_read_ahead.

Commandline: innodb-read-ahead=value

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: linear

Valid Values: none , random , linear , both

Removed: MariaDB 10.0/XtraDB 5.6 - replaced by MySQL 5.6's innodb_random_read_ahead

innodb_read_ahead_threshold

Description: Minimum number of pages InnoDB must read from an extent of 64 before initiating an asynchronous

read for the following extent.

Commandline: --innodb-read-ahead-threshold=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 56

Range: 0 to 64

innodb_read_io_threads

Description: Number of I/O threads for InnoDB reads. You may on rare occasions need to reduce this default on

Linux systems running multiple MariaDB servers to avoid exceeding system limits.

Commandline: --innodb-read-io-threads=#

Scope: Global

Dynamic: Yes (>= MariaDB 10.11), No (<= MariaDB 10.10)

Data Type: numeric

Default Value: 4

Range: 1 to 64

innodb_read_only

Description: If set to 1 (0 is default), the server will be read-only. For use in distributed applications, data

warehouses or read-only media.

Commandline: --innodb-read-only={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

innodb_read_only_compressed

Description: If set (the default before MariaDB 10.6.6), ROW_FORMAT=COMPRESSED tables will be read-only.

2976/4161

This was intended to be the first step towards removing write support and deprecating the feature, but this plan has

been abandoned.

Commandline: --innodb-read-only-compressed , --skip-innodb-read-only-compressed

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF (>= MariaDB 10.6.6), ON (<= MariaDB 10.6.5)

Introduced: MariaDB 10.6.0

innodb_recovery_stats

Description: If set to 1 (0 is default) and recovery is necessary on startup, the server will write detailed recovery

statistics to the error log at the end of the recovery process. This Percona XtraDB variable has not been ported to

XtraDB 5.6.

Commandline: No

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0

innodb_recovery_update_relay_log

Description: If set to 1 (0 is default), the relay log info file will be overwritten on crash recovery if the information

differs from the InnoDB record. Should not be used if multiple storage engine types are being replicated. Previously

named innodb_overwrite_relay_log_info . Removed in MariaDB 10.0/XtraDB 5.6 and replaced by MySQL

5.6's relay-log-recovery

Commandline: innodb-recovery-update-relay-log={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0 - replaced by MySQL 5.6's relay-log-recovery

innodb_replication_delay

Description: Time in milliseconds for the replica server to delay the replication thread if innodb_thread_concurrency

is reached. Deprecated and ignored from MariaDB 10.5.5.

Commandline: --innodb-replication-delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Deprecated: MariaDB 10.5.5

Removed: MariaDB 10.6.0

innodb_rollback_on_timeout

Description: InnoDB usually rolls back the last statement of a transaction that's been timed out (see

innodb_lock_wait_timeout). If innodb_rollback_on_timeout is set to 1 (0 is default), InnoDB will roll back the entire

transaction. Before MariaDB 5.5, rolling back the entire transaction was the default behavior.

Commandline: --innodb-rollback-on-timeout

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

innodb_rollback_segments

2977/4161

Description: Specifies the number of rollback segments that XtraDB/InnoDB will use within a transaction (see undo

log). Deprecated and replaced by innodb_undo_logs in MariaDB 10.0. Removed in MariaDB 10.5 as part of an

InnoDB cleanup, as it makes sense to always create and use the maximum number of rollback segments. |

Commandline: --innodb-rollback-segments=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 128

Range: 1 to 128

Deprecated: MariaDB 10.0

Removed: MariaDB 10.5.0

innodb_safe_truncate

Description: Use a backup-safe TRUNCATE TABLE implementation and crash-safe rename operations inside

InnoDB. This is not compatible with hot backup tools other than Mariabackup. Users who need to use such tools may

set this to OFF .

Commandline: --innodb-safe-truncate={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.2.19

Removed: MariaDB 10.3.0

innodb_scrub_log

Description: Enable InnoDB redo log scrubbing. See Data Scrubbing. Deprecated and ignored from MariaDB 10.5.2,

as never really worked (MDEV-13019 and MDEV-18370). If old log contents should be kept secret, then enabling

innodb_encrypt_log or setting a smaller innodb_log_file_size could help.

Commandline: --innodb-scrub-log

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_scrub_log_interval

Description: Used with Data Scrubbing in 10.1.3 only - replaced in 10.1.4 by innodb_scrub_log_speed. InnoDB redo

log scrubbing interval in milliseconds.

Commandline: --innodb-scrub-log-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 56

Range: 0 to 50000

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.1.4

innodb_scrub_log_speed

Description: InnoDB redo log scrubbing speed in bytes/sec. See Data Scrubbing. Deprecated and ignored from

MariaDB 10.5.2.

Commandline: --innodb-scrub-log-speed=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 256

Range: 1 to 50000

2978/4161

https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://jira.mariadb.org/browse/MDEV-13019
https://jira.mariadb.org/browse/MDEV-18370
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

Deprecated: MariaDB 10.5.2

Removed: MariaDB 10.6.0

innodb_sched_priority_cleaner

Description: Set a thread scheduling priority for cleaner and least-recently used (LRU) manager threads. The range

from 0 to 39 corresponds in reverse order to Linux nice values of -20 to 19 . So 0 is the lowest priority (Linux

nice value 19) and 39 is the highest priority (Linux nice value -20). XtraDB only. Added as a deprecated and

ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-sched-priority-cleaner=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 19

Range: 0 to 39

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_show_locks_held

Description: Specifies the number of locks held for each InnoDB transaction to be displayed in SHOW ENGINE

INNODB STATUS output. XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses

InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-show-locks-held=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 0 to 1000

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_show_verbose_locks

Description: If set to 1 , and innodb_status_output_locks is also ON, the traditional InnoDB behavior is followed and

locked records will be shown in SHOW ENGINE INNODB STATUS output. If set to 0 , the default, only high-level

information about the lock is shown. XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6

(which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-show-verbose-locks=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_simulate_comp_failures

Description: Simulate compression failures. Used for testing robustness against random compression failures.

XtraDB only.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 99

innodb_sort_buffer_size

2979/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/

Description: Size of the sort buffers used for sorting data when an InnoDB index is created, as well as the amount by

which the temporary log file is extended during online DDL operations to record concurrent writes. The larger the

setting, the fewer merge phases are required between buffers while sorting. When a CREATE TABLE or ALTER

TABLE creates a new index, three buffers of this size are allocated, as well as pointers for the rows in the buffer.

Commandline: --innodb-sort-buffer-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1048576 (1M)

Range: 65536 to 67108864

innodb_spin_wait_delay

Description: Maximum delay (not strictly corresponding to a time unit) between spin lock polls. Default changed

from 6 to 4 in MariaDB 10.3.5 , as this was verified to give the best throughput by OLTP update index and read-

write benchmarks on Intel Broadwell (2/20/40) and ARM (1/46/46).

Commandline: --innodb-spin-wait-delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 4 (>= MariaDB 10.3.5), 6 (<= MariaDB 10.3.4)

Range: 0 to 4294967295

innodb_stats_auto_recalc

Description: If set to 1 (the default), persistent statistics are automatically recalculated when the table changes

significantly (more than 10% of the rows). Affects tables created or altered with STATS_PERSISTENT=1 (see

CREATE TABLE), or when innodb_stats_persistent is enabled. innodb_stats_persistent_sample_pages determines

how much data to sample when recalculating. See InnoDB Persistent Statistics.

Commandline: --innodb-stats-auto-recalc={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_stats_auto_update

Description: If set to 0 (1 is default), index statistics will not be automatically calculated except when an ANALYZE

TABLE is run, or the table is first opened. Replaced by innodb_stats_auto_recalc in MariaDB 10.0/XtraDB 5.6.

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 1

Removed: MariaDB 10.0 - replaced by innodb_stats_auto_recalc.

innodb_stats_include_delete_marked

Description: Include delete marked records when calculating persistent statistics.

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_stats_method

Description: Determines how NULLs are treated for InnoDB index statistics purposes.

nulls_equal : The default, all NULL index values are treated as a single group. This is usually fine, but if you

have large numbers of NULLs the average group size is slanted higher, and the optimizer may miss using the

index for ref accesses when it would be useful.

nulls_unequal : The opposite approach to nulls_equal is taken, with each NULL forming its own group of

2980/4161

https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/

one. Conversely, the average group size is slanted lower, and the optimizer may use the index for ref accesses

when not suitable.

nulls_ignored : Ignore NULLs altogether from index group calculations.

See also Index Statistics, aria_stats_method and myisam_stats_method.

Commandline: --innodb-stats-method=name

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: nulls_equal

Valid Values: nulls_equal , nulls_unequal , nulls_ignored

innodb_stats_modified_counter

Description: The number of rows modified before we calculate new statistics. If set to 0 , the default, current limits

are used.

Commandline: --innodb-stats-modified-counter=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

innodb_stats_on_metadata

Description: If set to 1 , the default, XtraDB/InnoDB updates statistics when accessing the

INFORMATION_SCHEMA.TABLES or INFORMATION_SCHEMA.STATISTICS tables, and when running metadata

statements such as SHOW INDEX or SHOW TABLE STATUS. If set to 0 , statistics are not updated at those times,

which can reduce the access time for large schemas, as well as make execution plans more stable.

Commandline: --innodb-stats-on-metadata

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_stats_persistent

Description: ANALYZE TABLE produces index statistics, and this setting determines whether they will be stored on

disk, or be required to be recalculated more frequently, such as when the server restarts. This information is stored for

each table, and can be set with the STATS_PERSISTENT clause when creating or altering tables (see CREATE

TABLE). See InnoDB Persistent Statistics.

Commandline: --innodb-stats-persistent={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_stats_persistent_sample_pages

Description: Number of index pages sampled when estimating cardinality and statistics for indexed columns.

Increasing this value will increases index statistics accuracy, but use more I/O resources when running ANALYZE

TABLE. See InnoDB Persistent Statistics.

Commandline: --innodb-stats-persistent-sample-pages=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 20

innodb_stats_sample_pages

Description: Gives control over the index distribution statistics by determining the number of index pages to sample.

2981/4161

Higher values produce more disk I/O, but, especially for large tables, produce more accurate statistics and therefore

make more effective use of the query optimizer. Lower values than the default are not recommended, as the statistics

can be quite inaccurate.

If innodb_stats_traditional is enabled, then the exact number of pages configured by this system variable will

be sampled for statistics.

If innodb_stats_traditional is disabled, then the number of pages to sample for statistics is calculated using a

logarithmic algorithm, so the exact number can change depending on the size of the table. This means that

more samples may be used for larger tables.

If persistent statistics are enabled, then the innodb_stats_persistent_sample_pages system variable applies

instead. persistent statistics are enabled with the innodb_stats_persistent system variable.

This system variable has been deprecated. The innodb_stats_transient_sample_pages system variable

should be used instead.

Commandline: --innodb-stats-sample-pages=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 8

Range: 1 to 2 -1

Deprecated: MariaDB 10.0

Removed: MariaDB 10.5.0

innodb_stats_traditional

Description: This system variable affects how the number of pages to sample for transient statistics is determined, in

particular how innodb_stats_transient_sample_pages is used.

If innodb_stats_traditional is enabled, then the exact number of pages configured by the system variable will be

sampled for statistics.

If innodb_stats_traditional is disabled, then the number of pages to sample for statistics is calculated using a

logarithmic algorithm, so the exact number can change depending on the size of the table. This means that

more samples may be used for larger tables.

This system variable does not affect the calculation of persistent statistics.

Commandline: --innodb-stats-traditional={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_stats_transient_sample_pages

Description: Gives control over the index distribution statistics by determining the number of index pages to sample.

Higher values produce more disk I/O, but, especially for large tables, produce more accurate statistics and therefore

make more effective use of the query optimizer. Lower values than the default are not recommended, as the statistics

can be quite inaccurate.

If innodb_stats_traditional is enabled, then the exact number of pages configured by this system

variable will be sampled for statistics.

If innodb_stats_traditional is disabled, then the number of pages to sample for statistics is calculated

using a logarithmic algorithm, so the exact number can change depending on the size of the table. This means

that more samples may be used for larger tables.

If persistent statistics are enabled, then the innodb_stats_persistent_sample_pages system variable

applies instead. persistent statistics are enabled with the innodb_stats_persistent system variable.

Commandline: --innodb-stats-transient-sample-pages=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 8

Range: 1 to 2 -1

innodb_stats_update_need_lock

Description: Setting to 0 (1 is default) may help reduce contention of the &dict_operation_lock , but also

disables the Data_free option in SHOW TABLE STATUS. This Percona XtraDB variable has not been ported to

XtraDB 5.6.

Scope: Global

64

64

2982/4161

Dynamic: Yes

Data Type: boolean

Default Value: 1

Removed: MariaDB 10.0/XtraDB 5.6

innodb_status_output

Description: Enable InnoDB monitor output to the error log.

Commandline: --innodb-status-output={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_status_output_locks

Description: Enable InnoDB lock monitor output to the error log and SHOW ENGINE INNODB STATUS. Also

requires innodb_status_output=ON to enable output to the error log.

Commandline: --innodb-status-output-locks={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_strict_mode

Description: If set to 1 (the default), InnoDB will return errors instead of warnings in certain cases, similar to strict

SQL mode. See InnoDB Strict Mode for details.

Commandline: --innodb-strict-mode={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_support_xa

Description: If set to 1 , the default, XA transactions are supported. XA support ensures data is written to the binary

log in the same order to the actual database, which is critical for replication and disaster recovery, but comes at a

small performance cost. If your database is set up to only permit one thread to change data (for example, on a

replication replica with only the replication thread writing), it is safe to turn this option off. Removed in MariaDB 10.3,

XA transactions are always supported.

Commandline: --innodb-support-xa

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.2

Removed: MariaDB 10.3.0

innodb_sync_array_size

Description: By default 1 , can be increased to split internal thread co-ordinating, giving higher concurrency when

there are many waiting threads.

Commandline: --innodb-sync-array-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 1 to 1024

Removed: MariaDB 10.6.0

2983/4161

https://mariadb.com/kb/en/mariadb-1030-release-notes/

innodb_sync_spin_loops

Description: The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended.

Commandline: --innodb-sync-spin-loops=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 30

Range: 0 to 4294967295

innodb_table_locks

Description: If autocommit is set to to 0 (1 is default), setting innodb_table_locks to 1 , the default, will cause

InnoDB to lock a table internally upon a LOCK TABLE.

Commandline: --innodb-table-locks

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

innodb_thread_concurrency

Description: Once this number of threads is reached (excluding threads waiting for locks), XtraDB/InnoDB will place

new threads in a wait state in a first-in, first-out queue for execution, in order to limit the number of threads running

concurrently. A setting of 0 , the default, permits as many threads as necessary. A suggested setting is twice the

number of CPU's plus the number of disks. Deprecated and ignored from MariaDB 10.5.5.

Commandline: --innodb-thread-concurrency=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1000

Deprecated: MariaDB 10.5.5

Removed: MariaDB 10.6.0

innodb_thread_concurrency_timer_based

Description: If set to 1 , thread concurrency will be handled in a lock-free timer-based manner rather than the

default mutex-based method. Depends on atomic op builtins being available. This Percona XtraDB variable has not

been ported to XtraDB 5.6.

Commandline: innodb-thread-concurrency-timer-based={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.0/XtraDB 5.6

innodb_thread_sleep_delay

Description: Time in microseconds that InnoDB threads sleep before joining the queue. Setting to 0 disables sleep.

Deprecated and ignored from MariaDB 10.5.5

Commandline: --innodb-thread-sleep-delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value:

0 (>= MariaDB 10.5.5.)

10000 (<= MariaDB 10.5.4)

Range: 0 to 1000000

Deprecated: MariaDB 10.5.5

2984/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/LOCK_TABLES

Removed: MariaDB 10.6.0

innodb_temp_data_file_path

Description:

Commandline: --innodb-temp-data-file-path=path

Scope: Global

Dynamic: No

Data Type: string

Default Value: ibtmp1:12M:autoextend

innodb_tmpdir

Description: Allows an alternate location to be set for temporary non-tablespace files. If not set (the default), files will

be created in the usual tmpdir location.

Commandline: --innodb-tmpdir=path

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty

innodb_track_changed_pages

Description: For faster incremental backup with Xtrabackup , XtraDB tracks pages with changes written to them

according to the XtraDB redo log and writes the information to special changed page bitmap files. This read-only

variable is used for controlling this feature. See also innodb_max_changed_pages and innodb_max_bitmap_file_size.

XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead

of XtraDB) to allow for easier upgrades.

Commandline: innodb-track-changed-pages={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.6

innodb_track_redo_log_now

Description: Available on debug builds only. XtraDB only. Added as a deprecated and ignored option in MariaDB

10.2.6 (which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-track-redo-log-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.6

innodb_truncate_temporary_tablespace_now

Description: Set to ON to shrink the temporary tablespace.

Commandline: innodb-truncate-temporary-tablespace-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.3.0

innodb_undo_directory

Description: Path to the directory (relative or absolute) that InnoDB uses to create separate tablespaces for the undo

2985/4161

https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/

logs. . (the default value before 10.2.2) leaves the undo logs in the same directory as the other log files. From

MariaDB 10.2.2 , the default value is NULL, and if no path is specified, undo tablespaces will be created in the

directory defined by datadir. Use together with innodb_undo_logs and innodb_undo_tablespaces. Undo logs are most

usefully placed on a separate storage device.

Commandline: --innodb-undo-directory=name

Scope: Global

Dynamic: No

Data Type: string

Default Value: NULL

innodb_undo_log_truncate

Description: When enabled, innodb_undo_tablespaces that are larger than innodb_max_undo_log_size will be

marked for truncation. See also innodb_purge_rseg_truncate_frequency. Enabling this setting may cause stalls

during heavy write workloads.

Commandline: --innodb-undo-log-truncate[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

innodb_undo_logs

Description: Specifies the number of rollback segments that XtraDB/InnoDB will use within a transaction (or the

number of active undo logs). By default set to the maximum, 128 , it can be reduced to avoid allocating unneeded

rollback segments. See the Innodb_available_undo_logs status variable for the number of undo logs available. See

also innodb_undo_directory and innodb_undo_tablespaces. Replaced innodb_rollback_segments in MariaDB 10.0.

The Information Schema XTRADB_RSEG Table contains information about the XtraDB rollback segments.

Deprecated and ignored in MariaDB 10.5.0, as it always makes sense to use the maximum number of rollback

segments.

Commandline: --innodb-undo-logs=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 128

Range: 0 to 128

Deprecated: MariaDB 10.5.0

Removed: MariaDB 10.6.0

innodb_undo_tablespaces

Description: Number of tablespaces files used for dividing up the undo logs. Zero (the default before MariaDB 11.0)

means that undo logs are all part of the system tablespace, which contains one undo tablespace more than the

innodb_undo_tablespaces setting. A value of 1 is reset to 0 as 2 or more are needed for separate tablespaces.

When the undo logs can grow large, splitting them over multiple tablespaces will reduce the size of any single

tablespace. Until MariaDB 10.11.1, must be set before InnoDB is initialized, or else MariaDB will fail to start, with an

error saying that InnoDB did not find the expected number of undo tablespaces . The files are created in

the directory specified by innodb_undo_directory, and are named undoN , N being an integer. The default size of an

undo tablespace is 10MB.

From MariaDB 10.11, multiple undo tablespaces are enabled by default, and the default is changed to 3 so that the

space occupied by possible bursts of undo log records can be reclaimed after innodb_undo_log_truncate is set.

Before MariaDB 10.6, innodb_undo_logs must have a non-zero setting for innodb_undo_tablespaces to take

effect.

Commandline: --innodb-undo-tablespaces=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 3 (>= MariaDB 11.0), 0 (<= MariaDB 10.11)

Range: 0 , or 2 to 95

innodb_use_atomic_writes

2986/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_available_undo_logs
https://mariadb.com/kb/en/information-schema-xtradb_rseg-table/

Description: Implement atomic writes on supported SSD devices. See atomic write support for other variables

affected when this is set.

Commandline: innodb-use-atomic-writes={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

innodb_use_fallocate

Description: Preallocate files fast, using operating system functionality. On POSIX systems, posix_fallocate system

call is used.

Automatically set to 1 when innodb_use_atomic_writes is set - see FusionIO DirectFS atomic write support .

See InnoDB Page Compression: Saving Storage Space with Sparse Files for more information.

Commandline: innodb-use-fallocate={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.5 (treated as if ON)

Removed: MariaDB 10.3.0

innodb_use_global_flush_log_at_trx_commit

Description: Determines whether a user can set the variable innodb_flush_log_at_trx_commit. If set to 1 , a user

cannot reset the value with a SET command, while if set to 1 , a user can reset the value of

innodb_flush_log_at_trx_commit . XtraDB only. Added as a deprecated and ignored option in MariaDB 10.2.6

(which uses InnoDB as default instead of XtraDB) to allow for easier upgrades.

Commandline: innodb-use-global-flush-log-at-trx_commit={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_use_mtflush

Description: Whether to enable Multi-Threaded Flush operations. For more information, see Fusion.

InnoDB's multi-thread flush feature was deprecated in MariaDB 10.2.9 and removed from MariaDB 10.3.2 .

In later versions of MariaDB, use innodb_page_cleaners system variable instead.

See InnoDB Page Flushing: Page Flushing with Multi-threaded Flush Threads for more information.

Commandline: --innodb-use-mtflush={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.9

Removed: MariaDB 10.3.2

innodb_use_native_aio

Description: For Linux systems only, specified whether to use Linux's asynchronous I/O subsystem. Set to ON by

default, it may be changed to 0 at startup if InnoDB detects a problem, or from MariaDB 10.6.5/MariaDB 10.7.1 , if

a 5.11 - 5.15 Linux kernel is detected, to avoid an io-uring bug/incompatibility (MDEV-26674). MariaDB-

10.6.6/MariaDB-10.7.2 and later also consider 5.15.3+ as a fixed kernel and default to ON . To really benefit from the

setting, the files should be opened in O_DIRECT mode (innodb_flush_method=O_DIRECT, default from MariaDB

10.6), to bypass the file system cache. In this way, the reads and writes can be submitted with DMA, using the

InnoDB buffer pool directly, and no processor cycles need to be used for copying data.

Commandline: --innodb-use-native-aio={0|1}

Scope: Global

2987/4161

https://mariadb.com/kb/en/fusionio-directfs-atomic-write-support/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1071-release-notes/
https://jira.mariadb.org/browse/MDEV-26674

Dynamic: No

Data Type: boolean

Default Value: ON

innodb_use_purge_thread

Description: Usually with InnoDB, data changed by a transaction is written to an undo space to permit read

consistency, and freed when the transaction is complete. Many, or large, transactions, can cause the main tablespace

to grow dramatically, reducing performance. This option, introduced in XtraDB 5.1 and removed for 5.5, allows

multiple threads to perform the purging, resulting in slower, but much more stable performance.

Commandline: --innodb-use-purge-thread=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 0 to 32

Removed: XtraDB 5.5

innodb_use_stacktrace

Description: If set to ON (OFF is default), a signal handler for SIGUSR2 is installed when the InnoDB server starts.

When a long semaphore wait is detected at sync/sync0array.c, a SIGUSR2 signal is sent to the waiting thread and

thread that has acquired the RW-latch. For both threads a full stacktrace is produced as well as if possible. XtraDB

only. Added as a deprecated and ignored option in MariaDB 10.2.6 (which uses InnoDB as default instead of

XtraDB) to allow for easier upgrades.

Commandline: --innodb-use-stacktrace={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Deprecated: MariaDB 10.2.6

Removed: MariaDB 10.3.0

innodb_use_sys_malloc

Description: If set the 1 , the default, XtraDB/InnoDB will use the operating system's memory allocator. If set to 0 it

will use its own. Deprecated in MariaDB 10.0 and removed in MariaDB 10.2 along with InnoDB's internal memory

allocator.

Commandline: --innodb-use-sys-malloc={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.0

Removed: MariaDB 10.2.2

innodb_use_sys_stats_table

Description: If set to 1 (0 is default), XtraDB will use the SYS_STATS system table for extra table index statistics.

When a table is opened for the first time, statistics will then be loaded from SYS_STATS instead of sampling the

index pages. Statistics are designed to be maintained only by running an ANALYZE TABLE. Replaced by MySQL

5.6's Persistent Optimizer Statistics.

Commandline: innodb-use-sys-stats-table={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0

Removed: MariaDB 10.0/XtraDB 5.6

innodb_use_trim
2988/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

Description: Use trim to free up space of compressed blocks.

See InnoDB Page Compression: Saving Storage Space with Sparse Files for more information.

Commandline: --innodb-use-trim={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Deprecated: MariaDB 10.2.4

Removed: MariaDB 10.3.0

innodb_version

Description: InnoDB version number. From MariaDB 10.3.7 , as the InnoDB implementation in MariaDB has

diverged from MySQL, the MariaDB version is instead reported. For example, the InnoDB version reported in

MariaDB 10.1 (which is based on MySQL 5.6) included encryption and variable-size page compression before

MySQL 5.7 introduced them. MariaDB 10.2 (based on MySQL 5.7) introduced persistent AUTO_INCREMENT

(MDEV-6076) in a GA release before MySQL 8.0. MariaDB 10.3 (based on MySQL 5.7) introduced instant ADD

COLUMN (MDEV-11369) before MySQL.

Scope: Global

Dynamic: No

Data Type: string

Removed: MariaDB 10.10

innodb_write_io_threads

Description: Number of I/O threads for InnoDB writes. You may on rare occasions need to reduce this default on

Linux systems running multiple MariaDB servers to avoid exceeding system limits.

Commandline: --innodb-write-io-threads=#

Scope: Global

Dynamic: Yes (>= MariaDB 10.11), No (<= MariaDB 10.10)

Data Type: numeric

Default Value: 4

Range: 1 to 64

5.3.2.5 InnoDB Server Status Variables
Contents
1. Innodb_adaptive_hash_cells

2. Innodb_adaptive_hash_hash_searches

3. Innodb_adaptive_hash_heap_buffers

4. Innodb_adaptive_hash_non_hash_searches

5. Innodb_available_undo_logs

6. Innodb_background_log_sync

7. Innodb_buffer_pool_bytes_data

8. Innodb_buffer_pool_bytes_dirty

9. Innodb_buffer_pool_dump_status

10. Innodb_buffer_pool_load_incomplete

11. Innodb_buffer_pool_load_status

12. Innodb_buffer_pool_pages_data

13. Innodb_buffer_pool_pages_dirty

14. Innodb_buffer_pool_pages_flushed

15. Innodb_buffer_pool_pages_LRU_flushed

16. Innodb_buffer_pool_pages_LRU_freed

17. Innodb_buffer_pool_pages_free

18. Innodb_buffer_pool_pages_made_not_young

19. Innodb_buffer_pool_pages_made_young

20. Innodb_buffer_pool_pages_misc

21. Innodb_buffer_pool_pages_old

22. Innodb_buffer_pool_pages_total

23. Innodb_buffer_pool_read_ahead

24. Innodb_buffer_pool_read_ahead_evicted

25. Innodb_buffer_pool_read_ahead_rnd
2989/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://jira.mariadb.org/browse/MDEV-6076
https://jira.mariadb.org/browse/MDEV-11369

25. Innodb_buffer_pool_read_ahead_rnd

26. Innodb_buffer_pool_read_requests

27. Innodb_buffer_pool_reads

28. Innodb_buffer_pool_resize_status

29. Innodb_buffer_pool_wait_free

30. Innodb_buffer_pool_write_requests

31. Innodb_buffered_aio_submitted

32. Innodb_checkpoint_age

33. Innodb_checkpoint_max_age

34. Innodb_checkpoint_target_age

35. Innodb_current_row_locks

36. Innodb_data_fsyncs

37. Innodb_data_pending_fsyncs

38. Innodb_data_pending_reads

39. Innodb_data_pending_writes

40. Innodb_data_read

41. Innodb_data_reads

42. Innodb_data_writes

43. Innodb_data_written

44. Innodb_dblwr_pages_written

45. Innodb_dblwr_writes

46. Innodb_deadlocks

47. Innodb_defragment_compression_failures

48. Innodb_defragment_count

49. Innodb_defragment_failures

50. Innodb_dict_tables

51. Innodb_encryption_n_merge_blocks_decrypted

52. Innodb_encryption_n_merge_blocks_encrypted

53. Innodb_encryption_n_rowlog_blocks_decrypted

54. Innodb_encryption_n_rowlog_blocks_encrypted

55. Innodb_encryption_n_temp_blocks_decrypted

56. Innodb_encryption_n_temp_blocks_encrypted

57. Innodb_encryption_num_key_requests

58. Innodb_encryption_rotation_estimated_iops

59. Innodb_encryption_rotation_pages_flushed

60. Innodb_encryption_rotation_pages_modified

61. Innodb_encryption_rotation_pages_read_from_cache

62. Innodb_encryption_rotation_pages_read_from_disk

63. Innodb_have_atomic_builtins

64. Innodb_have_bzip2

65. Innodb_have_lz4

66. Innodb_have_lzma

67. Innodb_have_lzo

68. Innodb_have_punch_hole

69. Innodb_have_snappy

70. Innodb_history_list_length

71. Innodb_ibuf_discarded_delete_marks

72. Innodb_ibuf_discarded_deletes

73. Innodb_ibuf_discarded_inserts

74. Innodb_ibuf_free_list

75. Innodb_ibuf_merged_delete_marks

76. Innodb_ibuf_merged_deletes

77. Innodb_ibuf_merged_inserts

78. Innodb_ibuf_merges

79. Innodb_ibuf_segment_size

80. Innodb_ibuf_size

81. Innodb_instant_alter_column

82. Innodb_log_waits

83. Innodb_log_write_requests

84. Innodb_log_writes

85. Innodb_lsn_current

86. Innodb_lsn_flushed

87. Innodb_lsn_last_checkpoint

88. Innodb_master_thread_1_second_loops

89. Innodb_master_thread_10_second_loops

90. Innodb_master_thread_active_loops

91. Innodb_master_thread_background_loops

92. Innodb_master_thread_idle_loops
2990/4161

93. Innodb_master_thread_main_flush_loops

94. Innodb_master_thread_sleeps

95. Innodb_max_trx_id

96. Innodb_mem_adaptive_hash

97. Innodb_mem_dictionary

98. Innodb_mem_total

99. Innodb_mutex_os_waits

100. Innodb_mutex_spin_rounds

101. Innodb_mutex_spin_waits

102. Innodb_num_index_pages_written

103. Innodb_num_non_index_pages_written

104. Innodb_num_open_files

105. Innodb_num_page_compressed_trim_op

106. Innodb_num_page_compressed_trim_op_saved

107. Innodb_num_pages_decrypted

108. Innodb_num_pages_encrypted

109. Innodb_num_pages_page_compressed

110. Innodb_num_pages_page_compression_error

111. Innodb_num_pages_page_decompressed

112. Innodb_num_pages_page_encryption_error

113. Innodb_oldest_view_low_limit_trx_id

114. Innodb_onlineddl_pct_progress

115. Innodb_onlineddl_rowlog_pct_used

116. Innodb_onlineddl_rowlog_rows

117. Innodb_os_log_fsyncs

118. Innodb_os_log_pending_fsyncs

119. Innodb_os_log_pending_writes

120. Innodb_os_log_written

121. Innodb_page_compression_saved

122. Innodb_page_compression_trim_sect512

123. Innodb_page_compression_trim_sect1024

124. Innodb_page_compression_trim_sect2048

125. Innodb_page_compression_trim_sect4096

126. Innodb_page_compression_trim_sect8192

127. Innodb_page_compression_trim_sect16384

128. Innodb_page_compression_trim_sect32768

129. Innodb_page_size

130. Innodb_pages_created

131. Innodb_pages_read

132. Innodb_pages0_read

133. Innodb_pages_written

134. Innodb_purge_trx_id

135. Innodb_purge_undo_no

136. Innodb_read_views_memory

137. Innodb_row_lock_current_waits

138. Innodb_row_lock_numbers

139. Innodb_row_lock_time

140. Innodb_row_lock_time_avg

141. Innodb_row_lock_time_max

142. Innodb_row_lock_waits

143. Innodb_rows_deleted

144. Innodb_rows_inserted

145. Innodb_rows_read

146. Innodb_rows_updated

147. Innodb_s_lock_os_waits

148. Innodb_s_lock_spin_rounds

149. Innodb_s_lock_spin_waits

150. Innodb_scrub_background_page_reorganizations

151. Innodb_scrub_background_page_split_failures_missing_index

152. Innodb_scrub_background_page_split_failures_out_of_filespace

153. Innodb_scrub_background_page_split_failures_underflow

154. Innodb_scrub_background_page_split_failures_unknown

155. Innodb_scrub_background_page_splits

156. Innodb_scrub_log

157. Innodb_secondary_index_triggered_cluster_reads

158. Innodb_secondary_index_triggered_cluster_reads_avoided

159. Innodb_system_rows_deleted

160. Innodb_system_rows_inserted 2991/4161

160. Innodb_system_rows_inserted

161. Innodb_system_rows_read

162. Innodb_system_rows_updated

163. Innodb_truncated_status_writes

164. Innodb_undo_truncations

165. Innodb_x_lock_os_waits

166. Innodb_x_lock_spin_rounds

167. Innodb_x_lock_spin_waits

See Server Status Variables for a complete list of status variables that can be viewed with SHOW STATUS.

Much of the InnoDB information here can also be seen with a SHOW ENGINE INNODB STATUS statement.

See also the Full list of MariaDB options, system and status variables.

Innodb_adaptive_hash_cells

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0.0

Innodb_adaptive_hash_hash_searches

Description: Hash searches as shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW

ENGINE INNODB STATUS output.

Before the variable was introduced in MariaDB 10.5.0, use the adaptive_hash_searches counter in the

information_schema.INNODB_METRICS table instead.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.5.0

Innodb_adaptive_hash_heap_buffers

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0.0

Innodb_adaptive_hash_non_hash_searches

Description: Non-hash searches as shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the

SHOW ENGINE INNODB STATUS output. From MariaDB 10.6.2, not updated if innodb_adaptive_hash_index is not

enabled (the default).

In MariaDB 10.1, MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present. Use the

adaptive_hash_searches_btree counter in the information_schema.INNODB_METRICS table instead.

From MariaDB 10.5, this status variable is present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5, MariaDB 10.5.0

Removed: MariaDB 10.0.0

Innodb_available_undo_logs

Description: Total number available InnoDB undo logs. Differs from the innodb_undo_logs system variable, which

2992/4161

https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/

specifies the number of active undo logs.

Scope: Global

Data Type: numeric

Innodb_background_log_sync

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1, MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB only), MariaDB 10.5.0

Innodb_buffer_pool_bytes_data

Description: Number of bytes contained in the InnoDB buffer pool, both dirty (modified) and clean (unmodified). See

also Innodb_buffer_pool_pages_data, which can contain pages of different sizes in the case of compression.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_bytes_dirty

Description: Number of dirty (modified) bytes contained in the InnoDB buffer pool. See also

Innodb_buffer_pool_pages_dirty, which can contain pages of different sizes in the case of compression.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_dump_status

Description: A text description of the progress or final status of the last Innodb buffer pool dump.

Scope: Global

Data Type: string

Introduced: MariaDB 10.0.0

Innodb_buffer_pool_load_incomplete

Description: Whether or not the loaded buffer pool is incomplete, for example after a shutdown or abort during

innodb buffer pool load from file caused an incomplete save.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.3.5

Innodb_buffer_pool_load_status

Description: A text description of the progress or final status of the last Innodb buffer pool load.

Scope: Global

Data Type: string

Introduced: MariaDB 10.0.0

Innodb_buffer_pool_pages_data

Description: Number of InnoDB buffer pool pages which contain data, both dirty (modified) and clean (unmodified).

See also Innodb_buffer_pool_bytes_data.

Scope: Global

Data Type: numeric

2993/4161

https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/

Innodb_buffer_pool_pages_dirty

Description: Number of InnoDB buffer pool pages which contain dirty (modified) data. See also

Innodb_buffer_pool_bytes_dirty.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_pages_flushed

Description: Number of InnoDB buffer pool pages which have been flushed.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_pages_LRU_flushed

Description: Flush list as shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW

ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_buffer_pool_pages_LRU_freed

Description: Monitor the number of pages that were freed by a buffer pool LRU eviction scan, without flushing.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.6.0

Innodb_buffer_pool_pages_free

Description: Number of free InnoDB buffer pool pages.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_pages_made_not_young

Description: Pages not young as shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the

SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_buffer_pool_pages_made_young

Description: Pages made young as shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the

SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

2994/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb_buffer_pool_bytes_dirty

Innodb_buffer_pool_pages_misc

Description: Number of InnoDB buffer pool pages set aside for internal use.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_pages_old

Description: Old database page, as shown in the BUFFER POOL AND MEMORY section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present for XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_buffer_pool_pages_total

Description: Total number of InnoDB buffer pool pages.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_read_ahead

Description: Number of pages read into the InnoDB buffer pool by the read-ahead background thread.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_read_ahead_evicted

Description: Number of pages read into the InnoDB buffer pool by the read-ahead background thread that were

evicted without having been accessed by queries.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_read_ahead_rnd

Description: Number of random read-aheads.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_read_requests

Description: Number of requests to read from the InnoDB buffer pool.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_reads

Description: Number of reads that could not be satisfied by the InnoDB buffer pool and had to be read from disk.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_resize_status

Description: Progress of the dynamic InnoDB buffer pool resizing operation. See Setting Innodb Buffer Pool Size

2995/4161

Dynamically.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.2

Innodb_buffer_pool_wait_free

Description: Number of times InnoDB waited for a free page before reading or creating a page. Normally, writes to

the InnoDB buffer pool happen in the background. When no clean pages are available, dirty pages are flushed first in

order to free some up. This counts the numbers of wait for this operation to finish. If this value is not small, look at

increasing innodb_buffer_pool_size.

Scope: Global

Data Type: numeric

Innodb_buffer_pool_write_requests

Description: Number of requests to write to the InnoDB buffer pool.

Scope: Global

Data Type: numeric

Innodb_buffered_aio_submitted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.5.0

Innodb_checkpoint_age

Description: The checkpoint age, as shown in the LOG section of the SHOW ENGINE INNODB STATUS output.

(This is equivalent to subtracting "Last checkpoint at" from "Log sequence number".)

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_checkpoint_max_age

Description: Max checkpoint age, as shown in the LOG section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_checkpoint_target_age

Description: Checkpoint age target, as shown in the LOG section of the SHOW ENGINE INNODB STATUS output.

XtraDB only. Removed in MariaDB 10.0 and replaced with MySQL 5.6's flushing implementation.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

Innodb_current_row_locks

2996/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

Description: Number of current row locks on InnoDB tables as shown in the TRANSACTIONS section of the SHOW

ENGINE INNODB STATUS output. Renamed from InnoDB_row_lock_numbers in XtraDB 5.5.8-20.1.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Innodb_data_fsyncs

Description: Number of InnoDB fsync (sync-to-disk) calls. fsync call frequency can be influenced by the

innodb_flush_method configuration option.

Scope: Global

Data Type: numeric

Innodb_data_pending_fsyncs

Description: Number of pending InnoDB fsync (sync-to-disk) calls. fsync call frequency can be influenced by the

innodb_flush_method configuration option.

Scope: Global

Data Type: numeric

Innodb_data_pending_reads

Description: Number of pending InnoDB reads.

Scope: Global

Data Type: numeric

Innodb_data_pending_writes

Description: Number of pending InnoDB writes.

Scope: Global

Data Type: numeric

Innodb_data_read

Description: Number of InnoDB bytes read since server startup (not to be confused with Innodb_data_reads).

Scope: Global

Data Type: numeric

Innodb_data_reads

Description: Number of InnoDB read operations (not to be confused with Innodb_data_read).

Scope: Global

Data Type: numeric

Innodb_data_writes

Description: Number of InnoDB write operations.

Scope: Global

Data Type: numeric

Innodb_data_written

Description: Number of InnoDB bytes written since server startup. From MariaDB 10.5.1, no longer includes writes

to the redo log file ib_logfile0 , which continue to be counted by Innodb_os_log_written. An error in counting was

introduced in MariaDB 10.5.7 until MariaDB 10.5.20, MariaDB 10.6.13, MariaDB 10.8.8 , MariaDB 10.9.6, MariaDB

10.10.4 and MariaDB 10.11.3 (MDEV-31124) in which writes via the doublewrite buffer started to be counted

incorrectly, without multiplying them by innodb_page_size. A workaround for the error could be the following formulae:

2997/4161

https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://jira.mariadb.org/browse/MDEV-31124

real_data_written = Innodb_data_written + (innodb_page_size - 1) * Innodb_dblwr_pages_written

innodb_written = real_data_written + Innodb_os_log_written

Scope: Global

Data Type: numeric

Innodb_dblwr_pages_written

Description: Number of pages written to the InnoDB doublewrite buffer.

Scope: Global

Data Type: numeric

Innodb_dblwr_writes

Description: Number of writes to the InnoDB doublewrite buffer.

Scope: Global

Data Type: numeric

Innodb_deadlocks

Description: Total number of InnoDB deadlocks. Deadlocks occur when at least two transactions are waiting for the

other to finish, creating a circular dependency. InnoDB usually detects these quickly, returning an error.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_defragment_compression_failures

Description: Number of defragment re-compression failures. See Defragmenting InnoDB Tablespaces.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.1

Innodb_defragment_count

Description: Number of defragment operations. See Defragmenting InnoDB Tablespaces.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.1

Innodb_defragment_failures

Description: Number of defragment failures. See Defragmenting InnoDB Tablespaces.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.1

Innodb_dict_tables

Description: Number of entries in the XtraDB data dictionary cache. This Percona XtraDB variable was removed in

MariaDB 10/XtraDB 5.6 as it was replaced with MySQL 5.6's table_definition_cache implementation.

Scope: Global

Data Type: numeric

Introduced: XtraDB 5.0.77-b13

Removed: MariaDB 10.0

2998/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/

Innodb_encryption_n_merge_blocks_decrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.28 , MariaDB 10.2.9 , MariaDB 10.3.2

Innodb_encryption_n_merge_blocks_encrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.28 , MariaDB 10.2.9 , MariaDB 10.3.2

Innodb_encryption_n_rowlog_blocks_decrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.28 , MariaDB 10.2.9 , MariaDB 10.3.2

Innodb_encryption_n_rowlog_blocks_encrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.28 , MariaDB 10.2.9 , MariaDB 10.3.2

Innodb_encryption_n_temp_blocks_decrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

Innodb_encryption_n_temp_blocks_encrypted

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

Innodb_encryption_num_key_requests

Description: Was not present in MariaDB 10.5.2.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.4

Innodb_encryption_rotation_estimated_iops

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.1.3

Innodb_encryption_rotation_pages_flushed
2999/4161

https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.1.3

Innodb_encryption_rotation_pages_modified

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.1.3

Innodb_encryption_rotation_pages_read_from_cache

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.1.3

Innodb_encryption_rotation_pages_read_from_disk

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.1.3

Innodb_have_atomic_builtins

Description: Whether the server has been built with atomic instructions, provided by the CPU ensuring that critical

low-level operations can't be interrupted. XtraDB only.

Scope: Global

Data Type: boolean

Innodb_have_bzip2

Description: Whether the server has the bzip2 compression method available. See InnoDB/XtraDB Page

Compression.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.1.0

Innodb_have_lz4

Description: Whether the server has the lz4 compression method available. See InnoDB/XtraDB Page

Compression.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.1.0

Innodb_have_lzma

Description: Whether the server has the lzma compression method available. See InnoDB/XtraDB Page

Compression.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.1.0

3000/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/

Innodb_have_lzo

Description: Whether the server has the lzo compression method available. See InnoDB/XtraDB Page

Compression.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.1.0

Innodb_have_punch_hole

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.4

Innodb_have_snappy

Description: Whether the server has the snappy compression method available. See InnoDB/XtraDB Page

Compression.

Scope: Global

Data Type: boolean

Introduced: MariaDB 10.1.3

Innodb_history_list_length

Description: History list length as shown in the TRANSACTIONS section of the SHOW ENGINE INNODB STATUS

output. XtraDB only until introduced in MariaDB 10.5.0.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_discarded_delete_marks

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_discarded_deletes

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_discarded_inserts

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.
3001/4161

https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_free_list

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_merged_delete_marks

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_merged_deletes

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_merged_inserts

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_merges

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

3002/4161

Innodb_ibuf_segment_size

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_ibuf_size

Description: As shown in the INSERT BUFFER AND ADAPTIVE HASH INDEX section of the SHOW ENGINE

INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_instant_alter_column

Description: See Instant ADD COLUMN for InnoDB.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.2

Innodb_log_waits

Description: Number of times InnoDB was forced to wait for log writes to be flushed due to the log buffer being too

small.

Scope: Global

Data Type: numeric

Innodb_log_write_requests

Description: Number of requests to write to the InnoDB redo log.

Scope: Global

Data Type: numeric

Innodb_log_writes

Description: Number of writes to the InnoDB redo log.

Scope: Global

Data Type: numeric

Innodb_lsn_current

Description: Log sequence number as shown in the LOG section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

3003/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/

Innodb_lsn_flushed

Description: Flushed up to log sequence number as shown in the LOG section of the SHOW ENGINE INNODB

STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_lsn_last_checkpoint

Description: Log sequence number last checkpoint as shown in the LOG section of the SHOW ENGINE INNODB

STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_master_thread_1_second_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

Innodb_master_thread_10_second_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

Innodb_master_thread_active_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.0.9 (XtraDB-only), MariaDB 10.5.0:

Innodb_master_thread_background_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

3004/4161

https://mariadb.com/kb/en/mariadb-1009-release-notes/

Innodb_master_thread_idle_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.0.9 (XtraDB-only), MariaDB 10.5.0:

Innodb_master_thread_main_flush_loops

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1 and later, this system variable is not present

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

Innodb_master_thread_sleeps

Description: As shown in the BACKGROUND THREAD section of the SHOW ENGINE INNODB STATUS output.

XtraDB only.

In MariaDB 5.5, this system variable is present in XtraDB.

In MariaDB 10.1, MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present. Use the

innodb_master_thread_sleeps counter in the information_schema.INNODB_METRICS table instead.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.0

Innodb_max_trx_id

Description: As shown in the TRANSACTIONS section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_mem_adaptive_hash

Description: As shown in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_mem_dictionary

Description: As shown in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

3005/4161

https://mariadb.com/kb/en/mariadb-1009-release-notes/

In MariaDB 10.2, MariaDB 10.3, and MariaDB 10.4, this system variable is not present.

In MariaDB 10.5, this system variable was reintroduced.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 (XtraDB-only), MariaDB 10.5.0

Innodb_mem_total

Description: As shown in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Innodb_mutex_os_waits

Description: Mutex OS waits as shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Innodb_mutex_spin_rounds

Description: Mutex spin rounds as shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Innodb_mutex_spin_waits

Description: Mutex spin waits as shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS

output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Innodb_num_index_pages_written

Description:

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.0

Innodb_num_non_index_pages_written

Description:

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.0

3006/4161

https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/

Innodb_num_open_files

Description: Number of open files held by InnoDB. InnoDB only.

Scope: Global

Data Type: numeric

Innodb_num_page_compressed_trim_op

Description: Number of trim operations performed.

Scope: Global

Data Type: numeric

Innodb_num_page_compressed_trim_op_saved

Description: Number of trim operations not done because of an earlier trim.

Scope: Global

Data Type: numeric

Innodb_num_pages_decrypted

Description: Number of pages page decrypted. See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Innodb_num_pages_encrypted

Description: Number of pages page encrypted. See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Innodb_num_pages_page_compressed

Description: Number of pages that are page compressed.

Scope: Global

Data Type: numeric

Innodb_num_pages_page_compression_error

Description: Number of compression errors.

Scope: Global

Data Type: numeric

Innodb_num_pages_page_decompressed

Description: Number of pages compressed with page compression that are decompressed.

Scope: Global

Data Type: numeric

Innodb_num_pages_page_encryption_error

Description: Number of page encryption errors. See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.1.4

3007/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/

Innodb_oldest_view_low_limit_trx_id

Description: As shown in the TRANSACTIONS section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_onlineddl_pct_progress

Description: Shows the progress of in-place alter table. It might be not so accurate because in-place alter is highly

dependent on disk and buffer pool status. See Monitoring progress and temporal memory usage of Online DDL in

InnoDB .

Scope: Global

Data Type: numeric

Innodb_onlineddl_rowlog_pct_used

Description: Shows row log buffer usage in 5-digit integer (10000 means 100.00%). See Monitoring progress and

temporal memory usage of Online DDL in InnoDB .

Scope: Global

Data Type: numeric

Innodb_onlineddl_rowlog_rows

Description: Number of rows stored in the row log buffer. See Monitoring progress and temporal memory usage of

Online DDL in InnoDB .

Scope: Global

Data Type: numeric

Innodb_os_log_fsyncs

Description: Number of InnoDB log fsync (sync-to-disk) requests.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.8

Innodb_os_log_pending_fsyncs

Description: Number of pending InnoDB log fsync (sync-to-disk) requests.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.8

Innodb_os_log_pending_writes

Description: Number of pending InnoDB log writes.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.8

Innodb_os_log_written

Description: Number of bytes written to the InnoDB log.

Scope: Global

Data Type: numeric

3008/4161

https://blog.mariadb.org/monitoring-progress-and-temporal-memory-usage-of-online-ddl-in-innodb
https://blog.mariadb.org/monitoring-progress-and-temporal-memory-usage-of-online-ddl-in-innodb
https://blog.mariadb.org/monitoring-progress-and-temporal-memory-usage-of-online-ddl-in-innodb

Innodb_page_compression_saved

Description: Number of bytes saved by page compression.

Scope:

Data Type:

Innodb_page_compression_trim_sect512

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

512 byte block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.0 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect1024

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

1K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.2 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect2048

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

2K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.2 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect4096

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

4K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.0 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect8192

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

8K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.2 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect16384

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

16K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.2 , MariaDB 10.0.15 Fusion-io

3009/4161

https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/

Removed: MariaDB 10.2.4

Innodb_page_compression_trim_sect32768

Description: Number of TRIM operations performed for the page-compression/NVM Compression workload for the

32K block-size.

Scope:

Data Type: numeric

Introduced: MariaDB 10.1.2 , MariaDB 10.0.15 Fusion-io

Removed: MariaDB 10.2.4

Innodb_page_size

Description: Page size used by InnoDB. Defaults to 16KB, can be compiled with a different value.

Scope: Global

Data Type: numeric

Innodb_pages_created

Description: Number of InnoDB pages created.

Scope: Global

Data Type: numeric

Innodb_pages_read

Description: Number of InnoDB pages read.

Scope: Global

Data Type: numeric

Innodb_pages0_read

Description: Counter for keeping track of reads of the first page of InnoDB data files, because the original

implementation of data-at-rest-encryption for InnoDB introduced new code paths for reading the pages. Removed in

MariaDB 10.4.0 as the extra reads of the first page were removed, and the encryption subsystem will be initialized

whenever we first read the first page of each data file, in fil_node_open_file().

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.4 , MariaDB 10.1.21

Removed: MariaDB 10.4.0

Innodb_pages_written

Description: Number of InnoDB pages written.

Scope: Global

Data Type: numeric

Innodb_purge_trx_id

Description: Purge transaction id as shown in the TRANSACTIONS section of the SHOW ENGINE INNODB

STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

3010/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/

Innodb_purge_undo_no

Description: As shown in the TRANSACTIONS section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_read_views_memory

Description: As shown in the BUFFER POOL AND MEMORY section of the SHOW ENGINE INNODB STATUS

output. Shows the total of memory in bytes allocated for the InnoDB read view.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5.32

Removed: MariaDB 10.2

Innodb_row_lock_current_waits

Description: Number of pending row lock waits on InnoDB tables.

Scope: Global

Data Type: numeric

Innodb_row_lock_numbers

Description: Number of current row locks on InnoDB tables as shown in the TRANSACTIONS section of the SHOW

ENGINE INNODB STATUS output. Renamed to InnoDB_current_row_locks in XtraDB 5.5.10-20.1.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5 / XtraDB 5.5.8-20

Removed: MariaDB 5.5 / XtraDB 5.5.10-20.1

Innodb_row_lock_time

Description: Total time in milliseconds spent getting InnoDB row locks.

Scope: Global

Data Type: numeric

Innodb_row_lock_time_avg

Description: Average time in milliseconds spent getting an InnoDB row lock.

Scope: Global

Data Type: numeric

Innodb_row_lock_time_max

Description: Maximum time in milliseconds spent getting an InnoDB row lock.

Scope: Global

Data Type: numeric

Innodb_row_lock_waits

Description: Number of times InnoDB had to wait before getting a row lock.

Scope: Global

3011/4161

https://mariadb.com/kb/en/mariadb-5532-release-notes/

Data Type: numeric

Innodb_rows_deleted

Description: Number of rows deleted from InnoDB tables that where not system tables. Almost equivalent to

Handler_delete which does include system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_rows_inserted

Description: Number of rows inserted into InnoDB tables that where not system tables. No direct equivalent in

Handler status variables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_rows_read

Description: Number of rows read from InnoDB tables that where not system tables. Almost equivalent to the sum of

Handler_read* status variables which do include system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_rows_updated

Description: Number of rows updated in InnoDB tables that where not system tables. Almost equivalent to

Handler_update which does include system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_s_lock_os_waits

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_s_lock_spin_rounds

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_s_lock_spin_waits

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

3012/4161

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_scrub_background_page_reorganizations

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.5.2

Innodb_scrub_background_page_split_failures_missing_index

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.5.2

Innodb_scrub_background_page_split_failures_out_of_filespace

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.1.3

Removed: MariaDB 10.5.2

Innodb_scrub_background_page_split_failures_underflow

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.5.2

Innodb_scrub_background_page_split_failures_unknown

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.5.2

Innodb_scrub_background_page_splits

Description: See Table and Tablespace Encryption.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.5.2

Innodb_scrub_log

Description:

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.2.4

Removed: MariaDB 10.5.2

3013/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/

Innodb_secondary_index_triggered_cluster_reads

Description: Used to track the effectiveness of the Prefix Index Queries Optimization (MDEV-6929). Removed in

MariaDB 10.10 as the optimization is now always enabled.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_secondary_index_triggered_cluster_reads_avoided

Description: Used to track the effectiveness of the Prefix Index Queries Optimization (MDEV-6929). Removed in

MariaDB 10.10 as the optimization is now always enabled.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_system_rows_deleted

Description: Number of rows deleted on system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_system_rows_inserted

Description: Number of rows inserted on system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10

Innodb_system_rows_read

Description: Number of rows read on system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10.0

Innodb_system_rows_updated

Description: Number of rows updated on system tables.

Scope: Global

Data Type: numeric

Removed: MariaDB 10.10.0

Innodb_truncated_status_writes

Description: Number of times output from SHOW ENGINE INNODB STATUS has been truncated.

Scope: Global

Data Type: numeric

Innodb_undo_truncations

Description: Number of undo tablespace truncation operations.

Scope: Global

Data Type: numeric

Introduced: MariaDB 10.3.10

3014/4161

https://jira.mariadb.org/browse/MDEV-6929
https://jira.mariadb.org/browse/MDEV-6929
https://mariadb.com/kb/en/mariadb-10310-release-notes/

Innodb_x_lock_os_waits

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_x_lock_spin_rounds

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

Innodb_x_lock_spin_waits

Description: As shown in the SEMAPHORES section of the SHOW ENGINE INNODB STATUS output.

In MariaDB 5.5 and MariaDB 10.1, this system variable is present in XtraDB.

In MariaDB 10.2 and later, this system variable is not present.

Scope: Global

Data Type: numeric

Introduced: MariaDB 5.5

Removed: MariaDB 10.2

5.3.2.6 AUTO_INCREMENT Handling in InnoDB
Contents
1. AUTO_INCREMENT Lock Modes

1. Traditional Lock Mode

2. Consecutive Lock Mode

3. Interleaved Lock Mode

2. Setting AUTO_INCREMENT Values

AUTO_INCREMENT Lock Modes
The innodb_autoinc_lock_mode system variable determines the lock mode when generating AUTO_INCREMENT values for

InnoDB tables. These modes allow InnoDB to make significant performance optimizations in certain circumstances.

The innodb_autoinc_lock_mode system variable may be removed in a future release. See MDEV-19577 for more

information.

Traditional Lock Mode

When innodb_autoinc_lock_mode is set to 0 , InnoDB uses the traditional lock mode.

In this mode, InnoDB holds a table-level lock for all INSERT statements until the statement completes.

Consecutive Lock Mode

When innodb_autoinc_lock_mode is set to 1 , InnoDB uses the consecutive lock mode.

In this mode, InnoDB holds a table-level lock for all bulk INSERT statements (such as LOAD DATA or INSERT ... SELECT)

until the end of the statement. For simple INSERT statements, no table-level lock is held. Instead, a lightweight mutex is

used which scales significantly better. This is the default setting.

3015/4161

https://jira.mariadb.org/browse/MDEV-19577

Interleaved Lock Mode

When innodb_autoinc_lock_mode is set to 2 , InnoDB uses the interleaved lock mode.

In this mode, InnoDB does not hold any table-level locks at all. This is the fastest and most scalable mode, but is not safe for

statement-based replication.

Setting AUTO_INCREMENT Values
The AUTO_INCREMENT value for an InnoDB table can be set for a table by executing the ALTER TABLE statement and

specifying the AUTO_INCREMENT table option. For example:

ALTER TABLE tab AUTO_INCREMENT=100;

However, in MariaDB 10.2.3 and before, InnoDB stores the table's AUTO_INCREMENT counter in memory. In these

versions, when the server restarts, the counter is re-initialized to the highest value found in the table. This means that the

above operation can be undone if the server is restarted before any rows are written to the table.

In MariaDB 10.2.4 and later, the AUTO_INCREMENT counter is persistent, so this restriction is no longer present.

Persistent, however, does not mean transactional. Gaps may still occur in some cases, such as if a INSERT IGNORE

statement fails, or if a user executes ROLLBACK or ROLLBACK TO SAVEPOINT.

For example:

CREATE TABLE t1 (pk INT AUTO_INCREMENT PRIMARY KEY, i INT, UNIQUE (i)) ENGINE=InnoDB;

INSERT INTO t1 (i) VALUES (1),(2),(3);

INSERT IGNORE INTO t1 (pk, i) VALUES (100,1);

Query OK, 0 rows affected, 1 warning (0.099 sec)

SELECT * FROM t1;

+----+------+

| pk | i |

+----+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

+----+------+

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `pk` int(11) NOT NULL AUTO_INCREMENT,

 `i` int(11) DEFAULT NULL,

 PRIMARY KEY (`pk`),

 UNIQUE KEY `i` (`i`)

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=latin1

If the server is restarted at this point, then the AUTO_INCREMENT counter will revert to 101 , which is the persistent value

set as part of the failed INSERT IGNORE.

Restart server

SHOW CREATE TABLE t1\G

*************************** 1. row ***************************

 Table: t1

Create Table: CREATE TABLE `t1` (

 `pk` int(11) NOT NULL AUTO_INCREMENT,

 `i` int(11) DEFAULT NULL,

 PRIMARY KEY (`pk`),

 UNIQUE KEY `i` (`i`)

) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=latin1

5.3.2.7 InnoDB Buffer Pool

3016/4161

https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/

Contents
1. How the Buffer Pool Works

2. innodb_buffer_pool_size

3. innodb_buffer_pool_instances

4. innodb_old_blocks_pct and innodb_old_blocks_time

5. Dumping and Restoring the Buffer Pool

The InnoDB buffer pool is a key component for optimizing MariaDB. It stores data and indexes, and you usually want it as

large as possible so as to keep as much of the data and indexes in memory, reducing disk IO, as main bottleneck.

How the Buffer Pool Works
The buffer pool attempts to keep frequently-used blocks in the buffer, and so essentially works as two sublists, a new sublist

of recently-used information, and an old sublist of older information. By default, 37% of the list is reserved for the old list.

When new information is accessed that doesn't appear in the list, it is placed at the top of the old list, the oldest item in the

old list is removed, and everything else bumps back one position in the list.

When information is accessed that appears in the old list, it is moved to the top the new list, and everything above moves

back one position.

innodb_buffer_pool_size
The most important server system variable is innodb_buffer_pool_size. This size should contain most of the active data set

of your server so that SQL request can work directly with information in the buffer pool cache. Starting at several gigabytes

of memory is a good starting point if you have that RAM available. Once warmed up to its normal load there should be very

few innodb_buffer_pool_reads compared to innodb_buffer_pool_read_requests. Look how these values change over a

minute. If the change in innodb_buffer_pool_reads is less than 1% of the change in innodb_buffer_pool_read_requests then

you have a good amount of usage. If you are getting the status variable innodb_buffer_pool_wait_free increasing then you

don't have enough buffer pool (or your flushing isn't occurring frequently enough).

Be aware that before MariaDB 10.4.4 the total memory allocated is about 10% more than the specified size as extra space

is also reserved for control structures and buffers.

The larger the size, the longer it will take to initialize. On a modern 64-bit server with a 10GB memory pool, this can take

five seconds or more. Increasing innodb_buffer_pool_chunk_size by several factors will reduce this significantly. MariaDB

10.6 could start up with a 96GB buffer pool in less than 1 second.

Make sure that the size is not too large, causing swapping. The benefit of a larger buffer pool size is more than undone if

your operating system is regularly swapping.

Since MariaDB 10.2.2 , the buffer pool can be set dynamically, and new variables are introduced that may affect the size

and performance. See Setting Innodb Buffer Pool Size Dynamically.

innodb_buffer_pool_instances
The functionality described below was disabled in MariaDB 10.5, and removed in MariaDB 10.6, as the original reasons for

for splitting the buffer pool have mostly gone away.

If innodb_buffer_pool_size is set to more than 1GB, innodb_buffer_pool_instances divides the InnoDB buffer pool into a

specific number of instances. The default was 1 in MariaDB 5.5, but for large systems with buffer pools of many gigabytes,

many instances can help reduce contention concurrency. The default is 8 in MariaDB 10.0, with the exception of 32-bit

Windows, where it depends on the value of innodb_buffer_pool_size. Each instance manages its own data structures and

takes an equal portion of the total buffer pool size, so for example if innodb_buffer_pool_size is 4GB and

innodb_buffer_pool_instances is set to 4, each instance will be 1GB. Each instance should ideally be at least 1GB in size.

innodb_old_blocks_pct and innodb_old_blocks_time
The default 37% reserved for the old list can be adjusted by changing the value of innodb_old_blocks_pct. It can accept

anything between between 5% and 95%.

The innodb_old_blocks_time variable specifies the delay before a block can be moved from the old to the new sublist. 0

means no delay, while the default has been set to 1000 .

Before changing either of these values from their defaults, make sure you understand the impact and how your system

currently uses the buffer. Their main reason for existence is to reduce the impact of full table scans, which are usually

infrequent, but large, and previously could clear everything from the buffer. Setting a non-zero delay could help in situations

where full table scans are performed in quick succession.

3017/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

Temporarily changing these values can also be useful to avoid the negative impact of a full table scan, as explained in

InnoDB logical backups.

Dumping and Restoring the Buffer Pool
When the server starts, the buffer pool is empty. As it starts to access data, the buffer pool will slowly be populated. As more

data will be accessed, the most frequently accessed data will be put into the buffer pool, and old data may be evicted. This

means that a certain period of time is necessary before the buffer pool is really useful. This period of time is called the

warmup.

Since MariaDB 10.0, InnoDB can dump the buffer pool before the server shuts down, and restore it when it starts again. If

this feature is used (default since MariaDB 10.2), no warmup is necessary. Use the innodb_buffer_pool_dump_at_shutdown

and innodb_buffer_pool_load_at_startup system variables to enable or disable the buffer pool dump at shutdown and the

restore at startup respectively.

It is also possible to dump the InnoDB buffer pool at any moment while the server is running, and it is possible to restore the

last buffer pool dump at any moment. To do this, the special innodb_buffer_pool_dump_now and

innodb_buffer_pool_load_now system variables can be set to ON. When selected, their value is always OFF.

A buffer pool restore, both at startup or at any other moment, can be aborted by setting innodb_buffer_pool_load_abort to

ON.

The file which contains the buffer pool dump is specified via the innodb_buffer_pool_filename system variable.

5.3.2.8 InnoDB Change Buffering

The change buffer has been disabled by default from MariaDB 10.5.15, MariaDB 10.6.7, MariaDB 10.7.3 and

MariaDB 10.8.2 (MDEV-27734), was deprecated and ignored from MariaDB 10.9.0 (MDEV-27735), and was

removed in MariaDB 11.0.0 (MDEV-29694).

Benchmarks attached to MDEV-19514 show that the change buffer sometimes reduces performance, and in the

best case seem to bring a few per cent improvement to throughput. However, such improvement could come with a

price: If the buffered changes are never merged (MDEV-19514 , motivated by the reduction of random crashes and

the removal of an innodb_force_recovery option that can inflict further corruption), then the InnoDB system tablespace

can grow out of control (MDEV-21952).

Contents

INSERT, UPDATE and DELETE statements can be particularly heavy operations to perform, as all indexes need to be

updated after each change. For this reason these changes are often buffered.

Pages are modified in the buffer pool, and not immediately on disk. After all the records that cover the changes to a data

page have been written to the InnoDB redo log, the changed page may be written (''flushed'') to a data file. Pages that have

been modified in memory and not yet flushed are called dirty pages.

The Change Buffer is an optimization that allows some data to be modified even though the data page does not exist in the

buffer pool. Instead of modifying the data in its final destination, we would insert a record into a special Change Buffer that

resides in the system tablespace. When the page is read into the buffer pool for any reason, the buffered changes will be

applied to it.

The Change Buffer only contains changes to secondary index leaf pages.

Before MariaDB 5.5, only inserted rows could be buffered, so this buffer was called Insert Buffer. The old name still appears

in several places, for example in the output of SHOW ENGINE INNODB STATUS.

Inserts to UNIQUE secondary indexes cannot be buffered unless unique_checks=0 is used. This may sometimes allow

duplicates to be inserted into the UNIQUE secondary index. Much of the time, the UNIQUE constraint would be checked

because the change buffer could only be used if the index page is not located in the buffer pool.

When rows are deleted, a flag is set, thus rows are not immediately deleted. Delete-marked records may be purged after the

transaction has been committed and any read views that were created before the commit have been closed. Delete-mark

and purge buffering of any secondary indexes is allowed.

ROLLBACK never makes use of the change buffer; it would force a merge of any changes that were buffered during the

execution of the transaction.

The Change Buffer is an optimization because:

Some random-access page reads will be transformed into modifications of change buffer pages.

A change buffer page can be modified several times in memory and be flushed to disk only once.

Dirty pages are flushed together, so the number of IO operations is lower.

3018/4161

https://mariadb.com/kb/en/mariadb-1073-release-notes/
https://mariadb.com/kb/en/mariadb-1082-release-notes/
https://jira.mariadb.org/browse/MDEV-27734
https://jira.mariadb.org/browse/MDEV-27735
https://jira.mariadb.org/browse/MDEV-29694
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-21952

If the server crashes or is shut down, the Change Buffer might not be empty. The Change Buffer resides in the InnoDB

system tablespace, covered by the write-ahead log, so they can be applied at server restart. A shutdown with

innodb_fast_shutdown=0 will merge all buffered changes.

Starting with MariaDB 10.5, there no longer is a background task that would merge the change buffer to the secondary

index pages. The changes would only be merged on demand.

The Change Buffer was removed in MariaDB 11.0 because it has been a prominent source of corruption bugs that have

been extremely hard to reproduce.

The main server system variable here is innodb_change_buffering, which determines which form of change buffering, if any,

to use.

The following settings are available:

inserts

Only buffer insert operations

deletes

Only buffer delete operations

changes

Buffer both insert and delete operations

purges

Buffer the actual physical deletes that occur in the background

all

Buffer inserts, deletes and purges. Default setting from MariaDB 5.5 until MariaDB 10.5.14, MariaDB 10.6.6,

MariaDB 10.7.2 and MariaDB 10.8.1 .

none

Don't buffer any operations. Default from MariaDB 10.5.15, MariaDB 10.6.7, MariaDB 10.7.3 and MariaDB

10.8.2 .

Modifying the value of this variable only affects the buffering of new operations. The merging of already buffered changes is

not affected.

The innodb_change_buffer_max_size system variable determines the maximum size of the change buffer, expressed as a

percentage of the buffer pool.

5.3.2.9 InnoDB Doublewrite Buffer
The InnoDB doublewrite buffer was implemented to recover from half-written pages. This can happen when there's a power

failure while InnoDB is writing a page to disk. On reading that page, InnoDB can discover the corruption from the mismatch

of the page checksum. However, in order to recover, an intact copy of the page would be needed.

The double write buffer provides such a copy.

Whenever InnoDB flushes a page to disk, it is first written to the double write buffer. Only when the buffer is safely flushed

to disk will InnoDB write the page to the final destination. When recovering, InnoDB scans the double write buffer and for

each valid page in the buffer checks if the page in the data file is valid too.

Doublewrite Buffer Settings
To turn off the doublewrite buffer, set the innodb_doublewrite system variable to 0 . This is safe on filesystems that write

pages atomically - that is, a page write fully succeeds or fails. But with other filesystems, it is not recommended for

production systems. An alternative option is atomic writes. See atomic write support for more details.

5.3.2.10 InnoDB Tablespaces
Tables that use the InnoDB storage engine are written to disk in data files called tablespaces. An individual tablespace can

contain data from one or more InnoDB tables as well as the associated indexes.

InnoDB System Tablespaces

The system tablespace, how to change its size, and the use of raw disk partitions.

InnoDB File-Per-Table Tablespaces

InnoDB file-per-table tablespaces: what they are, where they're located, ho...

InnoDB Temporary Tablespaces

Information on tablespaces for user-created temporary tables.

1

3019/4161

https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1073-release-notes/
https://mariadb.com/kb/en/mariadb-1082-release-notes/

There are 1 related questions .

5.3.2.10.1 InnoDB System Tablespaces
Contents
1. Changing Sizes

1. Increasing the Size

2. Decreasing the Size

2. Using Raw Disk Partitions

1. Raw Disk Partitions on Windows

3. System Tables within the InnoDB System Tablespace

When InnoDB needs to store general information relating to the system as a whole, rather than a specific table, the specific

file it writes to is the system tablespace. By default, this is the ibdata1 file located in the data directory, (as defined by

either the datadir or innodb_data_home_dir system variables). InnoDB uses the system tablespace to store the data

dictionary, change buffer, and undo logs.

You can define the system tablespace filename or filenames, size and other options by setting the

innodb_data_file_path system variable. This system variable can be specified as a command-line argument to

mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

innodb_data_file_path=ibdata1:50M:autoextend

This system variable defaults to the file ibdata1 , and it defaults to a minimum size of 12M , and it defaults with the

autoextend attribute enabled.

Changing Sizes
InnoDB defaults to allocating 12M to the ibdata1 file for the system tablespace. While this is sufficient for most use cases,

it may not be for all. You may find after using MariaDB for a while that the allocation is too small for the system tablespace or

it grows too large for your disk. Fortunately, you can adjust this size as need later.

Increasing the Size

When setting the innodb_data_file_path system variable, you can define a size for each file given. In cases where you

need a larger system tablespace, add the autoextend option to the last value.

[mariadb]

...

innodb_data_file_path=ibdata1:12M;ibdata2:50M:autoextend

Under this configuration, when the last system tablespace grows beyond the size allocation, InnoDB increases the size of

the file by increments. To control the allocation increment, set the innodb_autoextend_increment system variable.

Decreasing the Size

From MariaDB 11.2.0, when MariaDB starts up, unused InnoDB tablespace is reclaimed, reducing the file size (MDEV-

14795).

Technically, how this works is:

1. Find the last used extent in the system tablespace by iterating through the BITMAP in the extent descriptor page.

2. Check whether the tablespace is being used within fixed size, and if the last used extent is less than the fixed

size, then set the desired target size to fixed size.

3. Flush all pages belonging to the system tablespace in flush list.

4. Truncate the truncated pages from FSP_FREE and FSP_FREE_FRAG list.

5. Reset the bitmap in descriptor pages for the truncated pages.

6. Update the FSP_SIZE and FSP_FREE_LIMIT in header page.

7. In case of multiple files, calculate the truncated last file size and do the truncation in last file.

MariaDB starting with 11.2.0

3020/4161

https://mariadb.com/kb/en/innodb-tablespaces/+questions/
https://mariadb.com/kb/en/mariadb-1120-release-notes/
https://jira.mariadb.org/browse/MDEV-14795

In cases where the InnoDB system tablespace has grown too large, before MariaDB 11.2, the process to reduce it in

size is a little more complicated than increasing the size. MariaDB does not allow you to remove data from the

tablespace file itself. Instead you need to delete the tablespace files themselves, then restore the database from

backups.

The backup utility mariadb-dump produces backup files containing the SQL statements needed to recreate the

database. As a result, it restores a database with the bare minimum data rather than any additional information that

might have built up in the tablespace file.

Use mariadb-dump to backup all of your InnoDB database tables, including the system tables in the mysql database

that use InnoDB. You can find out what they are using the Information Schema.

SELECT TABLE_NAME FROM information_schema.TABLES

WHERE TABLE_SCHEMA = 'mysql' AND ENGINE = 'InnoDB';

If you only use InnoDB, you may find it easier to back up all databases and tables.

$ mariadb-dump -u root -p --all-databases > full-backup.sql

Then stop the MariaDB Server and remove the InnoDB tablespace files. In the data directory or the InnoDB data home

directory, delete all the ibdata and ib_log files as well as any file with an .ibd or .frm extension.

Once this is done, restart the server and import the dump file:

$ mysql -u root -p < full-backup.sql

Using Raw Disk Partitions
Instead of having InnoDB write to the file system, you can set it to use raw disk partitions. On Windows and some Linux

distributions, this allows you to perform non-buffered I/O without the file system overhead. Note that in many use cases this

may not actually improve performance. Run tests to verify if there are any real gains for your application usage.

To enable a raw disk partition, first start MariaDB with the newraw option set on the tablespace. For example:

[mariadb]

...

innodb_data_file_path=/dev/sdc:10Gnewraw

When the MariaDB Server starts, it initializes the partition. Don't create or change any data, (any data written to InnoDB at

this stage will be lost on restart). Once the server has successful started, stop it then edit the configuration file again,

changing the newraw keyword to raw .

[mariadb]

...

innodb_data_file_path=/dev/sdc:10Graw

When you start MariaDB again, it'll read and write InnoDB data to the given disk partition instead of the file system.

Raw Disk Partitions on Windows

When defining a raw disk partition for InnoDB on the Windows operating system, use the same procedure as defined above,

but when defining the path for the innodb_data_file_path system variable, use ./ at the start. For example:

[mariadb]

...

innodb_data_file_path=//./E::10Graw

The given path is synonymous with the Windows syntax for accessing the physical drive.

System Tables within the InnoDB System Tablespace
InnoDB creates some system tables within the InnoDB System Tablespace:

SYS_DATAFILES

MariaDB until 11.2.0

3021/4161

https://mariadb.com/kb/en/mariadb-1120-release-notes/

SYS_FOREIGN

SYS_FOREIGN_COLS

SYS_TABLESPACES

SYS_VIRTUAL

SYS_ZIP_DICT

SYS_ZIP_DICT_COLS

These tables cannot be queried. However, you might see references to them in some places, such as in the

INNODB_SYS_TABLES table in the information_schema database.

5.3.2.10.2 InnoDB File-Per-Table Tablespaces
Contents
1. File-Per-Table Tablespace Locations

2. Copying Transportable Tablespaces

1. Copying Transportable Tablespaces for Non-partitioned Tables

1. Exporting Transportable Tablespaces for Non-partitioned Tables

2. Importing Transportable Tablespaces for Non-partitioned Tables

2. Copying Transportable Tablespaces for Partitioned Tables

1. Exporting Transportable Tablespaces for Partitioned Tables

2. Importing Transportable Tablespaces for Partitioned Tables

1. For Each Partition

3. Known Problems with Copying Transportable Tablespaces

1. Differing Storage Formats for Temporal Columns

2. Differing ROW_FORMAT Values

3. Foreign Key Constraints

3. Tablespace Encryption

When you create a table using the InnoDB storage engine, data written to that table is stored on the file system in a data file

called a tablespace. Tablespace files contain both the data and indexes.

When innodb_file_per_table=ON is set, InnoDB uses one tablespace file per InnoDB table. These tablespace files have the

.ibd extension. When innodb_file_per_table=OFF is set, InnoDB stores all tables in the InnoDB system tablespace.

InnoDB versions in MySQL 5.7 and above also support an additional type of tablespace called general tablespaces that

are created with CREATE TABLESPACE . However, InnoDB versions in MariaDB Server do not support general

tablespaces or CREATE TABLESPACE.

File-Per-Table Tablespace Locations
By default, InnoDB's file-per-table tablespaces are created in the system's data directory, which is defined by the datadir

system variable. The system variable innodb_data_home_dir will not change the location of file-per-table tablespaces.

In the event that you have a specific tablespace that you need stored in a dedicated path, you can set the location using the

DATA DIRECTORY table option when you create the table.

For instance,

CREATE TABLE test.t1 (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(50)

) ENGINE=InnoDB

DATA DIRECTORY = "/data/contact";

MariaDB then creates a database directory on the configured path and the file-per-table tablespace will be created inside

that directory. On Unix-like operating systems, you can see the file using the ls command:

ls -al /data/contact/test

drwxrwx--- 2 mysql mysql 4096 Dec 8 18:46 .

drwxr-xr-x 3 mysql mysql 4096 Dec 8 18:46 ..

-rw-rw---- 1 mysql mysql 98304 Dec 8 20:41 t1.ibd

Note, the system user that runs the MariaDB Server process (which is usually mysql) must have write permissions on the

given path.

Copying Transportable Tablespaces
3022/4161

https://dev.mysql.com/doc/refman/5.7/en/general-tablespaces.html
https://dev.mysql.com/doc/refman/5.7/en/create-tablespace.html

InnoDB's file-per-table tablespaces are transportable, which means that you can copy a file-per-table tablespace from one

MariaDB Server to another server. You may find this useful in cases where you need to transport full tables between servers

and don't want to use backup tools like mariabackup or mariadb-dump. In fact, this process can even be used with

mariabackup in some cases, such as when restoring partial backups or when restoring individual tables or partitions from a

backup.

Copying Transportable Tablespaces for Non-partitioned Tables

You can copy the transportable tablespace of a non-partitioned table from one server to another by exporting the tablespace

file from the original server, and then importing the tablespace file into the new server.

The workflow is simplified starting from MariaDB 11.2.1. On the source server, simply do:

FLUSH TABLES t1 FOR EXPORT;

scp /data/contacts/test/t1.ibd target-server.com:/var/lib/mysql/test/

scp /data/contacts/test/t1.cfg target-server.com:/var/lib/mysql/test/

scp /data/contacts/test/t1.frm target-server.com:/var/lib/mysql/test/

UNLOCK TABLES;

On the destination server, simply do:

ALTER TABLE t1 IMPORT TABLESPACE;

Exporting Transportable Tablespaces for Non-partitioned Tables

You can export a non-partitioned table by locking the table and copying the table's .ibd and .cfg files from the relevant

tablespace location for the table to a backup location. For example, the process would go like this:

First, use the FLUSH TABLES ... FOR EXPORT statement on the target table:

FLUSH TABLES test.t1 FOR EXPORT;

This forces the server to close the table and provides your connection with a read lock on the table.

Then, while your connection still holds the lock on the table, copy the tablespace file and the metadata file to a safe

directory:

cp /data/contacts/test/t1.ibd /data/saved-tablespaces/

cp /data/contacts/test/t1.cfg /data/saved-tablespaces/

Then, once you've copied the files, you can release the lock with UNLOCK TABLES:

UNLOCK TABLES;

Importing Transportable Tablespaces for Non-partitioned Tables

You can import a non-partitioned table by discarding the table's original tablespace, copying the table's .ibd and .cfg

files from the backup location to the relevant tablespace location for the table, and then telling the server to import the

tablespace.

For example, the process would go like this:

First, on the destination server, you need to create a copy of the table. Use the same CREATE TABLE statement that

was used to create the table on the original server.

CREATE TABLE test.t1 (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(50)

) ENGINE=InnoDB;

Then, use ALTER TABLE ... DISCARD TABLESPACE to discard the new table's tablespace:

ALTER TABLE test.t1 DISCARD TABLESPACE;

MariaDB starting with 11.2.1

3023/4161

Then, copy the .ibd and .cfg files from the original server to the relevant directory on the target MariaDB Server.

scp /data/tablespaces/t1.ibd target-server.com:/var/lib/mysql/test/

scp /data/tablespaces/t1.cfg target-server.com:/var/lib/mysql/test/

File-per-table tablespaces can be imported with just the .ibd file in many cases. If you do not have the tablespace's

.cfg file for whatever reason, then it is usually worth trying to import the tablespace with just the .ibd file.

Then, once the files are in the proper directory on the target server, use ALTER TABLE ... IMPORT TABLESPACE to

import the new table's tablespace:

ALTER TABLE test.t1 IMPORT TABLESPACE;

Copying Transportable Tablespaces for Partitioned Tables

Currently, MariaDB does not directly support the transport of tablespaces from partitioned tables. See MDEV-10568 for

more information about that. It is still possible to transport partitioned tables if we use a workaround. You can copy the

transportable tablespaces of a partitioned table from one server to another by exporting the tablespace file of each partition

from the original server, and then importing the tablespace file of each partition into the new server.

Exporting Transportable Tablespaces for Partitioned Tables

You can export a partitioned table by locking the table and copying the .ibd and .cfg files of each partition from the

relevant tablespace location for the partition to a backup location. For example, the process would go like this:

First, let's create a test table with some data on the original server:

CREATE TABLE test.t2 (

 employee_id INT,

 name VARCHAR(50)

) ENGINE=InnoDB

PARTITION BY RANGE (employee_id) (

 PARTITION p0 VALUES LESS THAN (6),

 PARTITION p1 VALUES LESS THAN (11),

 PARTITION p2 VALUES LESS THAN (16),

 PARTITION p3 VALUES LESS THAN MAXVALUE

);

INSERT INTO test.t2 (name, employee_id) VALUES

 ('Geoff Montee', 1),

 ('Chris Calendar', 6),

 ('Kyle Joiner', 11),

 ('Will Fong', 16);

Then, we need to export the partitioned tablespace from the original server, which follows the same process as

exporting non-partitioned tablespaces. That means that we need to use the FLUSH TABLES ... FOR EXPORT

statement on the target table:

FLUSH TABLES test.t2 FOR EXPORT;

This forces the server to close the table and provides your connection with a read lock on the table.

Then, if we grep the database directory in the data directory for the newly created t2 table, we can see a number of

.ibd and .cfg files for the table:

3024/4161

https://jira.mariadb.org/browse/MDEV-10568

ls -l /var/lib/mysql/test/ | grep t2

total 428

-rw-rw---- 1 mysql mysql 827 Dec 5 16:08 t2.frm

-rw-rw---- 1 mysql mysql 48 Dec 5 16:08 t2.par

-rw-rw---- 1 mysql mysql 579 Dec 5 18:47 t2#P#p0.cfg

-rw-r----- 1 mysql mysql 98304 Dec 5 16:43 t2#P#p0.ibd

-rw-rw---- 1 mysql mysql 579 Dec 5 18:47 t2#P#p1.cfg

-rw-rw---- 1 mysql mysql 98304 Dec 5 16:08 t2#P#p1.ibd

-rw-rw---- 1 mysql mysql 579 Dec 5 18:47 t2#P#p2.cfg

-rw-rw---- 1 mysql mysql 98304 Dec 5 16:08 t2#P#p2.ibd

-rw-rw---- 1 mysql mysql 579 Dec 5 18:47 t2#P#p3.cfg

-rw-rw---- 1 mysql mysql 98304 Dec 5 16:08 t2#P#p3.ibd

Then, while our connection still holds the lock on the table, we need to copy the tablespace files and the metadata

files to a safe directory:

$ mkdir /tmp/backup

$ sudo cp /var/lib/mysql/test/t2*.ibd /tmp/backup

$ sudo cp /var/lib/mysql/test/t2*.cfg /tmp/backup

Then, once we've copied the files, we can release the lock with UNLOCK TABLES:

UNLOCK TABLES;

Importing Transportable Tablespaces for Partitioned Tables

You can import a partitioned table by creating a placeholder table, discarding the placeholder table's original tablespace,

copying the partition's .ibd and .cfg files from the backup location to the relevant tablespace location for the placeholder

table, and then telling the server to import the tablespace. At that point, the server can exchange the tablespace for the

placeholder table with the one for the partition. For example, the process would go like this:

First, we need to copy the saved tablespace files from the original server to the target server:

$ scp /tmp/backup/t2* user@target-host:/tmp/backup

Then, we need to import the partitioned tablespaces onto the target server. The import process for partitioned tables

is more complicated than the import process for non-partitioned tables. To start with, if it doesn't already exist, then

we need to create a partitioned table on the target server that matches the partitioned table on the original server:

CREATE TABLE test.t2 (

 employee_id INT,

 name VARCHAR(50)

) ENGINE=InnoDB

PARTITION BY RANGE (employee_id) (

 PARTITION p0 VALUES LESS THAN (6),

 PARTITION p1 VALUES LESS THAN (11),

 PARTITION p2 VALUES LESS THAN (16),

 PARTITION p3 VALUES LESS THAN MAXVALUE

);

Then, using this table as a model, we need to create a placeholder of this table with the same structure that does not

use partitioning. This can be done with a CREATE TABLE... AS SELECT statement:

CREATE TABLE test.t2_placeholder LIKE test.t2;

ALTER TABLE test.t2_placeholder REMOVE PARTITIONING;

This statement will create a new table called t2_placeholder that has the same schema structure as t2 , but it does not

use partitioning and it contains no rows.

For Each Partition

From this point forward, the rest of our steps need to happen for each individual partition. For each partition, we need to do

the following process:

First, we need to use ALTER TABLE ... DISCARD TABLESPACE to discard the placeholder table's tablespace:

ALTER TABLE test.t2_placeholder DISCARD TABLESPACE;

3025/4161

Then, copy the .ibd and .cfg files for the next partition to the relevant directory for the t2_placeholder table

on the target MariaDB Server:

cp /tmp/backup/t2#P#p0.cfg /var/lib/mysql/test/t2_placeholder.cfg

cp /tmp/backup/t2#P#p0.ibd /var/lib/mysql/test/t2_placeholder.ibd

chown mysql:mysql /var/lib/mysql/test/t2_placeholder*

File-per-table tablespaces can be imported with just the .ibd file in many cases. If you do not have the tablepace's

.cfg file for whatever reason, then it is usually worth trying to import the tablespace with just the .ibd file.

Then, once the files are in the proper directory on the target server, we need to use ALTER TABLE ... IMPORT

TABLESPACE to import the new table's tablespace:

ALTER TABLE test.t2_placeholder IMPORT TABLESPACE;

The placeholder table now contains data from the p0 partition on the source server.

SELECT * FROM test.t2_placeholder;

+-------------+--------------+

| employee_id | name |

+-------------+--------------+

| 1 | Geoff Montee |

+-------------+--------------+

Then, it's time to transfer the partition from the placeholder to the target table. This can be done with an ALTER

TABLE... EXCHANGE PARTITION statement:

ALTER TABLE test.t2 EXCHANGE PARTITION p0 WITH TABLE test.t2_placeholder;

The target table now contains the first partition from the source table.

SELECT * FROM test.t2;

+-------------+--------------+

| employee_id | name |

+-------------+--------------+

| 1 | Geoff Montee |

+-------------+--------------+

Repeat this procedure for each partition you want to import. For each partition, we need to discard the placeholder

table's tablespace, and then import the partitioned table's tablespace into the placeholder table, and then exchange

the tablespaces between the placeholder table and the partition of our target table.

When this process is complete for all partitions, the target table will contain the imported data:

SELECT * FROM test.t2;

+-------------+----------------+

| employee_id | name |

+-------------+----------------+

| 1 | Geoff Montee |

| 6 | Chris Calendar |

| 11 | Kyle Joiner |

| 16 | Will Fong |

+-------------+----------------+

Then, we can remove the placeholder table from the database:

DROP TABLE test.t2_placeholder;

Known Problems with Copying Transportable Tablespaces

Differing Storage Formats for Temporal Columns

3026/4161

MariaDB 10.1.2 added the mysql56_temporal_format system variable, which enables a new MySQL 5.6-compatible

storage format for the TIME, DATETIME and TIMESTAMP data types.

If a file-per-tablespace file contains columns that use one or more of these temporal data types and if the tablespace file's

original table was created with a certain storage format for these columns, then the tablespace file can only be imported into

tables that were also created with the same storage format for these columns as the original table. Otherwise, you will see

errors like the following:

ALTER TABLE dt_test IMPORT TABLESPACE;

ERROR 1808 (HY000): Schema mismatch (Column dt precise type mismatch.)

See MDEV-15225 for more information.

See the pages for the TIME, DATETIME and TIMESTAMP data types to determine how to update the storage format for

temporal columns in tables that were created before MariaDB 10.1.2 or that were created with

mysql56_temporal_format=OFF.

Differing ROW_FORMAT Values

InnoDB file-per-table tablespaces can use different row formats. A specific row format can be specified when creating a

table either by setting the ROW_FORMAT table option or by the setting the innodb_default_row_format system variable.

See Setting a Table's Row Format for more information on how to set an InnoDB table's row format.

If a file-per-tablespace file was created with a certain row format, then the tablespace file can only be imported into tables

that were created with the same row format as the original table. Otherwise, you will see errors like the following:

ALTER TABLE t0 IMPORT TABLESPACE;

ERROR 1808 (HY000): Schema mismatch (Expected FSP_SPACE_FLAGS=0x21, .ibd file contains 0x0.)

The error message is a bit more descriptive in MariaDB 10.2.17 and later:

ALTER TABLE t0 IMPORT TABLESPACE;

ERROR 1808 (HY000): Schema mismatch (Table flags don't match, server table has 0x1 and the

meta-data file has 0x0; .cfg file uses ROW_FORMAT=REDUNDANT)

Be sure to check a tablespace's row format before moving it from one server to another. Keep in mind that the default row

format can change between major versions of MySQL or MariaDB. See Checking a Table's Row Format for information on

how to check an InnoDB table's row format.

See MDEV-15049 and MDEV-16851 for more information.

Foreign Key Constraints

DISCARD on a table with foreign key constraints is only possible after disabling foreign_key_checks:

SET SESSION foreign_key_checks=0;

ALTER TABLE t0 DISCARD TABLESPACE;

IMPORT on the other hand does not enforce foreign key constraints. So when importing tablespaces, referential integrity

can only be guaranteed to import all tables bound by foreign key constraint at the same time, from an EXPORT of those

tables taken with the same transactional state.

Tablespace Encryption
MariaDB supports data-at-rest encryption for the InnoDB storage engine. When enabled, the Server encrypts data before

writing it to the tablespace and decrypts reads from the tablespace before returning result-sets. This means that a malicious

user attempting to exfiltrate sensitive data won't be able to import the tablespace onto a different server as shown above

without the encryption key.

For more information on data encryption, see Encrypting Data for InnoDB.

5.3.2.10.3 InnoDB Temporary Tablespaces
When the user creates a temporary table using the CREATE TEMPORARY TABLE statement and the engine is set as

InnoDB, MariaDB creates a temporary tablespace file. When the table is not compressed, MariaDB writes to a shared

temporary tablespace as defined by the innodb_temp_data_file_path system variable. MariaDB does not allow the creation

of ROW_FORMAT=COMPRESSED temporary tables. All temporary tables will be uncompressed. MariaDB deletes
3027/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://jira.mariadb.org/browse/MDEV-15225
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://jira.mariadb.org/browse/MDEV-15049
https://jira.mariadb.org/browse/MDEV-16851

temporary tablespaces when the server shuts down gracefully and is recreated when it starts again. It cannot be placed on a

raw device.

Internal temporary tablespaces, (that is, temporary tables that cannot be kept in memory) use either Aria or MyISAM,

depending on the aria_used_for_temp_tables system variable. You can set the default storage engine for user-created

temporary tables using the default_tmp_storage_engine system variable.

Prior to MariaDB 10.2, temporary tablespaces existed as part of the InnoDB system tablespace or were file-per-table

depending on the configuration of the innodb_file_per_table system variable.

Sizing Temporary Tablespaces
In order to size temporary tablespaces, use the innodb_temp_data_file_path system variable. This system variable can be

specified as a command-line argument to mysqld or it can be specified in a relevant server option group in an option file.

For example:

[mariadb]

...

innodb_temp_data_file_path=ibtmp1:32M:autoextend

This system variable's syntax is the same as the innodb_data_file_path system variable. That is, a file name, size and

option. By default, it writes a 12MB autoextending file to ibtmp1 in the data directory.

To increase the size of the temporary tablespace, you can add a path to an additional tablespace file to the value of the the

innodb_temp_data_file_path system variable. Providing additional paths allows you to spread the temporary tablespace

between multiple tablespace files. The last file can have the autoextend attribute, which ensures that you won't run out of

space. For example:

[mariadb]

...

innodb_temp_data_file_path=ibtmp1:32M;ibtmp2:32M:autoextend

Unlike normal tablespaces, temporary tablespaces are deleted when you stop MariaDB. To shrink temporary tablespaces to

their minimum sizes, restart the server.

Shrinking the Tablespace

From MariaDB 11.3.0, the temporary tablespace can be shrunk by setting

innodb_truncate_temporary_tablespace_now to ON:

SET GLOBAL innodb_truncate_temporary_tablespace_now=1;

MariaDB starting with 11.3

5.3.2.11 InnoDB File Format
Contents
1. Setting a Table's File Format

2. Supported File Formats

1. Antelope

2. Barracuda

3. Future Formats

3. Checking a Table's File Format.

4. Compatibility

Prior to MariaDB 10.3, the InnoDB storage engine supports two different file formats.

Setting a Table's File Format
In MariaDB 10.2 and before, the default file format for InnoDB tables can be chosen by setting the innodb_file_format.

In MariaDB 10.2.1 and before, the default file format is Antelope . In MariaDB 10.2.2 and later, the default file format is

Barracuda and Antelope is deprecated.

3028/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

A table's tablespace is tagged with the lowest InnoDB file format that supports the table's row format. So, even if the

Barracuda file format is enabled, tables that use the COMPACT or REDUNDANT row formats will be tagged with the

Antelope file format in the information_schema.INNODB_SYS_TABLES table.

Supported File Formats
The InnoDB storage engine supports two different file formats:

Antelope

Barracuda

Antelope

In MariaDB 10.2.1 and before, the default file format is Antelope . In MariaDB 10.2.2 and later, the Antelope file

format is deprecated.

Antelope is the original InnoDB file format. It supports the COMPACT and REDUNDANT row formats, but not the DYNAMIC

or COMPRESSED row formats.

Barracuda

In MariaDB 10.1 and before, the Barracuda file format is only supported if the innodb_file_per_table system variable is set

to ON . In MariaDB 10.2.2 and later, the default file format is Barracuda and Antelope is deprecated.

Barracuda is a newer InnoDB file format. It supports the COMPACT , REDUNDANT , DYNAMIC and COMPRESSED row

formats. Tables with large BLOB or TEXT columns in particular could benefit from the dynamic row format.

Future Formats

InnoDB might use new file formats in the future. Each format will have an identifier from 0 to 25, and a name. The names

have already been decided, and are animal names listed in an alphabetical order: Antelope, Barracuda, Cheetah, Dragon,

Elk, Fox, Gazelle, Hornet, Impala, Jaguar, Kangaroo, Leopard, Moose, Nautilus, Ocelot, Porpoise, Quail, Rabbit, Shark,

Tiger, Urchin, Viper, Whale, Xenops, Yak and Zebra.

Checking a Table's File Format.
The information_schema.INNODB_SYS_TABLES table can be queried to see the file format used by a table.

A table's tablespace is tagged with the lowest InnoDB file format that supports the table's row format. So, even if the

Barracuda file format is enabled, tables that use the COMPACT or REDUNDANT row formats will be tagged with the

Antelope file format in the information_schema.INNODB_SYS_TABLES table.

Compatibility
Each tablespace is tagged with the id of the most recent file format used by one of its tables. All versions of InnoDB can

read tables that use an older file format. However, it can not read from more recent formats. For this reason, each time

InnoDB opens a table it checks the tablespace's format, and returns an error if a newer format is used.

This check can be skipped via the innodb_file_format_check variable. Beware that, is InnoDB tries to repair a table in an

unknown format, the table will be corrupted! This happens on restart if innodb_file_format_check is disabled and the server

crashed, or it was closed with fast shutdown.

To downgrade a table from the Barracuda format to Antelope, the table's ROW_FORMAT can be set to a value supported by

Antelope, via an ALTER TABLE statement. This recreates the indexes.

The Antelope format can be used to make sure that tables work on MariaDB and MySQL servers which are older than 5.5.

5.3.2.12 InnoDB Row Formats
InnoDB Row Formats Overview

InnoDB's row formats are REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED.2

3029/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

InnoDB REDUNDANT Row Format

The REDUNDANT row format is the original non-compacted row format.

InnoDB COMPACT Row Format

Similar to the REDUNDANT row format, but stores data in a more compact manner.

InnoDB DYNAMIC Row Format

Similar to the COMPACT row format, but can store even more data on overflow pages.

InnoDB COMPRESSED Row Format

Similar to the COMPACT row format, but can store even more data on overflow pages.

Troubleshooting Row Size Too Large Errors with InnoDB

Fixing "Row size too large (> 8126). Changing some columns to TEXT or BLOB may help."

2

6

5.3.2.12.1 InnoDB Row Formats Overview
Contents
1. Default Row Format

2. Setting a Table's Row Format

3. Checking a Table's Row Format

4. Row Formats

1. REDUNDANT Row Format

2. COMPACT Row Format

3. DYNAMIC Row Format

4. COMPRESSED Row Format

5. Maximum Row Size

6. Known Issues

1. Upgrading Causes Row Size Too Large Errors

The InnoDB storage engine supports four different row formats:

REDUNDANT

COMPACT

DYNAMIC

COMPRESSED

In MariaDB 10.1 and before, the latter two row formats are only supported if the InnoDB file format is Barracuda .

Therefore, the innodb_file_format system variable must be set to Barracuda to use these row formats in those

versions.

In MariaDB 10.1 and before, the latter two row formats are also only supported if the table is in a file per-table

tablespace. Therefore, the innodb_file_per_table system variable must be set to ON to use these row formats in those

versions.

Default Row Format
The innodb_default_row_format system variable can be used to set the default row format for InnoDB tables. The possible

values are:

redundant

compact

dynamic

This system variable's default value is dynamic , which means that the default row format is DYNAMIC .

This system variable cannot be set to compressed , which means that the default row format cannot be COMPRESSED .

For example, the following statements would create a table with the DYNAMIC row format:

3030/4161

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_default_row_format='dynamic';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB;

Setting a Table's Row Format
One way to specify an InnoDB table's row format is by setting the ROW_FORMAT table option to the relevant row format in

a CREATE TABLE or ALTER TABLE statement. For example:

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

In MariaDB 10.1 and before, InnoDB can silently ignore and override some row format choices if you do not have the

innodb_file_format system variable set to Barracuda and the innodb_file_per_table system variable set to ON .

Checking a Table's Row Format
The SHOW TABLE STATUS statement can be used to see the row format used by a table. For example:

SHOW TABLE STATUS FROM db1 WHERE Name='tab'\G

*************************** 1. row ***************************

 Name: tab

 Engine: InnoDB

 Version: 10

 Row_format: Dynamic

 Rows: 0

 Avg_row_length: 0

 Data_length: 16384

Max_data_length: 0

 Index_length: 0

 Data_free: 0

 Auto_increment: NULL

 Create_time: 2019-04-18 20:24:04

 Update_time: NULL

 Check_time: NULL

 Collation: latin1_swedish_ci

 Checksum: NULL

 Create_options: row_format=DYNAMIC

 Comment:

The information_schema.INNODB_SYS_TABLES table can also be queried to see the row format used by a table. For

example:

3031/4161

SELECT * FROM information_schema.INNODB_SYS_TABLES WHERE name='db1/tab'\G

*************************** 1. row ***************************

 TABLE_ID: 42

 NAME: db1/tab

 FLAG: 33

 N_COLS: 4

 SPACE: 27

 FILE_FORMAT: Barracuda

 ROW_FORMAT: Dynamic

ZIP_PAGE_SIZE: 0

 SPACE_TYPE: Single

A table's tablespace is tagged with the lowest InnoDB file format that supports the table's row format. So, even if the

Barracuda file format is enabled, tables that use the COMPACT or REDUNDANT row formats will be tagged with the

Antelope file format in the information_schema.INNODB_SYS_TABLES table.

Row Formats

REDUNDANT Row Format

The REDUNDANT row format is the original non-compacted row format.

The REDUNDANT row format was the only available row format before MySQL 5.0.3. In that release, this row format was

retroactively named the REDUNDANT row format. In the same release, the COMPACT row format was introduced as the new

default row format.

See InnoDB REDUNDANT Row Format for more information.

COMPACT Row Format

Default row format in MariaDB 10.2.1 and earlier COMPACT .

The COMPACT row format is similar to the REDUNDANT row format, but it stores data in a more compact manner that

requires about 20% less storage.

See InnoDB COMPACT Row Format for more information.

DYNAMIC Row Format

DYNAMIC is the default row format.

The DYNAMIC row format is similar to the COMPACT row format, but tables using the DYNAMIC row format can store even

more data on overflow pages than tables using the COMPACT row format. This results in more efficient data storage than

tables using the COMPACT row format, especially for tables containing columns using the VARBINARY, VARCHAR, BLOB

and TEXT data types. However, InnoDB tables using the COMPRESSED row format are more efficient.

See InnoDB DYNAMIC Row Format for more information.

COMPRESSED Row Format

An alternative way to compress InnoDB tables is by using InnoDB Page Compression.

The COMPRESSED row format is similar to the COMPACT row format, but tables using the COMPRESSED row format can store

even more data on overflow pages than tables using the COMPACT row format. This results in more efficient data storage

than tables using the COMPACT row format, especially for tables containing columns using the VARBINARY, VARCHAR,

BLOB and TEXT data types.

The COMPRESSED row format also supports compression of all data and index pages.

See InnoDB COMPRESSED Row Format for more information.

Maximum Row Size
Several factors help determine the maximum row size of an InnoDB table.

First, MariaDB enforces a 65,535 byte limit on a table's maximum row size. The total size of a table's BLOB and TEXT
3032/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/

columns do not count towards this limit. Only the pointers for a table's BLOB and TEXT columns count towards this limit.

MariaDB enforces this limit for all storage engines, so this limit also applies to InnoDB tables. Therefore, this limit is the

absolute maximum row size for an InnoDB table.

If you try to create a table that exceeds MariaDB's global limit on a table's maximum row size, then you will see an error like

this:

ERROR 1118 (42000): Row size too large. The maximum row size for the used table type,

not counting BLOBs, is 65535. This includes storage overhead, check the manual. You

have to change some columns to TEXT or BLOBs

However, InnoDB also has its own limits on the maximum row size, so an InnoDB table's maximum row size could be

smaller than MariaDB's global limit.

Second, the maximum amount of data that an InnoDB table can store in a row's main data page depends on the value of the

innodb_page_size system variable. At most, the data that a single row can consume on the row's main data page is half of

the value of the innodb_page_size system variable. With the default value of 16k , that would mean that a single row can

consume at most around 8 KB on the row's main data page. However, the limit on the row's main data page is not the

absolute limit on the row's size.

Third, all InnoDB row formats can store certain kinds of data in overflow pages, so the maximum row size of an InnoDB

table can be larger than the maximum amount of data that can be stored in the row's main data page.

Some row formats can store more data in overflow pages than others. For example, the DYNAMIC and COMPRESSED row

formats can store the most data in overflow pages. To see how to determine the how the various InnoDB row formats can

use overflow pages, see the following sections:

InnoDB REDUNDANT Row Format: Overflow Pages with the REDUNDANT Row Format

InnoDB COMPACT Row Format: Overflow Pages with the COMPACT Row Format

InnoDB DYNAMIC Row Format: Overflow Pages with the DYNAMIC Row Format

InnoDB COMPRESSED Row Format: Overflow Pages with the COMPRESSED Row Format

If a table's definition can allow rows that the table's InnoDB row format can't actually store, then InnoDB will raise errors or

warnings in certain scenarios.

If the table were using the REDUNDANT or COMPACT row formats, then the error or warning would be the following:

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB or using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED

may help. In current row format, BLOB prefix of 768 bytes is stored inline.

And if the table were using the DYNAMIC or COMPRESSED row formats, then the error or warning would be the following:

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored inline.

These messages are raised in the following cases:

If InnoDB strict mode is enabled and if a DDL statement is executed that touches the table, such as CREATE TABLE

or ALTER TABLE, then InnoDB will raise an error with this message

If InnoDB strict mode is disabled and if a DDL statement is executed that touches the table, such as CREATE

TABLE or ALTER TABLE , then InnoDB will raise a warning with this message.

Regardless of whether InnoDB strict mode is enabled, if a DML statement is executed that attempts to write a row

that the table's InnoDB row format can't store, then InnoDB will raise an error with this message.

For information on how to solve the problem, see Troubleshooting Row Size Too Large Errors with InnoDB.

Known Issues

Upgrading Causes Row Size Too Large Errors

Prior to MariaDB 10.2.26 , MariaDB 10.3.17 , and MariaDB 10.4.7, MariaDB doesn't properly calculate the row sizes

while executing DDL. In these versions, unsafe tables can be created, even if InnoDB strict mode is enabled. The

calculations were fixed by MDEV-19292 in MariaDB 10.2.26 , MariaDB 10.3.17 , and MariaDB 10.4.7.

As a side effect, some tables that could be created or altered in previous versions may get rejected with the following error

in these releases and any later releases.

3033/4161

https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://jira.mariadb.org/browse/MDEV-19292
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored inline.

And users could also see the following message as an error or warning in the error log:

[Warning] InnoDB: Cannot add field col in table db1.tab because after adding it, the row size is

8478 which is greater than maximum allowed size (8126) for a record on index leaf page.

InnoDB used the wrong calculations to determine row sizes for quite a long time, so a lot of users may unknowingly have

unsafe tables that the InnoDB row format can't actually store.

InnoDB does not currently have an easy way to check which existing tables have this problem. See MDEV-20400 for

more information.

For information on how to solve the problem, see Troubleshooting Row Size Too Large Errors with InnoDB.

5.3.2.12.2 InnoDB REDUNDANT Row Format
Contents
1. Using the REDUNDANT Row Format

2. Index Prefixes with the REDUNDANT Row Format

3. Overflow Pages with the REDUNDANT Row Format

The REDUNDANT row format is the original non-compacted row format.

The REDUNDANT row format was the only available row format before MySQL 5.0.3. In that release, this row format was

retroactively named the REDUNDANT row format. In the same release, the COMPACT row format was introduced as the new

default row format.

Using the REDUNDANT Row Format

The easiest way to create an InnoDB table that uses the REDUNDANT row format is by setting the ROW_FORMAT table

option to REDUNDANT in a CREATE TABLE or ALTER TABLE statement.

It is recommended to set the innodb_strict_mode system variable to ON when using this format.

The REDUNDANT row format is supported by both the Antelope and the Barracuda file formats, so tables with this row

format can be created regardless of the value of the innodb_file_format system variable.

For example:

SET SESSION innodb_strict_mode=ON;

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB ROW_FORMAT=REDUNDANT;

Index Prefixes with the REDUNDANT Row Format

The REDUNDANT row format supports index prefixes up to 767 bytes.

Overflow Pages with the REDUNDANT Row Format

All InnoDB row formats can store certain kinds of data in overflow pages. This allows for the maximum row size of an

InnoDB table to be larger than the maximum amount of data that can be stored in the row's main data page. See Maximum

Row Size for more information about the other factors that can contribute to the maximum row size for InnoDB tables.

In the REDUNDANT row format variable-length columns, such as columns using the VARBINARY, VARCHAR, BLOB and

TEXT data types, can be partially stored in overflow pages.

InnoDB only considers using overflow pages if the table's row size is greater than half of innodb_page_size. If the row size

is greater than this, then InnoDB chooses variable-length columns to be stored on overflow pages until the row size is less

than half of innodb_page_size.

3034/4161

https://jira.mariadb.org/browse/MDEV-20400

For VARBINARY, VARCHAR, BLOB and TEXT columns, only values longer than 767 bytes are considered for for storage

on overflow pages. Bytes that are stored to track a value's length do not count towards this limit. This limit is only based on

the length of the actual column's data.

Fixed-length columns greater than 767 bytes are encoded as variable-length columns, so they can also be stored in

overflow pages if the table's row size is greater than half of innodb_page_size. Even though a column using the CHAR data

type can hold at most 255 characters, a CHAR column can still exceed 767 bytes in some cases. For example, a

char(255) column can exceed 767 bytes if the character set is utf8mb4 .

If a column is chosen to be stored on overflow pages, then the first 767 bytes of the column's value and a 20-byte pointer to

the column's first overflow page are stored on the main page. Each overflow page is the size of [innodb-system-

variables#innodb_page_size|innodb_page_size]]. If a column is too large to be stored on a single overflow page, then it is

stored on multiple overflow pages. Each overflow page contains part of the data and a 20-byte pointer to the next overflow

page, if a next page exists.

5.3.2.12.3 InnoDB COMPACT Row Format

In MariaDB 10.2.1 and before, the default row format is COMPACT .

Contents
1. Using the COMPACT Row Format

2. Index Prefixes with the COMPACT Row Format

3. Overflow Pages with the COMPACT Row Format

The COMPACT row format is similar to the REDUNDANT row format, but it stores data in a more compact manner that

requires about 20% less storage.

Using the COMPACT Row Format

In MariaDB 10.2.2 and later, the easiest way to create an InnoDB table that uses the COMPACT row format is by

setting the ROW_FORMAT table option to to COMPACT in a CREATE TABLE or ALTER TABLE statement.

It is recommended to set the innodb_strict_mode system variable to ON when using this row format.

The COMPACT row format is supported by both the Antelope and the Barracuda file formats, so tables with this row

format can be created regardless of the value of the innodb_file_format system variable.

For example:

SET SESSION innodb_strict_mode=ON;

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB ROW_FORMAT=COMPACT;

In MariaDB 10.2.1 and before, the default row format is COMPACT . Therefore, in these versions, the easiest way to

create an InnoDB table that uses the COMPACT row format is by not setting the ROW_FORMAT table option at all in

the CREATE TABLE or ALTER TABLE statement.

It is recommended to set the innodb_strict_mode system variable to ON when using this row format.

The COMPACT row format is supported by both the Antelope and the Barracuda file formats, so tables with this row

format can be created regardless of the value of the innodb_file_format system variable.

For example:

SET SESSION innodb_strict_mode=ON;

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB;

MariaDB until 10.2.1

MariaDB starting with 10.2.2

MariaDB until 10.2.1

3035/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

Index Prefixes with the COMPACT Row Format

The COMPACT row format supports index prefixes up to 767 bytes.

Overflow Pages with the COMPACT Row Format

All InnoDB row formats can store certain kinds of data in overflow pages. This allows for the maximum row size of an

InnoDB table to be larger than the maximum amount of data that can be stored in the row's main data page. See Maximum

Row Size for more information about the other factors that can contribute to the maximum row size for InnoDB tables.

In the COMPACT row format variable-length columns, such as columns using the VARBINARY, VARCHAR, BLOB and

TEXT data types, can be partially stored in overflow pages.

InnoDB only considers using overflow pages if the table's row size is greater than half of innodb_page_size. If the row size

is greater than this, then InnoDB chooses variable-length columns to be stored on overflow pages until the row size is less

than half of innodb_page_size.

For VARBINARY, VARCHAR, BLOB and TEXT columns, only values longer than 767 bytes are considered for storage on

overflow pages. Bytes that are stored to track a value's length do not count towards this limit. This limit is only based on the

length of the actual column's data.

Fixed-length columns greater than 767 bytes are encoded as variable-length columns, so they can also be stored in

overflow pages if the table's row size is greater than half of innodb_page_size. Even though a column using the CHAR data

type can hold at most 255 characters, a CHAR column can still exceed 767 bytes in some cases. For example, a

char(255) column can exceed 767 bytes if the character set is utf8mb4 .

If a column is chosen to be stored on overflow pages, then the first 767 bytes of the column's value and a 20-byte pointer to

the column's first overflow page are stored on the main page. Each overflow page is the size of innodb_page_size. If a

column is too large to be stored on a single overflow page, then it is stored on multiple overflow pages. Each overflow page

contains part of the data and a 20-byte pointer to the next overflow page, if a next page exists.

5.3.2.12.4 InnoDB DYNAMIC Row Format
DYNAMIC is the default InnoDB row format.

Contents
1. Using the DYNAMIC Row Format

2. Index Prefixes with the DYNAMIC Row Format

3. Overflow Pages with the DYNAMIC Row Format

The DYNAMIC row format is similar to the COMPACT row format, but tables using the DYNAMIC row format can store even

more data on overflow pages than tables using the COMPACT row format. This results in more efficient data storage than

tables using the COMPACT row format, especially for tables containing columns using the VARBINARY, VARCHAR, BLOB

and TEXT data types. However, InnoDB tables using the COMPRESSED row format are more efficient.

The DYNAMIC row format was originally introduced in MariaDB 5.5.

Using the DYNAMIC Row Format

In MariaDB 10.2.2 and later, the default row format is DYNAMIC , as long as the innodb_default_row_format system

variable has not been modified. Therefore, in these versions, the easiest way to create an InnoDB table that uses the

DYNAMIC row format is by not setting the ROW_FORMAT table option at all in a CREATE TABLE or ALTER TABLE

statement.

It is recommended to set the innodb_strict_mode system variable to ON when using this row format.

For example:

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_default_row_format='dynamic';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB;

MariaDB starting with 10.2.2

3036/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

In MariaDB 10.2.1 and before, the easiest way to create an InnoDB table that uses the DYNAMIC row format is by

setting the ROW_FORMAT table option to to DYNAMIC in a CREATE TABLE or ALTER TABLE statement.

It is recommended to set the innodb_strict_mode system variable to ON when using this row format.

The DYNAMIC row format is only supported by the Barracuda file format. As a side effect, in MariaDB 10.1 and

before, the DYNAMIC row format is only supported if the InnoDB file format is Barracuda . Therefore, the

innodb_file_format system variable must be set to Barracuda to use these row formats in those versions.

In MariaDB 10.1 and before, the DYNAMIC row format is also only supported if the table is in a file per-table

tablespace. Therefore, the innodb_file_per_table system variable must be set to ON to use this row format in those

versions.

For example:

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

Index Prefixes with the DYNAMIC Row Format
The DYNAMIC row format supports index prefixes up to 3072 bytes. In MariaDB 10.2 and before, the innodb_large_prefix

system variable is used to configure the maximum index prefix length. In these versions, if innodb_large_prefix is set to ON ,

then the maximum prefix length is 3072 bytes, and if it is set to OFF , then the maximum prefix length is 767 bytes.

Overflow Pages with the DYNAMIC Row Format
All InnoDB row formats can store certain kinds of data in overflow pages. This allows for the maximum row size of an

InnoDB table to be larger than the maximum amount of data that can be stored in the row's main data page. See Maximum

Row Size for more information about the other factors that can contribute to the maximum row size for InnoDB tables.

In the DYNAMIC row format variable-length columns, such as columns using the VARBINARY, VARCHAR, BLOB and

TEXT data types, can be completely stored in overflow pages.

InnoDB only considers using overflow pages if the table's row size is greater than half of innodb_page_size. If the row size

is greater than this, then InnoDB chooses variable-length columns to be stored on overflow pages until the row size is less

than half of innodb_page_size.

For BLOB and TEXT columns, only values longer than 40 bytes are considered for storage on overflow pages. For

VARBINARY and VARCHAR columns, only values longer than 255 bytes are considered for storage on overflow pages.

Bytes that are stored to track a value's length do not count towards these limits. These limits are only based on the length of

the actual column's data.

These limits differ from the limits for the COMPACT row format, where the limit is 767 bytes for all types.

Fixed-length columns greater than 767 bytes are encoded as variable-length columns, so they can also be stored in

overflow pages if the table's row size is greater than half of innodb_page_size. Even though a column using the CHAR data

type can hold at most 255 characters, a CHAR column can still exceed 767 bytes in some cases. For example, a

char(255) column can exceed 767 bytes if the character set is utf8mb4 .

If a column is chosen to be stored on overflow pages, then the entire value of the column is stored on overflow pages, and

only a 20-byte pointer to the column's first overflow page is stored on the main page. Each overflow page is the size of

innodb_page_size. If a column is too large to be stored on a single overflow page, then it is stored on multiple overflow

pages. Each overflow page contains part of the data and a 20-byte pointer to the next overflow page, if a next page exists.

This behavior differs from the behavior of the COMPACT row format, which always stores the column prefix on the main

page. This allows tables using the DYNAMIC row format to contain a high number of columns using the VARBINARY,

VARCHAR, BLOB and TEXT data types.

MariaDB until 10.2.1

3037/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/

5.3.2.12.5 InnoDB COMPRESSED Row Format
Contents
1. Using the COMPRESSED Row Format

2. Compression with the COMPRESSED Row Format

3. Monitoring Performance of the COMPRESSED Row Format

4. Index Prefixes with the COMPRESSED Row Format

5. Overflow Pages with the COMPRESSED Row Format

6. Read-Only

In MariaDB 10.1 and later, an alternative (and usually superior) way to compress InnoDB tables is by using InnoDB

Page Compression. See Comparison with the COMPRESSED Row Format.

The COMPRESSED row format is similar to the COMPACT row format, but tables using the COMPRESSED row format can store

even more data on overflow pages than tables using the COMPACT row format. This results in more efficient data storage

than tables using the COMPACT row format, especially for tables containing columns using the VARBINARY, VARCHAR,

BLOB and TEXT data types.

The COMPRESSED row format also supports compression of all data and index pages.

Using the COMPRESSED Row Format

An InnoDB table that uses the COMPRESSED row format can be created by setting the ROW_FORMAT table option to

COMPRESSED and by setting the KEY_BLOCK_SIZE table option to one of the following values in a CREATE TABLE or

ALTER TABLE statement, where the units are in KB :

1

2

4

8

16

16k is the default value of the innodb_page_size system variable, so using 16 will usually result in minimal compression

unless one of the following is true:

The table has many columns that can be stored in overflow pages, such as columns that use the VARBINARY,

VARCHAR, BLOB and TEXT data types.

The server is using a non-default innodb_page_size value that is greater than 16k .

In MariaDB 10.1 and later, the value of the innodb_page_size system variable can be set to 32k and 64k . This is

especially useful because the larger page size permits more columns using the VARBINARY, VARCHAR, BLOB and TEXT

data types. Regardless, even when the value of the innodb_page_size system variable is set to some value higher than

16k , 16 is still the maximum value for the KEY_BLOCK_SIZE table option for InnoDB tables using the COMPRESSED row

format.

The COMPRESSED row format cannot be set as the default row format with the innodb_default_row_format system variable.

The COMPRESSED row format is only supported by the Barracuda file format. As a side effect, in MariaDB 10.1 and

before, the COMPRESSED row format is only supported if the InnoDB file format is Barracuda . Therefore, the

innodb_file_format system variable must be set to Barracuda to use these row formats in those versions.

In MariaDB 10.1 and before, the COMPRESSED row format is also only supported if the table is in a file per-table tablespace.

Therefore, the innodb_file_per_table system variable must be set to ON to use this row format in those versions.

It is also recommended to set the innodb_strict_mode system variable to ON when using this row format.

InnoDB automatically uses the COMPRESSED row format for a table if the KEY_BLOCK_SIZE table option is set to some

value in a CREATE TABLE or ALTER TABLE statement. For example:

3038/4161

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB KEY_BLOCK_SIZE=4;

If the KEY_BLOCK_SIZE table option is not set to some value, but the ROW_FORMAT table option is set to COMPRESSED

in a CREATE TABLE or ALTER TABLE statement, then InnoDB uses a default value of 8 for the KEY_BLOCK_SIZE table

option. For example:

SET SESSION innodb_strict_mode=ON;

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

CREATE TABLE tab (

 id int,

 str varchar(50)

) ENGINE=InnoDB ROW_FORMAT=COMPRESSED;

Compression with the COMPRESSED Row Format

The COMPRESSED row format supports compression of all data and index pages.

To avoid compressing and uncompressing pages too many times, InnoDB tries to keep both compressed and

uncompressed pages in the buffer pool when there is enough room. This results in a bigger cache. When there is not

enough room, an adaptive LRU algorithm is used to decide whether compressed or uncompressed pages should be evicted

from the buffer: for CPU-bound workloads, the compressed pages are evicted first; for I/O-bound workloads, the

uncompressed pages are evicted first. Of course, when necessary, both the compressed and uncompressed version of the

same data can be evicted from the buffer.

Each compressed page has an uncompressed modification log, stored within the page itself. InnoDB writes small changes

into it. When the space in the modification log runs out, the page is uncompressed, changes are applied, and the page is

recompressed again. This is done to avoid some unnecessary decompression and compression operations.

Sometimes a compression failure might happen, because the data has grown too much to fit the page. When this happens,

the page (and the index node) is split into two different pages. This process can be repeated recursively until the data fit the

pages. This can be CPU-consuming on some busy servers which perform many write operations.

Before writing a compressed page into a data file, InnoDB writes it into the redo log. This ensures that the redo log can

always be used to recover tables after a crash, even if the compression library is updated and some incompatibilities are

introduced. But this also means that the redo log will grow faster and might need more space, or the frequency of

checkpoints might need to increase.

Monitoring Performance of the COMPRESSED Row
Format
The following INFORMATION_SCHEMA tables can be used to monitor the performances of InnoDB compressed tables:

INNODB_CMP and INNODB_CMP_RESET

INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET

INNODB_CMPMEM and INNODB_CMPMEM_RESET

Index Prefixes with the COMPRESSED Row Format

The COMPRESSED row format supports index prefixes up to 3072 bytes. In MariaDB 10.2 and before, the

innodb_large_prefix system variable is used to configure the maximum index prefix length. In these versions, if

innodb_large_prefix is set to ON , then the maximum prefix length is 3072 bytes, and if it is set to OFF , then the maximum

prefix length is 767 bytes.

3039/4161

Overflow Pages with the COMPRESSED Row Format

All InnoDB row formats can store certain kinds of data in overflow pages. This allows for the maximum row size of an

InnoDB table to be larger than the maximum amount of data that can be stored in the row's main data page. See Maximum

Row Size for more information about the other factors that can contribute to the maximum row size for InnoDB tables.

In the COMPRESSED row format variable-length columns, such as columns using the VARBINARY, VARCHAR, BLOB and

TEXT data types, can be completely stored in overflow pages.

InnoDB only considers using overflow pages if the table's row size is greater than half of innodb_page_size. If the row size

is greater than this, then InnoDB chooses variable-length columns to be stored on overflow pages until the row size is less

than half of innodb_page_size.

For BLOB and TEXT columns, only values longer than 40 bytes are considered for storage on overflow pages. For

VARBINARY and VARCHAR columns, only values longer than 255 bytes are considered for storage on overflow pages.

Bytes that are stored to track a value's length do not count towards these limits. These limits are only based on the length of

the actual column's data.

These limits differ from the limits for the COMPACT row format, where the limit is 767 bytes for all types.

Fixed-length columns greater than 767 bytes are encoded as variable-length columns, so they can also be stored in

overflow pages if the table's row size is greater than half of innodb_page_size. Even though a column using the CHAR data

type can hold at most 255 characters, a CHAR column can still exceed 767 bytes in some cases. For example, a

char(255) column can exceed 767 bytes if the character set is utf8mb4 .

If a column is chosen to be stored on overflow pages, then the entire value of the column is stored on overflow pages, and

only a 20-byte pointer to the column's first overflow page is stored on the main page. Each overflow page is the size of

innodb_page_size. If a column is too large to be stored on a single overflow page, then it is stored on multiple overflow

pages. Each overflow page contains part of the data and a 20-byte pointer to the next overflow page, if a next page exists.

This behavior differs from the behavior of the COMPACT row format, which always stores the column prefix on the main

page. This allows tables using the COMPRESSED row format to contain a high number of columns using the VARBINARY,

VARCHAR, BLOB and TEXT data types.

Read-Only

From MariaDB 10.6.0 until MariaDB 10.6.5, tables that are of the COMPRESSED row format are read-only by default.

This was intended to be the first step towards removing write support and deprecating the feature.

This plan has been scrapped, and from MariaDB 10.6.6, COMPRESSED tables are no longer read-only by default.

From MariaDB 10.6.0 to MariaDB 10.6.5, set the innodb_read_only_compressed variable to OFF to make the tables

writable.

MariaDB starting with 10.6

5.3.2.3.4 Troubleshooting Row Size Too Large Errors with
InnoDB

5.3.2.13 InnoDB Strict Mode
Contents
1. Configuring InnoDB Strict Mode

2. InnoDB Strict Mode Errors

1. Wrong Create Options

2. COMPRESSED Row Format

3. Row Size Too Large

InnoDB strict mode is similar to SQL strict mode. When it is enabled, certain InnoDB warnings become errors instead.

Configuring InnoDB Strict Mode
InnoDB strict mode is enabled by default.

InnoDB strict mode can be enabled or disabled by configuring the innodb_strict_mode server system variable.

Its global value can be changed dynamically with SET GLOBAL. For example:

3040/4161

SET GLOBAL innodb_strict_mode=ON;

Its value for the current session can also be changed dynamically with SET SESSION. For example:

SET SESSION innodb_strict_mode=ON;

It can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_strict_mode=ON

InnoDB Strict Mode Errors

Wrong Create Options

If InnoDB strict mode is enabled, and if a DDL statement is executed and invalid or conflicting table options are specified,

then an error is raised. The error will only be a generic error that says the following:

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

However, more details about the error can be found by executing SHOW WARNINGS.

For example, the error is raised in the following cases:

The KEY_BLOCK_SIZE table option is set to a non-zero value, but the ROW_FORMAT table option is set to some

row format other than the COMPRESSED row format. For example:

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

KEY_BLOCK_SIZE=4

ROW_FORMAT=DYNAMIC;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: cannot specify ROW_FORMAT = DYNAMIC with KEY_BLOCK_SIZE. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The KEY_BLOCK_SIZE table option is set to a non-zero value, but the configured value is larger than either 16 or

the value of the innodb_page_size system variable, whichever is smaller.

3041/4161

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

KEY_BLOCK_SIZE=16;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: KEY_BLOCK_SIZE=16 cannot be larger than 8. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The KEY_BLOCK_SIZE table option is set to a non-zero value, but the innodb_file_per_table system variable is not

set to ON .

SET GLOBAL innodb_file_per_table=OFF;

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

KEY_BLOCK_SIZE=4;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The KEY_BLOCK_SIZE table option is set to a non-zero value, but it is not set to one of the supported values: [1, 2,

4, 8, 16].

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

KEY_BLOCK_SIZE=5;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1478 | InnoDB: invalid KEY_BLOCK_SIZE = 5. Valid values are [1, 2, 4, 8, 16] |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.000 sec)

The ROW_FORMAT table option is set to the COMPRESSED row format, but the innodb_file_per_table system

variable is not set to ON .

3042/4161

SET GLOBAL innodb_file_per_table=OFF;

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

ROW_FORMAT=COMPRESSED;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The ROW_FORMAT table option is set to a value, but it is not set to one of the values supported by InnoDB:

REDUNDANT, COMPACT, DYNAMIC, and COMPRESSED.

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

ROW_FORMAT=PAGE;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: invalid ROW_FORMAT specifier. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

Either the KEY_BLOCK_SIZE table option is set to a non-zero value or the ROW_FORMAT table option is set to the

COMPRESSED row format, but the innodb_page_size system variable is set to a value greater than 16k .

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

ROW_FORMAT=COMPRESSED;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1478 | InnoDB: Cannot create a COMPRESSED table when innodb_page_size > 16k. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.00 sec)

The DATA DIRECTORY table option is set, but the innodb_file_per_table system variable is not set to ON .

3043/4161

SET GLOBAL innodb_file_per_table=OFF;

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

DATA DIRECTORY='/mariadb';

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: DATA DIRECTORY requires innodb_file_per_table. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The DATA DIRECTORY table option is set, but the table is a temporary table.

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TEMPORARY TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

DATA DIRECTORY='/mariadb';

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: DATA DIRECTORY cannot be used for TEMPORARY tables. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The INDEX DIRECTORY table option is set.

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

INDEX DIRECTORY='/mariadb';

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: INDEX DIRECTORY is not supported |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The PAGE_COMPRESSED table option is set to 1 , so InnoDB page compression is enabled, but the

ROW_FORMAT table option is set to some row format other than the COMPACT or DYNAMIC row formats.

3044/4161

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

PAGE_COMPRESSED=1

ROW_FORMAT=COMPRESSED;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: PAGE_COMPRESSED table can't have ROW_TYPE=COMPRESSED |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The PAGE_COMPRESSED table option is set to 1 , so InnoDB page compression is enabled, but the

innodb_file_per_table system variable is not set to ON .

SET GLOBAL innodb_file_per_table=OFF;

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

PAGE_COMPRESSED=1;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: PAGE_COMPRESSED requires innodb_file_per_table. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The PAGE_COMPRESSED table option is set to 1 , so InnoDB page compression is enabled, but the

KEY_BLOCK_SIZE table option is also specified.

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

PAGE_COMPRESSED=1

KEY_BLOCK_SIZE=4;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: PAGE_COMPRESSED table can't have key_block_size |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

The PAGE_COMPRESSION_LEVEL table option is set, but the PAGE_COMPRESSED table option is set to 0 , so

InnoDB page compression is disabled.

3045/4161

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

PAGE_COMPRESSED=0

PAGE_COMPRESSION_LEVEL=9;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: PAGE_COMPRESSION_LEVEL requires PAGE_COMPRESSED |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.000 sec)

In MariaDB 10.2 and before, the error is raised in the following additional cases:

The KEY_BLOCK_SIZE table option is set to a non-zero value, but the innodb_file_format system variable is not

set to Barracuda .

SET GLOBAL innodb_file_format='Antelope';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

KEY_BLOCK_SIZE=4;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1478 | InnoDB: KEY_BLOCK_SIZE requires innodb_file_format > Antelope. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.00 sec)

The ROW_FORMAT table option is set to either the COMPRESSED or the DYNAMIC row format, but the

innodb_file_format system variable is not set to Barracuda .

SET GLOBAL innodb_file_format='Antelope';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

ROW_FORMAT=COMPRESSED;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1478 | InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_format > Antelope. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+---+

3 rows in set (0.00 sec)

The PAGE_COMPRESSED table option is set to 1 , so InnoDB page compression is enabled, but the

innodb_file_format system variable is not set to Barracuda .

MariaDB until 10.2

3046/4161

SET GLOBAL innodb_file_format='Antelope';

SET SESSION innodb_strict_mode=ON;

CREATE OR REPLACE TABLE tab (

 id int PRIMARY KEY,

 str varchar(50)

)

PAGE_COMPRESSED=1;

SHOW WARNINGS;

ERROR 1005 (HY000): Can't create table `db1`.`tab` (errno: 140 "Wrong create options")

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 140 | InnoDB: PAGE_COMPRESSED requires innodb_file_format > Antelope. |

| Error | 1005 | Can't create table `db1`.`tab` (errno: 140 "Wrong create options") |

| Warning | 1030 | Got error 140 "Wrong create options" from storage engine InnoDB |

+---------+------+--+

3 rows in set (0.00 sec)

COMPRESSED Row Format

If InnoDB strict mode is enabled, and if a table uses the COMPRESSED row format, and if the table's KEY_BLOCK_SIZE is

too small to contain a row, then an error is returned by the statement.

Row Size Too Large

If InnoDB strict mode is enabled, and if a table exceeds its row format's maximum row size, then InnoDB will return an error.

ERROR 1118 (42000): Row size too large (> 8126). Changing some columns to

TEXT or BLOB may help. In current row format, BLOB prefix of 0 bytes is stored inline.

See Troubleshooting Row Size Too Large Errors with InnoDB for more information.

5.3.2.14 InnoDB Redo Log
Contents
1. Overview

2. Flushing Effects on Performance and Consistency

1. Binary Log Group Commit and Redo Log Flushing

3. Redo Log Group Capacity

1. Changing the Redo Log Group Capacity

4. Log Sequence Number (LSN)

5. Checkpoints

1. Determining the Checkpoint Age

1. Determining the Checkpoint Age in InnoDB

6. Determining the Redo Log Occupancy

7. MariaDB 10.8 Updates

Directly editing or moving the redo logs can cause corruption, and should never normally be attempted.

Overview
The redo log is used by InnoDB during crash recovery and background flushing of transactions to the tablespaces. The redo

log files have names like ib_logfileN , where N is an integer. From MariaDB 10.5, there is only one redo log, so the file

will always be named ib_logfile0 . If the innodb_log_group_home_dir system variable is configured, then the redo log

files will be created in that directory. Otherwise, they will be created in the directory defined by the datadir system variable.

Flushing Effects on Performance and Consistency
3047/4161

The innodb_flush_log_at_trx_commit system variable determines how often the transactions are flushed to the redo log, and

it is important to achieve a good balance between speed and reliability.

Binary Log Group Commit and Redo Log Flushing

In MariaDB 10.0 and above, when both innodb_flush_log_at_trx_commit=1 (the default) is set and the binary log is enabled,

there is now one less sync to disk inside InnoDB during commit (2 syncs shared between a group of transactions instead of

3). See Binary Log Group Commit and InnoDB Flushing Performance for more information.

Redo Log Group Capacity
The redo log group capacity is the total combined size of all InnoDB redo logs. The relevant factors are:

From MariaDB 10.5, there is 1 redo log. For MariaDB 10.4 and before, the number of redo log files is configured by

the innodb_log_files_in_group system variable.

The size of each redo log file is configured by the innodb_log_file_size system variable. This can safely be set to a

much higher value from MariaDB 10.5. Before MariaDB 10.9, resizing required the server to be restarted. From

MariaDB 10.9 the variable can be set dynamically.

The redo log group capacity is determined by the following calculation:

innodb_log_group_capacity = innodb_log_file_size * innodb_log_files_in_group

For example, if innodb_log_file_size is set to 2G and innodb_log_files_in_group is set to 2 , then we would have the

following:

innodb_log_group_capacity = innodb_log_file_size * innodb_log_files_in_group

= 2G * 2

= 4G

Changing the Redo Log Group Capacity

The number (until MariaDB 10.4 only - from MariaDB 10.5 there is only 1 redo log) or size of redo log files can be changed

with the following process:

Stop the server.

To change the log file size, configure innodb_log_file_size. To increase the number of log files (until MariaDB 10.4

only), configure innodb_log_files_in_group.

Start the server.

Log Sequence Number (LSN)
Records within the InnoDB redo log are identified via a log sequence number (LSN).

Checkpoints
When InnoDB performs a checkpoint, it writes the LSN of the oldest dirty page in the InnoDB buffer pool to the InnoDB redo

log. If a page is the oldest dirty page in the InnoDB buffer pool, then that means that all pages with lower LSNs have been

flushed to the physical InnoDB tablespace files. If the server were to crash, then InnoDB would perform crash recovery by

only applying log records with LSNs that are greater than or equal to the LSN of the oldest dirty page written in the last

checkpoint.

Checkpoints are one of the tasks performed by the InnoDB master background thread. This thread schedules checkpoints 7

seconds apart when the server is very active, but checkpoints can happen more frequently when the server is less active.

Dirty pages are not actually flushed from the buffer pool to the physical InnoDB tablespace files during a checkpoint. That

process happens asynchronously on a continuous basis by InnoDB's write I/O background threads configured by the

innodb_write_io_threads system variable. If you want to make this process more aggressive, then you can decrease the

value of the innodb_max_dirty_pages_pct system variable. You may also need to better tune InnoDB's I/O capacity on your

system by setting the innodb_io_capacity system variable.

Determining the Checkpoint Age

The checkpoint age is the amount of data written to the InnoDB redo log since the last checkpoint.

Determining the Checkpoint Age in InnoDB

MariaDB starting with 10.5
3048/4161

MariaDB 10.5 reintroduced the Innodb_checkpoint_age status variable (available in XtraDB until MariaDB 10.1) for

determining the checkpoint age.

The checkpoint age can also be determined by the process shown below.

To determine the InnoDB checkpoint age, do the following:

Query SHOW ENGINE INNODB STATUS.

Find the LOG section. For example:

LOG

Log sequence number 252794398789379

Log flushed up to 252794398789379

Pages flushed up to 252792767756840

Last checkpoint at 252792767756840

0 pending log flushes, 0 pending chkp writes

23930412 log i/o's done, 2.03 log i/o's/second

Perform the following calculation:

innodb_checkpoint_age = Log sequence number - Last checkpoint at

In the example above, that would be:

innodb_checkpoint_age = Log sequence number - Last checkpoint at

= 252794398789379 - 252792767756840

= 1631032539 bytes

= 1631032539 byes / (1024 * 1024 * 1024) (GB/bytes)

= 1.5 GB of redo log written since last checkpoint

Determining the Redo Log Occupancy
The redo log occupancy is the percentage of the InnoDB redo log capacity that is taken up by dirty pages that have not yet

been flushed to the physical InnoDB tablespace files in a checkpoint. Therefore, it's determined by the following calculation:

innodb_log_occupancy = innodb_checkpoint_age / innodb_log_group_capacity

For example, if innodb_checkpoint_age is 1.5G and innodb_log_group_capacity is 4G , then we would have the

following:

innodb_log_occupancy = innodb_checkpoint_age / innodb_log_group_capacity

= 1.5G / 4G

= 0.375

If the calculated value for redo log occupancy is too close to 1.0 , then the InnoDB redo log capacity may be too small for

the current workload.

MariaDB 10.8 Updates
A number of redo log improvements were made in MariaDB 10.8:

Autosize innodb_buffer_pool_chunk_size (MDEV-25342).

Improve the redo log for concurrency (MDEV-14425).

Remove FIL_PAGE_FILE_FLUSH_LSN (MDEV-27199).

Before MariaDB 10.8.1 , mariadb-backup --prepare created a zero-length ib_logfile0 as a dummy placeholder. From

MariaDB 10.8.1 (MDEV-14425), the size of that dummy file was increased to 12304 (0x3010) bytes, and all updates of

FIL_PAGE_FILE_FLUSH_LSN in the first page of the system tablespace are removed.

From MariaDB 10.8.1 , if the server is started up with a zero-sized ib_logfile0, it is assumed that an upgrade is being

performed after a backup had been prepared. The start LSN will then be read from FIL_PAGE_FILE_FLUSH_LSN, and a

new log file will be created starting from exactly that LSN.

Manually creating a zero-sized ib_logfile0 without manually updating the FIL_PAGE_FILE_FLUSH_LSN in the system

tablespace to a recent enough LSN may result in error messages such as "page LSN is in the future". If a log was

discarded while some changes had already been written to data pages, all sort of corruption may occur.

If the database was initialized with a server that never updates the FIL_PAGE_FILE_FLUSH_LSN field, then any server

startup attempts with a zero-size ib_logfile0 will be refused because of an invalid LSN. If that field was ever updated with a

MariaDB starting with 10.5

3049/4161

https://jira.mariadb.org/browse/MDEV-25342
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-27199
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://jira.mariadb.org/browse/MDEV-14425
https://mariadb.com/kb/en/mariadb-1081-release-notes/

valid LSN by an older server, this safety mechanism cannot work, and the server may "rewind" to an earlier LSN.

5.3.2.15 InnoDB Undo Log
Contents
1. Overview

2. Implementation Details

3. Effects of Long-Running Transactions

4. Configuration

Overview
When a transaction writes data, it always inserts them in the table indexes or data (in the buffer pool or in physical files). No

private copies are created. The old versions of data being modified by active InnoDB transactions are stored in the undo log.

The original data can then be restored, or viewed by a consistent read.

Implementation Details
Before a row is modified, a diff is copied into the undo log. Each normal row contains a pointer to the most recent version of

the same row in the undo log. Each row in the undo log contains a pointer to previous version, if any. So, each modified row

has a history chain.

Rows are never physically deleted until a transaction ends. If they were deleted, the restore in ROLLBACK would be

impossible. Thus, rows are simply marked for deletion.

Each transaction uses a view of the records. The transaction isolation level determines how this view is created. For

example, READ UNCOMMITTED usually uses the current version of rows, even if they are not committed (dirty reads).

Other isolation levels require that the most recent committed version of rows is searched in the undo log. READ

COMMITTED uses a different view for each table, while REPEATABLE READ and SERIALIZABLE use the same view for

all tables.

There is also a global history list of the data. When a transaction is committed, its history is added to this history list. The

order of the list is the chronological order of the commits.

The purge thread deletes the rows in the undo log which are not needed by any existing view. The rows for which a most

recent version exists are deleted, as well as the delete-marked rows.

If InnoDB needs to restore an old version, it will simply replace the newer version with the older one. When a transaction

inserts a new row, there is no older version. However, in that case, the restore can be done by deleting the inserted rows.

Effects of Long-Running Transactions
Understanding how the undo log works helps with understanding the negative effects long transactions.

Long transactions generate several old versions of the rows in the undo log. Those rows will probably be needed for a

longer time, because other long transactions will need them. Since those transactions will generate more modified

rows, a sort of combinatorial explosion can be observed. Thus, the undo log requires more space.

Transaction may need to read very old versions of the rows in the history list, thus their performance will degrade.

Of course read-only transactions do not write more entries in the undo log; however, they delay the purging of existing

entries.

Also, long transactions can more likely result in deadlocks, but this problem is not related to the undo log.

Configuration
System variables affecting undo logs include:

innodb_max_undo_log_size

innodb_undo_directory

innodb_undo_log_truncate

innodb_undo_logs

innodb_undo_tablespaces

innodb_purge_batch_size

innodb_purge_rseg_truncate_frequency

The undo log is not a log file that can be viewed on disk in the usual sense, such as the error log or slow query log, but

rather an area of storage.

3050/4161

Before MariaDB 11.0, the undo log is usually part of the physical system tablespace, but from MariaDB 10.0, the

innodb_undo_directory and innodb_undo_tablespaces system variables can be used to split into different tablespaces and

store in a different location (perhaps on a different storage device). From MariaDB 11.0, multiple undo tablespaces are

enabled by default, and the innodb_undo_tablespaces default is changed to 3 so that the space occupied by possible bursts

of undo log records can be reclaimed after innodb_undo_log_truncate is set.

Each insert or update portion of the undo log is known as a rollback segment. The innodb_undo_logs system variable

allowed to reduce the number of rollback segments from the usual 128, to limit the number of concurrently active write

transactions. innodb_undo_logs was deprecated and ignored in MariaDB 10.5 and removed in MariaDB 10.6, as it always

makes sense to use the maximum number of rollback segments.

The related innodb_available_undo_logs status variable stores the total number of available InnoDB undo logs.

5.3.2.16 InnoDB Page Flushing
Contents
1. Page Flushing with InnoDB Page Cleaner Threads

1. innodb_max_dirty_pages_pct

2. innodb_max_dirty_pages_pct_lwm

3. Page Flushing with Multiple InnoDB Page Cleaner Threads

4. Page Flushing with a Single InnoDB Page Cleaner Thread

2. Page Flushing with Multi-threaded Flush Threads

3. Configuring the InnoDB I/O Capacity

Page Flushing with InnoDB Page Cleaner Threads
InnoDB page cleaner threads flush dirty pages from the InnoDB buffer pool. These dirty pages are flushed using a least-

recently used (LRU) algorithm.

innodb_max_dirty_pages_pct

The innodb_max_dirty_pages_pct variable specifies the maximum percentage of unwritten (dirty) pages in the buffer pool. If

this percentage is exceeded, flushing will take place.

innodb_max_dirty_pages_pct_lwm

The innodb_max_dirty_pages_pct_lwm variable determines the low-water mark percentage of dirty pages that will enable

preflushing to lower the dirty page ratio. The value 0 (the default) means that there will be no separate background flushing

so long as:

the share of dirty pages does not exceed innodb_max_dirty_pages_pct

the last checkpoint age (LSN difference since the latest checkpoint) does not exceed innodb_log_file_size (minus

some safety margin)

the buffer pool is not running out of space, which could trigger eviction flushing

Note that in MariaDB 10.5.7 and MariaDB 10.5.8 only, flushing was more aggressive, and the page cleaner thread would

always run in the background, as long as dirty pages exist in the buffer pool. To make flushing more eager, set to a higher

value, for example SET GLOBAL innodb_max_dirty_pages_pct_lwm=0.001; (the default until MariaDB 10.2.1).

Page Flushing with Multiple InnoDB Page Cleaner Threads

The innodb_page_cleaners system variable was added in MariaDB 10.2.2 , and makes it possible to use multiple

InnoDB page cleaner threads. It is deprecated and ignored from MariaDB 10.5.1, as the original reasons for for splitting

the buffer pool have mostly gone away.

The number of InnoDB page cleaner threads can be configured by setting the innodb_page_cleaners system variable. This

system variable can be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_page_cleaners=8

In MariaDB 10.3.3 and later, this system variable can also be changed dynamically with SET GLOBAL. For example:

MariaDB 10.2.2 - 10.5.1

3051/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

SET GLOBAL innodb_page_cleaners=8;

This system variable's default value is either 4 or the configured value of the innodb_buffer_pool_instances system

variable, whichever is lower.

Page Flushing with a Single InnoDB Page Cleaner Thread

In MariaDB 10.2.1 and before, and from MariaDB 10.5.1, when the original reasons for splitting the buffer pool have

mostly gone away, only a single InnoDB page cleaner thread is supported.

Page Flushing with Multi-threaded Flush Threads

InnoDB's multi-thread flush feature was first added in MariaDB 10.1.0 . It was deprecated in MariaDB 10.2.9 and

removed in MariaDB 10.3.2 .

In MariaDB 10.3.1 and before, InnoDB's multi-thread flush feature can be used. This is especially useful in MariaDB 10.1,

which only supports a single page cleaner thread.

InnoDB's multi-thread flush feature can be enabled by setting the innodb_use_mtflush system variable. The number of

threads cane be configured by setting the innodb_mtflush_threads system variable. This system variable can be set in a

server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_use_mtflush = ON

innodb_mtflush_threads = 8

The innodb_mtflush_threads system variable's default value is 8 . The maximum value is 64 . In multi-core systems, it is

recommended to set its value close to the configured value of the innodb_buffer_pool_instances system variable. However,

it is also recommended to use your own benchmarks to find a suitable value for your particular application.

InnoDB's multi-thread flush feature was deprecated in MariaDB 10.2.9 and removed from MariaDB 10.3.2 . In later

versions of MariaDB, use multiple InnoDB page cleaner threads instead.

Configuring the InnoDB I/O Capacity
Increasing the amount of I/O capacity available to InnoDB can also help increase the performance of page flushing.

The amount of I/O capacity available to InnoDB can be configured by setting the innodb_io_capacity system variable. This

system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_io_capacity=20000;

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_io_capacity=20000

The maximum amount of I/O capacity available to InnoDB in an emergency defaults to either 2000 or twice

innodb_io_capacity, whichever is higher, or can be directly configured by setting the innodb_io_capacity_max system

variable. This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_io_capacity_max=20000;

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_io_capacity_max=20000

MariaDB 10.1.0 - 10.3.2

3052/4161

https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/

5.3.2.17 InnoDB Purge
Contents
1. Optimizing Purge Performance

1. Configuring the Purge Threads

2. Configuring the Purge Batch Size

3. Configuring the Max Purge Lag

4. Configuring the Purge Rollback Segment Truncation Frequency

5. Configuring the Purge Undo Log Truncation

2. Purge's Effect on Row Metadata

When a transaction updates a row in an InnoDB table, InnoDB's MVCC implementation keeps old versions of the row in the

InnoDB undo log. The old versions are kept at least until all transactions older than the transaction that updated the row are

no longer open. At that point, the old versions can be deleted. InnoDB has purge process that is used to delete these old

versions.

Optimizing Purge Performance

Configuring the Purge Threads

The number of purge threads can be set by configuring the innodb_purge_threads system variable. This system variable

can be specified as a command-line argument to mysqld or it can be specified in a relevant server option group in an option

file. For example:

[mariadb]

...

innodb_purge_threads = 6

Configuring the Purge Batch Size

The purge batch size is defined as the number of InnoDB redo log records that must be written before triggering purge. The

purge batch size can be set by configuring the innodb_purge_batch_size system variable. This system variable can be

specified as a command-line argument to mysqld or it can be specified in a relevant server option group in an option file.

For example:

[mariadb]

...

innodb_purge_batch_size = 50

Configuring the Max Purge Lag

If purge operations are lagging on a busy server, then this can be a tough situation to recover from. As a solution, InnoDB

allows you to set the max purge lag. The max purge lag is defined as the maximum number of InnoDB undo log that can be

waiting to be purged from the history until InnoDB begins delaying DML statements.

The max purge lag can be set by configuring the innodb_max_purge_lag system variable. This system variable can be

changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_max_purge_lag=1000;

This system variable can also be specified as a command-line argument to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

innodb_max_purge_lag = 1000

The maximum delay can be set by configuring the innodb_max_purge_lag_delay system variable. This system variable can

be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_max_purge_lag_delay=100;

This system variable can also be specified as a command-line argument to mysqld or it can be specified in a relevant server

3053/4161

option group in an option file. For example:

[mariadb]

...

innodb_max_purge_lag_delay = 100

Configuring the Purge Rollback Segment Truncation Frequency

The purge rollback segment truncation frequency is defined as the number of purge loops that are run before unnecessary

rollback segments are truncated. The purge rollback segment truncation frequency can be set by configuring the

innodb_purge_rseg_truncate_frequency system variable. This system variable can be changed dynamically with SET

GLOBAL. For example:

SET GLOBAL innodb_purge_rseg_truncate_frequency=64;

This system variable can also be specified as a command-line argument to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

innodb_purge_rseg_truncate_frequency = 64

Configuring the Purge Undo Log Truncation

Purge undo log truncation occurs when InnoDB truncates an entire InnoDB undo log tablespace, rather than deleting

individual InnoDB undo log records.

Purge undo log truncation can be enabled by configuring the innodb_undo_log_truncate system variable. This system

variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_undo_log_truncate=ON;

This system variable can also be specified as a command-line argument to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

innodb_undo_log_truncate = ON

An InnoDB undo log tablespace is truncated when it exceeds the maximum size that is configured for InnoDB undo log

tablespaces. The maximum size can be set by configuring the innodb_max_undo_log_size system variable. This system

variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_max_undo_log_size='64M';

This system variable can also be specified as a command-line argument to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

innodb_max_undo_log_size = 64M

Purge's Effect on Row Metadata
An InnoDB table's clustered index has three hidden system columns that are automatically generated. These hidden system

columns are:

DB_ROW_ID - If the table has no other PRIMARY KEY or no other UNIQUE KEY defined as NOT NULL that can be

promoted to the table's PRIMARY KEY , then InnoDB will use a hidden system column called DB_ROW_ID . InnoDB

will automatically generated the value for the column from a global InnoDB-wide 48-bit sequence (instead of being

table-local).

DB_TRX_ID - The transaction ID of either the transaction that last changed the row or the transaction that currently

has the row locked.

DB_ROLL_PTR - A pointer to the InnoDB undo log that contains the row's previous record. The value of

3054/4161

DB_ROLL_PTR is only valid if DB_TRX_ID belongs to the current read view. The oldest valid read view is the purge

view.

If a row's last InnoDB undo log record is purged, this can obviously effect the value of the row's DB_ROLL_PTR column,

because there would no longer be any InnoDB undo log record for the pointer to reference.

In MariaDB 10.2 and before, the purge process wouldn't touch the value of the row's DB_TRX_ID column.

However, in MariaDB 10.3 and later, the purge process will set a row's DB_TRX_ID column to 0 after all of the row's

associated InnoDB undo log records have been deleted. This change allows InnoDB to perform an optimization: if a query

wants to read a row, and if the row's DB_TRX_ID column is set to 0 , then it knows that no other transaction has the row

locked. Usually, InnoDB needs to lock the transaction system's mutex in order to safely check whether a row is locked, but

this optimization allows InnoDB to confirm that the row can be safely read without any heavy internal locking.

This optimization can speed up reads, but it come at a noticeable cost at other times. For example, it can cause the purge

process to use more I/O after inserting a lot of rows, since the value of each row's DB_TRX_ID column will have to be reset.

1.1.1.2.9.1.1.1 Information Schema InnoDB Tables

5.3.2.19 InnoDB Online DDL
InnoDB Online DDL Overview

All about online DDL operations with InnoDB.

InnoDB Online DDL Operations with the INPLACE Alter Algorithm

These DDL operations can be done in-place with InnoDB.

InnoDB Online DDL Operations with the NOCOPY Alter Algorithm

These DDL operations can be done without copying the table with InnoDB.

InnoDB Online DDL Operations with the INSTANT Alter Algorithm

These DDL operations can be done instantly with InnoDB.

Instant ADD COLUMN for InnoDB

Instantly add a new column to a table1

5.3.2.19.1 InnoDB Online DDL Overview
Contents
1. Alter Algorithms

2. Specifying an Alter Algorithm

1. Specifying an Alter Algorithm Using the ALGORITHM Clause

2. Specifying an Alter Algorithm Using System Variables

3. Supported Alter Algorithms

1. DEFAULT Algorithm

2. COPY Algorithm

1. Using the COPY Algorithm with InnoDB

3. INPLACE Algorithm

1. Using the INPLACE Algorithm with InnoDB

2. Operations Supported by InnoDB with the INPLACE Algorithm

4. NOCOPY Algorithm

1. Operations Supported by InnoDB with the NOCOPY Algorithm

5. INSTANT Algorithm

1. Operations Supported by InnoDB with the INSTANT Algorithm

4. Alter Locking Strategies

5. Specifying an Alter Locking Strategy

1. Specifying an Alter Locking Strategy Using the LOCK Clause

2. Specifying an Alter Locking Strategy Using ALTER ONLINE TABLE

6. Supported Alter Locking Strategies

1. DEFAULT Locking Strategy

2. NONE Locking Strategy

3. SHARED Locking Strategy

4. EXCLUSIVE Locking Strategy

3055/4161

InnoDB tables support online DDL, which permits concurrent DML and uses optimizations to avoid unnecessary table

copying.

The ALTER TABLE statement supports two clauses that are used to implement online DDL:

ALGORITHM - This clause controls how the DDL operation is performed.

LOCK - This clause controls how much concurrency is allowed while the DDL operation is being performed.

Alter Algorithms
InnoDB supports multiple algorithms for performing DDL operations. This offers a significant performance improvement over

previous versions. The supported algorithms are:

DEFAULT - This implies the default behavior for the specific operation.

COPY

INPLACE

NOCOPY - This was added in MariaDB 10.3.7 .

INSTANT - This was added in MariaDB 10.3.7 .

Specifying an Alter Algorithm
The set of alter algorithms can be considered as a hierarchy. The hierarchy is ranked in the following order, with least

efficient algorithm at the top, and most efficient algorithm at the bottom:

COPY

INPLACE

NOCOPY

INSTANT

When a user specifies an alter algorithm for a DDL operation, MariaDB does not necessarily use that specific algorithm for

the operation. It interprets the choice in the following way:

If the user specifies COPY , then InnoDB uses the COPY algorithm.

If the user specifies any other algorithm, then InnoDB interprets that choice as the least efficient algorithm that the

user is willing to accept. This means that if the user specifies INPLACE , then InnoDB will use the most efficient

algorithm supported by the specific operation from the set (INPLACE , NOCOPY , INSTANT). Likewise, if the user

specifies NOCOPY , then InnoDB will use the most efficient algorithm supported by the specific operation from the set

(NOCOPY , INSTANT).

There is also a special value that can be specified:

If the user specifies DEFAULT , then InnoDB uses its default choice for the operation. The default choice is to use the

most efficient algorithm supported by the operation. The default choice will also be used if no algorithm is specified.

Therefore, if you want InnoDB to use the most efficient algorithm supported by an operation, then you usually do not

have to explicitly specify any algorithm at all.

Specifying an Alter Algorithm Using the ALGORITHM Clause

InnoDB supports the ALGORITHM clause.

The ALGORITHM clause can be used to specify the least efficient algorithm that the user is willing to accept. It is supported

by the ALTER TABLE and CREATE INDEX statements.

For example, if a user wanted to add a column to a table, but only if the operation used an algorithm that is at least as

efficient as the INPLACE , then they could execute the following:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

ALTER TABLE tab ADD COLUMN c varchar(50), ALGORITHM=INPLACE;

In MariaDB 10.3 and later, the above operation would actually use the INSTANT algorithm, because the ADD COLUMN

operation supports the INSTANT algorithm, and the INSTANT algorithm is more efficient than the INPLACE algorithm.

Specifying an Alter Algorithm Using System Variables

MariaDB starting with 10.3 3056/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

In MariaDB 10.3 and later, the alter_algorithm system variable can be used to pick the least efficient algorithm that the

user is willing to accept.

For example, if a user wanted to add a column to a table, but only if the operation used an algorithm that is at least as

efficient as the INPLACE , then they could execute the following:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD COLUMN c varchar(50);

In MariaDB 10.3 and later, the above operation would actually use the INSTANT algorithm, because the ADD COLUMN

operation supports the INSTANT algorithm, and the INSTANT algorithm is more efficient than the INPLACE algorithm.

In MariaDB 10.2 and before, the old_alter_table system variable can be used to specify whether the COPY algorithm

should be used.

For example, if a user wanted to add a column to a table, but they wanted to use the COPY algorithm instead of the

default algorithm for the operation, then they could execute the following:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION old_alter_table=1;

ALTER TABLE tab ADD COLUMN c varchar(50);

Supported Alter Algorithms
The supported algorithms are described in more details below.

DEFAULT Algorithm

The default behavior, which occurs if ALGORITHM=DEFAULT is specified, or if ALGORITHM is not specified at all, usually

only makes a copy if the operation doesn't support being done in-place at all. In this case, the most efficient available

algorithm will usually be used.

This means that, if an operation supports the INSTANT algorithm, then it will use that algorithm by default. If an operation

does not support the INSTANT algorithm, but it does support the NOCOPY algorithm, then it will use that algorithm by

default. If an operation does not support the NOCOPY algorithm, but it does support the INPLACE algorithm, then it will use

that algorithm by default.

COPY Algorithm

The COPY algorithm refers to the original ALTER TABLE algorithm.

When the COPY algorithm is used, MariaDB essentially does the following operations:

MariaDB starting with 10.3

MariaDB until 10.2

3057/4161

-- Create a temporary table with the new definition

CREATE TEMPORARY TABLE tmp_tab (

...

);

-- Copy the data from the original table

INSERT INTO tmp_tab

 SELECT * FROM original_tab;

-- Drop the original table

DROP TABLE original_tab;

-- Rename the temporary table, so that it replaces the original one

RENAME TABLE tmp_tab TO original_tab;

This algorithm is very inefficient, but it is generic, so it works for all storage engines.

If the COPY algorithm is specified with the ALGORITHM clause or with the alter_algorithm system variable, then the COPY

algorithm will be used even if it is not necessary. This can result in a lengthy table copy. If multiple ALTER TABLE

operations are required that each require the table to be rebuilt, then it is best to specify all operations in a single ALTER

TABLE statement, so that the table is only rebuilt once.

Using the COPY Algorithm with InnoDB

If the COPY algorithm is used with an InnoDB table, then the following statements apply:

The table will be rebuilt using the current values of the innodb_file_per_table, innodb_file_format, and

innodb_default_row_format system variables.

The operation will have to create a temporary table to perform the the table copy. This temporary table will be in the

same directory as the original table, and it's file name will be in the format

sql${PID}_${THREAD_ID}_${TMP_TABLE_COUNT} , where ${PID} is the process ID of mysqld ,

${THREAD_ID} is the connection ID, and ${TMP_TABLE_COUNT} is the number of temporary tables that the

connection has open. Therefore, the datadir may contain files with file names like # sql1234_12_1.ibd .

The operation inserts one record at a time into each index, which is very inefficient.

InnoDB does not use a sort buffer.

In MariaDB 10.2.13 , MariaDB 10.3.5 and later, the table copy operation creates a lot fewer InnoDB undo log

writes. See MDEV-11415 for more information.

The table copy operation creates a lot of InnoDB redo log writes.

INPLACE Algorithm

The COPY algorithm can be incredibly slow, because the whole table has to be copied and rebuilt. The INPLACE algorithm

was introduced as a way to avoid this by performing operations in-place and avoiding the table copy and rebuild, when

possible.

When the INPLACE algorithm is used, the underlying storage engine uses optimizations to perform the operation while

avoiding the table copy and rebuild. However, INPLACE is a bit of a misnomer, since some operations may still require the

table to be rebuilt for some storage engines. Regardless, several operations can be performed without a full copy of the

table for some storage engines.

A more accurate name for the algorithm would have been the ENGINE algorithm, since the storage engine decides how to

implement the algorithm.

If an ALTER TABLE operation supports the INPLACE algorithm, then it can be performed using optimizations by the

underlying storage engine, but it may rebuilt.

If the INPLACE algorithm is specified with the ALGORITHM clause or with the alter_algorithm system variable and if the

ALTER TABLE operation does not support the INPLACE algorithm, then an error will be raised. For example:

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c int;

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

In this case, raising an error is preferable, if the alternative is for the operation to make a copy of the table, and perform

3058/4161

https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://jira.mariadb.org/browse/MDEV-11415

unexpectedly slowly.

Using the INPLACE Algorithm with InnoDB

If the INPLACE algorithm is used with an InnoDB table, then the following statements apply:

The operation might have to write sort files in the directory defined by the innodb_tmpdir system variable.

The operation might also have to write a temporary log file to track data changes by DML queries executed during

the operation. The maximum size for this log file is configured by the innodb_online_alter_log_max_size system

variable.

Some operations require the table to be rebuilt, even though the algorithm is inaccurately called "in-place". This

includes operations such as adding or dropping columns, adding a primary key, changing a column to NULL, etc.

If the operation requires the table to be rebuilt, then the operation might have to create temporary tables.

It may have to create a temporary intermediate table for the actual table rebuild operation.

In MariaDB 10.2.19 and later, this temporary table will be in the same directory as the original table,

and it's file name will be in the format # sql${PID}_${THREAD_ID}_${TMP_TABLE_COUNT} , where

${PID} is the process ID of mysqld , ${THREAD_ID} is the connection ID, and

${TMP_TABLE_COUNT} is the number of temporary tables that the connection has open. Therefore, the

datadir may contain files with file names like # sql1234_12_1.ibd .

In MariaDB 10.2.18 and before, this temporary table will be in the same directory as the original table,

and it's file name will be in the format # sql-ib${TABLESPACE_ID}-${RAND} , where

${TABLESPACE_ID} is the table's tablespace ID within InnoDB and ${RAND} is a randomly initialized

number. Therefore, the datadir may contain files with file names like # sql-ib230291-

1363966925.ibd .

When it replaces the original table with the rebuilt table, it may also have to rename the original table using a

temporary table name.

If the server is MariaDB 10.3 or later or if it is running MariaDB 10.2 and the innodb_safe_truncate

system variable is set to OFF , then the format will actually be # sql-ib${TABLESPACE_ID}-${RAND} ,

where ${TABLESPACE_ID} is the table's tablespace ID within InnoDB and ${RAND} is a randomly

initialized number. Therefore, the datadir may contain files with file names like # sql-ib230291-

1363966925.ibd .

If the server is running MariaDB 10.1 or before or if it is running MariaDB 10.2 and the

innodb_safe_truncate system variable is set to ON , then the renamed table will have a temporary table

name in the format # sql-ib${TABLESPACE_ID} , where ${TABLESPACE_ID} is the table's

tablespace ID within InnoDB. Therefore, the datadir may contain files with file names like # sql-

ib230291.ibd .

The storage needed for the above items can add up to the size of the original table, or more in some cases.

Some operations are instantaneous, if they only require the table's metadata to be changed. This includes operations

such as renaming a column, changing a column's DEFAULT value, etc.

Operations Supported by InnoDB with the INPLACE Algorithm

With respect to the allowed operations, the INPLACE algorithm supports a subset of the operations supported by the COPY

algorithm, and it supports a superset of the operations supported by the NOCOPY algorithm.

See InnoDB Online DDL Operations with ALGORITHM=INPLACE for more information.

NOCOPY Algorithm

In MariaDB 10.3 and later, the NOCOPY algorithm is supported.

The INPLACE algorithm can sometimes be surprisingly slow in instances where it has to rebuild the clustered index,

because when the clustered index has to be rebuilt, the whole table has to be rebuilt. The NOCOPY algorithm was introduced

as a way to avoid this.

If an ALTER TABLE operation supports the NOCOPY algorithm, then it can be performed without rebuilding the clustered

index.

If the NOCOPY algorithm is specified with the ALGORITHM clause or with the alter_algorithm system variable and if the

ALTER TABLE operation does not support the NOCOPY algorithm, then an error will be raised. For example:

MariaDB starting with 10.3

3059/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/null-and-not-null
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab MODIFY COLUMN c int;

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: Cannot change column type INPLACE. Try

In this case, raising an error is preferable, if the alternative is for the operation to rebuild the clustered index, and perform

unexpectedly slowly.

Operations Supported by InnoDB with the NOCOPY Algorithm

With respect to the allowed operations, the NOCOPY algorithm supports a subset of the operations supported by the

INPLACE algorithm, and it supports a superset of the operations supported by the INSTANT algorithm.

See InnoDB Online DDL Operations with ALGORITHM=NOCOPY for more information.

INSTANT Algorithm

In MariaDB 10.3 and later, the INSTANT algorithm is supported.

The INPLACE algorithm can sometimes be surprisingly slow in instances where it has to modify data files. The INSTANT

algorithm was introduced as a way to avoid this.

If an ALTER TABLE operation supports the INSTANT algorithm, then it can be performed without modifying any data files.

If the INSTANT algorithm is specified with the ALGORITHM clause or with the alter_algorithm system variable and if the

ALTER TABLE operation does not support the INSTANT algorithm, then an error will be raised. For example:

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c int;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

In this case, raising an error is preferable, if the alternative is for the operation to modify data files, and perform unexpectedly

slowly.

Operations Supported by InnoDB with the INSTANT Algorithm

With respect to the allowed operations, the INSTANT algorithm supports a subset of the operations supported by the

NOCOPY algorithm.

See InnoDB Online DDL Operations with ALGORITHM=INSTANT for more information.

Alter Locking Strategies
InnoDB supports multiple locking strategies for performing DDL operations. This offers a significant performance

improvement over previous versions. The supported locking strategies are:

DEFAULT - This implies the default behavior for the specific operation.

NONE

SHARED

EXCLUSIVE

Regardless of which locking strategy is used to perform a DDL operation, InnoDB will have to exclusively lock the table for a

short time at the start and end of the operation's execution. This means that any active transactions that may have accessed

the table must be committed or aborted for the operation to continue. This applies to most DDL statements, such as ALTER

TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, RENAME TABLE, etc.

Specifying an Alter Locking Strategy

Specifying an Alter Locking Strategy Using the LOCK Clause

The ALTER TABLE statement supports the LOCK clause.

MariaDB starting with 10.3

3060/4161

The LOCK clause can be used to specify the locking strategy that the user is willing to accept. It is supported by the ALTER

TABLE and CREATE INDEX statements.

For example, if a user wanted to add a column to a table, but only if the operation is non-locking, then they could execute

the following:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

ALTER TABLE tab ADD COLUMN c varchar(50), ALGORITHM=INPLACE, LOCK=NONE;

If the LOCK clause is not explicitly set, then the operation uses LOCK=DEFAULT .

Specifying an Alter Locking Strategy Using ALTER ONLINE TABLE

ALTER ONLINE TABLE is equivalent to LOCK=NONE . Therefore, the ALTER ONLINE TABLE statement can be used to

ensure that your ALTER TABLE operation allows all concurrent DML.

Supported Alter Locking Strategies
The supported algorithms are described in more details below.

To see which locking strategies InnoDB supports for each operation, see the pages that describe which operations are

supported for each algorithm:

InnoDB Online DDL Operations with ALGORITHM=INPLACE

InnoDB Online DDL Operations with ALGORITHM=NOCOPY

InnoDB Online DDL Operations with ALGORITHM=INSTANT

DEFAULT Locking Strategy

The default behavior, which occurs if LOCK=DEFAULT is specified, or if LOCK is not specified at all, acquire the least

restrictive lock on the table that is supported for the specific operation. This permits the maximum amount of concurrency

that is supported for the specific operation.

NONE Locking Strategy

The NONE locking strategy performs the operation without acquiring any lock on the table. This permits all concurrent DML.

If this locking strategy is not permitted for an operation, then an error is raised.

SHARED Locking Strategy

The SHARED locking strategy performs the operation after acquiring a read lock on the table. This permit read-only

concurrent DML.

If this locking strategy is not permitted for an operation, then an error is raised.

EXCLUSIVE Locking Strategy

The EXCLUSIVE locking strategy performs the operation after acquiring a write lock on the table. This does not permit

concurrent DML.

5.3.2.19.2 InnoDB Online DDL Operations with
the INPLACE Alter Algorithm

3061/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/alter-online-table

Contents
1. Supported Operations by Inheritance

2. Column Operations

1. ALTER TABLE ... ADD COLUMN

2. ALTER TABLE ... DROP COLUMN

3. ALTER TABLE ... MODIFY COLUMN

1. Reordering Columns

2. Changing the Data Type of a Column

3. Changing a Column to NULL

4. Changing a Column to NOT NULL

5. Adding a New ENUM Option

6. Adding a New SET Option

7. Removing System Versioning from a Column

4. ALTER TABLE ... ALTER COLUMN

1. Setting a Column's Default Value

2. Removing a Column's Default Value

5. ALTER TABLE ... CHANGE COLUMN

3. Index Operations

1. ALTER TABLE ... ADD PRIMARY KEY

2. ALTER TABLE ... DROP PRIMARY KEY

3. ALTER TABLE ... ADD INDEX and CREATE INDEX

1. Adding a Plain Index

2. Adding a Fulltext Index

3. Adding a Spatial Index

4. ALTER TABLE ... DROP INDEX and DROP INDEX

5. ALTER TABLE ... ADD FOREIGN KEY

6. ALTER TABLE ... DROP FOREIGN KEY

4. Table Operations

1. ALTER TABLE ... AUTO_INCREMENT=...

2. ALTER TABLE ... ROW_FORMAT=...

3. ALTER TABLE ... KEY_BLOCK_SIZE=...

4. ALTER TABLE ... PAGE_COMPRESSED=... and ALTER TABLE ... PAGE_COMPRESSION_LEVEL=...

5. ALTER TABLE ... DROP SYSTEM VERSIONING

6. ALTER TABLE ... DROP CONSTRAINT

7. ALTER TABLE ... FORCE

8. ALTER TABLE ... ENGINE=InnoDB

9. OPTIMIZE TABLE ...

10. ALTER TABLE ... RENAME TO and RENAME TABLE ...

5. Limitations

1. Limitations Related to Fulltext Indexes

2. Limitations Related to Spatial Indexes

3. Limitations Related to Generated (Virtual and Persistent/Stored) Columns

Supported Operations by Inheritance
When the ALGORITHM clause is set to INPLACE , the supported operations are a superset of the operations that are

supported when the ALGORITHM clause is set to NOCOPY . Similarly, when the ALGORITHM clause is set to NOCOPY , the

supported operations are a superset of the operations that are supported when the ALGORITHM clause is set to INSTANT .

Therefore, when the ALGORITHM clause is set to INPLACE , some operations are supported by inheritance. See the

following additional pages for more information about these supported operations:

InnoDB Online DDL Operations with ALGORITHM=NOCOPY

InnoDB Online DDL Operations with ALGORITHM=INSTANT

Column Operations

ALTER TABLE ... ADD COLUMN

InnoDB supports adding columns to a table with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

With the exception of adding an auto-increment column, this operation supports the non-locking strategy. This strategy can

be explicitly chosen by setting the LOCK clause to NONE . When this strategy is used, all concurrent DML is permitted.

3062/4161

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD COLUMN c varchar(50);

Query OK, 0 rows affected (0.006 sec)

This applies to ALTER TABLE ... ADD COLUMN for InnoDB tables.

ALTER TABLE ... DROP COLUMN

InnoDB supports dropping columns from a table with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP COLUMN c;

Query OK, 0 rows affected (0.021 sec)

This applies to ALTER TABLE ... DROP COLUMN for InnoDB tables.

ALTER TABLE ... MODIFY COLUMN

This applies to ALTER TABLE ... MODIFY COLUMN for InnoDB tables.

Reordering Columns

InnoDB supports reordering columns within a table with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(50) AFTER a;

Query OK, 0 rows affected (0.022 sec)

Changing the Data Type of a Column

InnoDB does not support modifying a column's data type with ALGORITHM set to INPLACE in most cases. There are

some exceptions:

In MariaDB 10.2.2 and later, InnoDB supports increasing the length of VARCHAR columns with ALGORITHM set to

INPLACE , unless it would require changing the number of bytes requires to represent the column's length. A

3063/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/

VARCHAR column that is between 0 and 255 bytes in size requires 1 byte to represent its length, while a VARCHAR

column that is 256 bytes or longer requires 2 bytes to represent its length. This means that the length of a column

cannot be increased with ALGORITHM set to INPLACE if the original length was less than 256 bytes, and the new

length is 256 bytes or more.

In MariaDB 10.4.3 and later, InnoDB supports increasing the length of VARCHAR columns with ALGORITHM set to

INPLACE in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Changing the Data Type of a Column for more

information.

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c int;

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

But this succeeds in MariaDB 10.2.2 and later, because the original length of the column is less than 256 bytes, and the

new length is still less than 256 bytes:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) CHARACTER SET=latin1;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(100);

Query OK, 0 rows affected (0.005 sec)

But this fails in MariaDB 10.2.2 and later, because the original length of the column is less than 256 bytes, and the new

length is greater than 256 bytes:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(255)

) CHARACTER SET=latin1;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(256);

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

Changing a Column to NULL

InnoDB supports modifying a column to allow NULL values with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

3064/4161

https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) NOT NULL

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(50) NULL;

Query OK, 0 rows affected (0.021 sec)

Changing a Column to NOT NULL

InnoDB supports modifying a column to not allow NULL values with ALGORITHM set to INPLACE . It is required for strict

mode to be enabled in SQL_MODE. The operation will fail if the column contains any NULL values. Changes that would

interfere with referential integrity are also not permitted.

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(50) NOT NULL;

Query OK, 0 rows affected (0.021 sec)

Adding a New ENUM Option

InnoDB supports adding a new ENUM option to a column with ALGORITHM set to INPLACE . In order to add a new ENUM

option with ALGORITHM set to INPLACE , the following requirements must be met:

It must be added to the end of the list.

The storage requirements must not change.

This operation only changes the table's metadata, so the table does not have to be rebuilt..

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c ENUM('red', 'green')

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c ENUM('red', 'green', 'blue');

Query OK, 0 rows affected (0.004 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c ENUM('red', 'green')

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c ENUM('red', 'blue', 'green');

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

3065/4161

Adding a New SET Option

InnoDB supports adding a new SET option to a column with ALGORITHM set to INPLACE . In order to add a new SET

option with ALGORITHM set to INPLACE , the following requirements must be met:

It must be added to the end of the list.

The storage requirements must not change.

This operation only changes the table's metadata, so the table does not have to be rebuilt..

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c SET('red', 'green')

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c SET('red', 'green', 'blue');

Query OK, 0 rows affected (0.004 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c SET('red', 'green')

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c SET('red', 'blue', 'green');

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

Removing System Versioning from a Column

In MariaDB 10.3.8 and later, InnoDB supports removing system versioning from a column with ALGORITHM set to

INPLACE . In order for this to work, the system_versioning_alter_history system variable must be set to KEEP . See MDEV-

16330 for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) WITH SYSTEM VERSIONING

);

SET SESSION system_versioning_alter_history='KEEP';

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab MODIFY COLUMN c varchar(50) WITHOUT SYSTEM VERSIONING;

Query OK, 0 rows affected (0.005 sec)

ALTER TABLE ... ALTER COLUMN

This applies to ALTER TABLE ... ALTER COLUMN for InnoDB tables.

Setting a Column's Default Value

InnoDB supports modifying a column's DEFAULT value with ALGORITHM set to INPLACE .

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

3066/4161

https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://jira.mariadb.org/browse/MDEV-16330

NONE . When this strategy is used, all concurrent DML is permitted. For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ALTER COLUMN c SET DEFAULT 'No value explicitly provided.';

Query OK, 0 rows affected (0.005 sec)

Removing a Column's Default Value

InnoDB supports removing a column's DEFAULT value with ALGORITHM set to INPLACE .

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) DEFAULT 'No value explicitly provided.'

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ALTER COLUMN c DROP DEFAULT;

Query OK, 0 rows affected (0.005 sec)

ALTER TABLE ... CHANGE COLUMN

InnoDB supports renaming a column with ALGORITHM set to INPLACE , unless the column's data type or attributes

changed in addition to the name.

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab CHANGE COLUMN c str varchar(50);

Query OK, 0 rows affected (0.006 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab CHANGE COLUMN c num int;

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

This applies to ALTER TABLE ... CHANGE COLUMN for InnoDB tables.

3067/4161

Index Operations

ALTER TABLE ... ADD PRIMARY KEY

InnoDB supports adding a primary key to a table with ALGORITHM set to INPLACE .

If the new primary key column is not defined as NOT NULL, then it is highly recommended for strict mode to be enabled in

SQL_MODE. Otherwise, NULL values will be silently converted to the default value for the given data type, which is

probably not the desired behavior in this scenario.

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int,

 b varchar(50),

 c varchar(50)

);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD PRIMARY KEY (a);

Query OK, 0 rows affected (0.021 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int,

 b varchar(50),

 c varchar(50)

);

INSERT INTO tab VALUES (NULL, NULL, NULL);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD PRIMARY KEY (a);

ERROR 1265 (01000): Data truncated for column 'a' at row 1

And this fails:

CREATE OR REPLACE TABLE tab (

 a int,

 b varchar(50),

 c varchar(50)

);

INSERT INTO tab VALUES (1, NULL, NULL);

INSERT INTO tab VALUES (1, NULL, NULL);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD PRIMARY KEY (a);

ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

This applies to ALTER TABLE ... ADD PRIMARY KEY for InnoDB tables.

ALTER TABLE ... DROP PRIMARY KEY

InnoDB does not support dropping a primary key with ALGORITHM set to INPLACE in most cases.

If you try to do so, then you will see an error. InnoDB only supports this operation with ALGORITHM set to COPY .

Concurrent DML is *not* permitted.

However, there is an exception. If you are dropping a primary key, and adding a new one at the same time, then that

3068/4161

operation can be performed with ALGORITHM set to INPLACE . This operation supports the non-locking strategy. This

strategy can be explicitly chosen by setting the LOCK clause to NONE . When this strategy is used, all concurrent DML is

permitted.

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP PRIMARY KEY;

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Dropping a primary key is not

allowed without also adding a new primary key. Try ALGORITHM=COPY

But this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP PRIMARY KEY, ADD PRIMARY KEY (b);

Query OK, 0 rows affected (0.020 sec)

This applies to ALTER TABLE ... DROP PRIMARY KEY for InnoDB tables.

ALTER TABLE ... ADD INDEX and CREATE INDEX

This applies to ALTER TABLE ... ADD INDEX and CREATE INDEX for InnoDB tables.

Adding a Plain Index

InnoDB supports adding a plain index to a table with ALGORITHM set to INPLACE . The table is not rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD INDEX b_index (b);

Query OK, 0 rows affected (0.010 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

CREATE INDEX b_index ON tab (b);

Query OK, 0 rows affected (0.011 sec)

Adding a Fulltext Index

3069/4161

InnoDB supports adding a FULLTEXT index to a table with ALGORITHM set to INPLACE . The table is not rebuilt in some

cases.

However, there are some limitations, such as:

Adding a FULLTEXT index to a table that does not have a user-defined FTS_DOC_ID column will require the table to

be rebuilt once. When the table is rebuilt, the system adds a hidden FTS_DOC_ID column. From that point forward,

adding additional FULLTEXT indexes to the same table will not require the table to be rebuilt when ALGORITHM is

set to INPLACE .

Only one FULLTEXT index may be added at a time when ALGORITHM is set to INPLACE .

If a table has more than one FULLTEXT index, then it cannot be rebuilt by any ALTER TABLE operations when

ALGORITHM is set to INPLACE .

If a table has a FULLTEXT index, then it cannot be rebuilt by any ALTER TABLE operations when the LOCK clause is

set to NONE .

This operation supports a read-only locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

SHARED . When this strategy is used, read-only concurrent DML is permitted.

For example, this succeeds, but requires the table to be rebuilt, so that the hidden FTS_DOC_ID column can be added:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.055 sec)

And this succeeds in the same way as above:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

CREATE FULLTEXT INDEX b_index ON tab (b);

Query OK, 0 rows affected (0.041 sec)

And this succeeds, and the second command does not require the table to be rebuilt:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.043 sec)

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c);

Query OK, 0 rows affected (0.017 sec)

But this second command fails, because only one FULLTEXT index can be added at a time:

3070/4161

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.041 sec)

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c), ADD FULLTEXT INDEX d_index (d);

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: InnoDB presently supports one

FULLTEXT index creation at a time. Try ALGORITHM=COPY

And this third command fails, because a table cannot be rebuilt when it has more than one FULLTEXT index:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.040 sec)

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c);

Query OK, 0 rows affected (0.015 sec)

ALTER TABLE tab FORCE;

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: InnoDB presently supports one

FULLTEXT index creation at a time. Try ALGORITHM=COPY

Adding a Spatial Index

InnoDB supports adding a SPATIAL index to a table with ALGORITHM set to INPLACE .

However, there are some limitations, such as:

If a table has a SPATIAL index, then it cannot be rebuilt by any ALTER TABLE operations when the LOCK clause is

set to NONE .

This operation supports a read-only locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

SHARED . When this strategy is used, read-only concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD SPATIAL INDEX c_index (c);

Query OK, 0 rows affected (0.006 sec)

And this succeeds in the same way as above:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='INPLACE';

CREATE SPATIAL INDEX c_index ON tab (c);

Query OK, 0 rows affected (0.006 sec)

3071/4161

ALTER TABLE ... DROP INDEX and DROP INDEX

InnoDB supports dropping indexes from a table with ALGORITHM set to INPLACE .

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 INDEX b_index (b)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP INDEX b_index;

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 INDEX b_index (b)

);

SET SESSION alter_algorithm='INPLACE';

DROP INDEX b_index ON tab;

This applies to ALTER TABLE ... DROP INDEX and DROP INDEX for InnoDB tables.

ALTER TABLE ... ADD FOREIGN KEY

InnoDB supports adding foreign key constraints to a table with ALGORITHM set to INPLACE . In order to add a new

foreign key constraint to a table with ALGORITHM set to INPLACE , the foreign_key_checks system variable needs to be

set to OFF . If it is set to ON , then ALGORITHM=COPY is required.

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this fails:

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int

);

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab1 ADD FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a);

ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason: Adding foreign keys needs

foreign_key_checks=OFF. Try ALGORITHM=COPY

But this succeeds:

3072/4161

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int

);

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION foreign_key_checks=OFF;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab1 ADD FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a);

Query OK, 0 rows affected (0.011 sec)

This applies to ALTER TABLE ... ADD FOREIGN KEY for InnoDB tables.

ALTER TABLE ... DROP FOREIGN KEY

InnoDB supports dropping foreign key constraints from a table with ALGORITHM set to INPLACE .

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int,

 FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab1 DROP FOREIGN KEY tab2_fk;

Query OK, 0 rows affected (0.005 sec)

This applies to ALTER TABLE ... DROP FOREIGN KEY for InnoDB tables.

Table Operations

ALTER TABLE ... AUTO_INCREMENT=...

InnoDB supports changing a table's AUTO_INCREMENT value with ALGORITHM set to INPLACE . This operation should

finish instantly. The table is not rebuilt.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

3073/4161

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab AUTO_INCREMENT=100;

Query OK, 0 rows affected (0.004 sec)

This applies to ALTER TABLE ... AUTO_INCREMENT=... for InnoDB tables.

ALTER TABLE ... ROW_FORMAT=...

InnoDB supports changing a table's row format with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=DYNAMIC;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ROW_FORMAT=COMPRESSED;

Query OK, 0 rows affected (0.025 sec)

This applies to ALTER TABLE ... ROW_FORMAT=... for InnoDB tables.

ALTER TABLE ... KEY_BLOCK_SIZE=...

InnoDB supports changing a table's KEY_BLOCK_SIZE with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=COMPRESSED

 KEY_BLOCK_SIZE=4;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab KEY_BLOCK_SIZE=2;

Query OK, 0 rows affected (0.021 sec)

This applies to KEY_BLOCK_SIZE=... for InnoDB tables.

ALTER TABLE ... PAGE_COMPRESSED=... and ALTER TABLE ...
PAGE_COMPRESSION_LEVEL=...

In MariaDB 10.3.10 and later, InnoDB supports setting a table's PAGE_COMPRESSED value to 1 with ALGORITHM

set to INPLACE . InnoDB also supports changing a table's PAGE_COMPRESSED value from 1 to 0 with ALGORITHM

set to INPLACE .

In these versions, InnoDB also supports changing a table's PAGE_COMPRESSION_LEVEL value with ALGORITHM set to

3074/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/

INPLACE .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

See MDEV-16328 for more information.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab PAGE_COMPRESSED=1;

Query OK, 0 rows affected (0.006 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) PAGE_COMPRESSED=1;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab PAGE_COMPRESSED=0;

Query OK, 0 rows affected (0.020 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) PAGE_COMPRESSED=1

 PAGE_COMPRESSION_LEVEL=5;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab PAGE_COMPRESSION_LEVEL=4;

Query OK, 0 rows affected (0.006 sec)

This applies to PAGE_COMPRESSED=... and PAGE_COMPRESSION_LEVEL=... for InnoDB tables.

ALTER TABLE ... DROP SYSTEM VERSIONING

InnoDB supports dropping system versioning from a table with ALGORITHM set to INPLACE .

This operation supports the read-only locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

SHARED . When this strategy is used, read-only concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) WITH SYSTEM VERSIONING;

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP SYSTEM VERSIONING;

This applies to ALTER TABLE ... DROP SYSTEM VERSIONING for InnoDB tables.

ALTER TABLE ... DROP CONSTRAINT

In MariaDB 10.3.6 and later, InnoDB supports dropping a CHECK constraint from a table with ALGORITHM set to

INPLACE . See MDEV-16331 for more information.

3075/4161

https://jira.mariadb.org/browse/MDEV-16328
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://jira.mariadb.org/browse/MDEV-16331

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 CONSTRAINT b_not_empty CHECK (b != '')

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab DROP CONSTRAINT b_not_empty;

Query OK, 0 rows affected (0.004 sec)

This applies to ALTER TABLE ... DROP CONSTRAINT for InnoDB tables.

ALTER TABLE ... FORCE

InnoDB supports forcing a table rebuild with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab FORCE;

Query OK, 0 rows affected (0.022 sec)

This applies to ALTER TABLE ... FORCE for InnoDB tables.

ALTER TABLE ... ENGINE=InnoDB

InnoDB supports forcing a table rebuild with ALGORITHM set to INPLACE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ENGINE=InnoDB;

Query OK, 0 rows affected (0.022 sec)

This applies to ALTER TABLE ... ENGINE=InnoDB for InnoDB tables.

OPTIMIZE TABLE ...

InnoDB supports optimizing a table with ALGORITHM set to INPLACE .

3076/4161

If the innodb_defragment system variable is set to OFF , and if the innodb_optimize_fulltext_only system variable is also set

to OFF , then OPTIMIZE TABLE will be equivalent to ALTER TABLE & FORCE .

The table is rebuilt, which means that all of the data is reorganized substantially, and the indexes are rebuilt. As a result, the

operation is quite expensive.

If either of the previously mentioned system variables is set to ON , then OPTIMIZE TABLE will optimize some data without

rebuilding the table. However, the file size will not be reduced.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SHOW GLOBAL VARIABLES WHERE Variable_name IN('innodb_defragment', 'innodb_optimize_fulltext_only');

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| innodb_defragment | OFF |

| innodb_optimize_fulltext_only | OFF |

+-------------------------------+-------+

SET SESSION alter_algorithm='INPLACE';

OPTIMIZE TABLE tab;

+---------+----------+----------+---+

| Table | Op | Msg_type | Msg_text

+---------+----------+----------+---+

| db1.tab | optimize | note | Table does not support optimize, doing recreate + analyze instead

| db1.tab | optimize | status | OK

+---------+----------+----------+---+

2 rows in set (0.026 sec)

And this succeeds, but the table is not rebuilt:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET GLOBAL innodb_defragment=ON;

SHOW GLOBAL VARIABLES WHERE Variable_name IN('innodb_defragment', 'innodb_optimize_fulltext_only');

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| innodb_defragment | ON |

| innodb_optimize_fulltext_only | OFF |

+-------------------------------+-------+

SET SESSION alter_algorithm='INPLACE';

OPTIMIZE TABLE tab;

+---------+----------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------+----------+----------+----------+

| db1.tab | optimize | status | OK |

+---------+----------+----------+----------+

1 row in set (0.004 sec)

This applies to OPTIMIZE TABLE for InnoDB tables.

ALTER TABLE ... RENAME TO and RENAME TABLE ...

InnoDB supports renaming a table with ALGORITHM set to INPLACE .

This operation only changes the table's metadata, so the table does not have to be rebuilt.

This operation supports the exclusive locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

3077/4161

EXCLUSIVE . When this strategy is used, concurrent DML is not permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab RENAME TO old_tab;

Query OK, 0 rows affected (0.011 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

RENAME TABLE tab TO old_tab;

This applies to ALTER TABLE ... RENAME TO and RENAME TABLE for InnoDB tables.

Limitations

Limitations Related to Fulltext Indexes

If a table has more than one FULLTEXT index, then it cannot be rebuilt by any ALTER TABLE operations when

ALGORITHM is set to INPLACE .

If a table has a FULLTEXT index, then it cannot be rebuilt by any ALTER TABLE operations when the LOCK clause is

set to NONE .

Limitations Related to Spatial Indexes

If a table has a SPATIAL index, then it cannot be rebuilt by any ALTER TABLE operations when the LOCK clause is

set to NONE .

Limitations Related to Generated (Virtual and Persistent/Stored)
Columns

Generated columns do not currently support online DDL for all of the same operations that are supported for "real" columns.

See Generated (Virtual and Persistent/Stored) Columns: Statement Support for more information on the limitations.

5.3.2.19.3 InnoDB Online DDL Operations with
the NOCOPY Alter Algorithm

3078/4161

Contents
1. Supported Operations by Inheritance

2. Column Operations

1. ALTER TABLE ... ADD COLUMN

2. ALTER TABLE ... DROP COLUMN

3. ALTER TABLE ... MODIFY COLUMN

1. Reordering Columns

2. Changing the Data Type of a Column

3. Changing a Column to NULL

4. Changing a Column to NOT NULL

5. Adding a New ENUM Option

6. Adding a New SET Option

7. Removing System Versioning from a Column

4. ALTER TABLE ... ALTER COLUMN

1. Setting a Column's Default Value

2. Removing a Column's Default Value

5. ALTER TABLE ... CHANGE COLUMN

3. Index Operations

1. ALTER TABLE ... ADD PRIMARY KEY

2. ALTER TABLE ... DROP PRIMARY KEY

3. ALTER TABLE ... ADD INDEX and CREATE INDEX

1. Adding a Plain Index

2. Adding a Fulltext Index

3. Adding a Spatial Index

4. ALTER TABLE ... DROP INDEX and DROP INDEX

5. ALTER TABLE ... ADD FOREIGN KEY

6. ALTER TABLE ... DROP FOREIGN KEY

4. Table Operations

1. ALTER TABLE ... AUTO_INCREMENT=...

2. ALTER TABLE ... ROW_FORMAT=...

3. ALTER TABLE ... KEY_BLOCK_SIZE=...

4. ALTER TABLE ... PAGE_COMPRESSED=1 and ALTER TABLE ... PAGE_COMPRESSION_LEVEL=...

5. ALTER TABLE ... DROP SYSTEM VERSIONING

6. ALTER TABLE ... DROP CONSTRAINT

7. ALTER TABLE ... FORCE

8. ALTER TABLE ... ENGINE=InnoDB

9. OPTIMIZE TABLE ...

10. ALTER TABLE ... RENAME TO and RENAME TABLE ...

5. Limitations

1. Limitations Related to Generated (Virtual and Persistent/Stored) Columns

Supported Operations by Inheritance
When the ALGORITHM clause is set to NOCOPY , the supported operations are a superset of the operations that are

supported when the ALGORITHM clause is set to INSTANT .

Therefore, when the ALGORITHM clause is set to NOCOPY , some operations are supported by inheritance. See the

following additional pages for more information about these supported operations:

InnoDB Online DDL Operations with ALGORITHM=INSTANT

Column Operations

ALTER TABLE ... ADD COLUMN

In MariaDB 10.3.2 and later, InnoDB supports adding columns to a table with ALGORITHM set to NOCOPY in the cases

where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... ADD COLUMN for more information.

This applies to ALTER TABLE ... ADD COLUMN for InnoDB tables.

ALTER TABLE ... DROP COLUMN

In MariaDB 10.4 and later, InnoDB supports dropping columns from a table with ALGORITHM set to NOCOPY in the cases

where the operation supports having the ALGORITHM clause set to INSTANT .

3079/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... DROP COLUMN for more information.

This applies to ALTER TABLE ... DROP COLUMN for InnoDB tables.

ALTER TABLE ... MODIFY COLUMN

This applies to ALTER TABLE ... MODIFY COLUMN for InnoDB tables.

Reordering Columns

In MariaDB 10.4 and later, InnoDB supports reordering columns within a table with ALGORITHM set to NOCOPY in the

cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Reordering Columns for more information.

Changing the Data Type of a Column

InnoDB does not support modifying a column's data type with ALGORITHM set to NOCOPY in most cases. There are a few

exceptions in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Changing the Data Type of a Column for more

information.

Changing a Column to NULL

In MariaDB 10.4.3 and later, InnoDB supports modifying a column to allow NULL values with ALGORITHM set to NOCOPY

in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Changing a Column to NULL for more information.

Changing a Column to NOT NULL

InnoDB does not support modifying a column to not allow NULL values with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=REDUNDANT;

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab MODIFY COLUMN c varchar(50) NOT NULL;

ERROR 1845 (0A000): ALGORITHM=NOCOPY is not supported for this operation. Try ALGORITHM=INPLACE

Adding a New ENUM Option

InnoDB supports adding a new ENUM option to a column with ALGORITHM set to NOCOPY in the cases where the

operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Adding a New ENUM Option for more information.

Adding a New SET Option

InnoDB supports adding a new SET option to a column with ALGORITHM set to NOCOPY in the cases where the operation

supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Adding a New SET Option for more information.

Removing System Versioning from a Column

In MariaDB 10.3.8 and later, InnoDB supports removing system versioning from a column with ALGORITHM set to

NOCOPY in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Removing System Versioning from a Column for more

information.

3080/4161

https://mariadb.com/kb/en/mariadb-1038-release-notes/

ALTER TABLE ... ALTER COLUMN

This applies to ALTER TABLE ... ALTER COLUMN for InnoDB tables.

Setting a Column's Default Value

InnoDB supports modifying a column's DEFAULT value with ALGORITHM set to NOCOPY in the cases where the operation

supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Setting a Column's Default Value for more information.

Removing a Column's Default Value

InnoDB supports removing a column's DEFAULT value with ALGORITHM set to NOCOPY in the cases where the operation

supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: Removing a Column's Default Value for more

information.

ALTER TABLE ... CHANGE COLUMN

InnoDB supports renaming a column with ALGORITHM set to NOCOPY in the cases where the operation supports having

the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... CHANGE COLUMN for more

information.

This applies to ALTER TABLE ... CHANGE COLUMN for InnoDB tables.

Index Operations

ALTER TABLE ... ADD PRIMARY KEY

InnoDB does not support adding a primary key to a table with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int,

 b varchar(50),

 c varchar(50)

);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ADD PRIMARY KEY (a);

ERROR 1845 (0A000): ALGORITHM=NOCOPY is not supported for this operation. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... ADD PRIMARY KEY for InnoDB tables.

ALTER TABLE ... DROP PRIMARY KEY

InnoDB does not support dropping a primary key with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab DROP PRIMARY KEY;

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: Dropping a primary key is not

allowed without also adding a new primary key. Try ALGORITHM=COPY

This applies to ALTER TABLE ... DROP PRIMARY KEY for InnoDB tables.
3081/4161

ALTER TABLE ... ADD INDEX and CREATE INDEX

This applies to ALTER TABLE ... ADD INDEX and CREATE INDEX for InnoDB tables.

Adding a Plain Index

InnoDB supports adding a plain index to a table with ALGORITHM set to NOCOPY .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ADD INDEX b_index (b);

Query OK, 0 rows affected (0.009 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

CREATE INDEX b_index ON tab (b);

Query OK, 0 rows affected (0.009 sec)

Adding a Fulltext Index

InnoDB supports adding a FULLTEXT index to a table with ALGORITHM set to NOCOPY .

However, there are some limitations, such as:

Adding a FULLTEXT index to a table that does not have a user-defined FTS_DOC_ID column will require the table to

be rebuilt once. When the table is rebuilt, the system adds a hidden FTS_DOC_ID column. This initial operation will

have to be performed with ALGORITHM set to INPLACE .From that point forward, adding additional FULLTEXT

indexes to the same table will not require the table to be rebuilt, and ALGORITHM can be set to NOCOPY .

Only one FULLTEXT index may be added at a time when ALGORITHM is set to NOCOPY .

This operation supports a read-only locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

SHARED . When this strategy is used, read-only concurrent DML is permitted.

For example, this succeeds, but the first operation requires the table to be rebuilt ALGORITHM set to INPLACE , so that the

hidden FTS_DOC_ID column can be added:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.043 sec)

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c);

Query OK, 0 rows affected (0.017 sec)

And this succeeds in the same way as above:

3082/4161

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

CREATE FULLTEXT INDEX b_index ON tab (b);

Query OK, 0 rows affected (0.048 sec)

SET SESSION alter_algorithm='NOCOPY';

CREATE FULLTEXT INDEX c_index ON tab (c);

Query OK, 0 rows affected (0.016 sec)

But this second command fails, because only one FULLTEXT index can be added at a time:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.041 sec)

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c), ADD FULLTEXT INDEX d_index (d);

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: InnoDB presently supports one

FULLTEXT index creation at a time. Try ALGORITHM=COPY

Adding a Spatial Index

InnoDB supports adding a SPATIAL index to a table with ALGORITHM set to NOCOPY .

This operation supports a read-only locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

SHARED . When this strategy is used, read-only concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ADD SPATIAL INDEX c_index (c);

Query OK, 0 rows affected (0.005 sec)

And this succeeds in the same way as above:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='NOCOPY';

CREATE SPATIAL INDEX c_index ON tab (c);

Query OK, 0 rows affected (0.005 sec)

ALTER TABLE ... DROP INDEX and DROP INDEX

InnoDB supports dropping indexes from a table with ALGORITHM set to NOCOPY in the cases where the operation

supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... DROP INDEX and DROP INDEX for

more information.
3083/4161

This applies to ALTER TABLE ... DROP INDEX and DROP INDEX for InnoDB tables.

ALTER TABLE ... ADD FOREIGN KEY

InnoDB does supports adding foreign key constraints to a table with ALGORITHM set to NOCOPY . In order to add a new

foreign key constraint to a table with ALGORITHM set to NOCOPY , the foreign_key_checks system variable needs to be set

to OFF . If it is set to ON , then ALGORITHM=COPY is required.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this fails:

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int

);

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab1 ADD FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a);

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: Adding foreign keys needs

foreign_key_checks=OFF. Try ALGORITHM=COPY

But this succeeds:

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int

);

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION foreign_key_checks=OFF;

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab1 ADD FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a);

Query OK, 0 rows affected (0.011 sec)

This applies to ALTER TABLE ... ADD FOREIGN KEY for InnoDB tables.

ALTER TABLE ... DROP FOREIGN KEY

InnoDB supports dropping foreign key constraints from a table with ALGORITHM set to NOCOPY in the cases where the

operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... DROP FOREIGN KEY for more

information.

This applies to ALTER TABLE ... DROP FOREIGN KEY for InnoDB tables.

Table Operations

ALTER TABLE ... AUTO_INCREMENT=...

InnoDB supports changing a table's AUTO_INCREMENT value with ALGORITHM set to NOCOPY in the cases where the

operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... AUTO_INCREMENT=... for more
3084/4161

information.

This applies to ALTER TABLE ... AUTO_INCREMENT=... for InnoDB tables.

ALTER TABLE ... ROW_FORMAT=...

InnoDB does not support changing a table's row format with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=DYNAMIC;

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ROW_FORMAT=COMPRESSED;

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: Changing table options requires

the table to be rebuilt. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... ROW_FORMAT=... for InnoDB tables.

ALTER TABLE ... KEY_BLOCK_SIZE=...

InnoDB does not support changing a table's KEY_BLOCK_SIZE with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=COMPRESSED

 KEY_BLOCK_SIZE=4;

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab KEY_BLOCK_SIZE=2;

ERROR 1846 (0A000): ALGORITHM=NOCOPY is not supported. Reason: Changing table options requires

the table to be rebuilt. Try ALGORITHM=INPLACE

This applies to KEY_BLOCK_SIZE=... for InnoDB tables.

ALTER TABLE ... PAGE_COMPRESSED=1 and ALTER TABLE ...
PAGE_COMPRESSION_LEVEL=...

In MariaDB 10.3.10 and later, InnoDB supports setting a table's PAGE_COMPRESSED value to 1 with ALGORITHM

set to NOCOPY in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

InnoDB does not support changing a table's PAGE_COMPRESSED value from 1 to 0 with ALGORITHM set to NOCOPY .

In these versions, InnoDB also supports changing a table's PAGE_COMPRESSION_LEVEL value with ALGORITHM set to

NOCOPY in the cases where the operation supports having the ALGORITHM clause is set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... PAGE_COMPRESSED=1 and ALTER

TABLE ... PAGE_COMPRESSION_LEVEL=... for more information.

This applies to ALTER TABLE ... PAGE_COMPRESSED=... and ALTER TABLE ... PAGE_COMPRESSION_LEVEL=... for

InnoDB tables.

ALTER TABLE ... DROP SYSTEM VERSIONING

InnoDB does not support dropping system versioning from a table with ALGORITHM set to NOCOPY .

For example:

3085/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) WITH SYSTEM VERSIONING;

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab DROP SYSTEM VERSIONING;

ERROR 1845 (0A000): ALGORITHM=NOCOPY is not supported for this operation. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... DROP SYSTEM VERSIONING for InnoDB tables.

ALTER TABLE ... DROP CONSTRAINT

In MariaDB 10.3.6 and later, InnoDB supports dropping a CHECK constraint from a table with ALGORITHM set to

NOCOPY in the cases where the operation supports having the ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... DROP CONSTRAINT for more

information.

This applies to ALTER TABLE ... DROP CONSTRAINT for InnoDB tables.

ALTER TABLE ... FORCE

InnoDB does not support forcing a table rebuild with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab FORCE;

ERROR 1845 (0A000): ALGORITHM=NOCOPY is not supported for this operation. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... FORCE for InnoDB tables.

ALTER TABLE ... ENGINE=InnoDB

InnoDB does not support forcing a table rebuild with ALGORITHM set to NOCOPY .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='NOCOPY';

ALTER TABLE tab ENGINE=InnoDB;

ERROR 1845 (0A000): ALGORITHM=NOCOPY is not supported for this operation. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... ENGINE=InnoDB for InnoDB tables.

OPTIMIZE TABLE ...

InnoDB does not support optimizing a table with with ALGORITHM set to NOCOPY .

For example:

3086/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SHOW GLOBAL VARIABLES WHERE Variable_name IN('innodb_defragment',

'innodb_optimize_fulltext_only');

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| innodb_defragment | OFF |

| innodb_optimize_fulltext_only | OFF |

+-------------------------------+-------+

2 rows in set (0.001 sec)

SET SESSION alter_algorithm='NOCOPY';

OPTIMIZE TABLE tab;

+---------+----------+----------+--

-----------------+

| Table | Op | Msg_type | Msg_text

|

+---------+----------+----------+--

-----------------+

| db1.tab | optimize | note | Table does not support optimize, doing recreate + analyze

instead |

| db1.tab | optimize | error | ALGORITHM=NOCOPY is not supported for this operation. Try

ALGORITHM=INPLACE |

| db1.tab | optimize | status | Operation failed

|

+---------+----------+----------+--

-----------------+

3 rows in set, 1 warning (0.002 sec)

This applies to OPTIMIZE TABLE for InnoDB tables.

ALTER TABLE ... RENAME TO and RENAME TABLE ...

InnoDB supports renaming a table with ALGORITHM set to NOCOPY in the cases where the operation supports having the

ALGORITHM clause set to INSTANT .

See InnoDB Online DDL Operations with ALGORITHM=INSTANT: ALTER TABLE ... RENAME TO and RENAME TABLE ...

for more information.

This applies to ALTER TABLE ... RENAME TO and RENAME TABLE for InnoDB tables.

Limitations

Limitations Related to Generated (Virtual and Persistent/Stored)
Columns

Generated columns do not currently support online DDL for all of the same operations that are supported for "real" columns.

See Generated (Virtual and Persistent/Stored) Columns: Statement Support for more information on the limitations.

5.3.2.19.4 InnoDB Online DDL Operations with
the INSTANT Alter Algorithm

3087/4161

Contents
1. Column Operations

1. ALTER TABLE ... ADD COLUMN

2. ALTER TABLE ... DROP COLUMN

3. ALTER TABLE ... MODIFY COLUMN

1. Reordering Columns

2. Changing the Data Type of a Column

3. Changing a Column to NULL

4. Changing a Column to NOT NULL

5. Adding a New ENUM Option

6. Adding a New SET Option

7. Removing System Versioning from a Column

4. ALTER TABLE ... ALTER COLUMN

1. Setting a Column's Default Value

2. Removing a Column's Default Value

5. ALTER TABLE ... CHANGE COLUMN

2. Index Operations

1. ALTER TABLE ... ADD PRIMARY KEY

2. ALTER TABLE ... DROP PRIMARY KEY

3. ALTER TABLE ... ADD INDEX and CREATE INDEX

1. Adding a Plain Index

2. Adding a Fulltext Index

3. Adding a Spatial Index

4. ALTER TABLE ... ADD FOREIGN KEY

5. ALTER TABLE ... DROP FOREIGN KEY

3. Table Operations

1. ALTER TABLE ... AUTO_INCREMENT=...

2. ALTER TABLE ... ROW_FORMAT=...

3. ALTER TABLE ... KEY_BLOCK_SIZE=...

4. ALTER TABLE ... PAGE_COMPRESSED=1 and ALTER TABLE ... PAGE_COMPRESSION_LEVEL=...

5. ALTER TABLE ... DROP SYSTEM VERSIONING

6. ALTER TABLE ... DROP CONSTRAINT

7. ALTER TABLE ... FORCE

8. ALTER TABLE ... ENGINE=InnoDB

9. OPTIMIZE TABLE ...

10. ALTER TABLE ... RENAME TO and RENAME TABLE ...

4. Limitations

1. Limitations Related to Generated (Virtual and Persistent/Stored) Columns

2. Non-canonical Storage Format Caused by Some Operations

3. Known Bugs

1. Closed Bugs

Column Operations

ALTER TABLE ... ADD COLUMN

In MariaDB 10.3.2 and later, InnoDB supports adding columns to a table with ALGORITHM set to INSTANT if the new

column is the last column in the table. See MDEV-11369 for more information. If the table has a hidden FTS_DOC_ID

column is present, then this is not supported.

In MariaDB 10.4 and later, InnoDB supports adding columns to a table with ALGORITHM set to INSTANT , regardless of

where in the column list the new column is added.

When this operation is performed with ALGORITHM set to INSTANT , the tablespace file will have a non-canonical storage

format. See Non-canonical Storage Format Caused by Some Operations for more information.

With the exception of adding an auto-increment column, this operation supports the non-locking strategy. This strategy can

be explicitly chosen by setting the LOCK clause to NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

3088/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://jira.mariadb.org/browse/MDEV-11369

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD COLUMN c varchar(50);

Query OK, 0 rows affected (0.004 sec)

And this succeeds in MariaDB 10.4 and later:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD COLUMN c varchar(50) AFTER a;

Query OK, 0 rows affected (0.004 sec)

This applies to ALTER TABLE ... ADD COLUMN for InnoDB tables.

See Instant ADD COLUMN for InnoDB for more information.

ALTER TABLE ... DROP COLUMN

In MariaDB 10.4 and later, InnoDB supports dropping columns from a table with ALGORITHM set to INSTANT . See MDEV-

15562 for more information.

When this operation is performed with ALGORITHM set to INSTANT , the tablespace file will have a non-canonical storage

format. See Non-canonical Storage Format Caused by Some Operations for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab DROP COLUMN c;

Query OK, 0 rows affected (0.004 sec)

This applies to ALTER TABLE ... DROP COLUMN for InnoDB tables.

ALTER TABLE ... MODIFY COLUMN

This applies to ALTER TABLE ... MODIFY COLUMN for InnoDB tables.

Reordering Columns

In MariaDB 10.4 and later, InnoDB supports reordering columns within a table with ALGORITHM set to INSTANT . See

MDEV-15562 for more information.

When this operation is performed with ALGORITHM set to INSTANT , the tablespace file will have a non-canonical storage

format. See Non-canonical Storage Format Caused by Some Operations for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

3089/4161

https://jira.mariadb.org/browse/MDEV-15562
https://jira.mariadb.org/browse/MDEV-15562

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(50) AFTER a;

Query OK, 0 rows affected (0.004 sec)

Changing the Data Type of a Column

InnoDB does not support modifying a column's data type with ALGORITHM set to INSTANT in most cases. There are

some exceptions:

InnoDB supports increasing the length of VARCHAR columns with ALGORITHM set to INSTANT , unless it would

require changing the number of bytes requires to represent the column's length. A VARCHAR column that is between

0 and 255 bytes in size requires 1 byte to represent its length, while a VARCHAR column that is 256 bytes or longer

requires 2 bytes to represent its length. This means that the length of a column cannot be increased with

ALGORITHM set to INSTANT if the original length was less than 256 bytes, and the new length is 256 bytes or more.

In MariaDB 10.4.3 and later, InnoDB supports increasing the length of VARCHAR columns with ALGORITHM set to

INSTANT with no restrictions if the ROW_FORMAT table option is set to REDUNDANT. See MDEV-15563 for

more information.

In MariaDB 10.4.3 and later, InnoDB also supports increasing the length of VARCHAR columns with ALGORITHM set

to INSTANT in a more limited manner if the ROW_FORMAT table option is set to COMPACT, DYNAMIC, or

COMPRESSED. In this scenario, the following limitations apply:

The length can be increased with ALGORITHM set to INSTANT if the original length of the column is 127

bytes or less, and the new length of the column is 256 bytes or more.

The length can be increased with ALGORITHM set to INSTANT if the original length of the column is 255

bytes or less, and the new length of the column is still 255 bytes or less.

The length can be increased with ALGORITHM set to INSTANT if the original length of the column is 256

bytes or more, and the new length of the column is still 256 bytes or more.

The length can not be increased with ALGORITHM set to INSTANT if the original length was between 128

bytes and 255 bytes, and the new length is 256 bytes or more.

See MDEV-15563 for more information.

The supported operations in this category support the non-locking strategy. This strategy can be explicitly chosen by setting

the LOCK clause to NONE . When this strategy is used, all concurrent DML is permitted.

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c int;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

But this succeeds because the original length of the column is less than 256 bytes, and the new length is still less than 256

bytes:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) CHARACTER SET=latin1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(100);

Query OK, 0 rows affected (0.005 sec)

But this fails because the original length of the column is between 128 bytes and 255 bytes, and the new length is greater

than 256 bytes:

3090/4161

https://jira.mariadb.org/browse/MDEV-15563
https://jira.mariadb.org/browse/MDEV-15563

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(255)

) CHARACTER SET=latin1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(256);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

But this succeeds in MariaDB 10.4.3 and later because the table has ROW_FORMAT=REDUNDANT :

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(200)

) ROW_FORMAT=REDUNDANT;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(300);

Query OK, 0 rows affected (0.004 sec)

And this succeeds in MariaDB 10.4.3 and later because the table has ROW_FORMAT=DYNAMIC and the column's original

length is 127 bytes or less:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(127)

) ROW_FORMAT=DYNAMIC

 CHARACTER SET=latin1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(300);

Query OK, 0 rows affected (0.003 sec)

And this succeeds in MariaDB 10.4.3 and later because the table has ROW_FORMAT=COMPRESSED and the column's original

length is 127 bytes or less:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(127)

) ROW_FORMAT=COMPRESSED

 CHARACTER SET=latin1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(300);

Query OK, 0 rows affected (0.003 sec)

But this fails even in MariaDB 10.4.3 and later because the table has ROW_FORMAT=DYNAMIC and the column's original

length is between 128 bytes and 255 bytes:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(128)

) ROW_FORMAT=DYNAMIC

 CHARACTER SET=latin1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(300);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

Changing a Column to NULL

3091/4161

In MariaDB 10.4.3 and later, InnoDB supports modifying a column to allow NULL values with ALGORITHM set to INSTANT

if the ROW_FORMAT table option is set to REDUNDANT. See MDEV-15563 for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) NOT NULL

) ROW_FORMAT=REDUNDANT;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(50) NULL;

Query OK, 0 rows affected (0.004 sec)

Changing a Column to NOT NULL

InnoDB does not support modifying a column to not allow NULL values with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=REDUNDANT;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(50) NOT NULL;

ERROR 1845 (0A000): ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE

Adding a New ENUM Option

InnoDB supports adding a new ENUM option to a column with ALGORITHM set to INSTANT . In order to add a new ENUM

option with ALGORITHM set to INSTANT , the following requirements must be met:

It must be added to the end of the list.

The storage requirements must not change.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c ENUM('red', 'green')

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c ENUM('red', 'green', 'blue');

Query OK, 0 rows affected (0.002 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c ENUM('red', 'green')

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c ENUM('red', 'blue', 'green');

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

3092/4161

https://jira.mariadb.org/browse/MDEV-15563

Adding a New SET Option

InnoDB supports adding a new SET option to a column with ALGORITHM set to INSTANT . In order to add a new SET

option with ALGORITHM set to INSTANT , the following requirements must be met:

It must be added to the end of the list.

The storage requirements must not change.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c SET('red', 'green')

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c SET('red', 'green', 'blue');

Query OK, 0 rows affected (0.002 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c SET('red', 'green')

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c SET('red', 'blue', 'green');

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

Removing System Versioning from a Column

In MariaDB 10.3.8 and later, InnoDB supports removing system versioning from a column with ALGORITHM set to

INSTANT . In order for this to work, the system_versioning_alter_history system variable must be set to KEEP . See MDEV-

16330 for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) WITH SYSTEM VERSIONING

);

SET SESSION system_versioning_alter_history='KEEP';

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab MODIFY COLUMN c varchar(50) WITHOUT SYSTEM VERSIONING;

Query OK, 0 rows affected (0.004 sec)

ALTER TABLE ... ALTER COLUMN

This applies to ALTER TABLE ... ALTER COLUMN for InnoDB tables.

Setting a Column's Default Value

InnoDB supports modifying a column's DEFAULT value with ALGORITHM set to INSTANT .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

3093/4161

https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://jira.mariadb.org/browse/MDEV-16330

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ALTER COLUMN c SET DEFAULT 'No value explicitly provided.';

Query OK, 0 rows affected (0.003 sec)

Removing a Column's Default Value

InnoDB supports removing a column's DEFAULT value with ALGORITHM set to INSTANT .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50) DEFAULT 'No value explicitly provided.'

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ALTER COLUMN c DROP DEFAULT;

Query OK, 0 rows affected (0.002 sec)

ALTER TABLE ... CHANGE COLUMN

InnoDB supports renaming a column with ALGORITHM set to INSTANT , unless the column's data type or attributes

changed in addition to the name.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab CHANGE COLUMN c str varchar(50);

Query OK, 0 rows affected (0.004 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab CHANGE COLUMN c num int;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Cannot change column type

INPLACE. Try ALGORITHM=COPY

This applies to ALTER TABLE ... CHANGE COLUMN for InnoDB tables.

Index Operations

ALTER TABLE ... ADD PRIMARY KEY

InnoDB does not support adding a primary key to a table with ALGORITHM set to INSTANT .

3094/4161

For example:

CREATE OR REPLACE TABLE tab (

 a int,

 b varchar(50),

 c varchar(50)

);

SET SESSION sql_mode='STRICT_TRANS_TABLES';

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD PRIMARY KEY (a);

ERROR 1845 (0A000): ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE

This applies to ALTER TABLE ... ADD PRIMARY KEY for InnoDB tables.

ALTER TABLE ... DROP PRIMARY KEY

InnoDB does not support dropping a primary key with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab DROP PRIMARY KEY;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Dropping a primary key is not

allowed without also adding a new primary key. Try ALGORITHM=COPY

This applies to ALTER TABLE ... DROP PRIMARY KEY for InnoDB tables.

ALTER TABLE ... ADD INDEX and CREATE INDEX

This applies to ALTER TABLE ... ADD INDEX and CREATE INDEX for InnoDB tables.

Adding a Plain Index

InnoDB does not support adding a plain index to a table with ALGORITHM set to INSTANT .

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD INDEX b_index (b);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

And this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

CREATE INDEX b_index ON tab (b);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

Adding a Fulltext Index

3095/4161

InnoDB does not support adding a FULLTEXT index to a table with ALGORITHM set to INSTANT .

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD FULLTEXT INDEX b_index (b);

Query OK, 0 rows affected (0.042 sec)

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD FULLTEXT INDEX c_index (c);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

And this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INPLACE';

CREATE FULLTEXT INDEX b_index ON tab (b);

Query OK, 0 rows affected (0.040 sec)

SET SESSION alter_algorithm='INSTANT';

CREATE FULLTEXT INDEX c_index ON tab (c);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

Adding a Spatial Index

InnoDB does not support adding a SPATIAL index to a table with ALGORITHM set to INSTANT .

For example, this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ADD SPATIAL INDEX c_index (c);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

And this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c GEOMETRY NOT NULL

);

SET SESSION alter_algorithm='INSTANT';

CREATE SPATIAL INDEX c_index ON tab (c);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

ALTER TABLE ... ADD FOREIGN KEY

InnoDB does not support adding foreign key constraints to a table with ALGORITHM set to INSTANT .

For example:

3096/4161

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int

);

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

SET SESSION foreign_key_checks=OFF;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab1 ADD FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a);

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: ADD INDEX. Try ALGORITHM=NOCOPY

This applies to ALTER TABLE ... ADD FOREIGN KEY for InnoDB tables.

ALTER TABLE ... DROP FOREIGN KEY

InnoDB supports dropping foreign key constraints from a table with ALGORITHM set to INSTANT .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab2 (

 a int PRIMARY KEY,

 b varchar(50)

);

CREATE OR REPLACE TABLE tab1 (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 d int,

 FOREIGN KEY tab2_fk (d) REFERENCES tab2 (a)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab1 DROP FOREIGN KEY tab2_fk;

Query OK, 0 rows affected (0.004 sec)

This applies to ALTER TABLE ... DROP FOREIGN KEY for InnoDB tables.

Table Operations

ALTER TABLE ... AUTO_INCREMENT=...

InnoDB supports changing a table's AUTO_INCREMENT value with ALGORITHM set to INSTANT .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab AUTO_INCREMENT=100;

Query OK, 0 rows affected (0.002 sec)

This applies to ALTER TABLE ... AUTO_INCREMENT=... for InnoDB tables.

3097/4161

ALTER TABLE ... ROW_FORMAT=...

InnoDB does not support changing a table's row format with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=DYNAMIC;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ROW_FORMAT=COMPRESSED;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Changing table options requires

the table to be rebuilt. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... ROW_FORMAT=... for InnoDB tables.

ALTER TABLE ... KEY_BLOCK_SIZE=...

InnoDB does not support changing a table's KEY_BLOCK_SIZE with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) ROW_FORMAT=COMPRESSED

 KEY_BLOCK_SIZE=4;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab KEY_BLOCK_SIZE=2;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Changing table options requires

the table to be rebuilt. Try ALGORITHM=INPLACE

This applies to KEY_BLOCK_SIZE=... for InnoDB tables.

ALTER TABLE ... PAGE_COMPRESSED=1 and ALTER TABLE ...
PAGE_COMPRESSION_LEVEL=...

In MariaDB 10.3.10 and later, InnoDB supports setting a table's PAGE_COMPRESSED value to 1 with ALGORITHM

set to INSTANT . InnoDB does not support changing a table's PAGE_COMPRESSED value from 1 to 0 with

ALGORITHM set to INSTANT .

In these versions, InnoDB also supports changing a table's PAGE_COMPRESSION_LEVEL value with ALGORITHM set to

INSTANT .

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

See MDEV-16328 for more information.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab PAGE_COMPRESSED=1;

Query OK, 0 rows affected (0.004 sec)

And this succeeds:

3098/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://jira.mariadb.org/browse/MDEV-16328

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) PAGE_COMPRESSED=1

 PAGE_COMPRESSION_LEVEL=5;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab PAGE_COMPRESSION_LEVEL=4;

Query OK, 0 rows affected (0.004 sec)

But this fails:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) PAGE_COMPRESSED=1;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab PAGE_COMPRESSED=0;

ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Changing table options requires

the table to be rebuilt. Try ALGORITHM=INPLACE

This applies to ALTER TABLE ... PAGE_COMPRESSED=... and ALTER TABLE ... PAGE_COMPRESSION_LEVEL=... for

InnoDB tables.

ALTER TABLE ... DROP SYSTEM VERSIONING

InnoDB does not support dropping system versioning from a table with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

) WITH SYSTEM VERSIONING;

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab DROP SYSTEM VERSIONING;

ERROR 1845 (0A000): ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE

This applies to ALTER TABLE ... DROP SYSTEM VERSIONING for InnoDB tables.

ALTER TABLE ... DROP CONSTRAINT

In MariaDB 10.3.6 and later, InnoDB supports dropping a CHECK constraint from a table with ALGORITHM set to

INSTANT . See MDEV-16331 for more information.

This operation supports the non-locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

NONE . When this strategy is used, all concurrent DML is permitted.

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50),

 CONSTRAINT b_not_empty CHECK (b != '')

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab DROP CONSTRAINT b_not_empty;

Query OK, 0 rows affected (0.002 sec)

This applies to ALTER TABLE ... DROP CONSTRAINT for InnoDB tables.

3099/4161

https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://jira.mariadb.org/browse/MDEV-16331

ALTER TABLE ... FORCE

InnoDB does not support forcing a table rebuild with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab FORCE;

ERROR 1845 (0A000): ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE

This applies to ALTER TABLE ... FORCE for InnoDB tables.

ALTER TABLE ... ENGINE=InnoDB

InnoDB does not support forcing a table rebuild with ALGORITHM set to INSTANT .

For example:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab ENGINE=InnoDB;

ERROR 1845 (0A000): ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE

This applies to ALTER TABLE ... ENGINE=InnoDB for InnoDB tables.

OPTIMIZE TABLE ...

InnoDB does not support optimizing a table with with ALGORITHM set to INSTANT .

For example:

3100/4161

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SHOW GLOBAL VARIABLES WHERE Variable_name IN('innodb_defragment',

'innodb_optimize_fulltext_only');

+-------------------------------+-------+

| Variable_name | Value |

+-------------------------------+-------+

| innodb_defragment | OFF |

| innodb_optimize_fulltext_only | OFF |

+-------------------------------+-------+

2 rows in set (0.001 sec)

SET SESSION alter_algorithm='INSTANT';

OPTIMIZE TABLE tab;

+---------+----------+----------+--

------------------+

| Table | Op | Msg_type | Msg_text

|

+---------+----------+----------+--

------------------+

| db1.tab | optimize | note | Table does not support optimize, doing recreate + analyze

instead |

| db1.tab | optimize | error | ALGORITHM=INSTANT is not supported for this operation. Try

ALGORITHM=INPLACE |

| db1.tab | optimize | status | Operation failed

|

+---------+----------+----------+--

------------------+

3 rows in set, 1 warning (0.002 sec)

This applies to OPTIMIZE TABLE for InnoDB tables.

ALTER TABLE ... RENAME TO and RENAME TABLE ...

InnoDB supports renaming a table with ALGORITHM set to INSTANT .

This operation supports the exclusive locking strategy. This strategy can be explicitly chosen by setting the LOCK clause to

EXCLUSIVE . When this strategy is used, concurrent DML is not permitted.

For example, this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

ALTER TABLE tab RENAME TO old_tab;

Query OK, 0 rows affected (0.008 sec)

And this succeeds:

CREATE OR REPLACE TABLE tab (

 a int PRIMARY KEY,

 b varchar(50),

 c varchar(50)

);

SET SESSION alter_algorithm='INSTANT';

RENAME TABLE tab TO old_tab;

Query OK, 0 rows affected (0.008 sec)

This applies to ALTER TABLE ... RENAME TO and RENAME TABLE for InnoDB tables.

3101/4161

Limitations

Limitations Related to Generated (Virtual and Persistent/Stored)
Columns

Generated columns do not currently support online DDL for all of the same operations that are supported for "real" columns.

See Generated (Virtual and Persistent/Stored) Columns: Statement Support for more information on the limitations.

Non-canonical Storage Format Caused by Some Operations

Some operations cause a table's tablespace file to use a non-canonical storage format when the INSTANT algorithm is

used. The affected operations include:

Adding a column.

Dropping a column.

Reordering columns.

These operations require the following non-canonical changes to the storage format:

A hidden metadata record at the start of the clustered index is used to store each column's DEFAULT value. This

makes it possible to add new columns that have default values without rebuilding the table.

A BLOB in the hidden metadata record is used to store column mappings. This makes it possible to drop or reorder

columns without rebuilding the table. This also makes it possible to add columns to any position or drop columns from

any position in the table without rebuilding the table.

If a column is dropped, old records will contain garbage in that column's former position, and new records will be

written with NULL values, empty strings, or dummy values.

This non-canonical storage format has the potential to incur some performance or storage overhead for all subsequent DML

operations. If you notice some issues like this and you want to normalize a table's storage format to avoid this problem, then

you can do so by forcing a table rebuild by executing ALTER TABLE ... FORCE with ALGORITHM set to INPLACE . For

example:

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab FORCE;

Query OK, 0 rows affected (0.008 sec)

However, keep in mind that there are certain scenarios where you may not be able to rebuild the table with ALGORITHM set

to INPLACE . See InnoDB Online DDL Operations with ALGORITHM=INPLACE: Limitations for more information on those

cases. If you hit one of those scenarios, but you still want to rebuild the table, then you would have to do so with

ALGORITHM set to COPY .

Known Bugs

There are some known bugs that could lead to issues when an InnoDB DDL operation is performed using the INSTANT

algorithm. This algorithm will usually be chosen by default if the operation supports the algorithm.

The effect of many of these bugs is that the table seems to forget that its tablespace file is in the non-canonical storage

format.

If you are concerned that a table may be affected by one of these bugs, then your best option would be to normalize the

table structure. This can be done by rebuilding the table. For example:

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab FORCE;

Query OK, 0 rows affected (0.008 sec)

If you are concerned about these bugs, and you want to perform an operation that supports the INSTANT algorithm, but you

want to avoid using that algorithm, then you can set the algorithm to INPLACE and add the FORCE keyword to the ALTER

TABLE statement:

SET SESSION alter_algorithm='INPLACE';

ALTER TABLE tab ADD COLUMN c varchar(50), FORCE;

Closed Bugs

MDEV-20066 : This bug could cause a table to become corrupt if a column was added instantly. It is fixed in

3102/4161

https://jira.mariadb.org/browse/MDEV-20066

MariaDB 10.3.18 and MariaDB 10.4.8.

MDEV-20117 : This bug could cause a table to become corrupt if a column was dropped instantly. It is fixed in

MariaDB 10.4.9.

MDEV-19743 : This bug could cause a table to become corrupt during page reorganization if a column was added

instantly. It is fixed in MariaDB 10.3.17 and MariaDB 10.4.7.

MDEV-19783 : This bug could cause a table to become corrupt if a column was added instantly. It is fixed in

MariaDB 10.3.17 and MariaDB 10.4.7

MDEV-20090 : This bug could cause a table to become corrupt if columns were added, dropped, or reordered

instantly. It is fixed in MariaDB 10.4.9.

MDEV-18519 : This bug could cause a table to become corrupt if a column was added instantly. It is fixed in

MariaDB 10.6.9, MariaDB 10.7.5 , MariaDB 10.8.4 and MariaDB 10.9.2.

MDEV-18519 : This bug could cause a table to become corrupt if a column was added instantly. This isn't and won't

be fixed in versions less than MariaDB 10.6.

5.3.2.19.5 Instant ADD COLUMN for InnoDB
Contents
1. Limitations

2. Example

Normally, adding a column to a table requires the full table to be rebuilt. The complexity of the operation is proportional to

the size of the table, or O(n·m) where n is the number of rows in the table and m is the number of indexes.

In MariaDB 10.0 and later, the ALTER TABLE statement supports online DDL for storage engines that have implemented

the relevant online DDL algorithms and locking strategies.

The InnoDB storage engine has implemented online DDL for many operations. These online DDL optimizations allow

concurrent DML to the table in many cases, even if the table needs to be rebuilt.

See InnoDB Online DDL Overview for more information about online DDL with InnoDB.

Allowing concurrent DML during the operation does not solve all problems. When a column was added to a table with the

older in-place optimization, the resulting table rebuild could still significantly increase the I/O and memory consumption and

cause replication lag.

In contrast, with the new instant ALTER TABLE ... ADD COLUMN, all that is needed is an O(log n) operation to insert a

special hidden record into the table, and an update of the data dictionary. For a large table, instead of taking several hours,

the operation would be completed in the blink of an eye. The ALTER TABLE ... ADD COLUMN operation is only slightly

more expensive than a regular INSERT, due to locking constraints.

In the past, some developers may have implemented a kind of "instant add column" in the application by encoding multiple

columns in a single TEXT or BLOB column. MariaDB Dynamic Columns was an early example of that. A more recent

example is JSON and related string manipulation functions.

Adding real columns has the following advantages over encoding columns into a single "expandable" column:

Efficient storage in a native binary format

Data type safety

Indexes can be built natively

Constraints are available: UNIQUE, CHECK, FOREIGN KEY

DEFAULT values can be specified

Triggers can be written more easily

With instant ALTER TABLE ... ADD COLUMN, you can enjoy all the benefits of structured storage without the drawback of

having to rebuild the table.

Instant ALTER TABLE ... ADD COLUMN is available for both old and new InnoDB tables. Basically you can just upgrade

from MySQL 5.x or MariaDB and start adding columns instantly.

Columns instantly added to a table exist in a separate data structure from the main table definition, similar to how InnoDB

separates BLOB columns. If the table ever becomes empty, (such as from TRUNCATE or DELETE statements), InnoDB

incorporates the instantly added columns into the main table definition. See InnoDB Online DDL Operations with

ALGORITHM=INSTANT: Non-canonical Storage Format Caused by Some Operations for more information.

The operation is also crash safe. If the server is killed while executing an instant ALTER TABLE ... ADD COLUMN, when

the table is restored InnoDB integrates the new column, flattening the table definition.

Limitations
In MariaDB 10.3, instant ALTER TABLE ... ADD COLUMN only applies when the added columns appear last in the

table. The place specifier LAST is the default. If AFTER col is specified, then col must be the last column, or the

3103/4161

https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://jira.mariadb.org/browse/MDEV-20117
https://jira.mariadb.org/browse/MDEV-19743
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://jira.mariadb.org/browse/MDEV-19783
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://jira.mariadb.org/browse/MDEV-20090
https://jira.mariadb.org/browse/MDEV-18519
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://jira.mariadb.org/browse/MDEV-18519

operation will require the table to be rebuilt. In MariaDB 10.4, this restriction was lifted.

If the table contains a hidden FTS_DOC_ID column due to a FULLTEXT INDEX, then instant ALTER TABLE ... ADD

COLUMN will not be possible.

InnoDB data files after instant ALTER TABLE ... ADD COLUMN cannot be imported to older versions of MariaDB or

MySQL without first being rebuilt.

After using Instant ALTER TABLE ... ADD COLUMN, any table-rebuilding operation such as ALTER TABLE &

FORCE will incorporate instantaneously added columns into the main table body.

Instant ALTER TABLE ... ADD COLUMN is not available for ROW_FORMAT=COMPRESSED.

In MariaDB 10.3, ALTER TABLE & DROP COLUMN requires the table to be rebuilt. In MariaDB 10.4, this restriction

was lifted.

Example

CREATE TABLE t(id INT PRIMARY KEY, u INT UNSIGNED NOT NULL UNIQUE)

ENGINE=InnoDB;

INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);

ALTER TABLE t ADD COLUMN

(d DATETIME DEFAULT current_timestamp(),

 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'),

 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox jumps over the lazy dog');

UPDATE t SET t=NULL WHERE id=3;

SELECT id,u,d,ST_AsText(p),t FROM t;

SELECT variable_value FROM information_schema.global_status

WHERE variable_name = 'innodb_instant_alter_column';

The above example illustrates that when the added columns are declared NOT NULL, a DEFAULT value must be available,

either implied by the data type or set explicitly by the user. The expression need not be constant, but it must not refer to the

columns of the table, such as DEFAULT u+1 (a MariaDB extension). The DEFAULT current_timestamp() would be

evaluated at the time of the ALTER TABLE and apply to each row, like it does for non-instant ALTER TABLE. If a

subsequent ALTER TABLE changes the DEFAULT value for subsequent INSERT, the values of the columns in existing

records will naturally be unaffected.

The design was brainstormed in April by engineers from MariaDB Corporation, Alibaba and Tencent. A prototype was

developed by Vin Chen (Þÿã) from the Tencent Game DBA Team.

5.3.2.20 Binary Log Group Commit and InnoDB
Flushing Performance

Contents
1. Overview

2. Switching to Old Flushing Behavior

1. Non-durable Binary Log Settings

2. Recent Transactions Missing from Backups

MariaDB 10.0 introduced a performance improvement related to group commit that affects the performance of flushing

InnoDB transactions when the binary log is enabled.

Overview
In MariaDB 10.0 and above, when both innodb_flush_log_at_trx_commit=1 (the default) is set and the binary log is enabled,

there is now one less sync to disk inside InnoDB during commit (2 syncs shared between a group of transactions instead of

3).

Durability of commits is not decreased 4 this is because even if the server crashes before the commit is written to disk by

InnoDB, it will be recovered from the binary log at next server startup (and it is guaranteed that sufficient information is

synced to disk so that such a recovery is always possible).

3104/4161

Switching to Old Flushing Behavior
The old behavior, with 3 syncs to disk per (group) commit (and consequently lower performance), can be selected with the

new innodb_flush_log_at_trx_commit=3 option. There is normally no benefit to doing this, however there are a couple of

edge cases to be aware of.

Non-durable Binary Log Settings

If innodb_flush_log_at_trx_commit=1 is set and the binary log is enabled, but sync_binlog=0 is set, then commits are not

guaranteed durable inside InnoDB after commit. This is because if sync_binlog=0 is set and if the server crashes, then

transactions that were not flushed to the binary log prior to the crash will be missing from the binary log.

In this specific scenario, innodb_flush_log_at_trx_commit=3 can be set to ensure that transactions will be durable in

InnoDB, even if they are not necessarily durable from the perspective of the binary log.

One should be aware that if sync_binlog=0 is set, then a crash is nevertheless likely to cause transactions to be missing

from the binary log. This will cause the binary log and InnoDB to be inconsistent with each other. This is also likely to cause

any replication slaves to become inconsistent, since transactions are replicated through the binary log. Thus it is

recommended to set sync_binlog=1. With the group commit improvements introduced in MariaDB 5.3, this setting has much

less penalty in recent versions compared to older versions of MariaDB and MySQL.

Recent Transactions Missing from Backups

Mariabackup and Percona XtraBackup only see transactions that have been flushed to the redo log. With the group

commit improvements, there may be a small delay (defined by the binlog_commit_wait_usec system variable) between

when a commit happens and when the commit will be included in a backup.

Note that the backup will still be fully consistent with itself and the binary log. This problem is normally not an issue in

practice. A backup usually takes a long time to complete (relative to the 1 second or so that binlog_commit_wait_usec is

normally set to), and a backup usually includes a lot of transactions that were committed during the backup. With this in

mind, it is not generally noticeable if the backup does not include transactions that were committed during the last 1 second

or so of the backup process. It is just mentioned here for completeness.

5.3.2.21 InnoDB Page Compression
Contents
1. Overview

2. Use Cases

3. Comparison with the COMPRESSED Row Format

4. Comparison with Storage Engine-Independent Column Compression

5. Configuring the InnoDB Page Compression Algorithm

1. Checking Supported InnoDB Page Compression Algorithms

2. Adding Support for an InnoDB Page Compression Algorithm

6. Enabling InnoDB Page Compression

1. Enabling InnoDB Page Compression by Default

2. Enabling InnoDB Page Compression for Individual Tables

7. Configuring the Compression Level

1. Configuring the Default Compression Level

2. Configuring the Compression Level for Individual Tables

8. Configuring the Failure Threshold and Maximum Padding

1. Configuring the Failure Threshold

2. Configuring the Maximum Padding

9. Saving Storage Space with Sparse Files

1. Sparse File Support on Linux

2. Sparse File Support on Windows

3. Configuring InnoDB to use Sparse Files

10. Optimized for Flash Storage

11. Configuring InnoDB Page Flushing

12. Monitoring InnoDB Page Compression

13. Compatibility with Backup Tools

14. Acknowledgements

Overview
InnoDB page compression provides a way to compress InnoDB tables.

3105/4161

https://mariadb.com/kb/en/backup-restore-and-import-xtrabackup/

Use Cases
InnoDB page compression can be used on any storage device and any file system.

InnoDB page compression is most efficient on file systems that support sparse files. See Saving Storage Space with

Sparse Files for more information.

InnoDB page compression is most beneficial on solid state drives (SSDs) and other flash storage. See Optimized for

Flash Storage for more information.

InnoDB page compression performs best when your storage device and file system support atomic writes, since that

allows the InnoDB doublewrite buffer to be disabled. See Atomic Write Support for more information.

Comparison with the COMPRESSED Row Format

InnoDB page compression is a modern way to compress your InnoDB tables. It is similar to InnoDB's COMPRESSED row

format, but it has many advantages. Some of the differences are:

With InnoDB page compression, compressed pages are immediately decompressed after being read from the

tablespace file, and only uncompressed pages are stored in the buffer pool. In contrast, with InnoDB's

COMPRESSED row format, compressed pages are decompressed immediately after they are read from the

tablespace file, and both the uncompressed and compressed pages are stored in the buffer pool. This means that the

COMPRESSED row format uses more space in the buffer pool than InnoDB page compression does.

With InnoDB page compression, pages are compressed just before being written to the tablespace file. In contrast,

with InnoDB's COMPRESSED row format, pages are re-compressed immediately after any changes, and the

compressed pages are stored in the buffer pool alongside the uncompressed pages. These changes are then

occasionally flushed to disk. This means that the COMPRESSED row format re-compresses data more frequently

than InnoDB page compression does.

With InnoDB page compression, multiple compression algorithms are supported. In contrast, with InnoDB's

COMPRESSED row format, zlib is the only supported compression algorithm. This means that the COMPRESSED

row format has less compression options than InnoDB page compression does.

In general, InnoDB page compression is superior to the COMPRESSED row format.

Comparison with Storage Engine-Independent Column
Compression

See Storage Engine-Independent Column Compression - Comparison with InnoDB Page Compression.

Configuring the InnoDB Page Compression Algorithm
There is not currently a table option to set different InnoDB page compression algorithms for individual tables.

However, the server-wide InnoDB page compression algorithm can be configured by setting the

innodb_compression_algorithm system variable.

When this system variable is changed, the InnoDB page compression algorithm does not change for existing pages that

were already compressed with a different InnoDB page compression algorithm. InnoDB is able to handle this situation

without issues, because every page in an InnoDB tablespace contains metadata about the InnoDB page compression

algorithm in the page header. This means that InnoDB supports having uncompressed pages and pages compressed with

different InnoDB page compression algorithms in the same InnoDB tablespace at the same time.

This system variable can be set to one of the following values:

System

Variable

Value

Description

none
Pages are not compressed. This is the default value in MariaDB 10.2.3 and before, and MariaDB

10.1.21 and before.

zlib
Pages are compressed using the bundled zlib compression algorithm. This is the default value in

MariaDB 10.2.4 and later, and MariaDB 10.1.22 and later.

lz4 Pages are compressed using the lz4 compression algorithm.

lzo Pages are compressed using the lzo compression algorithm.

lzma Pages are compressed using the lzma compression algorithm.

3106/4161

https://www.zlib.net/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://www.zlib.net/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://code.google.com/p/lz4/
http://www.oberhumer.com/opensource/lzo/
http://tukaani.org/xz/

bzip2 Pages are compressed using the bzip2 compression algorithm.

snappy Pages are compressed using the snappy algorithm.

However, on many distributions, the standard MariaDB builds do not support all InnoDB page compression algorithms by

default. From MariaDB 10.7, algorithms can be installed as a plugin.

This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_compression_algorithm='lzma';

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_compression_algorithm=lzma

Checking Supported InnoDB Page Compression Algorithms

On many distributions, the standard MariaDB builds do not support all InnoDB page compression algorithms by default.

Therefore, if you want to use a specific InnoDB page compression algorithm, then you should check whether your MariaDB

build supports it.

The zlib compression algorithm is always supported. From MariaDB 10.7, algorithms can be installed as a plugin.

A MariaDB build's support for other InnoDB page compression algorithms can be checked by querying the following status

variables with SHOW GLOBAL STATUS:

Status Variable Description

Innodb_have_lz4 Whether InnoDB supports the lz4 compression algorithm.

Innodb_have_lzo Whether InnoDB supports the lzo compression algorithm.

Innodb_have_lzma Whether InnoDB supports the lzma compression algorithm.

Innodb_have_bzip2 Whether InnoDB supports the bzip2 compression algorithm.

Innodb_have_snappy Whether InnoDB supports the snappy compression algorithm.

For example:

SHOW GLOBAL STATUS WHERE Variable_name IN (

 'Innodb_have_lz4',

 'Innodb_have_lzo',

 'Innodb_have_lzma',

 'Innodb_have_bzip2',

 'Innodb_have_snappy'

);

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| Innodb_have_lz4 | OFF |

| Innodb_have_lzo | OFF |

| Innodb_have_lzma | ON |

| Innodb_have_bzip2 | OFF |

| Innodb_have_snappy | OFF |

+--------------------+-------+

Adding Support for an InnoDB Page Compression Algorithm

On many distributions, the standard MariaDB builds do not support all InnoDB page compression algorithms by default.

From MariaDB 10.7, algorithms can be installed as a plugin, but in earlier versions, if you want to use certain InnoDB page

compression algorithms, then you may need to do the following:

Download the package for the desired compression library from the above links.

Install the package for the desired compression library.

Compile MariaDB from the source distribution.

The general steps for compiling MariaDB are:

Download and unpack the source code distribution:

3107/4161

http://www.bzip.org/
http://google.github.io/snappy/
https://www.zlib.net/
https://mariadb.com/kb/en/innodb-server-status-variables/#innodb_have_lz4
https://code.google.com/p/lz4/
https://mariadb.com/kb/en/innodb-server-status-variables/#innodb_have_lzo
http://www.oberhumer.com/opensource/lzo/
https://mariadb.com/kb/en/innodb-server-status-variables/#innodb_have_lzma
http://tukaani.org/xz/
https://mariadb.com/kb/en/innodb-server-status-variables/#innodb_have_bzip2
http://www.bzip.org/
https://mariadb.com/kb/en/innodb-server-status-variables/#innodb_have_snappy
http://google.github.io/snappy/

wget https://downloads.mariadb.com/MariaDB/mariadb-10.4.8/source/mariadb-10.4.8.tar.gz

tar -xvzf mariadb-10.4.8.tar.gz

cd mariadb-10.4.8/

Configure the build using cmake:

cmake .

Check CMakeCache.txt to confirm that it has found the desired compression library on your system.

Compile the build:

make

Either install the build:

make install

Or make a package to install:

make package

See Compiling MariaDB From Source for more information.

Enabling InnoDB Page Compression
InnoDB page compression is not enabled by default. However, InnoDB page compression can be enabled for just individual

InnoDB tables or it can be enabled for all new InnoDB tables by default.

InnoDB page compression is also only supported if the InnoDB table is in a file per-table tablespace. Therefore, the

innodb_file_per_table system variable must be set to ON to use InnoDB page compression.

InnoDB page compression is only supported if the InnoDB table uses the Barracuda file format.Therefore, in MariaDB

10.1 and before, the innodb_file_format system variable must be set to Barracuda to use InnoDB page compression.

InnoDB page compression is also only supported if the InnoDB table's row format is COMPACT or DYNAMIC.

Enabling InnoDB Page Compression by Default

In MariaDB 10.2.3 and later, InnoDB page compression can be enabled for all new InnoDB tables by default by setting

the innodb_compression_default system variable to ON .

This system variable can be set to one of the following values:

System Variable Value Description

OFF New InnoDB tables do not use InnoDB page compression. This is the default value.

ON New InnoDB tables use InnoDB page compression.

This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_compression_default=ON;

This system variable's session value can be changed dynamically with SET SESSION. For example:

3108/4161

https://cmake.org/runningcmake/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

SET GLOBAL innodb_default_row_format='dynamic';

SET GLOBAL innodb_compression_algorithm='lzma';

SET SESSION innodb_compression_default=ON;

CREATE TABLE users (

 user_id int not null,

 b varchar(200),

 primary key(user_id)

)

 ENGINE=InnoDB;

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_compression_default=ON

Enabling InnoDB Page Compression for Individual Tables

InnoDB page compression can be enabled for individual tables by setting the PAGE_COMPRESSED table option to 1 . For

example:

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

SET GLOBAL innodb_default_row_format='dynamic';

SET GLOBAL innodb_compression_algorithm='lzma';

CREATE TABLE users (

 user_id int not null,

 b varchar(200),

 primary key(user_id)

)

 ENGINE=InnoDB

 PAGE_COMPRESSED=1;

Configuring the Compression Level
Some InnoDB page compression algorithms support a compression level option, which configures how the InnoDB page

compression algorithm will balance speed and compression.

The compression level's supported values range from 1 to 9 . The range goes from the fastest to the most compact, which

means that 1 is the fastest and 9 is the most compact.

Only the following InnoDB page compression algorithms currently support compression levels:

zlib

lzma

If an InnoDB page compression algorithm does not support compression levels, then it ignores any provided compression

level value.

Configuring the Default Compression Level

The default compression level can be configured by setting the innodb_compression_level system variable.

This system variable's default value is 6 .

This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_compression_level=9;

3109/4161

https://www.zlib.net/
http://tukaani.org/xz/

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_compression_level=9

Configuring the Compression Level for Individual Tables

The compression level for individual tables can also be configured by setting the PAGE_COMPRESSION_LEVEL table

option for the table. For example:

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

SET GLOBAL innodb_default_row_format='dynamic';

SET GLOBAL innodb_compression_algorithm='lzma';

CREATE TABLE users (

 user_id int not null,

 b varchar(200),

 primary key(user_id)

)

 ENGINE=InnoDB

 PAGE_COMPRESSED=1

 PAGE_COMPRESSION_LEVEL=9;

Configuring the Failure Threshold and Maximum Padding
InnoDB page compression can encounter compression failures.

InnoDB page compression's failure threshold can be configured. If InnoDB encounters more compression failures than the

failure threshold, then it pads pages with zeroed out bytes before attempting to compress them as a way to reduce failures.

If the failure rate stays above the failure threshold, then InnoDB pads pages with more zeroed out bytes in 128 byte

increments.

InnoDB page compression's maximum padding can also be configured.

Configuring the Failure Threshold

The failure threshold can be configured by setting the innodb_compression_failure_threshold_pct system variable.

This system variable's supported values range from 0 to 100 .

This system variable's default value is 5 .

This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_compression_failure_threshold_pct=10;

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_compression_failure_threshold_pct=10

Configuring the Maximum Padding

The maximum padding can be configured by setting the innodb_compression_pad_pct_max system variable.

This system variable's supported values range from 0 to 75 .

This system variable's default value is 50 .

This system variable can be changed dynamically with SET GLOBAL. For example:

SET GLOBAL innodb_compression_pad_pct_max=75;

3110/4161

This system variable can also be set in a server option group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_compression_pad_pct_max=75

Saving Storage Space with Sparse Files
When InnoDB page compression is used, InnoDB may still write the compressed page to the tablespace file with the original

size of the uncompressed page, which would be equivalent to the value of the innodb_page_size system variable. This is

done by design, because when InnoDB's I/O code needs to read the page from disk, it can only read the full page size.

However, this is obviously not optimal.

On file systems that support sparse files, this problem is solved by writing the tablespace file as a sparse file using the

punch hole technique. With the punch hole technique, InnoDB will only write the actual compressed page size to the

tablespace file, aligned to sector size. The rest of the page is trimmed.

This punch hole technique allows InnoDB to read the compressed page from disk as the full page size, even though the

compressed page really takes up less space on the file system.

There are some potential disadvantages to using sparse files:

Some utilities may require special options in order to handle sparse files in an efficient manner.

Most existing file systems are slow to unlink() sparse files. As a consequence, if a tablespace file is a sparse file,

then dropping the table can be very slow.

Sparse File Support on Linux

On Linux, the following file systems support sparse files:

ext3

ext4

xfs

btrfs

nvmfs

On Linux, file systems need to support the fallocate() system call with the FALLOC_FL_PUNCH_HOLE and

FALLOC_FL_KEEP_SIZE flags. For example:

fallocate(file_handle, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, file_offset, remainder_len);

Some Linux utilities may require special options in order to work with sparse files efficiently. For example:

The ls utility will report the non-sparse size of the tablespace file when executed with default behavior, but ls -s

 will report the actual amount of storage allocated for the tablespace file.

The cp utility is pretty good at auto-detecting sparse files, but it also provides the cp --sparse=always and cp --

sparse=never options, if the auto-detection is not desired.

The tar utility will archive sparse files with their non-sparse size when executed with default behavior, but tar --

sparse will auto-detect sparse files, and archive them with their sparse size.

Sparse File Support on Windows

On Windows, the following file systems support sparse files:

NTFS

On Windows, file systems need to support the DeviceIoControl() function with the FSCTL_SET_SPARSE and

FSCTL_SET_ZERO_DATA control codes. For example:

DeviceIoControl(file_handle, FSCTL_SET_SPARSE, inbuf, inbuf_size,

 outbuf, outbuf_size, NULL, &overlapped)

...

DeviceIoControl(file_handle, FSCTL_SET_ZERO_DATA, inbuf, inbuf_size,

 outbuf, outbuf_size, NULL, &overlapped)

Configuring InnoDB to use Sparse Files

In MariaDB 10.3 and later, InnoDB uses the punch hole technique to create sparse files used automatically when the

3111/4161

https://linux.die.net/man/2/unlink
https://linux.die.net/man/2/fallocate
https://linux.die.net/man/1/ls
https://linux.die.net/man/1/ls
https://linux.die.net/man/1/cp
https://linux.die.net/man/1/cp
https://linux.die.net/man/1/cp
https://linux.die.net/man/1/tar
https://linux.die.net/man/1/tar
https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_set_sparse
https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_set_zero_data

underlying file system supports sparse files.

In MariaDB 10.2 and before, InnoDB can be configured to use the punch hole technique to create sparse files by configuring

the innodb_use_trim and innodb_use_fallocate system variables. These system variables can be set in a server option

group in an option file prior to starting up the server. For example:

[mariadb]

...

innodb_use_trim=ON

innodb_use_fallocate=ON

Optimized for Flash Storage
InnoDB page compression was designed to be optimized on solid state drives (SSDs) and other flash storage.

InnoDB page compression was originally developed by collaborating with Fusion-io . As a consequence, it was originally

designed to work best on FusionIO devices using NVMFS . Fusion-io has since been acquired by Western Digital ,

and they have decided not to continue supporting NVMFS .

However, InnoDB page compression is still likely to be most optimized on solid state drives (SSDs) and other flash storage.

InnoDB page compression works without any issues on hard disk drives (HDDs). However, since its compression relies on

the use of sparse files, the data may be somewhat fragmented on disk. This fragmentation may hurt performance on HDDs,

since they handle random reads and writes much more slowly than flash storage.

Configuring InnoDB Page Flushing
With InnoDB page compression, pages are compressed when they are flushed to disk. Therefore, it can be helpful to

optimize the configuration of InnoDB's page flushing. See InnoDB Page Flushing for more information.

Monitoring InnoDB Page Compression
InnoDB page compression can be monitored by querying the following status variables with SHOW GLOBAL STATUS:

Status Variable Description

Innodb_page_compression_saved Bytes saved by compression

Innodb_page_compression_trim_sect512 Number of 512 sectors trimmed

Innodb_page_compression_trim_sect1024 Number of 1024 sectors trimmed

Innodb_page_compression_trim_sect2048 Number of 2048 sectors trimmed

Innodb_page_compression_trim_sect4096 Number of 4096 sectors trimmed

Innodb_page_compression_trim_sect8192 Number of 8192 sectors trimmed

Innodb_page_compression_trim_sect16384 Number of 16384 sectors trimmed

Innodb_page_compression_trim_sect32768 Number of 32768 sectors trimmed

Innodb_num_pages_page_compressed Number of pages compressed

Innodb_num_page_compressed_trim_op Number of trim operations

Innodb_num_page_compressed_trim_op_saved Number of trim operations saved

Innodb_num_pages_page_decompressed Number of pages decompressed

Innodb_num_pages_page_compression_error Number of compression errors

With InnoDB page compression, a page is only compressed when it is flushed to disk. This means that if you are monitoring

InnoDB page compression via these status variables, then the status variables values will only get incremented when the

dirty pages are flushed to disk, which does not necessarily happen immediately. For example:

3112/4161

http://fusionio.com
https://ieeexplore.ieee.org/document/6558434
http://fusionio.com
https://www.westerndigital.com/
https://ieeexplore.ieee.org/document/6558434
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_saved
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect512
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect1024
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect2048
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect4096
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect8192
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect16384
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_page_compression_trim_sect32768
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_num_pages_page_compressed
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_num_page_compressed_trim_op
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_num_page_compressed_trim_op_saved
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_num_pages_page_decompressed
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_num_pages_page_compression_error

CREATE TABLE `tab` (

 `id` int(11) NOT NULL,

 `str` varchar(50) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB;

INSERT INTO tab VALUES (1, 'str1');

SHOW GLOBAL STATUS LIKE 'Innodb_num_pages_page_compressed';

+----------------------------------+-------+

| Variable_name | Value |

+----------------------------------+-------+

| Innodb_num_pages_page_compressed | 0 |

+----------------------------------+-------+

SET GLOBAL innodb_file_per_table=ON;

SET GLOBAL innodb_file_format='Barracuda';

SET GLOBAL innodb_default_row_format='dynamic';

SET GLOBAL innodb_compression_algorithm='lzma';

ALTER TABLE tab PAGE_COMPRESSED=1;

SHOW GLOBAL STATUS LIKE 'Innodb_num_pages_page_compressed';

+----------------------------------+-------+

| Variable_name | Value |

+----------------------------------+-------+

| Innodb_num_pages_page_compressed | 0 |

+----------------------------------+-------+

SELECT SLEEP(10);

+-----------+

| SLEEP(10) |

+-----------+

| 0 |

+-----------+

SHOW GLOBAL STATUS LIKE 'Innodb_num_pages_page_compressed';

+----------------------------------+-------+

| Variable_name | Value |

+----------------------------------+-------+

| Innodb_num_pages_page_compressed | 3 |

+----------------------------------+-------+

Compatibility with Backup Tools
Mariabackup supports InnoDB page compression.

Percona XtraBackup does not support InnoDB page compression.

Acknowledgements
InnoDB page compression was developed by collaborating with Fusion-io . Special thanks especially to Dhananjoy

Das and Torben Mathiasen.

5.3.2.22 InnoDB Data Scrubbing

Note that most of the background and redo log scrubbing code has been removed in MariaDB 10.5.2. See MDEV-

15528 and MDEV-21870 .

Sometimes there is a requirement that when some data is deleted, it is really gone. This might be the case when one stores

user's personal information or some other sensitive data. Normally though, when a row is deleted, the space is only marked

as free on the page. It may eventually be overwritten, but there is no guarantee when that will happen. A copy of the deleted

rows may also be present in the log files.

3113/4161

https://mariadb.com/kb/en/percona-xtrabackup/
http://fusionio.com
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-21870

MariaDB 10.1.3 introduced support for InnoDB data scrubbing. Background threads periodically scan tablespaces and

logs and remove all data that should be deleted. The number of background threads for tablespace scans is set by innodb-

encryption-threads. Log scrubbing happens in a separate thread.

To configure scrubbing one can use the following variables:

innodb-background-scrub-

data-check-interval
Seconds

Check at this intervall if tablespaces needs scrubbing. Deprecated and

ignored from MariaDB 10.5.2.

innodb-background-scrub-

data-compressed
Boolean

Enable scrubbing of compressed data by background threads. Deprecated

and ignored from MariaDB 10.5.2.

innodb-background-scrub-

data-interval
Seconds

Scrub spaces that were last scrubbed longer than this many seconds ago.

Deprecated and ignored from MariaDB 10.5.2.

innodb-background-scrub-

data-uncompressed
Boolean

Enable scrubbing of uncompressed data by background threads. Deprecated

and ignored from MariaDB 10.5.2.

innodb-immediate-scrub-data-

uncompressed
Boolean Enable scrubbing of uncompressed data

innodb-scrub-log Boolean Enable redo log scrubbing. Deprecated and ignored from MariaDB 10.5.2.

innodb-scrub-log-speed Bytes/sec
Redo log scrubbing speed in bytes/sec. Deprecated and ignored from

MariaDB 10.5.2.

Redo log scrubbing did not fully work as intended, and was deprecated and ignored in MariaDB 10.5.2 (MDEV-21870). If

old log contents should be kept secret, then enabling innodb_encrypt_log or setting a smaller innodb_log_file_size could

help.

The Information Schema INNODB_TABLESPACES_SCRUBBING table contains scrubbing information.

Thanks
Scrubbing was donated to the MariaDB project by Google.

5.3.2.23 InnoDB Lock Modes
Contents
1. Shared and Exclusive Locks

2. Intention Locks

3. AUTO_INCREMENT Locks

4. Gap Locks

Locks are acquired by a transaction to prevent concurrent transactions from modifying, or even reading, some rows or

ranges of rows. This is done to make sure that concurrent write operations never collide.

InnoDB supports a number of lock modes.

Shared and Exclusive Locks
The two standard row-level locks are share locks(S) and exclusive locks(X).

A shared lock is obtained to read a row, and allows other transactions to read the locked row, but not to write to the locked

row. Other transactions may also acquire their own shared locks.

An exclusive lock is obtained to write to a row, and stops other transactions from locking the same row. It's specific behavior

depends on the isolation level; the default (REPEATABLE READ), allows other transactions to read from the exclusively

locked row.

Intention Locks
InnoDB also permits table locking, and to allow locking at both table and row level to co-exist gracefully, a series of locks

called intention locks exist.

An intention shared lock(IS) indicates that a transaction intends to set a shared lock.

An intention exclusive lock(IX) indicates that a transaction intends to set an exclusive lock.

Whether a lock is granted or not can be summarised as follows:

3114/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://jira.mariadb.org/browse/MDEV-21870

An X lock is not granted if any other lock (X, S, IX, IS) is held.

An S lock is not granted if an X or IX lock is held. It is granted if an S or IS lock is held.

An IX lock is not granted if in X or S lock is held. It is granted if an IX or IS lock is held.

An IS lock is not granted if an X lock is held. It is granted if an S, IX or IS lock is held.

AUTO_INCREMENT Locks
Locks are also required for auto-increments - see AUTO_INCREMENT handling in InnoDB.

Gap Locks
With the default isolation level, REPEATABLE READ , and, until MariaDB 10.4, the default setting of the

innodb_locks_unsafe_for_binlog variable, a method called gap locking is used. When InnoDB sets a shared or exclusive

lock on a record, it's actually on the index record. Records will have an internal InnoDB index even if they don't have a

unique index defined. At the same time, a lock is held on the gap before the index record, so that another transaction cannot

insert a new index record in the gap between the record and the preceding record.

The gap can be a single index value, multiple index values, or not exist at all depending on the contents of the index.

If a statement uses all the columns of a unique index to search for unique row, gap locking is not used.

Similar to the shared and exclusive intention locks described above, there can be a number of types of gap locks. These

include the shared gap lock, exclusive gap lock, intention shared gap lock and intention exclusive gap lock.

Gap locks are disabled if the innodb_locks_unsafe_for_binlog system variable is set (until MariaDB 10.4), or the isolation

level is set to READ COMMITTED .

5.3.2.24 InnoDB Monitors
Contents
1. Standard InnoDB Monitor

2. InnoDB Lock Monitor

3. InnoDB Tablespace Monitor

4. InnoDB Table Monitor

5. SHOW ENGINE INNODB STATUS

The InnoDB Monitor refers to particular kinds of monitors included in MariaDB and since the early versions of MySQL.

There are four types: the standard InnoDB monitor, the InnoDB Lock Monitor, InnoDB Tablespace Monitor and the InnoDB

Table Monitor.

Standard InnoDB Monitor
The standard InnoDB Monitor returns extensive InnoDB information, particularly lock, semaphore, I/O and buffer activity:

To enable the standard InnoDB Monitor, from MariaDB 10.0.14 , set the innodb_status_output system variable to 1.

Before MariaDB 10.0.14 , running the following statement was the method used:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB monitor, either set the system variable to zero, or, before MariaDB 10.0.14 , drop the table

DROP TABLE innodb_monitor;

The CREATE TABLE and DROP TABLE method of enabling and disabling the InnoDB Monitor has been deprecated,

and may be removed in a future version of MariaDB.

For a description of the output, see SHOW ENGINE INNODB STATUS.

InnoDB Lock Monitor
The InnoDB Lock Monitor displays additional lock information.

To enable the InnoDB Lock Monitor, the standard InnoDB monitor must be enabled. Then, from MariaDB 10.0.14 , set the

3115/4161

https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/

innodb_status_output_locks system variable to 1. Before MariaDB 10.0.14 , running the following statement was the

method used:

CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;

To disable the standard InnoDB monitor, either set the system variable to zero, or, before MariaDB 10.0.14 , drop the table

DROP TABLE innodb_lock_monitor;

The CREATE TABLE and DROP TABLE method of enabling and disabling the InnoDB Lock Monitor has been

deprecated, and may be removed in a future version of MariaDB.

InnoDB Tablespace Monitor

The InnoDB Tablespace Monitor is deprecated, and may be removed in a future version of MariaDB.

Enabling the Tablespace Monitor outputs a list of file segments in the shared tablespace to the error log, and validates the

tablespace allocation data structures.

To enable the Tablespace Monitor, run the following statement:

CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;

To disable it, drop the table:

DROP TABLE innodb_tablespace_monitor;

InnoDB Table Monitor

The InnoDB Table Monitor is deprecated, and may be removed in a future version of MariaDB.

Enabling the Table Monitor outputs the contents of the InnoDB internal data dictionary to the error log every fifteen seconds.

To enable the Table Monitor, run the following statement:

CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

To disable it, drop the table:

DROP TABLE innodb_table_monitor;

SHOW ENGINE INNODB STATUS
The SHOW ENGINE INNODB STATUS statement can be used to obtain the standard InnoDB Monitor output when

required, rather than sending it to the error log. It will also display the InnoDB Lock Monitor information if the

innodb_status_output_locks system variable is set to 1 .

5.3.2.25 InnoDB Encryption Overview
Contents
1. Basic Configuration

2. Creating Encrypted Tables

3. Finding Encrypted Tables

4. Redo Logs

MariaDB supports data-at-rest encryption for tables using the InnoDB storage engines. When enabled, the server encrypts

data when it writes it to and decrypts data when it reads it from the file system. You can configure InnoDB encryption to

3116/4161

https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/

automatically have all new InnoDB tables automatically encrypted, or specify encrypt per table.

For encrypting data with the Aria storage engine, see Encrypting Data for Aria .

Basic Configuration
Using data-at-rest encryption requires that you first configure an Encryption Key Management plugin, such as the

file_key_management or aws_key_management plugins. MariaDB uses this plugin to store, retrieve and manage the

various keys it uses when encrypting data to and decrypting data from the file system.

Once you have the plugin configured, you need to set a few additional system variables to enable encryption on InnoDB

tables, including innodb_encrypt_tables , innodb_encrypt_logs , innodb_encryption_threads , and

innodb_encryption_rotate_key_age .

[mariadb]

...

File Key Management

plugin_load_add = file_key_management

file_key_management_filename = /etc/mysql/encryption/keyfile.enc

file_key_management_filekey = FILE:/etc/mysql/encryption/keyfile.key

file_key_management_encryption_algorithm = AES_CTR

InnoDB Encryption

innodb_encrypt_tables = ON

innodb_encrypt_temporary_tables = ON

innodb_encrypt_log = ON

innodb_encryption_threads = 4

innodb_encryption_rotate_key_age = 1

For more information on system variables for encryption and other features, see the InnoDB system variables page.

Creating Encrypted Tables
To create encrypted tables, specify the table options ENCRYPTED=YES and ENCRYPTION_KEY_ID= with a corresponding

key id;

CREATE TABLE t (i int primary key) ENGINE=InnoDB ENCRYPTED=YES ENCRYPTION_KEY_ID=2;

Finding Encrypted Tables
When using data-at-rest encryption with the InnoDB storage engine, it is not necessary that you encrypt every table in your

database. You can check which tables are encrypted and which are not by querying the

INNODB_TABLESPACES_ENCRYPTION table in the Information Schema. This table provides information on which

tablespaces are encrypted, which encryption key each tablespace is encrypted with, and whether the background

encryption threads are currently working on the tablespace. Since the system tablespace can also contain tables, it can be

helpful to join the INNODB_TABLESPACES_ENCRYPTION table with the INNODB_SYS_TABLES table to find out the encryption

status of each specific table, rather than each tablespace. For example:

SELECT st.SPACE, st.NAME, te.ENCRYPTION_SCHEME, te.ROTATING_OR_FLUSHING

FROM information_schema.INNODB_TABLESPACES_ENCRYPTION te

JOIN information_schema.INNODB_SYS_TABLES st

 ON te.SPACE = st.SPACE \G

*************************** 1. row ***************************

 SPACE: 0

 NAME: SYS_DATAFILES

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 2. row ***************************

 SPACE: 0

 NAME: SYS_FOREIGN

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 3. row ***************************

 SPACE: 0

 NAME: SYS_FOREIGN_COLS

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 4. row *************************** 3117/4161

https://mariadb.com/kb/en/encrypting-data-for-aria/

*************************** 4. row ***************************

 SPACE: 0

 NAME: SYS_TABLESPACES

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 5. row ***************************

 SPACE: 0

 NAME: SYS_VIRTUAL

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 6. row ***************************

 SPACE: 0

 NAME: db1/default_encrypted_tab1

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 7. row ***************************

 SPACE: 416

 NAME: db1/default_encrypted_tab2

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 8. row ***************************

 SPACE: 402

 NAME: db1/tab

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 9. row ***************************

 SPACE: 185

 NAME: db1/tab1

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 10. row ***************************

 SPACE: 184

 NAME: db1/tab2

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 11. row ***************************

 SPACE: 414

 NAME: db1/testgb2

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 12. row ***************************

 SPACE: 4

 NAME: mysql/gtid_slave_pos

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 13. row ***************************

 SPACE: 2

 NAME: mysql/innodb_index_stats

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 14. row ***************************

 SPACE: 1

 NAME: mysql/innodb_table_stats

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

*************************** 15. row ***************************

 SPACE: 3

 NAME: mysql/transaction_registry

 ENCRYPTION_SCHEME: 1

ROTATING_OR_FLUSHING: 0

15 rows in set (0.000 sec)

Redo Logs
Using data-at-rest encryption with InnoDB, the innodb_encrypt_tables system variable only encrypts the InnoDB

tablespaces. In order to also encrypt the InnoDB Redo Logs, you also need to set the innodb_encrypt_logs system

variable.

Beginning in MariaDB 10.4, where the encryption key management plugin supports key rotation the InnoDB Redo Log can

also rotate encryption keys. In previous releases, the Redo Log can only use the first encryption key.

3118/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/innodb-server-system-variables#innodb_encrypt_logs

5.3.3 MariaDB ColumnStore
MariaDB ColumnStore is a columnar storage engine that utilizes a massively parallel distributed data architecture. It's a

columnar storage system built by porting InfiniDB 4.6.7 to MariaDB, and released under the GPL license.

From MariaDB 10.5.4, it is available as a storage engine for MariaDB Server. Before then, it is only available as a separate

download.

MariaDB ColumnStore is designed for big data scaling to process petabytes of data, linear scalability and exceptional

performance with real-time response to analytical queries. It leverages the I/O benefits of columnar storage, compression,

just-in-time projection, and horizontal and vertical partitioning to deliver tremendous performance when analyzing large data

sets.

Documentation for the latest release of Columnstore is not available on the Knowledge Base. Instead, see:

Release Notes

Deployment Instructions

About MariaDB ColumnStore

About MariaDB ColumnStore.

MariaDB ColumnStore Release Notes

MariaDB ColumnStore Release Notes

ColumnStore Getting Started

Quick summary of steps needed to install MariaDB ColumnStore

ColumnStore Upgrade Guides

Documentation on upgrading from prior versions and InfiniDB migration.

ColumnStore Architecture

MariaDB ColumnStore Architecture

Managing ColumnStore

Managing MariaDB ColumnStore System Environment and Database

ColumnStore Data Ingestion

How to load and manipulate data into MariaDB ColumnStore

ColumnStore SQL Structure and Commands

SQL syntax supported by MariaDB ColumnStore

ColumnStore Performance Tuning

Information relating to configuring and analyzing the ColumnStore system for optimal performance.

ColumnStore System Variables

ColumnStore System Variables

ColumnStore Security Vulnerabilities

Security vulnerabilities affecting MariaDB ColumnStore

ColumnStore Troubleshooting

Articles on troubleshooting tips and techniques

StorageManager

Articles on StorageManager and S3 configuration

Using MariaDB ColumnStore

Provides details on using third party products and tools with MariaDB ColumnStore

Building ColumnStore in MariaDB

This is a description of how to build and start a local ColumnStore install...

Can't create a table starting with a capital letter. All tables are lower case-

Hi, I was playing around with my MariaDB ColumnStore and I noticed the I am... 1

3119/4161

https://mariadb.com/docs/release-notes/mariadb-columnstore-1-5-2-release-notes/
https://mariadb.com/docs/deploy/community-single-columnstore/
https://mariadb.com/kb/en/about-mariadb-columnstore/
https://mariadb.com/kb/en/columnstore-release-notes/
https://mariadb.com/kb/en/columnstore-getting-started/
https://mariadb.com/kb/en/mariadb-columnstore-columnstore/
https://mariadb.com/kb/en/columnstore-architecture/
https://mariadb.com/kb/en/managing-columnstore/
https://mariadb.com/kb/en/columnstore-data-ingestion/
https://mariadb.com/kb/en/columnstore-sql-structure-and-commands/
https://mariadb.com/kb/en/columnstore-performance-tuning/
https://mariadb.com/kb/en/columnstore-system-variables/
https://mariadb.com/kb/en/columnstore-security-vulnerabilities/
https://mariadb.com/kb/en/columnstore-troubleshooting/
https://mariadb.com/kb/en/storagemanager/
https://mariadb.com/kb/en/using-mariadb-columnstore/
https://mariadb.com/kb/en/building-columnstore-in-mariadb/
https://mariadb.com/kb/en/mariadb-columnstore-cant-create-a-table-starting-with-a-capital-letter-all-/

There are 60 related questions .

5.3.4 Aria
Information about the Aria storage engine. From MariaDB 10.4, system tables use the Aria storage engine.

Aria Storage Engine

The Aria storage engine is compiled-in by default and is considered as an upgrade to MyISAM.

Aria Clients and Utilities

Clients and utilities for working with Aria tables

Aria FAQ

Frequently-asked questions about the Aria storage engine.

Aria Storage Formats

Table storage formats in Aria - PAGE, FIXED and DYNAMIC

Aria Status Variables

Aria-related server status variables.

Aria System Variables

Aria-related system variables.

Aria Group Commit

Aria group commits for speeding up multi-user inserts

Benchmarking Aria

Aria benchmarks

Aria Two-step Deadlock Detection

How Aria detects and deals with deadlocks

Aria Encryption Overview

Data-at-rest encryption for user-created tables and internal on-disk tempor...

The Aria Name

How Aria got its name.

There are 7 related questions .

2

1

5.3.4.1 Aria Storage Engine
Contents
1. Startup Options for Aria

2. Aria Log Files

1. Missing valid id

The Aria storage engine is compiled in by default from MariaDB 5.1 and it is required to be 'in use' when MariaDB is started.

From MariaDB 10.4, all system tables are Aria.

Additionally, internal on-disk tables are in the Aria table format instead of the MyISAM table format. This should speed up

some GROUP BY and DISTINCT queries because Aria has better caching than MyISAM.

Note: The Aria storage engine was previously called Maria (see The Aria Name for details on the rename) and in

previous versions of MariaDB the engine was still called Maria.

The following table options to Aria tables in CREATE TABLE and ALTER TABLE:

3120/4161

https://mariadb.com/kb/en/mariadb-columnstore/+questions/
https://mariadb.com/kb/en/aria/+questions/
https://mariadb.com/kb/en/mariadb/

TRANSACTIONAL= 0 | 1 : If the TRANSACTIONAL table option is set for an Aria table, then the table will be crash-

safe. This is implemented by logging any changes to the table to Aria's transaction log, and syncing those writes at

the end of the statement. This will marginally slow down writes and updates. However, the benefit is that if the server

dies before the statement ends, all non-durable changes will roll back to the state at the beginning of the statement.

This also needs up to 6 bytes more for each row and key to store the transaction id (to allow concurrent insert's and

selects).

TRANSACTIONAL=1 is not supported for partitioned tables.

An Aria table's default value for the TRANSACTIONAL table option depends on the table's value for the

ROW_FORMAT table option. See below for more details.

If the TRANSACTIONAL table option is set for an Aria table, the table does not actually support transactions.

See MDEV-21364 for more information. In this context, transactional just means crash-safe.

PAGE_CHECKSUM= 0 | 1 : If index and data should use page checksums for extra safety.

TABLE_CHECKSUM= 0 | 1 : Same as CHECKSUM in MySQL 5.1

ROW_FORMAT=PAGE | FIXED | DYNAMIC : The table's row format.

The default value is PAGE .

To emulate MyISAM, set ROW_FORMAT=FIXED or ROW_FORMAT=DYNAMIC

The TRANSACTIONAL and ROW_FORMAT table options interact as follows:

If TRANSACTIONAL=1 is set, then the only supported row format is PAGE . If ROW_FORMAT is set to some other value,

then Aria issues a warning, but still forces the row format to be PAGE .

If TRANSACTIONAL=0 is set, then the table will be not be crash-safe, and any row format is supported.

If TRANSACTIONAL is not set to any value, then any row format is supported. If ROW_FORMAT is set, then the table will

use that row format. Otherwise, the table will use the default PAGE row format. In this case, if the table uses the

PAGE row format, then it will be crash-safe. If it uses some other row format, then it will not be crash-safe.

Some other improvements are:

CHECKSUM TABLE now ignores values in NULL fields. This makes CHECKSUM TABLE faster and fixes some cases

where same table definition could give different checksum values depending on row format. The disadvantage is that

the value is now different compared to other MySQL installations. The new checksum calculation is fixed for all table

engines that uses the default way to calculate and MyISAM which does the calculation internally. Note: Old MyISAM

tables with internal checksum will return the same checksum as before. To fix them to calculate according to new

rules you have to do an ALTER TABLE . You can use the old ways to calculate checksums by using the option --

old to mariadbdmysqld or set the system variable ' @@old ' to 1 when you do CHECKSUM TABLE ... EXTENDED;

At startup Aria will check the Aria logs and automatically recover the tables from the last checkpoint if the server was

not taken down correctly. See Aria Log Files

Startup Options for Aria
For a full list, see Aria System Variables.

In normal operations, the only variables you have to consider are:

aria-pagecache-buffer-size

This is where all index and data pages are cached. The bigger this is, the faster Aria will work.

aria-block-size

The default value 8192, should be ok for most cases. The only problem with a higher value is that it takes

longer to find a packed key in the block as one has to search roughly 8192/2 to find each key. We plan to fix

this by adding a dictionary at the end of the page to be able to do a binary search within the block before

starting a scan. Until this is done and key lookups takes too long time even if you are not hitting disk, then you

should consider making this smaller.

Possible values to try are 2048 , 4096 or 8192

Note that you can't change this without dumping, deleting old tables and deleting all log files and then restoring

your Aria tables. (This is the only option that requires a dump and load)

aria-log-purge-type

Set this to " at_flush " if you want to keep a copy of the transaction logs (good as an extra backup). The logs

will stay around until you execute FLUSH ENGINE LOGS.

Aria Log Files
aria_log_control file is a very short log file (52 bytes) that contains the current state of all Aria tables related to logging

and checkpoints. In particular, it contains the following information:

3121/4161

https://jira.mariadb.org/browse/MDEV-21364
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/%255Baria-server-system-variables#aria_block_size

Aria file version: 1

Block size: 8192

maria_uuid: ee948482-6cb7-11ed-accb-3c7c3ff16468

last_checkpoint_lsn: (1,0x235a)

last_log_number: 1

trid: 28

recovery_failures: 0

The uuid is a unique identifier per system. All Aria files created will have a copy of this in their .MAI headers. This is

mainly used to check if someone has copied an Aria file between MariaDB servers.

last_checkpoint_lsn and last_log_number are information about the current aria_log files.

trid is the highest transaction number seen so far. Used by recovery.

aria_log.* files contain the log of all operations that change Aria files (including create table, drop table, insert etc..) This

is a 'normal' WAL (Write Ahead Log), similar to the InnoDB log file, except that aria_logs contain both redo and undo. Old

aria_log files are automatically deleted when they are not needed anymore (Neither the last checkpoint or any running

transaction need to refer to the old data anymore).

Missing valid id

The error Missing valid id at start of file. File is not a valid aria control file means that

something overwrote at least the first 4 bytes in the file. This can happen due to a problem with the file system (hardware or

software), or a bug in which a thread inside MariaDB wrote on the wrong file descriptor (in which case you should report the

bug, attaching a copy of the control file to assist).

In the case of a corrupted log file, with the server shut down, one should be able to fix that by deleting all aria_log files. If the

control_file is corrupted, then one has to delete the aria_control_file and all aria_log.* files. The effect of this is that on table

open of an Aria table, the server will think that it has been moved from another system and do an automatic check and repair

of it. If there was no issues, the table will be opened and can be used as normal. See also When is it safe to remove old log

files.

1.3.5 Aria Clients and Utilities

5.3.4.3 Aria FAQ
This FAQ provides information on the Aria storage engine.

The Aria storage engine was previously known as Maria, (see, the Aria Name). In current releases of MariaDB , you

can refer to the engine as Maria or Aria. As this will change in future releases, please update references in your scripts

and automation to use the correct name.

3122/4161

https://mariadb.com/kb/en/mariadb/

Contents
1. What is Aria?

2. Why is the engine called Aria?

3. What's the goal for the current version?

4. What's the goal for the next version?

5. What is the ultimate goal of Aria?

6. What are the design goals in Aria?

7. Where can I find documentation and help about Aria?

8. Who develops Aria?

9. What is the release policy/schedule of Aria?

1. Extended commitment for Beta 1.5

10. How does Aria 1.5 Compare to MyISAM?

11. Advantages of Aria compared to MyISAM

12. Differences between Aria and MyISAM

13. Disadvantages of Aria compared to MyISAM

14. Differences between MariaDB 5.1 release and the normal MySQL-5.1 release?

15. Why do you use the TRANSACTIONAL keyword now when Aria is not yet transactional?

16. What are the known problems with the MySQL-5.1-Maria release?

17. What is going to change in later Aria main releases?

18. How can I create a MyISAM-like (non-transactional) table in Aria?

19. What are the advantages/disadvantages of the new PAGE format compared to the old MyISAM-like row formats

(DYNAMIC and FIXED)

20. What's the proper way to copy a Aria table from one place to another?

21. When is it safe to remove old log files?

22. How does one solve the Missing valid id error?

What is Aria?
Aria is a storage engine for MySQL® and MariaDB. It was originally developed with the goal of becoming the default

transactional and non-transactional storage engine for MariaDB and MySQL.

It has been in development since 2007 and was first announced on Monty's blog . The same core MySQL engineers who

developed the MySQL server and the MyISAM, MERGE, and MEMORY storage engines are also working on Aria.

Why is the engine called Aria?
Originally, the storage engine was called Maria, after Monty's younger daughter. Monty named MySQL after his first child,

My and his second child Max gave his name to MaxDB and the MySQL-Max distributions.

In practice, having both MariaDB the database server and Maria the storage engine with such similar names proved

confusing. To mitigate this, the decision was made to change the name. A Rename Maria contest was held during the first

half of 2010 and names were submitted from around the world. Monty picked the name Aria from a short list of finalist. Chris

Tooley, who suggested it, received the prize of a Linux-powered System 76 Meerkat NetTop from Monty Program.

For more information, see the Aria Name.

What's the goal for the current version?
The current version of Aria is 1.5. The goal of this release is to develop a crash-safe alternative to MyISAM. That is, when

MariaDB restarts after a crash, Aria recovers all tables to the state as of the start of a statement or at the start of the last

LOCK TABLES statement.

The current goal is to keep the code stable and fix all bugs.

What's the goal for the next version?
The next version of Aria is 2.0. The goal for this release is to develop a fully transactional storage engine with at least all the

major features of InnoDB.

Currently, Aria 2.0 is on hold as its developers are focusing on improving MariaDB. However, they are interested in working

with interested customers and partners to add more features to Aria and eventually release 2.0.

These are some of the goals for Aria 2.0:

ACID compliant

Commit/Rollback

Concurrent updates/deletes

Row locking
3123/4161

http://monty-says.blogspot.com/2008/01/maria-engine-is-released.html
http://www.system76.com/product_info.php?cPath=27&products_id=91

Group commit (Already in MariaDB 5.2)

Faster lookup in index pages (Page directory)

Beginning in Aria 2.5, the plan is to focus on improving performance.

What is the ultimate goal of Aria?
Long term, we have the following goals for Aria:

To create a new, ACID and Multi-Version Concurrency Control (MVCC), transactional storage engine that can

function as both the default non-transactional and transactional storage engine for MariaDB and MySQL®.

To be a MyISAM replacement. This is possible because Aria can also be run in non-transactional mode, supports the

same row formats as MyISAM, and supports or will support all major features of MyISAM.

To be the default non-transactional engine in MariaDB (instead of MyISAM).

What are the design goals in Aria?
Multi-Version Concurrency Control (MVCC) and ACID storage engine.

Optionally non-transactional tables that should be 'as fast and as compact' as MyISAM tables.

Be able to use Aria for internal temporary tables in MariaDB (instead of MyISAM).

All indexes should have equal speed (clustered index is not on our current road map for Aria. If you need clustered

index, you should use XtraDB).

Allow 'any' length transactions to work (Having long running transactions will cause more log space to be used).

Allow log shipping; that is, you can do incremental backups of Aria tables just by copying the Aria logs.

Allow copying of Aria tables between different Aria servers (under some well-defined constraints).

Better blob handling (than is currently offered in MyISAM, at a minimum).

No memory copying or extra memory used for blobs on insert/update.

Blobs allocated in big sequential blocks - Less fragmentation over time.

Blobs are stored so that Aria can easily be extended to have access to any part of a blob with a single fetch in the

future.

Efficient storage on disk (that is, low row data overhead, low page data overhead and little lost space on pages).

Note: There is still some more work to succeed with this goal. The disk layout is fine, but we need more in-memory

caches to ensure that we get a higher fill factor on the pages.

Small footprint, to make MariaDB + Aria suitable for desktop and embedded applications.

Flexible memory allocation and scalable algorithms to utilize large amounts of memory efficiently, when it is available.

Where can I find documentation and help about Aria?
Documentation is available at Aria and related topics. The project is maintained on GitHub .

If you want to know what happens or be part of developing Aria, you can subscribe to the developers , docs , or discuss

 mailing lists.

To report and check bugs in Aria, see Reporting Bugs.

You can usually find some of the Maria developers on our Zulip instance at https://mariadb.zulipchat.com or on the IRC

channel #maria at https://libera.chat/ .

Who develops Aria?
The Core Team who develop Aria are:

Technical lead

Michael "Monty" Widenius - Creator of MySQL and MyISAM

Core Developers (in alphabetical order)

Guilhem Bichot - Replication expert, on line backup for MyISAM, etc.

Kristian Nielsen - MySQL build tools, NDB, MySQL server

Oleksandr Byelkin - Query cache, sub-queries, views.

Sergei Golubchik - Server Architect, Full text search, keys for MyISAM-Merge, Plugin architecture, etc.

All except Guilhem Bichot are working for MariaDB Corporation Ab .

What is the release policy/schedule of Aria?
Aria follows the same release criteria as for MariaDB . Some clarifications, unique for the Aria storage engine:

3124/4161

https://github.com/MariaDB/server
https://lists.mariadb.org/postorius/lists/developers.lists.mariadb.org/
https://lists.mariadb.org/postorius/lists/docs.lists.mariadb.org/
https://lists.mariadb.org/postorius/lists/discuss.lists.mariadb.org/
https://mariadb.zulipchat.com
https://mariadb.com/kb/en/irc/
https://libera.chat/
http://mariadb.com
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/mariadb/

Aria index and data file formats should be backwards and forwards compatible to ensure easy upgrades and

downgrades.

The log file format should also be compatible, but we don't make any guarantees yet. In some cases when upgrading,

you must remove the old aria_log.% and maria_log.% files before restarting MariaDB. (So far, this has only

occurred in the upgrade from MariaDB 5.1 and MariaDB 5.2).

Extended commitment for Beta 1.5

Aria is now feature complete according to specification.

How does Aria 1.5 Compare to MyISAM?
Aria 1.0 was basically a crash-safe non-transactional version of MyISAM. Aria 1.5 added more concurrency (multiple

inserter) and some optimizations.

Aria supports all aspects of MyISAM, except as noted below. This includes external and internal check/repair/compressing

of rows, different row formats, different index compress formats, aria_chk etc. After a normal shutdown you can copy Aria

files between servers.

Advantages of Aria compared to MyISAM
Data and indexes are crash safe.

On a crash, changes will be rolled back to state of the start of a statement or a last LOCK TABLES statement.

Aria can replay almost everything from the log. (Including CREATE , DROP , RENAME , TRUNCATE tables). Therefore,

you make a backup of Aria by just copying the log. The things that can't be replayed (yet) are:

Batch INSERT into an empty table (This includes LOAD DATA INFILE , SELECT... INSERT and INSERT

(many rows)).

ALTER TABLE . Note that .frm tables are NOT recreated!

LOAD INDEX can skip index blocks for unwanted indexes.

Supports all MyISAM ROW formats and new PAGE format where data is stored in pages. (default size is 8K).

Multiple concurrent inserters into the same table.

When using PAGE format (default) row data is cached by page cache.

Aria has unit tests of most parts.

Supports both crash-safe (soon to be transactional) and not transactional tables. (Non-transactional tables are not

logged and rows uses less space): CREATE TABLE foo (...) TRANSACTIONAL=0|1 ENGINE=Aria .

PAGE is the only crash-safe/transactional row format.

PAGE format should give a notable speed improvement on systems which have bad data caching. (For example

Windows).

From MariaDB 10.5, max key length is 2000 bytes, compared to 1000 bytes in MyISAM.

Differences between Aria and MyISAM
Aria uses BIG (1G by default) log files.

Aria has a log control file (aria_log_control) and log files (aria_log.%). The log files can be automatically

purged when not needed or purged on demand (after backup).

Aria uses 8K pages by default (MyISAM uses 1K). This makes Aria a bit faster when using keys of fixed size, but

slower when using variable-length packed keys (until we add a directory to index pages).

Disadvantages of Aria compared to MyISAM
Aria doesn't support INSERT DELAYED .

Aria does not support multiple key caches.

Storage of very small rows (< 25 bytes) are not efficient for PAGE format.

MERGE tables don't support Aria (should be very easy to add later).

Aria data pages in block format have an overhead of 10 bytes/page and 5 bytes/row. Transaction and multiple

concurrent-writer support will use an extra overhead of 7 bytes for new rows, 14 bytes for deleted rows and 0 bytes for

old compacted rows.

No external locking (MyISAM has external locking, but this is a rarely used feature).

Aria has one page size for both index and data (defined when Aria is used the first time). MyISAM supports different

page sizes per index.

Small overhead (15 bytes) per index page.

Aria doesn't support MySQL internal RAID (disabled in MyISAM too, it's a deprecated feature).

Minimum data file size for PAGE format is 16K (with 8K pages).

3125/4161

Aria doesn't support indexes on virtual fields.

Differences between MariaDB 5.1 release and the normal
MySQL-5.1 release?
See:

Aria storage engine

MariaDB versus MySQL

Why do you use the TRANSACTIONAL keyword now
when Aria is not yet transactional?
In the current development phase Aria tables created with TRANSACTIONAL=1 are crash safe and atomic but not

transactional because changes in Aria tables can't be rolled back with the ROLLBACK command. As we planned to make

Aria tables fully transactional, we decided it was better to use the TRANSACTIONAL keyword from the start so so that

applications don't need to be changed later.

What are the known problems with the MySQL-5.1-Maria
release?

See KNOWN_BUGS.txt for open/design bugs.

See jira.mariadb.org for newly reported bugs. Please report anything you can't find here!

If there is a bug in the Aria recovery code or in the code that generates the logs, or if the logs become corrupted, then

mysqld may fail to start because Aria can't execute the logs at start up.

Query cache and concurrent insert using page row format have a bug, please disable query cache while using page

row format and MDEV-6817 isn't complete

If Aria doesn't start or you have an unrecoverable table (shouldn't happen):

Remove the aria_log.% files from the data directory.

Restart mysqld and run CHECK TABLE, REPAIR TABLE or mariadb-check on your Aria tables.

Alternatively,

Remove logs and run aria_chk on your *.MAI files.

What is going to change in later Aria main releases?
The LOCK TABLES statement will not start a crash-safe segment. You should use BEGIN and COMMIT instead.

To make things future safe, you could do this:

BEGIN;

LOCK TABLES

UNLOCK TABLES;

COMMIT;

And later you can just remove the LOCK TABLES and UNLOCK TABLES statements.

How can I create a MyISAM-like (non-transactional) table
in Aria?
Example:

CREATE TABLE t1 (a int) ROW_FORMAT=FIXED TRANSACTIONAL=0 PAGE_CHECKSUM=0;

CREATE TABLE t2 (a int) ROW_FORMAT=DYNAMIC TRANSACTIONAL=0 PAGE_CHECKSUM=0;

SHOW CREATE TABLE t1;

SHOW CREATE TABLE t2;

Note that the rows are not cached in the page cache for FIXED or DYNAMIC format. If you want to have the data cached

(something MyISAM doesn't support) you should use ROW_FORMAT=PAGE :

3126/4161

https://jira.mariadb.org/browse/MDEV-6817
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/begin

CREATE TABLE t3 (a int) ROW_FORMAT=PAGE TRANSACTIONAL=0 PAGE_CHECKSUM=0;

SHOW CREATE TABLE t3;

You can use PAGE_CHECKSUM=1 also for non-transactional tables; This puts a page checksums on all index pages. It also

puts a checksum on data pages if you use ROW_FORMAT=PAGE .

You may still have a speed difference (may be slightly positive or negative) between MyISAM and Aria because of different

page sizes. You can change the page size for MariaDB with --aria-block-size=\ #, where \ # is 1024, 2048, 4096,

8192, 16384 or 32768.

Note that if you change the page size you have to dump all your old tables into text (with mariadb-dump) and remove the old

Aria log and files:

rm datadir/aria_log*

What are the advantages/disadvantages of the new
PAGE format compared to the old MyISAM-like row
formats (DYNAMIC and FIXED)

The MyISAM-like DYNAMIC and FIXED format are extremely simple and have very little space overhead, so it's hard to

beat them for when it comes to simple scanning of unmodified data. The DYNAMIC format does however get notably worse

over time if you update the row a lot in a manner that increases the size of the row.

The advantages of the PAGE format (compared to DYNAMIC or FIXED) for non-transactional tables are:

It's cached by the Page Cache, which gives better random performance (as it uses less system calls).

Does not fragment as easily easily as the DYNAMIC format during UPDATE statements. The maximum number of

fragments are very low.

Code can easily be extended to only read the accessed columns (for example to skip reading blobs).

Faster updates (compared to DYNAMIC).

The disadvantages are:

Slight storage overhead (should only be notable for very small row sizes)

Slower full table scan time.

When using row_format=PAGE , (the default), Aria first writes the row, then the keys, at which point the check for

duplicate keys happens. This makes PAGE format slower than DYNAMIC (or MyISAM) if there is a lot of duplicated

keys because of the overhead of writing and removing the row. If this is a problem, you can use

row_format=DYNAMIC to get same behavior as MyISAM.

What's the proper way to copy a Aria table from one
place to another?
An Aria table consists of 3 files:

XXX.frm : The definition for the table, used by MySQL.

XXX.MYI : Aria internal information about the structure of the data and index and data for all indexes.

XXX.MAD : The data.

It's safe to copy all the Aria files to another directory or MariaDB instance if any of the following holds:

If you shutdown the MariaDB Server properly with mariadb-admin shutdown, so that there is nothing for Aria to

recover when it starts.

or

If you have run a FLUSH TABLES statement and not accessed the table using SQL from that time until the tables

have been copied.

In addition, you must adhere the following rule for transactional tables:

You can't copy the table to a location within the same MariaDB server if the new table has existed before and the new table

is still active in the Aria recovery log (that is, Aria may need to access the old data during recovery). If you are unsure

whether the old name existed, run aria_chk --zerofill on the table before you use it.

After copying a transactional table and before you use the table, we recommend that you run the command:

3127/4161

$ aria_chk --zerofill table_name

This will overwrite all references to the logs (LSN), all transactional references (TRN) and all unused space with 0. It also

marks the table as 'movable'. An additional benefit of zerofill is that the Aria files will compress better. No real data is ever

removed as part of zerofill.

Aria will automatically notice if you have copied a table from another system and do 'zerofill' for the first access of the table if

it was not marked as 'movable'. The reason for using aria_chk --zerofill is that you avoid a delay in the MariaDB server for

the first access of the table.

Note that this automatic detection doesn't work if you copy tables within the same MariaDB server!

When is it safe to remove old log files?
If you want to remove the Aria log files (aria_log.%) with rm or delete, then you must first shut down MariaDB cleanly

(for example, with mariadb-admin shutdown) before deleting the old files.

The same rules apply when upgrading MariaDB; When upgrading, first take down MariaDB in a clean way and then

upgrade. This will allow you to remove the old log files if there are incompatible problems between releases.

Don't remove the aria_log_control file! This is not a log file, but a file that contains information about the Aria setup

(current transaction id, unique id, next log file number etc.).

If you do, Aria will generate a new aria_log_control file at startup and will regard all old Aria files as files moved from

another system. This means that they have to be 'zerofilled' before they can be used. This will happen automatically at next

access of the Aria files, which can take some time if the files are big.

If this happens, you will see things like this in your mysqld.err file:

[Note] Zerofilling moved table: '.\database\xxxx'

As part of zerofilling no vital data is removed.

How does one solve the Missing valid id error?
See Aria Log Files for details.

5.3.4.4 Aria Storage Formats
Contents
1. Fixed-length

2. Dynamic

3. Page

4. Transactional

The Aria storage engine supports three different table storage formats.

These are FIXED, DYNAMIC and PAGE, and they can be set with the ROW FORMAT option in the CREATE TABLE

statement. PAGE is the default format, while FIXED and DYNAMIC are essentially the same as the MyISAM formats.

The SHOW TABLE STATUS statement can be used to see the storage format used by a table.

Fixed-length
Fixed-length (or static) tables contain records of a fixed-length. Each column is the same length for all records, regardless of

the actual contents. It is the default format if a table has no BLOB, TEXT, VARCHAR or VARBINARY fields, and no ROW

FORMAT is provided. You can also specify a fixed table with ROW_FORMAT=FIXED in the table definition.

Tables containing BLOB or TEXT fields cannot be FIXED, as by design these are both dynamic fields.

Fixed-length tables have a number of characteristics

fast, since MariaDB will always know where a record begins

easy to cache

take up more space than dynamic tables, as the maximum amount of storage space will be allocated to each record.

3128/4161

reconstructing after a crash is uncomplicated due to the fixed positions

no fragmentation or need to re-organize, unless records have been deleted and you want to free the space up.

Dynamic
Dynamic tables contain records of a variable length. It is the default format if a table has any BLOB, TEXT, VARCHAR or

VARBINARY fields, and no ROW FORMAT is provided. You can also specify a DYNAMIC table with

ROW_FORMAT=DYNAMIC in the table definition.

Dynamic tables have a number of characteristics

Each row contains a header indicating the length of the row.

Rows tend to become fragmented easily. UPDATING a record to be longer will likely ensure it is stored in different

places on the disk.

All string columns with a length of four or more are dynamic.

They require much less space than fixed-length tables.

Restoring after a crash is more complicated than with FIXED tables.

Page
Page format is the default format for Aria tables, and is the only format that can be used if TRANSACTIONAL=1.

Page tables have a number of characteristics:

It's cached by the page cache, which gives better random performance as it uses fewer system calls.

Does not fragment as easily easily as the DYNAMIC format during UPDATES. The maximum number of fragments

are very low.

Updates more quickly than dynamic tables.

Has a slight storage overhead, mainly notable on very small rows

Slower to perform a full table scan

Slower if there are multiple duplicated keys, as Aria will first write a row, then keys, and only then check for duplicates

Transactional
See Aria Storage Engine for the impact of the TRANSACTIONAL option on the row format.

5.3.4.5 Aria Status Variables
Contents
1. Aria_pagecache_blocks_not_flushed

2. Aria_pagecache_blocks_unused

3. Aria_pagecache_blocks_used

4. Aria_pagecache_read_requests

5. Aria_pagecache_reads

6. Aria_pagecache_write_requests

7. Aria_pagecache_writes

8. Aria_transaction_log_syncs

This page documents status variables related to the Aria storage engine. See Server Status Variables for a complete list of

status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Aria_pagecache_blocks_not_flushed

Description: The number of dirty blocks in the Aria page cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Aria_pagecache_blocks_unused

Description: Free blocks in the Aria page cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

3129/4161

Aria_pagecache_blocks_used

Description: Blocks used in the Aria page cache. The global value can be flushed by FLUSH STATUS .

Scope: Global

Data Type: numeric

Aria_pagecache_read_requests

Description: The number of requests to read something from the Aria page cache.

Scope: Global

Data Type: numeric

Aria_pagecache_reads

Description: The number of Aria page cache read requests that caused a block to be read from the disk.

Scope: Global

Data Type: numeric

Aria_pagecache_write_requests

Description: The number of requests to write a block to the Aria page cache.

Scope: Global

Data Type: numeric

Aria_pagecache_writes

Description: The number of blocks written to disk from the Aria page cache.

Scope: Global

Data Type: numeric

Aria_transaction_log_syncs

Description: The number of Aria log fsyncs.

Scope: Global

Data Type: numeric

5.3.4.6 Aria System Variables

3130/4161

Contents
1. aria_block_size

2. aria_checkpoint_interval

3. aria_checkpoint_log_activity

4. aria_encrypt_tables

5. aria_force_start_after_recovery_failures

6. aria_group_commit

7. aria_group_commit_interval

8. aria_log_file_size

9. aria_log_purge_type

10. aria_max_sort_file_size

11. aria_page_checksum

12. aria_pagecache_age_threshold

13. aria_pagecache_buffer_size

14. aria_pagecache_division_limit

15. aria_pagecache_file_hash_size

16. aria_recover

17. aria_recover_options

18. aria_repair_threads

19. aria_sort_buffer_size

20. aria_stats_method

21. aria_sync_log_dir

22. aria_used_for_temp_tables

23. deadlock_search_depth_long

24. deadlock_search_depth_short

25. deadlock_timeout_long

26. deadlock_timeout_short

This page documents system variables related to the Aria storage engine. For options that are not system variables, see

Aria Options.

See Server System Variables for a complete list of system variables and instructions on setting system variables.

Also see the Full list of MariaDB options, system and status variables.

aria_block_size

Description: Block size to be used for Aria index pages. Changing this requires dumping, deleting old tables and

deleting all log files, and then restoring your Aria tables. If key lookups take too long (and one has to search roughly

8192/2 by default to find each key), can be made smaller, e.g. 4096 .

Commandline: --aria-block-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 8192

Range:

>= MariaDB 10.4.7: 4096 to 32768 in increments of 1024

<= MariaDB 10.4.6: 1024 to 32768 in increments of 1024

aria_checkpoint_interval

Description: Interval in seconds between automatic checkpoints. 0 means 'no automatic checkpoints' which makes

sense only for testing.

Commandline: --aria-checkpoint-interval=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 30

Range: 0 to 4294967295

aria_checkpoint_log_activity

Description: Number of bytes that the transaction log has to grow between checkpoints before a new checkpoint is

written to the log.

Commandline: aria-checkpoint-log-activity=#

3131/4161

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1048576

Range 0 to 4294967295

aria_encrypt_tables

Description: Enables automatic encryption of all user-created Aria tables that have the ROW_FORMAT table option

set to PAGE . See Data at Rest Encryption and Enabling Encryption for User-created Tables .

Commandline: aria-encrypt-tables={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

aria_force_start_after_recovery_failures

Description: Number of consecutive log recovery failures after which logs will be automatically deleted to cure the

problem; 0 (the default) disables the feature.

Commandline: --aria-force-start-after-recovery-failures=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

aria_group_commit

Description: Specifies Aria group commit mode.

Commandline: --aria_group_commit="value"

Alias: maria_group_commit

Scope: Global

Dynamic: No

Data Type: string

Valid values:

none - Group commit is disabled.

hard - Wait the number of microseconds specified by aria_group_commit_interval before actually doing the

commit. If the interval is 0 then just check if any other threads have requested a commit during the time this

commit was preparing (just before sync() file) and send their data to disk also before sync().

soft - The service thread will wait the specified time and then sync() to the log. If the interval is 0 then it won't

wait for any commits (this is dangerous and should generally not be used in production)

Default Value: none

aria_group_commit_interval

Description: Interval between Aria group commits in microseconds (1/1000000 second) for other threads to come

and do a commit in "hard" mode and sync()/commit at all in "soft" mode. Option only has effect if aria_group_commit

is used.

Commandline: --aria_group_commit_interval=#

Alias: maria_group_commit_interval

Scope: Global

Dynamic: No

Type: numeric

Valid Values:

Default Value: 0 (no waiting)

Range: 0-4294967295

aria_log_file_size

Description: Limit for Aria transaction log size

3132/4161

https://mariadb.com/kb/en/encrypting-data-for-aria/#enabling-encryption-for-user-created-tables

Commandline: --aria-log-file-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1073741824

aria_log_purge_type

Description: Specifies how the Aria transactional log will be purged. Set to at_flush to keep a copy of the

transaction logs (good as an extra backup). The logs will stay until the next FLUSH LOGS;

Commandline: --aria-log-purge-type=name

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: immediate

Valid Values: immediate , external , at_flush

aria_max_sort_file_size

Description: Don't use the fast sort index method to created index if the temporary file would get bigger than this.

Commandline: --aria-max-sort-file-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 9223372036853727232

Range: 0 to 9223372036854775807

aria_page_checksum

Description: Determines whether index and data should use page checksums for extra safety. Can be overridden

per table with PAGE_CHECKSUM clause in CREATE TABLE.

Commandline: --aria-page-checksum=#

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

aria_pagecache_age_threshold

Description: This characterizes the number of hits a hot block has to be untouched until it is considered aged

enough to be downgraded to a warm block. This specifies the percentage ratio of that number of hits to the total

number of blocks in the page cache.

Commandline: --aria-pagecache-age-threshold=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 300

Range: 100 to 9999900

aria_pagecache_buffer_size

Description: The size of the buffer used for index and data blocks for Aria tables. This can include explicit Aria

tables, system tables, and temporary tables. Increase this to get better handling and measure by looking at aria-

status-variables/#aria_pagecache_reads (should be small) vs aria-status-variables/#aria_pagecache_read_requests.

Commandline: --aria-pagecache-buffer-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 134217720 (128MB)

Range: 131072 (128KB) upwards

3133/4161

aria_pagecache_division_limit

Description: The minimum percentage of warm blocks in the key cache.

Commandline: --aria-pagecache-division-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 1 to 100

aria_pagecache_file_hash_size

Description: Number of hash buckets for open and changed files. If you have many Aria files open you should

increase this for faster flushing of changes. A good value is probably 1/10th of the number of possible open Aria files.

Commandline: --aria-pagecache-file-hash-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 512

Range: 128 to 16384

aria_recover

Description: aria_recover has been renamed to aria_recover_options in MariaDB 10.2.0 . See

aria_recover_options for the description.

aria_recover_options

Description: Specifies how corrupted tables should be automatically repaired. More than one option can be

specified, for example FORCE,BACKUP .

NORMAL : Normal automatic repair, the default until MariaDB 10.2.3

OFF : Autorecovery is disabled, the equivalent of not using the option

QUICK : Does not check rows in the table if there are no delete blocks.

FORCE : Runs the recovery even if it determines that more than one row from the data file will be lost.

BACKUP : Keeps a backup of the data files.

Commandline: --aria-recover-options[=#]

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value:

BACKUP,QUICK (>= MariaDB 10.2.4)

NORMAL (<= MariaDB 10.2.3)

Valid Values: NORMAL , BACKUP , FORCE , QUICK , OFF

Introduced: MariaDB 10.2.0

aria_repair_threads

Description: Number of threads to use when repairing Aria tables. The value of 1 disables parallel repair. Increasing

from the default will usually result in faster repair, but will use more CPU and memory.

Commandline: --aria-repair-threads=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

aria_sort_buffer_size

Description: The buffer that is allocated when sorting the index when doing a REPAIR or when creating indexes with

CREATE INDEX or ALTER TABLE.
3134/4161

https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/

Commandline: --aria-sort-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 268434432

aria_stats_method

Description: Determines how NULLs are treated for Aria index statistics purposes. If set to nulls_equal , all NULL

index values are treated as a single group. This is usually fine, but if you have large numbers of NULLs the average

group size is slanted higher, and the optimizer may miss using the index for ref accesses when it would be useful. If

set to nulls_unequal , the default, the opposite approach is taken, with each NULL forming its own group of one.

Conversely, the average group size is slanted lower, and the optimizer may use the index for ref accesses when not

suitable. Setting to nulls_ignored ignores NULLs altogether from index group calculations. Statistics need to be

recalculated after this method is changed. See also Index Statistics, myisam_stats_method and

innodb_stats_method.

Commandline: --aria-stats-method=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: nulls_unequal

Valid Values: nulls_equal , nulls_unequal , nulls_ignored

aria_sync_log_dir

Description: Controls syncing directory after log file growth and new file creation.

Commandline: --aria-sync-log-dir=#

Scope: Global

Dynamic: Yes

Data Type: enumeration

Default Value: NEWFILE

Valid Values: NEWFILE , NEVER , ALWAYS

aria_used_for_temp_tables

Description: Readonly variable indicating whether the Aria storage engine is used for temporary tables. If set to ON ,

the default, the Aria storage engine is used. If set to OFF , MariaDB reverts to using MyISAM for on-disk temporary

tables. The MEMORY storage engine is used for temporary tables regardless of this variable's setting where

appropriate. The default can be changed by not using the --with-aria-tmp-tables option when building

MariaDB.

Commandline: No

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

deadlock_search_depth_long

Description: Long search depth for the two-step deadlock detection. Only used by the Aria storage engine.

Commandline: --deadlock-search-depth-long=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 15

Range: 0 to 33

deadlock_search_depth_short

Description: Short search depth for the two-step deadlock detection. Only used by the Aria storage engine.

Commandline: --deadlock-search-depth-short=#

3135/4161

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 4

Range: 0 to 32

deadlock_timeout_long

Description: Long timeout in microseconds for the two-step deadlock detection. Only used by the Aria storage

engine.

Commandline: --deadlock-timeout-long=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 50000000

Range: 0 to 4294967295

deadlock_timeout_short

Description: Short timeout in microseconds for the two-step deadlock detection. Only used by the Aria storage

engine.

Commandline: --deadlock-timeout-short=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 10000

Range: 0 to 4294967295

5.3.4.7 Aria Group Commit
Since MariaDB 5.2, the Aria storage engine has included a feature to group commits to speed up concurrent threads doing

many inserts into the same or different Aria tables.

By default, group commit for Aria is turned off. It is controlled by the aria_group_commit and aria_group_commit_interval

system variables.

Information on setting server variables can be found on the Server System Variables page.

Terminology
A commit is flush of logs followed by a sync.

sent to disk means written to disk but not sync()ed,

flushed mean sent to disk and synced().

LSN means log serial number. It's refers to the position in the transaction log.

Non Group commit logic (aria_group_commit="none")
The thread which first started the commit is performing the actual flush of logs. Other threads set the new goal (LSN) of

the next pass (if it is maximum) and wait for the pass end or just wait for the pass end.

The effect of this is that a flush (write of logs + sync) will save all data for all threads/transactions that have been waiting

since the last flush.

If hard group commit is enabled
(aria_group_commit="hard")

If hard commit and aria_group_commit_interval=0

The first thread sends all changed buffers to disk. This is repeated as long as there are new LSNs added. The process can

3136/4161

not loop forever because we have a limited number of threads and they will wait for the data to be synced.

Pseudo code:

do

 send changed buffers to disk

 while new_goal

sync

If hard commit and aria_group_commit_interval > 0

If less than rate microseconds has passed since the last sync, then after buffers have been sent to disk, wait until rate

microseconds has passed since last sync, do sync and return. This ensures that if we call sync infrequently we don't do any

waits.

If soft group commit is enabled
(aria_group_commit="soft")
Note that soft group commit should only be used if you can afford to lose a few rows if your machine shuts down hard (as in

the case of a power failure).

Works like in non group commit' but the thread doesn't do any real sync(). If aria_group_commit_interval is not zero, the

sync() will be performed by a service thread with the given rate when needed (new LSN appears). If

aria_group_commit_interval is zero, there will be no sync() calls.

Code
The code for this can be found in storage/maria/ma_loghandler.c::translog_flush()

5.3.4.8 Benchmarking Aria
We have not yet had time to benchmark Aria properly. Here follows some things that have been discussed on the maria-

discuss email list.

Aria used for internal temporary tables
By default Aria (instead of MyISAM) is used for the internal temporary tables when MEMORY tables overflows to disk or

MEMORY tables can't be used (for example when you are using temporary results with BLOB's). In most cases Aria should

give you better performance than using MyISAM, but this is not always the case.

CREATE TABLE `t1` (`id` int(11) DEFAULT NULL, `tea` text)

 ENGINE=MyISAM DEFAULT CHARSET=latin1;

insert t1 select rand()*2e8, repeat(rand(), rand()*64) from t1;

Repeat the last row until you get 2097152 rows.

The queries tested

Q1: SELECT id, tea from t1 group by left(id,1) order by null;

Q2: SELECT id, count(*), tea from t1 group by left(id,1) order by null;

Q3: SELECT id, tea from t1 group by left(id,2) order by null;

Q4: SELECT id, count(*), tea from t1 group by left(id,2) order by null;

Q5: SELECT id, tea from t1 group by id % 100 order by null;

Q6: SELECT id, count(*), tea from t1 group by id % 100 order by null;

Results (times in seconds, lower is better):

Test Aria 8K page size Aria 2K page size MyISAM

Q1 3.08 2.41 2.17

Q2 6.24 5.21 12.89

Q3 4.87 4.05 4.04

Q4 8.20 7.04 15.14

3137/4161

http://launchpad.net/~maria-discuss

Q5 7.10 6.37 6.28

Q6 10.38 9.09 17.00

The good news is that for common group by queries that is using summary functions there is a close to 50 % speedup of

using Aria for internal temporary tables.

Note that queries Q1,Q3 and Q5 are not typical queries as there is no sum functions involved. In this case rows are just

written to the tmp tables and there is no updates. As soon as there are summary functions and updates the new row format

in Aria gives a close to 50 % speedup.

The above table also shows how the page size (determined by the aria_block_size system variable) affects the

performance. The reason for the difference is that there is more data to move back/from the page cache for inserting of

keys. (When reading data we are normally not copying pages). The bigger page size however allows longer keys and fewer

index levels so for bigger data sets the different should be smaller. It's possible to in the future optimize Aria to not copy

pages from the page cache also for index writes and then this difference should disappear.

The default page size for Aria is 8K.

If you want to run MariaDB with MyISAM for temporary tables, don't use the configure option '--with-aria-tmp-tables' when

building MariaDB.

5.3.4.9 Aria Two-step Deadlock Detection

Description
The Aria storage engine can automatically detect and deal with deadlocks (see the Wikipedia deadlocks article).

This feature is controlled by four configuration variables, two that control the search depth and two that control the timeout.

deadlock_search_depth_long

deadlock_search_depth_short

deadlock_timeout_long

deadlock_timeout_short

How it Works
If Aria is ever unable to obtain a lock, we might have a deadlock. There are two primary ways for detecting if a deadlock has

actually occurred. First is to search a wait-for graph (see the wait-for graph on Wikipedia) and the second is to just wait

and let the deadlock exhibit itself. Aria Two-step Deadlock Detection does a combination of both.

First, if the lock request cannot be granted immediately, we do a short search of the wait-for graph with a small search depth

as configured by the deadlock_search_depth_short variable. We have a depth limit because the graph can

(theoretically) be arbitrarily big and we don't want to recursively search the graph arbitrarily deep. This initial, short search is

very fast and most deadlocks will be detected right away. If no deadlock cycles are found with the short search the system

waits for the amount of time configured in deadlock_timeout_short to see if the lock conflicts will be removed and the

lock can be granted. Assuming this did not happen and the lock request still waits, the system then moves on to step two,

which is a repeat of the process but this time searching deeper using the deadlock_search_depth_long . If no deadlock

has been detected, it waits deadlock_timeout_long and times out.

When a deadlock is detected the system uses a weighting algorithm to determine which thread in the deadlock should be

killed and then kills it.

5.3.4.10 Aria Encryption Overview
Contents
1. Basic Configuration

2. Determining Whether a Table is Encrypted

3. Encryption and the Aria Log

MariaDB can encrypt data in tables that use the Aria storage engine. This includes both user-created tables and internal on-

disk temporary tables that use the Aria storage engine. This ensures that your Aria data is only accessible through MariaDB.

For encryption with the InnoDB and XtraDB storage engines, see Encrypting Data for InnoDB/XtraDB.

Basic Configuration
3138/4161

http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Wait-for_graph

In order to enable encryption for tables using the Aria storage engine, there are a couple server system variables that you

need to set and configure. Most users will want to set aria_encrypt_tables and encrypt_tmp_disk_tables .

Users of data-at-rest encryption will also need to have a key management and encryption plugin configured. Some

examples are File Key Management Plugin and AWS Key Management Plugin.

[mariadb]

...

File Key Management

plugin_load_add = file_key_management

file_key_management_filename = /etc/mysql/encryption/keyfile.enc

file_key_management_filekey = FILE:/etc/mysql/encryption/keyfile.key

file_key_management_encryption_algorithm = AES_CTR

Aria Encryption

aria_encrypt_tables=ON

encrypt_tmp_disk_tables=ON

Determining Whether a Table is Encrypted
The InnoDB storage engine has the information_schema.INNODB_TABLESPACES_ENCRYPTION table that can be used

to get information about which tables are encrypted. Aria does not currently have anything like that (see MDEV-17324

about that).

To determine whether an Aria table is encrypted, you currently have to search the data file for some plain text that you know

is in the data.

For example, let's say that we have the following table:

SELECT * FROM db1.aria_tab LIMIT 1;

+----+------+

| id | str |

+----+------+

| 1 | str1 |

+----+------+

1 row in set (0.00 sec

Then, we could search the data file that belongs to db1.aria_tab for str1 using a command-line tool, such as strings :

$ sudo strings /var/lib/mysql/db1/aria_tab.MAD | grep "str1"

str1

If you can find the plain text of the string, then you know that the table is not encrypted.

Encryption and the Aria Log
Only Aria tables are currently encrypted. The Aria log is not yet encrypted. See MDEV-8587 about that.

5.3.4.11 The Aria Name
Contents
1. Backstory

2. Renaming Maria (the engine)

The Aria storage engine used to be called Maria. This page gives the history and background of how and why this name

was changed to Aria.

Backstory
When starting what became the MariaDB project, Monty and the initial developers only planned to work on a next

generation MyISAM storage engine replacement. This storage engine would be crash safe and eventually support

transactions. Monty named the storage engine, and the project, after his daughter, Maria.

Work began in earnest on the Maria storage engine but the plans quickly expanded and morphed and soon the developers

3139/4161

https://jira.mariadb.org/browse/MDEV-17324
https://linux.die.net/man/1/strings
https://jira.mariadb.org/browse/MDEV-8587

were not just working on a storage engine, but on a complete branch of the MySQL database. Since the project was already

called Maria, it made sense to call the whole database server MariaDB.

Renaming Maria (the engine)
So now there was the database, MariaDB, and the storage engine, Maria. To end the confusion this caused, the decision

was made to rename the storage engine.

Monty's first suggestion was to name it Lucy, after his dog, but few who heard it liked that idea. So the decision was made

that the next best thing was for the community to suggest and vote on names.

This was done by running a contest in 2009 through the end of May 2010. After that the best names were voted on by the

community and Monty picked and announced the winner (Aria) at OSCon 2010 in Portland.

The winning entry was submitted by Chris Tooley. He received a Linux-powered System 76 Meerkat NetTop as his prize

for suggesting the winning name from Monty Program.

5.3.5 Archive
The ARCHIVE storage engine is a storage engine that uses gzip to compress rows. It is mainly used for storing large

amounts of data, without indexes, with only a very small footprint.

A table using the ARCHIVE storage engine is stored in two files on disk. There's a table definition file with an extension of

.frm, and a data file with the extension .ARZ. At times during optimization, a .ARN file will appear.

New rows are inserted into a compression buffer and are flushed to disk when needed. SELECTs cause a flush. Sometimes,

rows created by multi-row inserts are not visible until the statement is complete.

ARCHIVE allows a maximum of one key. The key must be on an AUTO_INCREMENT column, and can be a PRIMARY KEY or

a non-unique key. However, it has a limitation: it is not possible to insert a value which is lower than the next

AUTO_INCREMENT value.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Characteristics

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'ha_archive';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way by

providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to

mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = ha_archive

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'ha_archive';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option

group in an option file, then those options should be removed to prevent the plugin from being loaded the next time the server

is restarted.

3140/4161

http://blogs.gnome.org/mneptok/2010/07/20/rename-maria-contest-winner/
http://www.system76.com

Characteristics
Supports INSERT and SELECT, but not DELETE, UPDATE or REPLACE.

Data is compressed with zlib as it is inserted, making it very small.

Data is slow the select, as it needs to be uncompressed, and, besides the query cache, there is no cache.

Supports AUTO_INCREMENT (since MariaDB/MySQL 5.1.6), which can be a unique or a non-unique index.

Since MariaDB/MySQL 5.1.6, selects scan past BLOB columns unless they are specifically requested, making these

queries much more efficient.

Does not support spatial data types.

Does not support transactions.

Does not support foreign keys.

Does not support virtual columns.

No storage limit.

Supports row locking.

Supports table discovery, and the server can access ARCHIVE tables even if the corresponding .frm file is missing.

OPTIMIZE TABLE and REPAIR TABLE can be used to compress the table in its entirety, resulting in slightly better

compression.

With MariaDB, it is possible to upgrade from the MySQL 5.0 format without having to dump the tables.

INSERT DELAYED is supported.

Running many SELECTs during the insertions can deteriorate the compression, unless only multi-rows INSERTs and

INSERT DELAYED are used.

No items found.

There are 3 related questions .

5.3.6 BLACKHOLE
The BLACKHOLE storage engine accepts data but does not store it and always returns an empty result.

A table using the BLACKHOLE storage engine consists of a single .frm table format file, but no associated data or index files.

This storage engine can be useful, for example, if you want to run complex filtering rules on a slave without incurring any

overhead on a master. The master can run a BLACKHOLE storage engine, with the data replicated to the slave for

processing.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Using the BLACKHOLE Storage Engine

1. Using with DML

2. Using with Replication

3. Using with Triggers

4. Using with Foreign Keys

5. Using with Virtual Columns

6. Using with AUTO_INCREMENT

4. Limits

5. Examples

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'ha_blackhole';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

3141/4161

https://mariadb.com/kb/en/spatial/
https://mariadb.com/kb/en/archive/+questions/

[mariadb]

...

plugin_load_add = ha_blackhole

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'ha_blackhole';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Using the BLACKHOLE Storage Engine

Using with DML

INSERT, UPDATE, and DELETE statements all work with the BLACKHOLE storage engine. However, no data changes are

actually applied.

Using with Replication

If the binary log is enabled, all SQL statements will be logged as usual, and replicated to any slave servers. However, since

rows are not stored, it is important to use statement-based rather than the row or mixed format, as UPDATE and DELETE

statements are neither logged nor replicated. See Binary Log Formats.

Using with Triggers

Some triggers work with the BLACKHOLE storage engine.

BEFORE triggers for INSERT statements are still activated.

Triggers for UPDATE and DELETE statements are not activated.

Triggers with the FOR EACH ROW clause do not apply, since the tables have no rows.

Using with Foreign Keys

Foreign keys are not supported. If you convert an InnoDB table to BLACKHOLE , then the foreign keys will disappear. If you

convert the same table back to InnoDB, then you will have to recreate them.

Using with Virtual Columns

If you convert an InnoDB table which contains virtual columns to BLACKHOLE , then it produces an error.

Using with AUTO_INCREMENT

Because a BLACKHOLE table does not store data, it will not maintain the AUTO_INCREMENT value. If you are replicating

to a table that can handle AUTO_INCREMENT columns, and are not explicitly setting the primary key auto-increment value in

the INSERT query, or using the SET INSERT_ID statement, inserts will fail on the slave due to duplicate keys.

Limits
The maximum key size is:

3500 bytes (>= MariaDB 10.1.48 , MariaDB 10.2.35 , MariaDB 10.3.26 , MariaDB 10.4.16 and MariaDB 10.5.7)

1000 bytes (<= MariaDB 10.1.47 , MariaDB 10.2.34 , MariaDB 10.3.25 , MariaDB 10.4.15 and MariaDB 10.5.6).

Examples

3142/4161

https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/

CREATE TABLE table_name (

 id int unsigned primary key not null,

 v varchar(30)

) ENGINE=BLACKHOLE;

INSERT INTO table_name VALUES (1, 'bob'),(2, 'jane');

SELECT * FROM table_name;

Empty set (0.001 sec)

5.3.7 CONNECT

Note: You can download a PDF version of the CONNECT documentation (1.7.0003).

Connect Version Introduced Maturity

Connect 1.07.0002 MariaDB 10.5.9, MariaDB 10.4.18, MariaDB 10.3.28 , MariaDB 10.2.36 Stable

Connect 1.07.0001 MariaDB 10.4.12, MariaDB 10.3.22 , MariaDB 10.2.31 , MariaDB 10.1.44 Stable

Connect 1.06.0010 MariaDB 10.4.8, MariaDB 10.3.18 , MariaDB 10.2.27 Stable

Connect 1.06.0007 MariaDB 10.3.6 , MariaDB 10.2.14 , MariaDB 10.1.33 Stable

Connect 1.06.0005 MariaDB 10.3.3 , MariaDB 10.2.10 , MariaDB 10.1.29 Stable

Connect 1.06.0004 MariaDB 10.3.2 , MariaDB 10.2.9 , MariaDB 10.1.28 Stable

Connect 1.06.0001 MariaDB 10.3.1 , MariaDB 10.2.8 , MariaDB 10.1.24 Beta

Connect 1.05.0003 MariaDB 10.3.0 , MariaDB 10.2.5 , MariaDB 10.1.22 Stable

Connect 1.05.0001 MariaDB 10.2.4 , MariaDB 10.1.21 Stable

Connect 1.04.0008 MariaDB 10.2.2 , MariaDB 10.1.17 Stable

Connect 1.04.0006 MariaDB 10.2.0 , MariaDB 10.1.13 , Stable

Connect 1.04.0005 MariaDB 10.1.10 Beta

Connect 1.04.0003 MariaDB 10.1.9 Beta

The CONNECT storage engine enables MariaDB to access external local or remote data (MED). This is done by defining

tables based on different data types, in particular files in various formats, data extracted from other DBMS or products (such

as Excel or MongoDB) via ODBC or JDBC, or data retrieved from the environment (for example DIR, WMI, and MAC tables)

This storage engine supports table partitioning, MariaDB virtual columns and permits defining special columns such as

ROWID, FILEID, and SERVID.

No precise definition of maturity exists. Because CONNECT handles many table types, each type has a different maturity

depending on whether it is old and well-tested, less well-tested or newly implemented. This will be indicated for all data types.

Introduction to the CONNECT Engine

Reasons behind the CONNECT storage engine.

Installing the CONNECT Storage Engine

Installing the CONNECT storage engine.

CONNECT Create Table Options

CREATE TABLE options for the CONNECT engine.

CONNECT Data Types

Data types supported by CONNECT.

Current Status of the CONNECT Handler

The current CONNECT handler is a stable release.

CONNECT Table Types

3

2

3143/4161

https://mariadb.com/kb/en/connect-table-types/+attachment/connect_1_7_03
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10231-release-notes/
https://mariadb.com/kb/en/mariadb-10144-release-notes/
https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10227-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/connect-create-table-options/

CONNECT Table Types Overview

CONNECT can handle many table formats.

Inward and Outward Tables

The two broad categories of CONNECT tables.

CONNECT Table Types - Data Files

CONNECT plain DOS or UNIX data files.

CONNECT Zipped File Tables

When the table file or files are compressed in one or several zip files.

CONNECT DOS and FIX Table Types

CONNECT tables based on text files

CONNECT DBF Table Type

CONNECT dBASE III or IV tables.

CONNECT BIN Table Type

CONNECT binary files in which each row is a logical record of fixed length

CONNECT VEC Table Type

CONNECT binary files organized in vectors

CONNECT CSV and FMT Table Types

Variable length CONNECT data files.

CONNECT - NoSQL Table Types

Based on files that do not match the relational format but often represent hierarchical data.

CONNECT - Files Retrieved Using Rest Queries

JSON, XML and CSV data files can be retrieved as results from REST queries.

CONNECT JSON Table Type

JSON (JavaScript Object Notation) is a widely-used lightweight data-interchange format.

CONNECT XML Table Type

CONNECT XML files

CONNECT INI Table Type

CONNECT INI Windows configuration or initialization files.

CONNECT - External Table Types

Access tables belonging to the current or another server.

CONNECT ODBC Table Type: Accessing Tables From Another DBMS

CONNECT Table Types - ODBC Table Type: Accessing Tables from other DBMS

CONNECT JDBC Table Type: Accessing Tables from Another DBMS

Using JDBC to access other tables.

CONNECT MONGO Table Type: Accessing Collections from MongoDB

Used to directly access MongoDB collections as tables.

CONNECT MYSQL Table Type: Accessing MySQL/MariaDB Tables

Accessing a MySQL or MariaDB table or view

CONNECT PROXY Table Type

Tables that access and read the data of another table or view

CONNECT XCOL Table Type

Based on another table/view, used when object tables have a column that contains a list of values

1

4

4

1

3

1

6

3144/4161

CONNECT OCCUR Table Type

Extension to the PROXY type when referring to a table/view having several c...

CONNECT PIVOT Table Type

Transform the result of another table into another table along <pivot= and "fact" columns.

CONNECT TBL Table Type: Table List

Define a table as a list of tables of any engine and type.

CONNECT - Using the TBL and MYSQL Table Types Together

Used together, the TBL and MYSQL types lift all the limitations of the FEDERATED and MERGE engines

CONNECT Table Types - Special "Virtual" Tables

VIR, WMI and MAC special table types

CONNECT Table Types - VIR

VIR virtual type for CONNECT

CONNECT Table Types - OEM: Implemented in an External LIB

CONNECT OEM table types are implemented in an external library.

CONNECT Table Types - Catalog Tables

Catalog tables return information about another table or data source

Adding DataFlex 3.1c .dat Files As An External Table Type With CONNECT

I'm using MariaDB's CONNECT engine to access / utilize a set of Visual FoxP...

CONNECT engine windows

with mariadb 10.07 installed on windows, how to setup engines, particulary ...

creating pivot table fails

I tried to create a pivot table based on an existing table "test1" and get ...

limit of number of columns

I have a table of 6MB with 50 values in the pivot-values leading to 50 colu...

Other CONNECT Articles

CONNECT - Security

CONNECT requires the FILE privilege for "outward" tables

CONNECT - OEM Table Example

Example showing how an OEM table can be implemented.

Using CONNECT

Using CONNECT - General Information

Using CONNECT - General Information.

Using CONNECT - Virtual and Special Columns

Virtual and special columns example usage

Using CONNECT - Importing File Data Into MariaDB Tables

Directly using external (file) data has many advantages

Using CONNECT - Exporting Data From MariaDB

Exporting data from MariaDB with CONNECT

Using CONNECT - Indexing

Indexing with the CONNECT handler

Using CONNECT - Condition Pushdown

Using CONNECT - Condition Pushdown.

3

2

1

3

11

1

1

1

3145/4161

https://mariadb.com/kb/en/adding-dataflex-31c-dat-files-as-an-external-table-type-with-connect/
https://mariadb.com/kb/en/connect-engine-windows/
https://mariadb.com/kb/en/creating-pivot-table-fails/
https://mariadb.com/kb/en/limit-of-number-of-columns/

USING CONNECT - Offline Documentation

CONNECT Plugin User Manual.

Using CONNECT - Partitioning and Sharding

Partitioning and Sharding with CONNECT

Other CONNECT Articles

CONNECT - Making the GetRest Library

Compiling the function calling the cpprestsdk package separately that will be loaded by CONNECT.

CONNECT - Adding the REST Feature as a Library Called by an OEM Table

How the REST feature can be added as a library called by an OEM table.

CONNECT - Compiling JSON UDFs in a Separate Library

There are situations when you may need to have JSON UDFs in a separate library.

CONNECT System Variables

System variables related to the CONNECT storage engine.

JSON Sample Files

expense.json sample file

There are 20 related questions .

5.3.7.1 Introduction to the CONNECT Engine
CONNECT is not just a new <YASE= (Yet another Storage Engine) that provides another way to store data with additional

features. It brings a new dimension to MariaDB, already one of the best products to deal with traditional database

transactional applications, further into the world of business intelligence and data analysis, including NoSQL facilities.

Indeed, BI is the set of techniques and tools for the transformation of raw data into meaningful and useful information. And

where is this data?

"It's amazing in an age where relational databases reign supreme when it comes to managing data that so much

information still exists outside RDBMS engines in the form of flat files and other such constructs. In most enterprises,

data is passed back and forth between disparate systems in a fashion and speed that would rival the busiest

expressways in the world, with much of this data existing in common, delimited files. Target systems intercept these

source files and then typically proceed to load them via ETL (extract, transform, load) processes into databases that

then utilize the information for business intelligence, transactional functions, or other standard operations. ETL tasks

and data movement jobs can consume quite a bit of time and resources, especially if large volumes of data are present

that require loading into a database. This being the case, many DBAs welcome alternative means of accessing and

managing data that exists in file format."

- Robin Schumacher

What he describes is known as MED (Management of External Data) enabling the handling of data not stored in a DBMS

database as if it were stored in tables. An ISO standard exists that describes one way to implement and use MED in SQL by

defining foreign tables for which an external FDW (Foreign Data Wrapper) has been developed in C.

However, since this was written, a new source of data was developed as the <cloud=. Data are existing worldwide and, in

particular, can be obtained in JSON or XML format in answer to REST queries. From Connect 1.06.0010, it is possible to

create JSON, XML or CSV tables based on data retrieved from such REST queries.

MED as described above is a rather complex way to achieve this goal and MariaDB does not support the ISO SQL/MED

standard. But, to cover the need, possibly in transactional but mostly in decision support applications, the CONNECT

storage engine supports MED in a much simpler way.

The main features of CONNECT are:

1. No need for additional SQL language extensions.

2. Embedded wrappers for many external data types (files, data sources, virtual).

3. NoSQL query facilities for JSON, XML, HTML files and using JSON UDFs.

4. NoSQL data obtained from REST queries (requires cpprestsdk).

5. NoSQL new data type MONGO accessing MongoDB collections as relational tables.

6. Read/Write access to external files of most commonly used formats.

7. Direct access to most external data sources via ODBC, JDBC and MySQL or MongoDB API.

8. Only used columns are retrieved from external scan.

[1]

3146/4161

https://mariadb.com/kb/en/connect/+questions/

9. Push-down WHERE clauses when appropriate.

10. Support of special and virtual columns.

11. Parallel execution of multi-table tables (currently unavailable).

12. Supports partitioning by sub-files or by sub-tables (enabling table sharding).

13. Support of MRR for SELECT, UPDATE and DELETE.

14. Provides remote, block, dynamic and virtual indexing.

15. Can execute complex queries on remote servers.

16. Provides an API that allows writing additional FDW in C++.

With CONNECT, MariaDB has one of the most advanced implementations of MED and NoSQL, without the need for

complex additions to the SQL syntax (foreign tables are "normal" tables using the CONNECT engine).

Giving MariaDB easy and natural access to external data enables the use of all of its powerful functions and SQL-handling

abilities for developing business intelligence applications.

With version 1.07 of CONNECT, retrieving data from REST queries is available in all binary distributed version of MariaDB,

and, from 1.07.002, CONNECT allows workspaces greater than 4GB.

1. ± Robin Schumacher is Vice President Products at DataStax and former Director of Product Management at MySQL.

He has over 13 years of database experience in DB2, MySQL, Oracle, SQL Server and other database engines.

5.3.7.2 Installing the CONNECT Storage Engine
The CONNECT storage engine enables MariaDB to access external local or remote data (MED). This is done by defining

tables based on different data types, in particular files in various formats, data extracted from other DBMS or products (such

as Excel or MongoDB) via ODBC or JDBC, or data retrieved from the environment (for example DIR, WMI, and MAC tables)

This storage engine supports table partitioning, MariaDB virtual columns and permits defining special columns such as

ROWID, FILEID, and SERVID.

The storage engine must be installed before it can be used.

Contents
1. Installing the Plugin's Package

1. Installing on Linux

1. Installing with a Package Manager

1. Installing with yum/dnf

2. Installing with apt-get

3. Installing with zypper

2. Installing the Plugin

3. Uninstalling the Plugin

4. Installing Dependencies

1. Installing unixODBC

Installing the Plugin's Package
The CONNECT storage engine's shared library is included in MariaDB packages as the ha_connect.so or

ha_connect.so shared library on systems where it can be built.

Installing on Linux

The CONNECT storage engine is included in binary tarballs on Linux.

Installing with a Package Manager

The CONNECT storage engine can also be installed via a package manager on Linux. In order to do so, your system needs

to be configured to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

Installing with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

3147/4161

https://downloads.mariadb.org/mariadb/repositories/

package from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced

by dnf , which is the next major version of yum . However, yum commands still work on many systems that use dnf . For

example:

sudo yum install MariaDB-connect-engine

Installing with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB package from

MariaDB's repository using apt-get . For example:

sudo apt-get install mariadb-plugin-connect

Installing with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM package

from MariaDB's repository using zypper . For example:

sudo zypper install MariaDB-connect-engine

Installing the Plugin
Once the shared library is in place, the plugin is not actually installed by MariaDB by default. There are two methods that

can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'ha_connect';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = ha_connect

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'ha_connect';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Installing Dependencies
The CONNECT storage engine has some external dependencies.

Installing unixODBC

The CONNECT storage engine requires an ODBC library. On Unix-like systems, that usually means installing unixODBC .

On some systems, this is installed as the unixODBC package. For example:

sudo yum install unixODBC

On other systems, this is installed as the libodbc1 package. For example:

3148/4161

https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get
http://www.unixodbc.org/

sudo apt-get install libodbc1

If you do not have the ODBC library installed, then you may get an error about a missing library when you attempt to install

the plugin. For example:

INSTALL SONAME 'ha_connect';

ERROR 1126 (HY000): Can't open shared library

'/home/ian/MariaDB_Downloads/10.1.17/lib/plugin/ha_connect.so'

 (errno: 2, libodbc.so.1: cannot open shared object file: No such file or directory)

5.3.7.3 CONNECT Create Table Options
Contents
1. Table Options

2. Column Options

3. Index Options

Create Table statements for <CONNECT= tables are standard MariaDB create statements specifying engine=CONNECT .

There are a few additional table and column options specific to CONNECT.

Table Options

Table Option Type Description

AVG_ROW_LENGTH Integer Can be specified to help CONNECT estimate the size of a variable record table length.

BLOCK_SIZE Integer
The number of rows each block of a FIX, BIN, DBF, or VEC table contains. For an ODBC

table this is the RowSet size option. For a JDBC table this is the fetch size.

CATFUNC String The catalog function used by a catalog table.

COLIST String The column list of OCCUR tables or $project of MONGO tables.

COMPRESS Number
1 or 2 if the data file is g-zip compressed. Defaults to 0. Before CONNECT 1.05.0001,

this was boolean, and true if the data file is compressed.

CONNECTION String Specifies the connection of an ODBC, JDBC or MYSQL table.

DATA_CHARSET String The character set used in the external file or data source.

DBNAME String
The target database for ODBC, JDBC, MYSQL , catalog, and PROXY based tables. The

database concept is sometimes known as a schema.

ENGINE String Must be specfied as CONNECT .

ENDING Integer End of line length. Defaults to 1 for Unix/Linux and 2 for Windows.

FILE_NAME String
The file (path) name for all table types based on files. Can be absolute or relative to the

current data directory. If not specified, this is an Inward table and a default value is used.

FILTER String To filter an external table. Currently MONGO tables only.

HEADER Integer Applies to CSV, VEC, and HTML files. Its meaning depends on the table type.

HTTP String The HTTP of the client of REST queries. From Connect 1.06.0010.

HUGE Boolean
To specify that a table file can be larger than 2GB. For a MYSQL table, prevents the

result set from being stored in memory.

LRECL Integer The file record size (often calculated by default).

MAPPED Boolean Specifies whether file mapping is used to handle the table file.

MODULE String
The (path) name of the DLL or shared lib implementing the access of a non-standard

(OEM) table type.

MULTIPLE Integer Used to specify multiple file tables.

OPTION_LIST String Used to specify all other options not yet directly defined.

QCHAR String
Specifies the character used for quoting some fields of a CSV table or the identifiers of an

ODBC/JDBC tables.

3149/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

QUOTED Integer The level of quoting used in CSV table files.

READONLY Boolean True if the data file must not be modified or erased.

SEP_CHAR String
Specifies the field separator character of a CSV or XCOL table. Also, used to specify the

Jpath separator for JSON tables.

SEPINDEX Boolean When true, indexes are saved in separate files.

SPLIT Boolean True for a VEC table when all columns are in separate files.

SRCDEF String
The source definition of a table retrieved via ODBC, JDBC or the MySQL API or used by a

PIVOT table.

SUBTYPE String The subtype of an OEM table type.

TABLE_LIST String The comma separated list of TBL table sub-tables.

TABLE_TYPE String

The external table type: DOS, FIX, BIN, CSV, FMT, XML, JSON, INI, DBF, VEC, ODBC,

JDBC, MYSQL , TBL, PROXY, XCOL, OCCUR, PIVOT, ZIP, VIR, DIR, WMI, MAC, and

OEM. Defaults to DOS, MYSQL , or PROXY depending on what options are used.

TABNAME String
The target table or node for ODBC, JDBC, MYSQL , PROXY, or catalog tables; or the top

node name for XML tables.

URI String The URI of a REST request.. From Connect 1.06.0010.

XFILE_NAME String
The file (path) base name for table index files. Can be absolute or relative to the data

directory. Defaults to the file name.

ZIPPED Boolean True if the table file(s) is/are zipped in one or several zip files.

All integers in the above table are unsigned big integers.

Because CONNECT handles many table types; many table type specific options are not in the above list and must be

entered using the OPTION_LIST option. The syntax to use is:

... option_list='opname1=opvalue1,opname2=opvalue2...'

Be aware that until Connect 1.5.5, no blanks should be inserted before or after the ' = ' and ' , ' characters. The option name

is all that is between the start of the string or the last ' , ' character and the next ' = ' character, and the option value is all

that is between this ' = ' character and the next ' , ' or end of string. For instance:

option_list='name=TABLE,coltype=HTML,attribute=border=1;cellpadding=5,headattr=bgcolor=yellow';

This defines four options, ' name ', ' coltype ', ' attribute ', and ' headattr '; with values ' TABLE ', ' HTML ',

' border=1;cellpadding=5 ', and ' bgcolor=yellow ', respectively. The only restriction is that values cannot contain

commas, but they can contain equal signs.

Column Options

Column Option Type Description

DATE_FORMAT String The format indicating how a date is stored in the file.

DISTRIB Enum <scattered=, <clustered=, <sorted= (ascending).

FIELD_FORMAT String The column format for some table types.

FIELD_LENGTH Integer Set the internal field length for DATE columns.

FLAG Integer An integer value whose meaning depends on the table type.

JPATH String The Json path of JSON table columns.

MAX_DIST Integer Maximum number of distinct values in this column.

SPECIAL String The name of the SPECIAL column that set this column value.

XPATH String The XML path of XML table columns.

The MAX_DIST and DISTRIB column options are used for block indexing.

All integers in the above table are unsigned big integers.

JPATH and XPATH were added to make CREATE TABLE statements more readable, but they do the same thing as

3150/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

FIELD_FORMAT and any of them can be used with the same result.

Index Options

Index Option Type Description

DYNAM Boolean Set the index as <dynamic=.

MAPPED Boolean Use index file mapping.

Note 1: Creating a CONNECT table based on file does not erase or create the file if the file name is specified in the

CREATE TABLE statement (<outward= table). If the file does not exist, it will be populated by subsequent INSERT or LOAD

commands or by the <AS select statement= of the CREATE TABLE command. Unlike the CSV engine, CONNECT easily

permits the creation of tables based on already existing files, for instance files made by other applications. However, if the

file name is not specified, a file with a name defaulting to tablename.tabletype will be created in the data directory

(<inward= table).

Note 2: Dropping a CONNECT table is done with a standard DROP statement. For outward tables, this drops only the

CONNECT table definition but does not erase the corresponding data file and index files. Use DELETE or TRUNCATE to do

so. This is contrary to data and index files of inward tables are erased on DROP like for other MariaDB engines.

5.3.7.4 CONNECT Data Types
Contents
1. TYPE_STRING

2. TYPE_INT

3. TYPE_SHORT

4. TYPE_TINY

5. TYPE_BIGINT

6. TYPE_DOUBLE

7. TYPE_DECIM

8. DATE Data type

1. Date Format in Text Tables

2. Usage Notes

3. Handling dates that are out of the range of supported CONNECT dates

9. NULL handling

10. Unsigned numeric types

11. Data type conversion

Many data types make no or little sense when applied to plain files. This why CONNECT supports only a restricted set of

data types. However, ODBC, JDBC or MYSQL source tables may contain data types not supported by CONNECT. In this

case, CONNECT makes an automatic conversion to a similar supported type when it is possible.

The data types currently supported by CONNECT are:

Type name Description Used for

TYPE_STRING Zero ended string char, varchar, text

TYPE_INT 4 bytes integer int, mediumint, integer

TYPE_SHORT 2 bytes integer smallint

TYPE_TINY 1 byte integer tinyint

TYPE_BIGINT 8 bytes integer bigint, longlong

TYPE_DOUBLE 8 bytes floating point double, float, real

TYPE_DECIM Numeric value decimal, numeric, number

TYPE_DATE 4 bytes integer date, datetime, time, timestamp, year

TYPE_STRING
This type corresponds to what is generally known as CHAR or VARCHAR by database users, or as strings by programmers.

Columns containing characters have a maximum length but the character string is of fixed or variable length depending on

the file format.

The DATA_CHARSET option must be used to specify the character set used in the data source or file. Note that, unlike

3151/4161

usually with MariaDB, when a multi-byte character set is used, the column size represents the number of bytes the column

value can contain, not the number of characters.

TYPE_INT
The INTEGER type contains signed integer numeric 4-byte values (the int/ of the C language) ranging from 3

2,147,483,648 to 2,147,483,647 for signed type and 0 to 4,294,967,295 for unsigned type.

TYPE_SHORT
The SHORT data type contains signed integer numeric 2-byte values (the short integer of the C language) ranging from 3

32,768 to 32,767 for signed type and 0 to 65,535 for unsigned type.

TYPE_TINY
The TINY data type contains integer numeric 1-byte values (the char of the C language) ranging from 3128 to 127 for

signed type and 0 to 255 for unsigned type. For some table types, TYPE_TINY is used to represent Boolean values (0 is

false, anything else is true).

TYPE_BIGINT
The BIGINT data type contains signed integer 8-byte values (the long long of the C language) ranging from -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 for signed type and from 0 to

18,446,744,073,709,551,615 for unsigned type.

Inside tables, the coding of all integer values depends on the table type. In tables represented by text files, the number is

written in characters, while in tables represented by binary files (BIN or VEC) the number is directly stored in the binary

representation corresponding to the platform.

The length (or precision) specification corresponds to the length of the table field in which the value is stored for text files

only. It is used to set the output field length for all table types.

TYPE_DOUBLE
The DOUBLE data type corresponds to the C language double type, a floating-point double precision value coded with 8

bytes. Like for integers, the internal coding in tables depends on the table type, characters for text files, and platform binary

representation for binary files.

The length specification corresponds to the length of the table field in which the value is stored for text files only. The scale

(was precision) is the number of decimal digits written into text files. For binary table types (BIN and VEC) this does not

apply. The length and scale specifications are used to set the output field length and number of decimals for all types of

tables.

TYPE_DECIM
The DECIMAL data type corresponds to what MariaDB or ODBC data sources call NUMBER, NUMERIC, or DECIMAL: a

numeric value with a maximum number of digits (the precision) some of them eventually being decimal digits (the scale).

The internal coding in CONNECT is a character representation of the number. For instance:

colname decimal(14,6)

This defines a column colname as a number having a precision of 14 and a scale of 6. Supposing it is populated by:

insert into xxx values (-2658.74);

The internal representation of it will be the character string -2658.740000 . The way it is stored in a file table depends on

the table type. The length field specification corresponds to the length of the table field in which the value is stored and is

calculated by CONNECT from the precision and the scale values. This length is precision plus 1 if scale is not 0 (for the

decimal point) plus 1 if this column is not unsigned (for the eventual minus sign). In fix formatted tables the number is right

justified in the field of width length, for variable formatted tables, such as CSV, the field is the representing character string.

Because this type is mainly used by CONNECT to handle numeric or decimal fields of ODBC, JDBC and MySQL table

types, CONNECT does not provide decimal calculations or comparison by itself. This is why decimal columns of CONNECT
3152/4161

tables cannot be indexed.

DATE Data type
Internally, date/time values are stored by CONNECT as a signed 4-byte integer. The value 0 corresponds to 01 January

1970 12:00:00 am coordinated universal time (UTC). All other date/time values are represented by the number of

seconds elapsed since or before midnight (00:00:00), 1 January 1970, to that date/time value. Date/time values before

midnight 1 January 1970 are represented by a negative number of seconds.

CONNECT handles dates from 13 December 1901, 20:45:52 to 18 January 2038, 19:14:07.

Although date and time information can be represented in both CHAR and INTEGER data types, the DATE data type has

special associated properties. For each DATE value, CONNECT can store all or only some of the following information:

century, year, month, day, hour, minute, and second.

Date Format in Text Tables

Internally, date/time values are handled as a signed 4-byte integer. But in text tables (type DOS, FIX, CSV, FMT, and DBF)

dates are most of the time stored as a formatted character string (although they also can be stored as a numeric string

representing their internal value). Because there are infinite ways to format a date, the format to use for decoding dates, as

well as the field length in the file, must be associated to date columns (except when they are stored as the internal numeric

value).

Note that this associated format is used only to describe the way the temporal value is stored internally. This format is used

both for output to decode the date in a SELECT statement as well as for input to encode the date in INSERT or UPDATE

statements. However, what is kept in this value depends on the data type used in the column definition (all the MariaDB

temporal values can be specified). When creating a table, the format is associated to a date column using the

DATE_FORMAT option in the column definition, for instance:

create table birthday (

 Name varchar(17),

 Bday date field_length=10 date_format='MM/DD/YYYY',

 Btime time field_length=8 date_format='hh:mm tt')

engine=CONNECT table_type=CSV;

insert into birthday values ('Charlie','2012-11-12','15:30:00');

select * from birthday;

The SELECT query returns:

Name Bday Btime

Charlie 2012-11-12 15:30:00

The values of the INSERT statement must be specified using the standard MariaDB syntax and these values are displayed

as MariaDB temporal values. Sure enough, the column formats apply only to the way these values are represented inside

the CSV files. Here, the inserted record will be:

Charlie,11/12/2012,03:30 PM

Note: The field_length option exists because the MariaDB syntax does not allow specifying the field length between

parentheses for temporal column types. If not specified, the field length is calculated from the date format (sometimes as a

max value) or made equal to the default length value if there is no date format. In the above example it could have been

removed as the calculated values are the ones specified. However, if the table type would have been DOS or FIX, these

values could be adjusted to fit the actual field length within the file.

A CONNECT format string consists of a series of elements that represent a particular piece of information and define its

format. The elements will be recognized in the order they appear in the format string. Date and time format elements will be

replaced by the actual date and time as they appear in the source string. They are defined by the following groups of

characters:

Element Description

YY The last two digits of the year (that is, 1996 would be coded as "96").

YYYY The full year (that is, 1996 could be entered as "96" but displayed as <1996=).

MM The one or two-digit month number.

3153/4161

https://mariadb.com/kb/en/coordinated-universal-time/

MMM The three-character month abbreviation.

MMMM The full month name.

DD The one or two-digit month day.

DDD The three-character weekday abbreviation.

DDDD The full weekday name.

hh The one or two-digit hour in 12-hour or 24-hour format.

mm The one or two-digit minute.

ss The one or two-digit second.

t The one-letter AM/PM abbreviation (that is, AM is entered as "A").

tt The two-letter AM/PM abbreviation (that is, AM is entered as "AM").

Usage Notes

To match the source string, you can add body text to the format string, enclosing it in single quotes or double quotes if

it would be ambiguous. Punctuation marks do not need to be quoted.

The hour information is regarded as 12-hour format if a <t= or <tt= element follows the <hh= element in the format or as

24-hour format otherwise.

The "MM", "DD", "hh", "mm", "ss" elements can be specified with one or two letters (e.g. "MM" or "M") making no

difference on input, but placing a leading zero to one-digit values on output for two-letter elements.

If the format contains elements DDD or DDDD, the day of week name is skipped on input and ignored to calculate the

internal date value. On output, the correct day of week name is generated and displayed.

Temporal values are always stored as numeric in BIN and VEC tables.

Handling dates that are out of the range of supported CONNECT dates

If you want to make a table containing, for instance, historical dates not being convertible into CONNECT dates, make your

column CHAR or VARCHAR and store the dates in the MariaDB format. All date functions applied to these strings will

convert them to MariaDB dates and will work as if they were real dates. Of course they must be inserted and will be

displayed using the MariaDB format.

NULL handling
CONNECT handles null values for data sources able to produce nulls. Currently this concerns mainly the ODBC, JDBC,

MONGO, MYSQL , XML, JSON and INI table types. For INI, JSON, MONGO or XML types, null values are returned when

the key is missing in the section (INI) or when the corresponding node does not exist in a row (XML, JSON, MONGO).

For other file tables, the issue is to define what a null value is. In a numeric column, 0 can sometimes be a valid value but,

in some other cases, it can make no sense. The same for character columns; is a blank field a valid value or not?

A special case is DATE columns with a DATE_FORMAT specified. Any value not matching the format can be regarded as

NULL.

CONNECT leaves the decision to you. When declaring a column in the CREATE TABLE statement, if it is declared NOT

NULL, blank or zero values will be considered as valid values. Otherwise they will be considered as NULL values. In all

cases, nulls are replaced on insert or update by pseudo null values, a zero-length character string for text types or a zero

value for numeric types. Once converted to pseudo null values, they will be recognized as NULL only for columns declared

as nullable.

For instance:

create table t1 (a int, b char(10)) engine=connect;

insert into t1 values (0,'zero'),(1,'one'),(2,'two'),(null,'???');

select * from t1 where a is null;

The select query replies:

a b

NULL zero

NULL ???

Sure enough, the value 0 entered on the first row is regarded as NULL for a nullable column. However, if we execute the

[1]

3154/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

query:

select * from t1 where a = 0;

This will return no line because a NULL is not equal to 0 in an SQL where clause.

Now let us see what happens with not null columns:

create table t1 (a int not null, b char(10) not null) engine=connect;

insert into t1 values (0,'zero'),(1,'one'),(2,'two'),(null,'???');

The insert statement will produce a warning saying:

Level Code Message

Warning 1048 Column 'a' cannot be null

It is replaced by a pseudo null 0 on the fourth row. Let us see the result:

select * from t1 where a is null;

select * from t1 where a = 0;

The first query returns no rows, 0 are valid values and not NULL. The second query replies:

a b

0 zero

0 ???

It shows that the NULL inserted value was replaced by a valid 0 value.

Unsigned numeric types
They are supported by CONNECT since version 1.01.0010 for fixed numeric types (TINY, SHORT, INTEGER, and BITINT).

Data type conversion
CONNECT is able to convert data from one type to another in most cases. These conversions are done without warning

even when this leads to truncation or loss of precision. This is true, in particular, for tables of type ODBC, JDBC, MYSQL

and PROXY (via MySQL) because the source table may contain some data types not supported by CONNECT. They are

converted when possible to CONNECT types.

When converted, MariaDB types are converted as:

MariaDB Types CONNECT Type Remark

integer, medium integer TYPE_INT 4 byte integer

small integer TYPE_SHORT 2 byte integer

tiny integer TYPE_TINY 1 byte integer

char, varchar TYPE_STRING Same length

double, float, real TYPE_DOUBLE 8 byte floating point

decimal, numeric TYPE_DECIM Length depends on precision and scale

all date related types TYPE_DATE Date format can be set accordingly

bigint, longlong TYPE_BIGINT 8 byte integer

enum, set TYPE_STRING Numeric value not accessible

All text types
TYPE_STRING

TYPE_ERROR
Depending on the value of the connect_type_conv system variable value.

Other types TYPE_ERROR Not supported, no conversion provided.

For ENUM, the length of the column is the length of the longest value of the enumeration. For SET the length is enough to

contain all the set values concatenated with comma separator.

3155/4161

In the case of TEXT columns, the handling depends on the values given to the connect_type_conv and connect_conv_size

system variables.

Note: BLOB is currently not converted by default until a TYPE_BIN type is added to CONNECT. However, the FORCE

option (from Connect 1.06.006) can be specified for blob columns containing text and the SKIP option also applies to ODBC

BLOB columns.

ODBC SQL types are converted as:

SQL Types Connect Type Remark

SQL_CHAR, SQL_VARCHAR TYPE_STRING

SQL_LONGVARCHAR TYPE_STRING

len = min(abs(len), connect_conv_size) If the column is

generated by discovery (columns not specified) its length is

connect_conv_size.

SQL_NUMERIC,

SQL_DECIMAL
TYPE_DECIM

SQL_INTEGER TYPE_INT

SQL_SMALLINT TYPE_SHORT

SQL_TINYINT, SQL_BIT TYPE_TINY

SQL_FLOAT, SQL_REAL,

SQL_DOUBLE
TYPE_DOUBLE

SQL_DATETIME TYPE_DATE len = 10

SQL_INTERVAL TYPE_STRING len = 8 + ((scale) ? (scale+1) : 0)

SQL_TIMESTAMP TYPE_DATE len = 19 + ((scale) ? (scale +1) : 0)

SQL_BIGINT TYPE_BIGINT

SQL_GUID TYPE_STRING l len=36

SQL_BINARY,

SQL_VARBINARY,

SQL_LONG-VARBINARY

TYPE_STRING

len = min(abs(len), connect_conv_size) Only if the value of

connect_type_conv is force . The column should use the binary

charset.

Other types TYPE_ERROR Not supported.

JDBC SQL types are converted as:

JDBC Types Connect Type Remark

(N)CHAR,

(N)VARCHAR
TYPE_STRING

LONG(N)VARCHAR TYPE_STRING
len = min(abs(len), connect_conv_size) If the column is generated by

discovery (columns not specified), its length is connect_conv_size

NUMERIC,

DECIMAL,

VARBINARY

TYPE_DECIM

INTEGER TYPE_INT

SMALLINT TYPE_SHORT

TINYINT, BIT TYPE_TINY

FLOAT, REAL,

DOUBLE
TYPE_DOUBLE

DATE TYPE_DATE len = 10

TIME TYPE_DATE len = 8 + ((scale) ? (scale+1) : 0)

TIMESTAMP TYPE_DATE len = 19 + ((scale) ? (scale +1) : 0)

BIGINT TYPE_BIGINT

UUID (specific to

PostgreSQL)

TYPE_STRING

TYPE_ERROR

len=36

If connect_type_conv=NO

Other types TYPE_ERROR Not supported.

3156/4161

Note: The connect_type_conv SKIP option also applies to ODBC and JDBC tables.

1. ± Here input and output are used to specify respectively decoding the date to get its numeric value from the data file

and encoding a date to write it in the table file. Input is performed within SELECT queries; output is performed in

UPDATE or INSERT queries.

5.3.7.5 Current Status of the CONNECT
Handler
The current CONNECT handler is a GA (stable) release. It was written starting both from an aborted project written for

MySQL in 2004 and from the <DBCONNECT= program. It was tested on all the examples described in this document, and is

distributed with a set of 53 test cases. Here is a not limited list of future developments:

1. Adding more table types.

2. Make more tests files (53 are already made)

3. Adding more data types, in particular unsigned ones (done for unsigned).

4. Supporting indexing on nullable and decimal columns.

5. Adding more optimize tools (block indexing, dynamic indexing, etc.) (done)

6. Supporting MRR (done)

7. Supporting partitioning (done)

8. Getting NOSQL data from the Net as answers from REST queries (done)

No programs are bug free, especially new ones. Please report all bugs or documentation errors using the means provided

by MariaDB.

5.3.7.6 CONNECT Table Types
The main feature of CONNECT is to give MariaDB the ability to handle tables from many sources, native files, other DBMS9s

tables, or special <virtual= tables. Moreover, for all tables physically represented by data files, CONNECT recognizes many

different file formats, described below but not limited in the future to this list, because more can be easily added to it on

demand (OEM tables).

Note: You can download a PDF version of the CONNECT documentation (1.7.0003).

CONNECT Table Types Overview

CONNECT can handle many table formats.

Inward and Outward Tables

The two broad categories of CONNECT tables.

CONNECT Table Types - Data Files

CONNECT plain DOS or UNIX data files.

CONNECT Zipped File Tables

When the table file or files are compressed in one or several zip files.

CONNECT DOS and FIX Table Types

CONNECT tables based on text files

CONNECT DBF Table Type

CONNECT dBASE III or IV tables.

CONNECT BIN Table Type

CONNECT binary files in which each row is a logical record of fixed length

CONNECT VEC Table Type

CONNECT binary files organized in vectors

CONNECT CSV and FMT Table Types

Variable length CONNECT data files.

1

4

3157/4161

https://mariadb.com/kb/en/connect-table-types/+attachment/connect_1_7_03

CONNECT - NoSQL Table Types

Based on files that do not match the relational format but often represent hierarchical data.

CONNECT - Files Retrieved Using Rest Queries

JSON, XML and CSV data files can be retrieved as results from REST queries.

CONNECT JSON Table Type

JSON (JavaScript Object Notation) is a widely-used lightweight data-interchange format.

CONNECT XML Table Type

CONNECT XML files

CONNECT INI Table Type

CONNECT INI Windows configuration or initialization files.

CONNECT - External Table Types

Access tables belonging to the current or another server.

CONNECT ODBC Table Type: Accessing Tables From Another DBMS

CONNECT Table Types - ODBC Table Type: Accessing Tables from other DBMS

CONNECT JDBC Table Type: Accessing Tables from Another DBMS

Using JDBC to access other tables.

CONNECT MONGO Table Type: Accessing Collections from MongoDB

Used to directly access MongoDB collections as tables.

CONNECT MYSQL Table Type: Accessing MySQL/MariaDB Tables

Accessing a MySQL or MariaDB table or view

CONNECT PROXY Table Type

Tables that access and read the data of another table or view

CONNECT XCOL Table Type

Based on another table/view, used when object tables have a column that contains a list of values

CONNECT OCCUR Table Type

Extension to the PROXY type when referring to a table/view having several c...

CONNECT PIVOT Table Type

Transform the result of another table into another table along <pivot= and "fact" columns.

CONNECT TBL Table Type: Table List

Define a table as a list of tables of any engine and type.

CONNECT - Using the TBL and MYSQL Table Types Together

Used together, the TBL and MYSQL types lift all the limitations of the FEDERATED and MERGE engines

CONNECT Table Types - Special "Virtual" Tables

VIR, WMI and MAC special table types

CONNECT Table Types - VIR

VIR virtual type for CONNECT

CONNECT Table Types - OEM: Implemented in an External LIB

CONNECT OEM table types are implemented in an external library.

CONNECT Table Types - Catalog Tables

Catalog tables return information about another table or data source

There are 4 related questions .

4

1

3

1

6

3

2

3158/4161

https://mariadb.com/kb/en/connect-table-types/+questions/

5.3.7.6.1 CONNECT Table Types Overview
CONNECT can handle very many table formats; it is indeed one of its main features. The Type option specifies the type and

format of the table. The Type options available values and their descriptions are listed in the following table:

Type Description

BIN
Binary file with numeric values in platform representation, also with columns at fixed offset within records and

fixed record length.

BSON (Temporary) JSON table handled by the new JSON handling.

CSV*$
"Comma Separated Values" file in which each variable length record contains column values separated by a

specific character (defaulting to the comma)

DBF* File having the dBASE format.

DOS

The table is contained in one or several files. The file format can be refined by some other options of the

command or more often using a specific type as many of those described below. Otherwise, it is a flat text file

where columns are placed at a fixed offset within each record, the last column being of variable length.

DIR Virtual table that returns a file list like the Unix ls or DOS dir command.

FIX Text file arranged like DOS but with fixed length records.

FMT
File in which each record contains the column values in a non-standard format (the same for each record) This

format is specified in the column definition.

INI File having the format of the initialization or configuration files used by many applications.

JDBC* Table accessed via a JDBC driver.

JSON*$ File having the JSON format.

MAC Virtual table returning information about the machine and network cards (Windows only).

MONGO* Table accessed via the MongoDB C Driver API.

MYSQL

*
Table accessed using the MySQL API like the FEDERATED engine.

OCCUR*
A table based on another table existing on the current server, several columns of the object table containing

values that can be grouped in only one column.

ODBC*
Table extracted from an application accessible via ODBC or unixODBC. For example from another DBMS or

from an Excel spreadsheet.

OEM*
Table of any other formats not directly handled by CONNECT but whose access is implemented by an external

FDW (foreign data wrapper) written in C++ (as a DLL or Shared Library).

PIVOT* Used to "pivot" the display of an existing table or view.

PROXY* A table based on another table existing on the current server.

TBL* Accessing a collection of tables as one table (like the MERGE engine does for MyIsam tables)

VEC
Binary file organized in vectors, in which column values are grouped consecutively, either split in separate files

or in a unique file.

VIR* Virtual table containing only special and virtual columns.

WMI*

Windows Management Instrumentation table displaying information coming from a WMI provider. This type

enables to get in tabular format all sorts of information about the machine hardware and operating system

(Windows only).

XCOL*
A table based on another table existing on the current server with one of its columns containing comma

separated values.

XML*$ File having the XML or HTML format.

ZIP Table giving information about the contents of a zip file.

Catalog Tables
For all table types marked with a '*' in the table above, CONNECT is able to analyze the data source to retrieve the column

definition. This can be used to define a <catalog= table that display the column description of the source, or to create a table

without specifying the column definition that will be automatically constructed by CONNECT when creating the table.

3159/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

When marked with a 8$9 the file can be the result returned by a REST query.

5.3.7.6.2 Inward and Outward Tables
Contents
1. Outward Tables

1. Altering Outward Tables

2. Inward Tables

1. Altering Inward Tables

There are two broad categories of file-based CONNECT tables. Inward and Outward. They are described below.

Outward Tables
Tables are "outward" when their file name is specified in the CREATE TABLE statement using the file_name option.

Firstly, remember that CONNECT implements MED (Management of External Data). This means that the "true" CONNECT

tables 3 "outward tables" 3 are based on data that belongs to files that can be produced by other applications or data

imported from another DBMS.

Therefore, their data is "precious" and should not be modified except by specific commands such as INSERT, UPDATE, or

DELETE. For other commands such as CREATE, DROP, or ALTER their data is never modified or erased.

Outward tables can be created on existing files or external tables. When they are dropped, only the local description is

dropped, the file or external table is not dropped or erased. Also, DROP TABLE does not erase the indexes.

ALTER TABLE produces the following warning, as a reminder:

Warning (Code 1105): This is an outward table, table data were not modified.

If the specified file does not exist, it is created when data is inserted into the table. If a SELECT is issued before the file is

created, the following error is produced:

Warning (Code 1105): Open(rb) error 2 on <file_path>: No such file or directory

Altering Outward Tables

When an ALTER TABLE is issued, it just modifies the table definition accordingly without changing the data. ALTER can be

used safely to, for instance, modify options such as MAPPED, HUGE or READONLY but with extreme care when modifying

column definitions or order options because some column options such as FLAG should also be modified or may become

wrong.

Changing the table type with ALTER often makes no sense. But many suspicious alterations can be acceptable if they are

just meant to correct an existing wrong definition.

Translating a CONNECT table to another engine is fine but the opposite is forbidden when the target CONNECT table is not

table based or when its data file exists (because when the target table data cannot be changed and if the source table is

dropped, the table data would be lost). However, it can be done to create a new file-based tables when its file does not exist

or is void.

Creating or dropping indexes is accepted because it does not modify the table data. However, it is often unsafe to do it with

an ALTER TABLE statement that does other modifications.

Of course, all changes are acceptable for empty tables.

Note: Using outward tables requires the FILE privilege.

Inward Tables
A special type of file-based CONNECT tables are <inward= tables. They are file-based tables whose file name is not specified

in the CREATE TABLE statement (no file_name option).

Their file will be located in the current database directory and their name will default to tablename.type where tablename is

the table name and type is the table type folded to lower case. When they are created without using a CREATE TABLE ...

SELECT ... statement, an empty file is made at create time and they can be populated by further inserts.

They behave like tables of other storage engines and, unlike outward CONNECT tables, they are erased when the table is

dropped. Of course they should not be read-only to be usable. Even though their utility is limited, they can be used for

3160/4161

testing purposes or when the user does not have the FILE privilege.

Altering Inward Tables

One thing to know, because CONNECT builds indexes in a specific way, is that all index modifications are done using an

"in-place" algorithm 3 meaning not using a temporary table. This is why, when indexing is specified in an ALTER TABLE

statement containing other changes that cannot be done "in-place", the statement cannot be executed and raises an error.

Converting an inward table to an outward table, using an ALTER TABLE statement specifying a new file name and/or a new

table type, is restricted the same way it is when converting a table from another engine to an outward table. However there

are no restrictions to convert another engine table to a CONNECT inward table.

5.3.7.6.3 CONNECT Table Types - Data Files
Contents
1. Multiple File Tables

2. Record Format

3. File Mapping

4. Big File Tables

5. Compressed File Tables

6. Relational Formatted Tables

7. NoSQL Table Types

Most of the tables processed by CONNECT are just plain DOS or UNIX data files, logically regarded as tables thanks to the

description given when creating the table. This description comes from the CREATE TABLE statement. Depending on the

application, these tables can already exist as data files, used as is by CONNECT, or can have been physically made by

CONNECT as the result of a CREATE TABLE ... SELECT ... and/or INSERT statement(s).

The file path/name is given by the FILE_NAME option. If it is a relative path/name, it will be relative to the database

directory, the one containing the table .FRM file.

Unless specified, the maturity of file table types is stable.

Multiple File Tables
A multiple file table is one that is physically contained in several files of the same type instead of just one. These files are

processed sequentially during the process of a query and the result is the same as if all the table files were merged into one.

This is great to process files coming from different sources (such as cash register log files) or made at different time periods

(such as bank monthly reports) regarded as one table. Note that the operations on such files are restricted to sequential

Select and Update; and that VEC multiple tables are not supported by CONNECT. The file list depends on the setting of the

multiple option of the CREATE TABLE statement for that table.

Multiple tables are specified by the option MULTIPLE=n, which can take four values:

0 Not a multiple table (the default). This can be used in an ALTER TABLE statement.

1
The table is made from files located in the same directory. The FILE_NAME option is a pattern such as 'cash*.log'

that all the table file path/names verify.

2
The FILE_NAME gives the name of a file that contains the path/names of all the table files. This file can be made using

a DIR table.

3 Like multiple=1 but also including eligible files from the directory sub-folders.

The FILEID special column, described here, allows query pruning by filtering the file list or doing some grouping on the

files that make a multiple table.

Note: Multiple was not initially implemented for XML tables. This restriction was removed in version 1.02.

Record Format
This characteristic applies to table files handled by the operating system input/output functions. It is fixed for table types

FIX, BIN, DBF and VEC, and it is variable for DOS, VCT, FMT and some JSON tables.

For fixed tables, most I/O operations are done by block of BLOCK_SIZE rows. This diminishes the number of I/O9s and

enables block indexing.

Starting with CONNECT version 1.6.6, the BLOCK_SIZE option can also be specified for variable tables. Then, a file similar

3161/4161

to the block indexing file is created by CONNECT that gives the size in bytes of each block of BLOCK_SIZE rows. This

enables the use of block I/Os and block indexing to variable tables. It also enables CONNECT to return the exact row

number for info commands

File Mapping
For file-based tables of reasonable size, processing time can be greatly enhanced under Windows(TM) and some flavors of

UNIX or Linux by using the technique of <file mapping=, in which a file is processed as if it were entirely in memory. Mapping

is specified when creating the table by the use of the MAPPED=YES option. This does not apply to tables not handled by

system I/O functions (XML and INI).

Big File Tables
Because all files are handled by the standard input/output functions of the operating system, their size is limited to 2GB, the

maximum size handled by standard functions. For some table types, CONNECT can deal with files that are larger than 2GB,

or prone to become larger than this limit. These are the FIX, BIN and VEC types. To tell connect to use input/output

functions dealing with big files, specify the option huge=1 or huge=YES for that table. Note however that CONNECT

cannot randomly access tables having more than 2G records.

Compressed File Tables
CONNECT can make and process some tables whose data file is compressed. The only supported compression format is

the gzlib format. Zip and zlib formats are supported differently. The table types that can be compressed are DOS, FIX, BIN,

CSV and FMT. This can save some disk space at the cost of a somewhat longer processing time.

Some restrictions apply to compressed tables:

Compressed tables are not indexable.

Update and partial delete are not supported.

Use the numeric compress option to specify a compressed table:

1. Not compressed

2. Compressed in gzlib format.

3. Made of compressed blocks of block_size records (enabling block indexing)

Relational Formatted Tables
These are based on files whose records represent one table row. Only the column representation within each record can

differ. The following relational formatted tables are supported:

DOS and FIX Table Types

DBF Table Type

BIN Table Type

VEC Table Type

CSV and FMT Table Types

NoSQL Table Types
These are based on files that do not match the relational format but often represent hierarchical data. CONNECT can handle

JSON, INI-CFG, XML and some HTML files..

The way it is done is different from what PostgreSQL does. In addition to including in a table some column values of a

specific data format (JSON, XML) to be handled by specific functions, CONNECT can directly use JSON, XML or INI files

that can be produced by other applications and this is the table definition that describes where and how the contained

information must be retrieved.

This is also different from what MariaDB does with dynamic columns, which is close to what MySQL and PostgreSQL do

with the JSON column type.

The following NoSQL types are supported:

XML Table Type

JSON Table Type

INI Table Type

3162/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/%255B%255Bconnect-xml-table-type
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/connect-dos-and-fix-table-typess

5.3.7.6.4 CONNECT Zipped File Tables

Connect can work on table files that are compressed in one or several zip files.

The specific options used when creating tables based on zip files are:

Table Option Type Description

ZIPPED Boolean Required to be set as true.

ENTRY* String

The optional name or pattern of the zip entry or entries to be used with the table. If not

specified, all entries or only the first one will be used depending on the mulentries option

setting.

MULENTRIES* Boolean

True if several entries are part of the table. If not specified, it defaults to false if the entry option

is not specified. If the entry option is specified, it defaults to true if the entry name contains

wildcard characters or false if it does not.

APPEND* Boolean Used when creating new zipped tables (see below)

LOAD* String Used when creating new zipped tables (see below)

Options marked with a 8*9 must be specified in the option list.

Examples of use:

Example 1: Single CSV File Included in a Single ZIP File

Let's suppose you have a CSV file from which you would create a table by:

create table emp

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/employee.csv'

sep_char=';' header=1;

If the CSV file is included in a ZIP file, the CREATE TABLE becomes:

create table empzip

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/employee.zip'

sep_char=';' header=1 zipped=1 option_list='Entry=emp.csv';

The file_name option is the name of the zip file. The entry option is the name of the entry inside the zip file. If there is only

one entry file inside the zip file, this option can be omitted.

Example 2: Several CSV Files Included in a Single ZIP File

If the table is made from several files such as emp01.csv, emp02.csv, etc., the standard create table would be:

create table empmul (

... required column definition

) engine=connect table_type=CSV file_name='E:/Data/emp*.csv'

sep_char=';' header=1 multiple=1;

But if these files are all zipped inside a unique zip file, it becomes:

create table empzmul

... required column definition

engine=connect table_type=CSV file_name='E:/Data/emp.zip'

sep_char=';' header=1 zipped=1 option_list='Entry=emp*.csv';

Here the entry option is the pattern that the files inside the zip file must match. If all entry files are ok, the entry option can be

omitted but the Boolean option mulentries must be specified as true.

Example 3: Single CSV File included in Multiple ZIP Files (Without considering subfolders)

If the table is created on several zip files, it is specified as for all other multiple tables:

MariaDB starting with 10.2.4

3163/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/

create table zempmul (

... required column definition

) engine=connect table_type=CSV file_name='E:/Data/emp*.zip'

sep_char=';' header=1 multiple=1 zipped=yes

option_list='Entry=employee.csv';

Here again the entry option is used to restrict the entry file(s) to be used inside the zip files and can be omitted if all are ok.

The column descriptions can be retrieved by the discovery process for table types allowing it. It cannot be done for multiple

tables or multiple entries.

A catalog table can be created by adding catfunc=columns. This can be used to show the column definitions of multiple

tables. Multiple must be set to false and the column definitions will be the ones of the first table or entry.

This first implementation has some restrictions:

1. Zipped tables are read-only. UPDATE and DELETE are not supported. However, INSERT is supported in a specific

way when making tables.

2. The inside files are decompressed into memory. Memory problems may arise with huge files.

3. Only file types that can be handled from memory are eligible for this. This includes DOS, FIX, BIN, CSV, FMT, DBF,

JSON, and XML table types, as well as types based on these such as XCOL, OCCUR and PIVOT.

Optimization by indexing or block indexing is possible for table types supporting it. However, it applies to the uncompressed

table. This means that the whole table is always uncompressed.

Partitioning is also supported. See how to do it in the section about partitioning.

Creating New Zipped Tables

Tables can be created to access already existing zip files. However, is it also possible to make the zip file from an existing

file or table. Two ways are available to make the zip file:

Insert Method

insert can be used to make the table file for table types based on records (this excludes DBF, XML and JSON when pretty is

not 0). However, the current implementation of the used package (minizip) does not support adding to an already existing

zip entry. This means that when executing an insert statement the inserted records are not added but replace the existing

ones. CONNECT protects existing data by not allowing such inserts, Therefore, only three ways are available to do so:

1. Using only one insert statement to make the whole table. This is possible only for small tables and is principally useful

when making tests.

2. Making the table from the data of another table. This can be done by executing an <insert into table select * from

another_table= or by specifying <as select * from another_table= in the create table statement.

3. Making the table from a file whose format enables to use the <load data infile= statement.

To add a new entry in an existing zip file, specify <append=YES= in the option list. When inserting several entries, use

ALTER to specify the required options, for instance:

create table znumul (

Chiffre int(3) not null,

Lettre char(16) not null)

engine=CONNECT table_type=CSV

file_name='C:/Data/FMT/mnum.zip' header=1 lrecl=20 zipped=1

option_list='Entry=Num1';

insert into znumul select * from num1;

alter table znumul option_list='Entry=Num2,Append=YES';

insert into znumul select * from num2;

alter table znumul option_list='Entry=Num3,Append=YES';

insert into znumul select * from num3;

alter table znumul option_list='Entry=Num*,Append=YES';

select * from znumul;

The last ALTER is needed to display all the entries.

File Zipping Method

This method enables to make the zip file from another file when creating the table. It applies to all table types including DBF,

XML and JSON. It is specified in the create table statement with the load option. For example:

3164/4161

create table XSERVZIP (

NUMERO varchar(4) not null,

LIEU varchar(15) not null,

CHEF varchar(5) not null,

FONCTION varchar(12) not null,

NOM varchar(21) not null)

engine=CONNECT table_type=XML file_name='E:/Xml/perso.zip' zipped=1

option_list='entry=services,load=E:/Xml/serv2.xml';

When executing this statement, the serv2.xml file will be zipped as /perso.zip . The entry name can be specified or defaults

to the source file name.

If the column descriptions are specified, the table can be used later to read from the zipped table, but they are not used

when creating the zip file. Thus, a fake column (there must be one) can be specified and another table created to read the

zip file. This one can take advantage of the discovery process to avoid providing the columns description for table types

allowing it. For instance:

create table mkzq (whatever int)

engine=connect table_type=DBF zipped=1

file_name='C:/Data/EAUX/dbf/CQUART.ZIP'

option_list='Load=C:/Data/EAUX/dbf/CQUART.DBF';

create table zquart

engine=connect table_type=DBF zipped=1

file_name='C:/Data/EAUX/dbf/CQUART.ZIP';

It is also possible to create a multi-entries table from several files:

CREATE TABLE znewcities (

 _id char(5) NOT NULL,

 city char(16) NOT NULL,

 lat double(18,6) NOT NULL `FIELD_FORMAT`='loc:[0]',

 lng double(18,6) NOT NULL `FIELD_FORMAT`='loc:[1]',

 pop int(6) NOT NULL,

 state char(2) NOT NULL

) ENGINE=CONNECT TABLE_TYPE=JSON FILE_NAME='E:/Json/newcities.zip' ZIPPED=1 LRECL=1000

OPTION_LIST='Load=E:/Json/city_*.json,mulentries=YES,pretty=0';

Here the files to load are specified with wildcard characters and the mulentries options must be specified. However, the

entry option must not be specified, entry names will be made from the file names. Provide a fake column description if the

files have different column layout, but specific tables will have to be created to read each of them.

ZIP Table Type

A ZIP table type is also available. It is not meant to read the inside files but to display information about the zip file contents.

For instance:

create table xzipinfo2 (

entry varchar(256)not null,

cmpsize bigint not null flag=1,

uncsize bigint not null flag=2,

method int not null flag=3,

date datetime not null flag=4)

engine=connect table_type=ZIP file_name='E:/Data/Json/cities.zip';

This will display the name, compressed size, uncompressed size, and compress method of all entries inside the zip file.

Column names are irrelevant; these are flag values that mean what information to retrieve.

It is possible to retrieve this information from several zip files by specifying the multiple option:

create table TestZip1 (

entry varchar(260)not null,

cmpsize bigint not null flag=1,

uncsize bigint not null flag=2,

method int not null flag=3,

date datetime not null flag=4,

zipname varchar(256) special='FILEID')

engine=connect table_type=ZIP multiple=1

file_name='C:/Data/Ziptest/CCAM06300_DBF_PART*.zip';

3165/4161

Here we added the special column zipname to get the name of the zip file for each entry.

5.3.7.6.5 CONNECT DOS and FIX Table Types
Contents
1. Overview

2. Specifying the Field Format

3. Example

Overview
Tables of type DOS and FIX are based on text files (see CONNECT Table Types - Data Files). Within a record, column

fields are positioned at a fixed offset from the beginning of the record. Except sometimes for the last field, column fields are

also of fixed length. If the last field has varying length, the type of the table is DOS. For instance, having the file dept.dat

formatted like:

0318 KINGSTON 70012 SALES Bank/Insurance

0021 ARMONK 87777 CHQ Corporate headquarter

0319 HARRISON 40567 SALES Federal Administration

2452 POUGHKEEPSIE 31416 DEVELOPMENT Research & development

You can define a table based on it with:

create table department (

 number char(4) not null,

 location char(15) not null flag=5,

 director char(5) not null flag=20,

 function char(12) not null flag=26,

 name char(22) not null flag=38)

engine=CONNECT table_type=DOS file_name='dept.dat';

Here the flag column option represents the offset of this column inside the records. If the offset of a column is not specified,

it defaults to the end of the previous column and defaults to 0 for the first one. The lrecl parameter that represents the

maximum size of a record is calculated by default as the end of the rightmost column and can be unspecified except when

some trailing information exists after the rightmost column.

Note: A special case is files having an encoding such as UTF-8 (for instance specifying charset=UTF8) in which

some characters may be represented with several bytes. Unlike the type size that MariaDB interprets as a number of

characters, the lrecl value is the record size in bytes and the flag value represents the offset of the field in the

record in bytes. If the flag and/or the lrecl value are not specified, they will be calculated by the number of

characters in the fields multiplied by a value that is the maximum size in bytes of a character for the corresponding

charset. For UTF-8 this value is 3 which is often far too much as there are very few characters requiring 3 bytes to be

represented. When creating a new file, you are on the safe side by only doubling the maximum number of characters

of a field to calculate the offset of the next field. Of course, for already existing files, the offset must be specified

according to what it is in it.

Although the field representation is always text in the table file, you can freely choose the corresponding column type,

characters, date, integer or floating point according to its contents.

Sometimes, as in the number column of the above department table, you have the choice of the type, numeric or characters.

This will modify how the column is internally handled 4 in characters 0021 is different from 21 but not in numeric 4 as

well as how it is displayed.

If the last field has fixed length, the table should be referred as having the type FIX . For instance, to create a table on the

file boys.txt:

John Boston 25/01/1986 02/06/2010

Henry Boston 07/06/1987 01/04/2008

George San Jose 10/08/1981 02/06/2010

Sam Chicago 22/11/1979 10/10/2007

James Dallas 13/05/1992 14/12/2009

Bill Boston 11/09/1986 10/02/2008

You can for instance use the command:

3166/4161

create table boys (

 name char(12) not null,

 city char(12) not null,

 birth date not null date_format='DD/MM/YYYY',

 hired date not null date_format='DD/MM/YYYY' flag=36)

engine=CONNECT table_type=FIX file_name='boys.txt' lrecl=48;

Here some flag options were not specified because the fields have no intermediate space between them except for the last

column. The offsets are calculated by default adding the field length to the offset of the preceding field. However, for

formatted date columns, the offset in the file depends on the format and cannot be calculated by default. For fixed files, the

lrecl option is the physical length of the record including the line ending character(s). It is calculated by adding to the end of

the last field 2 bytes under Windows (CRLF) or 1 byte under UNIX. If the file is imported from another operating system, the

ENDING option will have to be specified with the proper value.

For this table, the last offset and the record length must be specified anyway because the date columns have field length

coming from their format that is not known by CONNECT. Do not forget to add the line ending length to the total length of

the fields.

This table is displayed as:

name city birth hired

John Boston 1986-01-25 2010-06-02

Henry Boston 1987-06-07 2008-04-01

George San Jose 1981-08-10 2010-06-02

Sam Chicago 1979-11-22 2007-10-10

James Dallas 1992-05-13 2009-12-14

Bill Boston 1986-09-11 2008-02-10

Whenever possible, the fixed format should be preferred to the varying one because it is much faster to deal with fixed

tables than with variable tables. Sure enough, instead of being read or written record by record, FIX tables are processed by

blocks of BLOCK_SIZE records, resulting in far less input/output operations to execute. The block size defaults to 100 if not

specified in the Create Table statement.

Note 1: It is not mandatory to declare in the table all the fields existing in the source file. However, if some fields are

ignored, the flag option of the following field and/or the lrecl option will have to be specified.

Note 2: Some files have an EOF marker (CTRL+Z 1A) that can prevent the table to be recognized as fixed because the file

length is not a multiple of the fixed record size. To indicate this, use in the option list the create option EOF. For instance, if

after creating the FIX table xtab on the file foo.dat that you know have fixed record size, you get, when you try to use it, a

message such as:

File foo.dat is not fixed length, len=302587 lrecl=141

After checking that the LRECL default or specified specification is correct, you can indicate to ignore that extra EOF

character by:

alter table xtab option_list='eof=1';

Of course, you can specify this option directly in the Create statement. All this applies to some other table types, in particular

to BIN tables.

Note 3: The width of the fields is the length specified in the column declaration. For instance for a column declared as:

number int(3) not null,

The field width in the file is 3 characters. This is the value used to calculate the offset of the next field if it is not specified. If

this length is not specified, it defaults to the MySQL default type length.

Specifying the Field Format
Some files have specific format for their numeric fields. For instance, the decimal point is absent and/or the field should be

filled with leading zeros. To deal with such files, as well in reading as in writing, the format can be specified in the CREATE

TABLE column definition. The syntax of the field format specification is:

3167/4161

Field_format='[Z][N][d]'

The optional parts of the format are:

Z The field has leading zeros

N No decimal point exist in the file

d The number of decimals, defaults to the column precision

Example
Let us see how it works in the following example. We define a table based on the file xfmt.txt having eight fields of 12

characters:

create table xfmt (

 col1 double(12,3) not null,

 col2 double(12,3) not null field_format='4',

 col3 double(12,2) not null field_format='N3',

 col4 double(12,3) not null field_format='Z',

 col5 double(12,3) not null field_format='Z3',

 col6 double(12,5) not null field_format='ZN5',

 col7 int(12) not null field_format='N3',

 col8 smallint(12) not null field_format='N3')

engine=CONNECT table_type=FIX file_name='xfmt.txt';

insert into xfmt values(4567.056,4567.056,4567.056,4567.056,-23456.8,

 3.14159,4567,4567);

select * from xfmt;

The first row is displayed as:

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

4567.056 4567.056 4567.06 4567.056 -23456.800 3.14159 4567 4567

The number of decimals displayed for all float columns is the column precision, the second argument of the column type

option. Of course, integer columns have no decimals, although their formats specify some.

More interesting is the file layout. To see it let us define another table based on the same file but whose columns are all

characters:

create table cfmt (

 col1 char(12) not null,

 col2 char(12) not null,

 col3 char(12) not null,

 col4 char(12) not null,

 col5 char(12) not null,

 col6 char(12) not null,

 col7 char(12) not null,

 col8 char(12) not null)

engine=CONNECT table_type=FIX file_name='xfmt.txt';

select * from cfmt;

The (transposed) display of the select command shows the file text layout for each field. Below a third column was added in

this document to comment this result.

Column Row 1 Comment (all numeric fields are written right justified)

COL1 4567.056 No format, the value was entered as is.

COL2 4567.0560 The format 849 forces to write 4 decimals.

COL3 4567060
N3 ³ No decimal point. The last 3 digits are decimals. However, the second decimal was

rounded because of the column precision.

COL4 00004567.056 Z ³ Leading zeros, 3 decimals (the column precision)

COL5 -0023456.800 Z3 ³ (Minus sign) leading zeros, 3 decimals.

COL6 000000314159 ZN5 ³ Leading zeros, no decimal point, 5 decimals.

3168/4161

COL7 4567000 N3 ³ No decimal point. The last 3 digits are decimals.

COL8 4567000 Same. Any decimals would be ignored.

Note: For columns internally using double precision floating-point numbers, MariaDB limits the decimal precision of any

calculation to the column precision. The declared column precision should be at least the number of decimals of the format

to avoid a loss of decimals as it happened for col3 of the above example.

5.3.7.6.6 CONNECT DBF Table Type
Contents
1. Overview

2. Conversion of dBASE Data Types

3. Reading soft deleted lines of a DBF table

Overview
A table of type DBF is physically a dBASE III or IV formatted file (used by many products like dBASE, Xbase, FoxPro etc.).

This format is similar to the FIX type format with in addition a prefix giving the characteristics of the file, describing in

particular all the fields (columns) of the table.

Because DBF files have a header that contains Meta data about the file, in particular the column description, it is possible to

create a table based on an existing DBF file without giving the column description, for instance:

create table cust engine=CONNECT table_type=DBF file_name='cust.dbf';

To see what CONNECT has done, you can use the DESCRIBE or SHOW CREATE TABLE commands, and eventually modify

some options with the ALTER TABLE command.

The case of deleted lines is handled in a specific way for DBF tables. Deleted lines are not removed from the file but are

"soft deleted" meaning they are marked as deleted. In particular, the number of lines contained in the file header does not

take care of soft deleted lines. This is why if you execute these two commands applied to a DBF table named tabdbf:

select count(*) from tabdbf;

select count(*) from tabdbf where 1;

They can give a different result, the (fast) first one giving the number of physical lines in the file and the second one giving

the number of line that are not (soft) deleted.

The commands UPDATE, INSERT, and DELETE can be used with DBF tables. The DELETE command marks the deleted

lines as suppressed but keeps them in the file. The INSERT command, if it is used to populate a newly created table,

constructs the file header before inserting new lines.

Note: For DBF tables, column name length is limited to 11 characters and field length to 256 bytes.

Conversion of dBASE Data Types
CONNECT handles only types that are stored as characters.

Symbol DBF Type CONNECT Type Description

B Binary (string) TYPE_STRING 10 digits representing a .DBT block number.

C Character TYPE_STRING
All OEM code page characters - padded with blanks to the width

of the field.

D Date TYPE_DATE 8 bytes - date stored as a string in the format YYYYMMDD.

N Numeric
TYPE_INT TYPE_BIGINT

TYPE_DOUBLE

Number stored as a string, right justified, and padded with blanks

to the width of the field.

L Logical TYPE_STRING 1 byte - initialized to 0x20 otherwise T or F.

M Memo (string) TYPE_STRING 10 digits representing a .DBT block number.

@ Timestamp Not supported
8 bytes - two longs, first for date, second for time. It is the

number of days since 01/01/4713 BC.

I Long Not supported 4 bytes. Leftmost bit used to indicate sign, 0 negative.

3169/4161

+ Autoincrement Not supported Same as a Long

F Float TYPE_DOUBLE
Number stored as a string, right justified, and padded with blanks

to the width of the field.

O Double Not supported 8 bytes - no conversions, stored as a double.

G OLE TYPE_STRING 10 digits representing a .DBT block number.

For the N numeric type, CONNECT converts it to TYPE_DOUBLE if the decimals value is not 0, to TYPE_BIGINT if the

length value is greater than 10, else to TYPE_INT.

For M, B, and G types, CONNECT just returns the DBT number.

Reading soft deleted lines of a DBF table
It is possible to read these lines by changing the read mode of the table. This is specified by an option READMODE that can

take the values:

0 Standard mode. This is the default option.

1 Read all lines including soft deleted ones.

2 Read only the soft deleted lines.

For example, to read all lines of the tabdbf table, you can do:

alter table tabdbf option_list='Readmode=1';

To come back to normal mode, specify READMODE=0.

5.3.7.6.7 CONNECT BIN Table Type
Contents
1. Overview

2. Type Conversion in BIN Tables

3. Example

4. Numeric fields alignment

Overview
A table of type BIN is physically a binary file in which each row is a logical record of fixed length . Within a record, column

fields are of a fixed offset and length as with FIX tables. Specific to BIN tables is that numerical values are internally

encoded using native platform representation, so no conversion is needed to handle numerical values in expressions.

It is not required that the lines of a BIN file be separated by characters such as CR and/or LF but this is possible. In such an

event, the lrecl option must be specified accordingly.

Note: Unlike for the DOS and FIX types, the width of the fields is the length of their internal representation in the file. For

instance for a column declared as:

number int(5) not null,

The field width in the file is 4 characters, the size of a binary integer. This is the value used to calculate the offset of the next

field if it is not specified. Therefore, if the next field is placed 5 characters after this one, this declaration is not enough, and

the flag option will have to be used on the next field.

Type Conversion in BIN Tables
Here are the correspondences between the column type and field format provided by default:

Column type File default format

Char(n) Text of n characters.

Date Integer (4 bytes)

Int(n) Integer (4 bytes)

[1]

3170/4161

Smallint(n) Short integer (2 bytes)

TinyInt(n) Char (1 Byte)

Bigint(n) Large integer (8 bytes)

Double(n,d) Double floating point (8 bytes)

However, the column type need not necessarily match the field format within the table file. In particular, this occurs for field

formats that correspond to numeric types that are not handled by CONNECT . Indeed, BIN table files may internally

contain float numbers or binary numbers of any byte length in big-endian or little-endian representation . Also, as in DOS or

FIX types tables, you may want to handle some character fields as numeric or vice versa.

This is why it is possible to specify the field format when it does not correspond to the column type default using the

field_format column option in the CREATE TABLE statement. Here are the available field formats for BIN tables:

Field_format Internal representation

[n]{L or B or H}[n] n bytes binary number in little endian, big endian or host endian representation.

C Characters string (n bytes)

I integer (4 bytes)

D Double float (8 bytes)

S Short integer (2 bytes)

T Tiny integer (1 byte)

G Big integer (8 bytes)

F or R Real or float (Floating point number on 4 bytes)

X Use the default format field for the column type

All field formats (except the first one) are a one-character specification . 'X' is equivalent to not specifying the field format.

For the 'C' character specification, n is the column width as specified with the column type. For one-column formats, the

number of bytes of the numeric fields corresponds to what it is on most platforms. However, it could vary for some. The G, I,

S and T formats are deprecated because they correspond to supported data types and may not be supported in future

versions.

Example
Here is an example of a BIN table. The file record layout is supposed to be:

NNNNCCCCCCCCCCIIIISSFFFFSS

Here N represents numeric characters, C any characters, I integer bytes, S short integer bytes, and F float number bytes.

The IIII field contains a date in numeric format.

The table could be created by:

create table testbal (

fig int(4) not null field_format='C',

name char(10) not null,

birth date not null field_format='L',

id char(5) not null field_format='L2',

salary double(9,2) not null default 0.00 field_format='F',

dept int(4) not null field_format='L2')

engine=CONNECT table_type=BIN block_size=5 file_name='Testbal.dat';

Specifying the little-endian representation for binary values is not useful on most machines, but makes the create table

statement portable on a machine using big endian, as well as the table file.

The field offsets and the file record length are calculated according the column internal format and eventually modified by

the field format. It is not necessary to specify them for a packed binary file without line endings. If a line ending is desired,

specify the ending option or specify the lrecl option adding the ending width. The table can be filled by:

insert into testbal values

 (5500,'ARCHIBALD','1980-01-25','3789',4380.50,318),

 (123,'OLIVER','1953-08-10','23456',3400.68,2158),

 (3123,'FOO','2002-07-23','888',default,318);

[2]

[3]

[4]

3171/4161

Note that the types of the inserted values must match the column type, not the field format type.

The query:

select * from testbal;

returns:

fig name birth id salary dept

5500 ARCHIBALD 1980-01-25 3789 4380.50 318

123 OLIVER 1953-08-10 23456 3400.68 2158

3123 FOO 2002-07-23 888 0.00 318

Numeric fields alignment
In binary files, numeric fields and record length can be aligned on 4-or-8-byte boundaries to optimize performance on certain

processors. This can be modified in the OPTION_LIST with an "align" option ("packed" meaning align=1 is the default).

1. ± Sometimes it can be a physical record if LF or CRLF have been written in the file.

2. ± Most of these are obsolete because CONNECT supports all column types except float

3. ± The default endian representation used in the table file can be specified by setting the ENDIAN option as 8L9 or 8B9 in

the option list.

4. ± It can be specified with more than one character, but only the first one is significant.

5.3.7.6.8 CONNECT VEC Table Type
Contents
1. Integral vector formats

2. Differences between vector formats

3. Header option

Warning: Avoid using this table type in production applications. This file format is specific to CONNECT and may not

be supported in future versions.

Tables of type VEC are binary files that in some cases can provide good performance on read-intensive query workloads.

CONNECT organizes their data on disk as columns of values from the same attribute, as opposed to storing it as rows of

tabular records. This organization means that when a query needs to access only a few columns of a particular table, only

those columns need to be read from disk. Conversely, in a row-oriented table, all values in a table are typically read from

disk, wasting I/O bandwidth.

CONNECT provides two integral VEC formats, in which each column's data is adjacent.

Integral vector formats
In these true vertical formats, the VEC files are made of all the data of the first column, followed by all the data of the second

column etc. All this can be in one physical file or each column data can be in a separate file. In the first case, the option

max_rows=m, where m is the estimate of the maximum size (number of rows) of the table, must be specified to be able to

insert some new records. This leaves an empty space after each column area in which new data can be inserted. In the

second case, the <Split= option can be specified at table creation and each column will be stored in a file named

sequentially from the table file name followed by the rank of the column. Inserting new lines can freely augment such a

table.

Differences between vector formats
These formats correspond to different needs. The integral vector format provides the best performance gain. It will be

chosen when the speed of decisional queries must be optimized.

In the case of a unique file, inserting new data will be limited but there will be only one open and close to do. However, the

size of the table cannot be calculated from the file size because of the eventual unused space in the file. It must be kept in a

header containing the maximum number of rows and the current number of valid rows in the table. To achieve this, specify

[2]

3172/4161

the option Header=n when creating the table. If n=1 the header will be placed at the beginning of the file, if n=2 it will be a

separate file with the type 8.blk9, and if n=3 the header will be place at the end of the file. This last value is provided

because batch inserting is sometimes slower when the header is at the beginning of the file. If not specified, the header

option will default to 2 for this table type.

On the other hand, the "Split" format with separate files have none of these issues, and is a much safer solution when the

table must frequently inserted or shared among several users.

For instance:

create table vtab (

a int not null,

b char(10) not null)

engine=CONNECT table_type=VEC file_name='vt.vec';

This table, split by default, will have the column values in files vt1.vec and vt2.vec.

For vector tables, the option block_size=n is used for block reading and writing; however, to have a file made of blocks of

equal size, the internal value of the max_rows=m option is eventually increased to become a multiple of n.

Like for BIN tables, numeric values are stored using platform internal layout, the correspondence between column types and

internal format being the same than the default ones given above for BIN. However, field formats are not available for VEC

tables.

Header option
This applies to VEC tables that are not split. Because the file size depends on the MAX_ROWS value, CONNECT cannot

know how many valid records exist in the file. Depending on the value of the HEADER option, this information is stored in a

header that can be placed at the beginning of the file, at the end of the file or in a separate file called fn.blk. The valid values

for the HEADER option are:

0 Defaults to 2 for standard tables and to 3 for inward tables.

1 The header is at the beginning of the file.

2 The header is in a separate file.

3 The header is at the end of the file.

The value 2 can be used when dealing with files created by another application with no header. The value 3 makes

sometimes inserting in the file faster than when the header is at the beginning of the file.

Note: VEC being a file format specific to CONNECT, no big endian / little endian conversion is provided. These files are not

portable between machines using a different byte order setting.

5.3.7.6.9 CONNECT CSV and FMT Table Types
Contents
1. CSV Type

1. Restrictions on CSV Tables

2. FMT Type

3. Column Format Specification of FMT tables

4. Optional Fields

5. Bad Record Error Processing

6. Fields Containing a Formatted Date

CSV Type
Many source data files are formatted with variable length fields and records. The simplest format, known as CSV (Comma

Separated Variables), has column fields separated by a separator character. By default, the separator is a comma but can

be specified by the SEP_CHAR option as any character, for instance a semi-colon.

If the CSV file first record is the list of column names, specifying the HEADER=1 option will skip the first record on reading.

On writing, if the file is empty, the column names record is automatically written.

For instance, given the following people.csv file:

3173/4161

Name;birth;children

"Archibald";17/05/01;3

"Nabucho";12/08/03;2

You can create the corresponding table by:

create table people (

 name char(12) not null,

 birth date not null date_format='DD/MM/YY',

 children smallint(2) not null)

engine=CONNECT table_type=CSV file_name='people.csv'

header=1 sep_char=';' quoted=1;

Alternatively the engine can attempt to automatically detect the column names, data types and widths using:

create table people

engine=CONNECT table_type=CSV file_name='people.csv'

header=1 sep_char=';' quoted=1;

For CSV tables, the flag column option is the rank of the column into the file starting from 1 for the leftmost column. This is

to enable having column displayed in a different order than in the file and/or to define the table specifying only some

columns of the CSV file. For instance:

create table people (

 name char(12) not null,

 children smallint(2) not null flag=3,

 birth date not null flag=2 date_format='DD/MM/YY')

engine=CONNECT table_type=CSV file_name='people.csv'

header=1 sep_char=';' quoted=1;

In this case the command:

select * from people;

will display the table as:

name children birth

Archibald 3 2001-05-17

Nabucho 2 2003-08-12

Many applications produce CSV files having some fields quoted, in particular because the field text contains the separator

character. For such files, specify the 'QUOTED=n' option to indicate the level of quoting and/or the ' QCHAR=c ' to specify

what is this eventual quoting character, which is " by default. Quoting with single quotes must be specified as

QCHAR='''' . On writing, fields will be quoted depending on the value of the quoting level, which is 31 by default meaning

no quoting:

0
The fields between quotes are read and the quotes discarded. On writing, fields will be quoted only if they contain the

separator character or begin with the quoting character. If they contain the quoting character, it will be doubled.

1
Only text fields will be written between quotes, except null fields. This includes also the column names of an eventual

header.

2 All fields will be written between quotes, except null fields.

3 All fields will be written between quotes, including null fields.

Files written this way are successfully read by most applications including spreadsheets.

Note 1: If only the QCHAR option is specified, the QUOTED option will default to 1.

Note 2: For CSV tables whose separator is the tab character, specify sep_char='\t' .

Note 3: When creating a table on an existing CSV file, you can let CONNECT analyze the file and make the column

description. However, this is a not an elaborate analysis of the file and, for instance, DATE fields will not be recognized as

such but will be regarded as string fields.

Note 4: The CSV parser only reads and buffers up to 4KB per row by default, rows longer than this will be truncated when

read from the file. If the rows are expected to be longer than this use lrecl to increase this. For example to set an 8KB

3174/4161

maximum row read you would use lrecl=8192

Restrictions on CSV Tables

If secure_file_priv is set to the path of some directory, then CSV tables can only be created with files in that

directory.

FMT Type
FMT tables handle files of various formats that are an extension of the concept of CSV files. CONNECT supports these files

providing all lines have the same format and that all fields present in all records are recognizable (optional fields must have

recognizable delimiters). These files are made by specific application and CONNECT handles them in read only mode.

FMT tables must be created as CSV tables, specifying their type as FMT. In addition, each column description must be

added to its format specification.

Column Format Specification of FMT tables
The input format for each column is specified as a FIELD_FORMAT option. A simple example is:

IP Char(15) not null field_format=' %n%s%n',

In the above example, the format for this (1st) field is ' %n%s%n' . Note that the blank character at the beginning of this

format is significant. No trailing blank should be specified in the column formats.

The syntax and meaning of the column input format is the one of the C scanf function.

However, CONNECT uses the input format in a specific way. Instead of using it to directly store the input value in the

column buffer; it uses it to delimit the sub string of the input record that contains the corresponding column value. Retrieving

this value is done later by the column functions as for standard CSV files.

This is why all column formats are made of five components:

1. An eventual description of what is met and ignored before the column value.

2. A marker of the beginning of the column value written as %n .

3. The format specification of the column value itself.

4. A marker of the end of the column value written as %n (or %m for optional fields).

5. An eventual description of what is met after the column value (not valid is %m was used).

For example, taking the file funny.txt:

12345,'BERTRAND',#200;5009.13

 56, 'POIROT-DELMOTTE' ,#4256 ;18009

345 ,'TRUCMUCHE' , #67; 19000.25

You can make a table fmtsample with 4 columns ID, NAME, DEPNO and SALARY, using the Create Table statement and

column formats:

create table FMTSAMPLE (

 ID Integer(5) not null field_format=' %n%d%n',

 NAME Char(16) not null field_format=' , ''%n%[^'']%n''',

 DEPNO Integer(4) not null field_format=' , #%n%d%n',

 SALARY Double(12,2) not null field_format=' ; %n%f%n')

Engine=CONNECT table_type=FMT file_name='funny.txt';

Field 1 is an integer (%d) with eventual leading blanks.

Field 2 is separated from field 1 by optional blanks, a comma, and other optional blanks and is between single quotes. The

leading quote is included in component 1 of the column format, followed by the %n marker. The column value is specified

as %[^'] meaning to keep any characters read until a quote is met. The ending marker (%n) is followed by the 5th

component of the column format, the single quote that follows the column value.

Field 3, also separated by a comma, is a number preceded by a pound sign.

Field 4, separated by a semicolon eventually surrounded by blanks, is a number with an optional decimal point (%f).

This table will be displayed as:

ID NAME DEPNO SALARY

3175/4161

12345 BERTRAND 200 5009.13

56 POIROT-DELMOTTE 4256 18009.00

345 TRUCMUCHE 67 19000.25

Optional Fields
To be recognized, a field normally must be at least one character long. For instance, a numeric field must have at least one

digit, or a character field cannot be void. However many existing files do not follow this format.

Let us suppose for instance that the preceding example file could be:

12345,'BERTRAND',#200;5009.13

 56, 'POIROT-DELMOTTE' ,# ;18009

345 ,'' , #67; 19000.25

This will display an error message such as <Bad format line x field y of FMTSAMPLE=. To avoid this and accept these

records, the corresponding fields must be specified as "optional". In the above example, fields 2 and 3 can have null values

(in lines 3 and 2 respectively). To specify them as optional, their format must be terminated by %m (instead of the second

%n). A statement such as this can do the table creation:

create table FMTAMPLE (

 ID Integer(5) not null field_format=' %n%d%n',

 NAME Char(16) not null field_format=' , ''%n%[^'']%m',

 DEPNO Integer(4) field_format=''' , #%n%d%m',

 SALARY Double(12,2) field_format=' ; %n%f%n')

Engine=CONNECT table_type=FMT file_name='funny.txt';

Note that, because the statement must be terminated by %m with no additional characters, skipping the ending quote of

field 2 was moved from the end of the second column format to the beginning of the third column format.

The table result is:

ID NAME DEPNO SALARY

12345 BERTRAND 200 5,009.13

56 POIROT-DELMOTTE NULL 18,009.00

345 NULL 67 19,000.25

Missing fields are replaced by null values if the column is nullable, blanks for character strings and 0 for numeric fields if it is

not.

Note 1: Because the formats are specified between quotes, quotes belonging to the formats must be doubled or escaped to

avoid a CREATE TABLE statement syntax error.

Note 2: Characters separating columns can be included as well in component 5 of the preceding column format or in

component 1 of the succeeding column format but for blanks, which should be always included in component 1 of the

succeeding column format because line trailing blanks can be sometimes lost. This is also mandatory for optional fields.

Note 3: Because the format is mainly used to find the sub-string corresponding to a column value, the field specification

does not necessarily match the column type. For instance supposing a table contains two integer columns, NBONE and

NBTWO, the two lines describing these columns could be:

NBONE integer(5) not null field_format=' %n%d%n',

NBTWO integer(5) field_format=' %n%s%n',

The first one specifies a required integer field (%d), the second line describes a field that can be an integer, but can be

replaced by a "-" (or any other) character. Specifying the format specification for this column as a character field (%s)

enables to recognize it with no error in all cases. Later on, this field will be converted to integer by the column read function,

and a null 0 value will be generated for field specified in their format as non-numeric.

Bad Record Error Processing
When no match if found for a column field the process aborts with a message such as:

Bad format line 3 field 4 of funny.txt

3176/4161

This can mean as well that one line of the input line is ill formed or that the column format for this field has been wrongly

specified. When you know that your file contains records that are ill formatted and should be eliminated from normal

processing, set the <maxerr= option of the CREATE TABLE statement, for instance:

Option_list='maxerr=100'

This will indicate that no error message be raised for the 100 first wrong lines. You can set Maxerr to a number greater than

the number of wrong lines in your files to ignore them and get no errors.

Additionally, the <accept= option permit to keep those ill formatted lines with the bad field, and all succeeding fields of the

record, nullified. If <accept= is specified without <maxerr=, all ill formatted lines will be accepted.

Note: This error processing also applies to CSV tables.

Fields Containing a Formatted Date
A special case is one of columns containing a formatted date. In this case, two formats must be specified:

1. The field recognition format used to delimit the date in the input record.

2. The date format used to interpret the date.

3. The field length option if the date representation is different than the standard type size.

For example, let us suppose we have a web log source file containing records such as:

165.91.215.31 - - [17/Jul/2001:00:01:13 -0400] - "GET /usnews/home.htm HTTP/1.1" 302

The create table statement shall be like this:

create table WEBSAMP (

 IP char(15) not null field_format='%n%s%n',

 DATE datetime not null field_format=' - - [%n%s%n -0400]'

 date_format='DD/MMM/YYYY:hh:mm:ss' field_length=20,

 FILE char(128) not null field_format=' - "GET %n%s%n',

 HTTP double(4,2) not null field_format=' HTTP/%n%f%n"',

 NBONE int(5) not null field_format=' %n%d%n')

Engine=CONNECT table_type=FMT lrecl=400

file_name='e:\\data\\token\\Websamp.dat';

Note 1: Here, field_length=20 was necessary because the default size for datetime columns is only 19. The

lrecl=400 was also specified because the actual file contains more information in each records making the record size

calculated by default too small.

Note 2: The file name could have been specified as 'e:/data/token/Websamp.dat' .

Note 3: FMT tables are currently read only.

5.3.7.6.10 CONNECT - NoSQL Table Types
They are based on files that do not match the relational format but often represent hierarchical data. CONNECT can handle

JSON, INI-CFG, XML, and some HTML files.

The way it is done is different from what MySQL or PostgreSQL does. In addition to including in a table some column values

of a specific data format (JSON, XML) to be handled by specific functions, CONNECT can directly use JSON, XML or INI

files that are produced by other applications, and this is the table definition that describes where and how the contained

information must be retrieved.

This is also different from what MariaDB does with dynamic columns, which is close to what MySQL and PostgreSQL do

with the JSON column type.

Note: The LEVEL option used with these tables should, from Connect 1.07.0002, be specified as DEPTH. Also, what was

specified with the FIELD_FORMAT column option should now also be specified using JPATH or XPATH.

5.3.7.6.11 CONNECT - Files Retrieved Using
Rest Queries
Starting with CONNECT version 1.07.0001, JSON, XML and possibly CSV data files can be retrieved as results from REST

queries when creating or querying such tables. This is done internally by CONNECT using the CURL program generally

3177/4161

available on all systems (if not just install it).

This can also be done using the Microsoft Casablanca (cpprestsdk) package. To enable it, first, install the package as

explained in https://github.com/microsoft/cpprestsdk . Then make the GetRest library (dll or so) as explained in Making the

GetRest Library.

Note: If both are available, cpprestsdk is used preferably because it is faster. This can be changed by specifying 8curl=19 in

the option list.

Note: If you want to use this feature with an older distributed version of MariaDB not featuring REST, it is possible to add it

as an OEM module as explained in Adding the REST Feature as a Library Called by an OEM Table .

Creating Tables using REST

To do so, specify the HTTP of the web client and eventually the URI of the request in the CREATE TABLE statement. For

example, for a query returning JSON data:

CREATE TABLE webusers (

 id bigint(2) NOT NULL,

 name char(24) NOT NULL,

 username char(16) NOT NULL,

 email char(25) NOT NULL,

 address varchar(256) DEFAULT NULL,

 phone char(21) NOT NULL,

 website char(13) NOT NULL,

 company varchar(256) DEFAULT NULL

) ENGINE=CONNECT DEFAULT CHARSET=utf8

TABLE_TYPE=JSON FILE_NAME='users.json' HTTP='http://jsonplaceholder.typicode.com' URI='/users';

As with standard JSON tables, discovery is possible, meaning that you can leave CONNECT to define the columns by

analyzing the JSON file. Here you could just do:

CREATE TABLE webusers

ENGINE=CONNECT DEFAULT CHARSET=utf8

TABLE_TYPE=JSON FILE_NAME='users.json'

HTTP='http://jsonplaceholder.typicode.com' URI='/users';

For example, executing:

SELECT name, address FROM webusers2 LIMIT 1;

returns:

name address

Leanne Graham Kulas Light Apt. 556 Gwenborough 92998-3874 -37.3159 81.1496

Here we see that for some complex elements such as address, which is a Json object containing values and objects,

CONNECT by default has just listed their texts separated by blanks. But it is possible to ask it to analyze in more depth the

json result by adding the DEPTH option. For instance:

CREATE OR REPLACE TABLE webusers

ENGINE=CONNECT DEFAULT CHARSET=utf8

TABLE_TYPE=JSON FILE_NAME='users.json'

HTTP='http://jsonplaceholder.typicode.com' URI='/users'

OPTION_LIST='Depth=2';

Then the table will be created as:

3178/4161

https://github.com/microsoft/cpprestsdk

CREATE TABLE `webusers3` (

 `id` bigint(2) NOT NULL,

 `name` char(24) NOT NULL,

 `username` char(16) NOT NULL,

 `email` char(25) NOT NULL,

 `address_street` char(17) NOT NULL `JPATH`='$.address.street',

 `address_suite` char(9) NOT NULL `JPATH`='$.address.suite',

 `address_city` char(14) NOT NULL `JPATH`='$.address.city',

 `address_zipcode` char(10) NOT NULL `JPATH`='$.address.zipcode',

 `address_geo_lat` char(8) NOT NULL `JPATH`='$.address.geo.lat',

 `address_geo_lng` char(9) NOT NULL `JPATH`='$.address.geo.lng',

 `phone` char(21) NOT NULL,

 `website` char(13) NOT NULL,

 `company_name` char(18) NOT NULL `JPATH`='$.company.name',

 `company_catchPhrase` char(40) NOT NULL `JPATH`='$.company.catchPhrase',

 `company_bs` varchar(36) NOT NULL `JPATH`='$.company.bs'

) ENGINE=CONNECT DEFAULT CHARSET=utf8 `TABLE_TYPE`='JSON' `FILE_NAME`='users.json'

`OPTION_LIST`='Depth=2' `HTTP`='http://jsonplaceholder.typicode.com' `URI`='/users';

Allowing one to get all the values of the Json result, for example:

SELECT name, address_city city, company_name company FROM webusers3;

That results in:

name city company

Leanne Graham Gwenborough Romaguera-Crona

Ervin Howell Wisokyburgh Deckow-Crist

Clementine Bauch McKenziehaven Romaguera-Jacobson

Patricia Lebsack South Elvis Robel-Corkery

Chelsey Dietrich Roscoeview Keebler LLC

Mrs. Dennis Schulist South Christy Considine-Lockman

Kurtis Weissnat Howemouth Johns Group

Nicholas Runolfsdottir V Aliyaview Abernathy Group

Glenna Reichert Bartholomebury Yost and Sons

Clementina DuBuque Lebsackbury Hoeger LLC

Of course, the complete create table (obtained by SHOW CREATE TABLE) can later be edited to make your table return

exactly what you want to get. See the JSON table type for details about what and how to specify these.

Note that such tables are read only. In addition, the data will be retrieved from the web each time you query the table with a

SELECT statement. This is fine if the result varies each time, such as when you query a weather forecasting site. But if you

want to use the retrieved file many times without reloading it, just create another table on the same file without specifying the

HTTP option.

Note: For JSON tables, specifying the file name is optional and defaults to tabname.type. However, you should specify it if

you want to use the file later for other tables.

See the JSON table type for changes that will occur in the new CONNECT versions (distributed in early 2021).

5.3.7.6.12 CONNECT JSON Table Type

3179/4161

Contents
1. Overview

2. The Jpath Specification

3. Handling of NULL Values

4. Having Columns defined by Discovery

5. JSON Catalogue Tables

6. Finding the table within a JSON file

7. JSON File Formats

8. Alternate Table Arrangement

9. Getting and Setting JSON Representation of a Column

10. Create, Read, Update and Delete Operations on JSON Tables

11. JSON User Defined Functions

1. Jfile_Bjson

2. Jfile_Convert

3. Jfile_Make

4. Json_Array_Add

5. Json_Array_Add_Values

6. Json_Array_Delete

7. Json_Array_Grp

8. JsonContains

9. JsonContains_Path

10. Json_File

11. Json_Get_Item

12. JsonGet_Grp_Size

13. JsonGet_String / JsonGet_Int / JsonGet_Real

14. Json_Item_Merge

15. JsonLocate

16. Json_Locate_All

17. Json_Make_Array

18. Json_Make_Object

19. Json_Object_Add

20. Json_Object_Delete

21. Json_Object_Grp

22. Json_Object_Key

23. Json_Object_List

24. Json_Object_Nonull

25. Json_Object_Values

26. JsonSet_Grp_Size

27. Json_Set_Item / Json_Insert_Item / Json_Update_Item

28. JsonValue

12. The <JBIN= return type

1. Using a file as json UDF first argument

2. Using <Jbin= to control what the query execution does

13. Using JSON as Dynamic Columns

14. New Set of BSON Functions

15. Converting Tables to JSON

16. Converting json files

17. Performance Consideration

1. Bjson files

18. Specifying a JSON table Encoding

19. Retrieving JSON data from MongoDB

20. Summary of Options and Variables Used with Json Tables

21. Notes

Overview
JSON (JavaScript Object Notation) is a lightweight data-interchange format widely used on the Internet. Many applications,

generally written in JavaScript or PHP use and produce JSON data, which are exchanged as files of different physical

formats. JSON data is often returned from REST queries.

It is also possible to query, create or update such information in a database-like manner. MongoDB does it using a

JavaScript-like language. PostgreSQL includes these facilities by using a specific data type and related functions like

dynamic columns.

The CONNECT engine adds this facility to MariaDB by supporting tables based on JSON data files. This is done like for

XML tables by creating tables describing what should be retrieved from the file and how it should be processed.

Starting with 1.07.0002, the internal way JSON was parsed and handled was changed. The main advantage of the new way

3180/4161

is to reduce the memory required to parse JSON. It was from 6 to 10 times the size of the JSON source and is now only 2

to 4 times. However, this is in Beta mode and JSON tables are still handled using the old mode. To use the new mode,

tables should be created with TABLE_TYPE=BSON. Another way is the set the connect_force_bson session variable to 1 or

ON. Then all JSON tables will be handled as BSON. Of course, this is temporary and when successfully tested, the new

way will replace the old way and all tables be created as JSON.

Let us start from the file <biblio3.json= that is the JSON equivalent of the XML Xsample file described in the XML table

chapter:

[

 {

 "ISBN": "9782212090819",

 "LANG": "fr",

 "SUBJECT": "applications",

 "AUTHOR": [

 {

 "FIRSTNAME": "Jean-Christophe",

 "LASTNAME": "Bernadac"

 },

 {

 "FIRSTNAME": "François",

 "LASTNAME": "Knab"

 }

],

 "TITLE": "Construire une application XML",

 "PUBLISHER": {

 "NAME": "Eyrolles",

 "PLACE": "Paris"

 },

 "DATEPUB": 1999

 },

 {

 "ISBN": "9782840825685",

 "LANG": "fr",

 "SUBJECT": "applications",

 "AUTHOR": [

 {

 "FIRSTNAME": "William J.",

 "LASTNAME": "Pardi"

 }

],

 "TITLE": "XML en Action",

 "TRANSLATED": {

 "PREFIX": "adapté de l'anglais par",

 "TRANSLATOR": {

 "FIRSTNAME": "James",

 "LASTNAME": "Guerin"

 }

 },

 "PUBLISHER": {

 "NAME": "Microsoft Press",

 "PLACE": "Paris"

 },

 "DATEPUB": 1999

 }

]

This file contains the different items existing in JSON.

Arrays : They are enclosed in square brackets and contain a list of comma separated values.

Objects : They are enclosed in curly brackets. They contain a comma separated list of pairs, each pair composed of

a key name between double quotes, followed by a 8:9 character and followed by a value.

Values : Values can be an array or an object. They also can be a string between double quotes, an integer or float

number, a Boolean value or a null value. The simplest way for CONNECT to locate a table in such a file is by an array

containing a list of objects (this is what MongoDB calls a collection of documents). Each array value will be a table

row and each pair of the row objects will represent a column, the key being the column name and the value the

column value.

A first try to create a table on this file will be to take the outer array as the table:

3181/4161

create table jsample (

ISBN char(15),

LANG char(2),

SUBJECT char(32),

AUTHOR char(128),

TITLE char(32),

TRANSLATED char(80),

PUBLISHER char(20),

DATEPUB int(4))

engine=CONNECT table_type=JSON

File_name='biblio3.json';

If we execute the query:

select isbn, author, title, publisher from jsample;

We get the result:

isbn author title publisher

9782212090819 Jean-Christophe Bernadac Construire une application XML Eyrolles Paris

9782840825685 William J. Pardi XML en Action Microsoft Press Pari

Note that by default, column values that are objects have been set to the concatenation of all the string values of the object

separated by a blank. When a column value is an array, only the first item of the array is retrieved (This will change in later

versions of Connect).

However, things are generally more complicated. If JSON files do not contain attributes (although object pairs are similar to

attributes) they contain a new item, arrays. We have seen that they can be used like XML multiple nodes, here to specify

several authors, but they are more general because they can contain objects of different types, even it may not be advisable

to do so.

This is why CONNECT enables the specification of a column field_format option <JPATH= (FIELD_FORMAT until Connect

1.6) that is used to describe exactly where the items to display are and how to handles arrays.

Here is an example of a new table that can be created on the same file, allowing choosing the column names, to get some

sub-objects and to specify how to handle the author array.

Until Connect 1.5:

create table jsampall (

ISBN char(15),

Language char(2) field_format='LANG',

Subject char(32) field_format='SUBJECT',

Author char(128) field_format='AUTHOR:[" and "]',

Title char(32) field_format='TITLE',

Translation char(32) field_format='TRANSLATOR:PREFIX',

Translator char(80) field_format='TRANSLATOR',

Publisher char(20) field_format='PUBLISHER:NAME',

Location char(16) field_format='PUBLISHER:PLACE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

From Connect 1.6:

create table jsampall (

ISBN char(15),

Language char(2) field_format='LANG',

Subject char(32) field_format='SUBJECT',

Author char(128) field_format='AUTHOR.[" and "]',

Title char(32) field_format='TITLE',

Translation char(32) field_format='TRANSLATOR.PREFIX',

Translator char(80) field_format='TRANSLATOR',

Publisher char(20) field_format='PUBLISHER.NAME',

Location char(16) field_format='PUBLISHER.PLACE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

From Connect 1.07.0002

3182/4161

create table jsampall (

ISBN char(15),

Language char(2) jpath='$.LANG',

Subject char(32) jpath='$.SUBJECT',

Author char(128) jpath='$.AUTHOR[" and "]',

Title char(32) jpath='$.TITLE',

Translation char(32) jpath='$.TRANSLATOR.PREFIX',

Translator char(80) jpath='$.TRANSLATOR',

Publisher char(20) jpath='$.PUBLISHER.NAME',

Location char(16) jpath='$.PUBLISHER.PLACE',

Year int(4) jpath='$.DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

Given the query:

select title, author, publisher, location from jsampall;

The result is:

title author publisher location

Construire une application XML Jean-Christophe Bernadac and François Knab Eyrolles Paris

XML en Action William J. Pardi Microsoft Press Paris

Note: The JPATH was not specified for column ISBN because it defaults to the column name.

Here is another example showing that one can choose what to extract from the file and how to <expand= an array, meaning

to generate one row for each array value:

Until Connect 1.5:

create table jsampex (

ISBN char(15),

Title char(32) field_format='TITLE',

AuthorFN char(128) field_format='AUTHOR:[X]:FIRSTNAME',

AuthorLN char(128) field_format='AUTHOR:[X]:LASTNAME',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

From Connect 1.6:

create table jsampex (

ISBN char(15),

Title char(32) field_format='TITLE',

AuthorFN char(128) field_format='AUTHOR.[X].FIRSTNAME',

AuthorLN char(128) field_format='AUTHOR.[X].LASTNAME',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

From Connect 1.06.006:

create table jsampex (

ISBN char(15),

Title char(32) field_format='TITLE',

AuthorFN char(128) field_format='AUTHOR[*].FIRSTNAME',

AuthorLN char(128) field_format='AUTHOR[*].LASTNAME',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

From Connect 1.07.0002

create table jsampex (

ISBN char(15),

Title char(32) jpath='TITLE',

AuthorFN char(128) jpath='AUTHOR[*].FIRSTNAME',

AuthorLN char(128) jpath='AUTHOR[*].LASTNAME',

Year int(4) jpath='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

3183/4161

It is displayed as:

ISBN Title AuthorFN AuthorLN Year

9782212090819 Construire une application XML Jean-Christophe Bernadac 1999

9782212090819 Construire une application XML François Knab 1999

9782840825685 XML en Action William J. Pardi 1999

Note: The example above shows that the 8$.9, that means the beginning of the path, can be omitted.

The Jpath Specification

From Connect 1.6, the Jpath specification has changed to be the one of the native JSON functions and more

compatible with what is generally used. It is close to the standard definition and compatible to what MongoDB and

other products do. The 8:9 separator is replaced by 8.9. Position in array is accepted MongoDB style with no square

brackets. Array specification specific to CONNECT are still accepted but [*] is used for expanding and [x] for multiply.

However, tables created with the previous syntax can still be used by adding SEP_CHAR=9:9 (can be done with alter

table). Also, it can be now specified as JPATH (was FIELD_FORMAT) but FIELD_FORMAT is still accepted.

Until Connect 1.5, it is the description of the path to follow to reach the required item. Each step is the key name (case

sensitive) of the pair when crossing an object, and the number of the value between square brackets when crossing an

array. Each specification is separated by a 8:9 character.

From Connect 1.6, It is the description of the path to follow to reach the required item. Each step is the key name (case

sensitive) of the pair when crossing an object, and the position number of the value when crossing an array. Key

specifications are separated by a 8.9 character.

For instance, in the above file, the last name of the second author of a book is reached by:

$.AUTHOR[1].LASTNAME standard style $AUTHOR.1.LASTNAME MongoDB style AUTHOR:[1]:LASTNAME old style

when SEP_CHAR=9:9 or until Connect 1.5

The 8$9 or <$.= prefix specifies the root of the path and can be omitted with CONNECT.

The array specification can also indicate how it must be processed:

For instance, in the above file, the last name of the second author of a book is reached by:

AUTHOR:[1]:LASTNAME

The array specification can also indicate how it must be processed:

Specification
Array

Type
Limit Description

n (Connect >= 1.6) or [n] All N.A Take the nth value of the array.

[*] (Connect >= 1.6), [X] or [x]

(Connect <= 1.5)
All Expand. Generate one row for each array value.

["string"] String Concatenate all values separated by the specified string.

[+] Numeric Make the sum of all the non-null array values.

[x] (Connect >= 1.6), [*] (Connect

<= 1.5)
Numeric Make the product of all non-null array values.

[!] Numeric Make the average of all the non-null array values.

[>] or [<] All Return the greatest or least non-null value of the array.

[#] All N.A Return the number of values in the array.

[] All
Expand if under an expanded object. Otherwise sum if numeric, else

concatenation separated by <, <.

All
Between two separators, if an array, expand it if under an expanded

object or take the first value of it.

Note 1: When the LIMIT restriction is applicable, only the first m array items are used, m being the value of the LIMIT option

(to be specified in option_list). The LIMIT default value is 10.

[1]

3184/4161

Note 2: An alternative way to indicate what is to be expanded is to use the expand option in the option list, for instance:

OPTION_LIST='Expand=AUTHOR'

AUTHOR is here the key of the pair that has the array as a value (case sensitive). Expand is limited to only one branch

(expanded arrays must be under the same object).

Let us take as an example the file expense.json (found here). The table jexpall expands all under and including the week

array:

From Connect 1.07.0002

create table jexpall (

WHO char(12),

WEEK int(2) jpath='$.WEEK[*].NUMBER',

WHAT char(32) jpath='$.WEEK[*].EXPENSE[*].WHAT',

AMOUNT double(8,2) jpath='$.WEEK[*].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

From Connect.1.6

create table jexpall (

WHO char(12),

WEEK int(2) field_format='$.WEEK[*].NUMBER',

WHAT char(32) field_format='$.WEEK[*].EXPENSE[*].WHAT',

AMOUNT double(8,2) field_format='$.WEEK[*].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

Until Connect 1.5:

create table jexpall (

WHO char(12),

WEEK int(2) field_format='WEEK:[x]:NUMBER',

WHAT char(32) field_format='WEEK:[x]:EXPENSE:[x]:WHAT',

AMOUNT double(8,2) field_format='WEEK:[x]:EXPENSE:[x]:AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

WHO WEEK WHAT AMOUNT

Joe 3 Beer 18.00

Joe 3 Food 12.00

Joe 3 Food 19.00

Joe 3 Car 20.00

Joe 4 Beer 19.00

Joe 4 Beer 16.00

Joe 4 Food 17.00

Joe 4 Food 17.00

Joe 4 Beer 14.00

Joe 5 Beer 14.00

Joe 5 Food 12.00

Beth 3 Beer 16.00

Beth 4 Food 17.00

Beth 4 Beer 15.00

Beth 5 Food 12.00

Beth 5 Beer 20.00

Janet 3 Car 19.00

Janet 3 Food 18.00

Janet 3 Beer 18.00

3185/4161

Janet 4 Car 17.00

Janet 5 Beer 14.00

Janet 5 Car 12.00

Janet 5 Beer 19.00

Janet 5 Food 12.00

The table jexpw shows what was bought and the sum and average of amounts for each person and week:

From Connect 1.07.0002

create table jexpw (

WHO char(12) not null,

WEEK int(2) not null jpath='$.WEEK[*].NUMBER',

WHAT char(32) not null jpath='$.WEEK[].EXPENSE[", "].WHAT',

SUM double(8,2) not null jpath='$.WEEK[].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null jpath='$.WEEK[].EXPENSE[!].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

From Connect 1.6:

create table jexpw (

WHO char(12) not null,

WEEK int(2) not null field_format='$.WEEK[*].NUMBER',

WHAT char(32) not null field_format='$.WEEK[].EXPENSE[", "].WHAT',

SUM double(8,2) not null field_format='$.WEEK[].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null field_format='$.WEEK[].EXPENSE[!].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

Until Connect 1.5:

create table jexpw (

WHO char(12) not null,

WEEK int(2) not null field_format='WEEK:[x]:NUMBER',

WHAT char(32) not null field_format='WEEK::EXPENSE:[", "]:WHAT',

SUM double(8,2) not null field_format='WEEK::EXPENSE:[+]:AMOUNT',

AVERAGE double(8,2) not null field_format='WEEK::EXPENSE:[!]:AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

WHO WEEK WHAT SUM AVERAGE

Joe 3 Beer, Food, Food, Car 69.00 17.25

Joe 4 Beer, Beer, Food, Food, Beer 83.00 16.60

Joe 5 Beer, Food 26.00 13.00

Beth 3 Beer 16.00 16.00

Beth 4 Food, Beer 32.00 16.00

Beth 5 Food, Beer 32.00 16.00

Janet 3 Car, Food, Beer 55.00 18.33

Janet 4 Car 17.00 17.00

Janet 5 Beer, Car, Beer, Food 57.00 14.25

Let us see what the table jexpz does:

From Connect 1.6:

3186/4161

create table jexpz (

WHO char(12) not null,

WEEKS char(12) not null field_format='WEEK[", "].NUMBER',

SUMS char(64) not null field_format='WEEK["+"].EXPENSE[+].AMOUNT',

SUM double(8,2) not null field_format='WEEK[+].EXPENSE[+].AMOUNT',

AVGS char(64) not null field_format='WEEK["+"].EXPENSE[!].AMOUNT',

SUMAVG double(8,2) not null field_format='WEEK[+].EXPENSE[!].AMOUNT',

AVGSUM double(8,2) not null field_format='WEEK[!].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null field_format='WEEK[!].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

From Connect 1.07.0002

create table jexpz (

WHO char(12) not null,

WEEKS char(12) not null jpath='WEEK[", "].NUMBER',

SUMS char(64) not null jpath='WEEK["+"].EXPENSE[+].AMOUNT',

SUM double(8,2) not null jpath='WEEK[+].EXPENSE[+].AMOUNT',

AVGS char(64) not null jpath='WEEK["+"].EXPENSE[!].AMOUNT',

SUMAVG double(8,2) not null jpath='WEEK[+].EXPENSE[!].AMOUNT',

AVGSUM double(8,2) not null jpath='WEEK[!].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null jpath='WEEK[!].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

Until Connect 1.5:

create table jexpz (

WHO char(12) not null,

WEEKS char(12) not null field_format='WEEK:[", "]:NUMBER',

SUMS char(64) not null field_format='WEEK:["+"]:EXPENSE:[+]:AMOUNT',

SUM double(8,2) not null field_format='WEEK:[+]:EXPENSE:[+]:AMOUNT',

AVGS char(64) not null field_format='WEEK:["+"]:EXPENSE:[!]:AMOUNT',

SUMAVG double(8,2) not null field_format='WEEK:[+]:EXPENSE:[!]:AMOUNT',

AVGSUM double(8,2) not null field_format='WEEK:[!]:EXPENSE:[+]:AMOUNT',

AVERAGE double(8,2) not null field_format='WEEK:[!]:EXPENSE:[x]:AMOUNT')

engine=CONNECT table_type=JSON

File_name='E:/Data/Json/expense2.json';

WHO WEEKS SUMS SUM AVGS SUMAVG AVGSUM AVERAGE

Joe 3, 4, 5 69.00+83.00+26.00 178.00 17.25+16.60+13.00 46.85 59.33 16.18

Beth 3, 4, 5 16.00+32.00+32.00 80.00 16.00+16.00+16.00 48.00 26.67 16.00

Janet 3, 4, 5 55.00+17.00+57.00 129.00 18.33+17.00+14.25 49.58 43.00 16.12

For all persons:

Column 1 show the person name.

Column 2 shows the weeks for which values are calculated.

Column 3 lists the sums of expenses for each week.

Column 4 calculates the sum of all expenses by person.

Column 5 shows the week9s expense averages.

Column 6 calculates the sum of these averages.

Column 7 calculates the average of the week9s sum of expenses.

Column 8 calculates the average expense by person.

It would be very difficult, if even possible, to obtain this result from table jexpall using an SQL query.

Handling of NULL Values
Json has a null explicit value that can be met in arrays or object key values. When regarding json as a relational table, a

column value can be null because the corresponding json item is explicitly null, or implicitly because the corresponding item

is missing in an array or object. CONNECT does not make any distinction between explicit and implicit nulls.

However, it is possible to specify how nulls are handled and represented. This is done by setting the string session variable

connect_json_null. The default value of connect_json_null is <<null>=; it can be changed, for instance, by:

SET connect_json_null='NULL';

3187/4161

This changes its representation when a column displays the text of an object or the concatenation of the values of an array.

It is also possible to tell CONNECT to ignore nulls by:

SET connect_json_null=NULL;

When doing so, nulls do not appear in object text or array lists. However, this does not change the behavior of array

calculation nor the result of array count.

Having Columns defined by Discovery
It is possible to let the MariaDB discovery process do the job of column specification. When columns are not defined in the

create table statement, CONNECT endeavors to analyze the JSON file and to provide the column specifications. This is

possible only for tables represented by an array of objects because CONNECT retrieves the column names from the object

pair keys and their definition from the object pair values. For instance, the jsample table could be created saying:

create table jsample engine=connect table_type=JSON file_name='biblio3.json';

Let9s check how it was actually specified using the show create table statement:

CREATE TABLE `jsample` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR` varchar(256) DEFAULT NULL,

 `TITLE` char(30) NOT NULL,

 `TRANSLATED` varchar(256) DEFAULT NULL,

 `PUBLISHER` varchar(256) DEFAULT NULL,

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON' `FILE_NAME`='biblio3.json';

It is equivalent except for the column sizes that have been calculated from the file as the maximum length of the

corresponding column when it was a normal value. For columns that are json arrays or objects, the column is specified as a

varchar string of length 256, supposedly big enough to contain the sub-object's concatenated values. Nullable is set to true

if the column is null or missing in some rows or if its JPATH contains arrays.

If a more complex definition is desired, you can ask CONNECT to analyse the JPATH up to a given depth using the DEPTH

or LEVEL option in the option list. Its default value is 0 but can be changed setting the connect_default_depth session

variable (in future versions the default will be 5). The depth value is the number of sub-objects that are taken in the JPATH2

(this is different from what is defined and returned by the native Json_Depth function).

For instance:

create table jsampall2 engine=connect table_type=JSON

 file_name='biblio3.json' option_list='level=1';

This will define the table as:

From Connect 1.07.0002

CREATE TABLE `jsampall2` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `JPATH`='$.AUTHOR.[0].FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `JPATH`='$.AUTHOR.[0].LASTNAME',

 `TITLE` char(30) NOT NULL,

 `TRANSLATED_PREFIX` char(23) DEFAULT NULL `JPATH`='$.TRANSLATED.PREFIX',

 `TRANSLATED_TRANSLATOR` varchar(256) DEFAULT NULL `JPATH`='$.TRANSLATED.TRANSLATOR',

 `PUBLISHER_NAME` char(15) NOT NULL `JPATH`='$.PUBLISHER.NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `JPATH`='$.PUBLISHER.PLACE',

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON'

 `FILE_NAME`='biblio3.json' `OPTION_LIST`='depth=1';

From Connect 1.6:

3188/4161

CREATE TABLE `jsampall2` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `FIELD_FORMAT`='AUTHOR..FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `FIELD_FORMAT`='AUTHOR..LASTNAME',

 `TITLE` char(30) NOT NULL,

 `TRANSLATED_PREFIX` char(23) DEFAULT NULL `FIELD_FORMAT`='TRANSLATED.PREFIX',

 `TRANSLATED_TRANSLATOR` varchar(256) DEFAULT NULL `FIELD_FORMAT`='TRANSLATED.TRANSLATOR',

 `PUBLISHER_NAME` char(15) NOT NULL `FIELD_FORMAT`='PUBLISHER.NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `FIELD_FORMAT`='PUBLISHER.PLACE',

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON'

 `FILE_NAME`='biblio3.json' `OPTION_LIST`='level=1';

Until Connect 1.5:

CREATE TABLE `jsampall2` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `FIELD_FORMAT`='AUTHOR::FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `FIELD_FORMAT`='AUTHOR::LASTNAME',

 `TITLE` char(30) NOT NULL,

 `TRANSLATED_PREFIX` char(23) DEFAULT NULL `FIELD_FORMAT`='TRANSLATED:PREFIX',

 `TRANSLATED_TRANSLATOR` varchar(256) DEFAULT NULL `FIELD_FORMAT`='TRANSLATED:TRANSLATOR',

 `PUBLISHER_NAME` char(15) NOT NULL `FIELD_FORMAT`='PUBLISHER:NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `FIELD_FORMAT`='PUBLISHER:PLACE',

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON' `

 FILE_NAME`='biblio3.json' `OPTION_LIST`='level=1';

For columns that are a simple value, the Json path is the column name. This is the default when the Jpath option is not

specified, so it was not specified for such columns. However, you can force discovery to specify it by setting the

connect_all_path variable to 1 or ON. This can be useful if you plan to change the name of such columns and relieves you

of manually specifying the path (otherwise it would default to the new name and cause the column to not or wrongly be

found).

Another problem is that CONNECT cannot guess what you want to do with arrays. Here the AUTHOR array is set to 0,

which means that only its first value will be retrieved unless you also had specified <Expand=AUTHOR= in the option list. But

of course, you can replace it with anything else.

This method can be used as a quick way to make a <template= table definition that can later be edited to make the desired

definition. In particular, column names are constructed from all the object keys of their path in order to have distinct column

names. This can be manually edited to have the desired names, provided their JPATH key names are not modified.

DEPTH can also be given the value -1 to create only columns that are simple values (no array or object). It normally defaults

to 0 but this can be modified setting the connect_default_depth variable.

Note: Since version 1.6.4, CONNECT eliminates columns that are <void= or whose type cannot be determined. For instance

given the file sresto.json:

{"_id":1,"name":"Corner Social","cuisine":"American","grades":[{"grade":"A","score":6}]}

{"_id":2,"name":"La Nueva Clasica Antillana","cuisine":"Spanish","grades":[]}

Previously, when using discovery, creating the table by:

create table sjr0

engine=connect table_type=JSON file_name='sresto.json'

option_list='Pretty=0,Depth=1' lrecl=128;

The table was previously created as:

3189/4161

CREATE TABLE `sjr0` (

 `_id` bigint(1) NOT NULL,

 `name` char(26) NOT NULL,

 `cuisine` char(8) NOT NULL,

 `grades` char(1) DEFAULT NULL,

 `grades_grade` char(1) DEFAULT NULL `JPATH`='$.grades[0].grade',

 `grades_score` bigint(1) DEFAULT NULL `JPATH`='$.grades[0].score'

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON'

 `FILE_NAME`='sresto.json'

 `OPTION_LIST`='Pretty=0,Depth=1,Accept=1' `LRECL`=128;

The column <grades= was added because of the void array in line 2. Now this column is skipped and does not appear

anymore (unless the option Accept=1 is added in the option list).

JSON Catalogue Tables
Another way to see JSON table column specifications is to use a catalogue table. For instance:

create table bibcol engine=connect table_type=JSON file_name='biblio3.json'

 option_list='level=2' catfunc=columns;

select column_name, type_name type, column_size size, jpath from bibcol;

which returns:

From Connect 1.07.0002:

column_name type size jpath

ISBN CHAR 13 $.ISBN

LANG CHAR 2 $.LANG

SUBJECT CHAR 12 $.SUBJECT

AUTHOR_FIRSTNAME CHAR 15 $.AUTHOR[0].FIRSTNAME

AUTHOR_LASTNAME CHAR 8 $.AUTHOR[0].LASTNAME

TITLE CHAR 30 $.TITLE

TRANSLATED_PREFIX CHAR 23 $.TRANSLATED.PREFIX

TRANSLATED_TRANSLATOR_FIRSTNAME CHAR 5 $TRANSLATED.TRANSLATOR.FIRSTNAME

TRANSLATED_TRANSLATOR_LASTNAME CHAR 6 $.TRANSLATED.TRANSLATOR.LASTNAME

PUBLISHER_NAME CHAR 15 $.PUBLISHER.NAME

PUBLISHER_PLACE CHAR 5 $.PUBLISHER.PLACE

DATEPUB INTEGER 4 $.DATEPUB

From Connect 1.6:

column_name type size jpath

ISBN CHAR 13

LANG CHAR 2

SUBJECT CHAR 12

AUTHOR_FIRSTNAME CHAR 15 AUTHOR..FIRSTNAME

AUTHOR_LASTNAME CHAR 8 AUTHOR..LASTNAME

TITLE CHAR 30

TRANSLATED_PREFIX CHAR 23 TRANSLATED.PREFIX

TRANSLATED_TRANSLATOR_FIRSTNAME CHAR 5 TRANSLATED.TRANSLATOR.FIRSTNAME

TRANSLATED_TRANSLATOR_LASTNAME CHAR 6 TRANSLATED.TRANSLATOR.LASTNAME

PUBLISHER_NAME CHAR 15 PUBLISHER.NAME

PUBLISHER_PLACE CHAR 5 PUBLISHER.PLACE

3190/4161

DATEPUB INTEGER 4

Until Connect 1.5:

column_name type size jpath

ISBN CHAR 13

LANG CHAR 2

SUBJECT CHAR 12

AUTHOR_FIRSTNAME CHAR 15 AUTHOR::FIRSTNAME

AUTHOR_LASTNAME CHAR 8 AUTHOR::LASTNAME

TITLE CHAR 30

TRANSLATED_PREFIX CHAR 23 TRANSLATED:PREFIX

TRANSLATED_TRANSLATOR_FIRSTNAME CHAR 5 TRANSLATED:TRANSLATOR:FIRSTNAME

TRANSLATED_TRANSLATOR_LASTNAME CHAR 6 TRANSLATED:TRANSLATOR:LASTNAME

PUBLISHER_NAME CHAR 15 PUBLISHER:NAME

PUBLISHER_PLACE CHAR 5 PUBLISHER:PLACE

DATEPUB INTEGER 4

All this is mostly useful when creating a table on a remote file that you cannot easily see.

Finding the table within a JSON file
Given the file <facebook.json=:

3191/4161

{

 "data": [

 {

 "id": "X999_Y999",

 "from": {

 "name": "Tom Brady", "id": "X12"

 },

 "message": "Looking forward to 2010!",

 "actions": [

 {

 "name": "Comment",

 "link": "http://www.facebook.com/X999/posts/Y999"

 },

 {

 "name": "Like",

 "link": "http://www.facebook.com/X999/posts/Y999"

 }

],

 "type": "status",

 "created_time": "2010-08-02T21:27:44+0000",

 "updated_time": "2010-08-02T21:27:44+0000"

 },

 {

 "id": "X998_Y998",

 "from": {

 "name": "Peyton Manning", "id": "X18"

 },

 "message": "Where's my contract?",

 "actions": [

 {

 "name": "Comment",

 "link": "http://www.facebook.com/X998/posts/Y998"

 },

 {

 "name": "Like",

 "link": "http://www.facebook.com/X998/posts/Y998"

 }

],

 "type": "status",

 "created_time": "2010-08-02T21:27:44+0000",

 "updated_time": "2010-08-02T21:27:44+0000"

 }

]

}

The table we want to analyze is represented by the array value of the <data= object. Here is how this is specified in the

create table statement:

From Connect 1.07.0002:

create table jfacebook (

`ID` char(10) jpath='id',

`Name` char(32) jpath='from.name',

`MyID` char(16) jpath='from.id',

`Message` varchar(256) jpath='message',

`Action` char(16) jpath='actions..name',

`Link` varchar(256) jpath='actions..link',

`Type` char(16) jpath='type',

`Created` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' jpath='created_time',

`Updated` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' jpath='updated_time')

engine=connect table_type=JSON file_name='facebook.json' option_list='Object=data,Expand=actions';

From Connect 1.6:

3192/4161

create table jfacebook (

`ID` char(10) field_format='id',

`Name` char(32) field_format='from.name',

`MyID` char(16) field_format='from.id',

`Message` varchar(256) field_format='message',

`Action` char(16) field_format='actions..name',

`Link` varchar(256) field_format='actions..link',

`Type` char(16) field_format='type',

`Created` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' field_format='created_time',

`Updated` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' field_format='updated_time')

engine=connect table_type=JSON file_name='facebook.json' option_list='Object=data,Expand=actions';

Until Connect 1.5:

create table jfacebook (

`ID` char(10) field_format='id',

`Name` char(32) field_format='from:name',

`MyID` char(16) field_format='from:id',

`Message` varchar(256) field_format='message',

`Action` char(16) field_format='actions::name',

`Link` varchar(256) field_format='actions::link',

`Type` char(16) field_format='type',

`Created` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' field_format='created_time',

`Updated` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss' field_format='updated_time')

engine=connect table_type=JSON file_name='facebook.json' option_list='Object=data,Expand=actions';

This is the object option that gives the Jpath of the table. Note also an alternate way to declare the array to be expanded by

the expand option of the option_list.

Because some string values contain a date representation, the corresponding columns are declared as datetime and the

date format is specified for them.

The Jpath of the object option has the same syntax as the column Jpath but of course all array steps must be specified

using the [n] (until Connect 1.5) or n (from Connect 1.6) format.

Note: This applies to the whole document for tables having PRETTY = 2 (see below). Otherwise, it applies to the document

objects of each file records.

JSON File Formats
The examples we have seen so far are files that, even they can be formatted in different ways (blanks, tabs, carriage return

and line feed are ignored when parsing them), respect the JSON syntax and are made of only one item (Object or Array).

Like for XML files, they are entirely parsed and a memory representation is made used to process them. This implies that

they are of reasonable size to avoid an out of memory condition. Tables based on such files are recognized by the option

Pretty=2 that we did not specify above because this is the default.

An alternate format, which is the format of exported MongoDB files, is a file where each row is physically stored in one file

record. For instance:

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" : 15338, "state"

: "MA" }

{ "_id" : "01002", "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017], "pop" :

36963, "state" : "MA" }

{ "_id" : "01005", "city" : "BARRE", "loc" : [-72.1083540000001, 42.409698], "pop" : 4546,

"state" : "MA" }

{ "_id" : "01007", "city" : "BELCHERTOWN", "loc" : [-72.4109530000001, 42.275103], "pop" :

10579, "state" : "MA" }

&

{ "_id" : "99929", "city" : "WRANGELL", "loc" : [-132.352918, 56.433524], "pop" : 2573,

"state" : "AK" }

{ "_id" : "99950", "city" : "KETCHIKAN", "loc" : [-133.18479, 55.942471], "pop" : 422,

"state" : "AK" }

The original file, <cities.json=, has 29352 records. To base a table on this file we must specify the option Pretty=0 in the

option list. For instance:

From Connect 1.07.0002:

3193/4161

create table cities (

`_id` char(5) key,

`city` char(32),

`lat` double(12,6) jpath='loc.0',

`long` double(12,6) jpath='loc.1',

`pop` int(8),

`state` char(2) distrib='clustered')

engine=CONNECT table_type=JSON file_name='cities.json' lrecl=128 option_list='pretty=0';

From Connect 1.6:

create table cities (

`_id` char(5) key,

`city` char(32),

`lat` double(12,6) field_format='loc.0',

`long` double(12,6) field_format='loc.1',

`pop` int(8),

`state` char(2) distrib='clustered')

engine=CONNECT table_type=JSON file_name='cities.json' lrecl=128 option_list='pretty=0';

Until Connect 1.5:

create table cities (

`_id` char(5) key,

`city` char(32),

`long` double(12,6) field_format='loc:[0]',

`lat` double(12,6) field_format='loc:[1]',

`pop` int(8),

`state` char(2) distrib='clustered')

engine=CONNECT table_type=JSON file_name='cities.json' lrecl=128 option_list='pretty=0';

Note the use of [n] (until Connect 1.5) or n (from Connect 1.6) array specifications for the longitude and latitude columns.

When using this format, the table is processed by CONNECT like a DOS, CSV or FMT table. Rows are retrieved and parsed

by records and the table can be very large. Another advantage is that such a table can be indexed, which can be of great

value for very large tables. The <distrib= option of the <state= column tells CONNECT to use block indexing when possible.

For such tables 3 as well as for pretty=1 ones 3 the record size must be specified using the LRECL option. Be sure you

don9t specify it too small as it is used to allocate the read/write buffers and the memory used for parsing the rows. If in doubt,

be generous as it does not cost much in memory allocation.

Another format exists, noted by Pretty=1, which is similar to this one but has some additions to represent a JSON array. A

header and a trailer records are added containing the opening and closing square bracket, and all records but the last are

followed by a comma. It has the same advantages for reading and updating, but inserting and deleting are executed in the

pretty=2 way.

Alternate Table Arrangement
We have seen that the most natural way to represent a table in a JSON file is to make it on an array of objects. However,

other possibilities exist. A table can be an array of arrays, a one column table can be an array of values, or a one row table

can be just one object or one value. Single row tables are internally handled by adding a one value array around them.

Let us see how to handle, for instance, a table that is an array of arrays. The file:

[

 [56, "Coucou", 500.00],

 [[2,0,1,4], "Hello World", 2.0316],

 ["1784", "John Doo", 32.4500],

 [1914, ["Nabucho","donosor"], 5.12],

 [7, "sept", [0.77,1.22,2.01]],

 [8, "huit", 13.0]

]

A table can be created on this file as:

From Connect 1.07.0002:

3194/4161

create table xjson (

`a` int(6) jpath='1',

`b` char(32) jpath='2',

`c` double(10,4) jpath='3')

engine=connect table_type=JSON file_name='test.json' option_list='Pretty=1,Jmode=1,Base=1' lrecl=128

From Connect 1.6:

create table xjson (

`a` int(6) field_format='1',

`b` char(32) field_format='2',

`c` double(10,4) field_format='3')

engine=connect table_type=JSON file_name='test.json' option_list='Pretty=1,Jmode=1,Base=1' lrecl=128

Until Connect 1.5:

create table xjson (

`a` int(6) field_format='[1]',

`b` char(32) field_format='[2]',

`c` double(10,4) field_format='[3]')

engine=connect table_type=JSON file_name='test.json'

option_list='Pretty=1,Jmode=1,Base=1' lrecl=128;

Columns are specified by their position in the row arrays. By default, this is zero-based but for this table the base was set to

1 by the Base option of the option list. Another new option in the option list is Jmode=1. It indicates what type of table this is.

The Jmode values are:

1. An array of objects. This is the default.

2. An array of Array. Like this one.

3. An array of values.

When reading, this is not required as the type of the array items is specified for the columns; however, it is required when

inserting new rows so CONNECT knows what to insert. For instance:

insert into xjson values(25, 'Breakfast', 1.414);

After this, it is displayed as:

a b c

56 Coucou 500.0000

2 Hello World 2.0316

1784 John Doo 32.4500

1914 Nabucho 5.1200

7 sept 0.7700

8 huit 13.0000

25 Breakfast 1.4140

Unspecified array values are represented by their first element.

Getting and Setting JSON Representation of a Column
We have seen that columns corresponding to a Json object or array are retrieved by default as the concatenation of all its

values separated by a blank. It is also possible to retrieve and display such column contains as the full JSON string

corresponding to it in the JSON file. This is specified in the JPATH by a <*= where the object or array would be specified.

Note: When having columns generated by discovery, this can be specified by adding the STRINGIFY option to ON or 1 in

the option list.

For instance:

From Connect 1.07.0002:

3195/4161

create table jsample2 (

ISBN char(15),

Lng char(2) jpath='LANG',

json_Author char(255) jpath='AUTHOR.*',

Title char(32) jpath='TITLE',

Year int(4) jpath='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

From Connect 1.6:

create table jsample2 (

ISBN char(15),

Lng char(2) field_format='LANG',

json_Author char(255) field_format='AUTHOR.*',

Title char(32) field_format='TITLE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

Until Connect 1.5:

create table jsample2 (

ISBN char(15),

Lng char(2) field_format='LANG',

json_Author char(255) field_format='AUTHOR:*',

Title char(32) field_format='TITLE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

Now the query:

select json_Author from jsample2;

will return and display :

json_Author

[{"FIRSTNAME":"Jean-Christophe","LASTNAME":"Bernadac"},{"FIRSTNAME":"François","LASTNAME":"Knab"}]

[{"FIRSTNAME":"William J.","LASTNAME":"Pardi"}]

Note: Prefixing the column name by json_ is optional but is useful when using the column as argument to Connect UDF

functions, making it to be surely recognized as valid Json without aliasing.

This also works on input, a column specified so that it can be directly set to a valid JSON string.

This feature is of great value as we will see below.

Create, Read, Update and Delete Operations on JSON
Tables
The SQL commands INSERT, UPDATE and DELETE are fully supported for JSON tables except those returned by REST

queries. For INSERT and UPDATE, if the target values are simple values, there are no problems.

However, there are some issues when the added or modified values are objects or arrays.

Concerning objects, the same problems exist that we have already seen with the XML type. The added or modified object

will have the format described in the table definition, which can be different from the one of the JSON file. Modifications

should be done using a file specifying the full path of modified objects.

New problems are raised when trying to modify the values of an array. Only updates can be done on the original table. First

of all, for the values of the array to be distinct values, all update operations concerning array values must be done using a

table expanding this array.

For instance, to modify the authors of the biblio.json based table, the jsampex table must be used. Doing so,

updating and deleting authors is possible using standard SQL commands. For example, to change the first name of Knab

from François to John:

update jsampex set authorfn = 'John' where authorln = 'Knab';

3196/4161

However It would be wrong to do:

update jsampex set authorfn = 'John' where isbn = '9782212090819';

Because this would change the first name of both authors as they share the same ISBN.

Where things become more difficult is when trying to delete or insert an author of a book. Indeed, a delete command will

delete the whole book and an insert command will add a new complete row instead of adding a new author in the same

array. Here we are penalized by the SQL language that cannot give us a way to specify this. Something like:

update jsampex add authorfn = 'Charles', authorln = 'Dickens'

where title = 'XML en Action';

However this does not exist in SQL. Does this mean that it is impossible to do it? No, but it requires us to use a table

specified on the same file but adapted to this task. One way to do it is to specify a table for which the authors are no more

an expanded array. Supposing we want to add an author to the <XML en Action= book. We will do it on a table containing

just the author(s) of that book, which is the second book of the table.

From Connect 1.6:

create table jauthor (

FIRSTNAME char(64),

LASTNAME char(64))

engine=CONNECT table_type=JSON File_name='biblio3.json' option_list='Object=1.AUTHOR';

Until Connect 1.5

create table jauthor (

FIRSTNAME char(64),

LASTNAME char(64))

engine=CONNECT table_type=JSON File_name='biblio3.json' option_list='Object=[1]:AUTHOR';

The command:

select * from jauthor;

replies:

FIRSTNAME LASTNAME

William J. Pardi

It is a standard JSON table that is an array of objects in which we can freely insert or delete rows.

insert into jauthor values('Charles','Dickens');

We can check that this was done correctly by:

select * from jsampex;

This will display:

ISBN Title AuthorFN AuthorLN Year

9782212090819 Construire une application XML Jean-Christophe Bernadac 1999

9782212090819 Construire une application XML John Knab 1999

9782840825685 XML en Action William J. Pardi 1999

9782840825685 XML en Action Charles Dickens 1999

Note: If this table were a big table with many books, it would be difficult to know what the order of a specific book is in the

table. This can be found by adding a special ROWID column in the table.

However, an alternate way to do it is by using direct JSON column representation as in the JSAMPLE2 table. This can be

done by:

3197/4161

update jsample2 set json_Author =

'[{"FIRSTNAME":"William J.","LASTNAME":"Pardi"},

 {"FIRSTNAME":"Charles","LASTNAME":"Dickens"}]'

where isbn = '9782840825685';

Here, we didn't have to find the index of the sub array to modify. However, this is not quite satisfying because we had to

manually write the whole JSON value to set to the json_Author column.

Therefore we need specific functions to do so. They are introduced now.

JSON User Defined Functions
Although such functions written by other parties do exist, CONNECT provides its own UDFs that are specifically adapted

to the JSON table type and easily available because, being inside the CONNECT library or DLL, they require no additional

module to be loaded (see CONNECT - Compiling JSON UDFs in a Separate Library to make these functions in a separate

library module).

In particular, MariaDB 10.2 and 10.3 feature native JSON functions. In some cases, it is possible that these native functions

can be used. However, mixing native and UDF JSON functions in the same query often does not work because the way they

recognize their arguments is different and might even cause a server crash.

Here is the list of the CONNECT functions; more can be added if required.

Name Type Return Description Added

jbin_array Function STRING*
Make a JSON array containing its

arguments.
MariaDB 10.1.9

jbin_array_add Function STRING*
Adds to its first array argument its second

arguments.
MariaDB 10.1.9

jbin_array_add_values Function STRING*
Adds to its first array argument all

following arguments.

jbin_array_delete Function STRING*
Deletes the nth element of its first array

argument.
MariaDB 10.1.9

jbin_file Function STRING* Returns of a (json) file contain. MariaDB 10.1.9

jbin_get_item Function STRING*
Access and returns a json item by a

JPATH key.
MariaDB 10.1.9

jbin_insert_item Function STRING Insert item values located to paths.

jbin_item_merge Function STRING* Merges two arrays or two objects. MariaDB 10.1.9

jbin_object Function STRING*
Make a JSON object containing its

arguments.
MariaDB 10.1.9

jbin_object_nonull Function STRING*
Make a JSON object containing its not null

arguments.
MariaDB 10.1.9

jbin_object_add Function STRING*
Adds to its first object argument its second

argument.
MariaDB 10.1.9

jbin_object_delete Function STRING*
Deletes the nth element of its first object

argument.
MariaDB 10.1.9

jbin_object_key Function STRING* Make a JSON object for key/value pairs.

jbin_object_list Function STRING* Returns the list of object keys as an array. MariaDB 10.1.9

jbin_set_item Function STRING Set item values located to paths.

jbin_update_item Function STRING Update item values located to paths.

jfile_bjson Function STRING
Convert a pretty=0 file to another BJson

file.

MariaDB 10.5.9, MariaDB

10.4.18, MariaDB 10.3.28

, MariaDB 10.2.36

jfile_convert Function STRING Convert a Json file to another pretty=0 file.

MariaDB 10.5.9, MariaDB

10.4.18, MariaDB 10.3.28

, MariaDB 10.2.36

jfile_make Function STRING
Make a json file from its json item first

argument.
MariaDB 10.1.9

[2]

3198/4161

https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

json_array Function STRING
Make a JSON array containing its

arguments.

MariaDB 10.0.17 until

Connect 1.5

json_array_add Function STRING

Adds to its first array argument its second

arguments (before MariaDB 10.1.9 , all

following arguments).

json_array_add_values Function STRING
Adds to its first array argument all

following arguments.
MariaDB 10.1.9

json_array_delete Function STRING
Deletes the nth element of its first array

argument.

json_array_grp Aggregate STRING
Makes JSON arrays from coming

argument.

json_file Function STRING Returns the contains of (json) file. MariaDB 10.1.9

json_get_item Function STRING
Access and returns a json item by a

JPATH key.
MariaDB 10.1.9

json_insert_item Function STRING Insert item values located to paths.

json_item_merge Function STRING Merges two arrays or two objects. MariaDB 10.1.9

json_locate_all Function STRING
Returns the JPATH9s of all occurrences of

an element.
MariaDB 10.1.9

json_make_array Function STRING
Make a JSON array containing its

arguments.
From Connect 1.6

json_make_object Function STRING
Make a JSON object containing its

arguments.
From Connect 1.6

json_object Function STRING
Make a JSON object containing its

arguments.

MariaDB 10.0.17 until

Connect 1.5

json_object_delete Function STRING
Deletes the nth element of its first object

argument.
MariaDB 10.1.9

json_object_grp Aggregate STRING
Makes JSON objects from coming

arguments.

json_object_list Function STRING Returns the list of object keys as an array. MariaDB 10.1.9

json_object_nonull Function STRING
Make a JSON object containing its not null

arguments.

json_serialize Function STRING Serializes the return of a <Jbin= function. MariaDB 10.1.9

json_set_item Function STRING Set item values located to paths.

json_update_item Function STRING Update item values located to paths.

jsonvalue Function STRING

Make a JSON value from its unique

argument. Called json_value until MariaDB

10.0.22 and MariaDB 10.1.8 .

MariaDB 10.0.17

jsoncontains Function INTEGER
Returns 0 or 1 if an element is contained

in the document.

jsoncontains_path Function INTEGER
Returns 0 or 1 if a JPATH is contained in

the document.

jsonget_string Function STRING
Access and returns a string element by a

JPATH key.
MariaDB 10.1.9

jsonget_int Function INTEGER
Access and returns an integer element by

a JPATH key.
MariaDB 10.1.9

jsonget_real Function REAL
Access and returns a real element by a

JPATH key.
MariaDB 10.1.9

jsonlocate Function STRING
Returns the JPATH to access one

element.
MariaDB 10.1.9

3199/4161

https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

String values are mapped to JSON strings. These strings are automatically escaped to conform to the JSON syntax. The

automatic escaping is bypassed when the value has an alias beginning with 8json_9. This is automatically the case when a

JSON UDF argument is another JSON UDF whose name begins with <json_= (not case sensitive). This is why all functions

that do not return a Json item are not prefixed by <json_=.

Argument string values, for some functions, can alternatively be json file names. When this is ambiguous, alias them as

jfile_. Full path should be used because UDF functions has no means to know what the current database is. Apparently,

when the file name path is not full, it is based on the MariaDB data directory but I am not sure it is always true.

Numeric values are (big) integers, double floating point values or decimal values. Decimal values are character strings

containing a numeric representation and are treated as strings. Floating point values contain a decimal point and/or an

exponent. Integers are written without decimal points.

To install these functions execute the following commands :

Note: Json function names are often written on this page with leading upper case letters for clarity. It is possible to do

so in SQL queries because function names are case insensitive. However, when creating or dropping them, their

names must match the case they are in the library module (lower case from MariaDB 10.1.9).

On Unix systems (from Connect 1.7.02):

create function jsonvalue returns string soname 'ha_connect.so';

create function json_make_array returns string soname 'ha_connect.so';

create function json_array_add_values returns string soname 'ha_connect.so';

create function json_array_add returns string soname 'ha_connect.so';

create function json_array_delete returns string soname 'ha_connect.so';

create function json_make_object returns string soname 'ha_connect.so';

create function json_object_nonull returns string soname 'ha_connect.so';

create function json_object_key returns string soname 'ha_connect.so';

create function json_object_add returns string soname 'ha_connect.so';

create function json_object_delete returns string soname 'ha_connect.so';

create function json_object_list returns string soname 'ha_connect.so';

create function json_object_values returns string soname 'ha_connect.so';

create function jsonset_grp_size returns integer soname 'ha_connect.so';

create function jsonget_grp_size returns integer soname 'ha_connect.so';

create aggregate function json_array_grp returns string soname 'ha_connect.so';

create aggregate function json_object_grp returns string soname 'ha_connect.so';

create function jsonlocate returns string soname 'ha_connect.so';

create function json_locate_all returns string soname 'ha_connect.so';

create function jsoncontains returns integer soname 'ha_connect.so';

create function jsoncontains_path returns integer soname 'ha_connect.so';

create function json_item_merge returns string soname 'ha_connect.so';

create function json_get_item returns string soname 'ha_connect.so';

create function jsonget_string returns string soname 'ha_connect.so';

create function jsonget_int returns integer soname 'ha_connect.so';

create function jsonget_real returns real soname 'ha_connect.so';

create function json_set_item returns string soname 'ha_connect.so';

create function json_insert_item returns string soname 'ha_connect.so';

create function json_update_item returns string soname 'ha_connect.so';

create function json_file returns string soname 'ha_connect.so';

create function jfile_make returns string soname 'ha_connect.so';

create function jfile_convert returns string soname 'ha_connect.so';

create function jfile_bjson returns string soname 'ha_connect.so';

create function json_serialize returns string soname 'ha_connect.so';

create function jbin_array returns string soname 'ha_connect.so';

create function jbin_array_add_values returns string soname 'ha_connect.so';

create function jbin_array_add returns string soname 'ha_connect.so';

create function jbin_array_delete returns string soname 'ha_connect.so';

create function jbin_object returns string soname 'ha_connect.so';

create function jbin_object_nonull returns string soname 'ha_connect.so';

create function jbin_object_key returns string soname 'ha_connect.so';

create function jbin_object_add returns string soname 'ha_connect.so';

create function jbin_object_delete returns string soname 'ha_connect.so';

create function jbin_object_list returns string soname 'ha_connect.so';

create function jbin_item_merge returns string soname 'ha_connect.so';

create function jbin_get_item returns string soname 'ha_connect.so';

create function jbin_set_item returns string soname 'ha_connect.so';

create function jbin_insert_item returns string soname 'ha_connect.so';

create function jbin_update_item returns string soname 'ha_connect.so';

create function jbin_file returns string soname 'ha_connect.so';

On Unix systems (from Connect 1.6):

[3]

3200/4161

https://mariadb.com/kb/en/mariadb-1019-release-notes/

create function jsonvalue returns string soname 'ha_connect.so';

create function json_make_array returns string soname 'ha_connect.so';

create function json_array_add_values returns string soname 'ha_connect.so';

create function json_array_add returns string soname 'ha_connect.so';

create function json_array_delete returns string soname 'ha_connect.so';

create function json_make_object returns string soname 'ha_connect.so';

create function json_object_nonull returns string soname 'ha_connect.so';

create function json_object_key returns string soname 'ha_connect.so';

create function json_object_add returns string soname 'ha_connect.so';

create function json_object_delete returns string soname 'ha_connect.so';

create function json_object_list returns string soname 'ha_connect.so';

create function jsonset_grp_size returns integer soname 'ha_connect.so';

create function jsonget_grp_size returns integer soname 'ha_connect.so';

create aggregate function json_array_grp returns string soname 'ha_connect.so';

create aggregate function json_object_grp returns string soname 'ha_connect.so';

create function jsonlocate returns string soname 'ha_connect.so';

create function json_locate_all returns string soname 'ha_connect.so';

create function jsoncontains returns integer soname 'ha_connect.so';

create function jsoncontains_path returns integer soname 'ha_connect.so';

create function json_item_merge returns string soname 'ha_connect.so';

create function json_get_item returns string soname 'ha_connect.so';

create function jsonget_string returns string soname 'ha_connect.so';

create function jsonget_int returns integer soname 'ha_connect.so';

create function jsonget_real returns real soname 'ha_connect.so';

create function json_set_item returns string soname 'ha_connect.so';

create function json_insert_item returns string soname 'ha_connect.so';

create function json_update_item returns string soname 'ha_connect.so';

create function json_file returns string soname 'ha_connect.so';

create function jfile_make returns string soname 'ha_connect.so';

create function json_serialize returns string soname 'ha_connect.so';

create function jbin_array returns string soname 'ha_connect.so';

create function jbin_array_add_values returns string soname 'ha_connect.so';

create function jbin_array_add returns string soname 'ha_connect.so';

create function jbin_array_delete returns string soname 'ha_connect.so';

create function jbin_object returns string soname 'ha_connect.so';

create function jbin_object_nonull returns string soname 'ha_connect.so';

create function jbin_object_key returns string soname 'ha_connect.so';

create function jbin_object_add returns string soname 'ha_connect.so';

create function jbin_object_delete returns string soname 'ha_connect.so';

create function jbin_object_list returns string soname 'ha_connect.so';

create function jbin_item_merge returns string soname 'ha_connect.so';

create function jbin_get_item returns string soname 'ha_connect.so';

create function jbin_set_item returns string soname 'ha_connect.so';

create function jbin_insert_item returns string soname 'ha_connect.so';

create function jbin_update_item returns string soname 'ha_connect.so';

create function jbin_file returns string soname 'ha_connect.so';

On Unix systems (from MariaDB 10.1.9 until Connect 1.5):

3201/4161

https://mariadb.com/kb/en/mariadb-1019-release-notes/

create function jsonvalue returns string soname 'ha_connect.so';

create function json_array returns string soname 'ha_connect.so';

create function json_array_add_values returns string soname 'ha_connect.so';

create function json_array_add returns string soname 'ha_connect.so';

create function json_array_delete returns string soname 'ha_connect.so';

create function json_object returns string soname 'ha_connect.so';

create function json_object_nonull returns string soname 'ha_connect.so';

create function json_object_key returns string soname 'ha_connect.so';

create function json_object_add returns string soname 'ha_connect.so';

create function json_object_delete returns string soname 'ha_connect.so';

create function json_object_list returns string soname 'ha_connect.so';

create function jsonset_grp_size returns integer soname 'ha_connect.so';

create function jsonget_grp_size returns integer soname 'ha_connect.so';

create aggregate function json_array_grp returns string soname 'ha_connect.so';

create aggregate function json_object_grp returns string soname 'ha_connect.so';

create function jsonlocate returns string soname 'ha_connect.so';

create function json_locate_all returns string soname 'ha_connect.so';

create function jsoncontains returns integer soname 'ha_connect.so';

create function jsoncontains_path returns integer soname 'ha_connect.so';

create function json_item_merge returns string soname 'ha_connect.so';

create function json_get_item returns string soname 'ha_connect.so';

create function jsonget_string returns string soname 'ha_connect.so';

create function jsonget_int returns integer soname 'ha_connect.so';

create function jsonget_real returns real soname 'ha_connect.so';

create function json_set_item returns string soname 'ha_connect.so';

create function json_insert_item returns string soname 'ha_connect.so';

create function json_update_item returns string soname 'ha_connect.so';

create function json_file returns string soname 'ha_connect.so';

create function jfile_make returns string soname 'ha_connect.so';

create function json_serialize returns string soname 'ha_connect.so';

create function jbin_array returns string soname 'ha_connect.so';

create function jbin_array_add_values returns string soname 'ha_connect.so';

create function jbin_array_add returns string soname 'ha_connect.so';

create function jbin_array_delete returns string soname 'ha_connect.so';

create function jbin_object returns string soname 'ha_connect.so';

create function jbin_object_nonull returns string soname 'ha_connect.so';

create function jbin_object_key returns string soname 'ha_connect.so';

create function jbin_object_add returns string soname 'ha_connect.so';

create function jbin_object_delete returns string soname 'ha_connect.so';

create function jbin_object_list returns string soname 'ha_connect.so';

create function jbin_item_merge returns string soname 'ha_connect.so';

create function jbin_get_item returns string soname 'ha_connect.so';

create function jbin_set_item returns string soname 'ha_connect.so';

create function jbin_insert_item returns string soname 'ha_connect.so';

create function jbin_update_item returns string soname 'ha_connect.so';

create function jbin_file returns string soname 'ha_connect.so';

On WIndows (from Connect 1.7.02):

3202/4161

create function jsonvalue returns string soname 'ha_connect';

create function json_make_array returns string soname 'ha_connect';

create function json_array_add_values returns string soname 'ha_connect';

create function json_array_add returns string soname 'ha_connect';

create function json_array_delete returns string soname 'ha_connect';

create function json_make_object returns string soname 'ha_connect';

create function json_object_nonull returns string soname 'ha_connect';

create function json_object_key returns string soname 'ha_connect';

create function json_object_add returns string soname 'ha_connect';

create function json_object_delete returns string soname 'ha_connect';

create function json_object_list returns string soname 'ha_connect';

create function json_object_values returns string soname 'ha_connect';

create function jsonset_grp_size returns integer soname 'ha_connect';

create function jsonget_grp_size returns integer soname 'ha_connect';

create aggregate function json_array_grp returns string soname 'ha_connect';

create aggregate function json_object_grp returns string soname 'ha_connect';

create function jsonlocate returns string soname 'ha_connect';

create function json_locate_all returns string soname 'ha_connect';

create function jsoncontains returns integer soname 'ha_connect';

create function jsoncontains_path returns integer soname 'ha_connect';

create function json_item_merge returns string soname 'ha_connect';

create function json_get_item returns string soname 'ha_connect';

create function jsonget_string returns string soname 'ha_connect';

create function jsonget_int returns integer soname 'ha_connect';

create function jsonget_real returns real soname 'ha_connect';

create function json_set_item returns string soname 'ha_connect';

create function json_insert_item returns string soname 'ha_connect';

create function json_update_item returns string soname 'ha_connect';

create function json_file returns string soname 'ha_connect';

create function jfile_make returns string soname 'ha_connect';

create function jfile_convert returns string soname 'ha_connect';

create function jfile_bjson returns string soname 'ha_connect';

create function json_serialize returns string soname 'ha_connect';

create function jbin_array returns string soname 'ha_connect';

create function jbin_array_add_values returns string soname 'ha_connect';

create function jbin_array_add returns string soname 'ha_connect';

create function jbin_array_delete returns string soname 'ha_connect';

create function jbin_object returns string soname 'ha_connect';

create function jbin_object_nonull returns string soname 'ha_connect';

create function jbin_object_key returns string soname 'ha_connect';

create function jbin_object_add returns string soname 'ha_connect';

create function jbin_object_delete returns string soname 'ha_connect';

create function jbin_object_list returns string soname 'ha_connect';

create function jbin_item_merge returns string soname 'ha_connect';

create function jbin_get_item returns string soname 'ha_connect';

create function jbin_set_item returns string soname 'ha_connect';

create function jbin_insert_item returns string soname 'ha_connect';

create function jbin_update_item returns string soname 'ha_connect';

create function jbin_file returns string soname 'ha_connect';

On WIndows (from Connect 1.6):

3203/4161

create function jsonvalue returns string soname 'ha_connect';

create function json_make_array returns string soname 'ha_connect';

create function json_array_add_values returns string soname 'ha_connect';

create function json_array_add returns string soname 'ha_connect';

create function json_array_delete returns string soname 'ha_connect';

create function json_make_object returns string soname 'ha_connect';

create function json_object_nonull returns string soname 'ha_connect';

create function json_object_key returns string soname 'ha_connect';

create function json_object_add returns string soname 'ha_connect';

create function json_object_delete returns string soname 'ha_connect';

create function json_object_list returns string soname 'ha_connect';

create function jsonset_grp_size returns integer soname 'ha_connect';

create function jsonget_grp_size returns integer soname 'ha_connect';

create aggregate function json_array_grp returns string soname 'ha_connect';

create aggregate function json_object_grp returns string soname 'ha_connect';

create function jsonlocate returns string soname 'ha_connect';

create function json_locate_all returns string soname 'ha_connect';

create function jsoncontains returns integer soname 'ha_connect';

create function jsoncontains_path returns integer soname 'ha_connect';

create function json_item_merge returns string soname 'ha_connect';

create function json_get_item returns string soname 'ha_connect';

create function jsonget_string returns string soname 'ha_connect';

create function jsonget_int returns integer soname 'ha_connect';

create function jsonget_real returns real soname 'ha_connect';

create function json_set_item returns string soname 'ha_connect';

create function json_insert_item returns string soname 'ha_connect';

create function json_update_item returns string soname 'ha_connect';

create function json_file returns string soname 'ha_connect';

create function jfile_make returns string soname 'ha_connect';

create function json_serialize returns string soname 'ha_connect';

create function jbin_array returns string soname 'ha_connect';

create function jbin_array_add_values returns string soname 'ha_connect';

create function jbin_array_add returns string soname 'ha_connect';

create function jbin_array_delete returns string soname 'ha_connect';

create function jbin_object returns string soname 'ha_connect';

create function jbin_object_nonull returns string soname 'ha_connect';

create function jbin_object_key returns string soname 'ha_connect';

create function jbin_object_add returns string soname 'ha_connect';

create function jbin_object_delete returns string soname 'ha_connect';

create function jbin_object_list returns string soname 'ha_connect';

create function jbin_item_merge returns string soname 'ha_connect';

create function jbin_get_item returns string soname 'ha_connect';

create function jbin_set_item returns string soname 'ha_connect';

create function jbin_insert_item returns string soname 'ha_connect';

create function jbin_update_item returns string soname 'ha_connect';

create function jbin_file returns string soname 'ha_connect';

On WIndows (until Connect 1.5):

3204/4161

create function jsonvalue returns string soname 'ha_connect';

create function json_array returns string soname 'ha_connect';

create function json_array_add_values returns string soname 'ha_connect';

create function json_array_add returns string soname 'ha_connect';

create function json_array_delete returns string soname 'ha_connect';

create function json_object returns string soname 'ha_connect';

create function json_object_nonull returns string soname 'ha_connect';

create function json_object_key returns string soname 'ha_connect';

create function json_object_add returns string soname 'ha_connect';

create function json_object_delete returns string soname 'ha_connect';

create function json_object_list returns string soname 'ha_connect';

create function jsonset_grp_size returns integer soname 'ha_connect';

create function jsonget_grp_size returns integer soname 'ha_connect';

create aggregate function json_array_grp returns string soname 'ha_connect';

create aggregate function json_object_grp returns string soname 'ha_connect';

create function jsonlocate returns string soname 'ha_connect';

create function json_locate_all returns string soname 'ha_connect';

create function jsoncontains returns integer soname 'ha_connect';

create function jsoncontains_path returns integer soname 'ha_connect';

create function json_item_merge returns string soname 'ha_connect';

create function json_get_item returns string soname 'ha_connect';

create function jsonget_string returns string soname 'ha_connect';

create function jsonget_int returns integer soname 'ha_connect';

create function jsonget_real returns real soname 'ha_connect';

create function json_set_item returns string soname 'ha_connect';

create function json_insert_item returns string soname 'ha_connect';

create function json_update_item returns string soname 'ha_connect';

create function json_file returns string soname 'ha_connect';

create function jfile_make returns string soname 'ha_connect';

create function json_serialize returns string soname 'ha_connect';

create function jbin_array returns string soname 'ha_connect';

create function jbin_array_add_values returns string soname 'ha_connect';

create function jbin_array_add returns string soname 'ha_connect';

create function jbin_array_delete returns string soname 'ha_connect';

create function jbin_object returns string soname 'ha_connect';

create function jbin_object_nonull returns string soname 'ha_connect';

create function jbin_object_key returns string soname 'ha_connect';

create function jbin_object_add returns string soname 'ha_connect';

create function jbin_object_delete returns string soname 'ha_connect';

create function jbin_object_list returns string soname 'ha_connect';

create function jbin_item_merge returns string soname 'ha_connect';

create function jbin_get_item returns string soname 'ha_connect';

create function jbin_set_item returns string soname 'ha_connect';

create function jbin_insert_item returns string soname 'ha_connect';

create function jbin_update_item returns string soname 'ha_connect';

create function jbin_file returns string soname 'ha_connect';

Jfile_Bjson

JFile_Bjson was introduced in MariaDB 10.5.9, MariaDB 10.4.18, MariaDB 10.3.28 and MariaDB 10.2.36 .

Jfile_Bjson(in_file_name, out_file_name, lrecl)

Converts the first argument pretty=0 json file to Bjson file. B(inary)json is a pre-parsed json format. It is described below in

the Performance chapter (available in next Connect versions).

Jfile_Convert

JFile_Convert was introduced in MariaDB 10.5.9, MariaDB 10.4.18, MariaDB 10.3.28 and MariaDB 10.2.36 .

Jfile_Convert(in_file_name, out_file_name, lrecl)

Converts the first argument json file to another pretty=0 json file. The third integer argument is the record length to use. This

is often required to process huge json files that would be very slow if they were in pretty=2 format.

MariaDB starting with 10.2.36

MariaDB starting with 10.2.36

3205/4161

https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/

This is done without completely parsing the file, is very fast and requires no big memory.

Jfile_Make

Jfile_Make was added in CONNECT 1.4 (from MariaDB 10.1.9).

Jfile_Make(arg1, arg2, [arg3], &)

The first argument must be a json item (if it is just a string, Jfile_Make will try its best to see if it is a json item or an input file

name). The following arguments are a string file name and an integer pretty value (defaulting to 2) in any order. This

function creates a json file containing the first argument item.

The returned string value is the created file name. If not specified as an argument, the file name can in some cases be

retrieved from the first argument; in such cases the file itself is modified.

This function can be used to create or format a json file. For instance, supposing we want to format the file tb.json, this can

be done with the query:

select Jfile_Make('tb.json' jfile_, 2);

The tb.json file will be changed to:

[

 {

 "_id": 5,

 "type": "food",

 "ratings": [

 5,

 8,

 9

]

 },

 {

 "_id": 6,

 "type": "car",

 "ratings": [

 5,

 9

]

 }

]

Json_Array_Add

Json_Array_Add(arg1, arg2, [arg3][, arg4][, ...])

Note: In CONNECT version 1.3 (before MariaDB 10.1.9), this function behaved like the new Json_Array_Add_Values

function. The following describes this function for CONNECT version 1.4 (from MariaDB 10.1.9) only. The first argument

must be a JSON array. The second argument is added as member of this array. For example:

select Json_Array_Add(Json_Array(56,3.1416,'machin',NULL),

'One more') Array;

Array

[56,3.141600,"machin",null,"One more"]

Note: The first array is not escaped, its (alias) name beginning with 8json_9.

Now we can see how adding an author to the JSAMPLE2 table can alternatively be done:

update jsample2 set

 json_author = json_array_add(json_author, json_object('Charles' FIRSTNAME, 'Dickens' LASTNAME))

 where isbn = '9782840825685';

MariaDB starting with 10.1.9

3206/4161

https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

Note: Calling a column returning JSON a name prefixed by json_ (like json_author here) is good practice and removes the

need to give it an alias to prevent escaping when used as an argument.

Additional arguments: If a third integer argument is given, it specifies the position (zero based) of the added value:

select Json_Array_Add('[5,3,8,7,9]' json_, 4, 2) Array;

Array

[5,3,4,8,7,9]

If a string argument is added, it specifies the Json path to the array to be modified. For instance:

select Json_Array_Add('{"a":1,"b":2,"c":[3,4]}' json_, 5, 1, 'c');

Json_Array_Add('{"a":1,"b":2,"c":[3, 4]}' json_, 5, 1, 'c')

{"a":1,"b":2,"c":[3,5,4]}

Json_Array_Add_Values

Json_Array_Add_Values added in CONNECT 1.4 replaces the function Json_Array_Add of CONNECT version 1.3 (before

MariaDB 10.1.9).

Json_Array_Add_Values(arg, arglist)

The first argument must be a JSON array string. Then all other arguments are added as members of this array. For

example:

select Json_Array_Add_Values

 (Json_Array(56, 3.1416, 'machin', NULL), 'One more', 'Two more') Array;

Array

[56,3.141600,"machin",null,"One more","Two more"]

Json_Array_Delete

Json_Array_Delete(arg1, arg2 [,arg3] [...])

The first argument should be a JSON array. The second argument is an integer indicating the rank (0 based conforming to

general json usage) of the element to delete. For example:

select Json_Array_Delete(Json_Array(56,3.1416,'foo',NULL),1) Array;

Array

[56,"foo",null]

Now we can see how to delete the second author from the JSAMPLE2 table:

update jsample2 set json_author = json_array_delete(json_author, 1)

 where isbn = '9782840825685';

A Json path can be specified as a third string argument

Json_Array_Grp

Json_Array_Grp(arg)

This is an aggregate function that makes an array filled from values coming from the rows retrieved by a query. Let us

suppose we have the pet table:

3207/4161

https://mariadb.com/kb/en/mariadb-1019-release-notes/

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

The query:

select name, json_array_grp(race) from pet group by name;

will return:

name json_array_grp(race)

Bill ["cat"]

Donald ["dog","fish"]

John ["dog"]

Kevin ["cat","bird"]

Lisbeth ["rabbit"]

Mary ["dog","cat"]

One problem with the JSON aggregate functions is that they construct their result in memory and cannot know the needed

amount of storage, not knowing the number of rows of the used table.

Therefore, the number of values for each group is limited. This limit is the value of JsonGrpSize whose default value is 10

but can be set using the JsonSet_Grp_Size function. Nevertheless, working on a larger table is possible, but only after

setting JsonGrpSize to the ceiling of the number of rows per group for the table. Try not to set it to a very large value to

avoid memory exhaustion.

JsonContains

JsonContains(json_doc, item [, int])<

This function can be used to check whether an item is contained in a document. Its arguments are the same than the ones

of the JsonLocate function; only the return value changes. The integer returned value is 1 is the item is contained in the

document or 0 otherwise.

JsonContains_Path

JsonContains_Path(json_doc, path)

This function can be used to check whether a Json path is contained in the document. The integer returned value is 1 is the

path is contained in the document or 0 otherwise.

Json_File

Json_File(arg1, [arg2, [arg3]], &)

The first argument must be a file name. This function returns the text of the file that is supposed to be a json file. If only one

argument is specified, the file text is returned without being parsed. Up to two additional arguments can be specified:

A string argument is the path to the sub-item to be returned. An integer argument specifies the pretty format value of the file.
3208/4161

This function is chiefly used to get the json item argument of other json functions from a json file. For instance, supposing

the file tb.json is:

{ "_id" : 5, "type" : "food", "ratings" : [5, 8, 9] }

{ "_id" : 6, "type" : "car", "ratings" : [5, 9] }

Extracting a value from it can be done with a query such as:

select JsonGet_String(Json_File('tb.json', 0), '[1]:type') "Type";

or, from MariaDB 10.2.8 :

select JsonGet_String(Json_File('tb.json', 0), '$[1].type') "Type";

This query returns:

Type

car

However, we9ll see that, most of the time, it is better to use Jbin_File or to directly specify the file name in queries. In

particular this function should not be used for queries that must modify the json item because, even if the modified json is

returned, the file itself would be unchanged.

Json_Get_Item

Json_Get_Item was added in CONNECT 1.4 (from MariaDB 10.1.9).

Json_Get_Item(arg1, arg2, &)

This function returns a subset of the json document passed as first argument. The second argument is the json path of the

item to be returned and should be one returning a json item (terminated by a 8*9). If not, the function will try to make it right

but this is not foolproof. For instance:

select Json_Get_Item(Json_Object('foo' as "first", Json_Array('a', 33)

 as "json_second"), 'second') as "item";

The correct path should have been 8second:*9 (or from MariaDB 10.2.8 , 8second.*9), but in this simple case the function

was able to make it right. The returned item:

item

["a",33]

Note: The array is aliased <json_second= to indicate it is a json item and avoid escaping it. However, the <json_= prefix is

skipped when making the object and must not be added to the path.

JsonGet_Grp_Size

JsonGet_Grp_Size(val)

This function returns the JsonGrpSize value.

JsonGet_String / JsonGet_Int / JsonGet_Real

JsonGet_String, JsonGet_Int and JsonGet_Real were added in CONNECT 1.4 (from MariaDB 10.1.9).

JsonGet_String(arg1, arg2, [arg3] &)

JsonGet_Int(arg1, arg2, [arg3] &)

JsonGet_Real(arg1, arg2, [arg3] &)

MariaDB starting with 10.1.9

MariaDB starting with 10.1.9

3209/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

The first argument should be a JSON item. If it is a string with no alias, it will be converted as a json item. The second

argument is the path of the item to be located in the first argument and returned, eventually converted according to the used

function. For example:

select

JsonGet_String('{"qty":7,"price":29.50,"garanty":null}','price') "String",

JsonGet_Int('{"qty":7,"price":29.50,"garanty":null}','price') "Int",

JsonGet_Real('{"qty":7,"price":29.50,"garanty":null}','price') "Real";

This query returns:

String Int Real

29.50 29 29.500000000000000

The function JsonGet_Real can be given a third argument to specify the number of decimal digits of the returned value. For

instance:

select

JsonGet_Real('{"qty":7,"price":29.50,"garanty":null}','price',4) "Real";

This query returns:

String

29.50

The given path can specify all operators for arrays except the <expand= [X] operator (or from MariaDB 10.2.8 , the<expand=

[*] operator). For instance:

select

JsonGet_Int(Json_Array(45,28,36,45,89), '[4]') "Rank",

JsonGet_Int(Json_Array(45,28,36,45,89), '[#]') "Number",

JsonGet_String(Json_Array(45,28,36,45,89), '[","]') "Concat",

JsonGet_Int(Json_Array(45,28,36,45,89), '[+]') "Sum",

JsonGet_Real(Json_Array(45,28,36,45,89), '[!]', 2) "Avg";

The result:

Rank Number Concat Sum Avg

89 5 45,28,36,45,89 243 48.60

Json_Item_Merge

Json_Item_Merge(arg1, arg2, &)

This function merges two arrays or two objects. For arrays, this is done by adding to the first array all the values of the

second array. For instance:

select Json_Item_Merge(Json_Array('a','b','c'), Json_Array('d','e','f')) as "Result";

The function returns:

Result

["a","b","c","d","e","f"]

For objects, the pairs of the second object are added to the first object if the key does not yet exist in it; otherwise the pair of

the first object is set with the value of the matching pair of the second object. For instance:

select Json_Item_Merge(Json_Object(1 "a", 2 "b", 3 "c"), Json_Object(4 "d",5 "b",6 "f"))

 as "Result";

The function returns:

Result

3210/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/

{"a":1,"b":5,"c":3,"d":4,"f":6}

JsonLocate

JsonLocate(arg1, arg2, [arg3], &):

The first argument must be a JSON tree. The second argument is the item to be located. The item to be located can be a

constant or a json item. Constant values must be equal in type and value to be found. This is "shallow equality" 3 strings,

integers and doubles won't match.

This function returns the json path to the located item or null if it is not found. For example:

select JsonLocate('{"AUTHORS":[{"FN":"Jules", "LN":"Verne"},

 {"FN":"Jack", "LN":"London"}]}' json_, 'Jack') Path;

This query returns:

Path

AUTHORS:[1]:FN

or, from MariaDB 10.2.8 :

Path

$.AUTHORS[1].FN

The path syntax is the same used in JSON CONNECT tables.

By default, the path of the first occurrence of the item is returned. The third parameter can be used to specify the occurrence

whose path is to be returned. For instance:

select

JsonLocate('[45,28,[36,45],89]',45) first,

JsonLocate('[45,28,[36,45],89]',45,2) second,

JsonLocate('[45,28,[36,45],89]',45.0) `wrong type`,

JsonLocate('[45,28,[36,45],89]','[36,45]' json_) json;

first second wrong type json

[0] [2]:[1] <null> [2]

or, from MariaDB 10.2.8 :

first second wrong type json

$[0] $[2][1] <null> $[2]

For string items, the comparison is case sensitive by default. However, it is possible to specify a string to be compared case

insensitively by giving it an alias beginning by <ci=:

select JsonLocate('{"AUTHORS":[{"FN":"Jules", "LN":"Verne"},

 {"FN":"Jack", "LN":"London"}]}' json_, 'VERNE' ci) Path;

Path

AUTHORS:[0]:LN

or, from MariaDB 10.2.8 :

Path

$.AUTHORS[0].LN

Json_Locate_All

Json_Locate_All(arg1, arg2, [arg3], &):

3211/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

The first argument must be a JSON item. The second argument is the item to be located. This function returns the paths to

all locations of the item as an array of strings. For example:

select Json_Locate_All('[[45,28],[[36,45],89]]',45);

This query returns:

All paths

["[0]:[0]","[1]:[0]:[1]"]

or, from MariaDB 10.2.8 :

All paths

["$[0][0]","$[1][0][1]"]

The returned array can be applied other functions. For instance, to get the number of occurrences of an item in a json tree,

you can do:

select JsonGet_Int(Json_Locate_All('[[45,28],[[36,45],89]]',45), '[#]') "Nb of occurs";

or, from MariaDB 10.2.8 :

select JsonGet_Int(Json_Locate_All('[[45,28],[[36,45],89]]',45), '$[#]') "Nb of occurs";

The displayed result:

Nb of occurs

2

If specified, the third integer argument set the depth to search in the document. This means the maximum items in the paths

(until MariaDB 10.2.7 , the number of 8:9 separator characters in them plus one). This value defaults to 10 but can be

increased for complex documents or reduced to set the maximum wanted depth of the returned paths.

Json_Make_Array

Json_Make_Array(val1, &, valn)

This function was named <Json_Array= in previous versions of CONNECT. It was renamed because MariaDB 10.2 features

native JSON functions including a Json_Array function. The native function does almost the same as the UDF one, but does

not accept CONNECT-specific arguments such as the result from JBIN functions.

Json_Make_Array returns a string denoting a JSON array with all its arguments as members. For example:

select Json_Make_Array(56, 3.1416, 'My name is "Foo"', NULL);

Json_Make_Array(56, 3.1416, 'My name is "Foo"',N ULL)

[56,3.141600,"My name is \"Foo\"",null]

Note: The argument list can be void. If so, a void array is returned.

This function was named <Json_Array= in previous versions of CONNECT. It was renamed because MariaDB 10.2 features

native JSON functions including a <Json_Array= function. The native function does almost the same as the UDF one but

does not accept CONNECT specific arguments such as the result from JBIN functions.

Json_Make_Object

Json_Make_Object(arg1, &, argn)

This function was named <Json_Object= in previous versions of CONNECT. It was renamed because MariaDB 10.2 features

native JSON functions including a Json_Object function. The native function does what the UDF Json_Object_Key does.

Json_Make_Object returns a string denoting a JSON object. For instance:

3212/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/

select Json_Make_Object(56, 3.1416, 'machin', NULL);

The object is filled with pairs corresponding to the given arguments. The key of each pair is made from the argument

(default or specified) alias.

Json_Make_Object(56, 3.1416, 'machin', NULL)

{"56":56,"3.1416":3.141600,"machin":"machin","NULL":null}

When needed, it is possible to specify the keys by giving an alias to the arguments:

select Json_Make_Object(56 qty, 3.1416 price, 'machin' truc, NULL garanty);

Json_Make_Object(56 qty,3.1416 price,'machin' truc, NULL garanty)

{"qty":56,"price":3.141600,"truc":"machin","garanty":null}

If the alias is prefixed by 8json_9 (to prevent escaping) the key name is stripped from that prefix.

This function is chiefly useful when entering values retrieved from a table, the key being by default the column name:

select Json_Make_Object(matricule, nom, titre, salaire) from connect.employe where nom = 'PANTIER';

Json_Make_Object(matricule, nom, titre, salaire)

{"matricule":40567,"nom":"PANTIER","titre":"DIRECTEUR","salaire":14000.000000}

This function was named <Json_Object= in previous versions of CONNECT. It was renamed because MariaDB 10.2 features

native JSON functions including a <Json_Object= function. The native function does what the UDF Json_Object_Key does.

Json_Object_Add

Json_Object_Add(arg1, arg2, [arg3] &)

The first argument must be a JSON object. The second argument is added as a pair to this object. For example:

select Json_Object_Add

 ('{"item":"T-shirt","qty":27,"price":24.99}' json_old,'blue' color) newobj;

newobj

{"item":"T-shirt","qty":27,"price":24.990000,"color":"blue"}

Note: If the specified key already exists in the object, its value is replaced by the new one.

The third string argument is a Json path to the target object.

Json_Object_Delete

Json_Object_Delete(arg1, arg2, [arg3] &):

The first argument must be a JSON object. The second argument is the key of the pair to delete. For example:

select Json_Object_Delete('{"item":"T-shirt","qty":27,"price":24.99}' json_old, 'qty') newobj;

newobj

{"item":"T-shirt","price":24.99}

The third string argument is a Json path to the object to be the target of deletion.

Json_Object_Grp

3213/4161

Json_Object_Grp(arg1,arg2)

This function works like Json_Array_Grp. It makes a JSON object filled with value pairs whose keys are passed from its first

argument and values are passed from its second argument.

This can be seen with the query:

select name, json_object_grp(number,race) from pet group by name;

This query returns:

name json_object_grp(number,race)

Bill {"cat":1}

Donald {"dog":1,"fish":3}

John {"dog":2}

Kevin {"cat":2,"bird":6}

Lisbeth {"rabbit":2}

Mary {"dog":1,"cat":1}

Json_Object_Key

Json_Object_Key([key1, val1 [, &, keyn, valn]])

Return a string denoting a JSON object. For instance:

select Json_Object_Key('qty', 56, 'price', 3.1416, 'truc', 'machin', 'garanty', NULL);

The object is filled with pairs made from each key/value arguments.

Json_Object_Key('qty', 56, 'price', 3.1416, 'truc', 'machin', 'garanty', NULL)

{"qty":56,"price":3.141600,"truc":"machin","garanty":null}

Json_Object_List

Json_Object_List(arg1, &):

The first argument must be a JSON object. This function returns an array containing the list of all keys existing in the object.

For example:

select Json_Object_List(Json_Object(56 qty,3.1416 price,'machin' truc, NULL garanty))

 "Key List";

Key List

["qty","price","truc","garanty"]

Json_Object_Nonull

Json_Object_Nonull(arg1, &, argn)

This function works like Json_Make_Object but <null= arguments are ignored and not inserted in the object. Arguments are

regarded as <null= if they are JSON null values, void arrays or objects, or arrays or objects containing only null members.

It is mainly used to avoid constructing useless null items when converting tables (see later).

Json_Object_Values

3214/4161

Json_Object_Values(json_object)

The first argument must be a JSON object. This function returns an array containing the list of all values existing in the

object. For example:

select Json_Object_Values('{"One":1,"Two":2,"Three":3}') "Value List";

Value List

[1,2,3]

JsonSet_Grp_Size

JsonSet_Grp_Size(val)

This function is used to set the JsonGrpSize value. This value is used by the following aggregate functions as a ceiling value

of the number of items in each group. It returns the JsonGrpSize value that can be its default value when passed 0 as

argument.

Json_Set_Item / Json_Insert_Item / Json_Update_Item

Json_{Set | Insert | Update}_Item(json_doc, [item, path [, val, path &]])

These functions insert or update data in a JSON document and return the result. The value/path pairs are evaluated left to

right. The document produced by evaluating one pair becomes the new value against which the next pair is evaluated.

Json_Set_Item replaces existing values and adds non-existing values.

Json_Insert_Item inserts values without replacing existing values.

Json_Update_Item replaces only existing values.

Example:

set @j = Json_Array(1, 2, 3, Json_Object_Key('quatre', 4));

select Json_Set_Item(@j, 'foo', '[1]', 5, '[3]:cinq') as "Set",

Json_Insert_Item(@j, 'foo', '[1]', 5, '[3]:cinq') as "Insert",

Json_Update_Item(@j, 'foo', '[1]', 5, '[3]:cinq') as "Update";

or, from MariaDB 10.2.8 :

set @j = Json_Array(1, 2, 3, Json_Object_Key('quatre', 4));

select Json_Set_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Set",

Json_Insert_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Insert",

Json_Update_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Update";

This query returns:

Set Insert Update

[1,"foo",3,{"quatre":4,"cinq":5}] [1,2,3,{"quatre":4,"cinq":5}] [1,"foo",3,{"quatre":4}]

JsonValue

JsonValue (val)

Returns a JSON value as a string, for instance:

select JsonValue(3.1416);

JsonValue(3.1416)

3.141600

Before MariaDB 10.1.9 , this function was called Json_Value, but was renamed to avoid clashing with the JSON_VALUE

3215/4161

https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/

function.

The <JBIN= return type
Almost all functions returning a json string - whose name begins with Json_ - have a counterpart with a name beginning

with Jbin_. This is both for performance (speed and memory) as well as for better control of what the functions should do.

This is due to the way CONNECT UDFs work internally. The Json functions, when receiving json strings as parameters,

parse them and construct a binary tree in memory. They work on this tree and before returning; serialize this tree to return a

new json string.

If the json document is large, this can take up a large amount of time and storage space. It is all right when one simple json

function is called 3 it must be done anyway 3 but is a waste of time and memory when json functions are used as

parameters to other json functions.

To avoid multiple serializing and parsing, the Jbin functions should be used as parameters to other functions. Indeed, they

do not serialize the memory document tree, but return a structure allowing the receiving function to have direct access to the

memory tree. This saves the serialize-parse steps otherwise needed to pass the argument and removes the need to

reallocate the memory of the binary tree, which by the way is 6 to 7 times the size of the json string. For instance:

select Json_Object(Jbin_Array_Add(Jbin_Array('a','b','c'), 'd') as "Jbin_foo") as "Result";

This query returns:

Result

{"foo":["a","b","c","d"]}

Here the binary json tree allocated by Jbin_Array is completed by Jbin_Array_Add and Json_Object and serialized only

once to make the final result string. It would be serialized and parsed two more times if using <Json= functions.

Note that Jbin results are recognized as such because they are aliased beginning with <Jbin_=. This is why in the

Json_Object function the alias is specified as <Jbin_foo=.

What happens if it is not recognized as such? These functions are declared as returning a string and to take care of this, the

returned structure begins with a zero-terminated string. For instance:

select Jbin_Array('a','b','c');

This query replies:

Jbin_Array('a','b','c')

Binary Json array

Note: When testing, the tree returned by a <Jbin= function can be seen using the Json_Serialize function whose unique

parameter must be a <Jbin= result. For instance:

select Json_Serialize(Jbin_Array('a','b','c'));

This query returns:

Json_Serialize(Jbin_Array('a','b','c'))

["a","b","c"]

Note: For this simple example, this is equivalent to using the Json_Array function.

Using a file as json UDF first argument

We have seen that many json UDFs can have an additional argument not yet described. This is in the case where the json

item argument was referring to a file. Then the additional integer argument is the pretty value of the json file. It matters only

when the first argument is just a file name (to make the UDF understand this argument is a file name, it should be aliased

with a name beginning with jfile_) or if the function modifies the file, in which case it will be rewritten with this pretty format.

The json item is created by extracting the required part from the file. This can be the whole file but more often only some of

it. There are two ways to specify the sub-item of the file to be used:

1. Specifying it in the Json_File or Jbin_File arguments.

2. Specifying it in the receiving function (not possible for all functions).

3216/4161

It doesn9t make any difference when the Jbin_File is used but it does with Json_File. For instance:

select Jfile_Make('{"a":1, "b":[44, 55]}' json_, 'test.json');

select Json_Array_Add(Json_File('test.json', 'b'), 66);

The second query returns:

Json_Array_Add(Json_File('test.json', 'b'), 66)

[44,55,66]

It just returns the 3 modified -- subset returned by the Json_File function, while the query:

select Json_Array_Add(Json_File('test.json'), 66, 'b');

returns what was received from Json_File with the modification made on the subset.

Json_Array_Add(Json_File('test.json'), 66, 'b')

{"a":1,"b":[44,55,66]}

Note that in both case the test.json file is not modified. This is because the Json_File function returns a string representing

all or part of the file text but no information about the file name. This is all right to check what would be the effect of the

modification to the file.

However, to have the file modified, use the Jbin_File function or directly give the file name. Jbin_File returns a structure

containing the file name, a pointer to the file parsed tree and eventually a pointer to the subset when a path is given as a

second argument:

select Json_Array_Add(Jbin_File('test.json', 'b'), 66);

This query returns:

Json_Array_Add(Jbin_File('test.json', 'b'), 66)

test.json

This time the file is modified. This can be checked with:

select Json_File('test.json', 3);

Json_File('test.json', 3)

{"a":1,"b":[44,55,66]}

The reason why the first argument is returned by such a query is because of tables such as:

create table tb (

n int key,

jfile_cols char(10) not null);

insert into tb values(1,'test.json');

In this table, the jfile_cols column just contains a file name. If we update it by:

update tb set jfile_cols = select Json_Array_Add(Jbin_File('test.json', 'b'), 66)

where n = 1;

This is the test.json file that must be modified, not the jfile_cols column. This can be checked by:

select JsonGet_String(jfile_cols, '[1]:*') from tb;

JsonGet_String(jfile_cols, '[1]:*')

{"a":1,"b":[44,55,66]}

Note: It was an important facility to name the second column of the table beginning by <jfile_= so the json functions knew it

was a file name without obliging to specify an alias in the queries.

3217/4161

Using <Jbin= to control what the query execution does

This is applying in particular when acting on json files. We have seen that a file was not modified when using the Json_File

function as an argument to a modifying function because the modifying function just received a copy of the json file. This is

not true when using the Jbin_File function that does not serialize the binary document and make it directly accessible. Also,

as we have seen earlier, json functions that modify their first file parameter modify the file and return the file name. This is

done by directly serializing the internal binary document as a file.

However, the <Jbin= counterpart of these functions does not serialize the binary document and thus does not modify the json

file. For example let us compare these two queries:

/* First query */

select Json_Object(Jbin_Object_Add(Jbin_File('bt2.json'), 4 as "d") as "Jbin_bt1")

 as "Result";

/* Second query */

select Json_Object(Json_Object_Add(Jbin_File('bt2.json'), 4 as "d") as "Jfile_bt1")

 as "Result";

Both queries return:

Result

{"bt1":{"a":1,"b":2,"c":3,"d":4}}

In the first query Jbin_Object_Add does not serialize the document (no <Jbin= functions do) and Json_Object just returns a

serialized modified tree. Consequently, the file bt2.json is not modified. This query is all right to copy a modified version of

the json file without modifying it.

However, in the second query Json_Object_Add does modify the json file and returns the file name. The Json_Object

function receives this file name, reads and parses the file, makes an object from it and returns the serialized result. This

modification can be done willingly but can be an unwanted side effect of the query.

Therefore, using <Jbin= argument functions, in addition to being faster and using less memory, are also safer when dealing

with json files that should not be modified.

Using JSON as Dynamic Columns
The JSON nosql language has all the features to be used as an alternative to dynamic columns. For instance, take the

following example of dynamic columns:

create table assets (

 item_name varchar(32) primary key, /* A common attribute for all items */

 dynamic_cols blob /* Dynamic columns will be stored here */

);

INSERT INTO assets VALUES

 ('MariaDB T-shirt', COLUMN_CREATE('color', 'blue', 'size', 'XL'));

INSERT INTO assets VALUES

 ('Thinkpad Laptop', COLUMN_CREATE('color', 'black', 'price', 500));

SELECT item_name, COLUMN_GET(dynamic_cols, 'color' as char) AS color FROM assets;

+-----------------+-------+

| item_name | color |

+-----------------+-------+

| MariaDB T-shirt | blue |

| Thinkpad Laptop | black |

+-----------------+-------+

/* Remove a column: */

UPDATE assets SET dynamic_cols=COLUMN_DELETE(dynamic_cols, "price")

 WHERE COLUMN_GET(dynamic_cols, 'color' as char)='black';

/* Add a column: */

3218/4161

UPDATE assets SET dynamic_cols=COLUMN_ADD(dynamic_cols, 'warranty', '3 years')

 WHERE item_name='Thinkpad Laptop';

/* You can also list all columns, or get them together with their values in JSON format: */

SELECT item_name, column_list(dynamic_cols) FROM assets;

+-----------------+---------------------------+

| item_name | column_list(dynamic_cols) |

+-----------------+---------------------------+

| MariaDB T-shirt | `size`,`color` |

| Thinkpad Laptop | `color`,`warranty` |

+-----------------+---------------------------+

SELECT item_name, COLUMN_JSON(dynamic_cols) FROM assets;

+-----------------+--+

| item_name | COLUMN_JSON(dynamic_cols) |

+-----------------+--+

| MariaDB T-shirt | {"size":"XL","color":"blue"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

The same result can be obtained with json columns using the json UDF9s:

/* JSON equivalent */

create table jassets (

 item_name varchar(32) primary key, /* A common attribute for all items */

 json_cols varchar(512) /* Jason columns will be stored here */

);

INSERT INTO jassets VALUES

 ('MariaDB T-shirt', Json_Object('blue' color, 'XL' size));

INSERT INTO jassets VALUES

 ('Thinkpad Laptop', Json_Object('black' color, 500 price));

SELECT item_name, JsonGet_String(json_cols, 'color') AS color FROM jassets;

+-----------------+-------+

| item_name | color |

+-----------------+-------+

| MariaDB T-shirt | blue |

| Thinkpad Laptop | black |

+-----------------+-------+

/* Remove a column: */

UPDATE jassets SET json_cols=Json_Object_Delete(json_cols, 'price')

 WHERE JsonGet_String(json_cols, 'color')='black';

/* Add a column */

UPDATE jassets SET json_cols=Json_Object_Add(json_cols, '3 years' warranty)

 WHERE item_name='Thinkpad Laptop';

/* You can also list all columns, or get them together with their values in JSON format: */

3219/4161

SELECT item_name, Json_Object_List(json_cols) FROM jassets;

+-----------------+-----------------------------+

| item_name | Json_Object_List(json_cols) |

+-----------------+-----------------------------+

| MariaDB T-shirt | ["color","size"] |

| Thinkpad Laptop | ["color","warranty"] |

+-----------------+-----------------------------+

SELECT item_name, json_cols FROM jassets;

+-----------------+--+

| item_name | json_cols |

+-----------------+--+

| MariaDB T-shirt | {"color":"blue","size":"XL"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

However, using JSON brings features not existing in dynamic columns:

Use of a language used by many implementation and developers.

Full support of arrays, currently missing from dynamic columns.

Access of subpart of json by JPATH that can include calculations on arrays.

Possible references to json files.

With more experience, additional UDFs can be easily written to support new needs.

New Set of BSON Functions
All these functions have been rewritten using the new JSON handling way and are temporarily available changing the J

starting name to B. Then Json_Make_Array new style is called using Bson_Make_Array. Some, such as Bson_Item_Delete,

are new and some fix bugs found in their Json counterpart.

Converting Tables to JSON
The JSON UDF9s and the direct Jpath <*= facility are powerful tools to convert table and files to the JSON format. For

instance, the file biblio3.json we used previously can be obtained by converting the xsample.xml file . This can be

done like this:

From Connect 1.07.0002

create table xj1 (row varchar(500) jpath='*') engine=connect table_type=JSON

file_name='biblio3.json' option_list='jmode=2';

Before Connect 1.07.0002

create table xj1 (row varchar(500) field_format='*')

 engine=connect table_type=JSON file_name='biblio3.json' option_list='jmode=2';

And then :

insert into xj1

 select json_object_nonull(ISBN, language LANG, SUBJECT,

 json_array_grp(json_object(authorfn FIRSTNAME, authorln LASTNAME)) json_AUTHOR, TITLE,

 json_object(translated PREFIX, json_object(tranfn FIRSTNAME, tranln LASTNAME) json_TRANSLATOR)

 json_TRANSLATED, json_object(publisher NAME, location PLACE) json_PUBLISHER, date DATEPUB)

from xsampall2 group by isbn;

The xj1 table rows will directly receive the Json object made by the select statement used in the insert statement and the

table file will be made as shown (xj1 is pretty=2 by default) Its mode is Jmode=2 because the values inserted are strings

even if they denote json objects.

Another way to do this is to create a table describing the file format we want before the biblio3.json file existed:

From Connect 1.07.0002

3220/4161

create table jsampall3 (

ISBN char(15),

LANGUAGE char(2) jpath='LANG',

SUBJECT char(32),

AUTHORFN char(128) jpath='AUTHOR:[X]:FIRSTNAME',

AUTHORLN char(128) jpath='AUTHOR:[X]:LASTNAME',

TITLE char(32),

TRANSLATED char(32) jpath='TRANSLATOR:PREFIX',

TRANSLATORFN char(128) jpath='TRANSLATOR:FIRSTNAME',

TRANSLATORLN char(128) jpath='TRANSLATOR:LASTNAME',

PUBLISHER char(20) jpath='PUBLISHER:NAME',

LOCATION char(20) jpath='PUBLISHER:PLACE',

DATE int(4) jpath='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

Before Connect 1.07.0002

create table jsampall3 (

ISBN char(15),

LANGUAGE char(2) field_format='LANG',

SUBJECT char(32),

AUTHORFN char(128) field_format='AUTHOR:[X]:FIRSTNAME',

AUTHORLN char(128) field_format='AUTHOR:[X]:LASTNAME',

TITLE char(32),

TRANSLATED char(32) field_format='TRANSLATOR:PREFIX',

TRANSLATORFN char(128) field_format='TRANSLATOR:FIRSTNAME',

TRANSLATORLN char(128) field_format='TRANSLATOR:LASTNAME',

PUBLISHER char(20) field_format='PUBLISHER:NAME',

LOCATION char(20) field_format='PUBLISHER:PLACE',

DATE int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

and to populate it by:

insert into jsampall3 select * from xsampall;

This is a simpler method. However, the issue is that this method cannot handle the multiple column values. This is why we

inserted from xsampall not from xsampall2 . How can we add the missing multiple authors in this table? Here again we

must create a utility table able to handle JSON strings. From Connect 1.07.0002

create table xj2 (ISBN char(15), author varchar(150) jpath='AUTHOR:*') engine=connect

table_type=JSON file_name='biblio3.json' option_list='jmode=1';

Before Connect 1.07.0002

create table xj2 (ISBN char(15), author varchar(150) field_format='AUTHOR:*')

 engine=connect table_type=JSON file_name='biblio3.json' option_list='jmode=1';

update xj2 set author =

(select json_array_grp(json_object(authorfn FIRSTNAME, authorln LASTNAME))

 from xsampall2 where isbn = xj2.isbn);

Voilà !

Converting json files
We have seen that json files can be formatted differently depending on the pretty option. In particular, big data files should

be formatted with pretty equal to 0 when used by a CONNECT json table. The best and simplest way to convert a file from

one format to another is to use the Jfile_Make function. Indeed this function makes a file of specified format using the

syntax:

Jfile_Make(json_document, [file_name], [pretty]);

The file name is optional when the json document comes from a Jbin_File function because the returned structure makes it

available. For instance, to convert back the json file tb.json to pretty= 0, this can be simply done by:

3221/4161

select Jfile_Make(Jbin_File('tb.json'), 0);

Performance Consideration
MySQL and PostgreSQL have a JSON data type that is not just text but an internal encoding of JSON data. This is to save

parsing time when executing JSON functions. Of course, the parse must be done anyway when creating the data and

serializing must be done to output the result.

CONNECT directly works on character strings impersonating JSON values with the need of parsing them all the time but

with the advantage of working easily on external data. Generally, this is not too penalizing because JSON data are often of

some or reasonable size. The only case where it can be a serious problem is when working on a big JSON file.

Then, the file should be formatted or converted to pretty=0.

From Connect 1.7.002, this easily done using the Jfile_Convert function, for instance:

select jfile_convert('bibdoc.json','bibdoc0.json',350);

Such a json file should not be used directly by JSON UDFs because they parse the whole file, even when only a subset is

used. Instead, it should be used by a JSON table created on it. Indeed, JSON tables do not parse the whole document but

just the item corresponding to the row they are working on. In addition, indexing can be used by the table as explained

previously on this page.

Generally speaking, the maximum flexibility offered by CONNECT is by using JSON tables and JSON UDFs together. Some

things are better handled by tables, other by UDFs. The tools are there but it is up to you to discover the best way to resolve

your problems.

Bjson files

Starting with Connect 1.7.002, pretty=0 json files can be converted to a binary format that is a pre-parsed representation of

json. This can be done with the Jfile_Bjson UDF function, for instance:

select jfile_bjson('bigfile.json','binfile.json',3500);

Here the third argument, the record length, must 6 to 10 times larger than the lrecl of the initial json file because the parsed

representation is bigger than the original json text representation.

Tables using such Bjson files must specify 8Pretty=-19 in the option list.

It is probably similar to the BSON used by MongoDB and PostgreSQL and permits to process queries up to 10 times faster

than working on text json files. Indexing is also available for tables using this format making even more performance

improvement. For instance, some queries on a json table of half a million rows, that were previously done in more than 10

seconds, took only 0.1 second when converted and indexed.

Here again, this has been remade to use the new way Json is handled. The files made using the bfile_bjson function are

only from two to four times the size of the source files. This new representation is not compatible with the old one.

Therefore, these files must be used with BSON tables only.

Specifying a JSON table Encoding
An important feature of JSON is that strings should in UNICODE. As a matter of fact, all examples we have found on the

Internet seemed to be just ASCII. This is because UNICODE is generally encoded in JSON files using UTF8 or UTF16 or

UTF32.

To specify the required encoding, just use the data_charset CONNECT option or the native DEFAULT CHARSET option.

Retrieving JSON data from MongoDB
Classified as a NoSQL database program, MongoDB uses JSON-like documents (BSON) grouped in collections. The

simplest way, and only method available before Connect 1.6, to access MongoDB data was to export a collection to a

JSON file. This produces a file having the pretty=0 format. Viewed as SQL, a collection is a table and documents are table

rows.

Since CONNECT version 1.6, it is now possible to directly access MongoDB collections via their MongoDB C Driver. This is

the purpose of the MONGO table type described later. However, JSON tables can also do it in a somewhat different way

(providing MONGO support is installed as described for MONGO tables).

It is achieved by specifying the MongoDB connection URI while creating the table. For instance:
3222/4161

From Connect 1.7.002

create or replace table jinvent (

_id char(24) not null,

item char(12) not null,

instock varchar(300) not null jpath='instock.*')

engine=connect table_type=JSON tabname='inventory' lrecl=512

connection='mongodb://localhost:27017';

Before Connect 1.7.002

create or replace table jinvent (

_id char(24) not null,

item char(12) not null,

instock varchar(300) not null field_format='instock.*')

engine=connect table_type=JSON tabname='inventory' lrecl=512

connection='mongodb://localhost:27017';

In this statement, the file_name option was replaced by the connection option. It is the URI enabling to retrieve data from a

local or remote MongoDB server. The tabname option is the name of the MongoDB collection that will be used and the

dbname option could have been used to indicate the database containing the collection (it defaults to the current database).

The way it works is that the documents retrieved from MongoDB are serialized and CONNECT uses them as if they were

read from a file. This implies serializing by MongoDB and parsing by CONNECT and is not the best performance wise.

CONNECT tries its best to reduce the data transfer when a query contains a reduced column list and/or a where clause.

This way makes all the possibilities of the JSON table type available, such as calculated arrays.

However, to work on large JSON collations, using the MONGO table type is generally the normal way.

Note: JSON tables using the MongoDB access accept the specific MONGO options colist, filter and pipeline. They are

described in the MONGO table chapter.

Summary of Options and Variables Used with Json
Tables
Options and variables that can be used when creating Json tables are listed here:

Table Option Type Description

ENGINE String Must be specified as CONNECT.

TABLE_TYPE String Must be JSON or BSON.

FILE_NAME String
The optional file (path) name of the Json file. Can be absolute or relative to the current data

directory. If not specified, it defaults to the table name and json file type.

DATA_CHARSET String Set it to 8utf89 for most Unicode Json documents.

LRECL Number The file record size for pretty < 2 json files.

HTTP String The HTTP of the server of REST queries.

URI String THE URI of REST queries

CONNECTION* String Specifies a connection to MONGODB .

ZIPPED Boolean True if the json file(s) is/are zipped in one or several zip files.

MULTIPLE Number Used to specify a multiple file table.

SEP_CHAR String Set it to 8:9 for old tables using the old json path syntax.

CATFUNC String The catalog function (column) used when creating a catalog table.

OPTION_LIST String Used to specify all other options listed below.

(*) For Json tables connected to MongoDB, Mongo specific options can also be used.

Other options must be specified in the option list:

Table

Option
Type Description

3223/4161

DEPTH

LEVEL
Number

Specifies the depth in the document CONNECT looks when defining columns by discovery or in

catalog tables

PRETTY Number Specifies the format of the Json file (-1 for Bjson files)

EXPAND String The name of the column to expand.

OBJECT String The json path of the sub-document used for the table.

BASE Number The numbering base for arrays: 0 (the default) or 1.

LIMIT Number
The maximum number of array values to use when concatenating, calculating or expanding

arrays. Defaults to 50 (>= Connect 1.7.0003), 10 (<= Connect 1.7.0002).

FULLARRAY Boolean Used when creating with Discovery. Make a column for each value of arrays (up to LIMIT).

JMODE Number
The Json mode (array of objects, array of arrays, or array of values) Only used when inserting

new rows.

ACCEPT Boolean Keep null columns (for discovery).

AVGLEN Number
An estimate average length of rows. This is used only when indexing and can be set if indexing

fails by miscalculating the table max size.

STRINGIFY String Ask discovery to make a column to return the Json representation of this object.

Column options:

Column Option Type Description

JPATH

FIELD_FORMAT
String Defaults to the column name.

DATE_FORMAT String Specifies the date format into the Json file when defining a DATE, DATETIME or TIME column.

Variables used with Json tables are:

connect_default_depth

connect_json_null

connect_json_all_path

connect_force_bson

Notes
1. ± The value n can be 0 based or 1 based depending on the base table option. The default is 0 to match what is the

current usage in the Json world but it can be set to 1 for tables created in old versions.

2. ± See for instance: json-functions, https://github.com/mysqludf/lib_mysqludf_json#readme and

https://blogs.oracle.com/svetasmirnova/entry/json_udf_functions_version_04

3. ± This will not work when CONNECT is compiled embedded

5.3.7.6.13 CONNECT XML Table Type
Contents
1. Overview

2. Creating XML tables

3. Using Xpaths with XML tables

1. Libxml2 default name space issue

2. Direct access on XML tables

3. Accessing tags with namespaces

4. Having Columns defined by Discovery

5. Multiple nodes in the XML document

6. Intermediate multiple node

7. Making a List of Multiple Values

1. What if a table contains several multiple nodes

8. Support of HTML Tables

1. New file setting

9. Notes

Overview
CONNECT supports tables represented by XML files. For these tables, the standard input/output functions of the operating

3224/4161

https://github.com/mysqludf/lib_mysqludf_json#readme
https://blogs.oracle.com/svetasmirnova/entry/json_udf_functions_version_04

system are not used but the parsing and processing of the file is delegated to a specialized library. Currently two such

systems are supported: libxml2, a part of the GNOME framework, but which does not require GNOME and, on Windows,

MS-DOM (DOMDOC), the Microsoft standard support of XML documents.

DOMDOC is the default for the Windows version of CONNECT and libxml2 is always used on other systems. On Windows

the choice can be specified using the XMLSUP CREATE TABLE list option, for instance specifying

option_list='xmlsup=libxml2' .

Creating XML tables
First of all, it must be understood that XML is a very general language used to encode data having any structure. In

particular, the tag hierarchy in an XML file describes a tree structure of the data. For instance, consider the file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<BIBLIO SUBJECT="XML">

 <BOOK ISBN="9782212090819" LANG="fr" SUBJECT="applications">

 <AUTHOR>

 <FIRSTNAME>Jean-Christophe</FIRSTNAME>

 <LASTNAME>Bernadac</LASTNAME>

 </AUTHOR>

 <AUTHOR>

 <FIRSTNAME>François</FIRSTNAME>

 <LASTNAME>Knab</LASTNAME>

 </AUTHOR>

 <TITLE>Construire une application XML</TITLE>

 <PUBLISHER>

 <NAME>Eyrolles</NAME>

 <PLACE>Paris</PLACE>

 </PUBLISHER>

 <DATEPUB>1999</DATEPUB>

 </BOOK>

 <BOOK ISBN="9782840825685" LANG="fr" SUBJECT="applications">

 <AUTHOR>

 <FIRSTNAME>William J.</FIRSTNAME>

 <LASTNAME>Pardi</LASTNAME>

 </AUTHOR>

 <TRANSLATOR PREFIX="adapté de l'anglais par">

 <FIRSTNAME>James</FIRSTNAME>

 <LASTNAME>Guerin</LASTNAME>

 </TRANSLATOR>

 <TITLE>XML en Action</TITLE>

 <PUBLISHER>

 <NAME>Microsoft Press</NAME>

 <PLACE>Paris</PLACE>

 </PUBLISHER>

 <DATEPUB>1999</DATEPUB>

 </BOOK>

</BIBLIO>

It represents data having the structure:

 <BIBLIO>

 __________|_________

 | |

 <BOOK:ISBN,LANG,SUBJECT> |

 ______________|_______________ |

 | | | | |

 <AUTHOR> <TITLE> <PUBLISHER> <DATEPUB> |

 ____|____ ___|____ |

 | | | | | |

<FIRST> | <LAST> <NAME> <PLACE> |

 | |

 <AUTHOR> <BOOK:ISBN,LANG,SUBJECT>

 ____|____ ______________________|__________________

 | | | | | | |

<FIRST> <LAST> <AUTHOR> <TRANSLATOR> <TITLE> <PUBLISHER> <DATEPUB>

 _____|_ ___|___ ___|____

 | | | | | |

 <FIRST> <LAST> <FIRST> <LAST> <NAME> <PLACE>

This structure seems at first view far from being tabular. However, modern database management systems, including

3225/4161

MariaDB, implement something close to the relational model and work on tables that are structurally not hierarchical but

tabular with rows and columns.

Nevertheless, CONNECT can do it. Of course, it cannot guess what you want to extract from the XML structure, but gives

you the possibility to specify it when you create the table .

Let us take a first example. Suppose you want to make a table from the above document, displaying the node contents.

For this, you can define a table xsamptag as:

create table xsamptag (

 AUTHOR char(50),

 TITLE char(32),

 TRANSLATOR char(40),

 PUBLISHER char(40),

 DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml';

It will be displayed as:

AUTHOR TITLE TRANSLATOR PUBLISHER DATEPUB

Jean-Christophe Bernadac Construire une application XML <null> Eyrolles Paris 1999

William J. Pardi XML en Action James Guerin Microsoft Press Paris 1999

Let us try to understand what happened. By default the column names correspond to tag names. Because this file is rather

simple, CONNECT was able to default the top tag of the table as the root node <BIBLIO> of the file, and the row tags as

the <BOOK> children of the table tag. In a more complex file, this should have been specified, as we will see later. Note that

we didn't have to worry about the sub-tags such as <FIRSTNAME> or <LASTNAME> because CONNECT automatically

retrieves the entire text contained in a tag and its sub-tags .

Only the first author of the first book appears. This is because only the first occurrence of a column tag has been

retrieved so the result has a proper tabular structure. We will see later what we can do about that.

How can we retrieve the values specified by attributes? By using a Coltype table option to specify the default column type.

The value 8@9 means that column names match attribute names. Therefore, we can retrieve them by creating a table such

as:

create table xsampattr (

 ISBN char(15),

 LANG char(2),

 SUBJECT char(32))

engine=CONNECT table_type=XML file_name='Xsample.xml'

option_list='Coltype=@';

This table returns the following:

ISBN LANG SUBJECT

9782212090819 fr applications

9782840825685 fr applications

Now to define a table that will give us all the previous information, we must specify the column type for each column.

Because in the next statement the column type defaults to Node, the field_format column parameter was used to indicate

which columns are attributes:

From Connect 1.7.0002

create table xsamp (

ISBN char(15) xpath='@',

LANG char(2) xpath='@',

SUBJECT char(32) xpath='@',

AUTHOR char(50),

TITLE char(32),

TRANSLATOR char(40),

PUBLISHER char(40),

DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

[1]

[2]

3226/4161

Before Connect 1.7.0002

create table xsamp (

 ISBN char(15) field_format='@',

 LANG char(2) field_format='@',

 SUBJECT char(32) field_format='@',

 AUTHOR char(50),

 TITLE char(32),

 TRANSLATOR char(40),

 PUBLISHER char(40),

 DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

Once done, we can enter the query:

select subject, lang, title, author from xsamp;

This will return the following result:

SUBJECT LANG TITLE AUTHOR

applications fr Construire une application XML Jean-Christophe Bernadac

applications fr XML en Action William J. Pardi

Note that we have been lucky. Because unlike SQL, XML is case sensitive and the column names have matched the node

names only because the column names were given in upper case. Note also that the order of the columns in the table could

have been different from the order in which the nodes appear in the XML file.

Using Xpaths with XML tables
Xpath is used by XML to locate and retrieve nodes. The table's main node Xpath is specified by the tabname option. If just

the node name is given, CONNECT constructs an Xpath such as 8BIBLIO9 in the example above that should retrieve the

BIBLIO node wherever it is within the XML file.

The row nodes are by default the children of the table node. However, for instance to eliminate some children nodes that are

not real row nodes, the row node name can be specified using the rownode sub-option of the option_list option.

The field_format options we used above can be specified to locate more precisely where and what information to retrieve

using an Xpath-like syntax. For instance:

From Connect 1.7.0002

create table xsampall (

isbn char(15) xpath='@ISBN',

language char(2) xpath='@LANG',

subject char(32) xpath='@SUBJECT',

authorfn char(20) xpath='AUTHOR/FIRSTNAME',

authorln char(20) xpath='AUTHOR/LASTNAME',

title char(32) xpath='TITLE',

translated char(32) xpath='TRANSLATOR/@PREFIX',

tranfn char(20) xpath='TRANSLATOR/FIRSTNAME',

tranln char(20) xpath='TRANSLATOR/LASTNAME',

publisher char(20) xpath='PUBLISHER/NAME',

location char(20) xpath='PUBLISHER/PLACE',

year int(4) xpath='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

Before Connect 1.7.0002

3227/4161

create table xsampall (

 isbn char(15) field_format='@ISBN',

 language char(2) field_format='@LANG',

 subject char(32) field_format='@SUBJECT',

 authorfn char(20) field_format='AUTHOR/FIRSTNAME',

 authorln char(20) field_format='AUTHOR/LASTNAME',

 title char(32) field_format='TITLE',

 translated char(32) field_format='TRANSLATOR/@PREFIX',

 tranfn char(20) field_format='TRANSLATOR/FIRSTNAME',

 tranln char(20) field_format='TRANSLATOR/LASTNAME',

 publisher char(20) field_format='PUBLISHER/NAME',

 location char(20) field_format='PUBLISHER/PLACE',

 year int(4) field_format='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

This very flexible column parameter serves several purposes:

To specify the tag name, or the attribute name if different from the column name.

To specify the type (tag or attribute) by a prefix of '@' for attributes.

To specify the path for sub-tags using the '/' character.

This path is always relative to the current context (the column top node) and cannot be specified as an absolute path from

the document root, therefore a leading '/' cannot be used. The path cannot be variable in node names or depth, therefore

using ' // ' is not allowed.

The query:

select isbn, title, translated, tranfn, tranln, location from

 xsampall where translated is not null;

replies:

ISBN TITLE TRANSLATED TRANFN TRANLN LOCATION

9782840825685 XML en Action adapté de l'anglais par James Guerin Paris

Libxml2 default name space issue

An issue with libxml2 is that some files can declare a default name space in their root node. Because Xpath only searches

in that name space, the nodes will not be found if they are not prefixed. If this happens, specify the tabname option as an

Xpath ignoring the current name space:

TABNAME="//*[local-name()='BIBLIO']"

This must also be done for the default of specified Xpath of the not attribute columns. For instance:

title char(32) field_format="*[local-name()='TITLE']",

Note: This raises an error (and is useless anyway) with DOMDOC.

Direct access on XML tables

Direct access is available on XML tables. This means that XML tables can be sorted and used in joins, even in the one-side

of the join.

However, building a permanent index is not yet implemented. It is unclear whether this can be useful. Indeed, the DOM

implementation that is used to access these tables firstly parses the whole file and constructs a node tree in memory. This

may often be the longest part of the process, so the use of an index would not be of great value. Note also that this limits the

XML files to a reasonable size. Anyway, when speed is important, this table type is not the best to use. Therefore, in these

cases, it is probably better to convert the file to another type by inserting the XML table into another table of a more

appropriate type for performance.

Accessing tags with namespaces

With the Windows DOMDOC support, this can be done using the prefix in the tabname column option and/or xpath column

option. For instance, given the file gns.xml:

3228/4161

<?xml version="1.0" encoding="UTF-8"?>

<gpx xmlns:gns="http:dummy">

<gns:trkseg>

<trkpt lon="-121.9822235107421875" lat="37.3884925842285156">

<gns:ele>6.610851287841797</gns:ele>

<time>2014-04-01T14:54:05.000Z</time>

</trkpt>

<trkpt lon="-121.9821929931640625" lat="37.3885803222656250">

<ele>6.787827968597412</ele>

<time>2014-04-01T14:54:08.000Z</time>

</trkpt>

<trkpt lon="-121.9821624755859375" lat="37.3886299133300781">

<ele>6.771987438201904</ele>

<time>2014-04-01T14:54:10.000Z</time>

</trkpt>

</gns:trkseg>

</gpx>

and the defined CONNECT table:

CREATE TABLE xgns (

`lon` double(21,16) NOT NULL `xpath`='@',

`lat` double(20,16) NOT NULL `xpath`='@',

`ele` double(21,16) NOT NULL `xpath`='gns:ele',

`time` datetime date_format="YYYY-MM-DD 'T' hh:mm:ss '.000Z'"

)

 ENGINE=CONNECT DEFAULT CHARSET=latin1 `table_type`=XML

 `file_name`='gns.xml' tabname='gns:trkseg' option_list='xmlsup=domdoc';

select * from xgns;

Displays:

lon lat ele time

-121,982223510742 37,3884925842285 6,6108512878418 01/04/2014 14:54:05

-121,982192993164 37,3885803222656 0 01/04/2014 14:54:08

-121,982162475586 37,3886299133301 0 01/04/2014 14:54:10

Only the prefixed 8ele9 tag is recognized.

However, this does not work with the libxml2 support. The solution is then to use a function ignoring the name space:

CREATE TABLE xgns2 (

`lon` double(21,16) NOT NULL `xpath`='@',

`lat` double(20,16) NOT NULL `xpath`='@',

`ele` double(21,16) NOT NULL `xpath`="*[local-name()='ele']",

`time` datetime date_format="YYYY-MM-DD 'T' hh:mm:ss '.000Z'"

)

 ENGINE=CONNECT DEFAULT CHARSET=latin1 `table_type`=XML

 `file_name`='gns.xml' tabname="*[local-name()='trkseg']" option_list='xmlsup=libxml2';

Then :

select * from xgns2;

Displays:

lon lat ele time

-121,982223510742 37,3884925842285 6,6108512878418 01/04/2014 14:54:05

-121,982192993164 37,3885803222656 6.7878279685974 01/04/2014 14:54:08

-121,982162475586 37,3886299133301 6.7719874382019 01/04/2014 14:54:10

This time, all 8ele` tags are recognized. This solution does not work with DOMDOC.

3229/4161

Having Columns defined by Discovery
It is possible to let the MariaDB discovery process do the job of column specification. When columns are not defined in the

CREATE TABLE statement, CONNECT endeavours to analyze the XML file and to provide the column specifications. This

is possible only for true XML tables, but not for HTML tables.

For instance, the xsamp table could have been created specifying:

create table xsamp

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

Let9s check how it was actually specified using the SHOW CREATE TABLE statement:

CREATE TABLE `xsamp` (

 `ISBN` char(13) NOT NULL `FIELD_FORMAT`='@',

 `LANG` char(2) NOT NULL `FIELD_FORMAT`='@',

 `SUBJECT` char(12) NOT NULL `FIELD_FORMAT`='@',

 `AUTHOR` char(24) NOT NULL,

 `TRANSLATOR` char(12) DEFAULT NULL,

 `TITLE` char(30) NOT NULL,

 `PUBLISHER` char(21) NOT NULL,

 `DATEPUB` char(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='XML'

 `FILE_NAME`='E:/Data/Xml/Xsample.xml' `TABNAME`='BIBLIO' `OPTION_LIST`='rownode=BOOK';

It is equivalent except for the column sizes that have been calculated from the file as the maximum length of the

corresponding column when it was a normal value. Also, all columns are specified as type CHAR because XML does not

provide information about the node content data type. Nullable is set to true if the column is missing in some rows.

If a more complex definition is desired, you can ask CONNECT to analyse the XPATH up to a given level using the level

option in the option list. The level value is the number of nodes that are taken in the XPATH. For instance:

create table xsampall

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK,Level=1';

This will define the table as:

From Connect 1.7.0002

CREATE TABLE `xsampall` (

 `ISBN` char(13) NOT NULL `XPATH`='@',

 `LANG` char(2) NOT NULL `XPATH`='@',

 `SUBJECT` char(12) NOT NULL `XPATH`='@',

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `XPATH`='AUTHOR/FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `XPATH`='AUTHOR/LASTNAME',

 `TRANSLATOR_PREFIX` char(24) DEFAULT NULL `XPATH`='TRANSLATOR/@PREFIX',

 `TRANSLATOR_FIRSTNAME` char(7) DEFAULT NULL `XPATH`='TRANSLATOR/FIRSTNAME',

 `TRANSLATOR_LASTNAME` char(6) DEFAULT NULL `XPATH`='TRANSLATOR/LASTNAME',

 `TITLE` char(30) NOT NULL,

 `PUBLISHER_NAME` char(15) NOT NULL `XPATH`='PUBLISHER/NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `XPATH`='PUBLISHER/PLACE',

 `DATEPUB` char(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='XML' `FILE_NAME`='Xsample.xml'

`TABNAME`='BIBLIO' `OPTION_LIST`='rownode=BOOK,Depth=1';

<</sql>>

Before Connect 1.7.0002

<<sql>>

CREATE TABLE `xsampall` (

 `ISBN` char(13) NOT NULL `FIELD_FORMAT`='@',

 `LANG` char(2) NOT NULL `FIELD_FORMAT`='@',

 `SUBJECT` char(12) NOT NULL `FIELD_FORMAT`='@',

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `FIELD_FORMAT`='AUTHOR/FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `FIELD_FORMAT`='AUTHOR/LASTNAME',

 `TRANSLATOR_PREFIX` char(24) DEFAULT NULL `FIELD_FORMAT`='TRANSLATOR/@PREFIX',

 `TRANSLATOR_FIRSTNAME` char(7) DEFAULT NULL `FIELD_FORMAT`='TRANSLATOR/FIRSTNAME',

 `TRANSLATOR_LASTNAME` char(6) DEFAULT NULL `FIELD_FORMAT`='TRANSLATOR/LASTNAME',

 `TITLE` char(30) NOT NULL,

 `PUBLISHER_NAME` char(15) NOT NULL `FIELD_FORMAT`='PUBLISHER/NAME',
3230/4161

 `PUBLISHER_NAME` char(15) NOT NULL `FIELD_FORMAT`='PUBLISHER/NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `FIELD_FORMAT`='PUBLISHER/PLACE',

 `DATEPUB` char(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='XML' `FILE_NAME`='Xsample.xml'

 `TABNAME`='BIBLIO' `OPTION_LIST`='rownode=BOOK,Level=1';

<</sql>>

This method can be used as a quick way to make a <template= table definition that can later be

edited to make the desired definition. In particular, column names are constructed from all the

nodes of their path in order to have distinct column names. This can be manually edited to have

the desired names, provided their XPATH is not modified.

To have a preview of how columns will be defined, you can use a catalog table like this:

<<sql>>

create table xsacol

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK,Level=1' catfunc=col;

<</sql>>

And when asking:

<<sql>>

select column_name Name, type_name Type, column_size Size, nullable, xpath from xsacol;

<</sql>>

You get the description of what the table columns will be:

<<style class="darkheader-nospace-borders">>

|= Name |= Type |= Size |= nullable |= xpath |

| ISBN | CHAR | 13 | 0 | @ |

| LANG | CHAR | 2 | 0 | @ |

| SUBJECT | CHAR | 12 | 0 | @ |

| AUTHOR_FIRSTNAME | CHAR | 15 | 0 | AUTHOR/FIRSTNAME |

| AUTHOR_LASTNAME | CHAR | 8 | 0 | AUTHOR/LASTNAME |

| TRANSLATOR_PREFIX | CHAR | 24 | 1 | TRANSLATOR/@PREFIX |

| TRANSLATOR_FIRSTNAME | CHAR | 7 | 1 | TRANSLATOR/FIRSTNAME |

| TRANSLATOR_LASTNAME | CHAR | 6 | 1 | TRANSLATOR/LASTNAME |

| TITLE | CHAR | 30 | 0 | |

| PUBLISHER_NAME | CHAR | 15 | 0 | PUBLISHER/NAME |

| PUBLISHER_PLACE | CHAR | 5 | 0 | PUBLISHER/PLACE |

| DATEPUB | CHAR | 4 | 0 | |

<</style>>

== Write operations on XML tables

You can freely use the Update, Delete and Insert commands with XML tables.

However, you must understand that the format of the updated or inserted data

follows the specifications of the table you created, not the ones of the

original source file. For instance, let us suppose we insert a new book using

the //xsamp// table (not the //xsampall// table) with the command:

<<code lang=mysql inline=false>>

insert into xsamp

 (isbn, lang, subject, author, title, publisher,datepub)

 values ('9782212090529','fr','général','Alain Michard',

 'XML, Langage et Applications','Eyrolles Paris',1998);

Then if we ask:

select subject, author, title, translator, publisher from xsamp;

Everything seems correct when we get the result:

SUBJECT AUTHOR TITLE TRANSLATOR PUBLISHER

applications Jean-Christophe Bernadac Construire une application XML Eyrolles Paris

applications William J. Pardi XML en Action James Guerin Microsoft Press Paris

général Alain Michard XML, Langage et Applications Eyrolles Paris

However if we enter the apparently equivalent query on the xsampall table, based on the same file:

3231/4161

select subject,

concat(authorfn, ' ', authorln) author , title,

concat(tranfn, ' ', tranln) translator,

concat(publisher, ' ', location) publisher from xsampall;

this returns an apparently wrong answer:

SUBJECT AUTHOR TITLE TRANSLATOR PUBLISHER

applications Jean-Christophe Bernadac Construire une application XML Eyrolles Paris

applications William J. Pardi XML en Action James Guerin Microsoft Press Paris

général XML, Langage et Applications

What happened here? Simply, because we used the xsamp table to do the Insert, what has been inserted within the XML

file had the structure described for xsamp:

 <BOOK ISBN="9782212090529" LANG="fr" SUBJECT="général">

 <AUTHOR>Alain Michard</AUTHOR>

 <TITLE>XML, Langage et Applications</TITLE>

 <TRANSLATOR></TRANSLATOR>

 <PUBLISHER>Eyrolles Paris</PUBLISHER>

 <DATEPUB>1998</DATEPUB>

 </BOOK>

CONNECT cannot "invent" sub-tags that are not part of the xsamp table. Because these sub-tags do not exist, the xsampall

table cannot retrieve the information that should be attached to them. If we want to be able to query the XML file by all the

defined tables, the correct way to insert a new book to the file is to use the xsampall table, the only one that addresses all

the components of the original document:

delete from xsamp where isbn = '9782212090529';

insert into xsampall (isbn, language, subject, authorfn, authorln,

 title, publisher, location, year)

 values('9782212090529','fr','général','Alain','Michard',

 'XML, Langage et Applications','Eyrolles','Paris',1998);

Now the added book, in the XML file, will have the required structure:

 <BOOK ISBN="9782212090529" LANG="fr" SUBJECT="général">

 <AUTHOR>

 <FIRSTNAME>Alain</FIRSTNAME>

 <LASTNAME>Michard</LASTNAME>

 </AUTHOR>

 <TITLE>XML, Langage et Applications</TITLE>

 <PUBLISHER>

 <NAME>Eyrolles</NAME>

 <PLACE>Paris</PLACE>

 </PUBLISHER>

 <DATEPUB>1998</DATEPUB>

 </BOOK>

Note: We used a column list in the Insert statements when creating the table to avoid generating a <TRANSLATOR> node

with sub-nodes, all containing null values (this works on Windows only).

Multiple nodes in the XML document
Let us come back to the above example XML file. We have seen that the author node can be "multiple" meaning that there

can be more than one author of a book. What can we do to get the complete information fitting the relational model?

CONNECT provides you with two possibilities, but is restricted to only one such multiple node per table.

The first and most challenging one is to return as many rows than there are authors, the other columns being repeated as if

we had make a join between the author column and the rest of the table. To achieve this, simply specify the <multiple= node

name and the <expand= option when creating the table. For instance, we can create the xsamp2 table like this:

3232/4161

create table xsamp2 (

 ISBN char(15) field_format='@',

 LANG char(2) field_format='@',

 SUBJECT char(32) field_format='@',

 AUTHOR char(40),

 TITLE char(32),

 TRANSLATOR char(32),

 PUBLISHER char(32),

 DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO'

option_list='rownode=BOOK,Expand=1,Mulnode=AUTHOR,Limit=2';

In this statement, the Limit option specifies the maximum number of values that will be expanded. If not specified, it defaults

to 10 . Any values above the limit will be ignored and a warning message issued . Now you can enter a query such as:

select isbn, subject, author, title from xsamp2;

This will retrieve and display the following result:

ISBN SUBJECT AUTHOR TITLE

9782212090819 applications Jean-Christophe Bernadac Construire une application XML

9782212090819 applications François Knab Construire une application XML

9782840825685 applications William J. Pardi XML en Action

9782212090529 général Alain Michard XML, Langage et Applications

In this case, this is as if the table had four rows. However if we enter the query:

select isbn, subject, title, publisher from xsamp2;

this time the result will be:

ISBN SUBJECT TITLE PUBLISHER

9782212090819 applications Construire une application XML Eyrolles Paris

9782840825685 applications XML en Action Microsoft Press Paris

9782212090529 général XML, Langage et Applications Eyrolles Paris

Because the author column does not appear in the query, the corresponding row was not expanded. This is somewhat

strange because this would have been different if we had been working on a table of a different type. However, it is closer to

the relational model for which there should not be two identical rows (tuples) in a table. Nevertheless, you should be aware

of this somewhat erratic behavior. For instance:

select count(*) from xsamp2; /* Replies 3 */

select count(author) from xsamp2; /* Replies 4 */

select count(isbn) from xsamp2; /* Replies 3 */

select isbn, subject, title, publisher from xsamp2 where author <> '';

This last query replies:

ISBN SUBJECT TITLE PUBLISHER

9782212090819 applications Construire une application XML Eyrolles Paris

9782212090819 applications Construire une application XML Eyrolles Paris

9782840825685 applications XML en Action Microsoft Press Paris

9782212090529 général XML, Langage et Applications Eyrolles Paris

Even though the author column does not appear in the result, the corresponding row was expanded because the multiple

column was used in the where clause.

Intermediate multiple node

[3]

3233/4161

The "multiple" node can be an intermediate node. If we want to do the same expanding with the xsampall table, there will be

nothing more to do. The xsampall2 table can be created with:

From Connect 1.7.0002

create table xsampall2 (

isbn char(15) xpath='@ISBN',

language char(2) xpath='@LANG',

subject char(32) xpath='@SUBJECT',

authorfn char(20) xpath='AUTHOR/FIRSTNAME',

authorln char(20) xpath='AUTHOR/LASTNAME',

title char(32) xpath='TITLE',

translated char(32) xpath='TRANSLATOR/@PREFIX',

tranfn char(20) xpath='TRANSLATOR/FIRSTNAME',

tranln char(20) xpath='TRANSLATOR/LASTNAME',

publisher char(20) xpath='PUBLISHER/NAME',

location char(20) xpath='PUBLISHER/PLACE',

year int(4) xpath='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK,Expand=1,Mulnode=AUTHOR,Limit=2';

Before Connect 1.7.0002

create table xsampall2 (

 isbn char(15) field_format='@ISBN',

 language char(2) field_format='@LANG',

 subject char(32) field_format='@SUBJECT',

 authorfn char(20) field_format='AUTHOR/FIRSTNAME',

 authorln char(20) field_format='AUTHOR/LASTNAME',

 title char(32) field_format='TITLE',

 translated char(32) field_format='TRANSLATOR/@PREFIX',

 tranfn char(20) field_format='TRANSLATOR/FIRSTNAME',

 tranln char(20) field_format='TRANSLATOR/LASTNAME',

 publisher char(20) field_format='PUBLISHER/NAME',

 location char(20) field_format='PUBLISHER/PLACE',

 year int(4) field_format='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO'

option_list='rownode=BOOK,Expand=1,Mulnode=AUTHOR,Limit=2';

The only difference is that the "multiple" node is an intermediate node in the path. The resulting table can be seen with a

query such as:

select subject, language lang, title, authorfn first, authorln

 last, year from xsampall2;

This query displays:

SUBJECT LANG TITLE FIRST LAST YEAR

applications fr Construire une application XML Jean-Christophe Bernadac 1999

applications fr Construire une application XML François Knab 1999

applications fr XML en Action William J. Pardi 1999

général fr XML, Langage et Applications Alain Michard 1998

These composite tables, half array half tree, reserve some surprises for us when updating, deleting from or inserting into

them. Insert just cannot generate this structure; if two rows are inserted with just a different author, two book nodes will be

generated in the XML file. Delete always deletes one book node and all its children nodes even if specified against only one

author. Update is more complicated:

update xsampall2 set authorfn = 'Simon' where authorln = 'Knab';

update xsampall2 set year = 2002 where authorln = 'Bernadac';

update xsampall2 set authorln = 'Mercier' where year = 2002;

After these three updates, the first two responding "Affected rows: 1" and the last one responding "Affected rows: 2", the last

query answers:

subject lang title first last year

3234/4161

applications fr Construire une application XML Jean-Christophe Mercier 2002

applications fr Construire une application XML François Knab 2002

applications fr XML en Action William J. Pardi 1999

général fr XML, Langage et Applications Alain Michard 1998

What must be understood here is that the Update modifies node values in the XML file, not cell values in the relational table.

The first update worked normally. The second update changed the year value of the book and this shows for the two

expanded rows because there is only one DATEPUB node for that book. Because the third update applies to a row having a

certain date value, both author names were updated.

Making a List of Multiple Values
Another way to see multiple values is to ask CONNECT to make a comma separated list of the multiple node values. This

time, it can only be done if the "multiple" node is not intermediate. For example, we can modify the xsamp2 table definition

by:

alter table xsamp2 option_list='rownode=BOOK,Mulnode=AUTHOR,Limit=3';

This time 'Expand' is not specified, and Limit gives the maximum number of items in the list. Now if we enter the query:

select isbn, subject, author "AUTHOR(S)", title from xsamp2;

We will get the following result:

ISBN SUBJECT AUTHOR(S) TITLE

9782212090819 applications Jean-Christophe Bernadac, François Knab Construire une application XML

9782840825685 applications William J. Pardi XML en Action

9782212090529 général Alain Michard XML, Langage et Applications

Note that updating the "multiple" column is not possible because CONNECT does not know which of the nodes to update.

This could not have been done with the xsampall2 table because the author node is intermediate in the path, and making

two lists, one of first names and another one of last names would not make sense anyway.

What if a table contains several multiple nodes

This can be handled by creating several tables on the same file, each containing only one multiple node and constructing

the desired result using joins.

Support of HTML Tables
Most tables included in HTML documents cannot be processed by CONNECT because the HTML language is often not

compatible with the syntax of XML. In particular, XML requires all open tags to be matched by a closing tag while it is

sometimes optional in HTML. This is often the case concerning column tags.

However, you can meet tables that respect the XML syntax but have some of the features of HTML tables. For instance:

<?xml version="1.0"?>

<Beers>

 <table>

 <th><td>Name</td><td>Origin</td><td>Description</td></th>

 <tr>

 <td><brandName>Huntsman</brandName></td>

 <td><origin>Bath, UK</origin></td>

 <td><details>Wonderful hop, light alcohol</details></td>

 </tr>

 <tr>

 <td><brandName>Tuborg</brandName></td>

 <td><origin>Danmark</origin></td>

 <td><details>In small bottles</details></td>

 </tr>

 </table>

</Beers>

3235/4161

Here the different column tags are included in <td></td> tags as for HTML tables. You cannot just add this tag in the

Xpath of the columns, because the search is done on the first occurrence of each tag, and this would cause this search to

fail for all columns except the first one. This case is handled by specifying the Colnode table option that gives the name of

these column tags, for example:

From Connect 1.7.0002

create table beers (

`Name` char(16) xpath='brandName',

`Origin` char(16) xpath='origin',

`Description` char(32) xpath='details')

engine=CONNECT table_type=XML file_name='beers.xml'

tabname='table' option_list='rownode=tr,colnode=td';

Before Connect 1.7.0002

create table beers (

 `Name` char(16) field_format='brandName',

 `Origin` char(16) field_format='origin',

 `Description` char(32) field_format='details')

engine=CONNECT table_type=XML file_name='beers.xml'

tabname='table' option_list='rownode=tr,colnode=td';

The table will be displayed as:

Name Origin Description

Huntsman Bath, UK Wonderful hop, light alcohol

Tuborg Danmark In small bottles

However, you can deal with tables even closer to the HTML model. For example the coffee.htm file:

<TABLE summary="This table charts the number of cups of coffe

 consumed by each senator, the type of coffee (decaf

 or regular), and whether taken with sugar.">

 <CAPTION>Cups of coffee consumed by each senator</CAPTION>

 <TR>

 <TH>Name</TH>

 <TH>Cups</TH>

 <TH>Type of Coffee</TH>

 <TH>Sugar?</TH>

 </TR>

 <TR>

 <TD>T. Sexton</TD>

 <TD>10</TD>

 <TD>Espresso</TD>

 <TD>No</TD>

 </TR>

 <TR>

 <TD>J. Dinnen</TD>

 <TD>5</TD>

 <TD>Decaf</TD>

 <TD>Yes</TD>

 </TR>

</TABLE>

Here column values are directly represented by the TD tag text. You cannot declare them as tags nor as attributes. In

addition, they are not located using their name but by their position within the row. Here is how to declare such a table to

CONNECT:

create table coffee (

 `Name` char(16),

 `Cups` int(8),

 `Type` char(16),

 `Sugar` char(4))

engine=connect table_type=XML file_name='coffee.htm'

tabname='TABLE' header=1 option_list='Coltype=HTML';

You specify the fact that columns are located by position by setting the Coltype option to 'HTML'. Each column position (0

based) will be the value of the flag column parameter that is set by default in sequence. Now we are able to display the

3236/4161

table:

Name Cups Type Sugar

T. Sexton 10 Espresso No

J. Dinnen 5 Decaf Yes

Note 1: We specified ' header=n ' in the create statement to indicate that the first n rows of the table are not data rows and

should be skipped.

Note 2: In this last example, we did not specify the node names using the Rownode and Colnode options because when

Coltype is set to 'HTML' they default to ' Rownode=TR ' and ' Colnode=TD '.

Note 3: The Coltype option is a word only the first character of which is significant. Recognized values are:

T(ag) or N(ode) Column names match a tag name (the default).

A(ttribute) or @ Column names match an attribute name.

H(tml) or C(ol) or P(os) Column are retrieved by their position.

New file setting

Some create options are used only when creating a table on a new file, i. e. when inserting into a file that does not exist yet.

When specified, the 'Header' option will create a header row with the name of the table columns. This is chiefly useful for

HTML tables to be displayed on a web browser.

Some new list-options are used in this context:

Encoding The encoding of the new document, defaulting to UTF-8.

Attribute A list of 'attname=attvalue' separated by ';' to add to the table node.

HeadAttr An attribute list to be added to the header row node.

Let us see for instance, the following create statement:

create table handlers (

 handler char(64),

 version char(20),

 author char(64),

 description char(255),

 maturity char(12))

engine=CONNECT table_type=XML file_name='handlers.htm'

tabname='TABLE' header=yes

option_list='coltype=HTML,encoding=ISO-8859-1,

attribute=border=1;cellpadding=5,headattr=bgcolor=yellow';

Supposing the table file does not exist yet, the first insert into that table, for instance by the following statement:

insert into handlers select plugin_name, plugin_version,

 plugin_author, plugin_description, plugin_maturity from

 information_schema.plugins where plugin_type = 'DAEMON';

will generate the following file:

3237/4161

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Created by CONNECT Version 3.05.0005 August 17, 2012 -->

<TABLE border="1" cellpadding="5">

 <TR bgcolor="yellow">

 <TH>handler</TH>

 <TH>version</TH>

 <TH>author</TH>

 <TH>description</TH>

 <TH>maturity</TH>

 </TR>

 <TR>

 <TD>Maria</TD>

 <TD>1.5</TD>

 <TD>Monty Program Ab</TD>

 <TD>Compatibility aliases for the Aria engine</TD>

 <TD>Gamma</TD>

 </TR>

</TABLE>

This file can be used to display the table on a web browser (encoding should be ISO-8859-x)

handler version author description maturity

Maria 1.5 Monty Program Ab Compatibility aliases for the Aria engine Gamma

Note: The XML document encoding is generally specified in the XML header node and can be different from the

DATA_CHARSET, which is always UTF-8 for XML tables. Therefore the table DATA_CHARSET character set should be

unspecified, or specified as UTF8. The Encoding specification is useful only for new XML files and ignored for existing files

having their encoding already specified in the header node.

Notes
1. ± CONNECT does not claim to be able to deal with any XML document. Besides, those that can usefully be

processed for data analysis are likely to have a structure that can easily be transformed into a table.

2. ± With libxml2, sub tags text can be separated by 0 or several blanks depending on the structure and indentation of

the data file.

3. ± This may cause some rows to be lost because an eventual where clause on the <multiple= column is applied only on

the limited number of retrieved rows.

5.3.7.6.14 CONNECT INI Table Type
Contents
1. Overview

2. Column layout

3. Row layout

Overview
The INI type is one of the configuration or initialization files often found on Windows machines. For instance, let us suppose

you have the following contact file contact.ini:

3238/4161

[BER]

name=Bertrand

forename=Olivier

address=21 rue Ferdinand Buisson

city=Issy-les-Mlx

zipcode=92130

tel=09.54.36.29.60

cell=06.70.06.04.16

[WEL]

name=Schmitt

forename=Bernard

hired=19/02/1985

address=64 tiergarten strasse

city=Berlin

zipcode=95013

tel=03.43.377.360

[UK1]

name=Smith

forename=Henry

hired=08/11/2003

address=143 Blum Rd.

city=London

zipcode=NW1 2BP

CONNECT lets you view it as a table in two different ways.

Column layout
The first way is to regard it as a table having one line per section, the columns being the keys you want to display. In this

case, the CREATE statement could be:

create table contact (

 contact char(16) flag=1,

 name char(20),

 forename char(32),

 hired date date_format='DD/MM/YYYY',

 address char(64),

 city char(20),

 zipcode char(8),

 tel char(16))

engine=CONNECT table_type=INI file_name='contact.ini';

The column that will contain the section name can have any name but must specify flag=1 . All other columns must have

the names of the keys we want to display (case insensitive). The type can be character or numeric depending on the key

value type, and the length is the maximum expected length for the key value. Once done, the statement:

select contact, name, hired, city, tel from contact;

This statement will display the file in tabular format.

contact name hired city tel

BER Bertrand 1970-01-01 Issy-les-Mlx 09.54.36.29.60

WEL Schmitt 1985-02-19 Berlin 03.43.377.360

UK1 Smith 2003-11-08 London NULL

Only the keys defined in the create statements are visible; keys that do not exist in a section are displayed as null or pseudo

null (blank for character, 1/1/70 for dates, and 0 for numeric) for columns declared NOT NULL.

All relational operations can be applied to this table. The table (and the file) can be updated, inserted and conditionally

deleted. The only constraint is that when inserting values, the section name must be the first in the list of values.

Note 1: When inserting, if a section already exists, no new section will be created but the new values will be added or

replace those of the existing section. Thus, the following two commands are equivalent:

3239/4161

update contact set forename = 'Harry' where contact = 'UK1';

insert into contact (contact,forename) values('UK1','Harry');

Note 2: Because sections represent one line, a DELETE statement on a section key will delete the whole section.

Row layout
To be a good candidate for tabular representation, an INI file should have often the same keys in all sections. In practice,

many files commonly found on computers, such as the win.ini file of the Windows directory or the my.ini file cannot be

viewed that way because each section has different keys. In this case, a second way is to regard the file as a table having

one row per section key and whose columns can be the section name, the key name, and the key value.

For instance, let us define the table:

create table xcont (

 section char(16) flag=1,

 keyname char(16) flag=2,

 value char(32))

engine=CONNECT table_type=INI file_name='contact.ini'

option_list='Layout=Row';

In this statement, the "Layout" option sets the display format, Column by default or anything else not beginning by 'C' for row

layout display. The names of the three columns can be freely chosen. The Flag option gives the meaning of the column.

Specify flag=1 for the section name and flag=2 for the key name. Otherwise, the column will contain the key value.

Once done, the command:

select * from xcont;

Will display the following result:

section keyname value

BER name Bertrand

BER forename Olivier

BER address 21 rue Ferdinand Buisson

BER city Issy-les-Mlx

BER zipcode 92130

BER tel 09.54.36.29.60

BER cell 06.70.06.04.16

WEL name Schmitt

WEL forename Bernard

WEL hired 19/02/1985

WEL address 64 tiergarten strasse

WEL city Berlin

WEL zipcode 95013

WEL tel 03.43.377.360

UK1 name Smith

UK1 forename Henry

UK1 hired 08/11/2003

UK1 address 143 Blum Rd.

UK1 city London

UK1 zipcode NW1 2BP

Note: When processing an INI table, all section names are retrieved in a buffer of 8K bytes (2048 bytes before 10.0.17). For

a big file having many sections, this size can be increased using for example:

3240/4161

option_list='seclen=16K';

5.3.7.6.15 CONNECT - External Table Types
Because so many ODBC and JDBC drivers exist and only the main ones have been heavily tested, these table types cannot

be ranked as stable. Use them with care in production applications.

These types can be used to access tables belonging to the current or another database server. Six types are currently

provided:

ODBC: To be used to access tables from a database management system providing an ODBC connector. ODBC is a

standard of Microsoft and is currently available on Windows. On Linux, it can also be used provided a specific application

emulating ODBC is installed. Currently only unixODBC is supported.

JDBC: To be used to access tables from a database management system providing a JDBC connector. JDBC is an Oracle

standard implemented in Java and principally meant to be used by Java applications. Using it directly from C or C++

application seems to be almost impossible due to an Oracle bug still not fixed. However, this can be achieved using a Java

wrapper class used as an interface between C++ and JDBC. On another hand, JDBC is available on all platforms and

operating systems.

Mongo: To access MongoDB collections as tables via their MongoDB C Driver. Because this requires both MongoDB and

the C Driver to be installed and operational, this table type is not currently available in binary distributions but only when

compiling MariaDB from source.

MySQL : This type is the preferred way to access tables belonging to another MySQL or MariaDB server. It uses the

MySQL API to access the external table. Even though this can be obtained using the FEDERATED(X) plugin, this specific

type is used internally by CONNECT because it also makes it possible to access tables belonging to the current server.

PROXY: Internally used by some table types to access other tables from one table.

External Table Specification

The four main external table types 3 odbc, jdbc, mongo and mysql 3 are specified giving the following information:

1. The data source. This is specified in the connection option.

2. The remote table or view to access. This can be specified within the connection string or using specific CONNECT

options.

3. The column definitions. This can be also left to CONNECT to find them using the discovery MariaDB feature.

4. The optional Quoted option. Can be set to 1 to quote the identifiers in the query sent to the remote server. This is

required if columns or table names can contain blanks.

The way this works is by establishing a connection to the external data source and by sending it an SQL statement (or its

equivalent using API functions for MONGO) enabling it to execute the original query. To enhance performance, it is

necessary to have the remote data source do the maximum processing. This is needed in particular to reduce the amount of

data returned by the data source.

This is why, for SELECT queries, CONNECT uses the cond_push MariaDB feature to retrieve the maximum of the where

clause of the original query that can be added to the query sent to the data source. This is automatic and does not require

anything to be done by the user.

However, more can be done. In addition to accessing a remote table, CONNECT offers the possibility to specify what the

remote server must do. This is done by specifying it as a view in the srcdef option. For example:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=XXX

CONNECTION='connecton string'

SRCDEF='select pays as country, count(*) as customers from custnum group by pays';

Doing so, the group by clause will be done by the remote server considerably reducing the amount of data sent back on the

connection.

This may even be increased by adding to the srcdef part of the <compatible= part of the query where clauses like this are

done for table-based tables. Note that for MariaDB, this table has two columns, country and customers. Supposing the

original query is:

SELECT * FROM custnum WHERE (country = 'UK' OR country = 'USA') AND customers > 5;

How can we make the where clause be added to the sent srcdef? There are many problems:

1. Where to include the additional information.

2. What about the use of alias.
3241/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb/connect-table-types-proxy-table-type

3. How to know what will be a where clause or a having clause.

The first problem is solved by preparing the srcdef view to receive clauses. The above example srcdef becomes:

SRCDEF='select pays as country, count(*) as customers from custnum where %s group by pays having

%s';

The %s in the srcdef are place holders for eventual compatible parts of the original query where clause. If the select query

does not specify a where clause, or a gives an unacceptable where clause, place holders will be filled by dummy clauses

(1=1).

The other problems must be solved by adding to the create table a list of columns that must be translated because they are

aliases or/and aliases on aggregate functions that must become a having clause. For example, in this case:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=XXX

CONNECTION='connecton string'

SRCDEF='select pays as country, count(*) as customers from custnum where %s group by pays having

%s'

OPTION_LIST='Alias=customers=*count(*);country=pays';

This is specified by the alias option, to be used in the option list. It is made of a semi-colon separated list of items

containing:

1. The local column name (alias in the remote server)

2. An equal sign.

3. An eventual 8*9 indicating this is column correspond to an aggregate function.

4. The remote column name.

With this information, CONNECT will be able to make the query sent to the remote data source:

select pays as country, count(*) as customers from custnum where (pays = 'UK' OR pays = 'USA')

group by country having count(*) > 5

Note: Some data sources, including MySQL and MariaDB, accept aliases in the having clause. In that case, the alias option

could have been specified as:

OPTION_LIST='Alias=customers=*;country=pays';

Another option exists, phpos, enabling to specify what place holders are present and in what order. To be specified as <W=,

<WH=, <H=, or <HW=. It is rarely used because by default CONNECT can set it from the srcdef content. The only cases it is

needed is when the srcdef contains only a having place holder or when the having place holder occurs before the where

place holder, which can occur on queries containing joins. CONNECT cannot handle more than one place holder of each

type.

SRCDEF is not available for MONGO tables, but other ways of achieving this exist and are described in the MONGO table

type chapter.

5.3.7.6.16 CONNECT ODBC Table Type:
Accessing Tables From Another DBMS

3242/4161

Contents
1. Random Access of ODBC Tables

2. Retrieving data from a spreadsheet

3. Multiple ODBC tables

4. Performance consideration

5. Using ODBC Tables inside correlated sub-queries

6. Accessing specified views

7. Data Modifying Operations

1. INSERT Command

2. UPDATE and DELETE Commands

8. Sending commands to a Data Source

1. Sending several commands together

9. Connecting to a Data Source

1. Defining the Connection String

2. ODBC Defined Connection Attributes

3. Using a Predefined DSN

10. ODBC Tables on Linux/Unix

1. SELinux

11. ODBC Catalog Information

1. Table name case

12. Non-ASCII Character Sets with Oracle

1. Using systemd

2. Using Windows

13. OPTION_LIST Values Supported by the ODBC Tables

ODBC (Open Database Connectivity) is a standard API for accessing database management systems (DBMS). CONNECT

uses this API to access data contained in other DBMS without having to implement a specific application for each one. An

exception is the access to MySQL that should be done using the MYSQL table type .

Note: On Linux, unixODBC must be installed.

These tables are given the type ODBC. For example, if a "Customers" table is contained in an Access# database you can

define it with a command such as:

create table Customer (

 CustomerID varchar(5),

 CompanyName varchar(40),

 ContactName varchar(30),

 ContactTitle varchar(30),

 Address varchar(60),

 City varchar(15),

 Region varchar(15),

 PostalCode varchar(10),

 Country varchar(15),

 Phone varchar(24),

 Fax varchar(24))

engine=connect table_type=ODBC block_size=10

tabname='Customers'

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Tabname option defaults to the table name. It is required if the source table name is different from the name of the

CONNECT table. Note also that for some data sources this name is case sensitive.

Often, because CONNECT can retrieve the table description using ODBC catalog functions, the column definitions can be

unspecified. For instance this table can be simply created as:

create table Customer engine=connect table_type=ODBC

 block_size=10 tabname='Customers'

 Connection='DSN=MS Access Database;DBQ=C:/Program Files/Microsoft Office/Office/1033/FPNWIND.MDB;'

The BLOCK_SIZE specification will be used later to set the RowsetSize when retrieving rows from the ODBC table. A

reasonably large RowsetSize can greatly accelerate the fetching process.

If you specify the column description, the column names of your table must exist in the data source table. However, you are

not obliged to define all the data source columns and you can change the order of the columns. Some type conversion can

also be done if appropriate. For instance, to access the FireBird sample table EMPLOYEE, you could define your table as:

3243/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

create table empodbc (

 EMP_NO smallint(5) not null,

 FULL_NAME varchar(37) not null),

 PHONE_EXT varchar(4) not null,

 HIRE_DATE date,

 DEPT_NO smallint(3) not null,

 JOB_COUNTRY varchar(15),

 SALARY double(12,2) not null)

engine=CONNECT table_type=ODBC tabname='EMPLOYEE'

connection='DSN=firebird';

This definition ignores the FIRST_NAME, LAST_NAME, JOB_CODE, and JOB_GRADE columns. It places the

FULL_NAME last column of the original table in second position. The type of the HIRE_DATE column was changed from

timestamp to date and the type of the DEPT_NO column was changed from char to integer.

Currently, some restrictions apply to ODBC tables:

1. Cursor type is forward only (sequential reading).

2. No indexing of ODBC tables (do not specify any columns as key). However, because CONNECT can often add a

where clause to the query sent to the data source, indexing will be used by the data source if it supports it. (Remote

indexing is available with version 1.04, released with MariaDB 10.1.6)

3. CONNECT ODBC supports SELECT and INSERT. UPDATE and DELETE are also supported in a somewhat

restricted way (see below). For other operations, use an ODBC table with the EXECSRC option (see below) to

directly send proper commands to the data source.

Random Access of ODBC Tables
In CONNECT version 1.03 (until MariaDB 10.1.5) ODBC tables are not indexable. Version 1.04 (from MariaDB 10.1.6)

adds remote indexing facility to the ODBC table type.

However, some queries require random access to an ODBC table; for instance when it is joined to another table or used in

an order by queries applied to a long column or large tables.

There are several ways to enable random (position) access to a CONNECT ODBC table. They are dependant on the

following table options:

Option Type Used For

Block_Size Integer Specifying the rowset size.

Memory* Integer Storing the result set in memory.

Scrollable* Boolean Using a scrollable cursor.

* - To be specified in the option_list.

When dealing with small tables, the simpler way to enable random access is to specify a rowset size equal or larger than

the table size (or the result set size if a push down where clause is used). This means that the whole result is in memory on

the first fetch and CONNECT will use it for further positional accesses.

Another way to have the result set in memory is to use the memory option. This option can be set to the following values:

0. No memory used (the default). Best when the table is read sequentially as in SELECT statements with only eventual

WHERE clauses.

1. Memory size required is calculated during the first sequential table read. The allocated memory is filled during the second

sequential read. Then the table rows are retrieved from the memory. This should be used when the table will be accessed

several times randomly, such as in sub-selects or being the target table of a join.

2. A first query is executed to get the result set size and the needed memory is allocated. It is filled on the first sequential

reading. Then random access of the table is possible. This can be used in the case of ORDER BY clauses, when MariaDB

uses position reading.

Note that the best way to handle ORDER BY is to set the max_length_for_sort_data variable to a larger value (its default

value is 1024 that is pretty small). Indeed, it requires less memory to be used, particularly when a WHERE clause limits the

retrieved data set. This is because in the case of an order by query, MariaDB firstly retrieves the sequentially the result set

and the position of each records. Often the sort can be done from the result set if it is not too big. But if too big, or if it implies

some <long= columns, only the positions are sorted and MariaDB retrieves the final result from the table read in random

order. If setting the max_length_for_sort_data variable is not feasible or does not work, to be able to retrieve table data from

memory after the first sequential read, the memory option must be set to 2.

For tables too large to be stored in memory another possibility is to make your table to use a scrollable cursor. In this case

each randomly accessed row can be retrieved from the data source specifying its cursor position, which is reasonably fast.

However, scrollable cursors are not supported by all data sources.

3244/4161

https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-1016-release-notes/

With CONNECT version 1.04 (from MariaDB 10.1.6), another way to provide random access is to specify some columns

to be indexed. This should be done only when the corresponding column of the source table is also indexed. This should be

used for tables too large to be stored in memory and is similar to the remote indexing used by the MYSQL table type and

by the FEDERATED engine.

There remains the possibility to extract data from the external table and to construct another table of any file format from the

data source. For instance to construct a fixed formatted DOS table containing the CUSTOMER table data, create the table

as

create table Custfix engine=connect File_name='customer.txt'

 table_type=fix block_size=20 as select * from customer;

Now you can use custfix for fast database operations on the copied customer table data.

Retrieving data from a spreadsheet
ODBC can also be used to create tables based on tabular data belonging to an Excel spreadsheet:

create table XLCONT

engine=CONNECT table_type=ODBC tabname='CONTACT'

Connection='DSN=Excel Files;DBQ=D:/Ber/Doc/Contact_BP.xls;';

This supposes that a tabular zone of the sheet including column headers is defined as a table named CONTACT or using a

<named reference=. Refer to the Excel documentation for how to specify tables inside sheets. Once done, you can ask:

select * from xlcont;

This will extract the data from Excel and display:

Nom Fonction Societe

Boisseau Frederic 9 Telecom

Martelliere Nicolas Vidal SA (Groupe UBM)

Remy Agathe Price Minister

Du Halgouet Tanguy Danone

Vandamme Anna GDF

Thomas Willy Europ Assistance France

Thomas Dominique Acoss (DG des URSSAF)

Thomas Berengere Responsable SI Decisionnel DEXIA Credit Local

Husy Frederic Responsable Decisionnel Neuf Cegetel

Lemonnier Nathalie Directeur Marketing Client Louis Vuitton

Louis Loic Reporting International Decisionnel Accor

Menseau Eric Orange France

Here again, the columns description was left to CONNECT when creating the table.

Multiple ODBC tables
The concept of multiple tables can be extended to ODBC tables when they are physically represented by files, for instance

to Excel or Access tables. The condition is that the connect string for the table must contain a field DBQ=filename, in which

wildcard characters can be included as for multiple=1 tables in their filename. For instance, a table contained in several

Excel files CA200401.xls, CA200402.xls, ...CA200412.xls can be created by a command such as:

create table ca04mul (Date char(19), Operation varchar(64),

 Debit double(15,2), Credit double(15,2))

engine=CONNECT table_type=ODBC multiple=1

qchar= '"' tabname='bank account'

connection='DSN=Excel Files;DBQ=D:/Ber/CA/CA2004*.xls;';

Providing that in each file the applying information is internally set for Excel as a table named "bank account". This

3245/4161

https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

extension to ODBC does not support multiple=2. The qchar option was specified to make the identifiers quoted in the select

statement sent to ODBC, in particular the when the table or column names contain blanks, to avoid SQL syntax errors.

Caution: Avoid accessing tables belonging to the currently running MariaDB server via the MySQL ODBC connector.

This may not work and may cause the server to be restarted.

Performance consideration
To avoid extracting entire tables from an ODBC source, which can be a lengthy process, CONNECT extracts the

"compatible" part of query WHERE clauses and adds it to the ODBC query. Compatible means that it must be understood

by the data source. In particular, clauses involving scalar functions are not kept because the data source may have different

functions than MariaDB or use a different syntax. Of course, clauses involving sub-select are also skipped. This will transfer

eventual indexing to the data source.

Take care with clauses involving string items because you may not know whether they are treated by the data source

as case sensitive or case insensitive. If in doubt, make your queries as if the data source was processing strings as

case sensitive to avoid incomplete results.

Using ODBC Tables inside correlated sub-queries
Unlike not correlated subqueries that are executed only once, correlated subqueries are executed many times. It is what

ODBC calls a "requery". Several methods can be used by CONNECT to deal with this depending on the setting of the

MEMORY or SCROLLABLE Boolean options:

Option Description

Default Implementing "requery" by discarding the current result set and re submitting the query (as MFC does)

Memory=1 or 2 Storing the result set in memory as MYSQL tables do.

Scrollable=Yes Using a scrollable cursor.

Note: the MEMORY and SCROLLABLE options must be specified in the OPTION _ LIST.

Because the table is accessed several times, this can make queries last very long except for small tables and is almost

unacceptable for big tables. However, if it cannot be avoided, using the memory method is the best choice and can be more

than four times faster than the default method. If it is supported by the driver, using a scrollable cursor is slightly slower than

using memory but can be an alternative to avoid memory problems when the sub-query returns a huge result set.

If the result set is of reasonable size, it is also possible to specify the block_size option equal or slightly larger than the result

set. The whole result set being read on the first fetch, can be accessed many times without having to do anything else.

Another good workaround is to replace within the correlated sub-query the ODBC table by a local copy of it because

MariaDB is often able to optimize the query and to provide a very fast execution.

Accessing specified views
Instead of specifying a source table name via the TABNAME option, it is possible to retrieve data from a <view= whose

definition is given in a new option SRCDEF. For instance:

CREATE TABLE custnum (

 country varchar(15) NOT NULL,

 customers int(6) NOT NULL)

ENGINE=CONNECT TABLE_TYPE=ODBC BLOCK_SIZE=10

CONNECTION='DSN=MS Access Database;DBQ=C:/Program Files/Microsoft Office/Office/1033/FPNWIND.MDB;'

SRCDEF='select country, count(*) as customers from customers group by country';

Or simply, because CONNECT can retrieve the returned column definition:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=ODBC BLOCK_SIZE=10

CONNECTION='DSN=MS Access Database;DBQ=C:/Program Files/Microsoft Office/Office/1033/FPNWIND.MDB;'

SRCDEF='select country, count(*) as customers from customers group by country';

Then, when executing for instance:

3246/4161

select * from custnum where customers > 3;

The processing of the group by is done by the data source, which returns only the generated result set on which only the

where clause is performed locally. The result:

country customers

Brazil 9

France 11

Germany 11

Mexico 5

Spain 5

UK 7

USA 13

Venezuela 4

This makes possible to let the data source do complicated operations, such as joining several tables or executing

procedures returning a result set. This minimizes the data transfer through ODBC.

Data Modifying Operations
The only data modifying operations are the INSERT , UPDATE and DELETE commands. They can be executed

successfully only if the data source database or tables are not read/only.

INSERT Command

When inserting values to an ODBC table, local values are used and sent to the ODBC table. This does not make any

difference when the values are constant but in a query such as:

insert into t1 select * from t2;

Where t1 is an ODBC table, t2 is a locally defined table that must exist on the local server. Besides, it is a good way to

create a distant ODBC table from local data.

CONNECT does not directly support INSERT commands such as:

insert into t1 values(2,'Deux') on duplicate key update msg = 'Two';

Sure enough, the <on duplicate key update= part of it is ignored, and will result in error if the key value is duplicated.

UPDATE and DELETE Commands

Unlike the INSERT command, UPDATE and DELETE are supported in a simplified way. Only simple table commands are

supported; CONNECT does not support multi-table commands, commands sent from a procedure, or issued via a trigger.

These commands are just rephrased to correspond to the data source syntax and sent to the data source for execution. Let

us suppose we created the table:

create table tolite (

 id int(9) not null,

 nom varchar(12) not null,

 nais date default null,

 rem varchar(32) default null)

ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='DSN=SQLite3 Datasource;Database=test.sqlite3'

CHARSET=utf8 DATA_CHARSET=utf8;

We can populate it by:

insert into tolite values(1,'Toto',now(),'First'),

(2,'Foo','2012-07-14','Second'),(4,'Machin','1968-05-30','Third');

3247/4161

The function now() will be executed by MariaDB and it returned value sent to the ODBC table.

Let us see what happens when updating the table. If we use the query:

update tolite set nom = 'Gillespie' where id = 10;

CONNECT will rephrase the command as:

update lite set nom = 'Gillespie' where id = 10;

What it did is just to replace the local table name with the remote table name and change all the back ticks to blanks or to

the data source identifier quoting characters if QUOTED is specified. Then this command will be sent to the data source to

be executed by it.

This is simpler and can be faster than doing a positional update using a cursor and commands such as <select ... for update

of ...= that are not supported by all data sources. However, there are some restrictions that must be understood due to the

way it is handled by MariaDB.

1. MariaDB does not know about all the above. The command will be parsed as if it were to be executed locally.

Therefore, it must respect the MariaDB syntax.

2. Being executed by the data source, the (rephrased) command must also respect the data source syntax.

3. All data referenced in the SET and WHERE clause belongs to the data source.

This is possible because both MariaDB and the data source are using the SQL language. But you must use only the basic

features that are part of the core SQL language. For instance, keywords like IGNORE or LOW_PRIORITY will cause syntax

error with many data source.

Scalar function names also can be different, which severely restrict the use of them. For instance:

update tolite set nais = now() where id = 2;

This will not work with SQLite3, the data source returning an <unknown scalar function= error message. Note that in this

particular case, you can rephrase it to:

update tolite set nais = date('now') where id = 2;

This understood by both parsers, and even if this function would return NULL executed by MariaDB, it does return the

current date when executed by SQLite3. But this begins to become too trickery so to overcome all these restrictions, and

permit to have all types of commands executed by the data source, CONNECT provides a specific ODBC table subtype

described now.

Sending commands to a Data Source
This can be done using a special subtype of ODBC table. Let us see this in an example:

create table crlite (

 command varchar(128) not null,

 number int(5) not null flag=1,

 message varchar(255) flag=2)

engine=connect table_type=odbc

connection='Driver=SQLite3 ODBC Driver;Database=test.sqlite3;NoWCHAR=yes'

option_list='Execsrc=1';

The key points in this create statement are the EXECSRC option and the column definition.

The EXECSRC option tells that this table will be used to send a command to the data source. Most of the sent commands

do not return result set. Therefore, the table columns are used to specify the command to be executed and to get the result

of the execution. The name of these columns can be chosen arbitrarily, their function coming from the FLAG value:

Flag=0: The command to execute.

Flag=1: The affected rows, or -1 in case of error, or the result number of column if the command returns a result set.

Flag=2: The returned (eventually error) message.

How to use this table and specify the command to send? By executing a command such as:

select * from crlite where command = 'a command';

3248/4161

This will send the command specified in the WHERE clause to the data source and return the result of its execution. The

syntax of the WHERE clause must be exactly as shown above. For instance:

select * from crlite where command =

'CREATE TABLE lite (

ID integer primary key autoincrement,

name char(12) not null,

birth date,

rem varchar(32))';

This command returns:

command number message

CREATE TABLE lite (ID integer primary key autoincrement, name...
0 Affected rows

Now we can create a standard ODBC table on the newly created table:

CREATE TABLE tlite

ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='Driver=SQLite3 ODBC Driver;Database=test.sqlite3;NoWCHAR=yes'

CHARSET=utf8 DATA_CHARSET=utf8;

We can populate it directly using the supported INSERT statement:

insert into tlite(name,birth) values('Toto','2005-06-12');

insert into tlite(name,birth,rem) values('Foo',NULL,'No ID');

insert into tlite(name,birth) values('Truc','1998-10-27');

insert into tlite(name,birth,rem) values('John','1968-05-30','Last');

And see the result:

select * from tlite;

ID name birth rem

1 Toto 2005-06-12 NULL

2 Foo NULL No ID

3 Truc 1998-10-27 NULL

4 John 1968-05-30 Last

Any command, for instance UPDATE, can be executed from the crlite table:

select * from crlite where command =

'update lite set birth = ''2012-07-14'' where ID = 2';

This command returns:

command number message

update lite set birth = '2012-07-15' where ID = 2 1 Affected rows

Let us verify it:

select * from tlite where ID = 2;

ID name birth rem

2 Foo 2012-07-15 No ID

The syntax to send a command is rather strange and may seem unnatural. It is possible to use an easier syntax by defining

a stored procedure such as:

3249/4161

create procedure send_cmd(cmd varchar(255))

MODIFIES SQL DATA

select * from crlite where command = cmd;

Now you can send commands like this:

call send_cmd('drop tlite');

This is possible only when sending one single command.

Sending several commands together

Grouping commands uses an easier syntax and is faster because only one connection is made for the all of them. To send

several commands in one call, use the following syntax:

select * from crlite where command in (

 'update lite set birth = ''2012-07-14'' where ID = 2',

 'update lite set birth = ''2009-08-10'' where ID = 3');

When several commands are sent, the execution stops at the end of them or after a command that is in error. To continue

after n errors, set the option maxerr=n (0 by default) in the option list.

Note 1: It is possible to specify the SRCDEF option when creating an EXECSRC table. It will be the command sent by

default when a WHERE clause is not specified.

Note 2: Most data sources do not allow sending several commands separated by semi-colons.

Note 3: Quotes inside commands must be escaped. This can be avoided by using a different quoting character than the one

used in the command

Note 4: The sent command must obey the data source syntax.

Note 5: Sent commands apply in the specified database. However, they can address any table within this database, or

belonging to another database using the name syntax schema.tabname.

Connecting to a Data Source
There are two ways to establish a connection to a data source:

1. Using SQLDriverConnect and a Connection String

2. Using SQLConnect and a Data Source Name (DSN)

The first way uses a Connection String whose components describe what is needed to establish the connection. It is the

most complete way to do it and by default CONNECT uses it.

The second way is a simplified way in which ODBC is just given the name of a DSN that must have been defined to ODBC

or UnixOdbc and that contains the necessary information to establish the connection. Only the user name and password can

be specified out of the DSN specification.

Defining the Connection String

Using the first way, the connection string must be specified. This is sometimes the most difficult task when creating ODBC

tables because, depending on the operating system and the data source, this string can widely differ.

The format of the ODBC Connection String is:

connection-string::= empty-string[;] | attribute[;] | attribute; connection-string

empty-string ::=

attribute ::= attribute-keyword=attribute-value | DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | driver-defined-attribute-keyword

attribute-value ::= character-string

driver-defined-attribute-keyword = identifier

Where character-string has zero or more characters; identifier has one or more characters; attribute- keyword is not case-

sensitive; attribute-value may be case-sensitive; and the value of the DSN keyword does not consist solely of blanks. Due to

the connection string grammar, keywords and attribute values that contain the characters []{}(),;?*=!@ should be

avoided. The value of the DSN keyword cannot consist only of blanks, and should not contain leading blanks. Because of

the grammar of the system information, keywords and data source names cannot contain the backslash (\) character.

Applications do not have to add braces around the attribute value after the DRIVER keyword unless the attribute contains a
3250/4161

semicolon (;), in which case the braces are required. If the attribute value that the driver receives includes the braces, the

driver should not remove them, but they should be part of the returned connection string.

ODBC Defined Connection Attributes

The ODBC defined attributes are:

DSN - the name of the data source to connect to. You must create this before attempting to refer to it. You create

new DSNs through the ODBC Administrator (Windows), ODBCAdmin (unixODBC's GUI manager) or in the odbc.ini

file.

DRIVER - the name of the driver to connect to. You can use this in DSN-less connections.

FILEDSN - the name of a file containing the connection attributes.

UID/PWD - any username and password the database requires for authentication.

SAVEFILE - request the DSN attributes are saved in this file.

Other attributes are DSN dependent attributes. The connection string can give the name of the driver in the DRIVER field or

the data source in the DSN field (attention! meet the spelling and case) and has other fields that depend on the data source.

When specifying a file, the DBQ field must give the full path and name of the file containing the table. Refer to the specific

ODBC connector documentation for the exact syntax of the connection string.

Using a Predefined DSN

This is done by specifying in the option list the Boolean option <UseDSN= as yes or 1. In addition, string options <user= and

<password= can be optionally specified in the option list.

When doing so, the connection string just contains the name of the predefined Data Source. For instance:

CREATE TABLE tlite ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='SQLite3 Datasource'

OPTION_LIST='UseDSN=Yes,User=me,Password=mypass';

Note: the connection data source name (limited to 32 characters) should not be preceded by <DSN==.

ODBC Tables on Linux/Unix
In order to use ODBC tables, you will need to have unixODBC installed. Additionally, you will need the ODBC driver for your

foreign server's protocol. For example, for MS SQL Server or Sybase, you will need to have FreeTDS installed.

Make sure the user running mysqld (usually the mysql user) has permission to the ODBC data source configuration and the

ODBC drivers. If you get an error on Linux/Unix when using TABLE_TYPE=ODBC:

Error Code: 1105 [unixODBC][Driver Manager]Can't open lib

'/usr/cachesys/bin/libcacheodbc.so' : file not found

You must make sure that the user running mysqld (usually "mysql") has enough permission to load the ODBC driver library.

It can happen that the driver file does not have enough read privileges (use chmod to fix this), or loading is prevented by

SELinux configuration (see below).

Try this command in a shell to check if the driver had enough permission:

sudo -u mysql ldd /usr/cachesys/bin/libcacheodbc.so

SELinux

SELinux can cause various problems. If you think SELinux is causing problems, check the system log (e.g.

/var/log/messages) or the audit log (e.g. /var/log/audit/audit.log).

mysqld can't load some executable code, so it can't use the ODBC driver.

Example error:

Error Code: 1105 [unixODBC][Driver Manager]Can't open lib

'/usr/cachesys/bin/libcacheodbc.so' : file not found

Audit log:

3251/4161

type=AVC msg=audit(1384890085.406:76): avc: denied { execute }

for pid=1433 comm="mysqld"

path="/usr/cachesys/bin/libcacheodbc.so" dev=dm-0 ino=3279212

scontext=unconfined_u:system_r:mysqld_t:s0

tcontext=unconfined_u:object_r:usr_t:s0 tclass=file

mysqld can't open TCP sockets on some ports, so it can't connect to the foreign server.

Example error:

ERROR 1296 (HY000): Got error 174 '[unixODBC][FreeTDS][SQL Server]Unable to connect to data

source' from CONNECT

Audit log:

type=AVC msg=audit(1423094175.109:433): avc: denied { name_connect } for pid=3193

comm="mysqld" dest=1433 scontext=system_u:system_r:mysqld_t:s0

tcontext=system_u:object_r:mssql_port_t:s0 tclass=tcp_socket

ODBC Catalog Information
Depending on the version of the used ODBC driver, some additional information on the tables are existing, such as table

QUALIFIER or OWNER for old versions, now named CATALOG or SCHEMA since version 3.

CATALOG is apparently rarely used by most data sources, but SCHEMA (formerly OWNER) is and corresponds to the

DATABASE information of MySQL.

The issue is that if no schema name is specified, some data sources return information for all schemas while some others

only return the information of the <default= schema. In addition, the used <schema= or <database= is sometimes implied by the

connection string and sometimes is not. Sometimes, it also can be included in a data source definition.

CONNECT offers two ways to specify this information:

1. When specified, the DBNAME create table option is regarded by ODBC tables as the SCHEMA name.

2. Table names can be specified as < cat.sch.tab= allowing to set the catalog and schema info.

When both are used, the qualified table name has precedence over DBNAME . For instance:

Tabname DBname Description

test.t1 The t1 table of the test schema.

test.t1 mydb The t1 table of the test schema (test has precedence)

t1 mydb The t1 table of the mydb schema

%.%.% All tables in all catalogs and all schemas

t1 The t1 table in the default or all schema depending on the DSN

%.t1 The t1 table in all schemas for all DSN

test.% All tables in the test schema

When creating a standard ODBC table, you should make sure only one source table is specified. Specifying more than one

source table must be done only for CONNECT catalog tables (with CATFUNC=tables or columns).

In particular, when column definition is left to the Discovery feature, if tables with the same name are present in several

schemas and the schema name is not specified, several columns with the same name will be generated. This will make the

creation fail with a not very explicit error message.

Note: With some ODBC drivers, the DBNAME option or qualified table name is useless because the schema implied by the

connection string or the definition of the data source has priority over the specified DBNAME .

Table name case

Another issue when dealing with ODBC tables is the way table and column names are handled regarding of the case.

For instance, Oracle follows to the SQL standard here. It converts non-quoted identifiers to upper case. This is correct and

expected. PostgreSQL is not standard. It converts identifiers to lower case. MySQL/MariaDB is not standard. They preserve

identifiers on Linux, and convert to lower case on Windows.

Think about that if you fail to see a table or a column on an ODBC data source.

3252/4161

Non-ASCII Character Sets with Oracle
When connecting through ODBC, the MariaDB Server operates as a client to the foreign database management system. As

such, it requires that you configure MariaDB as you would configure native clients for the given database server.

In the case of connecting to Oracle, when using non-ASCI character sets, you need to properly set the NLS_LANG

environment variable before starting the MariaDB Server.

For instance, to test this on Oracle, create a table that contains a series of special characters:

CREATE TABLE t1 (letter VARCHAR(4000));

INSERT INTO t1 VALUES

 (UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('C4'))),

 (UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('C5'))),

 (UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('C6')));

SELECT letter, RAWTOHEX(letter) FROM t1;

letter | RAWTOHEX(letter)

-------|-----------------

Ä | C4

Å | C5

Æ | C6

Then create a connecting table on MariaDB and attempt the same query:

CREATE TABLE t1 (

 letter VARCHAR(4000))

ENGINE=CONNECT

DEFAULT CHARSET=utf8mb4

CONNECTION='DSN=YOUR_DSN'

TABLE_TYPE = 'ODBC'

DATA_CHARSET = latin1

TABNAME = 'YOUR_SCHEMA.T1';

SELECT letter, HEX(letter) FROM t1;

+--------+-------------+

| letter | HEX(letter) |

+--------+-------------+

| A | 41 |

| ? | 3F |

| ? | 3F |

+--------+-------------+

While the character set is defined in a way that satisfies MariaDB, it has not been defined for Oracle, (that is, setting

the NLS_LANG environment variable). As a result, Oracle is not providing the characters you want to MariaDB and Connect.

The specific method of setting the NLS_LANG variable can vary depending on your operating system or distribution. If

you're experiencing this issue, check your OS documentation for more details on how to properly set environment variables.

Using systemd

With Linux distributions that use systemd, you need to set the environment variable in the service file, (systemd doesn't read

from the /etc/environment file).

This is done by setting the Environment variable in the [Service] unit. For instance,

systemctl edit mariadb.service

[Service]

Environment=NLS_LANG=GERMAN_GERMANY.WE8ISO8859P1

Then restart MariaDB,

systemctl restart mariadb.service

You can now retrieve the appropriate characters from Oracle tables:

3253/4161

SELECT letter, HEX(letter) FROM t1;

+--------+-------------+

| letter | HEX(letter) |

+--------+-------------+

| Ä | C384 |

| Å | C385 |

| Æ | C386 |

+--------+-------------+

Using Windows

Microsoft Windows doesn't ignore environment variables the way systemd does on Linux, but it does require that you set

the NLS_LANG environment variable on your system. In order to do so, you need to open an elevated command-prompt,

(that is, Cmd.exe with administrative privileges).

From here, you can use the Setx command to set the variable. For instance,

Setx NLS_LANG GERMAN_GERMANY.WE8ISO8859P1 /m

Note: For more detail about this, see MDEV-17501 .

OPTION_LIST Values Supported by the ODBC Tables

The following options can be given as comma-separated string to the OPTION_LIST value in the CREATE TABLE

statement.

Name Default Description

MaxRes 0 Maximum number of rows returned by catalog functions

ConnectTimeout -1 Connection timeout in seconds, unlimited by default

QueryTimeout -1 Query timeout in seconds, unlimited by default

UseDSN false Use pre-configured DSN

5.3.7.6.17 CONNECT JDBC Table Type:
Accessing Tables from Another DBMS

Contents
1. Compiling From Source Distribution

1. Compiling the Java source files

2. Setting the Required Information

1. JVM Library Location

2. Java Class Path

3. CONNECT JDBC Tables

1. Using a Federated Server

4. Connecting to a JDBC driver

1. Fetch Size

2. Connection to a Data Source

5. Random Access to JDBC Tables

6. Other Operations with JDBC Tables

7. JDBC Specific Restrictions

8. Handling the UUID Data Type

9. Executing the JDBC tests

10. Fixing Problem With mariadb-dump

The JDBC table type should be distributed with all recent versions of MariaDB. However, if the automatic compilation of it is

possible after the java JDK was installed, the complete distribution of it is not fully implemented in older versions. The

distributed JdbcInterface.jar file contains the JdbcInterface wrapper only. New versions distribute a JavaWrappers.jar that

contains all currently existing wrappers.

This will require that:

1. The Java SDK is installed on your system.

3254/4161

https://jira.mariadb.org/browse/MDEV-17501

2. The java wrapper class files are available on your system.

3. And of course, some JDBC drivers exist to be used with the matching DBMS.

Point 2 was made automatic in the newest versions of MariaDB.

Compiling From Source Distribution
Even when the Java JDK has been installed, CMake sometimes cannot find the location where it stands. For instance on

Linux the Oracle Java JDK package might be installed in a path not known by the CMake lookup functions causing error

message such as:

CMake Error at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:148 (message):

 Could NOT find Java (missing: Java_JAR_EXECUTABLE Java_JAVAC_EXECUTABLE

 Java_JAVAH_EXECUTABLE Java_JAVADOC_EXECUTABLE)

When this happen, provide a Java prefix as a hint on where the package was loaded. For instance on Ubuntu I was obliged

to enter:

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

After that, the compilation of the CONNECT JDBC type was completed successfully.

Compiling the Java source files

They are the source of the java wrapper classes used to access JDBC drivers. In the source distribution, they are located in

the CONNECT source directory.

The default wrapper, JdbcInterface, is the only one distributed with binary distribution. It uses the standard way to get a

connection to the drivers via the DriverManager.getConnection method. Other wrappers, only available with source

distribution, enable connection to a Data Source, eventually implementing pooling. However, they must be compiled and

installed manually.

The available wrappers are:

Wrapper Description

JdbcInterface Used to make the connection with available drivers the standard way.

ApacheInterface
Based on the Apache common-dbcp2 package this interface enables making connections to DBCP

data sources with any JDBC drivers.

MariadbInterface Makes connection to a MariaDB data source.

MysqlInterface
Makes connection to a Mysql data source. Must be used with a MySQL driver that implements data

sources.

OracleInterface Makes connection to an Oracle data source.

PostgresqlInterface Makes connection to a Postgresql data source.

The wrapper used by default is specified by the connect_java_wrapper session variable and is initially set to

wrappers/JdbcInterface . The wrapper to use for a table can also be specified in the option list as a wrapper option of

the <create table= statements.

Note: Conforming java naming usage, class names are preceded by the java package name with a slash separator.

However, this is not mandatory for CONNECT which adds the package name if it is missing.

The JdbcInterface wrapper is always usable when Java is present on your machine. Binary distributions have this wrapper

already compiled as a JdbcInterface.jar file installed in the plugin directory whose path is automatically included in the class

path of the JVM. Recent versions also add a JavaWrappers.jar that contains all these wrappers. Therefore there is no need

to worry about its path.

Compiling the ApacheInterface wrapper requires that the Apache common-DBCP2 package be installed. Other wrappers are

to be used only with the matching JDBC drivers that must be available when compiling them.

Installing the jar file in the plugin directory is the best place because it is part of the class path. Depending on what is

installed on your system, the source files can be reduced accordingly. To compile only the JdbcInterface.java file the

CMAKE_JAVA_INCLUDE_PATH is not required. Here the paths are the ones existing on my Windows 7 machine and

should be localized.

Setting the Required Information
3255/4161

Before any operation with a JDBC driver can be made, CONNECT must initialize the environment that will make working

with Java possible. This will consist of:

1. Loading dynamically the JVM library module.

2. Creating the Java Virtual Machine.

3. Establishing contact with the java wrapper class.

4. Connecting to the used JDBC driver.

Indeed, the JVM library module is not statically linked to the CONNECT plugin. This is to make it possible to use a

CONNECT plugin that has been compiled with the JDBC table type on a machine where the Java SDK is not installed.

Otherwise, users not interested in the JDBC table type would be obliged to install the Java SDK on their machine to be able

to load the CONNECT storage engine.

JVM Library Location

If the JVM library (jvm.dll on Windows, libjvm.so on Linux) was not placed in the standard library load path, CONNECT

cannot find it and must be told where to search for it. This happens in particular on Linux when the Oracle Javapackage was

installed in a private location.

If the JAVA_HOME variable was exported as explained above, CONNECT can sometimes find it using this information.

Otherwise, its search path can be added to the LD_LIBRARY_PATH environment variable. But all this is complicated

because making environment variables permanent on Linux is painful (many different methods must be used depending on

the Linux version and the used shell).

This is why CONNECT introduced a new global variable connect_jvm_path to store this information. It can be set when

starting the server as a command line option or even afterwards before the first use of the JDBC table type. For example:

set global connect_jvm_path="/usr/lib/jvm/java-8-oracle/jre/lib/i386/client"

or

set global connect_jvm_path="/usr/lib/jvm/java-8-oracle/jre/lib/i386/server"

The client library is smaller and faster for connection. The server library is more optimized and can be used in case of heavy

load usage.

Note that this may not be required on Windows because the path to the JVM library can sometimes be found in the registry.

Once this library is loaded, CONNECT can create the required Java Virtual Machine.

Java Class Path

This is the list of paths Java searches when loading classes. With CONNECT, the classes to load will be the java wrapper

classes used to communicate with the drivers , and the used JDBC driver classes that are grouped inside jar files. If the

ApacheInterface wrapper must be used, the class path must also include all three jars used by the Apache package.

Caution: This class path is passed as a parameter to the Java Virtual Machine (JVM) when creating it and cannot be

modified as it is a read only property. In addition, because MariaDB is a multi-threading application, this JVM cannot

be destroyed and will be used throughout the entire life of the MariaDB server. Therefore, be sure it is correctly set

before you use the JDBC table type for the first time. Otherwise, there will be practically no alternative than to shut

down the server and restart it.

The path to the wrapper classes must point to the directory containing the wrappers sub-directory. If a JdbcInterface.jar file

was made, its path is the directory where it is located followed by the jar file name. It is unclear where because this will

depend on the installation process. If you start from a source distribution, it can be in the storage/connect directory where

the CONNECT source files are or where you moved them or compiled the JdbcInterface.jar file.

For binary distributions, there is nothing to do because the jar file has been installed in the mysql share directory whose path

is always automatically included in the class path available to the JVM.

Remaining are the paths of all the installed JDBC drivers that you intend to use. Remember that their path must include the

jar file itself. Some applications use an environment variable CLASSPATH to contain them. Paths are separated by 8:9 on

Linux and by 8;9 on Windows.

If the CLASSPATH variable actually exists and if it is available inside MariaDB, so far so good. You can check this using an

UDF function provided by CONNECT that returns environment variable values:

3256/4161

create function envar returns string soname 'ha_connect.so';

select envar('CLASSPATH');

Most of the time, this will return null or some required files are missing. This is why CONNECT introduced a global variable

to store this information. The paths specified in this variable will be added and have precedence to the ones, if any, of the

CLASSPATH environment variable. As for the jvm path, this variable connect_class_path should be specified when starting

the server but can also be set before using the JDBC table type for the first time.

The current directory (sql/data) is also placed by CONNECT at the beginning of the class path.

As an example, here is how I start MariaDB when doing tests on Linux:

olivier@olivier-Aspire-8920:~$ sudo /usr/local/mysql/bin/mysqld -u root --console --default-

storage-engine=myisam --skip-innodb --connect_jvm_path="/usr/lib/jvm/java-8-

oracle/jre/lib/i386/server" --

connect_class_path="/home/olivier/mariadb/10.1/storage/connect:/media/olivier/SOURCE/mysql-

connector-java-6.0.2/mysql-connector-java-6.0.2-bin.jar"

CONNECT JDBC Tables
These tables are given the type JDBC. For instance, supposing you want to access the boys table located on and external

local or remote database management system providing a JDBC connector:

create table boys (

name char(12),

city char(12),

birth date,

hired date);

To access this table via JDBC you can create a table such as:

create table jboys engine=connect table_type=JDBC tabname=boys

connection='jdbc:mysql://localhost/dbname?user=root';

The CONNECTION option is the URL used to establish the connection with the remote server. Its syntax depends on the

external DBMS and in this example is the one used to connect as root to a MySQL or MariaDB local database using the

MySQL JDBC connector.

As for ODBC, the columns definition can be omitted and will be retrieved by the discovery process. The restrictions

concerning column definitions are the same as for ODBC.

Note: The dbname indicated in the URL corresponds for many DBMS to the catalog information. For MySQL and MariaDB it

is the schema (often called database) of the connection.

Using a Federated Server

Alternatively, a JDBC table can specify its connection options via a Federated server. For instance, supposing you have a

table accessing an external Postgresql table defined as:

create table juuid engine=connect table_type=JDBC tabname=testuuid

connection='jdbc:postgresql:test?user=postgres&password=pwd';

You can create a Federated server:

create server 'post1' foreign data wrapper 'postgresql' options (

HOST 'localhost',

DATABASE 'test',

USER 'postgres',

PASSWORD 'pwd',

PORT 0,

SOCKET '',

OWNER 'postgres');

Now the JDBC table can be created by:

create table juuid engine=connect table_type=JDBC connection='post1' tabname=testuuid;

3257/4161

or by:

create table juuid engine=connect table_type=JDBC connection='post1/testuuid';

In any case, the location of the remote table can be changed in the Federated server without having to alter all the tables

using this server.

JDBC needs a URL to establish a connection. CONNECT was able to construct that URL from the information contained in

such Federated server definition when the URL syntax is similar to the one of MySQL, MariaDB or Postgresql. However,

other DBMSs such as Oracle use a different URL syntax. In this case, simply replace the HOST information by the required

URL in the Federated server definition. For instance:

create server 'oracle' foreign data wrapper 'oracle' options (

HOST 'jdbc:oracle:thin:@localhost:1521:xe',

DATABASE 'SYSTEM',

USER 'system',

PASSWORD 'manager',

PORT 0,

SOCKET '',

OWNER 'SYSTEM');

Now you can create an Oracle table with something like this:

create table empor engine=connect table_type=JDBC connection='oracle/HR.EMPLOYEES';

Note: Oracle, as Postgresql, does not seem to understand the DATABASE setting as the table schema that must be

specified in the Create Table statement.

Connecting to a JDBC driver
When the connection to the driver is established by the JdbcInterface wrapper class, it uses the options that are provided

when creating the CONNECT JDBC tables. Inside the default Java wrapper, the driver9s main class is loaded by the

DriverManager.getConnection function that takes three arguments:

URL That is the URL that you specified in the CONNECTION option.

User As specified in the OPTION_LIST or NULL if not specified.

Password As specified in the OPTION_LIST or NULL if not specified.

The URL varies depending on the connected DBMS. Refer to the documentation of the specific JDBC driver for a

description of the syntax to use. User and password can also be specified in the option list.

Beware that the database name in the URL can be interpreted differently depending on the DBMS. For MySQL this is the

schema in which the tables are found. However, for Postgresql, this is the catalog and the schema must be specified using

the CONNECT dbname option.

For instance a table accessing a Postgresql table via JDBC can be created with a create statement such as:

create table jt1 engine=connect table_type=JDBC

connection='jdbc:postgresql://localhost/mtr' dbname=public tabname=t1

option_list='User=mtr,Password=mtr';

Note: In previous versions of JDBC, to obtain a connection, java first had to initialize the JDBC driver by calling the method

Class.forName. In this case, see the documentation of your DBMS driver to obtain the name of the class that implements

the interface java.sql.Driver. This name can be specified as an option DRIVER to be put in the option list. However, most

modern JDBC drivers since version 4 are self-loading and do not require this option to be specified.

The wrapper class also creates some required items and, in particular, a statement class. Some characteristics of this

statement will depend on the options specified when creating the table:

Scrollable To be specified in the option list. Determines the cursor type: no= forward_only or yes=scroll_insensitive.

Block_size Will be used to set the statement fetch size.

Fetch Size

The fetch size determines the number of rows that are internally retrieved by the driver on each interaction with the DBMS.

Its default value depends on the JDBC driver. It is equal to 10 for some drivers but not for the MySQL or MariaDB

3258/4161

connectors.

The MySQL/MariaDB connectors retrieve all the rows returned by one query and keep them in a memory cache. This is

generally fine in most cases, but not when retrieving a large result set that can make the query fail with a memory exhausted

exception.

To avoid this, when accessing a big table and expecting large result sets, you should specify the BLOCK_SIZE option to 1

(the only acceptable value). However a problem remains:

Suppose you execute a query such as:

select id, name, phone from jbig limit 10;

Not knowing the limit clause, CONNECT sends to the remote DBMS the query:

SELECT id, name, phone FROM big;

In this query big can be a huge table having million rows. Having correctly specified the block size as 1 when creating the

table, the wrapper just reads the 10 first rows and stops. However, when closing the statement, these MySQL/MariaDB

drivers must still retrieve all the rows returned by the query. This is why, the wrapper class when closing the statement also

cancels the query to stop that extra reading.

The bad news is that if it works all right for some previous versions of the MySQL driver, it does not work for new versions

as well as for the MariaDB driver that apparently ignores the cancel command. The good news is that you can use an old

MySQL driver to access MariaDB databases. It is also possible that this bug will be fixed in future versions of the drivers.

Connection to a Data Source

This is the java preferred way to establish a connection because a data source can keep a pool of connections that can be

re-used when necessary. This makes establishing connections much faster once it was done for the first time.

CONNECT provide additional wrappers whose files are located in the CONNECT source directory. The wrapper to use can

be specified in the global variable connect_java_wrapper, which defaults to <JdbcInterface=.

It can also be specified for a table in the option list by setting the option wrapper to its name. For instance:

create table jboys

engine=CONNECT table_type=JDBC tabname='boys'

connection='jdbc:mariadb://localhost/connect?user=root&useSSL=false'

option_list='Wrapper=MariadbInterface,Scrollable=1';

They can be used instead of the standard JdbcInterface and are using created data sources.

The Apache one uses data sources implemented by the Apache-commons-dbcp2 package and can be used with all drivers

including those not implementing data sources. However, the Apache package must be installed and its three required jar

files accessible via the class path.

1. commons-dbcp2-2.1.1.jar

2. commons-pool2-2.4.2.jar

3. commons-logging-1.2.jar

Note: the versions numbers can be different on your installation.

The other ones use data sources provided by the matching JDBC driver. There are currently four wrappers to be used with

mysql-6.0.2, mariadb, oracle and postgresql.

Unlike the class path, the used wrapper can be changed even after the JVM machine was created.

Random Access to JDBC Tables
The same methods described for ODBC tables can be used with JDBC tables.

Note that in the case of the MySQL or MariaDB connectors, because they internally read the whole result set in memory,

using the MEMORY option would be a waste of memory. It is much better to specify the use of a scrollable cursor when

needed.

Other Operations with JDBC Tables
Except for the way the connection string is specified and the table type set to JDBC, all operations with ODBC tables are

done for JDBC tables the same way. Refer to the ODBC chapter to know about:

3259/4161

Accessing specified views (SRCDEF)

Data modifying operations.

Sending commands to a data source.

JDBC catalog information.

Note: Some JDBC drivers fail when the global time_zone variable is ambiguous, which sometimes happens when it is set to

SYSTEM. If so, reset it to a not ambiguous value, for instance:

set global time_zone = '+2:00';

JDBC Specific Restrictions
Connecting via data sources created externally (for instance using Tomcat) is not supported yet.

Other restrictions are the same as for the ODBC table type.

Handling the UUID Data Type
PostgreSQL has a native UUID data type, internally stored as BIN(16). This is neither an SQL nor a MariaDB data type. The

best we can do is to handle it by its character representation.

UUID will be translated to CHAR(36) when column definitions are set using discovery. Locally a PostgreSQL UUID column

will be handled like a CHAR or VARCHAR column. Example:

Using the PostgreSQL table testuuid in the text database:

 Table « public.testuuid »

 Column | Type | Default

--------+------+--------------------

 id | uuid | uuid_generate_v4()

 msg | text |

Its column definitions can be queried by:

create or replace table juuidcol engine=connect table_type=JDBC tabname=testuuid

catfunc=columns

connection='jdbc:postgresql:test?user=postgres&password=pwd';

select table_name "Table", column_name "Column", data_type "Type",

 type_name "Name", column_size "Size"

 from juuidcol;

This query returns:

Table Column Type Name Size

testuuid id 1111 uuid 2147483647

testuuid msg 12 text 2147483647

Note: PostgreSQL, when a column size is undefined, returns 2147483647, which is not acceptable for MariaDB. CONNECT

change it to the value of the connect_conv_size session variable. Also, for TEXT columns the data type returned is 12

(SQL_VARCHAR) instead of -1 the SQL_TEXT value.

Accessing this table via JDBC by:

CREATE TABLE juuid ENGINE=connect TABLE_TYPE=JDBC TABNAME=testuuid

CONNECTION='jdbc:postgresql:test?user=postgres&password=pwd';

it will be created by discovery as:

CREATE TABLE `juuid` (

 `id` char(36) DEFAULT NULL,

 `msg` varchar(8192) DEFAULT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 CONNECTION='jdbc:postgresql:test?

user=postgres&password=pwd' `TABLE_TYPE`='JDBC' `TABNAME`='testuuid';

Note: 8192 being here the _connect_conv_size_ value.
3260/4161

Let's populate it:

insert into juuid(msg) values('First');

insert into juuid(msg) values('Second');

select * from juuid;

Result:

id msg

4b173ee1-1488-4355-a7ed-62ba59c2b3e7 First

6859f850-94a7-4903-8d3c-fc3c874fc274 Second

Here the id column values come from the DEFAULT of the PostgreSQL column that was specified as uuid_generate_v4().

It can be set from MariaDB. For instance:

insert into juuid

 values('2f835fb8-73b0-42f3-a1d3-8a532b38feca','inserted');

insert into juuid values(NULL,'null');

insert into juuid values('','random');

select * from juuid;

Result:

id msg

4b173ee1-1488-4355-a7ed-62ba59c2b3e7 First

6859f850-94a7-4903-8d3c-fc3c874fc274 Second

2f835fb8-73b0-42f3-a1d3-8a532b38feca inserted

<null> null

8fc0a30e-dc66-4b95-ba57-497a161f4180 random

The first insert specifies a valid UUID character representation. The second one set it to NULL. The third one (a void string)

generates a Java random UUID. UPDATE commands obey the same specification.

These commands both work:

select * from juuid where id = '2f835fb8-73b0-42f3-a1d3-8a532b38feca';

delete from juuid where id = '2f835fb8-73b0-42f3-a1d3-8a532b38feca';

However, this one fails:

select * from juuid where id like '%42f3%';

Returning:

1296: Got error 174 'ExecuteQuery: org.postgresql.util.PSQLException: ERROR: operator does not exist: uuid ~ unknown

hint: no operator corresponds to the data name and to the argument types.

because CONNECT cond_push feature added the WHERE clause to the query sent to PostgreSQL:

SELECT id, msg FROM testuuid WHERE id LIKE '%42f3%'

and the LIKE operator does not apply to UUID in PostgreSQL.

To handle this, a new session variable was added to CONNECT: connect_cond_push. It permits to specify if cond_push is

enabled or not for CONNECT and defaults to 1 (enabled). In this case, you can execute:

set connect_cond_push=0;

Doing so, the where clause will be executed by MariaDB only and the query will not fail anymore.

Executing the JDBC tests
Four tests exist but they are disabled because requiring some work to localized them according to the operating system and

3261/4161

available java package and JDBC drivers and DBMS.

Two of them, jdbc.test and jdbc_new.test, are accessing MariaDB via JDBC drivers that are contained in a fat jar file that is

part of the test. They should be executable without anything to do on Windows; simply adding the option 3enable-disabled

when running the tests.

However, on Linux these tests can fail to locate the JVM library. Before executing them, you should export the JAVA_HOME

environment variable set to the prefix of the java installation or export the LD_LIBRARY_PATH containing the path to the

JVM lib.

Fixing Problem With mariadb-dump
In some case or some platform, when CONNECT is set up for use with JDBC table types, this causes mariadb-dump with

the option --all-databases to fail.

This was reported by Robert Dyas who found the cause - see the discussion at MDEV-11238 .

5.3.7.6.18 CONNECT MONGO Table Type:
Accessing Collections from MongoDB

Contents
1. Accessing MongDB from CONNECT

1. Using the MongoDB C Driver

2. Using the Mongo Java Driver

3. Using JDBC

4. Using JSON

2. CONNECT MONGO Tables

1. Fixing Problems With mariadb-dump

2. MongoDB Dot Notation

3. MONGO Specific Options

1. Colist Option

2. Filter Option

3. Pipeline Option

4. Fullarray Option

4. Create, Read, Update and Delete Operations

5. Status of MONGO Table Type

6. Current Restrictions

Classified as a NoSQL database program, MongoDB uses JSON-like documents (BSON) grouped in collections. The

MONGO type is used to directly access MongoDB collections as tables.

Accessing MongDB from CONNECT
Accessing MongoDB from CONNECT can be done in different ways:

1. As a MONGO table via the MongoDB C Driver.

2. As a MONGO table via the MongoDB Java Driver.

3. As a JDBC table using some commercially available MongoDB JDBC drivers.

4. As a JSON table via the MongoDB C or Java Driver.

Using the MongoDB C Driver

This is currently not available from binary distributions but only for versions compiled from source. The preferred version of

the MongoDB C Driver is 1.7, because they provide package recognition. What must be done is:

1. Install libbson and the MongoDB C Driver 1.7.

2. Configure, compile and install MariaDB.

With earlier versions of the Mongo C Driver, the additional include directories and libraries will have to be specified manually

when compiling.

When possible, this is the preferred means of access because it does not require all the Java path settings etc. and is faster

than using the Java driver.

Using the Mongo Java Driver

This is possible with all distributions including JDBC support, or compiling from source. With a binary distribution that does

3262/4161

https://jira.mariadb.org/browse/MDEV-11238

not enable the MONGO table type, it is possible to access MongoDB using an OEM module. See CONNECT OEM Table

Example for details. The only additional things to do are:

1. Install the MongoDB Java Driver by downloading its jar file. Several versions are available. If possible use the latest

version 3 one.

2. Add the path to it in the CLASSPATH environment variable or in the connect_class_path variable. This is like what is

done to declare JDBC drivers.

Connection is established by new Java wrappers Mongo3Interface and Mongo2Interface. They are available in a JDBC

distribution in the Mongo2.jar and Mongo3.jar files (previously JavaWrappers.jar). If version 2 of the Java Driver is used,

specify <Version=2= in the option list when creating tables.

Using JDBC

See the documentation of the existing commercial JDBC Mongo drivers.

Using JSON

See the specific chapter of the JSON Table Type.

The following describes the MONGO table type.

CONNECT MONGO Tables
Creating and running MONGO tables requires a connection to a running local or remote MongoDB server.

A MONGO table is defined to access a MongoDB collection. The table rows will be the collection documents. For instance,

to create a table based on the MongoDB sample collection restaurants, you can do something such as the following:

create table resto (

_id varchar(24) not null,

name varchar(64) not null,

cuisine char(200) not null,

borough char(16) not null,

restaurant_id varchar(12) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 connection='mongodb://localhost:27017';

Note: The used driver is by default the C driver if only the MongoDB C Driver is installed and the Java driver if only the

MongoDB Java Driver is installed. If both are available, it can be specified by the DRIVER option to be specified in the

option list and defaults to C.

Here we did not define all the items of the collection documents but only those that are JSON values. The database is test

by default. The connection value is the URI used to establish a connection to a local or remote MongoDB server. The value

shown in this example corresponds to a local server started with its default port. It is the default connection value for

MONGO tables so we could have omit specifying it.

Using discovery is available. This table could have been created by:

create table resto

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 option_list='level=-1';

Here <depth=-1= is used to create only columns that are simple values (no array or object). Without this, with the default

value <depth=0= the table had been created as:

CREATE TABLE `resto` (

 `_id` char(24) NOT NULL,

 `address` varchar(136) NOT NULL,

 `borough` char(13) NOT NULL,

 `cuisine` char(64) NOT NULL,

 `grades` varchar(638) NOT NULL,

 `name` char(98) NOT NULL,

 `restaurant_id` char(8) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='MONGO' `TABNAME`='restaurants'

`DATA_CHARSET`='utf8';

Fixing Problems With mariadb-dump

3263/4161

In some case or some platforms, when CONNECT is set up for use with JDBC table types, this causes mariadb-dump with

the --all-databases option to fail.

This was reported by Robert Dyas who found the cause of it and how to fix it (see MDEV-11238).

This occurs when the Java JRE <Usage Tracker= is enabled. In that case, Java creates a directory

#mysql50#.oracle_jre_usage in the mysql data directory that shows up as a database but cannot be accessed via MySQL

Workbench nor apparently backed up by mariadb-dump --all-databases.

Per the Oracle documentation (https://docs.oracle.com/javacomponents/usage-tracker/overview/) the <Usage Tracker= is

disabled by default. It is enabled only when creating the properties file <JRE

directory>/lib/management/usagetracker.properties. This turns out to be WRONG on some platforms as the file does exist

by default on a new installation, and the existence of this file enables the usage tracker.

The solution on CentOS 7 with the Oracle JVM is to rename or delete the usagetracker.properties file (to disable it) and then

delete the bogus folder it created in the mysql database directory, then restart.

For example, the following works:

sudo mv /usr/java/default/jre/lib/management/management.properties

/usr/java/default/jre/lib/management/management.properties.TRACKER-OFF

sudo reboot

sudo rm -rf /var/lib/mysql/.oracle_jre_usage

sudo reboot

In this collection, the address column is a JSON object and the column grades is a JSON array. Unlike the JSON table, just

specifying the column name with no Jpath result in displaying the JSON representation of them. For instance:

select name, address from resto limit 3;

name address

Morris Park Bake Shop {"building":"1007","coord":[-73.8561,40.8484], "street":"Morris ParkAve", "zipcode":"10462"}

Wendy'S {"building":"469","coord":[-73.9617,40.6629], "street":"Flatbush Avenue", "zipcode":"11225"}

Reynolds Restaurant {"building":"351","coord":[-73.9851,40.7677], "street":"West 57Street", "zipcode":"10019"}

MongoDB Dot Notation

To address the items inside object or arrays, specify the Jpath in MongoDB syntax (if using Discovery, specify the Depth

option accordingly):

From Connect 1.7.0002

create table newresto (

_id varchar(24) not null,

name varchar(64) not null,

cuisine char(200) not null,

borough char(16) not null,

street varchar(65) jpath='address.street',

building char(16) jpath='address.building',

zipcode char(5) jpath='address.zipcode',

grade char(1) jpath='grades.0.grade',

score int(4) not null jpath='grades.0.score',

`date` date jpath='grades.0.date',

restaurant_id varchar(255) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 connection='mongodb://localhost:27017';

Before Connect 1.7.0002

3264/4161

https://jira.mariadb.org/browse/MDEV-11238
https://docs.oracle.com/javacomponents/usage-tracker/overview/

create table newresto (

_id varchar(24) not null,

name varchar(64) not null,

cuisine char(200) not null,

borough char(16) not null,

street varchar(65) field_format='address.street',

building char(16) field_format='address.building',

zipcode char(5) field_format='address.zipcode',

grade char(1) field_format='grades.0.grade',

score int(4) not null field_format='grades.0.score',

`date` date field_format='grades.0.date',

restaurant_id varchar(255) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 connection='mongodb://localhost:27017';

If this is not done, the Oracle JVM will start the usage tracker, which will create the hidden folder .oracle_jre_usage in the

mysql home directory, which will cause a mariadb-dump of the server to fail.

select name, street, score, date from newresto limit 5;

name street score date

Morris Park Bake Shop Morris Park Ave 2 03/03/2014

Wendy'S Flatbush Avenue 8 30/12/2014

Dj Reynolds Pub And Restaurant West 57 Street 2 06/09/2014

Riviera Caterer Stillwell Avenue 5 10/06/2014

Tov Kosher Kitchen 63 Road 20 24/11/2014

MONGO Specific Options
The MongoDB syntax for Jpath does not allow the CONNECT specific items on arrays. The same effect can still be obtained

by a different way. For this, additional options are used when creating MONGO tables.

Option Type Description

Colist String Options to pass to the MongoDB cursor.

Filter String Query used by the MongoDB cursor.

Pipeline* Boolean If True, Colist is a pipeline.

Fullarray* Boolean Used when creating with Discovery.

Driver* String C or Java.

Version* Integer The Java Driver version (defaults to 3)

: To be specified in the option list.

Note: For the content of these options, refer to the MongoDB documentation.

Colist Option

Used to pass different options when making the MongoDB cursor used to retrieve the collation documents. One of them is

the projection, allowing to limit the items retrieved in documents. It is hardly useful because this limitation is made

automatically by CONNECT. However, it can be used when using discovery to eliminate the _id (or another) column when

you are not willing to keep it:

create table restest

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 option_list='depth=-1'

colist='{"projection":{"_id":0},"limit":5}';

In this example, we added another cursor option, the limit option that works like the limit SQL clause.

This additional option works only with the C driver. When using the Java driver, colist should be:

3265/4161

colist='{"_id":0}';

And limit would be specified with select statements.

Note: When used with a JSON table, to specify the projection list (or 8all9 to get all columns) makes JPATH to be Connect

Json paths, not MongoDB ones, allowing JPATH options not available to MongoDB.

Filter Option

This option is used to specify a <filter= that works as a where clause on the table. Supposing we want to create a table

restricted to the restaurant making English cuisine that are not located in the Manhattan borough, we can do it by:

create table english

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8

colist='{"projection":{"cuisine":0}}'

filter='{"cuisine":"English","borough":{"$ne":"Manhattan"}}'

option_list='Depth=-1';

And if we ask:

select * from english;

This query will return:

_id borough name restaurant_id

58ada47de5a51ddfcd5ee1f3 Brooklyn The Park Slope Chipshop 40816202

58ada47de5a51ddfcd5ee999 Brooklyn Chip Shop 41076583

58ada47ee5a51ddfcd5f13d5 Brooklyn The Monro 41660253

58ada47ee5a51ddfcd5f176e Brooklyn Dear Bushwick 41690534

58ada47ee5a51ddfcd5f1e91 Queens Snowdonia Pub 50000290

Pipeline Option

When this option is specified as true (by YES or 1) the Colist option contains a MongoDB pipeline applying to the table

collation. This is a powerful mean for doing things such as expanding arrays like we do with JSON tables. For instance:

create table resto2 (

name varchar(64) not null,

borough char(16) not null,

date datetime not null,

grade char(1) not null,

score int(4) not null)

engine=connect table_type=MONGO tabname='restaurants' data_charset=utf8

colist='{"pipeline":[{"$match":{"cuisine":"French"}},{"$unwind":"$grades"},{"$project":

{"_id":0,"name":1,"borough":1,"date":"$grades.date","grade":"$grades.grade","score":"$grades.sc

ore"}}]}'

option_list='Pipeline=1';

In this pipeline <$match= is an early filter, <$unwind= means that the grades array will be expanded (one Document for each

array values) and <$project= eliminates the _id and cuisine columns and gives the Jpath for the date, grade and score

columns.

select name, grade, score, date from resto2

where borough = 'Bronx';

This query replies:

name grade score date

Bistro Sk A 10 21/11/2014 01:00:00

Bistro Sk A 12 19/02/2014 01:00:00

3266/4161

Bistro Sk B 18 12/06/2013 02:00:00

This make possible to get things like we do with JSON tables:

select name, avg(score) average from resto2

group by name having average >= 25;

Can be used to get the average score inside the grades array.

name average

Bouley Botanical 25,0000

Cheri 46,0000

Graine De Paris 30,0000

Le Pescadeux 29,7500

Fullarray Option

This option, like the Depth option, is only interpreted when creating a table with Discovery (meaning not specifying the

columns). It tells CONNECT to generate a column for all existing values in the array. For instance, let us see the MongoDB

collection tar by:

From Connect 1.7.0002

create table seetar (

Collection varchar(300) not null jpath='*')

engine=CONNECT table_type=MONGO tabname=tar;

Before Connect 1.7.0002

create table seetar (

Collection varchar(300) not null field_format='*')

engine=CONNECT table_type=MONGO tabname=tar;

The format 8*9 indicates we want to see the Json documents. This small collection is:

Collection

{"_id":{"$oid":"58f63a5099b37d9c930f9f3b"},"item":"journal","prices":[87.0,45.0,63.0,12.0,78.0]}

{"_id":{"$oid":"58f63a5099b37d9c930f9f3c"},"item":"notebook","prices":[123.0,456.0,789.0]}

The Fullarray option can be used here to generate enough columns to see all the prices of the document prices array.

create table tar

engine=connect table_type=MONGO

colist='{"projection":{"_id":0}}'

option_list='depth=1,Fullarray=YES';

The table has been created as:

From Connect 1.7.0002

CREATE TABLE `tar` (

 `item` char(8) NOT NULL,

 `prices_0` double(12,6) NOT NULL `JPATH`='prices.0',

 `prices_1` double(12,6) NOT NULL `JPATH`='prices.1',

 `prices_2` double(12,6) NOT NULL `JPATH`='prices.2',

 `prices_3` double(12,6) DEFAULT NULL `JPATH`='prices.3',

 `prices_4` double(12,6) DEFAULT NULL `JPATH`='prices.4'

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='MONGO' `COLIST`='{"projection":

{"_id":0}}' `OPTION_LIST`='depth=1,Fullarray=YES';

Before Connect 1.7.0002

3267/4161

CREATE TABLE `tar` (

 `item` char(8) NOT NULL,

 `prices_0` double(12,6) NOT NULL `FIELD_FORMAT`='prices.0',

 `prices_1` double(12,6) NOT NULL `FIELD_FORMAT`='prices.1',

 `prices_2` double(12,6) NOT NULL `FIELD_FORMAT`='prices.2',

 `prices_3` double(12,6) DEFAULT NULL `FIELD_FORMAT`='prices.3',

 `prices_4` double(12,6) DEFAULT NULL `FIELD_FORMAT`='prices.4'

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='MONGO' `COLIST`='{"projection":

{"_id":0}}' `OPTION_LIST`='level=1,Fullarray=YES';

And is displayed as:

item prices_0 prices_1 prices_2 prices_3 prices_4

journal 87.00 45.00 63.00 12.00 78.00

notebook 123.00 456.00 789.00 NULL NULL

Create, Read, Update and Delete Operations
All modifying operations are supported. However, inserting into arrays must be done in a specific way. Like with the

Fullarray option, we must have enough columns to specify the array values. For instance, we can create a new table by:

From Connect 1.7.0002

create table testin (

n int not null,

m char(12) not null,

surname char(16) not null jpath='person.name.first',

name char(16) not null jpath='person.name.last',

age int(3) not null jpath='person.age',

price_1 double(8,2) jpath='d.0',

price_2 double(8,2) jpath='d.1',

price_3 double(8,2) jpath='d.2')

engine=connect table_type=MONGO tabname='tin'

connection='mongodb://localhost:27017';

Before Connect 1.7.0002

create table testin (

n int not null,

m char(12) not null,

surname char(16) not null field_format='person.name.first',

name char(16) not null field_format='person.name.last',

age int(3) not null field_format='person.age',

price_1 double(8,2) field_format='d.0',

price_2 double(8,2) field_format='d.1',

price_3 double(8,2) field_format='d.2')

engine=connect table_type=MONGO tabname='tin'

connection='mongodb://localhost:27017';

Now it is possible to populate it by:

insert into testin values

(1789, 'Welcome', 'Olivier','Bertrand',56, 3.14, 2.36, 8.45),

(1515, 'Hello', 'John','Smith',32, 65.17, 98.12, NULL),

(2014, 'Coucou', 'Foo','Bar',20, -1.0, 74, 81356);

The result will be:

n m surname name age price_1 price_2 price_3

1789 Welcome Olivier Bertrand 56 3,14 2,36 8,45

1515 Hello John Smith 32 65,17 98,12 NULL

2014 Coucou Foo Bar 20 -1 74 81356

Note: If the collection does not exist yet when creating the table and inserting in it, MongoDB creates it automatically.

It can be updated by queries such as:

3268/4161

update tintin set price_3 = 83.36 where n = 2014;

To look how the array is generated, let us create another table:

From Connect 1.7.0002

create table tintin (

n int not null,

name char(16) not null jpath='person.name.first',

prices varchar(255) jpath='d')

engine=connect table_type=MONGO tabname='tin';

Before Connect 1.7.002

create table tintin (

n int not null,

name char(16) not null field_format='person.name.first',

prices varchar(255) field_format='d')

engine=connect table_type=MONGO tabname='in';

This table is displayed as:

From Connect 1.7.0002

n name prices

1789 Olivier [3.1400000000000001243,2.3599999999999998757,8.4499999999999992895]

1515 John [65.170000000000001705,98.120000000000004547,null]

2014 Foo [null,74.0,83.359999999999999432]

Before Connect 1.7.002

n name prices

1789 Olivier [3.14, 2.36, 8.45]

1515 John [65.17, 98.12]

2014 Foo [<null>, 74.0, 83.36]

Note: This last table can be used to make array calculations like with JSON tables using the JSON UDF functions. For

instance:

select name, jsonget_real(prices,'[+]') sum_prices, jsonget_real(prices,'[!]') avg_prices from tintin

This query returns:

name sum_prices avg_prices

Olivier 13.95 4.65

John 163.29 81.64

Foo 157,36 78.68

Note: When calculating on arrays, null values are ignored.

Status of MONGO Table Type
This table type is still under development. It has significant advantages over the JSON type to access MongoDB collections.

Firstly, the access being direct, tables are always up to date whether the collection has been modified by another

application. Performance wise, it can be faster than JSON, because most processing is done by MongoDB on BSON, its

internal representation of JSON data, which is designed to optimize all operations. Note that using the MongoDB C Driver

can be faster than using the MongoDB Java Driver.

Current Restrictions
Option <CATFUNC=tables= is not implemented yet.

3269/4161

Options SRCDEF and EXECSRC do not apply to MONGO tables.

5.3.7.6.19 CONNECT MYSQL Table Type:
Accessing MySQL/MariaDB Tables

Contents
1. Charset Specification

2. Indexing of MYSQL tables

3. Data Modifying Operations

4. Sending commands to a MariaDB Server

1. Sending several commands in one call

2. Retrieving Warnings and Notes

5. Connection Engine Limitations

1. Data types

2. SQL Limitations

6. CONNECT MYSQL versus FEDERATED

This table type uses libmysql API to access a MySQL or MariaDB table or view. This table must be created on the current

server or on another local or remote server. This is similar to what the FederatedX storage engine provides with some

differences.

Currently the Federated-like syntax can be used to create such a table, for instance:

create table essai (

 num integer(4) not null,

 line char(15) not null)

engine=CONNECT table_type=MYSQL

connection='mysql://root@localhost/test/people';

The connection string can have the same syntax as that used by FEDERATED

scheme://username:password@hostname:port/database/tablename

scheme://username@hostname/database/tablename

scheme://username:password@hostname/database/tablename

scheme://username:password@hostname/database/tablename

However, it can also be mixed with connect standard options. For instance:

create table essai (

 num integer(4) not null,

 line char(15) not null)

engine=CONNECT table_type=MYSQL dbname=test tabname=people

connection='mysql://root@localhost';

It can also be specified as a reference to a federated server:

connection="connection_one"

connection="connection_one/table_foo"

The pure (deprecated) CONNECT syntax is also accepted:

create table essai (

 num integer(4) not null,

 line char(15) not null)

engine=CONNECT table_type=MYSQL dbname=test tabname=people

option_list='user=root,host=localhost';

The specific connection items are:

Option Default value Description

Table The table name The name of the table to access.

Database The current DB name The database where the table is located.

Host localhost* The host of the server, a name or an IP address.

3270/4161

https://mariadb.com/kb/en/federatedx/

User The current user The connection user name.

Password No password An optional user password.

Port The currently used port The port of the server.

Quoted 0 1 if remote Tabname must be quoted.

- When the host is specified as <localhost=, the connection is established on Linux using Linux sockets. On Windows,

the connection is established by default using shared memory if it is enabled. If not, the TCP protocol is used. An

alternative is to specify the host as <.= to use a named pipe connection (if it is enabled). This makes possible to use

these table types with server skipping networking.

Caution: Take care not to refer to the MYSQL table itself to avoid an infinite loop!

MYSQL table can refer to the current server as well as to another server. Views can be referred by name or directly giving a

source definition, for instance:

create table grp engine=connect table_type=mysql

CONNECTION='mysql://root@localhost/test/people'

SRCDEF='select title, count(*) as cnt from employees group by title';

When specified, the columns of the mysql table must exist in the accessed table with the same name, but can be only a

subset of them and specified in a different order. Their type must be a type supported by CONNECT and, if it is not identical

to the type of the accessed table matching column, a conversion can be done according to the rules given in Data type

conversion.

Note: For columns prone to be targeted by a where clause, keep the column type compatible with the source table column

type (numeric or character) to have a correct rephrasing of the where clause.

If you do not want to restrict or change the column definition, do not provide it and leave CONNECT get the column definition

from the remote server. For instance:

create table essai engine=CONNECT table_type=MYSQL

connection='mysql://root@localhost/test/people';

This will create the essai table with the same columns than the people table. If the target table contains CONNECT

incompatible type columns, see Data type conversion to know how these columns can be converted or skipped.

Charset Specification
When accessing the remote table, CONNECT sets the connection charset set to the default local table charset as the

FEDERATED engine does.

Do not specify a column character set if it is different from the table default character set even when it is the case on the

remote table. This is because the remote column is translated to the local table character set when reading it. This is the

default but it can be modified by the setting the character_set_results variable of the target server. If it must keep its setting,

for instance to UTF8 when containing Unicode characters, specify the local default charset to its character set.

This means that it is not possible to correctly retrieve a remote table if it contains columns having different character sets. A

solution is to retrieve it by several local tables, each accessing only columns with the same character set.

Indexing of MYSQL tables
Indexes are rarely useful with MYSQL tables. This is because CONNECT tries to access only the requested rows. For

instance if you ask:

select * from essai where num = 23;

CONNECT will construct and send to the server the query:

SELECT num, line FROM people WHERE num = 23

If the people table is indexed on num, indexing will be used on the remote server. This, in all cases, will limit the amount of

data to retrieve on the network.

However, an index can be specified for columns that are prone to be used to join another table to the MYSQL table. For

3271/4161

instance:

select d.id, d.name, f.dept, f.salary

from loc_tab d straight_join cnc_tab f on d.id = f.id

where f.salary > 10000;

If the id column of the remote table addressed by the cnc_tab MYSQL table is indexed (which is likely if it is a key) you

should also index the id column of the MYSQL cnc_tab table. If so, using <remote= indexing as does FEDERATED, only the

useful rows of the remote table will be retrieved during the join process. However, because these rows are retrieved by

separate SELECT statements, this will be useful only when retrieving a few rows of a big table.

In particular, you should not specify an index for columns not used for joining and above all DO NOT index a joined column if

it is not indexed in the remote table. This would cause multiple scans of the remote table to retrieve the joined rows one by

one.

Data Modifying Operations
The CONNECT MYSQL type supports SELECT and INSERT and a somewhat limited form of UPDATE and DELETE.

These are described below.

The MYSQL type uses similar methods than the ODBC type to implement the INSERT, UPDATE and DELETE commands.

Refer to the ODBC chapter for the restrictions concerning them.

For the UPDATE and DELETE commands, there are fewer restrictions because the remote server being a MySQL server,

the syntax of the command will be always acceptable by the remote server.

For instance, you can freely use keywords like IGNORE or LOW_PRIORITY as well as scalar functions in the SET and

WHERE clauses.

However, there is still an issue on multi-table statements. Let us suppose you have a t1 table on the remote server and want

to execute a query such as:

update essai as x set line = (select msg from t1 where id = x.num)

where num = 2;

When parsed locally, you will have errors if no t1 table exists or if it does not have the referenced columns. When t1 does

not exist, you can overcome this issue by creating a local dummy t1 table:

create table t1 (id int, msg char(1)) engine=BLACKHOLE;

This will make the local parser happy and permit to execute the command on the remote server. Note however that having a

local MySQL table defined on the remote t1 table does not solve the problem unless it is also names t1 locally.

This is why, to permit to have all types of commands executed by the data source without any restriction, CONNECT

provides a specific MySQL table subtype described now.

Sending commands to a MariaDB Server
This can be done like for ODBC or JDBC tables by defining a specific table that will be used to send commands and get the

result of their execution..

create table send (

 command varchar(128) not null,

 warnings int(4) not null flag=3,

 number int(5) not null flag=1,

 message varchar(255) flag=2)

engine=connect table_type=mysql

connection='mysql://user@host/database'

option_list='Execsrc=1,Maxerr=2';

The key points in this create statement are the EXECSRC option and the column definition.

The EXECSRC option tells that this table will be used to send commands to the MariaDB server. Most of the sent

commands do not return result set. Therefore, the table columns are used to specify the command to be executed and to get

the result of the execution. The name of these columns can be chosen arbitrarily, their function coming from the FLAG

value:

Flag=0: The command to execute (the default)

3272/4161

Flag=1: The number of affected rows, or the result number of columns if the command would return a result set.

Flag=2: The returned (eventually error) message.

Flag=3: The number of warnings.

How to use this table and specify the command to send? By executing a command such as:

select * from send where command = 'a command';

This will send the command specified in the WHERE clause to the data source and return the result of its execution. The

syntax of the WHERE clause must be exactly as shown above. For instance:

select * from send where command =

'CREATE TABLE people (

num integer(4) primary key autoincrement,

line char(15) not null';

This command returns:

command warnings number message

CREATE TABLE people (num integer(4) primary key aut... 0 0 Affected rows

Sending several commands in one call

It can be faster to execute because there will be only one connection for all of them. To send several commands in one call,

use the following syntax:

select * from send where command in (

"update people set line = 'Two' where id = 2",

"update people set line = 'Three' where id = 3");

When several commands are sent, the execution stops at the end of them or after a command that is in error. To continue

after n errors, set the option maxerr=n (0 by default) in the option list.

Note 1: It is possible to specify the SRCDEF option when creating an EXECSRC table. It will be the command sent by

default when a WHERE clause is not specified.

Note 2: Backslashes inside commands must be escaped. Simple quotes must be escaped if the command is specified

between simple quotes, and double quotes if it is specified between double quotes.

Note 3: Sent commands apply in the specified database. However, they can address any table within this database.

Note 4: Currently, all commands are executed in mode AUTOCOMMIT.

Retrieving Warnings and Notes

If a sent command causes warnings to be issued, it is useless to resend a <show warnings= command because the MariaDB

server is opened and closed when sending commands. Therefore, getting warnings requires a specific (and tricky) way.

To indicate that warning text must be added to the returned result, you must send a multi-command query containing

<pseudo= commands that are not sent to the server but directly interpreted by the EXECSRC table. These <pseudo=

commands are:

Warning To get warnings

Note To get notes

Error To get errors returned as warnings (?)

Note that they must be spelled (case insensitive) exactly as above, no final <s=. For instance:

3273/4161

select * from send where command in ('Warning','Note',

'drop table if exists try',

'create table try (id int key auto_increment, msg varchar(32) not

null) engine=aria',

"insert into try(msg) values('One'),(NULL),('Three') ",

"insert into try values(2,'Deux') on duplicate key update msg =

'Two'",

"insert into try(message) values('Four'),('Five'),('Six')",

'insert into try(id) values(NULL)',

"update try set msg = 'Four' where id = 4",

'select * from try');

This can return something like this:

command warnings number message

drop table if exists try 1 0 Affected rows

Note 0 1051 Unknown table 'try'

create table try (id int key auto_increment,

msg...
0 0 Affected rows

insert into try(msg) values('One'),(NULL),

('Three')
1 3 Affected rows

Warning 0 1048 Column 'msg' cannot be null

insert into try values(2,'Deux') on duplicate

key...
0 2 Affected rows

insert into try(msge) values('Four'),('Five'),

('Six')
0 1054

Unknown column 'msge' in 'field

list'

insert into try(id) values(NULL) 1 1 Affected rows

Warning 0 1364
Field 'msg' doesn't have a default

value

update try set msg = 'Four' where id = 4 0 1 Affected rows

select * from try 0 2 Result set columns

The execution continued after the command in error because of the MAXERR option. Normally this would have stopped the

execution.

Of course, the last <select= command is useless here because it cannot return the table contain. Another MYSQL table

without the EXECSRC option and with proper column definition should be used instead.

Connection Engine Limitations

Data types

There is a maximum key.index length of 255 bytes. You may be able to declare the table without an index and rely on the

engine condition pushdown and remote schema.

The following types can't be used:

BIT

BINARY

TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

TINYTEXT, MEDIUMTEXT, LONGTEXT

ENUM

SET

Geometry types

Note: TEXT is allowed. However, the handling depends on the values given to the connect_type_conv and

connect_conv_size system variables, and by default no conversion of TEXT columns is permitted.

SQL Limitations

The following SQL queries are not supported

3274/4161

REPLACE INTO

INSERT ... ON DUPLICATE KEY UPDATE

CONNECT MYSQL versus FEDERATED
The CONNECT MYSQL table type should not be regarded as a replacement for the FEDERATED(X) engine. The main use

of the MYSQL type is to access other engine tables as if they were CONNECT tables. This was necessary when accessing

tables from some CONNECT table types such as TBL, XCOL, OCCUR, or PIVOT that are designed to access CONNECT

tables only. When their target table is not a CONNECT table, these types are silently using internally an intermediate

MYSQL table.

However, there are cases where you can use MYSQL CONNECT tables yourself, for instance:

1. When the table will be used by a TBL table. This enables you to specify the connection parameters for each sub-table

and is more efficient than using a local FEDERATED sub-table.

2. When the desired returned data is directly specified by the SRCDEF option. This is great to let the remote server do

most of the job, such as grouping and/or joining tables. This cannot be done with the FEDERATED engine.

3. To take advantage of the push_cond facility that adds a where clause to the command sent to the remote table. This

restricts the size of the result set and can be crucial for big tables.

4. For tables with the EXECSRC option on.

5. When doing tests. For instance to check a connection string.

If you need multi-table updating, deleting, or bulk inserting on a remote table, you can alternatively use the FEDERATED

engine or a <send= table specifying the EXECSRC option on.

5.3.7.6.20 CONNECT PROXY Table Type
Contents
1. Proxy on non-CONNECT Tables

2. Using a PROXY Table as a View

3. Avoiding PROXY table loop

4. Modifying Operations

A PROXY table is a table that accesses and reads the data of another table or view. For instance, to create a table based on

the boys FIX table:

create table xboy engine=connect

 table_type=PROXY tabname=boys;

Simply, PROXY being the default type when TABNAME is specified:

create table xboy engine=connect tabname=boys;

Because the boys table can be directly used, what can be the use of a proxy table? Well, its main use is to be internally used

by other table types such as TBL, XCOL, OCCUR, or PIVOT. Sure enough, PROXY tables are CONNECT tables, meaning

that they can be based on tables of any engines and accessed by table types that need to access CONNECT tables.

Proxy on non-CONNECT Tables
When the sub-table is a view or not a CONNECT table, CONNECT internally creates a temporary CONNECT table of

MYSQL type to access it. This connection uses the same default parameters as for a MYSQL table. It is also possible to

specify them to the PROXY table using in the PROXY declaration the same OPTION_LIST options as for a MYSQL table. Of

course, it is simpler and more natural to use directly the MYSQL type in this case.

Normally, the default parameters should enable the PROXY table to reconnect the server. However, an issue is when the

current user was logged using a password. The security protocol prevents CONNECT to retrieve this password and

requires it to be given in the PROXY table create statement. For instance adding to it:

... option_list='Password=mypass';

However, it is often not advisable to write in clear a password that can be seen by all user able to see the table declaration

by show create table, in particular, if the table is used when the current user is root. To avoid this, a specific user should be

created on the local host that will be used by proxy tables to retrieve local tables. This user can have minimum grant

options, for instance SELECT on desired directories, and needs no password. Supposing 8proxy9 is such a user, the option

list to add will be:
3275/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

... option_list='user=proxy';

Using a PROXY Table as a View
A PROXY table can also be used by itself to modify the way a table is viewed. For instance, a proxy table does not use the

indexes of the object table. It is also possible to define its columns with different names or type, to use only some of them or

to changes their order. For instance:

create table city (

 city varchar(11),

 boy char(12) flag=1,

 birth date)

engine=CONNECT tabname=boys;

select * from city;

This will display:

city boy birth

Boston John 1986-01-25

Boston Henry 1987-06-07

San Jose George 1981-08-10

Chicago Sam 1979-11-22

Dallas James 1992-05-13

Boston Bill 1986-09-11

Here we did not have to specify column format or offset because data are retrieved from the boys table, not directly from the

boys.txt file. The flag option of the boy column indicates that it correspond to the first column of the boys table, the name

column.

Avoiding PROXY table loop
CONNECT is able to test whether a PROXY , or PROXY -based, table refers directly or indirectly to itself. If a direct reference

can tested at table creation, an indirect reference can only be tested when executing a query on the table. However, this is

possible only for local tables. When using remote tables or views, a problem can occur if the remote table or the view refers

back to one of the local tables of the chain. The same caution should be used than when using FEDERATEDX tables.

Note: All PROXY or PROXY -based tables are read-only in this version.

Modifying Operations
All INSERT / UPDATE / DELETE operations can be used with proxy tables. However, the same restrictions applying to the

source table also apply to the proxy table.

Note: All PROXY and PROXY-based table types are not indexable.

5.3.7.6.21 CONNECT XCOL Table Type
Contents
1. Using Special Columns with XCOL

2. XCOL tables based on specified views

XCOL tables are based on another table or view, like PROXY tables. This type can be used when the object table has a

column that contains a list of values.

Suppose we have a 'children' table that can be displayed as:

name childlist

Sophie Vivian, Antony

3276/4161

Lisbeth Lucy,Charles,Diana

Corinne

Claude Marc

Janet Arthur, Sandra, Peter, John

We can have a different view on these data, where each child will be associated with his/her mother by creating an XCOL

table by:

CREATE TABLE xchild (

 mother char(12) NOT NULL,

 child char(12) DEFAULT NULL flag=2

) ENGINE=CONNECT table_type=XCOL tabname='chlist'

option_list='colname=child';

The COLNAME option specifies the name of the column receiving the list items. This will return from:

select * from xchild;

The requested view:

mother child

Sophia Vivian

Sophia Antony

Lisbeth Lucy

Lisbeth Charles

Lisbeth Diana

Corinne NULL

Claude Marc

Janet Arthur

Janet Sandra

Janet Peter

Janet John

Several things should be noted here:

When the original children field is void, what happens depends on the NULL specification of the "multiple" column. If it

is nullable, like here, a void string will generate a NULL value. However, if the column is not nullable, no row will be

generated at all.

Blanks after the separator are ignored.

No copy of the original data was done. Both tables use the same source data.

Specifying the column definitions in the CREATE TABLE statement is optional.

The "multiple" column child can be used as any other column. For instance:

select * from xchild where substr(child,1,1) = 'A';

This will return:

Mother Child

Sophia Antony

Janet Arthur

If a query does not involve the "multiple" column, no row multiplication will be done. For instance:

select mother from xchild;

This will just return all the mothers:

3277/4161

mother

Sophia

Lisbeth

Corinne

Claude

Janet

The same occurs with other types of select statements, for instance:

select count(*) from xchild; -- returns 5

select count(child) from xchild; -- returns 10

select count(mother) from xchild; -- returns 5

Grouping also gives different result:

select mother, count(*) from xchild group by mother;

Replies:

mother count(*)

Claude 1

Corinne 1

Janet 1

Lisbeth 1

Sophia 1

While the query:

select mother, count(child) from xchild group by mother;

Gives the more interesting result:

mother count(child)

Claude 1

Corinne 0

Janet 4

Lisbeth 3

Sophia 2

Some more options are available for this table type:

Option Description

Sep_char The separator character used in the "multiple" column, defaults to the comma.

Mult
Indicates the max number of multiple items. It is used to internally calculate the max size of the table and

defaults to 10. (To be specified in OPTION_LIST).

Using Special Columns with XCOL
Special columns can be used in XCOL tables. The mostly useful one is ROWNUM that gives the rank of the value in the list

of values. For instance:

CREATE TABLE xchild2 (

rank int NOT NULL SPECIAL=ROWID,

mother char(12) NOT NULL,

child char(12) NOT NULL flag=2

) ENGINE=CONNECT table_type=XCOL tabname='chlist' option_list='colname=child';

3278/4161

This table will be displayed as:

rank mother child

1 Sophia Vivian

2 Sophia Antony

1 Lisbeth Lucy

2 Lisbeth Charles

3 Lisbeth Diana

1 Claude Marc

1 Janet Arthur

2 Janet Sandra

3 Janet Peter

4 Janet John

To list only the first child of each mother you can do:

SELECT mother, child FROM xchild2 where rank = 1 ;

returning:

mother child

Sophia Vivian

Lisbeth Lucy

Claude Marc

Janet Arthur

However, note the following pitfall: trying to get the names of all mothers having more than 2 children cannot be done by:

SELECT mother FROM xchild2 where rank > 2;

This is because with no row multiplication being done, the rank value is always 1. The correct way to obtain this result is

longer but cannot use the ROWNUM column:

SELECT mother FROM xchild2 group by mother having count(child) > 2;

XCOL tables based on specified views
Instead of specifying a source table name via the TABNAME option, it is possible to retrieve data from a <view= whose

definition is given in a new option SRCDEF . For instance:

create table xsvars engine=connect table_type=XCOL

srcdef='show variables like "optimizer_switch"'

option_list='Colname=Value';

Then, for instance:

select value from xsvars limit 10;

This will display something like:

value

index_merge=on

index_merge_union=on

index_merge_sort_union=on

index_merge_intersection=on

3279/4161

index_merge_sort_intersection=off

engine_condition_pushdown=off

index_condition_pushdown=on

derived_merge=on

derived_with_keys=on

firstmatch=on

Note: All XCOL tables are read only.

5.3.7.6.22 CONNECT OCCUR Table Type
Similarly to the XCOL table type, OCCUR is an extension to the PROXY type when referring to a table or view having several

columns containing the same kind of data. It enables having a different view of the table where the data from these columns

are put in a single column, eventually causing several rows to be generated from one row of the object table. For example,

supposing we have a pets table:

name dog cat rabbit bird fish

John 2 0 0 0 0

Bill 0 1 0 0 0

Mary 1 1 0 0 0

Lisbeth 0 0 2 0 0

Kevin 0 2 0 6 0

Donald 1 0 0 0 3

We can create an occur table by:

create table xpet (

 name varchar(12) not null,

 race char(6) not null,

 number int not null)

engine=connect table_type=occur tabname=pets

option_list='OccurCol=number,RankCol=race'

Colist='dog,cat,rabbit,bird,fish';

When displaying it by

select * from xpet;

We will get the result:

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

First of all, the values of the column listed in the Colist option have been put in a unique column whose name is given by the

OccurCol option. When several columns have non null (or pseudo-null) values, several rows are generated, with the other

normal columns values repeated.

In addition, an optional special column was added whose name is given by the RankCol option. This column contains the
3280/4161

name of the source column from which the value of the OccurCol column comes from. It permits here to know the race of

the pets whose number is given in number.

This table type permit to make queries that would be more complicated to make on the original tables. For instance to know

who as more than 1 pet of a kind, you can simply ask:

select * from xpet where number > 1;

You will get the result:

name race number

John dog 2

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald fish 3

Note 1: Like for XCOL tables, no row multiplication for queries not implying the Occur column.

Note 2: Because the OccurCol was declared "not null" no rows were generated for null or pseudo-null values of the column

list. If the OccurCol is declared as nullable, rows are also generated for columns containing null or pseudo-null values.

Occur tables can be also defined from views or source definition. Also, CONNECT is able to generate the column definitions

if not specified. For example:

create table ocsrc engine=connect table_type=occur

colist='january,february,march,april,may,june,july,august,september,

october,november,december' option_list='rankcol=month,occurcol=day'

srcdef='select ''Foo'' name, 8 january, 7 february, 2 march, 1 april,

 8 may, 14 june, 25 july, 10 august, 13 september, 22 october, 28

 november, 14 december';

This table is displayed as:

name month day

Foo january 8

Foo february 7

Foo march 2

Foo april 1

Foo may 8

Foo june 14

Foo july 25

Foo august 10

Foo september 13

Foo october 22

Foo november 28

Foo december 14

5.3.7.6.23 CONNECT PIVOT Table Type

3281/4161

Contents
1. Using the PIVOT Tables Type

2. Restricting the Columns in a Pivot Table

3. PIVOT Create Table Syntax

1. Additional Access Options

4. Defining a Pivot Table

1. Defining a Pivot Table from a Source Table

2. Directly Defining the Source of a Pivot Table in SQL

5. Specifying the Columns Corresponding to the Pivot Column

6. Pivoting Big Source Tables

This table type can be used to transform the result of another table or view (called the source table) into a pivoted table

along <pivot= and <facts= columns. A pivot table is a great reporting tool that sorts and sums (by default) independent of the

original data layout in the source table.

For example, let us suppose you have the following <Expenses= table:

Who Week What Amount

Joe 3 Beer 18.00

Beth 4 Food 17.00

Janet 5 Beer 14.00

Joe 3 Food 12.00

Joe 4 Beer 19.00

Janet 5 Car 12.00

Joe 3 Food 19.00

Beth 4 Beer 15.00

Janet 5 Beer 19.00

Joe 3 Car 20.00

Joe 4 Beer 16.00

Beth 5 Food 12.00

Beth 3 Beer 16.00

Joe 4 Food 17.00

Joe 5 Beer 14.00

Janet 3 Car 19.00

Joe 4 Food 17.00

Beth 5 Beer 20.00

Janet 3 Food 18.00

Joe 4 Beer 14.00

Joe 5 Food 12.00

Janet 3 Beer 18.00

Janet 4 Car 17.00

Janet 5 Food 12.00

Pivoting the table contents using the 'Who' and 'Week' fields for the left columns, and the 'What' field for the top heading and

summing the 'Amount' fields for each cell in the new table, gives the following desired result:

Who Week Beer Car Food

Beth 3 16.00 0.00 0.00

Beth 4 15.00 0.00 17.00

Beth 5 20.00 0.00 12.00

Janet 3 18.00 19.00 18.00

Janet 4 0.00 17.00 0.00

3282/4161

Janet 5 33.00 12.00 12.00

Joe 3 18.00 20.00 31.00

Joe 4 49.00 0.00 34.00

Joe 5 14.00 0.00 12.00

Note that SQL enables you to get the same result presented differently by using the <group by= clause, namely:

select who, week, what, sum(amount) from expenses

 group by who, week, what;

However there is no way to get the pivoted layout shown above just using SQL. Even using embedded SQL programming

for some DBMS is not quite simple and automatic.

The Pivot table type of CONNECT makes doing this much simpler.

Using the PIVOT Tables Type
To get the result shown in the example above, just define it as a new table with the statement:

create table pivex

engine=connect table_type=pivot tabname=expenses;

You can now use it as any other table, for instance to display the result shown above, just say:

select * from pivex;

The CONNECT implementation of the PIVOT table type does much of the work required to transform the source table:

1. Finding the <Facts= column, by default the last column of the source table. Finding <Facts= or <Pivot= columns work

only for table based pivot tables. They do not for view or srcdef based pivot tables, for which they must be explicitly

specified.

2. Finding the <Pivot= column, by default the last remaining column.

3. Choosing the aggregate function to use, <SUM= by default.

4. Constructing and executing the <Group By= on the <Facts= column, getting its result in memory.

5. Getting all the distinct values in the <Pivot= column and defining a <Data= column for each.

6. Spreading the result of the intermediate memory table into the final table.

The source table <Pivot= column must not be nullable (there are no such things as a <null= column) The creation will be

refused even is this nullable column actually does not contain null values.

If a different result is desired, Create Table options are available to change the defaults used by Pivot. For instance if we

want to display the average expense for each person and product, spread in columns for each week, use the following

statement:

create table pivex2

engine=connect table_type=pivot tabname=expenses

option_list='PivotCol=Week,Function=AVG';

Now saying:

select * from pivex2;

Will display the resulting table:

Who What 3 4 5

Beth Beer 16.00 15.00 20.00

Beth Food 0.00 17.00 12.00

Janet Beer 18.00 0.00 16.50

Janet Car 19.00 17.00 12.00

Janet Food 18.00 0.00 12.00

3283/4161

Joe Beer 18.00 16.33 14.00

Joe Car 20.00 0.00 0.00

Joe Food 15.50 17.00 12.00

Restricting the Columns in a Pivot Table
Let us suppose that we want a Pivot table from expenses summing the expenses for all people and products whatever

week it was bought. We can do this just by removing from the pivex table the week column from the column list.

alter table pivex drop column week;

The result we get from the new table is:

Who Beer Car Food

Beth 51.00 0.00 29.00

Janet 51.00 48.00 30.00

Joe 81.00 20.00 77.00

Note: Restricting columns is also needed when the source table contains extra columns that should not be part of the pivot

table. This is true in particular for key columns that prevent a proper grouping.

PIVOT Create Table Syntax
The Create Table statement for PIVOT tables uses the following syntax:

create table pivot_table_name

[(column_definition)]

engine=CONNECT table_type=PIVOT

{tabname='source_table_name' | srcdef='source_table_def'}

[option_list='pivot_table_option_list'];

The column definition has two sets of columns:

1. A set of columns belonging to the source table, not including the <facts= and <pivot= columns.

2. <Data= columns receiving the values of the aggregated <facts= columns named from the values of the <pivot= column.

They are indicated by the <flag= option.

The options and sub-options available for Pivot tables are:

Option Type Description

Tabname [DB.]Name The name of the table to <pivot=. If not set SrcDef must be specified.

SrcDef SQL_statement The statement used to generate the intermediate mysql table.

DBname name The name of the database containing the source table. Defaults to the current database.

Function* name The name of the aggregate function used for the data columns, SUM by default.

PivotCol* name
Specifies the name of the Pivot column whose values are used to fill the <data= columns

having the flag option.

FncCol* [func(]name[)]
Specifies the name of the data <Facts= column. If the form func(name) is used, the aggregate

function name is set to func.

Groupby* Boolean Set it to True (1 or Yes) if the table already has a GROUP BY format.

Accept* Boolean To accept non matching Pivot column values.

: These options must be specified in the OPTION_LIST.

Additional Access Options

There are four cases where pivot must call the server containing the source table or on which the SrcDef statement must be

executed:

1. The source table is not a CONNECT table. 2. The SrcDef option is specified. 3. The source table is on another server. 4.

3284/4161

The columns are not specified.

By default, pivot tries to call the currently used server using host=localhost, user=root not using password, and port=3306.

However, this may not be what is needed, in particular if the local root user has a password in which case you can get an

<access denied= error message when creating or using the pivot table.

Specify the host, user, password and/or port options in the option_list to override the default connection options used to

access the source table, get column specifications, execute the generated group by or SrcDef query.

Defining a Pivot Table
There are principally two ways to define a PIVOT table:

1. From an existing table or view. 2. Directly giving the SQL statement returning the result to pivot.

Defining a Pivot Table from a Source Table

The tabname standard table option is used to give the name of the source table or view.

For tables, the internal Group By will be internally generated, except when the GROUPBY option is specified as true. Do it

only when the table or view has a valid GROUP BY format.

Directly Defining the Source of a Pivot Table in SQL

Alternatively, the internal source can be directly defined using the SrcDef option that must have the proper group by format.

As we have seen above, a proper Pivot Table is made from an internal intermediate table resulting from the execution of a

GROUP BY statement. In many cases, it is simpler or desirable to directly specify this when creating the pivot table. This

may be because the source is the result of a complex process including filtering and/or joining tables.

To do this, use the SrcDef option, often replacing all other options. For instance, suppose that in the first example we are

only interested in weeks 4 and 5. We could of course display it by:

select * from pivex where week in (4,5);

However, what if this table is a huge table? In this case, the correct way to do it is to define the pivot table as this:

create table pivex4

engine=connect table_type=pivot

option_list='PivotCol=what,FncCol=amount'

SrcDef='select who, week, what, sum(amount) from expenses

where week in (4,5) group by who, week, what';

If your source table has millions of records and you plan to pivot only a small subset of it, doing so will make a lot of a

difference performance wise. In addition, you have entire liberty to use expressions, scalar functions, aliases, join, where

and having clauses in your SQL statement. The only constraint is that you are responsible for the result of this statement to

have the correct format for the pivot processing.

Using SrcDef also permits to use expressions and/or scalar functions. For instance:

create table xpivot (

Who char(10) not null,

What char(12) not null,

First double(8,2) flag=1,

Middle double(8,2) flag=1,

Last double(8,2) flag=1)

engine=connect table_type=PIVOT

option_list='PivotCol=wk,FncCol=amnt'

Srcdef='select who, what, case when week=3 then ''First'' when

week=5 then ''Last'' else ''Middle'' end as wk, sum(amount) *

6.56 as amnt from expenses group by who, what, wk';

Now the statement:

select * from xpivot;

Will display the result:

Who What First Middle Last

3285/4161

Beth Beer 104.96 98.40 131.20

Beth Food 0.00 111.52 78.72

Janet Beer 118.08 0.00 216.48

Janet Car 124.64 111.52 78.72

Janet Food 118.08 0.00 78.72

Joe Beer 118.08 321.44 91.84

Joe Car 131.20 0.00 0.00

Joe Food 203.36 223.04 78.72

Note 1: to avoid multiple lines having the same fixed column values, it is mandatory in SrcDef to place the pivot column at

the end of the group by list.

Note 2: in the create statement SrcDef, it is mandatory to give aliases to the columns containing expressions so they are

recognized by the other options.

Note 3: in the SrcDef select statement, quotes must be escaped because the entire statement is passed to MariaDB

between quotes. Alternatively, specify it between double quotes.

Note 4: We could have left CONNECT do the column definitions. However, because they are defined from the sorted

names, the Middle column had been placed at the end of them.

Specifying the Columns Corresponding to the Pivot
Column
These columns must be named from the values existing in the <pivot= column. For instance, supposing we have the

following pet table:

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

Pivoting it using race as the pivot column is done with:

create table pivet

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1';

This gives the result:

name dog cat rabbit bird fish

John 2 0 0 0 0

Bill 0 1 0 0 0

Mary 1 1 0 0 0

Lisbeth 0 0 2 0 0

Kevin 0 2 0 6 0

Donald 1 0 0 0 3

By the way, does this ring a bell? It shows that in a way PIVOT tables are doing the opposite of what OCCUR tables do.

3286/4161

We can alternatively define specifically the table columns but what happens if the Pivot column contains values that is not

matching a <data= column? There are three cases depending on the specified options and flags.

First case: If no specific options are specified, this is an error an when trying to display the table. The query will abort with

an error message stating that a non-matching value was met. Note that because the column list is established when

creating the table, this is prone to occur if some rows containing new values for the pivot column are inserted in the source

table. If this happens, you should re-create the table or manually add the new columns to the pivot table.

Second case: The accept option was specified. For instance:

create table xpivet2 (

name varchar(12) not null,

dog int not null default 0 flag=1,

cat int not null default 0 flag=1)

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1,Accept=1';

No error will be raised and the non-matching values will be ignored. This table will be displayed as:

name dog cat

John 2 0

Bill 0 1

Mary 1 1

Lisbeth 0 0

Kevin 0 2

Donald 1 0

Third case: A <dump= column was specified with the flag value equal to 2. All non-matching values will be added in this

column. For instance:

create table xpivet (

name varchar(12) not null,

dog int not null default 0 flag=1,

cat int not null default 0 flag=1,

other int not null default 0 flag=2)

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1';

This table will be displayed as:

name dog cat other

John 2 0 0

Bill 0 1 0

Mary 1 1 0

Lisbeth 0 0 2

Kevin 0 2 6

Donald 1 0 3

It is a good idea to provide such a <dump= column if the source table is prone to be inserted new rows that can have a

value for the pivot column that did not exist when the pivot table was created.

Pivoting Big Source Tables
This may sometimes be risky. If the pivot column contains too many distinct values, the resulting table may have too many

columns. In all cases the process involved, finding distinct values when creating the table or doing the group by when using

it, can be very long and sometimes can fail because of exhausted memory.

Restrictions by a where clause should be applied to the source table when creating the pivot table rather than to the pivot

table itself. This can be done by creating an intermediate table or using as source a view or a srcdef option.

3287/4161

All PIVOT tables are read only.

5.3.7.6.24 CONNECT TBL Table Type: Table
List

Contents
1. Sub-tables of not CONNECT engines

2. Using the TABID special column

3. Parallel Execution

This type allows defining a table as a list of tables of any engine and type. This is more flexible than multiple tables that must

be all of the same file type. This type does, but is more powerful than, what is done with the MERGE engine.

The list of the columns of the TBL table may not necessarily include all the columns of the tables of the list. If the name of

some columns is different in the sub-tables, the column to use can be specified by its position given by the FLAG option of

the column. If the ACCEPT option is set to true (Y or 1) columns that do not exist in some of the sub-tables are accepted

and their value will be null or pseudo-null (this depends on the nullability of the column) for the tables not having this column.

The column types can also be different and an automatic conversion will be done if necessary.

Note: If not specified, the column definitions are retrieved from the first table of the table list.

The default database of the sub-tables is the current database or if not, can be specified in the DBNAME option. For the

tables that are not in the default database, this can be specified in the table list. For instance, to create a table based on the

French table employe in the current database and on the English table employee of the db2 database, the syntax of the

create statement can be:

CREATE TABLE allemp (

 SERIALNO char(5) NOT NULL flag=1,

 NAME varchar(12) NOT NULL flag=2,

 SEX smallint(1),

 TITLE varchar(15) NOT NULL flag=3,

 MANAGER char(5) DEFAULT NULL flag=4,

 DEPARTMENT char(4) NOT NULL flag=5,

 SECRETARY char(5) DEFAULT NULL flag=6,

 SALARY double(8,2) NOT NULL flag=7)

ENGINE=CONNECT table_type=TBL

table_list='employe,db2.employee' option_list='Accept=1';

The search for columns in sub tables is done by name and, if they exist with a different name, by their position given by a

not null FLAG option. Column sex exists only in the English table (FLAG is 0). Its values will null value for the French

table.

For instance, the query:

select name, sex, title, salary from allemp where department = 318;

Can reply:

NAME SEX TITLE SALARY

BARBOUD NULL VENDEUR 9700.00

MARCHANT NULL VENDEUR 8800.00

MINIARD NULL ADMINISTRATIF 7500.00

POUPIN NULL INGENIEUR 7450.00

ANTERPE NULL INGENIEUR 6850.00

LOULOUTE NULL SECRETAIRE 4900.00

TARTINE NULL OPERATRICE 2800.00

WERTHER NULL DIRECTEUR 14500.00

VOITURIN NULL VENDEUR 10130.00

BANCROFT 2 SALESMAN 9600.00

3288/4161

MERCHANT 1 SALESMAN 8700.00

SHRINKY 2 ADMINISTRATOR 7500.00

WALTER 1 ENGINEER 7400.00

TONGHO 1 ENGINEER 6800.00

HONEY 2 SECRETARY 4900.00

PLUMHEAD 2 TYPIST 2800.00

WERTHER 1 DIRECTOR 14500.00

WHEELFOR 1 SALESMAN 10030.00

The first 9 rows, coming from the French table, have a null for the sex value. They would have 0 if the sex column had been

created NOT NULL.

Sub-tables of not CONNECT engines

Sub-tables are accessed as PROXY tables. For not CONNECT sub-tables that are accessed via the MySQL API, it is

possible like with PROXY to change the MYSQL default options. Of course, this will apply to all not CONNECT tables of the

list.

Using the TABID special column

The TABID special column can be used to see from which table the rows come from and to restrict the access to only some

of the sub-tables.

Let us see the following example where t1 and t2 are MyISAM tables similar to the ones given in the MERGE description:

create table xt1 (

 a int(11) not null,

 message char(20))

engine=CONNECT table_type=MYSQL tabname='t1'

option_list='database=test,user=root';

create table xt2 (

 a int(11) not null,

 message char(20))

engine=CONNECT table_type=MYSQL tabname='t2'

option_list='database=test,user=root';

create table toto (

 tabname char(8) not null special='TABID',

 a int(11) not null,

 message char(20))

engine=CONNECT table_type=TBL table_list='xt1,xt2';

select * from total;

The result returned by the SELECT statement is:

tabname a message

xt1 1 Testing

xt1 2 table

xt1 3 t1

xt2 1 Testing

xt2 2 table

xt2 3 t2

Now if you send the query:

select * from total where tabname = 'xt2';

CONNECT will analyze the where clause and only read the xt1 table. This can save time if you want to retrieve only a few

3289/4161

sub-tables from a TBL table containing many sub-tables.

Parallel Execution

Parallel Execution is currently unavailable until some bugs are fixed.

When the sub-tables are located on different servers, it is possible to execute the remote queries simultaneously instead of

sequentially. To enable this, set the thread option to yes.

Additional options available for this table type:

Option Description

Maxerr The max number of missing tables in the table list before an error is raised. Defaults to 0.

Accept If true, missing columns are accepted and return null values. Defaults to false.

Thread If true, enables parallel execution of remote sub-tables.

These options can be specified in the OPTION_LIST .

5.3.7.6.25 CONNECT - Using the TBL and
MYSQL Table Types Together

Contents
1. Remotely executing complex queries

2. Providing a list of servers

Used together, these types lift all the limitations of the FEDERATED and MERGE engines.

MERGE: Its limitation is obvious, the merged tables must be identical MyISAM tables, and MyISAM is not even the default

engine for MariaDB. However, TBL accesses a collection of CONNECT tables, but because these tables can be user

specified or internally created MYSQL tables, there is no limitation to the type of the tables that can be merged.

TBL is also much more flexible. The merged tables must not be "identical", they just should have the columns defined in the

TBL table. If the type of one column in a merged table is not the one of the corresponding column of the TBL table, the

column value will be converted. As we have seen, if one column of the TBL table of the TBL column does not exist in one of

the merged table, the corresponding value will be set to null. If columns in a sub-table have a different name, they can be

accessed by position using the FLAG column option of CONNECT.

However, one limitation of the TBL type regarding MERGE is that TBL tables are currently read-only; INSERT is not

supported by TBL. Also, keep using MERGE to access a list of identical MyISAM tables because it will be faster, not passing

by the MySQL API.

FEDERATED(X): The main limitation of FEDERATED is to access only MySQL/MariaDB tables. The MYSQL table type of

CONNECT has the same limitation but CONNECT provides the ODBC table type and JDBC table type that can access

tables of any RDBS providing an ODBC or JDBC driver (including MySQL even it is not really useful!)

Another major limitation of FEDERATED is to access only one table. By combining TBL and MYSQL tables, CONNECT

enables to access a collection of local or remote tables as one table. Of course the sub-tables can be on different servers.

With one SELECT statement, a company manager will be able to interrogate results coming from all of his subsidiary

computers. This is great for distribution, banking, and many other industries.

Remotely executing complex queries
Many companies or administrations must deal with distributed information. CONNECT enables to deal with it efficiently

without having to copy it to a centralized database. Let us suppose we have on some remote network machines m1, m2, &

mn some information contained in two tables t1 and t2.

Suppose we want to execute on all servers a query such as:

select c1, sum(c2) from t1 a, t2 b where a.id = b.id group by c1;

This raises many problems. Returning the column values of the t1 and t2 tables from all servers can be a lot of network

traffic. The group by on the possibly huge resulting tables can be a long process. In addition, the join on the t1 and t2 tables

may be relevant only if the joined tuples belong to the same machine, obliging to add a condition on an additional tabid or

servid special column.

3290/4161

https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

All this can be avoided and optimized by forcing the query to be locally executed on each server and retrieving only the

small results of the group by queries. Here is how to do it. For each remote machine, create a table that will retrieve the

locally executed query. For instance for m1:

create table rt1 engine=connect option_list='host=m1'

srcdef='select c1, sum(c2) as sc2 from t1 a, t2 b where a.id = b.id group by c1';

Note the alias for the functional column. An alias would be required for the c1 column if its name was different on some

machines. The t1 and t2 table names can also be eventually different on the remote machines. The true names must be

used in the SRCDEF parameter. This will create a set of tables with two columns named c1 and sc2 .

Then create the table that will retrieve the result of all these tables:

create table rtall engine=connect table_type=tbl

table_list='rt1,rt2,&,rtn' option_list='thread=yes';

Now you can retrieve the desired result by:

select c1, sum(sc2) from rtall;

Almost all the work will be done on the remote machines, simultaneously thanks to the thread option, making this query

super-fast even on big tables placed on many remote machines.

Thread is currently experimental. Use it only for test and report any malfunction on JIRA .

Providing a list of servers
An interesting case is when the query to run on remote machines is the same for all of them. It is then possible to avoid

declaring all sub-tables. In this case, the table list option will be used to specify the list of servers the SRCDEF query must

be sent. This will be a list of URL9s and/or Federated server names.

For instance, supposing that federated servers srv1, srv2, & srvn were created for all remote servers, it will be possible to

create a tbl table allowing getting the result of a query executed on all of them by:

create table qall [column definition]

engine=connect table_type=TBL srcdef='a query'

table_list='srv1,srv2,&,srvn' [option_list='thread=yes'];

For instance:

create table verall engine=connect table_type=TBL srcdef='select @@version' table_list=',server_one'

select * from verall;

This reply:

@@version

10.0.3-MariaDB-debug

10.0.2-MariaDB

Here the server list specifies a void server corresponding to the local running MariaDB and a federated server named

server_one.

1. ± To generate the columns from the SRCDEF query, CONNECT must execute it. This will make sure it is ok.

However, if the remote server is not connected yet, or the remote table not existing yet, you can alternatively specify

the columns in the create table statement.

[1]

5.3.7.6.26 CONNECT Table Types - Special
"Virtual" Tables

3291/4161

https://mariadb.com/kb/en/jira/

Contents
1. DIR Type

1. The Subdir option

2. The Nodir option (Windows)

2. Windows Management Instrumentation Table Type <WMI=

1. Getting column information

2. Performance Consideration

3. Syntax of WMI queries

3. MAC Address Table Type <MAC=

The special table types supported by CONNECT are the Virtual table type (VIR - introduced in MariaDB 10.0.15),

Directory Listing table type (DIR), the Windows Management Instrumentation Table Type (WMI), and the <Mac Address=

type (MAC).

These tables are <virtual tables=, meaning they have no physical data but rather produce result data using specific

algorithms. Note that this is close to what Views are, so they could be regarded as special views.

DIR Type
A table of type DIR returns a list of file name and description as a result set. To create a DIR table, use a Create Table

statement such as:

create table source (

 DRIVE char(2) NOT NULL,

 PATH varchar(256) NOT NULL,

 FNAME varchar(256) NOT NULL,

 FTYPE char(4) NOT NULL,

 SIZE double(12,0) NOT NULL flag=5,

 MODIFIED datetime NOT NULL)

engine=CONNECT table_type=DIR file_name='..*.cc';

When used in a query, the table returns the same file information listing than the system "DIR *.cc " statement would

return if executed in the same current directory (here supposedly ..\)

For instance, the query:

select fname, size, modified from source

 where fname like '%handler%';

Displays:

fname size modified

handler 152177 2011-06-13 18:08:29

sql_handler 25321 2011-06-13 18:08:31

Note: the important item in this table is the flag option value (set sequentially from 0 by default) because it determines which

particular information item is returned in the column:

Flag value Information

0 The disk drive (Windows)

1 The file path

2 The file name

3 The file type

4 The file attribute

5 The file size

6 The last write access date

7 The last read access date

8 The file creation date

The Subdir option

3292/4161

https://mariadb.com/kb/en/mariadb-10015-release-notes/

When specified in the create table statement, the subdir option indicates to list, in addition to the files contained in the

specified directory, all the files verifying the filename pattern that are contained in sub-directories of the specified directory.

For instance, using:

create table data (

 PATH varchar(256) NOT NULL flag=1,

 FNAME varchar(256) NOT NULL,

 FTYPE char(4) NOT NULL,

 SIZE double(12,0) NOT NULL flag=5)

engine=CONNECT table_type=DIR file_name='*.frm'

option_list='subdir=1';

select path, count(*), sum(size) from data group by path;

You will get the following result set showing how many tables are created in the MariaDB databases and what is the total

length of the FRM files:

path count(*) sum(size)

\CommonSource\mariadb-5.2.7\sql\data\connect\ 30 264469

\CommonSource\mariadb-5.2.7\sql\data\mysql\ 23 207168

\CommonSource\mariadb-5.2.7\sql\data\test\ 22 196882

The Nodir option (Windows)

The Boolean Nodir option can be set to false (0 or no) to add directories that match the file name pattern from the listed files

(it is true by default). This is an addition to CONNECT version 1.6. Previously, directory names matching pattern were listed

on Windows. Directories were and are never listed on Linux.

Note: The way file names are retrieved makes positional access to them impossible. Therefore, DIR tables cannot be

indexed or sorted when it is done using positions.

Be aware, in particular when using the subdir option, that queries on DIR tables are slow and can last almost forever if made

on a directory that contains a great number of files in it and its sub-directories.

dir tables can be used to populate a list of files used to create a multiple=2 table. However, this is not as useful as it was

when the multiple 3 did not exist.

Windows Management Instrumentation Table Type <WMI=

Note: This table type is available on Windows only.

WMI provides an operating system interface through which instrumented components provide information. Some Microsoft

tools to retrieve information through WMI are the WMIC console command and the WMI CMI Studio application.

The CONNECT WMI table type enables administrators and operators not capable of scripting or programming on top of

WMI to enjoy the benefit of WMI without even learning about it. It permits to present this information as tables that can be

queried, transformed, copied in documents or other tables.

To create a WMI table displaying information coming from a WMI provider, you must provide the namespace and the class

name that characterize the information you want to retrieve. The best way to find them is to use the WMI CIM Studio that

have tools to browse namespaces and classes and that can display the names of the properties of that class.

The column names of the tables must be the names (case insensitive) of the properties you want to retrieve. For instance:

create table alias (

 friendlyname char(32) not null,

 target char(50) not null)

engine=CONNECT table_type='WMI'

option_list='Namespace=root\\cli,Class=Msft_CliAlias';

WMI tables returns one row for each instance of the related information. The above example is handy to get the class

equivalent of the alias of the WMIC command and also to have a list of many classes commonly used.

Because most of the useful classes belong to the 'root\cimv2' namespace, this is the default value for WMI tables when the

namespace is not specified. Some classes have many properties whose name and type may not be known when creating

the table. To find them, you can use the WMI CMI Studio application but his will be rarely required because CONNECT is

3293/4161

able to retrieve them.

Actually, the class specification also has default values for some namespaces. For the 8root\cli9 namespace the class name

defaults to 8Msft_CliAlias9 and for the 8root_cimv29 namespace the class default value is 8Win32_ComputerSystemProduct9.

Because many class names begin with 8Win32_9 it is not necessary to say it and specifying the class as 8Product9 will

effectively use class 8Win32_Product9.

For example if you define a table as:

create table CSPROD engine=CONNECT table_type='WMI';

It will return the information on the current machine, using the class ComputerSystemProduct of the CIMV2 namespace. For

instance:

select * from csprod;

Will return a result such as:

Column Row 1

Caption Computer system product

Description Computer system product

IdentifyingNumber LXAP50X32982327A922300

Name Aspire 8920

SKUNumber

UUID 00FC523D-B8F7-DC12-A70E-00B0D1A46136

Vendor Acer

Version Aspire 8920

Note: This is a transposed display that can be obtained with some GUI.

Getting column information

An issue, when creating a WMI table, is to make its column definition. Indeed, even when you know the namespace and the

class for the wanted information, it is not easy to find what are the names and types of its properties. However, because

CONNECT can retrieve this information from the WMI provider, you can simply omit defining columns and CONNECT will do

the job.

Alternatively, you can get this information using a catalog table (see below).

Performance Consideration

Some WMI providers can be very slow to answer. This is not an issue for those that return few object instances, such as the

ones returning computer, motherboard, or Bios information. They generally return only one row (instance). However, some

can return many rows, in particular the "CIM_DataFile" class. This is why care must be taken about them.

Firstly, it is possible to limit the allocated result size by using the 8Estimate9 create table option. To avoid result truncation,

CONNECT allocates a result of 100 rows that is enough for almost all tables.The 'Estimate' option permits to reduce this

size for all classes that return only a few rows, and in some rare case to increase it to avoid truncation.

However, it is not possible to limit the time taken by some WMI providers to answer, in particular the CIM_DATAFILE class.

Indeed the Microsoft documentation says about it:

"Avoid enumerating or querying for all instances of CIM_DataFile on a computer because the volume of data is likely to

either affect performance or cause the computer to stop responding."

Sure enough, even a simple query such as:

select count(*) from cim where drive = 'D:' and path like '\\MariaDB\\%';

is prone to last almost forever (probably due to the LIKE clause). This is why, when not asking for some specific items, you

should consider using the DIR table type instead.

Syntax of WMI queries

3294/4161

Queries to WMI providers are done using the WQL language, not the SQL language. CONNECT does the job of making the

WQL query. However, because of the restriction of the WQL syntax, the WHERE clause will be generated only when

respecting the following restrictions:

1. No function.

2. No comparison between two columns.

3. No expression (currently a CONNECT restriction)

4. No BETWEEN and IN predicates.

Filtering with WHERE clauses not respecting these conditions will still be done by MariaDB only, except in the case of

CIM_Datafile class for the reason given above.

However, there is one point that is not covered yet, the syntax used to specify dates in queries. WQL does not recognize

dates as number items but translates them to its internal format dates specified as text. Many formats are recognized as

described in the Microsoft documentation but only one is useful because common to WQL and MariaDB SQL. Here is an

example of a query on a table named "cim" created by:

create table cim (

 Name varchar(255) not null,

 LastModified datetime not null)

engine=CONNECT table_type='WMI'

option_list='class=CIM_DataFile,estimate=5000';

The date must be specified with the format in which CIM DATETIME values are stored (WMI uses the date and time formats

defined by the Distributed Management Task Force).

select * from cim where drive = 'D:' and path = '\\PlugDB\\Bin\\'

 and lastmodified > '20120415000000.000000+120';

This syntax must be strictly respected. The text has the format:

yyyymmddHHMMSS.mmmmmmsUUU

It is: year, month, day, hour, minute, second, millisecond, and signed minute deviation from UTC . This format is locale-

independent so you can write a query that runs on any machine.

Note 1: The WMI table type is available only in Windows versions of CONNECT.

Note 2: WMI tables are read only.

Note 3: WMI tables are not indexable.

Note 4: WMI consider all strings as case insensitive.

MAC Address Table Type <MAC=

Note: This table type is available on Windows only.

This type is used to display various general information about the computer and, in particular, about its network cards. To

create such a table, the syntax to use is:

create table tabname (column definition)

engine=CONNECT table_type=MAC;

Column names can be freely chosen because their signification, i.e. the values they will display, comes from the specified

Flag option. The valid values for Flag are:

Flag Valeur Type

1 Host name varchar(132)

2 Domain varchar(132)

3 DNS address varchar(24)

4 Node type int(1)

5 Scope ID varchar(256)

6 Routing int(1)

3295/4161

https://mariadb.com/kb/en/coordinated-universal-time/

7 Proxy int(1)

8 DNS int(1)

10 Name varchar(260)

11 Description varchar(132)

12 MAC address char(24)

13 Type int(3)

14 DHCP int(1)

15 IP address char(16)

16 SUBNET mask char(16)

17 GATEWAY char(16)

18 DHCP server char(16)

19 Have WINS int(1)

20 Primary WINS char(16)

21 Secondary WINS char(16)

22 Lease obtained datetime

23 Lease expires datetime

Note: The information of columns having a Flag value less than 10 are unique for the computer, the other ones are specific

to the network cards of the computer.

For instance, you can define the table macaddr as:

create table macaddr (

 Host varchar(132) flag=1,

 Card varchar(132) flag=11,

 Address char(24) flag=12,

 IP char(16) flag=15,

 Gateway char(16) flag=17,

 Lease datetime flag=23)

engine=CONNECT table_type=MAC;

If you execute the query:

select host, address, ip, gateway, lease from macaddr;

It will return, for example:

Host Address IP Gateway Lease

OLIVIER 00-A0-D1-A4-61-36 0.0.0.0 0.0.0.0 1970-01-01 00:00:00

OLIVIER 00-1D-E0-9B-90-0B 192.168.0.10 192.168.0.254 2011-09-18 10:28:5

5.3.7.6.27 CONNECT Table Types - VIR
Contents
1. VIR Type

1. Displaying constants or expressions

2. Generating a Table filled with constant values

3. VIR tables vs. SEQUENCE tables

VIR Type
A VIR table is a virtual table having only Special or Virtual columns. Its only property is its <size=, or cardinality, meaning the

number of virtual rows it contains. It is created using the syntax:

3296/4161

CREATE TABLE name [coldef] ENGINE=CONNECT TABLE_TYPE=VIR

[BLOCK_SIZE=n];

The optional BLOCK_SIZE option gives the size of the table, defaulting to 1 if not specified. When its columns are not

specified, it is almost equivalent to a SEQUENCE table <seq_1_to_Size=.

Displaying constants or expressions

Many DBMS use a no-column one-line table to do this, often call <dual=. MySQL and MariaDB use syntax where no table is

specified. With CONNECT, you can achieve the same purpose with a virtual table, with the noticeable advantage of being

able to display several lines. For example:

create table virt engine=connect table_type=VIR block_size=10;

select concat('The square root of ', n, ' is') what,

round(sqrt(n),16) value from virt;

This will return:

what value

The square root of 1 is 1.0000000000000000

The square root of 2 is 1.4142135623730951

The square root of 3 is 1.7320508075688772

The square root of 4 is 2.0000000000000000

The square root of 5 is 2.2360679774997898

The square root of 6 is 2.4494897427831779

The square root of 7 is 2.6457513110645907

The square root of 8 is 2.8284271247461903

The square root of 9 is 3.0000000000000000

The square root of 10 is 3.1622776601683795

What happened here? First of all, unlike Oracle <dual= tableS that have no columns, a MariaDB table must have at least one

column. By default, CONNECT creates VIR tables with one special column. This can be seen with the SHOW CREATE

TABLE statement:

CREATE TABLE `virt` (

`n` int(11) NOT NULL `SPECIAL`=ROWID,

PRIMARY KEY (`n`)

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='VIR'

`BLOCK_SIZE`=10

This special column is called <n= and its value is the row number starting from 1. It is purely a virtual table and no data file

exists corresponding to it and to its index. It is possible to specify the columns of a VIR table but they must be CONNECT

special columns or virtual columns. For instance:

create table virt2 (

n int key not null special=rowid,

sig1 bigint as ((n*(n+1))/2) virtual,

sig2 bigint as(((2*n+1)*(n+1)*n)/6) virtual)

engine=connect table_type=VIR block_size=10000000;

select * from virt2 limit 995, 5;

This table shows the sum and the sum of the square of the n first integers:

n sig1 sig2

996 496506 329845486

997 497503 330839495

998 498501 331835499

999 499500 332833500

3297/4161

1000 500500 333833500

Note that the size of the table can be made very big as there no physical data. However, the result should be limited in the

queries. For instance:

select * from virt2 where n = 1664510;

Such a query could last very long if the rowid column were not indexed. Note that by default, CONNECT declares the <n=

column as a primary key. Actually, VIR tables can be indexed but only on the ROWID (or ROWNUM) columns of the table.

This is a virtual index for which no data is stored.

Generating a Table filled with constant values

An interesting use of virtual tables, which often cannot be achieved with a table of any other type, is to generate a table

containing constant values. This is easily done with a virtual table. Let us define the table FILLER as:

create table filler engine=connect table_type=VIR block_size=5000000;

Here we choose a size larger than the biggest table we want to generate. Later if we need a table pre- filled with default

and/or null values, we can do for example:

create table tp (

id int(6) key not null,

name char(16) not null,

salary float(8,2));

insert into tp select n, 'unknown', NULL from filler where n <= 10000;

This will generate a table having 10000 rows that can be updated later when needed. Note that a SEQUENCE table could

have been used here instead of FILLING .

VIR tables vs. SEQUENCE tables

With just its default column, a VIR table is almost equivalent to a SEQUENCE table. The syntax used is the main difference,

for instance:

select * from seq_100_to_150_step_10;

can be obtained with a VIR table (of size >= 15) by:

select n*10 from vir where n between 10 and 15;

Therefore, the main difference is to be able to define the columns of VIR tables. Unfortunately, there are currently many

limitations to virtual columns that hopefully should be removed in the future.

5.3.7.6.28 CONNECT Table Types - OEM:
Implemented in an External LIB

Contents
1. An OEM Table Example

1. Some Currently Available OEM Table Modules and Subtypes

Although CONNECT provides a rich set of table types, specific applications may need to access data organized in a way

that is not handled by its existing foreign data wrappers (FDW). To handle these cases, CONNECT features an interface

that enables developers to implement in C++ the required table wrapper and use it as if it were part of the standard

CONNECT table type list. CONNECT can use these additional handlers providing the corresponding external module (dll or

shared lib) be available.

To create such a table on an existing handler, use a Create Table statement as shown below.

create table xtab (column definitions)

engine=CONNECT table_type=OEM module='libname'

subtype='MYTYPE' [standard table options]

Option_list='Myopt=foo';

3298/4161

The option module gives the name of the DLL or shared library implementing the OEM wrapper for the table type. This

library must be located in the plugin directory like all other plugins or UDF9s.

This library must export a function GetMYTYPE. The option subtype enables CONNECT to have the name of the exported

function and to use the new table type. Other options are interpreted by the OEM type and can also be specified within the

option_list option.

Column definitions can be unspecified only if the external wrapper is able to return this information. For this it must export a

function ColMYTYPE returning these definitions in a format acceptable by the CONNECT discovery function.

Which and how options must be specified and the way columns must be defined may vary depending on the OEM type used

and should be documented by the OEM type implementer(s).

An OEM Table Example
The OEM table REST described in Adding the REST Feature as a Library Called by an OEM Table permits using REST-like

tables with MariaDB binary distributions containing but not enabling the REST table type

Of course, the mongo (dll or so) exporting the GetREST and colREST functions must be available in the plugin directory for

all this to work.

Some Currently Available OEM Table Modules and Subtypes

Module Subtype Description

libhello HELLO A sample OEM wrapper displaying a one line table saying <Hello world=

mongo MONGO Enables using tables based on MongoDB collections.

Tabfic FIC Handles files having the Windev HyperFile format.

Tabofx OFC Handles Open Financial Connectivity files.

Tabofx QIF Handles Quicken Interchange Format files.

Cirpack CRPK Handles CDR's from Cirpack UTP's.

Tabplg PLG Access tables from the PlugDB DBMS.

How to implement an OEM handler is out of the scope of this document.

5.3.7.6.29 CONNECT Table Types - Catalog
Tables
A catalog table is one that returns information about another table, or data source. It is similar to what MariaDB commands

such as DESCRIBE or SHOW do. Applied to local tables, this just duplicates what these commands do, with the noticeable

difference that they are tables and can be used inside queries as joined tables or inside sub-selects.

But their main interest is to enable querying the structure of external tables that cannot be directly queried with description

commands. Let's see an example:

Suppose we want to access the tables from a Microsoft Access database as an ODBC type table. The first information we

must obtain is the list of tables existing in this data source. To get it, we will create a catalog table that will return it extracted

from the result set of the SQLTables ODBC function:

create table tabinfo (

 table_name varchar(128) not null,

 table_type varchar(16) not null)

engine=connect table_type=ODBC catfunc=tables

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

The SQLTables function returns a result set having the following columns:

Field Data Type Null Info Type Flag Value

Table_Cat char(128) NO FLD_CAT 17

Table_Name char(128) NO FLD_SCHEM 18

Table_Name char(128) NO FLD_NAME 1

3299/4161

Table_Type char(16) NO FLD_TYPE 2

Remark char(128) NO FLD_REM 5

Note: The Info Type and Flag Value are CONNECT interpretations of this result.

Here we could have omitted the column definitions of the catalog table or, as in the above example, chose the columns

returning the name and type of the tables. If specified, the columns must have the exact name of the corresponding

SQLTables result set, or be given a different name with the matching flag value specification.

(The Table_Type can be TABLE, SYSTEM TABLE, VIEW, etc.)

For instance, to get the tables we want to use we can ask:

select table_name from tabinfo where table_type = 'TABLE';

This will return:

table_name

Categories

Customers

Employees

Products

Shippers

Suppliers

Now we want to create the table to access the CUSTOMERS table. Because CONNECT can retrieve the column description

of ODBC tables, it not necessary to specify them in the create table statement:

create table Customers engine=connect table_type=ODBC

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

However, if we prefer to specify them (to eventually modify them) we must know what the column definitions of that table

are. We can get this information with a catalog table. This is how to do it:

create table custinfo engine=connect table_type=ODBC

tabname=customers catfunc=columns

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Alternatively it is possible to specify what columns of the catalog table we want:

create table custinfo (

 column_name char(128) not null,

 type_name char(20) not null,

 length int(10) not null flag=7,

 prec smallint(6) not null flag=9)

 nullable smallint(6) not null)

engine=connect table_type=ODBC tabname=customers

catfunc=columns

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

To get the column info:

select * from custinfo;

which results in this table:

column_name type_name length prec nullable

CustomerID VARCHAR 5 0 1

CompanyName VARCHAR 40 0 1

ContactName VARCHAR 30 0 1

3300/4161

ContactTitle VARCHAR 30 0 1

Address VARCHAR 60 0 1

City VARCHAR 15 0 1

Region VARCHAR 15 0 1

PostalCode VARCHAR 10 0 1

Country VARCHAR 15 0 1

Phone VARCHAR 24 0 1

Fax VARCHAR 24 0 1

Now you can create the CUSTOMERS table as:

create table Customers (

 CustomerID varchar(5),

 CompanyName varchar(40),

 ContactName varchar(30),

 ContactTitle varchar(30),

 Address varchar(60),

 City varchar(15),

 Region varchar(15),

 PostalCode varchar(10),

 Country varchar(15),

 Phone varchar(24),

 Fax varchar(24))

engine=connect table_type=ODBC block_size=10

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Let us explain what we did here: First of all, the creation of the catalog table. This table returns the result set of an ODBC

SQLColumns function sent to the ODBC data source. Columns functions always return a data set having some of the

following columns, depending on the table type:

Field Data Type Null Info Type Flag Value Returned by

Table_Cat* char(128) NO FLD_CAT 17 ODBC, JDBC

Table_Schema* char(128) NO FLD_SCEM 18 ODBC, JDBC

Table_Name char(128) NO FLD_TABNAME 19 ODBC, JDBC

Column_Name char(128) NO FLD_NAME 1 ALL

Data_Type smallint(6) NO FLD_TYPE 2 ALL

Type_Name char(30) NO FLD_TYPENAME 3 ALL

Column_Size* int(10) NO FLD_PREC 4 ALL

Buffer_Length* int(10) NO FLD_LENGTH 5 ALL

Decimal_Digits* smallint(6) NO FLD_SCALE 6 ALL

Radix smallint(6) NO FLD_RADIX 7 ODBC, JDBC, MYSQL

Nullable smallint(6) NO FLD_NULL 8 ODBC, JDBC, MYSQL

Remarks char(255) NO FLD_REM 9 ODBC, JDBC, MYSQL

Collation char(32) NO FLD_CHARSET 10 MYSQL

Key char(4) NO FLD_KEY 11 MYSQL

Default_value N.A. FLD_DEFAULT 12

Privilege N.A. FLD_PRIV 13

Date_fmt char(32) NO FLD_DATEFMT 15 MYSQL

Xpath/Jpath Varchar(256) NO FLD_FORMAT 16 XML/JSON

'*': These names have changed since earlier versions of CONNECT.

3301/4161

Note: ALL includes the ODBC, JDBC, MYSQL, DBF, CSV, PROXY, TBL, XML, JSON, XCOL, and WMI table types. More

could be added later.

We chose among these columns the ones that were useful for our create statement, using the flag value when we gave

them a different name (case insensitive).

The options used in this definition are the same as the one used later for the actual CUSTOMERS data tables except that:

1. The TABNAME option is mandatory here to specify what the queried table name is.

2. The CATFUNC option was added both to indicate that this is a catalog table, and to specify that we want column

information.

Note: If the TABNAME option had not been specified, this table would have returned the columns of all the tables defined in

the connected data source.

Currently the available CATFUNC are:

Function Specified as: Applies to table types:

FNC_TAB tables ODBC, JDBC, MYSQL

FNC_COL columns ODBC, JDBC, MYSQL, DBF, CSV, PROXY, XCOL, TBL, WMI

FNC_DSN

datasources

dsn

sqldatasources

ODBC

FNC_DRIVER
drivers

sqldrivers
ODBC, JDBC

Note: Only the bold part of the function name specification is required.

The DATASOURCE and DRIVERS functions respectively return the list of available data sources and ODBC drivers available

on the system.

The SQLDataSources function returns a result set having the following columns:

Field Data Type Null Info Type Flag value

Name varchar(256) NO FLD_NAME 1

Description varchar(256) NO FLD_REM 9

To get the data source, you can do for instance:

create table datasources (

engine=CONNECT table_type=ODBC catfunc=DSN;

The SQLDrivers function returns a result set having the following columns:

Field Type Null Info Type Flag value

Description varchar(128) YES FLD_NAME 1

Attributes varchar(256) YES FLD_REM 9

You can get the driver list with:

create table drivers

engine=CONNECT table_type=ODBC catfunc=drivers;

Another example, WMI table

To create a catalog table returning the attribute names of a WMI class, use the same table options as the ones used with

the normal WMI table plus the additional option 8catfunc=columns9. If specified, the columns of such a catalog table can be

chosen among the following:

Name Type Flag Description

Column_Name CHAR 1 The name of the property

Data_Type INT 2 The SQL data type

Type_Name CHAR 3 The SQL type name

Column_Size INT 4 The field length in characters

3302/4161

Buffer_Length INT 5 Depends on the coding

Scale INT 6 Depends on the type

If you wish to use a different name for a column, set the Flag column option.

For example, before creating the "csprod" table, you could have created the info table:

create table CSPRODCOL (

 Column_name char(64) not null,

 Data_Type int(3) not null,

 Type_name char(16) not null,

 Length int(6) not null,

 Prec int(2) not null flag=6)

engine=CONNECT table_type='WMI' catfunc=col;

Now the query:

select * from csprodcol;

will display the result:

Column_name Data_Type Type_name Length Prec

Caption 1 CHAR 255 1

Description 1 CHAR 255 1

IdentifyingNumber 1 CHAR 255 1

Name 1 CHAR 255 1

SKUNumber 1 CHAR 255 1

UUID 1 CHAR 255 1

Vendor 1 CHAR 255 1

Version 1 CHAR 255 1

This can help to define the columns of the matching normal table.

Note 1: The column length, for the Info table as well as for the normal table, can be chosen arbitrarily, it just must be enough

to contain the returned information.

Note 2: The Scale column returns 1 for text columns (meaning case insensitive); 2 for float and double columns; and 0 for

other numeric columns.

Catalog Table result size limit

Because catalog tables are processed like the information retrieved by <Discovery= when table columns are not specified in

a Create Table statement, their result set is entirely retrieved and memory allocated.

By default, this allocation is done for a maximum return line number of:

Catfunc Max lines

Drivers 256

Data Sources 512

Columns 20,000

Tables 10,000

When the number of lines retrieved for a table is more than this maximum, a warning is issued by CONNECT. This is mainly

prone to occur with columns (and also tables) with some data sources having many tables when the table name is not

specified.

If this happens, it is possible to increase the default limit using the MAXRES option, for instance:

create table allcols engine=connect table_type=odbc

connection='DSN=ORACLE_TEST;UID=system;PWD=manager'

option_list='Maxres=110000' catfunc=columns;

3303/4161

Indeed, because the entire table result is memorized before the query is executed; the returned value would be limited even

on a query such as:

select count(*) from allcols;

5.3.7.7 CONNECT - Security
The use of the CONNECT engine requires the FILE privilege for "outward" tables. This should not be an important

restriction. The use of CONNECT "outward" tables on a remote server seems of limited interest without knowing the files

existing on it and must be protected anyway. On the other hand, using it on the local client machine is not an issue because

it is always possible to create locally a user with the FILE privilege.

5.3.7.8 CONNECT - OEM Table Example
This is an example showing how an OEM table can be implemented.

The header File my_global.h :

/***/

/* Definitions needed by the included files. */

/***/

#if !defined(MY_GLOBAL_H)

#define MY_GLOBAL_H

typedef unsigned int uint;

typedef unsigned int uint32;

typedef unsigned short ushort;

typedef unsigned long ulong;

typedef unsigned long DWORD;

typedef char *LPSTR;

typedef const char *LPCSTR;

typedef int BOOL;

#if defined(__WIN__)

typedef void *HANDLE;

#else

typedef int HANDLE;

#endif

typedef char *PSZ;

typedef const char *PCSZ;

typedef unsigned char BYTE;

typedef unsigned char uchar;

typedef long long longlong;

typedef unsigned long long ulonglong;

typedef char my_bool;

struct charset_info_st {};

typedef const charset_info_st CHARSET_INFO;

#define FALSE 0

#define TRUE 1

#define Item char

#define MY_MAX(a,b) ((a>b)?(a):(b))

#define MY_MIN(a,b) ((a<b)?(a):(b))

#endif // MY_GLOBAL_H

Note: This is a fake my_global.h that just contains what is useful for the jmgoem.cpp source file.

The source File jmgoem.cpp :

/************* jmgoem C++ Program Source Code File (.CPP) **************/

/* PROGRAM NAME: jmgoem Version 1.0 */

/* (C) Copyright to the author Olivier BERTRAND 2017 */

/* This program is the Java MONGO OEM module definition. */

/***/

/***/

/* Definitions needed by the included files. */

/***/

#include "my_global.h"

/***/

/* Include application header files: */

/* global.h is header containing all global declarations. */ 3304/4161

/* global.h is header containing all global declarations. */

/* plgdbsem.h is header containing the DB application declarations. */

/* (x)table.h is header containing the TDBASE declarations. */

/* tabext.h is header containing the TDBEXT declarations. */

/* mongo.h is header containing the MONGO declarations. */

/***/

#include "global.h"

#include "plgdbsem.h"

#if defined(HAVE_JMGO)

#include "csort.h"

#include "javaconn.h"

#endif // HAVE_JMGO

#include "xtable.h"

#include "tabext.h"

#include "mongo.h"

/***/

/* These functions are exported from the MONGO library. */

/***/

extern "C" {

 PTABDEF __stdcall GetMONGO(PGLOBAL, void*);

 PQRYRES __stdcall ColMONGO(PGLOBAL, PTOS, void*, char*, char*, bool);

} // extern "C"

/***/

/* DB static variables. */

/***/

int TDB::Tnum;

int DTVAL::Shift;

#if defined(HAVE_JMGO)

int CSORT::Limit = 0;

double CSORT::Lg2 = log(2.0);

size_t CSORT::Cpn[1000] = {0}; /* Precalculated cmpnum values */

#if defined(HAVE_JAVACONN)

char *JvmPath = NULL;

char *ClassPath = NULL;

char *GetPluginDir(void)

{return "C:/mongo-java-driver/mongo-java-driver-3.4.2.jar;"

 "C:/MariaDB-10.1/MariaDB/storage/connect/";}

char *GetJavaWrapper(void) {return (char*)"wrappers/Mongo3Interface";}

#else // !HAVE_JAVACONN

HANDLE JAVAConn::LibJvm; // Handle to the jvm DLL

CRTJVM JAVAConn::CreateJavaVM;

GETJVM JAVAConn::GetCreatedJavaVMs;

#if defined(_DEBUG)

GETDEF JAVAConn::GetDefaultJavaVMInitArgs;

#endif // _DEBUG

#endif // !HAVE_JAVACONN

#endif // HAVE_JMGO

/***/

/* This function returns a Mongo definition class. */

/***/

PTABDEF __stdcall GetMONGO(PGLOBAL g, void *memp)

{

 return new(g, memp) MGODEF;

} // end of GetMONGO

#ifdef NOEXP

/***/

/* Functions to be defined if not exported by the CONNECT version. */

/***/

bool IsNum(PSZ s)

{

 for (char *p = s; *p; p++)

 if (*p == ']')

 break;

 else if (!isdigit(*p) || *p == '-')

 return false;

 return true;

} // end of IsNum

#endif

/***/
3305/4161

/* Return the columns definition to MariaDB. */

/***/

PQRYRES __stdcall ColMONGO(PGLOBAL g, PTOS tp, char *tab,

 char *db, bool info)

{

#ifdef NOMGOCOL

 // Cannot use discovery

 strcpy(g->Message, "No discovery, MGOColumns is not accessible");

 return NULL;

#else

 return MGOColumns(g, db, NULL, tp, info);

#endif

} // end of ColMONGO

The file mongo.def : (required only on Windows)

LIBRARY MONGO

EXPORTS

 GetMONGO @1

 ColMONGO @2

Compiling this OEM

To compile this OEM module, first make the two or three required files by copy/pasting from the above listings.

Even if this module is to be used with a binary distribution, you need some source files in order to successfully compile it. At

least the CONNECT header files that are included in jmgoem.cpp and the ones they can include. This can be obtained by

downloading the MariaDB source file tar.gz and extracting from it the CONNECT sources files in a directory that will be

added to the additional source directories if it is not the directory containing the above files.

The module must be linked to the ha_connect.lib of the binary version it will used with. Recent distributions add this lib

in the plugin directory.

The resulting module, for instance mongo.so or mongo.dll , must be placed in the plugin directory of the MariaDB server.

Then, you will be able to use MONGO like tables simply replacing in the CREATE TABLE statement the option

TABLE_TYPE=MONGO with TABLE_TYPE=OEM SUBTYPE=MONGO MODULE=9mongo.(so|dll)9 . Actually, the module name,

here supposedly 8mongo9, can be anything you like.

This will work with the last (not yet) distributed versions of MariaDB 10.0 and 10.1 because, even it is not enabled, the

MONGO type is included in them. This is also the case for MariaDB 10.2.9 but then, on Windows, you will have to define

NOEXP and NOMGOCOL because these functions are not exported by this version.

To implement for older versions that do not contain the MONGO type, you can add the corresponding source files, namely

javaconn.cpp , jmgfam.cpp , jmgoconn.cpp , mongo.cpp and tabjmg.cpp that you should find in the CONNECT

extracted source files if you downloaded a recent version. As they include my_global.h , this is the reason why the

included file was named this way. In addition, your compiling should define HAVE_JMGO and HAVE_JAVACONN . Of course,

this is possible only if ha_connect.lib is available.

5.3.7.9 Using CONNECT
Using CONNECT - General Information

Using CONNECT - General Information.

Using CONNECT - Virtual and Special Columns

Virtual and special columns example usage

Using CONNECT - Importing File Data Into MariaDB Tables

Directly using external (file) data has many advantages

Using CONNECT - Exporting Data From MariaDB

Exporting data from MariaDB with CONNECT

Using CONNECT - Indexing

Indexing with the CONNECT handler

Using CONNECT - Condition Pushdown

Using CONNECT - Condition Pushdown.

1

1

3306/4161

https://mariadb.com/kb/en/mariadb-1029-release-notes/

USING CONNECT - Offline Documentation

CONNECT Plugin User Manual.

Using CONNECT - Partitioning and Sharding

Partitioning and Sharding with CONNECT

5.3.7.9.1 Using CONNECT - General
Information

Contents
1. Performance

2. Create Table statement

3. Drop Table statement

4. Alter Table statement

5. Update and Delete for File Tables

The main characteristic of CONNECT is to enable accessing data scattered on a machine as if it was a centralized

database. This, and the fact that locking is not used by connect (data files are open and closed for each query) makes

CONNECT very useful for importing or exporting data into or from a MariaDB database and also for all types of Business

Intelligence applications. However, it is not suited for transactional applications.

For instance, the index type used by CONNECT is closer to bitmap indexing than to B-trees. It is very fast for retrieving

result but not when updating is done. In fact, even if only one indexed value is modified in a big table, the index is entirely

remade (yet this being four to five times faster than for a b-tree index). But normally in Business Intelligence applications,

files are not modified so often.

If you are using CONNECT to analyze files that can be modified by an external process, the indexes are of course not

modified by it and become outdated. Use the OPTIMIZE TABLE command to update them before using the tables based on

them.

This means also that CONNECT is not designed to be used by centralized servers, which are mostly used for transactions

and often must run a long time without human intervening.

Performance

Performances vary a great deal depending on the table type. For instance, ODBC tables are only retrieved as fast as the

other DBMS can do. If you have a lot of queries to execute, the best way to optimize your work can be sometime to

translate the data from one type to another. Fortunately this is very simple with CONNECT. Fixed formats like FIX, BIN or

VEC tables can be created from slower ones by commands such as:

Create table fastable table_specs select * from slowtable;

FIX and BIN are often the better choice because the I/O functions are done on blocks of BLOCK_SIZE rows. VEC tables

can be very efficient for tables having many columns only a few being used in each query. Furthermore, for tables of

reasonable size, the MAPPED option can very often speed up many queries.

Create Table statement

Be aware of the two broad kinds of CONNECT tables:

Inward

They are table whose file name is not specified at create. An empty file will be given a default name

(tabname.tabtype) and will be populated like for other engines. They do not require the FILE privilege and can

be used for testing purpose.

Outward
They are all other CONNECT tables and access external data sources or files. They are the true useful tables

but require the FILE privilege.

Drop Table statement

For outward tables, the DROP TABLE statement just removes the table definition but does not erase the table data.

However, dropping an inward tables also erase the table data as well.

Alter Table statement

3307/4161

Be careful using the ALTER TABLE statement. Currently the data compatibility is not tested and the modified definition can

become incompatible with the data. In particular, Alter modifies the table definition only but does not modify the table data.

Consequently, the table type should not be modified this way, except to correct an incorrect definition. Also adding, dropping

or modifying columns may be wrong because the default offset values (when not explicitly given by the FLAG option) may be

wrong when recompiled with missing columns.

Safe use of ALTER is for indexing, as we have seen earlier, and to change options such as MAPPED or HUGE those do not

impact the data format but just the way the data file is accessed. Modifying the BLOCK_SIZE option is all right with FIX,

BIN, DBF, split VEC tables; however it is unsafe for VEC tables that are not split (only one data file) because at their

creation the estimate size has been made a multiple of the block size. This can cause errors if this estimate is not a multiple

of the new value of the block size.

In all cases, it is safer to drop and re-create the table (outward tables) or to make another one from the table that must be

modified.

Update and Delete for File Tables

CONNECT can execute these commands using two different algorithms:

It can do it in place, directly modifying rows (update) or moving rows (delete) within the table file. This is a fast way to

do it in particular when indexing is used.

It can do it using a temporary file to make the changes. This is required when updating variable record length tables

and is more secure in all cases.

The choice between these algorithms depends on the session variable connect_use_tempfile.

5.3.7.9.2 Using CONNECT - Virtual and Special
Columns
CONNECT supports MariaDB virtual and persistent columns. It is also possible to declare a column as being a CONNECT

special column. Let us see on an example how this can be done. The boys table we have seen previously can be recreated

as:

create table boys (

 linenum int(6) not null default 0 special=rowid,

 name char(12) not null,

 city char(12) not null,

 birth date not null date_format='DD/MM/YYYY',

 hired date not null date_format='DD/MM/YYYY' flag=36,

 agehired int(3) as (floor(datediff(hired,birth)/365.25))

 virtual,

 fn char(100) not null default '' special=FILEID)

engine=CONNECT table_type=FIX file_name='boys.txt' mapped=YES lrecl=47;

We have defined two CONNECT special columns. You can give them any name; it is the field SPECIAL option that specifies

the special column functional name.

Note: the default values specified for the special columns do not mean anything. They are specified just to prevent getting

warning messages when inserting new rows.

For the definition of the agehired virtual column, no CONNECT options can be specified as it has no offset or length, not

being stored in the file.

The command:

select * from boys where city = 'boston';

will return:

linenum name city birth hired agehired fn

1 John Boston 1986-01-25 2010-06-02 24 d:\mariadb\sql\data\boys.txt

2 Henry Boston 1987-06-07 2008-04-01 20 d:\mariadb\sql\data\boys.txt

6 Bill Boston 1986-09-11 2008-02-10 21 d:\mariadb\sql\data\boys.txt

Existing special columns are listed in the following table:

Special Name Type Description of the column value

3308/4161

ROWID Integer
The row ordinal number in the table. This is not quite equivalent to a virtual column with an

auto increment of 1 because rows are renumbered when deleting rows.

ROWNUM Integer

The row ordinal number in the file. This is different from ROWID for multiple tables,

TBL/XCOL/OCCUR/PIVOT tables, XML tables with a multiple column, and for DBF tables

where ROWNUM includes soft deleted rows.

FILEID FDISK

FPATH FNAME

FTYPE

String

FILEID returns the full name of the file this row belongs to. Useful in particular for multiple

tables represented by several files. The other special columns can be used to retrieve only

one part of the full name.

TABID String The name of the table this row belongs to. Useful for TBL tables.

PARTID String The name of the partition this row belongs to. Specific to partitioned tables.

SERVID String
The name of the federated server or server host used by a MYSQL table. <ODBC= for an

ODBC table, "JDBC" for a JDBC table and <Current= for all other tables.

Note: CONNECT does not currently support auto incremented columns. However, a ROWID special column will do the job

of a column auto incremented by 1.

5.3.7.9.3 Using CONNECT - Importing File Data
Into MariaDB Tables
Directly using external (file) data has many advantages, such as to work on <fresh= data produced for instance by cash

registers, telephone switches, or scientific apparatus. However, you may want in some case to import external data into your

MariaDB database. This is extremely simple and flexible using the CONNECT handler. For instance, let us suppose you

want to import the data of the xsample.xml XML file previously given in example into a MyISAM table called biblio belonging

to the connect database. All you have to do is to create it by:

create table biblio engine=myisam select * from xsampall2;

This last statement creates the MyISAM table and inserts the original XML data, translated to tabular format by the

xsampall2 CONNECT table, into the MariaDB biblio table. Note that further transformation on the data could have been

achieved by using a more elaborate Select statement in the Create statement, for instance using filters, alias or applying

functions to the data. However, because the Create Table process copies table data, later modifications of the xsample.xml

file will not change the biblio table and changes to the biblio table will not modify the xsample.xml file.

All these can be combined or transformed by further SQL operations. This makes working with CONNECT much more

flexible than just using the LOAD statement.

5.3.7.9.4 Using CONNECT - Exporting Data
From MariaDB
Exporting data from MariaDB is obviously possible with CONNECT in particular for all formats not supported by the SELECT

INTO OUTFILE statement. Let us consider the query:

select plugin_name handler, plugin_version version, plugin_author

author, plugin_description description, plugin_maturity maturity

from information_schema.plugins where plugin_type = 'STORAGE ENGINE';

Supposing you want to get the result of this query into a file handlers.htm in XML/HTML format, allowing displaying it on an

Internet browser, this is how you can do it:

Just create the CONNECT table that will be used to make the file:

create table handout

engine=CONNECT table_type=XML file_name='handout.htm' header=yes

option_list='name=TABLE,coltype=HTML,attribute=border=1;cellpadding=5

 ,headattr=bgcolor=yellow'

select plugin_name handler, plugin_version version, plugin_author

author, plugin_description description, plugin_maturity maturity

from information_schema.plugins where plugin_type = 'STORAGE ENGINE';

Here the column definition is not given and will come from the Select statement following the Create. The CONNECT options

are the same we have seen previously. This will do both actions, creating the matching handlers CONNECT table and 'filling'
3309/4161

it with the query result.

Note 1: This could not be done in only one statement if the table type had required using explicit CONNECT column options.

In this case, firstly create the table, and then populate it with an Insert statement.

Note 2: The source <plugins= table column <description= is a long text column, data type not supported for CONNECT tables.

It has been silently internally replaced by varchar(256).

5.3.7.9.5 Using CONNECT - Indexing
Contents
1. Standard Indexing

1. Handling index errors

2. Index file mapping

2. Block Indexing

1. Difference between standard indexing and block indexing

2. Notes for this Release:

3. Remote Indexing

4. Dynamic Indexing

5. Virtual Indexing

Indexing is one of the main ways to optimize queries. Key columns, in particular when they are used to join tables, should

be indexed. But what should be done for columns that have only few distinct values? If they are randomly placed in the table

they should not be indexed because reading many rows in random order can be slower than reading the entire table

sequentially. However, if the values are sorted or clustered, indexing can be acceptable because CONNECT indexes store

the values in the order they appear into the table and this will make retrieving them almost as fast as reading them

sequentially.

CONNECT provides four indexing types:

1. Standard Indexing

2. Block Indexing

3. Remote Indexing

4. Dynamic Indexing

Standard Indexing
CONNECT standard indexes are created and used as the ones of other storage engines although they have a specific

internal format. The CONNECT handler supports the use of standard indexes for most of the file based table types.

You can define them in the CREATE TABLE statement, or either using the CREATE INDEX statement or the ALTER TABLE

statement. In all cases, the index files are automatically made. They can be dropped either using the DROP INDEX

statement or the ALTER TABLE statement, and this erases the index files.

Indexes are automatically reconstructed when the table is created, modified by INSERT, UPDATE or DELETE commands,

or when the SEPINDEX option is changed. If you have a lot of changes to do on a table at one moment, you can use table

locking to prevent indexes to be reconstructed after each statement. The indexes will be reconstructed when unlocking the

table. For instance:

lock table t1 write;

insert into t1 values(...);

insert into t1 values(...);

...

unlock tables;

If a table was modified by an external application that does not handle indexing, the indexes must be reconstructed to

prevent returning false or incomplete results. To do this, use the OPTIMIZE TABLE command.

For outward tables, index files are not erased when dropping the table. This is the same as for the data file and preserves

the possibility of several users using the same data file via different tables.

Unlike other storage engines, CONNECT constructs the indexes as files that are named by default from the data file name,

not from the table name, and located in the data file directory. Depending on the SEPINDEX table option, indexes are saved

in a unique file or in separate files (if SEPINDEX is true). For instance, if indexes are in separate files, the primary index of

the table dept.dat of type DOS is a file named dept_PRIMARY.dnx. This makes possible to define several tables on the

same data file, with eventual different options such as mapped or not mapped, and to share the index files as well.

If the index file should have a different name, for instance because several tables are created on the same data file with

different indexes, specify the base index file name with the XFILE_NAME option.

3310/4161

Note1: Indexed columns must be declared NOT NULL; CONNECT doesn't support indexes containing null values.

Note 2: MRR is used by standard indexing if it is enabled.

Note 3: Prefix indexing is not supported. If specified, the CONNECT engine ignores the prefix and builds a whole index.

Handling index errors

The way CONNECT handles indexing is very specific. All table modifications are done regardless of indexing. Only after a

table has been modified, or when an OPTIMIZE TABLE command is sent are the indexes made. If an error occurs, the

corresponding index is not made. However, CONNECT being a non-transactional engine, it is unable to roll back the

changes made to the table. The main causes of indexing errors are:

Trying to index a nullable column. In this case, you can alter the table to declare the column as not nullable or, if the

column is nullable indeed, make it not indexed.

Entering duplicate values in a column indexed by a unique index. In this case, if the index was wrongly declared as

unique, alter is declaration to reflect this. If the column should really contain unique values, you must manually

remove or update the duplicate values.

In both cases, after correcting the error, remake the indexes with the OPTIMIZE TABLE command.

Index file mapping

To accelerate the indexing process, CONNECT makes an index structure in memory from the index file. This can be done by

reading the index file or using it as if it was in memory by <file mapping=. On enabled versions, file mapping is used

according to the boolean connect_indx_map system variable. Set it to 0 (file read) or 1 (file mapping).

Block Indexing
To accelerate input/output, CONNECT uses when possible a read/write mode by blocks of n rows, n being the value given

in the BLOCK _ SIZE option of the Create Table, or a default value depending on the table type. This is automatic for fixed

files (FIX, BIN, DBF or VEC), but must be specified for variable files (DOS , CSV or FMT).

For blocked tables, further optimization can be achieved if the data values for some columns are <clustered= meaning that

they are not evenly scattered in the table but grouped in some consecutive rows. Block indexing permits to skip blocks in

which no rows fulfill a conditional predicate without having even to read the block. This is true in particular for sorted

columns.

You indicate this when creating the table by using the DISTRIB =d column option. The enum value d can be scattered,

clustered, or sorted. In general only one column can be sorted. Block indexing is used only for clustered and sorted

columns.

Difference between standard indexing and block indexing

Block indexing is internally handled by CONNECT while reading sequentially a table data. This means in particular

that when standard indexing is used on a table, block indexing is not used.

In a query, only one standard index can be used. However, block indexing can combine the restrictions coming from

a where clause implying several clustered/sorted columns.

The block index files are faster to make and much smaller than standard index files.

Notes for this Release:

On all operations that create or modify a table, CONNECT automatically calculates or recalculates and saves the

mini/maxi or bitmap values for each block, enabling it to skip block containing no acceptable values. In the case

where the optimize file does not correspond anymore to the table, because it has been accidentally destroyed, or

because some column definitions have been altered, you can use the OPTIMIZE TABLE command to reconstruct the

optimization file.

Sorted column special processing is currently restricted to ascending sort. Column sorted in descending order must

be flagged as clustered. Improper sorting is not checked in Update or Insert operations but is flagged when optimizing

the table.

Block indexing can be done in two ways. Keeping the min/max values existing for each block, or keeping a bitmap

allowing knowing what column distinct values are met in each blocks. This second ways often gives a better

optimization, except for sorted columns for which both are equivalent. The bitmap approach can be done only on

columns having not too many distinct values. This is estimated by the MAX _ DIST option value associated to the

column when creating the table. Bitmap block indexing will be used if this number is not greater than the MAXBMP

setting for the database.

CONNECT cannot perform block indexing on case insensitive character columns. To force block indexing on a

3311/4161

character column, specify its charset as not case insensitive, for instance as binary. However this will also apply to all

other clauses, this column being now case sensitive.

Remote Indexing
Remote indexing is specific to the MYSQL table type. It is equivalent to what the FEDERATED storage does. A MYSQL

table does not support indexes per se. Because access to the table is handled remotely, it is the remote table that supports

the indexes. What the MYSQL table does is just to add a WHERE clause to the SELECT command sent to the remote

server allowing the remote server to use indexing when applicable. Note however that because CONNECT adds when

possible all or part of the where clause of the original query, this happens often even if the remote indexed column is not

declared locally indexed. The only, but very important, case a column should be locally declared indexed is when it is used

to join tables. Otherwise, the required where clause would not be added to the sent SELECT query.

See Indexing of MYSQL tables for more.

Dynamic Indexing
An indexed created as <dynamic= is a standard index which, in some cases, can be reconstructed for a specific query. This

happens in particular for some queries where two tables are joined by an indexed key column. If the <from= table is big and

the <to= big table reduced in size because of a where clause, it can be worthwhile to reconstruct the index on this reduced

table.

Because of the time added by reconstructing the index, this will be valuable only if the time gained by reducing the index

size if more than this reconstruction time. This is why this should not be done if the <from= table is small because there will

not be enough row joining to compensate for the additional time. Otherwise, the gain of using a dynamic index is:

Indexing time is a little faster if the index is smaller.

The join process will return only the rows fulfilling the where clause.

Because the table is read sequentially when reconstructing the index there no need for MRR.

Constructing the index can be faster if the table is reduced by block indexing.

While constructing the index, CONNECT also stores in memory the values of other used columns.

This last point is particularly important. It means that after the index is reconstructed, the join is done on a temporary

memory table.

Unfortunately, storage engines being called independently by MariaDB for each table, CONNECT has no global information

to decide when it is good to use dynamic indexing. This is why you should use it only on cases where you see that some

important join queries take a very long time and only on columns used for joining the table. How to declare an index to be

dynamic is by using the Boolean DYNAM index option. For instance, the query:

select d.diag, count(*) cnt from diag d, patients p where d.pnb =

p.pnb and ageyears < 17 and county = 30 and drg <> 11 and d.diag

between 4296 and 9434 group by d.diag order by cnt desc;

Such a query joining the diag table to the patients table may last a very long time if the tables are big. To declare the primary

key on the pnb column of the patients table to be dynamic:

alter table patients drop primary key;

alter table patients add primary key (pnb) comment 'DYNAMIC' dynam=1;

Note 1: The comment is not mandatory here but useful to see that the index is dynamic if you use the SHOW INDEX

command.

Note 2: There is currently no way to just change the DYNAM option without dropping and adding the index. This is

unfortunate because it takes time.

Virtual Indexing
It applies only to the virtual tables of type VIR and must be made on a column specifying SPECIAL=ROWID or

SPECIAL=ROWNUM .

5.3.7.9.6 Using CONNECT - Condition
Pushdown
The ODBC, JDBC, MYSQL , TBL and WMI table types use engine condition pushdown in order to restrict the number of

3312/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/#indexing-of-mysql-tables
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

rows returned by the RDBS source or the WMI component.

The CONDITION_PUSHDOWN argument used in old versions of CONNECT is no longer needed because CONNECT uses

condition pushdown unconditionally.

5.3.7.9.7 USING CONNECT - Offline
Documentation

Note: You can download a PDF version of the CONNECT documentation (1.7.0003).

5.3.7.9.8 Using CONNECT - Partitioning and
Sharding

Contents
1. Partition engine issues

2. File Partitioning

1. Outward Tables

1. Partitioning on a Special Column

2. Partitioning of zipped tables

3. Table Partitioning

1. Indexing with Table Partitioning

2. Sharding with Table Partitioning

1. Sharding on a Special Column

4. Current Partition Limitations

1. Update statement

2. Alter Table statement

3. Rowid special column

CONNECT supports the MySQL/MariaDB partition specification. It is done similar to the way MyISAM or InnoDB do by

using the PARTITION engine that must be enabled for this to work. This type of partitioning is sometimes referred as

<horizontal partitioning=.

Partitioning enables you to distribute portions of individual tables across a file system according to rules which you can set

largely as needed. In effect, different portions of a table are stored as separate tables in different locations. The user-

selected rule by which the division of data is accomplished is known as a partitioning function, which in MariaDB can be the

modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear hashing function.

CONNECT takes this notion a step further, by providing two types of partitioning:

1. File partitioning. Each partition is stored in a separate file like in multiple tables.

2. Table partitioning. Each partition is stored in a separate table like in TBL tables.

Partition engine issues
Using partitions sometimes requires creating the tables in an unnatural way to avoid some error due to several partition

engine bugs:

1. Engine specific column and index options are not recognized and cause a syntax error when the table is created. The

workaround is to create the table in two steps, a CREATE TABLE statement followed by an ALTER TABLE

statement.

2. The connection string, when specified for the table, is lost by the partition engine. The workaround is to specify the

connection string in the option_list.

3. MySQL upstream bug #71095 . In case of list columns partitioning it sometimes causes a false <impossible where=

clause to be raised. This makes a wrong void result returned when it should not be void. There is no workaround but

this bug should be hopefully fixed.

The following examples are using the above workaround syntax to address these issues.

File Partitioning
File partitioning applies to file-based CONNECT table types. As with multiple tables, physical data is stored in several files

instead of just one. The differences to multiple tables are:

3313/4161

https://mariadb.com/kb/en/connect-table-types/+attachment/connect_1_7_03
https://bugs.mysql.com/bug.php?id=71095

1. Data is distributed amongst the different files following the partition rule.

2. Unlike multiple tables, partitioned tables are not read only.

3. Unlike multiple tables, partitioned tables can be indexable.

4. The file names are generated from the partition names.

5. Query pruning is automatically made by the partition engine.

The table file names are generated differently depending on whether the table is an inward or outward table. For inward

tables, for which the file name is not specified, the partition file names are:

Data file name: table_name#P#partition_name.table_file_type

Index file name: table_name#P#partition_name.index_file_type

For instance for the table:

CREATE TABLE t1 (

id INT KEY NOT NULL,

msg VARCHAR(32))

ENGINE=CONNECT TABLE_TYPE=FIX

partition by range(id) (

partition first values less than(10),

partition middle values less than(50),

partition last values less than(MAXVALUE));

CONNECT will generate in the current data directory the files:

| t1#P#first.fix

| t1#P#first.fnx

| t1#P#middle.fix

| t1#P#middle.fnx

| t1#P#last.fix

| t1#P#last.fnx

This is similar to what the partition engine does for other engines - CONNECT partitioned inward tables behave like other

engines partition tables do. Just the data format is different.

Note: If sub-partitioning is used, inward table files and index files are named:

| table_name#P#partition_name#SP#subpartition_name.type

| table_name#P#partition_name#SP#subpartition_name.index_type

Outward Tables

The real problems occur with outward tables, in particular when they are created from already existing files. The first issue is

to make the partition table use the correct existing file names. The second one, only for already existing not void tables, is to

be sure the partitioning function match the distribution of the data already existing in the files.

The first issue is addressed by the way data file names are constructed. For instance let us suppose we want to make a

table from the fixed formatted files:

E:\Data\part1.txt

E:\Data\part2.txt

E:\Data\part3.txt

This can be done by creating a table such as:

create table t2 (

id int not null,

msg varchar(32),

index XID(id))

engine=connect table_type=FIX file_name='E:/Data/part%s.txt'

partition by range(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

The rule is that for each partition the matching file name is internally generated by replacing in the given FILE _ NAME

option value the <%s= part by the partition name.

If the table was initially void, further inserts will populate it according to the partition function. However, if the files did exist
3314/4161

and contained data, this is your responsibility to determine what partition function actually matches the data distribution in

them. This means in particular that partitioning by key or by hash cannot be used (except in exceptional cases) because you

have almost no control over what the used algorithm does.

In the example above, there is no problem if the table is initially void, but if it is not, serious problems can be met if the initial

distribution does not match the table distribution. Supposing a row in which <id= as the value 12 was initially contained in the

part1.txt file, it will be seen when selecting the whole table but if you ask:

select * from t2 where id = 12;

The result will have 0 rows. This is because according to the partition function query pruning will only look inside the second

partition and will miss the row that is in the wrong partition.

One way to check for wrong distribution if for instance to compare the results from queries such as:

SELECT partition_name, table_rows FROM

information_schema.partitions WHERE table_name = 't2';

And

SELECT CASE WHEN id < 10 THEN 1 WHEN id < 50 THEN 2 ELSE 3 END

AS pn, COUNT(*) FROM part3 GROUP BY pn;

If they match, the distribution can be correct although this does not prove it. However, if they do not match, the distribution is

surely wrong.

Partitioning on a Special Column

There are some cases where the files of a multiple table do not contain columns that can be used for range or list

partitioning. For instance, let9s suppose we have a multiple table based on the following files:

tmp/boston.txt

tmp/chicago.txt

tmp/atlanta.txt

Each of them containing the same kind of data:

ID: int

First_name: varchar(16)

Last_name: varchar(30)

Birth: date

Hired: date

Job: char(10)

Salary: double(8,2)

A multiple table can be created on them, for instance by:

create table mulemp (

id int NOT NULL,

first_name varchar(16) NOT NULL,

last_name varchar(30) NOT NULL,

birth date NOT NULL date_format='DD/MM/YYYY',

hired date NOT NULL date_format='DD/MM/YYYY',

job char(10) NOT NULL,

salary double(8,2) NOT NULL

) engine=CONNECT table_type=FIX file_name='tmp/*.txt' multiple=1;

The issue is that if we want to create a partitioned table on these files, there are no columns to use for defining a partition

function. Each city file can have the same kind of column values and there is no way to distinguish them.

However, there is a solution. It is to add to the table a special column that will be used by the partition function. For instance,

the new table creation can be done by:

3315/4161

create table partemp (

id int NOT NULL,

first_name varchar(16) NOT NULL,

last_name varchar(30) NOT NULL,

birth date NOT NULL date_format='DD/MM/YYYY',

hired date NOT NULL date_format='DD/MM/YYYY',

job char(16) NOT NULL,

salary double(10,2) NOT NULL,

city char(12) default 'boston' special=PARTID,

index XID(id)

) engine=CONNECT table_type=FIX file_name='E:/Data/Test/%s.txt';

alter table partemp

partition by list columns(city) (

partition `atlanta` values in('atlanta'),

partition `boston` values in('boston'),

partition `chicago` values in('chicago'));

Note 1: we had to do it in two steps because of the column CONNECT options.

Note 2: the special column PARTID returns the name of the partition in which the row is located.

Note 3: here we could have used the FNAME special column instead because the file name is specified as being the

partition name.

This may seem rather stupid because it means for instance that a row will be in partition boston if it belongs to the partition

boston! However, it works because the partition engine doesn9t know about special columns and behaves as if the city

column was a real column.

What happens if we populate it by?

insert into partemp(id,first_name,last_name,birth,hired,job,salary) values

(1205,'Harry','Cover','1982-10-07','2010-09-21','MANAGEMENT',125000.00);

insert into partemp values

(1524,'Jim','Beams','1985-06-18','2012-07-25','SALES',52000.00,'chicago'),

(1431,'Johnny','Walker','1988-03-12','2012-08-09','RESEARCH',46521.87,'boston'),

(1864,'Jack','Daniels','1991-12-01','2013-02-16','DEVELOPMENT',63540.50,'atlanta');

The value given for the city column (explicitly or by default) will be used by the partition engine to decide in which partition to

insert the rows. It will be ignored by CONNECT (a special column cannot be given a value) but later will return the matching

value. For instance:

select city, first_name, job from partemp where id in (1524,1431);

This query returns:

city first_name job

boston Johnny RESEARCH

chicago Jim SALES

Everything works as if the city column was a real column contained in the table data files.

Partitioning of zipped tables

Two cases are currently supported:

If a table is based on several zipped files, portioning is done the standard way as above. This is the file_name option

specifying the name of the zip files that shall contain the 8%s9 part used to generate the file names.

If a table is based on only one zip file containing several entries, this will be indicated by placing the 8%s9 part in the entry

option value.

Note: If a table is based on several zipped files each containing several entries, only the first case is possible. Using sub-

partitioning to make partitions on each entries is not supported yet.

Table Partitioning
With table partitioning, each partition is physically represented by a sub-table. Compared to standard partitioning, this brings

the following features:

1. The partitions can be tables driven by different engines. This relieves the current existing limitation of the partition

engine.

3316/4161

2. The partitions can be tables driven by engines not currently supporting partitioning.

3. Partition tables can be located on remote servers, enabling table sharding.

4. Like for TBL tables, the columns of the partition table do not necessarily match the columns of the sub-tables.

The way it is done is to create the partition table with a table type referring to other tables, PROXY, MYSQL ODBC or

JDBC. Let us see how this is done on a simple example. Supposing we have created the following tables:

create table xt1 (

id int not null,

msg varchar(32))

engine=myisam;

create table xt2 (

id int not null,

msg varchar(32)); /* engine=innoDB */

create table xt3 (

id int not null,

msg varchar(32))

engine=connect table_type=CSV;

We can for instance create a partition table using these tables as physical partitions by:

create table t3 (

id int not null,

msg varchar(32))

engine=connect table_type=PROXY tabname='xt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

Here the name of each partition sub-table will be made by replacing the 8%s9 part of the tabname option value by the

partition name. Now if we do:

insert into t3 values

(4, 'four'),(7,'seven'),(10,'ten'),(40,'forty'),

(60,'sixty'),(81,'eighty one'),(72,'seventy two'),

(11,'eleven'),(1,'one'),(35,'thirty five'),(8,'eight');

The rows will be distributed in the different sub-tables according to the partition function. This can be seen by executing the

query:

select partition_name, table_rows from

information_schema.partitions where table_name = 't3';

This query replies:

partition_name table_rows

1 4

2 4

3 3

Query pruning is of course automatic, for instance:

explain partitions select * from t3 where id = 81;

This query replies:

id select_type table partitions type possible_keys key key_len ref rows Extra

1 SIMPLE part5 3 ALL <null> <null> <null> <null> 22 Using where

When executing this select query, only sub-table xt3 will be used.

Indexing with Table Partitioning

3317/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

Using the PROXY table type seems natural. However, in this current version, the issue is that PROXY (and ODBC) tables

are not indexable. This is why, if you want the table to be indexed, you must use the MYSQL table type. The CREATE

TABLE statement will be almost the same:

create table t4 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL tabname='xt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

The column id is declared as a key, and the table type is now MYSQL. This makes Sub-tables accessed by calling a

MariaDB server as MYSQL tables do. Note that this modifies only the way CONNECT sub-tables are accessed.

However, indexing just make the partitioned table use <remote indexing= the way FEDERATED tables do. This means that

when sending the query to retrieve the table data, a where clause will be added to the query. For instance, let9s suppose

you ask:

select * from t4 where id = 7;

The query sent to the server will be:

SELECT `id`, `msg` FROM `xt1` WHERE `id` = 7

On a query like this one, it does not change much because the where clause could have been added anyway by the

cond_push function, but it does make a difference in case of joins. The main thing to understand is that real indexing is done

by the called table and therefore that it should be indexed.

This also means that the xt1, xt2, and xt3 table indexes should be made separately because creating the t2 table as indexed

does not make the indexes on the sub-tables.

Sharding with Table Partitioning

Using table partitioning can have one more advantage. Because the sub-tables can address a table located on another

server, it is possible to shard a table on separate servers and hardware machines. This may be required to access as one

table data already located on several remote machines, such as servers of a company branches. Or it can be just used to

split a huge table for performance reason. For instance, supposing we have created the following tables:

create table rt1 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host1/test/sales';

create table rt2 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host2/test/sales';

create table rt3 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host3/test/sales';

Creating the partition table accessing all these will be almost like what we did with the t4 table:

create table t5 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL tabname='rt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

.

The only difference is the tabname option now referring to the rt1, rt2, and rt3 tables. However, even if it works, this is not

the best way to do it. This is because accessing a table via the MySQL API is done twice per table. Once by CONNECT to

access the FEDERATED table on the local server, then a second time by FEDERATED engine to access the remote table.

The CONNECT MYSQL table type being used anyway, you9d rather use it to directly access the remote tables. Indeed, the

partition names can also be used to modify the connection URL9s. For instance, in the case shown above, the partition table

can be created as:
3318/4161

https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

create table t6 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=mysql://root@host%s/test/sales'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

Several things can be noted here:

1. As we have seen before, the partition engine currently loses the connection string. This is why it was specified as

<connect= in the option list.

2. For each partition sub-tables, the <%s= part of the connection string has been replaced by the partition name.

3. It is not needed anymore to define the rt1, rt2, and rt3 tables (even it does not harm) and the FEDERATED engine is

no more used to access the remote tables.

This is a simple case where the connection string is almost the same for all the sub-tables. But what if the sub-tables are

accessed by very different connection strings? For instance:

For rt1: connection='mysql://root:tinono@127.0.0.1:3307/test/xt1'

For rt2: connection='mysql://foo:foopass@denver/dbemp/xt2'

For rt3: connection='mysql://root@huston :5505/test/tabx'

There are two solutions. The first one is to use the parts of the connection string to differentiate as partition names:

create table t7 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=mysql://%s'

partition by range columns(id) (

partition `root:tinono@127.0.0.1:3307/test/xt1` values less than(10),

partition `foo:foopass@denver/dbemp/xt2` values less than(50),

partition `root@huston :5505/test/tabx` values less than(MAXVALUE));

The second one, allowing avoiding too complicated partition names, is to create federated servers to access the remote

tables (if they do not already exist, else just use them). For instance the first one could be:

create server `server_one` foreign data wrapper 'mysql'

options

(host '127.0.0.1',

database 'test',

user 'root',

password 'tinono',

port 3307);

Similarly, <server_two= and <server_three= would be created and the final partition table would be created as:

create table t8 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=server_%s'

partition by range columns(id) (

partition `one/xt1` values less than(10),

partition `two/xt2` values less than(50),

partition `three/tabx` values less than(MAXVALUE));

It would be even simpler if all remote tables had the same name on the remote databases, for instance if they all were

named xt1, the connection string could be set as <server_%s/xt1= and the partition names would be just <one=, <two=, and

<three=.

Sharding on a Special Column

The technique we have seen above with file partitioning is also available with table partitioning. Companies willing to use as

one table data sharded on the company branch servers can, as we have seen, add to the table create definition a special

column. For instance:
3319/4161

create table t9 (

id int not null,

msg varchar(32),

branch char(16) default 'main' special=PARTID,

index XID(id))

engine=connect table_type=MYSQL

option_list='connect=server_%s/sales'

partition by range columns(id) (

partition `main` values in('main'),

partition `east` values in('east'),

partition `west` values in('west'));

This example assumes that federated servers had been created named <server_main=, <server_east= and <server_west= and

that all remote tables are named <sales=. Note also that in this example, the column id is no more a key.

Current Partition Limitations
Because the partition engine was written before some other engines were added to MariaDB, the way it works is sometime

incompatible with these engines, in particular with CONNECT.

Update statement

With the sample tables above, you can do update statements such as:

update t2 set msg = 'quatre' where id = 4;

It works perfectly and is accepted by CONNECT. However, let us consider the statement:

update t2 set id = 41 where msg = 'four';

This statement is not accepted by CONNECT. The reason is that the column id being part of the partition function, changing

its value may require the modified row to be moved to another partition. The way it is done by the partition engine is to

delete the old row and to re-insert the new modified one. However, this is done in a way that is not currently compatible with

CONNECT (remember that CONNECT supports UPDATE in a specific way, in particular for the table type MYSQL) This

limitation could be temporary. Meanwhile the workaround is to manually do what is done above,

Deleting the row to modify and inserting the modified row:

delete from t2 where id = 4;

insert into t2 values(41, 'four');

Alter Table statement

For all CONNECT outward tables, the ALTER TABLE statement does not make any change in the table data. This is why

ALTER TABLE should not be used; in particular to modify the partition definition, except of course to correct a wrong

definition. Note that using ALTER TABLE to create a partition table in two steps because column options would be lost is

valid as it applies to a table that is not yet partitioned.

As we have seen, it is also safe to use it to create or drop indexes. Otherwise, a simple rule of thumb is to avoid altering a

table definition and better drop and re-create a table whose definition must be modified. Just remember that for outward

CONNECT tables, dropping a table does not erase the data and that creating it does not modify existing data.

Rowid special column

Each partition being handled separately as one table, the ROWID special column returns the rank of the row in its partition,

not in the whole table. This means that for partition tables ROWID and ROWNUM are equivalent.

5.3.7.10 CONNECT - Making the GetRest
Library
To enable the REST feature with binary distributions of MariaDB, the function calling the cpprestsdk package is not included

in CONNECT, thus allowing CONNECT normal operation when the cpprestsdk package is not installed. Therefore, it must

be compiled separately as a library (so or dll) that will be loaded by CONNECT when needed.

3320/4161

This library will contain only one file shown here:

/************* Restget C++ Program Source Code File (.CPP) *************/

/* Adapted from the sample program of the Casablanca tutorial. */

/* Copyright Olivier Bertrand 2019. */

/***/

#include <cpprest/filestream.h>

#include <cpprest/http_client.h>

using namespace utility::conversions; // String conversions utilities

using namespace web; // Common features like URIs.

using namespace web::http; // Common HTTP functionality

using namespace web::http::client; // HTTP client features

using namespace concurrency::streams; // Asynchronous streams

typedef const char* PCSZ;

extern "C" int restGetFile(char* m, bool xt, PCSZ http, PCSZ uri, PCSZ fn);

/***/

/* Make a local copy of the requested file. */

/***/

int restGetFile(char *m, bool xt, PCSZ http, PCSZ uri, PCSZ fn)

{

 int rc = 0;

 auto fileStream = std::make_shared<ostream>();

 if (!http || !fn) {

 strcpy(m, "Missing http or filename");

 return 2;

 } // endif

 if (xt)

 fprintf(stderr, "restGetFile: fn=%s\n", fn);

 // Open stream to output file.

 pplx::task<void> requestTask = fstream::open_ostream(to_string_t(fn))

 .then([=](ostream outFile) {

 *fileStream= outFile;

 if (xt)

 fprintf(stderr, "Outfile isopen=%d\n", outFile.is_open());

 // Create http_client to send the request.

 http_client client(to_string_t(http));

 if (uri) {

 // Build request URI and start the request.

 uri_builder builder(to_string_t(uri));

 return client.request(methods::GET, builder.to_string());

 } else

 return client.request(methods::GET);

 })

 // Handle response headers arriving.

 .then([=](http_response response) {

 if (xt)

 fprintf(stderr, "Received response status code:%u\n",

 response.status_code());

 // Write response body into the file.

 return response.body().read_to_end(fileStream->streambuf());

 })

 // Close the file stream.

 .then([=](size_t n) {

 if (xt)

 fprintf(stderr, "Return size=%zu\n", n);

 return fileStream->close();

 });

 // Wait for all the outstanding I/O to complete and handle any exceptions

 try {

 if (xt)
3321/4161

 if (xt)

 fprintf(stderr, "Waiting\n");

 requestTask.wait();

 } catch (const std::exception &e) {

 if (xt)

 fprintf(stderr, "Error exception: %s\n", e.what());

 sprintf(m, "Error exception: %s", e.what());

 rc= 1;

 } // end try/catch

 if (xt)

 fprintf(stderr, "restget done: rc=%d\n", rc);

 return rc;

} // end of restGetFile

This file exists in the source of CONNECT as restget.cpp . If you have no access to the source, use your favorite editor

to make it by copy/pasting from the above.

Then, on Linux, compile the GetRest.so library:

g++ -o GetRest.so -O3 -Wall -std=c++11 -fPIC -shared restget.cpp -lcpprest

Note: You can replace -O3 by -g to make a debug version.

This library should be placed where it can be accessed. A good place is the directory where the libcpprest.so is, for

instance /usr/lib64 . You can move or copy it there.

On windows, using Visual Studio, make an empty win32 dll project named GetRest and add it the above file. Also add it the

module definition file restget.def :

LIBRARY REST

EXPORTS

 restGetFile @1

Important: This file must be specified in the property linker input page.

Once compiled, the release or debug versions can be copied in the cpprestsdk corresponding directories, bin or

debug\bin.

That is all. It is a once-off job. Once done, it will work with all new MariaDB versions featuring CONNECT version 1.07.

Note: the xt tracing variable is true when connect_xtrace setting includes the value <MONGO= (512).

Caution: If your server crashes when using this feature, this is likely because the GetRest lib is linked to the wrong

cpprestsdk lib (this may only apply on Windows)

A Release version of GetRest must be linked to the release version of the cpprestsdk lib (cpprest_2_10.dll) but if you

make a Debug version of GetRest, make sure it is linked to the Debug version of cpprestsdk lib (cpprest_2_10d.dll)

This may be automatic if you use Visual Studio to make the GetRest.dll.

5.3.7.11 CONNECT - Adding the REST Feature
as a Library Called by an OEM Table
If you are using a version of MariaDB that does not support REST, this is how the REST feature can be added as a library

called by an OEM table.

Before making the REST OEM module, the Microsoft Casablanca package must be installed as for compiling MariaDB from

source.

Even if this module is to be used with a binary distribution, you need some CONNECT source files in order to successfully

make it. It is made with four files existing in the version 1.06.0010 of CONNECT: tabrest.cpp, restget.cpp, tabrest.h and

mini-global.h. It also needs the CONNECT header files that are included in tabrest.cpp and the ones they can include. This

can be obtained by going to a recent download site of a version of MariaDB that includes the REST feature, downloading

the MariaDB source file tar.gz and extracting from it the CONNECT sources files in a directory that will be added to the

additional source directories if it is not the directory containing the above files.

3322/4161

On Windows, use a recent version of Visual Studio. Make a new empty DLL project and add the source files tabrest.cpp

and restget.cpp. Visual studio should automatically generate all necessary connections to the cpprest SDK. Just edit the

properties of the project to add the additional include directory (the one where the CONNECT source was downloaded) et

the link to the ha_connect.lib of the binary version of MariaDB (in the same directory than ha_connect.dll in your binary

distribution). Add the preprocessor definition XML_SUPPORT. Also set in the linker input page of the project property the

Module definition File to the rest.def file (with its full path) also existing in the CONNECT source files. If you are making a

debug configuration, make sure that in the C/C++ Code generation page the Runtime library line specifies Multi-threaded

Debug DLL (/MDd) or your server will crash when using the feature.

This is not really simple but it is nothing compared with Linux! Someone having made an OEM module for its own

application have written:

For whatever reason, g++ / ld on Linux are both extremely picky about what they will and won't consider a *"library"* for

linking purposes. In order to get them to recognize and therefore find `ha_connect.so` as a "valid" linkable library,

`ha_connect.so` must exist in a directory whose path is in `/etc/ld.so.conf` or `/etc/ld.so.conf.d/ha_connect.conf` *AND* its

filename must begin with "lib".

On Fedora, you can make a link to ha_connect.so by:

$ sudo ln -s /..path to../ha_connect.so /usr/lib64/libconnect.so

This provides a library whose name begins with <lib=. It was made in /usr/lib64/ because it was the directory of the

libcpprest.so Casablanca library. This solved the need of a file in /etc/ld.so.conf.d as this was already done for the cpprest

library. Note that the -s parameter is a must, without it all sort of nasty errors are met when using the feature.

Then compile and install the OEM module with:

$ makdir oem

$ cd oem

$ makedir Release

$ make -f oemrest.mak

$ sudo cp rest.so /usr/local/mysql/lib/plugin

The oemrest.mak file:

3323/4161

#LINUX

CPP = g++

LD = g++

OD = ./Release/

SD = /home/olivier/MariaDB/server/storage/connect/

CD =/usr/lib64

flags to compile object files that can be used in a dynamic library

CFLAGS= -Wall -c -O3 -std=c++11 -fPIC -fno-rtti -I$(SD) -DXML_SUPPORT

Replace -03 by -g for debug

LDFLAGS = -L$(CD) -lcpprest -lconnect

Flags to create a dynamic library.

DYNLINKFLAGS = -shared

on some platforms, use '-G' instead.

REST library's archive file

OEMREST = rest.so

SRCS_CPP = $(SD)tabrest.cpp $(SD)restget.cpp

OBJS_CPP = $(OD)tabrest.o $(OD)restget.o

top-level rule

all: $(OEMREST)

$(OEMREST): $(OBJS_CPP)

 $(LD) $(OBJS_CPP) $(LDFLAGS) $(DYNLINKFLAGS) -o $@

#CPP Source files

$(OD)tabrest.o: $(SD)tabrest.cpp $(SD)mini-global.h $(SD)global.h $(SD)plgdbsem.h

$(SD)xtable.h $(SD)filamtxt.h $(SD)plgxml.h $(SD)tabdos.h $(SD)tabfmt.h $(SD)tabjson.h

$(SD)tabrest.h $(SD)tabxml.h

 $(CPP) $(CFLAGS) -o $@ (SD)(*F).cpp

$(OD)restget.o: $(SD)restget.cpp $(SD)mini-global.h $(SD)global.h

 $(CPP) $(CFLAGS) -o $@ (SD)(*F).cpp

clean everything

clean:

 $(RM) $(OBJS_CPP) $(OEMREST)

The SD and CD variables are the directories of the CONNECT source files and the one containing the libcpprest.so lib. They

can be edited to match those on your machine OD is the directory that was made to contain the object files.

A very important flag is -fno-rtti. Without it you would be in big trouble.

The resulting module, for instance rest.so or rest.dll, must be placed in the plugin directory of the MariaDB server. Then, you

will be able to use NoSQL tables simply replacing in the CREATE TABLE statement the TABLE_TYPE option =JSON or

XML by TABLE_TYPE=OEM SUBTYPE=REST MODULE=9rest.(so|dll)9. Actually, the module name, here supposedly 8rest9,

can be anything you like.

The file type is JSON by default. If not, it must be specified like this:

OPTION_LIST=9Ftype=XML9

To be added to the create table statement. For instance:

CREATE TABLE webw

ENGINE=CONNECT TABLE_TYPE=OEM MODULE='Rest.dll' SUBTYPE=REST

FILE_NAME='weatherdata.xml'

HTTP='https://samples.openweathermap.org/data/2.5/forecast?

q=London,us&mode=xml&appid=b6907d289e10d714a6e88b30761fae22'

OPTION_LIST='Ftype=XML,Depth=3,Rownode=weatherdata';

Note: this last example returns an XML file whose format was not recognized by old CONNECT versions. It is here the

reason of the option 8Rownode=weatherdata9.

If you have trouble making the module, you can post an issue on JIRA .

5.3.7.12 CONNECT - Compiling JSON UDFs in
a Separate Library

3324/4161

https://mariadb.com/kb/en/jira/

Although the JSON UDFs can be nicely included in the CONNECT library module, there are cases when you may need to

have them in a separate library.

This is when CONNECT is compiled embedded, or if you want to test or use these UDFs with other MariaDB versions not

including them.

To make it, you need to have access to the most recent MariaDB source code. Then, make a project containing these files:

1. jsonudf.cpp

2. json.cpp

3. value.cpp

4. osutil.c

5. plugutil.cpp

6. maputil.cpp

7. jsonutil.cpp

jsonutil.cpp is not distributed with the source code, you will have to make it from the following:

3325/4161

#include "my_global.h"

#include "mysqld.h"

#include "plugin.h"

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <errno.h>

#include "global.h"

extern "C" int GetTraceValue(void) { return 0; }

uint GetJsonGrpSize(void) { return 100; }

/***/

/* These replace missing function of the (not used) DTVAL class. */

/***/

typedef struct _datpar *PDTP;

PDTP MakeDateFormat(PGLOBAL, PSZ, bool, bool, int) { return NULL; }

int ExtractDate(char*, PDTP, int, int val[6]) { return 0; }

#ifdef __WIN__

my_bool CloseFileHandle(HANDLE h)

{

 return !CloseHandle(h);

} /* end of CloseFileHandle */

#else /* UNIX */

my_bool CloseFileHandle(HANDLE h)

{

 return (close(h)) ? TRUE : FALSE;

} /* end of CloseFileHandle */

int GetLastError()

{

 return errno;

} /* end of GetLastError */

#endif // UNIX

/***/

/* Program for sub-allocating one item in a storage area. */

/* Note: This function is equivalent to PlugSubAlloc except that in */

/* case of insufficient memory, it returns NULL instead of doing a */

/* long jump. The caller must test the return value for error. */

/***/

void *PlgDBSubAlloc(PGLOBAL g, void *memp, size_t size)

{

 PPOOLHEADER pph; // Points on area header.

 if (!memp) // Allocation is to be done in the Sarea

 memp = g->Sarea;

 size = ((size + 7) / 8) * 8; /* Round up size to multiple of 8 */

 pph = (PPOOLHEADER)memp;

 if ((uint)size > pph->FreeBlk) { /* Not enough memory left in pool */

 sprintf(g->Message,

 "Not enough memory in Work area for request of %d (used=%d free=%d)",

 (int)size, pph->To_Free, pph->FreeBlk);

 return NULL;

 } // endif size

 // Do the suballocation the simplest way

 memp = MakePtr(memp, pph->To_Free); // Points to sub_allocated block

 pph->To_Free += size; // New offset of pool free block

 pph->FreeBlk -= size; // New size of pool free block

 return (memp);

} // end of PlgDBSubAlloc

You can create the file by copy/paste from the above.

3326/4161

Set all the additional include directories to the MariaDB include directories used in plugin compiling plus the reference of the

storage/connect directories, and compile like any other UDF giving any name to the made library module (I used

jsonudf.dll on Windows).

Then you can create the functions using this name as the soname parameter.

There are some restrictions when using the UDFs this way:

The connect_json_grp_size variable cannot be accessed. The group size is set and retrieved using the

jsonset_grp_size and jsonget_grp_size functions (previously 100).

In case of error, warnings are replaced by messages sent to stderr.

No trace.

5.3.7.13 CONNECT System Variables
Contents
1. connect_class_path

2. connect_cond_push

3. connect_conv_size

4. connect_default_depth

5. connect_default_prec

6. connect_enable_mongo

7. connect_exact_info

8. connect_force_bson

9. connect_indx_map

10. connect_java_wrapper

11. connect_json_all_path

12. connect_json_grp_size

13. connect_json_null

14. connect_jvm_path

15. connect_type_conv

16. connect_use_tempfile

17. connect_work_size

18. connect_xtrace

This page documents system variables related to the CONNECT storage engine. See Server System Variables for a

complete list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

connect_class_path

Description: Java class path

Commandline: --connect-class-path=value

Scope: Global

Dynamic:

Data Type: string

Default Value:

connect_cond_push

Description: Enable condition pushdown

Commandline: --connect-cond-push={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

connect_conv_size

Description: The size of the VARCHAR created when converting from a TEXT type. See connect_type_conv.

Commandline: --connect-conv-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

3327/4161

Default Value:

>= MariaDB 10.4.8: 1024

<= MariaDB 10.4.7: 8192

Range: 0 to 65500

connect_default_depth

Description: Default depth used by Json, XML and Mongo discovery.

Commandline: --connect-default-depth=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: -1 to 16

Introduced: MariaDB 10.5.7, MariaDB 10.4.16

connect_default_prec

Description: Default precision used for doubles.

Commandline: --connect-default-prec=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 6

Range: 0 to 16

Introduced: MariaDB 10.5.9, MariaDB 10.4.18

connect_enable_mongo

Description: Enable the Mongo table type.

Commandline: --connect-enable-mongo={0|1}

Scope: Global, Session

Dynamic:

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.2 , MariaDB 10.2.9

Removed: MariaDB 10.3.3

connect_exact_info

Description: Whether the CONNECT engine should return an exact record number value to information queries. It is

OFF by default because this information can take a very long time for large variable record length tables or for remote

tables, especially if the remote server is not available. It can be set to ON when exact values are desired, for instance

when querying the repartition of rows in a partition table.

Commandline: --connect-exact-info={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

connect_force_bson

Description: Force using BSON for JSON tables. Starting with these releases, the internal way JSON was parsed

and handled was changed. The main advantage of the new way is to reduce the memory required to parse JSON

(from 6 to 10 times the size of the JSON source to now only 2 to 4 times). However, this is in Beta mode and JSON

tables are still handled using the old mode. To use the new mode, tables should be created with

TABLE_TYPE=BSON, or by setting this session variable to 1 or ON. Then, all JSON tables will be handled as BSON.

This is temporary until the new way replaces the old way by default.

Commandline: --connect-force-bson={0|1}

Scope: Global, Session

3328/4161

https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.5.9, MariaDB 10.4.18

connect_indx_map

Description: Enable file mapping for index files. To accelerate the indexing process, CONNECT makes an index

structure in memory from the index file. This can be done by reading the index file or using it as if it was in memory by

<file mapping=. Set to 0 (file read, the default) or 1 (file mapping).

Commandline: --connect-indx-map=#

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

connect_java_wrapper

Description: Java wrapper.

Commandline: --connect-java-wrapper=val

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: wrappers/JdbcInterface

connect_json_all_path

Description: Discovery to generate json path for all columns if ON (the default) or do not when the path is the column

name.

Commandline: --connect-json-all-path={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.5.7, MariaDB 10.4.16

connect_json_grp_size

Description: Max number of rows for JSON aggregate functions.

Commandline: --connect-json-grp-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 50 (>= Connect 1.7.0003), 10 (<= Connect 1.7.0002)

Range: 1 to 2147483647

connect_json_null

Description: Representation of JSON null values.

Commandline: --connect-json-null=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: <null>

connect_jvm_path

Description: Path to JVM library.

3329/4161

Commandline: --connect-jvm_path=value

Scope: Global

Dynamic:

Data Type: string

Default Value:

connect_type_conv

Description: Determines the handling of TEXT columns.

NO : The default until Connect 1.06.005, no conversion takes place, and a TYPE_ERROR is returned, resulting

in a <not supported= message.

YES : The default from Connect 1.06.006. The column is internally converted to a column declared as

VARCHAR(n), n being the value of connect_conv_size.

FORCE (>= Connect 1.06.006): Also convert ODBC blob columns to TYPE_STRING.

SKIP : No conversion. When the column declaration is provided via Discovery (meaning the CONNECT table

is created without a column description), this column is not generated. Also applies to ODBC tables.

Commandline: --connect-type-conv=#

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Valid Values: NO , YES , FORCE or SKIP

Default Value: YES

connect_use_tempfile

Description:

NO : The first algorithm is always used. Because it can cause errors when updating variable record length

tables, this value should be set only for testing.

AUTO : This is the default value. It leaves CONNECT to choose the algorithm to use. Currently it is equivalent

to NO , except when updating variable record length tables (DOS, CSV or FMT) with file mapping forced to

OFF.

YES : Using a temporary file is chosen with some exceptions. These are when file mapping is ON, for VEC

tables and when deleting from DBF tables (soft delete). For variable record length tables, file mapping is forced

to OFF.

FORCE : Like YES but forces file mapping to be OFF for all table types.

TEST : Reserved for CONNECT development.

Commandline: --connect-use-tempfile=#

Scope: Session

Dynamic: Yes

Data Type: enum

Default Value: AUTO

connect_work_size

Description: Size of the CONNECT work area used for memory allocation. Permits allocating a larger memory sub-

allocation space when dealing with very large if sub-allocation fails. If the specified value is too big and memory

allocation fails, the size of the work area remains but the variable value is not modified and should be reset.

Commandline: --connect-work-size=#

Scope: Global, Session (Session-only from CONNECT 1.03.005)

Dynamic: Yes

Data Type: numeric

Default Value: 67108864

Range: 4194304 upwards, depending on the physical memory size

connect_xtrace

Description: Console trace value. Set to 0 (no trace), or to other values if a console tracing is desired. Note that to

test this handler, MariaDB should be executed with the --console parameter because CONNECT prints some error

and trace messages on the console. In some Linux versions, this is re-routed into the error log file. Console tracing

can be set on the command line or later by names or values. Valid values (from Connect 1.06.006) include:

0 : No trace

3330/4161

YES or 1 : Basic trace

MORE or 2 : More tracing

INDEX or 4 : Index construction

MEMORY or 8 : Allocating and freeing memory

SUBALLOC or 16 : Sub-allocating in work area

QUERY or 32 : Constructed query sent to external server

STMT or 64 : Currently executing statement

HANDLER or 128 : Creating and dropping CONNECT handlers

BLOCK or 256 : Creating and dropping CONNECT objects

MONGO or 512 : Mongo and REST (from Connect 1.06.0010) tracing

For example:

set global connect_xtrace=0; No trace

set global connect_xtrace='YES'; By name

set global connect_xtrace=1; By value

set global connect_xtrace='QUERY,STMT'; By name

set global connect_xtrace=96; By value

set global connect_xtrace=1023; Trace all

Commandline: --connect-xtrace=#

Scope: Global

Dynamic: Yes

Data Type: set

Default Value: 0

Valid Values: See description

5.3.7.14 JSON Sample Files
Contents
1. Expense.json

2. OEM example

1. tabfic.h

2. tabfic.cpp

3. tabfic.def

3. JSON UDFs in a separate library

Expense.json

[

 {

 "WHO": "Joe",

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 18.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Car",

 "AMOUNT": 20.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 19.00 3331/4161

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 16.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 }

]

 },

 {

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 }

]

 }

]

 },

 {

 "WHO": "Beth",

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 16.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 15.00

 }

]

 },

 {

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 20.00

 }

]

 }

]

 },
3332/4161

 {

 "WHO": "Janet",

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Car",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 18.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 18.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Car",

 "AMOUNT": 17.00

 }

]

 },

 {

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 },

 {

 "WHAT": "Car",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 }

]

 }

]

 }

]

OEM example

This is an example showing how an OEM table can be implemented. It is out of the scope of this document to explain how it

works and to be a full guide on writing OEM tables for CONNECT.

tabfic.h

The header File tabfic.h:

// TABFIC.H Olivier Bertrand 2008-2010

// External table type to read FIC files

#define TYPE_AM_FIC (AMT)129

typedef class FICDEF *PFICDEF;

typedef class TDBFIC *PTDBFIC;

typedef class FICCOL *PFICCOL;

/* ------------------------- FIC classes ------------------------- */
3333/4161

/* ------------------------- FIC classes ------------------------- */

/***/

/* FIC: OEM table to read FIC files. */

/***/

/***/

/* This function is exported from the Tabfic.dll */

/***/

extern "C" PTABDEF __stdcall GetFIC(PGLOBAL g, void *memp);

/***/

/* FIC table definition class. */

/***/

class FICDEF : public DOSDEF { /* Logical table description */

 friend class TDBFIC;

 public:

 // Constructor

 FICDEF(void) {Pseudo = 3;}

 // Implementation

 virtual const char *GetType(void) {return "FIC";}

 // Methods

 virtual BOOL DefineAM(PGLOBAL g, LPCSTR am, int poff);

 virtual PTDB GetTable(PGLOBAL g, MODE m);

 protected:

 // No Members

}; // end of class FICDEF

/***/

/* This is the class declaration for the FIC table. */

/***/

class TDBFIC : public TDBFIX {

 friend class FICCOL;

 public:

 // Constructor

 TDBFIC(PFICDEF tdp);

 // Implementation

 virtual AMT GetAmType(void) {return TYPE_AM_FIC;}

 // Methods

 virtual void ResetDB(void);

 virtual int RowNumber(PGLOBAL g, BOOL b = FALSE);

 // Database routines

 virtual PCOL MakeCol(PGLOBAL g, PCOLDEF cdp, PCOL cprec, int n);

 virtual BOOL OpenDB(PGLOBAL g, PSQL sqlp);

 virtual int ReadDB(PGLOBAL g);

 virtual int WriteDB(PGLOBAL g);

 virtual int DeleteDB(PGLOBAL g, int irc);

 protected:

 // Members

 int ReadMode; // To read soft deleted lines

 int Rows; // Used for RowID

}; // end of class TDBFIC

/***/

/* Class FICCOL: for Monetary columns. */

/***/

class FICCOL : public DOSCOL {

 public:

 // Constructors

 FICCOL(PGLOBAL g, PCOLDEF cdp, PTDB tdbp,

 PCOL cprec, int i, PSZ am = "FIC");

 // Implementation

 virtual int GetAmType(void) {return TYPE_AM_FIC;}

 // Methods

 virtual void ReadColumn(PGLOBAL g);

 protected:
3334/4161

 protected:

 // Members

 char Fmt; // The column format

}; // end of class FICCOL

tabfic.cpp

The source File tabfic.cpp:

/***/

/* FIC: OEM table to read FIC files. */

/***/

#if defined(WIN32)

#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff

#include <windows.h>

#endif // WIN32

#include "global.h"

#include "plgdbsem.h"

#include "reldef.h"

#include "filamfix.h"

#include "tabfix.h"

#include "tabfic.h"

int TDB::Tnum;

int DTVAL::Shift;

/***/

/* Initialize the CSORT static members. */

/***/

int CSORT::Limit = 0;

double CSORT::Lg2 = log(2.0);

size_t CSORT::Cpn[1000] = {0}; /* Precalculated cmpnum values */

/* ------------- Implementation of the FIC subtype --------------- */

/***/

/* This function is exported from the DLL. */

/***/

PTABDEF __stdcall GetFIC(PGLOBAL g, void *memp)

{

 return new(g, memp) FICDEF;

} // end of GetFIC

/* -------------- Implementation of the FIC classes -------------- */

/***/

/* DefineAM: define specific AM block values from FIC file. */

/***/

BOOL FICDEF::DefineAM(PGLOBAL g, LPCSTR am, int poff)

{

 ReadMode = GetIntCatInfo("Readmode", 0);

 // Indicate that we are a BIN format

 return DOSDEF::DefineAM(g, "BIN", poff);

} // end of DefineAM

/***/

/* GetTable: makes a new TDB of the proper type. */

/***/

PTDB FICDEF::GetTable(PGLOBAL g, MODE m)

{

 return new(g) TDBFIC(this);

} // end of GetTable

/* --- */

/***/

/* Implementation of the TDBFIC class. */

/***/

TDBFIC::TDBFIC(PFICDEF tdp) : TDBFIX(tdp, NULL)

{

 ReadMode = tdp->ReadMode;

 Rows = 0;

} // end of TDBFIC constructor

3335/4161

/***/

/* Allocate FIC column description block. */

/***/

PCOL TDBFIC::MakeCol(PGLOBAL g, PCOLDEF cdp, PCOL cprec, int n)

{

 PCOL colp;

 // BINCOL is alright except for the Monetary format

 if (cdp->GetFmt() && toupper(*cdp->GetFmt()) == 'M')

 colp = new(g) FICCOL(g, cdp, this, cprec, n);

 else

 colp = new(g) BINCOL(g, cdp, this, cprec, n);

 return colp;

} // end of MakeCol

/***/

/* RowNumber: return the ordinal number of the current row. */

/***/

int TDBFIC::RowNumber(PGLOBAL g, BOOL b)

{

 return (b) ? Txfp->GetRowID() : Rows;

} // end of RowNumber

/***/

/* FIC Access Method reset table for re-opening. */

/***/

void TDBFIC::ResetDB(void)

{

 Rows = 0;

 TDBFIX::ResetDB();

} // end of ResetDB

/***/

/* FIC Access Method opening routine. */

/***/

BOOL TDBFIC::OpenDB(PGLOBAL g, PSQL sqlp)

{

 if (Use == USE_OPEN) {

 // Table already open, just replace it at its beginning.

 return TDBFIX::OpenDB(g);

 } // endif use

 if (Mode != MODE_READ) {

 // Currently FIC tables cannot be modified.

 strcpy(g->Message, "FIC tables are read only");

 return TRUE;

 } // endif Mode

 /***/

 /* Physically open the FIC file. */

 /***/

 if (TDBFIX::OpenDB(g))

 return TRUE;

 Use = USE_OPEN;

 return FALSE;

} // end of OpenDB

/***/

/* ReadDB: Data Base read routine for FIC access method. */

/***/

int TDBFIC::ReadDB(PGLOBAL g)

{

 int rc;

 /***/

 /* Now start the reading process. */

 /***/

 do {

 rc = TDBFIX::ReadDB(g);

 } while (rc == RC_OK && ((ReadMode == 0 && *To_Line == '*') ||

 (ReadMode == 2 && *To_Line != '*')));

3336/4161

 Rows++;

 return rc;

} // end of ReadDB

/***/

/* WriteDB: Data Base write routine for FIC access methods. */

/***/

int TDBFIC::WriteDB(PGLOBAL g)

{

 strcpy(g->Message, "FIC tables are read only");

 return RC_FX;

} // end of WriteDB

/***/

/* Data Base delete line routine for FIC access methods. */

/***/

int TDBFIC::DeleteDB(PGLOBAL g, int irc)

{

 strcpy(g->Message, "Delete not enabled for FIC tables");

 return RC_FX;

} // end of DeleteDB

// ---------------------- FICCOL functions --------------------------

/***/

/* FICCOL public constructor. */

/***/

FICCOL::FICCOL(PGLOBAL g, PCOLDEF cdp, PTDB tdbp, PCOL cprec, int i,

 PSZ am) : DOSCOL(g, cdp, tdbp, cprec, i, am)

{

 // Set additional FIC access method information for column.

 Fmt = toupper(*cdp->GetFmt()); // Column format

} // end of FICCOL constructor

/***/

/* Handle the monetary value of this column. It is a big integer */

/* that represents the value multiplied by 1000. */

/* In this function we translate it to a double float value. */

/***/

void FICCOL::ReadColumn(PGLOBAL g)

{

 char *p;

 int rc;

 uint n;

 double fmon;

 PTDBFIC tdbp = (PTDBFIC)To_Tdb;

 /***/

 /* If physical reading of the line was deferred, do it now. */

 /***/

 if (!tdbp->IsRead())

 if ((rc = tdbp->ReadBuffer(g)) != RC_OK) {

 if (rc == RC_EF)

 sprintf(g->Message, MSG(INV_DEF_READ), rc);

 longjmp(g->jumper[g->jump_level], 11);

 } // endif

 p = tdbp->To_Line + Deplac;

 /***/

 /* Set Value from the line field. */

 /***/

 if (*(SHORT*)(p + 8) < 0) {

 n = ~*(SHORT*)(p + 8);

 fmon = (double)n;

 fmon *= 4294967296.0;

 n = ~*(int*)(p + 4);

 fmon += (double)n;

 fmon *= 4294967296.0;

 n = ~*(int*)p;

 fmon += (double)n;

 fmon++;

 fmon /= 1000000.0;

 fmon = -fmon;
3337/4161

 fmon = -fmon;

 } else {

 fmon = ((double)*(USHORT*)(p + 8));

 fmon *= 4294967296.0;

 fmon += ((double)*(ULONG*)(p + 4));

 fmon *= 4294967296.0;

 fmon += ((double)*(ULONG*)p);

 fmon /= 1000000.0;

 } // enif neg

 Value->SetValue(fmon);

} // end of ReadColumn

tabfic.def

The file tabfic.def: (required only on Windows)

LIBRARY TABFIC

DESCRIPTION 'FIC files'

EXPORTS

 GetFIC @1

JSON UDFs in a separate library

Although the JSON UDF9s can be nicely included in the CONNECT library module, there are cases when you may need to

have them in a separate library.

This is when CONNECT is compiled embedded, or if you want to test or use these UDF9s with other MariaDB versions not

including them.

To make it, you need to have access to the last MariaDB source code. Then, make a project containing these files:

1. jsonudf.cpp

2. json.cpp

3. value.cpp

4. osutil.c

5. plugutil.c

6. maputil.cpp

7. jsonutil.cpp

jsonutil.cpp is not distributed with the source code, you will have to make it from the following:

3338/4161

#include "my_global.h"

#include "mysqld.h"

#include "plugin.h"

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <errno.h>

#include "global.h"

extern "C" int GetTraceValue(void) { return 0; }

uint GetJsonGrpSize(void) { return 100; }

/***/

/* These replace missing function of the (not used) DTVAL class. */

/***/

typedef struct _datpar *PDTP;

PDTP MakeDateFormat(PGLOBAL, PSZ, bool, bool, int) { return NULL; }

int ExtractDate(char*, PDTP, int, int val[6]) { return 0; }

#ifdef __WIN__

my_bool CloseFileHandle(HANDLE h)

{

 return !CloseHandle(h);

} /* end of CloseFileHandle */

#else /* UNIX */

my_bool CloseFileHandle(HANDLE h)

{

 return (close(h)) ? TRUE : FALSE;

} /* end of CloseFileHandle */

int GetLastError()

{

 return errno;

} /* end of GetLastError */

#endif // UNIX

/***/

/* Program for sub-allocating one item in a storage area. */

/* Note: This function is equivalent to PlugSubAlloc except that in */

/* case of insufficient memory, it returns NULL instead of doing a */

/* long jump. The caller must test the return value for error. */

/***/

void *PlgDBSubAlloc(PGLOBAL g, void *memp, size_t size)

{

 PPOOLHEADER pph; // Points on area header.

 if (!memp) // Allocation is to be done in the Sarea

 memp = g->Sarea;

 size = ((size + 7) / 8) * 8; /* Round up size to multiple of 8 */

 pph = (PPOOLHEADER)memp;

 if ((uint)size > pph->FreeBlk) { /* Not enough memory left in pool */

 sprintf(g->Message,

 "Not enough memory in Work area for request of %d (used=%d free=%d)",

 (int)size, pph->To_Free, pph->FreeBlk);

 return NULL;

 } // endif size

 // Do the suballocation the simplest way

 memp = MakePtr(memp, pph->To_Free); // Points to sub_allocated block

 pph->To_Free += size; // New offset of pool free block

 pph->FreeBlk -= size; // New size of pool free block

 return (memp);

} // end of PlgDBSubAlloc

You can create the file by copy/paste from the above.

3339/4161

Set all the additional include directories to the MariaDB include directories used in plugin compiling plus the reference of the

storage/connect directories, and compile like any other UDF giving any name to the made library module (I used jsonudf.dll

on Windows)

Then you can create the functions using this name as the soname parameter.

There are some restrictions when using the UDF9s this way:

The connect_json_grp_size variable cannot be accessed. The group size is set to 100.

In case of error, warnings are replaced by messages sent to stderr.

No trace.

5.3.8 CSV
The CSV storage engine

CSV Overview

Used to read and append to files stored in CSV (comma-separated-values) format.

Checking and Repairing CSV Tables

CSV tables support the CHECK TABLE and REPAIR TABLE statements.

3

5.3.8.1 CSV Overview
Contents
1. The CSV storage engine and logging to tables

2. CSV Storage Engine files

3. Limitations

4. Examples

The CSV Storage Engine can read and append to files stored in CSV (comma-separated-values) format.

However, since MariaDB 10.0, a better storage engine is able to read and write such files: CONNECT.

The CSV storage engine and logging to tables
The CSV storage engine is the default storage engine when using logging of SQL queries to tables.

mysqld --log-output=table

CSV Storage Engine files
When you create a table using the CSV storage engine, three files are created:

<table_name>.frm

<table_name>.CSV

<table_name>.CSM

The .frm file is the table format file.

The .CSV file is a plain text file. Data you enter into the table is stored as plain text in comma-separated-values format.

The .CSM file stores metadata about the table such as the state and the number of rows in the table.

Limitations
CSV tables do not support indexing.

CSV tables cannot be partitioned.

Columns in CSV tables must be declared as NOT NULL.

No transactions.

The original CSV-format does not enable IETF-compatible parsing of embedded quote and comma characters. From

MariaDB 10.1.8 , it is possible to do so by setting the IETF_QUOTES option when creating a table.

Examples

3340/4161

https://mariadb.com/kb/en/mariadb-1018-release-notes/

Forgetting to add NOT NULL:

CREATE TABLE csv_test (x INT, y DATE, z CHAR(10)) ENGINE=CSV;

ERROR 1178 (42000): The storage engine for the table doesn't support nullable columns

Creating, inserting and selecting:

CREATE TABLE csv_test (

 x INT NOT NULL, y DATE NOT NULL, z CHAR(10) NOT NULL

) ENGINE=CSV;

INSERT INTO csv_test VALUES

 (1,CURDATE(),'one'),

 (2,CURDATE(),'two'),

 (3,CURDATE(),'three');

SELECT * FROM csv_test;

+---+------------+-------+

| x | y | z |

+---+------------+-------+

| 1 | 2011-11-16 | one |

| 2 | 2011-11-16 | two |

| 3 | 2011-11-16 | three |

+---+------------+-------+

Viewing in a text editor:

$ cat csv_test.CSV

1,"2011-11-16","one"

2,"2011-11-16","two"

3,"2011-11-16","three"

5.3.8.2 Checking and Repairing CSV Tables
CSV tables support the CHECK TABLE and REPAIR TABLE statements.

CHECK TABLE will mark the table as corrupt if it finds a problem, while REPAIR TABLE will restore rows until the first

corrupted row, discarding the rest.

Examples

CREATE TABLE csv_test (

 x INT NOT NULL, y DATE NOT NULL, z CHAR(10) NOT NULL

) ENGINE=CSV;

INSERT INTO csv_test VALUES

 (1,CURDATE(),'one'),

 (2,CURDATE(),'two'),

 (3,CURDATE(),'three');

SELECT * FROM csv_test;

+---+------------+-------+

| x | y | z |

+---+------------+-------+

| 1 | 2013-07-08 | one |

| 2 | 2013-07-08 | two |

| 3 | 2013-07-08 | three |

+---+------------+-------+

Using an editor, the actual file will look as follows

3341/4161

$ cat csv_test.CSV

1,"2013-07-08","one"

2,"2013-07-08","two"

3,"2013-07-08","three"

Let's introduce some corruption with an unwanted quote in the 2nd row:

1,"2013-07-08","one"

2","2013-07-08","two"

3,"2013-07-08","three"

CHECK TABLE csv_test;

+---------------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------------+-------+----------+----------+

| test.csv_test | check | error | Corrupt |

+---------------+-------+----------+----------+

We can repair this, but all rows from the corrupt row onwards will be lost:

REPAIR TABLE csv_test;

+---------------+--------+----------+--+

| Table | Op | Msg_type | Msg_text |

+---------------+--------+----------+--+

| test.csv_test | repair | Warning | Data truncated for column 'x' at row 2 |

| test.csv_test | repair | status | OK |

+---------------+--------+----------+--+

SELECT * FROM csv_test;

+---+------------+-----+

| x | y | z |

+---+------------+-----+

| 1 | 2013-07-08 | one |

+---+------------+-----+

5.3.9 FederatedX
Information about the FederatedX Storage Engine

About FederatedX

Federated Storage Engine fork that uses uses libmysql to talk to the data source.

Differences Between FederatedX and Federated

Main differences between FederatedX and Federated.

3

5.3.9.1 About FederatedX
The FederatedX storage engine is a fork of MySQL's Federated storage engine , which is no longer being developed by

Oracle. The original purpose of FederatedX was to keep this storage engine's development progressing-- to both add new

features as well as fix old bugs.

Since MariaDB 10.0, the CONNECT storage engine also allows access to a remote database via MySQL or ODBC

connection (table types: MYSQL , ODBC). However, in the current implementation there are several limitations.

3342/4161

https://dev.mysql.com/doc/refman/5.5/en/federated-storage-engine.html
https://mariadb.com/kb/en/connect-table-types-mysql-table-type-accessing-mysqlmariadb-tables/

Contents
1. What is the FederatedX storage engine?

2. History

3. Installing the Plugin

4. Uninstalling the Plugin

5. How FederatedX works

1. Internal workings of FederatedX

1. FederatedX table creation

2. Method calls

1. SELECT

2. INSERT

3. UPDATE

6. FederatedX capabilities and limitations

7. How do you use FederatedX?

1. How to see the storage engine in action

8. How do I create a federated server?

9. How does FederatedX differ from the old Federated Engine?

10. Where can I get FederatedX

1. What are the plans for FederatedX?

What is the FederatedX storage engine?
The FederatedX Storage Engine is a storage engine that works with both MariaDB and MySQL. Where other storage

engines are built as interfaces to lower-level file-based data stores, FederatedX uses libmysql to talk to the data source, the

data source being a remote RDBMS. Currently, since FederatedX only uses libmysql, it can only talk to another MySQL

RDBMS. The plan is of course to be able to use other RDBMS systems as a data source. There is an existing project

Federated ODBC which was able to use PostgreSQL as a remote data source, and it is this type of functionality which will

be brought to FederatedX in subsequent versions.

History
The history of FederatedX is derived from the History of Federated. Cisco needed a MySQL storage engine that would

allow them to consolidate remote tables on some sort of routing device, being able to interact with these remote tables as if

they were local to the device, but not actually on the device, since the routing device had only so much storage space. The

first prototype of the Federated Storage Engine was developed by JD (need to check on this- Brian Aker can verify) using

the HANDLER interface. Brian handed the code to Patrick Galbraith and explained how it needed to work, and with Brian

and Monty's tutelage and Patrick had a working Federated Storage Engine with MySQL 5.0. Eventually, Federated was

released to the public in a MySQL 5.0 release.

When MySQL 5.1 became the production release of MySQL, Federated had more features and enhancements added to it,

namely:

New Federated SERVER added to the parser. This was something Cisco needed that made it possible to change the

connection parameters for numerous Federated tables at once without having to alter or re-create the Federated

tables.

Basic Transactional support-- for supporting remote transactional tables

Various bugs that needed to be fixed from MySQL 5.0

Plugin capability

In MariaDB 10.0.2 FederatedX got support for assisted table discovery.

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'ha_federatedx';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to

mariadbd or it can be specified in a relevant server option group in an option file. For example:

3343/4161

https://mariadb.com/kb/en/mariadb-1002-release-notes/

[mariadb]

...

plugin_load_add = ha_federatedx

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'ha_federatedx';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

How FederatedX works
Every storage engine has to implement derived standard handler class API methods for a storage engine to work.

FederatedX is no different in that regard. The big difference is that FederatedX needs to implement these handler methods

in such as to construct SQL statements to run on the remote server and if there is a result set, process that result set into

the internal handler format so that the result is returned to the user.

Internal workings of FederatedX

Normal database files are local and as such: You create a table called 'users', a file such as 'users.MYD' is created. A

handler reads, inserts, deletes, updates data in this file. The data is stored in particular format, so to read, that data has to

be parsed into fields, to write, fields have to be stored in this format to write to this data file.

With the FederatedX storage engine, there will be no local files for each table's data (such as .MYD). A foreign database will

store the data that would normally be in this file. This will necessitate the use of MySQL client API to read, delete, update,

insert this data. The data will have to be retrieve via an SQL call " SELECT * FROM users

". Then, to read this data, it will have to be retrieved via mysql_fetch_row

one row at a time, then converted from the column in this select into the format that the handler expects.

The basic functionality of how FederatedX works is:

The user issues an SQL statement against the local federatedX table. This statement is parsed into an item tree

FederatedX uses the mysql handler API to implement the various methods required for a storage engine. It has

access to the item tree for the SQL statement issued, as well as the Table object and each of its Field members. At

With this information, FederatedX constructs an SQL statement

The constructed SQL statement is sent to the Foreign data source through libmysql using the mysql client API

The foreign database reads the SQL statement and sends the result back through the mysql client API to the origin

If the original SQL statement has a result set from the foreign data source, the FederatedX storage engine iterates

through the result set and converts each row and column to the internal handler format

If the original SQL statement only returns the number of rows returned (affected_rows), that number is added to the

table stats which results in the user seeing how many rows were affected.

FederatedX table creation

The create table will simply create the .frm file, and within the CREATE TABLE

SQL statement, there SHALL be any of the following :

connection=scheme://username:password@hostname:port/database/tablename

connection=scheme://username@hostname/database/tablename

connection=scheme://username:password@hostname/database/tablename

connection=scheme://username:password@hostname/database/tablename

Or using the syntax introduced in MySQL versions 5.1 for a Federated server (SQL/MED Spec xxxx)

connection="connection_one"

connection="connection_one/table_foo"

An example of a connect string specifying all the connection parameters would be:

connection=mysql://username:password@hostname:port/database/tablename

3344/4161

Or, using a Federated server, first a server is created:

create server 'server_one' foreign data wrapper 'mysql' options

 (HOST '127.0.0.1',

 DATABASE 'db1',

 USER 'root',

 PASSWORD '',

 PORT 3306,

 SOCKET '',

 OWNER 'root');

Then the FederatedX table is created specifying the newly created Federated server:

CREATE TABLE federatedx.t1 (

 `id` int(20) NOT NULL,

 `name` varchar(64) NOT NULL default ''

)

ENGINE="FEDERATED" DEFAULT CHARSET=latin1

CONNECTION='server_one';

(Note that in MariaDB, the original Federated storage engine is replaced with the new FederatedX storage engine. And for

backward compatibility, the old name "FEDERATED" is used in create table. So in MariaDB, the engine type should be

given as "FEDERATED" without an extra "X", not "FEDERATEDX").

The equivalent of above, if done specifying all the connection parameters

CONNECTION="mysql://root@127.0.0.1:3306/db1/t1"

You can also change the server to point to a new schema:

ALTER SERVER 'server_one' options(DATABASE 'db2');

All subsequent calls to any FederatedX table using the 'server_one' will now be against db2.t1! Guess what? You no longer

have to perform an alter table in order to point one or more FederatedX tables to a new server!

This connection="connection string" is necessary for the handler to be able to connect to the foreign server, either

by URL, or by server name.

Method calls

One way to see how the FederatedX storage engine works is to compile a debug build of MariaDB and turn on a trace log.

Using a two column table, with one record, the following SQL statements shown below, can be analyzed for what internal

methods they result in being called.

SELECT

If the query is for instance " SELECT * FROM foo

", then the primary methods you would see with debug turned on would be first:

ha_federatedx::info

ha_federatedx::scan_time:

ha_federatedx::rnd_init: share->select_query SELECT * FROM foo

ha_federatedx::extra

Then for every row of data retrieved from the foreign database in the result set:

ha_federatedx::rnd_next

ha_federatedx::convert_row_to_internal_format

ha_federatedx::rnd_next

After all the rows of data that were retrieved, you would see:

ha_federatedx::rnd_end

ha_federatedx::extra

ha_federatedx::reset

3345/4161

INSERT

If the query was " INSERT INTO foo (id, ts) VALUES (2, now());

", the trace would be:

ha_federatedx::write_row

ha_federatedx::reset

UPDATE

If the query was " UPDATE foo SET ts = now() WHERE id = 1;

", the resultant trace would be:

ha_federatedx::index_init

ha_federatedx::index_read

ha_federatedx::index_read_idx

ha_federatedx::rnd_next

ha_federatedx::convert_row_to_internal_format

ha_federatedx::update_row

ha_federatedx::extra

ha_federatedx::extra

ha_federatedx::extra

ha_federatedx::external_lock

ha_federatedx::reset

FederatedX capabilities and limitations
Tables MUST be created on the foreign server prior to any action on those tables via the handler, first version.

IMPORTANT: IF you MUST use the FederatedX storage engine type on the REMOTE end, make sure that the table

you connect to IS NOT a table pointing BACK to your ORIGINAL table! You know and have heard the screeching of

audio feedback? You know putting two mirrors in front of each other how the reflection continues for eternity? Well,

need I say more?!

There is no way for the handler to know if the foreign database or table has changed. The reason for this is that this

database has to work like a data file that would never be written to by anything other than the database. The integrity

of the data in the local table could be breached if there was any change to the foreign database.

Support for SELECT, INSERT, UPDATE, DELETE indexes.

No ALTER TABLE, DROP TABLE or any other Data Definition Language calls.

Prepared statements will not be used in the first implementation, it remains to to be seen whether the limited subset of

the client API for the server supports this.

This uses SELECT, INSERT, UPDATE, DELETE and not HANDLER for its implementation.

This will not work with the query cache.

FederatedX does not support GEOMETRY types. Such tables cannot be created explicitly, nor discovered.

How do you use FederatedX?
To use this handler, it's very simple. You must have two databases running, either both on the same host, or on different

hosts.

First, on the foreign database you create a table, for example:

CREATE TABLE test_table (

 id int(20) NOT NULL auto_increment,

 name varchar(32) NOT NULL default '',

 other int(20) NOT NULL default '0',

 PRIMARY KEY (id),

 KEY name (name),

 KEY other_key (other))

DEFAULT CHARSET=latin1;

Then, on the server that will be connecting to the foreign host (client), you create a federated table without specifying the

table structure:

CREATE TABLE test_table ENGINE=FEDERATED

 CONNECTION='mysql://root@127.0.0.1:9306/federatedx/test_federatedx';

3346/4161

Notice the "ENGINE" and "CONNECTION" fields? This is where you respectively set the engine type, "FEDERATED" and

foreign host information, this being the database your 'client' database will connect to and use as the "data file". Obviously,

the foreign database is running on port 9306, so you want to start up your other database so that it is indeed on port 9306,

and your FederatedX database on a port other than that. In my setup, I use port 5554 for FederatedX, and port 5555 for the

foreign database.

Alternatively (or if you're using MariaDB before version 10.0.2) you specify the federated table structure explicitly:

CREATE TABLE test_table (

 id int(20) NOT NULL auto_increment,

 name varchar(32) NOT NULL default '',

 other int(20) NOT NULL default '0',

 PRIMARY KEY (id),

 KEY name (name),

 KEY other_key (other))

ENGINE=FEDERATED

DEFAULT CHARSET=latin1

CONNECTION='mysql://root@127.0.0.1:9306/federatedx/test_federatedx';

In this case the table structure must match exactly the table on the foreign server.

How to see the storage engine in action

When developing this handler, I compiled the FederatedX database with debugging:

./configure --with-federatedx-storage-engine \

 --prefix=/home/mysql/mysql-build/federatedx/ --with-debug

Once compiled, I did a 'make install' (not for the purpose of installing the binary, but to install all the files the binary expects

to see in the directory I specified in the build with

--prefix=/home/code-dev/maria

Then, I started the foreign server:

/usr/local/mysql/bin/mysqld_safe \

 --user=mysql --log=/tmp/mysqld.5555.log -P 5555

Then, I went back to the directory containing the newly compiled mysqld <builddir>/sql/ , started up gdb:

gdb ./mysqld

Then, within the (gdb) prompt:

(gdb) run --gdb --port=5554 --socket=/tmp/mysqld.5554 --skip-innodb --debug

Next, I open several windows for each:

1. Tail the debug trace: tail -f /tmp/mysqld.trace|grep ha_fed

2. Tail the SQL calls to the foreign database: tail -f /tmp/mysqld.5555.log

3. A window with a client open to the federatedx server on port 5554

4. A window with a client open to the federatedx server on port 5555

I would create a table on the client to the foreign server on port 5555, and then to the FederatedX server on port 5554. At

this point, I would run whatever queries I wanted to on the FederatedX server, just always remembering that whatever

changes I wanted to make on the table, or if I created new tables, that I would have to do that on the foreign server.

Another thing to look for is 'show variables' to show you that you have support for FederatedX handler support:

show variables like '%federat%'

and:

show storage engines;

Both should display the federatedx storage handler.

3347/4161

How do I create a federated server?
A federated server is a way to have a foreign data source defined-- with all connection parameters-- so that you don't have

to specify explicitly the connection parameters in a string.

For instance, if you wanted to connect to a table, t1, using this definition:

CREATE TABLE test_table ENGINE=FEDERATED

 CONNECTION='mysql://patg@192.168.1.123/first_db/t1';

You could instead create this with a server:

create server 'server_one' foreign data wrapper 'mysql' options

 (HOST '192.168.1.123',

 DATABASE 'first_db',

 USER 'patg',

 PASSWORD '',

 PORT 3306,

 SOCKET '',

 OWNER 'root');

You could now specify the server instead of the full URL in the connection string:

CREATE TABLE test_table ENGINE=FEDERATED

 CONNECTION='server_one/t1';

On the server where you create this test_table you will now have access to the tabel t1 on the remote server found on

192.168.1.123.

How does FederatedX differ from the old Federated
Engine?
FederatedX from a user point of view is the same for the most part. What is different with FederatedX and Federated is the

following:

Rewrite of the main Federated source code from one single ha_federated.cc file into three main abstracted

components:

ha_federatedx.cc - Core implementation of FederatedX

federated_io.cc - Parent connection class to be over-ridden by derived classes for each RDBMS/client lib

federatated_io_<driver>.cc - derived federated_io class for a given RDBMS

federated_txn.cc - New support for using transactional engines on the foreign server using a connection poll

Various bugs fixed (need to look at opened bugs for Federated)

Where can I get FederatedX
FederatedX is part of MariaDB 5.1 and later. MariaDB merged with the latest FederatedX when there is a need to get a bug

fixed. You can get the latest code/follow/participate in the project from the FederatedX home page .

What are the plans for FederatedX?

Support for other RDBMS vendors using ODBC

Support for pushdown conditions

Ability to limit result set sizes

5.3.9.2 Differences Between FederatedX and
Federated
The main differences are:

New features in FederatedX
Transactions (beta feature)

3348/4161

http://launchpad.net/federatedx

Supports partitions (alpha feature)

New class structure which allows developers to write connection classes for other RDBMSs without having to modify

base classes for FederatedX

Different behavior
FederatedX is statically compiled into MariaDB by default.

When you create a table with FederatedX, the connection will be tested. The CREATE will fail if MariaDB can't

connect to the remote host or if the remote table doesn't exist.

5.3.10 MEMORY Storage Engine
Contents
1. Memory Usage

2. Index Type

3. Replication

4. Example

Contents of the MEMORY storage engine (previously known as HEAP) are stored in memory rather than on disk.

It is best-used for read-only caches of data from other tables, or for temporary work areas.

Since the data is stored in memory, it is highly vulnerable to power outages or hardware failure, and is unsuitable for

permanent data storage. In fact, after a server restart, MEMORY tables will be recreated (because the definition file is stored

on disk), but they will be empty. It is possible to re-populate them with a query using the --init-file server startup

option.

Variable-length types like VARCHAR can be used in MEMORY tables. BLOB or TEXT columns are not supported for

MEMORY tables.

Memory Usage
The maximum total size of MEMORY tables cannot exceed the max_heap_table_size system server variable. When a table

is created this value applies to that table, and when the server is restarted this value applies to existing tables. Changing

this value has no effect on existing tables. However, executing a ALTER TABLE ... ENGINE=MEMORY statement applies

the current value of max_heap_table_size to the table. Also, it is possible to change the session value of

max_heap_table_size before creating a table, to make sure that tables created by other sessions are not affected.

The MAX_ROWS table option provides a hint about the number of rows you plan to store in them. This is not a hard limit that

cannot be exceeded, and does not allow to exceed max_heap_table_size . The storage engine uses

max_heap_table_size and MAX_ROWS to calculate the maximum memory that could be allocated for the table.

Memory allocated to a MEMORY table is freed by running DROP TABLE or TRUNCATE TABLE, or rebuilding with ALTER

TABLE tbl_name ENGINE = MEMORY. When rows are deleted, space is not automatically freed.

Index Type
The MEMORY storage engine permits indexes to be either B-tree or Hash. Hash is the default type for MEMORY. See

Storage Engine index types for more on their characteristics.

A MEMORY table can have up to 64 indexes, 16 columns for each index and a maximum key length of 3072 bytes.

Replication
MEMORY tables are lost when a server restarts. In order to achieve this result in replication, the first time a primary uses a

MEMORY table after a restart, it writes a DELETE statement for that table to the binary log, so that replicas are also

emptied.

Example
The following example shows how to create a MEMORY table with a given maximum size, as described above.

3349/4161

SET max_heap_table_size = 1024*516;

CREATE TABLE t (a VARCHAR(10), b INT) ENGINE = MEMORY;

SET max_heap_table_size = @@max_heap_table_size;

5.3.11 MERGE
Contents
1. Description

2. Examples

Description
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM tables that can

be used as one. "Identical" means that all tables have identical column and index information. You cannot merge MyISAM

tables in which the columns are listed in a different order, do not have exactly the same columns, or have the indexes in

different order. However, any or all of the MyISAM tables can be compressed with myisampack. Columns names and

indexes names can be different, as long as data types and NULL/NOT NULL clauses are the same. Differences in table

options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS do not matter.

Each index in a MERGE table must match an index in underlying MyISAM tables, but the opposite is not true. Also, a

MERGE table cannot have a PRIMARY KEY or UNIQUE indexes, because it cannot enforce uniqueness over all underlying

tables.

The following options are meaningful for MERGE tables:

UNION . This option specifies the list of the underlying MyISAM tables. The list is enclosed between parentheses and

separated with commas.

INSERT_METHOD . This options specifies whether, and how, INSERTs are allowed for the table. Allowed values are:

NO (INSERTs are not allowed), FIRST (new rows will be written into the first table specified in the UNION list),

LAST (new rows will be written into the last table specified in the UNION list). The default value is NO .

If you define a MERGE table with a definition which is different from the underlying MyISAM tables, or one of the underlying

tables is not MyISAM, the CREATE TABLE statement will not return any error. But any statement which involves the table

will produce an error like the following:

ERROR 1168 (HY000): Unable to open underlying table which is differently defined

 or of non-MyISAM type or doesn't exist

A CHECK TABLE will show more information about the problem.

The error is also produced if the table is properly define, but an underlying table's definition changes at some point in time.

If you try to insert a new row into a MERGE table with INSERT_METHOD=NO, you will get an error like the following:

ERROR 1036 (HY000): Table 'tbl_name' is read only

It is possible to build a MERGE table on MyISAM tables which have one or more virtual columns. MERGE itself does not

support virtual columns, thus such columns will be seen as regular columns. The data types and sizes will still need to be

identical, and they cannot be NOT NULL.

Examples

3350/4161

CREATE TABLE t1 (

 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 message CHAR(20)) ENGINE=MyISAM;

CREATE TABLE t2 (

 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

 message CHAR(20)) ENGINE=MyISAM;

INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');

INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');

CREATE TABLE total (

 a INT NOT NULL AUTO_INCREMENT,

 message CHAR(20), INDEX(a))

 ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

SELECT * FROM total;

+---+---------+

| a | message |

+---+---------+

| 1 | Testing |

| 2 | table |

| 3 | t1 |

| 1 | Testing |

| 2 | table |

| 3 | t2 |

+---+---------+

In the following example, we'll create three MyISAM tables, and then a MERGE table on them. However, one of them uses

a different data type for the column b, so a SELECT will produce an error:

CREATE TABLE t1 (

 a INT,

 b INT

) ENGINE = MyISAM;

CREATE TABLE t2 (

 a INT,

 b INT

) ENGINE = MyISAM;

CREATE TABLE t3 (

 a INT,

 b TINYINT

) ENGINE = MyISAM;

CREATE TABLE t_mrg (

 a INT,

 b INT

) ENGINE = MERGE,UNION=(t1,t2,t3);

SELECT * FROM t_mrg;

ERROR 1168 (HY000): Unable to open underlying table which is differently defined

 or of non-MyISAM type or doesn't exist

To find out what's wrong, we'll use a CHECK TABLE:

3351/4161

CHECK TABLE t_mrg\G

*************************** 1. row ***************************

 Table: test.t_mrg

 Op: check

Msg_type: Error

Msg_text: Table 'test.t3' is differently defined or of non-MyISAM type or doesn't exist

*************************** 2. row ***************************

 Table: test.t_mrg

 Op: check

Msg_type: Error

Msg_text: Unable to open underlying table which is differently defined or of non-MyISAM type or

doesn't exist

*************************** 3. row ***************************

 Table: test.t_mrg

 Op: check

Msg_type: error

Msg_text: Corrupt

Now, we know that the problem is in t3 's definition.

5.3.12 Mroonga
Mroonga (formerly named Groonga Storage Engine) is a storage engine that provides fast CJK-ready full text searching

using column store.

About Mroonga

Mroonga full text search storage engine.

Mroonga Overview

Basic Mroonga usage.

Mroonga Status Variables

Mroonga-related status variables.

Mroonga System Variables

Mroonga-related system variables.

Mroonga User-Defined Functions

Mroonga user-defined functions (UDFs).

Information Schema MROONGA_STATS Table

Mroonga activities statistics.

5.3.12.1 About Mroonga
Contents
1. How to Install

2. Limitations

3. Available Character Sets

4. More Information

Mroonga Version Introduced Maturity

7.07 MariaDB 10.2.11 , MariaDB 10.1.29 Stable

5.04 MariaDB 10.1.6 Stable

5.02 MariaDB 10.0.18 , MariaDB 10.1.5 Stable

5.0 MariaDB 10.0.17 Stable

4.06 MariaDB 10.0.15 Stable

Mroonga is a full text search storage engine based on Groonga, which is an open-source CJK-ready (Chinese, Japanese,

and Korean) fulltext search engine using column base. See http://groonga.org for more.

With Mroonga, you can have a CJK-ready full text search feature, and it is faster than the MyISAM and InnoDB full text

search for both updating and searching.
3352/4161

https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
http://groonga.org

Mroonga also supports Groonga's fast geolocation search by using MariaDB's geolocation SQL syntax.

Mroonga currently only supports Linux x86_64 (Intel64/AMD64).

How to Install
Enable Mroonga with the following statement:

INSTALL SONAME 'ha_mroonga';

On Debian and Ubuntu mroonga engine will be installed with

sudo apt-get install mariadb-plugin-mroonga

See Plugin overview for details on installing and uninstalling plugins.

SHOW ENGINES can be used to check whether Mroonga is installed correctly:

SHOW ENGINES;

...

*************************** 8. row ***************************

 Engine: Mroonga

 Support: YES

 Comment: CJK-ready fulltext search, column store

Transactions: NO

 XA: NO

 Savepoints: NO

...

Once the plugin is installed, add a UDF (User-Defined Function) named "last_insert_grn_id", that returns the record ID

assigned by groonga in INSERT, by the following SQL.

CREATE FUNCTION last_insert_grn_id RETURNS INTEGER SONAME 'ha_mroonga.so';

Limitations
The maximum size of a single key is 4096 bytes.

The maximum size of all keys is 4GB.

The maximum number of records in a fulltext index is 268,435,455

The maximum number of distinct terms in a fulltext index is 268,435,455

The maximum size of a fulltext index is 256GB

Note that the maximum sizes are not hard limits, and may vary according to circumstance.

For more details, see http://mroonga.org/docs/reference/limitations.html .

Available Character Sets
Mroonga supports a limited number of character sets. These include:

ASCII

BINARY

CP932

EUCJPMS

KOI8R

LATIN1

SJIS

UJIS

UTF8

UTF8MB4

More Information
Further documentation for Mroonga can be found at http://mroonga.org/docs/

3353/4161

http://mroonga.org/docs/reference/limitations.html
http://mroonga.org/docs/

5.3.12.2 Mroonga Overview
Contents
1. Score

2. Parser

1. Examples

1. TokenBigram vs TokenBigramSplitSymbol

2. TokenBigram vs TokenBigramSplitSymbolAlpha

Once Mroonga has been installed (see About Mroonga), its basic usage is similar to that of a regular fulltext index.

For example:

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy)) ENGINE=Mroonga;

INSERT INTO ft_mroonga(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'), ('Who ate everybody up');

SELECT * FROM ft_mroonga WHERE MATCH(copy) AGAINST('wicked');

+--------------------------+

| copy |

+--------------------------+

| There was a wicked witch |

+--------------------------+

Score
Mroonga can also order by weighting. For example, first add another record:

INSERT INTO ft_mroonga(copy) VALUES ('She met a wicked, wicked witch');

Records can be returned by weighting, for example, the newly added record has two occurences of the word 'wicked' and a

higher weighting:

SELECT *, MATCH(copy) AGAINST('wicked') AS score FROM ft_mroonga

 WHERE MATCH(copy) AGAINST('wicked') ORDER BY score DESC;

+--------------------------------+--------+

| copy | score |

+--------------------------------+--------+

| She met a wicked, wicked witch | 299594 |

| There was a wicked witch | 149797 |

+--------------------------------+--------+

Parser
Mroonga permits you to set a different parser for searching by specifying the parser in the CREATE TABLE statement as a

comment or, in older versions, changing the value of the mroonga_default_parser system variable.

For example:

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy) COMMENT 'parser "TokenDelimitNull"')

 ENGINE=Mroonga;,

or

SET GLOBAL mroonga_default_parser = 'TokenBigramSplitSymbol';

The following parser settings are available:

3354/4161

Setting Description

off No tokenizing is performed.

TokenBigram
Default value. Continuous alphabetical characters, numbers or symbols

are treated as a token.

TokenBigramIgnoreBlank Same as TokenBigram except that white spaces are ignored.

TokenBigramIgnoreBlankSplitSymbol
Same as TokenBigramSplitSymbol . except that white spaces are

ignore.

TokenBigramIgnoreBlankSplitSymbolAlpha
Same as TokenBigramSplitSymbolAlpha except that white spaces

are ignored.

TokenBigramIgnoreBlankSplitSymbolAlphaDigit
Same as TokenBigramSplitSymbolAlphaDigit except that white

spaces are ignored.

TokenBigramSplitSymbol
Same as TokenBigram except that continuous symbols are not treated

as a token, but tokenised in bigram.

TokenBigramSplitSymbolAlpha
Same as TokenBigram except that continuous alphabetical characters

are not treated as a token, but tokenised in bigram.

TokenDelimit Tokenises by splitting on white spaces.

TokenDelimitNull Tokenises by splitting on null characters (\0).

TokenMecab
Tokenise using MeCab. Required Groonga to be buillt with MeCab

support.

TokenTrigram
Tokenises in trigrams but continuous alphabetical characters, numbers

or symbols are treated as a token.

TokenUnigram
Tokenises in unigrams but continuous alphabetical characters, numbers

or symbols are treated as a token.

Examples

TokenBigram vs TokenBigramSplitSymbol

TokenBigram failing to match partial symbols which TokenBigramSplitSymbol matches, since

TokenBigramSplitSymbol does not treat continuous symbols as a token.

DROP TABLE ft_mroonga;

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy) COMMENT 'parser "TokenBigram"')

 ENGINE=Mroonga;

INSERT INTO ft_mroonga(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'),

 ('Who ate everybody up'),

 ('She met a wicked, wicked witch'),

 ('A really wicked, wicked witch!!?!');

SELECT * FROM ft_mroonga WHERE MATCH(copy) AGAINST('!?');

Empty set (0.00 sec)

DROP TABLE ft_mroonga;

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy) COMMENT 'parser "TokenBigramSplitSymbol"')

 ENGINE=Mroonga;

INSERT INTO ft_mroonga(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'),

 ('Who ate everybody up'),

 ('She met a wicked, wicked witch'),

 ('A really wicked, wicked witch!!?!');

SELECT * FROM ft_mroonga WHERE MATCH(copy) AGAINST('!?');

+-----------------------------------+

| copy |

+-----------------------------------+

| A really wicked, wicked witch!!?! |

+-----------------------------------+

TokenBigram vs TokenBigramSplitSymbolAlpha

3355/4161

DROP TABLE ft_mroonga;

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy) COMMENT 'parser "TokenBigram"')

 ENGINE=Mroonga;

INSERT INTO ft_mroonga(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'),

 ('Who ate everybody up'),

 ('She met a wicked, wicked witch'),

 ('A really wicked, wicked witch!!?!');

SELECT * FROM ft_mroonga WHERE MATCH(copy) AGAINST('ick');

Empty set (0.00 sec)

DROP TABLE ft_mroonga;

CREATE TABLE ft_mroonga(copy TEXT,FULLTEXT(copy) COMMENT 'parser "TokenBigramSplitSymbolAlpha"')

 ENGINE=Mroonga;

INSERT INTO ft_mroonga(copy) VALUES ('Once upon a time'),

 ('There was a wicked witch'),

 ('Who ate everybody up'),

 ('She met a wicked, wicked witch'),

 ('A really wicked, wicked witch!!?!');

SELECT * FROM ft_mroonga WHERE MATCH(copy) AGAINST('ick');

+-----------------------------------+

| copy |

+-----------------------------------+

| There was a wicked witch |

| She met a wicked, wicked witch |

| A really wicked, wicked witch!!?! |

+-----------------------------------+

5.3.12.3 Mroonga Status Variables
Contents
1. Mroonga_count_skip

2. Mroonga_fast_order_limit

This page documents status variables related to the Mroonga storage engine. See Server Status Variables for a complete

list of status variables that can be viewed with SHOW STATUS.

Mroonga_count_skip

Description: Incremented each time the 'fast line count feature' is used. Can be used to check if the feature is

working after enabling it.

Data Type: numeric

Mroonga_fast_order_limit

Description: Incremented each time the 'fast ORDER BY LIMIT feature' is used. Can be used to check if the feature

is working after enabling it.

Data Type: numeric

5.3.12.4 Mroonga System Variables

3356/4161

Contents
1. mroonga_action_on_fulltext_query_error

2. mroonga_boolean_mode_syntax_flags

3. mroonga_database_path_prefix

4. mroonga_default_parser

5. mroonga_default_tokenizer

6. mroonga_default_wrapper_engine

7. mroonga_dry_write

8. mroonga_enable_operations_recording

9. mroonga_enable_optimization

10. mroonga_libgroonga_embedded

11. mroonga_libgroonga_support_lz4

12. mroonga_libgroonga_support_zlib

13. mroonga_libgroonga_support_zstd

14. mroonga_libgroonga_version

15. mroonga_lock_timeout

16. mroonga_log_file

17. mroonga_log_level

18. mroonga_match_escalation_threshold

19. mroonga_max_n_records_for_estimate

20. mroonga_query_log_file

21. mroonga_vector_column_delimiter

22. mroonga_version

This page documents system variables related to the Mroonga storage engine. See Server System Variables for a complete

list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

mroonga_action_on_fulltext_query_error

Description: Action to take when encountering a Mroonga fulltext error.

ERROR : Report an error without logging.

ERROR_AND_LOG : Report an error with logging (the default)

IGNORE : No logging or reporting - the error is ignored.

IGNORE_AND_LOG : Log the error without reporting it.

Commandline: --mroonga-action-on-fulltext-query-error=value

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: ERROR_AND_LOG

mroonga_boolean_mode_syntax_flags

Description: Flags to customize syntax in BOOLEAN MODE searches. Available flags:

DEFAULT : (=SYNTAX_QUERY,ALLOW_LEADING_NOT)

ALLOW_COLUMN : Allows COLUMN:... syntax in query syntax, an incompatible change to the regular

BOOLEAN MODE syntax. Permits multiple indexes in one MATCH () AGAINST () . Can be used in other

operations besides full-text search, such as equal, and prefix search. See Groonga query syntax for more

details.

ALLOW_LEADING_NOT Permits using the NOT_INCLUDED_KEYWORD syntax in the query syntax.

ALLOW_UPDATE : Permits updating values with the COLUMN:=NEW_VALUE syntax in the query syntax.

SYNTAX_QUERY : Mroonga will use Groonga's query syntax, compatible with MariaDB's BOOLEAN MODE

syntax. Unless SYNTAX_SCRIPT is specified, this mode is always in use.

SYNTAX_SCRIPT : Mroonga will use Groonga's script syntax, a JavaScript-like syntax. If both SYNTAX_QUERY

and SYNTAX_SCRIPT are specified, SYNTAX_SCRIPT will take precedence..

Commandline: --mroonga-boolean-mode-syntax-flags=value

Scope: Global, Session

Dynamic: Yes

Data Type: enum

Default Value: DEFAULT

mroonga_database_path_prefix

3357/4161

http://groonga.org/docs/reference/grn_expr/query_syntax.html

Description: The database path prefix.

Commandline: --mroonga-database-path-prefix=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: (Empty)

mroonga_default_parser

Description: The fulltext default parser, for example TokenBigramSplitSymbolAlphaDigit or TokenBigram (the

default). See the list of options at Mroonga Overview:Parser. Deprecated since Mroonga 5.04, use

mroonga_default_tokenizer instead.

Commandline: --mroonga-default-parser=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: TokenBigram

Deprecated: MariaDB 10.1.6 , Mroonga 5.0.4

mroonga_default_tokenizer

Description: The fulltext default parser, for example TokenBigramSplitSymbolAlphaDigit or TokenBigram (the

default). See the list of options at Mroonga Overview:Parser.

Commandline: --mroonga-default-tokenizer=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: TokenBigram

Introduced: MariaDB 10.1.6 , Mroonga 5.0.4

mroonga_default_wrapper_engine

Description: The default engine for wrapper mode.

Commandline: --mroonga-default-wrapper-engine=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

mroonga_dry_write

Description: If set to on , (off is default), data is not actually written to the Groonga database. Only really useful to

change for benchmarking.

Commandline: --mroonga-dry-write[={0|1}]

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: off

mroonga_enable_operations_recording

Description: Whether recording operations for recovery to the Groonga database is enabled (default) or not.

Requires reopening the database with FLUSH TABLES after changing the variable.

Commandline: --mroonga-enable-operations-recording={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.2.11 , MariaDB 10.1.29

3358/4161

https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/

mroonga_enable_optimization

Description: If set to on (the default), optimization is enabled. Only really useful to change for benchmarking.

Commandline: --mroonga-enable-optimization={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: on

mroonga_libgroonga_embedded

Description: Whether libgroonga is embedded or not.

Commandline: None

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.1.6

mroonga_libgroonga_support_lz4

Description: Whether libgroonga supports lz4 or not.

Commandline: None

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

mroonga_libgroonga_support_zlib

Description: Whether libgroonga supports zlib or not.

Commandline: None

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

mroonga_libgroonga_support_zstd

Description: Whether libgroonga supports Zstandard or not.

Commandline: None

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.2.11 , MariaDB 10.1.29

mroonga_libgroonga_version

Description: Groonga library version.

Commandline: None

Scope: Global

Dynamic: No

Data Type: string

mroonga_lock_timeout

Description: Lock timeout used in Groonga.

Commandline: <<code>> --mroonga-lock-timeout=#</code>>

3359/4161

https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 900000

Range: -1 to 2147483647

mroonga_log_file

Description: Name and path of the Mroonga log file.

Commandline: --mroonga-log-file=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: groonga.log

mroonga_log_level

Description: Mroonga log file output level, which determines what is logged. Valid levels include:

NONE No output.

EMERG : Only emergency error messages, such as database corruption.

ALERT : Alert messages, such as internal errors.

CRIT : Critical error messages, such as deadlocks.

ERROR : Errors, such as API errors.

WARNING : Warnings, such as invalid arguments.

NOTICE : Notices, such as a change in configuration or a status change.

INFO : Information messages, such as file system operations.

DEBUG : Debug messages, suggested for developers or testers.

DUMP : Dump messages.

Commandline: --mroonga-log-level=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: NOTICE

mroonga_match_escalation_threshold

Description: The threshold to determine whether the match method is escalated. -1 means never escalate.

Commandline: --mroonga-match-escalation-threshold=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -1 to 9223372036854775807

mroonga_max_n_records_for_estimate

Description: The max number of records to estimate the number of matched records

Commandline: --mroonga-max-n-records-for-estimate=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1000

Range: -1 to 2147483647

mroonga_query_log_file

Description: Query log file for Mroonga.

Commandline: --mroonga-query-log-file=filename

Scope: Global

Dynamic: Yes
3360/4161

Data Type: string

Default Value: (Empty string)

Introduced: MariaDB 10.2.11

mroonga_vector_column_delimiter

Description: Delimiter to use when outputting a vector column. The default is a white space.

Commandline: --mroonga-vector-column-delimiter=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: (white space)

mroonga_version

Description: Mroonga version

Commandline: None

Scope: Global

Dynamic: No

Data Type: string

5.3.12.5 Mroonga User-Defined Functions
Mroonga provides a number of User-defined functions (UDFs)

Creating Mroonga User-Defined Functions

How to install Mroonga's user-defined functions.

last_insert_grn_id

Returns the unique Groonga id of the last-inserted record.

mroonga_command

Pass a command to Groonga to execute.

mroonga_escape

Escaping a string.

mroonga_highlight_html

Highlights the specified keywords in the target text.

mroonga_normalize

Uses Groonga's normalizer to normalize text.

mroonga_snippet

A keyword with surrounding text, or the keyword in context.

mroonga_snippet_html

It provides a keyword with surrounding text, or the keyword in context.

2

5.3.12.5.1 Creating Mroonga User-Defined
Functions
The Mroonga storage engine includes a number of user-defined functions that need to be created before they can be used.

If these are not created already during Mroonga setup, you will need to do so yourself. The full list of available functions and

the statements to create them are found in share/mroonga/install.sql , for example, as of Mroonga 7.07 (MariaDB

10.2.11 and MariaDB 10.1.29) running on Linux:

3361/4161

https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/

DROP FUNCTION IF EXISTS last_insert_grn_id;

CREATE FUNCTION last_insert_grn_id RETURNS INTEGER

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_snippet;

CREATE FUNCTION mroonga_snippet RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_command;

CREATE FUNCTION mroonga_command RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_escape;

CREATE FUNCTION mroonga_escape RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_snippet_html;

CREATE FUNCTION mroonga_snippet_html RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_normalize;

CREATE FUNCTION mroonga_normalize RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_highlight_html;

CREATE FUNCTION mroonga_highlight_html RETURNS STRING

 SONAME 'ha_mroonga.so';

DROP FUNCTION IF EXISTS mroonga_query_expand;

CREATE FUNCTION mroonga_query_expand RETURNS STRING

 SONAME 'ha_mroonga.so';

5.3.12.5.2 last_insert_grn_id

Syntax

last_insert_grn_id()

Contents
1. Syntax

2. Description

3. Examples

Description
last_insert_grn_id is a user-defined function (UDF) included with the Mroonga storage engine. It returns the unique

Groonga id of the last-inserted record. See Creating Mroonga User-Defined Functions for details on creating this UDF if

required.

Examples

SELECT last_insert_grn_id();

+----------------------+

| last_insert_grn_id() |

+----------------------+

| 3 |

+----------------------+

5.3.12.5.3 mroonga_command

3362/4161

Contents
1. Syntax

2. Description

3. Example

Syntax

mroonga_command (command)

Description
mroonga_command is a user-defined function (UDF) included with the Mroonga storage engine. It passes a command to

Groonga for execution. See Creating Mroonga User-Defined Functions for details on creating this UDF if required.

command - string, required parameter specifying the command to pass that will be executed by Groonga. See the

Groonga reference for a list of commands.

Returns the result of the Groonga command.

Example

SELECT mroonga_command('status');

+--

-----------------------+

| mroonga_command('status')

|

+--

-----------------------+

|

{"alloc_count":593,"starttime":1512022368,"start_time":1512022368,"uptime":13510,"version":"7.0

.7","n_queries":0,"cache_hit_rate":0.0,"command_version":1,"default_command_version":1,"max_com

mand_version":3} |

5.3.12.5.4 mroonga_escape
Contents
1. Syntax

2. Description

3. Example

Syntax

mroonga_escape (string [,special_characters])

string - required parameter specifying the text you want to escape

special_characters - optional parameter specifying the characters to escape

Description
mroonga_escape is a user-defined function (UDF) included with the Mroonga storage engine, used for escaping a string.

See Creating Mroonga User-Defined Functions for details on creating this UDF if required.

If no special_characters parameter is provided, by default +-<>*()": are escaped.

Returns the escaped string.

Example

3363/4161

http://groonga.org/docs/reference/command.html

SELECT mroonga_escape("+-<>~*()\"\:");

'\\+\\-\\<\\>\\~*\\(\\)\\"\\:

5.3.12.5.5 mroonga_highlight_html

Syntax

mroonga_highlight_html(text[[, query AS query]])

mroonga_highlight_html(text[[, keyword1, ..., keywordN]])

Contents
1. Syntax

2. Description

3. Examples

Description
mroonga_highlight_html is a user-defined function (UDF) included with the Mroonga storage engine. It highlights the

specified keywords in the target text. See Creating Mroonga User-Defined Functions for details on creating this UDF if

required.

The optional parameter can either be one or more keywords, or a Groonga query.

The function highlights the specified keywords in the target text by surrounding each keyword with <span

class="keyword">... , and escaping special HTML characters such as < and > .

Returns highlighted HTML.

Examples

SELECT mroonga_highlight_html('<p>MariaDB includes the Mroonga storage engine</p>.')

 AS highlighted_html;

+---+

| highlighted_html |

+---+

| <p>MariaDB includes the Mroonga storage engine</p>. |

+---+

Highlighting the words MariaDB and Mroonga in a given text:

SELECT mroonga_highlight_html('MariaDB includes the Mroonga storage engine.', 'MariaDB',

'Mroonga')

 AS highlighted_html;

+--

------------+

| highlighted_html

|

+--

------------+

| MariaDB includes the Mroonga

storage engine. |

+--

------------+

The same outcome, formulated as a Groonga query:

3364/4161

SELECT mroonga_highlight_html('MariaDB includes the Mroonga storage engine.', 'MariaDB OR

Mroonga'

 AS query) AS highlighted_text;

+--

------------+

| highlighted_text

|

+--

------------+

| MariaDB includes the Mroonga

storage engine. |

+--

------------+

5.3.12.5.6 mroonga_normalize

Syntax

mroonga_normalize(string[, normalizer_name])

Contents
1. Syntax

2. Description

3. Examples

Description
mroonga_normalize is a user-defined function (UDF) included with the Mroonga storage engine. It uses Groonga's

normalizer to normalize text. See Creating Mroonga User-Defined Functions for details on creating this UDF if required.

Given a string, returns the normalized text.

See the Groonga Normalizer Reference for details on the Groonga normalizers. The default if no normalizer is provided is

NormalizerAuto .

Examples

SELECT mroonga_normalize("ABss");

+-------------------------------+

| mroonga_normalize("ABss") |

+-------------------------------+

| absúóøû |

+-------------------------------+

5.3.12.5.7 mroonga_snippet

Syntax

mroonga_snippet document,

 max_length,

 max_count,

 encoding,

 skip_leading_spaces,

 html_escape,

 snippet_prefix,

 snippet_suffix,

 word1, word1_prefix, word1_suffix

 ...

 [wordN wordN_prefix wordN_suffix]

3365/4161

http://groonga.org/docs/reference/normalizers.html

Contents
1. Syntax

2. Description

3. Example

Description
mroonga_snippet is a user-defined function (UDF) included with the Mroonga storage engine. It provides a keyword with

surrounding text, or the keyword in context. See Creating Mroonga User-Defined Functions for details on creating this UDF

if required.

The required parameters include:

document - Column name or string value.

max_length - Maximum length of the snippet, in bytes.

max_count - Maximum snippet elements (N word).

encoding - Encoding of the document, for example cp932_japanese_ci

skip_leading_spaces - 1 to skip leading spaces, 0 to not skip.

html_escape = 1 to enable HTML espape, 0 to disable.

prefix - Snippet start text.

suffix - Snippet end text.

The optional parameters include:

wordN - A word.

wordN_prefix - wordN start text.

wordN_suffix - wordN end text

It can be used in both storage and wrapper mode.

Returns the snippet string.

Example

5.3.12.5.8 mroonga_snippet_html

Description
mroonga_snippet_html is a user-defined function (UDF) included with the Mroonga storage engine. It provides a

keyword with surrounding text, or the keyword in context. It is still considered experimental. See Creating Mroonga User-

Defined Functions for details on creating this UDF if required.

1.1.1.2.9.1.1.29 Information Schema MROONGA_STATS
Table

5.3.13 MyISAM
MyISAM was the default storage engine from MySQL 3.23 until it was replaced by InnoDB in MariaDB and MySQL 5.5. It's a

light, non-transactional engine with great performance, is easy to copy between systems and has a small data footprint.

You're encouraged to rather use the Aria storage engine for new applications, which has even better performance and the

goal of being crash-safe.

Until MariaDB 10.4, system tables used the MyISAM storage engine.

MyISAM Overview

Light, non-transactional storage engine.

MyISAM System Variables

MyISAM system variables.

3366/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/storage-engine

MyISAM Storage Formats

The MyISAM storage engine supports three different table storage formats

MyISAM Clients and Utilities

Clients and utilities for working with MyISAM tables

MyISAM Index Storage Space

Regular MyISAM tables make use of B-tree indexes

MyISAM Log

Records all changes to MyISAM tables

Concurrent Inserts

Under some circumstances, MyISAM allows INSERTs and SELECTs to be executed concurrently.

Segmented Key Cache

Collection of structures for regular MyISAM key caches

There are 1 related questions .

5.3.13.1 MyISAM Overview
The MyISAM storage engine was the default storage engine from MySQL 3.23 until it was replaced as default by InnoDB in

MariaDB and MySQL 5.5. Historically, MyISAM is a replacement for the older ISAM engine, removed in MySQL 4.1.

It's a light, non-transactional engine with great performance, is easy to copy between systems and has a small data

footprint.

You're encouraged to rather use the Aria storage engine for new applications, which has even better performance in most

cases and the goal of being crash-safe.

A MyISAM table is stored in three files on disk. There's a table definition file with an extension of .frm , a data file with the

extension .MYD , and an index file with the extension .MYI .

MyISAM features
Does not support transactions.

Does not support foreign keys.

Supports FULLTEXT indexes.

Supports GIS data types.

Storage limit of 256TB.

Maximum of 64 indexes per table.

Maximum of 32 columns per index.

Maximum index length of 1000 bytes.

Limit of (2) (1.844E+19) rows per table.

Supports large files up to 63-bits in length where the underlying system supports this.

All data is stored with the low byte first, so all files will still work if copied to other systems or other machines.

The data file and the index file can be placed on different devices to improve speed.

Supports table locking, not row locking.

Supports a key buffer that is segmented in MariaDB.

Supports concurrent inserts.

Supports fixed length, dynamic and compressed formats - see MyISAM Storage Formats.

Numeric index values are stored with the high byte first, which enables more efficient index compression.

Data values are stored with the low byte first, making it mostly machine and operating system independent. The only

exceptions are if a machine doesn't use two's-complement signed integers and the IEEE floating-point format.

Can be copied between databases or systems with normal system tools, as long as the files are not open on either

system. Use FLUSH_TABLES to ensure files are not in use.

There are a number of tools for working with MyISAM tables. These include:

mariadb-check for checking or repairing

myisamchk for checking or repairing

myisampack for compressing

It is possible to build a MERGE table on the top of one or more MyISAM tables.

32 2

3367/4161

https://mariadb.com/kb/en/myisam-storage-engine/+questions/

5.3.13.2 MyISAM System Variables
Contents
1. key_buffer_size

2. key_cache_age_threshold

3. key_cache_block_size

4. key_cache_division_limit

5. key_cache_file_hash_size

6. key_cache_segments

7. myisam_block_size

8. myisam_data_pointer_size

9. myisam_max_extra_sort_file_size

10. myisam_max_sort_file_size

11. myisam_mmap_size

12. myisam_recover_options

13. myisam_repair_threads

14. myisam_sort_buffer_size

15. myisam_stats_method

16. myisam_use_mmap

This page documents system variables related to the MyISAM storage engine. For options, see MyISAM Options.

See Server System Variables for a complete list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

key_buffer_size

Description: Size of the buffer for the index blocks used by MyISAM tables and shared for all threads. See

Optimizing key_buffer_size for more on selecting the best value.

Commandline: --key-buffer-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 134217728

Range: 8 upwards (upper limit determined by operating system per process limit)

key_cache_age_threshold

Description: The lower the setting, the more quickly buffers move from the hot key cache sublist to the warm sublist.

Commandline: --key-cache-age-threshold=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 300

Range: 100 to 4294967295

key_cache_block_size

Description: MyISAM key cache block size in bytes .

Commandline: --key-cache-block-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1024

Range: 512 to 16384

key_cache_division_limit

Description: Percentage to use for the warm key cache buffer list (the remainder is allocated between the hot and

cold caches).

Commandline: --key-cache-division-limit=#

Scope: Global

3368/4161

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 1 to 100

key_cache_file_hash_size

Description: Number of hash buckets for open and changed files. If you have many MyISAM files open you should

increase this for faster flushing of changes. A good value is probably 1/10th of the number of possible open MyISAM

files.

Commandline: --key-cache-file-hash-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 512

Range: 128 to 16384

key_cache_segments

Description: The number of segments in a key cache. See Segmented Key Cache.

Commandline: --key-cache-segments=#

Scope: Global

Dynamic: Yes

Type: numeric

Default Value: 0 (non-segmented)

Range: 0 to 64

myisam_block_size

Description: Block size to be used for MyISAM index pages.

Commandline: --myisam-block-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1024

myisam_data_pointer_size

Description: Size in bytes of the default pointer, used in a MyISAM CREATE TABLE with no MAX_ROWS option.

Commandline: --myisam-data-pointer-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 6

Range: 2 to 7

myisam_max_extra_sort_file_size

Description: Removed in MySQL 5.0.6, was used as a way to force long character keys in large tables to use the

key cache method.

Removed: MySQL 5.0.6

myisam_max_sort_file_size

Description: Maximum size in bytes of the temporary file used while recreating a MyISAM index. If the this size is

exceeded, the slower process of using the key cache is done instead.

Commandline: --myisam-max-sort-file-size=#

Scope: Global

Dynamic: Yes

3369/4161

Data Type: numeric

Default Value - 32 bit: 2147483648

Default Value - 64 bit: 9223372036854775807

myisam_mmap_size

Description: Maximum memory in bytes that can be used for memory mapping compressed MyISAM files. Too high

a value may result in swapping if there are many compressed MyISAM tables.

Commandline: --myisam-mmap-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value - 32 bit: 4294967295

Default Value - 64 bit: 18446744073709547520

Range - 32-bit: 7 to 4294967295

Range - 64-bit: 7 to 18446744073709547520

myisam_recover_options

Description: MyISAM recovery mode. Multiple options can be selected, comma-delimited. Using no argument is

equivalent to specifying DEFAULT , while specifying "" is equivalent to OFF . If enabled each time the server opens a

MyISAM table, it checks whether it has been marked as crashed, or wasn't closed properly. If so, mysqld will run a

check and then attempt to repair the table, writing to the error log beforehand.

OFF: No recovery.

BACKUP: If the data file is changed while recovering, saves a backup of the .MYD data file. t.MYD will be

saved as t.MYD-datetime.BAK.

BACKUP_ALL: Same as BACKUP but also backs up the .MYI index file. t.MYI will be saved as t.MYI-

datetime.BAK.

DEFAULT: Recovers without backing up, forcing, or quick checking.

FORCE: Runs the recovery even if it determines that more than one row from the data file will be lost.

QUICK: Does not check rows in the table if there are no delete blocks.

Commandline: --myisam-recover-options[=name]

Scope: Global

Dynamic: No

Data Type: enumeration

Default Value:

BACKUP,QUICK (>= MariaDB 10.2.4)

DEFAULT (<= MariaDB 10.2.3)

OFF

Valid Values: OFF , DEFAULT , BACKUP , BACKUP_ALL , FORCE or QUICK

myisam_repair_threads

Description: If set to more than 1 , the default, MyISAM table indexes each have their own thread during repair and

sorting. Increasing from the default will usually result in faster repair, but will use more CPU and memory.

Commandline: --myisam-repair-threads=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range - 32-bit: 1 to 4294967295

Range - 64-bit: 1 to 18446744073709547520

myisam_sort_buffer_size

Description: Size in bytes of the buffer allocated when creating or sorting indexes on a MyISAM table.

Commandline: --myisam-sort-buffer-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 134217720 (128MB)

3370/4161

https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/

Range: 4096 to 18446744073709547520

myisam_stats_method

Description: Determines how NULLs are treated for MyISAM index statistics purposes. If set to nulls_equal , the

default, all NULL index values are treated as a single group. This is usually fine, but if you have large numbers of

NULLs the average group size is slanted higher, and the optimizer may miss using the index for ref accesses when it

would be useful. If set to nulls_unequal , the opposite approach is taken, with each NULL forming its own group of

one. Conversely, the average group size is slanted lower, and the optimizer may use the index for ref accesses when

not suitable. Setting to nulls_ignored ignores NULLs altogether from index group calculations. See also Index

Statistics, aria_stats_method, innodb_stats_method.

Commandline: --myisam-stats-method=name

Scope: Global, Session

Dynamic: Yes

Data Type: enumeration

Default Value: nulls_equal

Valid Values: nulls_equal , nulls_unequal , nulls_ignored

myisam_use_mmap

Description: If set to 1 (0 is default), memory mapping will be used to reading and writing MyISAM tables.

Commandline: --myisam-use-mmap

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

5.3.13.3 MyISAM Storage Formats
Contents
1. Fixed-length

2. Dynamic

3. Compressed

The MyISAM storage engine supports three different table storage formats.

These are FIXED, DYNAMIC and COMPRESSED. FIXED and DYNAMIC can be set with the ROW FORMAT option in the

CREATE TABLE statement, or will be chosen automatically depending on the columns the table contains. COMPRESSED

can only be set via the myisampack tool.

The SHOW TABLE STATUS statement can be used to see the storage format used by a table. Note that COMPRESSED

tables are reported as DYNAMIC in that context.

Fixed-length
Fixed-length (or static) tables contain records of a fixed-length. Each column is the same length for all records, regardless of

the actual contents. It is the default format if a table has no BLOB, TEXT, VARCHAR or VARBINARY fields, and no ROW

FORMAT is provided. You can also specify a fixed table with ROW_FORMAT=FIXED in the table definition.

Tables containing BLOB or TEXT fields cannot be FIXED, as by design these are both dynamic fields. However, no

error or warning will be raised if you specify FIXED.

Fixed-length tables have a number of characteristics

fast, since MariaDB will always know where a record begins

easy to repair: myisamchk is always able to recover all rows, except for the last one if it is not entirely written

easy to cache

take up more space than dynamic or compressed tables, as the maximum amount of storage space will be allocated

to each record.

reconstructing after a crash is uncomplicated due to the fixed positions

no fragmentation or need to re-organize, unless records have been deleted and you want to free the space up.

3371/4161

Dynamic
Dynamic tables contain records of a variable length. It is the default format if a table has any BLOB, TEXT, VARCHAR or

VARBINARY fields, and no ROW FORMAT is provided. You can also specify a DYNAMIC table with

ROW_FORMAT=DYNAMIC in the table definition. If the table contains BLOB or TEXT columns, its format is always

DYNAMIC, and the ROW FORMAT option is ignored.

Dynamic tables have a number of characteristics

Each row contains a header indicating the length of the row.

Rows tend to become fragmented easily. UPDATING a record to be longer will likely ensure it is stored in different

places on the disk. Use OPTIMIZE TABLE when the fragmentation is too high.

All string columns with a length of four or more are dynamic.

They require much less space than fixed-length tables.

Restoring after a crash is more complicated than with FIXED tables. Some fragments may be lost.

If a DYNAMIC table has some frequently-accessed fixed-length columns, it could be a good idea to move them into a

separate FIXED table to avoid fragmentation.

Compressed
Compressed tables are a read-only format, created with the myisampack tool. This can be done while the server is running,

but external lock must not be disabled. myisamchk is used to uncompress them.

Compressed tables have a number of characteristics:

while the data is read-only, DDL statements such as DROP TABLE and TRUNCATE TABLE will still function.

take much less space than fixed or dynamic tables. Each data has usually a 40-70% compression ratio

rows are compressed separately, reducing access overhead.

row headers will be from one to three bytes.

rows can be compressed with different compression types, including

prefix space compression

suffix space compression

columns with small sets of values are converted to ENUM

numeric zeros are stored with only one bit

integer columns will be reduced to the smallest int type that can hold the contents

1.3.8 MyISAM Clients and Utilities

5.3.13.5 MyISAM Index Storage Space
Regular MyISAM tables make use of B-tree indexes.

String indexes are space-compressed, which reduces the size of VARCHARs that don't use the full length, or a string that

has trailing spaces. String indexes also make use of prefix-compression, where strings with identical prefixes are

compressed.

Numeric indexes can also be prefix-compressed compressed if the PACK_KEYS=1 option is used. Regardless, the high

byte is always stored first, which allows a reduced index size.

In the worst case, with no strings being space-compressed, the total index storage space will be (index_length+4)/0.67 per

index.

5.3.13.6 MyISAM Log
The MyISAM log records all changes to MyISAM tables. It is not enabled by default. To enable it, start the server with the --

log-isam option, for example:

--log-isam=myisam.log

The isam instead of myisam above is not a typo - it's a legacy from when the predecessor to the MyISAM format, called

ISAM. The option can be used without specifying a filename, in which case the default, myisam.log is used.

To process the contents of the log file, use the myisamlog utility.

3372/4161

1.1.1.4.2.5 Concurrent Inserts

5.3.13.8 Segmented Key Cache
Contents
1. About Segmented Key Cache

2. Segmented Key Cache Syntax

3. Segmented Key Cache Statistics

About Segmented Key Cache
A segmented key cache is a collection of structures for regular MyISAM key caches called key cache segments. Segmented

key caches mitigate one of the major problems of the simple key cache: thread contention for key cache lock (mutex). With

regular key caches, every call of a key cache interface function must acquire this lock. So threads compete for this lock

even in the case when they have acquired shared locks for the file and the pages they want to read from are in the key

cache buffers.

When working with a segmented key cache any key cache interface function that needs only one page has to acquire the

key cache lock only for the segment the page is assigned to. This makes the chances for threads not having to compete for

the same key cache lock better.

Any page from a file can be placed into a buffer of only one segment. The number of the segment is calculated from the file

number and the position of the page in the file, and it's always the same for the page. Pages are evenly distributed among

segments.

The idea and the original code of the segmented key cache was provided by Fredrik Nylander from Stardoll.com. The code

was extensively reworked, improved, and eventually merged into MariaDB by Igor Babaev from Monty Program (now

MariaDB Corporation).

You can find some benchmark results comparing various settings on the Segmented Key Cache Performance page.

Segmented Key Cache Syntax
New global variable: key_cache_segments. This variable sets the number of segments in a key cache. Valid values for this

variable are whole numbers between 0 and 64 . If the number of segments is set to a number greater than 64 the

number of segments will be truncated to 64 and a warning will be issued.

A value of 0 means the key cache is a regular (i.e. non-segmented) key cache. This is the default. If

key_cache_segments is 1 (or higher) then the new key cache segmentation code is used. In practice there is no

practical use of a single-segment segmented key cache except for testing purposes, and setting key_cache_segments =

1 should be slower than any other option and should not be used in production.

Other global variables used when working with regular key caches also apply to segmented key caches: key_buffer_size,

key_cache_age_threshold, key_cache_block_size, and key_cache_division_limit.

Segmented Key Cache Statistics
Statistics about the key cache can be found by looking at the KEY_CACHES table in the INFORMATION_SCHEMA

database. Columns in this table are:

Column Name Description

KEY_CACHE_NAME The name of the key cache

SEGMENTS total number of segments (set to NULL for regular key caches)

SEGMENT_NUMBER
segment number (set to NULL for any regular key caches and for rows containing aggregation

statistics for segmented key caches)

FULL_SIZE memory for cache buffers/auxiliary structures

BLOCK_SIZE size of the blocks

USED_BLOCKS number of currently used blocks

UNUSED_BLOCKS number of currently unused blocks

DIRTY_BLOCKS number of currently dirty blocks

3373/4161

https://mariadb.com/kb/en/segmented-key-cache-performance/

READ_REQUESTS number of read requests

READS number of actual reads from files into buffers

WRITE_REQUESTS number of write requests

WRITES number of actual writes from buffers into files

5.3.14 MyRocks
MyRocks is a storage engine that adds the RocksDB database to MariaDB. RocksDB is an LSM database with a great

compression ratio that is optimized for flash storage.

MyRocks Version Introduced Maturity

MyRocks 1.0 MariaDB 10.3.7 , MariaDB 10.2.16 Stable

MyRocks 1.0 MariaDB 10.3.5 , MariaDB 10.2.14 Gamma

MyRocks 1.0 MariaDB 10.3.4 , MariaDB 10.2.13 Beta

MyRocks 1.0 MariaDB 10.2.5 Alpha

About MyRocks for MariaDB

Enables greater compression than InnoDB, and less write amplification.

Getting Started with MyRocks

Installing and getting started with MyRocks.

Building MyRocks in MariaDB

MariaDB compile process for MyRocks.

Loading Data Into MyRocks

MyRocks has ways to load data much faster than normal INSERTs

MyRocks Status Variables

MyRocks-related status variables.

MyRocks System Variables

MyRocks server system variables.

MyRocks Transactional Isolation

TODO: MyRocks uses snapshot isolation Support do READ-COMMITTED and REPEAT...

MyRocks and Replication

Details about how MyRocks works with replication.

MyRocks and Group Commit with Binary log

MyRocks supports group commit with the binary log

Optimizer Statistics in MyRocks

How MyRocks provides statistics to the query optimizer

Differences Between MyRocks Variants

Differences between Facebook's, MariaDB's and Percona Server's MyRocks.

MyRocks and Bloom Filters

Bloom filters are used to reduce read amplification.

MyRocks and CHECK TABLE

MyRocks supports the CHECK TABLE command.

MyRocks and Data Compression

MyRocks supports several compression algorithms.

5

1

3374/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/

MyRocks and Index-Only Scans

MyRocks and index-only scans on secondary indexes.

MyRocks and START TRANSACTION WITH CONSISTENT SNAPSHOT

FB/MySQL has added new syntax which returns the binlog coordinates pointing at the snapshot.

MyRocks Column Families

MyRocks stores data in column families, which are similar to tablespaces.

MyRocks in MariaDB 10.2 vs MariaDB 10.3

MyRocks storage engine in MariaDB 10.2 and MariaDB 10.3.

MyRocks Performance Troubleshooting

MyRocks exposes its performance metrics through several interfaces.

There are 1 related questions .

5.3.14.1 About MyRocks for MariaDB
Contents
1. About MyRocks for MariaDB

1. Benefits

1. Greater Space Efficiency

2. Greater Writing Efficiency

3. Faster Data Loading

4. Faster Replication

2. Requirements and Limitations

About MyRocks for MariaDB
MyRocks is an open source storage engine that was originally developed by Facebook.

MyRocks has been extended by the MariaDB engineering team to be a pluggable storage engine that you use in your

MariaDB solutions. It works seamlessly with MariaDB features. This openness in the storage layer allows you to use the

right storage engine to optimize your usage requirements, which provides optimum performance. Community contributions

are one of MariaDB9s greatest advantages over other databases. Under the lead of our developer Sergey Petrunia,

MyRocks in MariaDB is occasionally being merged with upstream MyRocks from Facebook.

See more at: https://mariadb.com/resources/blog/facebook-myrocks-mariadb#sthash.ZlEr7kNq.dpuf

MyRocks, typically, gives greater performance for web scale type applications. It can be an ideal storage engine solution

when you have workloads that require greater compression and IO efficiency. It uses a Log Structured Merge (LSM)

architecture, which has advantages over B-Tree algorithms, to provide efficient data ingestion, like read-free replication

slaves, or fast bulk data loading. MyRocks distinguishing features include:

compaction filter

merge operator

backup

column families

bulk loading

persistent cache

For more MyRocks features see: https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB

Benefits
On production workloads, MyRocks was tested to prove that it provides:

3375/4161

https://mariadb.com/kb/en/myrocks/+questions/
https://mariadb.com/resources/blog/facebook-myrocks-mariadb#sthash.ZlEr7kNq.dpuf
https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB

Greater Space Efficiency

2x more compression

MyRocks has 2x better compression compared to compressed InnoDB, 3-4x better compression compared to

uncompressed InnoDB, meaning you use less space.

Greater Writing Efficiency

2x lower write rates to storage

MyRocks has a 10x less write amplification compared to InnoDB, giving you better endurance of flash storage and

improving overall throughput.

Faster Data Loading

faster database loads

MyRocks writes data directly onto the bottommost level, which avoids all compaction overheads when you enable

faster data loading for a session.

Faster Replication

No random reads for updating secondary keys, except for unique indexes. The Read-Free Replication option does

away with random reads when updating primary keys, regardless of uniqueness, with a row-based binary logging

format.

http://myrocks.io https://mariadb.com/resources/blog/facebook-myrocks-mariadb

Requirements and Limitations
MyRocks is included from MariaDB 10.2.5 .

MyRocks is available in the MariaDB Server packages for Linux and Windows.

Maria DB optimistic parallel replication may not be supported.

MyRocks is not available for 32-bit platforms

Galera Cluster is tightly integrated into InnoDB storage engine (it also supports Percona's XtraDB which is a modified

version of InnoDB). Galera Cluster does not work with any other storage engines, including MyRocks (or TokuDB for

example).

MyRocks builds are available on platforms that support a sufficiently modern compiler, for example:

Ubuntu Trusty, Xenial, (amd64 and ppc64el)

Ubuntu Yakkety (amd64)

Debian Jessie, stable (amd64, ppc64el)

Debian Stretch, Sid (testing and unstable) (amd64)

CentOS/RHEL 7 (amd64)

Centos/RHEL 7.3 (amd64)

Fedora 24 and 25 (amd64)

OpenSUSE 42 (amd64)

Windows 64 (zip and MSI)

5.3.14.2 Getting Started with MyRocks

The MyRocks storage engine was first released in MariaDB 10.2.5 .

MyRocks is a storage engine that adds the RocksDB database to MariaDB. RocksDB is an LSM database with a great

compression ratio that is optimized for flash storage.

The storage engine must be installed before it can be used.

MariaDB starting with 10.2.5

3376/4161

http://myrocks.io
https://mariadb.com/resources/blog/facebook-myrocks-mariadb
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/

Contents
1. Installing the Plugin's Package

1. Installing on Linux

1. Installing with a Package Manager

1. Installing with yum/dnf

2. Installing with apt-get

3. Installing with zypper

2. Installing on Windows

2. Installing the Plugin

3. Uninstalling the Plugin

4. Verifying the Installation

5. Compression

6. System and Status Variables

Installing the Plugin's Package
The MyRocks storage engine's shared library is included in MariaDB packages as the ha_rocksdb.so or

ha_rocksdb.dll shared library on systems where it can be built. The plugin was first included in MariaDB 10.2.5 .

Installing on Linux

The MyRocks storage engine is included in binary tarballs on Linux.

Installing with a Package Manager

The MyRocks storage engine can also be installed via a package manager on Linux. In order to do so, your system needs

to be configured to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

Installing with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

package from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced

by dnf , which is the next major version of yum . However, yum commands still work on many systems that use dnf . For

example:

sudo yum install MariaDB-rocksdb-engine

Installing with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB package from

MariaDB's repository using apt-get . For example:

sudo apt-get install mariadb-plugin-rocksdb

Installing with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM package

from MariaDB's repository using zypper . For example:

sudo zypper install MariaDB-rocksdb-engine

Installing on Windows

The MyRocks storage engine is included in MSI and ZIP packages on Windows.

Installing the Plugin
Once the shared library is in place, the plugin is not actually installed by MariaDB by default. There are two methods that

3377/4161

https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://downloads.mariadb.org/mariadb/repositories/
https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get

can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'ha_rocksdb';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = ha_rocksdb

Note: When installed with a package manager, an option file that contains the --plugin-load-add option may also be

installed. The RPM package installs it as /etc/my.cnf.d/rocksdb.cnf , and the DEB package installs it as

/etc/mysql/mariadb.conf.d/rocksdb.cnf

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'ha_rocksdb';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Verifying the Installation
After installing MyRocks you will see RocksDB in the list of plugins:

SHOW PLUGINS;

+-------------------------------+----------+--------------------+---------------+---------+

| Name | Status | Type | Library | License |

+-------------------------------+----------+--------------------+---------------+---------+

...

| ROCKSDB | ACTIVE | STORAGE ENGINE | ha_rocksdb.so | GPL |

| ROCKSDB_CFSTATS | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_DBSTATS | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_PERF_CONTEXT | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_PERF_CONTEXT_GLOBAL | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_CF_OPTIONS | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_COMPACTION_STATS | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_GLOBAL_INFO | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_DDL | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_INDEX_FILE_MAP | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_LOCKS | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

| ROCKSDB_TRX | ACTIVE | INFORMATION SCHEMA | ha_rocksdb.so | GPL |

...

+-------------------------------+----------+--------------------+---------------+---------+

Compression
Supported compression types are listed in the rocksdb_supported_compression_types variable. For example:

SHOW VARIABLES LIKE 'rocksdb_supported_compression_types';

+-------------------------------------+-------------+

| Variable_name | Value |

+-------------------------------------+-------------+

| rocksdb_supported_compression_types | Snappy,Zlib |

+-------------------------------------+-------------+

See MyRocks and Data Compression for more.

3378/4161

System and Status Variables
All MyRocks system variables and status variables are prefaced with "rocksdb", so you can query them with, for example:

SHOW VARIABLES LIKE 'rocksdb%';

SHOW STATUS LIKE 'rocksdb%';

5.3.14.3 Building MyRocks in MariaDB
Contents
1. Build Process and Requirements

2. Building on Ubuntu 16.04

3. Starting MyRocks

This page describes how to get MyRocks in MariaDB when compiling MariaDB from source.

(See https://github.com/facebook/mysql-5.6/wiki/Build-Steps for instructions how to build the upstream)

Build Process and Requirements
MariaDB compile process will compile MyRocks into ha_rocksdb.so by default if the platform supports it (That is, no

WITH_ROCKSDB switch is necessary).

Platform requirements:

A 64-bit platform (due to some 32 bit compilers having difficulties with RocksDB)

git installed (or git submodules fetched somehow)

A sufficiently recent compiler:

gcc >= 4.8, or

clang >= 3.3, or

MS Visual Studio 2015 or newer

Building on Ubuntu 16.04
The steps were checked on a fresh install of Ubuntu 16.04.2 LTS Xenial.

sudo apt-get update

sudo apt-get -y install g++ cmake libbz2-dev libaio-dev bison zlib1g-dev libsnappy-dev

sudo apt-get -y install libgflags-dev libreadline6-dev libncurses5-dev libssl-dev liblz4-dev gdb git

;

git clone https://github.com/MariaDB/server.git mariadb-10.2

cd mariadb-10.2

git checkout 10.2

git submodule init

git submodule update

cmake .

make -j10

This should produce storage/rocksdb/ha_rocksdb.so which is MyRocks storage engine in the loadable form.

Starting MyRocks
MyRocks does not require any special way to initialize the data directory. Minimal my.cnf flle:

3379/4161

https://github.com/facebook/mysql-5.6/wiki/Build-Steps

cat > ~/my1.cnf <<EOF

[mysqld]

datadir=../mysql-test/var/install.db

plugin-dir=../storage/rocksdb

language=./share/english

socket=/tmp/mysql.sock

port=3307

plugin-load=ha_rocksdb

default-storage-engine=rocksdb

EOF

Run the server like this

(cd mysql-test; ./mtr alias)

cp -r mysql-test/var/install.db ~/data1

cd ../sql

./mysqld --defaults-file=~/my1.cnf

Compression libraries. Supported compression libraries are listed in rocksdb_supported_compression_types. Compiling like

the above, I get:

Snappy,Zlib,LZ4,LZ4HC

5.3.14.4 Loading Data Into MyRocks
Being a write-optimized storage engine, MyRocks has special ways to load data much faster than normal INSERTs would.

See

http://myrocks.io/docs/getting-started/ ; the section about "Migrating from InnoDB to MyRocks in production" has

some clues.

https://github.com/facebook/mysql-5.6/wiki/Data-Loading covers the topic in greater detail.

Note When one loads data with rocksdb_bulk_load=1 and the data conflicts with the data already in the database, one may

get non-trivial errors, for example:

ERROR 1105 (HY000): [./.rocksdb/test.t1_PRIMARY_2_0.bulk_load.tmp] bulk load error:

 Invalid argument: External file requires flush

5.3.14.5 MyRocks Status Variables
Contents
1. Rocksdb_block_cache_add

2. Rocksdb_block_cache_add_failures

3. Rocksdb_block_cache_bytes_read

4. Rocksdb_block_cache_bytes_write

5. Rocksdb_block_cache_data_add

6. Rocksdb_block_cache_data_bytes_insert

7. Rocksdb_block_cache_data_hit

8. Rocksdb_block_cache_data_miss

9. Rocksdb_block_cache_filter_add

10. Rocksdb_block_cache_filter_bytes_evict

11. Rocksdb_block_cache_filter_bytes_insert

12. Rocksdb_block_cache_filter_hit

13. Rocksdb_block_cache_filter_miss

14. Rocksdb_block_cache_hit

15. Rocksdb_block_cache_index_add

16. Rocksdb_block_cache_index_bytes_evict

17. Rocksdb_block_cache_index_bytes_insert

18. Rocksdb_block_cache_index_hit

19. Rocksdb_block_cache_index_miss

20. Rocksdb_block_cache_miss

21. Rocksdb_block_cachecompressed_hit
3380/4161

http://myrocks.io/docs/getting-started/
https://github.com/facebook/mysql-5.6/wiki/Data-Loading

21. Rocksdb_block_cachecompressed_hit

22. Rocksdb_block_cachecompressed_miss

23. Rocksdb_bloom_filter_full_positive

24. Rocksdb_bloom_filter_full_true_positive

25. Rocksdb_bloom_filter_prefix_checked

26. Rocksdb_bloom_filter_prefix_useful

27. Rocksdb_bloom_filter_useful

28. Rocksdb_bytes_read

29. Rocksdb_bytes_written

30. Rocksdb_compact_read_bytes

31. Rocksdb_compact_write_bytes

32. Rocksdb_compaction_key_drop_new

33. Rocksdb_compaction_key_drop_obsolete

34. Rocksdb_compaction_key_drop_user

35. Rocksdb_covered_secondary_key_lookups

36. Rocksdb_flush_write_bytes

37. Rocksdb_get_hit_l0

38. Rocksdb_get_hit_l1

39. Rocksdb_get_hit_l2_and_up

40. Rocksdb_getupdatessince_calls

41. Rocksdb_iter_bytes_read

42. Rocksdb_l0_num_files_stall_micros

43. Rocksdb_l0_slowdown_micros

44. Rocksdb_manual_compactions_processed

45. Rocksdb_manual_compactions_running

46. Rocksdb_memtable_compaction_micros

47. Rocksdb_memtable_hit

48. Rocksdb_memtable_miss

49. Rocksdb_memtable_total

50. Rocksdb_memtable_unflushed

51. Rocksdb_no_file_closes

52. Rocksdb_no_file_errors

53. Rocksdb_no_file_opens

54. Rocksdb_num_iterators

55. Rocksdb_number_block_not_compressed

56. Rocksdb_number_db_next

57. Rocksdb_number_db_next_found

58. Rocksdb_number_db_prev

59. Rocksdb_number_db_prev_found

60. Rocksdb_number_db_seek

61. Rocksdb_number_db_seek_found

62. Rocksdb_number_deletes_filtered

63. Rocksdb_number_keys_read

64. Rocksdb_number_keys_updated

65. Rocksdb_number_keys_written

66. Rocksdb_number_merge_failures

67. Rocksdb_number_multiget_bytes_read

68. Rocksdb_number_multiget_get

69. Rocksdb_number_multiget_keys_read

70. Rocksdb_number_reseeks_iteration

71. Rocksdb_number_sst_entry_delete

72. Rocksdb_number_sst_entry_merge

73. Rocksdb_number_sst_entry_other

74. Rocksdb_number_sst_entry_put

75. Rocksdb_number_sst_entry_singledelete

76. Rocksdb_number_superversion_acquires

77. Rocksdb_number_superversion_cleanups

78. Rocksdb_number_superversion_releases

79. Rocksdb_queries_point

80. Rocksdb_queries_range

81. Rocksdb_row_lock_deadlocks

82. Rocksdb_row_lock_wait_timeouts

83. Rocksdb_rows_deleted

84. Rocksdb_rows_deleted_blind

85. Rocksdb_rows_expired

86. Rocksdb_rows_filtered

87. Rocksdb_rows_inserted

88. Rocksdb_rows_read
3381/4161

88. Rocksdb_rows_read

89. Rocksdb_rows_updated

90. Rocksdb_snapshot_conflict_errors

91. Rocksdb_stall_l0_file_count_limit_slowdowns

92. Rocksdb_stall_l0_file_count_limit_stops

93. Rocksdb_stall_locked_l0_file_count_limit_slowdowns

94. Rocksdb_stall_locked_l0_file_count_limit_stops

95. Rocksdb_stall_memtable_limit_slowdowns

96. Rocksdb_stall_memtable_limit_stops

97. Rocksdb_stall_micros

98. Rocksdb_stall_pending_compaction_limit_slowdowns

99. Rocksdb_stall_pending_compaction_limit_stops

100. Rocksdb_stall_total_slowdowns

101. Rocksdb_stall_total_stops

102. Rocksdb_system_rows_deleted

103. Rocksdb_system_rows_inserted

104. Rocksdb_system_rows_read

105. Rocksdb_system_rows_updated

106. Rocksdb_wal_bytes

107. Rocksdb_wal_group_syncs

108. Rocksdb_wal_synced

109. Rocksdb_write_other

110. Rocksdb_write_self

111. Rocksdb_write_timedout

112. Rocksdb_write_wal

This page documents status variables related to the MyRocks storage engine. See Server Status Variables for a complete

list of status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Rocksdb_block_cache_add

Description: Number of blocks added to the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_add_failures

Description: Number of failures when adding blocks to Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_bytes_read

Description: Bytes read from Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_bytes_write

Description: Bytes written to Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_data_add

Description: Number of data blocks added to the Block Cache.

Scope: Global, Session

Data Type: numeric

3382/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_data_bytes_insert

Description: Bytes added to the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_data_hit

Description: Number of hits when accessing the data block from the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_data_miss

Description: Number of misses when accessing the data block from the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_filter_add

Description: Number of bloom filter blocks added to the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_filter_bytes_evict

Description: Bytes of bloom filter blocks evicted from the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_filter_bytes_insert

Description: Bytes of bloom filter blocks added to the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_filter_hit

Description: Number of hits when accessing the filter block from the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_filter_miss

Description: Number of misses when accessing the filter block from the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_hit

3383/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Description: Total number of hits for the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_index_add

Description: Number of index blocks added to Block Cache index.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_index_bytes_evict

Description: Bytes of index blocks evicted from the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_index_bytes_insert

Description: Bytes of index blocks added to the Block Cache.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_block_cache_index_hit

Description: Number of hits for the Block Cache index.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_index_miss

Description: Number of misses for the Block Cache index.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cache_miss

Description: Total number of misses for the Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cachecompressed_hit

Description: Number of hits for the compressed Block Cache.

Scope: Global, Session

Data Type: numeric

Rocksdb_block_cachecompressed_miss

Description: Number of misses for the compressed Block Cache.

Scope: Global, Session

Data Type: numeric

3384/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Rocksdb_bloom_filter_full_positive

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.18 , MariaDB 10.3.10

Rocksdb_bloom_filter_full_true_positive

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.18 , MariaDB 10.3.10

Rocksdb_bloom_filter_prefix_checked

Description: Number of times the Bloom Filter checked before creating an iterator on a file.

Scope: Global, Session

Data Type: numeric

Rocksdb_bloom_filter_prefix_useful

Description: Number of times the Bloom Filter check used to avoid creating an iterator on a file.

Scope: Global, Session

Data Type: numeric

Rocksdb_bloom_filter_useful

Description: Number of times the Bloom Filter used instead of reading form file.

Scope: Global, Session

Data Type: numeric

Rocksdb_bytes_read

Description: Total number of uncompressed bytes read from memtables, cache or table files.

Scope: Global, Session

Data Type: numeric

Rocksdb_bytes_written

Description: Total number of uncompressed bytes written.

Scope: Global, Session

Data Type: numeric

Rocksdb_compact_read_bytes

Description: Number of bytes read during compaction.

Scope: Global, Session

Data Type: numeric

Rocksdb_compact_write_bytes

Description: Number of bytes written during compaction.

Scope: Global, Session

Data Type: numeric

3385/4161

https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/

Rocksdb_compaction_key_drop_new

Description: Number of keys dropped during compaction due their being overwritten by new values.

Scope: Global, Session

Data Type: numeric

Rocksdb_compaction_key_drop_obsolete

Description: Number of keys dropped during compaction due to their being obsolete.

Scope: Global, Session

Data Type: numeric

Rocksdb_compaction_key_drop_user

Description: Number of keys dropped during compaction due to user compaction.

Scope: Global, Session

Data Type: numeric

Rocksdb_covered_secondary_key_lookups

Description: Incremented when avoiding reading a record via a keyread. This indicates lookups that were performed

via a secondary index containing a field that is only a prefix of the VARCHAR column, and that could return all

requested fields directly from the secondary index.

Scope: Global, Session

Data Type: numeric

Rocksdb_flush_write_bytes

Description: Number of bytes written during flush.

Scope: Global, Session

Data Type: numeric

Rocksdb_get_hit_l0

Description: Number of times reads got data from the L0 compaction layer.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_get_hit_l1

Description: Number of times reads got data from the L1 compaction layer.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_get_hit_l2_and_up

Description: Number of times reads got data from the L2 and up compaction layer.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_getupdatessince_calls

Description: Number of calls to the GetUpdatesSince function. You may find this useful when monitoring

refreshes of the transaction log.

3386/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Scope: Global, Session

Data Type: numeric

Rocksdb_iter_bytes_read

Description: Total uncompressed bytes read from an iterator, including the size of both key and value.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_l0_num_files_stall_micros

Description: Shows how long in microseconds throttled due to too mnay files in L0.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

Rocksdb_l0_slowdown_micros

Description: Total time spent waiting in microseconds while performing L0-L1 compactions.

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

Rocksdb_manual_compactions_processed

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.18 , MariaDB 10.3.10

Rocksdb_manual_compactions_running

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.18 , MariaDB 10.3.10

Rocksdb_memtable_compaction_micros

Description:

Scope: Global, Session

Data Type: numeric

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

Rocksdb_memtable_hit

Description: Number of memtable hits.

Scope: Global, Session

Data Type: numeric

Rocksdb_memtable_miss

Description: Number of memtable misses.

Scope: Global, Session

Data Type: numeric

3387/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

Rocksdb_memtable_total

Description: Memory used, in bytes, of all memtables.

Scope: Global, Session

Data Type: numeric

Rocksdb_memtable_unflushed

Description: Memory used, in bytes, of all unflushed memtables.

Scope: Global, Session

Data Type: numeric

Rocksdb_no_file_closes

Description: Number of times files were closed.

Scope: Global, Session

Data Type: numeric

Rocksdb_no_file_errors

Description: Number of errors encountered while trying to read data from an SST file.

Scope: Global, Session

Data Type: numeric

Rocksdb_no_file_opens

Description: Number of times files were opened.

Scope: Global, Session

Data Type: numeric

Rocksdb_num_iterators

Description: Number of iterators currently open.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_block_not_compressed

Description: Number of uncompressed blocks.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_db_next

Description: Number of next calls.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_number_db_next_found

Description: Number of next calls that returned data.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

3388/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Rocksdb_number_db_prev

Description: Number of prev calls.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_number_db_prev_found

Description: Number of prev calls that returned data.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_number_db_seek

Description: Number of seek calls.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_number_db_seek_found

Description: Number of seek calls that returned data.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_number_deletes_filtered

Description: Number of deleted records were not written to storage due to a nonexistent key.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_keys_read

Description: Number of keys have been read.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_keys_updated

Description: Number of keys have been updated.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_keys_written

Description: Number of keys have been written.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_merge_failures

Description: Number of failures encountered while performing merge operator actions.

Scope: Global, Session

Data Type: numeric

3389/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Rocksdb_number_multiget_bytes_read

Description: Number of bytes read during RocksDB MultiGet() calls.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_multiget_get

Description: Number of RocksDB MultiGet() requests made.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_multiget_keys_read

Description: Number of keys read through RocksDB MultiGet() calls.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_reseeks_iteration

Description: Number of reseeks that have occurred inside an iteration that skipped over a large number of keys with

the same user key.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_sst_entry_delete

Description: Number of delete markers written.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_sst_entry_merge

Description: Number of merge keys written.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_sst_entry_other

Description: Number of keys written that are not delete, merge or put keys.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_sst_entry_put

Description: Number of put keys written.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_sst_entry_singledelete

Description: Number of single-delete keys written.

Scope: Global, Session

Data Type: numeric

3390/4161

Rocksdb_number_superversion_acquires

Description: Number of times the superversion structure acquired. This is useful when tracking files for the database.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_superversion_cleanups

Description: Number of times the superversion structure performed cleanups.

Scope: Global, Session

Data Type: numeric

Rocksdb_number_superversion_releases

Description: Number of times the superversion structure released.

Scope: Global, Session

Data Type: numeric

Rocksdb_queries_point

Description: Number of single-row queries.

Scope: Global, Session

Data Type: numeric

Rocksdb_queries_range

Description: Number of multi-row queries.

Scope: Global, Session

Data Type: numeric

Rocksdb_row_lock_deadlocks

Description: Number of deadlocks.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_row_lock_wait_timeouts

Description: Number of row lock wait timeouts.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_rows_deleted

Description: Number of rows deleted.

Scope: Global, Session

Data Type: numeric

Rocksdb_rows_deleted_blind

Description:

Scope: Global, Session

Data Type: numeric

3391/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Rocksdb_rows_expired

Description: Number of expired rows.

Scope: Global, Session

Data Type: numeric

Rocksdb_rows_filtered

Description: Number of TTL filtered rows.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.15 , MariaDB 10.3.7

Rocksdb_rows_inserted

Description: Number of rows inserted.

Scope: Global, Session

Data Type: numeric

Rocksdb_rows_read

Description: Number of rows read.

Scope: Global, Session

Data Type: numeric

Rocksdb_rows_updated

Description: Number of rows updated.

Scope: Global, Session

Data Type: numeric

Rocksdb_snapshot_conflict_errors

Description: Number of snapshot conflict errors that have occurred during transactions that forced a rollback.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_l0_file_count_limit_slowdowns

Description: Write slowdowns due to L0 being near to full.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_l0_file_count_limit_stops

Description: Write stops due to L0 being to full.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_locked_l0_file_count_limit_slowdowns

Description: Write slowdowns due to L0 being near to full and L0 compaction in progress.

Scope: Global, Session

Data Type: numeric

3392/4161

https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/

Rocksdb_stall_locked_l0_file_count_limit_stops

Description: Write stops due to L0 being full and L0 compaction in progress.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_memtable_limit_slowdowns

Description: Write slowdowns due to approaching maximum permitted number of memtables.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.10 , MariaDB 10.3.3

Rocksdb_stall_memtable_limit_stops

Description: * Description: Write stops due to reaching maximum permitted number of memtables.

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.2.10 , MariaDB 10.3.3

Rocksdb_stall_micros

Description: Time in microseconds that the writer had to wait for the compaction or flush to complete.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_pending_compaction_limit_slowdowns

Description: Write slowdowns due to nearing the limit for the maximum number of pending compaction bytes.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_pending_compaction_limit_stops

Description: Write stops due to reaching the limit for the maximum number of pending compaction bytes.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_total_slowdowns

Description: Total number of write slowdowns.

Scope: Global, Session

Data Type: numeric

Rocksdb_stall_total_stops

Description: Total number of write stops.

Scope: Global, Session

Data Type: numeric

Rocksdb_system_rows_deleted

Description: Number of rows deleted from system tables.

Scope: Global, Session

Data Type: numeric

3393/4161

https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Rocksdb_system_rows_inserted

Description: Number of rows inserted into system tables.

Scope: Global, Session

Data Type: numeric

Rocksdb_system_rows_read

Description: Number of rows read from system tables.

Scope: Global, Session

Data Type: numeric

Rocksdb_system_rows_updated

Description: Number of rows updated for system tables.

Scope: Global, Session

Data Type: numeric

Rocksdb_wal_bytes

Description: Number of bytes written to WAL.

Scope: Global, Session

Data Type: numeric

Rocksdb_wal_group_syncs

Description: Number of group commit WAL file syncs have occurred. This is provided by MyRocks and is not a view

of a RocksDB counter. Increased in rocksdb_flush_wal() when doing the rdb->FlushWAL() call.

Scope: Global, Session

Data Type: numeric

Rocksdb_wal_synced

Description: Number of syncs made on RocksDB WAL file.

Scope: Global, Session

Data Type: numeric

Rocksdb_write_other

Description: Number of writes processed by a thread other than the requesting thread.

Scope: Global, Session

Data Type: numeric

Rocksdb_write_self

Description: Number of writes processed by requesting thread.

Scope: Global, Session

Data Type: numeric

Rocksdb_write_timedout

Description: Number of writes that timed out.

Scope: Global, Session

Data Type: numeric

3394/4161

Rocksdb_write_wal

Description: Number of write calls that requested WAL.

Scope: Global, Session

Data Type: numeric

5.3.14.6 MyRocks System Variables
Contents
1. rocksdb_access_hint_on_compaction_start

2. rocksdb_advise_random_on_open

3. rocksdb_allow_concurrent_memtable_write

4. rocksdb_allow_mmap_reads

5. rocksdb_allow_mmap_writes

6. rocksdb_allow_to_start_after_corruption

7. rocksdb_background_sync

8. rocksdb_base_background_compactions

9. rocksdb_blind_delete_primary_key

10. rocksdb_block_cache_size

11. rocksdb_block_restart_interval

12. rocksdb_block_size

13. rocksdb_block_size_deviation

14. rocksdb_bulk_load

15. rocksdb_bulk_load_allow_sk

16. rocksdb_bulk_load_allow_unsorted

17. rocksdb_bulk_load_size

18. rocksdb_bytes_per_sync

19. rocksdb_cache_dump

20. rocksdb_cache_high_pri_pool_ratio

21. rocksdb_cache_index_and_filter_blocks

22. rocksdb_cache_index_and_filter_with_high_priority

23. rocksdb_checksums_pct

24. rocksdb_collect_sst_properties

25. rocksdb_commit_in_the_middle

26. rocksdb_commit_time_batch_for_recovery

27. rocksdb_compact_cf

28. rocksdb_compaction_readahead_size

29. rocksdb_compaction_sequential_deletes

30. rocksdb_compaction_sequential_deletes_count_sd

31. rocksdb_compaction_sequential_deletes_file_size

32. rocksdb_compaction_sequential_deletes_window

33. rocksdb_concurrent_prepare

34. rocksdb_create_checkpoint

35. rocksdb_create_if_missing

36. rocksdb_create_missing_column_families

37. rocksdb_datadir

38. rocksdb_db_write_buffer_size

39. rocksdb_deadlock_detect

40. rocksdb_deadlock_detect_depth

41. rocksdb_debug_manual_compaction_delay

42. rocksdb_debug_optimizer_no_zero_cardinality

43. rocksdb_debug_ttl_ignore_pk

44. rocksdb_debug_ttl_read_filter_ts

45. rocksdb_debug_ttl_rec_ts

46. rocksdb_debug_ttl_snapshot_ts

47. rocksdb_default_cf_options

48. rocksdb_delayed_write_rate

49. rocksdb_delete_cf

50. rocksdb_delete_obsolete_files_period_micros

51. rocksdb_enable_2pc

52. rocksdb_enable_bulk_load_api

53. rocksdb_enable_insert_with_update_caching

54. rocksdb_enable_thread_tracking

55. rocksdb_enable_ttl

56. rocksdb_enable_ttl_read_filtering
3395/4161

56. rocksdb_enable_ttl_read_filtering

57. rocksdb_enable_write_thread_adaptive_yield

58. rocksdb_error_if_exists

59. rocksdb_error_on_suboptimal_collation

60. rocksdb_flush_log_at_trx_commit

61. rocksdb_flush_memtable_on_analyze

62. rocksdb_force_compute_memtable_stats

63. rocksdb_force_compute_memtable_stats_cachetime

64. rocksdb_force_flush_memtable_and_lzero_now

65. rocksdb_force_flush_memtable_now

66. rocksdb_force_index_records_in_range

67. rocksdb_git_hash

68. rocksdb_hash_index_allow_collision

69. rocksdb_ignore_unknown_options

70. rocksdb_index_type

71. rocksdb_info_log_level

72. rocksdb_io_write_timeout

73. rocksdb_is_fd_close_on_exec

74. rocksdb_keep_log_file_num

75. rocksdb_large_prefix

76. rocksdb_lock_scanned_rows

77. rocksdb_lock_wait_timeout

78. rocksdb_log_dir

79. rocksdb_log_file_time_to_roll

80. rocksdb_manifest_preallocation_size

81. rocksdb_manual_compaction_threads

82. rocksdb_manual_wal_flush

83. rocksdb_master_skip_tx_api

84. rocksdb_max_background_compactions

85. rocksdb_max_background_flushes

86. rocksdb_max_background_jobs

87. rocksdb_max_latest_deadlocks

88. rocksdb_max_log_file_size

89. rocksdb_max_manifest_file_size

90. rocksdb_max_manual_compactions

91. rocksdb_max_open_files

92. rocksdb_max_row_locks

93. rocksdb_max_subcompactions

94. rocksdb_max_total_wal_size

95. rocksdb_merge_buf_size

96. rocksdb_merge_combine_read_size

97. rocksdb_merge_tmp_file_removal_delay_ms

98. rocksdb_new_table_reader_for_compaction_inputs

99. rocksdb_no_block_cache

100. rocksdb_override_cf_options

101. rocksdb_paranoid_checks

102. rocksdb_pause_background_work

103. rocksdb_perf_context_level

104. rocksdb_persistent_cache_path

105. rocksdb_persistent_cache_size_mb

106. rocksdb_pin_l0_filter_and_index_blocks_in_cache

107. rocksdb_print_snapshot_conflict_queries

108. rocksdb_rate_limiter_bytes_per_sec

109. rocksdb_read_free_rpl_tables

110. rocksdb_records_in_range

111. rocksdb_remove_mariabackup_checkpoint

112. rocksdb_reset_stats

113. rocksdb_rollback_on_timeout

114. rocksdb_seconds_between_stat_computes

115. rocksdb_signal_drop_index_thread

116. rocksdb_sim_cache_size

117. rocksdb_skip_bloom_filter_on_read

118. rocksdb_skip_fill_cache

119. rocksdb_skip_unique_check_tables

120. rocksdb_sst_mgr_rate_bytes_per_sec

121. rocksdb_stats_dump_period_sec

122. rocksdb_stats_level

123. rocksdb_stats_recalc_rate
3396/4161

124. rocksdb_store_row_debug_checksums

125. rocksdb_strict_collation_check

126. rocksdb_strict_collation_exceptions

127. rocksdb_supported_compression_types

128. rocksdb_table_cache_numshardbits

129. rocksdb_table_stats_sampling_pct

130. rocksdb_tmpdir

131. rocksdb_trace_sst_api

132. rocksdb_two_write_queues

133. rocksdb_unsafe_for_binlog

134. rocksdb_update_cf_options

135. rocksdb_use_adaptive_mutex

136. rocksdb_use_clock_cache

137. rocksdb_use_direct_io_for_flush_and_compaction

138. rocksdb_use_direct_reads

139. rocksdb_use_direct_writes

140. rocksdb_use_fsync

141. rocksdb_validate_tables

142. rocksdb_verify_row_debug_checksums

143. rocksdb_wal_bytes_per_sync

144. rocksdb_wal_dir

145. rocksdb_wal_recovery_mode

146. rocksdb_wal_size_limit_mb

147. rocksdb_wal_ttl_seconds

148. rocksdb_whole_key_filtering

149. rocksdb_write_batch_max_bytes

150. rocksdb_write_disable_wal

151. rocksdb_write_ignore_missing_column_families

152. rocksdb_write_policy

This page documents system variables related to the MyRocks storage engine. See Server System Variables for a

complete list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

rocksdb_access_hint_on_compaction_start

Description: DBOptions::access_hint_on_compaction_start for RocksDB. Specifies the file access pattern, applied to

all input files, once a compaction starts.

Commandline: --rocksdb-access-hint-on-compaction-start=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 0 to 3

rocksdb_advise_random_on_open

Description: DBOptions::advise_random_on_open for RocksDB.

Commandline: --rocksdb-advise-random-on-open={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_allow_concurrent_memtable_write

Description: DBOptions::allow_concurrent_memtable_write for RocksDB.

Commandline: --rocksdb-allow-concurrent-memtable-write={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

3397/4161

rocksdb_allow_mmap_reads

Description: DBOptions::allow_mmap_reads for RocksDB

Commandline: --rocksdb-allow-mmap-reads={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_allow_mmap_writes

Description: DBOptions::allow_mmap_writes for RocksDB

Commandline: --rocksdb-allow-mmap-writes={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_allow_to_start_after_corruption

Description: Allow server still to start successfully even if RocksDB corruption is detected.

Commandline: --rocksdb-allow-to-start-after-corruption={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.7 , MariaDB 10.2.15

rocksdb_background_sync

Description: Turns on background syncs for RocksDB

Commandline: --rocksdb-background-sync={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_base_background_compactions

Description: DBOptions::base_background_compactions for RocksDB

Commandline: --rocksdb-base-background-compactions=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: -1 to 64

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_blind_delete_primary_key

Description: Deleting rows by primary key lookup, without reading rows (Blind Deletes). Blind delete is disabled if the

table has secondary key.

Commandline: --rocksdb-blind-delete-primary-key={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

3398/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

rocksdb_block_cache_size

Description: Block_cache size for RocksDB (block size 1024)

Commandline: --rocksdb-block-cache-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 536870912

Range: 1024 to 9223372036854775807

To see the statistics of block cache usage, check SHOW ENGINE ROCKSDB STATUS output (search for lines starting with

rocksdb.block.cache).

One can check the size of data of the block cache in DB_BLOCK_CACHE_USAGE column of the

INFORMATION_SCHEMA.ROCKSDB_DBSTATS table.

rocksdb_block_restart_interval

Description: BlockBasedTableOptions::block_restart_interval for RocksDB

Commandline: --rocksdb-block-restart-interval=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 16

Range: 1 to 2147483647

rocksdb_block_size

Description: BlockBasedTableOptions::block_size for RocksDB

Commandline: --rocksdb-block-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 4096

Range: 1 to 18446744073709551615

rocksdb_block_size_deviation

Description: BlockBasedTableOptions::block_size_deviation for RocksDB

Commandline: --rocksdb-block-size-deviation=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 0 to 2147483647

rocksdb_bulk_load

Description: Use bulk-load mode for inserts. This disables unique_checks and enables

rocksdb_commit_in_the_middle.

Commandline: --rocksdb-bulk-load={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_bulk_load_allow_sk

Description: Allow bulk loading of sk keys during bulk-load. Can be changed only when bulk load is disabled.

Commandline: --rocksdb-bulk-load_allow_sk={0|1}

Scope: Global, Session

3399/4161

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_bulk_load_allow_unsorted

Description: Allow unsorted input during bulk-load. Can be changed only when bulk load is disabled.

Commandline: --rocksdb-bulk-load_allow_unsorted={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_bulk_load_size

Description: Maximum number of records in a batch for bulk-load mode.

Commandline: --rocksdb-bulk-load-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1000

Range: 1 to 1073741824

rocksdb_bytes_per_sync

Description: DBOptions::bytes_per_sync for RocksDB.

Commandline: --rocksdb-bytes-per-sync=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_cache_dump

Description: Include RocksDB block cache content in core dump.

Commandline: --rocksdb-cache-dump={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_cache_high_pri_pool_ratio

Description: Specify the size of block cache high-pri pool.

Commandline: --rocksdb-cache-high-pri-pool-ratio=#

Scope: Global

Dynamic: Yes

Data Type: double

Default Value: 0.000000

Range: 0 to 1

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_cache_index_and_filter_blocks

Description: BlockBasedTableOptions::cache_index_and_filter_blocks for RocksDB.

Commandline: --rocksdb-cache-index-and-filter-blocks={0|1}

3400/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_cache_index_and_filter_with_high_priority

Description: cache_index_and_filter_blocks_with_high_priority for RocksDB.

Commandline: --rocksdb-cache-index-and-filter-with-high-priority={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_checksums_pct

Description: Percentage of rows to be checksummed.

Commandline: --rocksdb-checksums-pct=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 100

Range: 0 to 100

rocksdb_collect_sst_properties

Description: Enables collecting SST file properties on each flush.

Commandline: --rocksdb-collect-sst-properties={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_commit_in_the_middle

Description: Commit rows implicitly every rocksdb_bulk_load_size, on bulk load/insert, update and delete.

Commandline: --rocksdb-commit-in-the-middle={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_commit_time_batch_for_recovery

Description: TransactionOptions::commit_time_batch_for_recovery for RocksDB.

Commandline: --rocksdb-commit-time-batch-for-recovery={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_compact_cf

Description: Compact column family.

Commandline: --rocksdb-compact-cf=value

Scope: Global

Dynamic: Yes

3401/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

Data Type: string

Default Value: (Empty)

rocksdb_compaction_readahead_size

Description: DBOptions::compaction_readahead_size for RocksDB.

Commandline: --rocksdb-compaction-readahead-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_compaction_sequential_deletes

Description: RocksDB will trigger compaction for the file if it has more than this number sequential deletes per

window.

Commandline: --rocksdb-compaction-sequential-deletes=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2000000

rocksdb_compaction_sequential_deletes_count_sd

Description: Counting SingleDelete as rocksdb_compaction_sequential_deletes.

Commandline: --rocksdb-compaction-sequential-deletes-count-sd={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_compaction_sequential_deletes_file_size

Description: Minimum file size required for compaction_sequential_deletes.

Commandline: --rocksdb-compaction-sequential-deletes-file-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -1 to 9223372036854775807

rocksdb_compaction_sequential_deletes_window

Description: Size of the window for counting rocksdb_compaction_sequential_deletes.

Commandline: --rocksdb-compaction-sequential-deletes-window=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2000000

rocksdb_concurrent_prepare

Description: DBOptions::concurrent_prepare for RocksDB.

Commandline: --rocksdb-coconcurrent-prepare={0|1}

Scope: Global

Dynamic: No

3402/4161

Data Type: boolean

Default Value: 1

Removed: MariaDB 10.3.7 , MariaDB 10.2.15

rocksdb_create_checkpoint

Description: Checkpoint directory.

Commandline: --rocksdb-create-checkpoint=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: (Empty)

rocksdb_create_if_missing

Description: DBOptions::create_if_missing for RocksDB.

Commandline: --rocksdb-create-if-missing={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_create_missing_column_families

Description: DBOptions::create_missing_column_families for RocksDB.

Commandline: --rocksdb-create-missing-column-families={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_datadir

Description: RocksDB data directory.

Commandline: --rocksdb-datadir[=value]

Scope: Global

Dynamic: No

Data Type: string

Default Value: ./#rocksdb

rocksdb_db_write_buffer_size

Description: DBOptions::db_write_buffer_size for RocksDB.

Commandline: --rocksdb-db-write-buffer-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_deadlock_detect

Description: Enables deadlock detection.

Commandline: --rocksdb-deadlock-detect={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

3403/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/

rocksdb_deadlock_detect_depth

Description: Number of transactions deadlock detection will traverse through before assuming deadlock.

Commandline: --rocksdb-deadlock-detect-depth=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 50

Range: 2 to 18446744073709551615

rocksdb_debug_manual_compaction_delay

Description: For debugging purposes only. Sleeping specified seconds for simulating long running compactions.

Commandline: --rocksdb-debug_manual_compaction_delay=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_debug_optimizer_no_zero_cardinality

Description: If cardinality is zero, override it with some value.

Commandline: --rocksdb-debug-optimizer-no-zero-cardinality={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

rocksdb_debug_ttl_ignore_pk

Description: For debugging purposes only. If true, compaction filtering will not occur on PK TTL data. This variable is

a no-op in non-debug builds.

Commandline: --rocksdb-debug-ttl-ignore-pk={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_debug_ttl_read_filter_ts

Description: For debugging purposes only. Overrides the TTL read filtering time to time + debug_ttl_read_filter_ts. A

value of 0 denotes that the variable is not set. This variable is a no-op in non-debug builds.

Commandline: --rocksdb-debug-ttl-read-filter-ts=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -3600 to 3600

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_debug_ttl_rec_ts

Description: For debugging purposes only. Overrides the TTL of records to now() + debug_ttl_rec_ts. The value can

be +/- to simulate a record inserted in the past vs a record inserted in the 'future'. A value of 0 denotes that the

variable is not set. This variable is a no-op in non-debug builds.

Commandline: --rocksdb-debug-ttl-read-filter-ts=#

Scope: Global

Dynamic: Yes

3404/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

Data Type: numeric

Default Value: 0

Range: -3600 to 3600

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_debug_ttl_snapshot_ts

Description: For debugging purposes only. Sets the snapshot during compaction to now() +

debug_set_ttl_snapshot_ts. The value can be positive or negative to simulate a snapshot in the past vs a snapshot

created in the 'future'. A value of 0 denotes that the variable is not set. This variable is a no-op in non-debug builds.

Commandline: --rocksdb-debug-ttl-snapshot-ts=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -3600 to 3600

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_default_cf_options

Description: Default cf options for RocksDB.

Commandline: --rocksdb-default-cf-options=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

rocksdb_delayed_write_rate

Description: DBOptions::delayed_write_rate.

Commandline: --rocksdb-delayed-write-rate=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0 (Previously 16777216)

Range: 0 to 18446744073709551615

rocksdb_delete_cf

Description: Delete column family.

Commandline: --rocksdb-delete-cf=val

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty string)

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_delete_obsolete_files_period_micros

Description: DBOptions::delete_obsolete_files_period_micros for RocksDB.

Commandline: --rocksdb-delete-obsolete-files-period-micros=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 21600000000

Range: 0 to 9223372036854775807

rocksdb_enable_2pc

3405/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/

Description: Enable two phase commit for MyRocks. When set, MyRocks will keep its data consistent with the binary

log (in other words, the server will be a crash-safe master). The consistency is achieved by doing two-phase XA

commit with the binary log.

Commandline: --rocksdb-enable-2pc={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

rocksdb_enable_bulk_load_api

Description: Enables using SstFileWriter for bulk loading.

Commandline: --rocksdb-enable-bulk-load-api={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_enable_insert_with_update_caching

Description: Whether to enable optimization where we cache the read from a failed insertion attempt in INSERT ON

DUPLICATE KEY UPDATE.

Commandline: --rocksdb-enable-insert-with-update-caching={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_enable_thread_tracking

Description: DBOptions::enable_thread_tracking for RocksDB.

Commandline: --rocksdb-enable-thread-tracking={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_enable_ttl

Description: Enable expired TTL records to be dropped during compaction.

Commandline: --rocksdb-enable-ttl={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_enable_ttl_read_filtering

Description: For tables with TTL, expired records are skipped/filtered out during processing and in query results.

Disabling this will allow these records to be seen, but as a result rows may disappear in the middle of transactions as

they are dropped during compaction. Use with caution.

Commandline: --rocksdb-enable-ttl-read-filtering={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

3406/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

rocksdb_enable_write_thread_adaptive_yield

Description: DBOptions::enable_write_thread_adaptive_yield for RocksDB.

Commandline: --rocksdb-enable-write-thread-adaptive-yield={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_error_if_exists

Description: DBOptions::error_if_exists for RocksDBB.

Commandline: --rocksdb-error-if-exists={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_error_on_suboptimal_collation

Description: Raise an error instead of warning if a sub-optimal collation is used.

Commandline: --rocksdb-error-on-suboptimal-collation={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_flush_log_at_trx_commit

Description: Sync on transaction commit. Similar to innodb_flush_log_at_trx_commit. One can check the flushing by

examining the rocksdb_wal_synced and rocksdb_wal_bytes status variables.

1: Always sync on commit (the default).

0: Never sync.

2: Sync based on a timer controlled via rocksdb-background-sync.

Commandline: --rocksdb-flush-log-at-trx-commit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 2

rocksdb_flush_memtable_on_analyze

Description: Forces memtable flush on ANALZYE table to get accurate cardinality.

Commandline: --rocksdb-flush-memtable-on-analyze={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

Removed: MariaDB 10.3.7 , MariaDB 10.2.15

rocksdb_force_compute_memtable_stats

Description: Force to always compute memtable stats.

Commandline: --rocksdb-force-compute-memtable-stats={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

3407/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/

rocksdb_force_compute_memtable_stats_cachetime

Description: Time in usecs to cache memtable estimates.

Commandline: --rocksdb-force-compute-memtable-stats-cachetime=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 60000000

Range: 0 to 2147483647

rocksdb_force_flush_memtable_and_lzero_now

Description: Acts similar to force_flush_memtable_now, but also compacts all L0 files.

Commandline: --rocksdb-force-flush-memtable-and-lzero-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_force_flush_memtable_now

Description: Forces memstore flush which may block all write requests so be careful.

Commandline: --rocksdb-force-flush-memtable-now={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_force_index_records_in_range

Description: Used to override the result of records_in_range() when FORCE INDEX is used.

Commandline: --rocksdb-force-index-records-in-range=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483647

rocksdb_git_hash

Description: Git revision of the RocksDB library used by MyRocks.

Commandline: --rocksdb-git-hash=value=#

Scope: Global

Dynamic: No

Data Type: string

Default Value: As per git revision.

rocksdb_hash_index_allow_collision

Description: BlockBasedTableOptions::hash_index_allow_collision for RocksDB.

Commandline: --rocksdb-hash-index-allow-collision={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

3408/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

rocksdb_ignore_unknown_options

Description: Enable ignoring unknown options passed to RocksDB.

Commandline: --rocksdb-ignore-unknown-options={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.3.7 , MariaDB 10.2.15

rocksdb_index_type

Description: BlockBasedTableOptions::index_type for RocksDB.

Commandline: --rocksdb-index-type=value

Scope: Global

Dynamic: No

Data Type: enum

Default Value: kBinarySearch

Valid Values: kBinarySearch , kHashSearch

rocksdb_info_log_level

Description: Filter level for info logs to be written mysqld error log. Valid values include 'debug_level', 'info_level',

'warn_level', 'error_level' and 'fatal_level'.

Commandline: --rocksdb-info-log-level=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: error_level

Valid Values: error_level , debug_level , info_level , warn_level , fatal_level

rocksdb_io_write_timeout

Description: Timeout for experimental I/O watchdog.

Commandline: --rocksdb-io-write-timeout=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Valid Values: 0 to 4294967295

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_is_fd_close_on_exec

Description: DBOptions::is_fd_close_on_exec for RocksDB.

Commandline: --rocksdb-is-fd-close-on-exec={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_keep_log_file_num

Description: DBOptions::keep_log_file_num for RocksDB.

Commandline: --rocksdb-keep-log-file-num=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1000

Range: 0 to 18446744073709551615

3409/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

rocksdb_large_prefix

Description: Support large index prefix length of 3072 bytes. If off, the maximum index prefix length is 767.

Commandline: --rocksdb-large_prefix={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_lock_scanned_rows

Description: Take and hold locks on rows that are scanned but not updated.

Commandline: --rocksdb-lock-scanned-rows={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_lock_wait_timeout

Description: Number of seconds to wait for lock.

Commandline: --rocksdb-lock-wait-timeout=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 1073741824

rocksdb_log_dir

Description: DBOptions::log_dir for RocksDB. Where the log files are stored. An empty value implies

rocksdb_datadir is used as the directory.

Commandline: --rocksdb-log-dir=#

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

Introduced: MariaDB 10.9.1

rocksdb_log_file_time_to_roll

Description: DBOptions::log_file_time_to_roll for RocksDB.

Commandline: --rocksdb-log-file-time-to_roll=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_manifest_preallocation_size

Description: DBOptions::manifest_preallocation_size for RocksDB.

Commandline: --rocksdb-manifest-preallocation-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 4194304

Range: 0 to 18446744073709551615

3410/4161

rocksdb_manual_compaction_threads

Description: How many rocksdb threads to run for manual compactions.

Commandline: --rocksdb-manual-compation-threads=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 128

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_manual_wal_flush

Description: DBOptions::manual_wal_flush for RocksDB.

Commandline: --rocksdb-manual-wal-flush={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_master_skip_tx_api

Description: Skipping holding any lock on row access. Not effective on slave.

Commandline: --rocksdb-master-skip-tx-api={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_max_background_compactions

Description: DBOptions::max_background_compactions for RocksDB.

Commandline: --rocksdb-max-background-compactions=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 1 to 64

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_max_background_flushes

Description: DBOptions::max_background_flushes for RocksDB.

Commandline: --rocksdb-max-background-flushes=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 1 to 64

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_max_background_jobs

Description: DBOptions::max_background_jobs for RocksDB.

Commandline: --rocksdb-max-background-jobs=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 2

Range: -1 to 64

3411/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_max_latest_deadlocks

Description: Maximum number of recent deadlocks to store.

Commandline: --rocksdb-max-latest-deadlocks=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 5

Range: 0 to 4294967295

rocksdb_max_log_file_size

Description: DBOptions::max_log_file_size for RocksDB.

Commandline: --rocksdb-max-log-file-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_max_manifest_file_size

Description: DBOptions::max_manifest_file_size for RocksDB.

Commandline: --rocksdb-manifest-log-file-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1073741824

Range: 0 to 18446744073709551615

rocksdb_max_manual_compactions

Description: Maximum number of pending + ongoing number of manual compactions..

Commandline: --rocksdb-manual_compactions=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 0 to 4294967295

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

rocksdb_max_open_files

Description: DBOptions::max_open_files for RocksDB.

Commandline: --rocksdb-max-open-files=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: -2

Range: -2 to 2147483647

rocksdb_max_row_locks

Description: Maximum number of locks a transaction can have.

Commandline: --rocksdb-max-row-locks=#

Scope: Global, Session

Dynamic: Yes

3412/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

Data Type: numeric

Default Value: 1048576

Range:

1 to 1073741824 (>= MariaDB 10.3.10 , MariaDB 10.2.18)

1 to 1048576 (<= MariaDB 10.3.9 , MariaDB 10.2.17)

rocksdb_max_subcompactions

Description: DBOptions::max_subcompactions for RocksDB.

Commandline: --rocksdb-max-subcompactions=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 1 to 64

rocksdb_max_total_wal_size

Description: DBOptions::max_total_wal_size for RocksDB. The maximum size limit for write-ahead-log files. Once

this limit is reached, RocksDB forces the flushing of memtables.

Commandline: --rocksdb-max-total-wal-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

rocksdb_merge_buf_size

Description: Size to allocate for merge sort buffers written out to disk during inplace index creation.

Commandline: --rocksdb-merge-buf-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 67108864

Range: 100 to 18446744073709551615

rocksdb_merge_combine_read_size

Description: Size that we have to work with during combine (reading from disk) phase of external sort during fast

index creation.

Commandline: --rocksdb-merge-combine-read-size=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1073741824

Range: 100 to 18446744073709551615

rocksdb_merge_tmp_file_removal_delay_ms

Description: Fast index creation creates a large tmp file on disk during index creation. Removing this large file all at

once when index creation is complete can cause trim stalls on Flash. This variable specifies a duration to sleep (in

milliseconds) between calling chsize() to truncate the file in chunks. The chunk size is the same as merge_buf_size.

Commandline: --rocksdb-merge-tmp-file-removal-delay-ms=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

3413/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/

rocksdb_new_table_reader_for_compaction_inputs

Description: DBOptions::new_table_reader_for_compaction_inputs for RocksDB.

Commandline: --rocksdb-new-table-reader-for-compaction-inputs={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_no_block_cache

Description: BlockBasedTableOptions::no_block_cache for RocksDB.

Commandline: --rocksdb-no-block-cache={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_override_cf_options

Description: Option overrides per cf for RocksDB. Note that the rocksdb-override-cf-options syntax is quite

strict, and any typos will result in a parse error, and the MyRocks plugin will not be loaded. Depending on your

configuration, the server may still start. If it does start, you can use this command to check if the plugin is loaded:

select * from information_schema.plugins where plugin_name='ROCKSDB' (note that you need the

"ROCKSDB" plugin. Other auxiliary plugins like "ROCKSDB_TRX" might still get loaded). Another way is to detect the

error is check the error log.

Commandline: --rocksdb-override-cf-options=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

rocksdb_paranoid_checks

Description: DBOptions::paranoid_checks for RocksDB.

Commandline: --rocksdb-paranoid-checks={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_pause_background_work

Description: Disable all rocksdb background operations.

Commandline: --rocksdb-pause-background-work={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_perf_context_level

Description: Perf Context Level for rocksdb internal timer stat collection.

Commandline: --rocksdb-perf-context-level=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 5

3414/4161

rocksdb_persistent_cache_path

Description: Path for BlockBasedTableOptions::persistent_cache for RocksDB.

Commandline: --rocksdb-persistent-cache-path=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

rocksdb_persistent_cache_size_mb

Description: Size of cache in MB for BlockBasedTableOptions::persistent_cache for RocksDB.

Commandline: --rocksdb-persistent-cache-size-mb=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_pin_l0_filter_and_index_blocks_in_cache

Description: pin_l0_filter_and_index_blocks_in_cache for RocksDB.

Commandline: --rocksdb-pin-l0-filter-and-index-blocks-in-cache={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_print_snapshot_conflict_queries

Description: Logging queries that got snapshot conflict errors into *.err log.

Commandline: --rocksdb-print-snapshot-conflict-queries={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_rate_limiter_bytes_per_sec

Description: DBOptions::rate_limiter bytes_per_sec for RocksDB.

Commandline: --rocksdb-rate-limiter-bytes-per-sec=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

rocksdb_read_free_rpl_tables

Description: List of tables that will use read-free replication on the slave (i.e. not lookup a row during replication).

Commandline: --rocksdb-read-free-rpl-tables=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: (Empty)

Removed: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_records_in_range

3415/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/

Description: Used to override the result of records_in_range(). Set to a positive number to override.

Commandline: --rocksdb-records-in-range=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2147483647

rocksdb_remove_mariabackup_checkpoint

Description: Remove mariabackup checkpoint.

Commandline: --rocksdb-remove-mariabackup-checkpoint={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.8 , MariaDB 10.2.16

rocksdb_reset_stats

Description: Reset the RocksDB internal statistics without restarting the DB.

Commandline: --rocksdb-reset-stats={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_rollback_on_timeout

Description: Whether to roll back the complete transaction or a single statement on lock wait timeout (a single

statement by default).

Commandline: --rocksdb-rollback-on-timeout={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_seconds_between_stat_computes

Description: Sets a number of seconds to wait between optimizer stats recomputation. Only changed indexes will be

refreshed.

Commandline: --rocksdb-seconds-between-stat-computes=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 3600

Range: 0 to 4294967295

rocksdb_signal_drop_index_thread

Description: Wake up drop index thread.

Commandline: --rocksdb-signal-drop-index-thread={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

3416/4161

https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/

rocksdb_sim_cache_size

Description: Simulated cache size for RocksDB.

Commandline: --rocksdb-sim-cache-size=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

rocksdb_skip_bloom_filter_on_read

Description: Skip using bloom filter for reads.

Commandline: --rocksdb-skip-bloom-filter-on_read={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_skip_fill_cache

Description: Skip filling block cache on read requests.

Commandline: --rocksdb-skip-fill-cache={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_skip_unique_check_tables

Description: Skip unique constraint checking for the specified tables.

Commandline: --rocksdb-skip-unique-check-tables=value

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: .*

rocksdb_sst_mgr_rate_bytes_per_sec

Description: DBOptions::sst_file_manager rate_bytes_per_sec for RocksDB

Commandline: --rocksdb-sst-mgr-rate-bytes-per-sec=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_stats_dump_period_sec

Description: DBOptions::stats_dump_period_sec for RocksDB.

Commandline: --rocksdb-stats-dump-period-sec=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 600

Range: 0 to 2147483647

rocksdb_stats_level

3417/4161

Description: Statistics Level for RocksDB. Default is 0 (kExceptHistogramOrTimers).

Commandline: --rocksdb-stats-level=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4

Introduced: MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26

rocksdb_stats_recalc_rate

Description: The number of indexes per second to recalculate statistics for. 0 to disable background recalculation.

Commandline: --rocksdb-stats-recalc_rate=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4294967295

Introduced: MariaDB 10.3.10 MariaDB 10.2.18

rocksdb_store_row_debug_checksums

Description: Include checksums when writing index/table records.

Commandline: --rocksdb-store-row-debug-checksums={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_strict_collation_check

Description: Enforce case sensitive collation for MyRocks indexes.

Commandline: --rocksdb-strict-collation-check={0|1}

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: ON

rocksdb_strict_collation_exceptions

Description: List of tables (using regex) that are excluded from the case sensitive collation enforcement.

Commandline: --rocksdb-strict-collation-exceptions=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: (Empty)

rocksdb_supported_compression_types

Description: Compression algorithms supported by RocksDB. Note that RocksDB does not make use of MariaDB

10.7 compression-plugins.

Commandline: --rocksdb-supported-compression-types=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: Snappy,Zlib,ZSTDNotFinal

rocksdb_table_cache_numshardbits

3418/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

Description: DBOptions::table_cache_numshardbits for RocksDB.

Commandline: --rocksdb-table-cache-numshardbits=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 6

Range: 0 to 19

rocksdb_table_stats_sampling_pct

Description: Percentage of entries to sample when collecting statistics about table properties. Specify either 0 to

sample everything or percentage [1..100]. By default 10% of entries are sampled.

Commandline: --rocksdb-table-stats-sampling-pct=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 0 to 100

rocksdb_tmpdir

Description: Directory for temporary files during DDL operations.

Commandline: --rocksdb-tmpdir[=value]

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Value: (Empty)

rocksdb_trace_sst_api

Description: Generate trace output in the log for each call to the SstFileWriter.

Commandline: --rocksdb-trace-sst-api={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_two_write_queues

Description: DBOptions::two_write_queues for RocksDB.

Commandline: --rocksdb-two-write-queues={0|1}

Scope: Global,

Dynamic: No

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.3.7 , MariaDB 10.2.15

rocksdb_unsafe_for_binlog

Description: Allowing statement based binary logging which may break consistency.

Commandline: --rocksdb-unsafe-for-binlog={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_update_cf_options

Description: Option updates per column family for RocksDB.

3419/4161

https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/

Commandline: --rocksdb-update-cf-options=value

Scope: Global

Dynamic: Yes

Data Type: varchar

Default Value: (Empty)

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_use_adaptive_mutex

Description: DBOptions::use_adaptive_mutex for RocksDB.

Commandline: --rocksdb-use-adaptive-mutex={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_use_clock_cache

Description: Use ClockCache instead of default LRUCache for RocksDB.

Commandline: --rocksdb-use-clock-cache={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_use_direct_io_for_flush_and_compaction

Description: DBOptions::use_direct_io_for_flush_and_compaction for RocksDB.

Commandline: --rocksdb-use-direct-io-for-flush-and-compaction={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_use_direct_reads

Description: DBOptions::use_direct_reads for RocksDB.

Commandline: --rocksdb-use-direct-reads={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_use_direct_writes

Description: DBOptions::use_direct_writes for RocksDB.

Commandline: --rocksdb-use-direct-reads={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Removed: MariaDB 10.3.1 , MariaDB 10.2.8

rocksdb_use_fsync

Description: DBOptions::use_fsync for RocksDB.

Commandline: --rocksdb-use-fsync={0|1}

Scope: Global

3420/4161

https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/

Dynamic: No

Data Type: boolean

Default Value: OFF

rocksdb_validate_tables

Description: Verify all .frm files match all RocksDB tables (0 means no verification, 1 means verify and fail on error,

and 2 means verify but continue.

Commandline: --rocksdb-validate-tables=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 1

Range: 0 to 2

rocksdb_verify_row_debug_checksums

Description: Verify checksums when reading index/table records.

Commandline: --rocksdb-verify-row-debug-checksums={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_wal_bytes_per_sync

Description: DBOptions::wal_bytes_per_sync for RocksDB.

Commandline: --rocksdb-wal-bytes-per-sync=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_wal_dir

Description: DBOptions::wal_dir for RocksDB. Directory where the write-ahead-log files are stored.

Commandline: --rocksdb-wal-dir=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (Empty)

rocksdb_wal_recovery_mode

Description: DBOptions::wal_recovery_mode for RocksDB. Default is kAbsoluteConsistency. Records that are not

yet committed are stored in the Write-Ahead-Log (WAL). If the server is not cleanly shut down, the recovery mode will

determine the WAL recovery behavior.

1: kAbsoluteConsistency. Will not start if any corrupted entries (including incomplete writes) are detected (the

default).

0: kTolerateCorruptedTailRecords. Ignores any errors found at the end of the WAL

2: kPointInTimeRecovery. Replay of the WAL is halted after finding an error. The system will be recovered to

the latest consistent point-in-time. Data from a replica can used to replay past the point-in-time.

3: kSkipAnyCorruptedRecords. A risky option where any corrupted entries are skipped while subsequent

healthy WAL entries are applied.

Commandline: --rocksdb-wal-recovery-mode=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

3421/4161

Range: 0 to 3

rocksdb_wal_size_limit_mb

Description: DBOptions::WAL_size_limit_MB for RocksDB. Write-ahead-log files are moved to an archive directory

once their memtables are flushed. This variable specifies the largest size, in MB, that the archive can be.

Commandline: --rocksdb-wal-size-limit-mb=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

rocksdb_wal_ttl_seconds

Description: DBOptions::WAL_ttl_seconds for RocksDB. Oldest time, in seconds, that a write-ahead-log file should

exist.

Commandline: --rocksdb-wal-ttl-seconds=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 0

Range: 0 to 9223372036854775807

rocksdb_whole_key_filtering

Description: BlockBasedTableOptions::whole_key_filtering for RocksDB. If set (the default), the bloomfilter to use

the whole key (rather than only the prefix) for filtering is enabled. Lookups should use the whole key for matching to

make best use of this setting.

Commandline: --rocksdb-whole-key-filtering={0|1}

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: ON

rocksdb_write_batch_max_bytes

Description: Maximum size of write batch in bytes. 0 means no limit.

Commandline: --rocksdb-write-batch-max-bytes=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 18446744073709551615

rocksdb_write_disable_wal

Description: WriteOptions::disableWAL for RocksDB.

Commandline: --rocksdb-write-disable-wal={0|1}

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_write_ignore_missing_column_families

Description: WriteOptions::ignore_missing_column_families for RocksDB.

Commandline: --rocksdb-write-ignore-missing-column-families={0|1}

Scope: Global, Session

3422/4161

Dynamic: Yes

Data Type: boolean

Default Value: OFF

rocksdb_write_policy

Description: DBOptions::write_policy for RocksDB.

Commandline: --rocksdb-write-policy=val

Scope: Global

Dynamic: No

Data Type: enum

Default Value: write_committed

Valid Values: write_committed , write_prepared , write_unprepared

Introduced: MariaDB 10.3.10 , MariaDB 10.2.18

5.3.14.7 MyRocks Transactional Isolation
TODO:

MyRocks uses snapshot isolation

Support do READ-COMMITTED and REPEATABLE-READ

SERIALIZABLE is not supported

There is no "Gap Locking" which makes Statement Based Replication unsafe (See MyRocks and Replication).

5.3.14.8 MyRocks and Replication
Contents
1. MyRocks and Statement-Based Replication

1. Can One Still Use SBR with MyRocks?

2. Read-Free Slave

3. Differences From Upstream MyRocks

Details about how MyRocks works with replication.

MyRocks and Statement-Based Replication
Statement-based replication (SBR) works as follows: SQL statements are executed on the master (possibly concurrently).

They are written into the binlog (this fixes their ordering, "a serialization"). The slave then reads the binlog and executes the

statements in their binlog order.

In order to prevent data drift, serial execution of statements on the slave must have the same effect as concurrent execution

of these statements on the master. In other words, transaction isolation on the master must be close to SERIALIZABLE

transaction isolation level (This is not a strict mathematical proof but shows the idea).

InnoDB achieves this by (almost) supporting SERIALIZABLE transactional isolation level. It does so by supporting "Gap

Locks". MyRocks doesn't support SERIALIZABLE isolation, and it doesn't support gap locks.

Because of that, generally one cannot use MyRocks and statement-based replication.

Updating a MyRocks table while having SBR on, will result in an error as follow:

ERROR 4056 (HY000): Can't execute updates on master with binlog_format != ROW.

Can One Still Use SBR with MyRocks?

Yes. In many cases, database applications run a restricted set of SQL statements, and it's possible to prove that lack of

Gap Lock support is not a problem and data skew will not occur.

In that case, one can set @@rocksdb_unsafe_for_binlog=1 and MyRocks will work with SBR. The user is however

responsible for making sure their queries are not causing a data skew.

Read-Free Slave
3423/4161

https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/

TODO

Differences From Upstream MyRocks
MyRocks upstream (that is, Facebook's MySQL branch) has a number of unique replication enhancements. These are

available in upstream's version of MyRocks but not in MariaDB's version of MyRocks.

Read-Free Replication (see https://github.com/facebook/mysql-5.6/wiki/Read-Free-Replication) TODO

<<unique_check_lag_threshold>> . This is FB/MySQL-5.6 feature where unique checks are disabled if replication

lag exceeds a certain threshold.

<<slave_gtid_info=OPTIMIZED>> . This is said to be:

<<quote>>

"Whether SQL threads update mysql.slave_gtid_info table. If this value "

"is OPTIMIZED, updating the table is done inside storage engines to "

"avoid MySQL layer's performance overhead",

<</quote>>

5.3.14.9 MyRocks and Group Commit with
Binary log

Contents
1. Counter Values to Watch

2. On the Value of rocksdb_wal_group_syncs

3. Examples

MyRocks supports group commit with the binary log (MDEV-11934).

Counter Values to Watch
(The following is only necessary if you are studying MyRocks internals)

MariaDB's group commit counters are:

Binlog_commits - how many transactions were written to the binary log

Binlog_group_commits - how many group commits happened. (e.g. if each group had two transactions, this will be twice as

small as Binlog_commits)

On the RocksDB side, there is one relevant counter: Rocksdb_wal_synced - How many times RocksDB's WAL file was

synced. (TODO: this is after group commit happened, right?)

On the Value of rocksdb_wal_group_syncs
FB/MySQL-5.6 has a rocksdb_wal_group_syncs counter (The counter is provided by MyRocks, it is not a view of a

RocksDB counter). It is increased in rocksdb_flush_wal() when doing the rdb->FlushWAL() call.

rocksdb_flush_wal() is called by MySQL's Group Commit when it wants to make the effect of several rocksdb_prepare()

calls persistent.

So, the value of rocksdb_wal_group_syncs in FB/MySQL-5.6 is similar to Binlog_group_commits in MariaDB.

MariaDB doesn't have that call, each rocksdb_prepare() call takes care of being persistent on its own.

Because of that, rocksdb_wal_group_syncs is zero for MariaDB. (Currently, it is only incremented when the binlog is

rotated).

Examples
So for a workload with concurrency=50, n_queries=10K, one gets

Binlog_commits=10K

Binlog_group_commits=794

Rocksdb_wal_synced=8362

This is on a RAM disk

3424/4161

https://github.com/facebook/mysql-5.6/wiki/Read-Free-Replication
https://jira.mariadb.org/browse/MDEV-11934

For a workload with concurrency=50, n_queries=10K, rotating laptop hdd, one gets

Binlog_commits= 10K

Binlog_group_commits=1403

Rocksdb_wal_synced=400

The test took 38 seconds, Number of syncs was 1400+400=1800, which gives 45 syncs/sec which looks normal for this

slow rotating desktop hdd.

Note that the WAL was synced fewer times than there were binlog commit groups (?)

5.3.14.10 Optimizer Statistics in MyRocks
Contents
1. How MyRocks computes statistics

1. Are index statistics predictable?

2. Records-in-range estimates

2. ANALYZE TABLE

3. Debugging helper variables

This article describes how MyRocks storage engine provides statistics to the query optimizer.

There are three kinds of statistics:

Table statistics (number of rows in the table, average row size)

Index cardinality (how distinct values are in the index)

records-in-range estimates (how many rows are in a certain range "const1 < tbl.key < const2".

How MyRocks computes statistics
MyRocks (actually RocksDB) uses LSM files which are written once and never updated. When an LSM file is written,

MyRocks will compute index cardinalities and number-of-rows for the data in the file. (The file generally has rows, index

records and/or tombstones for multiple tables/indexes).

For performance reasons, statistics are computed based on a fraction of rows in the LSM file. The percentage of rows used

is controlled by rocksdb_table_stats_sampling_pct; the default value is 10%.

Before the data is dumped into LSM file, it is stored in the MemTable. MemTable doesn't allow computing index

cardinalities, but it can provide an approximate number of rows in the table. Use of MemTable data for statistics is controlled

by rocksdb_force_compute_memtable_stats; the default value is ON .

Are index statistics predictable?

Those who create/run MTR tests, need to know whether EXPLAIN output is deterministic. For MyRocks tables, the answer

is NO (just like for InnoDB).

Statistics are computed using sampling and GetApproximateMemTableStats() which means that the #rows column in the

EXPLAIN output may vary slightly.

Records-in-range estimates

MyRocks uses RocksDB's GetApproximateSizes() call to produce an estimate for the number of rows in the certain range.

The data in MemTable is also taken into account by issuing a GetApproximateMemTableStats call.

ANALYZE TABLE
ANALYZE TABLE will possibly flush the MemTable (depending on the rocksdb_flush_memtable_on_analyze and

rocksdb_pause_background_work settings).

After that, it will re-read statistics from the SST files and re-compute the summary numbers (TODO: and if the data was

already on disk, the result should not be different from the one we had before ANALYZE?)

Debugging helper variables
There are a few variables that will cause MyRocks to report certain pre-defined estimate numbers to the optimizer:

@@rocksdb_records_in_range - if not 0, report that any range has this many rows

@@rocksdb_force_index_records_in_range - if not 0, and FORCE INDEX hint is used, report that any range has this

3425/4161

many rows.

@@rocksdb_debug_optimizer_n_rows - if not 0, report that any MyRocks table has this many rows.

5.3.14.11 Differences Between MyRocks
Variants
MyRocks is available in

Facebook's (FB) MySQL branch (originally based on MySQL 5.6)

MariaDB (from 10.2 and 10.3)

Percona Server from 5.7

This page lists differences between these variants.

This is a work in progress. The contents are not final

Contents
1. RocksDB Data Location

2. Compression Algorithms

3. RocksDB Version Information

4. RocksDB Version

5. Binlog Position in information_schema.rocksdb_global_info

6. Gap Lock Detector

7. Generated Columns

8. rpl_skip_tx_api

9. Details

RocksDB Data Location
FB and Percona store RocksdDB files in $datadir/ .rocksdb . MariaDB puts them in $datadir/ #rocksdb . This is more

friendly for packaging and OS scripts.

Compression Algorithms
FB's branch doesn't provide binaries. One needs to compile it with appropriate compression libraries.

In MariaDB, available compression algorithms can be seen in the rocksdb_supported_compression_types variable.

From MariaDB 10.7, algorithms can be installed as a plugin. In earlier versions, the set of supported compression

algorithms depends on the platform.

On Ubuntu 16.04 (current LTS) it is Snappy,Zlib,LZ4,LZ4HC .

On CentOS 7.4 it is Snappy,Zlib .

In the bintar tarball it is Snappy,Zlib .

Percona Server supports: Zlib, ZSTD, LZ4 (the default), LZ4HC . Unsupported algorithms: Snappy,

BZip2, XPress .

RocksDB Version Information
FB's branch provides the rocksdb_git_hash *status* variable.

MariaDB provides the @@rocksdb_git_hash *system* variable.

Percona Server doesn't provide either.

RocksDB Version
Facebook's branch uses RocksDB 5.10.0 (the version number can be found in include/rocksdb/version.h)

commit ba295cda29daee3ffe58549542804efdfd969784

Author: Andrew Kryczka <andrewkr@fb.com>

Date: Fri Jan 12 11:03:55 2018 -0800

MariaDB currently uses 5.8.0

3426/4161

commit 9a970c81af9807071bd690f4c808c5045866291a

Author: Yi Wu <yiwu@fb.com>

Date: Wed Sep 13 17:21:35 2017 -0700

Percona Server uses 5.8.0

commit ab0542f5ec6e7c7e405267eaa2e2a603a77d570b

Author: Maysam Yabandeh <myabandeh@fb.com>

Date: Fri Sep 29 07:55:22 2017 -0700

Binlog Position in
information_schema.rocksdb_global_info

FB branch provides information_schema.rocksdb_global_info type=BINLOG, NAME={FILE, POS, GTID}.

Percona Server doesn't provide it.

MariaDB doesn't provide it.

One use of that information is to take the output of myrocks_hotbackup and make it a new master.

Gap Lock Detector
FB branch has a "Gap Lock Detector" feature. It is at the SQL layer. It can be controlled with gap_lock_XXX

variables and is disabled by default (gap-lock-raise-error=false, gap-lock-write-lock=false).

Percona Server has gap lock checking ON but doesn't seem to have any way to control it? Queries that use Gap Lock

on MyRocks fail with an error like this:

insert into tbl2 select * from tbl1;

ERROR 1105 (HY000): Using Gap Lock without full unique key in multi-table or multi-statement

transactions

is not allowed. You need to either rewrite queries to use all unique key columns in WHERE equal

conditions,

or rewrite to single-table, single-statement transaction. Query: insert into tbl2 select *

from tbl1

MariaDB doesn't include the Gap Lock Detector.

Generated Columns
Both MariaDB and Percona Server support generated columns, but neither one supports them for the MyRocks

storage engine (attempts to create a table will produce an error).

Invisible columns in MariaDB 10.3 are supported (as they are an SQL layer feature).

rpl_skip_tx_api
Facebook's branch has a performance feature for replication slaves, rpl_skip_tx_api . It is not available in MariaDB or in

Percona Server.

Details
The above comparison was made using

FB/MySQL 5.6.35

Percona Server 5.7.20-19-log

MariaDB 10.2.13 (MyRocks is beta)

5.3.14.12 MyRocks and Bloom Filters

3427/4161

https://mariadb.com/kb/en/mariadb-10213-release-notes/

Contents
1. Bloom Filter Parameters

1. Computing Prefix Length

2. Configuring Bloom Filter

3. Checking if Bloom Filter is Useful

Bloom filters are used to reduce read amplification. Bloom filters can be set on a per-column family basis (see myrocks-

column-families).

Bloom Filter Parameters
How many bits to use

whole_key_filtering=true/false

Whether the bloom filter is for the entire key or for the prefix. In case of a prefix, you need to look at the index

definition and compute the desired prefix length.

Computing Prefix Length

It's 4 bytes for index_nr

Then, for fixed-size columns (integer, date[time], decimal) it is key_length as shown by EXPLAIN . For VARCHAR

columns, determining the length is tricky (It depends on the values stored in the table. Note that MyRocks encodes

VARCHARs with "Variable-Length Space-Padded Encoding" format).

Configuring Bloom Filter
To enable 10-bit bloom filter for 8-byte prefix length for column family "cf1", put this into my.cnf:

rocksdb_override_cf_options='cf1={block_based_table_factory=

{filter_policy=bloomfilter:10:false;whole_key_filtering=0;};prefix_extractor=capped:8};'

and restart the server.

Check if the column family actually uses the bloom filter:

select *

from information_schema.rocksdb_cf_options

where

 cf_name='cf1' and

 option_type IN ('TABLE_FACTORY::FILTER_POLICY','PREFIX_EXTRACTOR');

+---------+------------------------------+----------------------------+

| CF_NAME | OPTION_TYPE | VALUE |

+---------+------------------------------+----------------------------+

| cf1 | PREFIX_EXTRACTOR | rocksdb.CappedPrefix.8 |

| cf1 | TABLE_FACTORY::FILTER_POLICY | rocksdb.BuiltinBloomFilter |

+---------+------------------------------+----------------------------+

Checking if Bloom Filter is Useful
Watch these status variables:

show status like '%bloom%';

+-------------------------------------+-------+

| Variable_name | Value |

+-------------------------------------+-------+

| Rocksdb_bloom_filter_prefix_checked | 1 |

| Rocksdb_bloom_filter_prefix_useful | 0 |

| Rocksdb_bloom_filter_useful | 0 |

+-------------------------------------+-------+

Other useful variables are:

rocksdb_force_flush_memtable_now - bloom filter is only used when reading data from disk. If you are doing

testing, flush the data to disk first.

3428/4161

rocksdb_skip_bloom_filter_on_read - skip using the bloom filter (default is FALSE).

5.3.14.13 MyRocks and CHECK TABLE
MyRocks supports the CHECK TABLE command.

The command will do a number of checks to verify that the table data is self-consistent.

The details about the errors are printed into the error log. If log_warnings > 2, the error log will also have some informational

messages which can help with troubleshooting.

Besides this, RocksDB has its own (low-level) log in #rocksdb/LOG file.

5.3.14.14 MyRocks and Data Compression
Contents
1. Supported Compression Algorithms

2. Compression Settings

1. Checking Compression Settings

2. Modifying Compression Settings

3. Caveat: Syntax Errors

3. Checking How the Data is Compressed

MyRocks supports several compression algorithms.

Supported Compression Algorithms
Supported compression algorithms can be checked like so:

show variables like 'rocksdb%compress%';

+-------------------------------------+------------------------------------+

| Variable_name | Value |

+-------------------------------------+------------------------------------+

| rocksdb_supported_compression_types | Snappy,Zlib,LZ4,LZ4HC,ZSTDNotFinal |

+-------------------------------------+------------------------------------+

Another way to make the check is to look into #rocksdb/LOG file in the data directory. It should have lines like:

2019/04/12-14:08:23.869919 7f839188b540 Compression algorithms supported:

2019/04/12-14:08:23.869920 7f839188b540 kZSTDNotFinalCompression supported: 1

2019/04/12-14:08:23.869922 7f839188b540 kZSTD supported: 1

2019/04/12-14:08:23.869923 7f839188b540 kXpressCompression supported: 0

2019/04/12-14:08:23.869924 7f839188b540 kLZ4HCCompression supported: 1

2019/04/12-14:08:23.869924 7f839188b540 kLZ4Compression supported: 1

2019/04/12-14:08:23.869925 7f839188b540 kBZip2Compression supported: 0

2019/04/12-14:08:23.869926 7f839188b540 kZlibCompression supported: 1

2019/04/12-14:08:23.869927 7f839188b540 kSnappyCompression supported: 1

Compression Settings
Compression is set on a per-Column Family basis. See MyRocks Column Families.

Checking Compression Settings

To check current compression settings for a column family one can use a query like so:

select * from information_schema.rocksdb_cf_options

where option_type like '%ompression%' and cf_name='default';

The output will be like:

3429/4161

+---------+---+---------------------------+

| CF_NAME | OPTION_TYPE | VALUE |

+---------+---+---------------------------+

| default | COMPRESSION_TYPE | kSnappyCompression |

| default | COMPRESSION_PER_LEVEL | NUL |

| default | COMPRESSION_OPTS | -14:32767:0 |

| default | BOTTOMMOST_COMPRESSION | kDisableCompressionOption |

| default | TABLE_FACTORY::VERIFY_COMPRESSION | 0 |

| default | TABLE_FACTORY::ENABLE_INDEX_COMPRESSION | 1 |

+---------+---+---------------------------+

Current column family settings will be used for the new SST files.

Modifying Compression Settings

Compression settings are not dynamic parameters, one cannot change them by setting rocksdb_update_cf_options.

The procedure to change compression settings is as follows:

Edit my.cnf to set rocksdb_override_cf_options.

Example:

rocksdb-override-cf-options='cf1={compression=kZSTD;bottommost_compression=kZSTD;}'

Restart the server.

The data will not be re-compressed immediately. However, all new SST files will use the new compression settings, so as

data gets inserted/updated the column family will gradually start using the new option.

Caveat: Syntax Errors

Please note that rocksdb-override-cf-options syntax is quite strict. Any typos will result in the parse error, and

MyRocks plugin will not be loaded. Depending on your configuration, the server may still start. If it does start, you can use

this command to check if the plugin is loaded:

select * from information_schema.plugins where plugin_name='ROCKSDB'

(note that you need the "ROCKSDB" plugin. Other auxiliary plugins like "ROCKSDB_TRX" might still get loaded).

Another way is to detect the error is check the error log. When option parsing fails, it will contain messages like so:

2019-04-16 11:07:57 140283675678016 [Warning] Invalid cf config for cf1 in override options

(options: cf1={compression=kLZ4Compression;bottommost_compression=kZSTDCompression;})

2019-04-16 11:07:57 140283675678016 [ERROR] RocksDB: Failed to initialize CF options map.

2019-04-16 11:07:57 140283675678016 [ERROR] Plugin 'ROCKSDB' init function returned error.

2019-04-16 11:07:57 140283675678016 [ERROR] Plugin 'ROCKSDB' registration as a STORAGE ENGINE

failed.

Checking How the Data is Compressed
A query to check what compression is used in the SST files that store the data for a given table (test.t1):

select

 SP.sst_name, SP.compression_algo

from

 information_schema.rocksdb_sst_props SP,

 information_schema.rocksdb_ddl D,

 information_schema.rocksdb_index_file_map IFM

where

 D.table_schema='test' and D.table_name='t1' and

 D.index_number= IFM.index_number and

 IFM.sst_name=SP.sst_name;

Example output:

3430/4161

+------------+------------------+

| sst_name | compression_algo |

+------------+------------------+

| 000028.sst | Snappy |

| 000028.sst | Snappy |

| 000026.sst | Snappy |

| 000026.sst | Snappy |

+------------+------------------+

5.3.14.15 MyRocks and Index-Only Scans
Contents
1. Secondary Keys Only

2. Background: Mem-Comparable Keys

3. Index-Only Support for Various Datatypes

4. Index-Only Support for Various Collations

1. 1. Binary (Reversible) Collations

2. 2. Restorable Collations

3. 3. All Other Collations

5. Covering Secondary Key Lookups for VARCHARs

This article is about MyRocks and index-only scans on secondary indexes. It applies to MariaDB's MyRocks, Facebook's

MyRocks, and other variants.

Secondary Keys Only
The primary key in MyRocks is always the clustered key, that is, the index record is THE table record and so it's not

possible to do "index only" because there isn't anything that is not in the primary key's (Key,Value) pair.

Secondary keys may or may not support index-only scans, depending on the datatypes of the columns that the query is

trying to read.

Background: Mem-Comparable Keys
MyRocks indexes store "mem-comparable keys" (that is, the key values are compared with memcmp). For some datatypes,

it is easily possible to convert between the column value and its mem-comparable form, while for others the conversion is

one-way.

For example, in case-insensitive collations capital and regular letters are considered identical, i.e. 'c' ='C'. For some

datatypes, MyRocks stores some extra data which allows it to restore the original value back. (For the

latin1_general_ci collation and character 'c', for example, it will store one bit which says whether the original value was

a small 'c' or a capital letter 'C'). This doesn't work for all datatypes, though.

Index-Only Support for Various Datatypes
Index-only scans are supported for numeric and date/time datatypes. For CHAR and VAR[CHAR], it depends on which

collation is used, see below for details.

Index-only scans are currently not supported for less frequently used datatypes, like

BIT(n)

SET(...)

ENUM(...) It is actually possible to add support for those, feel free to write a patch or at least make a case why a

particular datatype is important

Index-Only Support for Various Collations
As far as Index-only support is concerned, MyRocks distinguishes three kinds of collations:

- 1. Binary (Reversible) Collations

These are binary , latin1_bin , and utf8_bin .

For these collations, it is possible to convert a value back from its mem-comparable form. Hence, one can restore the

3431/4161

original value back from its index record, and index-only scans are supported.

- 2. Restorable Collations

These are collations where one can store some extra information which helps to restore the original value.

Criteria (from storage/rocksdb/rdb_datadic.cc, rdb_is_collation_supported()) are:

The charset should use 1-byte characters (so, unicode-based collations are not included)

strxfrm(1 byte) = {one 1-byte weight value always}

no binary sorting

PAD attribute

The examples are: latin1_general_ci , latin1_general_cs , latin1_swedish_ci , etc.

Index-only scans are supported for these collations.

- 3. All Other Collations

For these collations, there is no known way to restore the value from its mem-comparable form, and so index-only scans are

not supported.

MyRocks needs to fetch the clustered PK record to get the field value.

Covering Secondary Key Lookups for VARCHARs
TODO: there is also this optimization:

https://github.com/facebook/mysql-5.6/issues/303 https://github.com/facebook/mysql-

5.6/commit/f349c95848e92b5b27b44f0e57194100eb0997e7

document it.

5.3.14.16 MyRocks and START TRANSACTION
WITH CONSISTENT SNAPSHOT
FB/MySQL has added new syntax:

START TRANSACTION WITH CONSISTENT ROCKSDB|INNODB SNAPSHOT;

The statement returns the binlog coordinates pointing at the snapshot.

MariaDB (and Percona Server) support extension to the regular

START TRANSACTION WITH CONSISTENT SNAPSHOT;

syntax as documented in Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT .

After issuing the statement, one can examine the binlog_snapshot_file and binlog_snapshot_position status variables to see

the binlog position that corresponds to the snapshot.

5.3.14.17 MyRocks Column Families
MyRocks stores data in column families. These are similar to tablespaces. By default, the data is stored in the default

column family.

One can specify which column family the data goes to by using index comments:

 INDEX index_name(col1, col2, ...) COMMENT 'column_family_name'

3432/4161

https://github.com/facebook/mysql-5.6/issues/303
https://github.com/facebook/mysql-5.6/commit/f349c95848e92b5b27b44f0e57194100eb0997e7
https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent-snapshot/

Contents
1. Reasons for Column Families

2. Creating a Column Family

3. Dropping a Column Family

4. Setting Column Family Parameters

1. rocksdb_override_cf_options

5. Examining Column Family Parameters

If the column name starts with rev: , the column family is reverse-ordered.

Reasons for Column Families
Storage parameters like

Bloom filter settings

Compression settings

Whether the data is stored in reverse order

are specified on a per-column family basis.

Creating a Column Family
When creating a table or index, you can specify the name of the column family for it. If the column family doesn't exist, it will

be automatically created.

Dropping a Column Family
There is currently no way to drop a column family. RocksDB supports this internally but MyRocks doesn't provide any way

to do it.

Setting Column Family Parameters
Use these variables:

rocksdb_default_cf_options - a my.cnf parameter specifying default options for all column families.

rocksdb_override_cf_options - a my.cnf parameter specifying per-column family option overrides.

rocksdb_update_cf_options - a dynamically-settable variable which allows to change parameters online. Not all

parameters can be changed.

rocksdb_override_cf_options

This parameter allows one to override column family options for specific column families. Here is an example of how to set

option1=value1 and option2=value for column family cf1, and option3=value3 for column family cf3:

rocksdb_override_cf_options='cf1={option1=value1;option2=value2};cf2={option3=value3}'

One can check the contents of INFORMATION_SCHEMA.ROCKSDB_CF_OPTIONS to see what options are available.

Options that are frequently configured are:

Data compression. See myrocks-and-data-compression.

Bloom Filters. See myrocks-and-bloom-filters.

Examining Column Family Parameters
See the INFORMATION_SCHEMA.ROCKSDB_CF_OPTIONS table.

5.3.14.18 MyRocks in MariaDB 10.2 vs MariaDB
10.3
MyRocks storage engine itself is identical in MariaDB 10.2 and MariaDB 10.3.

MariaDB 10.3 has a feature that should be interesting for MyRocks users. It is the gtid_pos_auto_engines option (MDEV-

3433/4161

https://jira.mariadb.org/browse/MDEV-12179

12179). This is a performance feature for replication slaves that use multiple transactional storage engines.

For further information, see mysql.gtid_slave_pos table.

5.3.14.19 MyRocks Performance
Troubleshooting

Contents
1. Status Variables

2. SHOW ENGINE ROCKSDB STATUS

3. Performance Context

MyRocks exposes its performance metrics through several interfaces:

Status variables

SHOW ENGINE ROCKSDB STATUS

RocksDB's perf context

the contents slightly overlap, but each source has its own unique information, so be sure to check all three.

Status Variables

Check the output of

SHOW STATUS like 'Rocksdb%'

See MyRocks Status Variables for more information.

SHOW ENGINE ROCKSDB STATUS

This produces a lot of information.

One particularly interesting part is compaction statistics. It shows the amount of data on each SST level and other details:

*************************** 4. row ***************************

 Type: CF_COMPACTION

 Name: default

Status:

** Compaction Stats [default] **

Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp

Rd(MB/s) Wr(MB/s) Comp(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop

 L0 3/0 30.16 MB 1.0 0.0 0.0 0.0 11.9 11.9 0.0 1.0

0.0 76.6 159 632 0.251 0 0

 L1 5/0 247.54 MB 1.0 0.7 0.2 0.5 0.5 0.0 11.6 2.6

58.5 44.1 12 4 2.926 30M 10M

 L2 112/0 2.41 GB 1.0 0.6 0.0 0.6 0.5 -0.1 11.4 43.4

55.2 45.9 11 1 10.827 21M 3588K

 L3 466/0 8.91 GB 0.4 0.0 0.0 0.0 0.0 0.0 8.9 0.0

0.0 0.0 0 0 0.000 0 0

 Sum 586/0 11.59 GB 0.0 1.3 0.2 1.0 12.8 11.8 32.0 1.1

7.1 72.6 181 637 0.284 52M 13M

 Int 0/0 0.00 KB 0.0 0.9 0.1 0.8 0.8 0.0 0.1 20.5

48.4 45.3 19 6 3.133 33M 3588K

Performance Context

RocksDB has an internal mechanism called "perf context". The counter values are exposed through two tables:

INFORMATION_SCHEMA.ROCKSDB_PERF_CONTEXT_GLOBAL - global counters

INFORMATION_SCHEMA.ROCKSDB_PERF_CONTEXT - Per-table/partition counters

By default statistics are NOT collected. One needs to set rocksdb_perf_context_level to some value (e.g. 3) to enable

collection.

3434/4161

5.3.15 OQGRAPH
The Open Query GRAPH computation engine, or OQGRAPH as the engine itself is called, allows you to handle hierarchies

(tree structures) and complex graphs (nodes having many connections in several directions).

OQGRAPH Version Introduced Maturity

3.0 MariaDB 10.0.25 Gamma

3.0 MariaDB 10.0.7 Beta

2.0 MariaDB 5.2.1

Installing OQGRAPH

Installing OQGRAPH.

OQGRAPH Overview

Overview of the OQGRAPH storage engine.

OQGRAPH Examples

OQGRAPH examples.

Compiling OQGRAPH

How to compile OQGRAPH.

Building OQGRAPH Under Windows

OQGRAPH build instructions for Windows.

OQGRAPH System and Status Variables

List and description of OQGRAPH system and status variables.

There are 5 related questions .

8

6

1

5.3.15.1 Installing OQGRAPH
Contents
1. Installation

1. Debian and Ubuntu

2. Fedora/Red Hat/CentOS

3. Installing the Plugin

The Open Query GRAPH computation engine, or OQGRAPH as the engine itself is called, allows you to handle hierarchies

(tree structures) and complex graphs (nodes having many connections in several directions).

Installation
The OQGRAPH storage engine exists as a separate package in the repositories for MariaDB 10.0.7 and later. On Ubuntu

and Debian the package is called mariadb-oqgraph-engine-10.0 or mariadb-plugin-oqgraph . On Red Hat,

CentOS, and Fedora the package is called MariaDB-oqgraph-engine . To install the plugin, first install the appropriate

package and then install the plugin using the INSTALL SONAME or INSTALL PLUGIN commands.

Debian and Ubuntu

On Debian and Ubuntu, install the package as follows:

sudo apt-get install mariadb-plugin-oqgraph

or (for MariaDB 10.0)

sudo apt-get install mariadb-oqgraph-engine-10.0

3435/4161

https://mariadb.com/kb/en/mariadb-10025-release-notes/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-521-release-notes/
https://mariadb.com/kb/en/oqgraph-storage-engine/+questions/
https://mariadb.com/kb/en/mariadb-1007-release-notes/

Fedora/Red Hat/CentOS

Note that OQGRAPH v3 requires libjudy, which is not in the official Red Hat/Fedora repositories. This needs to be installed

first, for example:

wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

rpm -Uvh epel-release-6-8.noarch.rpm

Then install the package, as follows:

sudo yum install MariaDB-oqgraph-engine

Installing the Plugin

On either system you can then launch the mysql command-line client and install the plugin in MariaDB as follows:

INSTALL SONAME 'ha_oqgraph';

5.3.15.2 OQGRAPH Overview
Contents
1. Installing

2. Creating a Table

3. Example with origin and destination nodes only

4. Manipulating Weight

The Open Query GRAPH computation engine, or OQGRAPH as the engine itself is called, allows you to handle hierarchies

(tree structures) and complex graphs (nodes having many connections in several directions).

OQGRAPH is unlike other storage engines, consisting of an entirely different architecture to a regular storage engine such

as Aria, MyISAM or InnoDB.

It is intended to be used for retrieving hierarchical information, such as those used for graphs, routes or social relationships,

in plain SQL.

Installing
See Installing OQGRAPH. Note that if the query cache is enabled, OQGRAPH will not use it.

Creating a Table

The following documentation is based upon MariaDB 10.0.7 and OQGRAPH v3.

Example with origin and destination nodes only
To create an OQGRAPH v3 table, a backing table must first be created. This backing table will store the actual data, and will

be used for all INSERTs, UPDATEs and so on. It must be a regular table, not a view. Here's a simple example to start with:

CREATE TABLE oq_backing (

 origid INT UNSIGNED NOT NULL,

 destid INT UNSIGNED NOT NULL,

 PRIMARY KEY (origid, destid),

 KEY (destid)

);

Some data can be inserted into the backing table to test with later:

INSERT INTO oq_backing(origid, destid)

 VALUES (1,2), (2,3), (3,4), (4,5), (2,6), (5,6);

Now the read-only OQGRAPH table is created. The CREATE statement must match the format below - any difference will
3436/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/

result in an error.

CREATE TABLE oq_graph (

 latch VARCHAR(32) NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq_backing' origid='origid' destid='destid';

An older format (prior to MariaDB 10.0.7) has the latch field as a SMALLINT rather than a VARCHAR. The format is still

valid, but gives an error by default:

CREATE TABLE oq_old (

 latch SMALLINT UNSIGNED NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq_backing' origid='origid' destid='destid';

ERROR 1005 (HY000): Can't create table `test`.`oq_old` (errno: 140 "Wrong create options")

The old, deprecated format can still be used if the value of the oqgraph_allow_create_integer_latch system variable is

changed from its default, FALSE , to TRUE .

SET GLOBAL oqgraph_allow_create_integer_latch=1;

CREATE TABLE oq_old (

 latch SMALLINT UNSIGNED NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq_backing' origid='origid' destid='destid';

Query OK, 0 rows affected, 1 warning (0.19 sec)

SHOW WARNINGS;

+---------+------+---

--+

| Level | Code | Message

|

+---------+------+---

--+

| Warning | 1287 | 'latch SMALLINT UNSIGNED NULL' is deprecated and will be removed in a future

release. Please use 'latch VARCHAR(32) NULL' instead |

+---------+------+---

--+

Data is only inserted into the backing table, not the OQGRAPH table.

Now, having created the oq_graph table linked to a backing table, it is now possible to query the oq_graph table directly.

The weight field, since it was not specified in this example, defaults to 1 .

3437/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/

SELECT * FROM oq_graph;

+-------+--------+--------+--------+------+--------+

| latch | origid | destid | weight | seq | linkid |

+-------+--------+--------+--------+------+--------+

| NULL | 1 | 2 | 1 | NULL | NULL |

| NULL | 2 | 3 | 1 | NULL | NULL |

| NULL | 2 | 6 | 1 | NULL | NULL |

| NULL | 3 | 4 | 1 | NULL | NULL |

| NULL | 4 | 5 | 1 | NULL | NULL |

| NULL | 5 | 6 | 1 | NULL | NULL |

+-------+--------+--------+--------+------+--------+

The data here represents one-directional starting and ending nodes. So node 2 has paths to node 3 and node 6, while node

6 has no paths to any other node.

Manipulating Weight
There are three fields which can be manipulated: origid , destid (the example above uses these two), as well as

weight . To create a backing table with a weight field as well, the following syntax can be used:

CREATE TABLE oq2_backing (

 origid INT UNSIGNED NOT NULL,

 destid INT UNSIGNED NOT NULL,

 weight DOUBLE NOT NULL,

 PRIMARY KEY (origid, destid),

 KEY (destid)

);

INSERT INTO oq2_backing(origid, destid, weight)

 VALUES (1,2,1), (2,3,1), (3,4,3), (4,5,1), (2,6,10), (5,6,2);

CREATE TABLE oq2_graph (

 latch VARCHAR(32) NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq2_backing' origid='origid' destid='destid' weight='weight';

SELECT * FROM oq2_graph;

+-------+--------+--------+--------+------+--------+

| latch | origid | destid | weight | seq | linkid |

+-------+--------+--------+--------+------+--------+

| NULL | 1 | 2 | 1 | NULL | NULL |

| NULL | 2 | 3 | 1 | NULL | NULL |

| NULL | 2 | 6 | 10 | NULL | NULL |

| NULL | 3 | 4 | 3 | NULL | NULL |

| NULL | 4 | 5 | 1 | NULL | NULL |

| NULL | 5 | 6 | 2 | NULL | NULL |

+-------+--------+--------+--------+------+--------+

See OQGRAPH Examples for OQGRAPH usage examples.

5.3.15.3 OQGRAPH Examples

3438/4161

Contents
1. Creating a Table with origid, destid Only

2. Creating a Table with Weight

3. Shortest Path

4. Possible Destinations

5. Leaf Nodes

6. Summary of Implemented Latch Commands

Creating a Table with origid, destid Only

CREATE TABLE oq_backing (

 origid INT UNSIGNED NOT NULL,

 destid INT UNSIGNED NOT NULL,

 PRIMARY KEY (origid, destid),

 KEY (destid)

);

Some data can be inserted into the backing table to test with later:

INSERT INTO oq_backing(origid, destid)

 VALUES (1,2), (2,3), (3,4), (4,5), (2,6), (5,6);

Now the read-only OQGRAPH table is created.

From MariaDB 10.1.2 onwards you can use the following syntax:

CREATE TABLE oq_graph

ENGINE=OQGRAPH

data_table='oq_backing' origid='origid' destid='destid';

Prior to MariaDB 10.1.2 , the CREATE statement must match the format below - any difference will result in an error.

CREATE TABLE oq_graph (

 latch VARCHAR(32) NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq_backing' origid='origid' destid='destid';

Creating a Table with Weight
For the examples on this page, we'll create a second OQGRAPH table and backing table, this time with weight as well.

CREATE TABLE oq2_backing (

 origid INT UNSIGNED NOT NULL,

 destid INT UNSIGNED NOT NULL,

 weight DOUBLE NOT NULL,

 PRIMARY KEY (origid, destid),

 KEY (destid)

);

INSERT INTO oq2_backing(origid, destid, weight)

 VALUES (1,2,1), (2,3,1), (3,4,3), (4,5,1), (2,6,10), (5,6,2);

3439/4161

https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

CREATE TABLE oq2_graph (

 latch VARCHAR(32) NULL,

 origid BIGINT UNSIGNED NULL,

 destid BIGINT UNSIGNED NULL,

 weight DOUBLE NULL,

 seq BIGINT UNSIGNED NULL,

 linkid BIGINT UNSIGNED NULL,

 KEY (latch, origid, destid) USING HASH,

 KEY (latch, destid, origid) USING HASH

)

ENGINE=OQGRAPH

data_table='oq2_backing' origid='origid' destid='destid' weight='weight';

Shortest Path
A latch value of 'dijkstras' and an origid and destid is used for finding the shortest path between two nodes,

for example:

SELECT * FROM oq_graph WHERE latch='breadth_first' AND origid=1 AND destid=6;

+----------+--------+--------+--------+------+--------+

| latch | origid | destid | weight | seq | linkid |

+----------+--------+--------+--------+------+--------+

| dijkstras| 1 | 6 | NULL | 0 | 1 |

| dijkstras| 1 | 6 | 1 | 1 | 2 |

| dijkstras| 1 | 6 | 1 | 2 | 6 |

+----------+--------+--------+--------+------+--------+

Note that nodes are uni-directional, so there is no path from node 6 to node 1:

SELECT * FROM oq_graph WHERE latch='dijkstras' AND origid=6 AND destid=1;

Empty set (0.00 sec)

Using the GROUP_CONCAT function can produce more readable results, for example:

SELECT GROUP_CONCAT(linkid ORDER BY seq) AS path FROM oq_graph

 WHERE latch='dijkstras' AND origid=1 AND destid=6;

+-------+

| path |

+-------+

| 1,2,6 |

+-------+

Using the table oq2_graph , the shortest path is different:

SELECT GROUP_CONCAT(linkid ORDER BY seq) AS path FROM oq2_graph

 WHERE latch='dijkstras' AND origid=1 AND destid=6;

+-------------+

| path |

+-------------+

| 1,2,3,4,5,6 |

+-------------+

The reason is the weight between nodes 2 and 6 is 10 in oq_graph2 , so the shortest path taking into account weight is

now across more nodes.

Possible Destinations

SELECT GROUP_CONCAT(linkid) AS dests FROM oq_graph WHERE latch='dijkstras' AND origid=2;

+-----------+

| dests |

+-----------+

| 5,4,6,3,2 |

+-----------+

Note that this returns all possible destinations along the path, not just immediate links.

3440/4161

Leaf Nodes

Support for the leaves latch value was introduced in MariaDB 10.3.3 .

A latch value of 'leaves' and either origid or destid is used for finding leaf nodes at the beginning or end of a

graph.

INSERT INTO oq_backing(origid, destid)

 VALUES (1,2), (2,3), (3,5), (4,5), (5,6), (6,7), (6,8), (2,8);

For example, to find all reachable nodes from origid that only have incoming edges:

SELECT * FROM oq_graph WHERE latch='leaves' AND origid=2;

+--------+--------+--------+--------+------+--------+

| latch | origid | destid | weight | seq | linkid |

+--------+--------+--------+--------+------+--------+

| leaves | 2 | NULL | 4 | 2 | 7 |

| leaves | 2 | NULL | 1 | 1 | 8 |

+--------+--------+--------+--------+------+--------+

And to find all nodes from which a path can be found to destid that only have outgoing edges:

SELECT * FROM oq_graph WHERE latch='leaves' AND destid=5;

+--------+--------+--------+--------+------+--------+

| latch | origid | destid | weight | seq | linkid |

+--------+--------+--------+--------+------+--------+

| leaves | NULL | 5 | 3 | 2 | 1 |

| leaves | NULL | 5 | 1 | 1 | 4 |

+--------+--------+--------+--------+------+--------+

Summary of Implemented Latch Commands

Latch Alternative

additional

where clause

fields

Graph operation

NULL (unspecified) (none) List original data

(empty

string)
0 (none extra) List all vertices in linkid column

(empty

string)
0 origid List all first hop vertices from origid in linkid column

dijkstras 1 origid, destid
Find shortest path using Dijkstras algorithm between origid and destid, with

traversed vertex ids in linkid column

dijkstras 1 origid
Find all vertices reachable from origid, listed in linkid column, and report sum

of weights of vertices on path to given vertex in weight

dijkstras 1 destid

Find all vertices from which a path can be found to destid, listed in linkid

column, and report sum of weights of vertices on path to given vertex in

weight

breadth_first 2 origid List vertices reachable from origid in linkid column

breadth_first 2 destid List vertices from which a path can be found to destid in linkid column

breadth_first 2 origid, destid Find shortest path between origid and destid, report in linkid column

leaves 4 origid
List vertices reachable from origid, that only have incoming edges (from

MariaDB 10.3.3)

leaves 4 destid
List vertices from which a path can be found to destid, that only have

outgoing edges (from MariaDB 10.3.3)

leaves 4 origid, destid Not supported, will return an empty result

MariaDB 10.3.3

3441/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

Note: the use of integer latch commands is deprecated and may be phased out in a future release. Currently, numeric

values in the strings are interpreted as aliases, and use of an integer column can be optionally allowed, for the latch

commands column.

The use of integer latches is controlled using the oqgraph_allow_create_integer_latch system variable.

5.3.15.4 Compiling OQGRAPH
To compile OQGraph v2 you need to have the boost library with the versions not earlier than 1.40 and not later than 1.55

and gcc version not earlier than 4.5.

OQGraph v3 compiles fine with the newer boost libraries, but it additionally needs the Judy library installed.

When all build prerequisites are met, OQGraph is enabled and compiled automatically. To enable or disable OQGRAPH

explicitly, see the generic plugin build instructions.

Finding Out Why OQGRAPH Didn't Compile

If OQGRAPH gets compiled properly, there should be a file like:

storage/oqgraph/ha_oqgraph.so

If this is not the case, then you can find out if there is any modules missing that are required by OQGRAPH by doing:

cmake . -LAH | grep -i oqgraph

MariaDB starting with 10.0.7

5.3.15.5 Building OQGRAPH Under Windows
OQGRAPH v3 can be built on Windows.

This has been tested using Windows 7, Microsoft Visual Studio Express 2010 (32-bit), Microsoft Windows 64-bit

Platform SDK 7.1 (64-bit), the Boost library >= 1.55 and Judy 1.0.5. Probably other recent versions of Boost, Judy or

MSVC may work but these combinations have not been tested.

Download the source package for Boost 1.55 from the Boost project website, http://www.boost.org

Download the source package for Judy 1.05 via http://judy.sourceforge.net/

Follow the documented instructions for building under Windows from the command line:

Building_MariaDB_on_Windows

Ensure that the following variable is set to CMAKE: JUDY_ROOT=path\to\judy\unzipped

See also comments in storage/oqgraph/cmake/FindJudy.cmake

MariaDB starting with 10.0.11

5.3.15.6 OQGRAPH System and Status
Variables

Contents
1. System Variables

1. oqgraph_allow_create_integer_latch

2. Status Variables

1. Oqgraph_boost_version

2. Oqgraph_compat_mode

3. Oqgraph_verbose_debug

This page documents system and status variables related to the OQGRAPH storage engine. See Server Status Variables

and Server System Variables for complete list of all system and status variables.

System Variables

oqgraph_allow_create_integer_latch
3442/4161

https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
http://www.boost.org
http://judy.sourceforge.net/

Description: Created when the OQGRAPH storage engine is installed, if set to 1 (0 is default), permits the

latch field to be an integer (see OQGRAPH Overview).

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: 0

Status Variables

Oqgraph_boost_version

Description: OQGRAPH boost version.

Scope: Global, Session

Data Type: string

Oqgraph_compat_mode

Description: Whether or not legacy tables with integer latches are supported.

Scope: Global, Session

Data Type: string

Oqgraph_verbose_debug

Description: Whether or not verbose debugging is enabled. If it is, performance may be adversely impacted

Scope: Global, Session

Data Type: string

5.3.16 S3 Storage Engine

The S3 storage engine has been available since MariaDB 10.5.4.

S3 is a read-only storage engine that stores its data in Amazon S3.

Using the S3 Storage Engine

Using the S3 storage engine.

Testing the Connections to S3

Steps to help verify where an S3 problem could be.

S3 Storage Engine Internals

The S3 storage engine is based on the Aria code.

aria_s3_copy

Copies an Aria table to and from S3.

S3 Storage Engine Status Variables

S3 Storage Engine-related status variables.

S3 Storage Engine System Variables

S3 Storage Engine-related system variables.

There are 4 related questions .

MariaDB starting with 10.5

5.3.16.1 Using the S3 Storage Engine
MariaDB starting with 10.5 3443/4161

https://mariadb.com/kb/en/s3-storage-engine/+questions/

The S3 storage engine has been available since MariaDB 10.5.4.

Contents
1. Installing the Plugin

2. Moving Data to S3

3. New Options for ALTER TABLE

4. mysqld Startup Options for S3

5. Typical my.cnf Entry for connecting to Amazon S3 service

6. Typical my.cnf entry for connecting to a minio S3 server

7. Typical Usage Case for S3 Tables

8. Operations Allowed on S3 Tables

9. Discovery

10. Replication

11. aria_s3_copy

12. mariadb-dump

13. ANALYZE TABLE

14. CHECK TABLE

15. Current Limitations

1. Limitations in ALTER .. PARTITION

16. Performance Considerations

1. Discovery

2. Caching

3. Things to Try to Increase Performance

17. Future Development Ideas

18. Troubleshooting S3 on SELinux

The S3 storage engine is read only and allows one to archive MariaDB tables in Amazon S3, or any third-party public or

private cloud that implements S3 API (of which there are many), but still have them accessible for reading in MariaDB.

Installing the Plugin
As of MariaDB 10.5.7, the S3 storage engine is currently gamma maturity , so the following step can be omitted.

On earlier releases, when it was alpha maturity , it will not load by default on a stable release of the server due to the

default value of the plugin_maturity variable. Set to alpha (or below) in your config file to permit installation of the plugin:

[mysqld]

plugin-maturity = alpha

and restart the server.

Now install the plugin library, for example:

INSTALL SONAME 'ha_s3';

If the library is not available, for example:

INSTALL SONAME 'ha_s3';

ERROR 1126 (HY000): Can't open shared library '/var/lib/mysql/lib64/mysql/plugin/ha_s3.so'

 (errno: 13, cannot open shared object file: No such file or directory)

you may need to install a separate package for the S3 storage engine, for example:

shell> yum install MariaDB-s3-engine

Moving Data to S3
To move data from an existing table to S3, one can run:

ALTER TABLE old_table ENGINE=S3 COMPRESSION_ALGORITHM=zlib

To get data back to a 'normal' table one can do:

MariaDB starting with 10.5

3444/4161

https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/release-criteria/

ALTER TABLE s3_table ENGINE=INNODB

New Options for ALTER TABLE
S3_BLOCK_SIZE : Set to 4M as default. This is the block size for all index and data pages stored in S3.

COMPRESSION_ALGORITHM : Set to 'none' as default. Which compression algorithm to use for block stored in S3.

Options are: none or zlib .

ALTER TABLE can be used on S3 tables as normal to add columns or change column definitions.

mysqld Startup Options for S3
To be able to use S3 for storage one *must* define how to access S3 and where data are stored in S3:

s3_access_key: The AWS access key to access your data

s3_secret_key: The AWS secret key to access your data

s3_bucket: The AWS bucket where your data should be stored. All MariaDB table data is stored in this bucket.

s3_region: The AWS region where your data should be stored.

If you are using an S3 service that is using HTTP to connect (like https://min.io/) you also need the set the following

variables:

s3_port: Port number to connect to (0 means use default)

s3_use_http: If true, force use of HTTP protocol

If you are going to use a primary-replica setup, you should look at the following variables:

s3_replicate_alter_as_create_select: When converting an S3 table to local table, log all rows in binary log. Defaults

to TRUE . This allows the replica to replicate CREATE TABLE .. SELECT FROM s3_table even it the replica doesn't

have access to the original s3_table .

s3_slave_ignore_updates: Should be set if primary and replica share the same S3 instance. This tells the replica

that it can ignore any updates to the S3 tables as they are already applied on the primary. Defaults to FALSE .

The above defaults assume that the primary and replica don't share the same S3 instance.

Other, less critical options, are:

s3_host_name: Hostname for the S3 service. "s3.amazonaws.com", Amazon S3 service, by default.

s3_protocol_version: Protocol used to communication with S3. One of "Auto", "Amazon" or "Original" where "Auto"

is the default. If you get errors like "8 Access Denied" when you are connecting to another service provider, then try to

change this option. The reason for this variable is that Amazon has changed some parts of the S3 protocol since they

originally introduced it but other service providers are still using the original protocol.

s3_block_size: Set to 4M as default. This is the default block size for a table, if not specified in CREATE TABLE.

s3_pagecache_buffer_size: Default 128M. The size of the buffer used for data and index blocks for S3 tables.

Increase this to get better index handling (for all reads and multiple writes) to as much as you can afford.

Last some options you probably don't have to ever touch:

s3_pagecache_age_threshold : Default 300: This characterizes the number of hits a hot block has to be untouched

until it is considered aged enough to be downgraded to a warm block. This specifies the percentage ratio of that

number of hits to the total number of blocks in the page cache.

s3_pagecache_division_limit: Default 100. The minimum percentage of warm blocks in key cache.

s3_pagecache_file_hash_size: Default 512. Number of hash buckets for open files. If you have a lot of S3 files

open you should increase this for faster flush of changes. A good value is probably 1/10 of number of possible open

S3 files.

s3_debug: Default 0. Generates a trace file from libmarias3 on stderr (mysqld.err) for debugging the S3 protocol.

Typical my.cnf Entry for connecting to Amazon S3 service

3445/4161

https://min.io/

[mariadb]

s3=ON

s3-bucket=mariadb

s3-access-key=xxxx

s3-secret-key=xxx

s3-region=eu-north-1

s3-host-name=s3.amazonaws.com

The following is useful if you want to use minio as a S3 server. (https://min.io/)

#s3-port=9000

#s3-use-http=ON

Primary and replica share same S3 tables.

s3-slave-ignore-updates=1

[aria_s3_copy]

s3-bucket=mariadb

s3-access-key=xxxx

s3-secret-key=xxx

s3-region=eu-north-1

s3-host-name=s3.amazonaws.com

The following is useful if you want to use minio as a S3 server. (https://min.io/)

#s3-port=9000

#s3-use-http=ON

Typical my.cnf entry for connecting to a minio S3 server

[mariadb]

s3=ON

s3-host-name="127.0.0.1"

s3-bucket=storage-engine

s3-access-key=minio

s3-secret-key=minioadmin

s3-port=9000

s3-use-http=ON

[aria_s3_copy]

s3=ON

s3-host-name="127.0.0.1"

s3-bucket=storage-engine

s3-access-key=minio

s3-secret-key=minioadmin

s3-port=9000

s3-use-http=ON

Typical Usage Case for S3 Tables
The typical use case would be that there exists tables that after some time would become fairly inactive, but are still

important so that they can not be removed. In that case, an option is to move such a table to an archiving service, which is

accessible through an S3 API.

Notice that S3 means the Cloud Object Storage API defined by Amazon AWS. Often the whole of Amazon9s Cloud Object

Storage is referred to as S3. In the context of the S3 archive storage engine, it refers to the API itself that defines how to

store objects in a cloud service, being it Amazon9s or someone else9s. OpenStack for example provides an S3 API for

storing objects.

The main benefit of storing things in an S3 compatible storage is that the cost of storage is much cheaper than many other

alternatives. Many S3 implementations also provide reliable long-term storage.

Operations Allowed on S3 Tables
ALTER TABLE S3 supports all types, keys and other options that are supported by the Aria engine. One can also

perform ALTER TABLE on an S3 table to add or modify columns etc.

DROP TABLE

SELECT Any SELECT operations you can perform on a normal table should work with an S3 table.

SHOW TABLES will show all tables that exist in the current defined S3 location.

S3 tables can be part of partitions. See Discovery below.

3446/4161

https://min.io

Discovery
The S3 storage engine supports full MariaDB discovery. This means that if you have the S3 storage engine enabled and

properly configured, the table stored in S3 will automatically be discovered when it's accessed with SHOW TABLES,

SELECT or any other operation that tries to access it. In the case of SELECT, the .frm file from S3 will be copied to the local

storage to speed up future accesses.

When an S3 table is opened for the first time (it's not in the table cache) and there is a local .frm file, the S3 engine will

check if it's still relevant, and if not, update or delete the .frm file.

This means that if the table definition changes on S3 and it's in the local cache, one has to execute FLUSH TABLES to get

MariaDB to notice the change and update the .frm file.

If partitioning S3 tables are used, the partition definitions will also be stored on S3 storage and will be discovered by other

servers.

Discovery of S3 tables is not done for tables in the mysql databases to make mysqld boot faster and more securely.

Replication
S3 works with replication. One can use replication in two different scenarios:

The primary and replica share the same S3 storage. In this case the primary will make all changes to the S3 data and

the replica will ignore any changes in the replication stream to S3 data . This scenario is achieved by setting

s3_slave_ignore_updates to 1.

The primary and replica don't share the same S3 storage or the replica uses another storage engine for the S3 tables.

This scenario is achieved by setting s3_slave_ignore_updates to 0.

aria_s3_copy
aria_s3_copy is an external tool that one can use to copy Aria tables to and from S3. Use aria_s3_copy --help to get

the options of how to use it.

mariadb-dump
mariadb-dump will by default ignore S3 tables. If mariadb-dump is run with the --copy-s3-tables option, the

resulting file will contain a CREATE statement for a similar Aria table, followed by the table data and ending with an

ALTER TABLE xxx ENGINE=S3 .

ANALYZE TABLE
As of MariaDB 10.5.14, ANALYZE TABLE is supported for S3 tables. As the S3 tables are read-only, a normal ANALYZE

TABLE will not do anything. However using ANALYZE TABLE table_name PERSISTENT FOR... will now work.

CHECK TABLE
As of MariaDB 10.5.14, CHECK TABLE will work. As S3 tables are read only it is very unlikely that they can become

corrupted. The only known way an S3 table could be corrupted if either the original table copied to S3 was corrupted or the

process of copying the original table to S3 was somehow interrupted.

Current Limitations
mysql-test-run doesn't by default test the S3 engine as we can't embed AWS keys into mysql-test-run.

Replicas should not access S3 tables while they are ALTERed! This is because there is no locking implemented to S3

between servers. However, after a table (either the original S3 table or the partitioned S3 table) is changed on the

primary, the replica will notice this on the next access and update its local definition.

Limitations in ALTER .. PARTITION

All ALTER PARTITION operations are supported on S3 partitioning tables except:

REBUILD PARTITION

TRUNCATE PARTITION

REORGANIZE PARTITION

3447/4161

Performance Considerations
Depending on your connection speed to your S3 provider, there can be some notable slowdowns in some operations.

Discovery

As S3 is supporting discovery (automatically making tables available that are in S3) this can cause some small performance

problems if the S3 engine is enabled. Partitioning S3 tables also support discovery.

CREATE TABLE is a bit slower as the S3 engine has to check if the to-be-created table is already S3.

Queries on information_schema tables are slower as S3 has to check if there is new tables in S3.

DROP of non existing tables are slower as S3 has to check if the table is in S3.

There are no performance degradation's when accessing existing tables on the server. Accessing the S3 table the first time

will copy the .frm file from S3 to the local disk, speeding up future accesses to the table.

Caching

Accessing a table on S3 can take some time , especially if you are using big packets (s3_block_size). However the

second access to the same data should be fast as it's then cached in the S3 page cache.

Things to Try to Increase Performance

If you have performance problems with the S3 engine, here are some things you can try:

Decreasing s3_block_size. This can be done both globally and per table.

Use COMPRESSION_ALGORITHM=zlib when creating the table. This will decrease the amount of data transferred

from S3 to the local cache.

Increasing the size of the s3 page cache: s3_pagecache_buffer_size

Try also to execute the query twice to check if the problem is that the data was not properly cached. When data is cached

locally the performance should be excellent.

Future Development Ideas
Store aws keys and region in the mysql.servers table (as Spider and FederatedX). This will allow one to have

different tables on different S3 servers.

Store s3 bucket, access_key and secret key in a cache to better be able to better to reuse connections. This would

save some memory and make some S3 accesses a bit faster as we could reuse old connections.

Troubleshooting S3 on SELinux
If you get errors such as:

ERROR 3 (HY000): Got error from put_object(bubu/produkt/frm): 5 Couldn't connect to server

one reason could be that your system doesn't allow MariaDB to connect to ports other than 3306. To procedure to enable

other ports is the following:

Search for the ports allowed for MariaDB:

$ sudo semanage port -l | grep mysqd_port_t

mysqld_port_t tcp 1186, 3306, 63132-63164

Say you want to allow MariaDB to connect to port 32768:

$ sudo semanage port -a -t mysqld_port_t -p tcp 32768

You can verify that the new port, 32768, is now allowed for MariaDB:

$ sudo semanage port -l | grep mysqd_port_t

mysqld_port_t tcp 32768,1186, 3306, 63132-63164

3448/4161

https://mariadb.com/kb/en/federatedx/

5.3.16.2 Testing the Connections to S3

The S3 storage engine has been available since MariaDB 10.5.4.

Contents
1. S3 Connection Variables

1. Using aria_s3_copy to Test the Connection

2. Using mysql-test-run to Test the Connection and the S3 Storage Engine

2. What to Do Next

If you can't get the S3 storage engine to work, here are some steps to help verify where the problem could be.

S3 Connection Variables
In most cases the problem is to correctly set the S3 connection variables.

The variables are:

s3_access_key: The AWS access key to access your data

s3_secret_key: The AWS secret key to access your data

s3_bucket: The AWS bucket where your data should be stored. All MariaDB table data is stored in this bucket.

s3_region: The AWS region where your data should be stored.

s3_host_name: Hostname for the S3 service.

s3_protocol_version: Protocol used to communicate with S3. One of "Amazon" or "Original"

There are several ways to ensure you get them right:

Using aria_s3_copy to Test the Connection

aria_s3_copy is a tool that allows you to copy aria tables to and from S3. It's useful for testing the connection as it allows

you to specify all s3 options on the command line.

Execute the following sql commands to create a trivial sql table:

use test;

create table s3_test (a int) engine=aria row_format=page transactional=0;

insert into s3_test values (1),(2);

flush tables s3_test;

Now you can use the aria_s3_copy tool to copy this to S3 from your shell/the command line:

shell> cd mariadb-data-directory/test

shell> aria_s3_copy --op=to --verbose --force --**other*options* s3_test.frm

Copying frm file s3_test.frm

Copying aria table: test.s3_test to s3

Creating aria table information test/s3_test/aria

Copying index information test/s3_test/index

Copying data information test/s3_test/data

As you can see from the above, aria_s3_copy is using the current directory as the database name.

You can also set the aria_s3_copy options in your my.cnf file to avoid some typing.

Using mysql-test-run to Test the Connection and the S3 Storage Engine

One can use the MariaDB test system to run all default S3 test against your S3 storage.

To do that you have to locate the mysql-test directory in your system and cd to it.

The config file for the S3 test system can be found at suite/s3/my.cnf . To enable testing you have to edit this file and

add the s3 connection options to the end of the file. It should look something like this after editing:

MariaDB starting with 10.5

3449/4161

!include include/default_mysqld.cnf

!include include/default_client.cnf

[mysqld.1]

s3=ON

#s3-host-name=s3.amazonaws.com

#s3-protocol-version=Amazon

s3-bucket=MariaDB

s3-access-key=

s3-secret-key=

s3-region=

You must give values for s3-access-key , s3-secret-key and s3-region that reflects your S3 provider. The s3-

bucket name is defined by your administrator.

If you are not using Amazon Web Services as your S3 provider you must also specify s3-hostname and possibly change

s3-protocol-version to "Original".

Now you can test the configuration:

shell> cd **mysql-test** directory

shell> ./mysql-test-run --suite=s3

...

s3.no_s3 [pass] 5

s3.alter [pass] 11073

s3.arguments [pass] 2667

s3.basic [pass] 2757

s3.discovery [pass] 7851

s3.select [pass] 1325

s3.unsupported [pass] 363

Note that there may be more tests in your output as we are constantly adding more tests to S3 when needed.

What to Do Next
When you got the connection to work, you should add the options to your global my.cnf file. Now you can start testing S3

from your mysql command client by converting some existing table to S3 with ALTER TABLE ... ENGINE=S3.

5.3.16.3 S3 Storage Engine Internals

The S3 storage engine has been available since MariaDB 10.5.4.

Contents
1. ALTER TABLE

2. Partitioning Tables

3. Big Reads

4. Compression

5. Structure Stored on S3

6. Using the awsctl Python Tool to Examine Data

1. Installing awsctl on Linux

2. Using the awsctl Tool

The S3 storage engine is based on the Aria code. Internally the S3 storage inherits from the Aria code, with hooks that

change reads, so that instead of reading data from the local disk it reads things from S3.

The S3 engine uses it's own page cache, modified to be able to handle reading blocks from S3 (of size s3_block_size).

Internally the S3 page cache uses pages of aria-block-size for splitting the blocks read from S3.

ALTER TABLE
ALTER TABLE will first create a local table in the normal Aria on disk format and then move both index and data to S3 in

buckets of S3_BLOCK_SIZE. The .frm file is also copied to S3 for discovery to support discovery for other MariaDB servers.

One can also use ALTER TABLE to change the structure of an S3 table.

MariaDB starting with 10.5

3450/4161

Partitioning Tables
Starting from MariaDB 10.5.3, S3 tables can also be used with Partitioning tables. All ALTER PARTITION operations are

supported except:

REBUILD PARTITION

TRUNCATE PARTITION

REORGANIZE PARTITION

Big Reads
One of the properties of many S3 implementations is that they favor large reads. It's said that 4M gives the best

performance, which is why the default value for S3_BLOCK_SIZE is 4M.

Compression
If compression (COMPRESSION_ALGORITHM=zlib) is used, then all index blocks and data blocks are compressed. The

.frm file and Aria definition header (first page/pages in the index file) are not compressed as these are used by

discovery/open.

If compression is used, then the local block size is S3_BLOCK_SIZE , but the block stored in S3 will be the size of the

compressed block.

Typical compression we have seen is in the range of 80% saved space.

Structure Stored on S3
The table will be copied in S3 into the following locations:

frm file (for discovery):

s3_bucket/database/table/frm

First index block (contains description of the Aria file):

s3_bucket/database/table/aria

Rest of the index file:

s3_bucket/database/table/index/block_number

Data file:

s3_bucket/database/table/data/block_number

block_number is a 6-digit decimal number, prefixed with 0 (Can be larger than 6 numbers, the prefix is just for nice output)

Using the awsctl Python Tool to Examine Data

Installing awsctl on Linux

install python-pip (on an OpenSuse distribution)

use the appropriate command for your distribution

zypper install python-pip

pip install --upgrade pip

the following installs awscli tools in ~/.local/bin

pip install --upgrade --user awscli

export PATH=~/.local/bin:$PATH

configure your aws credentials

aws configure

Using the awsctl Tool

One can use the aws python tool to see how things are stored on S3:

3451/4161

shell> aws s3 ls --recursive s3://mariadb-bucket/

2019-05-10 17:46:48 8192 foo/test1/aria

2019-05-10 17:46:49 3227648 foo/test1/data/000001

2019-05-10 17:46:48 942 foo/test1/frm

2019-05-10 17:46:48 1015808 foo/test1/index/000001

To delete an obsolete table foo.test1 one can do:

shell> ~/.local/bin/aws s3 rm --recursive s3://mariadb-bucket/foo/test1

delete: s3://mariadb-bucket/foo/test1/aria

delete: s3://mariadb-bucket/foo/test1/data/000001

delete: s3://mariadb-bucket/foo/test1/frm

delete: s3://mariadb-bucket/foo/test1/index/000001

5.3.16.4 aria_s3_copy

The S3 storage engine has been available since MariaDB 10.5.4.

aria_s3_copy is a tool for copying an Aria table to and from S3.

The Aria table must be non transactional and have ROW_FORMAT=PAGE.

For aria_s3_copy to work reliably, the table should not be changed by the MariaDB server during the copy, and one

should have first performed FLUSH TABLES to ensure that the table is properly closed.

Example of properly created Aria table:

create table test1 (a int) transactional=0 row_format=PAGE engine=aria;

Note that ALTER TABLE table_name ENGINE=S3 will work for any kind of table. This internally converts the table to an Aria

table and then moves it to S3 storage.

Main Arguments

Option Description

-?, --help Display this help and exit.

-k, --s3-access-key=name AWS access key ID

-r, --s3-region=name AWS region

-K, --s3-secret-key=name AWS secret access key ID

-b, --s3-bucket=name AWS prefix for tables

-h, --s3-host-name=name Host name to S3 provider

-c, --compress Use compression

-o, --op=name Operation to execute. One of 'from_s3', 'to_s3' or 'delete_from_s3'

-d, --database=name
Database for copied table (second prefix). If not given, the directory of the table file is

used

-B, --s3-block-size=# Block size for data/index blocks in s3

-L, --s3-protocol-

version=name
Protocol used to communication with S3. One of "Amazon" or "Original".

-f, --force Force copy even if target exists

-v, --verbose Write more information

-V, --version Print version and exit.

-#, --debug[=name] Output debug log. Often this is 'd:t:o,filename'.

--s3-debug Output debug log from marias3 to stdout

MariaDB starting with 10.5

3452/4161

Typical Configuration in a my.cnf File

[aria_s3_copy]

s3-bucket=mariadb

s3-access-key=xxxx

s3-secret-key=xxx

s3-region=eu-north-1

#s3-host-name=s3.amazonaws.com

#s3-protocol-version=Amazon

verbose=1

op=to

Example Usage

The following code will copy an existing Aria table named test1 to S3. If the --database option is not given, then the

directory name where the table files exist will be used as the database.

shell> aria_s3_copy --force --op=to --database=foo --compress --verbose --s3_block_size=4M test1

Delete of aria table: foo.test1

Delete of index information foo/test1/index

Delete of data information foo/test1/data

Delete of base information and frm

Copying frm file test1.frm

Copying aria table: foo.test1 to s3

Creating aria table information foo/test1/aria

Copying index information foo/test1/index

.

Copying data information foo/test1/data

.

When using --verbose , aria_s3_copy will write a dot for each #/79 part of the file copied.

5.3.16.5 S3 Storage Engine Status Variables

The S3 storage engine has been available since MariaDB 10.5.4.

Contents
1. S3_pagecache_blocks_not_flushed

2. S3_pagecache_blocks_unused

3. S3_pagecache_blocks_used

4. S3_pagecache_reads

This page documents status variables related to the S3 storage engine. See Server Status Variables for a complete list of

status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

S3_pagecache_blocks_not_flushed

Description:

Scope:

Data Type:

Introduced: MariaDB 10.5

S3_pagecache_blocks_unused

Description:

Scope:

Data Type:

Introduced: MariaDB 10.5

MariaDB starting with 10.5

3453/4161

S3_pagecache_blocks_used

Description:

Scope:

Data Type:

Introduced: MariaDB 10.5

S3_pagecache_reads

Description:

Scope:

Data Type:

Introduced: MariaDB 10.5

5.3.16.6 S3 Storage Engine System Variables

The S3 storage engine has been available since MariaDB 10.5.4.

Contents
1. Variables

1. s3_access_key

2. s3_block_size

3. s3_bucket

4. s3_debug

5. s3_host_name

6. s3_pagecache_age_threshold

7. s3_pagecache_buffer_size

8. s3_pagecache_division_limit

9. s3_pagecache_file_hash_size

10. s3_port

11. s3_protocol_version

12. s3_region

13. s3_replicate_alter_as_create_select

14. s3_secret_key

15. s3_slave_ignore_updates

16. s3_use_http

This page documents system variables related to the S3 storage engine.

See Server System Variables for a complete list of system variables and instructions on setting system variables.

Also see the Full list of MariaDB options, system and status variables

Variables

s3_access_key

Description: The AWS access key to access your data. See mysqld startup options for S3.

Commandline: --s3-access-key=val

Scope: Global

Dynamic: No

Data Type: String

Default Value: (Empty)

Introduced: MariaDB 10.5.4

s3_block_size

Description: The default block size for a table, if not specified in CREATE TABLE. Set to 4M as default. See mysqld

startup options for S3.

Commandline: --s3-block-size=#

MariaDB starting with 10.5

3454/4161

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value: 4194304

Range: 4194304 to 16777216

Introduced: MariaDB 10.5.4

s3_bucket

Description: The AWS bucket where your data should be stored. All MariaDB table data is stored in this bucket. See

mysqld startup options for S3.

Commandline: --s3-bucket=val

Scope: Global

Dynamic: No

Data Type: String

Default Value: MariaDB

Introduced: MariaDB 10.5.4

s3_debug

Description: Generates a trace file from libmarias3 on stderr (mysqld.err) for debugging the S3 protocol.

Commandline: --s3-debug{=0|1}

Scope: Global

Dynamic:

Yes (>= MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3, MariaDB

11.3.2, MariaDB 11.4.1)

No (<= MariaDB 10.6.16, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3, MariaDB 11.2.2, MariaDB

11.3.1)

Data Type: Boolean

Valid Values: 0 or 1

Default Value: 0

Introduced: MariaDB 10.5.4

s3_host_name

Description: Hostname for the S3 service. "s3.amazonaws.com", Amazon S3 service, by default

Commandline: --s3-host-name=val

Scope: Globa;

Dynamic: No

Data Type: String

Default Value: s3.amazonaws.com

Introduced: MariaDB 10.5.4

s3_pagecache_age_threshold

Description: This characterizes the number of hits a hot block has to be untouched until it is considered aged

enough to be downgraded to a warm block. This specifies the percentage ratio of that number of hits to the total

number of blocks in the page cache.

Commandline: --s3-pagecache-age-threshold=val

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value: 300

Range: 100 to 18446744073709551615

Introduced: MariaDB 10.5.4

s3_pagecache_buffer_size

Description: The size of the buffer used for index blocks for S3 tables. Increase this to get better index handling (for

all reads and multiple writes) to as much as you can afford. Size can be adjusted in blocks of 8192 .

3455/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Commandline: --s3-pagecache-buffer-size=val

Scope: Global

Dynamic: No

Data Type: Numeric

Default Value: 134217728 (128M)

Range: 33554432 to 18446744073709551615

Introduced: MariaDB 10.5.4

s3_pagecache_division_limit

Description: The minimum percentage of warm blocks in key cache.

Commandline: --s3-pagecache-division-limit=val

Scope: Global

Dynamic: Yes

Data Type: Numeric

Default Value: 100

Range: 1 to 100

Introduced: MariaDB 10.5.4

s3_pagecache_file_hash_size

Description: Number of hash buckets for open files. Default 512. If you have a lot of S3 files open you should

increase this for faster flush of changes. A good value is probably 1/10 of number of possible open S3 files.

Commandline: --s3-pagecache-file-hash-size=#

Scope: Global

Dynamic: No

Data Type: Numeric

Default Value: 512

Range: 32 to 16384

Introduced: MariaDB 10.5.4

s3_port

Description: The TCP port number on the S3 host to connect to. A values of 0 means determine automatically.

Commandline: --s3-port=#

Scope: Global

Dynamic: No

Data Type: Numeric

Default Value: 0

Range: 0 to 65535

Introduced: MariaDB 10.5.7

s3_protocol_version

Description: Protocol used to communication with S3. "Auto" is the default. If you get errors like "8 Access Denied"

when you are connecting to another service provider, then try to change this option. The reason for this variable is

that Amazon has changed some parts of the S3 protocol since they originally introduced it but other service providers

are still using the original protocol.

Auto :

Original : Same as "Auto". Deprecated from MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 ,

MariaDB 11.1.4, MariaDB 11.2.3, MariaDB 11.3.2, MariaDB 11.4.1.

Amazon Same as "Auto". Deprecated from MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB

11.1.4, MariaDB 11.2.3, MariaDB 11.3.2, MariaDB 11.4.1.

Legacy : v1 protocol. From MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB

11.2.3, MariaDB 11.3.2, MariaDB 11.4.1

Path : From MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3,

MariaDB 11.3.2, MariaDB 11.4.1

Domain : From MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3,

MariaDB 11.3.2, MariaDB 11.4.1

Commandline: --s3-protocol-version=val

Scope: Global

3456/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Dynamic: Yes

Data Type: Enum

Valid Values:

Auto , Original , Amazon , Legacy , Path , Domain (>= MariaDB 10.6.17, MariaDB 10.11.7, MariaDB

11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3, MariaDB 11.3.2, MariaDB 11.4.1)

Auto , Original , Amazon (<= MariaDB 10.6.16, MariaDB 10.11.6, MariaDB 11.0.4, MariaDB 11.1.3,

MariaDB 11.2.2, MariaDB 11.3.1)

Default Value: Auto

Introduced: MariaDB 10.5.4

s3_region

Description: The AWS region where your data should be stored. See mysqld startup options for S3.

Commandline: --s3-region=val

Scope: Global

Dynamic: No

Data Type: String

Default Value: (Empty)

Introduced: MariaDB 10.5.4

s3_replicate_alter_as_create_select

Description: When converting S3 table to local table, log all rows in binary log. This allows the slave to replicate

CREATE TABLE .. SELECT FROM s3_table even it the slave doesn't have access to the original s3_table .

Commandline: --s3-replicate-alter-as-create-select{=0|1}

Scope: Global

Dynamic: No

Data Type: Boolean

Default Value: 1

Introduced: MariaDB 10.5.4

s3_secret_key

Description: The AWS secret key to access your data. See mysqld startup options for S3.

Commandline: --s3-secret-key=val

Scope: Global

Dynamic: No

Data Type: String

Default Value: (Empty)

Introduced: MariaDB 10.5.4

s3_slave_ignore_updates

Description: Should be set if master and slave share the same S3 instance. This tells the slave that it can ignore any

updates to the S3 tables as they are already applied on the master.

Commandline: --s3-slave-ignore-updates{=0|1}

Scope: Global

Dynamic: No

Data Type: Boolean

Default Value: 0

Introduced: MariaDB 10.5.4

s3_use_http

Description: If enabled, HTTP will be used instead of HTTPS.

Commandline: --s3-use-http{=0|1}

Scope: Global

Dynamic: No

Data Type: Boolean

Default Value: 0

3457/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/

Introduced: MariaDB 10.5.7

5.3.17 Sequence Storage Engine
Contents
1. Installing

2. Usage and Examples

3. Table Name Conflicts

This article is about the Sequence storage engine. For details about sequence objects, see Sequences.

A Sequence engine allows the creation of ascending or descending sequences of numbers (positive integers) with a given

starting value, ending value and increment.

It creates completely virtual, ephemeral tables automatically when you need them. There is no way to create a Sequence

table explicitly. Nor are they ever written to disk or create .frm files. They are read-only, transactional, and support XA.

Installing
The Sequence engine is installed by default, and SHOW ENGINES will list the Sequence storage engine as supported:

SHOW ENGINES\G

...

*************************** 5. row ***************************

 Engine: MyISAM

 Support: YES

 Comment: MyISAM storage engine

Transactions: NO

 XA: NO

 Savepoints: NO

*************************** 6. row ***************************

 Engine: SEQUENCE

 Support: YES

 Comment: Generated tables filled with sequential values

Transactions: YES

 XA: YES

 Savepoints: YES

*************************** 7. row ***************************

 Engine: MRG_MyISAM

 Support: YES

 Comment: Collection of identical MyISAM tables

Transactions: NO

 XA: NO

 Savepoints: NO

...

Usage and Examples
To use a Sequence table, you simply select from it, as in

SELECT * FROM seq_1_to_5;

+-----+

| seq |

+-----+

| 1 |

| 2 |

| 3 |

| 4 |

| 5 |

+-----+

To use a sequence in a statement, you select from the table named by a pattern seq_ FROM _to_ TO or

seq_ FROM _to_ TO _step_ STEP .

3458/4161

In the case of an odd step, the sequence will commence with the FROM , and end at the final result before TO .

SELECT * FROM seq_1_to_15_step_3;

+-----+

| seq |

+-----+

| 1 |

| 4 |

| 7 |

| 10 |

| 13 |

+-----+

A sequence can go backwards too. In this case the final value will always be the TO value, so that a descending sequence

has the same values as an ascending sequence:

SELECT * FROM seq_5_to_1_step_2;

+-----+

| seq |

+-----+

| 5 |

| 3 |

| 1 |

+-----+

SELECT * FROM seq_15_to_1_step_3;

+-----+

| seq |

+-----+

| 13 |

| 10 |

| 7 |

| 4 |

| 1 |

+-----+

SELECT * FROM seq_15_to_2_step_3;

+-----+

| seq |

+-----+

| 14 |

| 11 |

| 8 |

| 5 |

| 2 |

+-----+

This engine is particularly useful with joins and subqueries. For example, this query finds all prime numbers below 50:

3459/4161

SELECT seq FROM seq_2_to_50 s1 WHERE 0 NOT IN

 (SELECT s1.seq % s2.seq FROM seq_2_to_50 s2 WHERE s2.seq <= sqrt(s1.seq));

+-----+

| seq |

+-----+

| 2 |

| 3 |

| 5 |

| 7 |

| 11 |

| 13 |

| 17 |

| 19 |

| 23 |

| 29 |

| 31 |

| 37 |

| 41 |

| 43 |

| 47 |

+-----+

And almost (without 2, the only even prime number) the same result with joins:

SELECT s1.seq FROM seq_2_to_50 s1 JOIN seq_2_to_50 s2

 WHERE s1.seq > s2.seq AND s1.seq % s2.seq <> 0

 GROUP BY s1.seq HAVING s1.seq - COUNT(*) = 2;

+-----+

| seq |

+-----+

| 3 |

| 5 |

| 7 |

| 11 |

| 13 |

| 17 |

| 19 |

| 23 |

| 29 |

| 31 |

| 37 |

| 41 |

| 43 |

| 47 |

+-----+

Sequence tables can also be useful in date calculations. For example, to find the day of the week that a particular date has

fallen on over a 40 year period (perhaps for birthday planning ahead!):

SELECT DAYNAME('1980-12-05' + INTERVAL (seq) YEAR) day,

 '1980-12-05' + INTERVAL (seq) YEAR date FROM seq_0_to_40;

+-----------+------------+

| day | date |

+-----------+------------+

| Friday | 1980-12-05 |

| Saturday | 1981-12-05 |

| Sunday | 1982-12-05 |

...

| Friday | 2014-12-05 |

| Saturday | 2015-12-05 |

| Monday | 2016-12-05 |

| Tuesday | 2017-12-05 |

| Wednesday | 2018-12-05 |

| Thursday | 2019-12-05 |

| Saturday | 2020-12-05 |

+-----------+------------+

Although Sequence tables can only directly make use of positive integers, they can indirectly be used to return negative

results by making use of the CAST statement. For example:

3460/4161

SELECT CAST(seq AS INT) - 5 x FROM seq_5_to_1;

+----+

| x |

+----+

| 0 |

| -1 |

| -2 |

| -3 |

| -4 |

+----+

CAST is required to avoid a BIGINT UNSIGNED value is out of range error.

Sequence tables, while virtual, are still tables, so they must be in a database. This means that a default database must be

selected (for example, via the USE command) to be able to query a Sequence table. The information_schema database

cannot be used as the default for a Sequence table.

Table Name Conflicts
If the SEQUENCE storage engine is installed, it is not possible to create a table with a name which follows the SEQUENCE

pattern:

CREATE TABLE seq_1_to_100 (col INT) ENGINE = InnoDB;

ERROR 1050 (42S01): Table 'seq_1_to_100' already exists

However, a SEQUENCE table can be converted to another engine and the new table can be referred in any statement:

ALTER TABLE seq_1_to_100 ENGINE = BLACKHOLE;

SELECT * FROM seq_1_to_100;

Empty set (0.00 sec)

While a SEQUENCE table cannot be dropped, it is possible to drop the converted table. The SEQUENCE table with the

same name will still exist:

DROP TABLE seq_1_to_100;

SELECT COUNT(*) FROM seq_1_to_100;

+----------+

| COUNT(*) |

+----------+

| 100 |

+----------+

1 row in set (0.00 sec)

A temporary table with a SEQUENCE-like name can always be created and used:

CREATE TEMPORARY TABLE seq_1_to_100 (col INT) ENGINE = InnoDB;

SELECT * FROM seq_1_to_100;

Empty set (0.00 sec)

5.3.18 SphinxSE
SphinxSE is a storage engine that talks to searchd (Sphinx daemon) to enable text searching.

About SphinxSE

About the Sphinx Storage Engine

Installing Sphinx

Installing the Sphinx daemon

Configuring Sphinx

Before you can get Sphinx working with the Sphinx Storage Engine on MariaDB...

1

3461/4161

Installing and Testing SphinxSE with MariaDB

How to install and test SphinxSE

Sphinx Status Variables

Sphinx status variables.

There are 3 related questions .

5.3.18.1 About SphinxSE
Contents
1. Versions of SphinxSE in MariaDB

2. Enabling SphinxSE in MariaDB

3. Using SphinxSE

1. Basic Usage

2. Search Options

3. SHOW ENGINE SPHINX STATUS

4. JOINs with SphinxSE

4. Building snippets (excerpts) via MariaDB

5. More Information

The Sphinx storage engine (SphinxSE) is a storage engine that talks to searchd (the Sphinx daemon) to enable text

searching. Sphinx and SphinxSE is used as a faster and more customizable alternative to MariaDB's built-in full-text search.

Sphinx does not depend on MariaDB, and can run independently, but SphinxSE provides a convenient interface to the

underlying Sphinx daemon.

Versions of SphinxSE in MariaDB

SphinxSE Version Introduced Maturity

SphinxSE 2.2.6 MariaDB 10.0.15 Stable

SphinxSE 2.1.9 MariaDB 10.0.14 Stable

SphinxSE 2.0.4 MariaDB 5.5

SphinxSE 0.99 MariaDB 5.2 and MariaDB 5.3

Enabling SphinxSE in MariaDB
The Sphinx storage engine is included in the source, binaries, and packages of MariaDB. SphinxSE is built as a

dynamically loadable .so plugin. To use it, you need to perform a one-time install:

INSTALL SONAME 'ha_sphinx';

In Debian/Ubuntu packages SphinxSE is statically compiled into the MariaDB server, there is no need to use the

INSTALL SONAME statement.

Once installed, SphinxSE will show up in the list of installed storage engines:

MariaDB until 10.0

3462/4161

https://mariadb.com/kb/en/sphinx-storage-engine/+questions/
http://sphinxsearch.com/docs/current.html
https://mariadb.com/kb/en/mariadb-10015-release-notes/
http://sphinxsearch.com/docs/2.1.9/
https://mariadb.com/kb/en/mariadb-10014-release-notes/

SHOW ENGINES;

+------------+---------+--+--------------+------+--

----------+

| Engine | Support | Comment | Transactions | XA |

Savepoints |

+------------+---------+--+--------------+------+--

----------+

...

| SPHINX | YES | Sphinx storage engine 0.9.9 | NO | NO | NO

|

...

+------------+---------+--+--------------+------+--

----------+

This is a one-time step and will not need to be performed again.

Note: SphinxSE is just the storage engine part of Sphinx. You will have to install Sphinx itself in order to make use of

SphinxSE in MariaDB.

Despite the name, SphinxSE does not actually store any data itself. It is actually a built-in client which allows MariaDB to

talk to Sphinx, run search queries, and obtain search results. All indexing and searching happen outside MariaDB.

Some SphinxSE applications include:

easier porting of MariaDB/MySQL FTS applications to Sphinx

allowing Sphinx use with programming languages for which native APIs are not available yet

optimizations when additional Sphinx result set processing on the MariaDB side is required (eg. JOINs with original

document tables, additional MariaDB-side filtering, and etc...)

Using SphinxSE

Basic Usage

To search via SphinxSE, you would need to create a special ENGINE=SPHINX "search table", and then SELECT from it with

full text query put into the WHERE clause for query column.

Here is an example create statement and search query:

CREATE TABLE t1

(

 id BIGINT UNSIGNED NOT NULL,

 weight INTEGER NOT NULL,

 query VARCHAR(3072) NOT NULL,

 group_id INTEGER,

 INDEX(query)

) ENGINE=SPHINX CONNECTION="sphinx://127.0.0.1:9312/test1";

SELECT * FROM t1 WHERE query='test it;mode=any';

The first three columns of the search table must have a type of BIGINT for the 1st column (document id), INTEGER or

BIGINT for the 2nd column (match weight), and VARCHAR or TEXT for the 3rd column (your query), respectively. This

mapping is fixed; you cannot omit any of these three required columns, or move them around, or change types. Also, the

query column must be indexed; all the others must be kept unindexed. Column names are ignored so you can use arbitrary

ones.

Additional columns must be either INTEGER , TIMESTAMP , BIGINT , VARCHAR , or FLOAT . They will be bound to the

attributes provided in the Sphinx result set by name, so their names must match the attribute names specified in

sphinx.conf . If there's no such attribute name in the Sphinx search results, the additional columns will have NULL

values.

Special "virtual" attribute names can also be bound to SphinxSE columns. _sph_ needs to be used instead of @ for that.

For instance, to obtain the values of ' @groupby ', ' @count ', or ' @distinct ' virtual attributes, use ' _sph_groupby ',

' _sph_count ' or ' _sph_distinct ' column names, respectively.

The CONNECTION string parameter is used to specify the default searchd host, port, and indexes for queries issued using

this table. If no connection string is specified in CREATE

TABLE , index name ' * ' (ie. search all indexes) and ' 127.0.0.1:9312 ' are assumed. The connection string syntax is as

3463/4161

follows:

CONNECTION="sphinx://HOST:PORT/INDEXNAME"

You can change the default connection string later like so:

ALTER TABLE t1 CONNECTION="sphinx://NEWHOST:NEWPORT/NEWINDEXNAME";

You can also override all these parameters per-query.

Note: To use Linux sockets you can modify the searchd section of the Sphinx configuration file, setting the listen

parameter to a socket file. Instruct SphinxSE about the socket using CONNECTION="unix:unix/domain/socket[:index]".

Search Options

As seen in the example above, both query text and search options should be put into the ' WHERE ' clause of the search

query column (i.e. the 3rd column); the options are separated by semicolons (' ; ') and separate names from values using an

equals sign (' = '). Any number of options can be specified. Available options are:

query - query text;

mode - matching mode. Must be one of "all", "any", "phrase", "boolean", or "extended". Default is "all";

sort - match sorting mode. Must be one of "relevance", "attr_desc", "attr_asc", "time_segments", or "extended". In all

modes besides "relevance" attribute name (or sorting clause for "extended") is also required after a colon:

... WHERE query='test;sort=attr_asc:group_id';

... WHERE query='test;sort=extended:@weight desc, group_id asc';

offset - offset into result set, default is 0;

limit - amount of matches to retrieve from result set, default is 20;

index - names of the indexes to search:

... WHERE query='test;index=test1;';

... WHERE query='test;index=test1,test2,test3;';

minid, maxid - min and max document ID to match;

weights - comma-separated list of weights to be assigned to Sphinx full-text fields:

... WHERE query='test;weights=1,2,3;';

filter, !filter - comma-separated attribute name and a set of values to match:

only include groups 1, 5 and 19

... WHERE query='test;filter=group_id,1,5,19;';

exclude groups 3 and 11

... WHERE query='test;!filter=group_id,3,11;';

range, !range - comma-separated attribute name, min and max value to match:

include groups from 3 to 7, inclusive

... WHERE query='test;range=group_id,3,7;';

exclude groups from 5 to 25

... WHERE query='test;!range=group_id,5,25;';

maxmatches - per-query max matches value:

... WHERE query='test;maxmatches=2000;';

groupby - group-by function and attribute:

... WHERE query='test;groupby=day:published_ts;';

... WHERE query='test;groupby=attr:group_id;';

3464/4161

groupsort - group-by sorting clause:

... WHERE query='test;groupsort=@count desc;';

indexweights - comma-separated list of index names and weights to use when searching through several indexes:

... WHERE query='test;indexweights=idx_exact,2,idx_stemmed,1;';

comment - a string to mark this query in query log (mapping to $comment parameter in Query() API call):

... WHERE query='test;comment=marker001;';

select - a string with expressions to compute (mapping to SetSelect() API call):

... WHERE query='test;select=2*a+3*b as myexpr;';

Note: It is much more efficient to allow Sphinx to perform sorting, filtering, and slicing of the result set than to raise

max matches count and use ' WHERE ', ' ORDER BY ', and ' LIMIT ' clauses on the MariaDB side. This is for two reasons:

1. Sphinx does a number of optimizations and performs better than MariaDB/MySQL on these tasks.

2. Less data would need to be packed by searchd , and transferred and unpacked by SphinxSE.

SHOW ENGINE SPHINX STATUS

Starting with version 0.9.9-rc1, additional query info besides the result set can be retrieved with the ' SHOW ENGINE SPHINX

STATUS ' statement:

SHOW ENGINE SPHINX STATUS;

+--------+-------+---+

| Type | Name | Status |

+--------+-------+---+

| SPHINX | stats | total: 25, total found: 25, time: 126, words: 2 |

| SPHINX | words | sphinx:591:1256 soft:11076:15945 |

+--------+-------+---+

This information can also be accessed through status variables. Note that this method does not require super-user

privileges.

SHOW STATUS LIKE 'sphinx_%';

+--------------------+----------------------------------+

| Variable_name | Value |

+--------------------+----------------------------------+

| sphinx_total | 25 |

| sphinx_total_found | 25 |

| sphinx_time | 126 |

| sphinx_word_count | 2 |

| sphinx_words | sphinx:591:1256 soft:11076:15945 |

+--------------------+----------------------------------+

JOINs with SphinxSE

You can perform JOIN s on a SphinxSE search table and tables using other engines. Here's an example with "documents"

from example.sql:

3465/4161

SELECT content, date_added FROM test.documents docs

 JOIN t1 ON (docs.id=t1.id)

 WHERE query="one document;mode=any";

+-------------------------------------+---------------------+

| content | docdate |

+-------------------------------------+---------------------+

| this is my test document number two | 2006-06-17 14:04:28 |

| this is my test document number one | 2006-06-17 14:04:28 |

+-------------------------------------+---------------------+

SHOW ENGINE SPHINX STATUS;

+--------+-------+---+

| Type | Name | Status |

+--------+-------+---+

| SPHINX | stats | total: 2, total found: 2, time: 0, words: 2 |

| SPHINX | words | one:1:2 document:2:2 |

+--------+-------+---+

Building snippets (excerpts) via MariaDB
Starting with version 0.9.9-rc2, SphinxSE also includes a UDF function that lets you create snippets through MariaDB. The

functionality is fully similar to the BuildExcerprts API call but is accessible through MariaDB+SphinxSE.

The binary that provides the UDF is named sphinx.so and is automatically built and installed to the proper location

along with SphinxSE itself. Register the UDF using the following statement:

CREATE FUNCTION sphinx_snippets RETURNS STRING SONAME 'sphinx.so';

The UDF is packed together with the storage engine, in the same binary named ha_sphinx.so. Register the UDF using

the following statement:

CREATE FUNCTION sphinx_snippets RETURNS STRING SONAME 'ha_sphinx.so';

The function name must be ' sphinx_snippets ', you can not use an arbitrary name. Function arguments are as follows:

Prototype: function sphinx_snippets (document, index, words, [options]);

Document and words arguments can be either strings or table columns. Options must be specified like this: <code>'value'

AS option_name</code>. For a list of supported options, refer to the BuildExcerprts() API call. The only UDF-specific

additional option is named 'sphinx' and lets you specify searchd location (host and port).

Usage examples:

SELECT sphinx_snippets('hello world doc', 'main', 'world',

 'sphinx://192.168.1.1/' AS sphinx, true AS exact_phrase,

 '[b]' AS before_match, '[/b]' AS after_match)

FROM documents;

SELECT title, sphinx_snippets(text, 'index', 'mysql php') AS text

 FROM sphinx, documents

 WHERE query='mysql php' AND sphinx.id=documents.id;

More Information
More information on Sphinx and SphinxSE is available on the Sphinx website .

MariaDB until 5.5

MariaDB until 10.0

5.3.18.2 Installing Sphinx
In order to use the Sphinx Storage Engine, it is necessary to install the Sphinx daemon.

Many Linux distributions have Sphinx in their repositories. These can be used to install Sphinx instead of following the

3466/4161

http://sphinxsearch.com/docs/current.html#api-func-buildexcerpts
http://sphinxsearch.com/docs/current.html#api-func-buildexcerpts
http://sphinxsearch.com/docs/current.html

instructions below, but these are usually quite old versions and don't all include API's for easy integration. Ubuntu users can

use the updated repository at https://launchpad.net/~builds/+archive/sphinxsearch-rel21 (see instructions below).

Alternatively, download from http://sphinxsearch.com/downloads/release/

Debian and Ubuntu
Ubuntu users can make use of the repository, as follows:

sudo add-apt-repository ppa:builds/sphinxsearch-rel21

sudo apt-get update

sudo apt-get install sphinxsearch

Alternatively, install as follows:

The Sphinx package and daemon are named sphinxsearch .

sudo apt-get install unixodbc libpq5 mariadb-client

sudo dpkg -i sphinxsearch*.deb

Configure Sphinx as required

You may need to check /etc/default/sphinxsearch to see that START=yes

Start with sudo service sphinxsearch start (and stop with sudo service sphinxsearch stop)

Red Hat and CentOS
The package name is sphinx and the daemon searchd .

sudo yum install postgresql-libs unixODBC

sudo rpm -Uhv sphinx*.rpm

Configure Sphinx as required

service searchd start

Windows
Unzip and extract the downloaded zip file

Move the extracted directory to C:\Sphinx

Configure Sphinx as required

Install as a service:

C:\Sphinx\bin> C:\Sphinx\bin\searchd --install --config C:\Sphinx\sphinx.conf.in --

servicename SphinxSearch

Once Sphinx has been installed, it will need to be configured.

Full instructions, including details on compiling Sphinx yourself, are available at http://sphinxsearch.com/docs/current.html

.

5.3.18.3 Configuring Sphinx
Before you can get Sphinx working with the Sphinx Storage Engine on MariaDB, you need to configure it.

The default configuration file is called sphinx.conf , usually located in /etc/sphinxsearch (Debian/Ubuntu),

/etc/sphinx/sphinx.conf. (Red Hat/CentOS) or C:\Sphinx\sphinx.conf (Windows).

If it doesn't already exist, you can use the sample configuration file, sphinx.conf.dist . There is also sample data

supplied that we can use for testing. Load the sample data (which creates two tables, documents and tags in the test

database), for example:

mysql -u test < /usr/local/sphinx/etc/example.sql (Red Hat, CentOS) mysql -u test <

/usr/share/doc/sphinxsearch/example-conf/example.sql (Debian/Ubuntu)

The sample configuration file documents the available options. You will need to make at least a few changes. A MariaDB

user with permission to access the database must be created. For example:

CREATE USER 'sphinx'@localhost

 IDENTIFIED BY 'sphinx_password';

GRANT SELECT on test.* to 'sphinx'@localhost;

Add these details to the mysql section of the config file:

3467/4161

https://launchpad.net/~builds/+archive/sphinxsearch-rel21
http://sphinxsearch.com/downloads/release/
http://sphinxsearch.com/docs/current.html

sql_host = localhost

sql_user = sphinx

sql_pass = sphinx_password

sql_db = test

sql_port = 3306

On Windows, the path and pid lines will need to be changed to reflect a valid path, usually as follows:

path = C:\Sphinx\docsidx

...

pid_file = C:\Sphinx\sphinx.pid

The query in the configuration files is the query that will be used for building the index. In the sample data, this is:

sql_query = \

 SELECT id, group_id, UNIX_TIMESTAMP(date_added) AS date_added, title, content \

 FROM documents

5.3.18.4 Installing and Testing SphinxSE with
MariaDB
To use SphinxSE with MariaDB you need to first download and install Sphinx.

Complete Sphinx documentation is available on the Sphinx website .

Tips for Installing Sphinx

libexpat

One library we know you will need on Linux before you can install Sphinx is libexpat . If it is not installed, you will get the

warning checking for libexpat... not found . On Suse the package is called libexpat-devel , on Ubuntu the

package is called libexpat1-dev .

MariaDB detection

If you run into problems with MariaDB not being detected, use the following options:

 --with-mysql compile with MySQL support (default is enabled)

 --with-mysql-includes path to MySQL header files

 --with-mysql-libs path to MySQL libraries

The above will tell the configure script where your MySQL/MariaDB installation is.

Testing Sphinx
After installing Sphinx, you can check that things are working in MariaDB by doing the following:

cd installation-dir/mysql-test

./mysql-test-run --suite=sphinx

If the above test doesn't pass, check the logs in the 'var' directory. If there is a problem with the sphinx installation, the

reason can probably be found in the log file at: var/log/sphinx.sphinx/searchd/sphinx.log .

3.3.7.25 Sphinx Status Variables

5.3.19 Spider
The Spider storage engine is a federated database solution that supports partitioning and xa transactions, and allows tables

3468/4161

http://sphinxsearch.com/docs/

of different MariaDB instances to be handled as if they were on the same instance.

Versions of Spider in MariaDB

From MariaDB 10.9.2, the Spider version number matches the server version.

Spider Version Introduced Maturity

Spider 3.3.15 MariaDB 10.5.7, MariaDB 10.4.6 Stable

Spider 3.3.15 MariaDB 10.5.4 Gamma

Spider 3.3.14 MariaDB 10.4.3, MariaDB 10.3.13 Stable

Spider 3.3.13 MariaDB 10.3.7 Stable

Spider 3.3.13 MariaDB 10.3.3 Gamma

Spider 3.2.37 MariaDB 10.1.10 , MariaDB 10.0.23 Gamma

Spider 3.2.21 MariaDB 10.1.5 , MariaDB 10.0.18 Gamma

Spider 3.2.18 MariaDB 10.0.17 Gamma

Spider 3.2.11 MariaDB 10.0.14 Gamma

Spider 3.2.4 MariaDB 10.0.12 Gamma

Spider 3.2 MariaDB 10.0.11 Gamma

Spider 3.0 MariaDB 10.0.4 Beta

Spider Documentation
See the spider-2.0-doc repository for complete, older, documentation.

Presentation for new sharding features in Spider 3.3 .

Spider Storage Engine Overview

Storage engine with sharding features.

Spider Installation

Setting up Spider.

Spider Storage Engine Core Concepts

Key Spider concepts

Spider Use Cases

Basic working examples for Spider

Spider Cluster Management

Spider cluster management.

Spider Feature Matrix

Matrix of Spider features

Spider System Variables

System variables for the Spider storage engine.

Spider Table Parameters

Spider table parameters available in the CREATE TABLE ... COMMENT clause

Spider Status Variables

Spider server status variables.

Spider Functions

User-defined functions available with the Spider storage engine.

Spider mysql Database Tables

System tables related to the Spider storage engine.

2

2

3469/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
http://bazaar.launchpad.net/~kentokushiba/spiderformysql/spider-2.0-doc/files
https://speakerdeck.com/kentoku/new-features-and-enhancements-of-spider-storage-engine-for-sharding
https://mariadb.com/kb/en/spider-table-parameters/

Information Schema SPIDER_ALLOC_MEM Table

Information about Spider's memory usage.

Information Schema SPIDER_WRAPPER_PROTOCOLS Table

Installed along with the Spider storage engine.

Spider Differences Between SpiderForMySQL and MariaDB

Spider differences between MySQL and MariaDB

Spider Case Studies

List of clients using Spider

Spider Benchmarks

Benchmarks for Spider

Spider FAQ

Frequently-asked questions about the Spider storage engine

There are 5 related questions .

6

5.3.19.1 Spider Storage Engine Overview
Contents
1. About

2. Spider Versions in MariaDB

1. Some Server Variables to Set When Using Spider

3. Usage

1. Basic Usage

2. Further Examples

1. Federation Setup

2. Sharding Setup

3. Background Setup

4. High Availability Setup

About

The Spider storage engine is a storage engine with built-in sharding features. It supports partitioning and xa transactions,

and allows tables of different MariaDB instances to be handled as if they were on the same instance. It refers to one

possible implementation of ISO/IEC 9075-9:2008 SQL/MED.

When a table is created with the Spider storage engine, the table links to the table on a remote server. The remote table can

be of any storage engine. The table link is concretely achieved by the establishment of the connection from a local MariaDB

server to a remote MariaDB server. The link is shared for all tables that are part of a the same transaction.

Spider Versions in MariaDB

3470/4161

https://mariadb.com/kb/en/spider/+questions/

Spider Version Introduced Maturity

Spider 3.3.15 MariaDB 10.5.7, MariaDB 10.4.6 Stable

Spider 3.3.15 MariaDB 10.5.4 Gamma

Spider 3.3.14 MariaDB 10.4.3, MariaDB 10.3.13 Stable

Spider 3.3.13 MariaDB 10.3.7 Stable

Spider 3.3.13 MariaDB 10.3.3 Gamma

Spider 3.2.37 MariaDB 10.1.10 , MariaDB 10.0.23 Gamma

Spider 3.2.21 MariaDB 10.1.5 , MariaDB 10.0.18 Gamma

Spider 3.2.18 MariaDB 10.0.17 Gamma

Spider 3.2.11 MariaDB 10.0.14 Gamma

Spider 3.2.4 MariaDB 10.0.12 Gamma

Spider 3.2 MariaDB 10.0.11 Gamma

Spider 3.0 MariaDB 10.0.4 Beta

Some Server Variables to Set When Using Spider

If you are using Spider with replication, you can expand the list of transaction errors to be retried by setting

slave_transaction_retry_errors to the following to avoid network problems:

1158: Got an error reading communication packets

1159: Got timeout reading communication packets

1160: Got an error writing communication packets

1161: Got timeout writing communication packets

1429: Unable to connect to foreign data source

2013: Lost connection to MySQL server during query

12701: Remote MySQL server has gone away

Do this as follows in your my.cnf file:

slave_transaction_retry_errors="1158,1159,1160,1161,1429,2013,12701"

From MariaDB 10.4.5, the above is included the default.

Usage

Basic Usage

To create a table in the Spider storage engine format, the COMMENT and/or CONNECTION clauses of the CREATE

TABLE statement are used to pass connection information about the remote server.

For example, the following table exists on a remote server (in this example, the remote node was created with the MySQL

Sandbox tool, an easy way to test with multiple installations)::

node1 >CREATE TABLE s(

 id INT NOT NULL AUTO_INCREMENT,

 code VARCHAR(10),

 PRIMARY KEY(id));

On the local server, a Spider table can be created as follows:

CREATE TABLE s(

 id INT NOT NULL AUTO_INCREMENT,

 code VARCHAR(10),

 PRIMARY KEY(id)

)

ENGINE=SPIDER

COMMENT='host "127.0.0.1", user "msandbox", password "msandbox", port "8607"';

MariaDB starting with 10.3.4

3471/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mysql-sandbox/

Records can now be inserted on the local server, and they will be stored on the remote server:

INSERT INTO s(code) VALUES ('a');

node1 > SELECT * FROM s;

+----+------+

| id | code |

+----+------+

| 1 | a |

+----+------+

Alternative to specifying the data node information in the COMMENT, certain information (server, database, table) can

also be specified using Table Options, like so:

CREATE SERVER srv FOREIGN DATA WRAPPER mysql OPTIONS(

 HOST '127.0.0.1',

 USER 'msandbox',

 PASSWORD 'msandbox',

 PORT 8607);

CREATE TABLE s(

 id INT NOT NULL AUTO_INCREMENT,

 code VARCHAR(10),

 PRIMARY KEY(id)

)

ENGINE=SPIDER REMOTE_SERVER="srv" REMOTE_DATABASE="db" REMOTE_TABLE="s";

Further Examples

Preparing 10M record table using the sysbench utility

/usr/local/skysql/sysbench/bin/sysbench --test=oltp --db-driver=mysql --mysql-table-

engine=innodb --mysql-user=skysql --mysql-password=skyvodka --mysql-host=192.168.0.202 --mysql-

port=5054 --oltp-table-size=10000000 --mysql-db=test prepare

Make a first read only benchmark to check the initial single node performance.

/usr/local/skysql/sysbench/bin/sysbench --test=oltp --db-driver=mysql --mysql-table-

engine=innodb --mysql-user=skysql --mysql-password=skyvodka --mysql-host=192.168.0.202 --mysql-

port=5054 --mysql-db=test --oltp-table-size=10000000 --num-threads=4 --max-requests=100000 --

oltp-read-only=on run

MariaDB starting with 10.8.1

3472/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://github.com/akopytov/sysbench

sysbench 0.4.12: multi-threaded system evaluation benchmark

Running the test with following options:

Number of threads: 4

Doing OLTP test.

Running mixed OLTP test

Doing read-only test

Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases)

Using "BEGIN" for starting transactions

Using auto_inc on the id column

Maximum number of requests for OLTP test is limited to 100000

Threads started!

Done.

OLTP test statistics:

 queries performed:

 read: 1400196

 write: 0

 other: 200028

 total: 1600224

 transactions: 100014 (1095.83 per sec.)

 deadlocks: 0 (0.00 per sec.)

 read/write requests: 1400196 (15341.58 per sec.)

 other operations: 200028 (2191.65 per sec.)

Test execution summary:

 total time: 91.2681s

 total number of events: 100014

 total time taken by event execution: 364.3693

 per-request statistics:

 min: 1.85ms

 avg: 3.64ms

 max: 30.70ms

 approx. 95 percentile: 4.66ms

Threads fairness:

 events (avg/stddev): 25003.5000/84.78

 execution time (avg/stddev): 91.0923/0.00

Define an easy way to access the nodes from the MariaDB or MySQL client.

alias backend1='/usr/local/skysql/mysql-client/bin/mysql --user=skysql --password=skyvodka --

host=192.168.0.202 --port=5054'

alias backend2='/usr/local/skysql/mysql-client/bin/mysql --user=skysql --password=skyvodka --

host=192.168.0.203 --port=5054'

alias spider1='/usr/local/skysql/mysql-client/bin/mysql --user=skysql --password=skyvodka --

host=192.168.0.201 --port=5054'

Create the empty tables to hold the data and repeat for all available backend nodes.

3473/4161

backend1 << EOF

CREATE DATABASE backend;

CREATE TABLE backend.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

EOF

backend2 << EOF

CREATE DATABASE backend;

CREATE TABLE backend.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

EOF

Federation Setup

spider1 << EOF

CREATE SERVER backend

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.202',

 DATABASE 'test',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

CREATE TABLE test.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql",srv "backend"';

SELECT * FROM test.sbtest LIMIT 10;

EOF

3474/4161

Without connection pool or MariaDB thread pool, HaProxy and Spider have been protecting the tcp socket overflow without

specific TCP tuning. In reality with a well tuned TCP stack or thread pool the curve should not decrease so abruptly to 0.

Refer to the MariaDB Thread Pool to explore this feature.

Sharding Setup

Create the spider table on the Spider Node

3475/4161

#spider1 << EOF

CREATE SERVER backend1

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.202',

 DATABASE 'backend',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

CREATE SERVER backend2

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.203',

 DATABASE 'backend',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

CREATE DATABASE IF NOT EXISTS backend;

CREATE TABLE backend.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1"',

 PARTITION pt2 COMMENT = 'srv "backend2"'

) ;

EOF

Copy the data from the original sysbench table to the spider table

#/usr/local/skysql/mariadb/bin/mysqldump --user=skysql --password=skyvodka --

host=192.168.0.202 --port=5054 --no-create-info test sbtest | spider1 backend

#backend2 -e"select count(*) from backend.sbtest;"

+----------+

| count(*) |

+----------+

| 3793316 |

+----------+

#backend1 -e"select count(*) from backend.sbtest;"

+----------+

| count(*) |

+----------+

| 6206684 |

+----------+

We observe a common issue with partitioning is a non uniform distribution of data between the backends. based on the

partition key hashing algorithm.

Rerun the Benchmark with less queries

#/usr/local/skysql/sysbench/bin/sysbench --test=oltp --db-driver=mysql --mysql-table-

engine=innodb --mysql-user=skysql --mysql-password=skyvodka --mysql-host=192.168.0.201 --mysql-

port=5054 --mysql-db=backend --mysql-engine-trx=yes --oltp-table-size=10000000 --num-threads=4

--max-requests=100 --oltp-read-only=on run

3476/4161

OLTP test statistics:

 queries performed:

 read: 1414

 write: 0

 other: 202

 total: 1616

 transactions: 101 (22.95 per sec.)

 deadlocks: 0 (0.00 per sec.)

 read/write requests: 1414 (321.30 per sec.)

 other operations: 202 (45.90 per sec.)

Test execution summary:

 total time: 4.4009s

 total number of events: 101

 total time taken by event execution: 17.2960

 per-request statistics:

 min: 114.48ms

 avg: 171.25ms

 max: 200.98ms

 approx. 95 percentile: 195.12ms

Threads fairness:

 events (avg/stddev): 25.2500/0.43

 execution time (avg/stddev): 4.3240/0.04

The response time decreases to 0.04. This is expected because the query latency is increased from multiple network round

trips and condition push down is not implemented yet. Sysbench doing a lot of range queries. Just consider for now that this

range query can be a badly optimized query.

We need to increase the concurrency to get better throughput.

Background Setup

We have no background search available in MariaDB. It won't be available before MariaDB 10.2, but the next table definition

mainly enables improving the performance of a single complex query plan with background search that can be found via the

upstream spiral binaries MariaDB branch.

We have 4 cores per backend and 2 backends .

On backend1

3477/4161

#backend1 << EOF

CREATE DATABASE bsbackend1;

CREATE DATABASE bsbackend2;

CREATE DATABASE bsbackend3;

CREATE DATABASE bsbackend4;

CREATE TABLE bsbackend1.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend2.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend3.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend4.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

EOF

On backend2

3478/4161

#backend2 << EOF

CREATE DATABASE bsbackend5;

CREATE DATABASE bsbackend6;

CREATE DATABASE bsbackend7;

CREATE DATABASE bsbackend8;

CREATE TABLE bsbackend5.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend6.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend7.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

CREATE TABLE bsbackend8.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

EOF

On Spider Node

3479/4161

#spider2 << EOF

CREATE SERVER bsbackend1 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.202', DATABASE

'bsbackend1',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend2 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.202', DATABASE

'bsbackend2',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend3 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.202', DATABASE

'bsbackend3',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend4 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.202', DATABASE

'bsbackend4',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend5 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.203', DATABASE

'bsbackend5',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend6 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.203', DATABASE

'bsbackend6',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend7 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.203', DATABASE

'bsbackend7',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE SERVER bsbackend8 FOREIGN DATA WRAPPER mysql OPTIONS(HOST '192.168.0.203', DATABASE

'bsbackend8',USER 'skysql', PASSWORD 'skyvodka',PORT 5054);

CREATE DATABASE IF NOT EXISTS bsbackend;

CREATE TABLE bsbackend.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "bsbackend1"',

 PARTITION pt2 COMMENT = 'srv "bsbackend2"',

 PARTITION pt3 COMMENT = 'srv "bsbackend3"',

 PARTITION pt4 COMMENT = 'srv "bsbackend4"',

 PARTITION pt5 COMMENT = 'srv "bsbackend5"',

 PARTITION pt6 COMMENT = 'srv "bsbackend6"',

 PARTITION pt7 COMMENT = 'srv "bsbackend7"',

 PARTITION pt8 COMMENT = 'srv "bsbackend8"'

) ;

EOF

INSERT INTO bsbackend.sbtest SELECT * FROM backend.sbtest;

Now test the following query :

3480/4161

select count(*) from sbtest;

+----------+

| count(*) |

+----------+

| 10000001 |

+----------+

1 row in set (8,38 sec)

set spider_casual_read=1;

set spider_bgs_mode=2;

select count(*) from sbtest;

+----------+

| count(*) |

+----------+

| 10000001 |

+----------+

1 row in set (4,25 sec)

mysql> select sum(k) from sbtest;

+--------+

| sum(k) |

+--------+

| 0 |

+--------+

1 row in set (5,67 sec)

mysql> set spider_casual_read=0;

mysql> select sum(k) from sbtest;

+--------+

| sum(k) |

+--------+

| 0 |

+--------+

1 row in set (12,56 sec)

High Availability Setup

Spider's high availability feature has been deprecated (MDEV-28479), and will be deleted. Please use other high

availability solutions like replication or galera-cluster.

MariaDB starting with 10.7.5

3481/4161

https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://jira.mariadb.org/browse/MDEV-28479

3482/4161

#backend1 -e "CREATE DATABASE backend_rpl"

#backend2 -e "CREATE DATABASE backend_rpl"

#/usr/local/skysql/mariadb/bin/mysqldump --user=skysql --password=skyvodka --

host=192.168.0.202 --port=5054 backend sbtest | backend1 backend_rpl

#/usr/local/skysql/mariadb/bin/mysqldump --user=skysql --password=skyvodka --

host=192.168.0.203 --port=5054 backend sbtest | backend2 backend_rpl

#spider1 << EOF

DROP TABLE backend.sbtest;

CREATE SERVER backend1_rpl

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.202',

 DATABASE 'backend_rpl',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

CREATE SERVER backend2_rpl

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.203',

 DATABASE 'backend_rpl',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

CREATE TABLE backend.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_rpl"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_rpl"'

) ;

INSERT INTO backend.sbtest select 10000001, 0, '' ,'replicas test';

EOF

#backend1 -e "SELECT * FROM backend.sbtest WHERE id=10000001";

+----------+---+---+---------------+

| id | k | c | pad |

+----------+---+---+---------------+

| 10000001 | 0 | | replicas test |

+----------+---+---+---------------+

backend2 -e "SELECT * FROM backend.sbtest where id=10000001";

backend2 -e "SELECT * FROM backend_rpl.sbtest where id=10000001";

+----------+---+---+---------------+

| id | k | c | pad |

+----------+---+---+---------------+

| 10000001 | 0 | | replicas test |

+----------+---+---+---------------+

What is happening if we stop one backend?

#spider1 -e "SELECT * FROM backend.sbtest where id=10000001";

ERROR 1429 (HY000) at line 1: Unable to connect to foreign data source: backend1

Let's fix this with spider monitoring. Note that msi is the list of spider nodes @@server_id variable participating in the

quorum.

3483/4161

#spider1 << EOF

DROP TABLE backend.sbtest;

CREATE TABLE backend.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_rpl", mbk "2", mkd "2", msi "5054",

link_status "0 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_rpl", mbk "2", mkd "2", msi "5054",

link_status "0 0" '

) ;

CREATE SERVER mon

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.0.2019,

 DATABASE 'backend',

 USER 'skysql',

 PASSWORD 'skyvodka',

 PORT 5054

);

INSERT INTO `mysql`.`spider_link_mon_servers` VALUES

('%','%','%',5054,'mon',NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,0,NULL,NULL);

SELECT spider_flush_table_mon_cache();

EOF

Monitoring should be setup between Spider nodes participating in the cluster. We only have one Spider Node and

spider_link_mon_servers represent the inter-connection of all Spider nodes in our setup.

This simple setup does not bring HA in case the Spider Node is not available. In a production setup the number of

Spider Nodes in the spider_link_mon_servers table should be at least 3 to get a majority consensus.

#spider1 -e "SELECT * FROM backend.sbtest WHERE id=10000001"

+----------+---+---+---------------+

| id | k | c | pad |

+----------+---+---+---------------+

| 10000001 | 0 | | replicas test |

+----------+---+---+---------------+

Checking the state of the nodes:

#spider1 -e "SELECT db_name, table_name,server FROM mysql.spider_tables WHERE link_status=3"

+---------+--------------+----------+

| db_name | table_name | server |

+---------+--------------+----------+

| backend | sbtest#P#pt1 | backend1 |

+---------+--------------+----------+

3484/4161

No change has been made to cluster, so let's create a divergence:

spider1 -e "INSERT INTO backend.sbtest select 10000003, 0, '' ,'replicas test';"

backend1 -e "SELECT * FROM backend.sbtest WHERE id=10000003"

backend2 -e "SELECT * FROM backend_rpl.sbtest WHERE id=10000003"

+----------+---+---+---------------+

| id | k | c | pad |

+----------+---+---+---------------+

| 10000003 | 0 | | replicas test |

+----------+---+---+---------------+

Reintroducing the failed backend1 in the cluster:

#spider1 << EOF

ALTER TABLE backend.sbtest

ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_rpl" mbk "2", mkd "2", msi "5054", link_status

"2 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_rpl" mbk "2", mkd "2", msi "5054", link_status

"0 2" '

) ;

select spider_copy_tables('backend.sbtest#P#pt1','0','1');

select spider_copy_tables('backend.sbtest#P#pt2','1','0');

ALTER TABLE backend.sbtest

ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_rpl" mbk "2", mkd "2", msi "5054", link_status

"1 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_rpl" mbk "2", mkd "2", msi "5054", link_status

"0 1" '

) ;

EOF

5.3.19.2 Spider Installation
The Spider storage engine supports partitioning and XA transactions, and allows tables of different MariaDB instances to be

handled as if they were on the same instance.

To use Spider, you need two or more instances of MariaDB, typically running on separate hosts. The Spider node is the

MariaDB server that receives queries from your application. It then processes these queries, connecting to one or more

data nodes. The data nodes are the MariaDB servers that actually store the table data.

In order for this to work, you need to configure the data nodes to accept queries from the Spider node and you need to

configure the Spider node to use the data nodes as remote storage.

You don't need to install any additional packages to use it, but it does require some configuration.

3485/4161

Contents
1. Configuring Data Nodes

2. Install Spider on Spider Node

1. Step 1: Install Spider Package (Debian/Ubuntu)

2. Step 2a: Load the Spider Plugin (MariaDB 10.4 and Later)

3. Step 2b: Load the Spider Plugin (MariaDB 10.3 and Before)

4. Step 3: Verify Loading of the Spider Plugin

3. Configuring Spider Nodes

1. Configure the Server

2. Create the Table

Configuring Data Nodes
Spider deployments use data nodes to store the actual table data. In order for a MariaDB server to operate as a data node

for Spider, you need to create a table or tables on which to store the data and configure the server to accept client

connections from the Spider node.

For instance, first create the table:

CREATE TABLE test.spider_example (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(50)

) ENGINE=InnoDB;

Next, create a user for the Spider node and set a password for that user. For the sake of the example, assume the Spider

node is at the IP address 192.168.1.1:

CREATE USER spider@192.168.1.1;

SET PASSWORD FOR spider@192.168.1.1 = PASSWORD('passwd');

Then grant the spider user privileges on the example table.

GRANT ALL ON test.spider_example TO spider@192.168.1.1;

The data node is now ready for use. You can test it by attempting to connect the MariaDB client to the data from the Spider

node. For instance, assuming the data node is at the IP address 192.168.1.5, SSH into the Spider node then try to establish

a client connection.

$ mysql -u spider -p -h 192.168.1.5 test -e "SHOW TABLES;"

+----------------+

| Tables_in_test |

+----------------+

| spider_example |

+----------------+

Install Spider on Spider Node
The Spider storage engine must be installed on the Spider node. The Spider node is the MariaDB server that receives

queries for the table, (in this case test.spider_example). It then uses the Spider storage engine to connect to the tables

on the data nodes to retrieve data and return the result-set.

To install the Spider storage engine, complete the installation process shown below.

Step 1: Install Spider Package (Debian/Ubuntu)

On Debian and Ubuntu, the Spider storage engine is installed via a separate mariadb-plugin-spider package. To

install the package via APT, execute the following command:

$ sudo apt install mariadb-plugin-spider

On other Linux distributions, the Spider storage engine is installed with MariaDB Server.

3486/4161

Step 2a: Load the Spider Plugin (MariaDB 10.4 and Later)

With MariaDB 10.4 and later, the Spider storage engine can be loaded as a normal plugin, and Spider automatically creates

its dependencies. There are two primary ways to load the plugin.

The plugin can be loaded dynamically without a server restart by executing INSTALL SONAME or INSTALL PLUGIN :

INSTALL SONAME "ha_spider";

Alternatively, the plugin can be loaded by adding plugin_load_add=ha_spider to a configuration file:

<<quote>>

[mariadb]

...

plugin_load_add = "ha_spider"

<</quote>>

If the plugin is loaded in a configuration file, then the server will load the plugin after the server has been restarted.

Loading the plugin also creates a series of new tables in the mysql database, including:

table name added version

spider_xa MariaDB 10.0.4

spider_xa_member MariaDB 10.0.4

spider_xa_failed_log MariaDB 10.0.5

spider_tables MariaDB 10.0.4

spider_link_mon_servers MariaDB 10.0.4

spider_link_failed_log MariaDB 10.0.4

spider_table_position_for_recovery MariaDB 10.3.3

spider_table_sts MariaDB 10.3.3

spider_table_crd MariaDB 10.3.3

Step 2b: Load the Spider Plugin (MariaDB 10.3 and Before)

With MariaDB 10.3 and before, the Spider storage engine can be loaded by executing the included install_spider.sql

script:

$ mysql --user root --password < /usr/share/mysql/install_spider.sql

Running this configuration script also creates a series of new tables in the mysql database, including:

table name added version

spider_xa MariaDB 10.0.4

spider_xa_member MariaDB 10.0.4

spider_xa_failed_log MariaDB 10.0.5

spider_tables MariaDB 10.0.4

spider_link_mon_servers MariaDB 10.0.4

spider_link_failed_log MariaDB 10.0.4

spider_table_position_for_recovery MariaDB 10.3.3

spider_table_sts MariaDB 10.3.3

spider_table_crd MariaDB 10.3.3

Step 3: Verify Loading of the Spider Plugin

3487/4161

https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

You can verify that the Spider plugin has been loaded by querying the information_schema.ENGINES table:

SELECT ENGINE, SUPPORT

FROM information_schema.ENGINES

WHERE ENGINE = 'SPIDER';

+--------------------+---------+

| ENGINE | SUPPORT |

+--------------------+---------+

| SPIDER | YES |

+--------------------+---------+

If the Spider plugin is not loaded, then the query will not return any results.

Configuring Spider Nodes
With the data node or data nodes configured, you can set up the Spider node to use them. The Spider node is the MariaDB

server that receives queries for the table, (in this case test.spider_example). It then uses the Spider storage engine to

connect to the tables on the data nodes to retrieve data and return the result-set.

Configure the Server

In order to connect the Spider node to the data nodes, you may issue a CREATE SERVER statement for each data node.

You can then use the server definition in creating the Spider table.

CREATE SERVER dataNode1 FOREIGN DATA WRAPPER mysql

OPTIONS (

 HOST '192.168.1.5',

 DATABASE 'test',

 USER 'spider',

 PASSWORD 'passwd',

 PORT 3306);

In the event that you need to modify or replace this server after setting up the Spider table, remember to issue a FLUSH

statement to update the server definition.

FLUSH TABLES;

Alternatively, you could also choose not to create a server, but specify the connection info in the spider table creation.

Create the Table

With the data nodes set up and the Spider node configured for use, you can create the Spider table. The Spider table must

have the same column definitions as the tables on the data nodes. Spider can be configured through table parameters

passed to the COMMENT or CONNECTION option.

CREATE TABLE test.spider_example (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(50)

) ENGINE=Spider

COMMENT='wrapper "mysql", srv "dataNode1", table "spider_example"';

This configures Spider to use the server dataNode1 , (defined above), as a remote table. Any data you write to this table is

actually stored on the MariaDB server at 192.168.1.5.

Alternatively, starting from MariaDB 10.8.1 , one could specify spider table parameters using table options:

CREATE TABLE test.spider_example (

 id INT PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(50)

) ENGINE=Spider

REMOTE_SERVER=dataNode1 REMOTE_TABLE=spider_example;

3488/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/

5.3.19.3 Spider Storage Engine Core Concepts
Contents
1. Spider Common Usage

2. Spider Storage Engine Federation

3. Spider Threading Model

4. Spider Memory Model

A typical Spider deployment has a shared-nothing clustered architecture. The system works with any inexpensive hardware,

and with a minimum of specific requirements for hardware or software. It consists of a set of computers, with one or more

MariaDB processes known as nodes.

The nodes that store the data will be designed as Backend Nodes , and can be any MariaDB, MySQL, Oracle server

instances using any storage engine available inside the backend.

The Spider Proxy Nodes are instances running at least MariaDB 10. Spider Proxy Nodes are used to declare per

table attachment to the backend nodes. In addition Spider Proxy Nodes can be setup to enable the tables to be split and

mirrored to multiple Backend Nodes .

Spider Common Usage

In the default high availability setup #Spider Nodes# produce SQL errors when a backend server is not responding. Per

table monitoring can be setup to enable availability in case of unresponsive backends monotoring_bg_kind=1 or

monotoring_bg_kind=2 . The Monitoring Spider Nodes will be inter-connected with usage of the system table

mysql.link_mon_servers to manage network partitioning. Better known as split brain, an even number of Spider

Monitor Nodes should be setup to allow a consensus based on the majority. Rather a single separated shared

Monitoring Node instance or a minimum set of 3 Spider Nodes . More information can be found here .

Spider's high availability feature has been deprecated (MDEV-28479), and will be deleted. Please use other high

availability solutions like replication or galera-cluster.

Spider Storage Engine Federation

MariaDB starting with 10.7.5

3489/4161

http://fr.slideshare.net/Kentoku/spider-ha-20100922dtt7
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://jira.mariadb.org/browse/MDEV-28479

Spider is a pluggable Storage Engine, acting as a proxy between the optimizer and the remote backends. When the

optimizer requests multiple calls to the storage engine, Spider enforces consistency using the 2 phase commit protocol to

the backends and by creating transactions on the backends to preserve atomic operations for a single SQL execution.

Preserving atomic operation during execution is used at multiple levels in the architecture. For the regular optimizer plan, it

refers to multiple split reads and for concurrent partition scans, it will refer to semi transactions .

Costly queries can be more efficient when it is possible to fully push down part of the execution plan on each backend and

reduce the result afterwards. Spider enables such execution with some direct execution shortcuts.

Spider Threading Model
Spider uses the per partitions and per table model to concurrently access the remote backend nodes. For memory workload

that property can be used to define multiple partitions on a single remote backend node to better adapt the concurrency to

available CPUs in the hardware.

Spider maintains an internal dictionary of Table and Index statistics based on separated threads. The statistics are pulled

per default on a time line basis and refer to crd for cardinality and sts for table status.

Spider Memory Model
Spider stores resultsets into memory, but spider_quick_mode=3 stores resultsets into internal temporary tables if the

resultsets are larger than quick_table_size.

5.3.19.4 Spider Use Cases

3490/4161

Contents
1. Introduction

2. Basic setup

1. Setting the SUPER privilege for the Spider user on data nodes or alternatives to avoid privilege issues

2. Create accounts for spider to connect with on backend servers

3. Create table on backend servers

4. Create server entries on spider server

1. Unable to Connect Errors

3. Use case 1: remote table

4. Use case 2: sharding by hash

5. Use case 3: sharding by range

6. Use case 4: sharding by list

Introduction
This article will cover simple working examples for some standard use cases for Spider. The example will be illustrated using

a sales opportunities table to be consistent throughout. In some cases the actual examples will be contrived but are used to

illustrate the varying syntax options.

Basic setup
Have 3 or more servers available and Install MariaDB on each of these servers:

spider server which will act as the front end server hosting the spider storage engine.

backend1 which will act as a backed server storing data

backend2 which will act as a second backend server storing data

Follow the instructions here to enable the Spider storage engine on the spider server:

INSTALL SONAME 'ha_spider';

Setting the SUPER privilege for the Spider user on data
nodes or alternatives to avoid privilege issues
When explicitly setting the spider_internal_sql_log_off system variable, please note that Spider will execute matching SET

SQL_LOG_OFF statements on each of the data nodes. It will attempt to do this on the data nodes using the SUPER

privilege, which thus requires one to grant this privilege to the Spider user on the data nodes.

If the Spider user on the data note is not configured with the SUPER privilege, you may encounter issues when working with

Spider tables like ERROR 1227 (42000): Access denied for the missing SUPER privilege. To avoid this, don't explicitly set

spider_internal_sql_log_off, or set it to -1, or grant the SUPER privilege to the Spider user on the data node.

Create accounts for spider to connect with on backend
servers
Spider needs a remote connection to the backend server to actually perform the remote query. So this should be setup on

each backend server. In this case 172.21.21.2 is the ip address of the spider node limiting access to just that server.

backend1> mysql

grant all on test.* to spider@'172.21.21.2' identified by 'spider';

backend2> mysql

grant all on test.* to spider@'172.21.21.2' identified by 'spider';

Now verify that these connections can be used from the spider node (here 172.21.21.3 = backend1 and 172.21.21.4 =

backend2):

spider> mysql -u spider -p -h 172.21.21.3 test

spider> mysql -u spider -p -h 172.21.21.4 test

Create table on backend servers
The table definition should be created in the test database on both backend1 and backend2 servers:

3491/4161

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11),

primary key (id),

key (accountName)

) engine=InnoDB;

Create server entries on spider server
While the connection information can also be specified inline in the comment or (from MariaDB 10.8.1) as table options, it

is cleaner to define a server object representing each remote backend server connection:

create server backend1 foreign data wrapper mysql options

(host '172.21.21.3', database 'test', user 'spider', password 'spider', port 3306);

create server backend2 foreign data wrapper mysql options

(host '172.21.21.4', database 'test', user 'spider', password 'spider', port 3306);

Unable to Connect Errors

Bear in mind, if you ever need to remove, recreate or otherwise modify the server definition for any reason, you need to also

execute a FLUSH TABLES statement. Otherwise, Spider continues to use the old server definition, which can result in

queries raising the error

Error 1429: Unable to connect to foreign data source

If you encounter this error when querying Spider tables, issue a FLUSH TABLES statement to update the server definitions.

FLUSH TABLES;

Use case 1: remote table
In this case, a spider table is created to allow remote access to the opportunities table hosted on backend1. This then allows

for queries and remote dml into the backend1 server from the spider server:

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11),

primary key (id),

key (accountName)

) engine=spider comment='wrapper "mysql", srv "backend1" , table "opportunities"';

Use case 2: sharding by hash
See also hash-partitioning-type .

In this case a spider table is created to distribute data across backend1 and backend2 by hashing the id column. Since the

id column is an incrementing numeric value the hashing will ensure even distribution across the 2 nodes.

3492/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11),

primary key (id),

key (accountName)

) engine=spider COMMENT='wrapper "mysql", table "opportunities"'

 PARTITION BY HASH (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1"',

 PARTITION pt2 COMMENT = 'srv "backend2"'

) ;

Use case 3: sharding by range
See also range-partitioning-type .

In this case a spider table is created to distribute data across backend1 and backend2 based on the first letter of the

accountName field. All accountNames that start with the letter L and prior will be stored in backend1 and all other values

stored in backend2. Note that the accountName column must be added to the primary key which is a requirement of

MariaDB partitioning:

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11),

primary key (id, accountName),

key(accountName)

) engine=spider COMMENT='wrapper "mysql", table "opportunities"'

 PARTITION BY range columns (accountName)

(

 PARTITION pt1 values less than ('M') COMMENT = 'srv "backend1"',

 PARTITION pt2 values less than (maxvalue) COMMENT = 'srv "backend2"'

) ;

Use case 4: sharding by list
See also list-partitioning-type .

In this case a spider table is created to distribute data across backend1 and backend2 based on specific values in the

owner field. Bill, Bob, and Chris will be stored in backend1 and Maria and Olivier stored in backend2. Note that the owner

column must be added to the primary key which is a requirement of MariaDB partitioning:

create table opportunities (

id int,

accountName varchar(20),

name varchar(128),

owner varchar(7),

amount decimal(10,2),

closeDate date,

stageName varchar(11),

primary key (id, owner),

key(accountName)

) engine=spider COMMENT='wrapper "mysql", table "opportunities"'

 PARTITION BY list columns (owner)

(

 PARTITION pt1 values in ('Bill', 'Bob', 'Chris') COMMENT = 'srv "backend1"',

 PARTITION pt2 values in ('Maria', 'Olivier') COMMENT = 'srv "backend2"'

) ;

3493/4161

With MariaDB 10.2 the following partition clause can be used to specify a default partition for all other values, however this

must be a distinct partition / shard:

PARTITION partition_name DEFAULT

For a complete list of partition types, see partitioning-types .

5.3.19.5 Spider Cluster Management
Contents
1. Direct SQL

2. Direct Handler Socket

3. Inter Nodes Copy Table

4. General Log

5. Compiling in Debug Mode

6. Compiling in Static

7. Status Variables

8. Information Schema Tables

9. Performance Schema

Direct SQL
Direct SQL is a way to map reduced execution on remote backends and store the results in a local table. This can either be

sequential, using the UDF function spider_direct_sql, or concurrently, using spider_bg_direct_sql.

spider1 backend << EOF

CREATE TEMPORARY TABLE res

(

 id int(10) unsigned NOT NULL,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT ''

) ENGINE=MEMORY;

SELECT spider_direct_sql(

'SELECT * FROM sbtest s WHERE s.id IN(10,12,13)',

 'res',

 concat('host "', host, '", port "', port, '", user "', username, '", password "', password,

'", database "', tgt_db_name, '"')

) a

FROM

 mysql.spider_tables

WHERE

 db_name = 'backend' and table_name like 'sbtest#P#pt%';

SELECT * FROM res;

EOF

Or if you are using a SERVER:

SELECT spider_direct_sql(

 'SELECT * FROM sbtest s WHERE s.id IN(10,12,13)',

 'res',

 concat('server "', server, '"')

) a

 FROM mysql.spider_tables

 WHERE db_name = 'backend' and table_name like 'sbtest#P#pt%' ;

The default for spider_bg_direct_sql is to access concurrently all backends. If you have multiple partitions store inside a

single backend, you still can increase parallelism affecting different channels to each partitions.

3494/4161

CREATE TEMPORARY TABLE res

(

 id int(10) unsigned NOT NULL ,

 col_microsec DATETIME(6) default NOW(8),

 db varchar(20)

) ENGINE=MEMORY;

SELECT spider_bg_direct_sql('SELECT count(*) ,min(NOW(6)),min(DATABASE())) FROM sbtest',

'res', concat('srv "', server,'" cch ',@rn:=@rn+1)) a FROM mysql.spider_tables,(SELECT

@rn:=1) t2 WHERE db_name = 'bsbackend' and table_name like 'sbtest#P#pt%';

Direct Handler Socket

The Spider Handler Socket support has been removed, see MDEV-26858 .

Check that Handler Socket is running on the backend nodes

:~# backend2 -e "show variables like 'handler%'"

+-------------------------------+---------------+

| Variable_name | Value |

+-------------------------------+---------------+

| handlersocket_accept_balance | 0 |

| handlersocket_address | 192.168.0.201 |

| handlersocket_backlog | 32768 |

| handlersocket_epoll | 1 |

| handlersocket_plain_secret | |

| handlersocket_plain_secret_wr | |

| handlersocket_port | 20500 |

| handlersocket_port_wr | 20501 |

| handlersocket_rcvbuf | 0 |

| handlersocket_readsize | 0 |

| handlersocket_sndbuf | 0 |

| handlersocket_threads | 4 |

| handlersocket_threads_wr | 1 |

| handlersocket_timeout | 300 |

| handlersocket_verbose | 10 |

| handlersocket_wrlock_timeout | 12 |

+-------------------------------+---------------+

spider1 backend << EOF

CREATE TEMPORARY TABLE res

(

 id int(10) unsigned NOT NULL,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT ''

) ENGINE=MEMORY;

SELECT spider_direct_sql('1\t=\t1\t2\t100000\t0','res', 'host "192.168.0.202", table "sbtest",

database "test", port "20500", access_mode "1"');

Inter Nodes Copy Table

The UDF spider_copy_tables relies on Spider's high availability feature, which has been deprecated (MDEV-28479),

and will be deleted. Please use other high availability solutions like replication or galera-cluster.

The UDF function spider_copy_tables is available for copying table data from the source link ID to the destination link ID list

without stopping your service for copying

spider_copy_tables(Spider table name, source link ID, destination link ID list[, parameters])

Returns 1 if copying data succeeded.

Returns 0 if copying data failed.

If the Spider table is partitioned, you must set "Spider table name" with a part name such as "table_name#P#part_name".

MariaDB starting with 10.8.1

MariaDB starting with 10.8.1

3495/4161

https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://jira.mariadb.org/browse/MDEV-26858
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://jira.mariadb.org/browse/MDEV-28479

You can check the table name and the link ID with the part name using the following SQL:

SELECT table_name FROM mysql.spider_tables;

General Log
To capture all queries sent to remote backends on a Spider Node :

SET GLOBAL general_log=ON;

SET GLOBAL spider_general_log=ON;

SET GLOBAL spider_log_result_errors=1;

SET GLOBAL spider_log_result_error_with_sql=3;

Compiling in Debug Mode
See Compiling MariaDB for Debugging and Creating a Trace File .

Report the issue in MariaDB JIRA (see Reporting Bugs) or to the MariaDB Corporation support center.

Compiling in Static
Available since version 3.1.14

To activate spider as a static plugin change "MODULE_ONLY" to "MANDATORY" in storage/spider/CMakeList.txt before

compiling

Note that Spider UDF functions will not work with such settings.

Status Variables
A number of new status variables have been introduced, see Spider Status Variables for a complete list.

Information Schema Tables
A new Information Schema table is installed - SPIDER_ALLOC_MEM.

+-------------------+---------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------------+---------------------+------+-----+---------+-------+

| ID | int(10) unsigned | NO | | 0 | |

| FUNC_NAME | varchar(64) | YES | | NULL | |

| FILE_NAME | varchar(64) | YES | | NULL | |

| LINE_NO | int(10) unsigned | YES | | NULL | |

| TOTAL_ALLOC_MEM | bigint(20) unsigned | YES | | NULL | |

| CURRENT_ALLOC_MEM | bigint(20) | YES | | NULL | |

| ALLOC_MEM_COUNT | bigint(20) unsigned | YES | | NULL | |

| FREE_MEM_COUNT | bigint(20) unsigned | YES | | NULL | |

+-------------------+---------------------+------+-----+---------+-------+

From MariaDB 10.5, Spider installs another Information Schema table, SPIDER_WRAPPER_PROTOCOLS.

Performance Schema
The Performance schema is commonly used to troubleshoot issues that consume time inside your workload. The

Performance schema should not be activated for servers that are experimenting constant heavy load, but most of time it is

acceptable to lose 5% to 20% additional CPU to keep track of server internals execution.

To activate the performance schema, use the performance_schema system variable and add the following to the server

section of the MariaDB configuration file.

performance_schema=on

Activate the Spider probes to be monitored.

3496/4161

https://mariadb.com/kb/en/creating-a-trace-file/
https://jira.mariadb.org

UPDATE performance_schema.setup_instruments SET

 ENABLED='YES', TIMED='yes' WHERE NAME LIKE '%spider%';

Run your queries ...

And check the performance metrics. Remove specific Spider metrics to have a more global view.

SELECT * FROM performance_schema.events_waits_summary_global_by_event_name

 WHERE COUNT_STAR<>0 AND EVENT_NAME LIKE '%spider%'

 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;

5.3.19.6 Spider Feature Matrix
Not complete yet - still being updated

F(*) Federation only , P(*)partioning only . Spider column is for SpiderForMySQL found on the Spider web sIte.

Feature Spider 10.0

Clustering and High Availability

Commit, Rollback transactions on multiple backend Yes Yes

Multiplexing to a number of replicas using xa protocol 2PC Yes Yes

Split brain resolution based on a majority decision, failed node is remove from the list of replicas Yes Yes

Enable a failed backend to re enter the cluster transparently No No

Synchronize DDL to backend, table modification, schema changes No No

Synchronize DDL to other Spider No No

GTID tracking per table on XA error No Yes

Transparent partitioning No No

Covered by generic SQL test case Yes Yes

Heterogenous Backends

MariaDB and MySQL database backend Yes Yes

Oracle database backend, if build from source against the client library 'ORACLE_HOME' Yes Yes

Local table attachment Yes Yes

Performance

Index Condition Pushdown No No

Engine Condition Pushdown Yes Yes

Concurrent backend scan Yes No

Concurrent partition scan Yes No

Batched key access Yes Yes

Block hash join No Yes

HANDLER backend propagation Yes Yes

HANDLER backend translation from SQL Yes Yes

HANDLER OPEN cache per connection No Yes

HANDLER use prepared statement No Yes

HANDLER_SOCKET protocol backend propagation Yes Yes

HANDLER_SOCKET backend translation from SQL No No

Map reduce for ORDER BY ... LIMIT Yes Yes

Map reduce for MAX & MIN & SUM Yes Yes

Map reduce for some GROUP BY Yes Yes

Batch multiple WRITES in auto commit to reduce network round trip Yes Yes

Relaxing backend consistency Yes Yes

Execution Control

Configuration at table and partition level, settings can change per data collection Yes Yes

Configurable empty result set on errors. For API that does not have transactions replay Yes Yes

Query Cache tuning per table of the on remote backend Yes Yes

Index Hint per table imposed on remote backend Yes Yes

SSL connections to remote backend connections Yes Yes

Table definition discovery from remote backend Yes F(*)

Direct SQL execution to backend via UDF Yes Yes

3497/4161

Table re synchronization between backends via UDF Yes Yes

Maintain Index and Table Statistics of remote backends Yes Yes

Can use Independent Index and Table Statistics No Yes

Maintain local or remote table increments Yes Yes

LOAD DATA INFILE translate to bulk inserting Yes Yes

Performance Schema Probes Yes Yes

Load Balance Reads to replicate weight control Yes Yes

Fine tuning tcp timeout, connections retry Yes Yes

5.3.19.7 Spider System Variables
The following variables are available when the Spider storage engine has been installed.

See Server System Variables for a complete list of system variables and instructions on setting them.

See also the Full list of MariaDB options, system and status variables.

Starting from MariaDB 10.4.31, MariaDB 10.5.22, MariaDB 10.6.15, MariaDB 10.9.8, MariaDB 10.10.6, MariaDB

10.11.5, MariaDB 11.0.3, all spider system variables with the value -1 for deferring to table parameter values follow the

correct overriding mechanism: table parameter (if set) overrides system variables (if not -1) overrides actual variable

default. As a side effect, all such system variables in all versions have the same default value as the table param

default value.

Before this change, a non-minus-one system variable value would override the table parameter value. That is, if both

the system variable value and the table parameter value were set to be non-minus-one, the system variable value

would prevail. For MariaDB 10.7+ where the system variable default values were the same as table param default

instead of -1, this means that if the system variable were not set, but a table param is set to a non-default value, the

default would override the non-default value.

Contents
1. spider_auto_increment_mode

2. spider_bgs_first_read

3. spider_bgs_mode

4. spider_bgs_second_read

5. spider_bka_engine

6. spider_bka_mode

7. spider_bka_table_name_type

8. spider_block_size

9. spider_buffer_size

10. spider_bulk_size

11. spider_bulk_update_mode

12. spider_bulk_update_size

13. spider_casual_read

14. spider_conn_recycle_mode

15. spider_conn_recycle_strict

16. spider_conn_wait_timeout

17. spider_connect_error_interval

18. spider_connect_mutex

19. spider_connect_retry_count

20. spider_connect_retry_interval

21. spider_connect_timeout

22. spider_crd_bg_mode

23. spider_crd_interval

24. spider_crd_mode

25. spider_crd_sync

26. spider_crd_type

27. spider_crd_weight

28. spider_delete_all_rows_type

29. spider_direct_dup_insert

30. spider_direct_order_limit

31. spider_dry_access

32. spider_error_read_mode

33. spider_error_write_mode

34. spider_first_read

35. spider_force_commit

MariaDB starting with 10.4.31

3498/4161

36. spider_general_log

37. spider_ignore_comments

38. spider_index_hint_pushdown

39. spider_init_sql_alloc_size

40. spider_internal_limit

41. spider_internal_offset

42. spider_internal_optimize

43. spider_internal_optimize_local

44. spider_internal_sql_log_off

45. spider_internal_unlock

46. spider_internal_xa

47. spider_internal_xa_id_type

48. spider_internal_xa_snapshot

49. spider_load_crd_at_startup

50. spider_load_sts_at_startup

51. spider_local_lock_table

52. spider_lock_exchange

53. spider_log_result_error_with_sql

54. spider_log_result_errors

55. spider_low_mem_read

56. spider_max_connections

57. spider_max_order

58. spider_multi_split_read

59. spider_net_read_timeout

60. spider_net_write_timeout

61. spider_ping_interval_at_trx_start

62. spider_quick_mode

63. spider_quick_page_byte

64. spider_quick_page_size

65. spider_read_only_mode

66. spider_remote_access_charset

67. spider_remote_autocommit

68. spider_remote_default_database

69. spider_remote_sql_log_off

70. spider_remote_time_zone

71. spider_remote_trx_isolation

72. spider_remote_wait_timeout

73. spider_reset_sql_alloc

74. spider_same_server_link

75. spider_second_read

76. spider_select_column_mode

77. spider_selupd_lock_mode

78. spider_semi_split_read

79. spider_semi_split_read_limit

80. spider_semi_table_lock

81. spider_semi_table_lock_connection

82. spider_semi_trx

83. spider_semi_trx_isolation

84. spider_skip_default_condition

85. spider_skip_parallel_search

86. spider_slave_trx_isolation

87. spider_split_read

88. spider_store_last_crd

89. spider_store_last_sts

90. spider_strict_group_by

91. spider_sts_bg_mode

92. spider_sts_interval

93. spider_sts_mode

94. spider_sts_sync

95. spider_support_xa

96. spider_suppress_comment_ignored_warning

97. spider_sync_autocommit

98. spider_sync_sql_mode

99. spider_sync_time_zone

100. spider_sync_trx_isolation

101. spider_table_crd_thread_count

102. spider_table_init_error_interval

103. spider_table_sts_thread_count 3499/4161

103. spider_table_sts_thread_count

104. spider_udf_ct_bulk_insert_interval

105. spider_udf_ct_bulk_insert_rows

106. spider_udf_ds_bulk_insert_rows

107. spider_udf_ds_table_loop_mode

108. spider_udf_ds_use_real_table

109. spider_udf_table_lock_mutex_count

110. spider_udf_table_mon_mutex_count

111. spider_use_all_conns_snapshot

112. spider_use_cond_other_than_pk_for_update

113. spider_use_consistent_snapshot

114. spider_use_default_database

115. spider_use_flash_logs

116. spider_use_handler

117. spider_use_pushdown_udf

118. spider_use_snapshot_with_flush_tables

119. spider_use_table_charset

120. spider_version

121. spider_wait_timeout

122. spider_xa_register_mode

spider_auto_increment_mode

Description: The auto increment mode.

-1 Falls back to the default value, if the table parameter is not set.

0 Normal Mode. Uses a counter that Spider gets from the remote backend server with an exclusive lock for

the auto-increment value. This mode is slow. Use Quick Mode (2), if you use Spider tables with the table

partitioning feature and the auto-increment column is the first column of the index. Before MariaDB 10.3, this

value works as "1" for partitioned Spider tables.

1 Quick Mode. Uses an internal Spider counter for the auto-increment value. This mode is fast, but it is

possible for duplicates to occur when updating the same table from multiple Spider proxies.

2 Set Zero Mode. The auto-increment value is given by the remote backend. Sets the column to 0 , even if

you set the value to the auto-increment column in your statement. If you use the table with the table partitioning

feature, it sets to zero after choosing an inserted partition.

3 When the auto-increment column is set to NULL , the value is given by the remote backend server. If you

set the auto-increment column to 0 ,the value is given by the local server. Set spider_reset_auto_incremnet to

2 or 3 if you want to use an auto-increment column on the remote server.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 3

DSN Parameter Name: aim

spider_bgs_first_read

Description: Number of first read records to use when performing a concurrent background search. To start a range

scan on the remote backend, the storage engine first needs to send the first record. Fetching a second record in the

same query can save a network round trip stopping the plan if the backend has a single record. The first and second

reads are used to warm up for background search. When not using spider_split_read and spider_semi_split_read, the

third read fetches the remaining data source in a single fetch.

-1 Falls back to the default value, if the table parameter is not set.

0 Records are usually retrieved.

1 and greater: Number of records.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 2

Range: -1 to 9223372036854775807

DSN Parameter Name: bfr

spider_bgs_mode
3500/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Description: Background search mode. This enables the use of a thread per data server connection if the query is

not shard-based and must be distributed across shards. The partitioning plugin scans partitions one after the other to

optimize memory usage. Because the shards are external, reading all shards can be performed in parallel when the

plan prunes multiple partitions.

-1 Falls back to the default value, if the table parameter is not set.

0 Disables background search.

1 Uses background search when searching without locks

2 Uses background search when searching without locks or with shared locks.

3 Uses background search regardless of locks.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 3

DSN Parameter Name: bmd

spider_bgs_second_read

Description: Number of second read records on the backend server when using background search. When the first

records are found from spider_bgs_first_read, the engine continues scanning a range adding a LIMIT of

spider_bgs_first_read and spider_bgs_second_read.

-1 Falls back to the default value, if the table parameter is not set.

0 Records are usually retrieved.

1 and greater: Number of records.

Scope: Global, Session

Dynamic: Yes

Default Session Value: 100

Default Table Value: 100

Range: -1 to 9223372036854775807

DSN Parameter Name: bsr

spider_bka_engine

Description: Storage engine used with temporary tables when the spider_bka_mode system variable is set to 1 .

Defaults to the value of the table parameter , which is MEMORY by default.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Session Value: ""

Default Table Value: Memory

DSN Parameter Name: bke

spider_bka_mode

Description: Internal action to perform when multi-split reads are disabled. If the spider_multi_split_read system

variable is set to 0 , Spider uses this variable to determine how to handle statements when the optimizer resolves

range retrieval to multiple conditions.

 -1 Falls back to the default value, if the table parameter is not set.

0 Uses "union all".

1 Uses a temporary table, if it is judged acceptable.

2 Uses a temporary table, if it is judged acceptable and avoids replication delay.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 2

DSN Parameter Name: bkm

3501/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

spider_bka_table_name_type

Description: The type of temporary table name for bka.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

spider_block_size

Description: Size of memory block used in MariaDB. Can usually be left unchanged.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 16384

Range: 0 to 4294967295

DSN Parameter Name: bsz

spider_buffer_size

Description: Buffer size. -1 , the default, will use the table parameter .

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 16000

Default Table Value: 16000

Range: -1 to 2147483647

Introduced: MariaDB 10.5.4

spider_bulk_size

Description: Size in bytes of the buffer when multiple grouping multiple INSERT statements in a batch, (that is, bulk

inserts).

-1 The table parameter is adopted.

0 or greater: Size of the buffer.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 16000

Default Table Value: 16000

Range: -1 to 2147483647

DSN Parameter Name: bsz

spider_bulk_update_mode

Description: Bulk update and delete mode. Note: If you use a non-default value for the spider_bgs_mode or

spider_split_read system variables, Spider sets this variable to 2 .

-1 Falls back to the default value, if the table parameter is not set.

0 Sends UPDATE and DELETE statements one by one.

1 Collects multiple UPDATE and DELETE statements, then sends the collected statements one by one.

2 Collects multiple UPDATE and DELETE statements and sends them together.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 2

DSN Parameter Name: bum

3502/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

spider_bulk_update_size

Description: Size in bytes for UPDATE and DELETE queries when generating bulk updates.

-1 The table parameter is adopted.

0 or greater: Size of buffer.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 16000

Default Table Value: 16000

Range: -1 to 2147483647

DSN Parameter Name: bus

spider_casual_read

Description: Casual Reads enables all isolation levels, (such as repeatable reads) to work with transactions on

multiple backends. With auto-commit queries, you can relax read consistency and run on multiple connections to the

backends. This enables parallel queries across partitions, even if multiple shards are stored on the same physical

server.

-1 Use table parameter .

0 Use casual read.

1 Choose connection channel automatically.

2 to 63 Number of connection channels.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 63

DSN Parameter Name: ##

spider_conn_recycle_mode

Description: Connection recycle mode.

0 Disconnect.

1 Recycle by all sessions.

2 Recycle in the same session.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Range: 0 to 2

Default Session Value: 0

spider_conn_recycle_strict

Description: Whether to force the creation of new connections.

1 Don't force.

0 Force new connection

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Range: 0 to 1

spider_conn_wait_timeout

Description: Max waiting time in seconds for Spider to get a remote connection.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: 10

3503/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Range: 0 to 1000

Introduced: MariaDB 10.3.3

spider_connect_error_interval

Description: Return same error code until interval passes if connection is failed

Scope: Global,

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 4294967295

spider_connect_mutex

Description: Whether to serialize remote servers connections (use mutex at connecting). Use this parameter if you

get an error or slowdown due to too many connection processes.

0 Not serialized.

1 : Serialized.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: 0

spider_connect_retry_count

Description: Number of times to retry connections that fail due to too many connection processes.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1000

Range: 0 to 2147483647

spider_connect_retry_interval

Description: Interval in microseconds for connection failure due to too many connection processes.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1000

Range: -1 to 9223372036854775807

spider_connect_timeout

Description: Timeout in seconds to declare remote backend unresponsive when opening a connection. Change for

high-latency networks.

-1 The table parameter is adopted.

0 Less than 1.

1 and greater: Number of seconds.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 6

Default Table Value: 0

Range: -1 to 2147483647

DSN Parameter Name: cto

spider_crd_bg_mode

Description: Indexes cardinality statistics in the background. Disable when the spider_crd_mode system variable is
3504/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/

set to 3 or when the spider_crd_interval variable is set to 0 .

-1 Falls back to the default value, if the table parameter is not set.

0 Disables background confirmation.

2 Enables background confirmation.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 1

Range: -1 to 2

DSN Parameter Name: cbm

spider_crd_interval

Description: Time interval in seconds of index cardinality statistics. Set to 0 to always get the latest information

from remote servers.

-1 The table parameter is adopted.

1 or more: Interval in seconds table state confirmation.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 51

Default Table Value: 51

Range: -1 to 2147483647

DSN Parameter Name: civ

spider_crd_mode

Description: Mode for index cardinality statistics. By default, uses SHOW at the table-level.

-1,0 Uses the table parameter .

1 Uses the SHOW command.

2 Uses the Information Schema.

3 Uses the EXPLAIN command.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 3

DSN Parameter Name: cmd

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_crd_sync

Description: Synchronize index cardinality statistics in partitioned tables.

-1 Falls back to the default value, if the table parameter is not set.

0 Disables synchronization.

1 Uses table state synchronization when opening a table, but afterwards performs no synchronization.

2 Enables synchronization.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 2

DSN Parameter Name: csy

spider_crd_type

Description: Type of cardinality calculation. Only effective when the spider_crd_mode system variable is set to use

3505/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/

SHOW (1) or to use the Information Schema (2).

-1 Falls back to the default value, if the table parameter is not set.

0 Uses the value of the spider_crd_weight system variable, as a fixed value.

1 Uses the value of the spider_crd_weight system variable, as an addition value.

2 Uses the value of the spider_crd_weight system variable, as a multiplication value.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 2

Range: -1 to 2

DSN Parameter Name: ctp

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_crd_weight

Description: Weight coefficient used to calculate effectiveness of index from the cardinality of column. For more

information, see the description for the spider_crd_type system variable.

-1 Falls back to the default value, if the table parameter is not set.

0 or greater: Weight.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 2

Range: -1 to 2147483647

DSN Parameter Name: cwg

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_delete_all_rows_type

Description: The type of delete_all_rows.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

spider_direct_dup_insert

Description: Manages duplicate key check for REPLACE, INSERT IGNORE and LOAD DATA LOCAL INFILE to

remote servers. This can save on network roundtrips if the key always maps to a single partition. For bulk operations,

records are checked for duplicate key errors one by one on the remote server, unless you set it to avoid duplicate

checks on local servers (1).

-1 Falls back to the default value, if the table parameter is not set.

0 Performs duplicate checks on the local server.

1 Avoids duplicate checks on the local server.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: ddi

spider_direct_order_limit

Description: Pushes ORDER BY and LIMIT operations to the remote server.

-1 Falls back to the default value, if the table parameter is not set.

0 Uses local execution.

1 Uses push down execution.
3506/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 9223372036854775807

Range: -1 to 9223372036854775807

DSN Parameter Name: dol

spider_dry_access

Description: Simulates an empty result-set. No queries are sent to the backend. Use for performance tuning.

0 Normal access.

1 All access from Spider to data node is suppressed.

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

spider_error_read_mode

Description: Sends an empty result-set when reading a backend server raises an error. Useful with applications that

don't implement transaction replays.

-1 Falls back to the default value, if the table parameter is not set.

0 Returns an error.

1 Returns an empty result.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: erm

spider_error_write_mode

Description: Sends an empty result-set when writing to a backend server raises an error. Useful with applications

that don't implement transaction replays.

-1 Falls back to the default value, if the table parameter is not set.

0 Returns an error.

1 Returns an empty result-set on error.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: ewm

spider_first_read

Description: Number of first read records to start a range scan on the backend server. Spider needs to send the first

record. Fetching the second record saves network round-trips, stopping the plan if the backend has a single record.

First read and second read are used to warm up for background searches, third reads without using the

spider_split_read and spider_semi_split_read system variables fetches the remaining data source in a single last

fetch.

-1 Use the table parameter .

0 Usually retrieves records.

1 and greater: Sets the number of first read records.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

3507/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Default Session Value: 0

Default Table Value: 2

Range: -1 to 9223372036854775807

DSN Parameter Name: frd

spider_force_commit

Description: Behavior when error occurs on XA PREPARE , XA COMMIT , and XA ROLLBACK statements.

0 Returns the error.

1 Returns the error when the xid doesn't exist, otherwise it continues processing the XA transaction.

2 Continues processing the XA transaction, disregarding all errors.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Range: 0 to 2

spider_general_log

Description: Whether Spider logs all commands to the General Log. Spider logs error codes according to the

spider_log_result_errors system variable.

OFF Logs no commands.

ON Logs commands to the General Log.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: OFF

spider_ignore_comments

Description: Whether to unconditionally ignore COMMENT and CONNECTION strings without checking whether

table options are specified.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.3.0

spider_index_hint_pushdown

Description: Whether to use pushdown index hints, like force_index .

0 Do not use pushdown hints

1 Use pushdown hints

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: OFF

Introduced: MariaDB 10.3.3

spider_init_sql_alloc_size

Description: Initial size of the local SQL buffer.

-1 Falls back to the default value, if the table parameter is not set.

0 or greater: Size of the buffer.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1024

Default Table Value: 1024

DSN Parameter Name: isa

3508/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/

Range: -1 to 2147483647

Deprecated: MariaDB 10.7.5 , MariaDB 10.8.4 , MariaDB 10.9.2

spider_internal_limit

Description: Limits the number of records when acquired from a remote server.

-1 The table parameter is adopted.

0 or greater: Records limit.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 9223372036854775807

Default Table Value: 9223372036854775807

Range: -1 to 9223372036854775807

DSN Parameter Name: ilm

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_internal_offset

Description: Skip records when acquired from the remote server.

-1 Falls back to the default value, if the table parameter is not set.

0 or more : Number of records to skip.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 9223372036854775807

DSN Parameter Name: ios

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_internal_optimize

Description: Whether to perform push down operations for OPTIMIZE TABLE statements.

-1 Falls back to the default value, if the table parameter is not set.

0 Transmitted.

1 Not transmitted.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: iom

spider_internal_optimize_local

Description: Whether to transmit to remote servers when OPTIMIZE TABLE statements are executed on the local

server.

-1 Falls back to the default value, if the table parameter is not set.

0 Not transmitted.

1 Transmitted.

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: iol

spider_internal_sql_log_off

Description: Whether to log SQL statements sent to the remote server in the General Query Log.
3509/4161

https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/optimize_table
https://mariadb.com/kb/en/spider-table-parameters/

Explicitly setting this system variable to either ON or OFF causes the Spider node to send a SET

sql_log_off statement to each of the data nodes using the SUPER privilege.

-1 Don't know or does not matter; don't send 'SET SQL_LOG_OFF' statement

0 Send 'SET SQL_LOG_OFF 0' statement to data nodes (logs SQL statements to the remote server)

1 Send 'SET SQL_LOG_OFF 1' statement to data nodes (doesn't log SQL statements to the remote server)

Scope: Global, Session

Dynamic: Yes

Data Type: numeric (previously boolean)

Range: -1 to 1

Default Session Value: -1 (previously ON)

spider_internal_unlock

Description: Whether to transmit unlock tables to the connection of the table used with SELECT statements.

0 Not transmitted.

1 Transmitted.

Data Type: boolean

Default Session Value: 0

spider_internal_xa

Description: Whether to implement XA at the server- or storage engine-level. When using the server-level, set

different values for the server_id system variable on all server instances to generate different xid values.

OFF Uses the storage engine protocol.

ON Uses the server protocol.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: OFF

spider_internal_xa_id_type

Description: The type of internal_xa id.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Range: -1 to 1

spider_internal_xa_snapshot

Description: Limitation for reading consistent data on all backend servers when using MariaDB's internal XA

implementation and START TRANSACTION WITH CONSISTENT SNAPSHOT .

0 Raise error when using a Spider table.

1 Raise error when issued a START TRANSACTION statement.

2 Takes a consistent snapshot on each backend, but loses global consistency.

3 Starts transactions with XA, but removes CONSISTENT SNAPSHOT .

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Range: 0 to 3

Default Session Value: 0

spider_load_crd_at_startup

Description: Whether to load CRD from the system table at startup.

-1 Use table parameter

0 Do not load

1 Load

3510/4161

https://mariadb.com/kb/en/spider-table-parameters/

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

Introduced: MariaDB 10.3.3

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_load_sts_at_startup

Description: Whether to load STS from the system table at startup.

-1 Use table parameter

0 Do not load

1 Load

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Session Value: 1

Range: -1 to 1

Introduced: MariaDB 10.3.3

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_local_lock_table

Description: Whether to push LOCK TABLES statements down to the remote server.

0 Transmitted.

1 Not transmitted.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

spider_lock_exchange

Description: Whether to convert SELECT... LOCK IN SHARE MODE and SELECT... FOR UPDATE statements into

a LOCK TABLE statement.

0 Not converted.

1 Converted.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: 0

spider_log_result_error_with_sql

Description: How to log SQL statements with result errors.

0 No log

1 Log error

2 Log warning summary

3 Log warning

4 Log info (Added in MariaDB 10.5.4)

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4

spider_log_result_errors

Description: Log results from data nodes to the Spider node in the Error Log. Performs no logging by default.

3511/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

0 : Logs no errors from data nodes.

1 : Logs errors from data nodes.

2 : Logs errors from data nodes, as well as warning summaries.

3 : Logs errors from data nodes, as well as warning summaries and details.

4 : Logs errors from data nodes, as well as warning summaries and details, and result summaries.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 4

spider_low_mem_read

Description: Whether to use low memory mode when executing queries issued internally to remote servers that

return result-sets.

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't use low memory mode.

1 Uses low memory mode.

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 1

spider_max_connections

Description: Maximum number of connections from Spider to a remote MariaDB servers. Defaults to 0 , which is no

limit.

Command-line: --spider-max-connections

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Range: 0 to 99999

Introduced: MariaDB 10.3.3

spider_max_order

Description: Maximum number of columns for ORDER BY operations.

-1 The table parameter is adopted.

0 and greater: Maximum number of columns.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 32767

Default Table Value: 32767

Range: -1 to 32767

DSN Parameter Name: mod

spider_multi_split_read

Description: Whether to divide a statement into multiple SQL statements sent to the remote backend server when

the optimizer resolves range retrievals to multiple conditions.

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't divide statements.

1 Divides statements.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 100

Default Table Value: 100

3512/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Range: -1 to 2147483647

DSN Parameter Name: msr

spider_net_read_timeout

Description: TCP timeout in seconds to declare remote backend servers unresponsive when reading from a

connection. Change for high latency networks.

-1 Falls back to the default value, if the table parameter is not set.

0 Less than 1 second timeout.

1 and greater: Timeout in seconds.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 600

Default Table Value: 600

Range: -1 to 2147483647

DSN Parameter Name: nrt

spider_net_write_timeout

Description: TCP timeout in seconds to declare remote backend servers unresponsive when writing to a connection.

Change for high latency networks.

-1 The table parameter is adopted.

0 Less than 1 second timeout.

1 and more: Timeout in seconds.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 600

Default Table Value: 600

Range: -1 to 2147483647

DSN Parameter Name: nwt

spider_ping_interval_at_trx_start

Description: Resets the connection with keepalive timeout in seconds by sending a ping.

0 At every transaction.

1 and greater: Number of seconds.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 3600

Range: 0 to 2147483647

spider_quick_mode

Description: Sets the backend query buffering to cache on the remote backend server or in the local buffer.

-1 Falls back to the default value, if the table parameter is not set.

0 Local buffering, it acquires records collectively with store_result .

1 Remote buffering, it acquires records one by one. Interrupts don't wait and recovery on context switch back.

2 Remote buffering, it acquires records one by one. Interrupts wait to the end of the acquisition.

3 Local buffering, uses a temporary table on disk when the result-set is greater than the value of the

spider_quick_page_size system variable.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 3

Default Table Value: 3

Range: -1 to 3

DSN Parameter Name: qmd

3513/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

spider_quick_page_byte

Description: Memory limit by size in bytes in a page when acquired record by record.

-1 The table parameter is used. When quick_mode is 1 or 2, Spider stores at least 1 record even if

quick_page_byte is smaller than 1 record. When quick_mode is 3, quick_page_byte is used for judging using

temporary tables. That is given priority when spider_quick_page_byte is set.

0 or greater: Memory limit.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 10485760

Range: -1 to 9223372036854775807

Introduced: MariaDB 10.4.3, MariaDB 10.3.13

spider_quick_page_size

Description: Number of records in a page when acquired record by record.

-1 The table parameter is adopted.

0 or greater: Number of records.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1024 (>=MariaDB 10.7), -1 (<= MariaDB 10.6)

Default Table Value: 100

Range: -1 to 9223372036854775807

DSN Parameter Name: qps

spider_read_only_mode

Description: Whether to allow writes on Spider tables.

-1 Falls back to the default value, if the table parameter is not set.

0 Allows writes to Spider tables.

1 Makes tables read- only.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0 (>=MariaDB 10.7), -1 (<= MariaDB 10.6)

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: rom

spider_remote_access_charset

Description: Forces the specified session character set when connecting to the backend server. This can improve

connection time performance.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Session Value: null

spider_remote_autocommit

Description: Sets the auto-commit mode when connecting to backend servers. This can improve connection time

performance.

-1 Doesn't change the auto-commit mode.

0 Sets the auto-commit mode to 0 .

1 Sets the auto-commit mode to 1 .

Scope: Global

Dynamic: Yes

Data Type: numeric

3514/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Default Session Value: -1

Range: -1 to 1

spider_remote_default_database

Description: Sets the local default database when connecting to backend servers. This can improve connection time

performance.

Scope: Global, Session

Dynamic: Yes

Data Type: string

Default Session Value: Empty string

spider_remote_sql_log_off

Description: Sets the sql_log_off system variable to use when connecting to backend servers.

-1 Doesn't set the value.

0 Doesn't log Spider SQL statements to remote backend servers.

1 Logs SQL statements on remote backend

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: -1

Range: -1 to 1

spider_remote_time_zone

Description: Forces the specified time zone setting when connecting to backend servers. This can improve

connection performance when you know the time zone.

Scope: Global

Dynamic: Yes

Data Type: string

Default Session Value: null

spider_remote_trx_isolation

Description: Sets the Transaction Isolation Level when connecting to the backend server.

-1 Doesn't set the Isolation Level.

0 Sets to the READ UNCOMMITTED level.

1 Sets to the READ COMMITTED level.

2 Sets to the REPEATABLE READ level.

3 Sets to the SERIALIZABLE level.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: -1

Range: -1 to 3

spider_remote_wait_timeout

Description: Wait timeout in seconds on remote server. -1 means not set.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: -1

Range: -1 to 2147483647

Introduced: MariaDB 10.4.5

spider_reset_sql_alloc

3515/4161

https://mariadb.com/kb/en/time-zones/

Description: Resets the per connection SQL buffer after an SQL statement executes.

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't reset.

1 Resets.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 1

DSN Parameter Name: rsa

spider_same_server_link

Description: Enables the linking of a table to the same local instance.

0 Disables linking.

1 Enables linking.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: OFF

spider_second_read

Description: Number of second read records on the backend server when the first records are found from the first

read. Spider continues scanning a range, adding a LIMIT using the spider_first_read and spider_second_read

variables.

-1 Falls back to the default value, if the table parameter is not set.

0 Usually retrieves records.

1 and greater: Number of records.

Scope: Global, Session

Dynamic: Yes

Default Session Value: 0

Default Table Value: 0

Range: -1 to 9223372036854775807

DSN Parameter Name: srd

spider_select_column_mode

Description: Mode for column retrieval from remote backend server.

-1 Falls back to the default value, if the table parameter is not set.

0 Uses index columns when the SELECT statement can resolve with an index, otherwise uses all columns.

1 Uses all columns judged necessary to resolve the query.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 1

DSN Parameter Name: scm

spider_selupd_lock_mode

Description: Local lock mode on INSERT SELECT .

-1 Falls back to the default value, if the table parameter is not set.

0 Takes no locks.

1 Takes shared locks.

2 Takes exclusive locks.

Scope: Global, Session

Dynamic: Yes

3516/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 2

DSN Parameter Name: slm#

spider_semi_split_read

Description: Whether to use chunk retrieval with offset and limit parameters on SQL statements sent to the remote

backend server when using the spider_split_read system variable.

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't use chunk retrieval.

1 or more Uses chunk retrieval.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Default Table Value: 2

Range: -1 to 2147483647

DSN Parameter Name: ssr#

spider_semi_split_read_limit

Description: Sets the limit value for the spider_semi_split_read system variable.

-1 Falls back to the default value, if the table parameter is not set.

0 or more: The limit value.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 9223372036854775807

Default Table Value: 9223372036854775807

Range: -1 to 9223372036854775807

DSN Parameter Name: ssl#

spider_semi_table_lock

Description: Enables semi-table locking. This adds a LOCK TABLES statement to SQL executions sent to the

remote backend server when using non-transactional storage engines to preserve consistency between roundtrips.

0 Disables semi-table locking.

1 Enables semi-table locking.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0 (>=MariaDB 10.8), 1 (<= MariaDB 10.7)

Range: 0 to 1

DSN Parameter Name: stl#

spider_semi_table_lock_connection

Description: Whether to use multiple connections with semi-table locking. To enable semi-table locking, use the

spider_semi_table_lock system variable.

-1 Falls back to the default value, if the table parameter is not set.

0 Uses the same connection.

1 Uses different connections.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 1

3517/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/

DSN Parameter Name: stc#

spider_semi_trx

Description: Enables semi-transactions. This controls transaction consistency when an SQL statement is split into

multiple statements issued to the backend servers. You can preserve or relax consistency as need. Spider

encapsulates auto-committed SQL statements within a transaction on the remote backend server. When using READ

COMMITTED or READ UNCOMMITTED transaction isolation levels to force consistency, set the

spider_semi_trx_isolation system variable to 2 .

0 Disables semi-transaction consistency.

1 Enables semi-transaction consistency.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: ON

spider_semi_trx_isolation

Description: Set consistency during range SQL execution when spider_sync_trx_isolation is 1

-1 OFF

0 READ UNCOMMITTED

1 READ COMMITTED

2 REPEATABLE READ

3 SERIALIZABLE

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: -1

Range: -1 to 3

spider_skip_default_condition

Description: Whether to compute condition push downs.

-1 Falls back to the default value, if the table parameter is not set.

0 Computes condition push downs.

1 Doesn't compute condition push downs.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 1

DSN Parameter Name: sdc

spider_skip_parallel_search

Description: Whether to skip parallel search by specific conditions.

-1 :use table parameter

0 :not skip

1 :skip parallel search if query is not SELECT statement

2 :skip parallel search if query has SQL_NO_CACHE

3 :1+2

Commandline: --spider-skip-parallel-search=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Range: -1 to 3

Introduced: MariaDB 10.3.3

3518/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

spider_slave_trx_isolation

Description: Transaction isolation level when Spider table is used by slave SQL thread.

-1 off

0 read uncommitted

1 read committed

2 repeatable read

3 serializable

Commandline: --spider-slave-trx-isolation=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: -1

Range: -1 to 3

Introduced: MariaDB 10.4.3, MariaDB 10.3.13

spider_split_read

Description: Number of records in chunk to retry the result when a range query is sent to remote backend servers.

-1 Falls back to the default value, if the table parameter is not set.

0 or more: Number of records.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 9223372036854775807

Default Table Value: 9223372036854775807

Range: -1 to 9223372036854775807

DSN Parameter Name: srd

spider_store_last_crd

Description: Whether to store last CRD result in the system table.

-1 Use table parameter .

0 Do not store last CRD result in the system table.

1 Store last CRD result in the system table.

Commandline: --spider-store-last-crd=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

Introduced: MariaDB 10.3.3

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_store_last_sts

Description: Whether to store last STS result in the system table.

-1 Use table parameter .

0 Do not store last STS result in the system table.

1 Store last STS result in the system table.

Commandline: --spider-store-last-sts=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

Introduced: MariaDB 10.3.3

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_strict_group_by

3519/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

Description: Whether to use columns in select clause strictly for group by clause

-1 Use the table parameter .

0 Do not strictly use columns in select clause for group by clause

1 Use columns in select clause strictly for group by clause

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Range: -1 to 1

Introduced: MariaDB 10.5.4

spider_sts_bg_mode

Description: Enables background confirmation for table statistics. When background confirmation is enabled, Spider

uses one thread per partition to maintain table status. Disable when the spider_sts_interval system variable is set to

0 , which causes Spider to always retrieve the latest information as need. It is effective, when the spider_sts_interval

system variable is set to 10 .

-1 Falls back to the default value, if the table parameter is not set.

0 Disables background confirmation.

1 Enables background confirmation (create thread per table/partition).

2 Enables background confirmation (use static threads). (from MariaDB 10.)

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 2

Range: -1 to 2

DSN Parameter Name: sbm

spider_sts_interval

Description: Time interval of table statistics from the remote backend servers.

-1 Falls back to the default value, if the table parameter is not set.

0 Retrieves the latest table statistics on request.

1 or more: Interval in seconds for table state confirmation.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 10

Default Table Value: 10

Range: -1 to 2147483647

DSN Parameter Name: siv

spider_sts_mode

Description: Table statistics mode. Mode for table statistics. The SHOW command is used at the table level default.

-1,0 Uses the table parameter .

1 Uses the SHOW command.

2 Uses the Information Schema.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 1

Default Table Value: 1

Range: -1 to 2

DSN Parameter Name: smd

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

spider_sts_sync

Description: Synchronizes table statistics in partitioned tables.

3520/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't synchronize table statistics in partitioned tables.

1 Synchronizes table state when opening a table, doesn't synchronize after opening.

2 Synchronizes table statistics.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Session Value: 0

Default Table Value: 0

Range: -1 to 2

DSN Parameter Name: ssy

spider_support_xa

Description: XA Protocol for mirroring and for multi-shard transactions.

1 Enables XA Protocol for these Spider operations.

0 Disables XA Protocol for these Spider operations.

Scope: Global

Dynamic: No

Data Type: boolean

Default Table Value: 1

spider_suppress_comment_ignored_warning

Description: Whether to suppress warnings that table COMMENT or CONNECTION strings are ignored due to

specified table options.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 11.3.0

spider_sync_autocommit

Description: Whether to push down local auto-commits to remote backend servers.

OFF Pushes down local auto-commits.

ON Doesn't push down local auto-commits.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: ON

spider_sync_sql_mode

Description: Whether to sync sql_mode.

OFF No sync

ON Sync

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: ON

Introduced: MariaDB 10.4.7

spider_sync_time_zone

Description: Whether to push the local time zone down to remote backend servers.

OFF Doesn't synchronize time zones.

ON Synchronize time zones.

Scope: Global

Dynamic: Yes

3521/4161

https://mariadb.com/kb/en/spider-table-parameters/

Data Type: boolean

Default Session Value: OFF

Removed: MariaDB 10.3.9

spider_sync_trx_isolation

Description: Pushes local transaction isolation levels down to remote backend servers.

OFF Doesn't push down local isolation levels.

ON Pushes down local isolation levels.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: ON

spider_table_crd_thread_count

Description: Static thread count of table crd.

Commandline: --spider-table-crd-thread-count=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 1 to 4294967295

Introduced: MariaDB 10.3.3

spider_table_init_error_interval

Description: Interval in seconds where the same error code is returned if table initialization fails. Use to protect

against infinite loops in table links.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 4294967295

spider_table_sts_thread_count

Description: Static thread count of table sts.

Commandline: --spider-table-sts-thread-count=#

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 10

Range: 1 to 4294967295

Introduced: MariaDB 10.3.3

spider_udf_ct_bulk_insert_interval

Description: Interval in milliseconds between bulk inserts at copying. For use with the UDF spider_copy_tables,

which copies table data linked to a Spider table from the source server to destination server using bulk insert. If this

interval is 0, it may cause higher write traffic.

-1 Uses the UDF parameter.

0 and more: Time in milliseconds.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Default Table Value: 10

Range: -1 to 2147483647

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

3522/4161

https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

Removed: MariaDB 10.10

spider_udf_ct_bulk_insert_rows

Description: Number of rows to insert at a time when copying during bulk inserts.

-1, 0 : Uses the table parameter .

1 and more: Number of rows

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 100

Default Table Value: 100

Range: -1 to 9223372036854775807

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

Removed: MariaDB 10.10

spider_udf_ds_bulk_insert_rows

Description: Number of rows inserted at a time during bulk inserts when the result-set is stored in a temporary table

on executing a UDF.

-1, 0 Uses the UDF parameter.

1 or more: Number of rows

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 3000

Default Table Value: 3000

Range: -1 to 9223372036854775807

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

Removed: MariaDB 10.10

spider_udf_ds_table_loop_mode

Description: Whether to store the result-set in the same temporary table when the temporary table list count for UDF

is less than the result-set count on UDF execution.

-1 Falls back to the default value, if the table parameter is not set.

0 Drops records.

1 Inserts the last table.

2 Inserts the first table and loops again.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -1 to 2

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

Removed: MariaDB 10.10

spider_udf_ds_use_real_table

Description: Whether to use real table for temporary table list.

-1 Use UDF parameter.

0 Do not use real table.

1 Use real table.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: -1 to 1

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

Removed: MariaDB 10.10

3523/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

spider_udf_table_lock_mutex_count

Description: Mutex count of table lock for Spider UDFs.

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 20

Range: 1 to 4294967295

Removed: MariaDB 10.10

spider_udf_table_mon_mutex_count

Description: Mutex count of table mon for Spider UDFs.

Scope: Global

Dynamic: No

Data Type: numeric

Default Value: 20

Range: 1 to 4294967295

Removed: MariaDB 10.10

spider_use_all_conns_snapshot

Description: Whether to pass START TRANSACTION WITH SNAPSHOT statements to all connections.

OFF Doesn't pass statement to all connections.

ON Passes statement to all connections.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Session Value: OFF

spider_use_cond_other_than_pk_for_update

Description: Whether to use all conditions even if condition has a primary key.

0 Don't use all conditions

1 Use all conditions

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1

Introduced: MariaDB 10.3.13 , MariaDB 10.4.3

spider_use_consistent_snapshot

Description: Whether to push a local START TRANSACTION WITH CONSISTENT statement down to remote backend

servers.

OFF Doesn't push the local statement down.

ON Pushes the local statement down.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

spider_use_default_database

Description: Whether to use the default database.

OFF Doesn't use the default database.

ON Uses the default database.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

3524/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/

Default Value: ON

spider_use_flash_logs

Description: Whether to push FLUSH LOGS statements down to remote backend servers.

OFF Doesn't push the statement down.

ON Pushes the statement down.

Scope: Global, Session

Dynamic: Yes

Data Type: boolean

Default Value: OFF

spider_use_handler

Description: Converts HANDLER SQL statements. When the spider_sync_trx_isolation system variable is set to 0 ,

Spider disables HANDLER conversions to prevent use of the statement on the SERIALIZABLE isolation level.

-1 Falls back to the default value, if the table parameter is not set.

0 Converts HANDLER statements into SELECT statements.

1 Passes HANDLER to the remote backend server.

2 Converts SQL statements to HANDLER statements.

3 Converts SQL statements to HANDLER statements and HANDLER statements to SQL statements.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Default Table Value: 0

Range: -1 to 3

DSN Parameter Name: uhd

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

Removed: MariaDB 10.10

spider_use_pushdown_udf

Description: When using a UDF function in a condition and the engine_condition_pushdown system variable is set

to 1 , whether to execute the UDF function locally or push it down.

-1 Falls back to the default value, if the table parameter is not set.

0 Doesn't transmit the UDF

1 Transmits the UDF.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: -1

Default Table Value: 1

Range: -1 to 1

DSN Parameter Name: upu

spider_use_snapshot_with_flush_tables

Description: Whether to encapsulate FLUSH LOGS and UNLOCK TABLES statements when START TRANSACTION

WITH CONSISTENT and FLUSH TABLE WITH READ LOCK statements are sent to the remote backend servers.

0 : No encapsulation.

1 : Encapsulates, only when the spider_use_all_conns_snapshot system variable i set to 1 .

2 : Synchronizes the snapshot using a LOCK TABLES statement and [flush|FLUSH TABLES]] at the XA

transaction level. This is only effective when the spider_use_all_cons_snapshot system variable is set to 1 .

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 2

3525/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/flush-logs
https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/spider-table-parameters/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/flush-logs

spider_use_table_charset

Description: Whether to use the local table character set for the remote backend server connections.

-1 Falls back to the default value, if the table parameter is not set.

0 Use utf8 .

1 Uses the table character set.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Default Table Value: 1

Range: -1 to 1

DSN Parameter Name: utc

spider_version

Description: The current Spider version. Removed in MariaDB 10.9.2 when the Spider version number was matched

with the server version.

Scope: Global

Dynamic: No

Data Type: string

Removed: MariaDB 10.9.2

spider_wait_timeout

Description: Wait timeout in seconds of setting to remote server. -1 means not set.

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 604800

Range: -1 to 2147483647

Introduced: MariaDB 10.4.5

spider_xa_register_mode

Description: Mode of XA transaction register into system table.

0 Register all XA transactions

1 Register only write XA transactions

Command-line: --spider-xa-register-mode=#

Scope: Global, Session

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1

Introduced: MariaDB 10.3.3

Deprecated: MariaDB 10.7.4 , MariaDB 10.8.3

5.3.19.8 Spider Table Parameters
When a table uses the Spider storage engine, the following Spider table parameters can be set in the COMMENT clause of

the CREATE TABLE statement. Many Spider table parameters have corresponding system variables, so they can be set for

all Spider tables on the node. For additional information, see the Spider System Variables page.

From MariaDB 11.3, table parameters can be set using dedicated Spider table options. From MariaDB 11.4, using the

COMMENT clause is deprecated.

3526/4161

https://mariadb.com/kb/en/spider-table-parameters/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/

Contents
1. access_balances

2. active_link_count

3. casual_read

4. database

5. default_file

6. default_group

7. delete_all_rows_type

8. host

9. idx000

10. internal_delayed

11. link_status

12. monitoring_bg_interval

13. monitoring_bg_kind

14. monitoring_kind

15. monitoring_limit

16. monitoring_server_id

17. password

18. port

19. priority

20. query_cache

21. read_rate

22. scan_rate

23. server

24. socket

25. ssl_ca

26. ssl_capath

27. ssl_cert

28. ssl_cipher

29. ssl_key

30. ssl_verify_server_cert

31. table

access_balances

Description: Connection load balancing integer weight.

Default Table Value: 0

DSN Parameter Name: abl

active_link_count

Description: Number of active remote servers, for use in load balancing read connections

Default Table Value: all backends

DSN Parameter Name: alc

casual_read

Description:

Default Table Value:

DSN Parameter Name:

Introduced: Spider 3.2

database

Description: Database name for reference table that exists on remote backend server.

Default Table Value: local table database

DSN Parameter Name: database

default_file

Description: Configuration file used when connecting to remote servers. When the default_group table variable

is set, this variable defaults to the values of the --defaults-extra-file or --defaults-file options. When the

default_group table variable is not set, it defaults to none .

Default Table Value: none

DSN Parameter Name: dff

3527/4161

default_group

Description: Group name in configuration file used when connecting to remote servers.

Default Table Value: none

DSN Parameter Name: dfg

delete_all_rows_type

Description:

Default Table Value:

DSN Parameter Name:

Introduced: Spider 3.2

host

Description: Host name of remote server.

Default Table Value: localhost

DSN Parameter Name: host

idx000

Description: When using an index on Spider tables for searching, Spider uses this hint to search the remote table.

The remote table index is related to the Spider table index by this hint. The number represented by 000 is the index

ID, which is the number of the index shown by the SHOW CREATE TABLE statement. 000 is the Primary Key. For

instance, idx000 "force index(PRIMARY)" (in abbreviated format idx000 "f PRIMARY").

f force index

u use index

ig ignore index

Default Table Value: none

internal_delayed

Description: Whether to transmit existence of delay to remote servers when executing an INSERT DELAYED

statement on local server.

0 Doesn't transmit.

1 Transmits.

Default Table Value: 0

DSN Parameter Name: idl

link_status

Description: Change status of the remote backend server link.

0 Doesn't change status.

1 Changes status to OK .

2 Changes status to RECOVERY .

3 Changes status to no more in group communication.

Default Table Value: 0

DSN Parameter Name: lst

monitoring_bg_interval

Description: Interval of background monitoring in microseconds.

Default Table Value: 10000000

DSN Parameter Name: mbi

 monitoring_bg_kind

Description: Kind of background monitoring to use.

0 Disables background monitoring.

1 Monitors connection state.

2 Monitors state of table without WHERE clause.

3 Monitors state of table with WHERE clause (currently unsupported).

Default Table Value: 0

DSN Parameter Name: mbk

3528/4161

monitoring_kind

Description: Kind of monitoring.

0 Disables monitoring

1 Monitors connection state.

2 Monitors state of table without WHERE clause.

3 Monitors state of table with WHERE clause (currently unsupported).

Default Table Value: 0

DSN Parameter Name: mkd

monitoring_limit

Description: Limits the number of records in the monitoring table. This is only effective when Spider monitors the

state of a table, which occurs when the monitoring_kind table variable is set to a value greater than 1 .

Default Table Value: 1

Range: 0 upwards

DSN Parameter Name: mlt

monitoring_server_id

Description: Preferred monitoring @@server_id for each backend failure. You can use this to geo-localize backend

servers and set the first Spider monitoring node to contact for failover. In the event that this monitor fails, other

monitoring nodes are contacted. For multiple copy backends, you can set a lazy configuration with a single MSI

instead of one per backend.

Default Table Value: server_id

DSN Parameter Name: msi

password

Description: Remote server password.

Default Table Value: none

DSN Parameter Name: password

port

Description: Remote server port.

Default Table Value: 3306

DSN Parameter Name: port

priority

Description: Priority. Used to define the order of execution. For instance, Spider uses priority when deciding the

order in which to lock tables on a remote server.

Default Table Value: 1000000

DSN Parameter Name: prt

query_cache

Description: Passes the option for the Query Cache when issuing SELECT statements to the remote server.

0 No option passed.

1 Passes the SQL_CACHE option.

2 Passes the SQL_NO_CACHE option.

Default Table Value: 0

DSN Parameter Name: qch

read_rate

Description: Rate used to calculate the amount of time Spider requires when executing index scans.

Default Table Value: 0.0002

DSN Parameter Name: rrt

scan_rate

Description: Rate used to calculate the amount of time Spider requires when scanning tables.

Default Table Value: 0.0001

3529/4161

DSN Parameter Name: srt

server

Description: Server name. Used when generating connection information with CREATE SERVER statements.

Default Table Value: none

DSN Parameter Name: srv

socket

Description: Remote server socket.

Default Table Value: none

DSN Parameter Name: socket

ssl_ca

Description: Path to the Certificate Authority file.

Default Table Value: none

DSN Parameter Name: sca

ssl_capath

Description: Path to directory containing trusted TLS CA certificates in PEM format.

Default Table Value: none

DSN Parameter Name: scp

ssl_cert

Description: Path to the certificate file.

Default Table Value: none

DSN Parameter Name: scr

ssl_cipher

Description: List of allowed ciphers to use with TLS encryption.

Default Table Value: none

DSN Parameter Name: sch

ssl_key

Description: Path to the key file.

Default Table Value: none

DSN Parameter Name: sky

ssl_verify_server_cert

Description: Enables verification of the server's Common Name value in the certificate against the host name used

when connecting to the server.

0 Disables verification.

1 Enables verification.

Default Table Value: 0

DSN Parameter Name: svc

table

Description: Destination table name.

Default Table Value: Same table name

DSN Parameter Name: tbl

5.3.19.9 Spider Status Variables

3530/4161

Contents
1. Spider_direct_aggregate

2. Spider_direct_delete

3. Spider_direct_order_limit

4. Spider_direct_update

5. Spider_mon_table_cache_version

6. Spider_mon_table_cache_version_req

7. Spider_parallel_search

The following status variables are associated with the Spider storage engine. See Server Status Variables for a complete

list of status variables that can be viewed with SHOW STATUS.

See also the Full list of MariaDB options, system and status variables.

Spider_direct_aggregate

Description:

Scope: Global, Session

Data Type: numeric

Spider_direct_delete

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.3

Spider_direct_order_limit

Description:

Scope: Global, Session

Data Type: numeric

Spider_direct_update

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.3

Spider_mon_table_cache_version

Description:

Scope: Global, Session

Data Type: numeric

Spider_mon_table_cache_version_req

Description:

Scope: Global, Session

Data Type: numeric

Spider_parallel_search

Description:

Scope: Global, Session

Data Type: numeric

Introduced: MariaDB 10.3.3

3531/4161

https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

1.2.9.6 Spider Functions

1.2.9.6.1 SPIDER_BG_DIRECT_SQL

1.2.9.6.2 SPIDER_COPY_TABLES

1.2.9.6.3 SPIDER_DIRECT_SQL

1.2.9.6.4 SPIDER_FLUSH_TABLE_MON_CACHE

1.1.1.2.9.3.32 Spider mysql Database Tables

1.1.1.2.9.3.32.1 mysqlspider_link_failed_log Table

1.1.1.2.9.3.32.2 mysqlspider_link_mon_servers Table

1.1.1.2.9.3.32.3 mysqlspider_tables Table

1.1.1.2.9.3.32.4 mysqlspider_table_crd Table

1.1.1.2.9.3.32.5 mysqlspider_table_position_for_recovery
Table

1.1.1.2.9.3.32.6 mysqlspider_table_sts Table

1.1.1.2.9.3.32.7 mysqlspider_xa Table

1.1.1.2.9.3.32.8 mysqlspider_xa_failed_log Table

1.1.1.2.9.3.32.9 mysqlspider_xa_member Table

1.1.1.2.9.1.1.44 Information Schema
SPIDER_ALLOC_MEM Table

1.1.1.2.9.1.1.45 Information Schema
SPIDER_WRAPPER_PROTOCOLS Table

5.3.19.14 Spider Differences Between
SpiderForMySQL and MariaDB

Contents
1. SQL Syntax

2. Features

SQL Syntax

With SpiderForMySQL , the CREATE TABLE statement uses CONNECTION to define spider table variables whereas

MariaDB uses COMMENT .

Features

3532/4161

HANDLER can not be translated to SQL in MariaDB

Concurrent background search is not yet implemented in MariaDB

Vertical partitioning storage engine VP is not implemented in MariaDB

CREATE TABLE can use table discovery in MariaDB

JOIN performance improvement using join_cache_level>1 and join_buffer_size in MariaDB

5.3.19.15 Spider Case Studies
A list of users or clients that are using Spider and agree to be referenced:

Tencent Games. They handle 100TB data on 396 Spider nodes and 2800 data nodes. They use this cluster for their

online games.

Kadokawa Corporation

MicroAd, Inc.

Sansan, Inc.

teamLab Inc.

CCM Benchmark http://www.slideshare.net/skysql/ccm-escape-case-study-skysql-paris-meetup-17122013

Softlink http://fr.slideshare.net/skysql/galaxy-big-data-with-mariadb

Gavo http://wiki.ivoa.net/internal/IVOA/InterOpMay2014NewTechnologies/Spider-MariaDB.pdf

Blablacar Using for storing various logs

Believe Digital Using for back office analytics queries to aggregate multi billions tables in real time

5.3.19.16 Spider Benchmarks
This is best run on a cluster of 3 nodes intel NUC servers 12 virtual cores model name : Intel® Core(TM) i3-3217U CPU @

1.80GHz

All nodes have been running a mysqlslap client attached to the local spider node in the best run.

/usr/local/skysql/mysql-client/bin/mysqlslap --user=skysql --password=skyvodka --

host=192.168.0.201 --port=5012 -i1000000 -c32 -q "insert into test(c) values('0-31091-

138522330')" --create-schema=test

spider_conn_recycle_mode=1;

The read point select is produce with a 10M rows sysbench table

3533/4161

http://www.slideshare.net/skysql/ccm-escape-case-study-skysql-paris-meetup-17122013
http://fr.slideshare.net/skysql/galaxy-big-data-with-mariadb
http://wiki.ivoa.net/internal/IVOA/InterOpMay2014NewTechnologies/Spider-MariaDB.pdf

The write insert a single string into a memory table

Before Engine Condition Push Down patch .

Spider can benefit by 10% additional performance with Independent Storage Engine Statistics.

set global use_stat_tables='preferably';

USE backend;

ANALYZE TABLE sbtest;

3534/4161

5.3.19.17 Spider FAQ
Contents
1. What does "[ERROR] mysqld: Can't find record in 'spider_tables'" mean?

2. Are there minimum Spider settings?

3. What does "select spider_ping_table()" in the general log mean?

4. Do I need a primary key on physical tables?

5. Can I use Spider on top of Galera shards?

6. What are the most used architectures for Spider HA?

7. What are the most used architectures for Spider Map Reduce?

8. What about Grants on shards?

What does "[ERROR] mysqld: Can't find record in 'spider_tables'"
mean?

This happens when you have a Spider table defined that does not point to an existing table on a data node.

Are there minimum Spider settings?

myisam-recover=FORCE,BACKUP

optimizer_switch='engine_condition_pushdown=on'

When using spider_autoincrement_mode = 0, partitioned Spider tables work as spider_autoincrement_mode = 1 see :

MDEV-21404

What does "select spider_ping_table()" in the general log mean?

This is used by Spider monitoring to ask other monitoring nodes the status of a table.

Do I need a primary key on physical tables?

Not having a primary key will generate errors for resynchronizing tables via spider_copy_table().

Can I use Spider on top of Galera shards?

Yes, XA transactions can be disabled from Spider. Until Galera 4.0 fully supports xa transactions, spider can point to a

maxscale proxy that can manage transparent node election in case of failure inside a shard group. Note that disabling XA

will break cross shard WRITES in case of transaction ROLLBACK. This architecture need to be used with care if you have a

highly transactional workload that can generate cross shard deadlocks.

What are the most used architectures for Spider HA?

Delegation of shard node replication using asynchronous replication and slave election with GTID.

Delegation of shard node replication via active passive HA solutions.

Shard builds via replication into Spider tables is interesting when you can route READS to a pool of Spider nodes

reattaching the shards.

What are the most used architectures for Spider Map Reduce?

Map reduce in Spider is limited to a single table. Building spider on top of some views can eliminate the need to use

joins.

Replication to universal tables to every shard is commonly used to enable the views on each shard.

What about Grants on shards?

When using MRR and BKA (and you do so with network storage), when Spider needs to create temporary tables on

MariaDB until 10.1.1

MariaDB until 10.3.7

3535/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://jira.mariadb.org/browse/MDEV-21404

the backends, use the CREATE TEMPORARY TABLES privilege. Spider can still switch to a lower performance

solution using spider_bka_mode=2, or Query push down or range predicate using spider_bka_mode=0

1.1.1.2.9.1.1.15 Information Schema ENGINES Table

1.1.1.2.9.2.6 PERFORMANCE_SCHEMA Storage Engine

5.3.22 Storage Engine Development
Storage Engine FAQ

Are storage engines designed for MySQL compatible with MariaDB? In most cas...

Engine-defined New Table/Field/Index Attributes

A storage engine can allow the user to specify additional attributes per index, field, or table.

Table Discovery

Mechanism for an engine to tell the server that the table exists

Table Discovery (before 10.0.2)

This page describes the old discovery API, created in MySQL for NDB Cluste...

There are 1 related questions .

5.3.22.1 Storage Engine FAQ

Are storage engines designed for MySQL compatible with MariaDB?

In most cases, yes. MariaDB tries to keep API compatibility with MySQL, even across major versions.

Will storage engines created for MariaDB work in MySQL?

It will mostly work. It would need #ifdef's to adjust to MySQL-5.6 API, for example, for multi-read-range API, for table

discovery API, etc. But most of the code will work as is, without any changes.

Do storage engine binaries need to be recompiled for MariaDB?

Yes. You will need to recompile the storage engine against the exact version of MySQL or MariaDB you intend to run it on.

This is due to the version of the server being stored in the storage engine binary, and the server will refuse to load it if it was

compiled for a different version.

5.3.22.2 Engine-defined New Table/Field/Index
Attributes

Contents
1. API

2. SQL

In MariaDB, a storage engine can allow the user to specify additional attributes per index, field, or table. The engine needs

to declare what attributes it introduces.

API
There are three new members in the handlerton structure, they can be set in the engine's initialization function as

follows:

3536/4161

https://mariadb.com/kb/en/table-discovery-before-1002/
https://mariadb.com/kb/en/storage-engines-storage-engine-development/+questions/

example_hton->table_options= example_table_option_array;

example_hton->field_options= example_field_option_array;

example_hton->index_options= example_index_option_array;

The arrays are declared statically, as in the following example:

static MYSQL_THDVAR_ULONG(varopt_default, PLUGIN_VAR_RQCMDARG,

 "default value of the VAROPT table option", NULL, NULL, 5, 0, 100, 0);

struct ha_table_option_struct

{

 char *strparam;

 ulonglong ullparam;

 uint enumparam;

 bool boolparam;

 ulonglong varparam;

};

ha_create_table_option example_table_option_list[]=

{

 HA_TOPTION_NUMBER("NUMBER", ullparam, UINT_MAX32, 0, UINT_MAX32, 10),

 HA_TOPTION_STRING("STR", strparam),

 HA_TOPTION_ENUM("ONE_OR_TWO", enumparam, "one,two", 0),

 HA_TOPTION_BOOL("YESNO", boolparam, 1),

 HA_TOPTION_SYSVAR("VAROPT", varopt, varparam),

 HA_TOPTION_END

};

The engine declares a structure ha_table_option_struct

that will hold values of these new attributes.

And it describes these attributes to MySQL by creating an array of HA_TOPTION_*

macros. Note a detail: these macros expect a structure called ha_table_option_struct

, if the structure is called differently, a #define

will be needed.

There are five supported kinds of attributes:

macro name attribure value type corresponding C type additional parameters of a macro

HA_TOPTION_NUMBER an integer number unsigned long long
a default value, minimal allowed value, maximal allowed

value, a factor, that any allowed should be a multiple of.

HA_TOPTION_STRING a string char * none. The default value is a null pointer.

HA_TOPTION_ENUM
one value from a list

of allowed values
unsigned int

a string with a comma-separated list of allowed values, and

a default value as a number, starting from 0.

HA_TOPTION_BOOL a boolean bool a default value

HA_TOPTION_SYSVAR
defined by the

system variable

defined by the system

variable
system variable name

Do not use enum for your HA_TOPTION_ENUM C structure members, the size of the enum depends on the compiler, and

even on the compilation options, and the plugin API uses only types with known storage sizes.

In all macros the first two parameters are name of the attribute as should be used in SQL in the CREATE TABLE statement,

and the name of the corresponding member of the ha_table_option_struct structure.

The HA_TOPTION_SYSVAR stands aside a bit. It does not specify the attribute type or the default value, instead it binds the

attribute to a system variable. The attribute type and the range of allowed values will be the same as of the corresponding

system variable. The attribute default value will be the current value of its system variable. And unlike other attribute types

that are only stored in the .frm file if explicitly set in the CREATE TABLE statement, the HA_TOPTION_SYSVAR attributes

are always stored. If the system variable value is changed, it will not affect existing tables. Note that for this very reason, if a

table was created in the old version of a storage engine, and a new version has introduced a HA_TOPTION_SYSVAR

attribute, the attribute value in the old tables will be the default value of the system variable, not its current value.

The array ends with a HA_TOPTION_END macro.

Field and index (key) attributes are declared similarly using HA_FOPTION_* and HA_IOPTION_* macros.

When in a CREATE TABLE statement, the ::create() handler method is called, the table attributes are available in the

table_arg->s->option_struct , field attributes - in the option_struct member of the individual fields (objects of the

3537/4161

Field class), index attributes - in the option_struct member of the individual keys (objects of the KEY class).

Additionally, they are available in most other handler methods: the attributes are stored in the .frm file and on every open

MySQL makes them available to the engine by filling the corresponding option_struct members of the table, fields, and

keys.

The ALTER TABLE needs a special support from the engine. MySQL compares old and new table definitions to decide

whether it needs to rebuild the table or not. As the semantics of the engine declared attributes is unknown, MySQL cannot

make this decision by analyzing attribute values - this is delegated to the engine. The HA_CREATE_INFO structure has three

new members:

ha_table_option_struct *option_struct; ///< structure with parsed table options

ha_field_option_struct **fields_option_struct; ///< array of field option structures

ha_index_option_struct **indexes_option_struct; ///< array of index option structures

The engine (in the ::check_if_incompatible_data() method) is responsible for comparing new values of the attributes

from the HA_CREATE_INFO structure with the old values from the table and returning COMPATIBLE_DATA_NO if they were

changed in such a way that requires the table to be rebuild.

The example of declaring the attributes and comparing the values for the ALTER TABLE can be found in the EXAMPLE

engine.

SQL
The engine declared attributes can be specified per field, index, or table in the CREATE TABLE or ALTER TABLE . The

syntax is the conventional:

CREATE TABLE ... (

 field ... [attribute=value [attribute=value ...]],

 ...

 index ... [attribute=value [attribute=value ...]],

 ...

) ... [attribute=value [attribute=value ...]]

All values must be specified as literals, not expressions. The value of a boolean option may be specified as one of YES, NO,

ON, OFF, 1, or 0. A string value may be specified either quoted or not, as an identifier (if it is a valid identifier, of course).

Compare with the old behavior:

CREATE TABLE ... ENGINE=FEDERATED CONNECTION='mysql://root@127.0.0.1';

where the value of the ENGINE attribute is specified not quoted, while the value of the CONNECTION is quoted.

When an attribute is set, it will be stored with the table definition and shown in the SHOW CREATE TABLE;

. To remove an attribute from a table definition use ALTER TABLE

to set its value to a DEFAULT

.

The values of unknown attributes or attributes with the illegal values cause an error by default. But with ALTER TABLE one

can change the storage engine and some previously valid attributes may become unknown 4 to the new engine. They are

not removed automatically, though, because the table might be altered back to the first engine, and these attributes will be

valid again. Still SHOW CREATE TABLE will comment these unknown attributes out in the output, otherwise they would

make a generated CREATE TABLE statement invalid.

With the IGNORE_BAD_TABLE_OPTIONS

sql mode this behavior changes. Unknown attributes do not cause an error, they only result in a warning. And SHOW

CREATE TABLE will not comment them out. This mode is implicitly enabled in the replication slave thread.

5.3.22.3 Table Discovery
In MariaDB it is not always necessary to run an explicit CREATE TABLE statement for a table to appear. Sometimes a table

may already exist in the storage engine, but the server does not know about it, because there is no .frm file for this table.

This can happen for various reasons; for example, for a cluster engine the table might have been created in the cluster by

another MariaDB server node. Or for the engine that supports table shipping a table file might have been simply copied into

the MariaDB data directory. But no matter what the reason is, there is a mechanism for an engine to tell the server that the

table exists. This mechanism is called table discovery and if an engine wants the server to discover its tables, the engine

should support the table discovery API.

3538/4161

Contents
1. Automatic Discovery

1. handlerton::tablefile_extensions

2. handlerton::discover_table_names()

3. handlerton::discover_table_existence()

4. handlerton::discover_table()

5. TABLE_SHARE::init_from_binary_frm_image()

6. TABLE_SHARE::init_from_sql_statement_string()

7. TABLE_SHARE::read_frm_image()

8. TABLE_SHARE::free_frm_image()

9. HA_ERR_TABLE_DEF_CHANGED

10. TABLE_SHARE::tabledef_version

2. Assisted discovery

1. handlerton::discover_table_structure()

3. The role of .frm files

There are two different kinds of table discovery 4 a fully automatic discovery and a user-assisted one. In the former, the

engine can automatically discover the table whenever an SQL statement needs it. In MariaDB, the Archive and Sequence

engines support this kind of discovery. For example, one can copy a t1.ARZ file into the database directory and

immediately start using it 4 the corresponding .frm file will be created automatically. Or one can select from say, the

seq_1_to_10 table without any explicit CREATE TABLE statement.

In the latter, user-assisted, discovery the engine does not have enough information to discover the table all on its own. But it

can discover the table structure if the user provides certain additional information. In this case, an explicit CREATE TABLE

statement is still necessary, but it should contain no table structure 4 only the table name and the table attributes. In

MariaDB, the FederatedX storage engine supports this. When creating a table, one only needs to specify the CONNECTION

attribute and the table structure 4 fields and indexes 4 will be provided automatically by the engine.

Automatic Discovery

As far as automatic table discovery is concerned, the tables, from the server point of view, may appear, disappear, or

change structure anytime. Thus the server needs to be able to ask whether a given table exists and what its structure is. It

needs to be notified when a table structure changes outside of the server. And it needs to be able to get a list of all

(unknown to the server) tables, for statements like SHOW TABLES . The server does all that by invoking specific methods of

the handlerton :

const char **tablefile_extensions;

int (*discover_table_names)(handlerton *hton, LEX_STRING *db, MY_DIR *dir,

 discovered_list *result);

int (*discover_table_existence)(handlerton *hton, const char *db,

 const char *table_name);

int (*discover_table)(handlerton *hton, THD* thd, TABLE_SHARE *share);

handlerton::tablefile_extensions

Engines that store tables in separate files (one table might occupy many files with different extensions, but having the same

base file name) should store the list of possible extensions in the tablefile_extensions member of the handlerton

(earlier this list was returned by the handler::bas_ext() method). This will significantly simplify the discovery

implementation for these engines, as you will see below.

handlerton::discover_table_names()

When a user asks for a list of tables in a specific database 4 for example, by using SHOW TABLES or by selecting from

INFORMATION_SCHEMA.TABLES 4 the server invokes discover_table_names() method of the handlerton . For

convenience this method, besides the database name in question, gets the list of all files in this database directory, so that

the engine can look for table files without doing any filesystem i/o. All discovered tables should be added to the result

collector object. It is defined as

class discovered_list

{

 public:

 bool add_table(const char *tname, size_t tlen);

 bool add_file(const char *fname);

};

and the engine should call result->add_table() or result->add_file() for every discovered table (use

3539/4161

add_file() if the name to add is in the MariaDB file name encoding, and add_table() if it's a true table name, as

shown in SHOW TABLES).

If the engine is file-based, that is, it has non-empty list in the tablefile_extensions , this method is optional. For any file-

based engine that does not implement discover_table_names() , MariaDB will automatically discover the list of all tables

of this engine, by looking for files with the extension tablefile_extensions[0] .

handlerton::discover_table_existence()

In some rare cases MariaDB needs to know whether a given table exists, but does not particularly care about this table

structure (for example, when executing a DROP TABLE statement). In these cases, the server uses the

discover_table_existence() method to find out whether a table with the given name exists in the engine.

This method is optional. For the engine that does not implement it, MariaDB will look for files with the

tablefile_extensions[0] , if possible. But if the engine is not file-based, MariaDB will use the discover_table()

method to perform a full table discovery. While this will allow determining correctly whether a table exists, a full discovery is

usually slower than the simple existence check. In other words, engines that are not file-based might want to support

discover_table_existence() method as a useful optimization.

handlerton::discover_table()

This is the main method of table discovery, the heart of it. The server invokes it when it wants to use the table. The

discover_table() method gets the TABLE_SHARE structure, which is not completely initialized 4 only the table and the

database name (and a path to the table file) are filled in. It should initialize this TABLE_SHARE with the desired table

structure.

MariaDB provides convenient and easy to use helpers that allow the engine to initialize the TABLE_SHARE with minimal

efforts. They are the TABLE_SHARE methods init_from_binary_frm_image() and

init_from_sql_statement_string() .

TABLE_SHARE::init_from_binary_frm_image()

This method is used by engines that use "frm shipping" 4 such as Archive or NDB Cluster in MySQL. An frm shipping

engine reads the frm file for a given table, exactly as it was generated by the server, and stores it internally. Later it can

discover the table structure by using this very frm image. In this sense, a separate frm file in the database directory

becomes redundant, because a copy of it is stored in the engine.

TABLE_SHARE::init_from_sql_statement_string()

This method allows initializing the TABLE_SHARE using a conventional SQL CREATE TABLE syntax.

TABLE_SHARE::read_frm_image()

Engines that use frm shipping need to get the frm image corresponding to a particular table (typically in the

handler::create() method). They do it via the read_frm_image() method. It returns an allocated buffer with the binary

frm image, that the engine can use the way it needs.

TABLE_SHARE::free_frm_image()

The frm image that was returned by read_frm_image() must be freed with the free_frm_image().

HA_ERR_TABLE_DEF_CHANGED

One of the consequences of automatic discovery is that the table definition might change when the server doesn't expect it

to. Between two SELECT queries, for example. If this happens, if the engine detects that the server is using an outdated

version of the table definition, it should return a HA_ERR_TABLE_DEF_CHANGED handler error. Depending on when in

the query processing this error has happened, MariaDB will either re-discover the table and execute the query with the

correct table structure, or abort the query and return an error message to the user.

TABLE_SHARE::tabledef_version

The previous paragraph doesn't cover one important question 4 how can the engine know that the server uses an outdated

table definition? The answer is 4 by checking the tabledef_version, the table definition version. Every table gets a unique

tabledef_version value. Normally it is generated automatically when a table is created. When a table is discovered the

engine can force it to have a specific tabledef_version value (simply by setting it in the TABLE_SHARE before calling

the init_from_binary_frm_image() or init_from_sql_statement_string() methods).

3540/4161

Now the engine can compare the table definition version that the server is using (from any handler method it can be

accessed as this->table->s->tabledef_version) with the version of the actual table definition. If they differ 4 it is

HA_ERR_TABLE_DEF_CHANGED .

Assisted discovery

Assisted discovery is a lot simpler from the server point of view, a lot more controlled. The table cannot appear or disappear

at will, one still needs explicit DDL statements to manipulate it. There is only one new handlerton method that the server

uses to discover the table structure when a user has issued an explicit CREATE TABLE statement without declaring any

columns or indexes.

int (*discover_table_structure)(handlerton *hton, THD* thd,

 TABLE_SHARE *share, HA_CREATE_INFO *info);

The assisted discovery API is pretty much independent from the automatic discovery API. An engine can implement either

of them or both (or none); there is no requirement to support automatic discovery if only assisted discovery is needed.

handlerton::discover_table_structure()

Much like the discover_table() method, the discover_table_structure() handlerton method gets a partially initialized

TABLE_SHARE with the table name, database name, and a path to table files filled in, but without a table structure. Unlike

discover_table() , here the TABLE_SHARE has all the engine-defined table attributes in the the

TABLE_SHARE::option_struct structure. Based on the values of these attributes the discover_table_structure()

method should initialize the TABLE_SHARE with the desired set of fields and keys. It can use TABLE_SHARE helper

methods init_from_binary_frm_image() and init_from_sql_statement_string() for that.

The role of .frm files

Before table discovery was introduced, MariaDB used .frm files to store the table definition. But now the engine can store

the table definition (if the engine supports automatic discovery, of course), and .frm files become redundant. Still, the

server can use .frm files for such an engine 4 but they are no longer the only source of the table definition. Now .frm

files are merely a cache of the table definition, while the original authoritative table definition is stored in the engine. Like any

cache, its purpose is to reduce discovery attempts for a table. The engine decides whether it makes sense to cache table

definition in the .frm file or not (see the second argument for the TABLE_SHARE::init_from_binary_frm_image()).

For example, the Archive engine uses .frm cache, while the Sequence engine does not. In other words, MariaDB creates

.frm files for Archive tables, but not for Sequence tables.

The cache is completely transparent for a user; MariaDB makes sure that it always stores the actual table definition and

invalidates the .frm file automatically when it becomes out of date. This can happen, for example, if a user copies a new

Archive table into the datadir and forgets to delete the .frm file of the old table with the same name.

5.3.23 Converting Tables from MyISAM to
InnoDB

Contents
1. The task

2. INDEX Issues

3. Non-INDEX Issues

The task
You have decided to change one or more tables from MyISAM to InnoDB. That should be as simple as ALTER TABLE foo

ENGINE=InnoDB . But you have heard that there might be some subtle issues.

This describes possible issues that may arise and what to do about them.

Recommendation. One way to assist in searching for issues in is to do (at least in *nix)

mysqldump --no-data --all-databases >schemas

egrep 'CREATE|PRIMARY' schemas # Focusing on PRIMARY KEYs

egrep 'CREATE|FULLTEXT' schemas # Looking for FULLTEXT indexes

egrep 'CREATE|KEY' schemas # Looking for various combinations of indexes

3541/4161

Understanding how the indexes work will help you better understand what might run faster or slower in InnoDB.

INDEX Issues
(Most of these Recommendations and some of these Facts have exceptions.)

Fact. Every InnoDB table has a PRIMARY KEY. If you do not provide one, then the first non-NULL UNIQUE key is used. If

that can't be done, then a 6-byte, hidden, integer is provided.

Recommendation. Look for tables without a PRIMARY KEY. Explicitly specify a PRIMARY KEY, even if it's an artificial

AUTO_INCREMENT. This is not an absolute requirement, but it is a stronger admonishment for InnoDB than for MyISAM.

Some day you may need to walk through the table; without an explicit PK, you can't do it.

Fact. The fields of the PRIMARY KEY are included in each Secondary key.

Check for redundant indexes with this in mind.

PRIMARY KEY(id),

INDEX(b), -- effectively the same as INDEX(b, id)

INDEX(b, id) -- effectively the same as INDEX(b)

(Keep one of the INDEXes, not both)

Note subtle things like

PRIMARY KEY(id),

UNIQUE(b), -- keep for uniqueness constraint

INDEX(b, id) -- DROP this one

Also, since the PK and the data coexist:

PRIMARY KEY(id),

INDEX(id, b) -- DROP this one; it adds almost nothing

Contrast. This feature of MyISAM is not available in InnoDB; the value of 'id' will start over at 1 for each different value of

'abc':

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (abc, id)

A way to simulate the MyISAM 'feature' might be something like: What you want is this, but it won't work because it is

referencing the table twice:

INSERT INTO foo

 (other, id, ...)

 VALUES

 (123, (SELECT MAX(id)+1 FROM foo WHERE other = 123), ...);

Instead, you need some variant on this. (You may already have a BEGIN...COMMIT.)

BEGIN;

SELECT @id := MAX(id)+1 FROM foo WHERE other = 123 FOR UPDATE;

INSERT INTO foo

 (other, id, ...)

 VALUES

 (123, @id, ...);

COMMIT;

Having a transaction is mandatory to prevent another thread from grabbing the same id.

Recommendation. Look for such PRIMARY KEYs. If you find such, ponder how to change the design. There is no

straightforward workaround. However, the following may be ok. (Be sure that the datatype for id is big enough since it won't

start over.):

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (abc, id),

UNIQUE(id)

3542/4161

Recommendation. Keep the PRIMARY KEY short. If you have Secondary keys, remember that they include the fields of the

PK. A long PK would make the Secondary keys bulky. Well, maybe not 4 if the is a lot of overlap in fields. Example:

PRIMARY KEY(a,b,c), INDEX(c,b,a) 4 no extra bulk.

Recommendation. Check AUTO_INCREMENT sizes.

BIGINT is almost never needed. It wastes at least 4 bytes per row (versus INT).

Always use UNSIGNED and NOT NULL.

MEDIUMINT UNSIGNED (16M max) might suffice instead of INT

Be sure to be pessimistic 4 it is painful to ALTER.

Contrast. "Vertical Partitioning". This is where you artificially split a table to move bulky columns (eg, a BLOB) into another,

parallel, table. It is beneficial in MyISAM to avoid stepping over the blob when you don't need to read it. InnoDB stores

BLOB and TEXT differently 4 767 bytes are in the record, the rest is in some other block. So, it may (or may not) be worth

putting the tables back together. Caution: An InnoDB row is limited to 8KB, and the 767 counts against that.

Fact. FULLTEXT (prior to MariaDB 10.0.5) and SPATIAL indexes are not available in InnoDB. Note that MyISAM and

InnoDB FULLTEXT indexes use different stopword lists and different system variables.

Recommendation. Search for such indexes. Keep such tables in MyISAM. Better yet, do Vertical Partitioning (see above) to

split out the minimum number of columns from InnoDB.

Fact. The maximum length of an INDEX is different between the Engines. (This change is not likely to hit you, but watch

out.) MyISAM allows 1000 bytes; InnoDB allows 767 bytes, just big enough for a

VARCHAR(255) CHARACTER SET utf8.

ERROR 1071 (42000): Specified key was too long; max key length is 767 bytes

Fact. The PRIMARY KEY is included in the data. Hence, SHOW TABLE STATUS will show and Index_length of 0 bytes

(or 16KB) for a table with no secondary indexes. Otherwise, Index_length is the total size for the secondary keys.

Fact. The PRIMARY KEY is included in the data. Hence, exact match by PK may be a little faster with InnoDB. And, "range"

scans by PK are likely to be faster.

Fact. A lookup by Secondary Key traverses the secondary key's BTree, grabs the PRIMARY KEY, then traverses the PK's

BTree. Hence, secondary key lookups are a little more cumbersome in InnoDB.

Contrast. The fields of the PRIMARY KEY are included in each Secondary key. This may lead to "Using index" (in the

EXPLAIN plan) for InnoDB for cases where it did not happen in MyISAM. (This is a slight performance boost, and

counteracts the double-lookup otherwise needed.) However, when "Using index" would be useful on the PRIMARY KEY,

MyISAM would do an "index scan", yet InnoDB effectively has to do a "table scan".

Same as MyISAM. Almost always

INDEX(a) -- DROP this one because the other one handles it.

INDEX(a,b)

Contrast. The data is stored in PK order. This means that "recent" records are 'clustered' together at the end. This may give

you better 'locality of reference' than in MyISAM.

Same as MyISAM. The optimizer almost never uses two indexes in a single SELECT. (5.1 will occasionally do "index

merge".) SELECT in subqueries and UNIONs can independently pick indexes.

Subtle issue. When you DELETE a row, the AUTO_INCREMENT id will be burned. Ditto for REPLACE, which is a DELETE

plus an INSERT.

Very subtle issue. Replication occurs on COMMIT. If you have multiple threads using transactions, the

AUTO_INCREMENTs can arrive at a slave out of order. One transaction BEGINs, grabs an id. Then another transaction

grabs an id but COMMITs before the first finishes.

Same as MyISAM. "Prefix" indexing is usually bad in both InnoDB and MyISAM. Example: INDEX(foo(30))

Non-INDEX Issues
Disk space for InnoDB is likely to be 2-3 times as much as for MyISAM.

MyISAM and InnoDB use RAM radically differently. If you change all your tables, you should make significant adjustments:

key_buffer_size 4 small but non-zero; say, 10M;

innodb_buffer_pool_size 4 70% of available RAM

InnoDB has essentially no need for CHECK, OPTIMIZE, or ANALYZE. Remove them from your maintenance scripts. (No

real harm if you keep them.)

3543/4161

https://mariadb.com/kb/en/mariadb-1005-release-notes/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/stopword

Backup scripts may need checking. A MyISAM table can be backed up by copying three files. With InnoDB this is only

possible if innodb_file_per_table is set to 1. Before MariaDB 10.0, capturing a table or database for copying from production

to a development environment was not possible. Change to mysqldump. Since MariaDB 10.0 a hot copy can be created -

see Backup and restore overview.

Before MariaDB 5.5, the DATA DIRECTORY table option was not supported for InnoDB. Since MariaDB 5.5 it is supported,

but only in CREATE TABLE. INDEX DIRECTORY has no effect, since InnoDB does not use separate files for indexes. To

better balance the workload through several disks, the paths of some InnoDB log files can also be changed.

Understand autocommit and BEGIN/COMMIT.

(default) autocommit = 1: In the absence of any BEGIN or COMMIT statements, every statement is a transaction by

itself. This is close to the MyISAM behavior, but is not really the best.

autocommit = 0: COMMIT will close a transaction and start another one. To me, this is kludgy.

(recommended) BEGIN...COMMIT gives you control over what sequence of operation(s) are to be considered a

transaction and "atomic". Include the ROLLBACK statement if you need to undo stuff back to the BEGIN.

Perl's DBIx::DWIW and Java's JDBC have API calls to do BEGIN and COMMIT. These are probably better than 'executing'

BEGIN and COMMIT.

Test for errors everywhere! Because InnoDB uses row-level locking, it can stumble into deadlocks that you are not

expecting. The engine will automatically ROLLBACK to the BEGIN. The normal recovery is to redo, beginning at the

BEGIN. Note that this is a strong reason to have BEGINs.

LOCK/UNLOCK TABLES 4 remove them. Replace them (sort of) with BEGIN ... COMMIT. (LOCK will work if

innodb_table_locks is set to 1, but it is less efficient, and may have subtle issues.)

In 5.1, ALTER ONLINE TABLE can speed up some operations significantly. (Normally ALTER TABLE copies the table over

and rebuilds the indexes.)

The "limits" on virtually everything are different between MyISAM and InnoDB. Unless you have huge tables, wide rows, lots

of indexes, etc, you are unlikely to stumble into a different limit.

Mixture of MyISAM and InnoDB? This is OK. But there are caveats.

RAM settings should be adjusted to accordingly.

JOINing tables of different Engines works.

A transaction that affects tables of both types can ROLLBACK InnoDB changes, but will leave MyISAM changes

intact.

Replication: MyISAM statements are replicated when finished; InnoDB statements are held until the COMMIT.

FIXED (vs DYNAMIC) is meaningless in InnoDB.

PARTITION 4 You can partition MyISAM and InnoDB tables. Remember the screwball rule: You must either

have no UNIQUE (or PRIMARY) keys, or

have the value you are "partitioning on" in every UNIQUE key.

The former is not advised for InnoDB. The latter is messy if you want an AUTO_INCREMENT.

PRIMARY KEY in PARTITION 4 Since every key must include the field on which you are PARTITIONing, how can

AUTO_INCREMENT work? Well, there seems to be a convenient special case:

This works: PRIMARY KEY(autoinc, partition_key)

This does not work for InnoDB: PRIMARY KEY(partition_key, autoinc)

That is, an AUTO_INCREMENT will correctly increment, and be unique across all PARTITINOs, when it is the first field of

the PRIMARY KEY, but not otherwise.

5.3.24 Machine Learning with MindsDB
Contents
1. Overview

2. Installation

3. Usage

Overview
MindsDB is a third-party application that interfaces with MariaDB Server to provide Machine Learning capabilities through

SQL. The interface is done via the Connect Storage Engine.

Installation
3544/4161

https://docs.mindsdb.com/

To get a functional MariaDB - MindsDB installation, one needs to install the following components:

MindsDB: follow the instructions in the project's official documentation .

Connect Storage Engine must be enabled for the integration to work. See installing the connect storage engine.

MindsDB connects to MariaDB Server via a regular user to setup a dedicated database called mindsdb . Which user will be

used is specified within MindsDB's configuration file .

For example, if MindsDB is installed locally, one can create a user called mindsdb@localhost . MindsDB only

authenticates via the mysql_native_password plugin, hence one must set a password for the user:

CREATE USER mindsdb@localhost;

SET PASSWORD for mindsdb@localhost=PASSWORD("password");

The user must be granted the global FILE privilege and all privileges on the mindsdb database.

GRANT FILE on *.* to mindsdb@localhost;

GRANT ALL on mindsdb.* to mindsdb@localhost;

Assuming MindsDB is in the python path one can start up MindsDB with the following parameters:

python -m mindsdb --config=$CONFIG_PATH --api=http,mysql

Make sure $CONFIG_PATH points to the appropriate MindsDB configuration file.

Usage
Always consult the project's official documentation for up-to-date usage scenarios as MindsDB is an actively developed

project.

For a step-by-step example, you can consult the following blog post .

If the connection between MindsDB and MariaDB is successful, you should see the mindsdb database present and two

tables within it: commands and predictors .

MindsDB, as an AutoML framework does all the work when it comes to training the AI model. What is necessary is to pass it

the initial data, which MindsDB retrieves via a SELECT statement. This can be done by inserting into the predictors

table.

INSERT INTO `predictors`

 (`name`, `predict`, `select_data_query`)

VALUES ('bikes_model', 'count', 'SELECT * FROM test.bike_data');

The values inserted into predictors act as a command instructing MindsDB to:

1. Train a model called 'bikes_model'

2. From the input data, learn to predict the 'count' column.

3. The input data is generated via the select statement 'SELECT * FROM test.bike_data'. The select_data_query

should be a valid select that MindsDB can run against MariaDB.

5.4 Plugins
MariaDB supports the use of plugins, software components that may be added to the core software without having to rebuild

the MariaDB server from source code. Therefore, plugins can be loaded at start-up, or loaded and unloaded while the server

is running without interruption. Plugins are commonly used for adding desired storage engines, additional security

requirements, and logging special information about the server.

Plugin Overview

Basics of listing, installing and uninstalling plugins.

Information on Plugins

Information on installed and disabled plugins on a MariaDB Server.

Plugin SQL Statements

List of SQL statements related to plugins.

3545/4161

https://docs.mindsdb.com/installation/Installing/
https://docs.mindsdb.com/sql/create/databases/?h=maria#mariadb
https://docs.mindsdb.com/installation/Installing/
https://mariadb.org/machine-learning-sql/

Creating and Building Plugins

Documentation on how to create new plugins and build existing ones.

MariaDB Audit Plugin

Logging user activity with the MariaDB Audit Plugin.

Authentication Plugins

Authentication plugins allow various authentication methods to be used, and new ones developed.

Password Validation Plugins

Ensuring that user passwords meet certain minimal security requirements.

Key Management and Encryption Plugins

MariaDB uses plugins to handle key management and encryption of data.

MariaDB Replication & Cluster Plugins

Plugins related to MariaDB replication and other replication cluster systems.

Storage Engines

Various storage engines available for MariaDB.

Other Plugins

Information on installing and using other plugins.

There are 5 related questions .

5.4.1 Plugin Overview
Contents
1. Querying Plugin Information

1. Querying Plugin Information with SHOW PLUGINS

2. Querying Plugin Information with information_schema.PLUGINS

3. Querying Plugin Information with mysql.plugin

2. Installing a Plugin

1. Installing a Plugin Dynamically

1. Installing a Plugin with INSTALL SONAME

2. Installing a Plugin with INSTALL PLUGIN

2. Installing a Plugin with Plugin Load Options

1. Installing a Plugin with --plugin-load-add

2. Installing a Plugin with --plugin-load

3. Specifying Multiple Plugin Load Options

3. Installing a Plugin with mariadb-plugin

4. Configuring the Plugin Directory

5. Configuring the Minimum Plugin Maturity

6. Configuring Plugin Activation at Server Startup

3. Uninstalling Plugins

Plugins are server components that enhance MariaDB in some way. These can be anything from new storage engines,

plugins for enhancing full-text parsing, or even small enhancements, such as a plugin to get a timestamp as an integer.

Querying Plugin Information
There are a number of ways to see which plugins are currently active.

A server almost always has a large number of active plugins, because the server contains a large number of built-in plugins,

which are active by default and cannot be uninstalled.

Querying Plugin Information with SHOW PLUGINS

The SHOW PLUGINS statement can be used to query information about all active plugins.

For example:

3546/4161

https://mariadb.com/kb/en/plugins/+questions/

SHOW PLUGINS\G;

********************** 1. row **********************

 Name: binlog

 Status: ACTIVE

 Type: STORAGE ENGINE

Library: NULL

License: GPL

********************** 2. row **********************

 Name: mysql_native_password

 Status: ACTIVE

 Type: AUTHENTICATION

Library: NULL

License: GPL

********************** 3. row **********************

 Name: mysql_old_password

 Status: ACTIVE

 Type: AUTHENTICATION

Library: NULL

License: GPL

...

If a plugin's Library column has a NULL value, then the plugin is built-in, and it cannot be uninstalled.

Querying Plugin Information with information_schema.PLUGINS

The information_schema.PLUGINS table can be queried to get more detailed information about plugins.

For example:

SELECT * FROM information_schema.PLUGINS\G

...

*************************** 6. row ***************************

 PLUGIN_NAME: CSV

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: STORAGE ENGINE

 PLUGIN_TYPE_VERSION: 100003.0

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: Brian Aker, MySQL AB

 PLUGIN_DESCRIPTION: CSV storage engine

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: FORCE

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

*************************** 7. row ***************************

 PLUGIN_NAME: MEMORY

 PLUGIN_VERSION: 1.0

 PLUGIN_STATUS: ACTIVE

 PLUGIN_TYPE: STORAGE ENGINE

 PLUGIN_TYPE_VERSION: 100003.0

 PLUGIN_LIBRARY: NULL

PLUGIN_LIBRARY_VERSION: NULL

 PLUGIN_AUTHOR: MySQL AB

 PLUGIN_DESCRIPTION: Hash based, stored in memory, useful for temporary tables

 PLUGIN_LICENSE: GPL

 LOAD_OPTION: FORCE

 PLUGIN_MATURITY: Stable

 PLUGIN_AUTH_VERSION: 1.0

...

If a plugin's PLUGIN_LIBRARY column has the NULL value, then the plugin is built-in, and it cannot be uninstalled.

Querying Plugin Information with mysql.plugin

The mysql.plugin table can be queried to get information about installed plugins.

This table only contains information about plugins that have been installed via the following methods:

The INSTALL SONAME statement.

The INSTALL PLUGIN statement.

3547/4161

The mariadb-plugin utility.

This table does not contain information about:

Built-in plugins.

Plugins loaded with the --plugin-load-add option.

Plugins loaded with the --plugin-load option.

This table only contains enough information to reload the plugin when the server is restarted, which means it only contains

the plugin name and the plugin library.

For example:

SELECT * FROM mysql.plugin;

+------+------------+

| name | dl |

+------+------------+

| PBXT | libpbxt.so |

+------+------------+

Installing a Plugin
There are three primary ways to install a plugin:

A plugin can be installed dynamically with an SQL statement.

A plugin can be installed with a mariadbd option, but it requires a server restart.

A plugin can be installed with the mariadb-plugin utility, while the server is completely offline.

When you are installing a plugin, you also have to ensure that:

The server's plugin directory is properly configured, and the plugin's library is in the plugin directory.

The server's minimum plugin maturity is properly configured, and the plugin is mature enough to be installed.

Installing a Plugin Dynamically

A plugin can be installed dynamically by executing either the INSTALL SONAME or the INSTALL PLUGIN statement.

If a plugin is installed with one of these statements, then a record will be added to the mysql.plugins table for the plugin. This

means that the plugin will automatically be loaded every time the server restarts, unless specifically uninstalled or

deactivated.

Installing a Plugin with INSTALL SONAME

You can install a plugin dynamically by executing the INSTALL SONAME statement. INSTALL SONAME installs all plugins

from the given plugin library. This could be required for some plugin libraries.

For example, to install all plugins in the server_audit plugin library (which is currently only the server_audit audit plugin),

you could execute the following:

INSTALL SONAME 'server_audit';

Installing a Plugin with INSTALL PLUGIN

You can install a plugin dynamically by executing the INSTALL PLUGIN statement. INSTALL PLUGIN installs a single

plugin from the given plugin library.

For example, to install the server_audit audit plugin from the server_audit plugin library, you could execute the following:

INSTALL PLUGIN server_audit SONAME 'server_audit';

Installing a Plugin with Plugin Load Options

A plugin can be installed with a mariadbd option by providing either the --plugin-load-add or the --plugin-load option.

If a plugin is installed with one of these options, then a record will not be added to the mysql.plugins table for the plugin.

This means that if the server is restarted without the same option set, then the plugin will not automatically be loaded.

Installing a Plugin with --plugin-load-add

3548/4161

You can install a plugin with the --plugin-load-add option by specifying the option as a command-line argument to mariadbd

or by specifying the option in a relevant server option group in an option file.

The --plugin-load-add option uses the following format:

Plugins can be specified in the format name=library , where name is the plugin name and library is the plugin

library. This format installs a single plugin from the given plugin library.

Plugins can also be specified in the format library , where library is the plugin library. This format installs all

plugins from the given plugin library.

Multiple plugins can be specified by separating them with semicolons.

For example, to install all plugins in the server_audit plugin library (which is currently only the server_audit audit

plugin) and also the ed25519 authentication plugin from the auth_ed25519 plugin library, you could set the option to the

following values on the command-line:

$ mariadbd --user=mysql --plugin-load-add='server_audit' --plugin-load-add='ed25519=auth_ed25519'

You could also set the option to the same values in an option file:

[mariadb]

...

plugin_load_add = server_audit

plugin_load_add = ed25519=auth_ed25519

Special care must be taken when specifying both the --plugin-load option and the --plugin-load-add option together.

The --plugin-load option resets the plugin load list, and this can cause unexpected problems if you are not aware. The -

-plugin-load-add option does not reset the plugin load list, so it is much safer to use. See Specifying Multiple Plugin

Load Options for more information.

Installing a Plugin with --plugin-load

You can install a plugin with the --plugin-load option by specifying the option as a command-line argument to mariadbd or

by specifying the option in a relevant server option group in an option file.

The --plugin-load option uses the following format:

Plugins can be specified in the format name=library , where name is the plugin name and library is the plugin

library. This format installs a single plugin from the given plugin library.

Plugins can also be specified in the format library , where library is the plugin library. This format installs all

plugins from the given plugin library.

Multiple plugins can be specified by separating them with semicolons.

For example, to install all plugins in the server_audit plugin library (which is currently only the server_audit audit

plugin) and also the ed25519 authentication plugin from the auth_ed25519 plugin library, you could set the option to the

following values on the command-line:

$ mariadbd --user=mysql --plugin-load='server_audit;ed25519=auth_ed25519'

You could also set the option to the same values in an option file:

[mariadb]

...

plugin_load = server_audit;ed25519=auth_ed25519

Special care must be taken when specifying the --plugin-load option multiple times, or when specifying both the -

-plugin-load option and the --plugin-load-add option together. The --plugin-load option resets the plugin

load list, and this can cause unexpected problems if you are not aware. The --plugin-load-add option does not

reset the plugin load list, so it is much safer to use. See Specifying Multiple Plugin Load Options for more information.

Specifying Multiple Plugin Load Options

Special care must be taken when specifying the --plugin-load option multiple times, or when specifying both the --

plugin-load option and the --plugin-load-add option. The --plugin-load option resets the plugin load list, and

3549/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/-options/#-plugin-load-add

this can cause unexpected problems if you are not aware. The --plugin-load-add option does not reset the plugin load

list, so it is much safer to use.

This can have the following consequences:

If the --plugin-load option is specified multiple times, then only the last instance will have any effect. For

example, in the following case, the first instance of the option is reset:

[mariadb]

...

plugin_load = server_audit

plugin_load = ed25519=auth_ed25519

If the --plugin-load option is specified after the --plugin-load-add option, then it will also reset the changes

made by that option. For example, in the following case, the --plugin-load-add option does not do anything,

because the subsequent --plugin-load option resets the plugin load list:

[mariadb]

...

plugin_load_add = server_audit

plugin_load = ed25519=auth_ed25519

In contrast, if the --plugin-load option is specified before the --plugin-load-add option, then it will work fine,

because the --plugin-load-add option does not reset the plugin load list. For example, in the following case, both

plugins are properly loaded:

[mariadb]

...

plugin_load = server_audit

plugin_load_add = ed25519=auth_ed25519

Installing a Plugin with mariadb-plugin

A plugin can be installed with the mariadb-plugin utility if the server is completely offline.

The syntax is:

mariadb-plugin [options] <plugin> ENABLE|DISABLE

For example, to install the server_audit audit plugin, you could execute the following:

mariadb-plugin server_audit ENABLE

If a plugin is installed with this utility, then a record will be added to the mysql.plugins table for the plugin. This means that

the plugin will automatically be loaded every time the server restarts, unless specifically uninstalled or deactivated.

Configuring the Plugin Directory

When a plugin is being installed, the server looks for the plugin's library in the server's plugin directory. This directory is

configured by the plugin_dir system variable. This can be specified as a command-line argument to mariadbd or it can

be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_dir = /usr/lib64/mysql/plugin

Configuring the Minimum Plugin Maturity

When a plugin is being installed, the server compares the plugin's maturity level against the server's minimum allowed

plugin maturity. This can help prevent users from using unstable plugins on production servers. This minimum plugin

maturity is configured by the plugin_maturity system variable. This can be specified as a command-line argument to

mariadbd or it can be specified in a relevant server option group in an option file. For example:

3550/4161

[mariadb]

...

plugin_maturity = stable

Configuring Plugin Activation at Server Startup

A plugin will be loaded by default when the server starts if:

The plugin was installed with the INSTALL SONAME statement.

The plugin was installed with the INSTALL PLUGIN statement.

The plugin was installed with the mariadb-plugin utility.

The server is configured to load the plugin with the --plugin-load-add option.

The server is configured to load the plugin with the --plugin-load option.

This behavior can be changed with special options that take the form --plugin-name . For example, for the

server_audit audit plugin, the special option is called --server-audit.

The possible values for these special options are:

Option Value Description

OFF Disables the plugin without removing it from the mysql.plugins table.

ON
Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting

up, but the plugin will be disabled.

FORCE
Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT

Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

A plugin's status can be found by looking at the PLUGIN_STATUS column of the information_schema.PLUGINS table.

Uninstalling Plugins
Plugins that are found in the mysql.plugin table, that is those that were installed with INSTALL SONAME, INSTALL PLUGIN

or mariadb-plugin can be uninstalled in one of two ways:

The UNINSTALL SONAME or the UNINSTALL PLUGIN statement while the server is running

With mariadb-plugin while the server is offline.

Plugins that were enabled as a --plugin-load option do not need to be uninstalled. If --plugin-load is omitted the

next time the server starts, or the plugin is not listed as one of the --plugin-load entries, the plugin will not be loaded.

UNINSTALL PLUGIN uninstalls a single installed plugin, while UNINSTALL SONAME uninstalls all plugins belonging to a

given library.

5.4.2 Information on Plugins
List of Plugins

List of plugins included in MariaDB, ordered by their maturity.

Information Schema PLUGINS Table

Information Schema table containing information on plugins installed on a server.

Information Schema ALL_PLUGINS Table

Information about server plugins, whether installed or not.

5.4.2.1 List of Plugins
Contents
1. MariaDB Plugin Maturity

MariaDB Plugin Maturity
3551/4161

The following table lists the various plugins included in MariaDB ordered by their maturity. Note that maturity will differ

across MariaDB versions - see below for an easy way to get a complete list of plugins and their maturity in your version of

MariaDB:

Plugin Version Maturity Version

Archive 3.0 Stable

Aria 1.5 Stable

Audit Plugin 1.4 Stable

aws_key_management 1.0 Stable

binlog 1.0 Stable

Blackhole 1.0 Stable

Connect 1.7 Stable MariaDB 10.4.12, MariaDB 10.3.22

CLIENT_STATISTICS 2.0 Stable

cracklib_password_check 1.0 Stable

CSV 1.0 Stable

DISKS 1.1 Stable MariaDB 10.4.7, MariaDB 10.3.17

ed25519 1.1 Stable MariaDB 10.4.0

FederatedX 2.1 Stable

Feedback 1.1 Stable

file_key_management 1.0 Stable

gssapi 1.0 Stable

INDEX_STATISTICS 2.0 Stable

INET6 1.0 Stable MariaDB 10.5.12

InnoDB 10.* Stable

LOCALES 1.0 Stable

Memory 1.0 Stable

METADATA_LOCK_INFO 0.1 Stable

MRG_MyISAM 1.0 Stable

Mroonga 7.7 Stable

MyISAM 1.0 Stable

MyRocks 1.0 Stable MariaDB 10.3.7

mysql_json 0.1 Stable MariaDB 10.5.17

mysql_native_password 1.0 Stable

mysql_old_password 1.0 Stable

named_pipe 1.0 Stable

pam 1.0 Stable

password_reuse_check 2.0 Stable MariaDB 10.8.7 , MariaDB 10.9.5, MariaDB 10.10.2

partition 1.0 Stable

Performance_Schema 0.1 Stable

QUERY_CACHE_INFO 1.1 Stable

query_response_time 1.0 Stable

S3 1.0 Stable MariaDB 10.5.12

semisync 1.0 Stable Built-in, no longer a plugin from MariaDB 10.3.3

Sequence 1.0 Stable

SERVER_AUDIT 1.4 Stable

[1]

3552/4161

https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/gssapi-authentication-plugin/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/pam-authentication-plugin/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/

simple_password_check 1.0 Stable

Spider 3.3 Stable <= MariaDB 10.4, MariaDB 10.5.7

SQL_ERROR_LOG 1.0 Stable

TABLE_STATISTICS 2.0 Stable

USER_STATISTICS 2.0 Stable

user_variables 1.0 Stable MariaDB 10.3.13

TokuDB 4.0 Stable Disabled in MariaDB 10.5 and removed in MariaDB 10.6

unix_socket 1.0 Stable

UUID 1.0 Stable MariaDB 10.9.1

wsrep 1.0 Stable

WSREP_INFO 1.0 Stable

Plugin Version Maturity From

Federated 1.0 Gamma

OQGraph 3.0 Gamma

Sphinx 2.0 Gamma

Plugin Version Maturity From

Columnstore 1.0 Beta MariaDB 10.5.4

handlersocket 1.0 Beta

Plugin Version Maturity From

Cassandra 0.1 Experimental Removed in MariaDB 10.6

debug_key_management 1.0 Experimental

example_key_management 1.0 Experimental

Plugin Version Maturity Version

Execute the following on your MariaDB server to get a complete list of plugins and their maturity for your version of

MariaDB:

SELECT plugin_name, plugin_version, plugin_maturity

FROM information_schema.plugins

ORDER BY plugin_name;

[2]

1.1.1.2.9.1.1.34 Information Schema PLUGINS Table

1.1.1.2.9.1.1.4 Information Schema ALL_PLUGINS Table

1.1.1.2.6 Plugin SQL Statements

5.4.4 Creating and Building Plugins
Specifying Which Plugins to Build

Specifying which plugins to build.

Writing Plugins for MariaDB

Writing plugins for MariaDB.

2.1.2.8.5.2 Specifying Which Plugins to Build

3553/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/tokudb/
https://mariadb.com/kb/en/federated-storage-engine/
https://mariadb.com/kb/en/cassandra/

5.4.4.2 Writing Plugins for MariaDB
Contents
1. About

2. Authentication Plugins

3. Storage Engine Plugins

4. Information Schema Plugins

5. Encryption Plugins

6. Plugin Declaration Structure

1. Example Plugin Declaration

About
Generally speaking, writing plugins for MariaDB is very similar to writing plugins for MySQL.

Authentication Plugins
See Pluggable Authentication.

Storage Engine Plugins
Storage engines can extend CREATE TABLE syntax with optional index, field, and table attribute clauses. See Extending

CREATE TABLE for more information.

See Storage Engine Development.

Information Schema Plugins
Information Schema plugins can have their own FLUSH and SHOW statements. See FLUSH and SHOW for Information

Schema plugins .

Encryption Plugins
Encryption plugins in MariaDB are used for the data at rest encryption feature. They are responsible for both key

management and for the actual encryption and decryption of data.

Plugin Declaration Structure
The MariaDB plugin declaration differs from the MySQL plugin declaration in the following ways:

1. it has no useless 'reserved' field (the very last field in the MySQL plugin declaration)

2. it has a 'maturity' declaration

3. it has a field for a text representation of the version field

MariaDB can load plugins that only have the MySQL plugin declaration but both PLUGIN_MATURITY and

PLUGIN_AUTH_VERSION will show up as 'Unknown' in the INFORMATION_SCHEMA.PLUGINS table.

For compiled-in (not dynamically loaded) plugins, the presence of the MariaDB plugin declaration is mandatory.

Example Plugin Declaration

The MariaDB plugin declaration looks like this:

3554/4161

https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/

/* MariaDB plugin declaration */

maria_declare_plugin(example)

{

 MYSQL_STORAGE_ENGINE_PLUGIN, /* the plugin type (see include/mysql/plugin.h) */

 &example_storage_engine_info, /* pointer to type-specific plugin descriptor */

 "EXAMPLEDB", /* plugin name */

 "John Smith", /* plugin author */

 "Example of plugin interface", /* the plugin description */

 PLUGIN_LICENSE_GPL, /* the plugin license (see include/mysql/plugin.h) */

 example_init_func, /* Pointer to plugin initialization function */

 example_deinit_func, /* Pointer to plugin deinitialization function */

 0x0001 /* Numeric version 0xAABB means AA.BB version */,

 example_status_variables, /* Status variables */

 example_system_variables, /* System variables */

 "0.1 example", /* String version representation */

 MariaDB_PLUGIN_MATURITY_EXPERIMENTAL /* Maturity (see include/mysql/plugin.h)*/

}

maria_declare_plugin_end;

5.4.5 MariaDB Audit Plugin
Contents
1. Additional documentation

2. Tutorials

3. Blog Articles

4. Sub-Documents

MariaDB and MySQL are used in a broad range of environments, but if you needed to record user access to be in

compliance with auditing regulations for your organization, you would previously have had to use other database solutions.

To meet this need, though, MariaDB has developed the MariaDB Audit Plugin. Although the MariaDB Audit Plugin has some

unique features available only for MariaDB, it can be used also with MySQL.

Basically, the purpose of the MariaDB Audit Plugin is to log the server's activity. For each client session, it records who

connected to the server (i.e., user name and host), what queries were executed, and which tables were accessed and server

variables that were changed. This information is stored in a rotating log file or it may be sent to the local syslogd .

The MariaDB Audit Plugin works with MariaDB, MySQL (as of, version 5.5.34 and 10.0.7) and Percona Server. MariaDB

started including by default the Audit Plugin from versions 10.0.10 and 5.5.37, and it can be installed in any version from

MariaDB 5.5.20 .

Additional documentation

Below are links to additional documentation on the MariaDB Audit Plugin. They explain in detail how to install, configure and

use the Audit Plugin.

Installation

Configuration

Log Settings

Log Location & Rotation

Log Format

Status Variables

System Variables

Release Notes

Tutorials

Below are links to some tutorials on MariaDB's site and other sites. They may help you to get more out of the MariaDB Audit

Plugin.

Introducing the MariaDB Audit Plugin

by Anatoliy Dimitrov, September 2, 2014

Activating MariaDB Audit Log by Jaykishan Mutkawoa, May 30, 2016

Installing MariaDB Audit Plugin on Amazon RDS

Amazon RDS supports using the MariaDB Audit Plugin on MySQL and MariaDB database instances.

Blog Articles

Below are links to web log articles on the MariaDB Audit Plugin. You may find them useful in understanding better how to

3555/4161

https://mariadb.com/kb/en/mariadb-5520-release-notes/
https://mariadb.com/kb/en/release-notes-mariadb-audit-plugin/
file:///resources/blog/introducing-mariadb-audit-plugin
https://tunnelix.com/activating-mariadb-audit-log/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.Options.AuditPlugin.html

use the Audit Plugin. Since some of these articles are older, they won't include changes and improvements in newer

versions. You can rely on the documentation pages listed above for the most current information.

Activating Auditing for MariaDB in 5 Minutes

by Ralf Gebhardt, September 29, 2013

Query and Password Filtering with the MariaDB Audit Plugin

by Ralf Gebhardt, May 4, 2015

Set Up a Remote Log File using rsyslog

by Ralf Gebhardt, December 16, 2013

MySQL Auditing with MariaDB Auditing Plugin by Peter Zeitsev, February 15, 2016

Sub-Documents

MariaDB Audit Plugin - Installation

Installing the MariaDB Audit Plugin.

MariaDB Audit Plugin - Configuration

Audit Plugin global variables within MariaDB

MariaDB Audit Plugin - Log Settings

Log audit events to a file or syslog.

MariaDB Audit Plugin - Location and Rotation of Logs

Logs can be written to a separate file or to the system logs

MariaDB Audit Plugin - Log Format

The audit log is a set of records written as a list of fields to a file in plain0text format.

MariaDB Audit Plugin - Versions

Releases of the MariaDB Audit Plugin, and in which versions of MariaDB each...

MariaDB Audit Plugin Options and System Variables

Description of Server_Audit plugin options and system variables.

MariaDB Audit Plugin - Status Variables

Server Audit plugin status variables

Release Notes - MariaDB Audit Plugin

MariaDB Audit Plugin release notes

There are 8 related questions .

3

1

8

2

5.4.5.1 MariaDB Audit Plugin - Installation
The server_audit plugin logs the server's activity. For each client session, it records who connected to the server (i.e.,

user name and host), what queries were executed, and which tables were accessed and server variables that were

changed. This information is stored in a rotating log file or it may be sent to the local syslogd.

Contents
1. Locating the Plugin

2. Installing the Plugin

3. Uninstalling the Plugin

4. Prohibiting Uninstallation

Locating the Plugin
The server_audit plugin's shared library is included in MariaDB packages as the server_audit.so or

server_audit.dll shared library on systems where it can be built.

The plugin must be located in the plugin directory, the directory containing all plugin libraries for MariaDB. The path to this

directory is configured by the plugin_dir system variable. To see the value of this variable and thereby determine the file

path of the plugin library, execute the following SQL statement:

3556/4161

file:///resources/blog/activating-auditing-mariadb-and-mysql-5-minutes
file:///resources/blog/query-and-password-filtering-mariadb-audit-plugin
file:///resources/blog/mariadb-audit-plugin-set-remote-log-file-using-rsyslog
https://planet.mysql.com/entry/?id=5994184
https://mariadb.com/kb/en/release-notes-mariadb-audit-plugin/
https://mariadb.com/kb/en/mariadb-audit-plugin/+questions/

SHOW GLOBAL VARIABLES LIKE 'plugin_dir';

+---------------+--------------------------+

| Variable_name | Value |

+---------------+--------------------------+

| plugin_dir | /usr/lib64/mysql/plugin/ |

+---------------+--------------------------+

Check the directory returned at the filesystem level to make sure that you have a copy of the plugin library,

server_audit.so or server_audit.dll , depending on your system. It's included in recent installations of MariaDB. If

you do not have it, you should upgrade MariaDB.

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'server_audit';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = server_audit

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'server_audit';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Prohibiting Uninstallation
The UNINSTALL SONAME or UNINSTALL PLUGIN statements may be used to uninstall plugins. For the server_audit

plugin, you might want to disable this capability. To prevent the plugin from being uninstalled, you could set the the

server_audit option to FORCE_PLUS_PERMANENT in a relevant server option group in an option file after the plugin is

loaded once:

[mariadb]

...

plugin_load_add = server_audit

server_audit=FORCE_PLUS_PERMANENT

Once you've added the option to the server's option file and restarted the server, the plugin can't be uninstalled. If someone

tries to uninstall the audit plugin, then an error message will be returned. Below is an example of the error message:

UNINSTALL PLUGIN server_audit;

ERROR 1702 (HY000):

Plugin 'server_audit' is force_plus_permanent and can not be unloaded

For more information on FORCE_PLUS_PERMANENT and other option values for the server_audit option, see Plugin

Overview: Configuring Plugin Activation at Server Startup for more information.

3557/4161

5.4.5.2 MariaDB Audit Plugin - Configuration
After the audit plugin has been installed and loaded, there will be some new global variables within MariaDB. These can be

used to configure many components, limits, and methods related to auditing the server. You may set these variables related

to the logs, such as their location, size limits, rotation parameters, and method of logging information. You may also set

what information is logged, such connects, disconnects, and failed attempts to connect. You can also have the audit plugin

log queries, read and write access to tables. So as not to overload your logs, the audit plugin can be configured based on

lists of users. You can include or exclude the activities of specific users in the logs.

To see a list of audit plugin-related variables on the server and their values, execute the follow while connected to the

server:

SHOW GLOBAL VARIABLES LIKE 'server_audit%';

+-------------------------------+-----------------------+

| Variable_name | Value |

+-------------------------------+-----------------------+

| server_audit_events | CONNECT,QUERY,TABLE |

| server_audit_excl_users | |

| server_audit_file_path | server_audit.log |

| server_audit_file_rotate_now | OFF |

| server_audit_file_rotate_size | 1000000 |

| server_audit_file_rotations | 9 |

| server_audit_incl_users | |

| server_audit_logging | ON |

| server_audit_mode | 0 |

| server_audit_output_type | file |

| server_audit_query_log_limit | 1024 |

| server_audit_syslog_facility | LOG_USER |

| server_audit_syslog_ident | mysql-server_auditing |

| server_audit_syslog_info | |

| server_audit_syslog_priority | LOG_INFO |

+-------------------------------+-----------------------+

The values of these variables can be changed by an administrator with the SUPER privilege, using the SET statement.

Below is an example of how to disable audit logging:

SET GLOBAL server_audit_logging=OFF;

Although it is possible to change all of the variables shown above, some of them may be reset when the server restarts.

Therefore, you may want set them in the configuration file (e.g., /etc/my.cnf.d/server.cnf) to ensure the values are

the same after a restart:

[server]

...

server_audit_logging=OFF

&

For the reason given in the paragraph above, you would not generally set variables related to the auditing plugin using the

SET statement. However, you might do so to test settings before making them more permanent. Since one cannot always

restart the server, you would use the SET statement to change immediately the variables and then include the same

settings in the configuration file so that the variables are set again as you prefer when the server is restarted.

Configuring Logs and Setting Other Variables

Of all of the server variables you can set, you may want to set initially the server_audit_events variable to tell the Audit

Plugin which events to log. The Log Settings documentation page describes in detail the choices you have and provides

examples of log entries related to them.

You can see a detailed list of system variables related to the MariaDB Audit Plugin on the System Variables documentation

page. Status variables related to the Audit Plugin are listed and explained on the Status Variables documentation page.

5.4.5.3 MariaDB Audit Plugin - Log Settings
Events that are logged by the MariaDB Audit Plugin are grouped generally into different types: connect, query, and table

events. To log based on these types of events, set the variable, server_audit_events to CONNECT , QUERY , or TABLE . To

3558/4161

have the Audit Plugin log more than one type of event, put them in a comma-separated list like so:

SET GLOBAL server_audit_events = 'CONNECT,QUERY,TABLE';

Contents
1. Logging Connect Events

2. Logging Query Events

1. Queries Not Included in Subordinate Query Event Types

3. Logging Table Events

4. Logging User Activities

5. Excluding or Including Users

You can put the equivalent of this in the configuration file like so:

[mysqld]

...

server_audit_events=connect,query

By default, logging is set to OFF . To enable it, set the server_audit_logging variable to ON . Note that if the query cache is

enabled, and a query is returned from the query cache, no TABLE records will appear in the log since the server didn't open

or access any tables and instead relied on the cached results. So you may want to disable query caching.

There are actually a few types of events that may be logged, not just the three common ones mentioned above. A full list of

related system variables is detailed on the Server_Audit System Variables page, and status variables on the Server_Audit

Status Variables page of this documentation. Some of the major ones are highlighted below:

Type Description

CONNECT Connects, disconnects and failed connects4including the error code

QUERY
Queries executed and their results in plain text, including failed queries due to syntax or

permission errors

TABLE Tables affected by query execution

QUERY_DDL

Similar to QUERY , but filters only DDL-type queries (CREATE , ALTER , DROP , RENAME

and TRUNCATE). There are some exceptions however. RENAME USER is not logged,

while CREATE/DROP [PROCEDURE / FUNCTION / USER] are only logged from MariaDB

10.2.38 , MariaDB 10.3.29 , MariaDB 10.4.22, MariaDB 10.5.13 and MariaDB 10.6.5.

In earlier versions they are not logged. See MDEV-23457 .

QUERY_DML
Similar to QUERY , but filters only DML-type queries (DO , CALL , LOAD DATA/XML ,

DELETE , INSERT , SELECT , UPDATE , HANDLER and REPLACE statements)

QUERY_DML_NO_SELECT

Similar to QUERY_DML , but doesn't log SELECT queries. (since version 1.4.4) (DO ,

CALL , LOAD DATA/XML , DELETE , INSERT , UPDATE , HANDLER and REPLACE

statements)

QUERY_DCL
Similar to QUERY , but filters only DCL-type queries (CREATE USER , DROP USER ,

RENAME USER , GRANT , REVOKE and SET PASSWORD statements)

Since there are other types of queries besides DDL and DML, using the QUERY_DDL and QUERY_DML options together is

not equivalent to using QUERY . Starting in version 1.3.0 of the Audit Plugin, there is the QUERY_DCL option for logging DCL

types of queries (e.g., GRANT and REVOKE statements). In the same version, the server_audit_query_log_limit variable

was added to be able to set the length of a log record. Previously, a log entry would be truncated due to long query strings.

Logging Connect Events
If the Audit Plugin has been configured to log connect events, it will log connects, disconnects, and failed connects. For a

failed connection, the log includes the error code.

It's possible to define a list of users for which events can be excluded or included for tracing their database activities. This

list will be ignored, though, for the loggings of connect events. This is because auditing standards distinguish between

technical and physical users. Connects need to be logged for all types of users; access to objects need to be logged only for

physical users.

Logging Query Events

3559/4161

https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://jira.mariadb.org/browse/MDEV-23457

If QUERY , QUERY_DDL , QUERY_DML , QUERY_DML_NO_SELECT , and/or QUERY_DCL event types are enabled, then the

corresponding types of queries that are executed will be logged for defined users. The queries will be logged exactly as they

are executed, in plain text. This is a security vulnerability: anyone who has access to the log files will be able to read the

queries. So make sure that only trusted users have access to the log files and that the files are in a protected location. An

alternative is to use TABLE event type instead of the query-related event types.

Queries are also logged if they cannot be executed, if they're unsuccessful. For example, a query will be logged because of

a syntax error or because the user doesn't have the privileges necessary to access an object. These queries can be parsed

by the error code that's provided in the log.

You may find failed queries to be more interesting: They can reveal problems with applications (e.g., an SQL statement in an

application that doesn't match the current schema). They can also reveal if a malicious user is guessing at the names of

tables and columns to try to get access to data.

Below is an example in which a user attempts to execute an UPDATE statement on a table for which he does not have

permission:

UPDATE employees

SET salary = salary * 1.2

WHERE emp_id = 18236;

ERROR 1142 (42000):

UPDATE command denied to user 'bob'@'localhost' for table 'employees'

Looking in the Audit Plugin log (server_audit.log) for this entry, you can see the following entry:

20170817 11:07:18,ip-172-30-0-38,bob,localhost,15,46,QUERY,company,

'UPDATE employees SET salary = salary * 1.2 WHERE emp_id = 18236',1142

This log entry would be on one line, but it's reformatted here for better rendering. Looking at this log entry, you can see the

date and time of the query, followed by the server host, the user and host for the account. Next is the connection and query

identification numbers (i.e., 15 and 46). After the log event type (i.e., QUERY), the database name (i.e., company), the

query, and the error number is recorded.

Notice that the last value in the log entry is 1142 . That's the error number for the query. To find failed queries, you would

look for two elements: the notation indicating that it's a QUERY entry, and the last value for the entry. If the query is

successful, the value will be 0 .

Queries Not Included in Subordinate Query Event Types

Note that the QUERY event type will log queries that are not included in any of the subordinate QUERY_* event types, such

as:

CREATE FUNCTION

DROP FUNCTION

CREATE PROCEDURE

DROP PROCEDURE

SET

CHANGE MASTER TO

FLUSH

KILL

CHECK

OPTIMIZE

LOCK

UNLOCK

ANALYZE

INSTALL PLUGIN

UNINSTALL PLUGIN

INSTALL SONAME

UNINSTALL SONAME

EXPLAIN

Logging Table Events
MariaDB has the ability to record table events in the logs4this is not a feature of MySQL. This feature is the only way to log

which tables have been accessed through a view, a stored procedure, a stored function, or a trigger. Without this feature, a

log entry for a query shows only the view, stored procedure or function used, not the underlying tables. Of course, you could

3560/4161

create a custom application to parse each query executed to find the SQL statements used and the tables accessed, but

that would be a drain on system resources. Table event logging is much simpler: it adds a line to the log for each table

accessed, without any parsing. It includes notes as to whether it was a read or a write.

If you want to monitor user access to specific databases or tables (e.g., mysql.user), you can search the log for them.

Then if you want to see a query which accessed a certain table, the audit log entry will include the query identificaiton

number. You can use it to search the same log for the query entry. This can be useful when searching a log containing tens

of thousands of entries.

Because of the TABLE option, you may disable query logging and still know who accessed which tables. You might want to

disable QUERY event logging to prevent sensitive data from being logged. Since table event logging will log who accessed

which table, you can still watch for malicious activities with the log. This is often enough to fulfill auditing requirements.

Below is an example with both TABLE and QUERY events logging. For this scenario, suppose there is a VIEW in which

columns are selected from a few tables in a company database. The underlying tables are related to sensitive employee

information, in particular salaries. Although we may have taken precautions to ensure that only certain user accounts have

access to those tables, we will monitor the Audit Plugin logs for anyone who queries them4directly or indirectly through a

view.

20170817 16:04:33,ip-172-30-0-38,root,localhost,29,913,READ,company,employees,

20170817 16:04:33,ip-172-30-0-38,root,localhost,29,913,READ,company,employees_salaries,

20170817 16:04:33,ip-172-30-0-38,root,localhost,29,913,READ,company,ref_job_titles,

20170817 16:04:33,ip-172-30-0-38,root,localhost,29,913,READ,company,org_departments,

20170817 16:04:33,ip-172-30-0-38,root,localhost,29,913,QUERY,company,

'SELECT * FROM employee_pay WHERE title LIKE \'%Executive%\' OR title LIKE \'%Manager%\'',0

Although the user executed only one SELECT statement, there are multiple entries to the log: one for each table accessed

and one entry for the query on the view, (i.e., employee_pay). We know primarily this is all for one query because they all

have the same connection and query identification numbers (i.e., 29 and 913).

Logging User Activities
The Audit Plugin will log the database activities of all users, or only the users that you specify. A database activity is defined

as a query event or a table event. Connect events are logged for all users.

You may specify users to include in the log with the server_audit_incl_users variable or exclude users with the

server_audit_excl_users variable. This can be useful if you would like to log entries, but are not interested in entries

from trusted applications and would like to exclude them from the logs.

You would typically use either the server_audit_incl_users variable or the server_audit_excl_users variable. You

may, though, use both variables. If a username is inadvertently listed in both variables, database activities for that user will

be logged because server_audit_incl_users takes priority.

Although MariaDB considers a user as the combination of the username and hostname, the Audit Plugin logs only based on

the username. MariaDB uses both the username and hostname so as to grant privileges relevant to the location of the user.

Privileges are not relevant though for tracing the access to database objects. The host name is still recorded in the log, but

logging is not determined based on that information.

The following example shows how to add a new username to the server_audit_incl_users variable without removing

previous usernames:

SET GLOBAL server_audit_incl_users = CONCAT(@@global.server_audit_incl_users, ',Maria');

Remember to add also any new users to be included in the logs to the same variable in MariaDB configuration file.

Otherwise, when the server restarts it will discard the setting.

Excluding or Including Users
By default events from all users are logged, but certain users can be excluded from logging by using the

server_audit_excl_users variable. For example, to exclude users valerianus and rocky from having their events logged:

server_audit_excl_users=valerianus,rocky

This option is primarily used to exclude the activities of trusted applications.

Alternatively, server_audit_incl_users can be used to specifically include users. Both variables can be used, but if a user

appears on both lists, server_audit_incl_users has a higher priority, and their activities will be logged.

3561/4161

Note that CONNECT events are always logged for all users, regardless of these two settings. Logging is also based on

username only, not the username and hostname combination that MariaDB uses to determine privileges.

5.4.5.4 MariaDB Audit Plugin - Location and
Rotation of Logs

Contents
1. Separate log files

2. System logs

Logs can be written to a separate file or to the system logs. If you prefer to have the logging separated from other system

information, the value of the variable, server_audit_output_type should be set to file . Incidentally, file is the only

option on Windows systems.

You can force a rotation by enabling the server_audit_file_rotate_now variable like so:

SET GLOBAL server_audit_file_rotate_now = ON;

Separate log files

In addition to setting server_audit_output_type, you will have to provide the file path and name of the audit file. This is set in

the variable, server_audit_file_path. You can set the file size limit of the log file with the variable,

server_audit_file_rotate_size.

So, if rotation is on and the log file has reached the size limit you set, a copy is created with a consecutive number as

extension, the original file will be truncated to be used for the auditing again. To limit the number of log files created, set the

variable, server_audit_file_rotations. You can force log file rotation by setting the variable, server_audit_file_rotate_now to a

value of ON . When the number of files permitted is reached, the oldest file will be overwritten. Below is an example of how

the variables described above might be set in a server's configuration files:

[mysqld]

...

server_audit_file_rotate_now=ON

server_audit_file_rotate_size=1000000

server_audit_file_rotations=5

...

System logs

For security reasons, it's better sometimes to use the system logs instead of a local file owned by the mysql user. To do

this, the value of server_audit_output_type needs to be set to syslog . Advanced configurations, such as using a remote

syslogd service, are part of the syslogd configuration.

The variables, server_audit_syslog_ident and server_audit_syslog_info can be used to identify a system log entry made by

the audit plugin. If a remote syslogd service is used for several MariaDB servers, these same variables are also used to

identify the MariaDB server.

Below is an example of a system log entry taken from a server which had server_audit_syslog_ident set to the default value

of mysql+-server_auditing , and server_audit_syslog_info set to <prod1> .

Aug 717:19:58localhostmysql-+server_auditing:

<prod1> localhost.localdomain,root,localhost,1,7,

QUERY, mysql, 'SELECT * FROM user',0

Although the default values for server_audit_syslog_facility and server_audit_syslog_priority should be sufficient in most

cases, they can be changed based on the definition in syslog.h for the functions openlog() and syslog() .

5.4.5.5 MariaDB Audit Plugin - Log Format
The audit plugin logs user access to MariaDB and its objects. The audit trail (i.e., audit log) is a set of records, written as a

list of fields to a file in a plain0text format. The fields in the log are separated by commas. The format used for the plugin's

own log file is slightly different from the format used if it logs to the system log because it has its own standard format. The

general format for the logging to the plugin's own file is defined like the following:

3562/4161

[timestamp],[serverhost],[username],[host],[connectionid],

[queryid],[operation],[database],[object],[retcode]

If the server_audit_output_type variable is set to syslog instead of the default, file , the audit log file format will be as

follows:

[timestamp][syslog_host][syslog_ident]:[syslog_info][serverhost],[username],[host],

[connectionid],[queryid],[operation],[database],[object],[retcode]

Item logged Description

timestamp Time at which the event occurred. If syslog is used, the format is defined by syslogd .

syslog_host Host from which the syslog entry was received.

syslog_ident For identifying a system log entry, including the MariaDB server.

syslog_info For providing information for identifying a system log entry.

serverhost The MariaDB server host name.

username Connected user.

host Host from which the user connected.

connectionid Connection ID number for the related operation.

queryid
Query ID number, which can be used for finding the relational table events and related queries. For TABLE

events, multiple lines will be added.

operation Recorded action type: CONNECT, QUERY, READ, WRITE, CREATE, ALTER, RENAME, DROP.

database Active database (as set by USE).

object Executed query for QUERY events, or the table name in the case of TABLE events.

retcode Return code of the logged operation.

Various events will result in different audit records. Some events will not return a value for some fields (e.g., when the active

database is not set when connecting to the server).

Below is a generic example of the output for connect events, with placeholders representing data. These are events in

which a user connected, disconnected, or tried unsuccessfully to connect to the server.

[timestamp],[serverhost],[username],[host],[connectionid],0,CONNECT,[database],,0

[timestamp],[serverhost],[username],[host],[connectionid],0,DISCONNECT,,,0

[timestamp],[serverhost],[username],[host],[connectionid],0,FAILED_CONNECT,,,[retcode]

Here is the one audit record generated for each query event:

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],QUERY,[database],[object],

[retcode]

Below are generic examples of records that are entered in the audit log for each type of table event:

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],CREATE,[database],[object],

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],READ,[database],[object],

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],WRITE,[database],[object],

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],ALTER,[database],[object],

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],RENAME,[database],

[object_old]|[database_new].[object_new],

[timestamp],[serverhost],[username],[host],[connectionid],[queryid],DROP,[database],[object],

Starting in version 1.2.0, passwords are hidden in the log for certain types of queries. They are replaced with asterisks for

GRANT , CREATE USER , CREATE MASTER , CREATE SERVER , and ALTER SERVER statements. Passwords, however, are

not replaced for the PASSWORD() and OLD_PASSWORD() functions when they are used inside other SQL statements (i.e.,

SET PASSWORD).

5.4.5.6 MariaDB Audit Plugin - Versions
3563/4161

Below is a list of the releases of the MariaDB Audit Plugin, the most recent version first, and in which versions of MariaDB

each plugin version was included.

Version Introduced

1.4.13 MariaDB 10.2.38 , MariaDB 10.3.29 , MariaDB 10.4.19, MariaDB 10.5.10

1.4.10 MariaDB 10.2.35 , MariaDB 10.3.26 , MariaDB 10.5.7

1.4.7 MariaDB 10.1.41 , MariaDB 10.2.26 , MariaDB 10.3.17 , MariaDB 10.4.7

1.4.5 MariaDB 10.2.24 , MariaDB 10.3.15 , MariaDB 10.4.5

1.4.4
MariaDB 5.5.61 , MariaDB 10.0.36 , MariaDB 10.1.34 , MariaDB 10.2.15 , MariaDB 10.3.7 , MariaDB

10.4.0

1.4.0 MariaDB 5.5.48 , MariaDB 10.0.24 , MariaDB 10.1.11

1.3.0 MariaDB 5.5.43 , MariaDB 10.0.18 , MariaDB 10.1.5

1.2.0 MariaDB 5.5.42 , MariaDB 10.0.17 , MariaDB 10.1.4

1.1.7 MariaDB 5.5.38 , MariaDB 10.0.11 , MariaDB 10.1.0

1.1.6 MariaDB 5.5.37 , MariaDB 10.0.10

1.1.5 MariaDB 10.0.09

1.1.4 MariaDB 5.5.36

1.1.3 MariaDB 5.5.34 , MariaDB 10.0.7

5.4.5.7 MariaDB Audit Plugin Options and
System Variables

Contents
1. System Variables

1. server_audit_events

2. server_audit_excl_users

3. server_audit_file_path

4. server_audit_file_rotate_now

5. server_audit_file_rotate_size

6. server_audit_file_rotations

7. server_audit_incl_users

8. server_audit_loc_info

9. server_audit_logging

10. server_audit_mode

11. server_audit_output_type

12. server_audit_query_log_limit

13. server_audit_syslog_facility

14. server_audit_syslog_ident

15. server_audit_syslog_info

16. server_audit_syslog_priority

2. Options

1. server_audit

There are a several options and system variables related to the MariaDB Audit Plugin , once it has been installed .

System variables can be displayed using the SHOW VARIABLES statement like so:

3564/4161

https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://mariadb.com/kb/en/mariadb-5561-release-notes/
https://mariadb.com/kb/en/mariadb-10036-release-notes/
https://mariadb.com/kb/en/mariadb-10134-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-5542-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/mariadb-audit-plugin-117-release-notes/
https://mariadb.com/kb/en/mariadb-5538-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-audit-plugin-116-release-notes/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-audit-plugin-115-release-notes/
https://mariadb.com/kb/en/mariadb-10009-release-notes/
https://mariadb.com/kb/en/mariadb-audit-plugin-114-release-notes/
https://mariadb.com/kb/en/mariadb-5536-release-notes/
https://mariadb.com/kb/en/mariadb-audit-plugin-113-release-notes/
https://mariadb.com/kb/en/mariadb-5534-release-notes/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/server_audit-mariadb-audit-plugin/
https://mariadb.com/kb/en/mariadb-audit-plugin-entitymdashentity-installation/

SHOW GLOBAL VARIABLES LIKE '%server_audit%';

+-------------------------------+-----------------------+

| Variable_name | Value |

+-------------------------------+-----------------------+

| server_audit_events | CONNECT,QUERY,TABLE |

| server_audit_excl_users | |

| server_audit_file_path | server_audit.log |

| server_audit_file_rotate_now | OFF |

| server_audit_file_rotate_size | 1000000 |

| server_audit_file_rotations | 9 |

| server_audit_incl_users | |

| server_audit_logging | ON |

| server_audit_mode | 0 |

| server_audit_output_type | file |

| server_audit_query_log_limit | 1024 |

| server_audit_syslog_facility | LOG_USER |

| server_audit_syslog_ident | mysql-server_auditing |

| server_audit_syslog_info | |

| server_audit_syslog_priority | LOG_INFO |

+-------------------------------+-----------------------+

To change the value of one of these variables, you can use the SET statement, or set them at the command-line when

starting MariaDB. It's recommended that you set them in the MariaDB configuration for the server like so:

[mariadb]

...

server_audit_excl_users='bob,ted'

...

System Variables

Below is a list of all system variables related to the Audit Plugin. See Server System Variables for a complete list of system

variables and instructions on setting them. See also the full list of MariaDB options, system and status variables.

server_audit_events

Description: If set, then this restricts audit logging to certain event types. If not set, then every event type is logged to

the audit log. For example: SET GLOBAL server_audit_events='connect, query'

Commandline: --server-audit-events=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty string

Valid Values:

CONNECT , QUERY , TABLE (MariaDB Audit Plugin < 1.2.0)

CONNECT , QUERY , TABLE , QUERY_DDL , QUERY_DML (MariaDB Audit Plugin >= 1.2.0)

CONNECT , QUERY , TABLE , QUERY_DDL , QUERY_DML , QUERY_DCL (MariaDB Audit Plugin >=1.3.0)

CONNECT , QUERY , TABLE , QUERY_DDL , QUERY_DML , QUERY_DCL , QUERY_DML_NO_SELECT (MariaDB

Audit Plugin >= 1.4.4)

See MariaDB Audit Plugin - Versions to determine which MariaDB releases contain each MariaDB Audit Plugin

versions.

server_audit_excl_users

Description: If not empty, it contains the list of users whose activity will NOT be logged. For example: SET GLOBAL

server_audit_excl_users='user_foo, user_bar' . CONNECT records aren't affected by this variable - they are

always logged. The user is still logged if it's specified in server_audit_incl_users.

Commandline: --server-audit-excl-users=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty string

Size limit: 1024 characters

3565/4161

server_audit_file_path

Description: When server_audit_output_type=file, sets the path and the filename to the log file. If the specified path

exists as a directory, then the log will be created inside that directory with the name 'server_audit.log'. Otherwise the

value is treated as a filename. The default value is 'server_audit.log', which means this file will be created in the

database directory.

Commandline: --server-audit-file-path=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: server_audit.log

server_audit_file_rotate_now

Description: When server_audit_output_type=file, the user can force the log file rotation by setting this variable to

ON or 1.

Commandline: --server-audit-rotate-now[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

server_audit_file_rotate_size

Description: When server_audit_output_type=file, it limits the size of the log file to the given amount of bytes.

Reaching that limit turns on the rotation - the current log file is renamed as 'file_path.1'. The empty log file is created

as 'file_path' to log into it. The default value is 1000000.

Commandline: --server-audit-rotate-size=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1000000

Range: 100 to 9223372036854775807

server_audit_file_rotations

Description: When server_audit_output_type=file', this specifies the number of rotations to save. If set to 0 then the

log never rotates. The default value is 9.

Commandline: --server-audit-rotations=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 9

Range: 0 to 999

server_audit_incl_users

Description: If not empty, it contains a comma-delimited list of users whose activity will be logged. For example: SET

GLOBAL server_audit_incl_users='user_foo, user_bar' . CONNECT records aren't affected by this variable

- they are always logged. This setting has higher priority than server_audit_excl_users. So if the same user is

specified both in incl_ and excl_ lists, they will still be logged.

Commandline: --server-audit-incl-users=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty string

Size limit: 1024 characters

server_audit_loc_info

3566/4161

Description: Used by plugin internals. It has no useful meaning to users.

In earlier versions, users see it as a read-only variable.

In later versions, it is hidden from the user.

Commandline: N/A

Scope: Global

Dynamic: No

Data Type: string

Default Value: Empty string

Introduced: MariaDB 10.1.12 , MariaDB 10.0.24 , MariaDB 5.5.48

Hidden: MariaDB 10.1.18 , MariaDB 10.0.28 , MariaDB 5.5.53

server_audit_logging

Description: Enables/disables the logging. Expected values are ON/OFF. For example: SET GLOBAL

server_audit_logging=on If the server_audit_output_type is FILE, this will actually create/open the logfile so the

server_audit_file_path should be properly specified beforehand. Same about the SYSLOG-related parameters. The

logging is turned off by default.

Commandline: --server-audit-logging[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

server_audit_mode

Description: This variable doesn't have any distinctive meaning for a user. Its value mostly reflects the server version

with which the plugin was started and is intended to be used by developers for testing.

Commandline: --server-audit-mode[=#]

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 1

server_audit_output_type

Description: Specifies the desired output type. Can be SYSLOG, FILE or null as no output. For example: SET

GLOBAL server_audit_output_type=file file: log records will be saved into the rotating log file. The name of the

file set by server_audit_file_path variable. syslog: log records will be sent to the local syslogd daemon with the

standard <syslog.h> API. The default value is 'file'.

Commandline: --server-audit-output-type=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: file

Valid Values: SYSLOG , FILE

server_audit_query_log_limit

Description: Limit on the length of the query string in a record.

Commandline: --server-audit-query-log-limit=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1024

Range: 0 to 2147483647

server_audit_syslog_facility

Description: SYSLOG-mode variable. It defines the 'facility' of the records that will be sent to the syslog. Later the

3567/4161

https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10028-release-notes/
https://mariadb.com/kb/en/mariadb-5553-release-notes/

log can be filtered by this parameter.

Commandline: --server-audit-syslog-facility=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: LOG_USER

Valid Values: LOG_USER , LOG_MAIL , LOG_DAEMON , LOG_AUTH , LOG_SYSLOG , LOG_LPR , LOG_NEWS ,

LOG_UUCP , LOG_CRON , LOG_AUTHPRIV , LOG_FTP , and LOG_LOCAL0 3 LOG_LOCAL7 .

server_audit_syslog_ident

Description: SYSLOG-mode variable. String value for the 'ident' part of each syslog record. Default value is 'mysql-

server_auditing'. New value becomes effective only after restarting the logging.

Commandline: --server-audit-syslog-ident=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: mysql-server_auditing

server_audit_syslog_info

Description: SYSLOG-mode variable. The 'info' string to be added to the syslog records. Can be changed any time.

Commandline: --server-audit-syslog-info=value

Scope: Global

Dynamic: Yes

Data Type: string

Default Value: Empty string

server_audit_syslog_priority

Description: SYSLOG-mode variable. Defines the priority of the log records for the syslogd.

Commandline: --server-audit-syslog-priority=value

Scope: Global

Dynamic: Yes

Data Type: enum

Default Value: LOG_INFO

Valid Values: LOG_EMERG , LOG_ALERT , LOG_CRIT , LOG_ERR , LOG_WARNING , LOG_NOTICE , LOG_INFO ,

LOG_DEBUG

Options

server_audit

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See MariaDB Audit Plugin - Installation: Prohibiting Uninstallation for more information on one use case.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --server-audit=val

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

3568/4161

5.4.5.8 MariaDB Audit Plugin - Status Variables
Contents
1. Status Variables

1. Server_audit_active

2. Server_audit_current_log

3. Server_audit_last_error

4. Server_audit_writes_failed

There are a few status variables related to the MariaDB Audit Plugin , once it has been installed . These variables can be

displayed using the SHOW STATUS statement like so:

SHOW STATUS LIKE 'server_audit%';

+----------------------------+------------------+

| Variable_name | Value |

+----------------------------+------------------+

| Server_audit_active | ON |

| Server_audit_current_log | server_audit.log |

| Server_audit_last_error | |

| Server_audit_writes_failed | 0 |

+----------------------------+------------------+

Status Variables

Below is a list of all status variables related to the Audit Plugin. These cannot be set: These are not to be confused with

system variables, which can be set. See Server Status Variables for a complete list of status variables that can be viewed

with the SHOW STATUS statement. See also the Full list of MariaDB options, system and status variables.

Server_audit_active

Description: If the auditing is actually working. It gets the ON value when the logging is successfully started. Then it

can get the OFF value if the logging was stopped or log records can't be properly stored due to file or syslog errors.

Data Type: boolean

Server_audit_current_log

Description: The name of the logfile or the SYSLOG parameters that are in current use.

Data Type: string

Server_audit_last_error

Description: If something went wrong with the logging here you can see the message.

Data Type: string

Server_audit_writes_failed

Description: The number of log records since last logging-start that weren't properly stored because of errors of any

kind. The global value can be flushed by FLUSH STATUS .

Data Type: numeric

Default Value: 0

5.4.6 Authentication Plugins
When a user attempts to log in, the authentication plugin controls how MariaDB Server determines whether the connection is

from a legitimate user.

When creating or altering a user account with the GRANT, CREATE USER or ALTER USER statements, you can specify the

authentication plugin you want the user account to use by providing the IDENTIFIED VIA clause. By default, when you

create a user account without specifying an authentication plugin, MariaDB uses the mysql_native_password plugin.

MariaDB starting with 10.4 3569/4161

https://mariadb.com/kb/en/server_audit-mariadb-audit-plugin/
https://mariadb.com/kb/en/mariadb-audit-plugin-entitymdashentity-installation/

In MariaDB 10.4 and later, there are some notable changes, such as:

You can specify multiple authentication plugins for each user account.

The root@localhost user created by mariadb-install-db is created with the ability to use two authentication

plugins. First, it is configured to try to use the unix_socket authentication plugin. This allows the the

root@localhost user to login without a password via the local Unix socket file defined by the socket system

variable, as long as the login is attempted from a process owned by the operating system root user account.

Second, if authentication fails with the unix_socket authentication plugin, then it is configured to try to use the

mysql_native_password authentication plugin. However, an invalid password is initially set, so in order to

authenticate this way, a password must be set with SET PASSWORD.

Pluggable Authentication Overview

The authentication of users is delegated to plugins.

Authentication Plugin - mysql_native_password

Uses the password hashing algorithm introduced in MySQL 4.1.

Authentication Plugin - mysql_old_password

The mysql_old_password authentication plugin uses the pre-MySQL 4.1 password hashing algorithm.

Authentication Plugin - ed25519

Uses the Elliptic Curve Digital Signature Algorithm to securely store users' passwords.

Authentication Plugin - GSSAPI

The gssapi authentication plugin uses the GSSAPI interface to authenticate with Kerberos or NTLM.

Authentication with Pluggable Authentication Modules (PAM)

Uses the Pluggable Authentication Module (PAM) framework to authenticate MariaDB users.

Authentication Plugin - Unix Socket

Uses the user name that owns the process connected to MariaDB's unix socket file.

Authentication Plugin - Named Pipe

Uses the user name that owns the process connected to MariaDB's named pipe on Windows.

Authentication Plugin - SHA-256

MySQL supports the sha256_password and caching_sha2_password authentication plugins.

There are 1 related questions .

MariaDB starting with 10.4

1

5

20

5.4.6.1 Pluggable Authentication Overview

3570/4161

https://mariadb.com/kb/en/authentication-plugins/+questions/

Contents
1. Supported Authentication Plugins

1. Supported Server Authentication Plugins

2. Supported Client Authentication Plugins

2. Options Related to Authentication Plugins

1. Server Options Related to Authentication Plugins

2. Client Options Related to Authentication Plugins

3. Installation Options Related to Authentication Plugins

3. Extended SQL Syntax

4. Authentication Plugins Installed by Default

1. Server Authentication Plugins Installed by Default

2. Client Authentication Plugins Installed by Default

5. Default Authentication Plugin

1. Default Server Authentication Plugin

2. Default Client Authentication Plugin

1. Setting the Default Client Authentication Plugin

6. Authentication Plugins

1. Server Authentication Plugins

1. mysql_native_password

2. mysql_old_password

3. ed25519

4. gssapi

5. pam

6. unix_socket

7. named_pipe

7. Authentication Plugin API

1. Dialog Client Authentication Plugin - Client Library Extension

When a user attempts to log in, the authentication plugin controls how MariaDB Server determines whether the connection

is from a legitimate user.

When creating or altering a user account with the GRANT, CREATE USER or ALTER USER statements, you can specify

the authentication plugin you want the user account to use by providing the IDENTIFIED VIA clause. By default, when you

create a user account without specifying an authentication plugin, MariaDB uses the mysql_native_password plugin.

In MariaDB 10.4 and later, there are some notable changes, such as:

You can specify multiple authentication plugins for each user account.

The root@localhost user created by mariadb-install-db is created with the ability to use two authentication

plugins. First, it is configured to try to use the unix_socket authentication plugin. This allows the the

root@localhost user to login without a password via the local Unix socket file defined by the socket system

variable, as long as the login is attempted from a process owned by the operating system root user account.

Second, if authentication fails with the unix_socket authentication plugin, then it is configured to try to use the

mysql_native_password authentication plugin. However, an invalid password is initially set, so in order to

authenticate this way, a password must be set with SET PASSWORD.

Supported Authentication Plugins
The authentication process is a conversation between the server and a client. MariaDB implements both server-side and

client-side authentication plugins.

Supported Server Authentication Plugins

MariaDB provides seven server-side authentication plugins:

mysql_native_password

mysql_old_password

ed25519

gssapi

pam (Unix only)

unix_socket (Unix only)

named_pipe (Windows only)

Supported Client Authentication Plugins

MariaDB starting with 10.4

3571/4161

MariaDB provides eight client-side authentication plugins:

mysql_native_password

mysql_old_password

client_ed25519

auth_gssapi_client

dialog

mysql_clear_password

sha256_password

caching_sha256_password

Options Related to Authentication Plugins

Server Options Related to Authentication Plugins

MariaDB supports the following server options related to authentication plugins:

Server Option Description

old_passwords={1 | 0}

If set to 1 (0 is default), MariaDB reverts to using the mysql_old_password authentication

plugin by default for newly created users and passwords, instead of the

mysql_native_password authentication plugin.

plugin_dir=path
Path to the plugin directory. For security reasons, either make sure this directory can only be

read by the server, or set secure_file_priv .

plugin_maturity=level
The lowest acceptable plugin maturity. MariaDB will not load plugins less mature than the

specified level.

secure_auth
Connections will be blocked if they use the the mysql_old_password authentication plugin.

The server will also fail to start if the privilege tables are in the old, pre-MySQL 4.1 format.

Client Options Related to Authentication Plugins

Most clients and utilities support some command line arguments related to client authentication plugins:

Client Option Description

--connect-

expired-

password

Notify the server that this client is prepared to handle expired password sandbox mode even if --

batch was specified. From MariaDB 10.4.3.

--default-

auth=name
Default authentication client-side plugin to use.

--plugin-

dir=path
Directory for client-side plugins.

--secure-

auth

Refuse to connect to the server if the server uses the mysql_old_password authentication plugin. This

mode is off by default, which is a difference in behavior compared to MySQL 5.6 and later, where it is on

by default.

Developers who are using MariaDB Connector/C can implement similar functionality in their application by setting the

following options with the mysql_optionsv function:

MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS

MYSQL_PLUGIN_DIR

MYSQL_DEFAULT_AUTH

MYSQL_SECURE_AUTH

For example:

mysql_optionsv(mysql, MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS, 1);

mysql_optionsv(mysql, MYSQL_DEFAULT_AUTH, "name");

mysql_optionsv(mysql, MYSQL_PLUGIN_DIR, "path");

mysql_optionsv(mysql, MYSQL_SECURE_AUTH, 1);

Installation Options Related to Authentication Plugins

3572/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mysql_optionsv/

mariadb-install-db supports the following installation options related to authentication plugins:

Installation

Option
Description

--auth-root-

authentication-

method={normal

| socket}

If set to normal , it creates a root@localhost account that authenticates with the

mysql_native_password authentication plugin and that has no initial password set, which can be

insecure. If set to socket , it creates a root@localhost account that authenticates with the

unix_socket authentication plugin. Set to normal by default. Available since MariaDB 10.1.

--auth-root-

socket-

user=USER

Used with --auth-root-authentication-method=socket . It specifies the name of the second

account to create with SUPER privileges in addition to root , as well as of the system account

allowed to access it. Defaults to the value of --user .

Extended SQL Syntax
MariaDB has extended the SQL standard GRANT, CREATE USER, and ALTER USER statements, so that they support

specifying different authentication plugins for specific users. An authentication plugin can be specified with these statements

by providing the IDENTIFIED VIA clause.

For example, the GRANT syntax is:

GRANT <privileges> ON <level> TO <user>

 IDENTIFIED VIA <plugin> [USING <string>]

And the CREATE USER syntax is:

CREATE USER <user>

 IDENTIFIED VIA <plugin> [USING <string>]

And the ALTER USER syntax is:

ALTER USER <user>

 IDENTIFIED VIA <plugin> [USING <string>]

The optional USING clause allows users to provide an authentication string to a plugin. The authentication string's format

and meaning is completely defined by the plugin.

For example, for the mysql_native_password authentication plugin, the authentication string should be a password hash:

CREATE USER mysqltest_up1

 IDENTIFIED VIA mysql_native_password USING '*E8D46CE25265E545D225A8A6F1BAF642FEBEE5CB';

Since mysql_native_password is the default authentication plugin, the above is just another way of saying the following:

CREATE USER mysqltest_up1

 IDENTIFIED BY PASSWORD '*E8D46CE25265E545D225A8A6F1BAF642FEBEE5CB';

In contrast, for the pam authentication plugin, the authentication string should refer to a PAM service name:

CREATE USER mysqltest_up1

 IDENTIFIED VIA pam USING 'mariadb';

In MariaDB 10.4 and later, a user account can be associated with multiple authentication plugins.

For example, to configure the root@localhost user account to try the unix_socket authentication plugin, followed by

the mysql_native_password authentication plugin as a backup, you could execute the following:

CREATE USER root@localhost

 IDENTIFIED VIA unix_socket

 OR mysql_native_password USING PASSWORD("verysecret");

See Authentication from MariaDB 10.4 for more information.

MariaDB starting with 10.4

3573/4161

Authentication Plugins Installed by Default

Server Authentication Plugins Installed by Default

Not all server-side authentication plugins are installed by default. If a specific server-side authentication plugin is not

installed by default, then you can find the installation procedure on the documentation page for the specific authentication

plugin.

In MariaDB 10.4 and later, the following server-side authentication plugins are installed by default:

The mysql_native_password and mysql_old_password authentication plugins authentication plugins are installed

by default in all builds.

The unix_socket authentication plugin is installed by default in all builds on Unix and Linux.

The named_pipe authentication plugin is installed by default in all builds on Windows.

In MariaDB 10.3 and below, the following server-side authentication plugins are installed by default:

The mysql_native_password and mysql_old_password authentication plugins are installed by default in all

builds.

The unix_socket authentication plugin is installed by default in new installations that use the .deb packages

provided by Debian's default repositories in Debian 9 and later and Ubuntu's default repositories in Ubuntu 15.10

and later. See Differences in MariaDB in Debian (and Ubuntu) for more information.

The named_pipe authentication plugin is installed by default in all builds on Windows.

Client Authentication Plugins Installed by Default

Client-side authentication plugins do not need to be installed in the same way that server-side authentication plugins do. If

the client uses either the libmysqlclient or MariaDB Connector/C library, then the library automatically loads client-

side authentication plugins from the library's plugin directory whenever they are needed.

Most clients and utilities support the --plugin-dir command line argument that can be used to set the path to the

library's plugin directory:

Client Option Description

--plugin-dir=path Directory for client-side plugins.

Developers who are using MariaDB Connector/C can implement similar functionality in their application by setting the

MYSQL_PLUGIN_DIR option with the mysql_optionsv function.

For example:

mysql_optionsv(mysql, MYSQL_PLUGIN_DIR, "path");

If your client encounters errors similar to the following, then you may need to set the path to the library's plugin directory:

ERROR 2059 (HY000): Authentication plugin 'dialog' cannot be loaded:

/usr/lib/mysql/plugin/dialog.so: cannot open shared object file: No such file or directory

If the client does not use either the libmysqlclient or MariaDB Connector/C library, then you will have to determine

which authentication plugins are supported by the specific client library used by the client.

If the client uses either the libmysqlclient or MariaDB Connector/C library, but the client is not bundled with either

library's optional client authentication plugins, then you can only use the conventional authentication plugins (like

mysql_native_password and mysql_old_password) and the non-conventional authentication plugins that don't require

special client-side authentication plugins (like unix_socket and named_pipe).

Default Authentication Plugin

MariaDB starting with 10.4

MariaDB until 10.3

3574/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mysql_optionsv/
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-connector-c/

Default Server Authentication Plugin

The mysql_native_password authentication plugin is currently the default authentication plugin in all versions of MariaDB if

the old_passwords system variable is set to 0 , which is the default.

On a system with the old_passwords system variable set to 0 , this means that if you create a user account with either the

GRANT or CREATE USER statements, and if you do not specify an authentication plugin with the

IDENTIFIED VIA clause, then MariaDB will use the mysql_native_password authentication plugin for

the user account.

For example, this user account will use the mysql_native_password authentication plugin:

CREATE USER username@hostname;

And so will this user account:

CREATE USER username@hostname IDENTIFIED BY 'notagoodpassword';

The mysql_old_password authentication plugin becomes the default authentication plugin in all versions of MariaDB if the

old_passwords system variable is explicitly set to 1 .

However, the mysql_old_password authentication plugin is not considered secure, so it is recommended to avoid using this

authentication plugin. To help prevent undesired use of the mysql_old_password authentication plugin, the server supports

the secure_auth system variable that can be used to configured the server to refuse connections that try to use the

mysql_old_password authentication plugin:

Server Option Description

old_passwords=

{1 | 0}

If set to 1 (0 is default), MariaDB reverts to using the mysql_old_password authentication plugin by

default for newly created users and passwords, instead of the mysql_native_password authentication

plugin.

secure_auth
Connections will be blocked if they use the the mysql_old_password authentication plugin. The server

will also fail to start if the privilege tables are in the old, pre-MySQL 4.1 format.

Most clients and utilities also support the --secure-auth command line argument that can also be used to configure the

client to refuse to connect to servers that use the mysql_old_password authentication plugin:

Client

Option
Description

--

secure-

auth

Refuse to connect to the server if the server uses the mysql_old_password authentication plugin. This mode is

off by default, which is a difference in behavior compared to MySQL 5.6 and later, where it is on by default.

Developers who are using MariaDB Connector/C can implement similar functionality in their application by setting the

MYSQL_SECURE_AUTH option with the mysql_optionsv function.

For example:

mysql_optionsv(mysql, MYSQL_SECURE_AUTH, 1);

Default Client Authentication Plugin

The default client-side authentication plugin depends on a few factors.

If a client doesn't explicitly set the default client-side authentication plugin, then the client will determine which

authentication plugin to use by checking the length of the scramble in the server's handshake packet.

If the server's handshake packet contains a 9-byte scramble, then the client will default to the mysql_old_password

authentication plugin.

If the server's handshake packet contains a 20-byte scramble, then the client will default to the mysql_native_password

authentication plugin.

Setting the Default Client Authentication Plugin

Most clients and utilities support the --default-auth command line argument that can be used to set the default client-

side authentication plugin:

3575/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mysql_optionsv/

Client Option Description

--default-auth=name Default authentication client-side plugin to use.

Developers who are using MariaDB Connector/C can implement similar functionality in their application by setting the

MYSQL_DEFAULT_AUTH option with the mysql_optionsv function.

For example:

mysql_optionsv(mysql, MYSQL_DEFAULT_AUTH, "name");

If you know that your user account is configured to require a client-side authentication plugin that isn't mysql_old_password

or mysql_native_password, then it can help speed up your connection process to explicitly set the default client-side

authentication plugin.

According to the client-server protocol , the server first sends the handshake packet to the client, then the client replies

with a packet containing the user name of the user account that is requesting access. The server handshake packet initially

tells the client to use the default server authentication plugin, and the client reply initially tells the server that it will use the

default client authentication plugin.

However, the server-side and client-side authentication plugins mentioned in these initial packets may not be the correct

ones for this specific user account. The server only knows what authentication plugin to use for this specific user account

after reading the user name from the client reply packet and finding the appropriate row for the user account in either the

mysql.user table or the mysql.global_priv table, depending on the MariaDB version.

If the server finds that either the server-side or client-side default authentication plugin does not match the actual

authentication plugin that should be used for the given user account, then the server restarts the authentication on either the

server side or the client side.

This means that, if you know what client authentication plugin your user account requires, then you can avoid an

unnecessary authentication restart and you can save two packets and two round-trips.between the client and server by

configuring your client to use the correct authentication plugin by default.

Authentication Plugins

Server Authentication Plugins

mysql_native_password

The mysql_native_password authentication plugin uses the password hashing algorithm introduced in MySQL 4.1, which is

also used by the PASSWORD() function when old_passwords=0 is set. This hashing algorithm is based

on SHA-1 .

mysql_old_password

The mysql_old_password authentication plugin uses the pre-MySQL 4.1 password hashing algorithm, which is also used by

the OLD_PASSWORD() function and by the PASSWORD() function when old_passwords=1 is set.

ed25519

The ed25519 authentication plugin uses Elliptic Curve Digital Signature Algorithm to securely store users' passwords and

to authenticate users. The ed25519 algorithm is the same one that is used by OpenSSH . It is based on the elliptic curve

and code created by Daniel J. Bernstein .

From a user's perspective, the ed25519 authentication plugin still provides conventional password-based authentication.

gssapi

The gssapi authentication plugin allows the user to authenticate with services that use the Generic Security Services

Application Program Interface (GSSAPI) . Windows has a slightly different but very similar API called Security Support

Provider Interface (SSPI) .

On Windows, this authentication plugin supports Kerberos and NTLM authentication. Windows authentication is

supported regardless of whether a domain is used in the environment.

On Unix systems, the most dominant GSSAPI service is Kerberos . However, it is less commonly used on Unix systems

than it is on Windows. Regardless, this authentication plugin also supports Kerberos authentication on Unix.

The gssapi authentication plugin is most often used for authenticating with Microsoft Active Directory .

3576/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mysql_optionsv/
https://mariadb.com/kb/en/clientserver-protocol/
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA#Ed25519
https://www.openssh.com/txt/release-6.5
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://docs.microsoft.com/en-us/windows/desktop/secauthn/sspi
https://docs.microsoft.com/en-us/windows/desktop/secauthn/microsoft-kerberos
https://docs.microsoft.com/en-us/windows/desktop/secauthn/microsoft-ntlm
https://en.wikipedia.org/wiki/Windows_domain
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview

pam

The pam authentication plugin allows MariaDB to offload user authentication to the system's Pluggable Authentication

Module (PAM) framework. PAM is an authentication framework used by Linux, FreeBSD, Solaris, and other Unix-like

operating systems.

unix_socket

The unix_socket authentication plugin allows the user to use operating system credentials when connecting to MariaDB via

the local Unix socket file. This Unix socket file is defined by the socket system variable.

The unix_socket authentication plugin works by calling the getsockopt system call with the SO_PEERCRED socket option,

which allows it to retrieve the uid of the process that is connected to the socket. It is then able to get the user name

associated with that uid . Once it has the user name, it will authenticate the connecting user as the MariaDB account that

has the same user name.

For example:

$ mysql -uroot

MariaDB []> CREATE USER serg IDENTIFIED VIA unix_socket;

MariaDB []> CREATE USER monty IDENTIFIED VIA unix_socket;

MariaDB []> quit

Bye

$ whoami

serg

$ mysql --user=serg

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 2

Server version: 5.2.0-MariaDB-alpha-debug Source distribution

MariaDB []> quit

Bye

$ mysql --user=monty

ERROR 1045 (28000): Access denied for user 'monty'@'localhost' (using password: NO)

In this example, a user serg is already logged into the operating system and has full shell access. He has already

authenticated with the operating system and his MariaDB account is configured to use the unix_socket authentication plugin,

so he does not need to authenticate again for the database. MariaDB accepts his operating system credentials and allows

him to connect. However, any attempt to connect to the database as another operating system user will be denied.

named_pipe

The named_pipe authentication plugin allows the user to use operating system credentials when connecting to MariaDB via

named pipe on Windows. Named pipe connections are enabled by the named_pipe system variable.

The named_pipe authentication plugin works by using named pipe impersonation and calling GetUserName() to retrieve

the user name of the process that is connected to the named pipe. Once it has the user name, it authenticates the

connecting user as the MariaDB account that has the same user name.

For example:

CREATE USER wlad IDENTIFIED VIA named_pipe;

CREATE USER monty IDENTIFIED VIA named_pipe;

quit

C:\>echo %USERNAME%

wlad

C:\> mysql --user=wlad --protocol=PIPE

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 4

Server version: 10.1.12-MariaDB-debug Source distribution

Copyright (c) 2000, 2015, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> quit

Bye

C:\> mysql --user=monty --protocol=PIPE

ERROR 1698 (28000): Access denied for user 'monty'@'localhost'

3577/4161

http://en.wikipedia.org/wiki/Pluggable_authentication_module
http://man7.org/linux/man-pages/man7/socket.7.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378618%2528v=vs.85%2529.aspx

Authentication Plugin API
The authentication plugin API is extensively documented in the source code in the following files:

mysql/plugin_auth.h (server part)

mysql/client_plugin.h (client part)

mysql/plugin_auth_common.h (common parts)

The MariaDB source code also contains some authentication plugins that are intended explicitly to be examples for

developers. They are located in plugin/auth_examples .

The definitions of two example authentication plugins called two_questions and three_attempts can be seen in

plugin/auth_examples/dialog_examples.c . These authentication plugins demonstrate how to communicate with the

user using the dialog client authentication plugin.

The two_questions authentication plugin asks the user for a password and a confirmation ("Are you sure?").

The three_attempts authentication plugin gives the user three attempts to enter a correct password.

The password for both of these plugins should be specified in the plain text in the USING clause:

CREATE USER insecure IDENTIFIED VIA two_questions USING 'notverysecret';

Dialog Client Authentication Plugin - Client Library Extension

The dialog client authentication plugin, strictly speaking, is not part of the client-server or authentication plugin API. But it

can be loaded into any client application that uses the libmysqlclient or MariaDB Connector/C libraries. This

authentication plugin provides a way for the application to customize the UI of the dialog function.

In order to use the dialog client authentication plugin to communicate with the user in a customized way, the application will

need to implement a function with the following signature:

extern "C" char *mysql_authentication_dialog_ask(

 MYSQL *mysql, int type, const char *prompt, char *buf, int buf_len)

The function takes the following arguments:

The connection handle.

A question "type", which has one of the following values:

1 - Normal question

2 - Password (no echo)

A prompt.

A buffer.

The length of the buffer.

The function returns a pointer to a string of characters, as entered by the user. It may be stored in buf or allocated with

malloc() .

Using this function a GUI application can pop up a dialog window, a network application can send the question over the

network, as required. If no mysql_authentication_dialog_ask function is provided by the application, the dialog client

authentication plugin falls back to fputs() and fgets() .

Providing this callback is particularly important on Windows, because Windows GUI applications have no associated

console and the default dialog function will not be able to reach the user. An example of Windows GUI client that does it

correctly is HeidiSQL .

5.4.6.2 Authentication Plugin -
mysql_native_password
The mysql_native_password authentication plugin is the default authentication plugin that will be used for an account

created when no authentication plugin is explicitly mentioned and old_passwords=0 is set. It uses the password hashing

algorithm introduced in MySQL 4.1, which is also used by the PASSWORD() function when old_passwords=0 is set. This

hashing algorithm is based on SHA-1 .

It is not recommended to use the mysql_native_password authentication plugin for new installations that require

high password security. If someone is able to both listen to the connection protocol and get a copy of the mysql.user

table, then the person would be able to use this information to connect to the MariaDB server. The ed25519

3578/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://linux.die.net/man/3/fputs
https://linux.die.net/man/3/fgets
https://mariadb.com/kb/en/heidisql/
https://en.wikipedia.org/wiki/SHA-1

authentication plugin is a more modern authentication plugin that provides simple password authentication using a

more secure algorithm.

Contents
1. Installing the Plugin

2. Creating Users

3. Changing User Passwords

4. Client Authentication Plugins

1. mysql_native_password

5. Support in Client Libraries

6. Known Old Issues (Only Relevant for Old Installations)

1. Mismatches Between Password and authentication_string Columns

Installing the Plugin
The mysql_native_password authentication plugin is statically linked into the server, so no installation is necessary.

Creating Users
The easiest way to create a user account with the mysql_native_password authentication plugin is to make sure that

old_passwords=0 is set, and then create a user account via CREATE USER that does not specify an authentication plugin,

but does specify a password via the IDENTIFIED BY clause. For example:

SET old_passwords=0;

CREATE USER username@hostname IDENTIFIED BY 'mariadb';

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT. For

example:

SET old_passwords=0;

GRANT SELECT ON db.* TO username@hostname IDENTIFIED BY 'mariadb';

You can also create the user account by providing a password hash via the IDENTIFIED BY PASSWORD clause, and

MariaDB will validate whether the password hash is one that is compatible with mysql_native_password . For example:

SET old_passwords=0;

SELECT PASSWORD('mariadb');

+---+

| PASSWORD('mariadb') |

+---+

| *54958E764CE10E50764C2EECBB71D01F08549980 |

+---+

CREATE USER username@hostname

 IDENTIFIED BY PASSWORD '*54958E764CE10E50764C2EECBB71D01F08549980';

Similar to all other authentication plugins, you could also specify the name of the plugin in the IDENTIFIED VIA clause while

providing the password hash as the USING clause. For example:

CREATE USER username@hostname

 IDENTIFIED VIA mysql_native_password USING '*54958E764CE10E50764C2EECBB71D01F08549980';

Changing User Passwords
You can change a user account's password with the SET PASSWORD statement while providing the plain-text password as

an argument to the PASSWORD() function. For example:

SET PASSWORD = PASSWORD('new_secret')

You can also change the user account's password with the ALTER USER statement. You would have to make sure that

old_passwords=0 is set, and then you would have to specify a password via the IDENTIFIED BY clause. For example:

3579/4161

SET old_passwords=0;

ALTER USER username@hostname IDENTIFIED BY 'new_secret';

Client Authentication Plugins
For clients that use the libmysqlclient or MariaDB Connector/C libraries, MariaDB provides one client authentication

plugin that is compatible with the mysql_native_password authentication plugin:

mysql_native_password

When connecting with a client or utility to a server as a user account that authenticates with the mysql_native_password

authentication plugin, you may need to tell the client where to find the relevant client authentication plugin by specifying the

--plugin-dir option. For example:

mysql --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

However, the mysql_native_password client authentication plugin is generally statically linked into client libraries like

libmysqlclient or MariaDB Connector/C , so this is not usually necessary.

mysql_native_password

The mysql_native_password client authentication plugin hashes the password before sending it to the server.

Support in Client Libraries
The mysql_native_password authentication plugin is one of the conventional authentication plugins, so all client libraries

should support it.

Known Old Issues (Only Relevant for Old Installations)

Mismatches Between Password and authentication_string Columns

For compatibility reasons,the mysql_native_password authentication plugin tries to read the password hash from both

the Password and authentication_string columns in the mysql.user table. This has caused issues in the past if one

of the columns had a different value than the other.

Starting with MariaDB 10.2.19 and MariaDB 10.3.11 , CREATE USER, ALTER USER, GRANT, and SET PASSWORD

will set both columns whenever an account's password is changed.

See MDEV-16774 for more information.

5.4.6.3 Authentication Plugin -
mysql_old_password
The mysql_old_password authentication plugin is the default authentication plugin that will be used for an account

created when no authentication plugin is explicitly mentioned and old_passwords=1 is set. It uses the pre-MySQL 4.1

password hashing algorithm, which is also used by the OLD_PASSWORD() function and by the PASSWORD() function when

old_passwords=1 is set.

It is not recommended to use the mysql_old_password authentication plugin for new installations. The password

hashing algorithm is no longer as secure as it used to be, and the plugin is primarily provided for backward-

compatibility. The ed25519 authentication plugin is a more modern authentication plugin that provides simple

password authentication.

3580/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://jira.mariadb.org/browse/MDEV-16774

Contents
1. Installing the Plugin

2. Creating Users

3. Changing User Passwords

4. Client Authentication Plugins

1. mysql_old_password

5. Support in Client Libraries

Installing the Plugin
The mysql_old_password authentication plugin is statically linked into the server, so no installation is necessary.

Creating Users
The easiest way to create a user account with the mysql_old_password authentication plugin is to make sure that

old_passwords=1 is set, and then create a user account via CREATE USER that does not specify an authentication plugin,

but does specify a password via the IDENTIFIED BY clause. For example:

SET old_passwords=1;

CREATE USER username@hostname IDENTIFIED BY 'mariadb';

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user via GRANT . For example:

SET old_passwords=1;

GRANT SELECT ON db.* TO username@hostname IDENTIFIED BY 'mariadb';

You can also create the user account by providing a password hash via the IDENTIFIED BY PASSWORD clause, and

MariaDB will validate whether the password hash is one that is compatible with mysql_old_password . For example:

SET old_passwords=1;

Query OK, 0 rows affected (0.000 sec)

SELECT PASSWORD('mariadb');

+---------------------+

| PASSWORD('mariadb') |

+---------------------+

| 021bec665bf663f1 |

+---------------------+

1 row in set (0.000 sec)

CREATE USER username@hostname IDENTIFIED BY PASSWORD '021bec665bf663f1';

Query OK, 0 rows affected (0.000 sec)

Similar to all other authentication plugins, you could also specify the name of the plugin in the IDENTIFIED VIA clause

while providing the password hash as the USING clause. For example:

CREATE USER username@hostname IDENTIFIED VIA mysql_old_password USING '021bec665bf663f1';

Query OK, 0 rows affected (0.000 sec)

Changing User Passwords
You can change a user account's password with the SET PASSWORD statement while providing the plain-text password as

an argument to the PASSWORD() function. For example:

SET PASSWORD = PASSWORD('new_secret')

You can also change the user account's password with the ALTER USER statement. You would have to make sure that

old_passwords=1 is set, and then you would have to specify a password via the IDENTIFIED BY clause. For example:

SET old_passwords=1;

ALTER USER username@hostname IDENTIFIED BY 'new_secret';

3581/4161

Client Authentication Plugins
For clients that use the libmysqlclient or MariaDB Connector/C libraries, MariaDB provides one client authentication

plugin that is compatible with the mysql_old_password authentication plugin:

mysql_old_password

When connecting with a client or utility to a server as a user account that authenticates with the mysql_old_password

authentication plugin, you may need to tell the client where to find the relevant client authentication plugin by specifying the

--plugin-dir option. For example:

mysql --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

However, the mysql_old_password client authentication plugin is generally statically linked into client libraries like

libmysqlclient or MariaDB Connector/C , so this is not usually necessary.

mysql_old_password

The mysql_old_password client authentication plugin hashes the password before sending it to the server.

Support in Client Libraries
The mysql_old_password authentication plugin is one of the conventional authentication plugins, so all client libraries

should support it.

5.4.6.4 Authentication Plugin - ed25519
MySQL has used SHA-1 based authentication since version 4.1. Since MariaDB 5.2 this authentication plugin has been

called mysql_native_password. Over the years as computers became faster, new attacks on SHA-1 were being developed.

Nowadays SHA-1 is no longer considered as secure as it was in 2001. That's why the ed25519 authentication plugin was

created.

The ed25519 authentication plugin uses Elliptic Curve Digital Signature Algorithm (ECDSA) to securely store users'

passwords and to authenticate users. The ed25519 algorithm is the same one that is used by OpenSSH . It is based on

the elliptic curve and code created by Daniel J. Bernstein .

From a user's perspective, the ed25519 authentication plugin still provides conventional password-based authentication.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Creating Users

4. Changing User Passwords

5. Client Authentication Plugins

1. client_ed25519

6. Support in Client Libraries

1. Using the Plugin with MariaDB Connector/C

2. Using the Plugin with MariaDB Connector/ODBC

3. Using the Plugin with MariaDB Connector/J

4. Using the Plugin with MariaDB Connector/Node.js

5. Using the Plugin with MySqlConnector for .NET

7. Versions

8. Options

1. ed25519

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default as auth_ed25519.so or auth_ed25519.dll

depending on the operating system, the plugin is not actually installed by MariaDB by default. There are two methods that

can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'auth_ed25519';

3582/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-connector-c/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA#Ed25519
https://www.openssh.com/txt/release-6.5
https://en.wikipedia.org/wiki/Daniel_J._Bernstein

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to

mariadbd or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = auth_ed25519

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'auth_ed25519';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Creating Users

In MariaDB 10.4 and later, you can create a user account by executing the CREATE USER statement and providing

the IDENTIFIED VIA clause followied by the the name of the plugin, which is ed25519 , and providing the the USING

clause followed by the PASSWORD() function with the plain-text password as an argument. For example:

CREATE USER username@hostname IDENTIFIED VIA ed25519 USING PASSWORD('secret');

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT. For

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA ed25519 USING PASSWORD('secret');

In MariaDB 10.3 and before, the PASSWORD() function and SET PASSWORD statement did not work with the

ed25519 authentication plugin. Instead, you would have to use the UDF that comes with the authentication plugin to

calculate the password hash. For example:

CREATE FUNCTION ed25519_password RETURNS STRING SONAME "auth_ed25519.so";

Now you can calculate a password hash by executing:

SELECT ed25519_password("secret");

+---+

| SELECT ed25519_password("secret"); |

+---+

| ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY |

+---+

Now you can use it to create the user account using the new password hash.

To create a user account via CREATE USER, specify the name of the plugin in the IDENTIFIED VIA clause while

providing the password hash as the USING clause. For example:

CREATE USER username@hostname IDENTIFIED VIA ed25519

 USING 'ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY';

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT. For

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA ed25519

 USING 'ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY';

MariaDB starting with 10.4

MariaDB until 10.3

3583/4161

Note that users require a password in order to be able to connect. It is possible to create a user without specifying a

password, but they will be unable to connect.

Changing User Passwords

In MariaDB 10.4 and later, you can change a user account's password by executing the SET PASSWORD statement

followed by the PASSWORD() function and providing the plain-text password as an argument. For example:

SET PASSWORD = PASSWORD('new_secret')

You can also change the user account's password with the ALTER USER statement. You would have to specify the

name of the plugin in the IDENTIFIED VIA clause while providing the plain-text password as an argument to the

PASSWORD() function in the USING clause. For example:

ALTER USER username@hostname IDENTIFIED VIA ed25519 USING PASSWORD('new_secret');

In MariaDB 10.3 and before, the PASSWORD() function and SET PASSWORD statement did not work with the

ed25519 authentication plugin. Instead, you would have to use the UDF that comes with the authentication plugin to

calculate the password hash. For example:

CREATE FUNCTION ed25519_password RETURNS STRING SONAME "auth_ed25519.so";

Now you can calculate a password hash by executing:

SELECT ed25519_password("secret");

+---+

| SELECT ed25519_password("secret"); |

+---+

| ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY |

+---+

Now you can change the user account's password using the new password hash.

You can change the user account's password with the ALTER USER statement. You would have to specify the name

of the plugin in the IDENTIFIED VIA clause while providing the password hash as the USING clause. For example:

ALTER USER username@hostname IDENTIFIED VIA ed25519

 USING 'ZIgUREUg5PVgQ6LskhXmO+eZLS0nC8be6HPjYWR4YJY';

Client Authentication Plugins
For clients that use the libmysqlclient or MariaDB Connector/C libraries, MariaDB provides one client authentication

plugin that is compatible with the ed25519 authentication plugin:

client_ed25519

When connecting with a client or utility to a server as a user account that authenticates with the ed25519 authentication

plugin, you may need to tell the client where to find the relevant client authentication plugin by specifying the --plugin-

dir option. For example:

mysql --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

client_ed25519

The client_ed25519 client authentication plugin hashes and signs the password using the Elliptic Curve Digital Signature

Algorithm (ECDSA) before sending it to the server.

Support in Client Libraries

MariaDB starting with 10.4

MariaDB until 10.3

3584/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Using the Plugin with MariaDB Connector/C

MariaDB Connector/C supports ed25519 authentication using the client authentication plugins mentioned in the previous

section since MariaDB Connector/C 3.1.0.

Using the Plugin with MariaDB Connector/ODBC

MariaDB Connector/ODBC supports ed25519 authentication using the client authentication plugins mentioned in the

previous section since MariaDB Connector/ODBC 3.1.2.

Using the Plugin with MariaDB Connector/J

MariaDB Connector/J supports ed25519 authentication since MariaDB Connector/J 2.2.1.

Using the Plugin with MariaDB Connector/Node.js

MariaDB Connector/Node.js supports ed25519 authentication since MariaDB Connector/Node.js 2.1.0.

Using the Plugin with MySqlConnector for .NET

MySqlConnector for ADO.NET supports ed25519 authentication since MySqlConnector 0.56.0.

The connector implemented support for this authentication plugin in a separate NuGet package called

MySqlConnector.Authentication.Ed25519 . After the package is installed, your application must call

Ed25519AuthenticationPlugin.Install to enable it.

Versions

Version Status Introduced

1.1 Stable MariaDB 10.4.0

1.0 Stable MariaDB 10.3.8 , MariaDB 10.2.17 , MariaDB 10.1.35

1.0 Beta MariaDB 10.2.5 , MariaDB 10.1.22

Options

ed25519

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --ed25519=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.6.5 Authentication Plugin - GSSAPI
The gssapi authentication plugin allows the user to authenticate with services that use the Generic Security Services

Application Program Interface (GSSAPI) . Windows has a slightly different but very similar API called Security Support

Provider Interface (SSPI) . The GSSAPI is a standardized API described in RFC2743 and RFC2744 . The client and
3585/4161

https://mariadb.com/kb/en/mariadb-connector-c/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://mariadb.com/kb/en/mariadb-connector-odbc/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://mariadb.com/kb/en/mariadb-connector-j/
https://mariadb.com/kb/en/nodejs-connector/
https://mariadb.com/kb/en/mysqlconnector-for-adonet/
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://www.nuget.org/packages/MySqlConnector.Authentication.Ed25519/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://docs.microsoft.com/en-us/windows/desktop/secauthn/sspi
https://tools.ietf.org/html/rfc2743.html
https://tools.ietf.org/html/rfc2744.html

server negotiate using a standardized protocol described in RFC7546 .

On Windows, this authentication plugin supports Kerberos and NTLM authentication. Windows authentication is

supported regardless of whether a domain is used in the environment.

On Unix systems, the most dominant GSSAPI service is Kerberos . However, it is less commonly used on Unix systems

than it is on Windows. Regardless, this authentication plugin also supports Kerberos authentication on Unix.

The gssapi authentication plugin is most often used for authenticating with Microsoft Active Directory .

This article gives instructions on configuring the gssapi authentication plugin for MariaDB for passwordless login.

Contents
1. Installing the Plugin's Package

1. Installing on Linux

1. Installing with a Package Manager

1. Installing with yum/dnf

2. Installing with apt-get

3. Installing with zypper

2. Installing on Windows

2. Installing the Plugin

3. Uninstalling the Plugin

4. Configuring the Plugin

1. Creating a Keytab File on Unix

1. Creating a Keytab File with Microsoft Active Directory

2. Creating a Keytab File with MIT Kerberos

2. Configuring the Path to the Keytab File on Unix

3. Configuring the Service Principal Name

5. Creating Users

1. Creating Users Identified Via Group Membership or SID (Windows-specific)

6. Passwordless login on Windows

7. Client Authentication Plugins

1. auth_gssapi_client

8. Support in Client Libraries

1. Using the Plugin with MariaDB Connector/C

2. Using the Plugin with MariaDB Connector/ODBC

3. Using the Plugin with MariaDB Connector/J

4. Using the Plugin with MariaDB Connector/Node.js

5. Using the Plugin with MySqlConnector for .NET

1. .NET specific problems/workarounds

9. Versions

10. System Variables

1. gssapi_keytab_path

2. gssapi_principal_name

3. gssapi_mech_name

11. Options

1. gssapi

Installing the Plugin's Package
Since MariaDB 10.11, on Windows, the plugin is included in the server, and there is no need for separate installation.

The gssapi authentication plugin's shared library is included in MariaDB packages as the auth_gssapi.so or

auth_gssapi.dll shared library on systems where it can be built.

Installing on Linux

The gssapi authentication plugin is included in binary tarballs on Linux.

Installing with a Package Manager

The gssapi authentication plugin can also be installed via a package manager on Linux. In order to do so, your system

needs to be configured to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

3586/4161

https://tools.ietf.org/html/rfc7546.html
https://docs.microsoft.com/en-us/windows/desktop/secauthn/microsoft-kerberos
https://docs.microsoft.com/en-us/windows/desktop/secauthn/microsoft-ntlm
https://en.wikipedia.org/wiki/Windows_domain
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://downloads.mariadb.org/mariadb/repositories/

Installing with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

package from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced

by dnf , which is the next major version of yum . However, yum commands still work on many systems that use dnf . For

example:

sudo yum install MariaDB-gssapi-server

Installing with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB package from

MariaDB's repository using apt-get . For example:

sudo apt-get install mariadb-plugin-gssapi-server

Installing with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM package

from MariaDB's repository using zypper . For example:

sudo zypper install MariaDB-gssapi-server

Installing on Windows

Since MariaDB 10.11, the plugin is included in the server, and there is no need for separate installation.

Before MariaDB 10.11, the gssapi authentication plugin is included in MSI and ZIP packages on Windows.

Installing the Plugin
Since MariaDB 10.11, on Windows, the plugin is included in the server, and there is no need for separate installation.

Before MariaDB 10.11 on Windows, and on other operating systems, although the plugin's shared library is distributed with

MariaDB by default, the plugin is not actually installed by MariaDB by default. There are two methods that can be used to

install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'auth_gssapi';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to

mariadbd or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = auth_gssapi

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'auth_gssapi';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Configuring the Plugin
If the MariaDB server is running on Unix, then some additional configuration steps will need to be implemented in order to

use the plugin.
3587/4161

https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get

If the MariaDB server is running on Windows, then no special configuration steps will need to be implemented in order to

use the plugin, as long as the following is true:

The Windows server is joined to a domain.

The MariaDB server process is running as either a NetworkService Account or a Domain User Account .

Creating a Keytab File on Unix

If the MariaDB server is running on Unix, then the KDC server will need to create a keytab file for the MariaDB server. The

keytab file contains the service principal name, which is the identity that the MariaDB server will use to communicate with

the KDC server. The keytab will need to be transferred to the MariaDB server, and the mysqld server process will need

read access to this keytab file.

How this keytab file is generated depends on whether the KDC server is Microsoft Active Directory KDC or MIT

Kerberos KDC .

Creating a Keytab File with Microsoft Active Directory

If you are using Microsoft Active Directory KDC , then you may need to create a keytab using the ktpass.exe

utility on a Windows host. The service principal will need to be mapped to an existing domain user. To do so, follow the

steps listed below.

Be sure to replace the following items in the step below:

Replace ${HOST} with the fully qualified DNS name for the MariaDB server host.

Replace ${DOMAIN} with the Active Directory domain.

Replace ${AD_USER} with the existing domain user.

Replace ${PASSWORD} with the password for the service principal.

To create the service principal, execute the following:

ktpass.exe /princ mariadb/${HOST}@${DOMAIN} /mapuser ${AD_USER} /pass ${PASSWORD} /out

mariadb.keytab /crypto all /ptype KRB5_NT_PRINCIPAL /mapop set

Creating a Keytab File with MIT Kerberos

If you are using MIT Kerberos KDC , then you can create a keytab file using the kadmin utility. To do so, follow

the steps listed below.

In the following steps, be sure to replace ${HOST} with the fully qualified DNS name for the MariaDB server host.

First, create the service principal using the kadmin utility. For example:

kadmin -q "addprinc -randkey mariadb/${HOST}"

Then, export the newly created user to the keytab file using the kadmin utility. For example:

kadmin -q "ktadd -k /path/to/mariadb.keytab mariadb/${HOST}"

More details can be found at the following links:

MIT Kerberos Documentation: Database administration

MIT Kerberos Documentation: Application servers

Configuring the Path to the Keytab File on Unix

If the MariaDB server is running on Unix, then the path to the keytab file that was previously created can be set by

configuring the gssapi_keytab_path system variable. This can be specified as a command-line argument to mysqld or

it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

gssapi_keytab_path=/path/to/mariadb.keytab

Configuring the Service Principal Name

The service principal name can be set by configuring the gssapi_principal_name system variable. This can be specified

3588/4161

https://docs.microsoft.com/en-us/windows/desktop/services/networkservice-account
https://docs.microsoft.com/en-us/windows/desktop/ad/domain-user-accounts
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
http://web.mit.edu/Kerberos/krb5-1.12/doc/index.html
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ktpass
http://web.mit.edu/Kerberos/krb5-1.12/doc/index.html
http://web.mit.edu/Kerberos/krb5-1.12/doc/admin/install_appl_srv.html#the-keytab-file
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/admin_commands/kadmin_local.html
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/admin_commands/kadmin_local.html
https://web.mit.edu/kerberos/krb5-1.12/doc/admin/admin_commands/kadmin_local.html
http://web.mit.edu/Kerberos/krb5-1.12/doc/admin/database.html
http://web.mit.edu/Kerberos/krb5-1.12/doc/admin/appl_servers.html

as a command-line argument to mysqld or it can be specified in a relevant server option group in an option file. For

example:

[mariadb]

...

gssapi_principal_name=service_principal_name/host.domain.com@REALM

If a service principal name is not provided, then the plugin will try to use mariadb/host.domain.com@REALM by default.

If the MariaDB server is running on Unix, then the plugin needs a service principal name in order to function.

If the MariaDB server is running on Windows, then the plugin does not usually need a service principal in order to function.

However, if you want to use one anyway, then one can be created with the setspn utility.

Different KDC implementations may use different canonical forms to identify principals. See RFC2744: Section 3.10 to

learn what the standard says about principal names.

More details can be found at the following links:

Active Directory Domain Services: Service Principal Names

MIT Kerberos Documentation: Realm configuration decisions

MIT Kerberos Documentation: Principal names and DNS

Creating Users
To create a user account via CREATE USER , specify the name of the plugin in the IDENTIFIED VIA clause. For example:

CREATE USER username@hostname IDENTIFIED VIA gssapi;

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT . For

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA gssapi;

You can also specify the user's realm for MariaDB with the USING clause. For example:

CREATE USER username@hostname IDENTIFIED VIA gssapi USING 'username@EXAMPLE.COM';

The format of the realm depends on the specific authentication mechanism that is used. For example, the format would

need to be machine\\username for Windows users authenticating with NTLM.

If the realm is not provided in the user account's definition, then the realm is not used for comparison. Therefore,

'usr1@EXAMPLE.COM', 'usr1@EXAMPLE.CO.UK' and 'mymachine\usr1' would all identify as the following user account:

CREATE USER usr1@hostname IDENTIFIED VIA gssapi;

Creating Users Identified Via Group Membership or SID (Windows-
specific)

Since 10.6.0, on Windows only, it is possible to login using a AD or local group-membership. This is achieved by using

GROUP prefix in IDENTIFIED ... AS

CREATE USER root IDENTIFIED VIA gssapi as 'GROUP:Administrators'

CREATE USER root IDENTIFIED VIA gssapi as 'GROUP:BUILTIN\\Administrators'

Effect of the above definition is that every user that identifies as member of group Administrators can login using user name

root, passwordless.

User can also login using own or group SID

CREATE USER root IDENTIFIED VIA gssapi as 'SID:S-1-5-32-544'

Using SIDs will perform slightly faster than using name (since it will spare translation between SID and name which is

otherwise done), also SIDs immune against user or group renaming.

3589/4161

https://social.technet.microsoft.com/wiki/contents/articles/717.service-principal-names-spns-setspn-syntax-setspn-exe.aspx
https://tools.ietf.org/html/rfc2744.html#section-3.10
https://docs.microsoft.com/en-us/windows/win32/ad/service-principal-names
http://web.mit.edu/Kerberos/krb5-1.12/doc/admin/realm_config.html
http://web.mit.edu/Kerberos/krb5-1.12/doc/admin/princ_dns.html
https://docs.microsoft.com/en-us/windows-server/networking/technologies/nps/nps-crp-realm-names
https://en.wikipedia.org/wiki/Security_Identifier

Passwordless login on Windows

From MariaDB 10.11, on Windows, in addition to the usual authentication with a password, passwordless

authentication is permitted, when creating the 'root' user during install.

This works in a similar manner to Unix socket authentication. However, since auth_gssapi, unlike unix_socket, requires

client support, to avoid failures when MariaDB is used with 3rd party drivers, authentication on Windows first attempts

password-based native_authentication, and only if it fails, falls back to passwordless auth_gssapi.

Client Authentication Plugins
For clients that use the libmysqlclient or MariaDB Connector/C libraries, MariaDB provides one client authentication

plugin that is compatible with the gssapi authentication plugin:

auth_gssapi_client

When connecting with a client or utility to a server as a user account that authenticates with the gssapi authentication

plugin, you may need to tell the client where to find the relevant client authentication plugin by specifying the --plugin-

dir option. For example:

mysql --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

auth_gssapi_client

The auth_gssapi_client client authentication plugin receives the principal name from the server, and then uses either

the gss_init_sec_context function (on Unix) or the InitializeSecurityContext function (on Windows)

to establish a security context on the client.

Support in Client Libraries

Using the Plugin with MariaDB Connector/C

MariaDB Connector/C supports gssapi authentication using the client authentication plugins mentioned in the previous

section since MariaDB Connector/C 3.0.1.

Using the Plugin with MariaDB Connector/ODBC

MariaDB Connector/ODBC supports gssapi authentication using the client authentication plugins mentioned in the

previous section since MariaDB Connector/ODBC 3.0.0.

Using the Plugin with MariaDB Connector/J

MariaDB Connector/J supports gssapi authentication since MariaDB Connector/J 1.4.0. Current documentation can be

found here .

Using the Plugin with MariaDB Connector/Node.js

MariaDB Connector/Node.js does not yet support gssapi authentication. See CONJS-72 for more information.

Using the Plugin with MySqlConnector for .NET

MySqlConnector for ADO.NET supports gssapi authentication since MySqlConnector 0.47.0.

The support is transparent. Normally, the connector only needs to be provided the correct user name, and no other

parameters are required.

However, this connector also supports the ServerSPN connection string parameter, which can be used for mutual

authentication.

.NET specific problems/workarounds

MariaDB starting with 10.11

3590/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://web.mit.edu/kerberos/krb5-devel/doc/appdev/gssapi.html#initiator-credentials
https://docs.microsoft.com/en-us/windows/desktop/api/sspi/nf-sspi-initializesecuritycontexta
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mariadb-connector-odbc/
https://mariadb.com/kb/en/mariadb-connector-j/
https://mariadb.com/kb/en/gssapi-authentication-with-mariadb-connectorj/
https://mariadb.com/kb/en/nodejs-connector/
https://jira.mariadb.org/browse/CONJS-72
https://mariadb.com/kb/en/mysqlconnector-for-adonet/
https://mysql-net.github.io/MySqlConnector/connection-options

When connecting from Unix client to Windows server with ADO.NET, in an Active Directory domain environment, be aware

that .NET Core on Unix does not support principal names in UPN(User Principal Name) form, which is default on Windows

(e.g machine$@domain.com) . Thus, upon encountering an authentication exception with "server not found in Kerberos

database", use one of workarounds below

Force host-based SPN on server side.

For example, this can be done by setting the gssapi_principal_name system variable to HOST/machine

in a server option group in an option file.

Pass host-based SPN on client side.

For example, this can be done by setting the connector's ServerSPN connection string parameter to

HOST/machine .

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.15

1.0 Beta MariaDB 10.1.11

System Variables

gssapi_keytab_path

Description: Defines the path to the server's keytab file.

This system variable is only meaningful on Unix.

See Creating a Keytab File on Unix and Configuring the Path to the Keytab File on Unix for more information.

Commandline: --gssapi-keytab-path

Scope: Global

Dynamic: No

Data Type: string

Default Value: ''

Introduced: MariaDB 10.1.11

gssapi_principal_name

Description: Name of the service principal.

See Configuring the Service Principal Name for more information.

Commandline: --gssapi-principal-name

Scope: Global

Dynamic: No

Data Type: string

Default Value: ''

Introduced: MariaDB 10.1.11

gssapi_mech_name

Description: Name of the SSPI package used by server. Can be either 'Kerberos' or 'Negotiate'. Set it to 'Kerberos',

to prevent less secure NTLM in domain environments, but leave it as default (Negotiate) to allow non-domain

environments (e.g if server does not run in a domain environment).

This system variable is only meaningful on Windows.

Commandline: --gssapi-mech-name

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: Negotiate

Valid Values: Kerberos , Negotiate

Introduced: MariaDB 10.1.11

Options
3591/4161

https://mysql-net.github.io/MySqlConnector/connection-options
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/

gssapi

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --gssapi=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

Introduced: MariaDB 10.1.11

5.4.6.6 Authentication with Pluggable
Authentication Modules (PAM)

Authentication Plugin - PAM

Uses the Pluggable Authentication Module (PAM) framework to authenticate MariaDB users.

User and Group Mapping with PAM

Configure PAM to map a given PAM user or group to a different MariaDB user.

Configuring PAM Authentication and User Mapping with Unix Authentication

Walkthrough configuration of PAM authentication and user mapping with Unix authentication.

Configuring PAM Authentication and User Mapping with LDAP Authentication

Configuring PAM authentication and user mapping with LDAP authentication.

31

1

1

5.4.6.6.1 Authentication Plugin - PAM
The pam authentication plugin allows MariaDB to offload user authentication to the system's Pluggable Authentication

Module (PAM) framework. PAM is an authentication framework used by Linux, FreeBSD, Solaris, and other Unix-like

operating systems.

Note: Windows does not support PAM, so the pam authentication plugin does not support Windows. However, one

can use a MariaDB client on Windows to connect to MariaDB server that is installed on a Unix-like operating system

and that is configured to use the pam authentication plugin. For an example of how to do this, see the blog post:

MariaDB: Improve Security with Two-Step Verification .

3592/4161

https://mariadb.com/kb/en/mariadb-10111-release-notes/
http://en.wikipedia.org/wiki/Pluggable_authentication_module
https://mariadb.org/improve-security-with-two-step-verification/

Contents
1. Use Cases

2. Installing the Plugin

1. Installing the v1 Plugin

3. Uninstalling the Plugin

1. Uninstalling the v1 Plugin

4. Configuring PAM

1. Configuring the PAM Service

1. Configuring the pam_unix PAM Module

5. Creating Users

6. Client Authentication Plugins

1. dialog

2. mysql_clear_password

1. Compatiblity with MySQL Clients and Client Libraries

7. Support in Client Libraries

1. Using the Plugin with MariaDB Connector/C

2. Using the Plugin with MariaDB Connector/ODBC

3. Using the Plugin with MariaDB Connector/J

4. Using the Plugin with MariaDB Connector/Node.js

5. Using the Plugin with MySqlConnector for .NET

8. Logging

1. PAM Module Logging

2. PAM Authentication Plugin's Debug Logging

3. Custom Logging with pam_exec

9. User and Group Mapping

10. PAM Modules

1. pam_unix

2. pam_user_map

3. pam_ldap

4. pam_sss

5. pam_lsass

6. pam_winbind

7. pam_centrifydc

8. pam_krb5

9. pam_google_authenticator

10. pam_securid

11. pam_ssh

12. pam_time

11. Known Issues

1. Multi-Threaded Issues

2. Conflicts with Password Validation

3. SELinux

4. Memory Overcommit

12. Tutorials

13. Versions

14. System Variables

1. pam_debug

2. pam_use_cleartext_plugin

3. pam_winbind_workaround

15. Options

1. pam

Use Cases
PAM makes it possible to implement various authentication scenarios of different complexity. For example,

Authentication using passwords from /etc/shadow (indeed, this is what a default PAM configuration usually does).

See the pam_unix PAM module.

Authentication using LDAP. See the pam_ldap PAM module.

Authentication using Microsoft's Active Directory. See the pam_lsass, pam_winbind, and pam_centrifydc PAM

modules.

Authentication using one-time passwords (even with SMS confirmation!). See the pam_google_authenticator and

pam_securid PAM modules.

Authentication using SSH keys. See the pam_ssh PAM module.

User and group mapping. See the pam_user_map PAM module.

Combining different authentication modules in interesting ways in a PAM service.

Password expiration.

3593/4161

Limiting access by time, date, day of the week, etc. See the pam_time PAM module.

Logging every login attempt.

and so on, the list is in no way exhaustive.

Installing the Plugin
The pam authentication plugin's library is provided in binary packages in all releases on Linux.

Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'auth_pam';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = auth_pam

Installing the v1 Plugin

Starting in MariaDB 10.4.0, the auth_pam shared library actually refers to version 2.0 of the pam authentication

plugin. MariaDB 10.4.0 and later also provides version 1.0 of the plugin as the auth_pam_v1 shared library.

In MariaDB 10.4.0 and later, if you need to install version 1.0 of the authentication plugin instead of version 2.0 , then you

can do so. For example, with INSTALL SONAME or INSTALL PLUGIN:

INSTALL SONAME 'auth_pam_v1';

Or by specifying in a relevant server option group in an option file:

[mariadb]

...

plugin_load_add = auth_pam_v1

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'auth_pam';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Uninstalling the v1 Plugin

If you installed version 1.0 of the authentication plugin, then you can uninstall that by executing a similar statement for

auth_pam_v1 . For example:

UNINSTALL SONAME 'auth_pam_v1';

Configuring PAM
The pam authentication plugin tells MariaDB to delegate the authentication to the PAM authentication framework. How

exactly that authentication is performed depends on how PAM was configured.

MariaDB starting with 10.4.0

3594/4161

Configuring the PAM Service

PAM is divided into services . PAM services are configured by PAM configuration files . Typically, the global PAM

configuration file is located at /etc/pam.conf and PAM directory-based configuration files for individual services are

located in /etc/pam.d/ .

If you want to use a PAM service called mariadb for your MariaDB PAM authentication, then the PAM configuration file for

that service would also be called mariadb , and it would typically be located at /etc/pam.d/mariadb .

For example, here is a minimal PAM service configuration file that performs simple password authentication with UNIX

passwords:

auth required pam_unix.so audit

account required pam_unix.so audit

Let's breakdown this relatively simple PAM service configuration file.

Each line of a PAM service configuration file has the following general format:

type control module-path module-arguments

The above PAM service configuration file instructs the PAM authentication framework that for successful authentication

(i.e. type=auth), it is required that the pam_unix.so PAM module returns a success.

The above PAM service configuration file also instructs the PAM authentication framework that for an account (i.e.

type=account) to be valid, it is required that the pam_unix.so PAM module returns a success.

PAM also supports session and password types, but MariaDB's pam authentication plugin does not support those.

The above PAM service configuration file also provides the audit module argument to the pam_unix PAM module. The

pam_unix manual says that this module argument enables extreme debug logging to the syslog.

On most systems, you can find many other examples of PAM service configuration files in your /etc/pam.d/ directory.

Configuring the pam_unix PAM Module

If you configure PAM to use the pam_unix PAM module (as in the above example), then you might notice on some

systems that this will fail by default with errors like the following:

Apr 14 12:56:23 localhost unix_chkpwd[3332]: check pass; user unknown

Apr 14 12:56:23 localhost unix_chkpwd[3332]: password check failed for user (alice)

Apr 14 12:56:23 localhost mysqld: pam_unix(mysql:auth): authentication failure; logname= uid=991

euid=991 tty= ruser= rhost= user=alice

The problem is that on some systems, the pam_unix PAM module needs access to /etc/shadow in order to function,

and most systems only allow root to access that file by default.

Newer versions of PAM do not have this limitation, so you may want to try upgrading your version of PAM to see if that fixes

the issue.

If that does not work, then you can work around this problem by giving the user that runs mysqld access to /etc/shadow .

For example, if the mysql user runs mysqld, then you could do the following:

sudo groupadd shadow

sudo usermod -a -G shadow mysql

sudo chown root:shadow /etc/shadow

sudo chmod g+r /etc/shadow

And then you would have to restart the server .

At that point, the server should be able to read /etc/shadow .

Starting in MariaDB 10.4.0, the pam authentication plugin uses a setuid wrapper to perform its PAM checks, so it

should not need any special workarounds to perform privileged operations, such as reading /etc/shadow when using

the pam_unix PAM module. See MDEV-7032 for more information.

Creating Users

MariaDB starting with 10.4.0

3595/4161

http://www.linux-pam.org/Linux-PAM-html/sag-configuration-file.html
http://www.linux-pam.org/Linux-PAM-html/sag-configuration-directory.html
http://www.linux-pam.org/Linux-PAM-html/mwg-expected-of-module-auth.html
http://www.linux-pam.org/Linux-PAM-html/mwg-expected-of-module-acct.html
http://www.linux-pam.org/Linux-PAM-html/mwg-expected-of-module-session.html
http://www.linux-pam.org/Linux-PAM-html/mwg-expected-of-module-chauthtok.html
https://linux.die.net/man/8/pam_unix
https://linux.die.net/man/8/pam_unix
https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://linux.die.net/man/2/setuid
https://jira.mariadb.org/browse/MDEV-7032

Similar to all other authentication plugins, to create a user in MariaDB which uses the pam authentication plugin, you would

execute CREATE USER while specifying the name of the plugin in the IDENTIFIED VIA clause. For example:

CREATE USER username@hostname IDENTIFIED VIA pam;

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user this way with GRANT. For

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA pam;

You can also specify a PAM service name for MariaDB to use by providing it with the USING clause. For example:

CREATE USER username@hostname IDENTIFIED VIA pam USING 'mariadb';

This line creates a user that needs to be authenticated via the pam authentication plugin using the PAM service name

mariadb . As mentioned in a previous section, this service's configuration file will typically be present in

/etc/pam.d/mariadb .

If no service name is specified, then the plugin will use mysql as the default PAM service name.

Client Authentication Plugins
For clients that use the libmysqlclient or MariaDB Connector/C libraries, MariaDB provides two client authentication

plugins that are compatible with the pam authentication plugin:

dialog

mysql_clear_password

When connecting with a client or utility to a server as a user account that authenticates with the pam authentication plugin,

you may need to tell the client where to find the relevant client authentication plugin by specifying the --plugin-dir

option. For example:

mariadb --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

Both the dialog and the mysql_clear_password client authentication plugins transmit the password to the server

in clear text. Therefore, when you use the pam authentication plugin, it is incredibly important to encrypt client

connections using TLS to prevent the clear-text passwords from being seen by unauthorized users.

dialog

Usually the pam authentication plugin uses the dialog client authentication plugin to communicate with the user. This

client authentication plugin allows MariaDB to support arbitrarily complex PAM configurations with regular or one-time

passwords, challenge-response, multiple questions, or just about anything else. When using a MariaDB client library, there

is no need to install or enable anything 4 the dialog client authentication plugin is loaded by the client library completely

automatically and transparently for the application.

The dialog client authentication plugin was developed by MariaDB, so MySQL's clients and client libraries as well as third

party applications that bundle MySQL's client libraries do not support the dialog client authentication plugin out of the box.

If the server tells an unsupported client to use the dialog client authentication plugin, then the client is likely to throw an

error like the following:

ERROR 2059 (HY000): Authentication plugin 'dialog' cannot be loaded:

/usr/lib/mysql/plugin/dialog.so: cannot open shared object file: No such file or directory

For some libraries or applications, this problem can be fixed by copying dialog.so or dialog.dll from a MariaDB client

installation that is compatible with the system into the system's MySQL client authentication plugin directory. However, not

all clients are compatible with the dialog client authentication plugin, so this may not work for every client.

If your client does not support the dialog client authentication plugin, then you may need to use the

mysql_clear_password client authentication plugin instead.

The dialog client authentication plugin transmits the password to the server in clear text. Therefore, when you use

3596/4161

https://mariadb.com/kb/en/mariadb-connector-c/

the pam authentication plugin, it is incredibly important to encrypt client connections using TLS to prevent the clear-

text passwords from being seen by unauthorized users.

mysql_clear_password

Users can instruct the pam authentication plugin to use the mysql_clear_password client authentication plugin instead

of the dialog client authentication plugin by configuring the pam_use_cleartext_plugin system variable on the server. It can

be set in a relevant server option group in an option file. For example:

[mariadb]

...

pam_use_cleartext_plugin

It is important to note that the mysql_clear_password plugin has very limited functionality.

The mysql_clear_password client authentication plugin only supports PAM services that require password-based

authentication.

The mysql_clear_password client authentication plugin also only supports PAM services that ask the user a single

question.

If the PAM service requires challenge-responses, multiple questions, or other similar complicated authentication

schemes, then the PAM service is not compatible with mysql_clear_password client authentication plugin. In that

case, the dialog client authentication plugin will have to be used instead.

The mysql_clear_password client authentication plugin transmits the password to the server in clear text.

Therefore, when you use the pam authentication plugin, it is incredibly important to encrypt client connections using

TLS to prevent the clear-text passwords from being seen by unauthorized users.

Compatiblity with MySQL Clients and Client Libraries

The mysql_clear_password client authentication plugin is similar to MySQL's mysql_clear_password client

authentication plugin.

The mysql_clear_password client authentication plugin is compatible with MySQL clients and most MySQL client

libraries, while the dialog client authentication plugin is not always compatible with them. Therefore, the

mysql_clear_password client authentication plugin is most useful if you need some kind of MySQL compatibility in your

environment, but you still want to use the pam authentication plugin.

Even though the mysql_clear_password client authentication plugin is compatible with MySQL clients and most MySQL

client libraries, the mysql_clear_password client authentication plugin may be disabled by default by these clients and

client libraries. For example, MySQL's version of the mysql command-line client has the --enable-cleartext-plugin

option that must be set in order to use the mysql_clear_password client authentication plugin. For example:

mysql --enable-cleartext-plugin --user=alice -p

Other clients may require other methods to enable the authentication plugin. For example, MySQL Workbench has a

checkbox titled Enable Cleartext Authentication Plugin under the Advanced tab on the connection configuration screen.

For applications that use MySQL's libmysqlclient , the authentication plugin can be enabled by setting the

MYSQL_ENABLE_CLEARTEXT_PLUGIN option with the mysql_options() function. For example:

mysql_options(mysql, MYSQL_ENABLE_CLEARTEXT_PLUGIN, 1);

For MySQL compatibility, MariaDB Connector/C also allows applications to set the MYSQL_ENABLE_CLEARTEXT_PLUGIN

option with the mysql_optionsv function. However, this option does not actually do anything in MariaDB Connector/C ,

because the mysql_clear_password client authentication plugin is always enabled for MariaDB clients and client

libraries.

Support in Client Libraries

Using the Plugin with MariaDB Connector/C

3597/4161

https://dev.mysql.com/doc/refman/5.7/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/mysql.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_enable-cleartext-plugin
https://www.mysql.com/products/workbench/
https://mariadb.com/kb/en/mariadb-connector-c/
https://mariadb.com/kb/en/mysql_optionsv/
https://mariadb.com/kb/en/mariadb-connector-c/

MariaDB Connector/C supports pam authentication using the client authentication plugins mentioned in the previous

section since MariaDB Connector/C 2.1.0, regardless of the value of the pam_use_cleartext_plugin system variable.

Using the Plugin with MariaDB Connector/ODBC

MariaDB Connector/ODBC supports pam authentication using the client authentication plugins mentioned in the previous

section since MariaDB Connector/ODBC 1.0.0, regardless of the value of the pam_use_cleartext_plugin system variable.

Using the Plugin with MariaDB Connector/J

MariaDB Connector/J supports pam v1 authentication since MariaDB Connector/J 1.4.0, regardless of the value of the

pam_use_cleartext_plugin system variable.

MariaDB Connector/J supports pam v2 authentication since MariaDB Connector/J 2.4.4, regardless of the value of the

pam_use_cleartext_plugin system variable.

Using the Plugin with MariaDB Connector/Node.js

MariaDB Connector/Node.js supports pam authentication since MariaDB Connector/Node.js 0.7.0, regardless of the

value of the pam_use_cleartext_plugin system variable.

Using the Plugin with MySqlConnector for .NET

MySqlConnector for ADO.NET supports pam authentication since MySqlConnector 0.20.0, but only if the

pam_use_cleartext_plugin system variable is enabled on the server.

Logging

PAM Module Logging

Errors and messages from PAM modules are usually logged using the syslog daemon with the authpriv facility. To

determine the specific log file where the authpriv facility is logged, you can check rsyslog.conf .

On RHEL, CentOS, Fedora, and other similar Linux distributions, the default location for these messages is usually

/var/log/secure .

On Debian, Ubuntu, and other similar Linux distributions, the default location for these messages is usually

/var/log/auth.log .

For example, the syslog can contain messages like the following when MariaDB's pam authentication plugin is configured

to use the pam_unix PAM module, and the user enters an incorrect password:

Jan 9 05:35:41 ip-172-30-0-198 unix_chkpwd[1205]: password check failed for user (foo)

Jan 9 05:35:41 ip-172-30-0-198 mysqld: pam_unix(mariadb:auth): authentication failure; logname=

uid=997 euid=997 tty= ruser= rhost= user=foo

PAM Authentication Plugin's Debug Logging

MariaDB's pam authentication plugin can also log additional verbose debug logging to the error log. This is only done if the

plugin is a debug build and if pam_debug is set.

The output looks like this:

PAM: pam_start(mariadb, alice)

PAM: pam_authenticate(0)

PAM: conv: send(Enter PASSCODE:)

PAM: conv: recv(123456789)

PAM: pam_acct_mgmt(0)

PAM: pam_get_item(PAM_USER)

PAM: status = 0 user = ÿÿ\>

Custom Logging with pam_exec

The pam_exec PAM module can be used to implement some custom logging. This can be very useful when debugging

3598/4161

https://mariadb.com/kb/en/mariadb-connector-c/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://mariadb.com/kb/en/mariadb-connector-odbc/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://mariadb.com/kb/en/mariadb-connector-j/
https://mariadb.com/kb/en/mariadb-connector-j/
https://mariadb.com/kb/en/nodejs-connector/
https://mariadb.com/kb/en/mysqlconnector-for-adonet/
https://linux.die.net/man/8/rsyslogd
https://linux.die.net/man/5/rsyslog.conf
https://linux.die.net/man/8/pam_exec

certain kinds of issues.

For example, first, create a script that writes the log output:

tee /tmp/pam_log_script.sh <<EOF

#!/bin/bash

echo "\${PAM_SERVICE}:\${PAM_TYPE} - \${PAM_RUSER}@\${PAM_RHOST} is authenticating as \${PAM_USER}"

EOF

chmod 0775 /tmp/pam_log_script.sh

And then change the PAM service configuration to execute the script using the pam_exec PAM module. For example:

auth optional pam_exec.so log=/tmp/pam_output.txt /tmp/pam_log_script.sh

auth required pam_unix.so audit

account optional pam_exec.so log=/tmp/pam_output.txt /tmp/pam_log_script.sh

account required pam_unix.so audit

Whenever the above PAM service is used, the output of the script will be written to /tmp/pam_output.txt . It may look

similar to this:

*** Tue May 14 14:53:23 2019

mariadb:auth - @ is authenticating as alice

*** Tue May 14 14:53:25 2019

mariadb:account - @ is authenticating as alice

*** Tue May 14 14:53:28 2019

mariadb:auth - @ is authenticating as alice

*** Tue May 14 14:53:31 2019

mariadb:account - @ is authenticating as alice

User and Group Mapping
Even when using the pam authentication plugin, the authenticating PAM user account still needs to exist in MariaDB, and

the account needs to have privileges in the database. Creating these MariaDB accounts and making sure the privileges are

correct can be a lot of work. To decrease the amount of work involved, some users would like to be able to map a PAM user

to a different MariaDB user. For example, let9s say that alice and bob are both DBAs. It would be nice if each of them

could log into MariaDB with their own PAM username and password, while MariaDB sees both of them as the same dba

user. That way, there is only one MariaDB account to keep track of. See User and Group Mapping with PAM for more

information on how to do this.

PAM Modules
There are many PAM modules. The ones described below are the ones that have been seen most often by MariaDB.

pam_unix

The pam_unix PAM module provides support for Unix password authentication. It is the default PAM module on most

systems.

For a tutorial on setting up PAM authentication and user or group mapping with Unix authentication, see Configuring PAM

Authentication and User Mapping with Unix Authentication.

pam_user_map

The pam_user_map PAM module was developed by MariaDB to support user and group mapping.

pam_ldap

The pam_ldap PAM module provides support for LDAP authentication.

For a tutorial on setting up PAM authentication and user or group mapping with LDAP authentication, see Configuring PAM

Authentication and User Mapping with LDAP Authentication.

This can also be configured for Active Directory authentication.

pam_sss
3599/4161

https://linux.die.net/man/8/pam_exec
https://linux.die.net/man/8/pam_unix
https://linux.die.net/man/5/pam_ldap
https://en.wikipedia.org/wiki/Active_Directory

The pam_sss PAM module provides support for authentication with System Security Services Daemon (SSSD) .

This can be configured for Active Directory authentication.

pam_lsass

The pam_lsass PAM module provides support for Active Directory authentication. It is provided by PowerBroker Identity

Services 3 Open Edition .

pam_winbind

The pam_winbind PAM module provides support for Active Directory authentication. It is provided by winbindd from

the samba suite.

This PAM module converts all provided user names to lowercase. There is no way to disable this functionality. If you do not

want to be forced to use all lowercase user names, then you may need to configure the pam_winbind_workaround system

variable. See MDEV-18686 for more information.

pam_centrifydc

The pam_centrifydc PAM module provides support for Active Directory authentication. It integrates with the commercial

Active Directory Bridge from Centrify .

pam_krb5

The pam_krb5 PAM module provides support for Kerberos authentication.

This can be configured for Active Directory authentication.

pam_google_authenticator

The pam_google_authenticator PAM module provides two-factor identification with Google Authenticator. It is from

Google's google-authenticator-libpam open-source project. The PAM module should work with the open-source mobile

apps built by Google's google-authenticator and google-authenticator-android projects as well as the the closed source

Google Authenticator mobile apps that are present in each mobile app store.

For an example of how to use this PAM module, see the blog post: MariaDB: Improve Security with Two-Step Verification .

pam_securid

The pam_securid PAM module provides support for multi-factor authentication. It is part of the commercial RSA SecurID

Suite .

Note that current versions of this module are not safe for multi-threaded environments, and the vendor does not officially

support the product on MariaDB. See MDEV-10361 about that. However, the module may work with MariaDB 10.4.0 and

above.

pam_ssh

The pam_ssh PAM module provides authentication using SSH keys.

pam_time

The pam_time PAM module provides time-controlled access.

Known Issues

Multi-Threaded Issues

MariaDB is a multi-threaded program, which means that different connections concurrently run in different threads. Current

versions of MariaDB's pam authentication plugin execute PAM module code in the server address space. This means that

any PAM modules used with MariaDB must be safe for multi-threaded environments. Otherwise, if multiple clients try to

authenticate with the same PAM module in parallel, undefined behavior can occur. For example, the pam_fprintd PAM

module is not safe for multi-threaded environments, and if you use it with MariaDB, you may experience server crashes.

MariaDB starting with 10.4.0 3600/4161

https://linux.die.net/man/8/pam_sss
https://en.wikipedia.org/wiki/System_Security_Services_Daemon
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Active_Directory
https://github.com/BeyondTrust/pbis-open/wiki
https://www.samba.org/samba/docs/current/man-html/pam_winbind.8.html
https://en.wikipedia.org/wiki/Active_Directory
https://www.samba.org/samba/docs/current/man-html/winbindd.8.html
https://www.samba.org/samba/docs/current/man-html/samba.7.html
https://jira.mariadb.org/browse/MDEV-18686
https://docs.centrify.com/en/css/2018-html/index.html#page/Planning,_preparation,_and_deployment/unix_pam_services.html
https://en.wikipedia.org/wiki/Active_Directory
https://www.centrify.com/products/infrastructure-services/authentication/active-directory-bridge/integration/
https://linux.die.net/man/8/pam_krb5
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Active_Directory
https://github.com/google/google-authenticator-libpam
https://github.com/google/google-authenticator
https://github.com/google/google-authenticator-android
https://mariadb.org/improve-security-with-two-step-verification/
https://www.rsa.com/en-us/products/rsa-securid-suite
https://jira.mariadb.org/browse/MDEV-10361
https://linux.die.net/man/8/pam_ssh
https://linux.die.net/man/8/pam_time

Starting in MariaDB 10.4.0, the pam authentication plugin isolates PAM module code from the server address space,

so even PAM modules that are known to be unsafe for multi-threaded environments should not cause issues with

MariaDB. See MDEV-15473 for more information.

Conflicts with Password Validation

When a password validation plugin is enabled, MariaDB won't allow an account to be created if the password validation

plugin says that the account's password is too weak. This creates a problem for accounts that authenticate with the pam

authentication plugin, since MariaDB has no knowledge of the user's password. When a user tries to create an account that

authenticates with the pam authentication plugin, the password validation plugin would throw an error, even with

strict_password_validation=OFF set.

The workaround is to uninstall the password validation plugin with UNINSTALL PLUGIN, and then create the account, and

then reinstall the password validation plugin with INSTALL PLUGIN.

For example:

INSTALL PLUGIN simple_password_check SONAME 'simple_password_check';

Query OK, 0 rows affected (0.002 sec)

SET GLOBAL strict_password_validation=OFF;

Query OK, 0 rows affected (0.000 sec)

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

UNINSTALL PLUGIN simple_password_check;

Query OK, 0 rows affected (0.000 sec)

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

Query OK, 0 rows affected (0.000 sec)

INSTALL PLUGIN simple_password_check SONAME 'simple_password_check';

Query OK, 0 rows affected (0.001 sec)

Starting in MariaDB 10.4.0, accounts that authenticate with the pam authentication plugin should be exempt from

password validation checks. See MDEV-12321 and MDEV-10457 for more information.

SELinux

SELinux may cause issues when using the pam authentication plugin. For example, using pam_unix with the pam

authentication plugin while SELinux is enabled can sometimes lead to SELinux errors involving unix_chkpwd , such as the

following::

Apr 14 12:37:59 localhost setroubleshoot: Plugin Exception restorecon_source

Apr 14 12:37:59 localhost setroubleshoot: SELinux is preventing /usr/sbin/unix_chkpwd from

execute access on the file . For complete SELinux messages. run sealert -l c56fe6e0-c78c-4bdb-

a80f-27ef86a1ea85

Apr 14 12:37:59 localhost python: SELinux is preventing /usr/sbin/unix_chkpwd from execute

access on the file .

***** Plugin catchall (100. confidence) suggests **************************

If you believe that unix_chkpwd should be allowed execute access on the file by default.

Then you should report this as a bug.

You can generate a local policy module to allow this access.

Do

allow this access for now by executing:

grep unix_chkpwd /var/log/audit/audit.log | audit2allow -M mypol

semodule -i mypol.pp

Sometimes issues like this can be fixed by updating the system's SELinux policies. You may be able to update the policies

using audit2allow . See SELinux: Generating SELinux Policies with audit2allow for more information.

If you can't get the pam authentication plugin to work with SELinux at all, then it can help to disable SELinux entirely. See

SELinux: Changing SELinux's Mode for information on how to do this.

MariaDB starting with 10.4.0

MariaDB starting with 10.4.0

3601/4161

https://jira.mariadb.org/browse/MDEV-15473
https://jira.mariadb.org/browse/MDEV-12321
https://jira.mariadb.org/browse/MDEV-10457
https://linux.die.net/man/8/unix_chkpwd
https://linux.die.net/man/1/audit2allow

Memory Overcommit

On MariaDB 10.4 and later you may run into authentication failures with the following log message in the MariaDB error log:

pam: cannot exec /usr/lib64/mysql/plugin/auth_pam_tool_dir/auth_pam_tool (errno: 12 "Cannot allocate memory")

This can happen on operating system setups that are configured to prevent memory overcommit. When the MariaDB server

process spawns the auth_pam_tool helper process there's a brief period where the new process inherits the memory of

the MariaDB process before releasing that memory and executing the new command. When having a MariaDB server

configured to use more than 50% of the server machnines RAM -- which is common for dedicated database servers -- this

duplication would lead to an over-commit situation.

Starting with MariaDB 10.4.25, MariaDB 10.5.16, MariaDB 10.6.8, and MariaDB 10.7.4 , we changed to use

posix_spawn() instead of the classic fork();exec() to prevent this, but systems with older glibc versions prior to 2.26

still use fork();exec() to implement posix_spawn() internally and so are still affected; this is for example still the case

on RedHat Enterprise Linux 7.

To solve this you can either:

change the vm.overcommit_memory kernel setting to allow memory overcommit

install the older auth_pam_v1 plugin version that does not spawn a helper process (but may run into problems with

file permissions or multi threading with some PAM modules)

See also MDEV-26212 and MDEV-30734

Tutorials
You may find the following PAM-related tutorials helpful:

Configuring PAM Authentication and User Mapping with Unix Authentication

Configuring PAM Authentication and User Mapping with LDAP Authentication

Versions

Version Status Introduced

2.0 Beta MariaDB 10.4.0

1.0 Stable MariaDB 10.0.10

1.0 Beta MariaDB 5.2.10

System Variables

pam_debug

Description: Enables verbose debug logging to the error log for all authentication handled by the plugin.

This system variable is only available when the plugin is a debug build.

Commandline: --pam-debug

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.2.2 , MariaDB 10.1.17

pam_use_cleartext_plugin

Description: Use the mysql_clear_password client authentication plugin instead of the dialog client authentication

plugin. This may be needed for compatibility reasons, but it only supports simple PAM configurations that don't

require any input besides a password.

Commandline: --pam-use-cleartext-plugin

Scope: Global

Dynamic: No

Data Type: boolean

3602/4161

https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://jira.mariadb.org/browse/MDEV-26212
https://jira.mariadb.org/browse/MDEV-30734
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-5210-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/

Default Value: OFF

Introduced: MariaDB 10.1.1 , MariaDB 5.5.32

pam_winbind_workaround

Description: Configures the authentication plugin to compare the user name provided by the client with the user

name returned by the PAM module in a case insensitive manner. This may be needed if you use the pam_winbind

PAM module, which is known to convert all user names to lowercase, and which does not allow this behavior to be

disabled.

Commandline: --pam-winbind-workaround

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Introduced: MariaDB 10.4.5, MariaDB 10.3.15 , MariaDB 10.2.24 , MariaDB 10.1.39

Options

pam

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --pam=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.6.6.2 User and Group Mapping with PAM
Even when using the pam authentication plugin, the authenticating PAM user account still needs to exist in MariaDB, and

the account needs to have privileges in the database. Creating these MariaDB accounts and making sure the privileges are

correct can be a lot of work. To decrease the amount of work involved, some users would like to be able to map a PAM user

to a different MariaDB user. For example, let9s say that alice and bob are both DBAs. It would be nice if each of them

could log into MariaDB with their own PAM username and password, while MariaDB sees both of them as the same dba

user. That way, there is only one MariaDB account to keep track of.

Although most PAM modules usually do not do things like this, PAM supports the ability to change the user name in the

process of authentication.The MariaDB pam authentication plugin fully supports this feature of PAM.

3603/4161

https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-5532-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/

Contents
1. The pam_user_map PAM Module

1. Lack of Support for MySQL/Percona Group Mapping Syntax

2. Installing the pam_user_map PAM Module

1. Installing the pam_user_map PAM Module from Source

1. Installing Compilation Dependencies

2. Compiling and Installing the pam_user_map PAM Module

3. Configuring the pam_user_map PAM Module

4. Configuring PAM

5. Creating Users

6. Verifying that Mapping is Occurring

7. Logging

8. Known Issues

1. PAM User with Same Name as Mapped MariaDB User Must Exist

9. Tutorials

The pam_user_map PAM Module
Rather than building user and group mapping into the pam authentication plugin, MariaDB thought that it would cover the

most use cases and offer the most flexibility to offload this functionality to an external PAM module. The pam_user_map

PAM module was implemented by MariaDB to facilitate this. This PAM module can be configured in the PAM service used

by the pam authentication plugin, just like other PAM modules.

Lack of Support for MySQL/Percona Group Mapping Syntax

Unlike MariaDB, MySQL and Percona implemented group mapping in their PAM authentication plugins. If you've read

through MySQL's PAM authentication documentation on group mapping or Percona's PAM authentication documentation

on group mapping , you've probably seen syntax where the group mappings are provided in the CREATE USER statement

like this:

CREATE USER ''@''

 IDENTIFIED WITH authentication_pam

 AS 'mysql, root=developer, users=data_entry';

Since MariaDB's user and group mapping is performed by an external PAM module, MariaDB's pam authentication plugin

does not support this syntax. Instead, the user and group mappings for the pam_user_map PAM module are configured in

an external configuration file. This is discussed in a later section.

Installing the pam_user_map PAM Module
The pam_user_map PAM module gets installed as part of all our MariaDB server packages since MariaDB 10.5, and was

added since 10.2.31, 10.3.22, and 10.4.12 in previous MariaDB major releases where it was not present from the beginning.

Some Linux distributions have not picked up this change in their own packages yet, so when e.g. installing MariaDB server

from stock Ubuntu packages on Ubuntu 20.04LTS you still won't have the pam_user_map module installed even though

the MariaDB server installed is more recent than MariaDB 10.3.22 .

When using such an installation, and not being able to switch to our own MariaDB package repositories, it may be

necessary to compile the PAM module from source as described in the next section, or to manually extract it from one of

our server packages and copy it to the target system.

Installing the pam_user_map PAM Module from Source

Installing Compilation Dependencies

Before the module can be compiled from source, you may need to install some dependencies.

On RHEL, CentOS, and other similar Linux distributions that use RPM packages, you need to install gcc , pam-devel and

MariaDB-devel . For example:

sudo yum install gcc pam-devel MariaDB-devel

On Debian, Ubuntu, and other similar Linux distributions that use DEB packages, you need to install gcc , libpam0g-dev .

For example:

3604/4161

https://dev.mysql.com/doc/refman/8.0/en/pam-pluggable-authentication.html#pam-authentication-unix-with-proxy
https://www.percona.com/doc/percona-server/8.0/management/pam_plugin.html#supplementary-groups-support
https://mariadb.com/kb/en/mariadb-10322-release-notes/

sudo apt-get install gcc libpam0g-dev libmariadb-dev

Compiling and Installing the pam_user_map PAM Module

The pam_user_map PAM module can be built by downloading plugin/auth_pam/mapper/pam_user_map.c file from the

MariaDB source tree and compiling it after minor adjustments. Once it is built, it can be installed to the system's PAM

module directory, which is typically /lib64/security/ .

For example: (replace 10.4 in the URL with the actual server versions)

wget https://raw.githubusercontent.com/MariaDB/server/10.4/plugin/auth_pam/mapper/pam_user_map.c

sed -ie 's/config_auth_pam/plugin_auth_common/' pam_user_map.c

gcc -I/usr/include/mysql/ pam_user_map.c -shared -lpam -fPIC -o pam_user_map.so

sudo install --mode=0755 pam_user_map.so /lib64/security/

You will also need to adjust the major version number in the URL on the first line to match your installed MariaDB version,

and the #-I# include path argument on the gcc line, as depending on operating system and MariaDB server version the

plugin_auth_common.h file may be installed in different directories than /usr/include/mysql/

Configuring the pam_user_map PAM Module
The pam_user_map PAM module uses the configuration file at the path /etc/security/user_map.conf to determine

its user and group mappings. The file's format is described below.

To map a specific PAM user to a specific MariaDB user:

orig_pam_user_name: mapped_mariadb_user_name

Or to map any PAM user in a specific PAM group to a specific MariaDB user, the group name is prefixed with @ :

@orig_pam_group_name: mapped_mariadb_user_name

For example, here is an example /etc/security/user_map.conf :

===

#comments and empty lines are ignored

john: jack

bob: admin

top: accounting

@group_ro: readonly

Configuring PAM
With user and group mapping, configuring PAM is done similar to how it is normally done with the pam authentication

plugin. However, when configuring the PAM service, you will have to add an auth line for the pam_user_map PAM

module to the service's PAM configuration file. For example:

auth required pam_unix.so audit

auth required pam_user_map.so

account required pam_unix.so audit

Creating Users
With user and group mapping, creating users is done similar to how it is normally done with the pam authentication plugin.

However, one major difference is that you will need to GRANT the PROXY privilege on the mapped user to the original user.

For example, if you have the following configured in /etc/security/user_map.conf :

foo: bar

@dba:dba

Then you could execute the following to grant the relevant privileges:

3605/4161

CREATE USER 'bar'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'bar'@'%' ;

CREATE USER 'dba'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'dba'@'%' ;

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

GRANT PROXY ON 'bar'@'%' TO ''@'%';

GRANT PROXY ON 'dba'@'%' TO ''@'%';

Note that the ''@'%' account is a special catch-all anonymous account. Any login by a user that has no more specific

account match in the system will be matched by this anonymous account.

Also note that you might not be able to create the ''@'%' anonymous account by default on some systems without doing

some extra steps first. See Fixing a Legacy Default Anonymous Account for more information.

Verifying that Mapping is Occurring
In case any user mapping is performed, the original user name is returned by the SQL function USER() , while the

authenticated user name is returned by the SQL function CURRENT_USER() . The latter actually defines what privileges are

available to a connected user.

For example, if we have the following configured:

foo: bar

Then the following output would verify that it is working properly:

$ mysql -u foo -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 22

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| foo@ip-172-30-0-198.us-west-2.compute.internal | bar@% |

+--+----------------+

1 row in set (0.000 sec)

We can verify that our foo PAM user was properly mapped to the bar MariaDB user by looking at the return value of

CURRENT_USER() .

Logging
By default, the pam_user_map PAM module does not perform any logging. However, if you want to enable debug logging,

then you can add the debug module argument to the service's PAM configuration file. For example:

auth required pam_unix.so audit

auth required pam_user_map.so debug

account required pam_unix.so audit

When debug logging is enabled, the pam_user_map PAM module will write log entries to the same syslog location as other

PAM modules, which is typically /var/log/secure on many systems.

For example, this debug log output can look like the following:

3606/4161

Jan 9 05:42:13 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Opening file

'/etc/security/user_map.conf'.

Jan 9 05:42:13 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Incoming username 'alice'.

Jan 9 05:42:13 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User belongs to 2 groups

[alice,dba].

Jan 9 05:42:13 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Check if user is in group

'dba': YES

Jan 9 05:42:13 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User mapped as 'dba'

Jan 9 05:43:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Opening file

'/etc/security/user_map.conf'.

Jan 9 05:43:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Incoming username 'bob'.

Jan 9 05:43:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User belongs to 2 groups

[bob,dba].

Jan 9 05:43:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Check if user is in group

'dba': YES

Jan 9 05:43:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User mapped as 'dba'

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Opening file

'/etc/security/user_map.conf'.

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Incoming username 'foo'.

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User belongs to 1 group

[foo].

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Check if user is in group

'dba': NO

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): Check if username 'foo': YES

Jan 9 06:08:36 ip-172-30-0-198 mysqld: pam_user_map(mariadb:auth): User mapped as 'bar'

Known Issues

PAM User with Same Name as Mapped MariaDB User Must Exist

With user and group mapping, any PAM user or any PAM user in a given PAM group can be mapped to a specific MariaDB

user account. However, due to the way PAM works, a PAM user with the same name as the mapped MariaDB user account

must exist.

For example, if the configuration file for the PAM service file contained the following:

auth required pam_sss.so

auth required pam_user_map.so debug

account sufficient pam_unix.so

account sufficient pam_sss.so

And if /etc/security/user_map.conf contained the following:

@dba: dba

Then any PAM user in the PAM group dba would be mapped to the MariaDB user account dba . But if a PAM user with the

name dba did not also exist, then the pam_user_map PAM module's debug logging would write errors to the syslog like

the following:

Sep 27 17:17:05 dbserver1 mysqld: pam_user_map(mysql:auth): Opening file

'/etc/security/user_map.conf'.

Sep 27 17:17:05 dbserver1 mysqld: pam_user_map(mysql:auth): Incoming username 'alice'.

Sep 27 17:17:05 dbserver1 mysqld: pam_user_map(mysql:auth): User belongs to 4 groups

[dba,mongod,mongodba,mysql].

Sep 27 17:17:05 dbserver1 mysqld: pam_user_map(mysql:auth): Check if user is in group 'mysql':

YES

Sep 27 17:17:05 dbserver1 mysqld: pam_user_map(mysql:auth): User mapped as 'dba'

Sep 27 17:17:05 dbserver1 mysqld: pam_unix(mysql:account): could not identify user (from

getpwnam(dba))

Sep 27 17:17:05 dbserver1 mysqld: pam_sss(mysql:account): Access denied for user dba: 10 (User

not known to the underlying authentication module)

Sep 27 17:17:05 dbserver1 mysqld: 2018-09-27 17:17:05 72 [Warning] Access denied for user

'alice'@'localhost' (using password: NO)

In the above log snippet, notice that both the pam_unix and the pam_sss PAM modules are complaining that the dba

PAM user does not appear to exist, and that these complaints cause the PAM authentication process to fail, which causes

the MariaDB authentication process to fail as well.

3607/4161

This can be fixed by creating a PAM user with the same name as the mapped MariaDB user account, which is dba in this

case.

You may also be able to work around this problem by essentially disabling PAM's account verification for the service with the

pam_permit PAM module. For example, in the above case, that would be:

auth required pam_sss.so

auth required pam_user_map.so debug

account required pam_permit.so

See MDEV-17315 for more information.

Tutorials
You may find the following PAM and user mapping-related tutorials helpful:

Configuring PAM Authentication and User Mapping with Unix Authentication

Configuring PAM Authentication and User Mapping with LDAP Authentication

5.4.6.6.3 Configuring PAM Authentication and
User Mapping with Unix Authentication
In this article, we will walk through the configuration of PAM authentication using the pam authentication plugin and user

and group mapping with the pam_user_map PAM module. The primary authentication will be handled by the pam_unix

 PAM module, which performs standard Unix password authentication.

Contents
1. Hypothetical Requirements

2. Creating Our Unix Users and Groups

3. Installing the pam_user_map PAM Module

4. Configuring the pam_user_map PAM Module

5. Installing the PAM Authentication Plugin

6. Configuring the PAM Service

7. Configuring the pam_unix PAM Module

8. Creating MariaDB Users

9. Testing our Configuration

Hypothetical Requirements
In this walkthrough, we are going to assume the following hypothetical requirements:

The Unix user foo should be mapped to the MariaDB user bar . (foo: bar)

Any Unix user in the Unix group dba should be mapped to the MariaDB user dba . (@dba: dba)

Creating Our Unix Users and Groups
Let's go ahead and create the Unix users and groups that we are using for this hypothetical scenario.

First, let's create the the foo user and a couple users to go into the dba group. Note that each of these users needs a

password.

sudo useradd foo

sudo passwd foo

sudo useradd alice

sudo passwd alice

sudo useradd bob

sudo passwd bob

And then let's create our dba group and add our two users to it:

sudo groupadd dba

sudo usermod -a -G dba alice

sudo usermod -a -G dba bob

3608/4161

https://linux.die.net/man/8/pam_permit
https://jira.mariadb.org/browse/MDEV-17315
https://linux.die.net/man/8/pam_unix

We also need to create Unix users with the same name as the bar and dba MariaDB users. See here to read more about

why. No one will be logging in as these users, so they do not need passwords.

sudo useradd bar

sudo useradd dba -g dba

Installing the pam_user_map PAM Module
Next, let's install the pam_user_map PAM module.

Before the module can be compiled from source, we may need to install some dependencies.

On RHEL, CentOS, and other similar Linux distributions that use RPM packages, we need to install gcc and pam-devel :

sudo yum install gcc pam-devel

On Debian, Ubuntu, and other similar Linux distributions that use DEB packages, we need to install gcc and libpam0g-

dev :

sudo apt-get install gcc libpam0g-dev

And then we can build and install the library with the following:

wget https://raw.githubusercontent.com/MariaDB/server/10.4/plugin/auth_pam/mapper/pam_user_map.c

gcc pam_user_map.c -shared -lpam -fPIC -o pam_user_map.so

sudo install --mode=0755 pam_user_map.so /lib64/security/

Configuring the pam_user_map PAM Module
Next, let's configure the pam_user_map PAM module based on our hypothetical requirements.

The configuration file for the pam_user_map PAM module is /etc/security/user_map.conf . Based on our

hypothetical requirements, ours would look like:

foo: bar

@dba:dba

Installing the PAM Authentication Plugin
Next, let's install the pam authentication plugin.

Log into the MariaDB Server and execute the following:

INSTALL SONAME 'auth_pam';

Configuring the PAM Service
Next, let's configure the PAM service. We will call our service mariadb , so our PAM service configuration file will be

located at /etc/pam.d/mariadb on most systems.

Since we are only doing Unix authentication with the pam_unix PAM module and group mapping with the pam_user_map

PAM module, our configuration file would look like this:

auth required pam_unix.so audit

auth required pam_user_map.so

account required pam_unix.so audit

Configuring the pam_unix PAM Module
The pam_unix PAM module adds some additional configuration steps on a lot of systems. We basically have to give the

user that runs mysqld access to /etc/shadow .

3609/4161

If the mysql user is running mysqld , then we can do that by executing the following:

sudo groupadd shadow

sudo usermod -a -G shadow mysql

sudo chown root:shadow /etc/shadow

sudo chmod g+r /etc/shadow

The server needs to be restarted for this change to take affect.

Creating MariaDB Users
Next, let's create the MariaDB users. Remember that our PAM service is called mariadb .

First, let's create the MariaDB user for the user mapping: foo: bar

That means that we need to create a bar user:

CREATE USER 'bar'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'bar'@'%' ;

And then let's create the MariaDB user for the group mapping: @dba: dba

That means that we need to create a dba user:

CREATE USER 'dba'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'dba'@'%' ;

And then to allow for the user and group mapping, we need to create an anonymous user that authenticates with the pam

authentication plugin that is also able to PROXY as the bar and dba users. Before we can create the proxy user, we

might need to clean up some defaults:

DELETE FROM mysql.db WHERE User='' AND Host='%';

FLUSH PRIVILEGES;

And then let's create the anonymous proxy user:

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

GRANT PROXY ON 'bar'@'%' TO ''@'%';

GRANT PROXY ON 'dba'@'%' TO ''@'%';

Testing our Configuration
Next, let's test out our configuration by verifying that mapping is occurring. We can verify this by logging in as each of our

users and comparing the return value of USER() , which is the original user name and the return value of

CURRENT_USER() , which is the authenticated user name.

First, let's test out our foo user:

$ mysql -u foo -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 22

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| foo@ip-172-30-0-198.us-west-2.compute.internal | bar@% |

+--+----------------+

1 row in set (0.000 sec)

3610/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

We can verify that our foo Unix user was properly mapped to the bar MariaDB user by looking at the return value of

CURRENT_USER() .

Then let's test out our alice user in the dba group:

$ mysql -u alice -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 19

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| alice@ip-172-30-0-198.us-west-2.compute.internal | dba@% |

+--+----------------+

1 row in set (0.000 sec)

And then let's test out our bob user in the dba group:

$ mysql -u bob -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 20

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| bob@ip-172-30-0-198.us-west-2.compute.internal | dba@% |

+--+----------------+

1 row in set (0.000 sec)

We can verify that our alice and bob Unix users in the dba Unix group were properly mapped to the dba MariaDB user

by looking at the return values of CURRENT_USER() .

5.4.6.6.4 Configuring PAM Authentication and
User Mapping with LDAP Authentication
In this article, we will walk through the configuration of PAM authentication using the pam authentication plugin and user

and group mapping with the pam_user_map PAM module. The primary authentication will be handled by the pam_ldap

 PAM module, which performs LDAP authentication. We will also set up an OpenLDAP server.

3611/4161

https://linux.die.net/man/5/pam_ldap

Contents
1. Hypothetical Requirements

2. Setting up the OpenLDAP Server

1. Installing the OpenLDAP Server and Client Components

2. Configuring the OpenLDAP Server

1. Configuring the OpenLDAP Port

3. Starting the OpenLDAP Server

4. Installing the Standard LDAP objectClasses

5. Creating the LDAP Directory Manager User

6. Creating the Structure of the Directory

7. Creating the LDAP Users and Groups

3. Setting up the MariaDB Server

1. Installing LDAP and PAM Libraries

2. Configuring LDAP

3. Installing the pam_user_map PAM Module

4. Configuring the pam_user_map PAM Module

5. Installing the PAM Authentication Plugin

6. Configuring the PAM Service

1. Configuring PAM to Allow Only LDAP Authentication

2. Configuring PAM to Allow LDAP and Local Unix Authentication

1. Configuring the pam_unix PAM Module

4. Creating MariaDB Users

5. Testing our Configuration

1. Testing LDAP Authentication

2. Testing Local Unix Authentication

Hypothetical Requirements
In this walkthrough, we are going to assume the following hypothetical requirements:

The LDAP user foo should be mapped to the MariaDB user bar . (foo: bar)

Any LDAP user in the LDAP group dba should be mapped to the MariaDB user dba . (@dba: dba)

Setting up the OpenLDAP Server
Before we can use LDAP authentication, we first need to set up our OpenLDAP Server. This is usually done on a server that

is completely separate from the database server.

Installing the OpenLDAP Server and Client Components

On the server acting as the OpenLDAP Server, first, we need to install the OpenLDAP components.

On RHEL, CentOS, and other similar Linux distributions that use RPM packages, that would go like this:

sudo yum install openldap openldap-servers openldap-clients nss-pam-ldapd

Configuring the OpenLDAP Server

Next, let's to configure the OpenLDAP Server. The easiest way to do that is to copy the template configuration file that is

included with the installation. In many installations, that will be at /usr/share/openldap-servers/DB_CONFIG.example .

For example:

sudo cp /usr/share/openldap-servers/DB_CONFIG.example /var/lib/ldap/DB_CONFIG

sudo chown ldap. /var/lib/ldap/DB_CONFIG

Configuring the OpenLDAP Port

Sometimes it is useful to change the port used by OpenLDAP. For example, some cloud environments block well-known

authentication services, so they block the default LDAP port.

On some systems, the port can be changed by setting SLAPD_URLS in /etc/sysconfig/slapd :

SLAPD_URLS="ldapi:/// ldap://0.0.0.0:3306/"

I used 3306 because that is the port that is usually used by mysqld , so I know that it is not blocked.

3612/4161

Starting the OpenLDAP Server

Next, let's start the OpenLDAP Server and configure it to start on reboot. On systemd systems, that would go like this:

sudo systemctl start slapd

sudo systemctl enable slapd

Installing the Standard LDAP objectClasses

In order to use LDAP for authentication, we also need to install some standard objectClasses , such as posixAccount

and posixGroup . In LDAP, things like objectClasses are defined in LDIF files. In many installations, these

specific objectClasses are defined in /etc/openldap/schema/nis.ldif . nis.ldif also depends on core.ldif

and cosine.ldif . However, core.ldif is usually installed by default.

We can install them with ldapmodify :

sudo ldapmodify -a -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/cosine.ldif

sudo ldapmodify -a -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/nis.ldif

Creating the LDAP Directory Manager User

Next, let9s create a directory manager user. We can do this by using OpenLDAP's olc configuration system to change the

olcRootDN directive to the DN of the directory manager user, which means that the user will be a privileged LDAP

user that is not subject to access controls. We will also set the root password for the user by changing the olcRootPW

directive.

We will also set the DN suffix for our backend LDAP database by changing the olcSuffix directive.

Let9s use the slappasswd utility to generate a password hash from a clear-text password. Simply execute:

slappasswd

This utility should provide a password hash that looks kind of like this: {SSHA}AwT4jrvmokeCkbDrFAnGvzzjCMb7bvEl

OpenLDAP's olc configuration system also uses LDIF files. Now that we have the password hash, let9s create an

LDIF file to create the directory manager user:

3613/4161

https://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-make-changes-to-an-openldap-system
http://www.openldap.org/software/man.cgi?query=ldapmodify&sektion=1&apropos=0&manpath=OpenLDAP+2.4-Release
https://www.openldap.org/doc/admin24/slapdconf2.html
https://www.openldap.org/doc/admin24/slapdconf2.html#olcRootDN:%20%253CDN%253E
https://www.openldap.org/doc/admin24/slapdconf2.html#olcRootPW:%20%253Cpassword%253E
https://www.openldap.org/doc/admin24/slapdconf2.html#olcSuffix:%20%253Cdn%20suffix%253E
http://www.openldap.org/software/man.cgi?query=slappasswd&apropos=0&sektion=8&manpath=OpenLDAP+2.4-Release&format=html
https://www.openldap.org/doc/admin24/slapdconf2.html
https://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-make-changes-to-an-openldap-system

tee ~/setupDirectoryManager.ldif <<EOF

dn: olcDatabase={1}monitor,cn=config

changetype: modify

replace: olcAccess

olcAccess: {0}to *

 by dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth" read

 by dn.base="cn=Manager,dc=support,dc=mariadb,dc=com" read

 by * none

dn: olcDatabase={2}hdb,cn=config

changetype: modify

replace: olcSuffix

olcSuffix: dc=support,dc=mariadb,dc=com

dn: olcDatabase={2}hdb,cn=config

changetype: modify

replace: olcRootDN

olcRootDN: cn=Manager,dc=support,dc=mariadb,dc=com

dn: olcDatabase={2}hdb,cn=config

changetype: modify

add: olcRootPW

olcRootPW: {SSHA}AwT4jrvmokeCkbDrFAnGvzzjCMb7bvEl

dn: olcDatabase={2}hdb,cn=config

changetype: modify

add: olcAccess

olcAccess: {0}to attrs=userPassword,shadowLastChange

 by dn="cn=Manager,dc=support,dc=mariadb,dc=com" write

 by anonymous auth

 by self write

 by * none

olcAccess: {1}to dn.base=""

 by * read

olcAccess: {2}to *

 by dn="cn=Manager,dc=support,dc=mariadb,dc=com" write

 by * read

EOF

Note that I am using the dc=support,dc=mariadb,dc=com domain for my directory. You can change this to whatever is

relevant to you.

Now let9s run the ldif file with ldapmodify :

sudo ldapmodify -Y EXTERNAL -H ldapi:/// -f ~/setupDirectoryManager.ldif

We will use the new directory manager user to make changes to the LDAP directory after this step.

Creating the Structure of the Directory

Next, let's create the structure of the directory by creating parts of our tree.

3614/4161

http://www.openldap.org/software/man.cgi?query=ldapmodify&sektion=1&apropos=0&manpath=OpenLDAP+2.4-Release

tee ~/setupDirectoryStructure.ldif <<EOF

dn: dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: dcObject

objectclass: organization

o: MariaDB Support Team

dc: support

dn: cn=Manager,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: organizationalRole

cn: Manager

description: Directory Manager

dn: ou=People,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: organizationalUnit

ou: People

dn: ou=Groups,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: organizationalUnit

ou: Groups

dn: ou=System Users,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: organizationalUnit

ou: System Users

EOF

Now let9s use our new directory manager user and run the LDIF file with ldapmodify :

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/setupDirectoryStructure.ldif

Creating the LDAP Users and Groups

Let's go ahead and create the LDAP users and groups that we are using for this hypothetical scenario.

First, let's create the the foo user:

tee ~/createFooUser.ldif <<EOF

dn: uid=foo,ou=People,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: foo

uid: foo

uidNumber: 16859

gidNumber: 100

homeDirectory: /home/foo

loginShell: /bin/bash

gecos: foo

userPassword: {crypt}x

shadowLastChange: -1

shadowMax: -1

shadowWarning: 0

EOF

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/createFooUser.ldif

Then let's create a couple users to go into the dba group:

3615/4161

https://www.digitalocean.com/community/tutorials/how-to-use-ldif-files-to-make-changes-to-an-openldap-system
http://www.openldap.org/software/man.cgi?query=ldapmodify&sektion=1&apropos=0&manpath=OpenLDAP+2.4-Release

tee ~/createDbaUsers.ldif <<EOF

dn: uid=gmontee,ou=People,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: gmontee

uid: gmontee

uidNumber: 16860

gidNumber: 100

homeDirectory: /home/gmontee

loginShell: /bin/bash

gecos: gmontee

userPassword: {crypt}x

shadowLastChange: -1

shadowMax: -1

shadowWarning: 0

dn: uid=bstillman,ou=People,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: bstillman

uid: bstillman

uidNumber: 16861

gidNumber: 100

homeDirectory: /home/bstillman

loginShell: /bin/bash

gecos: bstillman

userPassword: {crypt}x

shadowLastChange: -1

shadowMax: -1

shadowWarning: 0

EOF

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/createDbaUsers.ldif

Note that each of these users needs a password, so we can set it for each user with ldappasswd :

ldappasswd -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -S

uid=foo,ou=People,dc=support,dc=mariadb,dc=com

ldappasswd -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -S

uid=gmontee,ou=People,dc=support,dc=mariadb,dc=com

ldappasswd -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -S

uid=bstillman,ou=People,dc=support,dc=mariadb,dc=com

And then let's create our dba group

tee ~/createDbaGroup.ldif <<EOF

dn: cn=dba,ou=Groups,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: posixGroup

gidNumber: 678

EOF

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/createDbaGroup.ldif

And then let's add our two users to it:

tee ~/addUsersToDbaGroup.ldif <<EOF

dn: cn=dba,ou=Groups,dc=support,dc=mariadb,dc=com

changetype: modify

add: memberuid

memberuid: gmontee

dn: cn=dba,ou=Groups,dc=support,dc=mariadb,dc=com

changetype: modify

add: memberuid

memberuid: bstillman

EOF

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/addUsersToDbaGroup.ldif

3616/4161

http://www.openldap.org/software/man.cgi?query=ldappasswd&apropos=0&sektion=1&manpath=OpenLDAP+2.4-Release&format=html

We also need to create LDAP users with the same name as the bar and dba MariaDB users. See here to read more

about why. No one will be logging in as these users, so they do not need passwords. Instead of the People

organizationalUnit , we will create them in the System Users organizationalUnit .

tee ~/createSystemUsers.ldif <<EOF

dn: uid=bar,ou=System Users,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: bar

uid: bar

uidNumber: 16862

gidNumber: 100

homeDirectory: /home/bar

loginShell: /bin/bash

gecos: bar

userPassword: {crypt}x

shadowLastChange: -1

shadowMax: -1

shadowWarning: 0

dn: uid=dba,ou=System Users,dc=support,dc=mariadb,dc=com

objectClass: top

objectClass: account

objectClass: posixAccount

objectClass: shadowAccount

cn: dba

uid: dba

uidNumber: 16863

gidNumber: 100

homeDirectory: /home/dba

loginShell: /bin/bash

gecos: dba

userPassword: {crypt}x

shadowLastChange: -1

shadowMax: -1

shadowWarning: 0

EOF

ldapmodify -a -x -D cn=Manager,dc=support,dc=mariadb,dc=com -W -f ~/createSystemUsers.ldif

Setting up the MariaDB Server
At this point, we can move onto setting up the MariaDB Server.

Installing LDAP and PAM Libraries

First, we need to make sure that the LDAP and PAM libraries are installed.

On RHEL, CentOS, and other similar Linux distributions that use RPM packages, we need to install the following packages:

sudo yum install openldap-clients nss-pam-ldapd pam pam-devel

Configuring LDAP

Next, let's configure LDAP on the system. We can use authconfig for this:

sudo authconfig --enableldap \

 --enableldapauth \

 --ldapserver="ldap://172.30.0.238:3306" \

 --ldapbasedn="dc=support,dc=mariadb,dc=com" \

 --enablemkhomedir \

 --update

Be sure to replace -3ldapserver and -3ldapbasedn with values that are relevant for your environment.

Installing the pam_user_map PAM Module

3617/4161

https://linux.die.net/man/8/authconfig

The following steps apply to MariaDB Server in versions 10.2.32.7, 10.3.23., 10.4.13.6, 10.5.2 and earlier. In later releases,

the pam_user_map PAM module is now included in the base install.

Next, let's install the pam_user_map PAM module.

Before the module can be compiled from source, we may need to install some dependencies.

On RHEL, CentOS, and other similar Linux distributions that use RPM packages, we need to install gcc and pam-devel :

sudo yum install gcc pam-devel

On Debian, Ubuntu, and other similar Linux distributions that use DEB packages, we need to install gcc and libpam0g-

dev :

sudo apt-get install gcc libpam0g-dev

And then we can build and install the library with the following:

wget https://raw.githubusercontent.com/MariaDB/server/10.4/plugin/auth_pam/mapper/pam_user_map.c

gcc pam_user_map.c -shared -lpam -fPIC -o pam_user_map.so

sudo install --mode=0755 pam_user_map.so /lib64/security/

Configuring the pam_user_map PAM Module

Next, let's configure the pam_user_map PAM module based on our hypothetical requirements.

The configuration file for the pam_user_map PAM module is /etc/security/user_map.conf . Based on our

hypothetical requirements, ours would look like:

foo: bar

@dba:dba

Installing the PAM Authentication Plugin

Next, let's install the pam authentication plugin.

Log into the MariaDB Server and execute the following:

INSTALL SONAME 'auth_pam';

Configuring the PAM Service

Next, let's configure the PAM service. We will call our service mariadb , so our PAM service configuration file will be

located at /etc/pam.d/mariadb on most systems.

Configuring PAM to Allow Only LDAP Authentication

Since we are only doing LDAP authentication with the pam_ldap PAM module and group mapping with the

pam_user_map PAM module, our configuration file would look like this:

auth required pam_ldap.so

auth required pam_user_map.so

account required pam_ldap.so

Configuring PAM to Allow LDAP and Local Unix Authentication

If we want to allow authentication from LDAP users and from local Unix users through pam_unix , while giving priority

to the local users, then we could do this instead:

auth [success=1 new_authtok_reqd=1 default=ignore] pam_unix.so audit

auth required pam_ldap.so try_first_pass

auth required pam_user_map.so

account sufficient pam_unix.so audit

account required pam_ldap.so

3618/4161

https://linux.die.net/man/5/pam_ldap
https://linux.die.net/man/8/pam_unix

Configuring the pam_unix PAM Module

If you also want to allow authentication from local Unix users, the pam_unix PAM module adds some additional

configuration steps on a lot of systems. We basically have to give the user that runs mysqld access to /etc/shadow .

If the mysql user is running mysqld , then we can do that by executing the following:

sudo groupadd shadow

sudo usermod -a -G shadow mysql

sudo chown root:shadow /etc/shadow

sudo chmod g+r /etc/shadow

The server needs to be restarted for this change to take affect.

Creating MariaDB Users
Next, let's create the MariaDB users. Remember that our PAM service is called mariadb .

First, let's create the MariaDB user for the user mapping: foo: bar

That means that we need to create a bar user:

CREATE USER 'bar'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'bar'@'%' ;

And then let's create the MariaDB user for the group mapping: @dba: dba

That means that we need to create a dba user:

CREATE USER 'dba'@'%' IDENTIFIED BY 'strongpassword';

GRANT ALL PRIVILEGES ON *.* TO 'dba'@'%' ;

And then to allow for the user and group mapping, we need to create an anonymous user that authenticates with the pam

authentication plugin that is also able to PROXY as the bar and dba users. Before we can create the proxy user, we

might need to clean up some defaults:

DELETE FROM mysql.db WHERE User='' AND Host='%';

FLUSH PRIVILEGES;

And then let's create the anonymous proxy user:

CREATE USER ''@'%' IDENTIFIED VIA pam USING 'mariadb';

GRANT PROXY ON 'bar'@'%' TO ''@'%';

GRANT PROXY ON 'dba'@'%' TO ''@'%';

Testing our Configuration
Next, let's test out our configuration by verifying that mapping is occurring. We can verify this by logging in as each of our

users and comparing the return value of USER() , which is the original user name and the return value of

CURRENT_USER() , which is the authenticated user name.

Testing LDAP Authentication

First, let's test out our foo user:

3619/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/

$ mysql -u foo -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 134

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| foo@ip-172-30-0-198.us-west-2.compute.internal | bar@% |

+--+----------------+

1 row in set (0.000 sec)

We can verify that our foo LDAP user was properly mapped to the bar MariaDB user by looking at the return value of

CURRENT_USER() .

Then let's test out our gmontee user in the dba group:

$ mysql -u gmontee -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 135

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| gmontee@ip-172-30-0-198.us-west-2.compute.internal | dba@% |

+--+----------------+

1 row in set (0.000 sec)

And then let's test out our bstillman user in the dba group:

$ mysql -u bstillman -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 136

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| bstillman@ip-172-30-0-198.us-west-2.compute.internal | dba@% |

+--+----------------+

1 row in set (0.000 sec)

We can verify that our gmontee and bstillman LDAP users in the dba LDAP group were properly mapped to the dba

MariaDB user by looking at the return values of CURRENT_USER() .

Testing Local Unix Authentication

If you chose the option that also allowed local Unix authentication, then let's test that out. Let's create a Unix user and give

the user a password real quick:

3620/4161

sudo useradd alice

sudo passwd alice

And let's also map this user to dba :

@dba:dba

foo: bar

alice: dba

And we know that the existing anonymous user already has the PROXY privilege granted to the dba user, so this should

just work without any other configuration. Let's test it out:

$ mysql -u alice -h 172.30.0.198

[mariadb] Password:

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 141

Server version: 10.3.10-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SELECT USER(), CURRENT_USER();

+--+----------------+

| USER() | CURRENT_USER() |

+--+----------------+

| alice@ip-172-30-0-198.us-west-2.compute.internal | dba@% |

+--+----------------+

1 row in set (0.000 sec)

We can verify that our alice Unix user was properly mapped to the dba MariaDB user by looking at the return values of

CURRENT_USER() .

5.4.6.7 Authentication Plugin - Unix Socket

In MariaDB 10.4.3 and later, the unix_socket authentication plugin is installed by default, and it is used by the

'root'@'localhost' user account by default. See Authentication from MariaDB 10.4 for more information.

The unix_socket authentication plugin allows the user to use operating system credentials when connecting to MariaDB

via the local Unix socket file. This Unix socket file is defined by the socket system variable.

The unix_socket authentication plugin works by calling the getsockopt system call with the SO_PEERCRED socket

option, which allows it to retrieve the uid of the process that is connected to the socket. It is then able to get the user name

associated with that uid . Once it has the user name, it will authenticate the connecting user as the MariaDB account that

has the same user name.

The unix_socket authentication plugin is not suited to multiple Unix users accessing a single MariaDB user account.

Contents
1. Security

1. Strengths

2. Weaknesses

2. Disabling the Plugin

3. Installing the Plugin

4. Uninstalling the Plugin

5. Creating Users

6. Switching to Password-based Authentication

7. Client Authentication Plugins

8. Support in Client Libraries

9. Example

10. Versions

11. Options

1. unix_socket

MariaDB starting with 10.4.3

3621/4161

http://man7.org/linux/man-pages/man7/socket.7.html

Security
A unix_socket authentication plugin is a passwordless security mechanism. Its security is in the strength of the access to

the Unix user rather than the complexity and the secrecy of the password. As the security is different from passwords, the

strengths and weaknesses need to be considered, and these aren't the same in every installation.

Strengths

Access is limited to the Unix user so, for example, a www-data user cannot access root with the unix_socket

authentication plugin.

There is no password to brute force.

There is no password that can be accidentally exposed by user accident, poor security on backups, or poor security

on passwords in configuration files.

Default Unix user security is usually strong on preventing remote access and password brute force attempts.

Weaknesses

The strength of a unix_socket authentication plugin is effectively the strength of the security of the Unix users on the

system. The Unix user default installation in most cases is sufficiently secure, however, business requirements or unskilled

management may expose risks. The following is a non-exhaustive list of potential Unix user security issues that may arise.

Common access areas without screen locks, where an unauthorized user accesses the logged in Unix user of an

authorized user.

Extensive sudo access grants that provide users with access to execute commands of a different Unix user.

Scripts writable by Unix users other than the Unix user that are executed (cron or directly) by the unix user.

Web pages that are susceptible to command injection, where the Unix user running the web page has elevated

privileges in the database that weren't intended to be used.

Poor Unix user password practices including weak user passwords, password exposure and password reuse

accompanied by an access vulnerability/mechanism of an unauthorized user to exploit this weakness.

Weak remote access mechanisms and network file system privileges.

Poor user security behavior including running untrusted scripts and software.

In some of these scenarios a database password may prevent these security exploits, however it will remove all the

strengths of the unix_socket authentication plugin previously mentioned.

Disabling the Plugin

In MariaDB 10.4.3 and later, the unix_socket authentication plugin is installed by default, so if you do not want it

to be available by default on those versions, then you will need to disable it.

The unix_socket authentication plugin is also installed by default in new installations that use the .deb packages

provided by Debian's default repositories in Debian 9 and later and Ubuntu's default repositories in Ubuntu 15.10 and

later, so if you do not want it to be available by default on those systems when those packages are used, then

you will need to disable it. See Differences in MariaDB in Debian (and Ubuntu) for more information.

The unix_socket authentication plugin can be disabled by starting the server with the unix_socket option set to OFF .

This can be specified as a command-line argument to mysqld or it can be specified in a relevant server option group in an

option file. For example:

[mariadb]

...

unix_socket=OFF

As an alternative, the unix_socket option can also be set to OFF by pairing the option with the disable option prefix.

For example:

[mariadb]

...

disable_unix_socket

MariaDB starting with 10.4.3

3622/4161

Installing the Plugin

In MariaDB 10.4.3 and later, the unix_socket authentication plugin is installed by default, so this step can be

skipped on those versions.

The unix_socket authentication plugin is also installed by default in new installations that use the .deb packages

provided by Debian's default repositories in Debian 9 and later and Ubuntu's default repositories in Ubuntu 15.10 and

later, so this step can be skipped on those systems when those packages are used . See Differences in MariaDB

in Debian (and Ubuntu) for more information.

In other systems, although the plugin's shared library is distributed with MariaDB by default as auth_socket.so , the

plugin is not actually installed by MariaDB by default. There are two methods that can be used to install the plugin with

MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'auth_socket';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = auth_socket

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'auth_socket';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Creating Users
To create a user account via CREATE USER , specify the name of the plugin in the IDENTIFIED VIA clause. For example:

CREATE USER username@hostname IDENTIFIED VIA unix_socket;

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT . For

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA unix_socket;

Switching to Password-based Authentication
Sometimes Unix socket authentication does not meet your needs, so it can be desirable to switch a user account back to

password-based authentication. This can easily be done by telling MariaDB to use another authentication plugin for the

account by executing the ALTER USER statement. The specific authentication plugin is specified with the IDENTIFIED

VIA clause. For example, if you wanted to switch to the mysql_native_password authentication plugin, then you could

execute:

ALTER USER root@localhost IDENTIFIED VIA mysql_native_password;

SET PASSWORD = PASSWORD('foo');

MariaDB starting with 10.4.3

3623/4161

Note that if your operating system has scripts that require password-less access to MariaDB, then this may break those

scripts. You may be able to fix that by setting a password in the [client] option group in your /root/.my.cnf option file. For

example:

[client]

password=foo

Client Authentication Plugins
The unix_socket authentication plugin does not require any specific client authentication plugins. It should work with all

clients.

Support in Client Libraries
The unix_socket authentication plugin does not require any special support in client libraries. It should work with all client

libraries.

Example

$ mysql -uroot

MariaDB []> CREATE USER serg IDENTIFIED VIA unix_socket;

MariaDB []> CREATE USER monty IDENTIFIED VIA unix_socket;

MariaDB []> quit

Bye

$ whoami

serg

$ mysql --user=serg

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 2

Server version: 5.2.0-MariaDB-alpha-debug Source distribution

MariaDB []> quit

Bye

$ mysql --user=monty

ERROR 1045 (28000): Access denied for user 'monty'@'localhost' (using password: NO)

In this example, a user serg is already logged into the operating system and has full shell access. He has already

authenticated with the operating system and his MariaDB account is configured to use the unix_socket authentication

plugin, so he does not need to authenticate again for the database. MariaDB accepts his operating system credentials and

allows him to connect. However, any attempt to connect to the database as another operating system user will be denied.

Versions

Version Status Introduced

1.0 Stable MariaDB 10.0.11

1.0 Beta MariaDB 5.2.0

Options

unix_socket

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugin table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

3624/4161

https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-520-release-notes/

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --unix-socket=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.6.8 Authentication Plugin - Named Pipe
The named_pipe authentication plugin allows the user to use operating system credentials when connecting to MariaDB

via named pipe on Windows. Named pipe connections are enabled by the named_pipe system variable.

The named_pipe authentication plugin works by using named pipe impersonation and calling GetUserName() to

retrieve the user name of the process that is connected to the named pipe. Once it has the user name, it authenticates the

connecting user as the MariaDB account that has the same user name.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Creating Users

4. Client Authentication Plugins

5. Support in Client Libraries

6. Example

7. Versions

8. Options

1. named_pipe

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'auth_named_pipe';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = auth_named_pipe

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'auth_named_pipe';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Creating Users
To create a user account via CREATE USER , specify the name of the plugin in the IDENTIFIED VIA clause. For example:

CREATE USER username@hostname IDENTIFIED VIA named_pipe;

If SQL_MODE does not have NO_AUTO_CREATE_USER set, then you can also create the user account via GRANT . For

3625/4161

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378618%2528v=vs.85%2529.aspx

example:

GRANT SELECT ON db.* TO username@hostname IDENTIFIED VIA named_pipe;

Client Authentication Plugins
The named_pipe authentication plugin does not require any specific client authentication plugins. It should work with all

clients.

Support in Client Libraries
The named_pipe authentication plugin does not require any special support in client libraries. It should work with all client

libraries.

Example

CREATE USER wlad IDENTIFIED VIA named_pipe;

CREATE USER monty IDENTIFIED VIA named_pipe;

quit

C:\>echo %USERNAME%

wlad

C:\> mysql --user=wlad --protocol=PIPE

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 4

Server version: 10.1.12-MariaDB-debug Source distribution

Copyright (c) 2000, 2015, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> quit

Bye

C:\> mysql --user=monty --protocol=PIPE

ERROR 1698 (28000): Access denied for user 'monty'@'localhost'

In this example, a user wlad is already logged into the system. Because he has identified himself to the operating system,

he does not need to do it again for the database 4 MariaDB trusts the operating system credentials. However, he cannot

connect to the database as another user.

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.11

Options

named_pipe

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.
3626/4161

https://mariadb.com/kb/en/mariadb-10111-release-notes/

There may be ambiguity between this option and the named_pipe system variable. See MDEV-19625

about that.

Commandline: --named-pipe=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

Introduced: MariaDB 10.1.11

5.4.6.9 Authentication Plugin - SHA-256
Contents
1. Support in MariaDB Server

2. Support in Client Libraries

1. Client Authentication Plugins

1. sha256_password

2. caching_sha256_password

2. Using the Plugin with MariaDB Connector/C

3. Using Plugins with MariaDB Connector/ODBC

4. Using Plugins with MariaDB Connector/J

5. Using Plugins with MariaDB Connector/Node.js

MySQL 5.6 added support for the sha256_password authentication plugin, and MySQL 8.0 also added support for

the caching_sha2_password authentication plugin.

The caching_sha2_password plugin is now the default authentication plugin in MySQL 8.0.4 and above, based on the

value of the default_authentication_plugin system variable.

Support in MariaDB Server

MariaDB Server does not currently support either the sha256_password or the caching_sha2_password

 authentication plugins. See MDEV-9804 for more information. The majority of this article is about how to use

MariaDB clients and connectors to connect to a MySQL server!

MariaDB Server does not support either of these authentication plugins. This is mainly because:

To use the protocol, one has to distribute the server's public key to all MariaDB users, which can be cumbersome and

impractical.

The server gets the password in clear text which can cause problems if the user is convinced to connect to a

malicious server.

If you are replacing a MySQL instance, that is using SHA-256 authentication, with MariaDB, you should start by changing

SHA-256 authentication to use mysql_native_authentication.

ALTER USER user_name IDENTIFIED WITH mysql_native_password BY 'new_password'

Support in Client Libraries

Client Authentication Plugins

For clients that use the MariaDB Connector/C library, MariaDB provides two client authentication plugins that are

compatible with MySQL's SHA-256 authentication plugins:

sha256_password

caching_sha256_password

When connecting with a client or utility to a server as a user account that authenticates with the sha256_password or

caching_sha256_password authentication plugin, you may need to tell the client where to find the relevant client

authentication plugin by specifying the --plugin-dir option. For example:

mysql --plugin-dir=/usr/local/mysql/lib64/mysql/plugin --user=alice

3627/4161

https://jira.mariadb.org/browse/MDEV-19625
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://dev.mysql.com/doc/refman/5.6/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/5.6/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://jira.mariadb.org/browse/MDEV-9804
https://mariadb.com/kb/en/mariadb-connector-c/

For clients that use MariaDB's libmysqlclient library instead of MariaDB Connector/C , these client authentication

plugins are not supported.

sha256_password

The sha256_password client authentication plugin is compatible with MySQL's sha256_password authentication

plugin, which was added in MySQL 5.6.

caching_sha256_password

The caching_sha256_password client authentication plugin is compatible with MySQL's caching_sha2_password

 authentication plugin, which was added in MySQL 8.0.

The caching_sha2_password plugin is now the default authentication plugin in MySQL 8.0.4 and above, based on the

value of the default_authentication_plugin system variable.

Using the Plugin with MariaDB Connector/C

MariaDB Connector/C supports sha256_password and caching_sha2_password authentication using the client

authentication plugins mentioned in the previous section.

It has supported the sha256_password client authentication plugin since MariaDB Connector/C 3.0.2. See CONC-229

for more information.

It has supported the caching_sha256_password client authentication plugin since MariaDB Connector/C 3.0.8 and

MariaDB Connector/C 3.1.0. See CONC-312 for more information.

Using Plugins with MariaDB Connector/ODBC

MariaDB Connector/ODBC supports sha256_password and caching_sha2_password authentication using the client

authentication plugins mentioned in the previous section.

It has supported sha256_password and caching_sha2_password authentication since MariaDB Connector/ODBC

3.1.4. See ODBC-241 for more information.

Using Plugins with MariaDB Connector/J

MariaDB Connector/J supports sha256_password and caching_sha2_password authentication since MariaDB

Connector/J 2.5.0. See CONJ-327 and CONJ-663 for more information.

Using Plugins with MariaDB Connector/Node.js

MariaDB Connector/Node.js supports sha256_password and caching_sha2_password authentication since MariaDB

Connector/Node.js 2.5.0. See CONJS-76 and CONJS-77 for more information.

5.4.7 Password Validation Plugins
Simple Password Check Plugin

This plugin checks that passwords meet certain simple criteria.

Cracklib Password Check Plugin

This plugin checks password strength using the CrackLib library.

Password Reuse Check Plugin

Plugin for preventing password reuse.

Password Validation Plugin API

Allows the creation of password validation plugins to check user passwords as they are set.

password_reuse_check_interval

Retention period for password history.

3628/4161

https://mariadb.com/kb/en/mariadb-connector-c/
https://dev.mysql.com/doc/refman/5.6/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://mariadb.com/kb/en/mariadb-connector-c/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://jira.mariadb.org/browse/CONC-229
https://jira.mariadb.org/browse/CONC-312
https://mariadb.com/kb/en/about-mariadb-connector-odbc/
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/client-authentication-plugins
https://jira.mariadb.org/browse/ODBC-241
https://mariadb.com/kb/en/about-mariadb-connector-j/
https://jira.mariadb.org/browse/CONJ-327
https://jira.mariadb.org/browse/CONJ-663
https://mariadb.com/kb/en/nodejs-connector/
https://jira.mariadb.org/browse/CONJS-76
https://jira.mariadb.org/browse/CONJS-77

5.4.7.1 Simple Password Check Plugin
simple_password_check is a password validation plugin. It can check whether a password contains at least a certain

number of characters of a specific type. When first installed, a password is required to be at least eight characters, and

requires at least one digit, one uppercase character, one lowercase character, and one character that is neither a digit nor a

letter.

Note that passwords can be directly set as a hash, bypassing the password validation, if the strict_password_validation

variable is OFF (it is ON by default).

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Example

4. Known Issues

1. Issues with PAM Authentication Plugin

5. Versions

6. System Variables

1. simple_password_check_digits

2. simple_password_check_letters_same_case

3. simple_password_check_minimal_length

4. simple_password_check_other_characters

7. Options

1. simple_password_check

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'simple_password_check';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = simple_password_check

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'simple_password_check';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Example
When creating a new password, if the criteria are not met, the following error is returned:

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('abc');

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

Known Issues

3629/4161

Issues with PAM Authentication Plugin

Prior to MariaDB 10.4.0, all password validation plugins are incompatible with the pam authentication plugin. See

Authentication Plugin - PAM: Conflicts with Password Validation for more information.

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.18

1.0 Gamma MariaDB 10.1.13

1.0 Beta MariaDB 10.1.11

1.0 Alpha MariaDB 10.1.2

System Variables

simple_password_check_digits

Description: A password must contain at least this many digits.

Commandline: --simple-password-check-digits=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1000

simple_password_check_letters_same_case

Description: A password must contain at least this many upper-case and this many lower-case letters.

Commandline: --simple-password-check-letters-same-case=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1000

simple_password_check_minimal_length

Description: A password must contain at least this many characters.

Commandline: --simple-password-check-minimal-length=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 8

Range: 0 to 1000

simple_password_check_other_characters

Description: A password must contain at least this many characters that are neither digits nor letters.

Commandline: --simple-password-check-other-characters=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 1

Range: 0 to 1000

Options
3630/4161

https://mariadb.com/kb/en/pam-authentication-plugin/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

simple_password_check

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --simple-password-check=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.7.2 Cracklib Password Check Plugin
Contents
1. Installing the Plugin's Package

1. Installing on Linux

1. Installing with a Package Manager

1. Installing with yum/dnf

2. Installing with apt-get

3. Installing with zypper

2. Installing the Plugin

3. Uninstalling the Plugin

4. Viewing CrackLib Errors

5. Example

6. Known Issues

1. Issues with PAM Authentication Plugin

2. SELinux

7. Versions

8. System Variables

1. cracklib_password_check_dictionary

9. Options

1. cracklib_password_check

cracklib_password_check is a password validation plugin. It uses the CrackLib library to check the strength of new

passwords. CrackLib is installed by default in many Linux distributions, since the system's Pluggable Authentication Module

(PAM) authentication framework is usually configured to check the strength of new passwords with the pam_cracklib

 PAM module.

Note that passwords can be directly set as a hash, bypassing the password validation, if the strict_password_validation

variable is OFF (it is ON by default).

The plugin requires at least cracklib 2.9.0, so it is not available on Debian/Ubuntu builds before Debian 8 Jessie/Ubuntu

14.04 Trusty, RedHat Enterprise Linux / CentOS 6.

Installing the Plugin's Package
The cracklib_password_check plugin's shared library is included in MariaDB packages as the

cracklib_password_check.so or cracklib_password_check.dll shared library on systems where it can be built.

Installing on Linux

The cracklib_password_check plugin is included in systemd binary tarballs on Linux, but not in the older generic and

glibc_214 tarballs.

Installing with a Package Manager

3631/4161

https://github.com/cracklib/cracklib
https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://linux.die.net/man/8/pam_cracklib

The cracklib_password_check plugin can also be installed via a package manager on Linux. In order to do so, your

system needs to be configured to install from one of the MariaDB repositories.

You can configure your package manager to install it from MariaDB Corporation's MariaDB Package Repository by using

the MariaDB Package Repository setup script.

You can also configure your package manager to install it from MariaDB Foundation's MariaDB Repository by using the

MariaDB Repository Configuration Tool .

Installing with yum/dnf

On RHEL, CentOS, Fedora, and other similar Linux distributions, it is highly recommended to install the relevant RPM

package from MariaDB's repository using yum or dnf . Starting with RHEL 8 and Fedora 22, yum has been replaced

by dnf , which is the next major version of yum . However, yum commands still work on many systems that use dnf . For

example:

sudo yum install MariaDB-cracklib-password-check

Installing with apt-get

On Debian, Ubuntu, and other similar Linux distributions, it is highly recommended to install the relevant DEB package from

MariaDB's repository using apt-get . For example:

sudo apt-get install mariadb-plugin-cracklib-password-check

Installing with zypper

On SLES, OpenSUSE, and other similar Linux distributions, it is highly recommended to install the relevant RPM package

from MariaDB's repository using zypper . For example:

sudo zypper install MariaDB-cracklib-password-check

Installing the Plugin
Once the shared library is in place, the plugin is not actually installed by MariaDB by default. There are two methods that

can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'cracklib_password_check';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = cracklib_password_check

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'cracklib_password_check';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Viewing CrackLib Errors
If password validation fails, then the original CrackLib error message can be viewed by executing SHOW WARNINGS .

3632/4161

https://downloads.mariadb.org/mariadb/repositories/
https://en.wikipedia.org/wiki/DNF_(software)
https://wiki.debian.org/apt-get

Example
When creating a new password, if the criteria are not met, the following error is returned:

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('abc');

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

Known Issues

Issues with PAM Authentication Plugin

Prior to MariaDB 10.4.0, all password validation plugins are incompatible with the pam authentication plugin. See

Authentication Plugin - PAM: Conflicts with Password Validation for more information.

SELinux

When using the standard SELinux policy with the mode set to enforcing , mysqld does not have access to

/usr/share/cracklib , and you may see the following error when attempting to use the cracklib_password_check

plugin:

CREATE USER `user`@`hostname` IDENTIFIED BY 's0mePwd123.';

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1819 | cracklib: error loading dictionary |

| Error | 1819 | Your password does not satisfy the current policy requirements |

| Error | 1396 | Operation CREATE USER failed for 'user'@'hostname' |

+---------+------+--+

And the SELinux audit.log will contain errors like the following:

type=AVC msg=audit(1548371977.821:66): avc: denied { read } for pid=3537 comm="mysqld"

name="pw_dict.pwd" dev="xvda2" ino=564747 scontext=system_u:system_r:mysqld_t:s0

tcontext=system_u:object_r:crack_db_t:s0 tclass=file

type=SYSCALL msg=audit(1548371977.821:66): arch=c000003e syscall=2 success=no exit=-13

a0=7fdd2a674580 a1=0 a2=1b6 a3=1b items=0 ppid=1 pid=3537 auid=4294967295 uid=995 gid=992

euid=995 suid=995 fsuid=995 egid=992 sgid=992 fsgid=992 tty=(none) ses=4294967295 comm="mysqld"

exe="/usr/sbin/mysqld" subj=system_u:system_r:mysqld_t:s0 key=(null)

This can be fixed by creating an SELinux policy that allows mysqld to load the CrackLib dictionary. For example:

cd /usr/share/mysql/policy/selinux/

tee ./mariadb-plugin-cracklib-password-check.te <<EOF

module mariadb-plugin-cracklib-password-check 1.0;

require {

 type mysqld_t;

 type crack_db_t;

 class file { execute setattr read create getattr execute_no_trans write ioctl open

append unlink };

 class dir { write search getattr add_name read remove_name open };

}

allow mysqld_t crack_db_t:dir { search read open };

allow mysqld_t crack_db_t:file { getattr read open };

EOF

sudo yum install selinux-policy-devel

make -f /usr/share/selinux/devel/Makefile mariadb-plugin-cracklib-password-check.pp

sudo semodule -i mariadb-plugin-cracklib-password-check.pp

See MDEV-18374 for more information.

3633/4161

https://mariadb.com/kb/en/pam-authentication-plugin/
https://jira.mariadb.org/browse/MDEV-18374

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.18

1.0 Gamma MariaDB 10.1.13

1.0 Alpha MariaDB 10.1.2

System Variables

cracklib_password_check_dictionary

Description: Sets the path to the CrackLib dictionary. If not set, the default CrackLib dictionary path is used. The

parameter expects the base name of a cracklib dictionary (a set of three files with endings .hwm , .pwd , .pwi), not

a directory path.

Commandline: --cracklib-password-check-dictionary=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: Depends on the system. Often /usr/share/cracklib/pw_dict

Options

cracklib_password_check

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --cracklib-password-check=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.7.3 Password Reuse Check Plugin

password_reuse_check is a password validation plugin introduced in MariaDB 10.7.0 .

Contents
1. Description

1. Installing the Plugin

2. Uninstalling the Plugin

2. Example

3. Versions

Description
The plugin is used to prevent a user from reusing a password, which can be a requirement in some security policies. The

password_reuse_check_interval system variable determines the retention period, in days, for a password. By default this is

MariaDB starting with 10.7

3634/4161

https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

zero, meaning unlimited retention. Old passwords are stored in the mysql.password_reuse_check_history table.

Note that passwords can be directly set as a hash, bypassing the password validation, if the strict_password_validation

variable is OFF (it is ON by default).

Installing the Plugin

Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default.

You can install the plugin dynamically, without restarting the server, by executing INSTALL SONAME or INSTALL PLUGIN.

For example:

INSTALL SONAME 'password_reuse_check';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = password_reuse_check

Uninstalling the Plugin

You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'password_reuse_check';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Example

INSTALL SONAME 'password_reuse_check';

GRANT SELECT ON *.* TO user1@localhost identified by 'pwd1';

Query OK, 0 rows affected (0.038 sec)

GRANT SELECT ON *.* TO user1@localhost identified by 'pwd1';

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

GRANT SELECT ON *.* TO user1@localhost identified by 'pwd2';

Query OK, 0 rows affected (0.003 sec)

GRANT SELECT ON *.* TO user1@localhost identified by 'pwd1';

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

Versions

Version Status Introduced

1.0 Alpha MariaDB 10.7.0

1.0 Beta MariaDB 10.7.2

1.0 Gamma MariaDB 10.7.4

2.0 Stable MariaDB 10.7.7 , MariaDB 10.8.7 , MariaDB 10.9.5, MariaDB 10.10.2

The bump to version 2.0 required the change of the stored format to mitigate an implementation weakness (MDEV-28838

) and as such the bump from 1.0 to 2.0 will invalidate previously saved password reuse protections.

5.4.7.4 Password Validation Plugin API
3635/4161

https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1077-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://jira.mariadb.org/browse/MDEV-28838

Contents
1. SQL-Level Extensions

1. Password-Changing Statements

1. With Plain Text Password

2. With Password Hash

2. Examples

3. Plugin API

<Password validation= means ensuring that user passwords meet certain minimal security requirements. A dedicated plugin

API allows the creation of password validation plugins that will check user passwords as they are set (in SET PASSWORD

and GRANT statements) and either allow or reject them.

SQL-Level Extensions
MariaDB comes with three password validation plugins 4 the simple_password_check plugin, the cracklib_password_check

plugin and the password_reuse_check plugin. They are not enabled by default; use INSTALL SONAME (or INSTALL

PLUGIN) statement to install them.

When at least one password plugin is loaded, all new passwords will be validated and password-changing statements will

fail if the password will not pass validation checks. Several password validation plugin can be loaded at the same time 4 in

this case a password must pass all validation checks by all plugins.

Password-Changing Statements

One can use various SQL statements to change a user password:

With Plain Text Password

SET PASSWORD = PASSWORD('plain-text password');

SET PASSWORD FOR `user`@`host` = PASSWORD('plain-text password');

SET PASSWORD = OLD_PASSWORD('plain-text password');

SET PASSWORD FOR `user`@`host` = OLD_PASSWORD('plain-text password');

CREATE USER `user`@`host` IDENTIFIED BY 'plain-text password';

GRANT privileges TO `user`@`host` IDENTIFIED BY 'plain-text password';

These statements are subject to password validation. If at least one password validation plugin is loaded, plain-text

passwords specified in these statements will be validated.

With Password Hash

SET PASSWORD = 'password hash';

SET PASSWORD FOR `user`@`host` = 'password hash';

CREATE USER `user`@`host` IDENTIFIED BY PASSWORD 'password hash';

CREATE USER `user`@`host` IDENTIFIED VIA mysql_native_password USING 'password hash';

CREATE USER `user`@`host` IDENTIFIED VIA mysql_old_password USING 'password hash';

GRANT privileges TO `user`@`host` IDENTIFIED BY PASSWORD 'password hash';

GRANT privileges TO `user`@`host` IDENTIFIED VIA mysql_native_password USING 'password hash';

GRANT privileges TO `user`@`host` IDENTIFIED VIA mysql_old_password USING 'password hash';

These statements can not possibly use password validation 4 there is nothing to validate, the original plain-text password is

not available. MariaDB introduces a strict password validation mode 4 controlled by a strict_password_validation global

server variable. If the strict password validation is enabled and at least one password validation plugin is loaded then these

<unvalidatable= passwords will be rejected. Otherwise they will be accepted. By default a strict password validation is

enabled (but note that it has no effect if no password validation plugin is loaded).

Examples
Failed password validation:

3636/4161

GRANT SELECT ON *.* to foobar IDENTIFIED BY 'raboof';

ERROR HY000: Your password does not satisfy the current policy requirements

SHOW WARNINGS;

+---------+------+--+

| Level | Code | Message |

+---------+------+--+

| Warning | 1819 | cracklib: it is based on your username |

| Error | 1819 | Your password does not satisfy the current policy requirements |

+---------+------+--+

Strict password validation:

GRANT SELECT ON *.* TO foo IDENTIFIED BY PASSWORD '2222222222222222';

ERROR HY000: The MariaDB server is running with the --strict-password-validation option so it

cannot execute this statement

Plugin API
Password validation plugin API is very simple. A plugin must implement only one method 4 validate_password() . This

method takes two arguments 4 user name and the plain-text password. And it returns 0 when the password has passed the

validation and 1 otherwise,

See also mysql/plugin_password_validation.h and password validation plugins in

plugin/simple_password_check/ and plugins/cracklib_password_check/ .

5.4.7.5 password_reuse_check_interval
The password_reuse_check_interval system variable is available when the password_reuse_check plugin is installed. It

determines the retention period for the password history in days. Zero, the default, means passwords are never discarded.

Commandline: --password_reuse_check_interval=#

Scope: Global

Read-only: No

Data Type: numeric

Default Value: 0

Range: 0 to 36500

5.4.8 Key Management and Encryption Plugins
Encryption Key Management

Managing encryption keys for data-at-rest encryption.

File Key Management Encryption Plugin

A key management and encryption plugin for data-at-rest encryption that uses a plain-text file.

Hashicorp Key Management Plugin

Implement encryption using keys stored in the Hashicorp Vault KMS.

AWS Key Management Encryption Plugin

A key management and encryption plugin for data-at-rest encryption that use...

Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin
Setup Guide

Plugin that uses the AWS Key Management Service.

Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin
Advanced Usage

This document assumes you've already set up an Amazon Web Services (AWS) a...

Eperi Key Management Encryption Plugin

A key management and encryption plugin for data-at-rest encryption that use...

6

2

1

1

3

2

3637/4161

Encryption Plugin API

MariaDB uses plugins to handle key management and encryption of data.

There are 1 related questions .

5.4.8.1 Encryption Key Management
Contents
1. Choosing an Encryption Key Management Solution

1. File Key Management Plugin

2. AWS Key Management Plugin

3. Eperi Key Management Plugin

2. Using Multiple Encryption Keys

3. Key Rotation

1. Support for Key Rotation in Encryption Plugins

1. Encryption Plugins with Key Rotation Support

2. Encryption Plugins without Key Rotation Support

4. Encryption Plugin API

MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

Choosing an Encryption Key Management Solution
How MariaDB manages encryption keys depends on which encryption key management solution you choose. Currently,

MariaDB has three options:

File Key Management Plugin

The File Key Management plugin that ships with MariaDB is a basic key management and encryption plugin that reads keys

from a plain-text file. It can also serve as example and as a starting point when developing a key management plugin.

For more information, see File Key Management Plugin.

AWS Key Management Plugin

The AWS Key Management plugin is a key management and encryption plugin that uses the Amazon Web Services (AWS)

Key Management Service (KMS). The AWS Key Management plugin depends on the AWS SDK for C++ , which uses the

Apache License, Version 2.0 . This license is not compatible with MariaDB Server's GPL 2.0 license , so we are not able

to distribute packages that contain the AWS Key Management plugin. Therefore, the only way to currently obtain the plugin

is to install it from source.

For more information, see AWS Key Management Plugin.

Eperi Key Management Plugin

The Eperi Key Management plugin is a key management and encryption plugin that uses the eperi Gateway for Databases

. The eperi Gateway for Databases stores encryption keys on the key server outside of the database server itself, which

provides an extra level of security. The eperi Gateway for Databases also supports performing all data encryption

operations on the key server as well, but this is optional.

For more information, see Eperi Key Management Plugin.

Using Multiple Encryption Keys
Key management and encryption plugins support using multiple encryption keys. Each encryption key can be defined with a

different 32-bit integer as a key identifier.

The support for multiple keys opens up some potential use cases. For example, let's say that a hypothetical key

management and encryption plugin is configured to provide two encryption keys. One encryption key might be intended for
3638/4161

https://mariadb.com/kb/en/key-management-and-encryption-plugins/+questions/
https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/blob/master/LICENSE
https://mariadb.com/kb/en/mariadb-license/
https://eperi.com/database-encryption/
https://eperi.com/database-encryption/
https://eperi.com/database-encryption/

"low security" tables. It could use short keys, which might not be rotated, and data could be encrypted with a fast encryption

algorithm. Another encryption key might be intended for "high security" tables. It could use long keys, which are rotated

often, and data could be encrypted with a slower, but more secure encryption algorithm. The user would specify the identifier

of the key that they want to use for different tables, only using high level security where it's needed.

There are two encryption key identifiers that have special meanings in MariaDB. Encryption key 1 is intended for

encrypting system data, such as InnoDB redo logs, binary logs, and so on. It must always exist when data-at-rest encryption

is enabled. Encryption key 2 is intended for encrypting temporary data, such as temporary files and temporary tables. It is

optional. If it doesn't exist, then MariaDB uses encryption key 1 for these purposes instead.

When encrypting InnoDB tables, the key that is used to encrypt tables can be changed.

When encrypting Aria tables, the key that is used to encrypt tables cannot currently be changed.

Key Rotation
Encryption key rotation is optional in MariaDB Server. Key rotation is only supported if the backend key management

service (KMS) supports key rotation, and if the corresponding key management and encryption plugin for MariaDB also

supports key rotation. When a key management and encryption plugin supports key rotation, users can opt to rotate one or

more encryption keys, which creates a new version of each rotated encryption key.

Key rotation allows users to improve data security in the following ways:

If the server is configured to automatically re-encrypt table data with the newer version of the encryption key after the

key is rotated, then that prevents an encryption key from being used for long periods of time.

If the server is configured to simultaneously encrypt table data with multiple versions of the encryption key after the

key is rotated, then that prevents all data from being leaked if a single encryption key version is compromised.

The InnoDB storage engine has background encryption threads that can automatically re-encrypt pages when key rotations

occur.

The Aria storage engine does not currently have a similar mechanism to re-encrypt pages in the background when key

rotations occur.

Support for Key Rotation in Encryption Plugins

Encryption Plugins with Key Rotation Support

The AWS Key Management Service (KMS) supports encryption key rotation, and the corresponding AWS Key

Management Plugin also supports encryption key rotation.

The eperi Gateway for Databases supports encryption key rotation, and the corresponding Eperi Key Management

Plugin also supports encryption key rotation.

Encryption Plugins without Key Rotation Support

The File Key Management Plugin does not support encryption key rotation, because it does not use a backend key

management service (KMS).

Encryption Plugin API
New key management and encryption plugins can be developed using the encryption plugin API.

5.4.8.2 File Key Management Encryption Plugin

3639/4161

https://aws.amazon.com/kms/
https://eperi.com/database-encryption/

Contents
1. Overview

2. Installing the File Key Management Plugin's Package

3. Installing the Plugin

4. Uninstalling the Plugin

5. Creating the Key File

1. Configuring the Path to an Unencrypted Key File

6. Encrypting the Key File

1. Configuring the Path to an Encrypted Key File

7. Choosing an Encryption Algorithm

1. Configuring the Encryption Algorithm

8. Using the File Key Management Plugin

9. Using Multiple Encryption Keys

10. Key Rotation

11. Versions

12. System Variables

1. file_key_management_encryption_algorithm

2. file_key_management_filekey

3. file_key_management_filename

13. Options

1. file_key_management

MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

The File Key Management plugin that ships with MariaDB is a key management and encryption plugin that reads encryption

keys from a plain-text file.

Overview
The File Key Management plugin is the easiest key management and encryption plugin to set up for users who want to use

data-at-rest encryption. Some of the plugin's primary features are:

It reads encryption keys from a plain-text key file.

As an extra protection mechanism, the plain-text key file can be encrypted.

It supports multiple encryption keys.

It does not support key rotation.

It supports two different algorithms for encrypting data.

It can also serve as an example and as a starting point when developing a key management and encryption plugin with the

encryption plugin API.

Installing the File Key Management Plugin's Package
The File Key Management plugin is included in MariaDB packages as the file_key_management.so or

file_key_management.dll shared library. The shared library is in the main server package, so no additional package

installations are necessary. The plug-in must be installed into MariaDB however as follows.

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. The plugin can be installed by providing the --plugin-load or the --plugin-load-add options. This can be

specified as a command-line argument to mysqld or it can be specified in a relevant server option group in an option file.

For example:

[mariadb]

...

plugin_load_add = file_key_management

Uninstalling the Plugin

3640/4161

Before you uninstall the plugin, you should ensure that data-at-rest encryption is completely disabled, and that MariaDB no

longer needs the plugin to decrypt tables or other files.

You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'file_key_management';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Creating the Key File
In order to encrypt your tables with encryption keys using the File Key Management plugin, you first need to create the file

that contains the encryption keys. The file needs to contain two pieces of information for each encryption key. First, each

encryption key needs to be identified with a 32-bit integer as the key identifier. Second, the encryption key itself needs to be

provided in hex-encoded form. These two pieces of information need to be separated by a semicolon. For example, the file

is formatted in the following way:

<encryption_key_id1>;<hex-encoded_encryption_key1>

<encryption_key_id2>;<hex-encoded_encryption_key2>

You can also optionally encrypt the key file to make it less accessible from the file system. That is explained further in the

section below.

The File Key Management plugin uses Advanced Encryption Standard (AES) to encrypt data, which supports 128-bit,

192-bit, and 256-bit encryption keys. Therefore, the plugin also supports 128-bit, 192-bit, and 256-bit encryption keys.

You can generate random encryption keys using the openssl rand command. For example, to create a random

256-bit (32-byte) encryption key, you would run the following command:

$ openssl rand -hex 32

a7addd9adea9978fda19f21e6be987880e68ac92632ca052e5bb42b1a506939a

The key file still needs to have a key identifier for each encryption key added to the beginning of each line. Key identifiers

do not need to be contiguous.

For example, to append three new encryption keys to a new key file, you could execute the following:

$ (echo -n "1;" ; openssl rand -hex 32) | sudo tee -a /etc/mysql/encryption/keyfile

$ (echo -n "2;" ; openssl rand -hex 32) | sudo tee -a /etc/mysql/encryption/keyfile

$ (echo -n "100;" ; openssl rand -hex 32) | sudo tee -a /etc/mysql/encryption/keyfile

The new key file would look something like the following after this step:

1;a7addd9adea9978fda19f21e6be987880e68ac92632ca052e5bb42b1a506939a

2;49c16acc2dffe616710c9ba9a10b94944a737de1beccb52dc1560abfdd67388b

100;8db1ee74580e7e93ab8cf157f02656d356c2f437d548d5bf16bf2a56932954a3

The key identifiers give you a way to reference the encryption keys from MariaDB. In the example above, you could

reference these encryption keys using the key identifiers 1 , 2 or 100 with the ENCRYPTION_KEY_ID table option or with

system variables such as innodb_default_encryption_key_id . You do not necessarily need multiple encryption keys--

the encryption key with the key identifier 1 is the only mandatory encryption key.

Configuring the Path to an Unencrypted Key File

If the key file is unencrypted, then the File Key Management plugin only requires the file_key_management_filename

system variable to be configured.

This system variable can be specified as command-line arguments to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

loose_file_key_management_filename = /etc/mysql/encryption/keyfile

3641/4161

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.openssl.org/docs/man1.1.1/man1/rand.html

Note that the loose option prefix is specified. This option prefix is used in case the plugin hasn't been installed yet.

Encrypting the Key File
By enabling the File Key Management plugin and setting the appropriate path on the file_key_management_filename

system variable, you can begin using the plugin to manage your encryption keys. But, there is a security risk in doing so,

given that the keys are stored in plain text on your system. You can reduce this exposure using file permissions, but it's

better to encrypt the whole key file to further restrict access.

There are some important details to keep in mind about encrypting the key file, such as:

The only algorithm that MariaDB currently supports to encrypt the key file is Cipher Block Chaining (CBC) mode of

Advanced Encryption Standard (AES) .

The encryption key size can be 128-bits, 192-bits, or 256-bits.

The encryption key is created from the SHA-1 hash of the encryption password.

The encryption password has a max length of 256 characters.

You can generate a random encryption password using the openssl rand command. For example, to create a

random 256 character encryption password, you could execute the following:

$ sudo openssl rand -hex 128 > /etc/mysql/encryption/keyfile.key

You can encrypt the key file using the openssl enc command. For example, to encrypt the key file with the

encryption password created in the previous step, you could execute the following:

$ sudo openssl enc -aes-256-cbc -md sha1 \

 -pass file:/etc/mysql/encryption/keyfile.key \

 -in /etc/mysql/encryption/keyfile \

 -out /etc/mysql/encryption/keyfile.enc

Running this command reads the unencrypted keyfile file created above and creates a new encrypted keyfile.enc

file, using the encryption password stored in keyfile.key . Once you've finished preparing your system, you can delete

the unencrypted keyfile file, as it's no longer necessary.

Configuring the Path to an Encrypted Key File

If the key file is encrypted, then the File Key Management plugin requires both the file_key_management_filename and

the file_key_management_filekey system variables to be configured.

The file_key_management_filekey system variable can be provided in two forms:

It can be the actual plain-text encryption password. This is not recommended, since the plain-text encryption

password would be visible in the output of the SHOW VARIABLES statement.

If it is prefixed with FILE: , then it can be a path to a file that contains the plain-text encryption password.

These system variables can be specified as command-line arguments to mysqld or they can be specified in a relevant

server option group in an option file. For example:

[mariadb]

...

loose_file_key_management_filename = /etc/mysql/encryption/keyfile.enc

loose_file_key_management_filekey = FILE:/etc/mysql/encryption/keyfile.key

Note that the loose option prefix is specified. This option prefix is used in case the plugin hasn't been installed yet.

Choosing an Encryption Algorithm
The File Key Management plugin currently supports two encryption algorithms for encrypting data: AES_CBC and

AES_CTR . Both of these algorithms use Advanced Encryption Standard (AES) in different modes. AES uses 128-bit

blocks, and supports 128-bit, 192-bit, and 256-bit keys. The modes are:

The AES_CBC mode uses AES in the Cipher Block Chaining (CBC) mode.

The AES_CTR mode uses AES in two slightly different modes in different contexts. When encrypting tablespace

pages (such as pages in InnoDB, XtraDB, and Aria tables), it uses AES in the Counter (CTR) mode. When

encrypting temporary files (where the cipher text is allowed to be larger than the plain text), it uses AES in the

authenticated Galois/Counter Mode (GCM) .

3642/4161

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CBC
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/SHA-1
https://www.openssl.org/docs/man1.1.1/man1/rand.html
https://www.openssl.org/docs/man1.1.1/man1/enc.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
http://en.wikipedia.org/wiki/Galois/Counter_Mode

The recommended algorithm is AES_CTR , but this algorithm is only available when MariaDB is built with recent versions of

OpenSSL . If the server is built with wolfSSL or yaSSL , then this algorithm is not available. See TLS and

Cryptography Libraries Used by MariaDB for more information about which libraries are used on which platforms.

Configuring the Encryption Algorithm

The encryption algorithm can be configured by setting the file_key_management_encryption_algorithm system

variable.

This system variable can be set to one of the following values:

System

Variable

Value

Description

AES_CBC Data is encrypted using AES in the Cipher Block Chaining (CBC) mode. This is the default value.

AES_CTR

Data is encrypted using AES either in the Counter (CTR) mode or in the authenticated Galois/Counter

Mode (GCM) mode, depending on context. This is only supported in some builds. See the previous section

for more information.

This system variable can be specified as command-line arguments to mysqld or it can be specified in a relevant server

option group in an option file. For example:

[mariadb]

...

loose_file_key_management_encryption_algorithm = AES_CTR

Note that the loose option prefix is specified. This option prefix is used in case the plugin hasn't been installed yet.

Note that this variable does not affect the algorithm that MariaDB uses to decrypt the key file. This variable only affects

the encryption algorithm that MariaDB uses to encrypt and decrypt data. The only algorithm that MariaDB currently

supports to encrypt the key file is Cipher Block Chaining (CBC) mode of Advanced Encryption Standard (AES) .

Using the File Key Management Plugin
Once the File Key Management Plugin is enabled, you can use it by creating an encrypted table:

CREATE TABLE t (i int) ENGINE=InnoDB ENCRYPTED=YES

Now, table t will be encrypted using the encryption key from the key file.

For more information on how to use encryption, see Data at Rest Encryption.

Using Multiple Encryption Keys
The File Key Management Plugin supports using multiple encryption keys. Each encryption key can be defined with a

different 32-bit integer as a key identifier.

When encrypting InnoDB tables, the key that is used to encrypt tables can be changed.

When encrypting Aria tables, the key that is used to encrypt tables cannot currently be changed.

Key Rotation
The File Key Management plugin does not currently support key rotation. See MDEV-20713 for more information.

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.18

1.0 Gamma MariaDB 10.1.13

3643/4161

https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
http://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CBC
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://jira.mariadb.org/browse/MDEV-20713
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/

1.0 Alpha MariaDB 10.1.3

System Variables

file_key_management_encryption_algorithm

Description: This system variable is used to determine which algorithm the plugin will use to encrypt data.

The recommended algorithm is AES_CTR , but this algorithm is only available when MariaDB is built with recent

versions of OpenSSL . If the server is built with wolfSSL or yaSSL , then this algorithm is not available.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

Commandline: --file-key-management-encryption-algorithm=value

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: AES_CBC

Valid Values: AES_CBC , AES_CTR

file_key_management_filekey

Description: This system variable is used to determine the encryption password that is used to decrypt the key file

defined by file_key_management_filename .

If this system variable's value is prefixed with FILE: , then it is interpreted as a path to a file that contains the

plain-text encryption password.

If this system variable's value is not prefixed with FILE: , then it is interpreted as the plain-text encryption

password. However, this is not recommended.

The encryption password has a max length of 256 characters.

The only algorithm that MariaDB currently supports when decrypting the key file is Cipher Block Chaining

(CBC) mode of Advanced Encryption Standard (AES) . The encryption key size can be 128-bits, 192-bits,

or 256-bits. The encryption key is calculated by taking a SHA-1 hash of the encryption password.

Commandline: --file-key-management-filekey=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (empty)

file_key_management_filename

Description: This system variable is used to determine the path to the file that contains the encryption keys. If

file_key_management_filekey is set, then this file can be encrypted with Cipher Block Chaining (CBC) mode

of Advanced Encryption Standard (AES) .

Commandline: --file-key-management-filename=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: (empty)

Options

file_key_management

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

3644/4161

https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CBC
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CBC
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --file-key-management=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.8.3 Hashicorp Key Management Plugin

The Hashicorp Key Management Plugin is used to implement encryption using keys stored in the Hashicorp Vault

KMS. For more information, see Hashicorp Vault and MariaDB, and for how to install Vault, see Install Vault , as well

as MySQL/MariaDB Database Secrets Engine .

Contents
1. Options

1. hashicorp-key-management-vault-url

2. hashicorp-key-management-token

3. hashicorp-key-management-vault-ca

4. hashicorp-key-management-timeout

5. hashicorp-key-management-retries

6. hashicorp-key-management-caching-enabled

7. hashicorp-key-management-use-cache-on-timeout

8. hashicorp-key-management-cache-timeout

9. hashicorp-key-management-cache-version-timeout

10. hashicorp-key-management-check-kv-version

The current version of this plugin implements the following features:

Authentication is done using the Hashicorp Vault's token authentication method;

If additional client authentication is required, then the path to the CA authentication bundle file may be passed as a

plugin parameter;

The creation of the keys and their management is carried out using the Hashicorp Vault KMS and their tools;

The plugin uses libcurl (https) as an interface to the HashiCorp Vault server;

JSON parsing is performed through the JSON service (through the include/mysql/service_json.h);

HashiCorp Vault 1.2.4 was used for development and testing.

Since we require support for key versioning, the key-value storage must be configured in Hashicorp Vault as a key-value

storage that uses the interface of the second version. For example, you can create it as follows:

~$ vault secrets enable -path /test -version=2 kv

Key names must correspond to their numerical identifiers. Key identifiers itself, their possible values and rules of use are

described in more detail in the MariaDB main documentation.

From the point of view of the key-value storage (in terms of Hashicorp Vault), the key is a secret containing one key-value

pair with the name "data" and a value representing a binary string containing the key value, for example:

~$ vault kv get /test/1

====== Metadata ======

Key Value

--- -----

created_time 2019-12-14T14:19:19.42432951Z

deletion_time n/a

destroyed false

version 1

==== Data ====

Key Value

--- -----

data 0123456789ABCDEF0123456789ABCDEF

MariaDB starting with 10.9

3645/4161

https://www.vaultproject.io/docs/install
https://developer.hashicorp.com/vault/docs/secrets/databases/mysql-maria

Keys values are strings containing binary data. MariaDB currently uses the AES algorithm with 256-bit keys as the default

encryption method. In this case, the keys that will be stored in the Hashicorp Vault should be 32-byte strings. Most likely you

will use some utilities for creating and administering keys designed to work with Hashicorp Vault. But in the simplest case,

keys can be created from the command line through the vault utility, for example, as follows:

~$ vault kv put /test/1 data="0123456789ABCDEF0123456789ABCDEF"

If you use default encryption (AES), you should ensure that the key length is 32 bytes, otherwise it may fail to use InnoDB as

a data storage.

The plugin currently does not unseal Hashicorp Vault on its own, you must do this in advance and on your own.

To use Hashicorp Vault KMS, the plugin must be preloaded and activated on the server. Most of its parameters should not

be changed during plugin operation and therefore must be preconfigured as part of the server configuration through

configuration file or command line options:

--plugin-load-add=hashicorp_key_management.so

--loose-hashicorp-key-management

--loose-hashicorp-key-management-vault-url="$VAULT_ADDR/v1/test"

--loose-hashicorp-key-management-token="$VAULT_TOKEN"

Options

The plugin supports the following parameters, which must be set in advance and cannot be changed during server

operation:

hashicorp-key-management-vault-url

Description: HTTP[s] URL that is used to connect to the Hashicorp Vault server. It must include the name of the

scheme (https:// for a secure connection) and, according to the API rules for storages of the key-value type in

Hashicorp Vault, after the server address, the path must begin with the "/v1/" string (as prefix), for example:

https://127.0.0.1:8200/v1/my_secrets . By default, the path is not set, therefore you must replace with the

correct path to your secrets.

Commandline: --[loose-]hashicorp-key-management-vault-url="<url>"

hashicorp-key-management-token

Description: Authentication token that passed to the Hashicorp Vault in the request header. By default, this

parameter contains an empty string, so you must specify the correct value for it, otherwise the Hashicorp Vault server

will refuse authorization.

Commandline: --[loose-]hashicorp-key-management-token="<token>"

hashicorp-key-management-vault-ca

Description: Path to the Certificate Authority (CA) bundle (is a file that contains root and intermediate certificates).

By default, this parameter contains an empty string, which means no CA bundle.

Commandline: --[loose-]hashicorp-key-management-vault-ca="<path>"

hashicorp-key-management-timeout

Description: Set the duration (in seconds) for the Hashicorp Vault server connection timeout. The default value is 15

seconds. The allowed range is from 1 to 86400 seconds. The user can also specify a zero value, which means the

default timeout value set by the libcurl library (currently 300 seconds).

Commandline: --[loose-]hashicorp-key-management-timeout=<timeout>

hashicorp-key-management-retries

Description: Number of server request retries in case of timeout. Default is three retries.

Commandline: ----[loose-]hashicorp-key-management-retries=<retries>

hashicorp-key-management-caching-enabled

Description: Enable key caching (storing key values received from the Hashicorp Vault server in the local memory).

By default caching is enabled.

Commandline: --[loose-]hashicorp-key-management-caching-enabled="on"|"off"

3646/4161

hashicorp-key-management-use-cache-on-timeout

Description: This parameter instructs the plugin to use the key values or version numbers taken from the cache in

the event of a timeout when accessing the vault server. By default this option is disabled. Please note that key values

or version numbers will be read from the cache when the timeout expires only after the number of attempts to read

them from the storage server that specified by the --[loose-]hashicorp-key-management-retries parameter has been

exhausted.

Commandline: --[loose-]hashicorp-key-management-use-cache-on-timeout="on"|"off"

hashicorp-key-management-cache-timeout

Description: The time (in milliseconds) after which the value of the key stored in the cache becomes invalid and an

attempt to read this data causes a new request send to the vault server. By default, cache entries become invalid

after 60,000 milliseconds (after one minute). If the value of this parameter is zero, then the keys will always be

considered invalid, but they still can be used if the vault server is unavailable and the corresponding cache operating

mode (--[loose-]hashicorp-key-management-use-cache-on-timeout="on") is enabled.

Commandline: --[loose-]hashicorp-key-management-cache-timeout=<timeout>

hashicorp-key-management-cache-version-timeout

Description: The time (in milliseconds) after which the information about latest version number of the key (which

stored in the cache) becomes invalid and an attempt to read this information causes a new request send to the vault

server. If the value of this parameter is zero, then information about latest key version numbers always considered

invalid, unless there is no communication with the vault server and use of the cache is allowed when the server is

unavailable. By default, this parameter is zero, that is, the latest version numbers for the keys stored in the cache are

considered always invalid, except when the vault server is unavailable and use of the cache is allowed on server

failures.

Commandline: --[loose-]hashicorp-key-management-cache-version-timeout=<timeout>

hashicorp-key-management-check-kv-version

Description: This parameter enables ("on", this is the default value) or disables ("off") checking the kv storage

version during plugin initialization. The plugin requires storage to be version 2 or older in order for it to work properly.

Commandline: --[loose-]hashicorp-key-management-check-kv-version="on"|"off"

5.4.8.4 AWS Key Management Encryption
Plugin

Contents
1. Overview

2. Tutorials

3. Preparation

4. Installing the Plugin's Package

1. Installing from Source

1. Building on Linux

5. Installing the Plugin

6. Uninstalling the Plugin

7. Configuring the AWS Key Management Plugin

8. Using the AWS Key Management Plugin

9. Using Multiple Encryption Keys

10. Key Rotation

11. Versions

12. System Variables

1. aws_key_management_key_spec

2. aws_key_management_log_level

3. aws_key_management_master_key_id

4. aws_key_management_mock

5. aws_key_management_region

6. aws_key_management_request_timeout

7. aws_key_management_rotate_key

13. Options

1. aws_key_management

Due to license incompatibilities between the MariaDB server source code and the Amazon AWS C++ SDK we can only

3647/4161

distribute the plugin in source code form, and not as ready-to-use binaries. See Installing the Plugin's Package for

details.

MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

The AWS Key Management plugin is a key management and encryption plugin that uses the Amazon Web Services (AWS)

Key Management Service (KMS) .

Overview
The AWS Key Management plugin uses the Amazon Web Services (AWS) Key Management Service (KMS) to generate

and store AES keys on disk, in encrypted form, using the Customer Master Key (CMK) kept in AWS KMS. When MariaDB

Server starts, the plugin will decrypt the encrypted keys, using the AWS KMS "Decrypt" API function. MariaDB data will then

be encrypted and decrypted using the AES key. It supports multiple encryption keys. It supports key rotation.

Tutorials
Tutorials related to the AWS Key Management plugin can be found at the following pages:

Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin Setup Guide

Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin Advanced Usage

Preparation
Before you use the plugin, you need to create a Customer Master Key (CMK). Create a key using the AWS Console

as described in the AMS KMS developer guide .

The easiest way to give the AWS key management plugin access to the key is to create an IAM Role with access to

the key, and to apply that IAM Role to an EC2 instance where MariaDB Server runs.

Make sure that MariaDB Server runs under the correct AWS identity that has access to the above key. For example,

you can store the AWS credentials in a AWS credentials file for the user who runs mysqld . More information about

the credentials file can be found in the AWS CLI Getting Started Guide .

Installing the Plugin's Package
The AWS Key Management plugin depends on the AWS SDK for C++ , which uses the Apache License, Version 2.0 .

This license is not compatible with MariaDB Server's GPL 2.0 license , so we are not able to distribute packages that

contain the AWS Key Management plugin. Therefore, the only way to currently obtain the plugin is to install it from source.

Installing from Source

When compiling MariaDB from source, the AWS Key Management plugin is not built by default in MariaDB 10.1, but it is

built by default in MariaDB 10.2 and later, on systems that support it.

Compilation is controlled by the following cmake arguments:

-DPLUGIN_AWS_KEY_MANAGEMENT=DYNAMIC to build a loadable plugin library

-DAWS_SDK_EXTERNAL_PROJECT=ON to download the AWS C++ SDK code

-DNOT_FOR_DISTRIBUTION=ON to confirm that you know to not distribute the resulting binaries

The plugin uses AWS C++ SDK , which introduces the following restrictions:

The plugin can only be built on Windows, Linux and macOS.

The plugin requires that one of the following compilers is used: gcc 4.8 or later, clang 3.3 or later, Visual Studio

2013 or later.

On Unix, the libcurl development package (e.g. libcurl3-dev on Debian Jessie), uuid development package

and openssl need to be installed.

You may need to use a newer version of cmake than is provided by default in your OS.

You do not need to download / install the AWS C++ SDK yourself, the correct version of the SDK github repository will be

cloned into the build directory at build time, and only the libraries for AWS components actually needed by the key

management plugin will be built, which takes much less time than building the full AWS C++ SDK.

3648/4161

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-file
https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/blob/master/LICENSE
https://mariadb.com/kb/en/mariadb-license/
https://github.com/awslabs/aws-sdk-cpp

Building on Linux

With all prerequisites installed the actual build process pretty much comes down to:

clone the MariaDB Server source code repository

git clone https://github.com/MariaDB/server.git

cd server

prepare the build

mkdir _build

cd _build

cmake .. -DNOT_FOR_DISTRIBUTION=ON \

 -DPLUGIN_AWS_KEY_MANAGEMENT=DYNAMIC \

 -DAWS_SDK_EXTERNAL_PROJECT=1

build the plugin only

cd plugin/aws_key_management

make

Cmake will print the following warning as part of its output, please take it serious and do not distribute the

aws_key_management.so file to any third parties:

You have linked MariaDB with Apache 2.0 libraries! You may not distribute the resulting binary. If you do, you

will put yourself into a legal problem with the Free Software Foundation.

After make succeeded you can copy the created aws_key_management.so plugin library file to the plugin directory of

your actual MariaDB Server machines installation, e.g. /usr/lib64/mysql/plugin on RedHat/Fedora based systems or

/usr/lib/mysql/plugin on Debian based systems.

Installing the Plugin
Even after the package that contains the plugin's shared library is installed on the operating system, the plugin is not actually

installed by MariaDB by default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'aws_key_management';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = aws_key_management

Uninstalling the Plugin
Before you uninstall the plugin, you should ensure that data-at-rest encryption is completely disabled, and that MariaDB no

longer needs the plugin to decrypt tables or other files.

You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'aws_key_management';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Configuring the AWS Key Management Plugin
To enable the AWS Key Management plugin, you also need to set the plugin's system variables. The

aws_key_management_master_key_id system variable is the primary one to set. These system variables can be

3649/4161

specified as command-line arguments to mysqld or they can be specified in a relevant server option group in an option

file. For example:

[mariadb]

...

aws_key_management_master_key_id=alias/<your key's alias>

Once you've updated the configuration file, restart the MariaDB server to apply the changes and make the key

management and encryption plugin available for use.

Using the AWS Key Management Plugin
Once the AWS Key Management Plugin is enabled, you can use it by creating an encrypted table:

CREATE TABLE t (i int) ENGINE=InnoDB ENCRYPTED=YES

Now, table t will be encrypted using the encryption key generated by AWS.

For more information on how to use encryption, see Data at Rest Encryption.

Using Multiple Encryption Keys
The AWS Key Management Plugin supports using multiple encryption keys. Each encryption key can be defined with a

different 32-bit integer as a key identifier. If a previously unused identifier is used, then the plugin will automatically generate

a new key.

When encrypting InnoDB tables, the key that is used to encrypt tables can be changed.

When encrypting Aria tables, the key that is used to encrypt tables cannot currently be changed.

Key Rotation
The AWS Key Management plugin does support key rotation. To rotate a key, set the aws_key_management_rotate_key

system variable. For example, to rotate key with ID 2:

SET GLOBAL aws_key_management_rotate_key=2;

Or to rotate all keys, set the value to -1:

SET GLOBAL aws_key_management_rotate_key=-1;

Versions

Version Status Introduced

1.0 Stable MariaDB 10.2.6 , MariaDB 10.1.24

1.0 Beta MariaDB 10.1.18

1.0 Experimental MariaDB 10.1.13

System Variables

aws_key_management_key_spec

Description: Encryption algorithm used to create new keys

Commandline: --aws-key-management-key-spec=value

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: AES_128

Valid Values: AES_128 , AES_256

3650/4161

https://mariadb.com/kb/en/starting-and-stopping-mariadb-starting-and-stopping-mariadb/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/

aws_key_management_log_level

Description: Dump log of the AWS SDK to MariaDB error log. Permitted values, in increasing verbosity, are Off

(default), Fatal, Error, Warn, Info, Debug, and Trace.

Commandline: --aws-key-management-log-level=value

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: Off

Valid Values: Off , Fatal , Warn , Info , Debug and Trace

aws_key_management_master_key_id

Description: AWS KMS Customer Master Key ID (ARN or alias prefixed by alias/) for the master encryption key.

Used to create new data keys. If not set, no new data keys will be created.

Commandline: --aws-key-management-master-key-id=value

Scope: Global

Dynamic: No

Data Type: string

Default Value:

aws_key_management_mock

Description: Mock AWS KMS calls (for testing). Must be enabled at compile-time.

Commandline: --aws-key-management-mock

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: OFF

Valid Values: OFF , ON

aws_key_management_region

Description: AWS region name, e.g us-east-1 . Default is SDK default, which is us-east-1.

Commandline: --aws-key-management-region=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: 'us-east-1'

aws_key_management_request_timeout

Description: Timeout in milliseconds for create HTTPS connection or execute AWS request. Specify 0 to use SDK

default.

Commandline: --aws-key-management-request-timeout=value

Scope: Global

Dynamic: No

Data Type: integer

Default Value: 0

aws_key_management_rotate_key

Description: Set this variable to a data key ID to perform rotation of the key to the master key given in

aws_key_management_master_key_id . Specify -1 to rotate all keys.

Commandline: --aws-key-management-rotate-key=value

Scope: Global

Dynamic: Yes

Data Type: integer

3651/4161

Default Value:

Options

aws_key_management

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --aws-key-management=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.8.5 Amazon Web Services (AWS) Key
Management Service (KMS) Encryption Plugin
Setup Guide

Contents
1. Overview

2. Installing the Plugin's Package

1. Installing from Source

3. Installing the Plugin

4. Sign up for Amazon Web Services

5. Create an IAM User and/or Role

1. Creating an IAM Role

2. Creating an IAM User

6. Create a Master Encryption Key

7. Configure AWS Credentials

8. Configure MariaDB

1. SELinux and Outbound Connections from MariaDB

9. Start MariaDB

10. Create Encrypted Tables

11. AWS KMS Plugin Option Reference

12. Next Steps

Overview
MariaDB contains a robust, full instance, at-rest encryption. This feature uses a flexible plugin interface to allow actual

encryption to be done using a key management approach that meets the customer's needs. MariaDB Server, starting with

MariaDB 10.2, includes a plugin that uses the Amazon Web Services (AWS) Key Management Service (KMS) to facilitate

separation of responsibilities and remote logging & auditing of key access requests.

Rather than storing the encryption key in a local file, this plugin keeps the master key in AWS KMS. When you first start

MariaDB, the AWS KMS plugin will connect to the AWS Key Management Service and ask it to generate a new key.

MariaDB will store that key on-disk in an encrypted form. The key stored on-disk cannot be used to decrypt the data; rather,

on each startup, MariaDB connects to AWS KMS and has the service decrypt the locally-stored key(s). The decrypted key is

stored in-memory as long as the MariaDB server process is running, and that in-memory decrypted key is used to encrypt

the local data.

This guide is based on CentOS 7, using systemd with SELinux enabled. Some steps will differ if you use other operating

systems or configurations.

3652/4161

Installing the Plugin's Package
The AWS Key Management plugin depends on the AWS SDK for C++ , which uses the Apache License, Version 2.0 .

This license is not compatible with MariaDB Server's GPL 2.0 license , so we are not able to distribute packages that

contain the AWS Key Management plugin. Therefore, the only way to currently obtain the plugin is to install it from source.

Installing from Source

When compiling MariaDB from source, the AWS Key Management plugin is not built by default in MariaDB 10.1, but it is

built by default in MariaDB 10.2 and later, on systems that support it.

Compilation is controlled by the -DPLUGIN_AWS_KEY_MANAGEMENT=DYNAMIC -DAWS_SDK_EXTERNAL_PROJECT=1 cmake

arguments.

The plugin uses AWS C++ SDK , which introduces the following restrictions:

The plugin can only be built on Windows, Linux and macOS.

The plugin requires that one of the following compilers is used: gcc 4.8 or later, clang 3.3 or later, Visual Studio

2013 or later.

On Unix, the libcurl development package (e.g. libcurl3-dev on Debian Jessie), uuid development package

and openssl need to be installed.

You may need to use a newer version of cmake than is provided by default in your OS.

Installing the Plugin
Even after the package that contains the plugin's shared library is installed on the operating system, the plugin is not actually

installed by MariaDB by default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'aws_key_management';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = aws_key_management

Sign up for Amazon Web Services
If you already have an AWS account, you can skip this section.

1. Load http://aws.amazon.com/ .

2. Click "Create a Free Account" and complete the steps.

3. You'll need to enter credit card information. Charges related only to your use of the AWS KMS service should be

limited to about $1/month for the single master key we will create. If you use other services, additional charges may

apply. Consult AWS Cloud Pricing Principles https://aws.amazon.com/pricing/ for more information about pricing of

AWS services.

4. You'll need to complete the AWS identify verification process.

Create an IAM User and/or Role
After creating an account or logging in to an existing account, follow these steps to create an IAM User or Role with

restricted privileges that will use (but not administer) your master encryption key.

If you intend to run MariaDB Server on an EC2 instance, you should create a Role (or modify an existing Role already

attached to your instance). If you intent to run MariaDB Server outside of AWS, you may want to create a User.

Creating an IAM Role

1. Load the Identity and Access Management Console at https://console.aws.amazon.com/iam/ .

2. Click "Roles" in the left-hand sidebar

3. Click "Create new role"
3653/4161

https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/blob/master/LICENSE
https://mariadb.com/kb/en/mariadb-license/
https://github.com/awslabs/aws-sdk-cpp
http://aws.amazon.com/
https://aws.amazon.com/pricing/
https://console.aws.amazon.com/iam/

4. Select "AWS Service Role"

5. Click the "Select" button next to "Amazon EC2 / Allows EC2 instances to call AWS services on your behalf."

6. Do not select any policies on the "Attach Policy" screen. Click "Next Step"

7. Click "Next Step"

8. Give your Role a "Role name"

9. Click "Create role"

Creating an IAM User

1. Load the Identity and Access Management Console at https://console.aws.amazon.com/iam/ .

2. Click "Users" in the left-hand sidebar.

3. Click the "Create New Users" button

4. Enter a single User Name of your choosing. We'll use "MDBEnc" for this demonstration. Keep the "Generate an

access key for each user" box checked.

5. Click "Create".

6. Click "Show User Security Credentials".

7. Copy the Access Key ID and Secret Access Key. Optionally, you can click "Download Credentials". We will need

these in order for local programs to interact with AWS using its API.

8. Create a file on your computer to hold the credentials for this user. We'll use this file later. It should have this

structure:

3654/4161

https://console.aws.amazon.com/iam/
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-create-new-user
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-enter-user-names
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-show-security-credentials
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-copy-security-credentials

[default]

aws_access_key_id = AKIAIG6IZ6TKF52FVV5A

aws_secret_access_key = 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

9. Click "Close". If prompted because you did not Download Credentials, ensure that you've saved them somewhere,

and click "Close".

Create a Master Encryption Key
Now, we'll create a master encryption key. This key can never be retrieved by any application or user. This key is used

remotely to encrypt (and decrypt) the actual encryption keys that will be used by MariaDB. If this key is deleted or you lose

access to it, you will be unable to use the contents of your MariaDB data directory.

1. Click "Encryption Keys" in the left-hand sidebar.

2. Click the "Get Started Now" button.

3. Use the "Filter" dropdown to choose the region where you'd like to create your master key.

4. Click the "Create Key" button.

5. Enter an Alias and Description of your choosing.

6. Click "Next Step".

7. Do not check the box to make your IAM Role or IAM User user a Key Administrator.

8. Click "Next Step" again.

9. Check the boxes to give your IAM Role and/or IAM User permissions to use this key.

10. Click "Next Step".

11. Click "Finish".

You should now see your key listed in the console:

You'll use the "Alias" you provided when you configure MariaDB later.

3655/4161

https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-create-key
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-key-usage-permissions
https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/+image/aws-kms-key-list-console

We now have a Customer Master Key and an IAM user that has privileges to access it using access credentials. This is

enough to begin using the AWS KMS plugin.

Configure AWS Credentials
There are a number of ways to give the IAM credentials to the AWS KMS plugin. The plugin supports reading credentials

from all standard locations used across the various AWS API clients.

The easiest approach is to run MariaDB Server in an EC2 instance that has an IAM Role with User access to the CMK you

wish to use. You can give key access privileges to a Role already attached to your EC2 instance, or you can create a new

IAM Role and attach it to an already-running EC2 instance. If you've done that, no further credentials management is

required and you do not need to create a credentials file.

If you're not running MariaDB Server on an EC2 instance, you can also place the credentials in the MariaDB data directory.

The AWS API client looks for a credentials file in the .aws subdirectory of the home directory of the user running the

client process. In the case of MariaDB, its home directory is its datadir .

1. Create a credentials file that MariaDB can read. Use the region you selected when creating the key. Master keys

cannot be used across regions. For example:

$ cat /var/lib/mysql/.aws/credentials

[default]

aws_access_key_id = AKIAIG6IZ6TKF52FVV5A

aws_secret_access_key = o7CEf7KhZfsVF9cS0a2roqqZNmuzXtIR869zpSBT

region = us-east-1

2. Change the permissions of the file so that it it is owned by, and can only be read by, the mysql user:

chown mysql /var/lib/mysql/.aws/credentials

chmod 600 /var/lib/mysql/.aws/credentials

Configure MariaDB
1. Create a new option file to tell MariaDB to enable encryption functionality and to use the AWS KMS plugin. Create a

new file under /etc/my.cnf.d/ (or wherever your OS may have you create such files) with contents like this:

[mariadb]

plugin_load_add = aws_key_management

aws-key-management = FORCE_PLUS_PERMANENT

aws-key-management-master-key-id = alias/mariadb-encryption

aws-key-management-region = us-east-1

!include /etc/my.cnf.d/enable_encryption.preset

1. Append the "Alias" value you copied above to alias/ to use as the value for the aws-key-management-master-

key-id option.

Note that you must include aws-key-management-region in your .cnf file if you are not using the us-east-1 region.

Now, you have told MariaDB to use the AWS KMS plugin and you've put credentials for the plugin in a location where the

plugin will find them. The /etc/my.cnf.d/enable_encryption.preset file contains a set of options that enable all available

encryption functionality.

When you start MariaDB, the AWS KMS plugin will connect to the AWS Key Management Service and ask it to generate a

new key. MariaDB will store that key on-disk in an encrypted form. The key stored on-disk cannot be used to decrypt the

data; rather, on each startup, MariaDB must connect to AWS KMS and have the service decrypt the locally-stored key. The

decrypted version is stored in-memory as long as the MariaDB server process is running, and that in-memory decrypted key

is used to encrypt the local data.

SELinux and Outbound Connections from MariaDB

Because MariaDB needs to connect to the AWS KMS service, you must ensure that the host has outbound network

connectivity over port 443 to AWS and you must ensure that local policies allow the MariaDB server process to make those

outbound connections. By default, SELinux restricts MariaDB from making such connections.

The most simple way to cause SELinux to allow outbound HTTPS connections from MariaDB is to enable to

mysql_connect_any boolean, like this:

setsebool -P mysql_connect_any 1

3656/4161

There are more complex alternatives that have a more granular effect, but those are beyond the scope of this document.

Start MariaDB
Start MariaDB using the systemctl tool:

systemctl start mariadb

If you do not use systemd, you may have to start MariaDB using some other mechanism.

You should see journal output similar to this:

journalctl --no-pager -o cat -u mariadb.service

[Note] /usr/sbin/mysqld (mysqld 10.1.9-MariaDB-enterprise-log) starting as process 19831 ...

[Note] AWS KMS plugin: generated encrypted datakey for key id=1, version=1

[Note] AWS KMS plugin: loaded key 1, version 1, key length 128 bit

[Note] InnoDB: Using mutexes to ref count buffer pool pages

[Note] InnoDB: The InnoDB memory heap is disabled

[Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins

[Note] InnoDB: Memory barrier is not used

[Note] InnoDB: Compressed tables use zlib 1.2.7

[Note] InnoDB: Using CPU crc32 instructions

[Note] InnoDB: Initializing buffer pool, size = 2.0G

[Note] InnoDB: Completed initialization of buffer pool

[Note] InnoDB: Highest supported file format is Barracuda.

[Note] InnoDB: 128 rollback segment(s) are active.

[Note] InnoDB: Waiting for purge to start

[Note] InnoDB: Percona XtraDB (http://www.percona.com) 5.6.26-74.0 started; log sequence number 1616819

[Note] InnoDB: Dumping buffer pool(s) not yet started

[Note] Plugin 'FEEDBACK' is disabled.

[Note] AWS KMS plugin: generated encrypted datakey for key id=2, version=1

[Note] AWS KMS plugin: loaded key 2, version 1, key length 128 bit

[Note] Using encryption key id 2 for temporary files

[Note] Server socket created on IP: '::'.

[Note] Reading of all Master_info entries succeded

[Note] Added new Master_info '' to hash table

[Note] /usr/sbin/mysqld: ready for connections.

Note the several lines of output that refer explicitly to the "AWS KMS plugin". You can see that the plugin generates a

"datakey", loads that data key, and then later generates and loads a second data key. The 2nd data key is used to encrypt

temporary files and temporary tables.

You can see the encrypted keys stored on-disk in the datadir:

ls -l /var/lib/mysql/aws*

-rw-rw----. 1 mysql mysql 188 Feb 25 18:55 /var/lib/mysql/aws-kms-key.1.1

-rw-rw----. 1 mysql mysql 188 Feb 25 18:55 /var/lib/mysql/aws-kms-key.2.1

Note that those keys are not useful alone. They are encrypted. When MariaDB starts up, the AWS KMS plugin decrypts

those keys by interacting with AWS KMS.

For maximum security, you should start from an empty datadir and run mariadb-install-db after configuring encryption. Then

you should re-import your data so that it is fully encrypted. Use sudo to run mariadb-install-db so that it finds your

credentials file:

sudo -u mysql mariadb-install-db

Installing MariaDB/MySQL system tables in '/var/lib/mysql' ...

2016-02-25 23:16:06 139731553998976 [Note] /usr/sbin/mysqld (mysqld 10.1.11-MariaDB-enterprise-

log) starting as process 39551 ...

2016-02-25 23:16:07 139731553998976 [Note] AWS KMS plugin: generated encrypted datakey for key

id=1, version=1

2016-02-25 23:16:07 139731553998976 [Note] AWS KMS plugin: loaded key 1, version 1, key length

128 bit

...

Create Encrypted Tables

3657/4161

With innodb-encrypt-tables=ON , new InnoDB tables will be encrypted by default, using the key ID set in

innodb_default_encryption_key_id (default 1). With innodb-encrypt-tables=FORCE enabled, it is not possible to

manually bypass encryption when creating a table.

You can cause the AWS KMS plugin to create new encryption keys at-will by specifying a new ENCRYPTION_KEY_ID

when creating a table:

MariaDB [test]> create table t1 (id serial, v varchar(32)) ENCRYPTION_KEY_ID=3;

Query OK, 0 rows affected (0.91 sec)

[Note] AWS KMS plugin: generated encrypted datakey for key id=3, version=1

[Note] AWS KMS plugin: loaded key 3, version 1, key length 128 bit

ls -l /var/lib/mysql/aws*

-rw-rw----. 1 mysql mysql 188 Feb 25 18:55 /var/lib/mysql/aws-kms-key.1.1

-rw-rw----. 1 mysql mysql 188 Feb 25 18:55 /var/lib/mysql/aws-kms-key.2.1

-rw-rw----. 1 mysql mysql 188 Feb 25 19:10 /var/lib/mysql/aws-kms-key.3.1

Read more about encrypting data in the Data at Rest Encryption section of the MariaDB Documentation.

AWS KMS Plugin Option Reference
aws_key_management_master_key_id : AWS KMS Customer Master Key ID (ARN or alias prefixed by alias/)

for master encryption key. Used to create new data keys. If not set, no new data keys will be created.

aws_key_management_rotate_key : Set this variable to a data key ID to perform rotation of the key to the master

key given in aws_key_management_master_key_id . Specify -1 to rotate all keys.

aws_key_management_key_spec : Encryption algorithm used to create new keys. Allowed values are AES_128

(default) or AES_256.

aws_key_management_log_level : Logging for AWS API. Allowed values, in increasing verbosity, are "Off"

(default), "Fatal", "Error", "Warn", "Info", "Debug", and "Trace".

Next Steps
For more information about advanced usage, including strategies to manage credentials, enforce separation of

responsibilities, and even require 2-factor authentication to start your MariaDB server, please review Amazon Web Services

(AWS) Key Management Service (KMS) Encryption Plugin Advanced Usage.

5.4.8.6 Amazon Web Services (AWS) Key
Management Service (KMS) Encryption Plugin
Advanced Usage

Contents
1. Managing AWS credentials

2. AWS KMS Key Policy

1. Source IP restrictions

2. Using a Multi-Factor Authentication (MFA) device

1. Wrapper program example

3. Disabling keys when not needed

1. Adding MFA

3. Logging and auditing

1. CloudTrail

2. CloudWatch

This document assumes you've already set up an Amazon Web Services (AWS) account, created a master key in the Key

Management Service (KMS), and have done the basic work to set up the MariaDB AWS KMS plugin. These steps are all

described in Amazon Web Services (AWS) Key Management Service (KMS) Encryption Plugin Setup Guide .

Ultimately, keeping all the credentials required to read the key on a single host means that a user who has gained access to

the host has enough information to read the encrypted files in the datadir, read the encrypted keys from the datadir, interact

with AWS KMS to decrypt the encrypted keys, and then used the decrypted keys to decrypt the encrypted data.

3658/4161

https://mariadb.com/kb/en/mariadb-enterprise-aws-kms-encryption-plugin-setup-guide/

Theoretically, a superuser can read the memory of the MariaDB server process to read the decrypted keys or restart

MariaDB with password authentication disabled in order to dump data, or add new users to MariaDB in order to allow a user

to connect and dump the data. Resolving these issues is beyond the scope of this document. A user who gains root access

to your operating system or root access to your MariaDB server will have the ability to decrypt your data. Plan accordingly.

Managing AWS credentials
Putting the AWS credentials in a file inside the MariaDB home directory is not ideal. By default, any user with the FILE

privilege can read any files that the MariaDB server has permission to read, which would include the credentials file. To

protect against this, you should set secure_file_priv to restrict the location the server will allow a user to read from

when executing LOAD DATA INFILE or the LOAD_FILE() function.

But putting them in other locations requires passing additional data to the server, which in the case of CentOS 7 requires

customizing the systemd startup procedure. This is most easily done by creating a "drop-in" file in

/etc/systemd/system/mariadb.service.d/. The file should end in ".conf" but can otherwise be named whatever you like. After

making any changes to systemd files, execute systemctl daemon-reload and then start (or restart) the service as usual.

You can place the credentials file in a location of your choosing and then refer to that file by setting the

AWS_CREDENTIAL_PROFILES_FILE environment variable in the drop-in file:

[Service]

Environment=AWS_CREDENTIAL_PROFILES_FILE=/etc/aws-kms-credentials

The credentials file will need to be readable by the "mysql" user, but it does not need to be readable by any other user.

AWS credentials can also be put directly into a "drop-in" systemd file that will be read when starting the MariaDB service:

cat /etc/systemd/system/mariadb.service.d/aws-kms.conf

[Service]

Environment=AWS_ACCESS_KEY_ID=AKIAIRSG2XYZATCJLZ4A

Environment=AWS_SECRET_ACCESS_KEY=ux91LZIxCp4ZXabcdefgIViQNtTan42QAmJqJVqV

However, any OS user can read this information from systemd, which could be considered a security risk. Another solution

is to put the credentials in a separate file that is only readable by root and then refer to that file using an EnvironmentFile

directive in a drop-in systemd file.

cat /etc/systemd/system/mariadb.service.d/aws-kms.env

AWS_ACCESS_KEY_ID=AKIAIRSG2XYZATCJLZ4A

AWS_SECRET_ACCESS_KEY=ux91LZIxCp4ZXabcdefgIViQNtTan42QAmJqJVqV

chown root /etc/systemd/system/mariadb.service.d/aws-kms.env

chmod 600 /etc/systemd/system/mariadb.service.d/aws-kms.env

cat /etc/systemd/system/mariadb.service.d/aws-kms.conf

[Service]

EnvironmentFile=/etc/systemd/system/mariadb.service.d/aws-kms.env

That has the advantage the the credentials can only be read directly by root. systemd adds those variables to the

environment of the MariaDB server when starting it, and MariaDB can use the credentials to interact with AWS. Note,

though, that any process running as the "mysql" user can still read the credentials from the proc filesystem on Linux.

$ whoami

mysql

$ cat /proc/$(pgrep mysqld)/environ | tr '\0' '\n' | grep AWS

AWS_ACCESS_KEY_ID=AKIAIRSG2XYZATCJLZ4A

AWS_SECRET_ACCESS_KEY=ux91LZIxCp4ZXabcdefgIViQNtTan42QAmJqJVqV

AWS KMS Key Policy
AWS KMS allows flexible, user-editable key policy. This offers fine-grained control over which users can operate on keys.

The possibilities range from simply restricting which IP addresses are allowed to perform operations on the key, to requiring

a MFA (Multi-Factor Authentication) device to use the key, to enforcing separation of responsibilities by creating an

additional user with limited privileges to enable and disable the key. All 3 of these options will be outlined in this section.

For more details about customizing the Key Policy for your master keys, please consult the AWS Key Management Service

Key Policy documentation.

3659/4161

http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-overview

Source IP restrictions

A simple, common-sense restriction to put in place is to restrict the range of IP addresses that are allowed to use your

master key. This way, even if someone obtains API credentials, they'll be unable to use them to decrypt your encryptions

keys from a different host.

To restrict API access from only a specific IP address or range of IP addresses, you'll need to manually edit the key policy.

1. Load the IAM console at https://console.aws.amazon.com/iam/ .

2. Click "Encryption Keys" in the left-hand sidebar.

3. Click the name of your encryption key to view its details.

4. Click the link labeled "Switch to policy view", to the right of the heading of the "Key Policy" section.

5. Locate the section that contains "Sid": "Allow use of the key" .

6. Add this text below the "Sid" line:

 "Condition": {

 "IpAddress": {

 "aws:SourceIp": [

 "10.1.2.3/32"

]

 }

 },

... replacing 10.1.2.3/32 above with an IP address or range of IP addresses in CIDR format. For example, a single

address would be 192.168.12.34/32 , while a range of addresses might be 192.168.0.0/24 .

7. Click "Save Changes".

8. Click "Proceed" if prompted with a warning about using the default view in the future.

Access to the API will now be restricted to requests coming from the IP address or range of IP addresses specified in the

policy.

Using a Multi-Factor Authentication (MFA) device

One approach is to modify the key policy for the master key so that MFA (Multi-Factor Authentication) is required in order to

use the key. This is achieved with a wrapper that handles prompting the user for an MFA token, acquires temporary, limited-

privilege credentials from the AWS Security Token Service (STS), and puts those credentials into the environment of the

MariaDB server process. The credentials can expire after as little as 15 minutes.

To require an MFA token for users of the key, you'll need to manually edit the key policy.

1. Load the IAM console at https://console.aws.amazon.com/iam/ .

2. Click "Encryption Keys" in the left-hand sidebar.

3. Click the name of your encryption key to view its details.

4. Click the link labeled "Switch to policy view", to the right of the heading of the "Key Policy" section.

5. Locate the section that contains "Sid": "Allow use of the key" .

6. Add this text below the "Sid" line:

 "Condition": {

 "Bool": {

 "aws:MultiFactorAuthPresent": "True"

 }

 },

7. Click "Save Changes".

8. Click "Proceed" if prompted with a warning about using the default view in the future.

Now, add an MFA device for your user. You'll need to have a hardware MFA device or an application such as Google

Authenticator installed on your smartphone.

1. Click "Users" in the left-hand sidebar.

2. Click the name of your user.

3. Click the "Security Credentials" tab.

4. In the "Sign-In Credentials" section, click the "Manage MFA Device" button.

5. Complete the steps to activate your MFA device.

6. Copy the ARN for your MFA device. You will need to use this when configuring the wrapper program.

Now, set up the wrapper program.

1. Copy the iam-kms-wrapper file to /usr/local/bin/, and ensure that it is executable.

2. Create a drop-in systemd config file in /etc/systemd/system/mariadb.service.d/ :

3660/4161

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

[Service]

EnvironmentFile=/etc/systemd/system/mariadb.service.d/aws-kms.env

ExecStart=

ExecStart=/usr/local/bin/iam-kms-wrapper --config=/etc/my.cnf.d/iam-kms-wrapper.config /usr/sbin/mysqld $MYSQLD_OPTS

3. Execute systemctl daemon-reload .

4. Create a file at /etc/my.cnf.d/iam-kms-wrapper.config with these contents, using the ARN for your MFA

device as the value for kms_mfa_id :

[kms]

kms_mfa_id = arn:aws:iam::551888187628:mfa/MDBEnc

kms_mfa_socket = /tmp/kms_mfa_socket

When you start the MariaDB service now, the wrapper will temporarily create a socket file at the location given by the

kms_mfa_socket option. The wrapper will read the MFA code from the socket and will use it to authenticate to KMS. To

give the MFA code, simply write the digits to the socket file using echo : echo 111676 > /tmp/kms_mfa_socket .

The systemctl command will block until MariaDB starts, so you will need to write the code to the socket file via a separate

terminal.

Note that the temporary credentials put into the environment of the MariaDB process will expire after a period of time

defined by the request to the AWS Security Token Service (STS). In the example below, they will expire after 900 seconds.

After that time, MariaDB may be unable to generate new encrypted data keys, which means that, for example, an attempt to

create a table with a previously-unused key ID would fail.

Wrapper program example

Here's an example wrapper program written in go. Build this into an executable named iam-kms-wrapper and use it as

instructed above. This could of course be written in any language for which an appropriate AWS SDK exists, but go has the

benefit of compiling to a static binary, which means you do not have to worry about interpreter versions or installing complex

dependencies on the host that runs your MariaDB server.

package main

import (

 "syscall"

 "os"

 "log"

 "flag"

 "github.com/aws/aws-sdk-go/aws"

 "github.com/aws/aws-sdk-go/aws/session"

 "github.com/aws/aws-sdk-go/aws/awserr"

 "github.com/aws/aws-sdk-go/service/sts"

 "github.com/robfig/config"

)

func main() {

 config_file_p := flag.String("config", "", "location of the config file")

 flag.Parse()

 if flag.NArg() < 1 {

 log.Fatal("Command to wrap must be given as first command-line argument")

 }

 cmd := flag.Arg(0)

 args := flag.Args()[0:]

 conf, err := config.ReadDefault(*config_file_p)

 if err != nil {

 log.Fatal(err)

 }

 kms_mfa_id, err := conf.String("kms","kms_mfa_id")

 mfa_socket_file, err := conf.String("kms","kms_mfa_socket")

 sess := session.New()

 svc := sts.New(sess)

 syscall.Umask(0044)

3661/4161

 log.Printf("Reading MFA token from %s\n",mfa_socket_file)

 if err := syscall.Mknod(mfa_socket_file, syscall.S_IFIFO|uint32(os.FileMode(0622)), 0); err

!= nil {

 log.Fatal(err)

 }

 file, err := os.Open(mfa_socket_file)

 if err != nil {

 log.Fatal(err)

 }

 token := make([]byte, 6)

 if _, err := file.Read(token); err != nil {

 log.Fatal(err)

 }

 file.Close()

 if err := syscall.Unlink(mfa_socket_file); err != nil {

 log.Fatal(err)

 }

 mfa_token := string(token)

 token_params := &sts.GetSessionTokenInput{

 DurationSeconds: aws.Int64(900),

 SerialNumber: aws.String(kms_mfa_id),

 TokenCode: aws.String(mfa_token),

 }

 resp, err := svc.GetSessionToken(token_params)

 if err != nil {

 if awsErr, ok := err.(awserr.Error); ok {

 // Prints out full error message, including original error if there was one.

 log.Fatal("Error:", awsErr.Error())

 } else {

 log.Fatal("Error:", err.Error())

 }

 }

 creds := resp.Credentials

 os.Setenv("AWS_ACCESS_KEY_ID",*creds.AccessKeyId)

 os.Setenv("AWS_SECRET_ACCESS_KEY",*creds.SecretAccessKey)

 os.Setenv("AWS_SESSION_TOKEN",*creds.SessionToken)

 execErr := syscall.Exec(cmd, args, os.Environ())

 if execErr != nil {

 panic(execErr)

 }

}

Disabling keys when not needed

Another possibility is to use the API to disable access to the master key and enable it only when a trusted administrator

knows that the MariaDB service needs to be started. A specialized tool on a separate host could be used to enable the key

for a very short period of time while the service starts and then quickly disable the key.

To do this, you can create an extra IAM User that can only use the kms:EnableKey and kms:DisableKey API endpoints for

your key. This user will not be able to encrypt or decrypt any data using the key.

First, create a new user.

1. Load the IAM console at https://console.aws.amazon.com/iam/ .

2. Click "Users" in the left-hand sidebar.

3. Click "Create New Users".

4. Enter a new user name. (The examples will use "MDBEncAdmin".)

5. Click "Show User Security Credentials".

6. Copy the credentials and put them in a credentials file with this structure:

3662/4161

https://console.aws.amazon.com/iam/

[MDBEncAdmin]

aws_access_key_id=AKIAJMPPNO7EBKABCDEF

aws_secret_access_key=pVdGwbuK5/jG64aBK1oEJOXRlkdM0aAylgabCDef

7. Click "Close".

8. Click "Close" again if prompted.

9. Click the name of your new user to open the details view.

10. Copy the "User ARN" value for your user (for example "arn:aws:iam::551888181234:user/MDBEncAdmin"). You will

need this for the next step.

Now, give the new user permission to perform API operations on your key.

1. Click "Encryption Keys" in the left-hand sidebar.

2. Click the name of your key to open the details view.

3. Click "Switch to policy view" if it is not already open. (The "policy view" is a large text field that contains JSON

describing the key policy.)

4. Create a new item in the Statement array with this structure:

 {

 "Sid": "Allow Enable and Disable of the key",

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::551888181234:user/MDBEncAdmin"

 },

 "Action": [

 "kms:EnableKey",

 "kms:DisableKey"

]

 },

...so that your Key Policy looks like this:

{

 "Version": "2012-10-17",

 "Id": "key-consolepolicy-2",

 "Statement": [

 {

 "Sid": "Allow Enable and Disable of the key",

 "Effect": "Allow",

 "Principal": {

 ...

5. Click "Save Changes".

You've now added a new IAM user and you've given that user privileges to enable and disable your key. This user will be

able to perform those operations using the AWS CLI or via a script of your own design using the AWS API. For example,

using the AWS CLI :

$ cat ~/.aws/credentials

[MDBEncAdmin]

aws_access_key_id=AKIAJMPPNO7EBKABCDEF

aws_secret_access_key=pVdGwbuK5/jG64aBK1oEJOXRlkdM0aAylgabCDef

$ AWS_PROFILE=MDBEncAdmin aws --region us-east-1 kms disable-key --key-id arn:aws:kms:us-east-

1:551888181234:key/abcdf8f6-084b-4cff-99ca-abcdef6c7907c

In order for MariaDB to start, this new user will have to enable the master key, then the DBA can start MariaDB, and this

user can once again disable the master key after the service has started. Note that in this workflow, MariaDB will be unable

to create new encryption keys, such as would be done when a user creates a table that refers to a non-existent key ID. The

AWS KMS plugin will encounter an error if it tries to generate a new encryption key while the master key is disabled. In that

scenario, the key administrator would have to enable the key before the operation could succeed. Here's what you should

expect to see in the journal if MariaDB tries to interact with a disabled master key:

[ERROR] AWS KMS plugin : GenerateDataKeyWithoutPlaintext failed : DisabledException - Unable to

parse ExceptionName: DisabledException Message: arn:aws:kms:us-east-1:551888181234:key/abcdf8f6-

084b-4cff-99ca-abcdef6c7907c is disabled.

Adding MFA

3663/4161

https://aws.amazon.com/cli/

It's also possible to add MFA to this technique so that the user that enables & disables the master key has to authenticate

using an MFA device. Adapt the instructions in the MFA section above to add MFA to the policy section for the user with

EnableKey and DisableKeys privileges, add an MFA device for that user, use Security Token Service (STS) to get

temporary security credentials, and then use those credentials to make the API calls. Here's an example Python script that

follows that workflow:

#!/usr/bin/env python

import boto3

import sys

Command-line argument processing should be more robust than this...

action= sys.argv[1]

mfa_token= sys.argv[2]

These should perhaps go into a config file instead of here

mfa_serial= 'arn:aws:iam::551888181234:mfa/MDBEncAdmin'

key_id= 'arn:aws:kms:us-east-1:551888181234:key/abcdf8f6-084b-4cff-99ca-abcdef6c7907c'

Make the connection to the Security Token Service to get temporary credentials

token_client= boto3.client('sts')

token_response= token_client.get_session_token(

 DurationSeconds= 900,

 SerialNumber= mfa_serial,

 TokenCode= mfa_token

)

cred= token_response['Credentials']

Start new session using temporary, MFA-authenticated credentials

kms_session= boto3.session.Session(

 aws_access_key_id= cred['AccessKeyId'],

 aws_secret_access_key= cred['SecretAccessKey'],

 aws_session_token= cred['SessionToken'],

 region_name= key_id.split(':')[3]

)

Start KMS client and execute operation against key

kms_client= kms_session.client('kms')

if action == 'enable' or action == 'e':

 action_f= kms_client.enable_key

elif action == 'disable' or action == 'd':

 action_f= kms_client.disable_key

else:

 raise Exception('Action must be either "disable" or "enable"')

action_f(KeyId=key_id)

$ AWS_PROFILE=MDBEncAdmin python kms-manage-key disable 575290

$ AWS_PROFILE=MDBEncAdmin python kms-manage-key enable 799870

Logging and auditing

CloudTrail

Amazon's CloudTrail service creates JSON-formatted text log files for every API interaction. Enabling CloudTrail requires

S3, which incurs additional fees.

First, enable CloudTrail and add a trail.

1. Load the CloudTrail console at https://console.aws.amazon.com/cloudtrail/ .

2. If you've never used CloudTrail before, click "Get Started Now".

3. Enter a value for "trail name". This example uses "mariadb-encryption-key".

4. Create a new S3 bucket, using a globally unique name, or use an existing S3 bucket, according to your needs.

5. Click "Turn On".

If you navigate to the S3 bucket you created, you should find log files that contain JSON-formatted descriptions of your API

interactions.

3664/4161

https://console.aws.amazon.com/cloudtrail/

CloudWatch

Amazon's CloudWatch service allows you to create alarms and event rules that monitor log information.

First, send your CloudTrail logs to CloudWatch.

1. Load the CloudTrail console at https://console.aws.amazon.com/cloudtrail/ .

2. Click "Trails" in the left-hand navigation sidebar.

3. Click the name of your trail to open the Configuration view.

4. In the "CloudWatch Logs" section, click "Configure".

5. Click "Continue".

6. Click "Allow".

Now, set up an SNS topic to facilitate email notifications.

1. Open https://console.aws.amazon.com/sns/ .

2. Make sure the region in the console (look in the upper-right corner) is the same as the region where you created your

key!

3. Click "Get Started" is prompted.

4. Click "Events" in the left-hand sidebar.

5. Click "Create new topic".

6. Enter a Topic name of your choosing.

7. Enter a Display name of your choosing.

8. Click "Create topic".

9. Click the ARN of your new SNS topic.

10. Click "Create Subscription".

11. Select "Email" from the Protocol dropdown.

12. Enter the desired notification email address in the Endpoint field.

13. Wait for the confirmation email to show up and follow the instructions.

Now, configure CloudWatch and create an Event Rule.

1. Open https://console.aws.amazon.com/cloudwatch/ .

2. Make sure the region in the console (look in the upper-right corner) is the same as the region where you created your

key and your SNS topic!

3. Click "Events" in the left-hand sidebar.

4. Click "Create rule".

5. Choose "AWS API call" from the "Select event source" dropdown.

6. Choose "KMS" from the "Service name" dropdown.

7. Decide which operations should trigger the event. (You can eep "Any operation" selected for simplicity.)

8. Click "Add target".

9. Select "SNS target" from the dropdown.

10. Select the SNS topic you created in the previous steps.

11. Click "Configure details".

12. Enter a Name and Description of your choosing.

13. Click "Create rule".

You should now get emails any time someone executes API calls on the KMS service in the region where you've created the

CloudWatch Event rule. That means you should get email any time the key is enabled or disabled, and any time the AWS

KMS plugin generates new keys or decrypts the keys stored on disk on the MariaDB server.

You may also wish to create an event rule (or an additional event) that matches only when an unauthorized user tries to

access the key. You might accomplish that by manually editing the Event selector of the rule to look something like this:

{

 "detail-type": [

 "AWS API Call via CloudTrail"

],

 "detail": {

 "eventSource": [

 "kms.amazonaws.com"

],

 "errorCode": [

 "AccessDenied",

 "UnauthorizedOperation"

]

 }

}

The emails are formatted as JSON. Further customization of the CloudWatch email workflow is beyond the scope of this

document.

3665/4161

https://console.aws.amazon.com/cloudtrail/
https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/cloudwatch/

There are many other workflows available using CloudWatch, including workflows with alarms and dashboards. Those are

beyond the scope of this document.

5.4.8.7 Eperi Key Management Encryption
Plugin

Eperi's Key Management Plugin Package no longer appears to be available.

Contents
1. Overview

2. Installing the Eperi Key Management Plugin's Package

3. Installing the Plugin

4. Uninstalling the Plugin

5. Configuring the Eperi Key Management Plugin

6. Using the Eperi Key Management Plugin

7. Using Multiple Encryption Keys

8. Key Rotation

9. Versions

10. System Variables

1. eperi_key_management_plugin_databaseId

2. eperi_key_management_plugin_encryption_algorithm

3. eperi_key_management_plugin_encryption_mode

4. eperi_key_management_plugin_osslmt

5. eperi_key_management_plugin_port

6. eperi_key_management_plugin_url

7. eperi_key_management_plugin_url_check_disabled

11. Options

1. eperi_key_management_plugin

MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

The Eperi Key Management plugin is a key management and encryption plugin that integrates with eperi Gateway for

Databases .

Overview
The Eperi Key Management plugin is one of the key management and encryption plugins that can be set up for users who

want to use data-at-rest encryption. Some of the plugin's primary features are:

It reads encryption keys from eperi Gateway for Databases .

It supports multiple encryption keys.

It supports key rotation.

It supports two different algorithms for encrypting data.

The eperi Gateway for Databases stores encryption keys on the key server outside of the database server itself, which

provides an extra level of security. The eperi Gateway for Databases also supports performing all data encryption

operations on the key server as well, but this is optional.

It also provides the following benefits:

Key management outside the database

No keys on database server hard disk

Graphical user interface for configuration

Encryption and decryption outside the database, supporting HSM's for maximum security.

Support for MariaDB is provided in eperi Gateway for Databases 3.4 .

Installing the Eperi Key Management Plugin's Package
For information on how to install the package, see Eperi's documentation at the Eperi Customer Portal .

3666/4161

https://eperi.com/database-encryption/
https://eperi.com/database-encryption/
https://eperi.com/database-encryption/
https://eperi.com/database-encryption/
https://eperi.com/eperi-gateway-for-databases-version-3-4-offers-native-mariadb-support/
https://customer.eperi.de/index.jsp

Installing the Plugin
Even after the package that contains the plugin's shared library is installed on the operating system, the plugin is not actually

installed by MariaDB by default. The plugin can be installed by providing the --plugin-load or the --plugin-load-add

options. This can be specified as a command-line argument to mysqld or it can be specified in a relevant server option

group in an option file. For example:

[mariadb]

...

plugin_load_add = eperi_key_management_plugin

Uninstalling the Plugin
Before you uninstall the plugin, you should ensure that data-at-rest encryption is completely disabled, and that MariaDB no

longer needs the plugin to decrypt tables or other files.

You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'eperi_key_management_plugin';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Configuring the Eperi Key Management Plugin
For information on how to configure the plugin, see Eperi's documentation at the Eperi Customer Portal .

Using the Eperi Key Management Plugin
Once the Eperi Key Management Plugin is enabled, you can use it by creating an encrypted table:

CREATE TABLE t (i int) ENGINE=InnoDB ENCRYPTED=YES

Now, table t will be encrypted using the encryption key from the key server.

For more information on how to use encryption, see Data at Rest Encryption.

Using Multiple Encryption Keys
The Eperi Key Management Plugin supports using multiple encryption keys. Each encryption key can be defined with a

different 32-bit integer as a key identifier.

When encrypting InnoDB tables, the key that is used to encrypt tables can be changed.

When encrypting Aria tables, the key that is used to encrypt tables cannot currently be changed.

Key Rotation
The Eperi Key Management plugin supports key rotation.

Versions

Version Status Introduced

1.0 Unknown eperi Gateway for Databases 3.4.0

System Variables

eperi_key_management_plugin_databaseId

3667/4161

https://customer.eperi.de/index.jsp
https://eperi.com/database-encryption/

Description: Determines the database ID which is processed in the eperi Gateway.

Commandline: --eperi-key-management-plugin-databaseid=value

Scope: Global

Dynamic: No

Data Type: integer

Default Value: 1

eperi_key_management_plugin_encryption_algorithm

Description: This system variable is used to determine which algorithm the plugin will use to encrypt data.

The recommended algorithm is AES_CTR , but this algorithm is only available when MariaDB is built with recent

versions of OpenSSL . If the server is built with wolfSSL or yaSSL , then this algorithm is not available.

See TLS and Cryptography Libraries Used by MariaDB for more information about which libraries are used on

which platforms.

Commandline: --eperi-key-management-plugin-encryption-algorithm=value

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: AES_CBC

Valid Values: AES_CBC , AES_CTR

eperi_key_management_plugin_encryption_mode

Description: Encryption mode.

Commandline: --eperi-key-management-plugin-encryption-mode=value

Scope: Global

Dynamic: No

Data Type: enumerated

Default Value: database

Valid Values: database , gateway

eperi_key_management_plugin_osslmt

Description: Determines, whether the plugin should register callback functions for OpenSSL thread support.

Commandline: --eperi-key-management-plugin-osslmt=value

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 0 (Linux), 1 (Windows)

eperi_key_management_plugin_port

Description: Listener port for plugin.

Commandline: --eperi-key-management-plugin-port=value

Scope: Global

Dynamic: No

Data Type: integer

Default Value: 14332

eperi_key_management_plugin_url

Description: URL to key server. The expected format of the URL is <host>:<port>. The port number is optional, and

the port number defaults to 14333 if it is not specified.

Commandline: --eperi-key-management-plugin-url=value

Scope: Global

Dynamic: No

Data Type: string

Default Value: NULL

3668/4161

https://www.openssl.org/
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/products/yassl/

eperi_key_management_plugin_url_check_disabled

Description: Determines, whether the connection between plugin and eperi Gateway is tested at server startup.

Commandline: --eperi-key-management-plugin-url-check-disabled=value

Scope: Global

Dynamic: No

Data Type: boolean

Default Value: 1

Options

eperi_key_management_plugin

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --eperi-key-management-plugin=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.8.8 Encryption Plugin API
Contents
1. Encryption Plugin API

2. Current Encryption Plugins

1. file_key_management

1. Versions

2. aws_key_management

1. Versions

3. example_key_management

1. Versions

4. debug_key_management

1. Versions

3. Encryption Service

MariaDB's data-at-rest encryption requires the use of a key management and encryption plugin. These plugins are

responsible both for the management of encryption keys and for the actual encryption and decryption of data.

MariaDB supports the use of multiple encryption keys. Each encryption key uses a 32-bit integer as a key identifier. If the

specific plugin supports key rotation, then encryption keys can also be rotated, which creates a new version of the

encryption key.

See Data at Rest Encryption and Encryption Key Management for more information.

Encryption Plugin API
The Encryption plugin API was created to allow a plugin to:

implement key management, provide encryption keys to the server on request and change them according to internal

policies.

implement actual data encryption and decryption with the algorithm defined by the plugin.

3669/4161

This is how the API reflects that:

/* Returned from get_latest_key_version() */

#define ENCRYPTION_KEY_VERSION_INVALID (~(unsigned int)0)

#define ENCRYPTION_KEY_NOT_ENCRYPTED (0)

#define ENCRYPTION_KEY_SYSTEM_DATA 1

#define ENCRYPTION_KEY_TEMPORARY_DATA 2

/* Returned from get_key() */

#define ENCRYPTION_KEY_BUFFER_TOO_SMALL (100)

#define ENCRYPTION_FLAG_DECRYPT 0

#define ENCRYPTION_FLAG_ENCRYPT 1

#define ENCRYPTION_FLAG_NOPAD 2

struct st_mariadb_encryption {

 int interface_version; /**< version plugin uses */

 /********************* KEY MANAGEMENT ***********************************/

 /**

 Function returning latest key version for a given key id.

 @return A version or ENCRYPTION_KEY_VERSION_INVALID to indicate an error.

 */

 unsigned int (*get_latest_key_version)(unsigned int key_id);

 /**

 Function returning a key for a key version

 @param key_id The requested key id

 @param version The requested key version

 @param key The key will be stored there. Can be NULL -

 in which case no key will be returned

 @param key_length in: key buffer size

 out: the actual length of the key

 This method can be used to query the key length - the required

 buffer size - by passing key==NULL.

 If the buffer size is less than the key length the content of the

 key buffer is undefined (the plugin is free to partially fill it with

 the key data or leave it untouched).

 @return 0 on success, or

 ENCRYPTION_KEY_VERSION_INVALID, ENCRYPTION_KEY_BUFFER_TOO_SMALL

 or any other non-zero number for errors

 */

 unsigned int (*get_key)(unsigned int key_id, unsigned int version,

 unsigned char *key, unsigned int *key_length);

 /********************* ENCRYPTION **************************************/

 /*

 The caller uses encryption as follows:

 1. Create the encryption context object of the crypt_ctx_size() bytes.

 2. Initialize it with crypt_ctx_init().

 3. Repeat crypt_ctx_update() until there are no more data to encrypt.

 4. Write the remaining output bytes and destroy the context object

 with crypt_ctx_finish().

 */

 /**

 Returns the size of the encryption context object in bytes

 */

 unsigned int (*crypt_ctx_size)(unsigned int key_id, unsigned int key_version);

 /**

 Initializes the encryption context object.

 */

 int (*crypt_ctx_init)(void *ctx, const unsigned char *key, unsigned int klen,

 const unsigned char *iv, unsigned int ivlen, int flags,

 unsigned int key_id, unsigned int key_version);

 /**

 Processes (encrypts or decrypts) a chunk of data

3670/4161

 Writes the output to th dst buffer. note that it might write

 more bytes that were in the input. or less. or none at all.

 */

 int (*crypt_ctx_update)(void *ctx, const unsigned char *src,

 unsigned int slen, unsigned char *dst,

 unsigned int *dlen);

 /**

 Writes the remaining output bytes and destroys the encryption context

 crypt_ctx_update might've cached part of the output in the context,

 this method will flush these data out.

 */

 int (*crypt_ctx_finish)(void *ctx, unsigned char *dst, unsigned int *dlen);

 /**

 Returns the length of the encrypted data

 It returns the exact length, given only the source length.

 Which means, this API only supports encryption algorithms where

 the length of the encrypted data only depends on the length of the

 input (a.k.a. compression is not supported).

 */

 unsigned int (*encrypted_length)(unsigned int slen, unsigned int key_id,

 unsigned int key_version);

};

The first method is used for key rotation. A plugin that doesn't support key rotation 4 for example, file_key_management

4 can return a fixed version for any valid key id. Note that it still has to return an error for an invalid key id. The version

ENCRYPTION_KEY_NOT_ENCRYPTED means that the data should not be encrypted.

The second method is used for key management, the server uses it to retrieve the key corresponding to a specific key

identifier and a specific key version.

The last five methods deal with encryption. Note that they take the key to use and key identifier and version. This is needed

because the server can derive a session-specific, user-specific, or a tablespace-specific key from the original encryption key

as returned by get_key() , so the key argument doesn't have to match the encryption key as the plugin knows it. On the

other hand, the encryption algorithm may depend on the key identifier and version (and in the example_key_management

plugin it does) so the plugin needs to know them to be able to encrypt the data.

Encryption methods are optional 4 if unset (as in the debug_key_management plugin), the server will fall back to

AES_CBC.

Current Encryption Plugins
The MariaDB source tree has four encryption plugins. All these plugins are fairly simple and can serve as good examples of

the Encryption plugin API.

file_key_management

It reads encryption keys from a plain-text file. It supports two different encryption algorithms. It supports multiple encryption

keys. It does not support key rotation. See the File Key Management Plugin article for more details.

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.18

1.0 Gamma MariaDB 10.1.13

1.0 Alpha MariaDB 10.1.3

aws_key_management

The AWS Key Management plugin uses the Amazon Web Services (AWS) Key Management Service (KMS) to generate

and store AES keys on disk, in encrypted form, using the Customer Master Key (CMK) kept in AWS KMS. When MariaDB

Server starts, the plugin will decrypt the encrypted keys, using the AWS KMS "Decrypt" API function. MariaDB data will then

be encrypted and decrypted using the AES key. It supports multiple encryption keys. It supports key rotation.

See the AWS Key Management Plugin article for more details.

3671/4161

https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://aws.amazon.com/kms/

Versions

Version Status Introduced

1.0 Stable MariaDB 10.2.6 , MariaDB 10.1.24

1.0 Beta MariaDB 10.1.18

1.0 Experimental MariaDB 10.1.13

example_key_management

Uses random time-based generated keys, ignores key identifiers, supports key versions and key rotation. Uses AES_ECB

and AES_CBC as encryption algorithms and changes them automatically together with key versions.

Versions

Version Status Introduced

1.0 Experimental MariaDB 10.1.3

debug_key_management

Key is generated from the version, user manually controls key rotation. Only supports key identifier 1, uses only AES_CBC.

Versions

Version Status Introduced

1.0 Experimental MariaDB 10.1.3

Encryption Service
Encryption is generally needed on the very low level inside the storage engine. That is, the storage engine needs to

support encryption and have access to the encryption and key management functionality. The usual way for a plugin to

access some functionality in the server is via a service. In this case the server provides the Encryption Service for storage

engines (and other interested plugins) to use. These service functions are directly hooked into encryption plugin methods

(described above).

Service functions are declared as follows:

unsigned int encryption_key_get_latest_version(unsigned int key_id);

unsigned int encryption_key_get(unsigned int key_id, unsigned int key_version,

 unsigned char *buffer, unsigned int *length);

unsigned int encryption_ctx_size(unsigned int key_id, unsigned int key_version);

int encryption_ctx_init(void *ctx, const unsigned char *key, unsigned int klen,

 const unsigned char *iv, unsigned int ivlen, int flags,

 unsigned int key_id, unsigned int key_version);

int encryption_ctx_update(void *ctx, const unsigned char *src,

 unsigned int slen, unsigned char *dst,

 unsigned int *dlen);

int encryption_ctx_finish(void *ctx, unsigned char *dst, unsigned int *dlen);

unsigned int encryption_encrypted_length(unsigned int slen, unsigned int key_id,

 unsigned int key_version);

There are also convenience helpers to check for a key or key version existence and to encrypt or decrypt a block of data

with one function call.

unsigned int encryption_key_id_exists(unsigned int id);

unsigned int encryption_key_version_exists(unsigned int id,

 unsigned int version);

int encryption_crypt(const unsigned char *src, unsigned int slen,

 unsigned char *dst, unsigned int *dlen,

 const unsigned char *key, unsigned int klen,

 const unsigned char *iv, unsigned int ivlen, int flags,

 unsigned int key_id, unsigned int key_version);

3672/4161

https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/

5.4.9 MariaDB Replication & Cluster Plugins
Semisynchronous Replication

Semisynchronous replication.

WSREP_INFO Plugin

Adds two new Information Schema tables, WSREP_MEMBERSHIP and WSREP_STATUS.

1

3.1.24 Semisynchronous Replication

5.4.9.2 WSREP_INFO Plugin
The WSREP_INFO plugin library contains the following plugins:

WSREP_MEMBERSHIP

WSREP_STATUS

The WSREP_MEMBERSHIP plugin creates the WSREP_MEMBERSHIP table in the INFORMATION_SCHEMA database. The

plugin also adds the SHOW WSREP_MEMBERSHIP statement.

The WSREP_STATUS plugin creates the WSREP_STATUS table in the INFORMATION_SCHEMA database. The plugin also

adds the SHOW WSREP_STATUS statement.

These tables and statements provide information about Galera. Only users with the SUPER privilege can access this

information.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Example

4. Versions

5. Options

1. wsrep_membership

2. wsrep_status

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'wsrep_info';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = wsrep_info

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'wsrep_info';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

3673/4161

Example

SHOW TABLES FROM information_schema LIKE 'WSREP%';

+---------------------------------------+

| Tables_in_information_schema (WSREP%) |

+---------------------------------------+

| WSREP_STATUS |

| WSREP_MEMBERSHIP |

+---------------------------------------+

Versions

Version Status Introduced

1.0 Stable MariaDB 10.1.18

1.0 Gamma MariaDB 10.1.13

1.0 Alpha MariaDB 10.1.2

Options

wsrep_membership

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --wsrep-membership=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

wsrep_status

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --wsrep-status=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.3 Storage Engines

3674/4161

https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/

5.4.11 Other Plugins
Compression Plugins

Five MariaDB compression libraries are available as plugins.

Disks Plugin

Shows metadata about disks on the system.

Feedback Plugin

Collect and send user statistics.

Locales Plugin

List compiled-in locales.

METADATA_LOCK_INFO Plugin

Active metadata locks.

MYSQL_JSON

Converting MySQL's JSON data type to MariaDB's format.

Query Cache Information Plugin

Examines the contents of the query cache.

Query Response Time Plugin

Records statistics on the time to execute queries on MariaDB Server.

SQL Error Log Plugin

Records SQL-level errors to a log file.

User Statistics

User Statistics.

User Variables Plugin

User Variables plugin.

There are 1 related questions .

7

4

5.4.11.1 Feedback Plugin

The Feedback plugin is not currently working.

The feedback plugin is designed to collect and, optionally, upload configuration and usage information to MariaDB.org

or to any other configured URL.

The feedback plugin exists in all MariaDB versions.

MariaDB is distributed with this plugin included, but it is not enabled by default. On Windows, this plugin is part of the server

and has a special checkbox in the installer window. Either way, you need to explicitly install and enable it in order for

feedback data to be sent.

3675/4161

https://mariadb.com/kb/en/other-plugins/+questions/
http://mariadb.org/

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Enabling the Plugin

4. Verifying the Plugin's Status

5. Collecting Data

6. Sending Data

7. Versions

8. System Variables

1. feedback_http_proxy

2. feedback_send_retry_wait

3. feedback_send_timeout

4. feedback_server_uid

5. feedback_url

6. feedback_user_info

9. Options

1. feedback

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN . For example:

INSTALL SONAME 'feedback';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line

argument to mysqld or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = feedback

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN . For example:

UNINSTALL SONAME 'feedback';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server

option group in an option file, then those options should be removed to prevent the plugin from being loaded the next time

the server is restarted.

Enabling the Plugin
You can enable the plugin by setting the feedback option to ON in a relevant server option group in an option file. For

example:

[mariadb]

...

feedback=ON

In Windows, the plugin can also be enabled during a new MSI installation. The MSI GUI installation provides the "Enable

feedback plugin" checkbox to enable the plugin. The MSI command-line installation provides the FEEDBACK=1 command-

line option to enable the plugin.

See the next section for how to verify the plugin is installed and active and (if needed) install the plugin.

Verifying the Plugin's Status

3676/4161

To verify whether the feedback plugin is installed and enabled, execute the SHOW PLUGINS statement or query the

information_schema.plugins table. For example:

SELECT plugin_status FROM information_schema.plugins

 WHERE plugin_name = 'feedback';

If that SELECT returns no rows, then you still need to install the plugin.

When the plugin is installed and enabled, you will see:

SELECT plugin_status FROM information_schema.plugins

 WHERE plugin_name = 'feedback';

+---------------+

| plugin_status |

+---------------+

| ACTIVE |

+---------------+

If you see DISABLED instead of ACTIVE , then you still need to enable the plugin.

Collecting Data
The feedback plugin will collect:

Certain rows from SHOW STATUS and SHOW VARIABLES.

All installed plugins and their versions.

System information such as CPU count, memory, architecture, and OS/linux distribution.

The feedback_server_uid, which is a SHA1 hash of the MAC address of the first network interface and the TCP port

that the server listens on.

The feedback plugin creates the FEEDBACK table in the INFORMATION_SCHEMA database. To see the data that has

been collected by the plugin, you can execute:

SELECT * FROM information_schema.feedback;

Only the contents of this table are sent to the feedback_url.

MariaDB stores collation usage statistics. Each collation that has been used by the server will have a record in "SELECT *

FROM information_schema.feedback" output, for example:

+--+---------------------+

| VARIABLE_NAME | VARIABLE_VALUE |

+--+---------------------+

| Collation used utf8_unicode_ci | 10 |

| Collation used latin1_general_ci | 20 |

+--+---------------------+

Collations that have not been used will not be included into the result.

Sending Data
The feedback plugin sends the data using a POST request to any URL or a list of URLs that you specify by setting the

feedback_url system variable. By default, this is set to the following URL:

https://mariadb.org/feedback_plugin/post

Both HTTP and HTTPS protocols are supported.

If HTTP traffic requires a proxy in your environment, then you can specify the proxy by setting the feedback_http_proxy

system variable.

If the feedback_url system variable is not set to an empty string, then the plugin will automatically send a report to all URLs

in the list a few minutes after the server starts up and then once a week after that.

If the feedback_url system variable is set to an empty string, then the plugin will not automatically send any data. This may

be necessary if outbound HTTP communication from your database server is not permitted. In this case, you can still upload

the data manually, if you'd like.

First, generate the report file with the MariaDB command-line mariadb client:

3677/4161

https://mariadb.org/feedback_plugin/post

$ mariadb -e 'select * from information_schema.feedback' > report.txt

Then you can upload the generated report.txt here using your web browser.

Or you can do it from the command line with tools such as curl . For example:

$ curl -F data=@report.txt https://mariadb.org/feedback_plugin/post

Manual uploading allows you to be absolutely sure that we receive only the data shown in the

INFORMATION_SCHEMA.FEEDBACK table and that no private or sensitive information is being sent.

Versions

Version Status Introduced

1.1 Stable MariaDB 10.0.10

1.1 Beta MariaDB 5.5.20 , MariaDB 5.3.3

System Variables

feedback_http_proxy

Description: Proxy server for use when http calls cannot be made, such as in a firewall environment. The format is

host:port .

Commandline: --feedback-http=proxy=value

Read-only: Yes

Data Type: string

Default Value: '' (empty)

feedback_send_retry_wait

Description: Time in seconds before retrying if the plugin failed to send the data for any reason.

Commandline: --feedback-send-retry-wait=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 60

Valid Values: 1 to 86400

feedback_send_timeout

Description: An attempt to send the data times out and fails after this many seconds.

Commandline: --feedback-send-timeout=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 60

Valid Values: 1 to 86400

feedback_server_uid

Description: Automatically calculated server unique id hash.

Scope: Global

Dynamic: No

Data Type: string

3678/4161

https://mariadb.org/feedback_plugin/post
https://curl.haxx.se/docs/manpage.html
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-5520-release-notes/
https://mariadb.com/kb/en/mariadb-533-release-notes/

feedback_url

Description: URL to which the data is sent. More than one URL, separated by spaces, can be specified. Set it to an

empty string to disable data sending.

Commandline: --feedback-url=url

Scope: Global

Dynamic: No

Data Type: string

Default Value: https://mariadb.org/feedback_plugin/post

feedback_user_info

Description: The value of this option is not used by the plugin, but it is included in the feedback data. It can be used

to add any user-specified string to the report. This could be used to help to identify it. For example, a support contract

number, or a computer name (if you collect reports internally by specifying your own feedback-url).

Commandline: --feedback-user-info=string

Scope: Global

Dynamic: No

Data Type: string

Default Value: Empty string

Options

feedback

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --feedback=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.2 Locales Plugin
The LOCALES plugin creates the LOCALES table in the INFORMATION_SCHEMA database. The plugin also adds the

SHOW LOCALES statement.The table and statement can be queried to see all locales that are compiled into the server.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Example

4. Versions

5. Options

1. locales

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

3679/4161

https://mariadb.org/feedback_plugin/post
https://mariadb.com/kb/en/server-locale/

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'locales';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = locales

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'locales';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Example

SELECT * FROM INFORMATION_SCHEMA.LOCALES;

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

| ID | NAME | DESCRIPTION | MAX_MONTH_NAME_LENGTH |

MAX_DAY_NAME_LENGTH | DECIMAL_POINT | THOUSAND_SEP | ERROR_MESSAGE_LANGUAGE |

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

| 0 | en_US | English - United States | 9 |

9 | . | , | english |

| 1 | en_GB | English - United Kingdom | 9 |

9 | . | , | english |

| 2 | ja_JP | Japanese - Japan | 3 |

3 | . | , | japanese |

| 3 | sv_SE | Swedish - Sweden | 9 |

7 | , | | swedish |

| 4 | de_DE | German - Germany | 9 |

10 | , | . | german |

| 5 | fr_FR | French - France | 9 |

8 | , | | french |

| 6 | ar_AE | Arabic - United Arab Emirates | 6 |

8 | . | , | english |

| 7 | ar_BH | Arabic - Bahrain | 6 |

8 | . | , | english |

| 8 | ar_JO | Arabic - Jordan | 12 |

8 | . | , | english |

...

| 106 | no_NO | Norwegian - Norway | 9 |

7 | , | . | norwegian |

| 107 | sv_FI | Swedish - Finland | 9 |

7 | , | | swedish |

| 108 | zh_HK | Chinese - Hong Kong SAR | 3 |

3 | . | , | english |

| 109 | el_GR | Greek - Greece | 11 |

9 | , | . | greek |

| 110 | rm_CH | Romansh - Switzerland | 9 |

9 | , | . | english |

+-----+-------+-------------------------------------+-----------------------+----------------

-----+---------------+--------------+------------------------+

Versions

Version Status Introduced

3680/4161

1.0 Stable MariaDB 10.1.13

1.0 Gamma MariaDB 10.0.10

1.0 Alpha MariaDB 10.0.4

Options

locales

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --locales=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.3 METADATA_LOCK_INFO Plugin
The METADATA_LOCK_INFO plugin creates the METADATA_LOCK_INFO table in the INFORMATION_SCHEMA database.

This table shows active metadata locks. The table will be empty if there are no active metadata locks.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Examples

1. Viewing all Metadata Locks

2. Matching Metadata Locks with Threads and Queries

4. Versions

5. Options

1. metadata_lock_info

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'metadata_lock_info';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = metadata_lock_info

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

3681/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/

UNINSTALL SONAME 'metadata_lock_info';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Examples

Viewing all Metadata Locks

SELECT * FROM information_schema.metadata_lock_info;

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

| THREAD_ID | LOCK_MODE | LOCK_DURATION | LOCK_TYPE | TABLE_SCHEMA

| TABLE_NAME |

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Global read lock |

| |

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Commit lock |

| |

| 31 | MDL_INTENTION_EXCLUSIVE | MDL_EXPLICIT | Schema metadata lock | dbname

| |

| 31 | MDL_SHARED_NO_READ_WRITE | MDL_EXPLICIT | Table metadata lock | dbname

| exotics |

+-----------+--------------------------+---------------+----------------------+--------------

---+-------------+

4 rows in set (0.00 sec)

Matching Metadata Locks with Threads and Queries

SELECT

CONCAT('Thread ',P.ID,' executing "',P.INFO,'" IS LOCKED BY Thread ',

M.THREAD_ID) WhoLocksWho

FROM INFORMATION_SCHEMA.PROCESSLIST P,

INFORMATION_SCHEMA.METADATA_LOCK_INFO M

WHERE LOCATE(lcase(LOCK_TYPE), lcase(STATE))>0;

+---+

| WhoLocksWho |

+---+

| Thread 3 executing "INSERT INTO foo (b) VALUES ('FOO')" IS LOCKED BY Thread 2 |

+---+

1 row in set (0.00 sec)

SHOW PROCESSLIST;

+----+------+-----------+------+---------+------+------------------------------+-------------

---------------------------+----------+

| Id | User | Host | db | Command | Time | State | Info

| Progress |

+----+------+-----------+------+---------+------+------------------------------+-------------

---------------------------+----------+

| 2 | root | localhost | test | Sleep | 123 | | NULL

| 0.000 |

| 3 | root | localhost | test | Query | 103 | Waiting for global read lock | INSERT INTO

foo (b) VALUES ('FOO') | 0.000 |

| 4 | root | localhost | test | Query | 0 | init | SHOW

PROCESSLIST | 0.000 |

+----+------+-----------+------+---------+------+------------------------------+-------------

---------------------------+----------+

3 rows in set (0.00 sec)

Versions

Version Status Introduced

0.1 Stable MariaDB 10.1.13

3682/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/

0.1 Beta MariaDB 10.0.10

0.1 Alpha MariaDB 10.0.7

Options

metadata_lock_info

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --metadata-lock-info=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.4 MYSQL_JSON

The TYPE_MYSQL_JSON plugin was first released in MariaDB 10.5.7.

The JSON type in MySQL stores the JSON object in its own native form, while in MariaDB the JSON type is a LONGTEXT.

Opening a table with a JSON type created in MySQL would result in an error:

select * from mysql_json_table;

ERROR 4161 (HY000): Unknown data type: 'MYSQL_JSON'

The mysql_json plugin is used to make it easier to upgrade to MariaDB.

Installing
Installing can be done in a number of ways, for example:

install soname 'type_mysql_json';

See Making MariaDB understand MySQL JSON for a full description.

MariaDB starting with 10.5.7

5.4.11.5 Query Cache Information Plugin
The QUERY_CACHE_INFO plugin creates the QUERY_CACHE_INFO table in the INFORMATION_SCHEMA database. This

table shows all queries in the query cache. Querying this table acquires the query cache lock and will result in lock waits for

queries that are using or expiring from the query cache. You must have the PROCESS privilege to query this table.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Example

4. Versions

5. Options

1. query_cache_info

3683/4161

https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.org/making-mariadb-understand-mysql-json/

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'query_cache_info';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = query_cache_info

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'query_cache_info';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Example

select statement_schema, statement_text, result_blocks_count,

 result_blocks_size from information_schema.query_cache_info;

+------------------+------------------+---------------------+--------------------+

| statement_schema | statement_text | result_blocks_count | result_blocks_size |

+------------------+------------------+---------------------+--------------------+

| test | select * from t1 | 1 | 512 |

+------------------+------------------+---------------------+--------------------+

Versions

Version Status Introduced

1.1 Stable MariaDB 10.1.13

1.1 Gamma MariaDB 10.1.8

1.0 Gamma MariaDB 10.0.10

1.0 Alpha MariaDB 5.5.31

Options

query_cache_info

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

3684/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --query-cache-info=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.6 Query Response Time Plugin
The query_response_time plugin creates the QUERY_RESPONSE_TIME table in the INFORMATION_SCHEMA

database. The plugin also adds the SHOW QUERY_RESPONSE_TIME and FLUSH QUERY_RESPONSE_TIME

statements.

The slow query log provides exact information about queries that take a long time to execute. However, sometimes there

are a large number of queries that each take a very short amount of time to execute. This feature provides a tool for

analyzing that information by counting and displaying the number of queries according to the the length of time they took to

execute.

This feature is based on Percona's Response Time Distribution .

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Response Time Distribution

4. Using the Plugin

1. Using the Information Schema Table

2. Using the SHOW Statement

3. Flushing Plugin Data

5. Versions

6. System Variables

1. query_response_time_flush

2. query_response_time_range_base

3. query_response_time_exec_time_debug

4. query_response_time_stats

7. Options

1. query_response_time

2. query_response_time_audit

Installing the Plugin
This shared library actually consists of two different plugins:

QUERY_RESPONSE_TIME - An INFORMATION_SCHEMA plugin that exposes statistics.

QUERY_RESPONSE_TIME_AUDIT - audit plugin, collects statistics.

Both plugins need to be installed to get meaningful statistics.

Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'query_response_time';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = query_response_time

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

3685/4161

http://www.percona.com/doc/percona-server/5.5/diagnostics/response_time_distribution.html

UNINSTALL SONAME 'query_response_time';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Response Time Distribution
The user can define time intervals that divide the range 0 to positive infinity into smaller intervals and then collect the

number of commands whose execution times fall into each of those intervals.

Each interval is described as:

(range_base ^ n; range_base ^ (n+1)]

The range_base is some positive number (see Limitations). The interval is defined as the difference between two nearby

powers of the range base.

For example, if the range base=10, we have the following intervals:

(0; 10 ^ -6], (10 ^ -6; 10 ^ -5], (10 ^ -5; 10 ^ -4], ...,

 (10 ^ -1; 10 ^1], (10^1; 10^2]...(10^7; positive infinity]

or

(0; 0.000001], (0.000001; 0.000010], (0.000010; 0.000100], ...,

 (0.100000; 1.0]; (1.0; 10.0]...(1000000; positive infinity]

For each interval, a count is made of the queries with execution times that fell into that interval.

You can select the range of the intervals by changing the range base. For example, for base range=2 we have the following

intervals:

(0; 2 ^ -19], (2 ^ -19; 2 ^ -18], (2 ^ -18; 2 ^ -17], ...,

 (2 ^ -1; 2 ^1], (2 ^ 1; 2 ^ 2]...(2 ^ 25; positive infinity]

or

(0; 0.000001], (0.000001, 0.000003], ...,

 (0.25; 0.5], (0.5; 2], (2; 4]...(8388608; positive infinity]

Small numbers look strange (i.e., don9t look like powers of 2), because we lose precision on division when the ranges are

calculated at runtime. In the resulting table, you look at the high boundary of the range.

For example, you may see:

SELECT * FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME;

+----------------+-------+----------------+

| TIME | COUNT | TOTAL |

+----------------+-------+----------------+

| 0.000001 | 0 | 0.000000 |

| 0.000010 | 17 | 0.000094 |

| 0.000100 | 4301 0.236555 |

| 0.001000 | 1499 | 0.824450 |

| 0.010000 | 14851 | 81.680502 |

| 0.100000 | 8066 | 443.635693 |

| 1.000000 | 0 | 0.000000 |

| 10.000000 | 0 | 0.000000 |

| 100.000000 | 1 | 55.937094 |

| 1000.000000 | 0 | 0.000000 |

| 10000.000000 | 0 | 0.000000 |

| 100000.000000 | 0 | 0.000000 |

| 1000000.000000 | 0 | 0.000000 |

| TOO LONG | 0 | TOO LONG |

+----------------+-------+----------------+

This means there were:

3686/4161

* 17 queries with 0.000001 < query execution time < = 0.000010 seconds; total execution time of

the 17 queries = 0.000094 seconds

* 4301 queries with 0.000010 < query execution time < = 0.000100 seconds; total execution time

of the 4301 queries = 0.236555 seconds

* 1499 queries with 0.000100 < query execution time < = 0.001000 seconds; total execution time

of the 1499 queries = 0.824450 seconds

* 14851 queries with 0.001000 < query execution time < = 0.010000 seconds; total execution time

of the 14851 queries = 81.680502 seconds

* 8066 queries with 0.010000 < query execution time < = 0.100000 seconds; total execution time

of the 8066 queries = 443.635693 seconds

* 1 query with 10.000000 < query execution time < = 100.0000 seconds; total execution time of

the 1 query = 55.937094 seconds

Using the Plugin

Using the Information Schema Table

You can get the distribution by querying the the QUERY_RESPONSE_TIME table in the INFORMATION_SCHEMA

database. For example:

SELECT * FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME;

You can also write more complex queries. For example:

SELECT c.count, c.time,

(SELECT SUM(a.count) FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME as a

 WHERE a.count != 0) as query_count,

(SELECT COUNT(*) FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME as b

 WHERE b.count != 0) as not_zero_region_count,

(SELECT COUNT(*) FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME) as region_count

FROM INFORMATION_SCHEMA.QUERY_RESPONSE_TIME as c

 WHERE c.count > 0;

Note: If query_response_time_stats is set to ON , then the execution times for these two SELECT queries will also be

collected.

Using the SHOW Statement

As an alternative to the QUERY_RESPONSE_TIME table in the INFORMATION_SCHEMA database, you can also use the

SHOW QUERY_RESPONSE_TIME statement. For example:

SHOW QUERY_RESPONSE_TIME;

Flushing Plugin Data

Flushing the plugin data does two things:

Clears the collected times from the QUERY_RESPONSE_TIME table in the INFORMATION_SCHEMA database.

Reads the value of query_response_time_range_base and uses it to set the range base for the table.

Plugin data can be flushed with the FLUSH QUERY_RESPONSE_TIME statement. For example:

FLUSH QUERY_RESPONSE_TIME;

Setting the query_response_time_flush system variable has the same effect. For example:

SET GLOBAL query_response_time_flush=1;

Versions
3687/4161

Version Status Introduced

1.0 Stable MariaDB 10.1.13

1.0 Gamma MariaDB 10.0.10

1.0 Alpha MariaDB 10.0.4

System Variables

query_response_time_flush

Description: Updating this variable flushes the statistics and re-reads query_response_time_range_base.

Commandline: None

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

query_response_time_range_base

Description: Select base of log for QUERY_RESPONSE_TIME ranges. WARNING: variable change takes affect only

after flush.

Commandline: --query-response-time-range-base=#

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 10

Range: 2 to 1000

query_response_time_exec_time_debug

Description: Pretend queries take this many microseconds. When 0 (the default) use the actual execution time.

This system variable is only available when the plugin is a debug build.

Scope: Global

Dynamic: Yes

Data Type: numeric

Default Value: 0

Range: 0 to 31536000

query_response_time_stats

Description: Enable or disable query response time statistics collecting

Commandline: query-response-time-stats[={0|1}]

Scope: Global

Dynamic: Yes

Data Type: boolean

Default Value: OFF

Options

query_response_time

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

3688/4161

https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --query-response-time=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

query_response_time_audit

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --query-response-time-audit=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.7 SQL Error Log Plugin
Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Logging

4. Example of Logs

5. Example Usage

6. Versions

7. System Variables and Options

The SQL_ERROR_LOG plugin collects errors sent to clients in a log file defined by sql_error_log_filename , so that they can

later be analyzed. The log file can be rotated if sql_error_log_rotate is set.

Errors are logged as they happen and an error will be logged even if it was handled by a condition handler and was never

technically sent to the client.

Comments are also logged, which can make the log easier to search. But this is only possible if the client does not strip the

comments away. For example, the mariadb command-line client only leaves comments when started with the --comments

option.

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'sql_errlog';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to

3689/4161

https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_filename
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_rotate

mariadbd or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = sql_errlog

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'sql_errlog';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Logging
The log format until MariaDB 10.10 is:

Time User Error_code: Error_message : Query

Starting from MariaDB 10.11, the format is:

Time User Type Error_code: Error_message : Query

Starting from MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3, MariaDB 11.3.2, and

MariaDB 11.4.1, when the sql_error_log_with_db_and_thread_info variable is enabled, the log also contains thread id

and database name. If there is no database, NULL will be displayed.

Time Thread_id User Database_name Type Error_code: Error_message : Query

Each separated by a space or : as above

Option Description Version

Time Time (YYYY-MM-DD hh-mm-ss) 5.5.22

Thread Id Thread Id of current thread 10.6.17

User privilege_user [login_user_name] @ hostname [ip] 5.5.22

Database name Name of the currently selected database 10.6.17

Type ERROR or WARNING 10.11.6

Error_code OS error, MariaDB storage engine code (120-199) or MariaDB internal error code (1000-) 5.5.22

Query Query text 5.5.22

Example of Logs

2023-10-31 15:54:37 root[root] @ localhost [] ERROR 1146: Table 'test.t_doesnt_exist' doesn't exist : select * from t_doesnt_exist

2023-10-31 15:54:37 root[root] @ localhost [] ERROR 1064: You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for the right syntax to use near 'syntax_error_query' at line 1 : syntax_error_query

2023-10-31 15:54:37 root[root] @ localhost [] ERROR 1146: Table 'test.temptab' doesn't exist : SELECT `c` FROM `temptab`

2023-11-01 11:31:15 [monty] @ storm [192.168.0.12] ERROR 1051: Unknown table 'test.t1' : drop table t1

With sql_error_log_with_db_and_thread_info enabled (database test and thread id 4):

2023-10-31 15:54:37 4 root[root] @ localhost [] `test` ERROR 1146: Table 'test.t_doesnt_exist' doesn't exist : select * from t_doesnt_exist

Example Usage
3690/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info

install plugin SQL_ERROR_LOG soname 'sql_errlog';

Query OK, 0 rows affected (0.00 sec)

use test;

Database changed

set sql_mode='STRICT_ALL_TABLES,NO_ENGINE_SUBSTITUTION';

Query OK, 0 rows affected (0.00 sec)

CREATE TABLE foo2 (id int) ENGINE=WHOOPSIE;

ERROR 1286 (42000): Unknown storage engine 'WHOOPSIE'

\! cat data/sql_errors.log

2013-03-19 9:38:40 msandbox[msandbox] @ localhost [] ERROR 1286: Unknown storage engine

'WHOOPSIE' : CREATE TABLE foo2 (id int) ENGINE=WHOOPSIE

Versions

Version Status Introduced

1.1 Stable MariaDB 10.6.17, MariaDB 10.11.7, MariaDB 11.0.5 , MariaDB 11.1.4, MariaDB 11.2.3

1.0 Stable MariaDB 10.1.13

1.0 Gamma MariaDB 10.0.10

1.0 Alpha MariaDB 5.5.22

System Variables and Options
sql_error_log

sql_error_log_filename

sql_error_log_rate

sql_error_log_rotate

sql_error_log_rotations

sql_error_log_size_limit

sql_error_log_size_warnings

sql_error_log_with_db_and_thread_info

3.3.4.6.6 User Statistics

5.4.11.9 User Variables Plugin
The user_variables plugin creates the USER_VARIABLES table in the INFORMATION_SCHEMA database. This table

contains information about user-defined variables.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Examples

1. Flushing User-Defined Variables

4. Versions

5. Options

1. user_variables

Installing the Plugin
In current versions, the user_variables plugin is statically linked into the server by default, so it does not need to be

installed.

Prior to MariaDB 10.2.6 , although the plugin's shared library is distributed with MariaDB by default, the plugin was not

actually installed by MariaDB by default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

3691/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-5522-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/

INSTALL SONAME 'user_variables';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = user_variables

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'user_variables';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

Examples

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

+---------------+----------------+---------------+--------------------+

| VARIABLE_NAME | VARIABLE_VALUE | VARIABLE_TYPE | CHARACTER_SET_NAME |

+---------------+----------------+---------------+--------------------+

| var | 0 | INT | utf8 |

| var2 | abc | VARCHAR | utf8 |

+---------------+----------------+---------------+--------------------+

Flushing User-Defined Variables

User-defined variables are reset and the Information Schema table emptied with the FLUSH USER_VARIABLES statement.

SET @str = CAST(123 AS CHAR(5));

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

+---------------+----------------+---------------+--------------------+

| VARIABLE_NAME | VARIABLE_VALUE | VARIABLE_TYPE | CHARACTER_SET_NAME |

+---------------+----------------+---------------+--------------------+

| str | 123 | VARCHAR | utf8mb3 |

+---------------+----------------+---------------+--------------------+

FLUSH USER_VARIABLES;

SELECT * FROM information_schema.USER_VARIABLES ORDER BY VARIABLE_NAME;

Empty set (0.000 sec)

Versions

Version Status Introduced

1.0 Stable MariaDB 10.3.13

1.0 Gamma MariaDB 10.2.6

1.0 Alpha MariaDB 10.2.0

Options

user_variables

Description: Controls how the server should treat the plugin when the server starts up.
3692/4161

https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --user-variables=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.10 Disks Plugin
The DISKS plugin creates the DISKS table in the INFORMATION_SCHEMA database. This table shows metadata about

disks on the system.

Before MariaDB 10.4.7, MariaDB 10.3.17 and MariaDB 10.2.26 , this plugin did not check user privileges. When it is

enabled, any user can query the INFORMATION_SCHEMA.DISKS table and see all the information it provides.

Since MariaDB 10.4.7, MariaDB 10.3.17 and MariaDB 10.2.26 , it required the FILE privilege.

The plugin only works on Linux.

Contents
1. Installing the Plugin

2. Uninstalling the Plugin

3. Example

4. Versions

5. Options

1. disks

Installing the Plugin
Although the plugin's shared library is distributed with MariaDB by default, the plugin is not actually installed by MariaDB by

default. There are two methods that can be used to install the plugin with MariaDB.

The first method can be used to install the plugin without restarting the server. You can install the plugin dynamically by

executing INSTALL SONAME or INSTALL PLUGIN. For example:

INSTALL SONAME 'disks';

The second method can be used to tell the server to load the plugin when it starts up. The plugin can be installed this way

by providing the --plugin-load or the --plugin-load-add options. This can be specified as a command-line argument to mysqld

or it can be specified in a relevant server option group in an option file. For example:

[mariadb]

...

plugin_load_add = disks

Uninstalling the Plugin
You can uninstall the plugin dynamically by executing UNINSTALL SONAME or UNINSTALL PLUGIN. For example:

UNINSTALL SONAME 'disks';

If you installed the plugin by providing the --plugin-load or the --plugin-load-add options in a relevant server option group in

an option file, then those options should be removed to prevent the plugin from being loaded the next time the server is

restarted.

3693/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/

Example

SELECT * FROM information_schema.DISKS;

+-----------+-------+----------+---------+-----------+

| Disk | Path | Total | Used | Available |

+-----------+-------+----------+---------+-----------+

| /dev/vda1 | / | 26203116 | 2178424 | 24024692 |

| /dev/vda1 | /boot | 26203116 | 2178424 | 24024692 |

| /dev/vda1 | /etc | 26203116 | 2178424 | 24024692 |

+-----------+-------+----------+---------+-----------+

Versions

Version Status Introduced

1.1 Stable MariaDB 10.4.7, MariaDB 10.3.17 , MariaDB 10.2.26 , MariaDB 10.1.41

1.0 Beta MariaDB 10.3.6 , MariaDB 10.2.14 , MariaDB 10.1.32

Options

disks

Description: Controls how the server should treat the plugin when the server starts up.

Valid values are:

OFF - Disables the plugin without removing it from the mysql.plugins table.

ON - Enables the plugin. If the plugin cannot be initialized, then the server will still continue starting up,

but the plugin will be disabled.

FORCE - Enables the plugin. If the plugin cannot be initialized, then the server will fail to start with an

error.

FORCE_PLUS_PERMANENT - Enables the plugin. If the plugin cannot be initialized, then the server will fail

to start with an error. In addition, the plugin cannot be uninstalled with UNINSTALL SONAME or

UNINSTALL PLUGIN while the server is running.

See Plugin Overview: Configuring Plugin Activation at Server Startup for more information.

Commandline: --disks=value

Data Type: enumerated

Default Value: ON

Valid Values: OFF , ON , FORCE , FORCE_PLUS_PERMANENT

5.4.11.11 Compression Plugins

Compressions plugins were added in a MariaDB 10.7.0 preview release.

Contents
1. Installing

2. Upgrading

The various MariaDB storage engines, such as InnoDB, RocksDB, Mroonga, can use different compression libraries.

Before MariaDB 10.7.0 , each separate library would have to be compiled in in order to be available for use, resulting in

numerous runtime/rpm/deb dependencies, most of which would never be used by users.

From MariaDB 10.7.0 , five additional MariaDB compression libraries (besides the default zlib) are available as plugins

(note that these affect InnoDB and Mroonga only; RocksDB still uses the compression algorithms from its own library):

bzip2

lzma

lz4

lzo

snappy

MariaDB starting with 10.7.0

3694/4161

https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/

Installing
Depending on how MariaDB was installed, the libraries may already be available for installation, or may first need to be

installed as .deb or .rpm packages, for example:

apt-get install mariadb-plugin-provider-lz4

Once available, install as a plugin, for example:

INSTALL SONAME 'provider_lz4';

The compression algorithm can then be used, for example, in InnoDB compression:

SET GLOBAL innodb_compression_algorithm = lz4;

Upgrading
When upgrading from a release without compression plugins, if a non-zlib compression algorithm was used, those tables

will be unreadable until the appropriate compression library is installed. mariadb-upgrade should be run. The --force

option (to run mariadb-check) or mariadb-check itself will indicate any problems with compression, for example:

Warning : MariaDB tried to use the LZMA compression, but its provider plugin is not loaded

Error : Table 'test.t' doesn't exist in engine

status : Operation failed

or

Error : Table test/t is compressed with lzma, which is not currently loaded.

 Please load the lzma provider plugin to open the table

error : Corrupt

In this case, the appropriate compression plugin should be installed, and the server restarted.

6 Training & Tutorials
This section provides tutorials for those who want to learn about MariaDB and related software.

Beginner MariaDB Articles

Tutorials for newcomers and beginners to MariaDB.

Basic MariaDB Articles

Basic tutorials -- more advanced than beginner.

Intermediate MariaDB Articles

Intermediate level tutorials for MariaDB developers and administrators.

Advanced MariaDB Articles

Tutorial articles for advanced MariaDB developers and administrators.

Books on MariaDB

Beginner Books

List of books on MariaDB for newcomers and beginners.

Intermediate and Advanced Books

List of books on MariaDB for intermediate and advanced developers and administrators.

Books on MariaDB Code

List of books on coding MariaDB Server and plugins.

3695/4161

https://mariadb.com/kb/en/books/
https://mariadb.com/kb/en/beginner-books/
https://mariadb.com/kb/en/intermediate-and-advanced-books/
https://mariadb.com/kb/en/books-on-mariadb-code/

6.1 Beginner MariaDB Articles
These tutorial articles were written for those who very little about databases and nothing about MariaDB. They are articles for

newcomers and beginners.

A MariaDB Primer

A 10-minute primer on using MariaDB.

MariaDB Basics

Basic article on using MariaDB.

Getting Data from MariaDB

Extensive tutorial on using the SELECT statement.

Adding and Changing Data in MariaDB

Tutorial on using INSERT and UPDATE statements.

Altering Tables in MariaDB

Tutorial on using the ALTER TABLE statement.

Changing Times in MariaDB

Tutorial on using various time and date functions in MariaDB.

Doing Time with MariaDB

Tutorial about temporal data types and functions.

Importing Data into MariaDB

Tutorial on using the LOAD DATA INFILE statement.

Making Backups with mariadb-dump

Tutorial article on how to make back-ups with mariadb-dump.

MariaDB String Functions

Extensive tutorial on how to use several string functions.

Restoring Data from Dump Files

Tutorial on how to restore data from a mariadb-dump backup.

Basic SQL Statements

Basic SQL statements for structuring and manipulating data.

Connecting to MariaDB

Connecting to MariaDB with the basic connection parameters.

External Tutorials

Links to external MariaDB, MySQL and SQL tutorials.

Useful MariaDB Queries

Quick reference of commonly-used MariaDB queries.

4

6

1

1

1

1

1

1

3

6.1.1 A MariaDB Primer
Contents
1. Logging into MariaDB

2. The Basics of a Database

3. Inserting Data

4. Modifying Data

This primer is designed to teach you the basics of getting information into and out of an existing MariaDB database using the

mariadb command-line client program. It's not a complete reference and will not touch on any advanced topics. It is just a

quick jump-start into using MariaDB.

Logging into MariaDB

3696/4161

Log into your MariaDB server from the command-line like so:

mariadb -u user_name -p -h ip_address db_name

Replace user_name with your database username. Replace ip_address with the host name or address of your server. If

you're accessing MariaDB from the same server you're logged into, then don't include -h and the ip_address. Replace

db_name with the name of the database you want to access (such as test, which sometimes comes already created for

testing purposes - note that Windows does not create this database, and some setups may also have removed the test

database by running mariadb-secure-installation, in which case you can leave the db_name out).

When prompted to enter your password, enter it. If your login is successful you should see something that looks similar to

this:

MariaDB [test]>

This is where you will enter in all of your SQL statements. More about those later. For now, let's look at the components of

the prompt: The "MariaDB" part means you that you are connected to a MariaDB database server. The word between the

brackets is the name of your default database, the test database in this example.

The Basics of a Database

To make changes to a database or to retrieve data, you will need to enter an SQL statement. SQL stands for Structured

Query Language. An SQL statement that requests data is called a query. Databases store information in tables. They're are

similar to spreadsheets, but much more efficient at managing data.

Note that the test database may not contain any data yet. If you want to follow along with the primer, copy and paste the

following into the mariadb client. This will create the tables we will use and add some data to them. Don't worry about

understanding them yet; we'll get to that later.

CREATE DATABASE IF NOT EXISTS test;

USE test;

CREATE TABLE IF NOT EXISTS books (

 BookID INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 Title VARCHAR(100) NOT NULL,

 SeriesID INT, AuthorID INT);

CREATE TABLE IF NOT EXISTS authors

(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE IF NOT EXISTS series

(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT);

INSERT INTO books (Title,SeriesID,AuthorID)

VALUES('The Fellowship of the Ring',1,1),

 ('The Two Towers',1,1), ('The Return of the King',1,1),

 ('The Sum of All Men',2,2), ('Brotherhood of the Wolf',2,2),

 ('Wizardborn',2,2), ('The Hobbbit',0,1);

Notice the semi-colons used above. The mariadb client lets you enter very complex SQL statements over multiple lines. It

won't send an SQL statement until you type a semi-colon and hit [Enter].

Let's look at what you've done so far. Enter the following:

SHOW TABLES;

+----------------+

| Tables_in_test |

+----------------+

| authors |

| books |

| series |

+----------------+

3 rows in set (0.00 sec)

Notice that this displays a list of the tables in the database. If you didn't already have tables in your test database, your

results should look the same as above. Let's now enter the following to get information about one of these tables:

3697/4161

DESCRIBE books;

+----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+----------------+

| BookID | int(11) | NO | PRI | NULL | auto_increment |

| Title | varchar(100) | NO | | NULL | |

| SeriesID | int(11) | YES | | NULL | |

| AuthorID | int(11) | YES | | NULL | |

+----------+--------------+------+-----+---------+----------------+

The main bit of information of interest to us is the Field column. The other columns provide useful information about the

structure and type of data in the database, but the Field column gives us the names, which is needed to retrieve data from

the table.

Let's retrieve data from the books table. We'll do so by executing a SELECT statement like so:

SELECT * FROM books;

+--------+----------------------------+----------+----------+

| BookID | Title | SeriesID | AuthorID |

+--------+----------------------------+----------+----------+

| 1 | The Fellowship of the Ring | 1 | 1 |

| 2 | The Two Towers | 1 | 1 |

| 3 | The Return of the King | 1 | 1 |

| 4 | The Sum of All Men | 2 | 2 |

| 5 | Brotherhood of the Wolf | 2 | 2 |

| 6 | Wizardborn | 2 | 2 |

| 7 | The Hobbbit | 0 | 1 |

+--------+----------------------------+----------+----------+

7 rows in set (0.00 sec)

This SQL statement or query asks the database to show us all of the data in the books table. The wildcard (' * ') character

indicates to select all columns.

Inserting Data

Suppose now that we want to add another book to this table. We'll add the book, Lair of Bones. To insert data into a table,

you would use the INSERT statement. To insert information on a book, we would enter something like this:

INSERT INTO books (Title, SeriesID, AuthorID)

VALUES ("Lair of Bones", 2, 2);

Query OK, 1 row affected (0.00 sec)

Notice that we put a list of columns in parentheses after the name of the table, then we enter the keyword VALUES followed

by a list of values in parentheses--in the same order as the columns were listed. We could put the columns in a different

order, as long as the values are in the same order as we list the columns. Notice the message that was returned indicates

that the execution of the SQL statement went fine and one row was entered.

Execute the following SQL statement again and see what results are returned:

SELECT * FROM books;

You should see the data you just entered on the last row of the results. In looking at the data for the other books, suppose

we notice that the title of the seventh book is spelled wrong. It should be spelled The Hobbit, not The Hobbbit. We will need

to update the data for that row.

Modifying Data

To change data in a table, you will use the UPDATE statement. Let's change the spelling of the book mentioned above. To

do this, enter the following:

3698/4161

UPDATE books

SET Title = "The Hobbit"

WHERE BookID = 7;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Notice the syntax of this SQL statement. The SET clause is where you list the columns and the values to set them. The

WHERE clause says that you want to update only rows in which the BookID column has a value of 7 , of which there are

only one. You can see from the message it returned that one row matched the WHERE clause and one row was changed.

There are no warnings because everything went fine. Execute the SELECT from earlier to see that the data changed.

As you can see, using MariaDB isn't very difficult. You just have to understand the syntax of SQL since it doesn't allow for

typing mistakes or things in the wrong order or other deviations.

See Also

MariaDB Basics

6.1.2 MariaDB Basics
Contents
1. Connecting to MariaDB

2. Creating a Structure

3. Minor Items

4. Entering Data

5. Retrieving Data

6. Changing & Deleting Data

7. Conclusion

Connecting to MariaDB

MariaDB is a database system, a database server. To interface with the MariaDB server, you can use a client program, or

you can write a program or script with one of the popular programming languages (e.g., PHP) using an API (Application

Programming Interface) to interface with the MariaDB server. For the purposes of this article, we will focus on using the

default client that comes with MariaDB called mariadb . With this client, you can either enter queries from the command-

line, or you can switch to a terminal, that is to say, monitor mode. To start, we'll use the latter.

From the Linux command-line, you would enter the following to log in as the root user and to enter monitor mode:

mariadb -u root -p -h localhost

The -u option is for specifying the user name. You would replace root here if you want to use a different user name. This

is the MariaDB user name, not the Linux user name. The password for the MariaDB user root will probably be different

from the Linux user root . Incidentally, it's not a good security practice to use the root user unless you have a specific

administrative task to perform for which only root has the needed privileges.

The -p option above instructs the mariadb client to prompt you for the password. If the password for the root user

hasn't been set yet, then the password is blank and you would just hit [Enter] when prompted. The -h option is for

specifying the host name or the IP address of the server. This would be necessary if the client is running on a different

machine than the server. If you've secure-shelled into the server machine, you probably won't need to use the host option.

In fact, if you're logged into Linux as root , you won't need the user option4the -p is all you'll need. Once you've entered

the line above along with the password when prompted, you will be logged into MariaDB through the client. To exit, type quit

or exit and press [Enter].

Creating a Structure

In order to be able to add and to manipulate data, you first have to create a database structure. Creating a database is

simple. You would enter something like the following from within the mariadb client:

CREATE DATABASE bookstore;

USE bookstore;

This very minimal, first SQL statement will create a sub-directory called bookstore on the Linux filesystem in the directory

3699/4161

which holds your MariaDB data files. It won't create any data, obviously. It'll just set up a place to add tables, which will in

turn hold data. The second SQL statement above will set this new database as the default database. It will remain your

default until you change it to a different one or until you log out of MariaDB.

The next step is to begin creating tables. This is only a little more complicated. To create a simple table that will hold basic

data on books, we could enter something like the following:

CREATE TABLE books (

isbn CHAR(20) PRIMARY KEY,

title VARCHAR(50),

author_id INT,

publisher_id INT,

year_pub CHAR(4),

description TEXT);

This SQL statement creates the table books with six fields, or rather columns. The first column (isbn) is an identification

number for each row4this name relates to the unique identifier used in the book publishing business. It has a fixed-width

character type of 20 characters. It will be the primary key column on which data will be indexed. The column data type for

the book title is a variable width character column of fifty characters at most. The third and fourth columns will be used for

identification numbers for the author and the publisher. They are integer data types. The fifth column is used for the

publication year of each book. The last column is for entering a description of each book. It's a TEXT data type, which

means that it's a variable width column and it can hold up to 65535 bytes of data for each row. There are several other data

types that may be used for columns, but this gives you a good sampling.

To see how the table we created looks, enter the following SQL statement:

DESCRIBE books;

+--------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------+-------------+------+-----+---------+-------+

| isbn | char(20) | NO | PRI | NULL | |

| title | varchar(50) | YES | | NULL | |

| author_id | int(11) | YES | | NULL | |

| publisher_id | int(11) | YES | | NULL | |

| year_pub | char(4) | YES | | NULL | |

| description | text | YES | | NULL | |

+--------------+-------------+------+-----+---------+-------+

To change the settings of a table, you can use the ALTER TABLE statement. I'll cover that statement in another article. To

delete a table completely (including its data), you can use the DROP TABLE statement, followed by the table name. Be

careful with this statement since it's not reversible.

The next table we'll create for our examples is the authors table to hold author information. This table will save us from

having to enter the author's name and other related data for each book written by each author. It also helps to ensure

consistency of data: there's less chance of inadvertent spelling deviations.

CREATE TABLE authors

(author_id INT AUTO_INCREMENT PRIMARY KEY,

name_last VARCHAR(50),

name_first VARCHAR(50),

country VARCHAR(50));

We'll join this table to the books table as needed. For instance, we would use it when we want a list of books along with their

corresponding authors' names. For a real bookstore's database, both of these tables would probably have more columns.

There would also be several more tables. For the examples that follow, these two tables as they are will be enough.

Minor Items

Before moving on to the next step of adding data to the tables, let me point out a few minor items that I've omitted

mentioning. SQL statements end with a semi-colon (or a \G). You can spread an SQL statement over multiple lines.

However, it won't be passed to the server by the client until you terminate it with a semi-colon and hit [Enter]. To cancel an

SQL statement once you've started typing it, enter \c and press [Enter].

As a basic convention, reserved words are printed in all capital letters. This isn't necessary, though. MariaDB is case-

insensitive with regards to reserved words. Database and table names, however, are case-sensitive on Linux. This is

because they reference the related directories and files on the filesystem. Column names aren't case sensitive since they're

not affected by the filesystem, per se. As another convention, we use lower-case letters for structural names (e.g., table

names). It's a matter of preference for deciding on names.

3700/4161

Entering Data

The primary method for entering data into a table is to use the INSERT statement. As an example, let's enter some

information about an author into the authors table. We'll do that like so:

INSERT INTO authors

(name_last, name_first, country)

VALUES('Kafka', 'Franz', 'Czech Republic');

This will add the name and country of the author Franz Kafka to the authors table. We don't need to give a value for the

author_id since that column was created with the AUTO_INCREMENT option. MariaDB will automatically assign an

identification number. You can manually assign one, especially if you want to start the count at a higher number than 1 (e.g.,

1000). Since we are not providing data for all of the columns in the table, we have to list the columns for which we are giving

data and in the order that the data is given in the set following the VALUES keyword. This means that we could give the data

in a different order.

For an actual database, we would probably enter data for many authors. We'll assume that we've done that and move on to

entering data for some books. Below is an entry for one of Kafka's books:

INSERT INTO books

(title, author_id, isbn, year_pub)

VALUES('The Castle', '1', '0805211063', '1998');

This adds a record for Kafka's book, The Castle. Notice that we mixed up the order of the columns, but it still works because

both sets agree. We indicate that the author is Kafka by giving a value of 1 for the author_id. This is the value that was

assigned by MariaDB when we entered the row for Kafka earlier. Let's enter a few more books for Kafka, but by a different

method:

INSERT INTO books

(title, author_id, isbn, year_pub)

VALUES('The Trial', '1', '0805210407', '1995'),

('The Metamorphosis', '1', '0553213695', '1995'),

('America', '1', '0805210644', '1995');

In this example, we've added three books in one statement. This allows us to give the list of column names once. We also

give the keyword VALUES only once, followed by a separate set of values for each book, each contained in parentheses

and separated by commas. This cuts down on typing and speeds up the process. Either method is fine and both have their

advantages. To be able to continue with our examples, let's assume that data on thousands of books has been entered.

With that behind us, let's look at how to retrieve data from tables.

Retrieving Data

The primary method of retrieving data from tables is to use a SELECT statement. There are many options available with the

SELECT statement, but you can start simply. As an example, let's retrieve a list of book titles from the books table:

SELECT title

FROM books;

This will display all of the rows of books in the table. If the table has thousands of rows, MariaDB will display thousands. To

limit the number of rows retrieved, we could add a LIMIT clause to the SELECT statement like so:

SELECT title

FROM books

LIMIT 5;

This will limit the number of rows displayed to five. To be able to list the author's name for each book along with the title, you

will have to join the books table with the authors table. To do this, we can use the JOIN clause like so:

SELECT title, name_last

FROM books

JOIN authors USING (author_id);

Notice that the primary table from which we're drawing data is given in the FROM clause. The table to which we're joining is

given in the JOIN clause along with the commonly named column (i.e., author_id) that we're using for the join.

To retrieve the titles of only books written by Kafka based on his name (not the author_id), we would use the WHERE clause

with the SELECT statement. This would be entered like the following:

3701/4161

SELECT title AS 'Kafka Books'

FROM books

JOIN authors USING (author_id)

WHERE name_last = 'Kafka';

+-------------------+

| Kafka Books |

+-------------------+

| The Castle |

| The Trial |

| The Metamorphosis |

| America |

+-------------------+

This statement will list the titles of Kafka books stored in the database. Notice that I've added the AS parameter next to the

column name title to change the column heading in the results set to Kafka Books. This is known as an alias. Looking at the

results here, we can see that the title for one of Kafka's books is incorrect. His book Amerika is spelled above with a "c" in

the table instead of a "k". This leads to the next section on changing data.

Changing & Deleting Data

In order to change existing data, a common method is to use the UPDATE statement. When changing data, though, we

need to be sure that we change the correct rows. In our example, there could be another book with the title America written

by a different author. Since the key column isbn has only unique numbers and we know the ISBN number for the book that

we want to change, we can use it to specify the row.

UPDATE books

SET title = 'Amerika'

WHERE isbn = '0805210644';

This will change the value of the title column for the row specified. We could change the value of other columns for the same

row by giving the column = value for each, separated by commas.

If we want to delete a row of data, we can use the DELETE statement. For instance, suppose that our fictitious bookstore

has decided no longer to carry books by John Grisham. By first running a SELECT statement, we determine the

identification number for the author to be 2034. Using this author identification number, we could enter the following:

DELETE FROM books

WHERE author_id = '2034';

This statement will delete all rows from the table books for the author_id given. To do a clean job of it, we'll have to do the

same for the authors table. We would just replace the table name in the statement above; everything else would be the

same.

Conclusion

This is a very basic primer for using MariaDB. Hopefully, it gives you the idea of how to get started with MariaDB. Each of

the SQL statements mentioned here have several more options and clauses each. We will cover these statements and

others in greater detail in other articles. For now, though, you can learn more about them from experimenting and by further

reading of the Knowledge Base online documentation. A downloadable PDF of much of the documentation is available here

.

6.1.3 Getting Data from MariaDB
Contents
1. Basic Elements

2. Selectivity and Order

3. Friendlier and More Complicated

4. Some Flags

5. Conclusion

The simplest way to retrieve data from MariaDB is to use the SELECT statement. Since the SELECT statement is an

essential SQL statement, it has many options available with it. It's not necessary to know or use them all4you could

execute very basic SELECT statements if that satisfies your needs. However, as you use MariaDB more, you may need

more powerful SELECT statements. In this article we will go through the basics of SELECT and will progress to more

involved SELECT statements;we will move from the beginner level to the more intermediate and hopefully you will find some

3702/4161

https://downloads.mariadb.org

benefit from this article regardless of your skill level. For absolute beginners who are just starting with MariaDB, you may

want to read the MariaDB Basics article.

Basic Elements

The basic, minimal elements of the SELECT statement call for the keyword SELECT , of course, the columns to select or to

retrieve, and the table from which to retrieve rows of data. Actually, for the columns to select, we can use the asterisk as a

wildcard to select all columns in a particular table. Using a database from a fictitious bookstore, we might enter the following

SQL statement to get a list of all columns and rows in a table containing information on books:

SELECT * FROM books;

This will retrieve all of the data contained in the books table. If we want to retrieve only certain columns, we would list them

in place of the asterisk in a comma-separated list like so:

SELECT isbn, title, author_id

FROM books;

This narrows the width of the results set by retrieving only three columns, but it still retrieves all of the rows in the table. If

the table contains thousands of rows of data, this may be more data than we want. If we want to limit the results to just a

few books, say five, we would include what is known as a LIMIT clause:

SELECT isbn, title, author_id

FROM books

LIMIT 5;

This will give us the first five rows found in the table. If we want to get the next ten found, we would add a starting point

parameter just before the number of rows to display, separated by a comma:

SELECT isbn, title, author_id

FROM books

LIMIT 5, 10;

Selectivity and Order

The previous statements have narrowed the number of columns and rows retrieved, but they haven't been very selective.

Suppose that we want only books written by a certain author, say Dostoevsky. Looking in the authors table we find that his

author identification number is 4729. Using a WHERE clause, we can retrieve a list of books from the database for this

particular author like so:

SELECT isbn, title

FROM books

WHERE author_id = 4729

LIMIT 5;

I removed the author_id from the list of columns to select, but left the basic LIMIT clause in because we want to point out

that the syntax is fairly strict on ordering of clauses and flags. You can't enter them in any order. You'll get an error in return.

The SQL statements we've looked at thus far will display the titles of books in the order in which they're found in the

database. If we want to put the results in alphanumeric order based on the values of the title column, for instance, we would

add an ORDER BY clause like this:

SELECT isbn, title

FROM books

WHERE author_id = 4729

ORDER BY title ASC

LIMIT 5;

Notice that the ORDER BY clause goes after the WHERE clause and before the LIMIT clause. Not only will this statement

display the rows in order by book title, but it will retrieve only the first five based on the ordering. That is to say, MariaDB will

first retrieve all of the rows based on the WHERE clause, order the data based on the ORDER BY clause, and then display a

limited number of rows based on the LIMIT clause. Hence the reason for the order of clauses. You may have noticed that we

slipped in the ASC flag. It tells MariaDB to order the rows in ascending order for the column name it follows. It's not

necessary, though, since ascending order is the default. However, if we want to display data in descending order, we would

replace the flag with DESC . To order by more than one column, additional columns may be given in the ORDER BY clause

in a comma separated list, each with the ASC or DESC flags if preferred.
3703/4161

Friendlier and More Complicated

So far we've been working with one table of data containing information on books for a fictitious bookstore. A database will

usually have more than one table, of course. In this particular database, there's also one called authors in which the name

and other information on authors is contained. To be able to select data from two tables in one SELECT statement, we will

have to tell MariaDB that we want to join the tables and will need to provide a join point. This can be done with a JOIN

clause as shown in the following SQL statement, with the results following it:

SELECT isbn, title,

CONCAT(name_first, ' ', name_last) AS author

FROM books

JOIN authors USING (author_id)

WHERE name_last = 'Dostoevsky'

ORDER BY title ASC

LIMIT 5;

+-------------+------------------------+-------------------+

| isbn | title | author |

+-------------+------------------------+-------------------+

| 0553212168 | Brothers Karamozov | Fyodor Dostoevsky |

| 0679420290 | Crime & Punishment | Fyodor Dostoevsky |

| 0553211757 | Crime & Punishment | Fyodor Dostoevsky |

| 0192834118 | Idiot | Fyodor Dostoevsky |

| 067973452X | Notes from Underground | Fyodor Dostoevsky |

+-------------+------------------------+-------------------+

5 rows in set (0.00 sec)

Our SELECT statement is getting hefty, but it's the same one to which we've been adding. Don't let the clutter fluster you.

Looking for the new elements, let's focus on the JOIN clause first. There are a few possible ways to construct a join. This

method works if you're using a newer version of MariaDB and if both tables contain a column of the same name and value.

Otherwise you'll have to redo the JOIN clause to look something like this:

...

JOIN authors ON author_id = row_id

...

This excerpt is based on the assumption that the key field in the authors table is not called author_id, but row_id instead.

There's much more that can be said about joins, but that would make for a much longer article. If you want to learn more on

joins, look at MariaDB's documentation page on JOIN syntax.

Looking again at the last full SQL statement above, you must have spotted the CONCAT() function that we added to the on-

going example statement. This string function takes the values of the columns and strings given and pastes them together,

to give one neat field in the results. We also employed the AS parameter to change the heading of the results set for the

field to author. This is much tider. Since we joined the books and the authors tables together, we were able to search for

books based on the author's last name rather than having to look up the author ID first. This is a much friendlier method,

albeit more complicated. Incidentally, we can have MariaDB check columns from both tables to narrow our search. We

would just add column = value pairs, separated by commas in the WHERE clause. Notice that the string containing the

author's name is wrapped in quotes4otherwise, the string would be considered a column name and we'd get an error.

The name Dostoevsky is sometimes spelled Dostoevskii, as well as a few other ways. If we're not sure how it's spelled in

the authors table, we could use the LIKE operator instead of the equal-sign, along with a wildcard. If we think the author's

name is probably spelled either of the two ways mentioned, we could enter something like this:

SELECT isbn, title,

CONCAT(name_first, ' ', name_last) AS author

FROM books

JOIN authors USING (author_id)

WHERE name_last LIKE 'Dostoevsk%'

ORDER BY title ASC

LIMIT 5;

This will match any author last name starting with Dostoevsk. Notice that the wildcard here is not an asterisk, but a percent-

sign.

Some Flags

There are many flags or parameters that can be used in a SELECT statement. To list and explain all of them with examples

would make this a very lengthy article. The reality is that most people never use some of them anyway. So, let's take a look

3704/4161

at a few that you may find useful as you get more involved with MariaDB or if you work with large tables on very active

servers.

The first flag that may be given, it goes immediately after the SELECT keyword, is ALL . By default, all rows that meet the

requirements of the various clauses given are selected, so this isn't necessary. If instead we would only want the first

occurrence of a particular criteria to be displayed, we could add the DISTINCT option. For instance, for authors like

Dostoevsky there will be several printings of a particular title. In the results shown earlier you may have noticed that there

were two copies of Crime & Punishment listed, however they have different ISBN numbers and different publishers.

Suppose that for our search we only want one row displayed for each title. We could do that like so:

SELECT DISTINCT isbn, title

FROM books

JOIN authors USING (author_id)

WHERE name_last = 'Dostoevsky'

ORDER BY title;

We've thinned out the ongoing SQL statement a bit for clarity. This statement will result in only one row displayed for Crime

& Punishment and it will be the first one found.

If we're retrieving data from an extremely busy database, by default any other SQL statements entered simultaneously

which are changing or updating data will be executed before a SELECT statement. SELECT statements are considered to

be of lower priority. However, if we would like a particular SELECT statement to be given a higher priority, we can add the

keyword HIGH_PRIORITY. Modifying the previous SQL statement for this factor, we would enter it like this:

SELECT DISTINCT HIGH_PRIORITY isbn, title

FROM books

JOIN authors USING (author_id)

WHERE name_last = 'Dostoevsky'

ORDER BY title;

You may have noticed in the one example earlier in which the results are shown, that there's a status line displayed that

specifies the number of rows in the results set. This is less than the number of rows that were found in the database that met

the statement's criteria. It's less because we used a LIMIT clause. If we add the SQL_CALC_FOUND_ROWS flag just

before the column list, MariaDB will calculate the number of columns found even if there is a LIMIT clause.

SELECT SQL_CALC_FOUND_ROWS isbn, title

FROM books

JOIN authors USING (author_id)

WHERE name_last = 'Dostoevsky'

LIMIT 5;

To retrieve this information, though, we will have to use the FOUND_ROWS() function like so:

SELECT FOUND_ROWS();

+--------------+

| FOUND_ROWS() |

+--------------+

| 26 |

+--------------+

This value is temporary and will be lost if the connection is terminated. It cannot be retrieved by any other client session. It

relates only to the current session and the value for the variable when it was last calculated.

Conclusion

There are several more parameters and possibilities for the SELECT statement that we had to skip to keep this article a

reasonable length. A popular one that we left out is the GROUP BY clause for calculating aggregate data for columns (e.g.,

an average). There are several flags for caching results and a clause for exporting a results set to a text file. If you would

like to learn more about SELECT and all of the options available, look at the on-line documentation for SELECT statements.

6.1.4 Adding and Changing Data in MariaDB

3705/4161

Contents
1. Adding Data

2. Priority

3. Contingent Additions

4. Replacement Data

5. Updating Data

6. Conclusion

There are several ways to add and to change data in MariaDB. There are a few SQL statements that you can use, each with

a few options. Additionally, there are twists that you can do by mixing SQL statements together with various clauses. In this

article, we will explore the ways in which data can be added and changed in MariaDB.

Adding Data

To add data to a table in MariaDB, you will need to use the INSERT statement. Its basic, minimal syntax is the command

INSERT followed by the table name and then the keyword VALUES with a comma separated list of values contained in

parentheses:

INSERT table1

VALUES('text1','text2','text3');

In this example, text is added to a table called table1, which contains only three columns 4the same number of values that

we're inserting. The number of columns must match. If you don't want to insert data into all of the columns of a table,

though, you could name the columns desired:

INSERT INTO table1

(col3, col1)

VALUES('text3','text1');

Notice that the keyword INTO was added here. This is optional and has no effect on MariaDB. It's only a matter of

grammatical preference. In this example we not only name the columns, but we list them in a different order. This is

acceptable to MariaDB. Just be sure to list the values in the same order. If you're going to insert data into a table and want

to specify all of the values except one (say the key column since it's an auto-incremented one), then you could just give a

value of DEFAULT to keep from having to list the columns. Incidentally, you can give the column names even if you're

naming all of them. It's just unnecessary unless you're going to reorder them as we did in this last example.

When you have many rows of data to insert into the same table, it can be more efficient to insert all of the rows in one SQL

statement. Multiple row insertions can be done like so:

INSERT IGNORE

INTO table2

VALUES('id1','text','text'),

('id2','text','text'),

('id2','text','text');

Notice that the keyword VALUES is used only once and each row is contained in its own set of parentheses and each set is

separated by commas. We've added an intentional mistake to this example: We are attempting to insert three rows of data

into table2 for which the first column happens to be a UNIQUE key field. The third row entered here has the same

identification number for the key column as the second row. This would normally result in an error and none of the three

rows would be inserted. However, since the statement has an IGNORE flag, duplicates will be ignored and not inserted, but

the other rows will still be inserted. So, the first and second rows above will be inserted and the third one won't.

Priority

An INSERT statement takes priority over read statements (i.e., SELECT statements). An INSERT will lock the table and

force other clients to wait until it's finished. On a busy MariaDB server that has many simultaneous requests for data, this

could cause users to experience delays when you run a script that performs a series of INSERT statements. If you don't

want user requests to be put on hold and you can wait to insert the data, you could use the LOW_PRIORITY flag:

INSERT LOW_PRIORITY

INTO table1

VALUES('text1','text2','text3');

The LOW_PRIORITY flag will put the INSERT statement in queue, waiting for all current and pending requests to be

completed before it's performed. If new requests are made while a low priority statement is waiting, then they are put ahead

of it in the queue. MariaDB does not begin to execute a low priority statement until there are no other requests waiting.

3706/4161

Once the transaction begins, though, the table is locked and any other requests for data from the table that come in after it

starts must wait until it's completed. Because it locks the table, low priority statements will prevent simultaneous insertions

from other clients even if you're dealing with a MyISAM table. Incidentally, notice that the LOW_PRIORITY flag comes

before the INTO .

One potential inconvenience with an INSERT LOW_PRIORITY statement is that the client will be tied up waiting for the

statement to be completed successfully. So if you're inserting data into a busy server with a low priority setting using the

mariadb client, your client could be locked up for minutes, maybe hours depending on how busy your server is at the time.

As an alternative either to making other clients with read requests wait or to having your client wait, you can use the

DELAYED flag instead of the LOW_PRIORITY flag:

INSERT DELAYED

INTO table1

VALUES('text1','text2','text3');

MariaDB will take the request as a low priority one and put it on its list of tasks to perform when it has a break. However, it

will immediately release the client so that the client can go on to enter other SQL statements or even exit. Another

advantage of this method is that multiple INSERT DELAYED requests are batched together for block insertion when there is

a gap, making the process potentially faster than INSERT LOW_PRIORITY . The flaw in this choice, however, is that the

client is never told if a delayed insertion is successfully made or not. The client is informed of error messages when the

statement is entered4the statement has to be valid before it will be queued 4but it's not told of problems that occur after it's

accepted. This brings up another flaw: delayed insertions are stored in the server's memory. So if the MariaDB daemon

(mariadbd) dies or is manually killed, then the transactions are lost and the client is not notified of the failure. So DELAYED

is not always a good alternative.

Contingent Additions

As an added twist to INSERT, you can combine it with a SELECT statement. Suppose that you have a table called

employees which contains employee information for your company. Suppose further that you have a column to indicate

whether an employee is on the company's softball team. However, you one day decide to create a separate database and

table for the softball team's data that someone else will administer. To get the database ready for the new administrator, you

have to copy some data for team members to the new table. Here's one way you can accomplish this task:

INSERT INTO softball_team

(last, first, telephone)

SELECT name_last, name_first, tel_home

FROM company.employees

WHERE softball='Y';

In this SQL statement the columns in which data is to be inserted into are listed, then the complete SELECT statement

follows with the appropriate WHERE clause to determine if an employee is on the softball team. Since we're executing this

statement from the new database and since the table employees is in a separate database called company, we have to

specify it as you see here. By the way, INSERT...SELECT statements cannot be performed on the same table.

Replacement Data

When you're adding massive amounts of data to a table that has a key field, as mentioned earlier, you can use the IGNORE

flag to prevent duplicates from being inserted, but still allow unique rows to be entered. However, there may be times when

you actually want to replace the rows with the same key fields with the new ones. In such a situation, instead of using

INSERT you can use a REPLACE statement:

REPLACE LOW_PRIORITY

INTO table2 (id, col1, col2)

VALUES('id1','text','text'),

('id2','text','text'),

('id3','text','text');

Notice that the syntax is the same as an INSERT statement. The flags all have the same effect, as well. Also, multiple rows

may be inserted, but there's no need for the IGNORE flag since duplicates won't happen4the originals are just overwritten.

Actually, when a row is replaced, it's first deleted completely and the new row is then inserted. Any columns without values

in the new row will be given the default values for the columns. None of the values of the old row are kept. Incidentally,

REPLACE will also allow you to combine it with a SELECT statement as we saw with the INSERT statement earlier.

Updating Data

If you want to change the data contained in existing records, but only for certain columns, then you would need to use an

3707/4161

UPDATE statement. The syntax for UPDATE is a little bit different from the syntax shown before for INSERT and REPLACE

statements:

UPDATE LOW_PRIORITY table3

SET col1 = 'text-a', col2='text-b'

WHERE id < 100;

In the SQL statement here, we are changing the value of the two columns named individually using the SET clause.

Incidentally, the SET clause optionally can be used in INSERT and REPLACE statements, but it eliminates the multiple row

option. In the statement above, we're also using a WHERE clause to determine which records are changed: only rows with

an id that has a value less than 100 are updated. Notice that the LOW_PRIORITY flag can be used with this statement, too.

The IGNORE flag can be used, as well.

A useful feature of the UPDATE statement is that it allows the use of the current value of a column to update the same

column. For instance, suppose you want to add one day to the value of a date column where the date is a Sunday. You

could do the following:

UPDATE table5

SET col_date = DATE_ADD(col_date, INTERVAL 1 DAY)

WHERE DAYOFWEEK(col_date) = 1;

For rows where the day of the week is Sunday, the DATE_ADD() function will take the value of col_date before it's updated

and add one day to it. MariaDB will then take this sum and set col_date to it.

There are a couple more twists that you can now do with the UPDATE statement: if you want to update the rows in a

specific order, you can add an ORDER BY clause. You can also limit the number of rows that are updated with a LIMIT

clause. Below is an example of both of these clauses:

UPDATE LOW_PRIORITY table3

SET col1='text-a', col2='text-b'

WHERE id < 100

ORDER BY col3 DESC

LIMIT 10;

The ordering can be descending as indicated here by the DESC flag, or ascending with either the ASC flag or by just leaving

it out, as ascending is the default. The LIMIT clause, of course, limits the number of rows affected to ten here.

If you want to refer to multiple tables in one UPDATE statement, you can do so like this:

UPDATE table3, table4

SET table3.col1 = table4.col1

WHERE table3.id = table4.id;

Here we see a join between the two tables named. In table3, the value of col1 is set to the value of the same column in

table4 where the values of id from each match. We're not updating both tables here; we're just accessing both. We must

specify the table name for each column to prevent an ambiguity error. Incidentally, ORDER BY and LIMIT clauses aren't

allowed with multiple table updates.

There's another combination that you can do with the INSERT statement that we didn't mention earlier. It involves the

UPDATE statement. When inserting multiple rows of data, if you want to note which rows had potentially duplicate entries

and which ones are new, you could add a column called status and change it's value accordingly with a statement like this

one:

INSERT IGNORE INTO table1

(id, col1, col2, status)

VALUES('1012','text','text','new'),

('1025,'text','text','new'),

('1030,'text','text','new')

ON DUPLICATE KEY

UPDATE status = 'old';

Because of the IGNORE flag, errors will not be generated, duplicates won't be inserted or replaced, but the rest will be

added. Because of the ON DUPLICATE KEY, the column status of the original row will be set to old when there are

duplicate entry attempts. The rest will be inserted and their status set to new.

Conclusion

As you can see from some of these SQL statements, MariaDB offers you quite a few ways to add and to change data. In

3708/4161

addition to these methods, there are also some bulk methods of adding and changing data in a table. You could use the

LOAD DATA INFILE statement and the mariadb-dump command-line utility. These methods are covered in another article

on Importing Data into MariaDB.

6.1.5 Altering Tables in MariaDB
Contents
1. Before Beginning

2. Basic Addition and More

3. Changing One's Mind

4. The Default

5. Indexes

6. Renaming & Shifting Tables

7. Summation

Despite a MariaDB developer's best planning, occasionally one needs to change the structure or other aspects of tables.

This is not very difficult, but some developers are unfamiliar with the syntax for the functions used in MariaDB to accomplish

this. And some changes can be very frustrating. In this article we'll explore the ways to alter tables in MariaDB and we'll give

some precautions about related potential data problems.

Before Beginning

For the examples in this article, we will refer to a database called db1 containing a table called clients . The clients

table is for keeping track of client names and addresses. To start off, we'll enter a DESCRIBE statement to see what the

table looks like:

DESCRIBE clients;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| cust_id | int(11) | | PRI | 0 | |

| name | varchar(25) | YES | | NULL | |

| address | varchar(25) | YES | | NULL | |

| city | varchar(25) | YES | | NULL | |

| state | char(2) | YES | | NULL | |

| zip | varchar(10) | YES | | NULL | |

| client_type | varchar(4) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

This is a very simple table that will hold very little information. However, it's sufficient for the examples here in which we will

change several of its columns. Before doing any structural changes to a table in MariaDB, especially if it contains data, one

should make a backup of the table to be changed. There are a few ways to do this, but some choices may not be permitted

by your web hosting company. Even if your database is on your own server, though, the mariadb-dump utility is typically the

best tool for making and restoring backups in MariaDB, and it's generally permitted by web hosting companies. To backup

the clients table with mariadb-dump, we will enter the following from the command-line:

mariadb-dump --user='username' --password='password' --add-locks db1 clients > clients.sql

As you can see, the username and password are given on the first line. On the next line, the --add-locks option is used

to lock the table before backing up and to unlock automatically it when the backup is finished. There are many other options

in mariadb-dump that could be used, but for our purposes this one is all that's necessary. Incidentally, this statement can be

entered in one line from the shell (i.e., not from the mariadb client), or it can be entered on multiple lines as shown here by

using the back-slash (i.e., /) to let the shell know that more is to follow. On the third line above, the database name is

given, followed by the table name. The redirect (i.e., >) tells the shell to send the results of the dump to a text file called

clients.sql in the current directory. A directory path could be put in front of the file name to create the file elsewhere. If

the table should need to be restored, the following can be run from the shell:

mariadb --user='username' --password='password' db1 < clients.sql

Notice that this line does not use the mariadb-dump utility. It uses the mariadb client from the outside, so to speak.

When the dump file (clients.sql) is read into the database, it will delete the clients table and it's data in MariaDB

before restoring the backup copy with its data. So be sure that users haven't added data in the interim. In the examples in

this article, we are assuming that there isn't any data in the tables yet.

3709/4161

Basic Addition and More

In order to add a column to an existing MariaDB table, one would use the ALTER TABLE statement. To demonstrate,

suppose that it has been decided that there should be a column for the client's account status (i.e., active or inactive). To

make this change, the following is entered:

ALTER TABLE clients

ADD COLUMN status CHAR(2);

This will add the column status to the end with a fixed width of two characters (i.e., AC for active and IA for inactive). In

looking over the table again, it's decided that another field for client apartment numbers or the like needs to be added. That

data could be stored in the address column, but it would better for it to be in a separate column. An ALTER TABLE

statement could be entered like above, but it will look tidier if the new column is located right after the address column. To do

this, we'll use the AFTER option:

ALTER TABLE clients

ADD COLUMN address2 varchar(25)

AFTER address;

By the way, to add a column to the first position, you would replace the last line of the SQL statement above to read like

this:

...

FIRST;

Before moving on, let's take a look at the table's structure so far:

DESCRIBE clients;

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| cust_id | int(11) | | PRI | 0 | |

| name | varchar(25) | YES | | NULL | |

| address | varchar(25) | YES | | NULL | |

| address2 | varchar(25) | YES | | NULL | |

| city | varchar(25) | YES | | NULL | |

| state | char(2) | YES | | NULL | |

| zip | varchar(10) | YES | | NULL | |

| client_type | varchar(4) | YES | | NULL | |

| status | char(2) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

Changing One's Mind

After looking over the above table display, it's decided that it might be better if the status column has the choices of 'AC' and

'IA' enumerated. To make this change, we'll enter the following SQL statement:

ALTER TABLE clients

CHANGE status status enum('AC','IA');

Notice that the column name status is specified twice. Although the column name isn't being changed, it still must be

respecified. To change the column name (from status to active), while leaving the enumerated list the same, we

specify the new column name in the second position:

ALTER TABLE clients

CHANGE status active ENUM('AC','IA');

Here we have the current column name and then the new column name, along with the data type specifications (i.e.,

ENUM), even though the result is only a name change. With the CHANGE clause everything must be stated, even items that

are not to be changed.

In checking the table structure again, more changes are decided on: The column address is to be renamed to address1 and

changed to forty characters wide. Also, the enumeration of active is to have 'yes' and 'no' choices. The problem with

changing enumerations is that data can be clobbered in the change if one isn't careful. We've glossed over this possibility

before because we are assuming that clients is empty. Let's take a look at how the modifications suggested could be made

with the table containing data:

3710/4161

ALTER TABLE clients

CHANGE address address1 varchar(40),

MODIFY active enum('yes','no','AC','IA');

UPDATE clients

SET active = 'yes'

WHERE active = 'AC';

UPDATE clients

SET active = 'no'

WHERE active = 'IA';

ALTER TABLE clients

MODIFY active enum('yes','no');

The first SQL statement above changes address and modifies active in preparation for the transition. Notice the use of a

MODIFY clause. It works the same as CHANGE , but it is only used for changing data types and not column names.

Therefore, the column name isn't respecified. Notice also that there is a comma after the CHANGE clause. You can string

several CHANGE and MODIFY clauses together with comma separators. We've enumerated both the new choices and the

old ones to be able to migrate the data. The two UPDATE statements are designed to adjust the data accordingly and the

last ALTER TABLE statement is to remove the old enumerated choices for the status column.

In talking to the boss, we find out that the client_type column isn't going to be used. So we enter the following in

MariaDB:

ALTER TABLE clients

DROP client_type;

This deletes client_type and its data, but not the whole table, obviously. Nevertheless, it is a permanent and non-

reversible action; there won't be a confirmation request when using the mariadb client. This is how it is with all MariaDB

DROP statements and clauses. So be sure that you want to delete an element and its data before using a DROP. As

mentioned earlier, be sure that you have a backup of your tables before doing any structured changes.

The Default

You may have noticed that the results of the DESCRIBE statements shown before have a heading called 'Default' and just

about all of the fields have a default value of NULL. This means that there are no default values and a null value is allowed

and will be used if a value isn't specified when a row is created. To be able to specify a default value other than NULL, an

ALTER TABLE statement can be entered with a SET clause. Suppose we're located in Louisiana and we want a default

value of 'LA' for state since that's where our clients are usually located. We would enter the following to set the default:

ALTER TABLE clients

ALTER state SET DEFAULT 'LA';

Notice that the second line starts with ALTER and not CHANGE . If we change our mind about having a default value for

state, we would enter the following to reset it back to NULL (or whatever the initial default value would be based on the data

type):

ALTER TABLE clients

ALTER state DROP DEFAULT;

This particular DROP doesn't delete data, by the way.

Indexes

One of the most irritating tasks in making changes to a table for newcomers is dealing with indexes. If they try to rename a

column that is indexed by only using an ALTER TABLE statement like we used earlier, they will get a frustrating and

confusing error message:

ALTER TABLE clients

CHANGE cust_id client_id INT

PRIMARY KEY;

ERROR 1068: Multiple primary key defined

If they're typing this column change from memory, they will wear themselves out trying different deviations thinking that they

3711/4161

remembered the syntax wrong. What most newcomers to MariaDB don't seem to realize is that the index is separate from

the indexed column. To illustrate, let's take a look at the index for clients by using the SHOW INDEX statement:

SHOW INDEX FROM clientsG;

*************************** 1. row ***************************

 Table: clients

 Non_unique: 0

 Key_name: PRIMARY

 Seq_in_index: 1

 Column_name: cust_id

 Collation: A

 Cardinality: 0

 Sub_part: NULL

 Packed: NULL

 Comment:

1 row in set (0.00 sec)

The text above shows that behind the scenes there is an index associated with cust_id . The column cust_id is not the

index. Incidentally, the G at the end of the SHOW INDEX statement is to display the results in portrait instead of landscape

format. Before the name of an indexed column can be changed, the index related to it must be eliminated. The index is not

automatically changed or deleted. Therefore, in the example above, MariaDB thinks that the developer is trying to create

another primary key index. So, a DROP clause for the index must be entered first and then a CHANGE for the column name

can be made along with the establishing of a new index:

ALTER TABLE clients

DROP PRIMARY KEY,

CHANGE cust_id

client_id INT PRIMARY KEY;

The order of these clauses is necessary. The index must be dropped before the column can be renamed. The syntax here is

for a PRIMARY KEY . There are other types of indexes, of course. To change a column that has an index type other than a

PRIMARY KEY . Assuming for a moment that cust_id has a UNIQUE index, this is what we would enter to change its

name:

ALTER TABLE clients

DROP UNIQUE cust_id

CHANGE cust_id

client_id INT UNIQUE;

Although the index type can be changed easily, MariaDB won't permit you to do so when there are duplicate rows of data

and when going from an index that allows duplicates (e.g., INDEX) to one that doesn't (e.g., UNIQUE). If you actually do

want to eliminate the duplicates, though, you can add the IGNORE flag to force the duplicates to be deleted:

ALTER IGNORE TABLE clients

DROP INDEX cust_id

CHANGE cust_id

client_id INT UNIQUE;

In this example, we're not only changing the indexed column's name, but we're also changing the index type from INDEX to

UNIQUE . And, again, the IGNORE flag tells MariaDB to ignore any records with duplicate values for cust_id .

Renaming & Shifting Tables

The previous sections covered how to make changes to columns in a table. Sometimes you may want to rename a table. To

change the name of the clients table to client_addresses we enter this:

RENAME TABLE clients

TO client_addresses;

The RENAME TABLE statement will also allows a table to be moved to another database just by adding the receiving

database's name in front of the new table name, separated by a dot. Of course, you can move a table without renaming it.

To move the newly named client_addresses table to the database db2, we enter this:

RENAME TABLE client_addresses

TO db2.client_addresses;

3712/4161

Finally, with tables that contain data (excluding InnoDB tables), occasionally it's desirable to resort the data within the table.

Although the ORDER BY clause in a SELECT statement can do this on the fly as needed, sometimes developers want to do

this somewhat permanently to the data within the table based on a particular column or columns. It can be done by entering

the following:

ALTER TABLE client_addresses

ORDER BY city, name;

Notice that we're sorting by the city first and then by the client's name. Now when the developer enters a SELECT statement

without an ORDER BY clause, the results are already ordered by the default of city and then name, at least until more data

is added to the table.

This is not applicable to InnoDB tables, the default, which are ordered according to the clustered index, unless the primary

key is defined on the specific columns.

Summation

Good planning is certainly important in developing a MariaDB database. However, as you can see, MariaDB is malleable

enough that it can be reshaped without much trouble. Just be sure to make a backup before restructuring a table and be

sure to check your work and the data when you're finished. With all of this in mind, you should feel comfortable in creating

tables since they don't have to be perfect from the beginning.

6.1.6 Changing Times in MariaDB
Contents
1. The Nature of Time

2. Around the Clock

3. Today or Tomorrow?

4. Around the Calendar

5. Stepping Back

6. Conclusion

The article entitled, Doing Time with MariaDB dealt with time and date columns in MariaDB and how to selectively retrieve

and format time and date elements. This article will go a little further by exploring special functions that are available in

MariaDB to modify time and date.

The Nature of Time

For most of us, there is a morning and an afternoon in each day. Days are measured in either two twelve-hour blocks or one

twenty-four-hour block. There are twelve months in a year, with each month consisting of thirty or thirty-one days. The only

exception is the month of February which contains twenty-eight days usually, but once every four years it contains twenty-

nine. While this all may be rather natural, putting it into a computer program can make it seem very unnatural and frustrating.

For the scenario in this article we have a MariaDB database in which customers enter work requests through the web. When

they enter a trouble ticket, a record is entered into a MariaDB table called, tickets. This record contains several fields, one of

which is the date that the ticket was entered called ticket_date. Another contains the time the ticket was entered. It's called

simply, entered. Yet another column is called promised; it's the time that the customer was promised that their problem

would be resolved. Both the entered and the promised columns are time data type columns. The value of entered is

determined from the current time of the server. The value of promised is determined by adding a number of hours to the

value of entered, depending on the urgency of the ticket set by the customer. For instance, tickets marked "ASAP" are to be

completed within two hours according to our company's policy. This all works nicely in testing, but occasionally customers

create tickets at odd times and on odd days.

Around the Clock

Setting aside the potential problems for a moment, let's look at a simple example of how we might add tickets. Suppose we

wanted to write a CGI script (in Perl or PHP) that will allow users to create tickets on-line any time. We might use the

following SQL statement in our script:

INSERT INTO tickets

(client_id, urgency, trouble,

ticket_date, entered, promised)

VALUES('$client_id', '$urgency', '$trouble',

CURDATE(), CURTIME(),

SEC_TO_TIME(TIME_TO_SEC(CURTIME()) + 7200));

If you're unfamiliar with INSERT statements and the use of script variables (e.g., $client_id), you may want to go back and

3713/4161

read an earlier article (MariaDB Basics) in this series which explains both. For the purposes of this article, however, let's

focus on the minor formula in the SQL statement above for calculating the promised time, the last line. The TIME_TO_SEC(

) function converts a time to seconds so that a calculation may be performed. In this case, the current time is converted to

seconds. The formula above then adds 7200 seconds (which is two hours) to that. In order to insert the seconds sum into a

time column (i.e., promised), it needs to be converted to a time format. Hence, the calculation is wrapped up in the

SEC_TO_TIME() function.

As nice as the SQL statement above is, a problem arises when a customer runs it at 11:00 p.m (or 23:00 in MariaDB time)

and the promised time is to be two hours later. The SQL statement above will calculate a promised time of 25:00. What time

is that in human or computer terms? As humans, we know that it's meant to be 1:00 a.m., but MariaDB will need this

clarified. One solution would be to place the time formula above inside of an IF clause in MariaDB. To do this, the last line of

the SQL statement would be replaced with these lines:

...

IF((TIME_TO_SEC(CURTIME()) + 7200) < 86400,

SEC_TO_TIME(TIME_TO_SEC(CURTIME()) + 7200),

SEC_TO_TIME((TIME_TO_SEC(CURTIME()) + 7200) - 86400)));

The first element in the IF clause is the test. The second piece is the value used if the test passes. The third is the value if

the test fails. So, if the total seconds is less than 86,400 (i.e., the number of seconds in one day), then the total seconds of

the current time, converted to the time format is to be used. Otherwise, the total seconds of the current time minus 86,400

seconds, converted to the time format is to be used. Incidentally, there's an extra closing parenthesis at the end of this SQL

statement excerpt because there was an opening one as part of the VALUES clause that's not shown here. Although the

statement above works, it's a bit excessive and can be accomplished a little more succinctly if one reconsiders the purpose

of the IF clause.

What we're trying to determine in the IF clause is the number of seconds into the day in which the work was promised to be

done, meaning the excess amount of time of the day (i.e., one hour). For such a calculation, the modulo division operator

(i.e., the %) can be used. The modulo division operator will give the remainder of a division. For instance, the result of

SELECT 14 % 5; is 4 . That is to say, 5 goes into 14 two complete times with 4 left over. As another example, the result

of SELECT 3 % 5; is 3; that is to say, 5 goes into 3 zero times with 3 left over. Using this arithmetic operator in the time

formula above, we can eliminate the IF clause and use the following to accomplish our task:

...

SEC_TO_TIME((TIME_TO_SEC(CURTIME()) + 7200) % 86400));

If the current time is 23:00, then the time in seconds will be 82,800. The formula above will add 7200 to 82,800 to make

90,000 seconds. The modulo division operator will divide 86,400 into 90,000 one time, giving a remainder of 3600 seconds.

The SEC_TO_TIME function will then convert 3600 seconds to one hour or 1:00 a.m.

Today or Tomorrow?

There is a problem with the results from the formula at the end of the previous section. If the customer is promised 1:00

a.m., is that time today or tomorrow? Again, as humans we know that since the promised time must be after the entered

time, it must be 1:00 a.m. on the following day. Since computers don't make these assumptions, though, we'll have to make

some adjustments to the tickets table and the SQL statement. To be able to record the date and time in each column, we'll

first change the column types of entered and promised from time to datetime. We'll do the following SQL statements to

migrate the data and to clean up the table:

ALTER TABLE tickets,

CHANGE COLUMN entered entered_old TIME,

CHANGE COLUMN promised promised_old TIME,

ADD COLUMN entered DATETIME,

ADD COLUMN promised DATETIME;

UPDATE tickets

SET entered = CONCAT(ticket_date, ' ', entered_old),

promised = CONCAT(ticket_date, ' ', promised_old);

ALTER TABLE tickets,

DROP COLUMN entered_old,

DROP COLUMN promised_old,

DROP COLUMN ticket_date;

The first SQL statement above alters the table to change the names of the time columns temporarily and to add the new

columns with datetime types. If we were instead just to change the existing time columns to datetime types without this two

step process, the data would be clobbered and reset to all zeros. The next SQL statement copies the values of the

ticket_date column and pastes it together with the value of one of the old time columns to come up with the new date and

3714/4161

time value for the entered and promised dates and times. The flaw in this statement, of course, is that it doesn't deal with the

problems with some promised times that the previous layout caused. In fact, it reinforces it by giving a 1:00 a.m. promised

time the date of the entered time. This will either have to be fixed manually if it's important to the developer, or with a script

that will compare the two time columns. Either way, it's a little out of the scope of this article, so we'll move on. The last SQL

statement above deletes the old time columns and the old date column now that the data has been migrated. By the way, it's

a good practice to backup the data before altering a table. Also, you probably would run a SELECT statement before the

last SQL statement above to check the migrated data before dropping the old columns.

Having changed the column types, we can now use the function DATE_ADD(), which can deal with times that exceed

twenty-four hours so that the problem with times straddling the midnight hour won't reoccur. Therefore, our on-going SQL

statement becomes this:

INSERT INTO tickets

(client_id, urgency, trouble,

entered, promised)

VALUES('$client_id', '$urgency', '$trouble',

NOW(),

DATE_ADD(NOW(), INTERVAL 2 HOUR));

First notice that the field ticket_date was eliminated and CURTIME() was replaced with NOW(), which provides the date

and time in one. In the last line we see DATE_ADD(): an interval of two hours is added to the date and time now (or rather

when the record is created). If the time rolls into the next day, then the date is advanced by one and the correct hour is set

accordingly.

The DATE_ADD() function will also allow for the addition of minutes. The directive HOUR would be replaced with MINUTE .

To add both hours and minutes (e.g., two hours and thirty minutes), the last line of the SQL statement above could read like

this:

...

DATE_ADD(NOW(), INTERVAL '2:30' HOUR_MINUTE));

If the time in which the statement is run is 11:00 p.m., the result would be 1:30 a.m. on the next day.

Around the Calendar

The dilemma that can occur with calculations involving hours that wrap around the clock, can similarly occur with

calculations involving days that roll into a new month. This problem was fairly easy to resolve with an arithmetic operator

when dealing with a constant like the number of seconds in a day. However, a formula to deal with the various number of

days in each month would be very lengthy. For instance, if we were simply to add five days to the date February 27, we

would get February 32. Imagine trying to create an SQL statement to figure out whether that's supposed to be March 1, 2,

3, or 4--depending on whether the previous month is a regular month with 30 or 31 days, or the one irregular month with 28

or 29 days, depending on the year.

Fortunately (as you probably have already guessed), DATE_ADD() will solve the month dilemma, as well. If instead of

promising that tickets will be resolved within a couple hours of the time they are entered, we promise resolution within five

days, the SQL statement would look like this:

INSERT INTO tickets

(client_id, urgency, trouble,

entered, promised)

VALUES('$client_id', '$urgency', '$trouble',

NOW(),

DATE_ADD(NOW(), INTERVAL 5 DAY));

If this statement is run on February 27, then the value of promised would be March 3 or 4, depending on whether it is a leap

year. Which one will be determined by the DATE_ADD() function, requiring no fancy formula.

Just as hours and minutes can be mixed with DATE_ADD(), days and hours can be mixed, as well. To make the value of

promised two days and six hours from now, the last line of the SQL statement above would read like this:

...

DATE_ADD(NOW(), INTERVAL '2 6' DAY_HOUR));

The function DATE_ADD() will also allow the addition of months and of years. For instance, to increase the date by one

year and two months, the SQL statement would be adjusted to look like this:

...

DATE_ADD(NOW(), INTERVAL '1 2' YEAR_MONTH));

3715/4161

This increases the year by one and the month by two. These intervals have no effect on time or day values, though. So, if

the value of NOW() is 2017-09-15 23:00 , then the value of promised would become 2018-11-15 23:00, regardless of

whether next year is a leap year and regardless of the number of days in each intervening month.

Stepping Back

It stands to reason that if one wants to add days to the current date, then one will want to subtract days in an equally

agreeable manner. For subtracting days we can still use the DATE_ADD function. Just put a negative sign in front of the

interval value like this:

...

DATE_ADD(NOW(), INTERVAL -5 DAY));

This will give a value five days before the current date. An alternative would be to use the DATE_SUB() function which

subtracts from the date given. The above amendment (subtracting five days from the current date) could be entered like so:

...

DATE_SUB(NOW(), INTERVAL 5 DAY));

Notice that the 5 is not preceded by a negative sign. If it were, it would have the effect of adding five days.

Conclusion

This article along with the previous one on time and date in MariaDB in no way exhaust the topic. There are many more

functions and tricks to manipulating temporal values in MariaDB, not to mention what can be done with the extension of a

script using a programming language like PHP. Plus, new functions are occasionally being added to MariaDB.

6.1.7 Doing Time with MariaDB
Contents
1. About Time

2. Telling Time

3. How to get a Date

4. What is the Time?

5. Date & Time Combined

6. Fine Time Pieces

7. Clean up Time

8. Time to End

The recording of date and time in a MariaDB database is a very common requirement. For gathering temporal data, one

needs to know which type of columns to use in a table. More importantly is knowing how to record chronological data and

how to retrieve it in various formats. Although this is a seemingly basic topic, there are many built-in time functions that can

be used for more accurate SQL statements and better formatting of data. In this article we will explore these various

aspects of how to do time with MariaDB.

About Time

Since date and time are only numeric strings, they can be stored in a regular character column. However, by using temporal

data type columns, you can make use of several built-in functions offered by MariaDB. Currently, there are five temporal

data types available: DATE , TIME , DATETIME , TIMESTAMP , and YEAR . The DATE column type is for recording the date

only and is basically in this format: yyyy-mm-dd . The TIME column type is for recording time in this format: hhh:mm:ss .

To record a combination of date and time, there is the DATETIME column type: yyyy-mm-dd hh:mm:ss . The TIMESTAMP

column is similar to DATETIME , but it's a little limited in its range of allowable time. It starts at the Unix epoc time (i.e., 1970-

01-01) and ends at the end of 2037. Finally, the YEAR data type is for recording only the year in a column: yy or yyyy .

For the examples in this article, DATE , TIME , and DATETIME columns will be used. The database that will be referenced is

for a fictitious psychiatry practice that keeps track of its patients and billable hours in MariaDB.

Telling Time

To record the current date and time in a MariaDB table, there are a few built-in functions that may be used. First, to record

the date there are the functions CURRENT_DATE and CURDATE() (depending on your style), which both produce the

same results (e.g., 2017-08-01). Notice that CURDATE() requires parentheses and the other does not. With many functions

a column name or other variables are placed inside of the parentheses to get a result. With functions like CURDATE(),

there is nothing that may go inside the parenthesis. Since these two functions retrieve the current date in the format of the

DATE column type, they can be used to fill in a DATE column when inserting a row:

3716/4161

INSERT INTO billable_work

(doctor_id, patient_id, session_date)

VALUES('1021', '1256', CURRENT_DATE);

The column session_date is a DATE column. Notice that there are no quotes around the date function. If there were it would

be taken as a literal value rather than a function. Incidentally, I've skipped discussing how the table was set up. If you're not

familiar with how to set up a table, you may want to read the MariaDB Basics article. To see what was just recorded by the

INSERT statement above, the following may be entered (results follow):

SELECT rec_id, doctor_id,

patient_id, session_date

FROM billable_work

WHERE rec_id=LAST_INSERT_ID();

+--------+-----------+------------+--------------+

| rec_id | doctor_id | patient_id | session_date |

+--------+-----------+------------+--------------+

| 2462 | 1021 | 1256 | 2017-08-23 |

+--------+-----------+------------+--------------+

Notice in the billable_work table that the primary key column (i.e., rec_id) is an automatically generated and incremental

number column (i.e., AUTO_INCREMENT). As long as another record is not created or the user does not exit from the

mariadb client or otherwise end the session, the LAST_INSERT_ID() function will retrieve the value of the rec_id for the

last record entered by the user.

To record the time of an appointment for a patient in a time data type column, CURRENT_TIME or CURTIME() are used in

the same way to insert the time. The following is entered to update the row created above to mark the starting time of the

appointment4another SELECT statement follows with the results:

UPDATE billable_work

SET session_time=CURTIME()

WHERE rec_id='2462';

SELECT patient_id, session_date, session_time

FROM billable_work

WHERE rec_id='2462';

+------------+--------------+--------------+

| patient_id | session_date | session_time |

+------------+--------------+--------------+

| 1256 | 2017-08-23 | 10:30:23 |

+------------+--------------+--------------+

The column session_time is a time column. To record the date and time together in the same column,

CURRENT_TIMESTAMP or SYSDATE() or NOW() can be used. All three functions produce the same time format: yyyy-

mm-dd hh:mm:ss . Therefore, the column's data type would have to be DATETIME to use them.

How to get a Date

Although MariaDB records the date in a fairly agreeable format, you may want to present the date when it's retrieved in a

different format. Or, you may want to extract part of the date, such as only the day of the month. There are many functions

for reformatting and selectively retrieving date and time information. To start off with, let's select a column with a data type of

DATE and look at the functions available for retrieving each component. To extract the year, there's the YEAR() function.

For extracting just the month, the MONTH() function could be called upon. And to grab the day of the month,

DAYOFMONTH() will work. Using the record entered above, here's what an SQL statement and its results would look like in

which the session date is broken up into separate parts, but in a different order:

SELECT MONTH(session_date) AS Month,

DAYOFMONTH(session_date) AS Day,

YEAR(session_date) AS Year

FROM billable_work

WHERE rec_id='2462';

+-------+------+------+

| Month | Day | Year |

+-------+------+------+

| 8 | 23 | 2017 |

+-------+------+------+

3717/4161

For those who aren't familiar with the keyword AS , it's used to label a column's output and may be referenced within an

SQL statement. Splitting up the elements of a date can be useful in analyzing a particular element. If the bookkeeper of the

fictitious psychiatry office needed to determine if the day of the week of each session was on a Saturday because the billing

rate would be higher (time and a half), the DAYOFWEEK() function could be used. To spice up the examples, let's wrap the

date function up in an IF() function that tests for the day of the week and sets the billing rate accordingly.

SELECT patient_id AS 'Patient ID',

session_date AS 'Date of Session',

IF(DAYOFWEEK(session_date)=6, 1.5, 1.0)

 AS 'Billing Rate'

FROM billable_work

WHERE rec_id='2462';

+-------------+-----------------+--------------+

| Patient ID | Date of Session | Billing Rate |

+-------------+-----------------+--------------+

| 1256 | 2017-08-23 | 1.5 |

+-------------+-----------------+--------------+

Since we've slipped in the IF() function, we should explain it's format. The test condition is listed first within the

parentheses. In this case, the test is checking if the session date is the sixth day of the week. Then, what MariaDB should

display is given if the test passes, followed by the result if it fails.

Similar to the DAYOFWEEK() function, there's also WEEKDAY(). The only difference is that for DAYOFWEEK() the first

day of the week is Sunday4with WEEKDAY() the first day is Monday. Both functions represent the first day with 0 and the

last with 6 . Having Saturday and Sunday symbolized by 5 and 6 can be handy in constructing an IF statement that has a

test component like " WEEKDAY(session_date) > 4 " to determine if a date is a weekend day. This is cleaner than testing

for values of 0 and 6 .

There is a function for determining the day of the year: DAYOFYEAR(). It's not used often, but it is available if you ever

need it. Occasionally, though, knowing the quarter of a year for a date can be useful for financial accounting. Rather than set

up a formula in a script to determine the quarter, the QUARTER() function can do this easily. For instance, suppose an

accountant wants a list of a doctor's sessions for each patient for the previous quarter. These three SQL statements could

be entered in sequence to achieve the results that follow:

SET @LASTQTR:=IF((QUARTER(CURDATE())-1)=0,

4, QUARTER(CURDATE())-1);

SET @YR:=IF(@LASTQTR=4,

YEAR(NOW())-1, YEAR(NOW()));

SELECT patient_id AS 'Patient ID',

COUNT(session_time)

 AS 'Number of Sessions'

FROM billable_work

WHERE QUARTER(session_date) = @LASTQTR

 AND YEAR(session_date) = @YR

 AND doctor_id='1021'

GROUP BY patient_id

ORDER BY patient_id LIMIT 5;

+------------+--------------------+

| Patient ID | Number of Sessions |

+------------+--------------------+

| 1104 | 10 |

| 1142 | 7 |

| 1203 | 18 |

| 1244 | 6 |

| 1256 | 12 |

+------------+--------------------+

This example is the most complicated so far. But it's not too difficult to understand if we pull it apart. The first SQL statement

sets up a user variable containing the previous quarter (i.e., 1, 2, 3, or 4). This variable will be needed in the other two

statements. The IF() clause in the first statement checks if the quarter of the current date minus one is zero. It will equal

zero when it's run during the first quarter of a year. During a first quarter, of course, the previous quarter is the fourth quarter

of the previous year. So, if the equation equals zero, then the variable @LASTQTR is set to 4 . Otherwise, @LASTQTR is set

to the value of the current quarter minus one. The second statement is necessary to ensure that the records for the correct

year are selected. So, if @LASTQTR equals four, then @YR needs to equal last year. If not, @YR is set to the current year.

With the user variables set to the correct quarter and year, the SELECT statement can be entered. The COUNT() function

counts the number of appointments that match the WHERE clause for each patient based on the GROUP BY clause. The

3718/4161

WHERE clause looks for sessions with a quarter that equals @LASTQTR and a year that equals @YR , as well as the doctor's

identification number. In summary, what we end up with is a set of SQL statements that retrieve the desired information

regardless of which quarter or year it's entered.

What is the Time?

The last section covered how to retrieve pieces of a date column. Now let's look at how to do the same with a time column.

To extract just the hour of a time saved in MariaDB, the HOUR() function could be used. For the minute and second, there's

MINUTE() and SECOND(). Let's put them all together in one straightforward SELECT statement:

SELECT HOUR(session_time) AS Hour,

MINUTE(session_time) AS Minute,

SECOND(session_time) AS Second

FROM billable_work

WHERE rec_id='2462';

+------+--------+--------+

| Hour | Minute | Second |

+------+--------+--------+

| 10 | 30 | 00 |

+------+--------+--------+

Date & Time Combined

All of the examples given so far have involved separate columns for date and time. The EXTRACT() function, however, will

allow a particular component to be extracted from a combined column type (i.e., DATETIME or TIMESTAMP). The format is

EXTRACT(date_type FROM date_column) where date_type is the component to retrieve and date_column is the name of

the column from which to extract data. To extract the year, the date_type would be YEAR ; for month, MONTH is used; and

for day, there's DAY . To extract time elements, HOUR is used for hour, MINUTE for minute, and SECOND for second.

Although that's all pretty simple, let's look at an example. Suppose the table billable_work has a column called

appointment (a datetime column) that contains the date and time for which the appointment was scheduled (as

opposed to the time it actually started in session_time). To get the hour and minute for a particular date, the following

SQL statement will suffice:

SELECT patient_name AS Patient,

EXTRACT(HOUR FROM appointment) AS Hour,

EXTRACT(MINUTE FROM appointment) AS Minute

FROM billable_work, patients

WHERE doctor_id='1021'

 AND EXTRACT(MONTH FROM appointment)='8'

 AND EXTRACT(DAY FROM appointment)='30'

 AND billable_work.patient_id =

 patients.patient_id;

This statement calls upon another table (patients) which holds patient information such as their names. It requires a

connecting point between the tables (i.e., the patient_id from each table). If you're confused on how to form

relationships between tables in a SELECT statement, you may want to go back and read the Getting Data from MariaDB

article. The SQL statement above would be used to retrieve the appointments for one doctor for one day, giving results like

this:

+-------------------+------+--------+

| Patient | Hour | Minute |

+-------------------+------+--------+

| Michael Zabalaoui | 10 | 00 |

| Jerry Neumeyer | 11 | 00 |

| Richard Stringer | 13 | 30 |

| Janice Sogard | 14 | 30 |

+-------------------+------+--------+

In this example, the time elements are separated and they don't include the date. With the EXTRACT() function, however,

you can also return combined date and time elements. There is DAY_HOUR for the day and hour; there's DAY_MINUTE for

the day, hour, and minute; DAY_SECOND for day, hour, minute, and second; and YEAR_MONTH for year and month. There

are also some time only combinations: HOUR_MINUTE for hour and minute; HOUR_SECOND for hour, minute, and second;

and MINUTE_SECOND for minute and second. However, there's not a MONTH_DAY to allow the combining of the two extracts

in the WHERE clause of the last SELECT statement above. Nevertheless, we'll modify the example above and use the

HOUR_MINUTE date_type to retrieve the hour and minute in one resulting column. It would only require the second and third

lines to be deleted and replaced with this:

3719/4161

...

EXTRACT(HOUR_MINUTE FROM appointment)

 AS Appointment

...

+-------------------+-------------+

| Patient | Appointment |

+-------------------+-------------+

| Michael Zabalaoui | 1000 |

| Jerry Neumeyer | 1100 |

| Richard Stringer | 1330 |

| Janice Sogard | 1430 |

+-------------------+-------------+

The problem with this output, though, is that the times aren't very pleasing looking. For more natural date and time displays,

there are a few simple date formatting functions available and there are the DATE_FORMAT() and TIME_FORMAT()

functions.

Fine Time Pieces

The simple functions that we mentioned are used for reformatting the output of days and months. To get the date of patient

sessions for August, but in a more wordier format, MONTHNAME() and DAYNAME() could be used:

SELECT patient_name AS Patient,

CONCAT(DAYNAME(appointment), ' - ',

 MONTHNAME(appointment), ' ',

 DAYOFMONTH(appointment), ', ',

 YEAR(appointment)) AS Appointment

FROM billable_work, patients

WHERE doctor_id='1021'

 AND billable_work.patient_id =

 patients.patient_id

 AND appointment>'2017-08-01'

 AND appointment<'2017-08-31'

LIMIT 1;

+-------------------+-----------------------------+

| Patient | Appointment |

+-------------------+-----------------------------+

| Michael Zabalaoui | Wednesday - August 30, 2017 |

+-------------------+-----------------------------+

In this statement the CONCAT() splices together the results of several date functions along with spaces and other

characters. The EXTRACT() function was eliminated from the WHERE clause and instead a simple numeric test for

sessions in August was given. Although EXTRACT() is fairly straightforward, this all can be accomplished with less typing

by using the DATE_FORMAT() function.

The DATE_FORMAT() function has over thirty options for formatting the date to your liking. Plus, you can combine the

options and add your own separators and other text. The syntax is DATE_FORMAT(date_column, 'options &

characters') . As an example, let's reproduce the last SQL statement by using the DATE_FORMAT() function for

formatting the date of the appointment and for scanning for appointments in July only:

SELECT patient_name AS Patient,

DATE_FORMAT(appointment, '%W - %M %e, %Y')

 AS Appointment

FROM billable_work, patients

WHERE doctor_id='1021'

 AND billable_work.patient_id =

 patients.patient_id

 AND DATE_FORMAT(appointment, '%c') = 8

LIMIT 1;

This produces the exact same output as above, but with a more succinct statement. The option %W gives the name of the

day of the week. The option %M provides the month's name. The option %e displays the day of the month (%d would work,

but it left-pads single-digit dates with zeros). Finally, %Y is for the four character year. All other elements within the quotes

(i.e., the spaces, the dash, and the comma) are literal characters for a nicer display.

With DATE_FORMAT(), time elements of a field also can be formatted. For instance, suppose we also wanted the hour

and minute of the appointment. We would only need to change the second line of the SQL statement above (to save space,

3720/4161

patient_name was eliminated):

SELECT

DATE_FORMAT(appointment, '%W - %M %e, %Y at %r')

 AS Appointment

...

+--+

| Appointment |

+--+

| Wednesday - August 30, 2017 at 02:11:19 AM |

+--+

The word at was added along with the formatting option %r which gives the time with AM or PM at the end.

Although it may be a little confusing at first, once you've learned some of the common formatting options, DATE_FORMAT(

) is much easier to use than EXTRACT(). There are many more options to DATE_FORMAT() that we haven't mentioned.

For a complete list of the options available, see the DATE_FORMAT() documentation page.

Clean up Time

In addition to DATE_FORMAT(), MariaDB has a comparable built-in function for formating only time: TIME_FORMAT().

The syntax is the same and uses the same options as DATE_FORMAT(), except only the time related formatting options

apply. As an example, here's an SQL statement that a doctor might use at the beginning of each day to get a list of her

appointments for the day:

SELECT patient_name AS Patient,

TIME_FORMAT(appointment, '%l:%i %p')

 AS Appointment

FROM billable_work, patients

WHERE doctor_id='1021'

 AND billable_work.patient_id =

 patients.patient_id

 AND DATE_FORMAT(appointment, '%Y-%m-%d') =

 CURDATE();

+-------------------+-------------+

| Patient | Appointment |

+-------------------+-------------+

| Michael Zabalaoui | 10:00 AM |

| Jerry Neumeyer | 11:00 AM |

| Richard Stringer | 01:30 PM |

| Janice Sogard | 02:30 PM |

+-------------------+-------------+

The option %l provides the hours 01 through 12. The %p at the end indicates (with the AM or PM) whether the time is

before or after noon. The %i option gives the minute. The colon and the space are for additional display appeal. Of course,

all of this can be done exactly the same way with the DATE_FORMAT() function. As for the DATE_FORMAT() component

in the WHERE clause here, the date is formatted exactly as it will be with CURDATE() (i.e., 2017-08-30) so that they may

be compared properly.

Time to End

Many developers use PHP, Perl, or some other scripting language with MariaDB. Sometimes developers will solve retrieval

problems with longer scripts rather than learn precisely how to extract temporal data with MariaDB. As you can see in

several of the examples here (particularly the one using the QUARTER() function), you can accomplish a great deal within

MariaDB. When faced with a potentially complicated SQL statement, try creating it in the mariadb client first. Once you get

what you need (under various conditions) and in the format desired, then copy the statement into your script. This practice

can greatly help you improve your MariaDB statements and scripting code.

6.1.8 Importing Data into MariaDB

3721/4161

Contents
1. Foreign Data Basics

2. Loading Data Basics

3. Duplicate Rows

4. Live Data

5. Being Difficult

6. mariadb-import

7. Web Hosting Restraints

8. Concluding Observations and Admissions

When a MariaDB developer first creates a MariaDB database for a client, often times the client has already accumulated

data in other, simpler applications. Being able to convert data easily to MariaDB is critical. In the previous two articles of this

MariaDB series, we explored how to set up a database and how to query one. In this third installment, we will introduce

some methods and tools for bulk importing of data into MariaDB. This isn't an overly difficult task, but the processing of large

amounts of data can be intimidating for a newcomer and and as a result it can be a barrier to getting started with MariaDB.

Additionally, for intermediate developers, there are many nuances to consider for a clean import, which is especially

important for automating regularly scheduled imports. There are also restraints to deal with that may be imposed on a

developer when using a web hosting company.

Foreign Data Basics

Clients sometimes give developers raw data in formats created by simple database programs like MS Access ®. Since non-

technical clients don't typically understand database concepts, new clients often give me their initial data in Excel

spreadsheets. Let's first look at a simple method for importing data. The simplest way to deal with incompatible data in any

format is to load it up in its original software and to export it out to a delimited text file. Most applications have the ability to

export data to a text format and will allow the user to set the delimiters. We like to use the bar (i.e., | , a.k.a. pipe) to

separate fields and the line-feed to separate records.

For the examples in this article, we will assume that a fictitious client's data was in Excel and that the exported text file will

be named prospects.txt . It contains contact information about prospective customers for the client's sales department,

located on the client's intranet site. The data is to be imported into a MariaDB table called prospect_contact , in a

database called sales_dept . To make the process simpler, the order and number of columns in MS Excel ® (the format

of the data provided by the client) should be the same as the table into which the data is going to be imported. So if

prospect_contact has columns that are not included in the spreadsheet, one would make a copy of the spreadsheet and add

the missing columns and leave them blank. If there are columns in the spreadsheet that aren't in prospect_contact , one

would either add them to the MariaDB table, or, if they're not to be imported, one would delete the extra columns from the

spreadsheet. One should also delete any headings and footnotes from the spreadsheet. After this is completed then the

data can be exported. Since this is Unix Review, we'll skip how one would export data in Excel and assume that the task

was accomplished easily enough using its export wizard.

The next step is to upload the data text file to the client's web site by FTP. It should be uploaded in ASCII mode. Binary

mode may send binary hard-returns for row-endings. Also, it's a good security habit to upload data files to non-public

directories. Many web hosting companies provide virtual domains with a directory like /public_html , which is the

document root for the Apache web server; it typically contains the site's web pages. In such a situation, / is a virtual root

containing logs and other files that are inaccessible to the public. We usually create a directory called tmp in the virtual root

directory to hold data files temporarily for importing into MariaDB. Once that's done, all that's required is to log into MariaDB

with the mariadb client as an administrative user (if not root, then a user with FILE privileges), and run the proper SQL

statement to import the data.

Loading Data Basics

The LOAD DATA INFILE statement is the easiest way to import data from a plain text file into MariaDB. Below is what one

would enter in the mariadb client to load the data in the file called prospects.txt into the table prospect_contact :

LOAD DATA INFILE '/tmp/prospects.txt'

INTO TABLE prospect_contact

FIELDS TERMINATED BY '|';

Before entering the statement above, the MariaDB session would, of course, be switched to the sales_dept database with a

USE statement. It is possible, though, to specify the database along with the table name (e.g.,

sales_dept.prospect_contact). If the server is running Windows, the forward slashes are still used for the text file's

path, but a drive may need to be specified at the beginning of the path: ' c:/tmp/prospects.txt '. Notice that the SQL

statement above has | as the field delimiter. If the delimiter was [TAB]4which is common4then one would replace |

with \t here. A line-feed (\n) isn't specified as the record delimiter since it's assumed. If the rows start and end with

something else, though, then they will need to be stated. For instance, suppose the rows in the text file start with a double-

quote and end with a double-quote and a Windows hard-return (i.e., a return and a line-feed). The statement would need to

3722/4161

read like this:

LOAD DATA INFILE '/tmp/prospects.txt'

INTO TABLE prospect_contact

FIELDS TERMINATED BY '|'

LINES STARTING BY '"'

TERMINATED BY '"\r\n';

Notice that the starting double-quote is inside of single-quotes. If one needs to specify a single-quote as the start of a line,

one could either put the one single-quote within double-quotes or one could escape the inner single-quote with a back-slash,

thus telling MariaDB that the single-quote that follows is to be taken literally and is not part of the statement, per se:

...

LINES STARTING BY '\''

...

Duplicate Rows

If the table prospect_contact already contains some of the records that are about to be imported from prospects.txt (that is

to say, records with the same primary key), then a decision should be made as to what MariaDB is to do about the

duplicates. The SQL statement, as it stands above, will cause MariaDB to try to import the duplicate records and to create

duplicate rows in prospect_contact for them. If the table's properties are set not to allow duplicates, then MariaDB will kick

out errors. To get MariaDB to replace the duplicate existing rows with the ones being imported in, one would add the

REPLACE just before the INTO TABLE clause like this:

LOAD DATA INFILE '/tmp/prospects.txt'

REPLACE INTO TABLE prospect_contact

FIELDS TERMINATED BY '|'

LINES STARTING BY '"'

TERMINATED BY '"\n';

To import only records for prospects that are not already in prospect_contact, one would substitute REPLACE with the

IGNORE flag. This instructs MariaDB to ignore records read from the text file that already exist in the table.

Live Data

For importing data into a table while it's in use, table access needs to be addressed. If access to the table by other users

may not be interrupted, then a LOW_PRIORITY flag can be added to the LOAD DATA INFILE statement. This tells MariaDB

that the loading of this data is a low priority. One would only need to change the first line of the SQL statement above to set

its priority to low:

LOAD DATA LOW_PRIORITY INFILE '/tmp/prospects.txt'

...

If the LOW_PRIORITY flag isn't included, the table will be locked temporarily during the import and other users will be

prevented from accessing it.

Being Difficult

I mentioned earlier that uploading of the text file should not be done in binary mode so as to avoid the difficulties associated

with Windows line endings. If this is unavoidable, however, there is an easy way to import binary row-endings with MariaDB.

One would just specify the appropriate hexadecimals for a carriage-return combined with a line-feed (i.e., CRLF) as the

value of TERMINATED BY :

...

TERMINATED BY 0x0d0a;

Notice that there are intentionally no quotes around the binary value. If there were, MariaDB would take the value for text

and not a binary code. The semi-colon is not part of the value; it's the SQL statement terminator.

Earlier we also stated that the first row in the spreadsheet containing the column headings should be deleted before

exporting to avoid the difficulty of importing the headings as a record. It's actually pretty easy to tell MariaDB to just skip the

top line. One would add the following line to the very end of the LOAD DATA INFILE statement:

...

IGNORE 1 LINES;

3723/4161

The number of lines for MariaDB to ignore can, of course, be more than one.

Another difficulty arises when some Windows application wizards export data with each field surrounded by double-quotes,

as well as around the start and end of records. This can be a problem when a field contains a double-quote. To deal with

this, some applications use back-slash (\) to escape embedded double-quotes, to indicate that a particular double-quote is

not a field ending but part of the field's content. However, some applications will use a different character (like a pound-sign)

to escape embedded quotes. This can cause problems if MariaDB isn't prepared for the odd escape-character. MariaDB will

think the escape character is actually text and the embedded quote-mark, although it's escaped, is a field ending. The

unenclosed text that follows will be imported into the next column and the remaining columns will be one column off, leaving

the last column not imported. As maddening as this can be, it's quite manageable in MariaDB by adding an ENCLOSED BY

and an ESCAPED BY clause:

LOAD DATA LOW_PRIORITY INFILE '/tmp/prospects.txt'

REPLACE INTO TABLE prospect_contact

FIELDS TERMINATED BY '"'

ENCLOSED BY '"' ESCAPED BY '#'

LINES STARTING BY '"'

TERMINATED BY '"\n'

IGNORE 1 LINES;

In the Foreign Data Basics section above, we said that the columns in the spreadsheet should be put in the same order and

quantity as the receiving table. This really isn't necessary if MariaDB is cued in as to what it should expect. To illustrate, let's

assume that prospect_contact has four columns in the following order: row_id , name_first , name_last , telephone .

Whereas, the spreadsheet has only three columns, differently named, in this order: Last Name , First Name ,

Telephone . If the spreadsheet isn't adjusted, then the SQL statement will need to be changed to tell MariaDB the field

order:

LOAD DATA LOW_PRIORITY INFILE '/tmp/prospects.txt'

REPLACE INTO TABLE sales_dept.prospect_contact

FIELDS TERMINATED BY 0x09

ENCLOSED BY '"' ESCAPED BY '#'

TERMINATED BY 0x0d0a

IGNORE 1 LINES

(name_last, name_first, telephone);

This SQL statement tells MariaDB the name of each table column associated with each spreadsheet column in the order

that they appear in the text file. From there it will naturally insert the data into the appropriate columns in the table. As for

columns that are missing like row_id, MariaDB will fill in those fields with the default value if one has been supplied in the

table's properties. If not, it will leave the field as NULL. Incidentally, we slipped in the binary [TAB] (0x09) as a field

delimiter.

mariadb-import

For some clients and for certain situations it may be of value to be able to import data into MariaDB without using the

mariadb client. This could be necessary when constructing a shell script to import text files on an automated, regular

schedule. To accomplish this, the mariadb-import (mysqlimport before MariaDB 10.5) utility may be used as it

encompasses the LOAD DATA INFILE statement and can easily be run from a script. So if one wants to enter the involved

SQL statement at the end of the last section above, the following could be entered from the command-line (i.e., not in the

mariadb client):

mariadb-import --user='marie_dyer' --password='angelle1207' \

--fields-terminated-by=0x09 --lines-terminated-by=0x0d0a \

--replace --low-priority --fields-enclosed-by='"' \

 --fields-escaped-by='#' --ignore-lines='1' --verbose \

--columns='name_last, name_first, telephone' \

sales_dept '/tmp/prospect_contact.txt'

Although this statement is written over several lines here, it either has to be on the same line when entered or a space

followed by a back-slash has to be entered at the end of each line (as seen here) to indicate that more follows. Since the

above is entered at the command-line prompt, the user isn't logged into MariaDB. Therefore the first line contains the user

name and password for mariadb-import to give to MariaDB. The password itself is optional, but the directive --password

(without the equal sign) isn't. If the password value is not given in the statement, then the user will be prompted for it. Notice

that the order of directives doesn't matter after the initial command, except that the database and file name go last.

Regarding the file name, its prefix must be the same as the table4the dot and the extension are ignored. This requires that

prospects.txt be renamed to prospect_contact.txt . If the file isn't renamed, then MariaDB would create a new

table called prospects and the --replace option would be pointless. After the file name, incidentally, one could list more

text files, separated by a space, to process using mariadb-import. We've added the --verbose directive so as to be able

3724/4161

to see what's going on. One probably would leave this out in an automated script. By the way, --low-priority and --

ignore-lines are available.

Web Hosting Restraints

Some web hosting companies do not allow the use of LOAD DATA INFILE or mariadb-import statements due to security

vulnerabilities in these statements for them. To get around this, some extra steps are necessary to avoid having to manually

enter the data one row at a time. First, one needs to have MariaDB installed on one's local workstation. For simplicity, we'll

assume this is done and is running Linux on the main partition and MS Windows® on an extra partition. Recapping the on-

going example of this article based on these new circumstances, one would boot up into Windows and start MS Excel®,

load the client's spreadsheet into it and then run the export wizard as before4saving the file prospects.txt to the 'My

Documents' directory. Then one would reboot into Linux and mount the Windows partition and copy the data text file to

/tmp in Linux, locally. Next one would log into the local (not the client's) MariaDB server and import the text file using a

LOAD DATA INFILE as we've extensively outline above. From there one would exit MariaDB and export the data out of

MariaDB using the mariadb-dump utility locally, from the command-line like this:

mariadb-dump --user='root' --password='geronimo' sales_dept prospect_contact > /tmp/prospects.sql

This creates an interesting text file complete with all of the SQL commands necessary to insert the data back into MariaDB

one record, one INSERT at a time. When you run mariadb-import, it's very educational to open up it in a text editor to see

what it generates.

After creating this table dump, one would upload the resulting file (in ASCII mode) to the /tmp directory on the client's web

server. From the command prompt on the client's server one would enter the following:

mariadb --user='marie_dyer' --password='angelle12107' sales_dept < '/tmp/prospects.sql'

This line along with the mariadb-dump line show above are simple approaches. Like the Windows application wizard, with

mariadb-dump one can specify the format of the output file and several other factors. One important factor related to the

scenario used in this article is the CREATE TABLE statement that will be embedded in the mariadb-dump output file. This

will fail and kick out an error because of the existing table prospect_contact in the client's database. To limit the output to

only INSERT statements and no CREATE TABLE statements, the mariadb-dump line would look like this:

mariadb-dump -u marie_dyer -p --no-create-info sales_dept prospect_contact > /tmp/prospects.sql

Notice that we've used acceptable abbreviations for the user name and the password directives. Since the password was

given here, the user will be prompted for it.

The mariadb-dump utility usually works pretty well. However, one feature it's lacking at this time is a REPLACE flag as is

found in the LOAD DATA INFILE statement and with the mariadb-import tool. So if a record already exists in the

prospect_contact , it won't be imported. Instead it will kick out an error message and stop at that record, which can be a

mess if one has imported several hundred rows and have several hundred more to go. One easy fix for this is to open up

prospects.sql in a text editor and do a search on the word INSERT and replace it with REPLACE . The syntax of both of

these statements are the same, fortunately. So one would only need to replace the keyword for new records to be inserted

and for existing records to be replaced.

Concluding Observations and Admissions

It's always amazing to me how much can be involved in the simplest of statements in MariaDB. MariaDB is deceptively

powerful and feature rich. One can keep the statements pretty minimal or one can develop a fairly detailed, single statement

to allow for accuracy of action. There are many other aspects of importing data into MariaDB that we did not address4in

particular dealing with utilities. We also didn't talk about the Perl modules that could be used to convert data files. These

can be useful in scripting imports. There are many ways in which one can handle importing data. Hopefully, this article has

presented most of the basics and pertinent advanced details that may be of use to most MariaDB developers.

6.1.9 Making Backups with mariadb-dump
Contents
1. Backing Up Everything

2. Just One Database

3. Dumping Tables

4. Conclusion

5. Other References

3725/4161

One of the best utilities to use to make a backup copy of a server's MariaDB's data is mariadb-dump (previously called

mysqldump, which still works as a symlink). It comes with MariaDB, so it costs you nothing more. Best of all it doesn't

require you to shut down MariaDB services to make a backup. It works very simply: it retrieves the data and schema from

each database and table and builds a data text file outside of MariaDB. This data text file (known as a dump file) will contain

the SQL statements necessary to reconstruct the databases and data. If you were to open a dump file generated by

mariadb-dump, you would see CREATE TABLE statements and a multitude of INSERT statements, one for each row of

data.

Backing Up Everything

To export all of the databases in MariaDB using mariadb-dump, the following would be entered from the filesystem

command-line:

mariadb-dump -u admin_backup -p -x -A > /data/backup/dbs.sql

The first set of options here (-u admin_backup -p) tell MariaDB that this utility is to be executed by the user

admin_backup and that the user needs to be prompted for a password, which will have to be typed in on the next line when

asked. Incidentally, although you might be tempted to just use the root user, you should create a special administrative user

as we're using here. If the dump is to be executed by cron by way of a shell script, this option can be changed to -pmypwd ,

where mypwd is the password4there's no space between the -p and the password. The -x option has MariaDB lock all

of the tables before performing the backup. The lock won't be released until the process is finished. To bundle INSERT

statements together for each table, we've added the -e option. This extended insert option will cause the dump file to be

smaller and allow any possible future restores to be executed faster. The -A option specifies that all databases are to be

exported. Finally, the greater-than sign is a shell redirect of the standard output (STDOUT) to the path and file named after

it.

The example given for backing up all database is the short hand version. The convention is migrating to longer options, not

the single letter options. In fact, some are being deprecated and won't be available in the future. So, the above could and

should be entered like this:

mariadb-dump --user=admin_backup --password --lock-tables --all-databases > /data/backup/dbs.sql

The longer option names are easier to follow and to remember. Again, if the backup is to be executed by a shell script, the

user's password should be listed: --password=mypwd . Notice that the equal-sign is added when the password is given

with the long option name.

Just One Database

Backing up all of the databases at once with mariadb-dump may result in one large dump file. This could be take longer to

complete the backup and make restoration a bit cumbersome later. Therefore, it might be more useful to stagger backups

based on databases, making for possbily several smaller files. You could then backup larger databases during slower traffic

times. You might also backup critical databases or ones that are changed much during slower times of the day so that you

don't dimish user interaction.

To export only one database and not all, enter something like the following from the command-line:

mariadb-dump --user=admin_backup --password --lock-tables --databases db1 > /data/backup/db1.sql

The only significant difference in this line is that the -A option has been replaced with -B and the database to be exported

has been given. To export multiple databases, just enter them after the -B option, separated by spaces (e.g., -B db1

db2).

Dumping Tables

For very large databases, you may want to backup the data based on tables rather than the whole database. You could

backup weekly an entire database and then only backup daily individual tables for which data changes often. To backup just

one table, the following could be entered from the command line:

mariadb-dump --user=admin_backup --password --lock-tables db1 table1 > /data/backup/db1_table1.sql

First notice that the --databases option has not been included in the line above. The utility assumes that the first name

given is a database and the second name is a table name and not another database. To backup multiple tables from a

3726/4161

database, just list them after the database name, separated by spaces (e.g., db1 table1 table2).

Conclusion

As you can see from this article, mariadb-dump is easy to use and very powerful. In fact, it can clobber your data if you're

not careful. Therefore, you should practice using it on a test database4a test server even4a few times until you're

comfortable with making backups and restoring them. Don't wait until you've lost your data and in a panic to restore your

data to find out that you haven't been backing up your data properly or that you don't know how to fine tune data restoration.

Develop some skills in advance and in a safe and controlled way. To learn how to restore dump files, see Restoring Data

From Dump Files.

Other References

Devart backup tutorial

6.1.10 MariaDB String Functions
Contents
1. Formatting

2. Extracting

3. Manipulating

4. Expression Aids

5. Conclusion

MariaDB has many built-in functions that can be used to manipulate strings of data. With these functions, one can format

data, extract certain characters, or use search expressions. Good developers should be aware of the string functions that

are available. Therefore, in this article we will go through several string functions, grouping them by similar features, and

provide examples of how they might be used.

Formatting

There are several string functions that are used to format text and numbers for nicer display. A popular and very useful

function for pasting together the contents of data fields with text is the CONCAT() function. As an example, suppose that a

table called contacts has a column for each sales contact's first name and another for the last name. The following SQL

statement would put them together:

SELECT CONCAT(name_first, ' ', name_last)

AS Name

FROM contacts;

This statement will display the first name, a space, and then the last name together in one column. The AS clause will

change the column heading of the results to Name.

A less used concatenating function is CONCAT_WS(). It will put together columns with a separator between each. This can

be useful when making data available for other programs. For instance, suppose we have a program that will import data,

but it requires the fields to be separated by vertical bars. We could just export the data, or we could use a SELECT

statement like the one that follows in conjunction with an interface written with an API language like Perl:

SELECT CONCAT_WS('|', col1, col2, col3)

FROM table1;

The first element above is the separator. The remaining elements are the columns to be strung together.

If we want to format a long number with commas every three digits and a period for the decimal point (e.g., 100,000.00), we

can use the function FORMAT() like so:

SELECT CONCAT('$', FORMAT(col5, 2))

FROM table3;

In this statement, the CONCAT() will place a dollar sign in front of the numbers found in the col5 column, which will be

formatted with commas by FORMAT(). The 2 within the FORMAT() stipulates two decimal places.

Occasionally, one will want to convert the text from a column to either all upper-case letters or all lower-case letters. In the

example that follows, the output of the first column is converted to upper-case and the second to lower-case:

3727/4161

https://blog.devart.com/mysql-backup-tutorial.html

SELECT UCASE(col1),

LCASE(col2)

FROM table4;

When displaying data in forms, it's sometimes useful to pad the data displayed with zeros or dots or some other filler. This

can be necessary when dealing with VARCHAR columns where the width varies to help the user to see the column limits.

There are two functions that may be used for padding: LPAD() and RPAD().

SELECT RPAD(part_nbr, 8, '.') AS 'Part Nbr.',

LPAD(description, 15, '_') AS Description

FROM catalog;

In this SQL statement, dots are added to the right end of each part number. So a part number of "H200" will display as

"H200....", but without the quotes. Each part's description will have under-scores preceding it. A part with a description of

"brass hinge" will display as "brass hinge".

If a column is a CHAR data-type, a fixed width column, then it may be necessary to trim any leading or trailing spaces from

displays. There are a few functions to accomplish this task. The LTRIM() function will eliminate any leading spaces to the

left. So " H200 " becomes " H200 ". For columns with trailing spaces, spaces on the right, RTRIM() will work: " H500 "

becomes " H500 ". A more versatile trimming function, though, is TRIM(). With it one can trim left, right or both. Below are a

few examples:

SELECT TRIM(LEADING '.' FROM col1),

TRIM(TRAILING FROM col2),

TRIM(BOTH '_' FROM col3),

TRIM(col4)

FROM table5;

In the first TRIM() clause, the padding component is specified; the leading dots are to be trimmed from the output of col1 .

The trailing spaces will be trimmed off of col2 4space is the default. Both leading and trailing under-scores are trimmed

from col3 above. Unless specified, BOTH is the default. So leading and trailing spaces are trimmed from col4 in the

statement here.

Extracting

When there is a need to extract specific elements from a column, MariaDB has a few functions that can help. Suppose a

column in the table contacts contains the telephone numbers of sales contacts, including the area-codes, but without any

dashes or parentheses. The area-code of each could be extracted for sorting with the LEFT() and the telephone number

with the RIGHT() function.

SELECT LEFT(telephone, 3) AS area_code,

RIGHT(telephone, 7) AS tel_nbr

FROM contacts

ORDER BY area_code;

In the LEFT() function above, the column telephone is given along with the number of characters to extract, starting from the

first character on the left in the column. The RIGHT() function is similar, but it starts from the last character on the right,

counting left to capture, in this statement, the last seven characters. In the SQL statement above, area_code is reused to

order the results set. To reformat the telephone number, it will be necessary to use the SUBSTRING() function.

SELECT CONCAT('(', LEFT(telephone, 3), ') ',

SUBSTRING(telephone, 4, 3), '-',

MID(telephone, 7)) AS 'Telephone Number'

FROM contacts

ORDER BY LEFT(telephone, 3);

In this SQL statement, the CONCAT() function is employed to assemble some characters and extracted data to produce a

common display for telephone numbers (e.g., (504) 555-1234). The first element of the CONCAT() is an opening

parenthesis. Next, a LEFT() is used to get the first three characters of telephone, the area-code. After that a closing

parenthesis, along with a space is added to the output. The next element uses the SUBSTRING() function to extract the

telephone number's prefix, starting at the fourth position, for a total of three characters. Then a dash is inserted into the

display. Finally, the function MID() extracts the remainder of the telephone number, starting at the seventh position. The

functions MID() and SUBSTRING() are interchangeable and their syntax are the same. By default, for both functions, if the

number of characters to capture isn't specified, then it's assumed that the remaining ones are to be extracted.

Manipulating
3728/4161

There are a few functions in MariaDB that can help in manipulating text. One such function is REPLACE(). With it every

occurrence of a search parameter in a string can be replaced. For example, suppose we wanted to replace the title Mrs.

with Ms. in a column containing the person's title, but only in the output. The following SQL would do the trick:

SELECT CONCAT(REPLACE(title, 'Mrs.', 'Ms.'),

' ', name_first, ' ', name_last) AS Name

FROM contacts;

We're using the ever handy CONCAT() function to put together the contact's name with spaces. The REPLACE() function

extracts each title and replaces Mrs. with Ms., where applicable. Otherwise, for all other titles, it displays them unchanged.

If we want to insert or replace certain text from a column (but not all of its contents), we could use the INSERT() function in

conjunction with the LOCATE() function. For example, suppose another contacts table has the contact's title and full name

in one column. To change the occurrences of Mrs. to Ms., we could not use REPLACE() since the title is embedded in this

example. Instead, we would do the following:

SELECT INSERT(name, LOCATE(name, 'Mrs.'), 4, 'Ms.')

FROM contacts;

The first element of the INSERT() function is the column. The second element which contains the LOCATE() is the position

in the string that text is to be inserted. The third element is optional; it states the number of characters to overwrite. In this

case, Mrs. which is four characters is overwritten with Ms. (the final element), which is only three. Incidentally, if 0 is

specified, then nothing is overwritten, text is inserted only. As for the LOCATE() function, the first element is the column and

the second the search text. It returns the position within the column where the text is found. If it's not found, then 0 is

returned. A value of 0 for the position in the INSERT() function negates it and returns the value of name unchanged.

On the odd chance that there is a need to reverse the content of a column, there's the REVERSE() function. You would just

place the column name within the function. Another minor function is the REPEAT() function. With it a string may be

repeated in the display:

SELECT REPEAT(col1, 2)

FROM table1;

The first component of the function above is the string or column to be repeated. The second component states the number

of times it's to be repeated.

Expression Aids

The function CHAR_LENGTH() is used to determine the number of characters in a string. This could be useful in a situation

where a column contains different types of information of specific lengths. For instance, suppose a column in a table for a

college contains identification numbers for students, faculty, and staff. If student identification numbers have eight

characters while others have less, the following will count the number of student records:

SELECT COUNT(school_id)

AS 'Number of Students'

FROM table8

WHERE CHAR_LENGTH(school_id)=8;

The COUNT() function above counts the number of rows that meet the condition of the WHERE clause.

In a SELECT statement, an ORDER BY clause can be used to sort a results set by a specific column. However, if the

column contains IP addresses, a simple sort may not produce the desired results:

SELECT ip_address

FROM computers WHERE server='Y'

ORDER BY ip_address LIMIT 3;

+-------------+

| ip_address |

+-------------+

| 10.0.1.1 |

| 10.0.11.1 |

| 10.0.2.1 |

+-------------+

In the limited results above, the IP address 10.0.2.1 should be second. This happens because the column is being sorted

lexically and not numerically. The function INET_ATON() will solve this sorting problem.

3729/4161

file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/repeat

SELECT ip_address

FROM computers WHERE server='Y'

ORDER BY INET_ATON(ip_address) LIMIT 3;

Basically, the INET_ATON() function will convert IP addresses to regular numbers for numeric sorting. For instance, if we

were to use the function in the list of columns in a SELECT statement, instead of the WHERE clause, the address 10.0.1.1

would return 167772417, 10.0.11.1 will return 167774977, and 10.0.2.1 the number 167772673. As a complement to

INET_ATON(), the function INET_ATON() will translate these numbers back to their original IP addresses.

MariaDB is fairly case insensitive, which usually is fine. However, to be able to check by case, the STRCMP() function can

be used. It converts the column examined to a string and makes a comparison to the search parameter.

SELECT col1, col2

FROM table6

WHERE STRCMP(col3, 'text')=0;

If there is an exact match, the function STRCMP() returns 0. So if col3 here contains "Text", it won't match. Incidentally, if

col3 alphabetically is before the string to which it's compared, a -1 will be returned. If it's after it, a 1 is returned.

When you have list of items in one string, the SUBSTRING_INDEX() can be used to pull out a sub-string of data. As an

example, suppose we have a column which has five elements, but we want to retrieve just the first two elements. This SQL

statement will return them:

SELECT SUBSTRING_INDEX(col4, '|', 2)

FROM table7;

The first component in the function above is the column or string to be picked apart. The second component is the delimiter.

The third is the number of elements to return, counting from the left. If we want to grab the last two elements, we would use

a negative two to instruct MariaDB to count from the right end.

Conclusion

There are more string functions available in MariaDB. A few of the functions mentioned here have aliases or close

alternatives. There are also functions for converting between ASCII, binary, hexi-decimal, and octal strings. And there are

also string functions related to text encryption and decryption that were not mentioned. However, this article has given you a

good collection of common string functions that will assist you in building more powerful and accurate SQL statements.

6.1.11 Restoring Data from Dump Files
Contents
1. Restoring One Table

If you lose your data in MariaDB, but have been using mariadb-dump (previously called mysqldump) to make regular

backups of your data in MariaDB, you can use the dump files to restore your data. This is the point of the back-ups, after all.

To restore a dump file, it's just a matter of having the mariadb client execute all of the SQL statements that the file contains.

There are some things to consider before restoring from a dump file, so read this section all of the way through before

restoring. One simple and perhaps clumsy method to restore from a dump file is to enter something like the following:

mariadb --user admin_restore --password < /data/backup/db1.sql

Again, this is not using mariadb-dump. The mariadb-dump utility is only for making back-up copies, not restoring databases.

Instead, you would use the mariadb client, which will read the dump file's content in order to batch execute the SQL

statements that it contains. Notice that the redirect for STDOUT is not used here, but the redirect for the standard input

(STDIN); the less-than sign is used since the dump file is an input source. Also, notice that in this example a database isn't

specified. That's given within the dump file.

Restoring One Table

The problem with restoring from a dump file is that you may overwrite tables or databases that you wish you hadn't. For

instance, your dump file might be a few days old and only one table may have been lost. If you restore all of the databases

or all of the tables in a database, you would be restoring the data back to it's state at the time of the backup, a few days

before. This could be quite a disaster. This is why dumping by database and table can be handy. However, that could be

cumbersome.

A simple and easy method of limiting a restoration would be to create temporarily a user who only has privileges for the

3730/4161

table you want to restore. You would enter a GRANT statement like this:

GRANT SELECT

ON db1.* TO 'admin_restore_temp'@'localhost'

IDENTIFIED BY 'its_pwd';

GRANT ALL ON db1.table1

TO 'admin_restore_temp'@'localhost';

These two SQL statements allow the temporary user to have the needed SELECT privileges on all of the tables of db1 and

ALL privileges for the table1 table. Now when you restore the dump file containing the whole db1 database, only

table1 will be replaced with the back-up copy. Of course, MariaDB will generate errors. To overlook the errors and to

proceed with the restoration of data where no errors are generated (i.e., table1), use the --force option. Here's what

you would enter at the command-line for this situation:

mariadb --user admin_restore_temp --password --force < /data/backup/db1.sql

6.1.12 Basic SQL Queries: A Quick SQL Cheat
Sheet

Contents
1. Defining How Your Data Is Stored

2. Manipulating Your Data

3. Transactions

1. A Simple Example

This page lists the most important SQL statements and contains links to their documentation pages. If you need a basic

tutorial on how to use the MariaDB database server and how to execute simple commands, see A MariaDB Primer.

Also see Common MariaDB Queries for examples of commonly-used queries.

Defining How Your Data Is Stored
CREATE DATABASE is used to create a new, empty database.

DROP DATABASE is used to completely destroy an existing database.

USE is used to select a default database.

CREATE TABLE is used to create a new table, which is where your data is actually stored.

ALTER TABLE is used to modify an existing table's definition.

DROP TABLE is used to completely destroy an existing table.

DESCRIBE shows the structure of a table.

Manipulating Your Data
SELECT is used when you want to read (or select) your data.

INSERT is used when you want to add (or insert) new data.

UPDATE is used when you want to change (or update) existing data.

DELETE is used when you want to remove (or delete) existing data.

REPLACE is used when you want to add or change (or replace) new or existing data.

TRUNCATE is used when you want to empty (or delete) all data from the template.

Transactions
START TRANSACTION is used to begin a transaction.

COMMIT is used to apply changes and end transaction.

ROLLBACK is used to discard changes and end transaction.

A Simple Example

3731/4161

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE mytable (id INT PRIMARY KEY, name VARCHAR(20));

INSERT INTO mytable VALUES (1, 'Will');

INSERT INTO mytable VALUES (2, 'Marry');

INSERT INTO mytable VALUES (3, 'Dean');

SELECT id, name FROM mytable WHERE id = 1;

UPDATE mytable SET name = 'Willy' WHERE id = 1;

SELECT id, name FROM mytable;

DELETE FROM mytable WHERE id = 1;

SELECT id, name FROM mytable;

DROP DATABASE mydb;

SELECT count(1) from mytable; gives the number of records in the table

The first version of this article was copied, with permission, from http://hashmysql.org/wiki/Basic_SQL_Statements on 2012-10-05.

6.1.13 Connecting to MariaDB
Contents
1. Connection Parameters

1. host

2. password

3. pipe

4. port

5. protocol

6. shared-memory-base-name

7. socket

8. TLS Options

1. ssl

2. ssl-ca

3. ssl-capath

4. ssl-cert

5. ssl-cipher

6. ssl-key

7. ssl-crl

8. ssl-crlpath

9. ssl-verify-server-cert

9. user

2. Option Files

This article covers connecting to MariaDB and the basic connection parameters. If you are completely new to MariaDB, take

a look at A MariaDB Primer first.

In order to connect to the MariaDB server, the client software must provide the correct connection parameters. The client

software will most often be the mariadb client, used for entering statements from the command line, but the same concepts

apply to any client, such as a graphical client, a client to run backups such as mariadb-dump, etc. The rest of this article

assumes that the mariadb command line client is used.

If a connection parameter is not provided, it will revert to a default value.

For example, to connect to MariaDB using only default values with the mariadb client, enter the following from the command

line:

mariadb

In this case, the following defaults apply:

The host name is localhost .

The user name is either your Unix login name, or ODBC on Windows.

No password is sent.

The client will connect to the server with the default socket, but not any particular database on the server.

These defaults can be overridden by specifying a particular parameter to use. For example:

mariadb -h 166.78.144.191 -u username -ppassword database_name

3732/4161

http://hashmysql.org/wiki/Basic_SQL_Statements

In this case:

-h specifies a host. Instead of using localhost , the IP 166.78.144.191 is used.

-u specifies a user name, in this case username

-p specifies a password, password . Note that for passwords, unlike the other parameters, there cannot be a space

between the option (-p) and the value (password). It is also not secure to use a password in this way, as other

users on the system can see it as part of the command that has been run. If you include the -p option, but leave out

the password, you will be prompted for it, which is more secure.

The database name is provided as the first argument after all the options, in this case database_name .

It will connect with the default tcp_ip port, 3306

Connection Parameters

host

--host=name

-h name

Connect to the MariaDB server on the given host. The default host is localhost . By default, MariaDB does not permit

remote logins - see Configuring MariaDB for Remote Client Access.

password

--password[=passwd]

-p[passwd]

The password of the MariaDB account. It is generally not secure to enter the password on the command line, as other users

on the system can see it as part of the command that has been run. If you include the -p or --password option, but leave

out the password, you will be prompted for it, which is more secure.

pipe

--pipe

-W

On Windows systems that have been started with the --enable-named-pipe option, use this option to connect to the

server using a named pipe.

port

--port=num

-P num

The TCP/IP port number to use for the connection. The default is 3306 .

protocol

--protocol=name

Specifies the protocol to be used for the connection for the connection. It can be one of TCP , SOCKET , PIPE or MEMORY

(case-insensitive). Usually you would not want to change this from the default. For example on Unix, a Unix socket file

(SOCKET) is the default protocol, and usually results in the quickest connection.

TCP : A TCP/IP connection to a server (either local or remote). Available on all operating systems.

SOCKET : A Unix socket file connection, available to the local server on Unix systems only. If socket is not specified

with --socket, in a config file or with the environment variable MYSQL_UNIX_PORT then the default

/tmp/mysql.sock will be used.

PIPE . A named-pipe connection (either local or remote). Available on Windows only.

MEMORY . Shared-memory connection to the local server on Windows systems only.

3733/4161

shared-memory-base-name

--shared-memory-base-name=name

Only available on Windows systems in which the server has been started with the --shared-memory option, this specifies

the shared-memory name to use for connecting to a local server. The value is case-sensitive, and defaults to MARIADB .

socket

--socket=name

-S name

For connections to localhost, this specifies either the Unix socket file to use (default /tmp/mysql.sock), or, on Windows

where the server has been started with the --enable-named-pipe option, the name (case-insensitive) of the named pipe

to use (default MARIADB).

TLS Options

A brief listing is provided below. See Secure Connections Overview and TLS System Variables for more detail.

ssl

--ssl

Enable TLS for connection (automatically enabled with other TLS flags). Disable with ' --skip-ssl '

ssl-ca

--ssl-ca=name

CA file in PEM format (check OpenSSL docs, implies --ssl).

ssl-capath

--ssl-capath=name

CA directory (check OpenSSL docs, implies --ssl).

ssl-cert

--ssl-cert=name

X509 cert in PEM format (implies --ssl).

ssl-cipher

--ssl-cipher=name

TLS cipher to use (implies --ssl).

ssl-key

--ssl-key=name

X509 key in PEM format (implies --ssl).

ssl-crl
3734/4161

--ssl-crl=name

Certificate revocation list (implies --ssl).

ssl-crlpath

--ssl-crlpath=name

Certificate revocation list path (implies --ssl).

ssl-verify-server-cert

--ssl-verify-server-cert

Verify server's "Common Name" in its cert against hostname used when connecting. This option is disabled by default.

user

--user=name

-u name

The MariaDB user name to use when connecting to the server. The default is either your Unix login name, or ODBC on

Windows. See the GRANT command for details on creating MariaDB user accounts.

Option Files
It's also possible to use option files (or configuration files) to set these options. Most clients read option files. Usually,

starting a client with the --help option will display which files it looks for as well as which option groups it recognizes.

6.1.14 External Tutorials
Contents
1. MariaDB-Focused Tutorials

2. MySQL-Focused Tutorials (But Should Work For MariaDB Too)

3. General SQL Tutorials

Here are some links to external MariaDB, MySQL and SQL tutorials that may be of interest

MariaDB-Focused Tutorials
Tutorialspoint MariaDB tutorial for beginners

MariaDB Tutorial by "Tech on the net"

Learn MySQL / MariaDB for Beginners

MariaDB Tutorial from javatpoint

MySQL-Focused Tutorials (But Should Work For
MariaDB Too)

mysqltutorial . Site with a lot of MySQL usage information and also how to connect to MySQL from different

programming languages.

MySQL Tutorial for Beginners Learn in 7 Days

MySQL Tutorial from javatpoint

MySQL Tutorial from w3resource

MySQL by Examples for Beginners

MySQL Tutorial 3 A Beginner9s Guide To Learn MySQL

Php/MySQL Tutorial from tizag

PHP & MySQL Tutorial from siteground

3735/4161

https://www.tutorialspoint.com/mariadb/index.htm
https://www.techonthenet.com/mariadb/index.php
https://www.tecmint.com/learn-mysql-mariadb-for-beginners
https://www.javatpoint.com/mariadb-tutorial
http://www.mysqltutorial.org
https://www.guru99.com/mysql-tutorial.htm
https://www.javatpoint.com/mysql-tutorial
https://www.w3resource.com/mysql/mysql-tutorials.php
http://www.ntu.edu.sg/home/ehchua/programming/sql/mysql_beginner.html
https://www.edureka.co/blog/mysql-tutorial/
http://www.tizag.com/mysqlTutorial/
https://www.siteground.com/tutorials/php-mysql/

General SQL Tutorials
w3schools general SQL tutorial

sqltutorial . Helps you get started with SQL quickly and effectively through many practical examples.

6.1.15 Useful MariaDB Queries
Contents
1. Creating a Table

2. Inserting Records

3. Using AUTO_INCREMENT

4. Querying from two tables on a common value

5. Finding the Maximum Value

6. Finding the Minimum Value

7. Finding the Average Value

8. Finding the Maximum Value and Grouping the Results

9. Ordering Results

10. Finding the Row with the Minimum of a Particular Column

11. Finding Rows with the Maximum Value of a Column by Group

12. Calculating Age

13. Using User-defined Variables

14. View Tables in Order of Size

15. Removing Duplicates

This page is intended to be a quick reference of commonly-used and/or useful queries in MariaDB.

Creating a Table

CREATE TABLE t1 (a INT);

CREATE TABLE t2 (b INT);

CREATE TABLE student_tests (

 name CHAR(10), test CHAR(10),

 score TINYINT, test_date DATE

);

See CREATE TABLE for more.

Inserting Records

INSERT INTO t1 VALUES (1), (2), (3);

INSERT INTO t2 VALUES (2), (4);

INSERT INTO student_tests

 (name, test, score, test_date) VALUES

 ('Chun', 'SQL', 75, '2012-11-05'),

 ('Chun', 'Tuning', 73, '2013-06-14'),

 ('Esben', 'SQL', 43, '2014-02-11'),

 ('Esben', 'Tuning', 31, '2014-02-09'),

 ('Kaolin', 'SQL', 56, '2014-01-01'),

 ('Kaolin', 'Tuning', 88, '2013-12-29'),

 ('Tatiana', 'SQL', 87, '2012-04-28'),

 ('Tatiana', 'Tuning', 83, '2013-09-30');

See INSERT for more.

Using AUTO_INCREMENT
The AUTO_INCREMENT attribute is used to automatically generate a unique identity for new rows.

CREATE TABLE student_details (

 id INT NOT NULL AUTO_INCREMENT, name CHAR(10),

 date_of_birth DATE, PRIMARY KEY (id)

);

3736/4161

https://www.w3schools.com/sql
http://www.sqltutorial.org/

When inserting, the id field can be omitted, and is automatically created.

INSERT INTO student_details (name,date_of_birth) VALUES

 ('Chun', '1993-12-31'),

 ('Esben','1946-01-01'),

 ('Kaolin','1996-07-16'),

 ('Tatiana', '1988-04-13');

SELECT * FROM student_details;

+----+---------+---------------+

| id | name | date_of_birth |

+----+---------+---------------+

| 1 | Chun | 1993-12-31 |

| 2 | Esben | 1946-01-01 |

| 3 | Kaolin | 1996-07-16 |

| 4 | Tatiana | 1988-04-13 |

+----+---------+---------------+

See AUTO_INCREMENT for more.

Querying from two tables on a common value

SELECT * FROM t1 INNER JOIN t2 ON t1.a = t2.b;

This kind of query is called a join - see JOINS for more.

Finding the Maximum Value

SELECT MAX(a) FROM t1;

+--------+

| MAX(a) |

+--------+

| 3 |

+--------+

See the MAX() function for more, as well as Finding the maximum value and grouping the results below for a more practical

example.

Finding the Minimum Value

SELECT MIN(a) FROM t1;

+--------+

| MIN(a) |

+--------+

| 1 |

+--------+

See the MIN() function for more.

Finding the Average Value

SELECT AVG(a) FROM t1;

+--------+

| AVG(a) |

+--------+

| 2.0000 |

+--------+

See the AVG() function for more.

Finding the Maximum Value and Grouping the Results

3737/4161

SELECT name, MAX(score) FROM student_tests GROUP BY name;

+---------+------------+

| name | MAX(score) |

+---------+------------+

| Chun | 75 |

| Esben | 43 |

| Kaolin | 88 |

| Tatiana | 87 |

+---------+------------+

See the MAX() function for more.

Ordering Results

SELECT name, test, score FROM student_tests ORDER BY score DESC;

+---------+--------+-------+

| name | test | score |

+---------+--------+-------+

| Kaolin | Tuning | 88 |

| Tatiana | SQL | 87 |

| Tatiana | Tuning | 83 |

| Chun | SQL | 75 |

| Chun | Tuning | 73 |

| Kaolin | SQL | 56 |

| Esben | SQL | 43 |

| Esben | Tuning | 31 |

+---------+--------+-------+

See ORDER BY for more.

Finding the Row with the Minimum of a Particular Column
In this example, we want to find the lowest test score for any student.

SELECT name,test, score FROM student_tests WHERE score=(SELECT MIN(score) FROM student);

+-------+--------+-------+

| name | test | score |

+-------+--------+-------+

| Esben | Tuning | 31 |

+-------+--------+-------+

Finding Rows with the Maximum Value of a Column by
Group
This example returns the best test results of each student:

SELECT name, test, score FROM student_tests st1 WHERE score = (

 SELECT MAX(score) FROM student st2 WHERE st1.name = st2.name

);

+---------+--------+-------+

| name | test | score |

+---------+--------+-------+

| Chun | SQL | 75 |

| Esben | SQL | 43 |

| Kaolin | Tuning | 88 |

| Tatiana | SQL | 87 |

+---------+--------+-------+

Calculating Age
The TIMESTAMPDIFF function can be used to calculate someone's age:

3738/4161

SELECT CURDATE() AS today;

+------------+

| today |

+------------+

| 2014-02-17 |

+------------+

SELECT name, date_of_birth, TIMESTAMPDIFF(YEAR,date_of_birth,'2014-08-02') AS age

 FROM student_details;

+---------+---------------+------+

| name | date_of_birth | age |

+---------+---------------+------+

| Chun | 1993-12-31 | 20 |

| Esben | 1946-01-01 | 68 |

| Kaolin | 1996-07-16 | 18 |

| Tatiana | 1988-04-13 | 26 |

+---------+---------------+------+

See TIMESTAMPDIFF() for more.

Using User-defined Variables
This example sets a user-defined variable with the average test score, and then uses it in a later query to return all results

above the average.

SELECT @avg_score:= AVG(score) FROM student_tests;

+-------------------------+

| @avg_score:= AVG(score) |

+-------------------------+

| 67.000000000 |

+-------------------------+

SELECT * FROM student_tests WHERE score > @avg_score;

+---------+--------+-------+------------+

| name | test | score | test_date |

+---------+--------+-------+------------+

| Chun | SQL | 75 | 2012-11-05 |

| Chun | Tuning | 73 | 2013-06-14 |

| Kaolin | Tuning | 88 | 2013-12-29 |

| Tatiana | SQL | 87 | 2012-04-28 |

| Tatiana | Tuning | 83 | 2013-09-30 |

+---------+--------+-------+------------+

User-defined variables can also be used to add an incremental counter to a resultset:

SET @count = 0;

SELECT @count := @count + 1 AS counter, name, date_of_birth FROM student_details;

+---------+---------+---------------+

| counter | name | date_of_birth |

+---------+---------+---------------+

| 1 | Chun | 1993-12-31 |

| 2 | Esben | 1946-01-01 |

| 3 | Kaolin | 1996-07-16 |

| 4 | Tatiana | 1988-04-13 |

+---------+---------+---------------+

See User-defined Variables for more.

View Tables in Order of Size
Returns a list of all tables in the database, ordered by size:

3739/4161

SELECT table_schema as `DB`, table_name AS `Table`,

 ROUND(((data_length + index_length) / 1024 / 1024), 2) `Size (MB)`

 FROM information_schema.TABLES

 ORDER BY (data_length + index_length) DESC;

+--------------------+---------------------------------------+-----------+

| DB | Table | Size (MB) |

+--------------------+---------------------------------------+-----------+

| wordpress | wp_simple_history_contexts | 7.05 |

| wordpress | wp_posts | 6.59 |

| wordpress | wp_simple_history | 3.05 |

| wordpress | wp_comments | 2.73 |

| wordpress | wp_commentmeta | 2.47 |

| wordpress | wp_simple_login_log | 2.03 |

...

Removing Duplicates
This example assumes there's a unique ID, but that all other fields are identical. In the example below, there are 4 records,

3 of which are duplicates, so two of the three duplicates need to be removed. The intermediate SELECT is not necessary,

but demonstrates what is being returned.

CREATE TABLE t (id INT, f1 VARCHAR(2));

INSERT INTO t VALUES (1,'a'), (2,'a'), (3,'b'), (4,'a');

SELECT * FROM t t1, t t2 WHERE t1.f1=t2.f1 AND t1.id<>t2.id AND t1.id=(

 SELECT MAX(id) FROM t tab WHERE tab.f1=t1.f1

);

+------+------+------+------+

| id | f1 | id | f1 |

+------+------+------+------+

| 4 | a | 1 | a |

| 4 | a | 2 | a |

+------+------+------+------+

DELETE FROM t WHERE id IN (

 SELECT t2.id FROM t t1, t t2 WHERE t1.f1=t2.f1 AND t1.id<>t2.id AND t1.id=(

 SELECT MAX(id) FROM t tab WHERE tab.f1=t1.f1

)

);

Query OK, 2 rows affected (0.120 sec)

SELECT * FROM t;

+------+------+

| id | f1 |

+------+------+

| 3 | b |

| 4 | a |

+------+------

6.2 Basic MariaDB Articles
These articles are at a basic level. They are more advanced than beginners and less advanced than intermediate developers

and administrators.

Basic SQL Debugging

An introductory tutorial on debugging MariaDB.

Configuring MariaDB for Remote Client Access

How to configure MariaDB for remote client access.

Creating & Using Views

A tutorial on creating and using views.

Getting Started with Indexes

Extensive tutorial on creating indexes for tables.

2

6

3740/4161

Joining Tables with JOIN Clauses

An introductory tutorial on using the JOIN clause.

The Essentials of an Index

Explains the basics of a table index.

Troubleshooting Connection Issues

Common problems when trying to connect to MariaDB.9

6.2.1 Basic SQL Debugging
Contents
1. Designing Queries

1. Using Whitespace

2. Table and Field Aliases

3. Placing JOIN conditions

2. Finding Syntax Errors

1. Interpreting the Empty Error

2. Checking for keywords

3. Version specific syntax

Designing Queries
Following a few conventions makes finding errors in queries a lot easier, especially when you ask for help from people who

might know SQL, but know nothing about your particular schema. A query easy to read is a query easy to debug. Use

whitespace to group clauses within the query. Choose good table and field aliases to add clarity, not confusion. Choose the

syntax that supports the query's meaning.

Using Whitespace

A query hard to read is a query hard to debug. White space is free. New lines and indentation make queries easy to read,

particularly when constructing a query inside a scripting language, where variables are interspersed throughout the query.

There is a syntax error in the following. How fast can you find it?

SELECT u.id, u.name, alliance.ally FROM users u JOIN alliance ON

(u.id=alliance.userId) JOIN team ON (alliance.teamId=team.teamId

WHERE team.teamName='Legionnaires' AND u.online=1 AND ((u.subscription='paid'

AND u.paymentStatus='current') OR u.subscription='free') ORDER BY u.name;

Here's the same query, with correct use of whitespace. Can you find the error faster?

SELECT

 u.id

 , u.name

 , alliance.ally

FROM

 users u

 JOIN alliance ON (u.id = alliance.userId)

 JOIN team ON (alliance.teamId = team.teamId

WHERE

 team.teamName = 'Legionnaires'

 AND u.online = 1

 AND (

 (u.subscription = 'paid' AND u.paymentStatus = 'current')

 OR

 u.subscription = 'free'

)

ORDER BY

 u.name;

Even if you don't know SQL, you might still have caught the missing ')' following team.teamId.

The exact formatting style you use isn't so important. You might like commas in the select list to follow expressions, rather

than precede them. You might indent with tabs or with spaces. Adherence to some particular form is not important. Legibility

is the only goal.

3741/4161

Table and Field Aliases

Aliases allow you to rename tables and fields for use within a query. This can be handy when the original names are very

long, and is required for self joins and certain subqueries. However, poorly chosen aliases can make a query harder to

debug, rather than easier. Aliases should reflect the original table name, not an arbitrary string.

Bad:

SELECT *

FROM

 financial_reportQ_1 AS a

 JOIN sales_renderings AS b ON (a.salesGroup = b.groupId)

 JOIN sales_agents AS c ON (b.groupId = c.group)

WHERE

 b.totalSales > 10000

 AND c.id != a.clientId

As the list of joined tables and the WHERE clause grow, it becomes necessary to repeatedly look back to the top of the

query to see to which table any given alias refers.

Better:

SELECT *

FROM

 financial_report_Q_1 AS frq1

 JOIN sales_renderings AS sr ON (frq1.salesGroup = sr.groupId)

 JOIN sales_agents AS sa ON (sr.groupId = sa.group)

WHERE

 sr.totalSales > 10000

 AND sa.id != frq1.clientId

Each alias is just a little longer, but the table initials give enough clues that anyone familiar with the database only need see

the full table name once, and can generally remember which table goes with which alias while reading the rest of the query.

Placing JOIN conditions

The manual warns against using the JOIN condition (that is, the ON clause) for restricting rows. Some queries, particularly

those using implicit joins, take the opposite extreme - all join conditions are moved to the WHERE clause. In consequence,

the table relationships are mixed with the business logic.

Bad:

SELECT *

FROM

 family,

 relationships

WHERE

 family.personId = relationships.personId

 AND relationships.relation = 'father'

Without digging through the WHERE clause, it is impossible to say what links the two tables.

Better:

SELECT *

FROM

 family

 JOIN relationships ON (family.personId = relationships.personId)

WHERE

 relationships.relation = 'father'

The relation between the tables is immediately obvious. The WHERE clause is left to limit rows in the result set.

Compliance with such a restriction negates the use of the comma operator to join tables. It is a small price to pay. Queries

should be written using the explicit JOIN keyword anyway, and the two should never be mixed (unless you like rewriting all

your queries every time a new version changes operator precedence).

Finding Syntax Errors

3742/4161

Syntax errors are among the easiest problems to solve. MariaDB provides an error message showing the exact point where

the parser became confused. Check the query, including a few words before the phrase shown in the error message. Most

syntax and parsing errors are obvious after a second look, but some are more elusive, especially when the error text seems

empty, points to a valid keyword, or seems to error on syntax that appears exactly correct.

Interpreting the Empty Error

Most syntax errors are easy to interpret. The error generally details the exact source of the trouble. A careful look at the

query, with the error message in mind, often reveals an obvious mistake, such as mispelled field names, a missing 'AND', or

an extra closing parenthesis. Sometimes the error is a little less helpful. A frequent, less-than-helpful message:

ERROR 1064: You have an error in your SQL syntax; check the manual that corresponds to your

MariaDB server version for the right syntax to use near ' ' at line 1

The empty ' ' can be disheartening. Clearly there is an error, but where? A good place to look is at the end of the query. The

' ' suggests that the parser reached the end of the statement while still expecting some syntax token to appear.

Check for missing closers, such as ' and):

SELECT * FROM someTable WHERE field = 'value

Look for incomplete clauses, often indicated by an exposed comma:

SELECT * FROM someTable WHERE field = 1 GROUP BY id,

Checking for keywords

MariaDB allows table and field names and aliases that are also reserved words. To prevent ambiguity, such names must be

enclosed in backticks (`):

SELECT * FROM actionTable WHERE `DELETE` = 1;

If the syntax error is shown near one of your identifiers, check if it appears on the reserved word list.

A text editor with color highlighting for SQL syntax helps to find these errors. When you enter a field name, and it shows up

in the same color as the SELECT keyword, you know something is amiss. Some common culprits:

DESC is a common abbreviation for "description" fields. It means "descending" in a MariaDB ORDER clause.

DATE, TIME, and TIMESTAMP are all common field names. They are also field types.

ORDER appears in sales applications. MariaDB uses it to specify sorting for results.

Some keywords are so common that MariaDB makes a special allowance to use them unquoted. My advice: don't. If it's a

keyword, quote it.

Version specific syntax

As MariaDB adds new features, the syntax must change to support them. Most of the time, old syntax will work in newer

versions of MariaDB. One notable exception is the change in precedence of the comma operator relative to the JOIN

keyword in version 5.0. A query that used to work, such as

SELECT * FROM a, b JOIN c ON a.x = c.x;

will now fail.

More common, however, is an attempt to use new syntax in an old version. Web hosting companies are notoriously slow to

upgrade MariaDB, and you may find yourself using a version several years out of date. The result can be very frustrating

when a query that executes flawlessly on your own workstation, running a recent installation, fails completely in your

production environment.

This query fails in any version of MySQL prior to 4.1, when subqueries were added to the server:

SELECT * FROM someTable WHERE someId IN (SELECT id FROM someLookupTable);

This query fails in some early versions of MySQL, because the JOIN syntax did not originally allow an ON clause:

SELECT * FROM tableA JOIN tableB ON tableA.x = tableB.y;

3743/4161

Always check the installed version of MariaDB, and read the section of the manual relevant for that version. The manual

usually indicates exactly when particular syntax became available for use.

The initial version of this article was copied, with permission, from http://hashmysql.org/wiki/Basic_Debugging on 2012-10-05.

6.2.2 Configuring MariaDB for Remote Client
Access

Contents
1. Finding the Defaults File

2. Editing the Defaults File

3. Granting User Connections From Remote Hosts

4. Port 3306 is Configured in Firewall

5. Caveats

Some MariaDB packages bind MariaDB to 127.0.0.1 (the loopback IP address) by default as a security measure using the

bind-address configuration directive. Old MySQL packages sometimes disabled TCP/IP networking altogether using the

skip-networking directive. Before going in to how to configure these, let's explain what each of them actually does:

skip-networking is fairly simple. It just tells MariaDB to run without any of the TCP/IP networking options.

bind-address requires a little bit of background information. A given server usually has at least two networking

interfaces (although this is not required) and can easily have more. The two most common are a Loopback network

device and a physical Network Interface Card (NIC) which allows you to communicate with the network. MariaDB is

bound to the loopback interface by default because it makes it impossible to connect to the TCP port on the server

from a remote host (the bind-address must refer to a local IP address, or you will receive a fatal error and MariaDB

will not start). This of course is not desirable if you want to use the TCP port from a remote host, so you must remove

this bind-address directive or replace it either 0.0.0.0 to listen on all interfaces, or the address of a specific public

interface.

Multiple comma-separated addresses can now be given to bind_address to allow the server to listen on more than

one specific interface while not listening on others.

If bind-address is bound to 127.0.0.1 (localhost), one can't connect to the MariaDB server from other hosts or from the same

host over TCP/IP on a different interface than the loopback (127.0.0.1). This for example will not work (connecting with a

hostname that points to a local IP of the host):

(/my/maria-10.11) ./client/mariadb --host=myhost --protocol=tcp --port=3306 test

ERROR 2002 (HY000): Can't connect to MySQL server on 'myhost' (115)

(/my/maria-10.11) telnet myhost 3306

Trying 192.168.0.11...

telnet: connect to address 192.168.0.11: Connection refused

Using 'localhost' works when binding with bind_address :

(my/maria-10.11) ./client/mariadb --host=localhost --protocol=tcp --port=3306 test

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MariaDB monitor. Commands end with ; or \g.

...

Finding the Defaults File
To enable MariaDB to listen to remote connections, you need to edit your defaults file. See Configuring MariaDB with my.cnf

for more detail.

Common locations for defaults files:

MariaDB starting with 10.11

3744/4161

http://hashmysql.org/wiki/Basic_Debugging

 * /etc/my.cnf (*nix/BSD)

 * $MYSQL_HOME/my.cnf (*nix/BSD) *Most Notably /etc/mysql/my.cnf

 * SYSCONFDIR/my.cnf (*nix/BSD)

 * DATADIR\my.ini (Windows)

You can see which defaults files are read and in which order by executing:

shell> mariadbd --help --verbose

mariadbd Ver 10.11.5-MariaDB for linux-systemd on x86_64 (MariaDB Server)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Starts the MariaDB database server.

Usage: ./mariadbd [OPTIONS]

Default options are read from the following files in the given order:

/etc/my.cnf /etc/mysql/my.cnf ~/.my.cnf

The last line shows which defaults files are read.

Editing the Defaults File
Once you have located the defaults file, use a text editor to open the file and try to find lines like this under the [mysqld]

section:

 [mysqld]

 ...

 skip-networking

 ...

 bind-address = <some ip-address>

 ...

(The lines may not be in this order, and the order doesn't matter.)

If you are able to locate these lines, make sure they are both commented out (prefaced with hash (#) characters), so that

they look like this:

 [mysqld]

 ...

 #skip-networking

 ...

 #bind-address = <some ip-address>

 ...

(Again, the order of these lines don't matter)

Alternatively, just add the following lines at the end of your .my.cnf (notice that the file name starts with a dot) file in your

home directory or alternative last in your /etc/my.cnf file.

[mysqld]

skip-networking=0

skip-bind-address

This works as one can have any number of [mysqld] sections.

Save the file and restart the mariadbd daemon or service (see Starting and Stopping MariaDB).

You can check the options mariadbd is using by executing:

shell> ./sql/mariadbd --print-defaults

./sql/mariadbd would have been started with the following arguments:

--bind-address=127.0.0.1 --innodb_file_per_table=ON --server-id=1 --skip-bind-address ...

It doesn't matter if you have the original --bind-address left as the later --skip-bind-address will overwrite it.

Granting User Connections From Remote Hosts

3745/4161

Now that your MariaDB server installation is setup to accept connections from remote hosts, we have to add a user that is

allowed to connect from something other than 'localhost' (Users in MariaDB are defined as 'user'@'host', so

'chadmaynard'@'localhost' and 'chadmaynard'@'1.1.1.1' (or 'chadmaynard'@'server.domain.local') are different users that

can have completely different permissions and/or passwords.

To create a new user:

log into the mariadb command line client (or your favorite graphical client if you wish)

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 36

Server version: 5.5.28-MariaDB-mariadb1~lucid mariadb.org binary distribution

Copyright (c) 2000, 2012, Oracle, Monty Program Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

if you are interested in viewing any existing remote users, issue the following SQL statement on the mysql.user table:

SELECT User, Host FROM mysql.user WHERE Host <> 'localhost';

+--------+-----------+

| User | Host |

+--------+-----------+

| daniel | % |

| root | 127.0.0.1 |

| root | ::1 |

| root | gandalf |

+--------+-----------+

4 rows in set (0.00 sec)

(If you have a fresh install, it is normal for no rows to be returned)

Now you have some decisions to make. At the heart of every grant statement you have these things:

list of allowed privileges

what database/tables these privileges apply to

username

host this user can connect from

and optionally a password

It is common for people to want to create a "root" user that can connect from anywhere, so as an example, we'll do just that,

but to improve on it we'll create a root user that can connect from anywhere on my local area network (LAN), which has

addresses in the subnet 192.168.100.0/24. This is an improvement because opening a MariaDB server up to the Internet

and granting access to all hosts is bad practice.

GRANT ALL PRIVILEGES ON *.* TO 'root'@'192.168.100.%'

 IDENTIFIED BY 'my-new-password' WITH GRANT OPTION;

(% is a wildcard)

For more information about how to use GRANT, please see the GRANT page.

At this point we have accomplished our goal and we have a user 'root' that can connect from anywhere on the

192.168.100.0/24 LAN.

Port 3306 is Configured in Firewall
One more point to consider whether the firewall is configured to allow incoming request from remote clients:

On RHEL and CentOS 7, it may be necessary to configure the firewall to allow TCP access to MariaDB from remote hosts.

To do so, execute both of these commands:

firewall-cmd --add-port=3306/tcp

firewall-cmd --permanent --add-port=3306/tcp

Caveats
If your system is running a software firewall (or behind a hardware firewall or NAT) you must allow connections

3746/4161

destined to TCP port that MariaDB runs on (by default and almost always 3306).

To undo this change and not allow remote access anymore, simply remove the skip-bind-address line or

uncomment the bind-address line in your defaults file. The end result should be that you should have in the output

from ./sql/mariadbd --print-defaults the option --bind-address=127.0.0.1 and no --skip-bind-

address .

The initial version of this article was copied, with permission, from http://hashmysql.org/wiki/Remote_Clients_Cannot_Connect on 2012-10-30.

6.2.3 Creating & Using Views
Contents
1. A Tutorial Introduction

1. Requirements for This Tutorial

2. The Employee Database

3. Working with the Employee Database

1. Filtering by Name, Date and Time

2. Refining Our Query

4. The Utility of Views

1. Creating the Employee Tardiness View

2. Other Uses of Views

1. Restricting Data Access

2. Row-level Security

3. Pre-emptive Optimization

4. Abstracting Tables

5. Summary

A Tutorial Introduction
Up-front warning: This is the beginning of a very basic tutorial on views, based on my experimentation with them. This

tutorial assumes that you've read the appropriate tutorials up to and including More Advanced Joins (or that you understand

the concepts behind them). This page is intended to give you a general idea of how views work and what they do, as well as

some examples of when you could use them.

Requirements for This Tutorial

In order to perform the SQL statements in this tutorial, you will need access to a MariaDB database and you will need the

CREATE TABLE and CREATE VIEW privileges on this table.

The Employee Database
First, we need some data we can perform our optimizations on, so we'll recreate the tables from the More Advanced Joins

tutorial, to provide us with a starting point. If you have already completed that tutorial and have this database already, you

can skip ahead.

First, we create the table that will hold all of the employees and their contact information:

CREATE TABLE `Employees` (

 `ID` TINYINT(3) UNSIGNED NOT NULL AUTO_INCREMENT,

 `First_Name` VARCHAR(25) NOT NULL,

 `Last_Name` VARCHAR(25) NOT NULL,

 `Position` VARCHAR(25) NOT NULL,

 `Home_Address` VARCHAR(50) NOT NULL,

 `Home_Phone` VARCHAR(12) NOT NULL,

 PRIMARY KEY (`ID`)

) ENGINE=MyISAM;

Next, we add a few employees to the table:

3747/4161

http://hashmysql.org/wiki/Remote_Clients_Cannot_Connect
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/More_Advanced_Joins

INSERT INTO `Employees` (`First_Name`, `Last_Name`, `Position`, `Home_Address`, `Home_Phone`)

VALUES

 ('Mustapha', 'Mond', 'Chief Executive Officer', '692 Promiscuous Plaza', '326-555-3492'),

 ('Henry', 'Foster', 'Store Manager', '314 Savage Circle', '326-555-3847'),

 ('Bernard', 'Marx', 'Cashier', '1240 Ambient Avenue', '326-555-8456'),

 ('Lenina', 'Crowne', 'Cashier', '281 Bumblepuppy Boulevard', '328-555-2349'),

 ('Fanny', 'Crowne', 'Restocker', '1023 Bokanovsky Lane', '326-555-6329'),

 ('Helmholtz', 'Watson', 'Janitor', '944 Soma Court', '329-555-2478');

Now, we create a second table, containing the hours which each employee clocked in and out during the week:

CREATE TABLE `Hours` (

 `ID` TINYINT(3) UNSIGNED NOT NULL,

 `Clock_In` DATETIME NOT NULL,

 `Clock_Out` DATETIME NOT NULL

) ENGINE=MyISAM;

Finally, although it is a lot of information, we add a full week of hours for each of the employees into the second table that

we created:

INSERT INTO `Hours`

VALUES ('1', '2005-08-08 07:00:42', '2005-08-08 17:01:36'),

 ('1', '2005-08-09 07:01:34', '2005-08-09 17:10:11'),

 ('1', '2005-08-10 06:59:56', '2005-08-10 17:09:29'),

 ('1', '2005-08-11 07:00:17', '2005-08-11 17:00:47'),

 ('1', '2005-08-12 07:02:29', '2005-08-12 16:59:12'),

 ('2', '2005-08-08 07:00:25', '2005-08-08 17:03:13'),

 ('2', '2005-08-09 07:00:57', '2005-08-09 17:05:09'),

 ('2', '2005-08-10 06:58:43', '2005-08-10 16:58:24'),

 ('2', '2005-08-11 07:01:58', '2005-08-11 17:00:45'),

 ('2', '2005-08-12 07:02:12', '2005-08-12 16:58:57'),

 ('3', '2005-08-08 07:00:12', '2005-08-08 17:01:32'),

 ('3', '2005-08-09 07:01:10', '2005-08-09 17:00:26'),

 ('3', '2005-08-10 06:59:53', '2005-08-10 17:02:53'),

 ('3', '2005-08-11 07:01:15', '2005-08-11 17:04:23'),

 ('3', '2005-08-12 07:00:51', '2005-08-12 16:57:52'),

 ('4', '2005-08-08 06:54:37', '2005-08-08 17:01:23'),

 ('4', '2005-08-09 06:58:23', '2005-08-09 17:00:54'),

 ('4', '2005-08-10 06:59:14', '2005-08-10 17:00:12'),

 ('4', '2005-08-11 07:00:49', '2005-08-11 17:00:34'),

 ('4', '2005-08-12 07:01:09', '2005-08-12 16:58:29'),

 ('5', '2005-08-08 07:00:04', '2005-08-08 17:01:43'),

 ('5', '2005-08-09 07:02:12', '2005-08-09 17:02:13'),

 ('5', '2005-08-10 06:59:39', '2005-08-10 17:03:37'),

 ('5', '2005-08-11 07:01:26', '2005-08-11 17:00:03'),

 ('5', '2005-08-12 07:02:15', '2005-08-12 16:59:02'),

 ('6', '2005-08-08 07:00:12', '2005-08-08 17:01:02'),

 ('6', '2005-08-09 07:03:44', '2005-08-09 17:00:00'),

 ('6', '2005-08-10 06:54:19', '2005-08-10 17:03:31'),

 ('6', '2005-08-11 07:00:05', '2005-08-11 17:02:57'),

 ('6', '2005-08-12 07:02:07', '2005-08-12 16:58:23');

Working with the Employee Database
In this example, we are going to assist Human Resources by simplifying the queries that their applications need to perform.

At the same time, it's going to enable us to abstract their queries from the database, which allows us more flexibility in

maintaining it.

Filtering by Name, Date and Time

In the previous tutorial, we looked at a JOIN query that displayed all of the lateness instances for a particular employee. In

this tutorial, we are going to abstract that query somewhat to provide us with all lateness occurrences for all employees, and

then standardize that query by making it into a view.

Our previous query looked like this:

3748/4161

SELECT

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`

FROM `Employees`

INNER JOIN `Hours` ON `Employees`.`ID` = `Hours`.`ID`

WHERE `Employees`.`First_Name` = 'Helmholtz'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') >= '2005-08-08'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') <= '2005-08-12'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%H:%i:%S') > '07:00:59';

The result:

+------------+-----------+---------------------+---------------------+

| First_Name | Last_Name | Clock_In | Clock_Out |

+------------+-----------+---------------------+---------------------+

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 |

+------------+-----------+---------------------+---------------------+

Refining Our Query

The previous example displays to us all of Heimholtz's punch-in times that were after seven AM. We can see here that

Heimholz has been late twice within this reporting period, and we can also see that in both instances, he either left exactly

on time or he left early. Our company policy, however, dictates that late instances must be made up at the end of one's shift,

so we want to exclude from our report anyone whose clock-out time was greater than 10 hours and one minute after their

clock-in time.

SELECT

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`,

 (TIMESTAMPDIFF(MINUTE,`Hours`.`Clock_Out`,`Hours`.`Clock_In`) + 601) as Difference

FROM `Employees`

INNER JOIN `Hours` USING (`ID`)

WHERE DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') >= '2005-08-08'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') <= '2005-08-12'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%H:%i:%S') > '07:00:59'

AND TIMESTAMPDIFF(MINUTE,`Hours`.`Clock_Out`,`Hours`.`Clock_In`) > -601;

This gives us the following list of people who have violated our attendance policy:

+------------+-----------+---------------------+---------------------+------------+

| First_Name | Last_Name | Clock_In | Clock_Out | Difference |

+------------+-----------+---------------------+---------------------+------------+

| Mustapha | Mond | 2005-08-12 07:02:29 | 2005-08-12 16:59:12 | 4 |

| Henry | Foster | 2005-08-11 07:01:58 | 2005-08-11 17:00:45 | 2 |

| Henry | Foster | 2005-08-12 07:02:12 | 2005-08-12 16:58:57 | 4 |

| Bernard | Marx | 2005-08-09 07:01:10 | 2005-08-09 17:00:26 | 1 |

| Lenina | Crowne | 2005-08-12 07:01:09 | 2005-08-12 16:58:29 | 3 |

| Fanny | Crowne | 2005-08-11 07:01:26 | 2005-08-11 17:00:03 | 2 |

| Fanny | Crowne | 2005-08-12 07:02:15 | 2005-08-12 16:59:02 | 4 |

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 | 4 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 | 4 |

+------------+-----------+---------------------+---------------------+------------+

The Utility of Views
We can see in the previous example that there have been several instances of employees coming in late and leaving early.

Unfortunately, we can also see that this query is getting needlessly complex. Having all of this SQL in our application not

only creates more complex application code, but also means that if we ever change the structure of this table we're going to

have to change what is becoming a somewhat messy query. This is where views begin to show their usefulness.

Creating the Employee Tardiness View

3749/4161

Creating a view is almost exactly the same as creating a SELECT statement, so we can use our previous SELECT

statement in the creation of our new view:

CREATE SQL SECURITY INVOKER VIEW Employee_Tardiness AS

SELECT

 `Employees`.`First_Name`,

 `Employees`.`Last_Name`,

 `Hours`.`Clock_In`,

 `Hours`.`Clock_Out`,

(TIMESTAMPDIFF(MINUTE,`Hours`.`Clock_Out`,`Hours`.`Clock_In`) + 601) as Difference

FROM `Employees`

INNER JOIN `Hours` USING (`ID`)

WHERE DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') >= '2005-08-08'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%Y-%m-%d') <= '2005-08-12'

AND DATE_FORMAT(`Hours`.`Clock_In`, '%H:%i:%S') > '07:00:59'

AND TIMESTAMPDIFF(MINUTE,`Hours`.`Clock_Out`,`Hours`.`Clock_In`) > -601;

Note that the first line of our query contains the statement 'SQL SECURITY INVOKER' - this means that when the view is

accessed, it runs with the same privileges that the person accessing the view has. Thus, if someone without access to our

Employees table tries to access this view, they will get an error.

Other than the security parameter, the rest of the query is fairly self explanatory. We simply run 'CREATE VIEW <view-

name> AS' and then append any valid SELECT statement, and our view is created. Now if we do a SELECT from the view,

we can see we get the same results as before, with much less SQL:

SELECT * FROM Employee_Tardiness;

+------------+-----------+---------------------+---------------------+------------+

| First_Name | Last_Name | Clock_In | Clock_Out | Difference |

+------------+-----------+---------------------+---------------------+------------+

| Mustapha | Mond | 2005-08-12 07:02:29 | 2005-08-12 16:59:12 | 5 |

| Henry | Foster | 2005-08-11 07:01:58 | 2005-08-11 17:00:45 | 3 |

| Henry | Foster | 2005-08-12 07:02:12 | 2005-08-12 16:58:57 | 5 |

| Bernard | Marx | 2005-08-09 07:01:10 | 2005-08-09 17:00:26 | 2 |

| Lenina | Crowne | 2005-08-12 07:01:09 | 2005-08-12 16:58:29 | 4 |

| Fanny | Crowne | 2005-08-09 07:02:12 | 2005-08-09 17:02:13 | 1 |

| Fanny | Crowne | 2005-08-11 07:01:26 | 2005-08-11 17:00:03 | 3 |

| Fanny | Crowne | 2005-08-12 07:02:15 | 2005-08-12 16:59:02 | 5 |

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 | 5 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 | 5 |

+------------+-----------+---------------------+---------------------+------------+

Now we can even perform operations on the table, such as limiting our results to just those with a Difference of at least five

minutes:

SELECT * FROM Employee_Tardiness WHERE Difference >=5;

+------------+-----------+---------------------+---------------------+------------+

| First_Name | Last_Name | Clock_In | Clock_Out | Difference |

+------------+-----------+---------------------+---------------------+------------+

| Mustapha | Mond | 2005-08-12 07:02:29 | 2005-08-12 16:59:12 | 5 |

| Henry | Foster | 2005-08-12 07:02:12 | 2005-08-12 16:58:57 | 5 |

| Fanny | Crowne | 2005-08-12 07:02:15 | 2005-08-12 16:59:02 | 5 |

| Helmholtz | Watson | 2005-08-09 07:03:44 | 2005-08-09 17:00:00 | 5 |

| Helmholtz | Watson | 2005-08-12 07:02:07 | 2005-08-12 16:58:23 | 5 |

+------------+-----------+---------------------+---------------------+------------+

Other Uses of Views

Aside from just simplifying our application's SQL queries, there are also other benefits that views can provide, some of

which are only possible by using views.

Restricting Data Access

For example, even though our Employees database contains fields for Position, Home Address, and Home Phone, our

query does not allow for these fields to be shown. This means that in the case of a security issue in the application (for

example, an SQL injection attack, or even a malicious programmer), there is no risk of disclosing an employee's personal

3750/4161

information.

Row-level Security

We can also define separate views to include a specific WHERE clause for security; for example, if we wanted to restrict a

department head's access to only the staff that report to him, we could specify his identity in the view's CREATE statement,

and he would then be unable to see any other department's employees, despite them all being in the same table. If this view

is writeable and it is defined with the CASCADE clause, this restriction will also apply to writes. This is actually the only way

to implement row-level security in MariaDB, so views play an important part in that area as well.

Pre-emptive Optimization

We can also define our views in such a way as to force the use of indexes, so that other, less-experienced developers don't

run the risk of running un-optimized queries or JOINs that result in full-table scans and extended locks. Expensive queries,

queries that SELECT *, and poorly thought-out JOINs can not only slow down the database entirely, but can cause inserts to

fail, clients to time out, and reports to error out. By creating a view that is already optimized and letting users perform their

queries on that, you can ensure that they won't cause a significant performance hit unnecessarily.

Abstracting Tables

When we re-engineer our application, we sometimes need to change the database to optimize or accommodate new or

removed features. We may, for example, want to normalize our tables when they start getting too large and queries start

taking too long. Alternately, we may be installing a new application with different requirements alongside a legacy

application. Unfortunately, database redesign will tend to break backwards-compatibility with previous applications, which

can cause obvious problems.

Using views, we can change the format of the underlying tables while still presenting the same table format to the legacy

application. Thus, an application which demands username, hostname, and access time in string format can access the

same data as an application which requires firstname, lastname, user@host, and access time in Unix timestamp format.

Summary
Views are an SQL feature that can provide a lot of versatility in larger applications, and can even simplify smaller

applications further. Just as stored procedures can help us abstract out our database logic, views can simplify the way we

access data in the database, and can help un-complicate our queries to make application debugging easier and more

efficient.

The initial version of this article was copied, with permission, from http://hashmysql.org/wiki/Views_(Basic) on 2012-10-05.

3.3.3.2 Getting Started with Indexes

6.2.5 Joining Tables with JOIN Clauses
In the absence of a more tutorial-level document, here is a simple example of three basic JOIN types, which you can

experiment with in order to see what the different joins accomplish:

CREATE TABLE t1 (a INT);

CREATE TABLE t2 (b INT);

INSERT INTO t1 VALUES (1), (2), (3);

INSERT INTO t2 VALUES (2), (4);

SELECT * FROM t1 INNER JOIN t2 ON t1.a = t2.b;

SELECT * FROM t1 CROSS JOIN t2;

SELECT * FROM t1 LEFT JOIN t2 ON t1.a = t2.b;

SELECT * FROM t2 LEFT JOIN t1 ON t1.a = t2.b;

The first two SELECTs are (unfortunately) commonly written with an older form:

SELECT * FROM t1, t2 WHERE t1.a = t2.b;

SELECT * FROM t1, t2;

What you can see from this is that an INNER JOIN produces a result set containing only rows that have a match, in both

tables (t1 and t2), for the specified join condition(s).

3751/4161

http://hashmysql.org/wiki/Views_(Basic

A CROSS JOIN produces a result set in which every row in each table is joined to every row in the other table; this is also

called a cartesian product. In MariaDB the CROSS keyword can be omitted, as it does nothing. Any JOIN without an ON

clause is a CROSS JOIN.

The LEFT JOIN is an outer join, which produces a result set with all rows from the table on the "left" (t1); the values for the

columns in the other table (t2) depend on whether or not a match was found. If no match is found, all columns from that

table are set to NULL for that row.

The RIGHT JOIN is similar to the LEFT JOIN, though its resultset contains all rows from the right table, and the left table's

columns will be filled with NULLs when needed.

JOINs can be concatenated to read results from three or more tables.

Here is the output of the various SELECT statements listed above:

SELECT * FROM t1 INNER JOIN t2 ON t1.a = t2.b;

------ ------

| a | b |

------ ------

| 2 | 2 |

------ ------

1 row in set (0.00 sec)

SELECT * FROM t1 CROSS JOIN t2;

------ ------

| a | b |

------ ------

| 1 | 2 |

| 2 | 2 |

| 3 | 2 |

| 1 | 4 |

| 2 | 4 |

| 3 | 4 |

------ ------

6 rows in set (0.00 sec)

SELECT * FROM t1 LEFT JOIN t2 ON t1.a = t2.b;

------ ------

| a | b |

------ ------

| 1 | NULL |

| 2 | 2 |

| 3 | NULL |

------ ------

3 rows in set (0.00 sec)

SELECT * FROM t2 LEFT JOIN t1 ON t1.a = t2.b;

------ ------

| b | a |

------ ------

| 2 | 2 |

| 4 | NULL |

------ ------

2 rows in set (0.00 sec)

That should give you a bit more understanding of how JOINS work!

Other References
JOINs Tutorial with Examples

How to write complex queries

6.2.6 The Essentials of an Index
Imagine you've created a table with the following rows (this is the same table as used in the More Advanced Joins tutorial).

3752/4161

https://blog.devart.com/mysql-joins-tutorial-with-examples.html
https://blog.devart.com/how-to-write-complex-mysql-queries.html

+----+------------+-----------+-------------------------+---------------------------+--------------+

| ID | First_Name | Last_Name | Position | Home_Address | Home_Phone |

+----+------------+-----------+-------------------------+---------------------------+--------------+

| 1 | Mustapha | Mond | Chief Executive Officer | 692 Promiscuous Plaza | 326-555-3492 |

| 2 | Henry | Foster | Store Manager | 314 Savage Circle | 326-555-3847 |

| 3 | Bernard | Marx | Cashier | 1240 Ambient Avenue | 326-555-8456 |

| 4 | Lenina | Crowne | Cashier | 281 Bumblepuppy Boulevard | 328-555-2349 |

| 5 | Fanny | Crowne | Restocker | 1023 Bokanovsky Lane | 326-555-6329 |

| 6 | Helmholtz | Watson | Janitor | 944 Soma Court | 329-555-2478 |

+----+------------+-----------+-------------------------+---------------------------+--------------+

Now, imagine you've been asked to return the home phone of Fanny Crowne. Without indexes, the only way to do it is to go

through every row until you find the matching first name and surname. Now imagine there are millions of records and you

can see that, even for a speedy database server, this is highly inefficient.

The answer is to sort the records. If they were stored in alphabetical order by surname, even a human could quickly find a

record amongst a large number. But we can't sort the entire record by surname. What if we want to also look a record by

ID, or by first name? The answer is to create separate indexes for each column we wish to sort by. An index simply contains

the sorted data (such as surname), and a link to the original record.

For example, an index on Last_Name:

+-----------+----+

| Last_Name | ID |

+-----------+----+

| Crowne | 4 |

| Crowne | 5 |

| Foster | 2 |

| Marx | 3 |

| Mond | 1 |

| Watson | 6 |

+-----------+----+

and an index on Position

+-------------------------+----+

| Position | ID |

+-------------------------+----+

| Cashier | 3 |

| Cashier | 4 |

| Chief Executive Officer | 1 |

| Janitor | 6 |

| Restocker | 5 |

| Store Manager | 2 |

+-------------------------+----+

would allow you to quickly find the phone numbers of all the cashiers, or the phone number of the employee with the

surname Marx, very quickly.

Where possible, you should create an index for each column that you search for records by, to avoid having the server read

every row of a table.

See CREATE INDEX and Getting Started with Indexes for more information.

6.2.7 Troubleshooting Connection Issues
Contents
1. Server Not Running in Specified Location

2. Unable to Connect from a Remote Location

3. Authentication Problems

1. Problems Exporting Query Results

2. Access to the Server, but not to a Database

3. Option Files and Environment Variables

4. Unable to Connect to a Running Server / Lost root Password

5. localhost and %

3753/4161

If you are completely new to MariaDB and relational databases, you may want to start with the MariaDB Primer. Also, make

sure you understand the connection parameters discussed in the Connecting to MariaDB article.

There are a number of common problems that can occur when connecting to MariaDB.

Server Not Running in Specified Location

If the error you get is something like:

mariadb -uname -p -uname -p

ERROR 2002 (HY000): Can't connect to local MySQL server through

 socket '/var/run/mysqld/mysqld.sock' (2 "No such file or directory")

or

mariadb -uname -p --port=3307 --protocol=tcp

ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost'

 (111 "Connection refused")

the server is either not running, or not running on the specified port, socket or pipe. Make sure you are using the correct

host, port, pipe, socket and protocol options, or alternatively, see Getting, Installing and Upgrading MariaDB, Starting and

Stopping MariaDB or Troubleshooting Installation Issues.

The socket file can be in a non-standard path. In this case, the socket option is probably written in the my.cnf file. Check

that its value is identical in the [mysqld] and [client] sections; if not, the client will look for a socket in a wrong place.

If unsure where the Unix socket file is running, it's possible to find this out, for example:

netstat -ln | grep mysqld

unix 2 [ACC] STREAM LISTENING 33209505 /var/run/mysqld/mysqld.sock

Unable to Connect from a Remote Location

Usually, the MariaDB server does not by default accept connections from a remote client or connecting with tcp and a

hostname and has to be configured to permit these.

(/my/maria-10.4) ./client/mysql --host=myhost --protocol=tcp --port=3306 test

ERROR 2002 (HY000): Can't connect to MySQL server on 'myhost' (115)

(/my/maria-10.4) telnet myhost 3306

Trying 192.168.0.11...

telnet: connect to address 192.168.0.11: Connection refused

(/my/maria-10.4) perror 115

OS error code 115: Operation now in progress

To solve this, see Configuring MariaDB for Remote Client Access

Authentication Problems

Note that from MariaDB 10.4.3, the unix_socket authentication plugin is enabled by default on Unix-like systems. This uses

operating system credentials when connecting to MariaDB via the local Unix socket file. See unix_socket authentication

plugin for instructions on connecting and on switching to password-based authentication as well as Authentication from

MariaDB 10.4 for an overview of the MariaDB 10.4 changes..

Authentication is granted to a particular username/host combination. user1'@'localhost' , for example, is not the same

as user1'@'166.78.144.191' . See the GRANT article for details on granting permissions.

Passwords are hashed with PASSWORD function. If you have set a password with the SET PASSWORD statement, the

PASSWORD function must be used at the same time. For example, SET PASSWORD FOR 'bob'@'%.loc.gov' =

PASSWORD('newpass') rather than just SET PASSWORD FOR 'bob'@'%.loc.gov' = 'newpass' ;

Problems Exporting Query Results

If you can run regular queries, but get an authentication error when running the SELECT ... INTO OUTFILE, SELECT ...

3754/4161

INTO DUMPFILE or LOAD DATA INFILE statements, you do not have permission to write files to the server. This requires

the FILE privilege. See the GRANT article.

Access to the Server, but not to a Database

If you can connect to the server, but not to a database, for example:

USE test;

ERROR 1044 (42000): Access denied for user 'ian'@'localhost' to database 'test'

or can connect to a particular database, but not another, for example mariadb -uname -p -u name db1 works but not

mariadb -uname -p -u name db2 , you have not been granted permission for the particular database. See the GRANT

article.

Option Files and Environment Variables

It's possible that option files or environment variables may be providing incorrect connection parameters. Check the values

provided in any option files read by the client you are using (see mysqld Configuration Files and Groups and the

documentation for the particular client you're using - see Clients and Utilities).

Option files can usually be suppressed with no-defaults option, for example:

mariadb-import --no-defaults ...

Unable to Connect to a Running Server / Lost root Password

If you are unable to connect to a server, for example because you have lost the root password, you can start the server

without using the privilege tables by running the --skip-grant-tables option, which gives users full access to all tables. You

can then run FLUSH PRIVILEGES to resume using the grant tables, followed by SET PASSWORD to change the password

for an account.

localhost and %

You may have created a user with something like:

CREATE USER melisa identified by 'password';

This creates a user with the '%' wildcard host.

select user,host from mysql.user where user='melisa';

+--------+------+

| user | host |

+--------+------+

| melisa | % |

+--------+------+

However, you may still be failing to login from localhost. Some setups create anonymous users, including localhost. So the

following records exist in the user table:

select user,host from mysql.user where user='melisa' or user='';

+--------+-----------+

| user | host |

+--------+-----------+

| melisa | % |

| | localhost |

+--------+-----------+

Since you are connecting from localhost, the anonymous credentials, rather than those for the 'melisa' user, are used. The

solution is either to add a new user specific to localhost, or to remove the anonymous localhost user.

6.3 Intermediate MariaDB Articles
These are articles for intermediate level MariaDB developers and administrators.

3755/4161

https://mariadb.com/kb/en/clients-and-utilities/

Database Theory

Articles on hierarchical, network and relational databases.

Starting and Stopping MariaDB

Articles related to starting and stopping MariaDB Server.

6.3.1 Database Theory
Just as perhaps we take movie special effects for granted until we see what state of the art was in previous eras, so we can't

fully appreciate the power of relational databases without seeing what preceded them.

Relational databases allow any table to relate to any other table through means of common fields. It is a highly flexible

system, and most modern databases are relational.

Introduction to Relational Databases

Brief introduction to the concept of a relational database.

Exploring Early Database Models

Before relational databases there were a number of other models

Understanding the Hierarchical Database Model

The earliest model was the hierarchical database model, resembling an upside-down tree.

Understanding the Network Database Model

A progression from the hierarchical model designed to solve some of its problems

Understanding the Relational Database Model

The relational database model was a huge leap forward from the network data...

Relational Databases: Basic Terms

The relational database model uses certain terms to describe its components

Relational Databases: Table Keys

A key, or index, unlocks access to the tables

Relational Databases: Foreign Keys

Foreign keys are the primary key in a foreign table

Relational Databases: Views

Views are virtual tables

Database Design

Articles about the database design process

Database Normalization

Normalization is a powerful tool for designing databases

ACID: Concurrency Control with Transactions

Ensuring data integrity.

4

2

1

6.3.1.1 Introduction to Relational Databases
Contents
1. What is a Database?

1. Table 1

2. Table 2

2. Database Terminology

What is a Database?
The easiest way to understand a database is as a collection of related files. Imagine a file (either paper or digital) of sales

orders in a shop. Then there's another file of products, containing stock records. To fulfil an order, you'd need to look up the

product in the order file and then look up and adjust the stock levels for that particular product in the product file. A database

3756/4161

and the software that controls the database, called a database management system (DBMS), helps with this kind of task.

Most databases today are relational databases, named such because they deal with tables of data related by a common

field. For example, Table 1 below shows the product table, and Table 2 shows the invoice table. As you can see, the relation

between the two tables is based on the common field product_code . Any two tables can relate to each other simply by

having a field in common.

Table 1

Product_code Description Price

A416 Nails, box $0.14

C923 Drawing pins, box $0.08

Table 2

Invoice_code Invoice_line Product_code Quantity

3804 1 A416 10

3804 2 C923 15

Database Terminology
Let's take a closer look at the previous two tables to see how they are organized:

Each table consists of many rows and columns.

Each new row contains data about one single entity (such as one product or one order line). This is called a record.

For example, the first row in Table 1 is a record; it describes the A416 product, which is a box of nails that costs

fourteen cents. The terms row and record are interchangeable.

Each column (also called an attribute) contains one piece of data that relates to the record, called a tuple. Examples

of attributes are the quantity of an item sold or the price of a product. An attribute, when referring to a database table,

is called a field. For example, the data in the Description column in Table 1 are fields. The terms attribute and field

are interchangeable.

Given this kind of structure, the database gives you a way to manipulate this data: SQL. SQL (structured query language) is

a powerful way to search for records or make changes. Almost all DBMSs use SQL, although many have added their own

enhancements to it. This means that when you learn SQL while using MariaDB, almost all of it is not specific to MariaDB

and can be used with other relational databases as well, such as PostgreSQL, MySQL, Oracle and SQL Server. MariaDB

was originally-created as a drop-in replacement to MySQL, so MariaDB and MySQL are particularly close.

6.3.1.2 Exploring Early Database Models
Before the advent of databases, the only way to store data was from unrelated files. Programmers had to go to great

lengths to extract the data, and their programs had to perform complex parsing and relating.

Languages such as Perl, with its powerful regular expressions ideal for processing text, have made the job a lot easier than

before; however, accessing the data from files is still a challenging task. Without a standard way to access data, systems

are more prone to errors, are slower to develop, and are more difficult to maintain. Data redundancy (where data is

duplicated unnecessarily) and poor data integrity (where data is not changed in all locations, leading to wrong or outdated

data being supplied) are frequent consequences of the file access method of data storage. For these reasons, database

management systems (DBMSs) were developed to provide a standard and reliable way to access and update data. They

provide an intermediary layer between the application and the data, and the programmer is able to concentrate on

developing the application, rather than worrying about data access issues.

A database model is a logical model concerned with how the data is represented. Instead of database designers worrying

about the physical storage of data, the database model allows them to look at a higher, more conceptual level, reducing the

gap between the real-world problem for which the application is being developed and the technical implementation.

There are a number of database models. The next two articles cover two common models; the hierarchical database model

and the network database model. After that comes the one MariaDB, along with most modern DBMSs uses, the relational

model.

6.3.1.3 Understanding the Hierarchical
Database Model

3757/4161

The earliest model was the hierarchical database model, resembling an upside-down tree. Files are related in a parent-child

manner, with each parent capable of relating to more than one child, but each child only being related to one parent. Most

of you will be familiar with this kind of structure4it9s the way most file systems work. There is usually a root, or top-level,

directory that contains various other directories and files. Each subdirectory can then contain more files and directories, and

so on. Each file or directory can only exist in one directory itself4it only has one parent. As you can see in the image below

A1 is the root directory, and its children are B1 and B2. B1 is a parent to C1, C2, and C3, which in turn has children of its

own.

This model, although being a vast improvement on dealing with unrelated files, has some serious disadvantages. It

represents one-to-many relationships well (one parent has many children; for example, one company branch has many

employees), but it has problems with many-to-many relationships. Relationships such as that between a product file and an

orders file are difficult to implement in a hierarchical model. Specifically, an order can contain many products, and a product

can appear in many orders. Also, the hierarchical model is not flexible because adding new relationships can result in

wholesale changes to the existing structure, which in turn means all existing applications need to change as well. This is not

fun when someone has forgotten a table and wants it added to the system shortly before the project is due to launch! And

developing the applications is complex because the programmer needs to know the data structure well in order to traverse

the model to access the needed data. As you9ve seen in the earlier chapters, when accessing data from two related tables,

you only need to know the fields you require from those two tables. In the hierarchical model, you9d need to know the entire

chain between the two. For example, to relate data from A1 and D4, you9d need to take the route: A1, B1, C3 and D4.

6.3.1.4 Understanding the Network Database
Model
The network database model was a progression from the hierarchical database model and was designed to solve some of

that model's problems, specifically the lack of flexibility. Instead of only allowing each child to have one parent, this model

allows each child to have multiple parents (it calls the children members and the parents owners). It addresses the need to

model more complex relationships such as the orders/parts many-to-many relationship mentioned in the hierarchical article.

As you can see in the figure below, A1 has two members, B1 and B2. B1. is the owner of C1, C2, C3 and C4. However, in

this model, C4 has two owners, B1 and B2.

Of course, this model has its problems, or everyone would still be using it. It is more difficult to implement and maintain, and,

although more flexible than the hierarchical model, it still has flexibility problems, Not all relations can be satisfied by

assigning another owner, and the programmer still has to understand the data structure well in order to make the model

efficient.

3758/4161

6.3.1.5 Understanding the Relational Database
Model
The relational database model was a huge leap forward from the network database model. Instead of relying on a parent-

child or owner-member relationship, the relational model allows any file to be related to any other by means of a common

field. Suddenly, the complexity of the design was greatly reduced because changes could be made to the database schema

without affecting the system's ability to access data. And because access was not by means of paths to and from files, but

from a direct relationship between files, new relations between these files could easily be added.

In 1970, when E.F. Codd developed the model, it was thought to be impractical. The increased ease of use comes at a

large performance penalty, and the hardware in those days was not able to implement the model. Since then, of course,

hardware has taken huge strides to where today, even the simplest computers can run sophisticated relational database

management systems.

Relational databases go hand-in-hand with the development of SQL. The simplicity of SQL - where even a novice can learn

to perform basic queries in a short period of time - is a large part of the reason for the popularity of the relational model.

The two tables below relate to each other through the product_code field. Any two tables can relate to each other simply by

creating a field they have in common.

Table 1

Product_code Description Price

A416 Nails, box $0.14

C923 Drawing pins, box $0.08

Table 2

Invoice_code Invoice_line Product_code Quantity

3804 1 A416 10

3804 2 C923 15

6.3.1.6 Relational Databases: Basic Terms
The relational database model uses certain terms to describe its components:

Data are the values kept in the database. On their own, the data means very little. CA 684-213 is an example of

data in a DMV (Division of Motor Vehicles) database.

Information is processed data. For example, CA 684-213 is the car registration number of a car belonging to

Lyndon Manson, in a DMV database.

A database is a collection of tables, also called entities.

Each table is made up of records (the horizontal rows in the table, also called tuples). Each record should be unique,

and can be stored in any order in the table.

Each record is made up of fields (which are the vertical columns of the table, also called attributes). Basically, a

record is one fact (for example, one customer or one sale).

These fields can be of various types. MariaDB has many types (see Data Types for a list), but generally types fall into

three kinds: character, numeric, and date. For example, a customer name is a character field, a customer's birthday is

a date field, and a customer's number of children is a numeric field.

The range of allowed values for a field is called the domain (also called a field specification). For example, a credit

card field may be limited to only the values Mastercard , Visa and Amex .

A field is said to contain a null value when it contains nothing at all. Null fields can create complexities in calculations

and have consequences for data accuracy. For this reason, many fields are specifically set not to contain null values.

A key accesses specific records in a table.

An index is a mechanism to improve the performance of a database. Indexes are often confused with keys. Indexes

are, strictly speaking, part of the physical structure, and keys are part of the logical structure. You'll often see the

terms used interchangeably, however, including throughout this Knowledge Base.

A view is a virtual table made up of a subset of the actual tables.

A one-to-one (1:1) relationship is where for each instance of the first table in a relationship, only one instance of the

second table exists, An example of this would be a case where a chain of stores carries a vending machine. Each

vending machine can only be in one store, and each store carries only one vending machine.

3759/4161

A one-to-many (1:N) relationship is where for each instance of the first table in a relationship, many instances of the

second table exist. This is a common kind of relationship. An example is the relationship between a sculptor and their

sculptures. Each sculptor may have created many sculptures, but each sculpture has been created by only one

sculptor.

A many-to-many (M:N) relationship occurs where, for each instance of the first table, there are many instances of the

second table, and for each instance of the second table, there are many instances of the first. For example, a student

can have many lecturers, and a lecturer can have many students.

A mandatory relationship exists where for each instance of the first table in a relationship, one or more instances of

the second must exist. For example, for a music group to exist, there must exist at least one musician in that group.

An optional relationship is where for each instance of the first table in a relationship, there may exist instances of the

second. For example, if an author can be listed in the database without having written a book (in other words, a

prospective author), that relationship is optional. The reverse isn't necessarily true though. For example, for a book to

be listed, it must have an author.

Data integrity refers to the condition where data is accurate, valid, and consistent. An example of poor integrity would

be if a customer telephone number is stored differently in two different locations. Another is where a course record

contains a reference to a lecturer who is no longer present at the school. Database normalization is a technique that

assists you to minimize the risk of these sorts of problems.

6.3.1.7 Relational Databases: Table Keys
A key, or index, as the term itself indicates, unlocks access to the tables. If you know the key, you know how to identify

specific records and the relationships between the tables.

Each key consists of one or more fields, or field prefix. The order of columns in an index is significant. Each key has a

name.

A candidate key is a field, or combination of fields, that uniquely identifies a record. It cannot contain a null value, and its

value must be unique. (With duplicates, you would no longer be identifying a unique record).

A primary key (PK) is a candidate key that has been designated to identify unique records in the table throughout the

database structure.

A surrogate key is a primary key that contains unique values automatically generated by the database system - usually,

integer numbers. A surrogate key has no meaning, except uniquely identifying a record. This is the most common type of

primary key.

For example, see the following table:

Customer_code First_name Surname Telephone_number

1 Ariane Edison 448-2143

2 Georgei Edison 448-2142

3 Abbas Edison 9231-5312

At first glance, there are two possible candidate keys for this table. Either customer_code or a combination of first_name,

surname and telephone_number would suffice. It is always better to choose the candidate key with the least number of

fields for the primary key, so you would choose customer_code in this example (note that it is a surrogate key). Upon

reflection, there is also the possibility of the second combination not being unique. The combination of first_name, surname

and telephone_number could in theory be duplicated, such as where a father has a son of the same name who is

contactable at the same telephone number. This system would have to expressly exclude this possibility for these three

fields to be considered for the status of primary key.

There may be many Ariane Edisons, but you avoid confusion by assigning each a unique number. Once a primary key has

been created, the remaining candidates are labeled as alternate keys.

3760/4161

6.3.1.8 Relational Databases: Foreign Keys
You already know that a relationship between two tables is created by assigning a common field to the two tables (see

Relational Databases: Table Keys). This common field must be a primary key to one table. Consider a relationship between

a customer table and a sale table. The relationship is not much good if instead of using the primary key, customer_code, in

the sale table, you use another field that is not unique, such as the customer's first name. You would be unlikely to know for

sure which customer made the sale in that case. So, in the table below, customer_code is called the foreign_key in the sale

table; in other words, it is the primary key in a foreign table.

Foreign keys allow for something called referential integrity. What this means is that if a foreign key contains a value, this

value refers to an existing record in the related table. For example, take a look at the tables below:

Lecturer table

Code First Name Surname

1 Anne Cohen

2 Leonard Clark

3 Vusi Cave

Course table

Course Title Lecturer Code

Introduction to Programming 1

Information Systems 2

Systems Software 3

Referential integrity exists here, as all the lecturers in the course table exist in the lecturer table. However, let's assume

Anne Cohen leaves the institution, and you remove her from the lecturer table. In a situation where referential integrity is not

enforced, she would be removed from the lecturer table, but not from the course table, as shown below:

Lecturer table

Code First Name Surname

2 Leonard Clark

3 Vusi Cave

Course table

Course Title Lecturer Code

Introduction to Programming 1

Information Systems 2

Systems Software 3

Now, when you look up who lectures Introduction to Programming, you are sent to a non-existent record. This is called poor

data intregrity.

Foreign keys also allow cascading deletes and updates. For example, if Anne Cohen leaves, taking the Introduction to

Programming Course with her, all trace of her can be removed from both the lecturer and course table using one statement.

The delete cascades through the relevant tables, removing all relevant records.

Foreign keys can also contain null values, indicating that no relationship exists.

3761/4161

6.3.1.9 Relational Databases: Views
Views are virtual tables. They are only a structure, and contain no data. Their purpose is to allow a user to see a subset of

the actual data. A view can consist of a subset of one table. For example, the student view, below, is a subset of the student

table.

Student View

First name

Surname

Grade

Student Table

Student_id

First name

Surname

Grade

Address

Telephone

This view could be used to allow other students to see their fellow student's marks but not allow them access to personal

information.

Alternatively, a view could be a combination of a number of tables, such as the view below:

Student View

First name

Surname

Grade

Student Table

Student_id

First name

Surname

Address

Telephone

Course Table

Course_id

Course description

Grade Table

Student_id

Course_id

Grade

Views are also useful for security. In larger organizations, where many developers may be working on a project, views allow

developers to access only the data they need. What they don't need, even if it is in the same table, is hidden from them,

safe from being seen or manipulated. It also allows queries to be simplified for developers. For example, without the view, a

developer would have to retrieve the fields in the view with the following sort of query

SELECT first_name, surname, course_description, grade FROM student, grade, course

 WHERE grade.student_id = student.student_id AND grade.course_id = course.course_id

With the view, a developer could do the same with the following:

3762/4161

SELECT first_name, surname, course_description, grade FROM student_grade_view

Much simpler for a junior developer who hasn't yet learned to do joins, and it's just less hassle for a senior developer too!

For more use cases, see the Views Tutorial.

6.3.1.10 Database Design
Articles about the database design process

Database Design: Overview

Databases exist because of the need to change data into information

Database Lifecycle

Like everything else, databases have a finite lifespan

Database Design Phase 1: Analysis

Defining problems, possibilities, constraints, objectives and agreeing on the scope

Database Design Phase 2: Conceptual Design

Requirements identified in the previous phase are used as the basis to develop the new system

Database Design Phase 2: Logical and Physical Design

After conceptual design, it's time to convert to the logical and physical design

Database Design Phase 3: Implementation

Install the DBMS and load the data

Database Design Phase 4: Testing

Testing performance, security, and integrity of the data

Database Design Phase 5: Operation

Rolling out for everyday use

Database Design Phase 6: Maintenance

Maintaining indexes, optimizing tables, adding and removing users, changing passwords

Database Design Example Phase 1: Analysis

Walking through the database design process with a step-by-step example

Database Design Example Phase 2: Design

Poet Circle logical design and identifying the initial entities

Database Design Example Phase 3: Implementation

Creating the Poet's Circle tables

Database Design Example Phases 4-6: Testing, Operation and Maintenance

Testing, rolling out and maintenance of the Poet's Circle database.

6.3.1.10.1 Database Design: Overview
Databases exist because of the need to change data into information. Data are the raw and unprocessed facts. Information

is obtained by processing the data into something useful. For example, millions of names and telephone numbers in a

phone book are data. Information is the telephone number of the fire department when your house is burning down.

A database is a large repository of facts, designed in such a way that processing the facts into information is easy. If the

phone book was structured in a less convenient way, such as with names and numbers placed in chronological order

according to when the numbers were issued, converting the data into information would be much more difficult. Not knowing

when the fire department was issued their latest number, you could search for days, and by the time you find the number

your house would be a charred pile of ash. So, it's a good thing the phone book was designed as it was.

A database is much more flexible; a similar set of data to what's in a phone book could be ordered by MariaDB according to

name, telephone number, address as well as chronologically. But databases are of course more complex, containing many

different kinds of information. People, job titles and a company's products can all mingle to provide complex information. But

3763/4161

this complexity makes the design of databases more complex as well. Poor design could make for slow queries, or it could

even make certain kinds of information impossible to reach. This section of the Knowledge Base features articles about

good database design, specifically:

The database lifecycle

Entity-relationship modeling

Common mistakes in database design

Real-world example: creating a publishing tracking system

Concurrency control with transactions

6.3.1.10.2 Database Lifecycle

This article follows on from Database Design: Overview.

Like everything else, databases have a finite lifespan. They are born in a flush of optimism and make their way through life

achieving fame, fortune, and peaceful anonymity, or notoriety as the case may be, before fading out once more. Even the

most successful database at some time is replaced by another, more flexible and up-to-date structure, and so begins life

anew. Although exact definitions differ, there are generally six stages of the database lifecycle.

Analysis

The analysis phase is where the stakeholders are interviewed and any existing system is examined to identify problems,

possibilities and constraints. The objectives and scope of the new system are determined.

Design

The design phase is where a conceptual design is created from the previously determined requirements, and a logical and

physical design are created that will ready the database for implementation.

Implementation

The implementation phase is where the database management system (DBMS) is installed, the databases are created, and

the data are loaded or imported.

Testing

The testing phase is where the database is tested and fine-tuned, usually in conjunction with the associated applications.

Operation

The operation phase is where the database is working normally, producing information for its users.

Maintenance

The maintenance phase is where changes are made to the database in response to new requirements or changed

operating conditions (such as heavier load).

Database development is not independent of systems development, often being one component of the greater systems

development process. The stages of systems development basically mirror the stages of a database lifecycle but are a

superset. Whereas database design deals with designing the system to store the data, systems design is also concerned

with the processes that will impact on the data.

6.3.1.10.3 Database Design Phase 1: Analysis

This article follows on from Database Lifecycle.

Your existing system can no longer cope. It's time to move on. Perhaps the existing paper system is generating too many

errors, or the old Perl script based on flat files can no longer handle the load. Or perhaps an existing news database is

struggling under its own popularity and needs an upgrade. This is the stage where the existing system is reviewed.

Depending on the size of the project, the designer may be an individual, responsible for the database implementation and

coding, or may be a whole team of analysts. For now, the term designer will represent all these possibilities.

The following are the steps in the Analysis Phase.
3764/4161

1. Analyze the organization

2. Define any problems, possibilities or constraints

3. Define the objectives

4. Agree on the scope

When reviewing a system, the designer needs to look at the bigger picture - not just the hardware or existing table

structures, but the whole situation of the organization calling for the redesign. For example, a large bank with centralized

management would have a different structure and a different way of operating from a decentralized media organization,

where anyone can post news onto a website. This may seem trivial, but understanding the organization you're building the

database for is vital. to designing a good database for it. The same demands in the bank and media organizations should

lead to different designs because the organizations are different. In other words, a solution that was constructed for the bank

cannot be unthinkingly implemented for the media organization, even when the situation seems similar. A culture of central

control at the bank may mean that news posted on the bank website has to be moderated and authorized by central

management, or may require the designer to keep detailed audit trails of who modified what and when. On the flip-side, the

media organization may be more laissez-faire and will be happy with news being modified by any authorized editor.

Understanding an organization's culture helps the designers ask the right questions. The bank may not ask for an audit trail,

it may simply expect it; and when the time comes to roll out the implementation, the audit trail would need to be patched on,

requiring more time and resources.

Once you understand the organization structure, you can question the users of any existing system as to what their

problems and needs are, as well as what constraints will exist then. You need to question different role players, as each can

add new understanding as to what the database may need. For example, the media organization's marketing department

may need detailed statistics about the times of day certain articles are read. You may also be alerted to possible future

requirements. Perhaps the editorial department is planning to expand the website, which will give them the staff to cross-link

web articles. Keeping this future requirement in mind could make it easier to add the cross-linking feature when the time

comes.

Constraints can include hardware ("We have to use our existing database server") or people ("We only have one data

capturer on shift at any one time"). Constraints also refer to the limitations on values. For example, a student's grade in a

university database may not be able to go beyond 100 percent, or the three categories of seats in a theatre database are

small, medium and large.

It is rarely sufficient to rely on one level of management, or an individual, to supply objectives and current problems, except

in the smallest of organizations. Top management may be paying for the database design, but lower levels will need to use

it, and their input is probably even more important for a successful design.

Of course, although anything is possible given infinite time and money, this is (usually) never forthcoming. Determining

scope, and formalizing it, is an important part of the project. If the budget is for one month's work but the ideal solution

requires three, the designer must make clear these constraints and agree with the project owners on which facets are not

going to be implemented.

6.3.1.10.4 Database Design Phase 2:
Conceptual Design

This article follows on from Database Design Phase 1: Analysis .

Contents
1. Conceptual design

1. Entities and attributes

2. Relationships

1. Mandatory

2. Optional

3. One-to-one (1:1)

4. One-to-many (1:M)

5. Many-to-many (M:N)

3. Developing an entity-relationship diagram

The design phase is where the requirements identified in the previous phase are used as the basis to develop the new

system. Another way of putting it is that the business understanding of the data structures is converted to a technical

understanding. The what questions ("What data are required? What are the problems to be solved?") are replaced by the

how questions ("How will the data be structured? How is the data to be accessed?")

This phase consists of three parts: the conceptual design, the logical design and the physical design. Some methodologies

merge the logical design phase into the other two phases. This section is not aimed at being a definitive discussion of

database design methodologies (there are whole books written on that!); rather it aims to introduce you to the topic.

3765/4161

Conceptual design
The purpose of the conceptual design phase is to build a conceptual model based upon the previously identified

requirements, but closer to the final physical model. A commonly-used conceptual model is called an entity-relationship

model.

Entities and attributes

Entities are basically people, places, or things you want to keep information about. For example, a library system may have

the book, library and borrower entities. Learning to identify what should be an entity, what should be a number of entities,

and what should be an attribute of an entity takes practice, but there are some good rules of thumb. The following questions

can help to identify whether something is an entity:

Can it vary in number independently of other entities? For example, person height is probably not an entity, as it

cannot vary in number independently of person. It is not fundamental, so it cannot be an entity in this case.

Is it important enough to warrant the effort of maintaining. For example customer may not be important for a small

grocery store and will not be an entity in that case, but it will be important for a video store, and will be an entity in that

case.

Is it its own thing that cannot be separated into subcategories? For example, a car-rental agency may have different

criteria and storage requirements for different kinds of vehicles. Vehicle may not be an entity, as it can be broken up

into car and boat, which are the entities.

Does it list a type of thing, not an instance? The video game blow-em-up 6 is not an entity, rather an instance of the

game entity.

Does it have many associated facts? If it only contains one attribute, it is unlikely to be an entity. For example, city

may be an entity in some cases, but if it contains only one attribute, city name, it is more likely to be an attribute of

another entity, such as customer.

The following are examples of entities involving a university with possible attributes in parentheses.

Course (name, code, course prerequisites)

Student (first_name, surname, address, age)

Book (title, ISBN, price, quantity in stock)

An instance of an entity is one particular occurrence of that entity. For example, the student Rudolf Sono is one instance of

the student entity. There will probably be many instances. If there is only one instance, consider whether the entity is

warranted. The top level usually does not warrant an entity. For example, if the system is being developed for a particular

university, university will not be an entity because the whole system is for that one university. However, if the system was

developed to track legislation at all universities in the country, then university would be a valid entity.

Relationships

Entities are related in certain ways. For example, a borrower may belong to a library and can take out books. A book can be

found in a particular library. Understanding what you are storing data about, and how the data relate, leads you a large part

of the way to a physical implementation in the database.

There are a number of possible relationships:

Mandatory

For each instance of entity A, there must exist one or more instances of entity B. This does not necessarily mean that for

each instance of entity B, there must exist one or more instances of entity A. Relationships are optional or mandatory in one

direction only, so the A-to-B relationship can be optional, while the B-to-A relationship is mandatory.

Optional

For each instance of entity A, there may or may not exist instances of entity B.

One-to-one (1:1)

This is where for each instance of entity A, there exists one instance of entity B, and vice-versa. If the relationship is

optional, there can exist zero or one instances, and if the relationship is mandatory, there exists one and only one instance

of the associated entity.

One-to-many (1:M)

For each instance of entity A, many instances of entity B can exist, which for each instance of entity B, only one instance of

entity A exists. Again, these can be optional or mandatory relationships.

3766/4161

Many-to-many (M:N)

For each instance of entity A, many instances of entity B can exist, and vice versa. These can be optional or mandatory

relationships.

There are numerous ways of showing these relationships. The image below shows student and course entities. In this case,

each student must have registered for at least one course, but a course does not necessarily have to have students

registered. The student-to-course relationship is mandatory, and the course-to-student relationship is optional.

The image below shows invoice_line and product entities. Each invoice line must have at least one product (but no more

than one); however each product can appear on many invoice lines, or none at all. The invoice_line-to-product relationship

is mandatory, while the product-to-invoice_line relationship is optional.

The figure below shows husband and wife entities. In this system (others are of course possible), each husband must have

one and only one wife, and each wife must have one, and only one, husband. Both relationships are mandatory.

An entity can also have a relationship with itself. Such an entity is called a recursive entity. Take a person entity. If you're

interested in storing data about which people are brothers, you wlll have an "is brother to" relationship. In this case, the

relationship is an M:N relationship.

Conversely, a weak entity is an entity that cannot exist without another entity. For example, in a school, the scholar entity is

related to the weak entity parent/guardian. Without the scholar, the parent or guardian cannot exist in the system. Weak

entities usually derive their primary key, in part or in totality, from the associated entity. parent/guardian could take the

primary key from the scholar table as part of its primary key (or the entire key if the system only stored one parent/guardian

per scholar).

The term connectivity refers to the relationship classification.

The term cardinality refers to the specific number of instances possible for a relationship. Cardinality limits list the minimum

and maximum possible occurrences of the associated entity. In the husband and wife example, the cardinality limit is (1,1),

and in the case of a student who can take between one and eight courses, the cardinality limits would be represented as

(1,8).

Developing an entity-relationship diagram

An entity-relationship diagram models how the entities relate to each other. It's made up of multiple relationships, the kind

shown in the examples above. In general, these entities go on to become the database tables.

The first step in developing the diagram is to identify all the entities in the system. In the initial stage, it is not necessary to

identify the attributes, but this may help to clarify matters if the designer is unsure about some of the entities. Once the

entities are listed, relationships between these entities are identified and modeled according to their type: one-to-many,

optional and so on. There are many software packages that can assist in drawing an entity-relationship diagram, but any

graphical package should suffice.

Once the initial entity-relationship diagram has been drawn, it is often shown to the stakeholders. Entity-relationship

diagrams are easy for non-technical people to understand, especially when guided through the process. This can help

identify any errors that have crept in. Part of the reason for modeling is that models are much easier to understand than

pages of text, and they are much more likely to be viewed by stakeholders, which reduces the chances of errors slipping

through to the next stage, when they may be more difficult to fix.

3767/4161

It is important to remember that there is no one right or wrong answer. The more complex the situation, the more

possible designs that will work. Database design is an acquired skill, though, and more experienced designers will

have a good idea of what works and of possible problems at a later stage, having gone through the process before.

Once the diagram has been approved, the next stage is to replace many-to-many relationships with two one-to-many

relationships. A DBMS cannot directly implement many-to-many relationships, so they are decomposed into two smaller

relationships. To achieve this, you have to create an intersection, or composite entity type. Because intersection entities are

less "real-world" than ordinary entities, they are sometimes difficult to name. In this case, you can name them according to

the two entities being intersected. For example, you can intersect the many-to-many relationship between student and

course by a student-course entity.

The same applies even if the entity is recursive. The person entity that has an M:N relationship "is brother to" also needs an

intersection entity. You can come up with a good name for the intersection entity in this case: brother. This entity would

contain two fields, one for each person of the brother relationship 4 in other words, the primary key of the first brother and

the primary key of the other brother.

6.3.1.10.5 Database Design Phase 2: Logical
and Physical Design

This article follows on from Database Design Phase 2: Conceptual Design .

Contents
1. Overview

2. Common errors

Overview
Once the conceptual design is finalized, it's time to convert this to the logical and physical design. Usually, the DBMS is

chosen at this stage, depending on the requirements and complexity of the data structures. Strictly speaking, the logical

design and the physical design are two separate stages, but are often merged into one. They overlap because most current

DBMSs (including MariaDB) match logical records to physical records on disk on a 1:1 basis.

3768/4161

Each entity will become a database table, and each attribute will become a field of this table. Foreign keys can be created if

the DBMS supports them and the designer decides to implement them. If the relationship is mandatory, the foreign key must

be defined as NOT NULL, and if it's optional, the foreign key can allow nulls. For example, because of the invoice line-to-

product relationship in the previous example, the product code field is a foreign key in the invoice to line table. Because the

invoice line must contain a product, the field must be defined as NOT NULL. The default MariaDB storage engine, XtraDB,

does support foreign key constraints, but some storage engines, such as MyISAM do not. The ON DELETE CASCADE and

ON DELETE RESTRICT clauses are used to support foreign keys. ON DELETE RESTRICT means that records cannot be

deleted unless all records associated with the foreign key are also deleted. In the invoice line-to-product case, ON DELETE

RESTRICT in the invoice line table means that if a product is deleted, the deletion will not take place unless all associated

invoice lines with that product are deleted as well. This avoids the possibility of an invoice line existing that points to a non-

existent product. ON DELETE CASCADE achieves a similar effect, but more automatically (and more dangerously!). If the

foreign key was declared with ON CASCADE DELETE, associated invoice lines would automatically be deleted if a product

was deleted. ON UPDATE CASCADE is similar to ON DELETE CASCADE in that all foreign key references to a primary

key are updated when the primary key is updated.

Normalizing your tables is an important step when designing the database. This process helps avoid data redundancy and

improves your data integrity.

Novice database designers usually make a number of common errors. If you've carefully identified entities and attributes

and you've normalized your data, you'll probably avoid these errors.

Common errors
Keep unrelated data in different tables. People who are used to using spreadsheets often make this mistake because

they are used to seeing all their data in one two-dimensional table. A relational database is much more powerful; don't

'hamstring' it in this way.

Don't store values you can calculate. Let's say you're interested three numbers: /A, B and the product of A and B

(A*B). Don't store the product. It wastes space and can easily be calculated if you need it. And it makes your database

more difficult to maintain: If you change A, you also have to change all of the products as well. Why waste your

database's efforts on something you can calculate when you need it?

Does your design cater to all the conditions you've analyzed? In the heady rush of creating an entity-relationship

diagram, you can easily overlook a condition. Entity-relationship diagrams are usually better at getting stakeholders to

spot an incorrect rule than spot a missing one. The business logic is as important as the database logic and is more

likely to be overlooked. For example, it's easy to spot that you cannot have a sale without an associated customer,

but have you built in that the customer cannot be approved for a sale of less than $500 if another approved customer

has not recommended them?

Are your attributes, which are about to become field names, well chosen? Fields should be clearly named. For

example, if you use f1 and f2 instead of surname and first_name, the time saved in less typing will be lost in looking

up the correct spelling of the field, or in mistakes where a developer thought f1 was the first name, and f2 the

surname. Similarly, try to avoid the same names for different fields. If six tables have a primary key of code, you're

making life unnecessarily difficult. Rather, use more descriptive terms, such as sales_code or customer_code.

Don't create too many relationships. Almost every table in a system can be related by some stretch of the

imagination, but there's no need to do this. For example, a tennis player belongs to a sports club. A sports club

belongs to a region. The tennis players then also belong to a region, but this relationship can be derived through the

sports club, so there's no need to add another foreign key (except to achieve performance benefits for certain kinds of

queries). Normalizing can help you avoid this sort of problem (and even when you're trying to optimize for speed, it's

usually better to normalize and then consciously denormalize rather than not normalize at all).

Conversely, have you catered to all relations? Do all relations from your entity-relationship diagram appear as

common fields in your table structures? Have you covered all relations? Are all many-to-many relationships broken

up into two one-to-many relationships, with an intersection entity?

Have you listed all constraints? Constraints include a gender that can only be m or f, ages of schoolchildren that

cannot exceed twenty, or email addresses that need to have an @ sign and at least one period (.; don't take these

limits for granted. At some stage the system you will need to implement them, and you're either going to forget to do

so, or have to go back and gather more data if you don't list these up front.

Are you planning to store too much data? Should a customer be asked to supply their eye color, favorite kind of fish,

and names of their grandparents if they are simply trying to register for an online newsletter? Sometimes stakeholders

want too much information from their customers. If the user is outside the organization, they may not have a voice in

the design process, but they should always be thought of foremost. Consider also the difficulty and time taken to

capture all the data. If a telephone operator needs to take all this information down before making a sale, imagine

how much slower they will be. Also consider the impact data has on database speed. Larger tables are generally

slower to access, and unnecessary BLOB, TEXT and VARCHAR fields lead to record and table fragmentation.

Have you combined fields that should be separate? Combining first name and surname into one field is a common

beginner mistake. Later you'll realise that sorting names alphabetically is tricky if you've stored them as John Ellis and

Alfred Ntombela. Keep distinct data discrete.

Has every table got a primary key? There had better be a good reason for leaving out a primary key. How else are

you going to identify a unique record quickly? Consider that an index speeds up access time tremendously, and when

kept small it adds very little overhead. Also, it's usually better to create a new field for the primary key rather than take

3769/4161

existing fields. First name and surname may be unique in your current database, but they may not always be. Creating

a system-defined primary key ensures it will always be unique.

Give some thought to your other indexes. What fields are likely to be used in this condition to access the table? You

can always create more fields later when you test the system, but add any you think you need at this stage.

Are your foreign keys correctly placed? In a one-to-many relationship, the foreign key appears in the many table, and

the associated primary key in the one table. Mixing these up can cause errors.

Do you ensure referential integrity? Foreign keys should not relate to a primary key in another table that no longer

exists.

Have you covered all character sets you may need? German letters, for example, have an expanded character set,

and if the database is to cater for German users it will have to take this into account. Similarly, dates and currency

formats should be carefully considered if the system is to be international

Is your security sufficient? Remember to assign the minimum permissions you can. Do not allow anyone to view a

table if they do not need to do so. Allowing malicious users view data, even if they cannot change it, is often the first

step in for an attacker.

6.3.1.10.6 Database Design Phase 3:
Implementation

This article follows on from Database Design Phase 2: Logical and Physical Design .

The implementation phase is where you install the DBMS on the required hardware, optimize the database to run best on

that hardware and software platform, and create the database and load the data. The initial data could be either new data

captured directly or existing data imported from a MariaDB database or another DBMS. You also establish database security

in this phase and give the various users that you've identified access applicable to their requirements. Finally, you also

initiate backup plans in this phase.

The following are steps in the implementation phase:

1. Install the DBMS.

2. Tune the setup variables according to the hardware, software and usage conditions.

3. Create the database and tables.

4. Load the data.

5. Set up the users and security.

6. Implement the backup regime.

6.3.1.10.7 Database Design Phase 4: Testing

This article follows on from Database Design Phase 3: Implementation .

The testing phase is where the performance, security, and integrity of the data are tested. Usually this will occur in

conjunctions with the applications that have been developed. You test the performance under various loads conditions to

see how the database handles multiple concurrent connections or high volumes of updating and reading. Are the reports

generated quickly enough? For example, an application designed with the old MyISAM storage engine may prove to be too

slow because the impact of the updates was underestimated. The storage engine may have to be changed to XtraDB in

response.

Data integrity also needs to be tested, as the application may have logical flaws that result in transactions being lost or other

inaccuracies. Further, security needs to be tested to ensure that users can access and change only the data they should.

The logical or physical designs may have to be modified. Perhaps new indexes are required (which the tester may discover

after careful use of MariaDB's EXPLAIN statement, for example).

The testing and fine-tuning process is an iterative one, with multiple tests performed and changes implemented.

The following are the steps in the testing phase:

1. Test the performance

2. Test the security

3. Test the data integrity

4. Fine-tune the parameters or modify the logical or physical designs in response to the tests.

6.3.1.10.8 Database Design Phase 5: Operation

3770/4161

This article follows on from Database Design Phase 4: Testing .

The operation phase takes place when the testing is complete and the database is ready to be rolled out for everyday use.

The users of the system begin to operate the system, load data, read reports and so on. Inevitably, problems come to light.

The designers need to carefully manage the database's scope at this stage, as users may expect all their desires to be

pandered to. Poor database designers may find themselves extending the project well beyond their initial time estimate, and

the situation may also become unpleasant if the scope has not been clearly defined and agreed upon. Project owners will

feel wronged if their needs are not met, and the database designers will feel overworked and underpaid. Even when scope

has been well managed, there will always be new requirements, These then lead to the next stage.

There are numerous strategies for implementing a rollout. The low-key approach often works well, where the relatively low

number of users in the early stage make bug fixing easy. Hugely publicized rollouts often end with egg on the stakeholder's

faces, as the best testers of all, the users, invariably find unforeseen bugs, which is best done away from the spotlight.

Alternatively, rollouts can occur in a distributed manner, where a pilot branch or office is selected, and when the system has

proven its stability, it's rolled out to the remaining branches.

The following are the steps in the operation phase:

1. Hand over operation of the database to the users.

2. Make any final changes based on the problems discovered by users.

6.3.1.10.9 Database Design Phase 6:
Maintenance

This article follows on from Database Design Phase 5: Operation.

The database maintenance phase incorporates general maintenance, such as maintaining the indexes, optimizing the

tables, adding and removing users, and changing passwords, as well as backups and restoration of backups in case of a

failure. New requirements also start to be requested, and this may result in new fields, or new tables, being created.

As the new system and organization changes, the existing database becomes less and less sufficient to meet the

organization's needs. For example, the media organization may be amalgamated with media bodies from other countries,

requiring integration of many data sources, or the volumes and staff may expand (or reduce) dramatically. Eventually, there

comes a time, whether it's 10 months after completion or 10 years, when the database system needs to be replaced. The

maintenance of the existing database begins to drain more and more resources, and the effort to create a new design is

matched by the current maintenance effort. As this point, the database is coming to the end of its life, and a new project

begins life in the Analysis phase.

The following are the steps in the maintenance phase:

1. Maintain the indexes

2. Maintain the tables

3. Maintain the users

4. Change passwords

5. Backup

6. Restore backups

7. Change the design to meet new requirements

6.3.1.10.10 Database Design Example Phase 1:
Analysis

This article follows on from Database Design Phase 6: Maintenance.

Real-world example: creating a publishing tracking
system
Now let's walk through the database design process with a step-by-step example. The Poet's Circle is a publisher that

publishes poetry and poetry anthologies. It is keen to develop a new system that tracks poets, poems, anthologies and

sales. The following sections show the steps taken from the initial analysis to the final, working database.

3771/4161

file:///database-design-phase-5-operation

Poet's circle database phase 1: analysis

The following information is gleaned from speaking to the various stakeholders at Poet's Circle. They want to develop a

database system to track the poets they have recorded, the poems they write, the publications they appear in, as well as the

sales to customers that these publications make.

The designer asks various questions to get more detailed information, such as "What is a poet, as far as the system goes?

Does Poet's Circle keep track of poets even if they haven't written or published poems? Are publications recorded even

before there are any associated poems? Does a publication consist of one poem, or many? Are potential customer's details

recorded?" The following summarizes the responses in our example:

Poet's Circle is a publisher that bases its choices of publications on an active poetry community on its website. If

enough of the community wants a poem published, Poet's Circle will do so.

A poet can be anybody who wants to be a poet, not necessarily someone who has a poem captured in the system or

someone who has even written a poem.

Poems can be submitted through a web interface, by email or on paper.

All captured poems are written by an associated poet, whose details are already in the system. There can be no

poems submitted and stored without a full set of details of the poet.

A publication can be a single poem, a poetry anthology, or a work of literary criticism.

Customers can sign up through a web interface and may order publications at that point in time, or express interest in

receiving updates for possible later purchases.

Sales of publications are made to customers whose details are stored in the system. There are no anonymous sales.

A single sale can be for one publication, but many publications can also be purchased at the same time. If more than

one customer is involved in this sale, Poet's Circle treats it as more than one sale. Each customer has their own sale.

Not all publications make sales 4 some may be special editions, and others simply never sell any copies.

6.3.1.10.11 Database Design Example Phase 2:
Design

This article follows on from Database Design Example Phase 1: Analysis.

Based on the provided information, you can begin your logical design and should be able to identify the initial entities:

Poet

Poem

Publication

Sale

Customer

The Poet's Circle is not an entity, or even of instance an a publisher entity. Only if the system were developed for many

publishers would publisher be a valid entity.

Neither website nor poetry community are entities. There is only one website, and anyway, a website is merely a means of

producing data to populate the database. There is also only one poetry community as far as this system is concerned, and

there is not much you'd want to store about it.

Next, you need to determine the relationship between these entities. You can identify the following:

A poet can write many poems. The analysis identified the fact that a poet can be stored in the system even if there are

no associated poems. Poems may be captured at a later point in time, or the poet may still be a potential poet.

Conversely, many poets could conceivably write a poem, though the poem must have been written by at least one

poet.

A publication may contain many poems (an anthology) or just one. It can also contain no poems (poetry criticism for

example). A poem may or may not appear in a publication.

A sale must be for at least one publication, but it may be for many. A publication may or may not have made any

sales.

A customer may be made for many sales, or none at all. A sale is only made for one and only one customer.

You can identify the following attributes:

Poet: first name, surname, address, email address

Poem: poem title, poem contents

Publication: title, price

Sales: date, amount

Customer: first name, surname, address, email address

Based on these entities and relationships, you can construct the entity-relationship diagram shown below:

3772/4161

There are two many-to-many relationships in the figure above. These need to be converted into one-to-many relationships

before you can implement them in a DBMS. After doing so, the intersection entities poem-publication and sale-publication

are created.

3773/4161

Now, to begin the logical and physical design, you need to add attributes that can create the relationship between the

entities and specify primary keys. You do what's usually best, and create new, unique, primary keys. The following tables

show the structures for the tables created from each of the entities:

Poet table

Field Definition

poet code primary key, integer

first name character (30)

surname character (40)

address character (100)

postcode character (20)

email address character (254)

Poem table

Field Definition

poem code primary key, integer

3774/4161

poem title character(50)

poem contents text

poet code foreign key, integer

Poem-publication table

Field Definition

poem code joint primary key, foreign key, integer

publication code joint primary key, foreign key, integer

Publication table

Field Definition

publication code primary key, integer

title character(100)

price numeric(5.2)

Sale-publication table

Field Definition

sale code joint primary key, foreign key, integer

publication code joint primary key, foreign key, integer

Sale table

Field Definition

sale code primary key, integer

date date

amount numeric(10.2)

customer code foreign key, integer

Customer table

Field Definition

customer code primary key, integer

first name character (30)

surname character (40)

address character (100)

postcode character (20)

email address character (254)

MariaDB will have no problem with this, and is selected as the DBMS. Existing hardware and operating system platforms are

also selected. The following section looks at the implementation and the SQL statements used to create the MariaDB tables.

6.3.1.10.12 Database Design Example Phase 3:
Implementation

This article follows on from Database Design Example Phase 2: Design .

3775/4161

With the design complete, it's time to install MariaDB and run the CREATE statements, as follows:

CREATE DATABASE poets_circle;

CREATE TABLE poet (

 poet_code INT NOT NULL,

 first_name VARCHAR(30),

 surname VARCHAR(40),

 address VARCHAR(100),

 postcode VARCHAR(20),

 email VARCHAR(254),

 PRIMARY KEY(poet_code)

);

CREATE TABLE poem(

 poem_code INT NOT NULL,

 title VARCHAR(50),

 contents TEXT,

 poet_code INT NOT NULL,

 PRIMARY KEY(poem_code),

 INDEX(poet_code),

 FOREIGN KEY(poet_code) REFERENCES poet(poet_code)

);

CREATE TABLE publication(

 publication_code INT NOT NULL,

 title VARCHAR(100),

 price MEDIUMINT UNSIGNED,

 PRIMARY KEY(publication_code)

);

CREATE TABLE poem_publication(

 poem_code INT NOT NULL,

 publication_code INT NOT NULL,

 PRIMARY KEY(poem_code, publication_code),

 INDEX(publication_code),

 FOREIGN KEY(poem_code) REFERENCES poem(poem_code),

 FOREIGN KEY(publication_code) REFERENCES publication(publication_code)

);

CREATE TABLE sales_publication(

 sales_code INT NOT NULL,

 publication_code INT NOT NULL,

 PRIMARY KEY(sales_code, publication_code)

);

CREATE TABLE customer(

 customer_code INT NOT NULL,

 first_name VARCHAR(30),

 surname VARCHAR(40),

 address VARCHAR(100),

 postcode VARCHAR(20),

 email VARCHAR(254),

 PRIMARY KEY(customer_code)

);

CREATE TABLE sale(

 sale_code INT NOT NULL,

 sale_date DATE,

 amount INT UNSIGNED,

 customer_code INT NOT NULL,

 PRIMARY KEY(sale_code),

 INDEX(customer_code),

 FOREIGN KEY(customer_code) REFERENCES customer(customer_code)

);

6.3.1.10.13 Database Design Example Phases
4-6: Testing, Operation and Maintenance

This article follows on from Database Design Example Phase 3: Implementation .
3776/4161

Once the database is ready the application programs have been rolled out, it's time for the testing to begin. While the other

phases of the database lifecycle can occur reasonably independently of the systems development process, part of the

testing phase is how all the components run together.

Load testing may indicate that MariaDB has not been set up to handle the expected 600 concurrent connections, and the

configuration file needs to be changed. Other tests may indicate that in certain circumstances, duplicate key errors are

received, as the locking mechanism is not uniformly implemented, and the application does not handle locking correctly. The

application needs to be fixed. Backups also need to be tested, as well as the ability to smoothly restore from backup with a

minimum of downtime.

Testing is one of the most neglected and critical phases. A designer or manager who does not properly account for

testing is simply incompetent. No matter how tiny your system, make sure you allocate time for thorough testing, and

time for fixing the inevitable bugs.

Once testing is complete, the system can be rolled out. You decide on a low-key rollout and give a few selected poets

access to the website to upload their poems. You discover other problems. Some poets upload poems using character sets

you haven't catered for, and you need to make a few tweaks to ensure these are handled correctly.

Soon enough, the system is rolled out completely. Maintenance, though, is a never-ending task, and with the immense

popularity of the system, and with large numbers of updates and deletes, the system tends to become fragmented. The

administrator regularly needs to take care of this, and, of course, the inevitable disk failure leads to an all-night restore

session, and much thankfulness for the ease of use of mariadb-dump.

6.3.1.11 Database Normalization
This section introduces you to a powerful tool for designing databases: normalization.

Database Normalization Overview

A sample system going through the process of normalization

Database Normalization: 1st Normal Form

Moving from unnormalized to 1st normal form

Database Normalization: 2nd Normal Form

From 1st to 2nd normal form

Database Normalization: 3rd Normal Form

From 2nd to 3rd normal form

Database Normalization: Boyce-Codd Normal Form

Beyond 3rd normal form with Boyce-Codd normal form

Database Normalization: 4th Normal Form

Beyond Boyce-Codd normal form with 4th normal form

Database Normalization: 5th Normal Form and Beyond

Normal forms beyond 4th are mainly of academic interest

Understanding Denormalization

Denormalization is the process of reversing the transformations made during...

1

6.3.1.11.1 Database Normalization Overview

3777/4161

Contents
1. Plant data displayed as a tabular report

2. Trying to create a table with plant data

3. Each record stands alone

4. Data anomaly

5. Removing the fields not dependent on the entire key

6. Creating a new table with location data

7. Creating a new table with location data

8. Another anomaly

9. Plant data after removing the soil description

10. Creating a new table with the soil description

Developed in the 1970's by E.F. Codd, database normalization is standard requirement of many database designs.

Normalization is a technique that can help you avoid data anomalies and other problems with managing your data. It

consists of transforming a table through various stages: 1st normal form, 2nd normal form, 3rd normal form, and beyond.

It aims to:

Eliminate data redundancies (and therefore use less space)

Make it easier to make changes to data, and avoid anomalies when doing so

Make referential integrity constraints easier to enforce

Produce an easily comprehensible structure that closely resembles the situation the data represents, and allows for

growth

Let's begin by creating a sample set of data. You'll walk through the process of normalization first without worrying about the

theory, to get an understanding of the reasons you'd want to normalize. Once you've done that, we'll introduce the theory

and the various stages of normalization, which will make the whole process described below much simpler the next time you

do it.

Imagine you are working on a system that records plants placed in certain locations, and the soil descriptions associated

with them.

The location:

Location Code: 11

Location name: Kirstenbosch Gardens

contains the following three plants:

Plant code: 431

Plant name: Leucadendron

Soil category: A

Soil description: Sandstone

Plant code: 446

Plant name: Protea

Soil category: B

Soil description: Sandstone/Limestone

Plant code: 482

Plant name: Erica

Soil category: C

Soil description: Limestone

The location:

Location Code: 12

Location name: Karbonkelberg Mountains

contains the following two plants:

Plant code: 431

Plant name: Leucadendron

Soil category: A

Soil description: Sandstone

Plant code: 449

Plant name: Restio

Soil category: B

Soil description: Sandstone/Limestone

Tables in a relational database are in a grid, or table format (MariaDB, like most modern DBMSs is a relational database),

so let's rearrange this data in the form of a tabular report:

3778/4161

Plant data displayed as a tabular report

Location code Location name Plant code Plant name Soil category Soil description

11 Kirstenbosch Gardens 431 Leaucadendron A Sandstone

446 Protea B Sandstone/limestone

482 Erica C Limestone

12 Karbonkelberg Mountains 431 Leucadendron A Sandstone

449 Restio B Sandstone/limestone

How are you to enter this data into a table in the database? You could try to copy the layout you see above, resulting in a

table something like the below. The null fields reflect the fields where no data was entered.

Trying to create a table with plant data

Location code Location name Plant code Plant name Soil category Soil description

11 Kirstenbosch Gardens 431 Leucadendron A Sandstone

NULL NULL 446 Protea B Sandstone/limestone

NULL NULL 482 Erica C Limestone

1 2 Karbonkelberg Mountains 431 Leucadendron A Sandstone

NULL NULL 449 Restio B Sandstone/limestone

This table is not much use, though. The first three rows are actually a group, all belonging to the same location. If you take

the third row by itself, the data is incomplete, as you cannot tell the location the Erica is to be found. Also, with the table as it

stands, you cannot use the location code, or any other fields, as a primary key (remember, a primary key is a field, or list of

fields, that uniquely identify one record). There is not much use in having a table if you can't uniquely identify each record in

it.

So, the solution is to make sure each table row can stand alone, and is not part of a group, or set. To achieve this, remove

the groups, or sets of data, and make each row a complete record in its own right, which results in the table below.

Each record stands alone

Location code Location name Plant code Plant name Soil category Soil description

11 Kirstenbosch Gardens 431 Leucadendron A Sandstone

11 Kirstenbosch Gardens 446 Protea B Sandstone/limestone

11 Kirstenbosch Gardens 482 Erica C Limestone

12 Karbonkelberg Mountains 431 Leucadendron A Sandstone

12 Karbonkelberg Mountains 449 Restio B Sandstone/limestone

Notice that the location code cannot be a primary key on its own. It does not uniquely identify a row of data. So, the primary

key must be a combination of location code and plant code. Together these two fields uniquely identify a row of data. Think

about it. You would never add the same plant type more than once to a particular location. Once you have the fact that it

occurs in that location, that's enough. If you want to record quantities of plants at a location - for this example, you're just

interested in the spread of plants - you don't need to add an entire new record for each plant; rather, just add a quantity

field. If for some reason you would be adding more than one instance of a plant/location combination, you'd need to add

something else to the key to make it unique.

So, now the data can go in table format, but there are still problems with it. The table stores the information that code 11

refers to Kirstenbosch Gardens three times! Besides the waste of space, there is another serious problem. Look carefully at

the data below.

Data anomaly

Location code Location name Plant code Plant name Soil category Soil description

11 Kirstenbosch Gardens 431 Leucadendron A Sandstone

11 Kirstenbosh Gardens 446 Protea B Sandstone/limestone

3779/4161

11 Kirstenbosch Gardens 482 Erica C Limestone

12 Karbonkelberg Mountains 431 Leucadendron A Sandstone

12 Karbonkelberg Mountains 449 Restio B Sandstone/limestone

Did you notice anything strange? Congratulations if you did! Kirstenbosch is misspelled in the second record. Now imagine

trying to spot this error in a table with thousands of records! By using the structure in the table above, the chances of data

anomalies increases dramatically.

The solution is simple. You remove the duplication. What you are doing is looking for partial dependencies - in other words,

fields that are dependent on a part of a key and not the entire key. Because both the location code and the plant code make

up the key, you look for fields that are dependent only on location code or on plant name.

There are quite a few fields where this is the case. Location name is dependent on location code (plant code is irrelevant in

determining project name), and plant name, soil code, and soil name are all dependent on plant number. So, take out all

these fields, as shown in the table below:

Removing the fields not dependent on the entire key

Location code Plant code

11 431

11 446

11 482

12 431

12 449

Clearly you can't remove the data and leave it out of your database completely. You take it out, and put it into a new table,

consisting of the fields that have the partial dependency and the fields on which they are dependent. For each of the key

fields in the partial dependency, you create a new table (in this case, both are already part of the primary key, but this

doesn't always have to be the case). So, you identified plant name, soil description and soil category as being dependent on

plant code. The new table will consist of plant code, as a key, as well as plant name, soil category and soil description, as

shown below:

Creating a new table with location data

Plant code Plant name Soil category Soil description

431 Leucadendron A Sandstone

446 Protea B Sandstone/limestone

482 Erica C Limestone

431 Leucadendron A Sandstone

449 Restio B Sandstone/limestone

You do the same process with the location data, shown below:

Creating a new table with location data

Location code Location name

11 Kirstenbosch Gardens

12 Karbonkelberg Mountains

See how these tables remove the earlier duplication problem? There is only one record that contains Kirstenbosch

Gardens, so the chances of noticing a misspelling are much higher. And you aren't wasting space storing the name in many

different records. Notice that the location code and plant code fields are repeated in two tables. These are the fields that

create the relation, allowing you to associate the various plants with the various locations. Obviously there is no way to

remove the duplication of these fields without losing the relation altogether, but it is far more efficient storing a small code

repeatedly than a large piece of text.

But the table is still not perfect. There is still a chance for anomalies to slip in. Examine the table below carefully:

3780/4161

Another anomaly

Plant code Plant name Soil category Soil description

431 Leucadendron A Sandstone

446 Protea B Sandstone/limestone

482 Erica C Limestone

431 Leucadendron A Sandstone

449 Restio B Sandstone

The problem in the table above is that the Restio has been associated with Sandstone, when in fact, having a soil category

of B, it should be a mix of sandstone and limestone (the soil category determines the soil description in this example). Once

again you're storing data redundantly. The soil category to soil description relationship is being stored in its entirety for each

plant. As before, the solution is to take out this excess data and place it in its own table. What you are in fact doing at this

stage is looking for transitive relationships, or relationships where a nonkey field is dependent on another nonkey field. Soil

description, although in one sense dependent on plant code (it did seem to be a partial dependency when we looked at it in

the previous step), is actually dependent on soil category. So, soil description must be removed. Once again, take it out and

place it in a new table, along with its actual key (soil category) as shown in the tables below:

Plant data after removing the soil description

Plant code Plant name Soil category

431 Leucadendron A

446 Protea B

482 Erica C

449 Restio B

Creating a new table with the soil description

Soil category Soil description

A Sandstone

B Sandstone/limestone

C Limestone

You've cut down on the chances of anomalies once again. It is now impossible to mistakenly assume soil category B is

associated with anything but a mix of sandstone and limestone. The soil description to soil category relationships are stored

in only one place - the new soil table, where you can be much more certain they are accurate.

Often, when you're designing a system you don't yet have a complete set of test data available, and it's not necessary if you

understand how the data relates. This article has used the tables and their data to demonstrate the consequences of storing

data in tables that were not normalized, but without them you have to rely on dependencies between fields, which is the key

to database normalization.

The following articles will describe the process more formally, starting with moving from unnormalized data (or zero normal

form) to first normal form.

6.3.1.11.2 Database Normalization: 1st Normal
Form

This article follows on from the Database Normalization Overview.

At first, the data structure was as follows:

Location code

Location name

1-n plant numbers (1-n is a shorthand for saying there are many occurrences of this field. In other words, it is a

repeating group).

3781/4161

1-n plant names

1-n soil categories

1-n soil descriptions

This is a completely unnormalized structure - in other words, it is in zero normal form So, to begin the normalization

process, you start by moving from zero normal form to 1st normal form.

Tables are in 1st normal form if they follow these rules:

There are no repeating groups.

All the key attributes are defined.

All attributes are dependent on the primary key.

What this means is that data must be able to fit into a tabular format, where each field contains one value. This is also the

stage where the primary key is defined. Some sources claim that defining the primary key is not necessary for a table to be

in first normal form, but usually it's done at this stage and is necessary before we can progress to the next stage.

Theoretical debates aside, you'll have to define your primary keys at this point.

Although not always seen as part of the definition of 1st normal form, the principle of atomicity is usually applied at this

stage as well. This means that all columns must contain their smallest parts, or be indivisible. A common example of

this is where someone creates a name field, rather than first name and surname fields. They usually regret it later.

So far, the plant example has no keys, and there are repeating groups. To get it into 1st normal form, you'll need to define a

primary key and change the structure so that there are no repeating groups; in other words, each row / column intersection

contains one, and only one, value. Without this, you cannot put the data into the ordinary two-dimensional table that most

databases require. You define location code and plant code as the primary key together (neither on its own can uniquely

identify a record), and replace the repeating groups with a single-value attribute. After doing this, you are left with the

structure shown in the table below (the primary key is in italics):

Plant location table

Location code

Location name

Plant code

Plant name

Soil category

Soil description

This table is now in 1st normal formal. The process for turning a table into 2nd normal form is continued in the next article.

6.3.1.11.3 Database Normalization: 2nd Normal
Form

Contents
1. Plant location table with partial dependencies removed

2. Table resulting from fields dependent on plant code

3. Table resulting from fields dependent on location code

This article follows on from Database Normalization: 1st Normal Form.

After converting to first normal form, the following table structure was achieved:

Plant location table

Location code

Location name

Plant code

Plant name

Soil category

3782/4161

Soil description

Is this in 2nd normal form?

A table is in 2nd normal form if:

it is in 1st normal form

it includes no partial dependencies (where an attribute is only dependent on part of a primary key)

For an attribute to be only dependent on part of the primary key, the primary key must consist of more than one field. If

the primary key contains only one field, the table is automatically in 2nd normal form if it is in 1st normal form

Let's examine all the fields. Location name is only dependent on location code. Plant name, soil category, and soil

description are only dependent on plant code (this assumes that each plant only occurs in one soil type, which is the case in

this example). So you remove each of these fields and place them in a separate table, with the key being that part of the

original key on which they are dependent. For example, with plant name, the key is plant code. This leaves you with the

tables below:

Plant location table with partial dependencies removed

Plant location table

Plant code

Location code

Table resulting from fields dependent on plant code

Plant table

Plant code

Plant name

Soil category

Soil description

Table resulting from fields dependent on location code

Location table

Location code

Location name

The resulting tables are now in 2nd normal form. The process for turning a table into 3rd normal form is continued in the

next article.

6.3.1.11.4 Database Normalization: 3rd Normal
Form

This article follows on from Database Normalization: 2nd Normal Form.

After converting to second normal form, the following table structure was achieved:

Plant location table

Plant code

Location code

Plant table

Plant code

3783/4161

Plant name

Soil category

Soil description

Location table

Location code

Location name

Are these tables in 3rd normal form?

A table is in 3rd normal form if:

it is in 2nd normal form

it contains no transitive dependencies (where a non-key attribute is dependent on the primary key through another

non-key attribute)

If a table only contains one non-key attribute, it is obviously impossible for a non-key attribute to be dependent on

another non-key attribute. Any tables where this is the case that are in 2nd normal form are then therefore also in 3rd

normal form.

As only the plant table has more than one non-key attribute, you can ignore the others because they are in 3rd normal form

already. All fields are dependent on the primary key in some way, since the tables are in second normal form. But is this

dependency on another non-key field? Plant name is not dependent on either soil category or soil description. Nor is soil

category dependent on either soil description or plant name.

However, soil description is dependent on soil category. You use the same procedure as before, removing it, and placing it

in its own table with the attribute that it was dependent on as the key. You are left with the tables below:

Plant location table remains unchanged

Plant location table

Plant code

Location code

Plant table with soil description removed

Plant table

Plant code

Plant name

Soil category

The new soil table

Soil table

Soil category

Soil description

Location table remains unchanged

Location table

Location code

Location name

All of these tables are now in 3rd normal form. 3rd normal form is usually sufficient for most tables because it avoids the

most common kind of data anomalies. It's suggested getting most tables you work with to 3rd normal form before you

implement them, as this will achieve the aims of normalization listed in Database Normalization Overview in the vast

majority of cases.
3784/4161

The normal forms beyond this, such as Boyce-Codd normal form and 4th normal form, are rarely useful for business

applications. In most cases, tables in 3rd normal form are already in these normal forms anyway. But any skilful database

practitioner should know the exceptions, and be able to normalize to the higher levels when required.

The next article covers Boyce-Codd normal form.

6.3.1.11.5 Database Normalization: Boyce-Codd
Normal Form

Contents
1. Table containing data about the student, course, and instructor relationship

2. Using student and course as the key

3. More data anomalies

4. Student Instructor table after removing Course

5. Resulting Instructor table

6. Using student and instructor as the key

7. Removing course

8. Creating a new table with course

This article follows on from Database Normalization: 3rd Normal Form

E.F. Codd and R.F. Boyce, two of the people instrumental in the development of the database model, have been honored

by the name of this normal form. E.F. Codd developed and expanded the relational model, and also developed

normalization for relational models in 1970, while R.F. Boyce was one of the creators of Structured Query Language (then

called SEQUEL).

In spite of some resources stating the contrary, Boyce-Codd normal form is not the same as 4th normal form. Let's look at

an example of data anomalies, which are presented in 3rd normal form and solved by transforming into Boyce-Codd normal

form, before defining it.

Table containing data about the student, course, and instructor
relationship

Student Course Instructor table

Student

Course

Instructor

Assume that the following is true for the table above:

Each instructor takes only one course

Each course can have one or more instructors

Each student only has one instructor per course

Each student can take one or more courses

What would the key be? None of the fields on their own would be sufficient to uniquely identify a records, so you have to use

two fields. Which two should you use?

Perhaps student and instructor seem like the best choice, as that would allow you to determine the course. Or you could use

student and course, which would determine the instructor. For now, let's use student and course as the key:

Using student and course as the key

Student Course Instructor table

Student

Course

Instructor

What normal form is this table in? It's in 1st normal form, as it has a key and no repeating groups. It's also in 2nd normal

form, as the instructor is dependent on both other fields (students have many courses, and therefore instructors, and

courses have many instructors). Finally, it's also in 3rd normal form, as there is only one non-key attribute.
3785/4161

But there are still some data anomalies. Look at the data sample below:

More data anomalies

Student Course Instructor

Conrad Pienaar Biology Nkosizana Asmal

Dingaan Fortune Mathematics Kader Dlamini

Gerrie Jantjies Science Helen Ginwala

Mark Thobela Biology Nkosizana Asmal

Conrad Pienaar Science Peter Leon

Alicia Ncita Science Peter Leon

Quinton Andrews Mathematics Kader Dlamini

The fact that Peter Leon teaches science is stored redundantly, as are Kader Dlamini with mathematics and Nkosizana

Asmal with biology. The problem is that the instructor determines the course. Or put another, course is determined by

instructor. The table conforms to 3rd normal form rules because no non-key attribute is dependent upon a non-key attribute!

Again, you use the familiar method of removing this field and placing it into another table, along with its key:

Student Instructor table after removing Course

Student Course Instructor table

Student

Instructor

After removing the course field, the primary key needs to include both remaining fields to uniquely identify a record.

Resulting Instructor table

Student Course Instructor table

Instructor

Course

Although we had chosen course as part of the primary key in the original table, the instructor determines the course, which

is why we make it the primary key in this table. As you can see, the redundancy problem has been solved.

Thus, a table is in Boyce-Codd normal form if:

it is in 3rd normal form

each determinant is a candidate key

That sounds scary! For most people new to database design, these are new terms. If you followed along with the example

above, however, the terms will soon become clear:

a determinant is an attribute that determines the value of another attribute.

a candidate key is either the key or an alternate key (in other words, the attribute could be a key for that table)

In the initial table, instructor is not a candidate key (alone it cannot uniquely identify the record), yet it determines the

course, so the table is not in Boyce-Codd normal form.

Let's look at the example again, and see what happens if you chose student and instructor as the key. What normal form is

the table in this time?

Using student and instructor as the key

Student Course Instructor table

Student

Instructor

Course

Once again it's in 1st normal form because there is a primary key and there are no repeating groups. This time, though, it's

3786/4161

not in 2nd normal form because course is determined by only part of the key: the instructor. By removing course and its key,

instructor, you get the structure shown below:

Removing course

Student Instructor table

Student

Instructor

Creating a new table with course

Student Course Instructor table

Instructor

Course

Either way you do it, by making sure the tables are normalized into Boyce-Codd normal form, you get the same two resulting

tables. It's usually the case that when there are alternate fields to choose as a key, it doesn't matter which ones you choose

initially because after normalizing you get the same results either way.

6.3.1.11.6 Database Normalization: 4th Normal
Form

Contents
1. Student Course Instructor data, with several instructors per course

2. More data anomalies

3. Three attributes as key

4. Creating a table for the student to instructor relationship

5. Creating a table for the student to course relationship

This article is intended to be read after the Boyce-Codd normal form article.

Let's look at the situation where redundancies can creep in even though a table is in Boyce-Codd normal form. Let's take

the student / instructor / course example used in that article, but change one of the initial assumptions.

Assume that the following is true for the tables below:

Each instructor takes only one course

Each course can have one or more instructors

Each student can have several instructors per course (this is different to the previous example)

Each student can take one or more courses

Student Course Instructor data, with several instructors per course

More data anomalies

Student Course Instructor

Conrad Pienaar Biology Nkosizana Asmal

Dingaan Fortune Mathematics Kader Dlamini

Gerrie Jantjies Science Helen Ginwala

Mark Thobela Biology Nkosizana Asmal

Conrad Pienaar Science Peter Leon

Alicia Ncita Science Peter Leon

Quinton Andrews Mathematics Kader Dlamini

Dingaan Fortune Mathematics Helen Ginwala

3787/4161

The data is the same as before, except that Helen Ginwala is teaching science to Gerrie Jantjies as well as mathematics to

Dingaan Fortune, and Dingaan Fortune is being taught by both Helen Ginwala and Kader Dlamini for mathematics.

The only possible key is a combination of all three attributes, as shown below. No other combination will uniquely identify a

particular record.

Three attributes as key

Student Course Instructor table

Student

Instructor

Course

But this still has some potentially anomalous behavior. The fact that Kader Dlamini teaches mathematics is still stored more

than once, as is the fact that Dingaan Thobela takes mathematics. The real problem is that the table stores more than one

kind of fact: that of student-to-course relationship, as well as that of a student-to-instructor relationship. You can avoid this,

as always, by separating the data into two tables, as shown below:

Creating a table for the student to instructor relationship

Student Instructor table

Student

Instructor

Creating a table for the student to course relationship

Student Instructor table

Student

Course

This situation exists when you have multiple multivalued dependencies. A multivalued dependency exists between two

attributes when, for each value of the first attribute, there are one or more associated values of the second attribute. For

each value of student, there were many values of course. This is the first multivalued dependency. Then, for each value of

student, there are one or more associated values of instructor. This is the second multivalued dependency.

Thus, a table is in 4th normal form if:

it is in Boyce-Codd normal form

it does not contain more than one multivalued dependency

6.3.1.11.7 Database Normalization: 5th Normal
Form and Beyond

Contents
1. The sales rep example

2. Looking at a larger set of data

3. Creating a table with Sales rep and Product

4. Creating a table with Sales rep and Company

5. Creating a table with Company and Product

This article follows on from the 4th normal form article.

There are normal forms beyond 4th that are mainly of academic interest, as the problems they exist to solve rarely appear

in practice. This series won't discuss then in detail, but for those interested, the following example provides a taste.

The sales rep example

Sales rep Company Product

3788/4161

Felicia Powers Exclusive Books

Afzal Ignesund Wordsworth Magazines

Felicia Powers Exclusive Magazines

Usually you would store this data in one table, as you need all three records to see which combinations are valid. Afzal

Ignesund sells magazines for Wordsworth, but not necessarily books. Felicia Powers happens to sell both books and

magazines for Exclusive. However, let's add another condition. If a sales rep sells a certain product, and they sell it for a

particular company, then they must sell that product for that company.

Let's look at a larger data set adhering to this condition:

Looking at a larger set of data

Sales rep Company Product

Felicia Powers Exclusive Books

Felicia Powers Exclusive Magazines

Afzal Ignesund Wordsworth Books

Felicia Powers Wordsworth Books

Felicia Powers Wordsworth Magazines

Now, with this extra dependency, you could normalize the table above into three separate tables without losing any facts, as

shown below:

Creating a table with Sales rep and Product

Sales rep Product

Felicia Powers Books

Felicia Powers Magazines

Afzal Ignesund Books

Creating a table with Sales rep and Company

Sales rep Company

Felicia Powers Exclusive

Felicia Powers Wordsworth

Afzal Ignesund Wordsworth

Creating a table with Company and Product

Company Product

Exclusive Books

Exclusive Magazines

Wordsworth Books

Wordsworth Magazines

Basically, a table is in 5th normal form if it cannot be made into any smaller tables with different keys (most tables can

obviously be made into smaller tables with the same key!).

Beyond 5th normal form you enter the heady realms of domain key normal form, a kind of theoretical ideal. Its practical use

to a database designer os similar to that of infinity to a bookkeeper - i.e. it exists in theory but is not going to be used in

practice. Even the most demanding owner is not going to expect that of the bookkeeper!

For those interested in pursuing this academic and highly theoretical topic further, I suggest obtaining a copy of An

Introduction to Database Systems by C.J. Date, at the time of writing in its 8th edition, or Relational Theory for Computer

Professionals by the same author.

3789/4161

6.3.1.11.8 Understanding Denormalization
Denormalization is the process of reversing the transformations made during normalization for performance reasons. It's a

topic that stirs controversy among database experts; there are those who claim the cost is too high and never denormalize,

and there are those that tout its benefits and routinely denormalize.

For proponents of denormalization, the thinking is as follows: normalization creates more tables as you proceed towards

higher normal forms, but more tables mean there are more joins to be made when data is retrieved, which in turn slows

down your queries. For that reason, to improve the performance of certain queries, you can override the advantages to data

integrity and return the data structure to a lower normal form.

A practical approach makes sense, taking into account the limitations of SQL and MariaDB in particular, but being cautious

not to needless denormalize. Here are some suggestions:

if your performance with a normalized structure is acceptable, you should not denormalize.

if your performance is unacceptable, make sure normalizing will cause it to become acceptable. There are very likely

to be other alternatives, such as better hardware, load balancing, etc. It's hard to undo structural changes later.

be sure you are willing to trade decreased data integrity for the increase in performance.

consider possible future scenario, where applications may place different requirements on the data. Denormalizing to

enhance performance of a specific application makes your data structure dependent on that application, when in an

ideal situation it will be application-independent.

The table below introduces a common structure where it may not be in your best interests to denormalize. Which normal

form is it in?

Customer table

ID

First name

Surname

Address line 1

Address line 2

Town

Zip code

It must be in 1st normal form because it has a primary key and there are no repeating groups. It must be in 2nd normal form

because there's only one key, so there cannot be any partial dependencies. And 3rd normal form? Are there any transitive

dependencies? It looks like it. Zip Code is probably determined by the town attribute. To transform it into 3rd normal form,

you should take out Zi..p code, putting it in a separate table with town as the key. In most cases, though, this is not worth

doing. So although this table is not in 3rd normal form, separating the table is not worth the trouble. The more tables you

have, the more joins you need to do, which slows the system down. The reason you normalize at all is to reduce the size of

the tables by removing redundant data, and doing do can often speed up the system.

But you also need to look at how your tables are used. Town and Zip code would almost always be returned together, as

part of the address. In most cases, the small amount of space you save by removing the duplicate town/zip code

combinations would not offset the slowing down of the system because of the extra joins. In some situations, this may be

useful, perhaps where you need to sort addresses according to zip codes or towns for many thousands of customers, and

the distribution of data means that a query to the new, smaller table can return the results substantially quicker. In the end,

experienced database designers can go beyond rigidly following the steps, as they understand how the data will be used.

And that is something only experience can teach you. Normalization is just a helpful set of steps that most often produces an

efficient table structure, and not a rule for database design.

There are some scary database designs out there, almost always because of not normalizing rather than too much

normalization. So if you're unsure, normalize!

6.3.1.12 ACID: Concurrency Control with
Transactions
Database requests happen in linear fashion, one after another. When many users are accessing a database, or one user

has a related set of requests to run, it becomes important to ensure that the results remain consistent. To achieve this, you

use transactions, which are groups of database requests that are processed as a whole. Put another way, they are logical

units of work.

To ensure data integrity, transactions need to adhere to four conditions: atomicity, consistency, isolation and durability
3790/4161

(ACID).

Atomicity

Atomicity means the entire transaction must complete. If this is not the case, the entire transaction is aborted. This ensures

that the database can never be left with partially completed transactions, which lead to poor data integrity. If you remove

money out of one bank account, for example, but the second request fails and the system cannot place the money in

another bank, both requests must fail. The money cannot simply be lost, or taken from one account without going into the

other.

Consistency

Consistency refers to the state the data is in when certain conditions are met. For example, one rule may be that each

invoice must relate to a customer in the customer table. These rules may be broken during the course of a transaction if, for

example the invoice is inserted without a related customer, which is added at a later stage in the transaction. These

temporary violations are not visible outside of the transaction, and will always be resolved by the time the transaction is

complete.

Isolation

Isolation means that any data being used during the processing of one transaction cannot be used by another transaction

until the first transaction is complete. For example, if two people deposit $100 into another account with a balance of $900,

the first transaction must add $100 to $900, and the second must add $100 to $1000. If the second transaction reads the

$900 before the first transaction has completed, both transactions will seem to succeed, but $100 will have gone missing.

The second transaction must wait until it alone is accessing the data.

Durability

Durability refers to the fact that once data from a transaction has been committed, its effects will remain, even after a system

failure. While a transaction is under way, the effects are not persistent. If the database crashes, backups will always restore

it to a consistent state prior to the transaction commencing. Nothing a transaction does should be able to change this fact.

2.1.6 Starting and Stopping MariaDB

6.4 Advanced MariaDB Articles
Tutorial articles for advanced MariaDB developers and administrators.

Development Articles

Articles of interest to MariaDB developers.

There are 2 related questions .

6.4.1 Development Articles
Articles of interest to MariaDB Developers

General Development Information

MariaDB Server Releases

Information about MariaDB Server releases, release policies and procedures.

MariaDB Internals Documentation

Documentation on the internal workings of MariaDB.

MariaDB Development Tools

Tools for developing MariaDB.

3791/4161

https://mariadb.com/kb/en/advanced-mariadb-articles/+questions/
https://mariadb.com/kb/en/general-development-information/
https://mariadb.com/kb/en/tools/

Debugging MariaDB

This section is for articles on debugging MariaDB.

Quality

This section collects articles related to MariaDB quality assurance efforts.

Outdated pages

Security Vulnerabilities Fixed in MariaDB

Security vulnerabilities (CVEs) fixed in MariaDB

Security Vulnerabilities Fixed in Oracle MySQL That Did Not Exist in MariaDB

Lists of CVEs fixed in MySQL but that were never present in MariaDB.

Uploading Package to PPA

After creating a Launchpad account: Docker build, cloning the MariaDB repo...

MariaDB Quality Development Rules

Those are quality-improving rules that everyone with a write access to the ...

There are 21 related questions .

6.4.1.1 MariaDB Internals Documentation
Documentation on the internal workings of MariaDB.

Contributing Code

Guidelines and procedures for contributing code to MariaDB.

Writing Plugins for MariaDB

Writing plugins for MariaDB.

Pluggable Authentication Overview

The authentication of users is delegated to plugins.

Information Schema plugins: SHOW and FLUSH statements

Information Schema plugins can support SHOW and FLUSH statements.

Query Optimizer

Articles about the MariaDB query optimizer

Using MariaDB with Your Programs (API)

Using MariaDB with your programs (API)

Storage Engine Development

Storage Engine Development.

Merging into MariaDB

How to merge various source trees into MariaDB

MariaDB Source Code Internals

Articles about MariaDB source code and related internals.

Encryption Plugin API

MariaDB uses plugins to handle key management and encryption of data.

Password Validation Plugin API

Allows the creation of password validation plugins to check user passwords as they are set.

There are 1 related questions .

2

3792/4161

https://mariadb.com/kb/en/debugging-mariadb/
https://mariadb.com/kb/en/quality/
https://mariadb.com/kb/en/outdated-pages/
https://mariadb.com/kb/en/security/
https://mariadb.com/kb/en/security-vulnerabilities-in-oracle-mysql-that-did-not-exist-in-mariadb/
https://mariadb.com/kb/en/uploading-package-to-ppa/
https://mariadb.com/kb/en/mariadb-quality-development-rules/
https://mariadb.com/kb/en/development-articles/+questions/
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://mariadb.com/kb/en/mariadb-internals-documentation-merging-into-mariadb/
https://mariadb.com/kb/en/mariadb-source-code-internals/
https://mariadb.com/kb/en/mariadb-internals-documentation/+questions/

6.4.1.1.1 Query Optimizer
Articles about the MariaDB query optimizer

Optimization Strategies

Various optimization strategies used by the query optimizer.

Optimizations for Derived Tables

Optimizations for derived tables, or subqueries in the FROM clause

Optimizer Trace

Produces a JSON trace with decision info taken by the optimizer during the optimization phase.

Statistics for Optimizing Queries

Different statistics provided by MariaDB to help you optimize your queries

Table Elimination

Resolving queries without accessing some of the tables the query refers to

Block-Based Join Algorithms

Algorithms that employ a join buffer for the first join before starting to look in the second.

Condition Selectivity Computation Internals

How the MariaDB optimizer computes condition selectivities.

Extended Keys

Optimization using InnoDB key components to generate more efficient execution plans.

MIN/MAX optimization

How MIN and MAX are optimized

Notes When an Index Cannot Be Used

Notes (low severity warnings) when an indexed column cannot use the index to lookup rows.

Optimizer Debugging With GDB

Useful things for debugging optimizer code with gdb.

Optimizer Development

Notes about Optimizer Development mysql-test InnoDB Estimates are unstable...

Rowid Filtering Optimization

Rowid filtering is an optimization available from MariaDB 10.4.

The Optimizer Cost Model from MariaDB 11.0

The optimizer cost model in MariaDB 11.0.

1

6.4.1.1.1.1 Optimizer Trace
Optimizer Trace Overview

Produces a JSON trace with decision info taken by the optimizer during the optimization phase.

Optimizer Trace Guide

Guide to the structured log file showing what actions were taken by the query optimizer.

Basic Optimizer Trace Example

MariaDB> set optimizer_trace=9enabled=on9; MariaDB> select * from t1 where a<10; MariaDB> s

How to Collect Large Optimizer Traces

Steps for collecting large optimizer traces.

3793/4161

https://mariadb.com/kb/en/condition-selectivity-computation-internals/
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/optimizer-debugging-with-gdb/

Optimizer Trace for Developers

This article describes guidelines for what/how to write to Optimizer Trace ...

Optimizer Trace Resources

Optimizer Trace Walkthrough talk at MariaDB Fest 2020: https://mariadb.org/...

6.4.1.1.1.1.1 Optimizer Trace Overview

Optimizer Trace was introduced in MariaDB 10.4.3.

Contents
1. Usage

2. Associated System Variables

3. INFORMATION_SCHEMA.OPTIMIZER_TRACE

4. Optimizer Trace Contents

5. Traceable Queries

6. Enabling Optimizer Trace

7. Memory Usage

8. Privilege Checking

9. Limitations

Usage
This feature produces a trace as a JSON document for any SELECT/UPDATE/DELETE containing information about

decisions taken by the optimizer during the optimization phase (choice of table access method, various costs,

transformations, etc). This feature helps to explain why some decisions were taken by the optimizer and why some were

rejected.

Associated System Variables
optimizer_trace=9enabled=on/off9

Default value is off

optimizer_trace_max_mem_size= value

Default value: 1048576

INFORMATION_SCHEMA.OPTIMIZER_TRACE
Each connection stores a trace from the last executed statement. One can view the trace by reading the Information

Schema OPTIMIZER_TRACE table.

Structure of the optimizer trace table:

SHOW CREATE TABLE INFORMATION_SCHEMA.OPTIMIZER_TRACE \G

*************************** 1. row ***************************

 Table: OPTIMIZER_TRACE

Create Table: CREATE TEMPORARY TABLE `OPTIMIZER_TRACE` (

 `QUERY` longtext NOT NULL DEFAULT '',

 `TRACE` longtext NOT NULL DEFAULT '',

 `MISSING_BYTES_BEYOND_MAX_MEM_SIZE` int(20) NOT NULL DEFAULT 0,

 `INSUFFICIENT_PRIVILEGES` tinyint(1) NOT NULL DEFAULT 0

) ENGINE=Aria DEFAULT CHARSET=utf8 PAGE_CHECKSUM=0

Optimizer Trace Contents
See Optimizer Trace Guide for an overview of what one can find in the trace.

Traceable Queries
These include SELECT, UPDATE, DELETE as well as their multi-table variants and all of the preceding prefixed by

EXPLAIN and ANALYZE.

MariaDB starting with 10.4.3

3794/4161

https://mariadb.com/kb/en/optimizer-trace-resources/

Enabling Optimizer Trace
To enable optimizer trace run:

SET optimizer_trace='enabled=on';

Memory Usage
Each trace is stored as a string. It is extended (with realloc()) as the optimization progresses and appends data to it. The

optimizer_trace_max_mem_size variable sets a limit on the total amount of memory used by the current trace. If this limit is

reached, the current trace isn't extended (so it will be incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE

column will show the number of bytes missing from this trace.

Privilege Checking
In complex scenarios where the query uses SQL SECURITY DEFINER views or stored routines, it may be that a user is

denied from seeing the trace of its query because it lacks some extra privileges on those objects. In that case, the trace will

be shown as empty and the INSUFFICIENT_PRIVILEGES column will show "1".

Limitations
Currently, only one trace is stored. It is not possible to trace the sub-statements of a stored routine; only the statement at

the top level is traced.

6.4.1.1.1.1.2 Optimizer Trace Guide
Contents
1. A Basic Example

2. Trace Structure

3. Extracting Trace Components

4. Examples of Various Information in the Trace

1. Basic Rewrites

2. VIEW Processing

3. Range Optimizer - What Ranges Will Be Scanned

4. Ref Access Options

5. Join Optimization

Optimizer trace uses the JSON format. It is basically a structured log file showing what actions were taken by the query

optimizer.

A Basic Example

Let's take a simple query:

MariaDB> explain select * from t1 where a<10;

+------+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+

| 1 | SIMPLE | t1 | range | a | a | 5 | NULL | 10 | Using index condition |

+------+-------------+-------+-------+---------------+------+---------+------+------+-----------------------+

One can see the full trace here. Taking only the component names, one gets:

3795/4161

MariaDB> select * from information_schema.optimizer_trace limit 1\G

*************************** 1. row ***************************

 QUERY: select * from t1 where a<10

 TRACE:

{

 "steps": [

 {

 "join_preparation": { ... }

 },

 {

 "join_optimization": {

 "select_id": 1,

 "steps": [

 { "condition_processing": { ... } },

 { "table_dependencies": [...] },

 { "ref_optimizer_key_uses": [...] },

 { "rows_estimation": [

 {

 "range_analysis": {

 "analyzing_range_alternatives" : { ... },

 "chosen_range_access_summary": { ... },

 },

 "selectivity_for_indexes" : { ... },

 "selectivity_for_columns" : { ... }

 }

]

 },

 { "considered_execution_plans": [...] },

 { "attaching_conditions_to_tables": { ... } }

]

 }

 },

 {

 "join_execution": { ... }

 }

]

}

Trace Structure
For each SELECT, there are two "Steps":

join_preparation

join_optimization

Join preparation shows early query rewrites. join_optmization is where most of the query optimizations are done. They

are:

condition_processing - basic rewrites in WHERE/ON conditions.

ref_optimizer_key_uses - Construction of possible ways to do ref and eq_ref accesses.

rows_estimation - Consideration of range and index_merge accesses.

considered_execution_plans - Join optimization itself, that is, choice of the join order.

attaching_conditions_to_tables - Once the join order is fixed, parts of the WHERE clause are "attached" to

tables to filter out rows as early as possible.

The above steps are for just one SELECT. If the query has subqueries, each SELECT will have these steps, and there will

be extra steps/rewrites to handle the subquery construct itself.

Extracting Trace Components
If you are interested in some particular part of the trace, MariaDB has two functions that come in handy:

JSON_EXTRACT extracts a part of JSON document

JSON_DETAILED presents it in a user-readable way.

For example, the contents of the analyzing_range_alternatives node can be extracted like so:

3796/4161

MariaDB> select JSON_DETAILED(JSON_EXTRACT(trace, '$**.analyzing_range_alternatives'))

 -> from INFORMATION_SCHEMA.OPTIMIZER_TRACE\G

*************************** 1. row ***************************

JSON_DETAILED(JSON_EXTRACT(trace, '$**.analyzing_range_alternatives')): [

 {

 "range_scan_alternatives":

 [

 {

 "index": "a_b_c",

 "ranges":

 [

 "(1) <= (a,b) < (4,50)"

],

 "rowid_ordered": false,

 "using_mrr": false,

 "index_only": false,

 "rows": 4,

 "cost": 6.2509,

 "chosen": true

 }

],

 "analyzing_roworder_intersect":

 {

 "cause": "too few roworder scans"

 },

 "analyzing_index_merge_union": []

 }

]

Examples of Various Information in the Trace

Basic Rewrites

A lot of applications construct database query text on the fly, which sometimes means that the query has constructs that are

repetitive or redundant. In most cases, the optimizer will be able to remove them. One can check the trace to be sure:

explain select * from t1 where not (col1 >= 3);

Optimizer trace will show:

"steps": [

 {

 "join_preparation": {

 "select_id": 1,

 "steps": [

 {

 "expanded_query": "select t1.a AS a,t1.b AS b,t1.col1 AS col1 from t1 where t1.col1 < 3"

 }

Here, one can see that NOT was removed.

Similarly, one can also see that IN(...) with one element is the same as equality:

explain select * from t1 where col1 in (1);

will show

 "join_preparation": {

 "select_id": 1,

 "steps": [

 {

 "expanded_query": "select t1.a AS a,t1.b AS b,t1.col1 AS col1 from t1 where t1.col1 = 1"

On the other hand, converting an UTF-8 column to UTF-8 is not removed:

3797/4161

explain select * from t1 where convert(utf8_col using utf8) = 'hello';

will show

 "join_preparation": {

 "select_id": 1,

 "steps": [

 {

 "expanded_query": "select t1.a AS a,t1.b AS b,t1.col1 AS col1,t1.utf8_col AS utf8_col from t1 where convert(t1.utf8_col using utf8) = 'hello'"

 }

so redundant CONVERT calls should be used with caution.

VIEW Processing

MariaDB has two algorithms to handle VIEWs: merging and materialization. If you run a query that uses a VIEW, the trace

will have either

 "view": {

 "table": "view1",

 "select_id": 2,

 "algorithm": "merged"

 }

or

 {

 "view": {

 "table": "view2",

 "select_id": 2,

 "algorithm": "materialized"

 }

 },

depending on which algorithm was used.

Range Optimizer - What Ranges Will Be Scanned

The MariaDB optimizer has a complex part called the Range Optimizer. This is a module that examines WHERE (and ON)

clauses and constructs index ranges that need to be scanned to answer the query. The rules for constructing the ranges are

quite complex.

An example: Consider a table

create table some_events (

 start_date date,

 end_date date,

 ...

 key (start_date, end_date)

);

and a query:

explain select * from some_events where start_date >= '2019-09-10' and end_date <= '2019-09-14';

+------+-------------+-------------+------+---------------+------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+------+-------------+-------------+------+---------------+------+---------+------+------+-------------+

| 1 | SIMPLE | some_events | ALL | start_date | NULL | NULL | NULL | 1000 | Using where |

+------+-------------+-------------+------+---------------+------+---------+------+------+-------------+

One might think that the optimizer would be able to use the restrictions on both start_date and end_date to construct a

narrow range to be scanned. But this is not so, one of the restrictions creates a left-endpoint range and the other one

creates a right-endpoint range, hence they cannot be combined.

3798/4161

select

 JSON_DETAILED(JSON_EXTRACT(trace, '$**.analyzing_range_alternatives')) as trace

from information_schema.optimizer_trace\G

*************************** 1. row ***************************

trace: [

 {

 "range_scan_alternatives":

 [

 {

 "index": "start_date",

 "ranges":

 [

 "(2019-09-10,NULL) < (start_date,end_date)"

],

...

the potential range only uses one of the bounds.

Ref Access Options

Index-based Nested-loops joins are called "ref access" in the MariaDB optimizer.

The optimizer analyzes the WHERE/ON conditions and collects all equality conditions that can be used by ref access using

some index.

The list of conditions can be found in the ref_optimizer_key_uses node. (TODO example)

Join Optimization

The join optimizer's node is named considered_execution_plans .

The optimizer constructs the join orders in a left-to-right fashion. That is, if the query is a join of three tables:

select * from t1, t2, t3 where ...

then the optimizer will

Pick the first table (say, it is t1),

consider adding another table (say, t2), and construct a prefix "t1, t2"

consider adding the third table (t3), and constructing a prefix "t1, t2, t3", which is a complete join plan Other join

orders will be considered as well.

The basic operation here is: "given a join prefix of tables A,B,C ..., try adding table X to it". In JSON, it looks like this:

 {

 "plan_prefix": ["t1", "t2"],

 "table": "t3",

 "best_access_path": {

 "considered_access_paths": [

 {

 ...

 }

]

 }

 }

(search for plan_prefix followed by table).

If you are interested in how the join order of #t1,t2,t3# was constructed (or not constructed), you need to search for these

patterns:

"plan_prefix":[], "table":"t1"

"plan_prefix":["t1"], "table":"t2"

"plan_prefix":["t1", "t2"], "table":"t3"

6.4.1.1.1.1.3 Basic Optimizer Trace Example
MariaDB> set optimizer_trace=9enabled=on9;

3799/4161

MariaDB> select * from t1 where a<10;

MariaDB> select * from information_schema.optimizer_trace limit 1\G

*************************** 1. row ***************************

 QUERY: select * from t1 where a<10

 TRACE: {

 "steps": [

 {

 "join_preparation": {

 "select_id": 1,

 "steps": [

 {

 "expanded_query": "select t1.a AS a,t1.b AS b,t1.c AS c from t1 where t1.a < 10"

 }

]

 }

 },

 {

 "join_optimization": {

 "select_id": 1,

 "steps": [

 {

 "condition_processing": {

 "condition": "WHERE",

 "original_condition": "t1.a < 10",

 "steps": [

 {

 "transformation": "equality_propagation",

 "resulting_condition": "t1.a < 10"

 },

 {

 "transformation": "constant_propagation",

 "resulting_condition": "t1.a < 10"

 },

 {

 "transformation": "trivial_condition_removal",

 "resulting_condition": "t1.a < 10"

 }

]

 }

 },

 {

 "table_dependencies": [

 {

 "table": "t1",

 "row_may_be_null": false,

 "map_bit": 0,

 "depends_on_map_bits": []

 }

]

 },

 {

 "ref_optimizer_key_uses": []

 },

 {

 "rows_estimation": [

 {

 "table": "t1",

 "range_analysis": {

 "table_scan": {

 "rows": 1000,

 "cost": 206.1

 },

 "potential_range_indexes": [

 {

 "index": "a",

 "usable": true,

 "key_parts": ["a"]

 },

 {

 "index": "b",

 "usable": false,

 "cause": "not applicable"

 }

],
3800/4161

 "setup_range_conditions": [],

 "group_index_range": {

 "chosen": false,

 "cause": "no group by or distinct"

 },

 "analyzing_range_alternatives": {

 "range_scan_alternatives": [

 {

 "index": "a",

 "ranges": ["(NULL) < (a) < (10)"],

 "rowid_ordered": false,

 "using_mrr": false,

 "index_only": false,

 "rows": 10,

 "cost": 13.751,

 "chosen": true

 }

],

 "analyzing_roworder_intersect": {

 "cause": "too few roworder scans"

 },

 "analyzing_index_merge_union": []

 },

 "chosen_range_access_summary": {

 "range_access_plan": {

 "type": "range_scan",

 "index": "a",

 "rows": 10,

 "ranges": ["(NULL) < (a) < (10)"]

 },

 "rows_for_plan": 10,

 "cost_for_plan": 13.751,

 "chosen": true

 }

 }

 },

 {

 "selectivity_for_indexes": [

 {

 "index_name": "a",

 "selectivity_from_index": 0.01

 }

],

 "selectivity_for_columns": [],

 "cond_selectivity": 0.01

 }

]

 },

 {

 "considered_execution_plans": [

 {

 "plan_prefix": [],

 "table": "t1",

 "best_access_path": {

 "considered_access_paths": [

 {

 "access_type": "range",

 "resulting_rows": 10,

 "cost": 13.751,

 "chosen": true

 }

]

 }

 }

]

 },

 {

 "attaching_conditions_to_tables": {

 "original_condition": "t1.a < 10",

 "attached_conditions_computation": [],

 "attached_conditions_summary": [

 {

 "table": "t1",

 "attached": "t1.a < 10"

 }
3801/4161

 }

]

 }

 }

]

 }

 },

 {

 "join_execution": {

 "select_id": 1,

 "steps": []

 }

 }

]

}

MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0

 INSUFFICIENT_PRIVILEGES: 0

6.4.1.1.1.1.4 How to Collect Large Optimizer
Traces
Optimizer traces can be large for some queries.

In order to collect a large trace, you need to perform the following steps (using 128 MB as an example):

set global max_allowed_packet=128*1024*1024;

Reconnect specifying --max-allowed-packet=128000000 for the client as well.

set optimizer_trace=1;

set optimizer_trace_max_mem_size=127*1024*1024;

Now, one can run the query and save the large trace.

6.4.1.1.1.1.5 Optimizer Trace for Developers
This article describes guidelines for what/how to write to Optimizer Trace when doing server development.

Basic considerations
The trace is a "structured log" of what was done by the optimizer. Prefer to do tracing as soon as a rewrite/decision is made

(instead of having a separate trace_something() function).

Generally, a function should expect to find the trace in a state where we're writing an array. The rationale is that array

elements are ordered, while object members are not (even if they come in a certain order in the JSON text). We're writing a

log, so it's natural for different entries to form an array.

Typically you'll want to start an unnamed object, then use member names to show what kind of entry you're about to write:

[

 ..., # Something before us

 {

 "my_new_rewrite": {

 "from": "foo",

 "to": "bar",

 ...

 }

 }

 ...

(TODO other considerations)

Making sure the trace is valid
Json_writer_object and Json_writer_array classes use RAII idiom and ensure that JSON objects and arrays are

3802/4161

"closed" in the reverse order they were started.

However, they do not ensure these constraints:

JSON objects must have named members.

JSON arrays must have unnamed members.

Tracing code has runtime checks for these. Attempt to write invalid JSON will cause assertion failure.

Test coverage
It is possible to run mysql-test-run with this argument

 --mysqld=--optimizer_trace=enabled=on

This will run all tests with tracing on. As mentioned earlier, debug build will perform checks that we are not producing invalid

trace.

The BuildBot instance at http://buildbot.askmonty.org/ also runs tests with this argument, see mtr_opttrace pass in

kvm-fulltest and kvm-fulltest2.

Debugging
See optimizer-debugging-with-gdb/#printing-the-optimizer-trace for commands to print the trace for the current statement.

6.4.1.1.1.2 Optimizer Development
Notes about Optimizer Development

Contents
1. mysql-test

1. InnoDB Estimates are unstable

2. Run mtr with Optimizer Trace enabled

mysql-test

InnoDB Estimates are unstable

This is caused by background statistics update. It may cause the numbers in EXPLAIN output to be off-by-one. It may also

cause different query plans to be picked on different runs (See e.g. MDEV-32901 for details)

On a per-table basis, one can use STATS_AUTO_RECALC=0 as table parameter.

On a per-file basis, one can use this include:

--source mysql-test/include/innodb_stable_estimates.inc

Run mtr with Optimizer Trace enabled

TODO

6.4.1.1.1.3 The Optimizer Cost Model from
MariaDB 11.0

3803/4161

http://buildbot.askmonty.org/
https://mariadb.com/kb/en/optimizer-debugging-with-gdb/#printing-the-optimizer-trace
https://jira.mariadb.org/browse/MDEV-32901

Contents
1. Background

2. New Cost Model

3. Description of the Different Cost Variables

4. Other Optimizer Cost Changes

5. Other Notable Plan Changes

6. When the Optimizer Changes Matter

7. Changing Costs

1. In Configuration Files (and Command Line)

2. From SQL

3. Examples of Changing Costs

8. For Storage Engine Developers

Background
Before MariaDB 11.0, the MariaDB Query optimizer used a 'basic cost' of 1 for:

One disk access

Fetching a key

Fetching a row based on the rowid (= unique row identifier) from the key

There were some smaller costs:

filter lookup: 0.01

Examining a where clause: 0.20

Comparing two keys: 0.05

Fetching a row through an index from a temporary memory table: 0.05

The above costs are reasonable for finding out the best index to use. However, they where not good for finding out if we

should use a table scan, index scan or range lookup. The cost for the different engines were not properly calibrated.

New Cost Model
In MariaDB 11.0 we have fixed the above shortcomings by changing the basic cost for 'storage engine operations' to be 1

millisecond. This means that for most queries the query cost (LAST_QUERY_COST) should be close (or at least proportional)

to the time the server is spending in the storage engine + join_cache + sorting.

Note that the user level costs are in microseconds (as milliseconds would have so many zero's that it makes it hard to

compare values).

The engine costs have also been separated into smaller parts to make things more accurate.

The "disk"-read cost now assumes a mid level SSD disk with 400MB/second. This can be changed by the end user by

modifying OPTIMIZER_DISK_READ_COST .

All engine specific costs are visible in information_schema.optimizer_costs .

For example:

The "default" cost for an engine can be found with:

 select * from information_schema.optimizer_costs where engine="default"\G

*************************** 1. row ***************************

 ENGINE: default

 OPTIMIZER_DISK_READ_COST: 10.240000

OPTIMIZER_INDEX_BLOCK_COPY_COST: 0.035600

 OPTIMIZER_KEY_COMPARE_COST: 0.011361

 OPTIMIZER_KEY_COPY_COST: 0.015685

 OPTIMIZER_KEY_LOOKUP_COST: 0.435777

 OPTIMIZER_KEY_NEXT_FIND_COST: 0.082347

 OPTIMIZER_DISK_READ_RATIO: 0.020000

 OPTIMIZER_ROW_COPY_COST: 0.060866

 OPTIMIZER_ROW_LOOKUP_COST: 0.130839

 OPTIMIZER_ROW_NEXT_FIND_COST: 0.045916

 OPTIMIZER_ROWID_COMPARE_COST: 0.002653

 OPTIMIZER_ROWID_COPY_COST: 0.002653

The above costs are the default (base) for all engines and should be reasonable for engines that does not have a clustered

index (like MyISAM, Aria etc). The default costs can be changed by specifying just the cost as an argument, like mariadbd

--optimizer-disk-read-cost=20 or from SQL: set global optimizer_disk_read_cost=20 . An engine specific

cost can be tuned by prefixing the cost with the engine name, like set global

3804/4161

innodb.optimizer_disk_read_cost=20 .

An engine can tune some or all of the above cost in the storage engine interface. Here follows the cost for the InnoDB

storage engine.

select * from information_schema.optimizer_costs where engine="innodb"\G

*************************** 1. row ***************************

 ENGINE: InnoDB

 OPTIMIZER_DISK_READ_COST: 10.240000

OPTIMIZER_INDEX_BLOCK_COPY_COST: 0.035600

 OPTIMIZER_KEY_COMPARE_COST: 0.011361

 OPTIMIZER_KEY_COPY_COST: 0.015685

 OPTIMIZER_KEY_LOOKUP_COST: 0.791120

 OPTIMIZER_KEY_NEXT_FIND_COST: 0.099000

 OPTIMIZER_DISK_READ_RATIO: 0.020000

 OPTIMIZER_ROW_COPY_COST: 0.060870

 OPTIMIZER_ROW_LOOKUP_COST: 0.765970

 OPTIMIZER_ROW_NEXT_FIND_COST: 0.070130

 OPTIMIZER_ROWID_COMPARE_COST: 0.002653

 OPTIMIZER_ROWID_COPY_COST: 0.002653

As can be seen, the ROW_LOOKUP_COST is close to the KEY_LOOKUP_COST , which is because InnoDB has clustered

primary key indexes and is using it to find the row from a secondary index.

Some engines, like HEAP / MEMORY implement their own cost functions as different indexes in the same engine can have

different costs. This is why some of the cost numbers for these engines are 0.

There are also some SQL level costs that are independent of the storage engine:

select * from information_schema.global_variables where variable_name like "%where%cost%" or variable_name

+---------------------------+----------------+

| VARIABLE_NAME | VARIABLE_VALUE |

+---------------------------+----------------+

| OPTIMIZER_SCAN_SETUP_COST | 10.000000 |

| OPTIMIZER_WHERE_COST | 0.032000 |

+---------------------------+----------------+

Description of the Different Cost Variables
Time and cost are quite interchangeable in the new cost model. Below we will use cost for most things, except for

OPTIMIZER_DISK_READ_COST as one should use published/tested timings for the SSD/harddisk if one wants to change the

value..

Variable Type Description

OPTIMIZER_DISK_READ_COST Engine
Time in microseconds to read a 4K block from a disk/SSD. The

default is set for a 400MB/second SSD

OPTIMIZER_INDEX_BLOCK_COPY_COST Engine

Cost to lock and a copy a block from the global cache to a local

cache. This cost is added for every block accessed, independent of

whether they are cached or not

OPTIMIZER_KEY_COMPARE_COST Engine Cost to compare two keys

OPTIMIZER_KEY_COPY_COST Engine
Cost to copy a key from the index to a local buffer as part of

searching for a key

OPTIMIZER_KEY_LOOKUP_COST Engine Cost to find a key entry in the index (index read)

OPTIMIZER_KEY_NEXT_FIND_COST Engine Cost to find the next key in the index (index next)

OPTIMIZER_DISK_READ_RATIO Engine

The ratio of BLOCK_NOT_IN_CACHE/CACHE_READS. The cost of

disk usage is calculated as estimated_blocks *

OPTIMIZER_DISK_READ_RATIO * OPTIMIZER_DISK_READ_COST . A

value of 0 means that all blocks are always in the cache. A value of 1

means that a block is never in the cache

OPTIMIZER_ROW_COPY_COST Engine
Cost of copying a row to a local buffer. Should be slightly more than

OPTIMIZER_KEY_COPY_COST

3805/4161

OPTIMIZER_ROW_LOOKUP_COST Engine
Cost to find a row based on the rowid (Rowid is stored in the index

together with the key)

OPTIMIZER_ROW_NEXT_FIND_COST Engine Cost of finding the next row

OPTIMIZER_ROWID_COMPARE_COST Engine Cost of comparing two rowids

 OPTIMIZER_ROWID_COPY_COST Engine Cost of copying a rowid from the index

 OPTIMIZER_SCAN_SETUP_COST Session

Cost of starting a table or index scan. This has a low value to

encourage the optimizer to use index lookup also tables with very few

rows

OPTIMIZER_WHERE_COST Session

Cost to execute the WHERE clause for every found row. Increasing

this variable will encourage the optimizer to find plans which read

fewer rows

More information of the costs and how they were calculated can be found in the Docs/optimizer_costs.txt file in the

MariaDB Source distributions.

Other Optimizer Cost Changes
When counting disk accesses, we assume that all rows and index data are cached for the duration of the query. This

is to avoid the following problem:

table t1 with 1 million_rows is scanned

For each row we do a lookup in table t2, which has only 10 rows

If we would count all lookups in t2, there would be 1 million lookups. If this would be the case, the optimizer would choose to

use a join cache on the rows in t1 and do a table scan over t2.

The cost of sorting (filesort) is now more accurate, which allows the optimizer to better choose between index scan

and filesort for ORDER BY/GROUP BY queries.

A lot of rule-based cost has been changed to be cost-based:

The decision to use an index (and which index) for resolving ORDER BY/GROUP BY were only partly cost-based

before.

The old optimizer would limit the number of 8expected key lookups9 to 10% of the number of rows. This would cause

the optimizer to use an index to scan a big part of a table when a full table scan would be much faster. This code is

now removed.

InnoDB would limit the number of rows in a range to 50% of the total rows, which would confuse the optimizer for big

ranges. The cap is now removed.

If there was a usable filter for an index, it was sometimes used without checking the complete cost of the filter.

8Aggregate distinct optimization with indexes9 is now cost-based. This will change many queries from "Using index for

group-by (scanning)= to <Using index for group-by=.

Other Notable Plan Changes
Indexes can now be used for ORDER BY/GROUP BY in sub queries (instead of filesort)

Derived tables and queries with UNION can now create a distinct key (instead of a key with duplicates) to speed up

key accesses.

Indexes with more used key parts are preferred if the number of resulting rows is the same:

WHERE key_part_1 = 1 and key_part_2 < 10

This will now use a RANGE over both key parts instead of using lookups on key_part_1.

For very small tables, index lookup is preferred over table scan.

EXPLAIN does not report "Using index" for scans using a clustered primary key as technically this a table scan.

When the Optimizer Changes Matter
The new, improved optimizer should be able to find a better plan

If you are using queries with more than two tables.

If you have indexes with a lot of identical values.

If you are using ranges that cover more than 10% of a table.

WHERE key between 1 and 1000 -- Table has values 1-2000

If you have complex queries when not all used columns are or can be indexed.

In which case you may need to depend on selectivity to get the right plan.

If you are using queries mixing different storage engines.

Like using tables from both InnoDB and Memory in the same query.
3806/4161

If you have had to use FORCE INDEX to get a good plan.

If using ANALYZE TABLE made your plans worse (or not good enough).

If your queries have lots of derived tables (subselects).

You are using ORDER BY / GROUP BY that could be resolved via indexes.

Changing Costs
All engine and <SQL level= cost variables can be changed via MariaDB startup options, in configuration files or dynamically

using SQL.

In Configuration Files (and Command Line)

[mariadbd]

Archive is using a hard disk (typical seek is 8-10 ms)

archive.OPTIMIZER_DISK_READ_COST=8000

All other engines are using an SSD.

OPTIMIZER_DISK_READ_COST=10.240000

From SQL

Tell optimizer to find a plan with as few accepted rows as possible

SET SESSION OPTIMIZER_WHERE_COST=1.0;

Inform the optimizer that InnoDB buffer pool has a 80% hit rate

SET GLOBAL innodb.OPTIMIZER_DISK_READ_RATIO=0.20;

Note engine costs are GLOBAL while other costs can also be SESSION .

To keep things fast, engine-specific costs are stored in the table definition (TABLE_SHARE). One effect of this is that

if one changes the cost for an engine, it will only take effect when new, not previously cached tables are accessed.

You can use FLUSH TABLES to force the table to use the new costs at next access.

Examples of Changing Costs

OPTIMIZER_WHERE_COST is added as a cost for for all 'accepted rows'. Increasing this variable will cause the

optimizer to choose plans with less estimated rows.

One can specify the kind of disk used by the system by changing OPTIMIZER_DISK_READ_COST . This should be the

time to do a random read of a 4096 byte block.

The cost of a potential disk read is calculated as OPTIMIZER_DISK_READ_COST * OPTIMIZER_DISK_READ_RATIO .

Increasing OPTIMIZER_DISK_READ_RATIO will inform the optimizer that not all data is cached.

OPTIMIZER_SCAN_SETUP_COST will increase the cost of a table scan. One can increase this to avoid using table

scans.

For Storage Engine Developers
The costs for an engine are set the following way when the engine plugin is loaded/initialized:

Copy the "default" storage engine costs to the plugin engine costs.

#handlerton->costs points to the engine specific cost data.

Call handlerton->update_optimizer_costs() to let the storage engine update the costs.

Apply all user specific engine costs (from configuration files/startup) to the engine costs structure.

When a TABLE_SHARE is created, the costs are copied from handlerton->costs to

TABLE_SHARE.optimizer_costs . handler::update_optimizer_costs() is called to allow the engine to tune

the cost for this specific table instance. This is done to avoid having to take any "cost" mutex while running queries.

User changes to engine costs are stored in the data pointed to by handlerton->costs . This is why FLUSH

TABLES is needed to activate new engine costs.

To speed up cost access for the optimizer, handler::set_optimizer_costs() is called for each query to copy

OPTIMIZER_WHERE_COST and OPTIMIZER_SCAN_SETUP_COST to the engine cost structure.

6.4.1.1.2 Using MariaDB with Your Programs
(API)

3807/4161

Error Codes

MariaDB error codes and SQLSTATE codes

libMariaDB

libmysqld

The Embedded, Stand-Alone MariaDB Server.

Non-Blocking Client Library

Non-blocking client library documentation.

Progress Reporting

Progress reporting for long running commands.

There are 2 related questions .

6.4.1.1.2.1 Error Codes
MariaDB Error Code Reference

MariaDB error codes reference list.

Operating System Error Codes

Linux and Windows operating system error codes.

SQLSTATE

A string which identifies a condition's class and subclass

MariaDB Error Codes 1000 to 1099

MariaDB error codes from 1000 to 1099.

MariaDB Error Codes 1100 to 1199

MariaDB error codes from 1100 to 1199.

MariaDB Error Codes 1200 to 1299

MariaDB error codes from 1200 to 1299.

There are 2 related questions .

1

1

6.4.1.1.2.1.1 MariaDB Error Codes

6.4.1.1.2.1.2 Operating System Error Codes
Contents
1. Linux Error Codes

2. Windows Error Codes

Below is a partial list of more common Linux and Windows operating system error codes.

Linux Error Codes
The perror tool can be used to find the error message which is associated with a given error code.

Number Error Code Description

1 EPERM Operation not permitted

2 ENOENT No such file or directory

3808/4161

https://mariadb.com/kb/en/libmariadb/
https://mariadb.com/kb/en/libmysqld/
https://mariadb.com/kb/en/non-blocking-client-library/
https://mariadb.com/kb/en/using-mariadb-with-your-programs-api/+questions/
https://mariadb.com/kb/en/mariadb-error-codes-1000-to-1099/
https://mariadb.com/kb/en/mariadb-error-codes-1100-to-1199/
https://mariadb.com/kb/en/mariadb-error-codes-1200-to-1299/
https://mariadb.com/kb/en/error-codes/+questions/
https://mariadb.com/kb/en/mariadb-error-codes/

3 ESRCH No such process

4 EINTR Interrupted system call

5 EIO I/O error

6 ENXIO No such device or address

7 E2BIG Argument list too long

8 ENOEXEC Exec format error

9 EBADF Bad file number

10 ECHILD No child processes

11 EAGAIN Try again

12 ENOMEM Out of memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Device or resource busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument

23 ENFILE File table overflow

24 EMFILE Too many open files

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE Illegal seek

30 EROFS Read-only file system

31 EMLINK Too many links

32 EPIPE Broken pipe

33 EDOM Math argument out of domain of func

34 ERANGE Math result not representable

35 EDEADLK Resource deadlock would occur

36 ENAMETOOLONG File name too long

37 ENOLCK No record locks available

38 ENOSYS Function not implemented

39 ENOTEMPTY Directory not empty

40 ELOOP Too many symbolic links encountered

42 ENOMSG No message of desired type

43 EIDRM Identifier removed

44 ECHRNG Channel number out of range

45 EL2NSYNC Level 2 not synchronized

46 EL3HLT Level 3 halted

3809/4161

47 EL3RST Level 3 reset

48 ELNRNG Link number out of range

49 EUNATCH Protocol driver not attached

50 ENOCSI No CSI structure available

51 EL2HLT Level 2 halted

52 EBADE Invalid exchange

53 EBADR Invalid request descriptor

54 EXFULL Exchange full

55 ENOANO No anode

56 EBADRQC Invalid request code

57 EBADSLT Invalid slot

59 EBFONT Bad font file format

60 ENOSTR Device not a stream

61 ENODATA No data available

62 ETIME Timer expired

63 ENOSR Out of streams resources

64 ENONET Machine is not on the network

65 ENOPKG Package not installed

66 EREMOTE Object is remote

67 ENOLINK Link has been severed

68 EADV Advertise error

69 ESRMNT Srmount error

70 ECOMM Communication error on send

71 EPROTO Protocol error

72 EMULTIHOP Multihop attempted

73 EDOTDOT RFS specific error

74 EBADMSG Not a data message

75 EOVERFLOW Value too large for defined data type

76 ENOTUNIQ Name not unique on network

77 EBADFD File descriptor in bad state

78 EREMCHG Remote address changed

79 ELIBACC Can not access a needed shared library

80 ELIBBAD Accessing a corrupted shared library

81 ELIBSCN .lib section in a.out corrupted

82 ELIBMAX Attempting to link in too many shared libraries

83 ELIBEXEC Cannot exec a shared library directly

84 EILSEQ Illegal byte sequence

85 ERESTART Interrupted system call should be restarted

86 ESTRPIPE Streams pipe error

87 EUSERS Too many users

88 ENOTSOCK Socket operation on non-socket

89 EDESTADDRREQ Destination address required

90 EMSGSIZE Message too long

3810/4161

91 EPROTOTYPE Protocol wrong type for socket

92 ENOPROTOOPT Protocol not available

93 EPROTONOSUPPORT Protocol not supported

94 ESOCKTNOSUPPORT Socket type not supported

95 EOPNOTSUPP Operation not supported on transport endpoint

96 EPFNOSUPPORT Protocol family not supported

97 EAFNOSUPPORT Address family not supported by protocol

98 EADDRINUSE Address already in use

99 EADDRNOTAVAIL Cannot assign requested address

100 ENETDOWN Network is down

101 ENETUNREACH Network is unreachable

102 ENETRESET Network dropped connection because of reset

103 ECONNABORTED Software caused connection abort

104 ECONNRESET Connection reset by peer

105 ENOBUFS No buffer space available

106 EISCONN Transport endpoint is already connected

107 ENOTCONN Transport endpoint is not connected

108 ESHUTDOWN Cannot send after transport endpoint shutdown

109 ETOOMANYREFS Too many references: cannot splice

110 ETIMEDOUT Connection timed out

111 ECONNREFUSED Connection refused

112 EHOSTDOWN Host is down

113 EHOSTUNREACH No route to host

114 EALREADY Operation already in progress

115 EINPROGRESS Operation now in progress

116 ESTALE Stale NFS file handle

117 EUCLEAN Structure needs cleaning

118 ENOTNAM Not a XENIX named type file

119 ENAVAIL No XENIX semaphores available

120 EISNAM Is a named type file

121 EREMOTEIO Remote I/O error

122 EDQUOT Quota exceeded

123 ENOMEDIUM No medium found

124 EMEDIUMTYPE Wrong medium type

125 ECANCELED Operation Canceled

126 ENOKEY Required key not available

127 EKEYEXPIRED Key has expired

128 EKEYREVOKED Key has been revoked

129 EKEYREJECTED Key was rejected by service

130 EOWNERDEAD Owner died

131 ENOTRECOVERABLE State not recoverable

Windows Error Codes
3811/4161

For a complete list, see https://msdn.microsoft.com/en-us/library/ms681381.aspx

Number Error Code Description

1 ERROR_INVALID_FUNCTION Incorrect function.

2 ERROR_FILE_NOT_FOUND The system cannot find the file specified.

3 ERROR_PATH_NOT_FOUND The system cannot find the path specified.

4 ERROR_TOO_MANY_OPEN_FILES The system cannot open the file.

5 ERROR_ACCESS_DENIED Access is denied.

6 ERROR_INVALID_HANDLE The handle is invalid.

7 ERROR_ARENA_TRASHED The storage control blocks were destroyed.

8 ERROR_NOT_ENOUGH_MEMORY Not enough storage is available to process this command.

9 ERROR_INVALID_BLOCK The storage control block address is invalid.

10 ERROR_BAD_ENVIRONMENT The environment is incorrect.

11 ERROR_BAD_FORMAT An attempt was made to load a program with an incorrect format.

12 ERROR_INVALID_ACCESS The access code is invalid.

13 ERROR_INVALID_DATA The data is invalid.

14 ERROR_OUTOFMEMORY Not enough storage is available to complete this operation.

15 ERROR_INVALID_DRIVE The system cannot find the drive specified.

16 ERROR_CURRENT_DIRECTORY The directory cannot be removed.

17 ERROR_NOT_SAME_DEVICE The system cannot move the file to a different disk drive.

18 ERROR_NO_MORE_FILES There are no more files.

19 ERROR_WRITE_PROTECT The media is write protected.

20 ERROR_BAD_UNIT The system cannot find the device specified.

21 ERROR_NOT_READY The device is not ready.

22 ERROR_BAD_COMMAND The device does not recognize the command.

23 ERROR_CRC Data error (cyclic redundancy check).

24 ERROR_BAD_LENGTH
The program issued a command but the command length is

incorrect.

25 ERROR_SEEK The drive cannot locate a specific area or track on the disk.

26 ERROR_NOT_DOS_DISK The specified disk or diskette cannot be accessed.

27 ERROR_SECTOR_NOT_FOUND The drive cannot find the sector requested.

28 ERROR_OUT_OF_PAPER The printer is out of paper.

29 ERROR_WRITE_FAULT The system cannot write to the specified device.

30 ERROR_READ_FAULT The system cannot read from the specified device.

31 ERROR_GEN_FAILURE A device attached to the system is not functioning.

32 ERROR_SHARING_VIOLATION
The process cannot access the file because it is being used by

another process.

33 ERROR_LOCK_VIOLATION
The process cannot access the file because another process has

locked a portion of the file.

34 ERROR_WRONG_DISK
The wrong diskette is in the drive. Insert %2 (Volume Serial

Number: %3) into drive %1.

36 ERROR_SHARING_BUFFER_EXCEEDED Too many files opened for sharing.

38 ERROR_HANDLE_EOF Reached the end of the file.

39 ERROR_HANDLE_DISK_FULL The disk is full.

87 ERROR_INVALID_PARAMETER The parameter is incorrect.

3812/4161

https://msdn.microsoft.com/en-us/library/ms681381.aspx

112 ERROR_DISK_FULL The disk is full.

123 ERROR_INVALID_NAME The file name, directory name, or volume label syntax is incorrect.

1450 ERROR_NO_SYSTEM_RESOURCES
Insufficient system resources exist to complete the requested

service.

6.4.1.1.2.1.3 SQLSTATE
SQLSTATE is a code which identifies SQL error conditions. It composed by five characters, which can be numbers or

uppercase ASCII letters. An SQLSTATE value consists of a class (first two characters) and a subclass (last three

characters).

There are three important standard classes. They all indicate in which logical group of errors the condition falls. They match

to a particular keyword which can be used with DECLARE HANDLER. Also, the SQLSTATE class determines the default

value for the MYSQL_ERRNO and MESSAGE_TEXT condition properties.

'00' means 'success'. It can not be set in any way, and can only be read via the API.

'01' contains all warnings, and matches to the SQLWARNING keyword. The default MYSQL_ERRNO is 1642 and

default MESSAGE_TEXT is 'Unhandled user-defined warning condition'.

'02' is the NOT FOUND class. The default MYSQL_ERRNO is 1643 and default MESSAGE_TEXT is 'Unhandled

user-defined not found condition'.

All other classes match the SQLEXCEPTION keyword. The default MYSQL_ERRNO is 1644 and default

MESSAGE_TEXT is 'Unhandled user-defined exception condition'.

The subclass, if it is set, indicates a particular condition, or a particular group of conditions within the class. However the

'000' sequence means 'no subclass'.

For example, if you try to SELECT from a table which does not exist, a 1109 error is produced, with a '42S02' SQLSTATE.

'42' is the class and 'S02' is the subclass. This value matches to the SQLEXCEPTION keyword. When FETCH is called for a

cursor which has already reached the end, a 1329 error is produced, with a '02000' SQLSTATE. The class is '02' and there

is no subclass (because '000' means 'no subclass'). It can be handled by a NOT FOUND handlers.

The standard SQL specification says that classes beginning with 0, 1, 2, 3, 4, A, B, C, D, E, F and G are reserved for

standard-defined classes, while other classes are vendor-specific. It also says that, when the class is standard-defined,

subclasses starting with those characters (except for '000') are standard-defined subclasses, while other subclasses are

vendor-defined. However, MariaDB and MySQL do not strictly obey this rule.

To read the SQLSTATE of a particular condition which is in the diagnostics area , the GET DIAGNOSTICS statement

can be used: the property is called RETURNED_SQLSTATE. For user-defined conditions (SIGNAL and RESIGNAL

statements), a SQLSTATE value must be set via the SQLSTATE clause. However, SHOW WARNINGS and SHOW

ERRORS do not display the SQLSTATE.

For user-defined conditions, MariaDB and MySQL recommend the '45000' SQLSTATE class.

'HY000' is called the "general error": it is the class used for builtin conditions which do not have a specific SQLSTATE class.

A partial list of error codes and matching SQLSTATE values can be found in the page MariaDB Error Codes .

6.4.1.1.2.2 Progress Reporting
Contents
1. What is Progress Reporting?

2. Supported Commands

1. Limitations

3. Enabling and Disabling Progress Reporting

4. Clients Which Support Progress Reporting

5. Progress Reporting in the mysql Command Line Client

6. How to Add Support for Progress Reporting to a Client

7. How to Add Support for Progress Reporting to a Storage Engine

8. Examples to Look at in the MariaDB Source:

9. Format of Progress Packets

MariaDB supports progress reporting for some long running commands.

What is Progress Reporting?
Progress reporting means that:

3813/4161

https://mariadb.com/kb/en/diagnostics-area/
https://mariadb.com/kb/en/get-diagnostics/
https://mariadb.com/kb/en/mariadb-error-codes/

There is a Progress column in SHOW PROCESSLIST which shows the total progress (0-100%)

INFORMATION_SCHEMA.PROCESSLIST has three columns which allow you to see in which process stage we are

and how much of that stage is completed:

STAGE

MAX_STAGE

PROGRESS (within current stage).

The client receives progress messages which it can display to the user to indicate how long the command will take.

We have separate progress reporting for stages because different stages take different amounts of time.

Supported Commands
Currently, the following commands can send progress report messages to the client:

ALTER TABLE

CREATE INDEX

DROP INDEX

LOAD DATA INFILE (not LOAD DATA LOCAL INFILE , as in that case we don't know the size of the file).

Some Aria storage engine operations also support progress messages:

CHECK TABLE

REPAIR TABLE

ANALYZE TABLE

OPTIMIZE TABLE

Limitations

Although the above commands support progress reporting, there are some limitations to what progress is reported. To be

specific, when executing one of these commands against an InnoDB table with ALGORITHM=INPLACE (which is the

default in MariaDB 10.0+), progress is only reported during the merge sort phase while reconstructing indexes.

Enabling and Disabling Progress Reporting
mysqld (the MariaDB server) automatically sends progress report messages to clients that support the new protocol, using

the value of the progress_report_time variable. They are sent every max(global.progress_report_time ,

progress_report_time) seconds (by default 5). You can disable the sending of progress report messages to the client

by setting either the local variable (affects only the current connection) or the global variable (affects all connections) to 0 .

If the extra column in SHOW PROCESSLIST gives you a compatibility problem, you can disable it by starting mysqld with

the --old flag.

Clients Which Support Progress Reporting
The mariadb command line client

The mytop that comes with MariaDB has a '%' column which shows the progress.

Progress Reporting in the mysql Command Line Client
Progress reporting is enabled by default in the mariadb client. You can disable it with --disable-progress-reports . It

is automatically disabled in batch mode.

When enabled, for every supported command you get a progress report like:

ALTER TABLE my_mail ENGINE=aria;

Stage: 1 of 2 'copy to tmp table' 5.37% of stage done

This is updated every progress_report_time seconds (the default is 5). If the global progress_report_time is higher, this

will be used. You can also disable error reporting by setting the variable to 0 .

How to Add Support for Progress Reporting to a Client
You need to use the MariaDB 5.3 or later client library. You can check that the library supports progress reporting by doing:

3814/4161

#ifdef CLIENT_PROGRESS

To enable progress reporting to the client you need to add CLIENT_PROGRESS to the connect_flag in

mysql_real_connect() :

mysql_real_connect(mysql, host, user, password,

 database, opt_mysql_port, opt_mysql_unix_port,

 connect_flag | CLIENT_PROGRESS);

Then you need to provide a callback function for progress reports:

static void report_progress(const MYSQL *mysql, uint stage, uint max_stage,

 double progress, const char *proc_info,

 uint proc_info_length);

mysql_options(&mysql, MYSQL_PROGRESS_CALLBACK, (void*) report_progress);

The above report_progress function will be called for each progress message.

This is the implementation used by mysql.cc :

uint last_progress_report_length;

static void report_progress(const MYSQL *mysql, uint stage, uint max_stage,

 double progress, const char *proc_info,

 uint proc_info_length)

{

 uint length= printf("Stage: %d of %d '%.*s' %6.3g%% of stage done",

 stage, max_stage, proc_info_length, proc_info,

 progress);

 if (length < last_progress_report_length)

 printf("%*s", last_progress_report_length - length, "");

 putc('\r', stdout);

 fflush(stdout);

 last_progress_report_length= length;

}

If you want only one number for the total progress, you can calculate it with:

double total_progress=

 ((stage -1) / (double) max_stage * 100.00 + progress / max_stage);

Note: proc_info is totally independent of stage. You can have many different proc_info values within a stage.

The idea behind proc_info is to give the user more information about what the server is doing.

How to Add Support for Progress Reporting to a Storage
Engine
The functions to use for progress reporting are:

void thd_progress_init(MYSQL_THD thd, unsigned int max_stage);

Initialize progress reporting with stages. This is mainly used for commands that are totally executed within the engine, like

CHECK TABLE . You should not use this for operations that could be called by, for example, ALTER TABLE as this has

already called the function.

max_stage is the number of stages your storage engine will have.

void thd_progress_report(MYSQL_THD thd, unsigned long long progress,

 unsigned long long max_progress);

The above is used for reporting progress.

3815/4161

progress is how much of the file/rows/keys you have gone through.

max_progress is the max number of rows you will go through.

You can call this with varying numbers, but normally the ratio progress/max_progress should be increasing.

This function can be called even if you are not using stages, for example when enabling keys as part of ALTER TABLE or

ADD INDEX .

void thd_progress_next_stage(MYSQL_THD thd);

To go to the next stage in a multi-stage process initiated by thd_progress_init() :

void thd_progress_end(MYSQL_THD thd);

End progress reporting; Sets 'Progress' back to 0 in SHOW PROCESSLIST .

const char *thd_proc_info(thd, 'stage name');

This sets the name of the current status/stage that is displayed in SHOW PROCESSLIST and in the client. It's recommended

that you call this between stages and thus before thd_progress_report() and thd_progress_next_stage() .

This functions returns the last used proc_info . It's recommended that you restore proc_info to its original value when

you are done processing.

Note: thd_proc_info() is totally independent of stage. You can have many different proc_info values within a

stage to give the user more information about what is going on.

Examples to Look at in the MariaDB Source:
client/mysql.cc for an example of how to use reporting.

libmysql/client.c:cli_safe_read() to see how progress packets are handled in client

sql/protocol.cc::net_send_progress_packet() for how progress packets are handled in server.

Format of Progress Packets
The progress packet is sent as an error packet with error number 65535 .

It contains the following data (in addition to the error header):

Option Number of bytes Other info

1 1 Number of strings. For future

Stage 1 Stage from 1 - Max_stage

Max_stage 1 Max number of stages

Progress 3 Progress in % * 1000

Status_length 1-2 Packet length of string in net_field_length() format

Status Status_length Status / Stage name

6.4.1.2 EXPLAIN FORMAT=JSON in MySQL
Contents
1. Higher priority

2. Nice to have

1. Show ranges being scanned

3. Low priority

1. Filesort/priority queue

There are some things that we in MariaDB are not happy with in MySQL/Oracle's implementation of EXPLAIN

FORMAT=JSON.

The most important issues are already fixed in MariaDB's EXPLAIN FORMAT=JSON implementation. See EXPLAIN

3816/4161

https://mariadb.com/kb/en/explain-format-json-differences/

FORMAT=JSON Differences From MySQL for details.

This page lists things are are not fixed yet.

Higher priority
Better display for ORDER/GROUP BY (MDEV-6995)

Better display for Batched Key Access plans (Plain join buffering is fixed already)

Nice to have

Show ranges being scanned

Currently, one can only find the ranges produced by the range optimizer by looking into optimizer_trace. It would be nice if

EXPLAIN showed them, too

MySQL [dbt3sf1]> explain format=json select * from customer where c_acctbal < -1000 \G

*************************** 1. row ***************************

EXPLAIN: {

 "query_block": {

 "select_id": 1,

 "table": {

 "table_name": "customer",

 "access_type": "range",

 "possible_keys": [

 "c_acctbal",

 "i_c_acctbal_nationkey"

],

 "key": "c_acctbal",

 "used_key_parts": [

 "c_acctbal"

],

 "key_length": "9",

 "rows": 1,

 "filtered": 100,

 "index_condition": "(`dbt3sf1`.`customer`.`c_acctbal` < -(1000))"

 }

 }

}

Low priority

Filesort/priority queue

Neither version of EXPLAIN in 5.6 shows the "filesort with small limit" optimization. See MDEV-6430 .

7 MariaDB Server Releases
You can find the release dates for all upcoming MariaDB Server releases here .

MariaDB Server 11.4

The current short-term development release series.

MariaDB Server 11.3

The current short-term development release.

MariaDB Server 11.2

A previous short-term stable series, maintained until November 2024.

MariaDB Server 11.1

A previous short-term stable release series, maintained until August 2024.

MariaDB Server 11.0

A previous short-term MariaDB stable release series, maintained until June 2024.

3817/4161

https://jira.mariadb.org/browse/MDEV-6995
https://jira.mariadb.org/browse/MDEV-6430
https://jira.mariadb.org/secure/Dashboard.jspa?selectPageId=10000

MariaDB Server 10.11

The current long-term MariaDB stable release series, maintained until February 2028.

MariaDB Server 10.10

A previous short-term MariaDB stable release series, no longer maintained.

MariaDB Server 10.9

A previous short-term MariaDB stable release series, no longer maintained.

MariaDB Server 10.8

A previous short-term MariaDB stable release series, no longer maintained.

MariaDB Server 10.7

A previous short-term MariaDB stable release series, no longer maintained.

MariaDB Server 10.6

A previous long-term MariaDB stable release series, maintained until July 2026.

MariaDB Server 10.5

A previous MariaDB stable release series, maintained until 24 June 2025.

MariaDB Server 10.4

A previous MariaDB stable release series, maintained until 18 June 2024.

MariaDB Server 10.3

A previous MariaDB stable release series, no longer maintained.

MariaDB Server 10.2

A previous MariaDB stable release series, no longer maintained.

MariaDB Server 10.1

A previous stable MariaDB release series, no longer maintained.

MariaDB Server 10.0

A previous stable MariaDB release series, no longer maintained.

MariaDB Server 5.5

A previous stable MariaDB release series, no longer maintained.

MariaDB Server 5.3

A previous stable MariaDB release series, no longer maintained.

MariaDB Server 5.2

A previous stable MariaDB release series, no longer maintained.

MariaDB Server 5.1

A previous stable MariaDB release series, no longer maintained.

Release Notes

Notes regarding MariaDB releases.

Changelogs

MariaDB Changelogs.

MariaDB Release Model

Current MariaDB Release Model (from 11.3 up) Releases happen four times a y...

MariaDB Release Criteria

Alpha, Beta, Gamma and Stable releases.

MariaDB Security Bug Fixing Policy

Bug fixing policy and how security issues are handled.

3818/4161

https://mariadb.com/kb/en/mariadb-server-10-3/
https://mariadb.com/kb/en/release-notes/
https://mariadb.com/kb/en/changelogs/
https://mariadb.com/kb/en/mariadb-release-model/
https://mariadb.com/kb/en/mariadb-release-criteria/

MariaDB Maintenance Policy

Information on the MariaDB Software Maintenance Policy.

MariaDB Platform Deprecation Policy

Information on MariaDB's Software Deprecation Policy and Schedule.

MariaDB Feature Deprecation Policy

MariaDB Server policy for removing deprecated features.

Release Process [obsolete]

The release process for MariaDB.

Release Coordinator [obsolete]

Project release coordinator

There are 4 related questions .

1

7.0.0.1 MariaDB Server 11.4
Changes and Improvements in MariaDB 11.4

Current Version: 11.4.1 | Status: RC | Release Date: 16 Feb 2024

Release Notes - MariaDB 11.4 Series

MariaDB 11.4 series release notes.

7.0.0.2 Changes and Improvements in MariaDB
11.4

The most recent release of MariaDB 11.4 is:

MariaDB 11.4.1 Download Now

Contents
1. Upgrading

2. New Features

1. SSL/TLS

2. Partitioning

3. Sys Schema

4. Optimizer

5. Spider

6. Miscellaneous

7. Replication

8. Data Types

9. Backup and Restore

10. Application-Time Periods

11. Variables

3. Security Vulnerabilities Fixed in MariaDB 11.4

4. List of All MariaDB 11.4 Releases

MariaDB 11.4 is a current short-term development series. See Plans for MariaDB 11.4 .

New Features

SSL/TLS

SSL is now enabled in the server by default. No configuration necessary, if no server certificate was provided a self-

signed certificate will be automatically generated by the server. See Mission Impossible: Zero-Configuration SSL on

mariadb.org (MDEV-31856).

Alternate download from mariadb.org

3819/4161

https://mariadb.com/kb/en/mariadb-maintenance-policy/
https://mariadb.com/kb/en/mariadb-platform-deprecation-policy/
https://mariadb.com/kb/en/mariadb-feature-deprecation-policy/
https://mariadb.com/kb/en/release-process-obsolete/
https://mariadb.com/kb/en/release-coordinator-obsolete/
https://mariadb.com/kb/en/mariadb-server-release-dates/+questions/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.4.1/
https://mariadb.com/kb/en/plans-for-mariadb-11-4/
https://mariadb.org/mission-impossible-zero-configuration-ssl/
https://jira.mariadb.org/browse/MDEV-31856

Clients now can validate self-signed server certificates if the mysql_native_password or ed25519 authentication is

used and account password is not empty (MDEV-31855).

Clients now require SSL and have --ssl-verify-server-cert enabled by default (MDEV-31857).

Replication clients do that too, MASTER_SSL_VERIFY_SERVER_CERT is enabled by default.

Use --disable-ssl or --disable-ssl-verify-server-cert to revert to the old behavior.

Clients can use new command line options --tls-fp and --tls-fplist to verify the server certificate by its fingerprint

Partitioning

ALTER TABLE & EXCHANGE PARTITION and ALTER TABLE & CONVERT TABLE & TO now support the WITH

VALIDATION and WITHOUT VALIDATION clauses. If neither is specified, the default behavior is WITH VALIDATION

(MDEV-22164)

Sys Schema

New view sys.privileges_by_table_by_level shows granted privileges broken down by table on which they allow

access and level on which they were granted. For example, if a user x has SELECT privilege granted ON db.* ,

this view will list all tables in the db schema with the user x having SELECT privilege on them. This is different from

INFORMATION_SCHEMA.TABLE_PRIVILEGES, which only lists privileges granted on the table level (MDEV-24486

)

Optimizer

Not only ascending, but also descending indexes can now be used to optimize MIN() and MAX() (MDEV-27576)

Spider

The preferred way to specify Spider parameters is to use the dedicated Spider table options (implemented in

MariaDB 11.3). Abusing the table COMMENT clause is now deprecated (MDEV-28861)

Miscellaneous

CONV() function now supports conversion up to base 62 (MDEV-30879)

Added support for packages (CREATE PACKAGE) outside of ORACLE sql_mode (MDEV-32101)

Replication

Binary log writing speed was improved by moving checksum calculations out of the global binlog mutex (MDEV-

31273). This is a contribution by Kristian Nielsen

New system variable max_binlog_total_size enables binary log purging when the total size of all binary logs exceeds

the specified threshold. The implementation is based on the patch from Percona (MDEV-31404)

New system variable slave_connections_needed_for_purge disables binary log purging until the number of

connected slaves reaches the specified threshold (MDEV-31404).

FULL_NODUP is a new value for the binlog_row_image system variable. It essentially works like FULL , that is all

columns are included in the event, but it takes less space, because the after image omits columns that were not

changed by the UPDATE statement, and have same values as in the before image. This is a contribution from

Alibaba (MDEV-32589)

mariadb-binlog --flashback support for the FULL_NODUP mode. This is a contribution from Alibaba (MDEV-32894

).

MariaDB can optionally maintain a special index of GTIDs and their location in the binary log. If enabled (the default),

it allows finding very quickly where a new connecting replica should start replicating from. Without an index, this

required scanning the binlog. This is a contribution by Kristian Nielsen (MDEV-4991).

Data Types

The TIMESTAMP range of values was extended. The maximal allowed value for timestamps was '2038-01-19

03:14:07 UTC', and is now '2106-02-07 06:28:15 UTC'. This does not change the storage format, and new tables can

be read by old MariaDB servers as long as timestamp values are within the old timestamp range. At the moment this

is only supported on 64-bit platforms (MDEV-32188).

Backup and Restore

New mariadb-dump option, -j , --parallel= # for increased parallelism, specifies the number of dump table jobs

3820/4161

https://jira.mariadb.org/browse/MDEV-31855
https://jira.mariadb.org/browse/MDEV-31857
https://jira.mariadb.org/browse/MDEV-22164
https://jira.mariadb.org/browse/MDEV-24486
https://jira.mariadb.org/browse/MDEV-27576
https://mariadb.com/kb/en/spider-table-parameters/
https://jira.mariadb.org/browse/MDEV-28861
https://jira.mariadb.org/browse/MDEV-30879
https://jira.mariadb.org/browse/MDEV-32101
https://jira.mariadb.org/browse/MDEV-31273
https://jira.mariadb.org/browse/MDEV-31404
https://jira.mariadb.org/browse/MDEV-31404
https://jira.mariadb.org/browse/MDEV-32589
https://jira.mariadb.org/browse/MDEV-32894
https://jira.mariadb.org/browse/MDEV-4991
https://jira.mariadb.org/browse/MDEV-32188

executed in parallel (only for use with the --tab option). Also added to mariadb-import, with --use-threads as a

synonym. (MDEV-32216)

Application-Time Periods

Add views for periods in information_schema (MDEV-22597), in particular

New view INFORMATION_SCHEMA.PERIODS

New view INFORMATION_SCHEMA.KEY_PERIOD_USAGE

New columns IS_SYSTEM_TIME_PERIOD_START and IS_SYSTEM_TIME_PERIOD_END in the

INFORMATION_SCHEMA.COLUMNS view

Variables

For a list of all new variables, see System Variables Added in MariaDB 11.4.

List of All MariaDB 11.4 Releases

Date Release Status Release Notes Changelog

16 Feb 2024 MariaDB 11.4.1 RC Release Notes Changelog

24 Dec 2023 MariaDB 11.4.0 Alpha Release Notes

7.0.0.3 Release Notes - MariaDB 11.4 Series
MariaDB 11.4.1 Release Notes

Status: Release Candidate (RC) | Release Date: 16 Feb 2024

MariaDB 11.4.0 Release Notes

Status: Alpha | Release Date: 24 December 2023

7.0.0.3.1 MariaDB 11.4.1 Release Notes
Download Release Notes Changelog Overview of 11.4

Release date: 16 Feb 2024

Do not use non-stable (non-GA) releases in production!

MariaDB 11.4 is a current short-term development series of MariaDB. It is an evolution of MariaDB 11.3 with several entirely

new features.

MariaDB 11.4.1 is a Release Candidate (RC) release.

For an overview of MariaDB 11.4 see the What is MariaDB 11.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

Alternate download from mariadb.org

3821/4161

https://jira.mariadb.org/browse/MDEV-32216
https://jira.mariadb.org/browse/MDEV-22597
https://mariadb.com/kb/en/mariadb-11-4-1-changelog/
http://downloads.mariadb.org/mariadb/11.4.1
https://mariadb.com/kb/en/mariadb-11-4-1-changelog/
https://downloads.mariadb.org/mariadb/11.4.1/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

New mariadb-dump option, -j , --parallel= # for increased parallelism, specifies the number of dump table jobs

executed in parallel (only for use with the --tab option). Also added to mariadb-import, with --use-threads as a

synonym. (MDEV-32216)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

3822/4161

https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-32216
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera
3823/4161

https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

Application-Time Periods

Add views for periods in information_schema (MDEV-22597), in particular

New view INFORMATION_SCHEMA.PERIODS

New view INFORMATION_SCHEMA.KEY_PERIOD_USAGE

New columns IS_SYSTEM_TIME_PERIOD_START and IS_SYSTEM_TIME_PERIOD_END in the

INFORMATION_SCHEMA.COLUMNS view

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.4 for Fedora 37 and Ubuntu 23.04

"Lunar"

It is now possible to create partitions on tables that contain GEOMETRY types (MDEV-19177)

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

New OLD_MODE value, NO_NULL_COLLATION_IDS , a compatibility setting to support connectors (in particular

MySQL Connector/NET) that give an exception when collation ids returned by SHOW COLLATION are NULL. It is

automatically set when a MySQL Connector/NET connection is determined.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

3824/4161

https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-22597
https://jira.mariadb.org/browse/MDEV-19177
https://jira.mariadb.org/browse/MDEV-32884
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Memory pressure (MDEV-24670)

Changelog
For a complete list of changes made in MariaDB 11.4.1, with links to detailed information on each push, see the changelog

.

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.3.2 MariaDB 11.4.0 Release Notes

The most recent release of MariaDB 11.4 is:

MariaDB 11.4.1 Download Now

Download Release Notes Changelog Overview of 11.4

Release date: 24 December 2023

Do not use alpha releases in production!

MariaDB 11.4 is a short-term development series of MariaDB. It is an evolution of MariaDB 11.3 with several entirely new

features.

MariaDB 11.4.0 is a single preview release. Features are to be considered preview, and none are guaranteed to make it into

MariaDB 11.4.

The preview is available as a container quay.io/mariadb-foundation/mariadb-devel:11.4.

For an overview of MariaDB 11.4 see the What is MariaDB 11.4? page.

Thanks, and enjoy MariaDB!

Partitioning
ALTER TABLE & EXCHANGE PARTITION and ALTER TABLE & CONVERT TABLE & TO now support the WITH

VALIDATION and WITHOUT VALIDATION clauses. If neither is specified, the default behavior is WITH VALIDATION

(MDEV-22164)

Sys Schema
New view sys.privileges_by_table_by_level shows granted privileges broken down by table on which they allow

access and level on which they were granted. For example, if a user x has SELECT privilege granted ON db.* ,

Alternate download from mariadb.org

3825/4161

https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://jira.mariadb.org/browse/MDEV-24670
https://mariadb.com/kb/en/mariadb-11-4-1-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.4.1/
http://downloads.mariadb.org/mariadb/11.4.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-11-4-0-changelog
https://jira.mariadb.org/browse/MDEV-22164

this view will list all tables in the db schema with the user x having SELECT privilege on them. This is different from

INFORMATION_SCHEMA.TABLE_PRIVILEGES, which only lists privileges granted on the table level (MDEV-24486

)

Optimizer
Not only ascending, but also descending indexes can now be used to optimize MIN() and MAX() (MDEV-27576)

Spider
The preferred way to specify Spider parameters is to use the dedicated Spider table options (implemented in

MariaDB 11.3). Abusing the table COMMENT clause is now deprecated (MDEV-28861)

Miscellaneous
CONV() function now supports conversion up to base 62 (MDEV-30879)

Added support for packages (CREATE PACKAGE) outside of ORACLE sql_mode (MDEV-32101)

Replication
Binary log writing speed was improved by moving checksum calculations out of the global binlog mutex (MDEV-

31273). This is a contribution by Kristian Nielsen

New system variable max_binlog_total_size enables binary log purging when the total size of all binary logs exceeds

the specified threshold. The implementation is based on the patch from Percona (MDEV-31404)

New system variable slave_connections_needed_for_purge disables binary log purging until the number of

connected slaves reaches the specified threshold (MDEV-31404).

FULL_NODUP is a new value for the binlog_row_image system variable. It essentially works like FULL , that is all

columns are included in the event, but it takes less space, because the after image omits columns that were not

changed by the UPDATE statement, and have same values as in the before image. This is a contribution from

Alibaba (MDEV-32589)

mariadb-binlog --flashback support for the FULL_NODUP mode. This is a contribution from Alibaba (MDEV-32894

).

MariaDB can optionally maintain a special index of GTIDs and their location in the binary log. If enabled (the default),

it allows finding very quickly where a new connecting replica should start replicating from. Without an index, this

required scanning the binlog. This is a contribution by Kristian Nielsen (MDEV-4991).

Note that this feature was not included in MariaDB 11.4. GTID events in the binary log now include connection id of

the client connection that generated the event. This allows mariadb-binlog to tag all row events with a corresponding

connection id (MDEV-7850).

Data Types
The TIMESTAMP range of values was extended. The maximal allowed value for timestamps was '2038-01-19

03:14:07 UTC', and is now '2106-02-07 06:28:15 UTC'. This does not change the storage format, and new tables can

be read by old MariaDB servers as long as timestamp values are within the old timestamp range. At the moment this

is only supported on 64-bit platforms (MDEV-32188).

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.4 MariaDB Server 11.3
Changes and Improvements in MariaDB 11.3

Current Version: 11.3.2 | Status: Stable (GA) | Release Date: 16 Feb 2024

3826/4161

https://jira.mariadb.org/browse/MDEV-24486
https://jira.mariadb.org/browse/MDEV-27576
https://mariadb.com/kb/en/spider-table-parameters/
https://jira.mariadb.org/browse/MDEV-28861
https://jira.mariadb.org/browse/MDEV-30879
https://jira.mariadb.org/browse/MDEV-32101
https://jira.mariadb.org/browse/MDEV-31273
https://jira.mariadb.org/browse/MDEV-31404
https://jira.mariadb.org/browse/MDEV-31404
https://jira.mariadb.org/browse/MDEV-32589
https://jira.mariadb.org/browse/MDEV-32894
https://jira.mariadb.org/browse/MDEV-4991
https://jira.mariadb.org/browse/MDEV-7850
https://jira.mariadb.org/browse/MDEV-32188
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Release Notes - MariaDB 11.3 Series

MariaDB 11.3 series release notes.

Changelogs - MariaDB 11.3 Series

MariaDB 11.3 changelogs

7.0.0.5 Changes and Improvements in MariaDB
11.3

The most recent release of MariaDB 11.3 is:

MariaDB 11.3.2 Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. Connection Redirection

2. InnoDB

3. Replication

4. Data Types

5. Functions

1. Date and Time

6. Optimizer

7. Privileges

8. Processlist

9. OLD_MODE

10. Mariabackup

11. Spider

12. Removed

13. Variables

3. Security Vulnerabilities Fixed in MariaDB 11.3

4. List of All MariaDB 11.3 Releases

MariaDB 11.3 is a current short-term series. Note that it is the first release in the new release model, that from 11.3, we will

stop doing GA bug fix releases within each minor version. See Adjusting the MariaDB Server release model

(mariadb.org).

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 11.2 to MariaDB 11.3.

New Features & Improvements

Connection Redirection

Added a redirect mechanism using the redirect_url system variable (MDEV-15935)

At the moment client-side support is missing

InnoDB

Shrink temporary tablespaces without restart by setting the innodb_truncate_temporary_tablespace_now system

variable. (MDEV-28699)

Replication

Add keywords "SQL_BEFORE_GTIDS" and "SQL_AFTER_GTIDS" for START SLAVE UNTIL (MDEV-27247).

SQL_BEFORE_GTIDS stops the replica when it sees gtids of the option's argument list, without executing them.

Data Types

Alternate download from mariadb.org

3827/4161

https://mariadb.com/kb/en/changelogs-mariadb-11-3-series/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.3.2/
https://mariadb.org/adjusting-release-model
https://jira.mariadb.org/browse/MDEV-15935
https://jira.mariadb.org/browse/MDEV-28699
https://jira.mariadb.org/browse/MDEV-27247

It is now possible to create partitions on tables that contain GEOMETRY types (MDEV-19177)

INET4 data types can now be cast into INET6 types (MDEV-31626)

This means INET4 values can be compared with INET6 values and can be inserted into INET6 columns; the server

can automatically convert INET4 value into INET6 as needed.

Functions

Key derivation function KDF for generating good encryption keys for AES_ENCRYPT (MDEV-31474)

Date and Time

DATE_FORMAT function can now print the current time zone abbreviation and current time zone offset from UTC with

%Z and %z format specifiers. (MDEV-31684)

Optimizer

Queries like UCASE(varchar_col)=... can now use an index on varchar_col if its collation is case insensitive. An

optimizer_switch option, sargable_casefold=ON, has been added to enable this optimization. (MDEV-31496)

Privileges

Add a new database-level privilege, SHOW CREATE ROUTINE that allows one to see the routine definition even if the

user isn't the routine owner (MDEV-29167)

Processlist

Added a SENT_ROWS column to the Information Schema PROCESSLIST table, as well as extended the display size

for the columns in processlist to ensure that most results will fit in display (MDEV-3953)

OLD_MODE

Setting a non-default old_mode value will now always issue a deprecation warning (MDEV-31811)

Mariabackup

mariabackup --innobackupex mode has been deprecated (MDEV-31505)

Spider

The Spider storage engine now supports table options instead of having to encode them in

COMMENT/CONNECTION strings. When any table option is specified, Spider will ignore COMMENT/CONNECTION

strings at the same table/partition/subpartition. A new variable spider_ignore_comments is introduced to ignore them

globally at all levels (table/partition/subpartition). Another variable, spider_suppress_comment_ignored_warning, is

introduced to suppress warnings when Spider ignores COMMENT/CONNECTION strings. (MDEV-28856)

Removed

The following deprecated features and system variables have been removed (MDEV-32104):

sr_YU locale (deprecated since MariaDB 10.0.11)

"engine_condition_pushdown" in optimizer_switch (deprecated since MariaDB 10.1.1)

date_format, datetime_format, time_format, max_tmp_tables (deprecated since MariaDB 10.1.2)

wsrep_causal_reads (deprecated since MariaDB 10.1.3)

"parser" in mroonga table comment (deprecated since MariaDB 10.2.11)

Variables

For a list of all new variables, see System Variables Added in MariaDB 11.3.

List of All MariaDB 11.3 Releases

3828/4161

https://jira.mariadb.org/browse/MDEV-19177
https://jira.mariadb.org/browse/MDEV-31626
https://jira.mariadb.org/browse/MDEV-31474
https://jira.mariadb.org/browse/MDEV-31684
https://jira.mariadb.org/browse/MDEV-31496
https://jira.mariadb.org/browse/MDEV-29167
https://jira.mariadb.org/browse/MDEV-3953
https://jira.mariadb.org/browse/MDEV-31811
https://jira.mariadb.org/browse/MDEV-31505
https://jira.mariadb.org/browse/MDEV-28856
https://jira.mariadb.org/browse/MDEV-32104
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/

Date Release Status Release Notes Changelog

16 Feb 2024 MariaDB 11.3.2 Stable (GA) Release Notes Changelog

21 Nov 2023 MariaDB 11.3.1 RC Release Notes Changelog

20 Sep 2023 MariaDB 11.3.0 Alpha Release Notes

7.0.0.6 Release Notes - MariaDB 11.3 Series
MariaDB 11.3.2 Release Notes

Status: Stable (GA) | Release Date: 16 Feb 2024

MariaDB 11.3.1 Release Notes

Status: Release Candidate (RC) | Release Date: 21 Nov 2023

MariaDB 11.3.0 Release Notes

Status: Alpha | Release Date: 20 September 2023

7.0.0.6.1 MariaDB 11.3.2 Release Notes
Download Release Notes Changelog Overview of 11.3

Release date: 16 Feb 2024

Note that the Debian packages have compatibility problems with PHP and NodeJS. We suggest that these users hold

off upgrading, wait until the next 11.x release, MariaDB 11.4.2 , or implement one of the following workarounds:

Edit /etc/mysql/mariadb.conf.d/50-server.cnf and change character-set-collations =

utf8mb4=uca1400_ai_ci to character-set-collations = utf8mb4=general_ci

or

run this as root: sed -i -e '/character-set-collations/d' /etc/mysql/mariadb.conf.d/50-

server.cnf

MariaDB 11.3 is a current short-term development series of MariaDB. It is an evolution of MariaDB 11.2 with several entirely

new features. It will be the final 11.3 release - see Adjusting the MariaDB Server release model .

MariaDB 11.3.2 is a Stable (GA) release.

For an overview of MariaDB 11.3 see the What is MariaDB 11.3? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

Alternate download from mariadb.org

3829/4161

https://mariadb.com/kb/en/mariadb-11-3-2-changelog/
https://mariadb.com/kb/en/mariadb-11-3-1-changelog/
http://downloads.mariadb.org/mariadb/11.3.2
https://mariadb.com/kb/en/mariadb-11-3-2-changelog/
https://downloads.mariadb.org/mariadb/11.3.2/
https://mariadb.com/kb/en/mariadb-11-4-2-release-notes/
https://mariadb.org/adjusting-release-model/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

3830/4161

https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

3831/4161

https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.3 for Fedora 37 and Ubuntu 23.04

"Lunar"

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

It is now possible to create partitions on tables that contain GEOMETRY types (MDEV-19177)

New OLD_MODE value, NO_NULL_COLLATION_IDS , a compatibility setting to support connectors (in particular

MySQL Connector/NET) that give an exception when collation ids returned by SHOW COLLATION are NULL. It is

automatically set when a MySQL Connector/NET connection is determined.

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Memory pressure (MDEV-24670)

Changelog
For a complete list of changes made in MariaDB 11.3.1, with links to detailed information on each push, see the changelog

.

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

3832/4161

https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-32884
https://jira.mariadb.org/browse/MDEV-19177
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://jira.mariadb.org/browse/MDEV-24670
https://mariadb.com/kb/en/mariadb-11-3-1-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.6.2 MariaDB 11.3.1 Release Notes

The most recent release of MariaDB 11.3 is:

MariaDB 11.3.2 Download Now

Download 11.3.1 Release Notes Changelog Overview of 11.3

Release date: 21 Nov 2023

Do not use non-stable (non-GA) releases in production!

MariaDB 11.3 is a current short-term development series of MariaDB. It is an evolution of MariaDB 11.2 with several entirely

new features.

MariaDB 11.3.1 is a Release Candidate (RC) release.

For an overview of MariaDB 11.3 see the What is MariaDB 11.3? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

Alternate download from mariadb.org

3833/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.3.2/
https://downloads.mariadb.org/mariadb/11.3.1/
https://mariadb.com/kb/en/mariadb-11-3-1-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Wrong result of: WHERE inet6_column IN ('','::1') (MDEV-31719)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Raise notes when an index cannot be used on data type mismatch (MDEV-32203)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Missed kill when the SQL driver thread goes to wait for parallel slave worker queues to drain (MDEV-29974)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing ||

state() == s_must_abort || state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state()

== s_must_abort || state() == s_aborting || state() == s_cert_failed || state() ==

s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int

wsrep::client_state::bf_abort(wsrep::seqno) (MDEV-30217)

3834/4161

https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-31719
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-32203
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-29974
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

utf8mb3_key_col=utf8mb4_value cannot be used for ref access (MDEV-32113)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)
3835/4161

https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Changelog
For a complete list of changes made in MariaDB 11.3.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.3.1, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.6.3 MariaDB 11.3.0 Release Notes

The most recent release of MariaDB 11.3 is:

MariaDB 11.3.2 Download Now

Download Release Notes Changelog Overview of 11.3

Release date: 20 September 2023

Do not use alpha releases in production!

MariaDB 11.3 is a current short-term development series of MariaDB. It is an evolution of MariaDB 11.2 with several entirely

new features.

Alternate download from mariadb.org

3836/4161

https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://mariadb.com/kb/en/mariadb-11-3-1-changelog/
https://mariadb.org/mariadb-11-3-1-11-2-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.3.2/
http://downloads.mariadb.org/mariadb/11.3.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-11-3-0-changelog

MariaDB 11.3.0 is a single preview release. Features are to be considered preview, and none are guaranteed to make it into

MariaDB 11.3.

The preview is available as a container quay.io/mariadb-foundation/mariadb-devel:11.3-preview.

For an overview of MariaDB 11.3 see the What is MariaDB 11.3? page.

Thanks, and enjoy MariaDB!

Connection Redirection
Added a redirect mechanism using the redirect_url system variable (MDEV-15935)

At the moment client-side support is missing

InnoDB
Shrink temporary tablespaces without restart by setting the innodb_truncate_temporary_tablespace_now system

variable. (MDEV-28699)

Replication
Add keywords "SQL_BEFORE_GTIDS" and "SQL_AFTER_GTIDS" for START SLAVE UNTIL (MDEV-27247).

SQL_BEFORE_GTIDS stops the replica when it sees gtids of the option's argument list, without executing them.

SSL/TLS
Note that this feature did not make it into MariaDB 11.3, but is in MariaDB 11.4.

SSL is now enabled in the server by default. No configuration necessary, if no server certificate was provided a self-

signed certificate will be automatically generated by the server. See Mission Impossible: Zero-Configuration SSL on

mariadb.org (MDEV-31856).

Clients now can validate self-signed server certificates if the mysql_native_password or ed25519 authentication is

used and account password is not empty (MDEV-31855).

Clients now require SSL and have --ssl-verify-server-cert enabled by default (MDEV-31857).

Replication clients do that too, MASTER_SSL_VERIFY_SERVER_CERT is enabled by default.

Use --disable-ssl or --disable-ssl-verify-server-cert to revert to the old behavior.

Clients can use new command line options --tls-fp and --tls-fplist to verify the server certificate by its fingerprint

Data Types
INET4 data types can now be cast into INET6 types (MDEV-31626)

This means, INET4 values can be compared with INET6 values and can be inserted into INET6 columns, the server

can automatically convert INET4 value into INET6 as needed.

Functions
Key derivation function KDF for generating good encryption keys for AES_ENCRYPT (MDEV-31474)

Date and Time

DATE_FORMAT function can now print the current time zone abbreviation and current time zone offset from UTC with

%Z and %z format specifiers. (MDEV-31684)

Optimizer
Queries like UCASE(varchar_col)=... can now use an index on varchar_col if its collation is case insensitive. An

optimizer_switch option, sargable_casefold=ON, has been added to enable this optimization. (MDEV-31496)

Privileges
Add a new database-level privilege, SHOW CREATE ROUTINE that allows to see the routine definition even if the user

3837/4161

https://jira.mariadb.org/browse/MDEV-15935
https://jira.mariadb.org/browse/MDEV-28699
https://jira.mariadb.org/browse/MDEV-27247
https://mariadb.org/mission-impossible-zero-configuration-ssl/
https://jira.mariadb.org/browse/MDEV-31856
https://jira.mariadb.org/browse/MDEV-31855
https://jira.mariadb.org/browse/MDEV-31857
https://jira.mariadb.org/browse/MDEV-31626
https://jira.mariadb.org/browse/MDEV-31474
https://jira.mariadb.org/browse/MDEV-31684
https://jira.mariadb.org/browse/MDEV-31496

isn't the routine owner (MDEV-29167)

Processlist
Added a SENT_ROWS column to the Information Schema PROCESSLIST table, as well as extended the display size

for the columns in processlist to ensure that most results will fit in display (MDEV-3953)

Application-Time Periods
Note that this feature did not make it into MariaDB 11.3, but is in MariaDB 11.4.

Add views for periods in information_schema (MDEV-22597), in particular

New view INFORMATION_SCHEMA.PERIODS

New view INFORMATION_SCHEMA.KEY_PERIOD_USAGE

New columns IS_SYSTEM_TIME_PERIOD_START and IS_SYSTEM_TIME_PERIOD_END in the

INFORMATION_SCHEMA.COLUMNS view

OLD_MODE
Setting a non-default old_mode value will now always issue a deprecation warning (MDEV-31811)

Mariabackup
mariabackup --innobackupex mode has been deprecated (MDEV-31505)

Spider
The Spider storage engine now supports table options instead of having to encode them in

COMMENT/CONNECTION strings. When any table option is specified, Spider will ignore COMMENT/CONNECTION

strings at the same table/partition/subpartition. A new variable spider_ignore_comments is introduced to ignore them

globally at all levels (table/partition/subpartition). Another variable, spider_suppress_comment_ignored_warning, is

introduced to suppress warnings when Spider ignores COMMENT/CONNECTION strings. (MDEV-28856)

Removed
The following deprecated features and system variables have been removed (MDEV-32104):

debug (deprecated since MariaDB 5.5.37)

sr_YU locale (deprecated since MariaDB 10.0.11)

"engine_condition_pushdown" in optimizer_switch (deprecated since MariaDB 10.1.1)

date_format, datetime_format, time_format, max_tmp_tables (deprecated since MariaDB 10.1.2)

wsrep_causal_reads (deprecated since MariaDB 10.1.3)

"parser" in mroonga table comment (deprecated since MariaDB 10.2.11)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.7 MariaDB Server 11.2
Changes and Improvements in MariaDB 11.2

Current Version: 11.2.3 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 11.2 Series

MariaDB 11.2 series release notes.

3838/4161

https://jira.mariadb.org/browse/MDEV-29167
https://jira.mariadb.org/browse/MDEV-3953
https://jira.mariadb.org/browse/MDEV-22597
https://jira.mariadb.org/browse/MDEV-31811
https://jira.mariadb.org/browse/MDEV-31505
https://jira.mariadb.org/browse/MDEV-28856
https://jira.mariadb.org/browse/MDEV-32104
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/server-locale/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Changelogs - MariaDB 11.2 Series

MariaDB 11.2 changelogs

7.0.0.8 Changes and Improvements in MariaDB
11.2

The most recent release of MariaDB 11.2 is:

MariaDB 11.2.3 Stable (GA) Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. Online Schema Change

2. InnoDB

3. JSON

4. Miscellaneous

5. Variables

3. Security Vulnerabilities Fixed in MariaDB 11.2

4. List of All MariaDB 11.2 Releases

MariaDB 11.2 is a current short-term release series, maintained until November 2024.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 11.1 to MariaDB 11.2.

New Features & Improvements

Online Schema Change

ALTER TABLE can now do most operations with ALGORITHM=COPY, LOCK=NONE , that is, in most cases, unless the

algorithm and lock level are explicitly specified, ALTER TABLE will be performed using the COPY algorithm while

simultaneously allowing concurrent DML statements on the altered table.

InnoDB

The InnoDB system tablespace is now shrunk by reclaiming unused space at startup (MDEV-14795)

JSON

JSON_TABLE now allows retrieval of the key when iterating on JSON objects (MDEV-30145)

New functions JSON_OBJECT_FILTER_KEYS, JSON_OBJECT_TO_ARRAY and JSON_ARRAY_INTERSECT to

check for JSON intersection (MDEV-26182)

Miscellaneous

All binlog* variables are now visible as system variables, specifically binlog_do_db, binlog_ignore_db,

binlog_row_event_max_size (MDEV-30188)

ALTER TABLE IMPORT enhancement (MDEV-26137)

Temporary tables are now displayed in the Information Schema TABLES Table, SHOW TABLES and SHOW TABLE

STATUS (MDEV-12459)

Stored programs: validation of stored program statements (MDEV-5816)

Remove the deprecated old_alter_table variable (MDEV-30905)

Extend AES_ENCRYPT() and AES_DECRYPT() to support an initialization vector and algorithm (MDEV-9069)

Variables

For a list of all new variables, see System Variables Added in MariaDB 11.2.

Alternate download from mariadb.org

3839/4161

https://mariadb.com/kb/en/changelogs-mariadb-11-2-series/
https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.3/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-14795
https://jira.mariadb.org/browse/MDEV-30145
https://jira.mariadb.org/browse/MDEV-26182
https://jira.mariadb.org/browse/MDEV-30188
https://jira.mariadb.org/browse/MDEV-26137
https://jira.mariadb.org/browse/MDEV-12459
https://jira.mariadb.org/browse/MDEV-5816
https://jira.mariadb.org/browse/MDEV-30905
https://jira.mariadb.org/browse/MDEV-9069

List of All MariaDB 11.2 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 11.2.3 Stable (GA) Release Notes Changelog

21 Nov 2023 MariaDB 11.2.2 Stable (GA) Release Notes Changelog

21 Aug 2023 MariaDB 11.2.1 RC Release Notes Changelog

20 Jun 2023 MariaDB 11.2.0 Alpha Release Notes

7.0.0.9 Release Notes - MariaDB 11.2 Series
MariaDB 11.2.3 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 11.2.2 Release Notes

Status: Stable (GA) | Release Date: 21 Nov 2023

MariaDB 11.2.1 Release Notes

Status: Release Candidate (RC) | Release Date: 21 Aug 2023

MariaDB 11.2.0 Release Notes

Status: Alpha | Release Date: 20 Jun 20231

7.0.0.9.1 MariaDB 11.2.3 Release Notes
Download Release Notes Changelog Overview of 11.2

Release date: 7 Feb 2024

MariaDB 11.2 is a current short-term stable series of MariaDB, maintained until October 2024. It is an evolution of

MariaDB 11.1 with several entirely new features.

MariaDB 11.2.3 is a Stable (GA) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.2? page.

Thanks, and enjoy MariaDB!

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)
3840/4161

https://mariadb.com/kb/en/mariadb-11-2-3-changelog/
https://mariadb.com/kb/en/mariadb-11-2-2-changelog/
https://mariadb.com/kb/en/mariadb-11-2-1-changelog/
https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-11-2-3-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

3841/4161

https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication
3842/4161

https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.2 for Fedora 37 and Ubuntu 23.04

"Lunar"

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

New OLD_MODE value, NO_NULL_COLLATION_IDS , a compatibility setting to support connectors (in particular

MySQL Connector/NET) that give an exception when collation ids returned by SHOW COLLATION are NULL. It is

automatically set when a MySQL Connector/NET connection is determined.

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Memory pressure (MDEV-24670)

Changelog
For a complete list of changes made in MariaDB 11.2.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.2.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

3843/4161

https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-32884
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://jira.mariadb.org/browse/MDEV-24670
https://mariadb.com/kb/en/mariadb-11-2-3-changelog/
https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.9.2 MariaDB 11.2.2 Release Notes

The most recent release of MariaDB 11.2 is:

MariaDB 11.2.3 Stable (GA) Download Now

Download 11.2.2 Release Notes Changelog Overview of 11.2

Release date: 21 Nov 2023

MariaDB 11.2 is a current short-term stable series of MariaDB, maintained until November 2024. It is an evolution of

MariaDB 11.1 with several entirely new features.

MariaDB 11.2.2 is a Stable (GA) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.2? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Alternate download from mariadb.org

3844/4161

https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.2/
https://mariadb.com/kb/en/mariadb-11-2-2-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Wrong result of: WHERE inet6_column IN ('','::1') (MDEV-31719)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Raise notes when an index cannot be used on data type mismatch (MDEV-32203)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Missed kill when the SQL driver thread goes to wait for parallel slave worker queues to drain (MDEV-29974)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing ||

state() == s_must_abort || state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state()

== s_must_abort || state() == s_aborting || state() == s_cert_failed || state() ==

s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int

wsrep::client_state::bf_abort(wsrep::seqno) (MDEV-30217)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

3845/4161

https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-31719
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-32203
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-29974
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

utf8mb3_key_col=utf8mb4_value cannot be used for ref access (MDEV-32113)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

3846/4161

https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Variables

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 11.2.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.2.2, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.9.3 MariaDB 11.2.1 Release Notes

3847/4161

https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-11-2-2-changelog/
https://mariadb.org/mariadb-11-3-1-11-2-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 11.2 is:

MariaDB 11.2.3 Stable (GA) Download Now

Download 11.2.1 Release Notes Changelog Overview of 11.2

Release date: 21 Aug 2023

Do not use non-stable (non-GA) releases in production!

MariaDB 11.2 is the current development series of MariaDB. It is an evolution of MariaDB 11.1 with several entirely new

features.

MariaDB 11.2 is a Release Candidate (RC) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.2? page.

Thanks, and enjoy MariaDB!

Notable Items

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.2 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

In this release repositories for Debian 12 "Bookworm" have been added.

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediately changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mariadb-upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Alternate download from mariadb.org

3848/4161

https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.1/
https://mariadb.com/kb/en/mariadb-11-2-1-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

3849/4161

https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 11.2.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.2.1, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.9.4 MariaDB 11.2.0 Release Notes

The most recent release of MariaDB 11.2 is:

MariaDB 11.2.3 Stable (GA) Download Now

Download 11.2.0 Release Notes Changelog Overview of 11.2

Release date: 20 Jun 2023

Do not use alpha releases in production!

MariaDB 11.2 is a short-term development series of MariaDB, and will be maintained for one year after its Generally

Available release. It is an evolution of MariaDB 11.1 with several entirely new features.

Alternate download from mariadb.org

3850/4161

https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-11-2-1-changelog/
https://mariadb.org/mariadb-11-2-1-11-1-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/11.2.3/
https://downloads.mariadb.org/mariadb/11.2.3/
http://downloads.mariadb.org/mariadb/11.2.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-11-2-0-changelog

MariaDB 11.2.0 is a single preview release. Features are to be considered preview, and none are guaranteed to make it into

MariaDB 11.2.

The preview is available as a container quay.io/mariadb-foundation/mariadb-devel:11.2-preview.

For an overview of MariaDB 11.2 see the What is MariaDB 11.2? page.

Thanks, and enjoy MariaDB!

InnoDB
The InnoDB system tablespace is now shrunk by reclaiming unused space at startup (MDEV-14795)

JSON
JSON_TABLE now allows retrieval of the key when iterating on JSON objects (MDEV-30145)

New functions JSON_OBJECT_FILTER_KEYS, JSON_OBJECT_TO_ARRAY and JSON_ARRAY_INTERSECT to

check for JSON intersection (MDEV-26182)

Miscellaneous
All binlog* variables are now visible as system variables, specifically binlog_do_db, binlog_ignore_db,

binlog_row_event_max_size (MDEV-30188)

ALTER TABLE IMPORT enhancement (MDEV-26137)

Temporary tables are now displayed in the Information Schema TABLES Table, SHOW TABLES and SHOW TABLE

STATUS (MDEV-12459)

Stored programs: validation of stored program statements (MDEV-5816)

Remove the deprecated old_alter_table variable (MDEV-30905)

Extend AES_ENCRYPT() and AES_DECRYPT() to support an initialization vector and algorithm (MDEV-9069)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.10 MariaDB Server 11.1
Changes and Improvements in MariaDB 11.1

Current Version: 11.1.4 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 11.1 Series

MariaDB 11.1 series release notes.

Changelogs - MariaDB 11.1 Series

MariaDB 11.1 changelogs

7.0.0.11 Changes and Improvements in
MariaDB 11.1

The most recent release of MariaDB 11.1 is:

MariaDB 11.1.4 Stable (GA) Download Now

Alternate download from mariadb.org

3851/4161

https://jira.mariadb.org/browse/MDEV-14795
https://jira.mariadb.org/browse/MDEV-30145
https://jira.mariadb.org/browse/MDEV-26182
https://jira.mariadb.org/browse/MDEV-30188
https://jira.mariadb.org/browse/MDEV-26137
https://jira.mariadb.org/browse/MDEV-12459
https://jira.mariadb.org/browse/MDEV-5816
https://jira.mariadb.org/browse/MDEV-30905
https://jira.mariadb.org/browse/MDEV-9069
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/changelogs-mariadb-11-1-series/
https://mariadb.org/download/?tab=mariadb&release=11.1.4&product=mariadb
https://downloads.mariadb.org/mariadb/11.1.4/

Contents
1. Upgrading

2. New Features & Improvements

1. JSON

3. Optimizer

1. Transactions

4. InnoDB

5. Mariabackup

1. Variables

6. Security Vulnerabilities Fixed in MariaDB 11.1

7. List of All MariaDB 11.1 Releases

MariaDB 11.1 is a current short-term release series, maintained until August 2024.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 11.0 to MariaDB 11.1.

New Features & Improvements

JSON

JSON_SCHEMA_VALID function for validating a JSON schema (MDEV-27128)

Optimizer
Semi-join optimization for single-table UPDATE/DELETE statements. Update and delete statements that use

subqueries can now use all subquery optimization strategies that MariaDB offers, so now if you use subqueries in

UPDATE or DELETE, these statements will likely be much faster (MDEV-7487)

Queries with the DATE or YEAR functions comparing against a constant can now make use of indexes, so these will

be noticeably quicker in certain instances. For example SELECT * FROM t2 WHERE YEAR(a) = 2019 or SELECT

* FROM t2 WHERE DATE(a) <= '2017-01-01' . See Sargable DATE and YEAR (MDEV-8320)

Transactions

The transaction_isolation option is now a system variable, and the tx_isolation system variable is deprecated (MDEV-

21921)

InnoDB
Remove innodb_defragment and related parameters (MDEV-30545)

Mariabackup
Rename Mariabackup9s xtrabackup_* files to mariadb_backup_* (MDEV-18931)

Variables

For a list of all new variables, see System Variables Added in MariaDB 11.1.

List of All MariaDB 11.1 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 11.1.4 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 11.1.3 Stable (GA) Release Notes Changelog

21 Aug 2023 MariaDB 11.1.2 Stable (GA) Release Notes Changelog

6 Jun 2023 MariaDB 11.1.1 RC Release Notes Changelog

3852/4161

https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-7487
https://jira.mariadb.org/browse/MDEV-8320
https://jira.mariadb.org/browse/MDEV-21921
https://jira.mariadb.org/browse/MDEV-30545
https://jira.mariadb.org/browse/MDEV-18931
https://mariadb.com/kb/en/mariadb-11-1-4-changelog/
https://mariadb.com/kb/en/mariadb-11-1-3-changelog/
https://mariadb.com/kb/en/mariadb-11-1-2-changelog/
https://mariadb.com/kb/en/mariadb-11-1-1-changelog/

27 Mar 2023 MariaDB 11.1.0 Alpha Release Notes

7.0.0.12 Release Notes - MariaDB 11.1 Series
MariaDB 11.1.4 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 11.1.3 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 11.1.2 Release Notes

Status: Stable (GA) | Release Date: 21 Aug 2023

MariaDB 11.1.1 Release Notes

Status: Release Candidate (RC) | Release Date: 6 Jun 2023

MariaDB 11.1.0 Release Notes

Status: Alpha | Release Date: 27 Mar 2023

7.0.0.12.1 MariaDB 11.1.4 Release Notes
Download Release Notes Changelog Overview of 11.1

Release date: 7 Feb 2024

MariaDB 11.1 is a current short-term stable series of MariaDB, maintained until July 2024. It is an evolution of MariaDB

11.1 with several entirely new features.

MariaDB 11.1.4 is a Stable (GA) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.1? page.

Thanks, and enjoy MariaDB!

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

3853/4161

https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-11-1-4-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

3854/4161

https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

3855/4161

https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.1 for Fedora 37 and Ubuntu 23.04

"Lunar"

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

New OLD_MODE value, NO_NULL_COLLATION_IDS , a compatibility setting to support connectors (in particular

MySQL Connector/NET) that give an exception when collation ids returned by SHOW COLLATION are NULL. It is

automatically set when a MySQL Connector/NET connection is determined.

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Memory pressure (MDEV-24670)

Changelog
For a complete list of changes made in MariaDB 11.1.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.1.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

3856/4161

https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-32884
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://jira.mariadb.org/browse/MDEV-24670
https://mariadb.com/kb/en/mariadb-11-1-4-changelog/
https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.0.12.2 MariaDB 11.1.3 Release Notes

The most recent release of MariaDB 11.1 is:

MariaDB 11.1.4 Stable (GA) Download Now

Download 11.1.3 Release Notes Changelog Overview of 11.1

Release date: 13 Nov 2023

MariaDB 11.1 is a current short-term stable series of MariaDB, maintained until July 2024. It is an evolution of MariaDB

11.1 with several entirely new features.

MariaDB 11.1.3 is a Stable (GA) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.1? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Race condition between page write completion and log checkpoint (MDEV-32511)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

Alternate download from mariadb.org

3857/4161

https://mariadb.org/download/?tab=mariadb&release=11.1.4&product=mariadb
https://downloads.mariadb.org/mariadb/11.1.4/
https://downloads.mariadb.org/mariadb/11.1.3/
https://mariadb.com/kb/en/mariadb-11-1-3-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int wsrep::client_state::bf_abort(wsrep::seqno)

(MDEV-30217)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

3858/4161

https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

mysql_install_db_win.test fails on second execution (MDEV-32232)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

3859/4161

https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-32232
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Variables

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 11.1.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.1.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

3860/4161

https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-11-1-3-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.0.12.3 MariaDB 11.1.2 Release Notes

The most recent release of MariaDB 11.1 is:

MariaDB 11.1.4 Stable (GA) Download Now

Download 11.1.2 Release Notes Changelog Overview of 11.1

Release date: 21 Aug 2023

MariaDB 11.1 is a current short-term stable series of MariaDB, maintained until August 2024. It is an evolution of MariaDB

11.0 with several entirely new features.

MariaDB 11.1.2 is a Stable (GA) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.1? page.

Thanks, and enjoy MariaDB!

Notable Items

Localization

Create Swahili localization (MDEV-31530)

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.1 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

In this release repositories for Debian 12 "Bookworm" have been added.

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediately changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mariadb-upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

Alternate download from mariadb.org

3861/4161

https://mariadb.org/download/?tab=mariadb&release=11.1.4&product=mariadb
https://downloads.mariadb.org/mariadb/11.1.4/
https://downloads.mariadb.org/mariadb/11.1.2/
https://mariadb.com/kb/en/mariadb-11-1-2-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/server-locale/
https://jira.mariadb.org/browse/MDEV-31530
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)
3862/4161

https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 11.1.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.1.2, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.12.4 MariaDB 11.1.1 Release Notes

The most recent release of MariaDB 11.1 is:

MariaDB 11.1.4 Stable (GA) Download Now

Download 11.1.1 Release Notes Changelog Overview of 11.1

Release date: 6 Jun 2023

Do not use non-stable (non-GA) releases in production!

Alternate download from mariadb.org

3863/4161

https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-11-1-2-changelog/
https://mariadb.org/mariadb-11-2-1-11-1-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.org/download/?tab=mariadb&release=11.1.4&product=mariadb
https://downloads.mariadb.org/mariadb/11.1.4/
https://downloads.mariadb.org/mariadb/11.1.1/
https://mariadb.com/kb/en/mariadb-11-1-1-changelog/

MariaDB 11.1 is the current short-term development series of MariaDB, which will be maintained for one year after the

Stable (GA) release. It is an evolution of MariaDB 11.0 with several entirely new features.

MariaDB 11.1.1 is a Release Candidate (RC) release.

For an overview of MariaDB 11.1 see the What is MariaDB 11.1? page.

Thanks, and enjoy MariaDB!

Notable Items
The transaction_isolation option is now a system variable, and the tx_isolation system variable is deprecated (MDEV-

21921)

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 11.1.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.1.1, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.12.5 MariaDB 11.1.0 Release Notes

The most recent release of MariaDB 11.1 is:

MariaDB 11.1.4 Stable (GA) Download Now

Alternate download from mariadb.org

3864/4161

https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-21921
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-11-1-1-changelog/
https://mariadb.org/mariadb-11-1-1-11-0-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.org/download/?tab=mariadb&release=11.1.4&product=mariadb
https://downloads.mariadb.org/mariadb/11.1.4/

Download Release Notes Changelog Overview of 11.1

Release date: 27 Mar 2023

Do not use alpha releases in production!

MariaDB 11.1 is a current development series of MariaDB, and will be maintained for one year after its Generally Available

release. It is an evolution of MariaDB 11.0 with several entirely new features.

MariaDB 11.1.0 is a single preview release. Features are to be considered preview, and none are guaranteed to make it into

MariaDB 11.1.

For an overview of MariaDB 11.1 see the What is MariaDB 11.1? page.

Thanks, and enjoy MariaDB!

InnoDB
Remove innodb_defragment and related parameters (MDEV-30545)

Optimizer
Semi-join optimization for single-table UPDATE/DELETE statements. Update and delete statements that use

subqueries can now use all subquery optimization strategies that MariaDB offers, so now if you use subqueries in

UPDATE or DELETE, these statements will likely be much faster (MDEV-7487)

Queries with the DATE or YEAR functions comparing against a constant can now make use of indexes, so these will

be noticeably quicker in certain instances. For example SELECT * FROM t2 WHERE YEAR(a) = 2019 or SELECT

* FROM t2 WHERE DATE(a) <= '2017-01-01' (MDEV-8320)

General
ALTER ONLINE TABLE - not released in the final MariaDB 11.1 (MDEV-16329)

JSON
JSON_SCHEMA_VALID function for validating a JSON schema (MDEV-27128)

Mariabackup
Rename Mariabackup9s xtrabackup_* files to mariadb_backup_* (MDEV-18931)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.13 MariaDB Server 11.0
Changes and Improvements in MariaDB 11.0

Current Version: 11.0.5 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 11.0 Series

MariaDB 10.11 series release notes.

3865/4161

http://downloads.mariadb.org/mariadb/11.1.0
https://mariadb.com/kb/en/mariadb-11-0-1-changelog/
https://jira.mariadb.org/browse/MDEV-30545
https://jira.mariadb.org/browse/MDEV-7487
https://jira.mariadb.org/browse/MDEV-8320
https://jira.mariadb.org/browse/MDEV-16329
https://jira.mariadb.org/browse/MDEV-27128
https://jira.mariadb.org/browse/MDEV-18931
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Changelogs - MariaDB 11.0 Series

MariaDB 11.0 changelogs

7.0.0.14 Changes and Improvements in
MariaDB 11.0

The most recent release of MariaDB 11.0 is:

MariaDB 11.0.5 Stable (GA) Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. Functions

2. Optimizer

3. InnoDB

4. Variables

3. Security Vulnerabilities Fixed in MariaDB 11.0

4. List of All MariaDB 11.0 Releases

MariaDB 11.0 is a current short-term release series, maintained until June 2024.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.11 to MariaDB 11.0.

New Features & Improvements

Functions

Given a time in picoseconds, the new function FORMAT_PICO_TIME returns a human-readable time value and unit

indicator (MDEV-19629)

Optimizer

Major improvements to the Optimizer. See The Optimizer Cost Model from MariaDB 11.0.

InnoDB

The InnoDB Change Buffer has been removed (MDEV-29694)

Variables

For a list of all new variables, see System Variables Added in MariaDB 11.0 and Status Variables Added in MariaDB

11.0.

The default value for innodb_undo_tablespaces has been changed from 0 to 3 (MDEV-29986)

The following variables have been deprecated:

innodb_defragment

innodb_defragment_n_pages

innodb_defragment_stats_accuracy

innodb_defragment_fill_factor_n_recs

innodb_defragment_fill_factor

innodb_defragment_frequency

innodb_file_per_table

innodb_flush_method

The following deprecated variables have been removed:

innodb_change_buffer_max_size

innodb_change_buffering

Alternate download from mariadb.org

3866/4161

https://mariadb.com/kb/en/changelogs-mariadb-11-0-series/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.0.5/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-29694
https://jira.mariadb.org/browse/MDEV-29986

List of All MariaDB 11.0 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 11.0.5 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 11.0.4 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 11.0.3 Stable (GA) Release Notes Changelog

6 Jun 2023 MariaDB 11.0.2 Stable (GA) Release Notes Changelog

22 Feb 2023 MariaDB 11.0.1 RC (Release Candidate) Release Notes Changelog

27 Dec 2022 MariaDB 11.0.0 Alpha Release Notes

7.0.0.15 Release Notes - MariaDB 11.0 Series
MariaDB 11.0.5 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 11.0.4 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 11.0.3 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 11.0.2 Release Notes

Status: Stable (GA) | Release Date: 6 Jun 2023

MariaDB 11.0.1 Release Notes

Status: Release Candidate (RC) | Release Date: 22 Feb 2023

MariaDB 11.0.0 Release Notes

Status: Alpha | Release Date: 27 Dec 2022

7.0.0.15.1 MariaDB 11.0.4 Release Notes

The most recent release of MariaDB 11.0 is:

MariaDB 11.0.5 Stable (GA) Download Now

Download 11.0.4 Release Notes Changelog Overview of 11.0

Release date: 13 Nov 2023

MariaDB 11.0 is a current short-term stable series of MariaDB and will be maintained until June 2024. It is an evolution of

MariaDB 10.11 with several entirely new features.

MariaDB 11.0.4 is a Stable (GA) release.

For an overview of MariaDB 11.0 see the What is MariaDB 11.0? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

Alternate download from mariadb.org

3867/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-changelog/
https://mariadb.com/kb/en/mariadb-11-0-4-changelog/
https://mariadb.com/kb/en/mariadb-11-0-3-changelog/
https://mariadb.com/kb/en/mariadb-11-0-2-changelog/
https://mariadb.com/kb/en/mariadb-11-0-1-changelog/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.0.5/
https://downloads.mariadb.org/mariadb/11.0.4/
https://mariadb.com/kb/en/mariadb-11-0-4-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Race condition between page write completion and log checkpoint (MDEV-32511)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

3868/4161

https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int wsrep::client_state::bf_abort(wsrep::seqno)

(MDEV-30217)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

mysql_install_db_win.test fails on second execution (MDEV-32232)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)
3869/4161

https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-32232
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions
3870/4161

https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Variables

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 11.0.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.0.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.15.2 MariaDB 11.0.3 Release Notes

The most recent release of MariaDB 11.0 is:

MariaDB 11.0.5 Stable (GA) Download Now

Download 11.0.3 Release Notes Changelog Overview of 11.0

Release date: 14 Aug 2023

MariaDB 11.0 is a current short-term stable series of MariaDB and will be maintained until June 2024. It is an evolution of

MariaDB 10.11 with several entirely new features.

MariaDB 11.0.3 is a Stable (GA) release.

For an overview of MariaDB 11.0 see the What is MariaDB 11.0? page.

Thanks, and enjoy MariaDB!

Notable Items

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

Alternate download from mariadb.org

3871/4161

https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-11-0-4-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.0.5/
https://downloads.mariadb.org/mariadb/11.0.3/
https://mariadb.com/kb/en/mariadb-11-0-3-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29253

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 11.0 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

In this release repositories for Debian 12 "Bookworm" have been added.

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mysql_upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

3872/4161

https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
3873/4161

https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479

For a complete list of changes made in MariaDB 11.0.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.0.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.15.3 MariaDB 11.0.2 Release Notes

The most recent release of MariaDB 11.0 is:

MariaDB 11.0.5 Stable (GA) Download Now

Download 11.0.2 Release Notes Changelog Overview of 11.0

Release date: 6 Jun 2023

MariaDB 11.0 is a current short-term stable series of MariaDB and will be maintained until June 2024. It is an evolution of

MariaDB 10.11 with several entirely new features.

MariaDB 11.0.2 is a Stable (GA) release.

For an overview of MariaDB 11.0 see the What is MariaDB 11.0? page.

Thanks, and enjoy MariaDB!

Notable Items

Functions

Given a time in picoseconds, the new function FORMAT_PICO_TIME returns a human-readable time value and unit

indicator (MDEV-19629)

InnoDB

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301)

New optimizer_switch option, hash_join_cardinality , is added. It is ON by default. When set to ON, the optimizer

will produce tighter bounds for hash join output cardinality. (MDEV-30812)

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

ANALYZE FORMAT=JSON now prints more information about Block Nested Loop joins: block-nl-join element

Alternate download from mariadb.org

3874/4161

https://mariadb.com/kb/en/mariadb-11-0-3-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.0.5/
https://downloads.mariadb.org/mariadb/11.0.2/
https://mariadb.com/kb/en/mariadb-11-0-2-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-19629
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-26301
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224

now has r_loops , r_effective_rows and r_other_time_ms fields (MDEV-30806 , MDEV-30830 , MDEV-

30972).

Variables

New status variable: max_used_connections_time (MDEV-30543)

Changelog
For a complete list of changes made in MariaDB 11.0.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 11.0.2, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.15.4 MariaDB 11.0.1 Release Notes
Download Release Notes Changelog Overview of 11.0

Release date: 22 Feb 2023

Do not use non-stable (non-GA) releases in production!

MariaDB 11.0 is the current development series of MariaDB. It is an evolution of MariaDB 10.11 with several entirely new

features.

For an overview of MariaDB 11.0 see the What is MariaDB 11.0? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Remove the global sequence DICT_HDR_ROW_ID for DB_ROW_ID (MDEV-19506)

Remove the InnoDB change buffer (MDEV-29694)

Deprecate innodb_file_per_table (MDEV-29983)

Set innodb_undo_tablespaces=3 by default (MDEV-29986)

Deprecate innodb_flush_method (MDEV-30136)

Deprecate innodb_defragment and related parameters (MDEV-30544)

InnoDB read-ahead may cause page writes (MDEV-26790)

Read-ahead unnecessarily allocates and frees pages when a page is in the buffer pool (MDEV-30216)

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

3875/4161

https://jira.mariadb.org/browse/MDEV-30806
https://jira.mariadb.org/browse/MDEV-30830
https://jira.mariadb.org/browse/MDEV-30972
https://jira.mariadb.org/browse/MDEV-30543
https://mariadb.com/kb/en/mariadb-11-0-2-changelog/
https://mariadb.org/mariadb-11-1-1-11-0-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
http://downloads.mariadb.org/mariadb/11.0.1
https://mariadb.com/kb/en/mariadb-11-0-1-changelog/
https://jira.mariadb.org/browse/MDEV-19506
https://jira.mariadb.org/browse/MDEV-29694
https://jira.mariadb.org/browse/MDEV-29983
https://jira.mariadb.org/browse/MDEV-29986
https://jira.mariadb.org/browse/MDEV-30136
https://jira.mariadb.org/browse/MDEV-30544
https://jira.mariadb.org/browse/MDEV-26790
https://jira.mariadb.org/browse/MDEV-30216
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984

mariadb-backup --backup --incremental --throttle=... hangs (MDEV-29896)

Crash after recovery, with InnoDB: Tried to read (MDEV-30132)

Trying to write ... bytes at ... outside the bounds (MDEV-30069)

TRUNCATE breaks FOREIGN KEY locking (MDEV-29504 , MDEV-29849)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION.NAME is NULL for undo tablespaces (MDEV-30119)

Fixed hangs and error handling in B-tree operations (MDEV-29603 , MDEV-30400)

InnoDB bulk insert fixes (MDEV-30047 , MDEV-30321)

InnoDB fails to start on innodb_undo_tablespaces mismatch (MDEV-30158)

mariabackup.skip_innodb crashes when innodb_undo_tablespaces > 0 (MDEV-30122)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is showed now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mariadb-binlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

Docker Official Images

11.0, unlike previous version, no longer includes mysql named compatible executable symlinks inside the container.

Packaging

mysql compatible symlinks are no longer installed in core package, but are delegated to a -compat package (MDEV-

30203)

Use of mysql named executables (except for Windows) will result in a deprecation warning (MDEV-29582)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Json Range only affects first row of the result set (MDEV-30304)

In this release repositories for Fedora 37 and Ubuntu 22.10 Kinetic have been added.

Changelog
For a complete list of changes made in MariaDB 11.0.1, with links to detailed information on each push, see the changelog

.

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.0.15.5 MariaDB 11.0.0 Release Notes

3876/4161

https://jira.mariadb.org/browse/MDEV-29896
https://jira.mariadb.org/browse/MDEV-30132
https://jira.mariadb.org/browse/MDEV-30069
https://jira.mariadb.org/browse/MDEV-29504
https://jira.mariadb.org/browse/MDEV-29849
https://jira.mariadb.org/browse/MDEV-30119
https://jira.mariadb.org/browse/MDEV-29603
https://jira.mariadb.org/browse/MDEV-30400
https://jira.mariadb.org/browse/MDEV-30047
https://jira.mariadb.org/browse/MDEV-30321
https://jira.mariadb.org/browse/MDEV-30158
https://jira.mariadb.org/browse/MDEV-30122
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-30203
https://jira.mariadb.org/browse/MDEV-29582
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-30304
https://mariadb.com/kb/en/mariadb-11-0-1-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 11.0 is:

MariaDB 11.0.5 Stable (GA) Download Now

Download Release Notes Changelog Overview of 11.0

Release date: 27 Dec 2022

Do not use alpha releases in production!

MariaDB 11.0 is a current development series of MariaDB, and will be maintained for five years. It is an evolution of

MariaDB 10.11 with several entirely new features.

MariaDB 11.0.0 is a single preview release. Features are to be considered preview, and none are guaranteed to make it into

MariaDB 11.0.

For an overview of MariaDB 11.0 see the What is MariaDB 11.0? page.

Thanks, and enjoy MariaDB!

New optimizer cost model
This is the main change that practically defines this release. Read about new optimizer cost model on its own page.

Galera
MDEV-22570 Implement wsrep_provider_options as plugin

MDEV-29281 Add details about node eviction status to the JSON file with Galera node status

Removing/Deprecating old code
MDEV-29694 Remove the InnoDB change buffer

MDEV-30136 Deprecate innodb_flush_method

MDEV-29983 Deprecate innodb_file_per_table

MDEV-30128 remove support for 5.1- replication events

MDEV-29582 deprecate mysql* names

MDEV-29227 deprecate explicit_defaults_for_timestamp=0

MDEV-28910 remove the 5.5.5- version hack

MDEV-29668 SUPER no longer allows actions that have fine-grained dedicated privileges

Other changes
MDEV-30203 Move mysql compatibility symlinks to different package

MDEV-30153 ad hoc client versions are confusing

MDEV-29986 Set innodb_undo_tablespaces=3 by default

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

Alternate download from mariadb.org

7.0.1 MariaDB Server 10.11
3877/4161

https://mariadb.com/kb/en/mariadb-11-0-5-release-notes/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/11.0.5/
http://downloads.mariadb.org/mariadb/11.0.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-11-0-0-changelog
https://jira.mariadb.org/browse/MDEV-22570
https://jira.mariadb.org/browse/MDEV-29281
https://jira.mariadb.org/browse/MDEV-29694
https://jira.mariadb.org/browse/MDEV-30136
https://jira.mariadb.org/browse/MDEV-29983
https://jira.mariadb.org/browse/MDEV-30128
https://jira.mariadb.org/browse/MDEV-29582
https://jira.mariadb.org/browse/MDEV-29227
https://jira.mariadb.org/browse/MDEV-28910
https://jira.mariadb.org/browse/MDEV-29668
https://jira.mariadb.org/browse/MDEV-30203
https://jira.mariadb.org/browse/MDEV-30153
https://jira.mariadb.org/browse/MDEV-29986
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Changes and Improvements in MariaDB 10.11

Current Version: 10.11.7 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 10.11 Series

MariaDB 10.11 series release notes.

Changelogs - MariaDB 10.11 Series

MariaDB 10.11 changelogs

7.0.1.1 Changes and Improvements in MariaDB
10.11

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. Authentication

2. Optimizer

1. Descending Indexes

3. Replication

1. mysqlbinlog GTID support

4. Galera

5. JSON

6. UUID

7. SHOW ANALYZE FORMAT=JSON

8. Information Schema

9. System versioning

10. InnoDB

1. InnoDB Redo Log Improvements

11. UCA14 Collation

12. Windows

13. Spider Storage Engine

14. Convert Partitions

15. Miscellaneous

16. Variables

1. InnoDB Variables

2. Spider Variables

3. Security Vulnerabilities Fixed in MariaDB 10.11

4. List of All MariaDB 10.11 Releases

MariaDB 10.11 is the current long-term maintenance release series, maintained until February 2028.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.6 to MariaDB 10.11.

New Features & Improvements
This list includes features from the short-term releases MariaDB 10.7, MariaDB 10.8, MariaDB 10.9 and MariaDB 10.10.

Authentication

GRANT to PUBLIC (MDEV-5215) (blog post)

Separate SUPER and READ ONLY ADMIN privileges (MDEV-29596)

bind_address now accepts a comma-separated list of addresses to bind to (MDEV-24377)

password_reuse_check plugin is a new password validation plugin that prevents the new password from being the

same as the one being used during the configurable retention period. (MDEV-9245 , MariaDB 10.7)

Alternate download from mariadb.org

3878/4161

https://mariadb.com/kb/en/changelogs-mariadb-10-11-series/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://jira.mariadb.org/browse/MDEV-29596
https://jira.mariadb.org/browse/MDEV-24377
https://jira.mariadb.org/browse/MDEV-9245

Optimizer

Make ANALYZE FORMAT=JSON show time spent in the query optimizer (MDEV-28926)

Improve optimization of joins with many tables, including eq_ref tables (MDEV-28852 , MariaDB 10.10)

Table elimination does not work across derived tables (MDEV-26278 , MariaDB 10.10)

Histograms in the statistics tables are more precise and stored as JSON, not binary (MDEV-21130 , MDEV-26519

, blog post , MariaDB 10.8).

Improve simple multibyte collation performance on the ASCII range (MDEV-26572 , MariaDB 10.7).

Descending Indexes

Individual columns in the index can now be explicitly sorted in the ascending or descending order. This can be useful

for optimizing certain ORDER BY cases (MDEV-13756 , MDEV-26938 , MDEV-26939 , MDEV-26996 ,

MariaDB 10.8).

Replication

Change defaults for CHANGE MASTER TO so that GTID-based replication is used by default if master supports it

(MDEV-19801 , MariaDB 10.10)

Added global.slave_max_statement_time system variable for SQL thread to limit maximum execution time per query

replicated (MDEV-27161 , MariaDB 10.10)

Deprecate MASTER_USE_GTID=Current_Pos to favor new MASTER_DEMOTE_TO_SLAVE option (MDEV-20122

, MariaDB 10.10)

Implement the --do-domain-ids, --ignore-domain-ids, and --ignore-server-ids options for mariadb-binlog (MDEV-

20119 , MariaDB 10.9)

Semisync-slave server recovery is extended to work on new server_id server (MDEV-27342 , MariaDB 10.9)

mariadb-binlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be

listed with the actual bytes (MDEV-14608 , MariaDB 10.9)

Normally, ALTER TABLE gets fully executed on the primary first and only then it is replicated and starts executing on

replicas. With this feature ALTER TABLE gets replicated and starts executing on replicas when it starts executing on

the primary, not when it finishes. This way the replication lag caused by a heavy ALTER TABLE can be completely

eliminated (MDEV-11675 , MariaDB 10.8).

Multi-source replication supports MySQL-style CHANNEL syntax (MDEV-26307 , MariaDB 10.7)

mysqlbinlog GTID support

mariadb-binlog (or mysqlbinlog as it was called back when the task was created) now supports both filtering

events by GTID ranges through --start-position and --stop-position, and validating a binary log's ordering

of GTIDs through --gtid-strict-mode (MDEV-4989 , MariaDB 10.8).

Galera

Implement a method to add IPs to allowlist for Galera Cluster node addresses that can make SST/IST requests

(MDEV-27246 , MariaDB 10.10)

JSON file interface to wsrep node state / SST progress logging (MDEV-26971 , MariaDB 10.9)

JSON

JSON_OVERLAPS function (MDEV-27677 , MariaDB 10.9)

Implement range notation for JSONPath (MDEV-27911 , MariaDB 10.9)

Support JSONPath negative index (MDEV-22224 , MariaDB 10.9)

JSON_EQUALS function to check for equality between JSON objects (MDEV-23143 , MariaDB 10.7).

JSON_NORMALIZE function, which recursively sorts keys and removes spaces (MDEV-16375 , MariaDB 10.7)

UUID

New UUID data type (MDEV-4958 , MariaDB 10.7)

SHOW ANALYZE FORMAT=JSON

Extend SHOW EXPLAIN to support SHOW ANALYZE [FORMAT=JSON] (MDEV-27021 , MariaDB 10.9)

Add EXPLAIN FOR CONNECTION syntax support to SHOW EXPLAIN (MDEV-10000 , MariaDB 10.9)

Information Schema
3879/4161

https://jira.mariadb.org/browse/MDEV-28926
https://jira.mariadb.org/browse/MDEV-28852
https://jira.mariadb.org/browse/MDEV-26278
https://jira.mariadb.org/browse/MDEV-21130
https://jira.mariadb.org/browse/MDEV-26519
https://mariadb.org/10-7-preview-feature-json-histograms/
https://jira.mariadb.org/browse/MDEV-26572
https://jira.mariadb.org/browse/MDEV-13756
https://jira.mariadb.org/browse/MDEV-26938
https://jira.mariadb.org/browse/MDEV-26939
https://jira.mariadb.org/browse/MDEV-26996
https://jira.mariadb.org/browse/MDEV-19801
https://jira.mariadb.org/browse/MDEV-27161
https://jira.mariadb.org/browse/MDEV-20122
https://jira.mariadb.org/browse/MDEV-20119
https://jira.mariadb.org/browse/MDEV-27342
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-11675
https://jira.mariadb.org/browse/MDEV-26307
https://jira.mariadb.org/browse/MDEV-4989
https://jira.mariadb.org/browse/MDEV-27246
https://jira.mariadb.org/browse/MDEV-26971
https://jira.mariadb.org/browse/MDEV-27677
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-27911
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-22224
https://jira.mariadb.org/browse/MDEV-23143
https://jira.mariadb.org/browse/MDEV-16375
https://jira.mariadb.org/browse/MDEV-4958
https://jira.mariadb.org/browse/MDEV-27021
https://jira.mariadb.org/browse/MDEV-10000

Performance Issues reading the Information Schema Parameters table (MDEV-29104)

Full table scan in the Information Schema Parameters and Information Schema Routines tables (MDEV-20609)

System versioning

System versioning setting, system_versioning_insert_history, to allow history modification (MDEV-16546)

mariadb-dump: dump and restore historical data (MDEV-16029)

Add option to dump system versioned table as of specified timestamp (MDEV-16355 , MariaDB 10.7).

InnoDB

InnoDB performance improvements (MDEV-27557 , MDEV-28185 , MDEV-27767 , MDEV-28313 , MDEV-

28137 , MDEV-28465 , MDEV-26789 , MariaDB 10.9)

In bulk insert, pre-sort and build indexes one page at a time (MDEV-24621 , MariaDB 10.7)

InnoDB Redo Log Improvements

autosize innodb_buffer_pool_chunk_size (MDEV-25342 , MariaDB 10.8).

Improve the redo log for concurrency (MDEV-14425 , MariaDB 10.8).

Remove FIL_PAGE_FILE_FLUSH_LSN (MDEV-27199 , MariaDB 10.8).

UCA14 Collation

Add UCA-14.0.0 collations (MDEV-27009 , MariaDB 10.10)

Improve contraction performance in UCA collations (MDEV-27265 , MariaDB 10.10)

Improve UCA collation performance for utf8mb3 and utf8mb4 (MDEV-27266 , MariaDB 10.10)

Windows

Passwordless login for mariadb root user, for OS admin users (MDEV-26715)

On newer versions of Windows (Windows 10 1903 or later), the mariadb client defaults to the utf8mb4 character

set. Several problems with Unicode input and output in client were fixed. Command line utilities now accept all

Unicode characters in user names, database names, file names etc (in the past, characters were restricted to the

current ANSI codepage) (MariaDB 10.8).

Spider Storage Engine

This was mostly internal refactoring work. As a result one can now declare Spider connections using the

REMOTE_SERVER , REMOTE_DATABASE , and REMOTE_TABLE attributes and not abuse the COMMENT field for that.

This works both for the whole table and per partition (MDEV-5271 , MDEV-27106 , MariaDB 10.8).

Convert Partitions

ALTER TABLE ... CONVERT PARTITION .. TO TABLE (MDEV-22166 , MariaDB 10.7), and

ALTER TABLE ... CONVERT TABLE ... TO PARTITION ... (MDEV-22165) as an easy way to convert tables to

partitions and back in one command, instead of a sequence of CREATE/EXCHANGE/DROP (MariaDB 10.7)

Miscellaneous

Add RANDOM_BYTES function (MDEV-25704 , MariaDB 10.10)

The INET4 data type (MDEV-23287 , MariaDB 10.10)

Re-design the upper level of handling UPDATE and DELETE statements (MDEV-28883 , MariaDB 10.10)

Deprecate the DES_ENCRYPT/DECRYPT functions (MDEV-27104 , MariaDB 10.10)

Hashicorp Key Management Plugin for implementing encryption using keys stored in the Hashicorp Vault KMS

(MDEV-19281 , MariaDB 10.9)

Stored procedures already have support for the IN, OUT and INOUT parameter qualifiers. Added as well for stored

functions and (IN only) cursors (MDEV-10654). This was a contribution by ManoharKB (MariaDB 10.8).

Add an optional argument to the CRC32() function, as well as the CRC32C() function, which uses the Castagnoli

polynomial. (MDEV-27208). Note: The order of the 2-ary arguments was swapped after the preview release:

crc32('MariaDB')=crc32(crc32('Maria'),'DB') (MariaDB 10.8)

my_print_defaults now handles --default-* options in exactly the same way as other MariaDB tools (MDEV-

26238 , MariaDB 10.8).

UCA collations are now notably faster (MDEV-27266 , MDEV-27265 , MariaDB 10.8).

NATURAL_SORT_KEY function (MDEV-4742 , MariaDB 10.7).

3880/4161

https://jira.mariadb.org/browse/MDEV-29104
https://jira.mariadb.org/browse/MDEV-20609
https://jira.mariadb.org/browse/MDEV-16546
https://jira.mariadb.org/browse/MDEV-16029
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-ldump
https://jira.mariadb.org/browse/MDEV-16355
https://jira.mariadb.org/browse/MDEV-27557
https://jira.mariadb.org/browse/MDEV-28185
https://jira.mariadb.org/browse/MDEV-27767
https://jira.mariadb.org/browse/MDEV-28313
https://jira.mariadb.org/browse/MDEV-28137
https://jira.mariadb.org/browse/MDEV-28465
https://jira.mariadb.org/browse/MDEV-26789
https://jira.mariadb.org/browse/MDEV-24621
https://jira.mariadb.org/browse/MDEV-25342
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-27199
https://jira.mariadb.org/browse/MDEV-27009
https://jira.mariadb.org/browse/MDEV-27265
https://jira.mariadb.org/browse/MDEV-27266
https://jira.mariadb.org/browse/MDEV-26715
https://jira.mariadb.org/browse/MDEV-5271
https://jira.mariadb.org/browse/MDEV-27106
https://jira.mariadb.org/browse/MDEV-22166
https://jira.mariadb.org/browse/MDEV-22165
https://jira.mariadb.org/browse/MDEV-25704
https://jira.mariadb.org/browse/MDEV-23287
https://jira.mariadb.org/browse/MDEV-28883
https://jira.mariadb.org/browse/MDEV-27104
https://jira.mariadb.org/browse/MDEV-19281
https://jira.mariadb.org/browse/MDEV-10654
https://github.com/MariaDB/server/pull/1931
https://github.com/ManoharKB
https://jira.mariadb.org/browse/MDEV-27208
https://jira.mariadb.org/browse/MDEV-26238
https://jira.mariadb.org/browse/MDEV-27266
https://jira.mariadb.org/browse/MDEV-27265
https://jira.mariadb.org/browse/MDEV-4742

Five provider plugins (bzip2, lzma, lz4, lzo, snappy) provide compression capabilities to the server and storage

engines (MDEV-12933 , blog post , MariaDB 10.7).

SFORMAT function for arbitrary text formatting (MDEV-25015 , MariaDB 10.7)

GET DIAGNOSTICS supports a new condition property name ROW_NUMBER . In multi-row inserts it allows one to

retrieve a number of a row that has caused the error (MDEV-10075 , MDEV-26611 , MariaDB 10.7)

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.11 .

Rename slow queries variables (MDEV-7567)

log_slow_min_examined_row_limit (min_examined_row_limit)

log_slow_query (slow_query_log)

log_slow_query_file (slow_query_log_file). This was named log_slow_query_file_name in the MariaDB 10.11.0

preview release.

log_slow_query_time (long_query_time)

replicate_rewrite_db is now a system variable, no longer just an option (MDEV-15530)

Change default of explicit_defaults_for_timestamp to ON (MDEV-28632 , MariaDB 10.10)

--ssl option set as default for mariadb CLI (MDEV-27105 , MariaDB 10.10)

Merge (and deprecate) old to old_mode sql variable (MDEV-24920 , MariaDB 10.9)

Deprecate the keep_files_on_create variable (MDEV-23570 , MariaDB 10.8).

Deprecate wsrep_replicate_myisam (MDEV-24947 , MariaDB 10.7)

Deprecate wsrep_strict_ddl (MDEV-24843 , MariaDB 10.7)

InnoDB Variables

innodb_write_io_threads and innodb_read_io_threads are now dynamic, and their values can be changed without

restarting the server (MDEV-11026)

Removed innodb_version (MDEV-28554 , MariaDB 10.10)

Deprecated innodb_prefix_index_cluster_optimization (MariaDB 10.10)

Deprecated innodb_change_buffering (MariaDB 10.9)

innodb_disallow_writes removed (MDEV-25975 , MariaDB 10.9)

innodb_log_file_size is now dynamic (MDEV-27812 , MariaDB 10.9)

Spider Variables

The following deprecated variables have been removed (MariaDB 10.10):

spider_udf_ct_bulk_insert_interval

spider_udf_ct_bulk_insert_rows

spider_udf_ds_bulk_insert_rows

spider_udf_ds_table_loop_mode

spider_udf_ds_use_real_table

spider_use_handle

spider_udf_table_mon_mutex_count

spider_use_handler

Security Vulnerabilities Fixed in MariaDB 10.11

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-22084 : MariaDB 10.11.6

CVE-2022-47015 : MariaDB 10.11.3

List of All MariaDB 10.11 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 10.11.7 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 10.11.6 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 10.11.5 Stable (GA) Release Notes Changelog

3881/4161

https://jira.mariadb.org/browse/MDEV-12933
https://mariadb.org/10-7-preview-feature-provider-plugins
https://jira.mariadb.org/browse/MDEV-25015
https://mariadb.com/kb/en/get-diagnostics/
https://jira.mariadb.org/browse/MDEV-10075
https://jira.mariadb.org/browse/MDEV-26611
https://mariadb.com/kb/en/system-variables-added-in-mariadb-1011/
https://jira.mariadb.org/browse/MDEV-7567
https://jira.mariadb.org/browse/MDEV-15530
https://jira.mariadb.org/browse/MDEV-28632
https://jira.mariadb.org/browse/MDEV-27105
https://jira.mariadb.org/browse/MDEV-24920
https://jira.mariadb.org/browse/MDEV-23570
https://jira.mariadb.org/browse/MDEV-24947
https://jira.mariadb.org/browse/MDEV-24843
https://jira.mariadb.org/browse/MDEV-11026
https://jira.mariadb.org/browse/MDEV-28554
https://jira.mariadb.org/browse/MDEV-25975
https://jira.mariadb.org/browse/MDEV-27812
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-11-7-changelog/
https://mariadb.com/kb/en/mariadb-10-11-6-changelog/
https://mariadb.com/kb/en/mariadb-10-11-5-changelog/

7 Jun 2023 MariaDB 10.11.4 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.11.3 Stable (GA) Release Notes Changelog

16 Feb 2023 MariaDB 10.11.2 Stable (GA) Release Notes Changelog

17 Nov 2022 MariaDB 10.11.1 RC Release Notes Changelog

26 Sep 2022 MariaDB 10.11.0 Alpha Release Notes

7.0.1.2 Release Notes - MariaDB 10.11 Series
MariaDB 10.11.7 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 10.11.6 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 10.11.5 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.11.4 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.11.3 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

MariaDB 10.11.2 Release Notes

Status: Stable (GA) | Release Date: 16 Feb 2023

MariaDB 10.11.1 Release Notes

Status: Release Candidate (RC) | Release Date: 17 Nov 2022

MariaDB 10.11.0 Release Notes

Status: Alpha | Release Date: 26 Sep 2022

7.0.1.2.1 MariaDB 10.11.7 Release Notes
Download Release Notes Changelog Overview of 10.11

Release date: 7 Feb 2024

MariaDB 10.11 is the current stable long term series of MariaDB, maintained until February 2028. It is an evolution of

MariaDB 10.10 with several entirely new features.

MariaDB 10.11.7 is a Stable (GA) release.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Alternate download from mariadb.org

3882/4161

https://mariadb.com/kb/en/mariadb-10-11-4-changelog/
https://mariadb.com/kb/en/mariadb-10-11-3-changelog/
https://mariadb.com/kb/en/mariadb-10-11-2-changelog/
https://mariadb.com/kb/en/mariadb-10-11-1-changelog/
https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-10-11-7-changelog/
https://downloads.mariadb.org/mariadb/10.11.7/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

3883/4161

https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

3884/4161

https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.11 for Fedora 37 and Ubuntu 23.04

"Lunar"

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

New OLD_MODE value, NO_NULL_COLLATION_IDS , a compatibility setting to support connectors (in particular

MySQL Connector/NET) that give an exception when collation ids returned by SHOW COLLATION are NULL. It is

automatically set when a MySQL Connector/NET connection is determined.

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Memory pressure (MDEV-24670)

Changelog

3885/4161

https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-32884
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://jira.mariadb.org/browse/MDEV-24670

For a complete list of changes made in MariaDB 10.11.7, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.11.7, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.2 MariaDB 10.11.6 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download 10.11.6 Release Notes Changelog Overview of 10.11

Release date: 13 Nov 2023

MariaDB 10.11 is the current stable long term series of MariaDB, maintained until February 2028. It is an evolution of

MariaDB 10.10 with several entirely new features.

MariaDB 10.11.6 is a Stable (GA) release.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Alternate download from mariadb.org

3886/4161

https://mariadb.com/kb/en/mariadb-10-11-7-changelog/
https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/10.11.6/
https://mariadb.com/kb/en/mariadb-10-11-6-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Race condition between page write completion and log checkpoint (MDEV-32511)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

3887/4161

https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int wsrep::client_state::bf_abort(wsrep::seqno)

(MDEV-30217)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

mysql_install_db_win.test fails on second execution (MDEV-32232)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

3888/4161

https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-32232
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

SQL Error Log Plugin

Added the sql_error_log_warnings system variable, which permits warnings to be logged in addition to errors.

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Warnings and Notes

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

3889/4161

https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_warnings
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 10.11.6, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.11.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.3 MariaDB 10.11.5 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download 10.11.5 Release Notes Changelog Overview of 10.11

Release date: 14 Aug 2023

MariaDB 10.11 is the current stable long term series of MariaDB, maintained until February 2028. It is an evolution of

MariaDB 10.10 with several entirely new features.

MariaDB 10.11.5 is a Stable (GA) release.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.11 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

In this release repositories for Debian 12 "Bookworm" have been added.

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

Alternate download from mariadb.org

3890/4161

https://mariadb.com/kb/en/mariadb-10-11-6-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/10.11.5/
https://mariadb.com/kb/en/mariadb-10-11-5-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mysql_upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UUIDs version >= 6 are now stored without byte-swapping, UUIDs with version >=8 and variant=0 are now

considered invalid, old tables are supported, old (always byte swapped) and new (swapped for version < 6) UUIDs

can be compared and converted transparently (MDEV-29959)

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

3891/4161

https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-29959
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 10.11.5, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.11.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.
3892/4161

https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-10-11-5-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.4 MariaDB 10.11.4 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download 10.11.4 Release Notes Changelog Overview of 10.11

Release date: 7 Jun 2023

MariaDB 10.11 is the current long term maintenance development series of MariaDB, maintained until February 2028. It is

an evolution of MariaDB 10.10 with several entirely new features.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 10.11.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.11.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

Alternate download from mariadb.org

3893/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/10.11.4/
https://mariadb.com/kb/en/mariadb-10-11-4-changelog/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-11-4-changelog/
https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.1.2.5 MariaDB 10.11.3 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download 10.11.3 Release Notes Changelog Overview of 10.11

Release date: 10 May 2023

MariaDB 10.11 is the current long term maintenance development series of MariaDB, maintained until February 2028. It is

an evolution of MariaDB 10.10 with several entirely new features.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

rec_get_offsets() is not optimal (MDEV-30567)

Performance regression in fil_space_t::try_to_close() introduced in MDEV-23855 (MDEV-30775)

InnoDB recovery hangs when buffer pool ran out of memory (MDEV-30551)

InnoDB undo log truncation fails to wait for purge of history (MDEV-30671

MariaDB crash due to DB_FAIL reported for a corrupted page (MDEV-30397)

Deadlock between INSERT and InnoDB non-persistent statistics update (MDEV-30638)

InnoDB hang on B-tree split or merge (MDEV-29835)

Performance regression in locking reads from secondary indexes (MDEV-30357)

Improve adaptive flushing (MDEV-26055)

Make page flushing even faster (MDEV-26827)

Purge misses a chance to free not-yet-reused undo pages (MDEV-29593)

InnoDB temporary tablespace: reclaiming of free space does not work (MDEV-26782)

Deadlock between CHECK TABLE and bulk insert (MDEV-30798)

UPPER() returns an empty string for U+0251 in uca1400 collations for utf8 (MDEV-30661)

System-wide max transaction id corrupted after changing the undo tablespaces (MDEV-30311)

Fix miscount of doublewrites by Innodb_data_written (MDEV-31124)

Backup

mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Race condition between buffer pool flush and log file deletion in mariadb-backup --prepare (MDEV-30860)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Ensured SHOW-SLAVE-STATUS is processed on the parallel slave having a necessary mutex always intialized

(MDEV-30620)

Fixed the slave applier to report a correct error when gtid_slave_pos insert fails for some (engine) reasons (MDEV-

31038)

Made parallel slave reports in performance schema consistent with that of show-slave-status (MDEV-26071)

Alternate download from mariadb.org

3894/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/10.11.3/
https://mariadb.com/kb/en/mariadb-10-11-3-changelog/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034
https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-30775
https://jira.mariadb.org/browse/MDEV-30551
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-30397
https://jira.mariadb.org/browse/MDEV-30638
https://jira.mariadb.org/browse/MDEV-29835
https://jira.mariadb.org/browse/MDEV-30357
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-26827
https://jira.mariadb.org/browse/MDEV-29593
https://jira.mariadb.org/browse/MDEV-26782
https://jira.mariadb.org/browse/MDEV-30798
https://jira.mariadb.org/browse/MDEV-30661
https://jira.mariadb.org/browse/MDEV-30311
https://jira.mariadb.org/browse/MDEV-31124
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-30860
https://jira.mariadb.org/browse/MDEV-29621
https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780
https://jira.mariadb.org/browse/MDEV-30620
https://jira.mariadb.org/browse/MDEV-31038
https://jira.mariadb.org/browse/MDEV-26071

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301)

New optimizer_switch option, hash_join_cardinality , is added. It is off by default. When set to ON, the optimizer will

produce tighter bounds for hash join output cardinality. (MDEV-30812)

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

ANALYZE FORMAT=JSON now prints more information about Block Nested Loop joins: block-nl-join element

now has r_loops , r_effective_rows and r_other_time_ms fields (MDEV-30806 , MDEV-30972).

A GROUP BY query with MIN(primary_key) in select list and primary_key<>const in the WHERE could

produce wrong result when executed with "Using index for group-by" strategy (MDEV-30605)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Image

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

Added LTS tags for easier identification of LTS releases:

lts-jammy

lts

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.11 for Fedora 36.

In this release repositories for Fedora 38 and Ubuntu 23.04 Lunar have been added.

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes made in MariaDB 10.11.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.11.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.6 MariaDB 10.11.2 Release Notes
Download Release Notes Changelog Overview of 10.11

Release date: 16 Feb 2023

MariaDB 10.11 is a long term maintenance release series of MariaDB, maintained until February 2028. It is an evolution

of MariaDB 10.10 with several entirely new features.

MariaDB 10.11.2 is a Stable (GA) release.
3895/4161

https://jira.mariadb.org/browse/MDEV-26301
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://jira.mariadb.org/browse/MDEV-20057
https://jira.mariadb.org/browse/MDEV-30806
https://jira.mariadb.org/browse/MDEV-30972
https://jira.mariadb.org/browse/MDEV-30605
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-11-3-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
http://downloads.mariadb.org/mariadb/10.11.2
https://mariadb.com/kb/en/mariadb-10-11-2-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.11.1 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

Fedora, openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2

digest algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

mariadb-backup --backup --incremental --throttle=... hangs (MDEV-29896)

Crash after recovery, with InnoDB: Tried to read (MDEV-30132)

Trying to write ... bytes at ... outside the bounds (MDEV-30069)

TRUNCATE breaks FOREIGN KEY locking (MDEV-29504 , MDEV-29849)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION.NAME is NULL for undo tablespaces (MDEV-30119)

Fixed hangs and error handling in B-tree operations (MDEV-29603 , MDEV-30400)

InnoDB bulk insert fixes (MDEV-30047 , MDEV-30321)

InnoDB fails to start on innodb_undo_tablespaces mismatch (MDEV-30158)

mariabackup.skip_innodb crashes when innodb_undo_tablespaces > 0 (MDEV-30122)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mariadb-binlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

Json Range only affects first row of the result set (MDEV-30304)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.11 for Fedora 35.

In this release repositories for Fedora 37 and Ubuntu 22.10 Kinetic have been added.

Changelog
For a complete list of changes made in MariaDB 10.11.1, with links to detailed information on each push, see the changelog

.

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.
3896/4161

https://mariadb.org/new-gpg-release-key-rpms/
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984
https://jira.mariadb.org/browse/MDEV-29896
https://jira.mariadb.org/browse/MDEV-30132
https://jira.mariadb.org/browse/MDEV-30069
https://jira.mariadb.org/browse/MDEV-29504
https://jira.mariadb.org/browse/MDEV-29849
https://jira.mariadb.org/browse/MDEV-30119
https://jira.mariadb.org/browse/MDEV-29603
https://jira.mariadb.org/browse/MDEV-30400
https://jira.mariadb.org/browse/MDEV-30047
https://jira.mariadb.org/browse/MDEV-30321
https://jira.mariadb.org/browse/MDEV-30158
https://jira.mariadb.org/browse/MDEV-30122
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://jira.mariadb.org/browse/MDEV-30304
https://mariadb.com/kb/en/mariadb-10-11-1-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.7 MariaDB 10.11.1 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download 10.11.1 Release Notes Changelog Overview of 10.11

Release date: 17 Nov 2022

Do not use non-stable (non-GA) releases in production!

MariaDB 10.11 is a current development series of MariaDB. It is an evolution of MariaDB 10.10 with several entirely new

features.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Notable Items

Authentication

bind_address now accepts a comma-separated list of addresses to bind to (MDEV-24377)

InnoDB

Allow innodb_undo_tablespaces to be changed after database creation (MDEV-19229)

Replication

Formerly only a server option, replicate_rewrite_db is now a global system variable (MDEV-15530)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Alternate download from mariadb.org

3897/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
https://downloads.mariadb.org/mariadb/10.11.1/
https://mariadb.com/kb/en/mariadb-10-11-1-changelog/
https://jira.mariadb.org/browse/MDEV-24377
https://jira.mariadb.org/browse/MDEV-19229
https://jira.mariadb.org/browse/MDEV-15530
https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468

Adds OCI labels to image (fixes issue 436 and users need for version)

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Changelog
For a complete list of changes made in MariaDB 10.11.1, with links to detailed information on each push, see the changelog

.

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.1.2.8 MariaDB 10.11.0 Release Notes

The most recent release of MariaDB 10.11 is:

MariaDB 10.11.7 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.11

Release date: 26 Sep 2022

Do not use alpha releases in production!

MariaDB 10.11 is a current development series of MariaDB. It is an evolution of MariaDB 10.10 with several entirely new

features.

Unlike recent new releases, MariaDB 10.11.0 is a single preview release. Features are to be considered preview, and none

are guaranteed to make it into MariaDB 10.11.

The preview is available as a container quay.io/mariadb-foundation/mariadb-devel:10.11-preview.

For an overview of MariaDB 10.11 see the What is MariaDB 10.11? page.

Thanks, and enjoy MariaDB!

Authentication

Windows - passwordless login for mariadb root user, for OS admin users, using the gssapi authentication plugin

(MDEV-26715)

GRANT to PUBLIC (MDEV-5215) (blog post)

Separate SUPER and READ ONLY ADMIN privileges (MDEV-29596)

Optimizer

Semi-join optimization for single-table update/delete statements (MDEV-7487)

Allow pushdown of queries involving UNIONs in outer select to foreign engines (MDEV-25080)

Make ANALYZE FORMAT=JSON show time spent in the query optimizer (MDEV-28926)

Alternate download from mariadb.org

3898/4161

https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3
https://mariadb.com/kb/en/mariadb-10-11-1-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.11.7/
http://downloads.mariadb.org/mariadb/10.11.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-10-11-0-changelog
https://jira.mariadb.org/browse/MDEV-26715
https://jira.mariadb.org/browse/MDEV-5215
https://mariadb.org/grant-to-public-in-mariadb/
https://jira.mariadb.org/browse/MDEV-29596
https://jira.mariadb.org/browse/MDEV-7487
https://jira.mariadb.org/browse/MDEV-25080
https://jira.mariadb.org/browse/MDEV-28926

Information Schema

Performance Issues reading the Information Schema Parameters table (MDEV-29104)

Full table scan in the Information Schema Parameters and Information Schema Routines tables (MDEV-20609)

System versioning

System versioning setting, system_versioning_insert_history, to allow history modification (MDEV-16546)

mariadb-dump: dump and restore historical data (MDEV-16029)

InnoDB

innodb_write_io_threads and innodb_read_io_threads are now dynamic, and their values can be changed without

restarting the server (MDEV-11026)

General

Rename slow queries variables (MDEV-7567)

log_slow_min_examined_row_limit (min_examined_row_limit)

log_slow_query (slow_query_log)

log_slow_query_file_name (slow_query_log_file) This will be renamed to log_slow_query_file in the next

MariaDB 10.11 release.

log_slow_query_time (long_query_time)

replicate_rewrite_db is now a system variable, no longer just an option (MDEV-15530)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2 MariaDB Server 10.10
Changes and Improvements in MariaDB 10.10

Current Version: 10.10.7 | Status: Stable (GA) | Release Date: 13 Nov 2023

Release Notes - MariaDB 10.10 Series

MariaDB 10.10 series release notes.

Changelogs - MariaDB 10.10 Series

MariaDB 10.10 changelogs

7.0.2.1 Changes and Improvements in MariaDB
10.10

MariaDB 10.10 is no longer maintained. Please use a more recent release .

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Alternate download from mariadb.org

3899/4161

https://jira.mariadb.org/browse/MDEV-29104
https://jira.mariadb.org/browse/MDEV-20609
https://jira.mariadb.org/browse/MDEV-16546
https://jira.mariadb.org/browse/MDEV-16029
https://jira.mariadb.org/browse/MDEV-11026
https://jira.mariadb.org/browse/MDEV-7567
https://jira.mariadb.org/browse/MDEV-15530
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/changelogs-mariadb-1010-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/

Contents
1. Upgrading

2. New Features & Improvements

1. Variables

2. Replication

3. Optimizer

4. UCA14 Collation

5. Galera

6. Miscellaneous

7. Variables

1. InnoDB

2. Spider

3. Security Vulnerabilities Fixed in MariaDB 10.10

4. List of All MariaDB 10.10 Releases

MariaDB 10.10 is a short-term release series, maintained until November 2023.

New Features & Improvements

Replication

Change defaults for CHANGE MASTER TO so that GTID-based replication is used by default if master supports it

(MDEV-19801)

Added global.slave_max_statement_time system variable for SQL thread to limit maximum execution time per query

replicated (MDEV-27161)

Deprecate MASTER_USE_GTID=Current_Pos to favor new MASTER_DEMOTE_TO_SLAVE option (MDEV-20122

)

Optimizer

Improve optimization of joins with many tables, including eq_ref tables (MDEV-28852)

Table elimination does not work across derived tables (MDEV-26278)

UCA14 Collation

Add UCA-14.0.0 collations (MDEV-27009)

Improve contraction performance in UCA collations (MDEV-27265)

Improve UCA collation performance for utf8mb3 and utf8mb4 (MDEV-27266)

Galera

Implement a method to add IPs to allowlist for Galera Cluster node addresses that can make SST/IST requests

(MDEV-27246)

Miscellaneous

Change default of explicit_defaults_for_timestamp to ON (MDEV-28632)

--ssl option set as default for mariadb CLI (MDEV-27105)

Add RANDOM_BYTES function (MDEV-25704)

The INET4 data type (MDEV-23287)

Re-design the upper level of handling UPDATE and DELETE statements (MDEV-28883)

Deprecate the DES_ENCRYPT/DECRYPT functions (MDEV-27104)

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.10 .

InnoDB

Removed innodb_version (MDEV-28554)

Deprecated innodb_prefix_index_cluster_optimization

Spider

3900/4161

https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-19801
https://jira.mariadb.org/browse/MDEV-27161
https://jira.mariadb.org/browse/MDEV-20122
https://jira.mariadb.org/browse/MDEV-28852
https://jira.mariadb.org/browse/MDEV-26278
https://jira.mariadb.org/browse/MDEV-27009
https://jira.mariadb.org/browse/MDEV-27265
https://jira.mariadb.org/browse/MDEV-27266
https://jira.mariadb.org/browse/MDEV-27246
https://jira.mariadb.org/browse/MDEV-28632
https://jira.mariadb.org/browse/MDEV-27105
https://jira.mariadb.org/browse/MDEV-25704
https://jira.mariadb.org/browse/MDEV-23287
https://jira.mariadb.org/browse/MDEV-28883
https://jira.mariadb.org/browse/MDEV-27104
https://mariadb.com/kb/en/system-variables-added-in-mariadb-1010/
https://jira.mariadb.org/browse/MDEV-28554

The following deprecated variables have been removed:

spider_udf_ct_bulk_insert_interval

spider_udf_ct_bulk_insert_rows

spider_udf_ds_bulk_insert_rows

spider_udf_ds_table_loop_mode

spider_udf_ds_use_real_table

spider_use_handle

spider_udf_table_mon_mutex_count

spider_use_handler

List of All MariaDB 10.10 Releases

Date Release Status Release Notes Changelog

13 Nov 2023 MariaDB 10.10.7 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 10.10.6 Stable (GA) Release Notes Changelog

7 Jun 2023 MariaDB 10.10.5 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.10.4 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.10.3 Stable (GA) Release Notes Changelog

17 Nov 2022 MariaDB 10.10.2 Stable (GA) Release Notes Changelog

22 Aug 2022 MariaDB 10.10.1 RC Release Notes Changelog

23 Jun 2022 MariaDB 10.10.0 Alpha Release Notes

7.0.2.2 Release Notes - MariaDB 10.10 Series
MariaDB 10.10.7 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 10.10.6 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.10.5 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.10.4 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

MariaDB 10.10.3 Release Notes

Status: Stable (GA) | Release Date: 6 Feb 2023

MariaDB 10.10.2 Release Notes

Status: Stable (GA) | Release Date: 17 Nov 2022

MariaDB 10.10.1 Release Notes

Status: RC | Release Date: 22 Aug 2022

MariaDB 10.10.0 Release Notes

Status: Alpha | Release Date: 23 Jun 2022

7.0.2.2.1 MariaDB 10.10.7 Release Notes
Download Release Notes Changelog Overview of 10.10

Release date: 13 Nov 2023

Alternate download from mariadb.org

3901/4161

https://mariadb.com/kb/en/mariadb-10-10-7-changelog/
https://mariadb.com/kb/en/mariadb-10-10-6-changelog/
https://mariadb.com/kb/en/mariadb-10-10-5-changelog/
https://mariadb.com/kb/en/mariadb-10-10-4-changelog/
https://mariadb.com/kb/en/mariadb-10-10-3-changelog/
https://mariadb.com/kb/en/mariadb-10-10-2-changelog/
https://mariadb.com/kb/en/mariadb-10-10-1-changelog/
https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-10-10-7-changelog/
https://downloads.mariadb.org/mariadb/10.10.7/

MariaDB 10.10 is a previous short-term maintenance stable series of MariaDB, maintained until November 2023. It is an

evolution of MariaDB 10.9 with several entirely new features.

MariaDB 10.10.7 is a Stable (GA) release.

MariaDB 10.10.7 is the last release of the MariaDB 10.10 release series.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items
As per the MariaDB Maintenance Policy , this will be the final release of MariaDB 10.10

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Race condition between page write completion and log checkpoint (MDEV-32511)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

3902/4161

https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-30100
https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-32113

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int wsrep::client_state::bf_abort(wsrep::seqno)

(MDEV-30217)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

3903/4161

https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

mysql_install_db_win.test fails on second execution (MDEV-32232)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

3904/4161

https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-32232
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Variables

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 10.10.7, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.7, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.2 MariaDB 10.10.6 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Alternate download from mariadb.org

3905/4161

https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-10-10-7-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/

Download 10.10.6 Release Notes Changelog Overview of 10.10

Release date: 14 Aug 2023

MariaDB 10.10 is a previous short-term maintenance stable series of MariaDB, maintained until November 2023. It is an

evolution of MariaDB 10.9 with several entirely new features.

MariaDB 10.10.6 is a Stable (GA) release.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.10 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mysql_upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UUIDs version >= 6 are now stored without byte-swapping, UUIDs with version >=8 and variant=0 are now

considered invalid, old tables are supported, old (always byte swapped) and new (swapped for version < 6) UUIDs

can be compared and converted transparently (MDEV-29959)

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

3906/4161

https://downloads.mariadb.org/mariadb/10.10.6/
https://mariadb.com/kb/en/mariadb-10-10-6-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-29959
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

3907/4161

https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 10.10.6, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.3 MariaDB 10.10.5 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Download 10.10.5 Release Notes Changelog Overview of 10.10

Release date: 7 Jun 2023

MariaDB 10.10 is a current short-term stable series of MariaDB, maintained until November 2023. It is an evolution of

MariaDB 10.9 with several entirely new features.

MariaDB 10.10.5 is a Stable (GA) release.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items

Alternate download from mariadb.org

3908/4161

https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-10-10-6-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/
https://downloads.mariadb.org/mariadb/10.10.5/
https://mariadb.com/kb/en/mariadb-10-10-5-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 10.10.5, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.4 MariaDB 10.10.4 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Download 10.10.4 Release Notes Changelog Overview of 10.10

Release date: 10 May 2023

MariaDB 10.10 is a current short-term maintenance stable series of MariaDB, maintained until November 2023. It is an

evolution of MariaDB 10.9 with several entirely new features.

MariaDB 10.10.4 is a Stable (GA) release.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

Alternate download from mariadb.org

3909/4161

https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-10-5-changelog/
https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/
https://downloads.mariadb.org/mariadb/10.10.4/
https://mariadb.com/kb/en/mariadb-10-10-4-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034

rec_get_offsets() is not optimal (MDEV-30567)

Performance regression in fil_space_t::try_to_close() introduced in MDEV-23855 (MDEV-30775)

InnoDB recovery hangs when buffer pool ran out of memory (MDEV-30551)

InnoDB undo log truncation fails to wait for purge of history (MDEV-30671

MariaDB crash due to DB_FAIL reported for a corrupted page (MDEV-30397)

Deadlock between INSERT and InnoDB non-persistent statistics update (MDEV-30638)

InnoDB hang on B-tree split or merge (MDEV-29835)

Performance regression in locking reads from secondary indexes (MDEV-30357)

Improve adaptive flushing (MDEV-26055)

Make page flushing even faster (MDEV-26827)

Purge misses a chance to free not-yet-reused undo pages (MDEV-29593)

InnoDB temporary tablespace: reclaiming of free space does not work (MDEV-26782)

Deadlock between CHECK TABLE and bulk insert (MDEV-30798)

UPPER() returns an empty string for U+0251 in uca1400 collations for utf8 (MDEV-30661)

Fix miscount of doublewrites by Innodb_data_written (MDEV-31124)

Backup
mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Race condition between buffer pool flush and log file deletion in mariadb-backup --prepare (MDEV-30860)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Ensured SHOW-SLAVE-STATUS is processed on the parallel slave having a necessary mutex always intialized

(MDEV-30620)

Fixed the slave applier to report a correct error when gtid_slave_pos insert fails for some (engine) reasons (MDEV-

31038)

Made parallel slave reports in performance schema consistent with that of show-slave-status (MDEV-26071)

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301).

New optimizer_switch option, hash_join_cardinality , is added. It is off by default. When set to ON, the optimizer will

produce tighter bounds for hash join output cardinality. (MDEV-30812)

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

ANALYZE FORMAT=JSON now prints more information about Block Nested Loop joins: block-nl-join element

now has r_loops , r_effective_rows and r_other_time_ms fields (MDEV-30806 , MDEV-30830 , MDEV-

30972).

A GROUP BY query with MIN(primary_key) in select list and primary_key<>const in the WHERE could

produce wrong result when executed with "Using index for group-by" strategy (MDEV-30605)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Image

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.10 for Fedora 36.

In this release repositories for Fedora 38 and Ubuntu 23.04 Lunar have been added.

3910/4161

https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-30775
https://jira.mariadb.org/browse/MDEV-30551
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-30397
https://jira.mariadb.org/browse/MDEV-30638
https://jira.mariadb.org/browse/MDEV-29835
https://jira.mariadb.org/browse/MDEV-30357
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-26827
https://jira.mariadb.org/browse/MDEV-29593
https://jira.mariadb.org/browse/MDEV-26782
https://jira.mariadb.org/browse/MDEV-30798
https://jira.mariadb.org/browse/MDEV-30661
https://jira.mariadb.org/browse/MDEV-31124
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-30860
https://jira.mariadb.org/browse/MDEV-29621
https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780
https://jira.mariadb.org/browse/MDEV-30620
https://jira.mariadb.org/browse/MDEV-31038
https://jira.mariadb.org/browse/MDEV-26071
https://jira.mariadb.org/browse/MDEV-26301
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://jira.mariadb.org/browse/MDEV-20057
https://jira.mariadb.org/browse/MDEV-30806
https://jira.mariadb.org/browse/MDEV-30830
https://jira.mariadb.org/browse/MDEV-30972
https://jira.mariadb.org/browse/MDEV-30605
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes made in MariaDB 10.10.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.5 MariaDB 10.10.3 Release Notes
Download Release Notes Changelog Overview of 10.10

Release date: 6 Feb 2023

MariaDB 10.10 is a current short-term maintenance stable series of MariaDB, maintained until November 2023. It is an

evolution of MariaDB 10.9 with several entirely new features.

MariaDB 10.10.3 is a Stable (GA) release.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.10.2 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

Fedora, openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2

digest algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

mariadb-backup --backup --incremental --throttle=... hangs (MDEV-29896)

Crash after recovery, with InnoDB: Tried to read (MDEV-30132)

Trying to write ... bytes at ... outside the bounds (MDEV-30069)

TRUNCATE breaks FOREIGN KEY locking (MDEV-29504 , MDEV-29849)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION.NAME is NULL for undo tablespaces (MDEV-30119)

Fixed hangs and error handling in B-tree operations (MDEV-29603 , MDEV-30400)

InnoDB bulk insert fixes (MDEV-30047 , MDEV-30321)

3911/4161

https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-10-4-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
http://downloads.mariadb.org/mariadb/10.10.3
https://mariadb.com/kb/en/mariadb-10-10-3-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/new-gpg-release-key-rpms/
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984
https://jira.mariadb.org/browse/MDEV-29896
https://jira.mariadb.org/browse/MDEV-30132
https://jira.mariadb.org/browse/MDEV-30069
https://jira.mariadb.org/browse/MDEV-29504
https://jira.mariadb.org/browse/MDEV-29849
https://jira.mariadb.org/browse/MDEV-30119
https://jira.mariadb.org/browse/MDEV-29603
https://jira.mariadb.org/browse/MDEV-30400
https://jira.mariadb.org/browse/MDEV-30047
https://jira.mariadb.org/browse/MDEV-30321

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mysqlbinlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

JSON

JSON_PRETTY added as an alias for JSON_DETAILED (MDEV-19160)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

Json Range only affects first row of the result set (MDEV-30304)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.10 for Fedora 35.

In this release repositories for Fedora 37 and Ubuntu 22.10 Kinetic have been added.

Changelog
For a complete list of changes made in MariaDB 10.10.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.6 MariaDB 10.10.2 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Download 10.10.2 Release Notes Changelog Overview of 10.10

Release date: 17 Nov 2022

MariaDB 10.10 is a current short-term series of MariaDB, maintained until November 2023. It is an evolution of MariaDB

10.9 with several entirely new features.

MariaDB 10.10.2 is a Stable (GA) release.

Alternate download from mariadb.org

3912/4161

https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-19160
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://jira.mariadb.org/browse/MDEV-30304
https://mariadb.com/kb/en/mariadb-10-10-3-changelog/
https://mariadb.org/mariadb-10-10-3-10-9-5-10-8-7-10-7-8-10-6-12-10-5-19-10-4-28-and-10-3-38-now-available//
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/
https://downloads.mariadb.org/mariadb/10.10.2/
https://mariadb.com/kb/en/mariadb-10-10-2-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items

SSL

The server no longer tolerates incorrectly configured SSL (MDEV-29811). If you have enabled SSL in my.cnf but

have not configured it properly (for example, a certificate file is missing), MariaDB used to silently disable SSL,

leaving you under impression that everything was fine and connections were secure. Since this release, MariaDB will

fail to start if SSL is enabled, but cannot be switched on.

Backup

Assertion on info.page_size failed in xb_delta_open_matching_space (MDEV-18589)

Mariabackup locks database for minutes (MDEV-28772)

InnoDB

Adaptive hash index MDEV-27700 , MDEV-29384

MVCC and locking (MDEV-29666 , MDEV-27927 , MDEV-28709 , MDEV-29635)

Virtual columns (MDEV-29299 , MDEV-29753)

InnoDB crash recovery fixes (MDEV-29559)

Race condition between KILL and transaction commit (MDEV-29368)

Implement CHECK TABLE&EXTENDED for InnoDB (MDEV-24402)

InnoDB persistent statistics fail to update after bulk insert (MDEV-28327)

InnoDB bulk insert bug fixes (MDEV-29570 , MDEV-29761)

InnoDB hangs on multiple concurrent requests of a cold ROW_FORMAT=COMPRESSED page (MDEV-27983)

Galera

Galera updated to 26.4.13

Galera server crashes after 10.3 > 10.4 upgrade (MDEV-29375)

wsrep_incoming_addresses status variable prints 0 as port number if the port is not mentioned in

wsrep_node_incoming_address system variable (MDEV-28868)

Replication

Minor correction in unsafe warning message (MDEV-28827)

False replication error-stop of REVOKE PRIVILEGES from a non-existing user on primary (MDEV-28530) in

combination with a filtering replica is corrected

SET DEFAULT ROLE replication is mended on a replica that filters system tables (MDEV-28294)

XA COMMIT is not binlogged when the XA transaction has not updated any transaction engine (MDEV-25616)

Concurrent CREATE TRIGGER statements made to binlog without any mixup (MDEV-25606)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

3913/4161

https://jira.mariadb.org/browse/MDEV-29811
https://jira.mariadb.org/browse/MDEV-18589
https://jira.mariadb.org/browse/MDEV-28772
https://jira.mariadb.org/browse/MDEV-27700
https://jira.mariadb.org/browse/MDEV-29384
https://jira.mariadb.org/browse/MDEV-29666
https://jira.mariadb.org/browse/MDEV-27927
https://jira.mariadb.org/browse/MDEV-28709
https://jira.mariadb.org/browse/MDEV-29635
https://jira.mariadb.org/browse/MDEV-29299
https://jira.mariadb.org/browse/MDEV-29753
https://jira.mariadb.org/browse/MDEV-29559
https://jira.mariadb.org/browse/MDEV-29368
https://jira.mariadb.org/browse/MDEV-24402
https://jira.mariadb.org/browse/MDEV-28327
https://jira.mariadb.org/browse/MDEV-29570
https://jira.mariadb.org/browse/MDEV-29761
https://jira.mariadb.org/browse/MDEV-27983
https://jira.mariadb.org/browse/MDEV-29375
https://jira.mariadb.org/browse/MDEV-28868
https://jira.mariadb.org/browse/MDEV-28827
https://jira.mariadb.org/browse/MDEV-28530
https://jira.mariadb.org/browse/MDEV-28294
https://jira.mariadb.org/browse/MDEV-25616
https://jira.mariadb.org/browse/MDEV-25606

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Adds OCI labels to image (fixes issue 436 and users need for version)

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Changelog
For a complete list of changes made in MariaDB 10.10.2, with links to detailed information on each push, see the changelog

.

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.7 MariaDB 10.10.1 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Download 10.10.1 Release Notes Changelog Overview of 10.10

Release date: 22 Aug 2022

Do not use non-stable (non-GA) releases in production!

MariaDB 10.10 is a current short-term support development series of MariaDB. It is an evolution of MariaDB 10.9 with

several entirely new features.

MariaDB 10.10.1 is a Release Candidate (RC) release.

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB corruption due to lack of file locking (MDEV-28495)

FULLTEXT search with apostrophe, and mandatory words (MDEV-20797)

ALTER TABLE IMPORT TABLESPACE corrupts an encrypted table (MDEV-28779)

ALTER TABLE wrong-result fix (MDEV-26294)

Crash recovery fixes (MDEV-28668 , MDEV-28731)

DDL crash recovery fixes (MDEV-28752 , MDEV-28802 , MDEV-28864 , MDEV-28870 , MDEV-28923 ,

MDEV-28977)

Avoid crashes on corrupted data (MDEV-13542 , MDEV-18519 , MDEV-21098 , MDEV-22388 , MDEV-28457

, MDEV-28950)

Bulk load bug fixes (MDEV-28242 , MDEV-28679)

Performance fixes (MDEV-28708 , MDEV-28766)

Alternate download from mariadb.org

3914/4161

https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468
https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3
https://mariadb.com/kb/en/mariadb-10-10-2-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/
https://downloads.mariadb.org/mariadb/10.10.1/
https://mariadb.com/kb/en/mariadb-10101-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-28495
https://jira.mariadb.org/browse/MDEV-20797
https://jira.mariadb.org/browse/MDEV-28779
https://jira.mariadb.org/browse/MDEV-26294
https://jira.mariadb.org/browse/MDEV-28668
https://jira.mariadb.org/browse/MDEV-28731
https://jira.mariadb.org/browse/MDEV-28752
https://jira.mariadb.org/browse/MDEV-28802
https://jira.mariadb.org/browse/MDEV-28864
https://jira.mariadb.org/browse/MDEV-28870
https://jira.mariadb.org/browse/MDEV-28923
https://jira.mariadb.org/browse/MDEV-28977
https://jira.mariadb.org/browse/MDEV-13542
https://jira.mariadb.org/browse/MDEV-18519
https://jira.mariadb.org/browse/MDEV-21098
https://jira.mariadb.org/browse/MDEV-22388
https://jira.mariadb.org/browse/MDEV-28457
https://jira.mariadb.org/browse/MDEV-28950
https://jira.mariadb.org/browse/MDEV-28242
https://jira.mariadb.org/browse/MDEV-28679
https://jira.mariadb.org/browse/MDEV-28708
https://jira.mariadb.org/browse/MDEV-28766

Remove innodb_version (MDEV-28554)

Deprecate and ignore the parameter innodb_prefix_index_cluster_optimization (MDEV-28540)

Some InnoDB counters are duplicating generic SHOW STATUS (MDEV-28539)

Useless output in SHOW ENGINE INNODB STATUS (MDEV-28542)

Replication

ER_SLAVE_INCIDENT error is specified now on slave to be seen with SHOW-SLAVE-STATUS (MDEV-21087)

INCIDENT_EVENT is no longer binlogged when a being logged transaction can be safely rolledback (MDEV-21443

)

sequences related row-format events are made to correspond to binlog_row_image (MDEV-28487)

Possible reason of FLUSH BINARY LOGS hang is eliminated (MDEV-28948)

Fix out-of-order gtid error in the circular semisync setup (MDEV-28609)

Added global.slave_max_statement_time system variable for SQL thread to limit maximum execution time per query

replicated (MDEV-27161)

Deprecate MASTER_USE_GTID=Current_Pos to favor new MASTER_DEMOTE_TO_SLAVE option (MDEV-20122

)

MASTER_USE_GTID defaults of CHANGE MASTER TO and RESET SLAVE are changed to be compatible with

GTID-based replication (MDEV-19801)

Galera

Possible to write/update with read_only=ON and not a SUPER privilege (MDEV-28546)

Node crashes with Transport endpoint is not connected mysqld got signal 6 (MDEV-25068)

Galera4 not able to report proper wsrep_incoming_addresses (MDEV-20627)

Galera should replicate nextval()-related changes in sequences with INCREMENT <> 0, at least NOCACHE ones

with engine=InnoDB (MDEV-27862)

Add support for OpenSSL 3.0 in Galera (MDEV-25949)

Implement a method to add IPs to allowlist for Galera Cluster node addresses that can make SST/IST requests

(MDEV-27246)

Optimizer

Server crash in JOIN_CACHE::free or in copy_fields (MDEV-23809)

Queries that use DISTINCT and an always-constant function like COLLATION(aggegate_func(...)) could cause

a server crash. Note that COLLATION() is a special function - its value is constant even if its argument is not

costant.

Crash when using ANY predicand with redundant subquery in GROUP BY clause (MDEV-29139)

A query with a subuquery in this form could cause a crash:

... ANY (SELECT ... GROUP BY (SELECT redundant_subselect_here)) ...

MariaDB Server SEGV on INSERT .. SELECT (MDEV-26427)

Certain queries in form "INSERT ... SELECT with_aggregate_or_window_func" could cause a crash.

restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (MDEV-28749)

Subquery semi-join optimization could miss LooseScan or FirstMatch strategies for certain queries.

Optimizer uses all partitions after upgrade to 10.3 (MDEV-28246)

For multi-table UPDATE or DELETE queries, the optimizer failed to apply Partition Pruning optimization for the

table that is updated or deleted from.

Range optimizer regression for key IN (const,) (MDEV-25020)

The issue can be observed on MariaDB 10.5.9 and later versions which have the fix for MDEV-9750 . That fix

introduceds optimizer_max_sel_arg_weight.

If one sets optimizer_max_sel_arg_weight to a very high value or zero (which means "unlimited") and runs

queries that produce heavy-weight graphs, they can observe a performance slowdown, e.g.:

table.keyXpartY [NOT] IN (...)

Wrong result with table elimination combined with not_null_range_scan (MDEV-28858)

If one runs with optimizer_switch='not_null_range_scan=on' (which is not enabled by default), a query that

does a join and has const tables could produce a wrong result.

Assertion `tmp >= 0' failed in best_access_path (MDEV-28882)

If one uses histogram_type=JSON_HB, has collected a histogram of that type and runs a query that selects a

very narrow range near histogram end, they can hit an assertion in the optimizer due to rounding errors in the

histogram causing negative selectivity.

3915/4161

https://jira.mariadb.org/browse/MDEV-28554
https://jira.mariadb.org/browse/MDEV-28540
https://jira.mariadb.org/browse/MDEV-28539
https://jira.mariadb.org/browse/MDEV-28542
https://jira.mariadb.org/browse/MDEV-21087
https://jira.mariadb.org/browse/MDEV-21443
https://jira.mariadb.org/browse/MDEV-28487
https://jira.mariadb.org/browse/MDEV-28948
https://jira.mariadb.org/browse/MDEV-28609
https://jira.mariadb.org/browse/MDEV-27161
https://jira.mariadb.org/browse/MDEV-20122
https://jira.mariadb.org/browse/MDEV-19801
https://jira.mariadb.org/browse/MDEV-28546
https://jira.mariadb.org/browse/MDEV-25068
https://jira.mariadb.org/browse/MDEV-20627
https://jira.mariadb.org/browse/MDEV-27862
https://jira.mariadb.org/browse/MDEV-25949
https://jira.mariadb.org/browse/MDEV-27246
https://jira.mariadb.org/browse/MDEV-23809
https://jira.mariadb.org/browse/MDEV-29139
https://jira.mariadb.org/browse/MDEV-26427
https://jira.mariadb.org/browse/MDEV-28749
https://jira.mariadb.org/browse/MDEV-28246
https://jira.mariadb.org/browse/MDEV-25020
https://jira.mariadb.org/browse/MDEV-9750
https://jira.mariadb.org/browse/MDEV-28858
https://jira.mariadb.org/browse/MDEV-28882

General

Crash in JSON_EXTRACT (MDEV-29188)

ALTER TABLE ALGORITHM=NOCOPY does not work after upgrade (MDEV-28727)

Server crash upon CREATE VIEW with unknown column in ON condition (MDEV-29088)

password_reuse_check plugin mixes username and password (MDEV-28838)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.10 for Debian 10 "Buster" for

ppc64el

Changelog
For a complete list of changes made in MariaDB 10.10.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.10.1, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.2.2.8 MariaDB 10.10.0 Release Notes

The most recent release of MariaDB 10.10 is:

MariaDB 10.10.7 Stable (GA) Download Now

Download 10.10.0 Release Notes Changelog Overview of 10.10

Release date: 23 Jun 2022

Do not use alpha releases in production!

MariaDB 10.10 is a current development series of MariaDB. It is an evolution of MariaDB 10.9 with several entirely new

features.

MariaDB 10.10.0 is not a single release, but is instead a number of preview releases based on feature branches. Each

should be considered Alpha .

For an overview of MariaDB 10.10 see the What is MariaDB 10.10? page.

Thanks, and enjoy MariaDB!

Alternate download from mariadb.org

3916/4161

https://jira.mariadb.org/browse/MDEV-29188
https://jira.mariadb.org/browse/MDEV-28727
https://jira.mariadb.org/browse/MDEV-29088
https://jira.mariadb.org/browse/MDEV-28838
https://mariadb.com/kb/en/mariadb-10101-changelog/
https://mariadb.org/mariadb-10-10-1-rc-and-10-9-2-ga-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.10.7/
http://downloads.mariadb.org/mariadb/10.10.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-10100-changelog
https://mariadb.com/kb/en/release-criteria/

List of packages
1. Replication

2. Optimizer

3. UCA14 Collation

4. DDL

5. Galera

6. Miscellaneous

Remember, these features are in separate preview packages. The subsection header text corresponds to the preview

package name.

Replication

Change defaults for CHANGE MASTER TO so that GTID-based replication is used by default if master supports it

(MDEV-19801)

Deprecate MASTER_USE_GTID=Current_Pos to favor new MASTER_DEMOTE_TO_SLAVE option (MDEV-20122

)

Available as container: quay.io/mariadb-foundation/mariadb-devel:10.10-gtid

Optimizer

Improve optimization of joins with many tables, including eq_ref tables (MDEV-28852)

Table elimination does not work across derived tables (MDEV-26278)

Available as container: quay.io/mariadb-foundation/mariadb-devel:10.10-optimizer

UCA14 Collation

Add UCA-14.0.0 collations (MDEV-27009)

Improve contraction performance in UCA collations (MDEV-27265)

Improve UCA collation performance for utf8mb3 and utf8mb4 (MDEV-27266)

Available as container: quay.io/mariadb-foundation/mariadb-devel:10.10-uca14

DDL

ALTER ONLINE TABLE (MDEV-16329) (not included in MariaDB 10.10.1)

Atomic CREATE OR REPLACE TABLE (MDEV-25292) (not included in MariaDB 10.10.1)

Available as container: quay.io/mariadb-foundation/mariadb-devel:10.10-ddl

Galera

Implement a method to add IPs to allowlist for Galera Cluster node addresses that can make SST/IST requests

(MDEV-27246)

Miscellaneous

Change default of explicit_defaults_for_timestamp to ON (MDEV-28632)

--ssl option set as default for mariadb CLI (MDEV-27105)

Add RANDOM_BYTES function (MDEV-25704)

The INET4 data type (MDEV-23287)

Re-design the upper level of handling UPDATE and DELETE statements (MDEV-28883)

Deprecate the DES_ENCRYPT/DECRYPT functions (MDEV-27104)

Available as container: quay.io/mariadb-foundation/mariadb-devel:10.10-misc

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

3917/4161

https://jira.mariadb.org/browse/MDEV-19801
https://jira.mariadb.org/browse/MDEV-20122
https://jira.mariadb.org/browse/MDEV-28852
https://jira.mariadb.org/browse/MDEV-26278
https://jira.mariadb.org/browse/MDEV-27009
https://jira.mariadb.org/browse/MDEV-27265
https://jira.mariadb.org/browse/MDEV-27266
https://jira.mariadb.org/browse/MDEV-16329
https://jira.mariadb.org/browse/MDEV-25292
https://jira.mariadb.org/browse/MDEV-27246
https://jira.mariadb.org/browse/MDEV-28632
https://jira.mariadb.org/browse/MDEV-27105
https://jira.mariadb.org/browse/MDEV-25704
https://jira.mariadb.org/browse/MDEV-23287
https://jira.mariadb.org/browse/MDEV-28883
https://jira.mariadb.org/browse/MDEV-27104
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3 MariaDB Server 10.9
Changes and Improvements in MariaDB 10.9

Current Version: 10.9.8 | Status: Stable (GA) | Release Date: 14 Aug 2023

Release Notes - MariaDB 10.9 Series

MariaDB 10.9 series release notes.

Changelogs - MariaDB 10.9 Series

MariaDB 10.9 changelogs

There are 1 related questions .

7.0.3.1 Changes and Improvements in MariaDB
10.9

MariaDB 10.9 is no longer maintained. Please use a more recent release .

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. JSON

2. InnoDB

3. Hashicorp Key Management Plugin

4. Replication and Galera

5. SHOW ANALYZE FORMAT=JSON

6. Variables

3. Security Vulnerabilities Fixed in MariaDB 10.9

4. List of All MariaDB 10.9 Releases

MariaDB 10.9 is a previous short-term release series. The first stable release was in August 2022, and it was maintained

until August 2023.

New Features & Improvements

JSON

JSON_OVERLAPS function (MDEV-27677)

Implement range notation for JSONPath (MDEV-27911)

Support JSONPath negative index (MDEV-22224)

InnoDB

innodb_log_file_size is now dynamic (MDEV-27812)

InnoDB performance improvements (MDEV-27557 , MDEV-28185 , MDEV-27767 , MDEV-28313 , MDEV-

28137 , MDEV-28465 , MDEV-26789)

innodb_disallow_writes removed (MDEV-25975)

Hashicorp Key Management Plugin
3918/4161

https://mariadb.com/kb/en/release-notes-mariadb-10-9-series/
https://mariadb.com/kb/en/changelogs-mariadb-109-series/
https://mariadb.com/kb/en/mariadb-server-10-9/+questions/
https://mariadb.com/kb/en/new-and-old-releases/
https://downloads.mariadb.org/mariadb/10.9.8/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-27677
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-27911
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-22224
https://jira.mariadb.org/browse/MDEV-27812
https://jira.mariadb.org/browse/MDEV-27557
https://jira.mariadb.org/browse/MDEV-28185
https://jira.mariadb.org/browse/MDEV-27767
https://jira.mariadb.org/browse/MDEV-28313
https://jira.mariadb.org/browse/MDEV-28137
https://jira.mariadb.org/browse/MDEV-28465
https://jira.mariadb.org/browse/MDEV-26789
https://jira.mariadb.org/browse/MDEV-25975

Hashicorp Key Management Plugin for implementing encryption using keys stored in the Hashicorp Vault KMS

(MDEV-19281)

Replication and Galera

Implement the --do-domain-ids, --ignore-domain-ids, and --ignore-server-ids options for mariadb-binlog (MDEV-

20119)

Semisync-slave server recovery is extended to work on new server_id server (MDEV-27342)

mariadb-binlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be

listed with the actual bytes (MDEV-14608)

JSON file interface to wsrep node state / SST progress logging (MDEV-26971)

SHOW ANALYZE FORMAT=JSON

Extend SHOW EXPLAIN to support SHOW ANALYZE [FORMAT=JSON] (MDEV-27021)

Add EXPLAIN FOR CONNECTION syntax support to SHOW EXPLAIN (MDEV-10000)

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.9 .

Merge old to old_mode sql variable (MDEV-24920)

The following variables have been deprecated:

innodb_change_buffering

old (replaced by old_mode)

Security Vulnerabilities Fixed in MariaDB 10.9

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2022-47015 : MariaDB 10.9.6

CVE-2022-38791 : MariaDB 10.9.2

CVE-2022-32091 : MariaDB 10.9.2

CVE-2022-32089 : MariaDB 10.9.2

CVE-2022-32084 : MariaDB 10.9.2

CVE-2022-32082 : MariaDB 10.9.2

CVE-2022-32081 : MariaDB 10.9.2

CVE-2018-25032 : MariaDB 10.9.2

List of All MariaDB 10.9 Releases

Date Release Status Release Notes Changelog

14 Aug 2023 MariaDB 10.9.8 Stable (GA) Release Notes Changelog

7 Jun 2023 MariaDB 10.9.7 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.9.6 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.9.5 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.9.4 Stable (GA) Release Notes Changelog

19 Sep 2022 MariaDB 10.9.3 Stable (GA) Release Notes Changelog

22 Aug 2022 MariaDB 10.9.2 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.9.1 RC Release Notes Changelog

23 Mar 2022 MariaDB 10.9.0 Alpha Release Notes

3919/4161

https://jira.mariadb.org/browse/MDEV-19281
https://jira.mariadb.org/browse/MDEV-20119
https://jira.mariadb.org/browse/MDEV-27342
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-26971
https://jira.mariadb.org/browse/MDEV-27021
https://jira.mariadb.org/browse/MDEV-10000
https://mariadb.com/kb/en/system-variables-added-in-mariadb-109/
https://jira.mariadb.org/browse/MDEV-24920
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
https://mariadb.com/kb/en/mariadb-10-9-8-changelog/
https://mariadb.com/kb/en/mariadb-10-9-7-changelog/
https://mariadb.com/kb/en/mariadb-10-9-6-changelog/
https://mariadb.com/kb/en/mariadb-10-9-5-changelog/
https://mariadb.com/kb/en/mariadb-10-9-4-changelog/
https://mariadb.com/kb/en/mariadb-1093-changelog/
https://mariadb.com/kb/en/mariadb-1092-changelog/
https://mariadb.com/kb/en/mariadb-1091-changelog/

7.0.3.2 Release Notes - MariaDB 10.9 Series
MariaDB 10.9 was a short-term maintenance stable series of MariaDB maintained until August 2023.

MariaDB 10.9.8 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.9.7 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.9.6 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

MariaDB 10.9.5 Release Notes

Status: Stable (GA) | Release Date: 6 Feb 2023

MariaDB 10.9.4 Release Notes

Status: Stable (GA) | Release Date: 7 Nov 2022

MariaDB 10.9.3 Release Notes

Status: Stable (GA) | Release Date: 19 Sep 2022

MariaDB 10.9.2 Release Notes

Status: Stable (GA) | Release Date: 22 Aug 2022

MariaDB 10.9.1 Release Notes

Status: RC | Release Date: 20 May 2022

MariaDB 10.9.0 Release Notes

Status: Alpha | Release Date: 23 Mar 2022

7.0.3.2.1 MariaDB 10.9.8 Release Notes
Download Release Notes Changelog Overview of 10.9

Release date: 14 Aug 2023

MariaDB 10.9 is a previous short-term stable series of MariaDB, maintained until August 2023. It is an evolution of

MariaDB 10.8 with several entirely new features.

MariaDB 10.9.8 is a Stable (GA) release.

MariaDB 10.9.8 is the last release of the MariaDB 10.9 release series.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items
As per the MariaDB Maintenance Policy , this will be the final release of MariaDB 10.9

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.9 for Ubuntu 18.04 LTS "Bionic"

Alternate download from mariadb.org

3920/4161

https://mariadb.org/about/#maintenance-policy
https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-10-9-8-changelog/
https://downloads.mariadb.org/mariadb/10.9.8/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-29253

and Ubuntu 22.10 "Kinetic"

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mysql_upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Character Sets, Data Types

UUIDs version >= 6 are now stored without byte-swapping, UUIDs with version >=8 and variant=0 are now

considered invalid, old tables are supported, old (always byte swapped) and new (swapped for version < 6) UUIDs

can be compared and converted transparently (MDEV-29959)

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Duplicate entry allowed into a UNIQUE column (MDEV-31120)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

3921/4161

https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915
https://jira.mariadb.org/browse/MDEV-29959
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-31120
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 10.9.8, with links to detailed information on each push, see the changelog

3922/4161

https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479

.

Contributors
For a full list of contributors to MariaDB 10.9.8, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.2 MariaDB 10.9.7 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.7 Release Notes Changelog Overview of 10.9

Release date: 7 Jun 2023

MariaDB 10.9 is the current short-term maintenance stable series of MariaDB, maintained until August 2023. It is an

evolution of MariaDB 10.8 with several entirely new features.

MariaDB 10.9.7 is a Stable (GA) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 10.9.7, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.7, see the MariaDB Foundation release announcement .

3923/4161

https://mariadb.com/kb/en/mariadb-10-9-8-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.9.8/
https://downloads.mariadb.org/mariadb/10.9.7/
https://mariadb.com/kb/en/mariadb-10-9-7-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-9-7-changelog/
https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.3 MariaDB 10.9.6 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.6 Release Notes Changelog Overview of 10.9

Release date: 10 May 2023

MariaDB 10.9 is the current short-term maintenance stable series of MariaDB, maintained until August 2023. It is an

evolution of MariaDB 10.8 with several entirely new features.

MariaDB 10.9.6 is a Stable (GA) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

rec_get_offsets() is not optimal (MDEV-30567)

Performance regression in fil_space_t::try_to_close() introduced in MDEV-23855 (MDEV-30775)

InnoDB recovery hangs when buffer pool ran out of memory (MDEV-30551)

InnoDB undo log truncation fails to wait for purge of history (MDEV-30671

MariaDB crash due to DB_FAIL reported for a corrupted page (MDEV-30397)

Deadlock between INSERT and InnoDB non-persistent statistics update (MDEV-30638)

InnoDB hang on B-tree split or merge (MDEV-29835)

Performance regression in locking reads from secondary indexes (MDEV-30357)

Improve adaptive flushing (MDEV-26055)

Make page flushing even faster (MDEV-26827)

Purge misses a chance to free not-yet-reused undo pages (MDEV-29593)

InnoDB temporary tablespace: reclaiming of free space does not work (MDEV-26782)

Deadlock between CHECK TABLE and bulk insert (MDEV-30798)

Fix miscount of doublewrites by Innodb_data_written (MDEV-31124)

Backup
mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Race condition between buffer pool flush and log file deletion in mariadb-backup --prepare (MDEV-30860)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

3924/4161

https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.9.8/
https://downloads.mariadb.org/mariadb/10.9.6/
https://mariadb.com/kb/en/mariadb-10-9-6-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034
https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-30775
https://jira.mariadb.org/browse/MDEV-30551
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-30397
https://jira.mariadb.org/browse/MDEV-30638
https://jira.mariadb.org/browse/MDEV-29835
https://jira.mariadb.org/browse/MDEV-30357
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-26827
https://jira.mariadb.org/browse/MDEV-29593
https://jira.mariadb.org/browse/MDEV-26782
https://jira.mariadb.org/browse/MDEV-30798
https://jira.mariadb.org/browse/MDEV-31124
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-30860
https://jira.mariadb.org/browse/MDEV-29621

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Ensured SHOW-SLAVE-STATUS is processed on the parallel slave having a necessary mutex always intialized

(MDEV-30620)

Fixed the slave applier to report a correct error when gtid_slave_pos insert fails for some (engine) reasons (MDEV-

31038)

Made parallel slave reports in performance schema consistent with that of show-slave-status (MDEV-26071)

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301).

New optimizer_switch option, hash_join_cardinality , is added. It is off by default. When set to ON, the optimizer will

produce tighter bounds for hash join output cardinality. (MDEV-30812)

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

ANALYZE FORMAT=JSON now prints more information about Block Nested Loop joins: block-nl-join element

now has r_loops , r_effective_rows and r_other_time_ms fields (MDEV-30806 , MDEV-30972).

A GROUP BY query with MIN(primary_key) in select list and primary_key<>const in the WHERE could

produce wrong result when executed with "Using index for group-by" strategy (MDEV-30605)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Image

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.9 for Fedora 36.

In this release repositories for Fedora 38 and Ubuntu 23.04 Lunar have been added.

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes made in MariaDB 10.9.6, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

3925/4161

https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780
https://jira.mariadb.org/browse/MDEV-30620
https://jira.mariadb.org/browse/MDEV-31038
https://jira.mariadb.org/browse/MDEV-26071
https://jira.mariadb.org/browse/MDEV-26301
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://jira.mariadb.org/browse/MDEV-20057
https://jira.mariadb.org/browse/MDEV-30806
https://jira.mariadb.org/browse/MDEV-30972
https://jira.mariadb.org/browse/MDEV-30605
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-9-6-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.3.2.4 MariaDB 10.9.5 Release Notes
Download Release Notes Changelog Overview of 10.9

Release date: 6 Feb 2023

MariaDB 10.9 is the current short-term maintenance stable series of MariaDB, maintained until August 2023. It is an

evolution of MariaDB 10.8 with several entirely new features.

MariaDB 10.9.5 is a Stable (GA) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.9.4 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

Fedora, openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2

digest algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

mariadb-backup --backup --incremental --throttle=... hangs (MDEV-29896)

Crash after recovery, with InnoDB: Tried to read (MDEV-30132)

Trying to write ... bytes at ... outside the bounds (MDEV-30069)

TRUNCATE breaks FOREIGN KEY locking (MDEV-29504 , MDEV-29849)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION.NAME is NULL for undo tablespaces (MDEV-30119)

Fixed hangs and error handling in B-tree operations (MDEV-29603 , MDEV-30400)

InnoDB bulk insert fixes (MDEV-30047 , MDEV-30321)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mysqlbinlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

JSON

JSON_PRETTY added as an alias for JSON_DETAILED (MDEV-19160)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

Json Range only affects first row of the result set (MDEV-30304)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.9 for Fedora 35.

In this release repositories for Fedora 37 and Ubuntu 22.10 Kinetic have been added.

3926/4161

http://downloads.mariadb.org/mariadb/10.9.5
https://mariadb.com/kb/en/mariadb-10-9-5-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/new-gpg-release-key-rpms/
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984
https://jira.mariadb.org/browse/MDEV-29896
https://jira.mariadb.org/browse/MDEV-30132
https://jira.mariadb.org/browse/MDEV-30069
https://jira.mariadb.org/browse/MDEV-29504
https://jira.mariadb.org/browse/MDEV-29849
https://jira.mariadb.org/browse/MDEV-30119
https://jira.mariadb.org/browse/MDEV-29603
https://jira.mariadb.org/browse/MDEV-30400
https://jira.mariadb.org/browse/MDEV-30047
https://jira.mariadb.org/browse/MDEV-30321
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-19160
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://jira.mariadb.org/browse/MDEV-30304

Changelog
For a complete list of changes made in MariaDB 10.9.5, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.5 MariaDB 10.9.4 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.4 Release Notes Changelog Overview of 10.9

Release date: 7 Nov 2022

MariaDB 10.9 is the current short-term maintenance stable series of MariaDB, maintained until August 2023. It is an

evolution of MariaDB 10.8 with several entirely new features.

MariaDB 10.9.4 is a Stable (GA) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

SSL

The server no longer tolerates incorrectly configured SSL (MDEV-29811). If you have enabled SSL in my.cnf but

have not configured it properly (for example, a certificate file is missing), MariaDB used to silently disable SSL,

leaving you under impression that everything was fine and connections were secure. Since this release, MariaDB will

fail to start if SSL is enabled, but cannot be switched on.

Backup

Assertion on info.page_size failed in xb_delta_open_matching_space (MDEV-18589)

Mariabackup locks database for minutes (MDEV-28772)

InnoDB

Adaptive hash index MDEV-27700 , MDEV-29384

MVCC and locking (MDEV-29666 , MDEV-27927 , MDEV-28709 , MDEV-29635)

Virtual columns (MDEV-29299 , MDEV-29753)

InnoDB crash recovery fixes (MDEV-29559)

Race condition between KILL and transaction commit (MDEV-29368)

Implement CHECK TABLE&EXTENDED for InnoDB (MDEV-24402)

3927/4161

https://mariadb.com/kb/en/mariadb-10-9-5-changelog/
https://mariadb.org/mariadb-10-10-3-10-9-5-10-8-7-10-7-8-10-6-12-10-5-19-10-4-28-and-10-3-38-now-available//
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.9.8/
https://downloads.mariadb.org/mariadb/10.9.4/
https://mariadb.com/kb/en/mariadb-10-9-4-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29811
https://jira.mariadb.org/browse/MDEV-18589
https://jira.mariadb.org/browse/MDEV-28772
https://jira.mariadb.org/browse/MDEV-27700
https://jira.mariadb.org/browse/MDEV-29384
https://jira.mariadb.org/browse/MDEV-29666
https://jira.mariadb.org/browse/MDEV-27927
https://jira.mariadb.org/browse/MDEV-28709
https://jira.mariadb.org/browse/MDEV-29635
https://jira.mariadb.org/browse/MDEV-29299
https://jira.mariadb.org/browse/MDEV-29753
https://jira.mariadb.org/browse/MDEV-29559
https://jira.mariadb.org/browse/MDEV-29368
https://jira.mariadb.org/browse/MDEV-24402

InnoDB persistent statistics fail to update after bulk insert (MDEV-28327)

InnoDB bulk insert bug fixes (MDEV-29570 , MDEV-29761)

Galera

Galera updated to 26.4.13

Galera server crashes after 10.3 > 10.4 upgrade (MDEV-29375)

wsrep_incoming_addresses status variable prints 0 as port number if the port is not mentioned in

wsrep_node_incoming_address system variable (MDEV-28868)

Replication

XA COMMIT is not binlogged when the XA transaction has not updated any transaction engine (MDEV-25616)

Concurrent CREATE TRIGGER statements made to binlog without any mixup (MDEV-25606)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Adds OCI labels to image (fixes issue 436 and users need for version)

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Changelog
For a complete list of changes made in MariaDB 10.9.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.6 MariaDB 10.9.3 Release Notes

The most recent release of MariaDB 10.9 is:
3928/4161

https://jira.mariadb.org/browse/MDEV-28327
https://jira.mariadb.org/browse/MDEV-29570
https://jira.mariadb.org/browse/MDEV-29761
https://jira.mariadb.org/browse/MDEV-29375
https://jira.mariadb.org/browse/MDEV-28868
https://jira.mariadb.org/browse/MDEV-25616
https://jira.mariadb.org/browse/MDEV-25606
https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468
https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3
https://mariadb.com/kb/en/mariadb-10-9-4-changelog/
https://mariadb.org/mariadb-10-9-4-10-8-6-10-7-7-10-6-11-10-5-18-10-4-27-and-10-3-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.3 Release Notes Changelog Overview of 10.9

Release date: 19 Sep 2022

MariaDB 10.9 is the current short-term maintenance stable series of MariaDB, maintained until August 2023. It is an

evolution of MariaDB 10.8 with several entirely new features.

MariaDB 10.9.3 is a Stable (GA) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

Issues Fixed

Assertion mysql_mutex_assert_owner(&log_sys.flush_order_mutex) failed in mtr_t::commit() (MDEV-29383)

Frequent "Data structure corruption" in InnoDB after OOM (MDEV-29374)

Recovery or backup of instant ALTER TABLE is incorrect (MDEV-29438)

InnoDB Temporary Tablespace (ibtmp1) is continuously growing (MDEV-28240)

Full text index corruption if shutdown before changes are fully flushed (MDEV-29342)

JSON_VALUE() does not parse NULL properties properly (MDEV-27151)

InnoDB hangs on multiple concurrent requests of a cold ROW_FORMAT=COMPRESSED page (MDEV-27983)

Changelog
For a complete list of changes made in MariaDB 10.9.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.7 MariaDB 10.9.2 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.2 Release Notes Changelog Overview of 10.9

Release date: 22 Aug 2022

MariaDB 10.9 is a current stable series of MariaDB, maintained until August 2023. It is an evolution of MariaDB 10.8 with

several entirely new features.

MariaDB 10.9.2 is a Stable (GA) release.

3929/4161

https://downloads.mariadb.org/mariadb/10.9.8/
https://downloads.mariadb.org/mariadb/10.9.3/
https://mariadb.com/kb/en/mariadb-1093-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29383
https://jira.mariadb.org/browse/MDEV-29374
https://jira.mariadb.org/browse/MDEV-29438
https://jira.mariadb.org/browse/MDEV-28240
https://jira.mariadb.org/browse/MDEV-29342
https://jira.mariadb.org/browse/MDEV-27151
https://jira.mariadb.org/browse/MDEV-27983
https://mariadb.com/kb/en/mariadb-1093-changelog/
https://mariadb.org/mariadb-10-9-3-10-8-5-10-7-6-and-10-6-10-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.9.8/
https://downloads.mariadb.org/mariadb/10.9.2/
https://mariadb.com/kb/en/mariadb-1092-changelog/
https://mariadb.com/kb/en/release-criteria/

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB corruption due to lack of file locking (MDEV-28495)

FULLTEXT search with apostrophe, and mandatory words (MDEV-20797)

ALTER TABLE IMPORT TABLESPACE corrupts an encrypted table (MDEV-28779)

ALTER TABLE wrong-result fix (MDEV-26294)

Crash recovery fixes (MDEV-28668 , MDEV-28731)

DDL crash recovery fixes (MDEV-28752 , MDEV-28802 , MDEV-28864 , MDEV-28870 , MDEV-28923 ,

MDEV-28977)

Avoid crashes on corrupted data (MDEV-13542 , MDEV-18519 , MDEV-21098 , MDEV-22388 , MDEV-28457

, MDEV-28950)

Bulk load bug fixes (MDEV-28242 , MDEV-28679)

Performance fixes (MDEV-28708 , MDEV-28766)

Replication

explicit_defaults_for_timestamp is stored in binlog, so that CREATE TABLE on slave would always have the same

effect as on master. (MDEV-29078)

ER_SLAVE_INCIDENT error is specified now on slave to be seen with SHOW-SLAVE-STATUS (MDEV-21087)

INCIDENT_EVENT is no longer binlogged when a being logged transaction can be safely rolledback (MDEV-21443

)

sequences related row-format events are made to correspond to binlog_row_image (MDEV-28487)

Possible reason of FLUSH BINARY LOGS hang is eliminated (MDEV-28948)

Fix out-of-order gtid error in the circular semisync setup (MDEV-28609)

Galera

Possible to write/update with read_only=ON and not a SUPER privilege (MDEV-28546)

Node crashes with Transport endpoint is not connected mysqld got signal 6 (MDEV-25068)

Galera4 not able to report proper wsrep_incoming_addresses (MDEV-20627)

Galera should replicate nextval()-related changes in sequences with INCREMENT <> 0, at least NOCACHE ones

with engine=InnoDB (MDEV-27862)

Add support for OpenSSL 3.0 in Galera (MDEV-25949)

Optimizer

Server crash in JOIN_CACHE::free or in copy_fields (MDEV-23809)

Queries that use DISTINCT and an always-constant function like COLLATION(aggegate_func(...)) could cause

a server crash. Note that COLLATION() is a special function - its value is constant even if its argument is not

costant.

Crash when using ANY predicand with redundant subquery in GROUP BY clause (MDEV-29139)

A query with a subuquery in this form could cause a crash:

... ANY (SELECT ... GROUP BY (SELECT redundant_subselect_here)) ...

MariaDB Server SEGV on INSERT .. SELECT (MDEV-26427)

Certain queries in form "INSERT ... SELECT with_aggregate_or_window_func" could cause a crash.

restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (MDEV-28749)

Subquery semi-join optimization could miss LooseScan or FirstMatch strategies for certain queries.

Optimizer uses all partitions after upgrade to 10.3 (MDEV-28246)

For multi-table UPDATE or DELETE queries, the optimizer failed to apply Partition Pruning optimization for the

table that is updated or deleted from.

Range optimizer regression for key IN (const,) (MDEV-25020)

The issue can be observed on MariaDB 10.5.9 and later versions which have the fix for MDEV-9750 . That fix

introduceds optimizer_max_sel_arg_weight.

If one sets optimizer_max_sel_arg_weight to a very high value or zero (which means "unlimited") and runs

queries that produce heavy-weight graphs, they can observe a performance slowdown, e.g.:

3930/4161

https://jira.mariadb.org/browse/MDEV-28495
https://jira.mariadb.org/browse/MDEV-20797
https://jira.mariadb.org/browse/MDEV-28779
https://jira.mariadb.org/browse/MDEV-26294
https://jira.mariadb.org/browse/MDEV-28668
https://jira.mariadb.org/browse/MDEV-28731
https://jira.mariadb.org/browse/MDEV-28752
https://jira.mariadb.org/browse/MDEV-28802
https://jira.mariadb.org/browse/MDEV-28864
https://jira.mariadb.org/browse/MDEV-28870
https://jira.mariadb.org/browse/MDEV-28923
https://jira.mariadb.org/browse/MDEV-28977
https://jira.mariadb.org/browse/MDEV-13542
https://jira.mariadb.org/browse/MDEV-18519
https://jira.mariadb.org/browse/MDEV-21098
https://jira.mariadb.org/browse/MDEV-22388
https://jira.mariadb.org/browse/MDEV-28457
https://jira.mariadb.org/browse/MDEV-28950
https://jira.mariadb.org/browse/MDEV-28242
https://jira.mariadb.org/browse/MDEV-28679
https://jira.mariadb.org/browse/MDEV-28708
https://jira.mariadb.org/browse/MDEV-28766
https://jira.mariadb.org/browse/MDEV-29078
https://jira.mariadb.org/browse/MDEV-21087
https://jira.mariadb.org/browse/MDEV-21443
https://jira.mariadb.org/browse/MDEV-28487
https://jira.mariadb.org/browse/MDEV-28948
https://jira.mariadb.org/browse/MDEV-28609
https://jira.mariadb.org/browse/MDEV-28546
https://jira.mariadb.org/browse/MDEV-25068
https://jira.mariadb.org/browse/MDEV-20627
https://jira.mariadb.org/browse/MDEV-27862
https://jira.mariadb.org/browse/MDEV-25949
https://jira.mariadb.org/browse/MDEV-23809
https://jira.mariadb.org/browse/MDEV-29139
https://jira.mariadb.org/browse/MDEV-26427
https://jira.mariadb.org/browse/MDEV-28749
https://jira.mariadb.org/browse/MDEV-28246
https://jira.mariadb.org/browse/MDEV-25020
https://jira.mariadb.org/browse/MDEV-9750

table.keyXpartY [NOT] IN (...)

Wrong result with table elimination combined with not_null_range_scan (MDEV-28858)

If one runs with optimizer_switch='not_null_range_scan=on' (which is not enabled by default), a query that

does a join and has const tables could produce a wrong result.

Assertion `tmp >= 0' failed in best_access_path (MDEV-28882)

If one uses histogram_type=JSON_HB, has collected a histogram of that type and runs a query that selects a

very narrow range near histogram end, they can hit an assertion in the optimizer due to rounding errors in the

histogram causing negative selectivity.

Spider

The Spider version number now matches the server version (and the spider_version system variable removed)

(MDEV-26282)

spider_init_sql_alloc_size and spider_buffer_size have been deprecated (MDEV-27926 , MDEV-28560)

Spider's high-availability feature has been deprecated (MDEV-28479)

JSON

JSON_TABLE: extract document fragment into JSON column (MDEV-25875)

CONNECT

CONNECT Engine now supports INSERT IGNORE with Mysql Table type (MDEV-27766)

General

explicit_defaults_for_timestamp now also has a session scope, not only global (MDEV-29225)

New mariadb client option, -enable-cleartext-plugin . Option does not do anything, and is for MySQL-

compatibility purposes only.

Crash in JSON_EXTRACT (MDEV-29188)

ALTER TABLE ALGORITHM=NOCOPY does not work after upgrade (MDEV-28727)

Server crash upon CREATE VIEW with unknown column in ON condition (MDEV-29088)

password_reuse_check plugin mixes username and password (MDEV-28838)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.9 for Debian 10 "Buster" for

ppc64el

Security

Fixes for the following security vulnerabilities :

CVE-2022-32082

CVE-2022-32089

CVE-2022-32081

CVE-2018-25032

CVE-2022-32091

CVE-2022-38791

CVE-2022-32084

Changelog
For a complete list of changes made in MariaDB 10.9.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.2, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.
3931/4161

https://jira.mariadb.org/browse/MDEV-28858
https://jira.mariadb.org/browse/MDEV-28882
https://jira.mariadb.org/browse/MDEV-26282
https://jira.mariadb.org/browse/MDEV-27926
https://jira.mariadb.org/browse/MDEV-28560
https://jira.mariadb.org/browse/MDEV-28479
https://jira.mariadb.org/browse/MDEV-25875
https://jira.mariadb.org/browse/MDEV-27766
https://jira.mariadb.org/browse/MDEV-29225
https://jira.mariadb.org/browse/MDEV-29188
https://jira.mariadb.org/browse/MDEV-28727
https://jira.mariadb.org/browse/MDEV-29088
https://jira.mariadb.org/browse/MDEV-28838
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
https://mariadb.com/kb/en/mariadb-1092-changelog/
https://mariadb.org/mariadb-10-10-1-rc-and-10-9-2-ga-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.3.2.8 MariaDB 10.9.1 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.1 Release Notes Changelog Overview of 10.9

Release date: 20 May 2022

Do not use non-stable (non-GA) releases in production!

MariaDB 10.9 is a current development series of MariaDB. It is an evolution of MariaDB 10.8 with several entirely new

features.

MariaDB 10.9.1 is a Release Candidate (RC) release.

For an overview of MariaDB 10.9 see the What is MariaDB 10.9? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

innodb_disallow_writes removed (MDEV-25975)

InnoDB gap locking fixes (MDEV-20605 , MDEV-28422)

InnoDB performance improvements (MDEV-27557 , MDEV-28185 , MDEV-27767 , MDEV-28313 , MDEV-

28137 , MDEV-28465 , MDEV-26789)

Backup regression fixes (MDEV-27919)

InnoDB portability: FreeBSD futexes (MDEV-26476), POWER and s390x transactional memory (MDEV-27956)

ALTER TABLE: Fixed bogus duplicate key errors (MDEV-15250)

DDL and crash recovery fixes (MDEV-27274 , MDEV-27234 , MDEV-27817)

Requests to recalculate persistent statistics were sometimes lost (MDEV-27805)

Deprecate the parameter innodb_change_buffering (MDEV-27735)

Allow SET GLOBAL innodb_log_file_size (MDEV-27812)

Replication

New options for mysqlbinlog --do-domain-ids, --ignore-domain-ids, and --ignore-server-ids are implemented (MDEV-

20119)

Semisync-slave server recovery is refined to correctly rollback prepared transaction (MDEV-28461)

Circular semisync setup endless event circulation is handled (MDEV-27760)

Semisync-slave server recovery is extended to work on new server_id server (MDEV-27342)

Server initialization time gtid_slave_pos purge related reason of crashing in binlog background thread is removed

(MDEV-26473)

Shutdown of the semisync master can't produce inconsistent state anymore (MDEV-11853)

Binlogs disappear after rsync IST (MDEV-28583)

master crash is eliminated in compressed semisync replication protocol with packet counting amendment (MDEV-

25580)

OPTIMIZE on a sequence does not cause counterfactual ER_BINLOG_UNSAFE_STATEMENT anymore (MDEV-

24617)

Automatically generated Gtid_log_list_event is made to recognize within replication event group as a formal member

(MDEV-28550)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE using two or more unique key values at a time with

MIXED format binlogging is corrected (MDEV-28310)

3932/4161

https://downloads.mariadb.org/mariadb/10.9.8/
http://downloads.mariadb.org/mariadb/10.9.1
https://mariadb.com/kb/en/mariadb-1091-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25975
https://jira.mariadb.org/browse/MDEV-20605
https://jira.mariadb.org/browse/MDEV-28422
https://jira.mariadb.org/browse/MDEV-27557
https://jira.mariadb.org/browse/MDEV-28185
https://jira.mariadb.org/browse/MDEV-27767
https://jira.mariadb.org/browse/MDEV-28313
https://jira.mariadb.org/browse/MDEV-28137
https://jira.mariadb.org/browse/MDEV-28465
https://jira.mariadb.org/browse/MDEV-26789
https://jira.mariadb.org/browse/MDEV-27919
https://jira.mariadb.org/browse/MDEV-26476
https://jira.mariadb.org/browse/MDEV-27956
https://jira.mariadb.org/browse/MDEV-15250
https://jira.mariadb.org/browse/MDEV-27274
https://jira.mariadb.org/browse/MDEV-27234
https://jira.mariadb.org/browse/MDEV-27817
https://jira.mariadb.org/browse/MDEV-27805
https://jira.mariadb.org/browse/MDEV-27735
https://jira.mariadb.org/browse/MDEV-27812
https://jira.mariadb.org/browse/MDEV-20119
https://jira.mariadb.org/browse/MDEV-28461
https://jira.mariadb.org/browse/MDEV-27760
https://jira.mariadb.org/browse/MDEV-27342
https://jira.mariadb.org/browse/MDEV-26473
https://jira.mariadb.org/browse/MDEV-11853
https://jira.mariadb.org/browse/MDEV-28583
https://jira.mariadb.org/browse/MDEV-25580
https://jira.mariadb.org/browse/MDEV-24617
https://jira.mariadb.org/browse/MDEV-28550
https://jira.mariadb.org/browse/MDEV-28310

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE stops issuing unnecessary "Unsafe statement" with

MIXED binlog format (MDEV-21810)

Incomplete replication event groups are detected to error out by the slave IO thread (MDEV-27697)

mysqlbinlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be listed

with the actual bytes (MDEV-14608)

Backup

Incorrect binlogs after Galera SST using rsync and mariabackup (MDEV-27524)

mariabackup does not detect multi-source replication slave (MDEV-21037)

Useless warning "InnoDB: Allocated tablespace ID <id> for <tablename>, old maximum was 0" during backup stage

(MDEV-27343)

mariabackup prepare fails for incrementals if a new schema is created after full backup is taken (MDEV-28446)

Optimizer

Query performance degradation in newer MariaDB versions when using many tables (MDEV-28073)

A SEGV in Item_field::used_tables/update_depend_map_for_order... (MDEV-26402)

ANALYZE FORMAT=JSON fields are incorrect for UNION ALL queries (MDEV-27699)

Subquery in an UPDATE query uses full scan instead of range (MDEV-22377)

Assertion `item1->type() == Item::FIELD_ITEM ... (MDEV-19398)

Server crashes in Expression_cache_tracker::fetch_current_stats (MDEV-28268)

MariaDB server crash at Item_subselect::init_expr_cache_tracker (MDEV-26164 , MDEV-26047)

Crash with union of my_decimal type in ORDER BY clause (MDEV-25994)

SIGSEGV in st_join_table::cleanup (MDEV-24560)

Assertion `!eliminated' failed in Item_subselect::exec (MDEV-28437)

Spider

spider_crd_type and spider_crd_weight have been deprecated (MDEV-28010)

General

Auto-create history partitions for system-versioned tables (MDEV-17554)

mariadb-dump --order-by-size option (MDEV-28074)

Server error messages are now available in Chinese (MDEV-28227)

For RHEL/CentOS 7, non x86_64 architectures are no longer supported upstream and so our support will also be

dropped with this release

Packages for Ubuntu 22.04 LTS "Jammy" and Fedora 36 are now available in this release

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Debian 9 "Stretch", Ubuntu

21.10 "Impish", and Fedora 34

Changelog
For a complete list of changes made in MariaDB 10.9.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.9.1, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

3933/4161

https://jira.mariadb.org/browse/MDEV-21810
https://jira.mariadb.org/browse/MDEV-27697
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-27524
https://jira.mariadb.org/browse/MDEV-21037
https://jira.mariadb.org/browse/MDEV-27343
https://jira.mariadb.org/browse/MDEV-28446
https://jira.mariadb.org/browse/MDEV-28073
https://jira.mariadb.org/browse/MDEV-26402
https://jira.mariadb.org/browse/MDEV-27699
https://jira.mariadb.org/browse/MDEV-22377
https://jira.mariadb.org/browse/MDEV-19398
https://jira.mariadb.org/browse/MDEV-28268
https://jira.mariadb.org/browse/MDEV-26164
https://jira.mariadb.org/browse/MDEV-26047
https://jira.mariadb.org/browse/MDEV-25994
https://jira.mariadb.org/browse/MDEV-24560
https://jira.mariadb.org/browse/MDEV-28437
https://jira.mariadb.org/browse/MDEV-28010
https://jira.mariadb.org/browse/MDEV-17554
https://jira.mariadb.org/browse/MDEV-28074
https://mariadb.com/kb/en/mariadb-error-codes/
https://jira.mariadb.org/browse/MDEV-28227
https://mariadb.com/kb/en/mariadb-1091-changelog/
https://mariadb.org/mariadb-10-9-1-10-8-3-10-7-4-10-6-8-10-5-16-10-4-25-10-3-35-and-10-2-44-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.3.2.9 MariaDB 10.9.0 Release Notes

The most recent release of MariaDB 10.9 is:

MariaDB 10.9.8 Stable (GA) Download Now

Download 10.9.0 Release Notes Changelog Overview of 10.9

Release date: 23 March 2022

Do not use alpha releases in production!

MariaDB 10.9 is a current development series of MariaDB. It is an evolution of MariaDB 10.8 with several entirely new

features.

MariaDB 10.9.0 is not a single release, but is instead a number of preview releases based on feature branches. Each should

be considered Alpha . Read more about feature preview releases here .

Thanks, and enjoy MariaDB!

List of packages
1. JSON

2. SHOW ANALYZE FORMAT=JSON

3. Async redo log write

4. Miscellaneous

Remember, these features are in separate preview packages. The subsection header text corresponds to the preview

package name.

JSON

JSON_OVERLAPS function (MDEV-27677)

Implement range notation for JSONPath (MDEV-27911)

Support JSONPath negative index (MDEV-22224)

SHOW ANALYZE FORMAT=JSON

Extend SHOW EXPLAIN to support SHOW ANALYZE [FORMAT=JSON] (MDEV-27021)

Add EXPLAIN FOR CONNECTION syntax support to SHOW EXPLAIN (MDEV-10000)

Async redo log write

Asynchronous redo log write (MDEV-26603) (not included in MariaDB 10.9.1)

Miscellaneous

Implement the --do-domain-ids, --ignore-domain-ids, and --ignore-server-ids options for mariadb-binlog/mysqlbinlog

(MDEV-20119)

information_schema.tables.table_type now shows TEMPORARY for local temporary tables (MDEV-12459) (not

included in MariaDB 10.9.1)

Merge old to old_mode sql variable (MDEV-24920)

Hashicorp Key Management Plugin for implementing encryption using keys stored in the Hashicorp Vault KMS

(MDEV-19281)

JSON file interface to wsrep node state / SST progress logging (MDEV-26971)

Allow innodb_log_file_size to change without server restart (MDEV-27812)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

3934/4161

https://downloads.mariadb.org/mariadb/10.9.8/
http://downloads.mariadb.org/mariadb/10.9.0
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/mariadb-1080-changelog
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/preview-releases/
https://jira.mariadb.org/browse/MDEV-27677
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-27911
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/JSONPath_Expressions
https://jira.mariadb.org/browse/MDEV-22224
https://jira.mariadb.org/browse/MDEV-27021
https://jira.mariadb.org/browse/MDEV-10000
https://jira.mariadb.org/browse/MDEV-26603
https://jira.mariadb.org/browse/MDEV-20119
https://jira.mariadb.org/browse/MDEV-12459
https://jira.mariadb.org/browse/MDEV-24920
https://jira.mariadb.org/browse/MDEV-19281
https://jira.mariadb.org/browse/MDEV-26971
https://jira.mariadb.org/browse/MDEV-27812
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.4 MariaDB Server 10.8
Changes and Improvements in MariaDB 10.8

Current Version: 10.8.8 | Status: Stable (GA) | Release Date: 10 May 2023

Release Notes - MariaDB 10.8 Series

MariaDB 10.8 Series Release Notes

Changelogs - MariaDB 10.8 Series

MariaDB 10.8 changelogs

7.0.4.1 Changes and Improvements in MariaDB
10.8

MariaDB 10.8 is no longer maintained. Please use a more recent release .

The most recent release of MariaDB 10.8 is:

MariaDB 10.8.8 Stable (GA) Download Now

Contents
1. Upgrading

2. New Features & Improvements

1. Stored Procedures INOUT Parameters

2. Lag free ALTER TABLE in replication

3. Descending indexes

4. InnoDB redo log improvements

5. JSON Histograms

6. Spider Storage Engine Improvements

7. Misc. features

8. mysqlbinlog GTID support

9. Windows - Improved i18n support

10. Variables

3. Security Vulnerabilities Fixed in MariaDB 10.8

4. List of All MariaDB 10.8 Releases

MariaDB 10.8 is a previous short-term maintenance series. The first stable release was in May 2022, and it was maintained

 for one year.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.7 to MariaDB 10.8 .

New Features & Improvements

Stored Procedures INOUT Parameters

Stored procedures already have support for the IN, OUT and INOUT parameter qualifiers. Added as well for stored

functions and (IN only) cursors (MDEV-10654). This was a contribution by ManoharKB .

Lag free ALTER TABLE in replication

Normally, ALTER TABLE gets fully executed on the primary first and only then it is replicated and starts executing on

replicas. With this feature ALTER TABLE gets replicated and starts executing on replicas when it starts executing on

3935/4161

https://mariadb.com/kb/en/release-notes-mariadb-10-8-series/
https://mariadb.com/kb/en/changelogs-mariadb-10-8-series/
https://mariadb.com/kb/en/new-and-old-releases/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://downloads.mariadb.org/mariadb/10.8.8/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/upgrading-from-mariadb-10-7-to-mariadb-10-8/
https://jira.mariadb.org/browse/MDEV-10654
https://github.com/MariaDB/server/pull/1931
https://github.com/ManoharKB

the primary, not when it finishes. This way the replication lag caused by a heavy ALTER TABLE can be completely

eliminated (MDEV-11675).

Descending indexes

Individual columns in the index can now be explicitly sorted in the ascending or descending order. This can be useful

for optimizing certain ORDER BY cases (MDEV-13756 , MDEV-26938 , MDEV-26939 , MDEV-26996).

InnoDB redo log improvements

autosize innodb_buffer_pool_chunk_size (MDEV-25342).

Improve the redo log for concurrency (MDEV-14425).

Remove FIL_PAGE_FILE_FLUSH_LSN (MDEV-27199).

JSON Histograms

Histograms in the statistics tables are more precise and stored as JSON, not binary (MDEV-21130 , MDEV-26519

, blog post).

Spider Storage Engine Improvements

This was mostly internal refactoring work. As a result one can now declare Spider connections using the

REMOTE_SERVER , REMOTE_DATABASE , and REMOTE_TABLE attributes and not abuse the COMMENT field for that.

This works both for the whole table and per partition (MDEV-5271 , MDEV-27106).

Misc. features

Add an optional argument to the CRC32() function, as well as the CRC32C() function, which uses the Castagnoli

polynomial. (MDEV-27208). Note: The order of the 2-ary arguments was swapped after the preview release:

crc32('MariaDB')=crc32(crc32('Maria'),'DB')

Deprecate the keep_files_on_create variable (MDEV-23570).

my_print_defaults now handles --default-* options in exactly the same way as other MariaDB tools (MDEV-

26238).

UCA collations are now notably faster (MDEV-27266 , MDEV-27265).

mysqlbinlog GTID support

mariadb-binlog (or mysqlbinlog as it was called back when the task was created) now supports both filtering

events by GTID ranges through --start-position and --stop-position, and validating a binary log's ordering

of GTIDs through --gtid-strict-mode (MDEV-4989).

Windows - Improved i18n support

On newer versions of Windows (Windows 10 1903 or later), the mariadb client defaults to the utf8mb4 character

set. Several problems with Unicode input and output in client were fixed. Command line utilities now accept all

Unicode characters in user names, database names, file names etc (in the past, characters were restricted to the

current ANSI codepage).

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.8 .

Security Vulnerabilities Fixed in MariaDB 10.8

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.8.4

CVE-2022-47015 : MariaDB 10.8.8

CVE-2022-38791 : MariaDB 10.8.4

CVE-2022-32091 : MariaDB 10.8.4

3936/4161

https://jira.mariadb.org/browse/MDEV-11675
https://jira.mariadb.org/browse/MDEV-13756
https://jira.mariadb.org/browse/MDEV-26938
https://jira.mariadb.org/browse/MDEV-26939
https://jira.mariadb.org/browse/MDEV-26996
https://jira.mariadb.org/browse/MDEV-25342
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-27199
https://jira.mariadb.org/browse/MDEV-21130
https://jira.mariadb.org/browse/MDEV-26519
https://mariadb.org/10-7-preview-feature-json-histograms/
https://jira.mariadb.org/browse/MDEV-5271
https://jira.mariadb.org/browse/MDEV-27106
https://jira.mariadb.org/browse/MDEV-27208
https://jira.mariadb.org/browse/MDEV-23570
https://jira.mariadb.org/browse/MDEV-26238
https://jira.mariadb.org/browse/MDEV-27266
https://jira.mariadb.org/browse/MDEV-27265
https://jira.mariadb.org/browse/MDEV-4989
https://mariadb.com/kb/en/system-variables-added-in-mariadb-10-8/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mdb-10-8-8-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/

CVE-2022-32089 : MariaDB 10.8.4

CVE-2022-32084 : MariaDB 10.8.4

CVE-2022-32082 : MariaDB 10.8.4

CVE-2022-32081 : MariaDB 10.8.4

CVE-2022-24052 : MariaDB 10.8.1

CVE-2022-24051 : MariaDB 10.8.1

CVE-2022-24050 : MariaDB 10.8.1

CVE-2022-24048 : MariaDB 10.8.1

CVE-2021-46659 : MariaDB 10.8.1

CVE-2018-25032 : MariaDB 10.8.4

List of All MariaDB 10.8 Releases

Date Release Status Release Notes Changelog

10 May 2023 MariaDB 10.8.8 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.8.7 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.8.6 Stable (GA) Release Notes Changelog

19 Sep 2022 MariaDB 10.8.5 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.8.4 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.8.3 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.8.2 RC Release Notes Changelog

09 Feb 2022 MariaDB 10.8.1 RC Release Notes Changelog

21 Dec 2021 MariaDB 10.8.0 Alpha Release Notes

7.0.5 MariaDB Server 10.7
Changes and Improvements in MariaDB 10.7

Current Version: 10.7.8 | Status: Stable (GA) | Release Date: 6 Feb 2023

Release Notes - MariaDB 10.7 Series

MariaDB 10.7 Series Release Notes

Changelogs - MariaDB 10.7 Series

MariaDB 10.7 changelogs

7.0.5.1 Changes and Improvements in MariaDB
10.7

MariaDB 10.7 is no longer maintained. Please use a more recent release .

The most recent release of MariaDB 10.7 is:

MariaDB 10.7.8 Stable (GA) Download Now

3937/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-8-changelog/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-7-changelog/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-changelog/
https://mariadb.com/kb/en/mariadb-1085-release-notes/
https://mariadb.com/kb/en/mariadb-1085-release-notes/
https://mariadb.com/kb/en/mariadb-1085-changelog/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1084-release-notes/
https://mariadb.com/kb/en/mariadb-1084-changelog/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1083-release-notes/
https://mariadb.com/kb/en/mariadb-1083-changelog/
https://mariadb.com/kb/en/mariadb-1082-release-notes/
https://mariadb.com/kb/en/mariadb-1082-release-notes/
https://mariadb.com/kb/en/mariadb-1082-changelog/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1081-release-notes/
https://mariadb.com/kb/en/mariadb-1081-changelog/
https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/mariadb-1080-release-notes/
https://mariadb.com/kb/en/release-notes-mariadb-10-7-series/
https://mariadb.com/kb/en/changelogs-mariadb-10-7-series/
https://mariadb.com/kb/en/new-and-old-releases/
https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://downloads.mariadb.org/mariadb/10.7.8/

Contents
1. Upgrading

2. New Features & Improvements

1. UUID

2. JSON

3. Natural Sort

4. Optimization

5. Provider Plugins

6. SFORMAT

7. mariadb-dump

8. Convert Partitions

9. Password Reuse

10. Replication

11. InnoDB Bulk Insert

12. Diagnostics

13. Variables

3. Security Vulnerabilities Fixed in MariaDB 10.7

4. List of All MariaDB 10.7 Releases

MariaDB 10.7 is a previous short-term maintenance stable series. The first stable release was in February 2022, and it was

maintained for one year.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.6 to MariaDB 10.7 .

New Features & Improvements

UUID

New UUID data type (MDEV-4958)

JSON

JSON_EQUALS function to check for equality between JSON objects (MDEV-23143).

JSON_NORMALIZE function, which recursively sorts keys and removes spaces (MDEV-16375)

Natural Sort

NATURAL_SORT_KEY function (MDEV-4742).

Optimization

Improve simple multibyte collation performance on the ASCII range (MDEV-26572).

Provider Plugins

Five provider plugins (bzip2, lzma, lz4, lzo, snappy) provide compression capabilities to the server and storage

engines (MDEV-12933 , blog post).

SFORMAT

SFORMAT function for arbitrary text formatting (MDEV-25015)

mariadb-dump

Add option to dump system versioned table as of specified timestamp (MDEV-16355).

Convert Partitions

ALTER TABLE ... CONVERT PARTITION .. TO TABLE (MDEV-22166), and

ALTER TABLE ... CONVERT TABLE ... TO PARTITION ... (MDEV-22165) as an easy way to convert tables to

3938/4161

https://mariadb.com/kb/en/upgrading-from-mariadb-106-to-mariadb-107/
https://jira.mariadb.org/browse/MDEV-4958
https://jira.mariadb.org/browse/MDEV-23143
https://jira.mariadb.org/browse/MDEV-16375
https://jira.mariadb.org/browse/MDEV-4742
https://jira.mariadb.org/browse/MDEV-26572
https://jira.mariadb.org/browse/MDEV-12933
https://mariadb.org/10-7-preview-feature-provider-plugins
https://jira.mariadb.org/browse/MDEV-25015
https://jira.mariadb.org/browse/MDEV-16355
https://jira.mariadb.org/browse/MDEV-22166
https://jira.mariadb.org/browse/MDEV-22165

partitions and back in one command, instead of a sequence of CREATE/EXCHANGE/DROP

Password Reuse

password_reuse_check plugin is a new password validation plugin that prevents the new password from being the

same as the one being used during the configurable retention period. (MDEV-9245)

Replication

Multi-source replication supports MySQL-style CHANNEL syntax (MDEV-26307)

InnoDB Bulk Insert

In bulk insert, pre-sort and build indexes one page at a time (MDEV-24621)

Diagnostics

GET DIAGNOSTICS supports a new condition property name ROW_NUMBER . In multi-row inserts it allows one to

retrieve a number of a row that has caused the error (MDEV-10075 , MDEV-26611)

Variables

The following deprecated variables have been removed :

wsrep_replicate_myisam (MDEV-24947)

wsrep_strict_ddl (MDEV-24843)

Security Vulnerabilities Fixed in MariaDB 10.7

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.7.5

CVE-2022-38791 : MariaDB 10.7.5

CVE-2022-32091 : MariaDB 10.7.5

CVE-2022-32089 : MariaDB 10.7.5

CVE-2022-32088 : MariaDB 10.7.4

CVE-2022-32087 : MariaDB 10.7.4

CVE-2022-32086 : MariaDB 10.7.4

CVE-2022-32085 : MariaDB 10.7.4

CVE-2022-32084 : MariaDB 10.7.5

CVE-2022-32083 : MariaDB 10.7.4

CVE-2022-32082 : MariaDB 10.7.5

CVE-2022-32081 : MariaDB 10.7.5

CVE-2022-27458 : MariaDB 10.7.4

CVE-2022-27457 : MariaDB 10.7.4

CVE-2022-27456 : MariaDB 10.7.4

CVE-2022-27455 : MariaDB 10.7.4

CVE-2022-27452 : MariaDB 10.7.4

CVE-2022-27451 : MariaDB 10.7.4

CVE-2022-27449 : MariaDB 10.7.4

CVE-2022-27448 : MariaDB 10.7.4

CVE-2022-27447 : MariaDB 10.7.4

CVE-2022-27446 : MariaDB 10.7.4

CVE-2022-27445 : MariaDB 10.7.4

CVE-2022-27444 : MariaDB 10.7.4

CVE-2022-27387 : MariaDB 10.7.4

CVE-2022-27386 : MariaDB 10.7.4

CVE-2022-27384 : MariaDB 10.7.4

CVE-2022-27383 : MariaDB 10.7.4

CVE-2022-27382 : MariaDB 10.7.4

CVE-2022-27381 : MariaDB 10.7.4

CVE-2022-27380 : MariaDB 10.7.4

3939/4161

https://jira.mariadb.org/browse/MDEV-9245
https://jira.mariadb.org/browse/MDEV-26307
https://jira.mariadb.org/browse/MDEV-24621
https://mariadb.com/kb/en/get-diagnostics/
https://jira.mariadb.org/browse/MDEV-10075
https://jira.mariadb.org/browse/MDEV-26611
https://jira.mariadb.org/browse/MDEV-24947
https://jira.mariadb.org/browse/MDEV-24843
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/

CVE-2022-27379 : MariaDB 10.7.4

CVE-2022-27378 : MariaDB 10.7.4

CVE-2022-27377 : MariaDB 10.7.4

CVE-2022-27376 : MariaDB 10.7.4

CVE-2022-24052 : MariaDB 10.7.2

CVE-2022-24051 : MariaDB 10.7.2

CVE-2022-24050 : MariaDB 10.7.2

CVE-2022-24048 : MariaDB 10.7.2

CVE-2022-21595 : MariaDB 10.7.2

CVE-2022-0778 : MariaDB 10.7.2

CVE-2021-46669 : MariaDB 10.7.4

CVE-2021-46668 : MariaDB 10.7.3

CVE-2021-46665 : MariaDB 10.7.3

CVE-2021-46664 : MariaDB 10.7.3

CVE-2021-46663 : MariaDB 10.7.3

CVE-2021-46661 : MariaDB 10.7.3

CVE-2021-46659 : MariaDB 10.7.2

CVE-2018-25032 : MariaDB 10.7.5

List of All MariaDB 10.7 Releases

Date Release Status Release Notes Changelog

6 Feb 2023 MariaDB 10.7.8 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.7.7 Stable (GA) Release Notes Changelog

19 Sep 2022 MariaDB 10.7.6 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.7.5 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.7.4 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.7.3 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.7.2 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.7.1 RC Release Notes Changelog

17 Sep 2021 MariaDB 10.7.0 Alpha Release Notes

7.0.6 MariaDB Server 10.6
Changes and Improvements in MariaDB 10.6

Current Version: 10.6.17 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 10.6 Series

MariaDB 10.6 Series Release Notes

Changelogs - MariaDB 10.6 Series

MariaDB 10.6 changelogs

2

7.0.6.1 Changes and Improvements in MariaDB
10.6

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Alternate download from mariadb.org

3940/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
https://mariadb.com/kb/en/mariadb-10-7-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
https://mariadb.com/kb/en/mariadb-10-7-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
https://mariadb.com/kb/en/mariadb-10-7-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
https://mariadb.com/kb/en/mariadb-10-7-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-10-7-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
https://mariadb.com/kb/en/mariadb-10-7-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
https://mariadb.com/kb/en/mariadb-1078-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-8-changelog/
https://mariadb.com/kb/en/mariadb-1077-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-7-changelog/
https://mariadb.com/kb/en/mariadb-1076-release-notes/
https://mariadb.com/kb/en/mariadb-1076-release-notes/
https://mariadb.com/kb/en/mariadb-1076-changelog/
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1075-release-notes/
https://mariadb.com/kb/en/mariadb-1075-changelog/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1074-release-notes/
https://mariadb.com/kb/en/mariadb-1074-changelog/
https://mariadb.com/kb/en/mariadb-1073-release-notes/
https://mariadb.com/kb/en/mariadb-1073-release-notes/
https://mariadb.com/kb/en/mariadb-1073-changelog/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1072-release-notes/
https://mariadb.com/kb/en/mariadb-1072-changelog/
https://mariadb.com/kb/en/mariadb-1071-release-notes/
https://mariadb.com/kb/en/mariadb-1071-release-notes/
https://mariadb.com/kb/en/mariadb-1071-changelog/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/mariadb-1070-release-notes/
https://mariadb.com/kb/en/changelogs-mariadb-106-series/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/

Contents
1. Upgrading

2. New Features & Improvements

1. Atomic DDL

2. SQL Syntax

1. Oracle Compatibility

3. InnoDB

4. Replication, Galera and Binlog

5. Sys Schema

6. Performance Schema

7. Information Schema

8. Storage Engines

9. Character Sets

10. General

11. Variables

1. InnoDB Variables

3. Security Vulnerabilities Fixed in MariaDB 10.6

4. List of All MariaDB 10.6 Releases

MariaDB 10.6 is the current long-term maintenance stable version. The first stable release was in July 2021, and it will be

maintained until July 2026.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.5 to MariaDB 10.6.

New Features & Improvements

Atomic DDL

CREATE TABLE, ALTER TABLE, RENAME TABLE, DROP TABLE, DROP DATABASE and related DDL statements

are now atomic. Either the statement is fully completed, or everything is reverted to it's original state. Note that when

deleting multiple tables with DROP TABLE, only each individual drop is atomic, not the full list of tables). (MDEV-

23842).

SQL Syntax

Implement SQL-standard SELECT ... OFFSET ... FETCH (MDEV-23908)

Add SELECT ... SKIP LOCKED syntax (InnoDB only) (MDEV-13115)

Indexes can be ignored (MDEV-7317 , MDEV-25075)

JSON_TABLE, used to extract JSON data based on a JSON path expression and to return it as a relational table

(MDEV-17399)

Oracle Compatibility

Anonymous subqueries in a FROM clause (no AS clause) are permitted in ORACLE mode (MDEV-19162)

ADD_MONTHS() added (MDEV-20025)

TO_CHAR() added (MDEV-20017)

SYS_GUID() added (MDEV-24285)

MINUS is mapped to EXCEPT in UNION (MDEV-20021)

ROWNUM function returns the current number of accepted rows in the current context (MDEV-24089)

InnoDB

Optimization to speed up inserts into an empty table (MDEV-515)

We intended to deprecate and eventually remove the InnoDB's COMPRESSED row format. The first step was to

make the tables read-only by default, but this plan was abandoned from MariaDB 10.6.6 (MDEV-23497) (MDEV-

27736)

Information Schema SYS_TABLESPACES now directly reflects the filesystem, and SYS_DATAFILES has been

removed (MDEV-22343)

Defer writes to the InnoDB temporary tablespace (MDEV-12227)

The old MariaDB 5.5-compatible innodb checksum is no longer supported, only crc32 . Removed the *innodb

and *none options from innodb_checksum_algorithm, and the --strict-check / -C and --write / -w options

from innochecksum (MDEV-25105)

3941/4161

https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-23842
https://jira.mariadb.org/browse/MDEV-23908
https://jira.mariadb.org/browse/MDEV-13115
https://jira.mariadb.org/browse/MDEV-7317
https://jira.mariadb.org/browse/MDEV-25075
https://jira.mariadb.org/browse/MDEV-17399
https://jira.mariadb.org/browse/MDEV-19162
https://jira.mariadb.org/browse/MDEV-20025
https://jira.mariadb.org/browse/MDEV-20017
https://jira.mariadb.org/browse/MDEV-24285
https://jira.mariadb.org/browse/MDEV-20021
https://jira.mariadb.org/browse/MDEV-24089
https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-23497
https://jira.mariadb.org/browse/MDEV-27736
https://jira.mariadb.org/browse/MDEV-22343
https://jira.mariadb.org/browse/MDEV-12227
https://jira.mariadb.org/browse/MDEV-25105

Replication, Galera and Binlog

Increase master_host limit to 255, user to 128 (MDEV-24312)

The wsrep_mode system variable, for turning on WSREP features which are not part of default behavior (including

the experimental Aria replication) (MDEV-20008 , MDEV-20715 , MDEV-24946)

The delay between binary log purges can now be specified with much greater precision. The system variable

binlog_expire_logs_seconds is introduced as a form of alias for expire_logs_days, which now accepts a precision of

1/1000000 days (MDEV-19371)

Allow transition from unencrypted to TLS Galera cluster communication without cluster downtime (MDEV-22131)

Sys Schema

Bundle sys-schema, a collection of views, functions and procedures to help administrators get insight into database

usage. (MDEV-9077)

Performance Schema

Merged replication instrumentation and tables (MDEV-16437 , MDEV-20220)

Information Schema

The views INFORMATION_SCHEMA.KEYWORDS and INFORMATION_SCHEMA.SQL_FUNCTIONS have been

added to the information schema (MDEV-25129)

Storage Engines

TokuDB has been removed (MDEV-19780)

CassandraSE has been removed (MDEV-23024)

Character Sets

The utf8 character set (and related collations) is now by default an alias for utf8mb3 rather than the other way

around. It can be set to imply utf8mb4 by changing the value of the old_mode system variable (MDEV-8334)

General

Bundle sys schema (MDEV-9077)

Do not resend unchanged resultset metadata for prepared statements (MDEV-19237)

--bind-address=hostname now listens on both IPv6 and IPv4 addresses (MDEV-6536)

Support systemd socket activation (MDEV-5536)

For the GSSAPI plugin, support AD or local group name, and SIDs on Windows (MDEV-23959)

Check for $MARIADB_HOME/my.cnf (MDEV-21365)

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.6 and Status Variables Added in MariaDB

10.6.

max_recursive_iterations has been reduced to 1000 (MDEV-17239)

InnoDB Variables

The following deprecated variables have been removed (MDEV-23397):

innodb_adaptive_max_sleep_delay

innodb_background_scrub_data_check_interval

innodb_background_scrub_data_compressed

innodb_background_scrub_data_interval

innodb_background_scrub_data_uncompressed

innodb_buffer_pool_instances

innodb_commit_concurrency

innodb_concurrency_tickets

innodb_file_format

innodb_large_prefix

innodb_lock_schedule_algorithm

3942/4161

https://jira.mariadb.org/browse/MDEV-24312
https://jira.mariadb.org/browse/MDEV-20008
https://jira.mariadb.org/browse/MDEV-20715
https://jira.mariadb.org/browse/MDEV-24946
https://jira.mariadb.org/browse/MDEV-19371
https://jira.mariadb.org/browse/MDEV-22131
https://jira.mariadb.org/browse/MDEV-9077
https://jira.mariadb.org/browse/MDEV-16437
https://jira.mariadb.org/browse/MDEV-20220
https://jira.mariadb.org/browse/MDEV-25129
https://mariadb.com/kb/en/tokudb/
https://jira.mariadb.org/browse/MDEV-19780
https://mariadb.com/kb/en/cassandra/
https://jira.mariadb.org/browse/MDEV-23024
https://jira.mariadb.org/browse/MDEV-8334
https://jira.mariadb.org/browse/MDEV-9077
https://jira.mariadb.org/browse/MDEV-19237
https://jira.mariadb.org/browse/MDEV-6536
https://jira.mariadb.org/browse/MDEV-5536
https://jira.mariadb.org/browse/MDEV-23959
https://jira.mariadb.org/browse/MDEV-21365
https://jira.mariadb.org/browse/MDEV-17239
https://jira.mariadb.org/browse/MDEV-23397

innodb_log_checksums

innodb_log_compressed_pages

innodb_log_files_in_group

innodb_log_optimize_ddl

innodb_page_cleaners

innodb_replication_delay

innodb_scrub_log

innodb_scrub_log_speed

innodb_sync_array_size

innodb_thread_concurrency

innodb_thread_sleep_delay

innodb_undo_logs

Security Vulnerabilities Fixed in MariaDB 10.6

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.6.9

CVE-2023-22084 : MariaDB 10.6.16

CVE-2022-47015 : MariaDB 10.6.13

CVE-2022-38791 : MariaDB 10.6.9

CVE-2022-32091 : MariaDB 10.6.9

CVE-2022-32089 : MariaDB 10.6.9

CVE-2022-32088 : MariaDB 10.6.8

CVE-2022-32087 : MariaDB 10.6.8

CVE-2022-32086 : MariaDB 10.6.8

CVE-2022-32085 : MariaDB 10.6.8

CVE-2022-32084 : MariaDB 10.6.9

CVE-2022-32083 : MariaDB 10.6.8

CVE-2022-32082 : MariaDB 10.6.9

CVE-2022-32081 : MariaDB 10.6.9

CVE-2022-31624 : MariaDB 10.6.5

CVE-2022-27458 : MariaDB 10.6.8

CVE-2022-27457 : MariaDB 10.6.8

CVE-2022-27456 : MariaDB 10.6.8

CVE-2022-27455 : MariaDB 10.6.8

CVE-2022-27452 : MariaDB 10.6.8

CVE-2022-27451 : MariaDB 10.6.8

CVE-2022-27449 : MariaDB 10.6.8

CVE-2022-27448 : MariaDB 10.6.8

CVE-2022-27447 : MariaDB 10.6.8

CVE-2022-27446 : MariaDB 10.6.8

CVE-2022-27445 : MariaDB 10.6.8

CVE-2022-27444 : MariaDB 10.6.8

CVE-2022-27387 : MariaDB 10.6.8

CVE-2022-27386 : MariaDB 10.6.8

CVE-2022-27385 : MariaDB 10.6.5

CVE-2022-27384 : MariaDB 10.6.8

CVE-2022-27383 : MariaDB 10.6.8

CVE-2022-27382 : MariaDB 10.6.8

CVE-2022-27381 : MariaDB 10.6.8

CVE-2022-27380 : MariaDB 10.6.8

CVE-2022-27379 : MariaDB 10.6.8

CVE-2022-27378 : MariaDB 10.6.8

CVE-2022-27377 : MariaDB 10.6.8

CVE-2022-27376 : MariaDB 10.6.8

CVE-2022-24052 : MariaDB 10.6.6

CVE-2022-24051 : MariaDB 10.6.6

CVE-2022-24050 : MariaDB 10.6.6

CVE-2022-24048 : MariaDB 10.6.6

CVE-2022-21595 : MariaDB 10.6.6

CVE-2022-0778 : MariaDB 10.6.6

CVE-2021-46669 : MariaDB 10.6.8

CVE-2021-46668 : MariaDB 10.6.7
3943/4161

https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mdb-10616-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668

CVE-2021-46667 : MariaDB 10.6.5

CVE-2021-46665 : MariaDB 10.6.7

CVE-2021-46664 : MariaDB 10.6.7

CVE-2021-46663 : MariaDB 10.6.7

CVE-2021-46662 : MariaDB 10.6.5

CVE-2021-46661 : MariaDB 10.6.7

CVE-2021-46659 : MariaDB 10.6.6

CVE-2021-46658 : MariaDB 10.6.3

CVE-2021-35604 : MariaDB 10.6.3

CVE-2021-2389 : MariaDB 10.6.4

CVE-2021-2372 : MariaDB 10.6.4

CVE-2018-25032 : MariaDB 10.6.9

List of All MariaDB 10.6 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 10.6.17 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 10.6.16 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 10.6.15 Stable (GA) Release Notes Changelog

7 Jun 2023 MariaDB 10.6.14 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.6.13 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.6.12 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.6.11 Stable (GA) Release Notes Changelog

19 Sep 2022 MariaDB 10.6.10 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.6.9 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.6.8 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.6.7 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.6.6 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.6.5 Stable (GA) Release Notes Changelog

6 Aug 2021 MariaDB 10.6.4 Stable (GA) Release Notes Changelog

6 Jul 2021 MariaDB 10.6.3 Stable (GA) Release Notes Changelog

18 Jun 2021 MariaDB 10.6.2 RC Release Notes Changelog

21 May 2021 MariaDB 10.6.1 Beta Release Notes Changelog

26 Apr 2021 MariaDB 10.6.0 Alpha Release Notes Changelog

[2]

[2]

7.0.6.2 Release Notes - MariaDB 10.6 Series
MariaDB 10.6.17 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 10.6.16 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 10.6.15 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.6.14 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.6.13 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

3944/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://mariadb.com/kb/es/mariadb-10-6-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
https://mariadb.com/kb/es/mariadb-10-6-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-6-17-changelog/
https://mariadb.com/kb/en/mariadb-10-6-16-changelog/
https://mariadb.com/kb/en/mariadb-10-6-15-changelog/
https://mariadb.com/kb/en/mariadb-10-6-14-changelog/
https://mariadb.com/kb/en/mariadb-10-6-13-changelog/
https://mariadb.com/kb/en/mariadb-10-6-12-changelog/
https://mariadb.com/kb/en/mariadb-10-6-11-changelog/
https://mariadb.com/kb/en/mariadb-10610-changelog/
https://mariadb.com/kb/en/mariadb-1069-changelog/
https://mariadb.com/kb/en/mariadb-1068-changelog/
https://mariadb.com/kb/en/mariadb-1067-changelog/
https://mariadb.com/kb/en/mariadb-1066-changelog/
https://mariadb.com/kb/en/mariadb-1065-changelog/
https://mariadb.com/kb/en/mariadb-1064-changelog/
https://mariadb.com/kb/en/mariadb-1063-changelog/
https://mariadb.com/kb/en/mariadb-1062-changelog/
https://mariadb.com/kb/en/mariadb-1061-changelog/
https://mariadb.com/kb/en/mariadb-1060-changelog/

MariaDB 10.6.12 Release Notes

Status: Stable (GA) | Release Date: 6 Feb 2023

MariaDB 10.6.11 Release Notes

Status: Stable (GA) | Release Date: 7 Nov 2022

MariaDB 10.6.10 Release Notes

Status: Stable (GA) | Release Date: 19 Sep 2022

MariaDB 10.6.9 Release Notes

Status: Stable (GA) | Release Date: 15 Aug 2022

MariaDB 10.6.8 Release Notes

Status: Stable (GA) | Release Date: 20 May 2022

MariaDB 10.6.7 Release Notes

Status: Stable (GA) | Release Date: 12 Feb 2022

MariaDB 10.6.6 Release Notes

Status: Stable (GA) | Release Date: 9 Feb 2022

MariaDB 10.6.5 Release Notes

Status: Stable (GA) | Release Date: 8 Nov 2021

MariaDB 10.6.4 Release Notes

Status: Stable (GA) | Release Date: 6 Aug 2021

MariaDB 10.6.3 Release Notes

Status: Stable (GA) | Release Date: 6 Jul 2021

MariaDB 10.6.2 Release Notes

Status: RC | Release Date: 18 Jun 2021

MariaDB 10.6.1 Release Notes

Status: Beta | Release Date: 21 May 2021

MariaDB 10.6.0 Release Notes

Status: Alpha | Release Date: 26 Apr 2021

7.0.6.2.1 MariaDB 10.6.17 Release Notes
Download Release Notes Changelog Overview of 10.6

Release date: 7 Feb 2024

MariaDB 10.6 is a current long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5 with

several entirely new features.

MariaDB 10.6.17 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Alternate download from mariadb.org

3945/4161

https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-10-6-17-changelog/
https://downloads.mariadb.org/mariadb/10.6.17/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

History list is not shrunk unless there is a pause in the workload (MDEV-33213)

path separator near ib_buffer_pool incorrect (MDEV-32983)

Deadlock between buf_page_get_zip() and buf_pool_t::corrupted_evict() on InnoDB

ROW_FORMAT=COMPRESSED table corruption (MDEV-32371)

Empty INSERT crashes with innodb_force_recovery=6 or innodb_read_only=ON (MDEV-31861)

Assertion `end_lsn == page_lsn' failed in recv_recover_page (MDEV-33137)

Some calls to buf_read_ahead_linear() seem to be useless (MDEV-32068)

Opening all .ibd files on InnoDB startup can be slow (MDEV-32027)

InnoDB LRU flushing does not run before running out of buffer pool (MDEV-33053)

innodb_undo_log_truncate=ON is blocking page writes (MDEV-33112)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

If tables are frequently created, renamed, dropped, a backup cannot be restored (MDEV-32939)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Problems with a stored function EMPTY() on upgrade to 10.6 (MDEV-31616)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

3946/4161

https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-33213
https://jira.mariadb.org/browse/MDEV-32983
https://jira.mariadb.org/browse/MDEV-32371
https://jira.mariadb.org/browse/MDEV-31861
https://jira.mariadb.org/browse/MDEV-33137
https://jira.mariadb.org/browse/MDEV-32068
https://jira.mariadb.org/browse/MDEV-32027
https://jira.mariadb.org/browse/MDEV-33053
https://jira.mariadb.org/browse/MDEV-33112
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-32939
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-31616
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

Add optimizer_adjust_secondary_key_costs variable to influence how costs for secondary keys are calculated.

(MDEV-33118)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

Unusable key notes do not get reported for some operations (MDEV-32958)

Unusable key notes report wrong predicates for > and >= (MDEV-32957)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Backport MDEV-32532 to 10.6 (MDEV-32903)

Assertion `0' failed in Item_type_holder::val_int (MDEV-29494)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087). NULL is displayed if there is no database (MDEV-32906

)

The SQL Error Log Plugin can optionally (when sql_error_log_with_db_and_thread_info is enabled) include the

thread ID and database / table in its log (MDEV-27087)

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

3947/4161

https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165
https://mariadb.com/kb/en/using-optimizer_adjust_secondary_key_costs-in-10-6-10-11/
https://jira.mariadb.org/browse/MDEV-33118
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-32958
https://jira.mariadb.org/browse/MDEV-32957
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-32532
https://jira.mariadb.org/browse/MDEV-32903
https://jira.mariadb.org/browse/MDEV-29494
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-32906
https://mariadb.com/kb/en/sql-error-log-system-variables-and-options/#sql_error_log_with_db_and_thread_info
https://jira.mariadb.org/browse/MDEV-27087
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

"Read semi-sync reply magic number error" warnings on master (MDEV-32551)

Second Semi-sync Replica Can Hang at Connect Time (MDEV-32792)

Semi-sync ACKed Transaction can Timeout and Switch Off Semi-sync with Multiple Replicas (MDEV-32960)

Semi-Sync Ack_Receiver Thread Should Allow COM_QUIT Command (MDEV-32385)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Fedora 37

s3_debug is now dynamic, and s3_protocol_version contains new options, and old options have been deprecated

(MDEV-32884)

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Deprecate secure_auth=0 (MDEV-32617)

sys schema view session_ssl_status is empty (MDEV-32751)

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.17, with links to detailed information on each push, see

the changelog .

3948/4161

https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://jira.mariadb.org/browse/MDEV-32551
https://jira.mariadb.org/browse/MDEV-32792
https://jira.mariadb.org/browse/MDEV-32960
https://jira.mariadb.org/browse/MDEV-32385
https://jira.mariadb.org/browse/MDEV-32884
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://jira.mariadb.org/browse/MDEV-32617
https://jira.mariadb.org/browse/MDEV-32751
https://mariadb.com/kb/en/mariadb-10-6-17-changelog/

Contributors
For a full list of contributors to MariaDB 10.6.17, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.2 MariaDB 10.6.16 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.16 Release Notes Changelog Overview of 10.6

Release date: 13 Nov 2023

MariaDB 10.6 is the current long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5

with several entirely new features.

MariaDB 10.6.16 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Assertion failures in log_sort_flush_list upon crash recovery (MDEV-32029)

Race condition between page write completion and log checkpoint (MDEV-32511)

Assertion `purge_sys.tail.trx_no <= purge_sys.rseg->last_trx_no()' (MDEV-30100)

Alternate download from mariadb.org

3949/4161

https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.16/
https://mariadb.com/kb/en/mariadb-10-6-16-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-32029
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-30100

Assertion `index->is_btree() || index->is_ibuf()' failed in btr_search_guess_on_hash (MDEV-30802)

InnoDB hang in buf_flush_wait_LRU_batch_end() (MDEV-32134)

InnoDB may hang when running out of buffer pool (MDEV-32588)

Corrupt index(es) on busy table when using FOREIGN KEY (MDEV-30531)

InnoDB Recovery doesn't display encryption message when no encryption configuration passed (MDEV-31098)

Wrong information about innodb_checksum_algorithm in the information_schema.SYSTEM_VARIABLES (MDEV-

31473)

InnoDB may fail to recover after being killed in fil_delete_tablespace() (MDEV-31826)

Create separate tpool thread for async aio (MDEV-31095)

UNDO logs still growing for write-intensive workloads (MDEV-32050)

Increase the default for innodb_purge_batch_size from 300 to 1000 (MDEV-32050)

Deprecate innodb_purge_rseg_truncate_frequency.

The motivation for introducing this in MySQL seems to have been to avoid stalls due to freeing undo log pages

or truncating undo log tablespaces. In MariaDB, innodb_undo_log_truncate=ON should be a much lighter

operation because it will not involve any log checkpoint. (MDEV-32050)

Slow full index scan in 10.6 vs 10.5 for the (slow) I/O-bound case (MDEV-30986)

LOAD DATA into InnoDB w/partitions: huge performance loss, affected 10.6+ (MDEV-31835)

Disable read-ahead for temporary tablespace (MDEV-32145)

Optimizer

New optimizer_switch setting, cset_narrowing , to enable the Charset Narrowing Optimization (MDEV-32113)

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

jointable materialization subquery optimization ignoring errors, then failing ASSERT. (MDEV-31983)

Server crashes in JOIN::cleanup after erroneous query with view (MDEV-32164)

Prepared statement return wrong result (missing row) (MDEV-9938)

Assertion `range->rows >= s->found_records' failed in best_access_path (MDEV-32682)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Parallel replication lags because innobase_kill_query() may fail to interrupt a lock wait (MDEV-32096)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Assertion `mode_ == m_local || transaction_.is_streaming()' failed in int wsrep::client_state::bf_abort(wsrep::seqno)

(MDEV-30217)

3950/4161

https://jira.mariadb.org/browse/MDEV-30802
https://jira.mariadb.org/browse/MDEV-32134
https://jira.mariadb.org/browse/MDEV-32588
https://jira.mariadb.org/browse/MDEV-30531
https://jira.mariadb.org/browse/MDEV-31098
https://jira.mariadb.org/browse/MDEV-31473
https://jira.mariadb.org/browse/MDEV-31826
https://jira.mariadb.org/browse/MDEV-31095
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-32050
https://jira.mariadb.org/browse/MDEV-30986
https://jira.mariadb.org/browse/MDEV-31835
https://jira.mariadb.org/browse/MDEV-32145
https://jira.mariadb.org/browse/MDEV-32113
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-31983
https://jira.mariadb.org/browse/MDEV-32164
https://jira.mariadb.org/browse/MDEV-9938
https://jira.mariadb.org/browse/MDEV-32682
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-32096
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-30217

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

OPTIMIZE TABLE crash (MDEV-28122)

Server crashes in Alter_info::add_stat_drop_index upon CREATE TABLE (MDEV-32449)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

mysql_install_db_win.test fails on second execution (MDEV-32232)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

3951/4161

https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-28122
https://jira.mariadb.org/browse/MDEV-32449
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-32232
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

maria-install-db fails on MacOS (MDEV-31871)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf upon query from partitioned table (MDEV-32388)

MSAN / Valgrind errors in Item_func_like::get_mm_leaf with temporal field (MDEV-32531)

ASAN errors in base_list_iterator::next / setup_table_map upon 2nd execution of PS (MDEV-32656)

safe_mutex: Found wrong usage of mutex 'LOCK_thd_data' and 'wait_mutex' (MDEV-32728)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Variables

Added the note_verbosity system variable to manage notes when an index cannot be used .

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.16, with links to detailed information on each push, see

the changelog .

Contributors

3952/4161

https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://jira.mariadb.org/browse/MDEV-31871
https://jira.mariadb.org/browse/MDEV-32388
https://jira.mariadb.org/browse/MDEV-32531
https://jira.mariadb.org/browse/MDEV-32656
https://jira.mariadb.org/browse/MDEV-32728
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/notes-when-an-index-cannot-be-used/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-10-6-16-changelog/

For a full list of contributors to MariaDB 10.6.16, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.3 MariaDB 10.6.15 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.15 Release Notes Changelog Overview of 10.6

Release date: 14 Aug 2023

MariaDB 10.6 is a previous long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5

with several entirely new features.

MariaDB 10.6.15 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

Upgrading from MySQL

MariaDB now detects and converts previously incompatible MySQL partition schemes (MDEV-29253)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Ubuntu 18.04 LTS "Bionic"

and Ubuntu 22.10 "Kinetic"

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

bzero wipes more bytes than necessary in set_global_from_ddl_log_entry (MDEV-31521)

Assertion `0' failed in Type_handler_row::field_type upon TO_CHAR with wrong argument (MDEV-29152)

mysql_upgrade fails due to old_mode="" , with "Cannot load from mysql.proc. The table is probably corrupted"

(MDEV-28915)

Alternate download from mariadb.org

3953/4161

https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.15/
https://mariadb.com/kb/en/mariadb-10-6-15-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29253
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-31521
https://jira.mariadb.org/browse/MDEV-29152
https://jira.mariadb.org/browse/MDEV-28915

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

Crashing on I/O error is unhelpful (MDEV-27593)

SIGSEGV in log_sort_flush_list() in InnoDB crash recovery (MDEV-31354)

InnoDB tables are being flagged as corrupted on an I/O bound server (MDEV-31767)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

Server Status Innodb_row_lock_time% is reported in seconds (MDEV-29311)

innochecksum dies with Floating point exception (MDEV-31641)

Add InnoDB engine information to the slow query log (MDEV-31558)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

ER_DUP_KEY in mysql.innodb_table_stats upon RENAME on sequence (MDEV-31607)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

InnoDB: Failing assertion: page_type == i_s_page_type[page_type].type_value (MDEV-31386)

btr_estimate_n_rows_in_range() accesses unfixed, unlatched page (MDEV-30648)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

ASAN errors in dict_v_col_t::detach upon adding key to virtual column (MDEV-31416)

Purge trying to access freed secondary index page (MDEV-31264)

Freed data pages are not always being scrubbed (MDEV-31253)

InnoDB recovery hangs after reporting corruption (MDEV-31353)

!cursor->index->is_committed() in row0ins.cc after update to 10.4.13 from 10.3.21 (MDEV-22739)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

InnoDB recovery and mariadb-backup --prepare fail to report detailed progress (MDEV-29911)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Server freeze due to innodb_change_buffering and innodb_file_per_table=0 (MDEV-31088)

Change buffer entries are left behind when freeing a page, causing secondary index corruption when the page is later

reused (MDEV-31385)

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

ANALYZE FORMAT=JSON now includes InnoDB engine statistics for each table (MDEV-31577)

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

3954/4161

https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-27593
https://jira.mariadb.org/browse/MDEV-31354
https://jira.mariadb.org/browse/MDEV-31767
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-29311
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-31558
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-31607
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31386
https://jira.mariadb.org/browse/MDEV-30648
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31416
https://jira.mariadb.org/browse/MDEV-31264
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31353
https://jira.mariadb.org/browse/MDEV-22739
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373
https://jira.mariadb.org/browse/MDEV-31088
https://jira.mariadb.org/browse/MDEV-31385
https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31577
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

Calling a function from a different database in a slave side trigger crashes (MDEV-29894)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node never returns from Donor/Desynced to Synced when wsrep_mode = BF_ABORT_MARIABACKUP (MDEV-31737

)

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

Assertion failure !lock.was_chosen_as_deadlock_victim in trx0trx.h:1065 (MDEV-30963)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.15, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.15, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.4 MariaDB 10.6.14 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Alternate download from mariadb.org

3955/4161

https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-29894
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31737
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-30963
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-10-6-15-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/

Download 10.6.14 Release Notes Changelog Overview of 10.6

Release date: 7 Jun 2023

Warning: This version can cause InnoDB file corruption under high I/O-bound load. Stick to an earlier release, or

upgrade to a more recent release, if possible. See MDEV-31767 .

MariaDB 10.6 is the current long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5

with several entirely new features.

MariaDB 10.6.14 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

InnoDB hang fixes (MDEV-31158 , MDEV-31343 , MDEV-31350)

Innodb_buffer_pool_read_requests is not updated correctly (MDEV-31309)

InnoDB monitor trx_rseg_history_len was accidentally disabled by default (MDEV-31308)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.14, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.14, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.5 MariaDB 10.6.13 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Alternate download from mariadb.org

3956/4161

https://downloads.mariadb.org/mariadb/10.6.14/
https://mariadb.com/kb/en/mariadb-10-6-14-changelog/
https://jira.mariadb.org/browse/MDEV-31767
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-31158
https://jira.mariadb.org/browse/MDEV-31343
https://jira.mariadb.org/browse/MDEV-31350
https://jira.mariadb.org/browse/MDEV-31309
https://jira.mariadb.org/browse/MDEV-31308
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-6-14-changelog/
https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/

Download 10.6.13 Release Notes Changelog Overview of 10.6

Release date: 10 May 2023

MariaDB 10.6 is the current long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5

with several entirely new features.

MariaDB 10.6.13 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

rec_get_offsets() is not optimal (MDEV-30567)

Performance regression in fil_space_t::try_to_close() introduced in MDEV-23855 (MDEV-30775)

InnoDB recovery hangs when buffer pool ran out of memory (MDEV-30551)

InnoDB undo log truncation fails to wait for purge of history (MDEV-30671

MariaDB crash due to DB_FAIL reported for a corrupted page (MDEV-30397)

Deadlock between INSERT and InnoDB non-persistent statistics update (MDEV-30638)

InnoDB hang on B-tree split or merge (MDEV-29835)

Performance regression in locking reads from secondary indexes (MDEV-30357)

Improve adaptive flushing (MDEV-26055)

Make page flushing even faster (MDEV-26827)

Purge misses a chance to free not-yet-reused undo pages (MDEV-29593)

InnoDB temporary tablespace: reclaiming of free space does not work (MDEV-26782)

Fix miscount of doublewrites by Innodb_data_written (MDEV-31124)

Backup

mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Race condition between buffer pool flush and log file deletion in mariadb-backup --prepare (MDEV-30860)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Ensured SHOW-SLAVE-STATUS is processed on the parallel slave having a necessary mutex always intialized

(MDEV-30620)

Fixed the slave applier to report a correct error when gtid_slave_pos insert fails for some (engine) reasons (MDEV-

31038)

Made parallel slave reports in performance schema consistent with that of show-slave-status (MDEV-26071)

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301).

New optimizer_switch option, hash_join_cardinality , is added. It is off by default. When set to ON, the optimizer will

produce tighter bounds for hash join output cardinality. (MDEV-30812)

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

3957/4161

https://downloads.mariadb.org/mariadb/10.6.13/
https://mariadb.com/kb/en/mariadb-10-6-13-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034
https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-30775
https://jira.mariadb.org/browse/MDEV-30551
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-30397
https://jira.mariadb.org/browse/MDEV-30638
https://jira.mariadb.org/browse/MDEV-29835
https://jira.mariadb.org/browse/MDEV-30357
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-26827
https://jira.mariadb.org/browse/MDEV-29593
https://jira.mariadb.org/browse/MDEV-26782
https://jira.mariadb.org/browse/MDEV-31124
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-30860
https://jira.mariadb.org/browse/MDEV-29621
https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780
https://jira.mariadb.org/browse/MDEV-30620
https://jira.mariadb.org/browse/MDEV-31038
https://jira.mariadb.org/browse/MDEV-26071
https://jira.mariadb.org/browse/MDEV-26301
https://mariadb.com/kb/en/hash_join_cardinality-optimizer_switch-flag/
https://jira.mariadb.org/browse/MDEV-30812
https://jira.mariadb.org/browse/MDEV-20057

ANALYZE FORMAT=JSON now prints more information about Block Nested Loop joins: block-nl-join element

now has r_loops , r_effective_rows and r_other_time_ms fields (MDEV-30806 , MDEV-30830 , MDEV-

30972).

A GROUP BY query with MIN(primary_key) in select list and primary_key<>const in the WHERE could

produce wrong result when executed with "Using index for group-by" strategy (MDEV-30605)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Image

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Fedora 36.

In this release repositories for Fedora 38 and Ubuntu 23.04 Lunar have been added.

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.13, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.13, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.6 MariaDB 10.6.12 Release Notes
Download Release Notes Changelog Overview of 10.6

Release date: 6 Feb 2023

MariaDB 10.6 is the current long-term series of MariaDB, maintained until July 2026. It is an evolution of MariaDB 10.5

with several entirely new features.

MariaDB 10.6.12 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.6.11 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

3958/4161

https://jira.mariadb.org/browse/MDEV-30806
https://jira.mariadb.org/browse/MDEV-30830
https://jira.mariadb.org/browse/MDEV-30972
https://jira.mariadb.org/browse/MDEV-30605
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-6-13-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
http://downloads.mariadb.org/mariadb/10.6.12
https://mariadb.com/kb/en/mariadb-10-6-12-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

Fedora, openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2

digest algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

mariadb-backup --backup --incremental --throttle=... hangs (MDEV-29896)

Crash after recovery, with InnoDB: Tried to read (MDEV-30132)

Trying to write ... bytes at ... outside the bounds (MDEV-30069)

TRUNCATE breaks FOREIGN KEY locking (MDEV-29504 , MDEV-29849)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION.NAME is NULL for undo tablespaces (MDEV-30119)

Fixed hangs and error handling in B-tree operations (MDEV-29603 , MDEV-30400)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mysqlbinlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

JSON

JSON_PRETTY added as an alias for JSON_DETAILED (MDEV-19160)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Fedora 35.

In this release repositories for Fedora 37 and Ubuntu 22.10 Kinetic have been added.

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.12, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.12, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

3959/4161

https://mariadb.org/new-gpg-release-key-rpms/
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417
https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984
https://jira.mariadb.org/browse/MDEV-29896
https://jira.mariadb.org/browse/MDEV-30132
https://jira.mariadb.org/browse/MDEV-30069
https://jira.mariadb.org/browse/MDEV-29504
https://jira.mariadb.org/browse/MDEV-29849
https://jira.mariadb.org/browse/MDEV-30119
https://jira.mariadb.org/browse/MDEV-29603
https://jira.mariadb.org/browse/MDEV-30400
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-19160
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://mariadb.com/kb/en/mariadb-10-6-12-changelog/
https://mariadb.org/mariadb-10-10-3-10-9-5-10-8-7-10-7-8-10-6-12-10-5-19-10-4-28-and-10-3-38-now-available//
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.6.2.7 MariaDB 10.6.11 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.11 Release Notes Changelog Overview of 10.6

Release date: 7 Nov 2022

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB, maintained until July 2026. It is an evolution of

MariaDB 10.5 with several entirely new features.

MariaDB 10.6.11 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

SSL

The server no longer tolerates incorrectly configured SSL (MDEV-29811). If you have enabled SSL in my.cnf but

have not configured it properly (for example, a certificate file is missing), MariaDB used to silently disable SSL,

leaving you under impression that everything was fine and connections were secure. Since this release, MariaDB will

fail to start if SSL is enabled, but cannot be switched on.

Backup

Assertion on info.page_size failed in xb_delta_open_matching_space (MDEV-18589)

InnoDB

Adaptive hash index MDEV-27700 , MDEV-29384

MVCC and locking (MDEV-29666 , MDEV-27927 , MDEV-28709 , MDEV-29635)

Virtual columns (MDEV-29299 , MDEV-29753)

InnoDB crash recovery fixes (MDEV-29559)

Race condition between KILL and transaction commit (MDEV-29368)

Implement CHECK TABLE&EXTENDED for InnoDB (MDEV-24402)

InnoDB persistent statistics fail to update after bulk insert (MDEV-28327)

Galera

Galera updated to 26.4.13

Galera server crashes after 10.3 > 10.4 upgrade (MDEV-29375)

wsrep_incoming_addresses status variable prints 0 as port number if the port is not mentioned in

wsrep_node_incoming_address system variable (MDEV-28868)

Replication

XA COMMIT is not binlogged when the XA transaction has not updated any transaction engine (MDEV-25616)

Concurrent CREATE TRIGGER statements made to binlog without any mixup (MDEV-25606)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

Alternate download from mariadb.org

3960/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.11/
https://mariadb.com/kb/en/mariadb-10-6-11-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29811
https://jira.mariadb.org/browse/MDEV-18589
https://jira.mariadb.org/browse/MDEV-27700
https://jira.mariadb.org/browse/MDEV-29384
https://jira.mariadb.org/browse/MDEV-29666
https://jira.mariadb.org/browse/MDEV-27927
https://jira.mariadb.org/browse/MDEV-28709
https://jira.mariadb.org/browse/MDEV-29635
https://jira.mariadb.org/browse/MDEV-29299
https://jira.mariadb.org/browse/MDEV-29753
https://jira.mariadb.org/browse/MDEV-29559
https://jira.mariadb.org/browse/MDEV-29368
https://jira.mariadb.org/browse/MDEV-24402
https://jira.mariadb.org/browse/MDEV-28327
https://jira.mariadb.org/browse/MDEV-29375
https://jira.mariadb.org/browse/MDEV-28868
https://jira.mariadb.org/browse/MDEV-25616
https://jira.mariadb.org/browse/MDEV-25606

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Adds OCI labels to image (fixes issue 436 and users need for version)

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.11, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.11, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.8 MariaDB 10.6.10 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.10 Release Notes Changelog Overview of 10.6

Release date: 19 Sep 2022

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB, maintained until July 2026. It is an evolution of

MariaDB 10.5 with several entirely new features.

MariaDB 10.6.10 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

Issues Fixed

Alternate download from mariadb.org

3961/4161

https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468
https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3
https://mariadb.com/kb/en/mariadb-10-6-11-changelog/
https://mariadb.org/mariadb-10-9-4-10-8-6-10-7-7-10-6-11-10-5-18-10-4-27-and-10-3-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.10/
https://mariadb.com/kb/en/mariadb-10610-changelog/
https://mariadb.com/kb/en/release-criteria/

Assertion mysql_mutex_assert_owner(&log_sys.flush_order_mutex) failed in mtr_t::commit() (MDEV-29383)

Frequent "Data structure corruption" in InnoDB after OOM (MDEV-29374)

Recovery or backup of instant ALTER TABLE is incorrect (MDEV-29438)

InnoDB Temporary Tablespace (ibtmp1) is continuously growing (MDEV-28240)

Full text index corruption if shutdown before changes are fully flushed (MDEV-29342)

JSON_VALUE() does not parse NULL properties properly (MDEV-27151)

InnoDB hangs on multiple concurrent requests of a cold ROW_FORMAT=COMPRESSED page (MDEV-27983)

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.10, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.10, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.9 MariaDB 10.6.9 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.9 Release Notes Changelog Overview of 10.6

Release date: 15 Aug 2022

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB. It is an evolution of MariaDB 10.5 with several

entirely new features.

MariaDB 10.6.8 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Regressions
Unfortunately, some bugs have been found post release, so this is updated to help avoid these issues if possible. All are

fixed in MariaDB 10.6.10.

MDEV-29374 4 a crash shortly after a page merge (can be triggered by an UPDATE or DELETE or, say, rollback

of an INSERT) can cause data corruption

MDEV-29342 4 if InnoDB table had a fulltext index and only one new row was inserted between the last sync

(performed asynchronously by a dedicated thread) and server shutdown, the fulltext index wasn't properly updated

and became out of sync with the data. Before 10.6.9 this happened silently, in 10.6.9 an assertion crashed the server

after detecting the inconsistency.

Notable Items

Alternate download from mariadb.org

3962/4161

https://jira.mariadb.org/browse/MDEV-29383
https://jira.mariadb.org/browse/MDEV-29374
https://jira.mariadb.org/browse/MDEV-29438
https://jira.mariadb.org/browse/MDEV-28240
https://jira.mariadb.org/browse/MDEV-29342
https://jira.mariadb.org/browse/MDEV-27151
https://jira.mariadb.org/browse/MDEV-27983
https://mariadb.com/kb/en/mariadb-10610-changelog/
https://mariadb.org/mariadb-10-9-3-10-8-5-10-7-6-and-10-6-10-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.9/
https://mariadb.com/kb/en/mariadb-1069-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29374
https://jira.mariadb.org/browse/MDEV-29342

InnoDB

InnoDB corruption due to lack of file locking (MDEV-28495)

FULLTEXT search with apostrophe, and mandatory words (MDEV-20797)

ALTER TABLE IMPORT TABLESPACE corrupts an encrypted table (MDEV-28779)

ALTER TABLE wrong-result fix (MDEV-26294)

Crash recovery fixes (MDEV-28668 , MDEV-28731)

DDL crash recovery fixes (MDEV-28752 , MDEV-28802 , MDEV-28864 , MDEV-28870 , MDEV-28923 ,

MDEV-28977)

Avoid crashes on corrupted data (MDEV-13542 , MDEV-18519 , MDEV-21098 , MDEV-22388 , MDEV-28457

)

Replication

explicit_defaults_for_timestamp is stored in binlog, so that CREATE TABLE on slave would always have the same

effect as on master. (MDEV-29078)

ER_SLAVE_INCIDENT error is specified now on slave to be seen with SHOW-SLAVE-STATUS (MDEV-21087)

INCIDENT_EVENT is no longer binlogged when a being logged transaction can be safely rolledback (MDEV-21443

)

sequences related row-format events are made to correspond to binlog_row_image (MDEV-28487)

Possible reason of FLUSH BINARY LOGS hang is eliminated (MDEV-28948)

Fix out-of-order gtid error in the circular semisync setup (MDEV-28609)

Galera

Possible to write/update with read_only=ON and not a SUPER privilege (MDEV-28546)

Node crashes with Transport endpoint is not connected mysqld got signal 6 (MDEV-25068)

Galera4 not able to report proper wsrep_incoming_addresses (MDEV-20627)

Galera should replicate nextval()-related changes in sequences with INCREMENT <> 0, at least NOCACHE ones

with engine=InnoDB (MDEV-27862)

Add support for OpenSSL 3.0 in Galera (MDEV-25949)

Optimizer

Server crash in JOIN_CACHE::free or in copy_fields (MDEV-23809)

Queries that use DISTINCT and an always-constant function like COLLATION(aggegate_func(...)) could cause

a server crash. Note that COLLATION() is a special function - its value is constant even if its argument is not

costant.

Crash when using ANY predicand with redundant subquery in GROUP BY clause (MDEV-29139)

A query with a subuquery in this form could cause a crash:

... ANY (SELECT ... GROUP BY (SELECT redundant_subselect_here)) ...

MariaDB Server SEGV on INSERT .. SELECT (MDEV-26427)

Certain queries in form "INSERT ... SELECT with_aggregate_or_window_func" could cause a crash.

restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (MDEV-28749)

Subquery semi-join optimization could miss LooseScan or FirstMatch strategies for certain queries.

Optimizer uses all partitions after upgrade to 10.3 (MDEV-28246)

For multi-table UPDATE or DELETE queries, the optimizer failed to apply Partition Pruning optimization for the

table that is updated or deleted from.

Range optimizer regression for key IN (const,) (MDEV-25020)

The issue can be observed on MariaDB 10.5.9 and later versions which have the fix for MDEV-9750 . That fix

introduceds optimizer_max_sel_arg_weight.

If one sets optimizer_max_sel_arg_weight to a very high value or zero (which means "unlimited") and runs

queries that produce heavy-weight graphs, they can observe a performance slowdown, e.g.:

table.keyXpartY [NOT] IN (...)

Wrong result with table elimination combined with not_null_range_scan (MDEV-28858)

If one runs with optimizer_switch='not_null_range_scan=on' (which is not enabled by default), a query that

does a join and has const tables could produce a wrong result.

OpenSSL

3963/4161

https://jira.mariadb.org/browse/MDEV-28495
https://jira.mariadb.org/browse/MDEV-20797
https://jira.mariadb.org/browse/MDEV-28779
https://jira.mariadb.org/browse/MDEV-26294
https://jira.mariadb.org/browse/MDEV-28668
https://jira.mariadb.org/browse/MDEV-28731
https://jira.mariadb.org/browse/MDEV-28752
https://jira.mariadb.org/browse/MDEV-28802
https://jira.mariadb.org/browse/MDEV-28864
https://jira.mariadb.org/browse/MDEV-28870
https://jira.mariadb.org/browse/MDEV-28923
https://jira.mariadb.org/browse/MDEV-28977
https://jira.mariadb.org/browse/MDEV-13542
https://jira.mariadb.org/browse/MDEV-18519
https://jira.mariadb.org/browse/MDEV-21098
https://jira.mariadb.org/browse/MDEV-22388
https://jira.mariadb.org/browse/MDEV-28457
https://jira.mariadb.org/browse/MDEV-29078
https://jira.mariadb.org/browse/MDEV-21087
https://jira.mariadb.org/browse/MDEV-21443
https://jira.mariadb.org/browse/MDEV-28487
https://jira.mariadb.org/browse/MDEV-28948
https://jira.mariadb.org/browse/MDEV-28609
https://jira.mariadb.org/browse/MDEV-28546
https://jira.mariadb.org/browse/MDEV-25068
https://jira.mariadb.org/browse/MDEV-20627
https://jira.mariadb.org/browse/MDEV-27862
https://jira.mariadb.org/browse/MDEV-25949
https://jira.mariadb.org/browse/MDEV-23809
https://jira.mariadb.org/browse/MDEV-29139
https://jira.mariadb.org/browse/MDEV-26427
https://jira.mariadb.org/browse/MDEV-28749
https://jira.mariadb.org/browse/MDEV-28246
https://jira.mariadb.org/browse/MDEV-25020
https://jira.mariadb.org/browse/MDEV-9750
https://jira.mariadb.org/browse/MDEV-28858

Backport OpenSSL-3.0 compatibility to 10.6 branch (MDEV-28133)

JSON

JSON_TABLE: extract document fragment into JSON column (MDEV-25875)

CONNECT

CONNECT Engine now supports INSERT IGNORE with Mysql Table type (MDEV-27766)

mariadb Client

New mariadb client option, -enable-cleartext-plugin . Option does not do anything, and is for MySQL-

compatibility purposes only.

General

explicit_defaults_for_timestamp now also has a session scope, not only global (MDEV-29225)

Crash in JSON_EXTRACT (MDEV-29188)

ALTER TABLE ALGORITHM=NOCOPY does not work after upgrade (MDEV-28727)

Server crash upon CREATE VIEW with unknown column in ON condition (MDEV-29088)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Debian 10 "Buster" for

ppc64el

Repositories for Ubuntu 22.04 and RHEL/Rocky 9 have been added in this release

Security

Fixes for the following security vulnerabilities :

CVE-2023-5157

CVE-2022-32082

CVE-2022-32089

CVE-2022-32081

CVE-2018-25032

CVE-2022-32091

CVE-2022-32084

CVE-2022-38791

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.9, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.9, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.10 MariaDB 10.6.8 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

3964/4161

https://jira.mariadb.org/browse/MDEV-28133
https://jira.mariadb.org/browse/MDEV-25875
https://jira.mariadb.org/browse/MDEV-27766
https://jira.mariadb.org/browse/MDEV-29225
https://jira.mariadb.org/browse/MDEV-29188
https://jira.mariadb.org/browse/MDEV-28727
https://jira.mariadb.org/browse/MDEV-29088
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-1069-changelog/
https://mariadb.org/mariadb-10-8-4-10-7-5-10-6-9-10-5-17-10-4-26-and-10-3-36-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/

Download 10.6.8 Release Notes Changelog Overview of 10.6

Release date: 20 May 2022

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB. It is an evolution of MariaDB 10.5 with several

entirely new features.

MariaDB 10.6.8 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Note that MariaDB 10.6.8 is not yet available for Ubuntu 22.04 due to MDEV-28133 . MariaDB 10.6.9 will be

available.

Notable Items

InnoDB

innodb_disallow_writes removed (MDEV-25975)

InnoDB gap locking fixes (MDEV-20605 , MDEV-28422)

InnoDB performance improvements (MDEV-27557 , MDEV-28185 , MDEV-27767 , MDEV-28313 , MDEV-

28137 , MDEV-28465 , MDEV-26789)

Backup regression fixes (MDEV-27919)

InnoDB portability: FreeBSD futexes (MDEV-26476), POWER and s390x transactional memory (MDEV-27956)

ALTER TABLE: Fixed bogus duplicate key errors (MDEV-15250)

DDL and crash recovery fixes (MDEV-27274 , MDEV-27234 , MDEV-27817)

Requests to recalculate persistent statistics were sometimes lost (MDEV-27805)

Replication

Semisync-slave server recovery is refined to correctly rollback prepared transaction (MDEV-28461)

Circular semisync setup endless event circulation is handled (MDEV-27760)

Semisync-slave server recovery is extended to work on new server_id server (MDEV-27342)

Server initialization time gtid_slave_pos purge related reason of crashing in binlog background thread is removed

(MDEV-26473)

Shutdown of the semisync master can't produce inconsistent state anymore (MDEV-11853)

Binlogs disappear after rsync IST (MDEV-28583)

master crash is eliminated in compressed semisync replication protocol with packet counting amendment (MDEV-

25580)

OPTIMIZE on a sequence does not cause counterfactual ER_BINLOG_UNSAFE_STATEMENT anymore (MDEV-

24617)

Automatically generated Gtid_log_list_event is made to recognize within replication event group as a formal member

(MDEV-28550)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE using two or more unique key values at a time with

MIXED format binlogging is corrected (MDEV-28310)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE stops issuing unnecessary "Unsafe statement" with

MIXED binlog format (MDEV-21810)

Incomplete replication event groups are detected to error out by the slave IO thread (MDEV-27697)

mysqlbinlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be listed

with the actual bytes (MDEV-14608)

Backup

Incorrect binlogs after Galera SST using rsync and mariabackup (MDEV-27524)

mariabackup does not detect multi-source replication slave (MDEV-21037)

Useless warning "InnoDB: Allocated tablespace ID <id> for <tablename>, old maximum was 0" during backup stage

(MDEV-27343)

mariabackup prepare fails for incrementals if a new schema is created after full backup is taken (MDEV-28446))

Alternate download from mariadb.org

3965/4161

https://downloads.mariadb.org/mariadb/10.6.17/
http://downloads.mariadb.org/mariadb/10.6.8
https://mariadb.com/kb/en/mariadb-1068-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-28133
https://jira.mariadb.org/browse/MDEV-25975
https://jira.mariadb.org/browse/MDEV-20605
https://jira.mariadb.org/browse/MDEV-28422
https://jira.mariadb.org/browse/MDEV-27557
https://jira.mariadb.org/browse/MDEV-28185
https://jira.mariadb.org/browse/MDEV-27767
https://jira.mariadb.org/browse/MDEV-28313
https://jira.mariadb.org/browse/MDEV-28137
https://jira.mariadb.org/browse/MDEV-28465
https://jira.mariadb.org/browse/MDEV-26789
https://jira.mariadb.org/browse/MDEV-27919
https://jira.mariadb.org/browse/MDEV-26476
https://jira.mariadb.org/browse/MDEV-27956
https://jira.mariadb.org/browse/MDEV-15250
https://jira.mariadb.org/browse/MDEV-27274
https://jira.mariadb.org/browse/MDEV-27234
https://jira.mariadb.org/browse/MDEV-27817
https://jira.mariadb.org/browse/MDEV-27805
https://jira.mariadb.org/browse/MDEV-28461
https://jira.mariadb.org/browse/MDEV-27760
https://jira.mariadb.org/browse/MDEV-27342
https://jira.mariadb.org/browse/MDEV-26473
https://jira.mariadb.org/browse/MDEV-11853
https://jira.mariadb.org/browse/MDEV-28583
https://jira.mariadb.org/browse/MDEV-25580
https://jira.mariadb.org/browse/MDEV-24617
https://jira.mariadb.org/browse/MDEV-28550
https://jira.mariadb.org/browse/MDEV-28310
https://jira.mariadb.org/browse/MDEV-21810
https://jira.mariadb.org/browse/MDEV-27697
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-27524
https://jira.mariadb.org/browse/MDEV-21037
https://jira.mariadb.org/browse/MDEV-27343
https://jira.mariadb.org/browse/MDEV-28446

Optimizer

Query performance degradation in newer MariaDB versions when using many tables (MDEV-28073)

A SEGV in Item_field::used_tables/update_depend_map_for_order... (MDEV-26402)

ANALYZE FORMAT=JSON fields are incorrect for UNION ALL queries (MDEV-27699)

Subquery in an UPDATE query uses full scan instead of range (MDEV-22377)

Assertion `item1->type() == Item::FIELD_ITEM ... (MDEV-19398)

Server crashes in Expression_cache_tracker::fetch_current_stats (MDEV-28268)

MariaDB server crash at Item_subselect::init_expr_cache_tracker (MDEV-26164 , MDEV-26047)

Crash with union of my_decimal type in ORDER BY clause (MDEV-25994)

SIGSEGV in st_join_table::cleanup (MDEV-24560)

Assertion `!eliminated' failed in Item_subselect::exec (MDEV-28437)

General

Server error messages are now available in Chinese (MDEV-28227)

For RHEL/CentOS 7, non x86_64 architectures are no longer supported upstream and so our support will also be

dropped with this release

Packages for Ubuntu 22.04 LTS "Jammy" and Fedora 36 are not yet available pending the resolution of MDEV-28133

: Backport OpenSSL-3.0 compatibility to 10.6 branch

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Debian 9 "Stretch", Ubuntu

21.10 "Impish", and Fedora 34

Security

Fixes for the following security vulnerabilities :

CVE-2021-46669

CVE-2022-27376

CVE-2022-27377

CVE-2022-27378

CVE-2022-27379

CVE-2022-27380

CVE-2022-27381

CVE-2022-27382

CVE-2022-27383

CVE-2022-27384

CVE-2022-27386

CVE-2022-27387

CVE-2022-27444

CVE-2022-27445

CVE-2022-27446

CVE-2022-27447

CVE-2022-27448

CVE-2022-27449

CVE-2022-27451

CVE-2022-27452

CVE-2022-27455

CVE-2022-27456

CVE-2022-27457

CVE-2022-27458

CVE-2022-32087

CVE-2022-32086

CVE-2022-32085

CVE-2022-32083

CVE-2022-32088

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.8, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.8, see the MariaDB Foundation release announcement .

3966/4161

https://jira.mariadb.org/browse/MDEV-28073
https://jira.mariadb.org/browse/MDEV-26402
https://jira.mariadb.org/browse/MDEV-27699
https://jira.mariadb.org/browse/MDEV-22377
https://jira.mariadb.org/browse/MDEV-19398
https://jira.mariadb.org/browse/MDEV-28268
https://jira.mariadb.org/browse/MDEV-26164
https://jira.mariadb.org/browse/MDEV-26047
https://jira.mariadb.org/browse/MDEV-25994
https://jira.mariadb.org/browse/MDEV-24560
https://jira.mariadb.org/browse/MDEV-28437
https://mariadb.com/kb/en/mariadb-error-codes/
https://jira.mariadb.org/browse/MDEV-28227
https://jira.mariadb.org/browse/MDEV-28133
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-1068-changelog/
https://mariadb.org/mariadb-10-9-1-10-8-3-10-7-4-10-6-8-10-5-16-10-4-25-10-3-35-and-10-2-44-now-available/

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.11 MariaDB 10.6.7 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.7 Release Notes Changelog Overview of 10.6

Release date: 12 Feb 2022

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB. It is an evolution of MariaDB 10.5 with several

entirely new features.

MariaDB 10.6.7 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

This release fixes a blocking problem with the MariaDB 10.6.6 release when manually running mariadb-upgrade.

(MDEV-27789)

See MariaDB 10.6.6 for other changes since the previous release.

InnoDB

Set innodb_change_buffering=none by default (MDEV-27734)

Security

Fixes for the following security vulnerabilities :

CVE-2021-46665

CVE-2021-46664

CVE-2021-46661

CVE-2021-46668

CVE-2021-46663

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.7, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.7, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

Alternate download from mariadb.org

3967/4161

https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
http://downloads.mariadb.org/mariadb/10.6.7
https://mariadb.com/kb/en/mariadb-1067-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-27789
https://jira.mariadb.org/browse/MDEV-27734
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-1067-changelog/
https://mariadb.org/mariadb-10-8-2-rc-and-mariadb-10-7-3-10-6-7-10-5-15-10-4-24-10-3-34-and-10-2-43-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.12 MariaDB 10.6.6 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.6 Release Notes Changelog Overview of 10.6

Release date: 9 Feb 2022

This release is no longer available for download after a problem was noticed when manually running mariadb-upgrade.

See MDEV-27789 for more details.

Please use a later release.

MariaDB 10.6 is the current long-term maintenance stable series of MariaDB. It is an evolution of MariaDB 10.5 with several

entirely new features.

MariaDB 10.6.6 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

--skip-symbolic-links does not disallow .isl file creation (MDEV-26870)

Indexed CHAR columns are broken with NO_PAD collations (MDEV-25440)

insert-intention lock conflicts with waiting ORDINARY lock (MDEV-27025)

Crash recovery improvements (MDEV-26784 , MDEV-27022 , MDEV-27183 , MDEV-27610)

mariabackup skips valid .ibd file (MDEV-26326)

Allow seamless upgrade despite ROW_FORMAT=COMPRESSED (MDEV-27736)

Galera

Galera updated to 26.4.11

Galera SST scripts should use ssl_capath (not ssl_ca) for CA directory (MDEV-27181)

Alter Sequence do not replicate to another nodes with in Galera Cluster (MDEV-19353)

Galera crash - Assertion. Possible parallel writeset problem (MDEV-26803)

CREATE TABLE with FOREIGN KEY constraint fails to apply in parallel (MDEV-27276)

Galera cluster node consider old server_id value even after modification of server_id [wsrep_gtid_mode=ON]

(MDEV-26223)

Replication

Seconds behind master corrected from artificial spikes at relay-log rotation (MDEV-16091)

Statement rollback in binlog when transaction creates or drop temporary table is set right (MDEV-26833)

CREATE-or-REPLACE SEQUENCE is made to binlog with the DDL flag to stabilize its parallel execution on slave

(MDEV-27365)

Packaging & Misc

prohibition running two upgrades in parallel (MDEV-27068 , MDEV-27107 , MDEV-27279)

Alternate download from mariadb.org

3968/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://mariadb.com/downloads
https://mariadb.com/kb/en/mariadb-1066-changelog/
https://jira.mariadb.org/browse/MDEV-27789
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-26870
https://jira.mariadb.org/browse/MDEV-25440
https://jira.mariadb.org/browse/MDEV-27025
https://jira.mariadb.org/browse/MDEV-26784
https://jira.mariadb.org/browse/MDEV-27022
https://jira.mariadb.org/browse/MDEV-27183
https://jira.mariadb.org/browse/MDEV-27610
https://jira.mariadb.org/browse/MDEV-26326
https://jira.mariadb.org/browse/MDEV-27736
https://jira.mariadb.org/browse/MDEV-27181
https://jira.mariadb.org/browse/MDEV-19353
https://jira.mariadb.org/browse/MDEV-26803
https://jira.mariadb.org/browse/MDEV-27276
https://jira.mariadb.org/browse/MDEV-26223
https://jira.mariadb.org/browse/MDEV-16091
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-27365
https://jira.mariadb.org/browse/MDEV-27068
https://jira.mariadb.org/browse/MDEV-27107
https://jira.mariadb.org/browse/MDEV-27279

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Ubuntu 21.04 Hirsute,

CentOS 8, and Fedora 33

mariadb_repo_setup script updated to version 2022-02-08, with the following fixes and enhancements:

Default location of the script has been moved to: https://r.mariadb.com/downloads/mariadb_repo_setup (old

location is deprecated, but still works)

The GPG keyring file, used with Debian and Ubuntu repositories, has moved to:

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg and the checksum for the file can be found at:

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256

Support for RHEL and SLES aarch64 repositories added

New function added to verify that the MariaDB Server version, if specified on the command line, follows the

correct naming and that a corresponding repository actually exists.

Fixed repository pinning for Ubuntu and Debian repositories

MariaDB Server 10.7 is now the default server version

Docker Library

Faster initialization by disabling binary logging during initialization (MDEV-27074)

mysql_upgrade can be run if needed using the environment variable MARIADB_AUTO_UPGRADE=1 (MDEV-25670

)

A healthcheck script /usr/local/bin/healthcheck.sh is installed in the container with various checking options (MDEV-

25434)

mysql@localhost user is created with the environment variable MARIADB_MYSQL_LOCALHOST_USER=1 and

additional grants (beyond USAGE) with MARIADB_MYSQL_LOCALHOST_GRANTS={global grant list} (MDEV-

27732)

skip innodb buffer pool loads/dumps on temporary startup/shutdown for faster startup/initialization, and accurate

"healthcheck.sh --innodb_buffer_pool_loaded"

change group ownership on datadir/socket dir (issue #401)

log note about note on Securing system users, mysql_secure_installation not required (reddit suggestion)

speed up Docker Library initialization of timezones (MDEV-27608 , MDEV-23326)

MariaDB names of executable programs and scripts used instead of historical mysql ones

Security

Fixes for the following security vulnerabilities :

CVE-2022-24052

CVE-2022-24051

CVE-2022-24050

CVE-2022-24048

CVE-2021-46659

CVE-2022-0778

CVE-2022-21595

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.6, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.13 MariaDB 10.6.5 Release Notes
3969/4161

https://r.mariadb.com/downloads/mariadb_repo_setup
https://supplychain.mariadb.com/mariadb-keyring-2019.gpg
https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256
https://jira.mariadb.org/browse/MDEV-27074
https://jira.mariadb.org/browse/MDEV-25670
https://jira.mariadb.org/browse/MDEV-25434
https://jira.mariadb.org/browse/MDEV-27732
https://github.com/MariaDB/mariadb-docker/issues/401
https://www.reddit.com/r/docker/comments/rhwf28/mysql_secure_installation_on_mariadb_with_docker/
https://jira.mariadb.org/browse/MDEV-27608
https://jira.mariadb.org/browse/MDEV-23326
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-1066-changelog/
https://mariadb.org/mariadb-10-8-1-rc-and-mariadb-10-7-2-10-6-6-10-5-14-10-4-23-10-3-33-and-10-2-42-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.5 Release Notes Changelog Overview of 10.6

Release date: 8 Nov 2021

MariaDB 10.6 is the current stable series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new features.

MariaDB 10.6.5 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Linux after kernel version 5.10 has a io-uring regression causing a write to storage to be lost, or not acknowledged.

As such innodb_use_native_aio will default to 0 (off) until 5.16. If innodb_use_native_aio is enabled in your

configuration, a warning will be logged, however it will continue with the io-uring enabled, potentially resulting in a

hang, or an assertion later. The long term support kernel 5.14.14 we haven't observed failures, and 5.15.0-rc7 failures

have been observed, though less frequently. If you have innodb_use_native_aio explicitly enabled, and are using

watch out for a lack of InnoDB updates followed by a 10 minute timeout. See MDEV-26674 for details.

ALTER TABLE&IMPORT TABLESPACE fixes (MDEV-18543 , MDEV-20931 , MDEV-26131 , MDEV-26621)

innodb_undo_log_truncate fixes (MDEV-26445 , MDEV-26450 , MDEV-26672 , MDEV-26864)

Page I/O performance fixes (MDEV-25215 , MDEV-26547 , MDEV-26626 , MDEV-26819)

Replication timeouts with XA PREPARE (MDEV-26682)

Improved DDL and data dictionary (MDEV-25919)

Performance fixes (MDEV-26356 , MDEV-26467 , MDEV-26826)

Replication

Memory hogging on slave by ROW event applier is eliminated (MDEV-26712)

mysql --binary-mode now properly handles \\0 in data (MDEV-25444)

Fixes race condition between SHOW BINARY LOGS and RESET MASTER (MDEV-20215)

Missed statement rollback in case transaction drops or create temporary table is corrected (MDEV-26833)

Audit Plugin

The QUERY_DDL server_audit_events setting now logs CREATE/DROP [PROCEDURE / FUNCTION / USER]

statements. See MariaDB Audit Plugin - Log Settings. (MDEV-23457)

Packaging & Misc

Session tracking flag in OK_PACKET (MDEV-26868)

Some views force server (and mysqldump) to generate invalid SQL for their definitions (MDEV-26299)

Security

Fixes for the following security vulnerabilities :

CVE-2021-46667

CVE-2021-46662

CVE-2022-27385

CVE-2022-27385

CVE-2022-31624

Changelog

Alternate download from mariadb.org

3970/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
http://downloads.mariadb.org/mariadb/10.6.5
https://mariadb.com/kb/en/mariadb-1065-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-26674
https://jira.mariadb.org/browse/MDEV-18543
https://jira.mariadb.org/browse/MDEV-20931
https://jira.mariadb.org/browse/MDEV-26131
https://jira.mariadb.org/browse/MDEV-26621
https://jira.mariadb.org/browse/MDEV-26445
https://jira.mariadb.org/browse/MDEV-26450
https://jira.mariadb.org/browse/MDEV-26672
https://jira.mariadb.org/browse/MDEV-26864
https://jira.mariadb.org/browse/MDEV-25215
https://jira.mariadb.org/browse/MDEV-26547
https://jira.mariadb.org/browse/MDEV-26626
https://jira.mariadb.org/browse/MDEV-26819
https://jira.mariadb.org/browse/MDEV-26682
https://jira.mariadb.org/browse/MDEV-25919
https://jira.mariadb.org/browse/MDEV-26356
https://jira.mariadb.org/browse/MDEV-26467
https://jira.mariadb.org/browse/MDEV-26826
https://jira.mariadb.org/browse/MDEV-26712
https://jira.mariadb.org/browse/MDEV-25444
https://jira.mariadb.org/browse/MDEV-20215
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-23457
https://jira.mariadb.org/browse/MDEV-26868
https://jira.mariadb.org/browse/MDEV-26299
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624

For a complete list of changes and bugfixes made in MariaDB 10.6.5, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.14 MariaDB 10.6.4 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.4 Release Notes Changelog Overview of 10.6

Release date: 6 Aug 2021

Warning: This version can cause InnoDB file corruption on FreeBSD and on AIX. Stick to an earlier release, or upgrade

to a more recent release, if you are running either of these environments. See MDEV-26537 .

MariaDB 10.6 is the current stable series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new features.

MariaDB 10.6.4 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB no longer acquires advisory file locks by default (MDEV-24393)

Encryption: Automatically disable key rotation checks for file_key_management plugin (MDEV-14180)

Some fixes from MySQL 5.7.35 (MDEV-26205)

Fixed scrubbing on AIX (MDEV-26110)

buf_pool.flush_list corrupted by buffer pool resizing or ROW_FORMAT=COMPRESSED (MDEV-26200)

Optimizer

A query that uses ORDER BY .. LIMIT clause and "Range checked for each record optimization" could produce

incorrect results under some circumstances (MDEV-25858)

Queries that have more than 32 equality conditions comparing columns of different tables ("tableX.colX=tableY.colY)

could cause a stack overrun in the query optimizer (MDEV-17783 , MDEV-23937)

"Condition pushdown into derived table" optimization cannot be applied if the expression being pushed refers to a

derived table column which is computed from expression that has a stored function call, @session variable reference,

or other similar construct. The fix for MDEV-25969 makes it so that only the problematic part of the condition is not

pushed. The rest of the condition is now pushed. (MDEV-25969)

A query with window function on the left side of the subquery could cause a crash. (MDEV-25630)

Alternate download from mariadb.org

3971/4161

https://mariadb.com/kb/en/mariadb-1065-changelog/
https://mariadb.org/mariadb-10-7-1-rc-and-mariadb-10-6-5-10-5-13-10-4-22-10-3-32-and-10-2-41-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
http://downloads.mariadb.org/mariadb/10.6.4
https://mariadb.com/kb/en/mariadb-1064-changelog/
https://jira.mariadb.org/browse/MDEV-26537
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24393
https://jira.mariadb.org/browse/MDEV-14180
https://jira.mariadb.org/browse/MDEV-26205
https://jira.mariadb.org/browse/MDEV-26110
https://jira.mariadb.org/browse/MDEV-26200
https://jira.mariadb.org/browse/MDEV-25858
https://jira.mariadb.org/browse/MDEV-17783
https://jira.mariadb.org/browse/MDEV-23937
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25630

Fixed the issue fixed in MySQL Bug #76803: DML or locking SELECT statements that use outer joins could produce

this warning in the error log: [ERROR] InnoDB: Unlock row could not find a 3 mode lock on the

record. (MDEV-26106)

Packaging & Misc

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.6 for Ubuntu 20.10 Groovy

Debian 11 Bullseye repositories added

Galera updated to 26.4.9

Linux on IBM Z (s390x) architecture added with releases on Ubuntu-20.04 Focal

Security

Fixes for the following security vulnerabilities :

CVE-2021-2372

CVE-2021-2389

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.4, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.15 MariaDB 10.6.3 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.3 Release Notes Changelog Overview of 10.6

Release date: 6 Jul 2021

MariaDB 10.6 is the current stable series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new features.

MariaDB 10.6.3 is a Stable (GA) release.

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Changes

InnoDB

Maximum value of innodb_lock_wait_timeout is now 100000000, which means infinite timeout (MDEV-26067)

Alternate download from mariadb.org

3972/4161

https://jira.mariadb.org/browse/MDEV-26106
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://mariadb.com/kb/en/mariadb-1064-changelog/
https://mariadb.org/mariadb-10-6-4-10-5-12-10-4-21-10-3-31-and-10-2-40-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
http://downloads.mariadb.org/mariadb/10.6.3
https://mariadb.com/kb/en/mariadb-1063-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-26067

Write performance improvements: MDEV-25954 , MDEV-25948 , MDEV-25113 , MDEV-26004 , MDEV-25801

Atomic DDL rewrite (MDEV-25506)

Thinly provisioned SSD support for page_compressed tables (MDEV-26029)

Replication

Fix binlog background thread hang at shutdown (MDEV-26031)

General

The views INFORMATION_SCHEMA.KEYWORDS and INFORMATION_SCHEMA.SQL_FUNCTIONS have been

added to the information schema (MDEV-25129)

Assertion `thd->locked_tables_mode == LTM_NONE' failed in Locked_tables_list::init_locked_tables

(MDEV-25837)

Security

Fixes for the following security vulnerabilities :

CVE-2021-35604

CVE-2021-46658

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.3, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.16 MariaDB 10.6.2 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.2 Release Notes Changelog Overview of 10.6

Release date: 18 Jun 2021

MariaDB 10.6 is the current development series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new

features.

MariaDB 10.6.2 is a Release Candidate (RC) release.

Do not use non-stable (non-GA) releases in production!

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Alternate download from mariadb.org

3973/4161

https://jira.mariadb.org/browse/MDEV-25954
https://jira.mariadb.org/browse/MDEV-25948
https://jira.mariadb.org/browse/MDEV-25113
https://jira.mariadb.org/browse/MDEV-26004
https://jira.mariadb.org/browse/MDEV-25801
https://jira.mariadb.org/browse/MDEV-25506
https://jira.mariadb.org/browse/MDEV-26029
https://jira.mariadb.org/browse/MDEV-26031
https://jira.mariadb.org/browse/MDEV-25129
https://jira.mariadb.org/browse/MDEV-25837
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
https://mariadb.com/kb/en/mariadb-1063-changelog/
https://mariadb.org/mariadb-10-6-3-ga-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.2/
https://mariadb.com/kb/en/mariadb-1062-changelog/
https://mariadb.com/kb/en/release-criteria/

Register now for our MariaDB Community Server 10.6 webinar to be held 2021-06-29 and be one of the first to see

the biggest features coming in MariaDB Community Server 10.6, with an exclusive opportunity to have your questions

answered by MariaDB engineering and product leads.

Thanks, and enjoy MariaDB!

Notable Changes

InnoDB

When innodb_adaptive_hash_index=OFF (the default), the following counters (which reflect btr_cur_n_non_sea) will

no longer be updated (MDEV-25882):

adaptive_hash_index in INFORMATION_SCHEMA.INNODB_METRICS

Innodb_adaptive_hash_non_hash_searches in INFORMATION_SCHEMA.GLOBAL_STATUS

Replication

Semisync replica recovery is introduced. rpl-semi-sync-slave-enabled = ON server executes a special recovery

branch to guarantee its consistency with a primary server (MDEV-21117)

General

Error messages now use "MariaDB" instead of "MySQL" (MDEV-22189)

Implement FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK for views (MDEV-15888)

All statements can be prepared, except PREPARE , EXECUTE , and DEALLOCATE / DROP PREPARE (MDEV-16708

)

Changelog
For a complete list of changes and bugfixes made in MariaDB 10.6.2, with links to detailed information on each push, see

the changelog .

Contributors
For a full list of contributors to MariaDB 10.6.2, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.17 MariaDB 10.6.1 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.1 Release Notes Changelog Overview of 10.6

Alternate download from mariadb.org

3974/4161

https://go.mariadb.com/21Q3-WBN-GLBL-OSSG-Community-Server-10.6-2021-06-22_Registration-LP.html?utm_source=KB
https://jira.mariadb.org/browse/MDEV-25882
https://jira.mariadb.org/browse/MDEV-21117
https://jira.mariadb.org/browse/MDEV-22189
https://jira.mariadb.org/browse/MDEV-15888
https://jira.mariadb.org/browse/MDEV-16708
https://mariadb.com/kb/en/mariadb-1062-changelog/
https://mariadb.org/mariadb-10-6-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.1/
https://mariadb.com/kb/en/mariadb-1061-changelog/

Release date: 21 May 2021

MariaDB 10.6 is the current development series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new

features.

MariaDB 10.6.1 is a Beta release.

Do not use beta releases in production!

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Register now for our MariaDB Community Server 10.6 webinar to be held 2021-06-29 and be one of the first to see

the biggest features coming in MariaDB Community Server 10.6, with an exclusive opportunity to have your questions

answered by MariaDB engineering and product leads.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

Atomic DDL

CREATE TABLE, ALTER TABLE, RENAME TABLE, DROP TABLE, DROP DATABASE and related DDL statements

are now atomic. Either the statement is fully completed, or everything is reverted to it's original state. Note that when

deleting multiple tables with DROP TABLE, only each individual drop is atomic, not the full list of tables). (MDEV-

23842).

Replication, Galera and Binlog

The delay between binary log purges can now be specified with much greater precision. The system variable

binlog_expire_logs_seconds is introduced as a form of alias for expire_logs_days, which now accepts a precision of

1/1000000 days (MDEV-19371)

Allow transition from unencrypted to TLS Galera cluster communication without cluster downtime (MDEV-22131)

DDL information logged on all Galera cluster nodes if wsrep_debug is set to SERVER and wsrep_OSU_method is

'TOI' (MDEV-9609)

For the mysqlbinlog / mariadb-binlog --base64-output option, removed the deprecated always option, and

changed the default to auto (MDEV-25222)

Oracle Compatibility

ADD_MONTHS() added (MDEV-20025)

TO_CHAR() added (MDEV-20017)

SYS_GUID() added (MDEV-24285)

MINUS is mapped to EXCEPT in UNION (MDEV-20021)

ROWNUM function returns the current number of accepted rows in the current context (MDEV-24089)

Character Sets

The utf8 character set (and related collations) is now by default an alias for utf8mb3 rather than the other way

around. It can be set to imply utf8mb4 by changing the value of the old_mode system variable (MDEV-8334)

Clients

For clients such as mysql / mariadb, the connection property specified via the command line (e.g. --port=3306) will

now force its type (MDEV-14974)

Changelog
For a complete list of changes made in MariaDB 10.6.1, with links to detailed information on each push, see the changelog

3975/4161

https://mariadb.com/kb/en/release-criteria/
https://go.mariadb.com/21Q3-WBN-GLBL-OSSG-Community-Server-10.6-2021-06-22_Registration-LP.html?utm_source=KB
https://jira.mariadb.org/browse/MDEV-23842
https://jira.mariadb.org/browse/MDEV-19371
https://jira.mariadb.org/browse/MDEV-22131
https://jira.mariadb.org/browse/MDEV-9609
https://jira.mariadb.org/browse/MDEV-25222
https://jira.mariadb.org/browse/MDEV-20025
https://jira.mariadb.org/browse/MDEV-20017
https://jira.mariadb.org/browse/MDEV-24285
https://jira.mariadb.org/browse/MDEV-20021
https://jira.mariadb.org/browse/MDEV-24089
https://jira.mariadb.org/browse/MDEV-8334
https://jira.mariadb.org/browse/MDEV-14974
https://mariadb.com/kb/en/mariadb-1061-changelog/

.

Contributors
For a full list of contributors to MariaDB 10.6.1, see the MariaDB Foundation release announcement .

Do not use beta releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.6.2.18 MariaDB 10.6.0 Release Notes

The most recent release of MariaDB 10.6 is:

MariaDB 10.6.17 Stable (GA) Download Now

Download 10.6.0 Release Notes Changelog Overview of 10.6

Release date: 26 Apr 2021

MariaDB 10.6 is the current development series of MariaDB. It is an evolution of MariaDB 10.5 with several entirely new

features.

MariaDB 10.6.0 is an Alpha release.

Do not use alpha releases in production!

For an overview of MariaDB 10.6 see the What is MariaDB 10.6? page.

Thanks, and enjoy MariaDB!

Notable Changes
This is the first alpha release in the MariaDB 10.6 series.

Notable changes of this release include:

SQL Syntax

Indexes can be ignored (MDEV-7317)

Implement SQL-standard SELECT ... OFFSET ... FETCH (MDEV-23908)

Add SELECT ... SKIP LOCKED syntax (InnoDB only) (MDEV-13115)

JSON_TABLE, used to extract JSON data based on a JSON path expression and to return it as a relational table

(MDEV-17399)

Oracle Compatibility

Anonymous subqueries in a FROM clause (no AS clause) are permitted in ORACLE mode

Storage Engines

Alternate download from mariadb.org

3976/4161

https://mariadb.org/mariadb-10-6-1-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.6.17/
https://downloads.mariadb.org/mariadb/10.6.0/
https://mariadb.com/kb/en/mariadb-1060-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-7317
https://jira.mariadb.org/browse/MDEV-23908
https://jira.mariadb.org/browse/MDEV-13115
https://jira.mariadb.org/browse/MDEV-17399

TokuDB has been removed (MDEV-19780)

CassandraSE has been removed (MDEV-23024)

InnoDB

Optimization to speed up inserts into an empty table (MDEV-515)

Make InnoDB's COMPRESSED row format read-only by default (MDEV-23497)

Information Schema SYS_TABLESPACES now directly reflects the filesystem, and SYS_DATAFILES has been

removed (MDEV-22343)

innodb_flush_method=O_DIRECT is enabled by default (MDEV-24854), and liburing replaces libaio on

recent Linux kernels (MDEV-24883).

The InnoDB transaction deadlock reporter was improved (MDEV-24738).

The old MariaDB 5.5-compatible innodb checksum is no longer supported, only crc32 and full_crc32 .

Removed the *innodb and *none options from innodb_checksum_algorithm, and the --strict-check / -C and

--write / -w options from innochecksum (MDEV-25105)

Replication, Galera and Binlog

Increase master_host limit to 255, user to 128 (MDEV-24312)

The wsrep_mode system variable, for turning on WSREP features which are not part of default behavior (including

the experimental Aria replication) (MDEV-20008 , MDEV-20715 , MDEV-24946)

Sys Schema

Bundle sys-schema, a collection of views, functions and procedures to help administrators get insight into database

usage. (MDEV-9077)

Performance Schema

Merged replication instrumentation and tables (MDEV-16437 , MDEV-20220)

General

Do not resend unchanged resultset metadata for prepared statements (MDEV-19237)

--bind-address=hostname now listens on both IPv6 and IPv4 addresses (MDEV-6536)

Support systemd socket activation (MDEV-5536)

For the GSSAPI plugin, support AD or local group name, and SIDs on Windows (MDEV-23959)

Check for $MARIADB_HOME/my.cnf (MDEV-21365)

max_recursive_iterations has been reduced to 1000 (MDEV-17239)

Setting system variables to negative values will no longer set them to the maximum value (MDEV-22219)

Galera

wsrep_mode variable for turning on WSREP features which are not part of default behavior.

wsrep_strict_ddl has been deprecated. Use wsrep_mode=STRICT_REPLICATION instead.

InnoDB Variables

The following deprecated variables have been removed (MDEV-23397):

innodb_adaptive_max_sleep_delay

innodb_background_scrub_data_check_interval

innodb_background_scrub_data_compressed

innodb_background_scrub_data_interval

innodb_background_scrub_data_uncompressed

innodb_buffer_pool_instances

innodb_commit_concurrency

innodb_concurrency_tickets

innodb_file_format

innodb_large_prefix

innodb_log_checksums

innodb_log_compressed_pages

innodb_log_files_in_group

innodb_log_optimize_ddl

3977/4161

https://mariadb.com/kb/en/tokudb/
https://jira.mariadb.org/browse/MDEV-19780
https://mariadb.com/kb/en/cassandra/
https://jira.mariadb.org/browse/MDEV-23024
https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-23497
https://jira.mariadb.org/browse/MDEV-22343
https://jira.mariadb.org/browse/MDEV-24854
https://jira.mariadb.org/browse/MDEV-24883
https://jira.mariadb.org/browse/MDEV-24738
https://jira.mariadb.org/browse/MDEV-25105
https://jira.mariadb.org/browse/MDEV-24312
https://jira.mariadb.org/browse/MDEV-20008
https://jira.mariadb.org/browse/MDEV-20715
https://jira.mariadb.org/browse/MDEV-24946
https://jira.mariadb.org/browse/MDEV-9077
https://jira.mariadb.org/browse/MDEV-16437
https://jira.mariadb.org/browse/MDEV-20220
https://jira.mariadb.org/browse/MDEV-19237
https://jira.mariadb.org/browse/MDEV-6536
https://jira.mariadb.org/browse/MDEV-5536
https://jira.mariadb.org/browse/MDEV-23959
https://jira.mariadb.org/browse/MDEV-21365
https://jira.mariadb.org/browse/MDEV-17239
https://jira.mariadb.org/browse/MDEV-22219
https://jira.mariadb.org/browse/MDEV-23397

innodb_page_cleaners

innodb_replication_delay

innodb_scrub_log

innodb_scrub_log_speed

innodb_thread_concurrency

innodb_thread_sleep_delay

innodb_undo_logs

Changelog
For a complete list of changes made in MariaDB 10.6.0, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.6.0, see the MariaDB Foundation release announcement .

Do not use alpha releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7 MariaDB Server 10.5
Changes and Improvements in MariaDB 10.5

Current Version: 10.5.24 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 10.5 Series

MariaDB 10.5 Series Release Notes

Changelogs - MariaDB 10.5 Series

MariaDB 10.5 changelogs

There are 2 related questions .

7.0.7.1 Changes and Improvements in MariaDB
10.5

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Alternate download from mariadb.org

3978/4161

https://mariadb.com/kb/en/mariadb-1060-changelog/
https://mariadb.org/mariadb-10-6-0-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/changes-and-improvements-in-mariadb-10-5/
https://mariadb.com/kb/en/changelogs-mariadb-105-series/
https://mariadb.com/kb/en/mariadb-server-10-5/+questions/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/

Contents
1. Upgrading

2. Implemented Features

1. ColumnStore

2. Binaries Named mariadb (mysql Symlinked)

3. INET 6 Data Type

4. Amazon S3

5. Privileges Made More Granular

6. InnoDB: Performance Improvements etc.

1. InnoDB New Defaults for Variables

2. InnoDB Removed or Deprecated Variables

7. Performance Schema Updates to Match MySQL 5.7 Instrumentation and Tables

8. Galera: Full GTID Support

9. Binary Log and Replication: More Metadata

10. Syntax

11. JSON

12. Thread Pool

13. Performance Improvements

1. Query Optimizer

14. General

15. PCRE (Perl Compatible Regular Expressions)

16. Variables

3. Security Vulnerabilities Fixed in MariaDB 10.5

4. Resources

5. List of All MariaDB 10.5 Releases

MariaDB 10.5 is a previous major stable version The first stable release was in June 2020, and it will be maintained until

June 2025.

Upgrading
See Upgrading Between Major MariaDB Versions and Upgrading from MariaDB 10.4 to MariaDB 10.5.

Implemented Features

ColumnStore

This release of MariaDB Server includes the MariaDB ColumnStore storage engine. Note, that plugins have

independent maturity levels and MariaDB ColumnStore in 10.5.4 has Beta maturity.

Binaries Named mariadb (mysql Symlinked)

All binaries previously beginning with mysql now begin with mariadb , with symlinks for the corresponding mysql

command. (MDEV-21303)

When starting the MariaDB server via the systemd service it will be started using the mariadbd binary name, so this

will now show up in the system process list instead of mysqld

Same for the mariadbd-safe wrapper script. Even when called via the mysqld_safe symlink, it will start the actual

server process as mariadbd , not mysqld now. This also affects startup via system service init scripts on platforms

that don't yet have switched to SystemD

INET 6 Data Type

New INET6 data type for storing IPv6 addresses (MDEV-274)

Amazon S3

The S3 storage engine allows one to archive MariaDB tables in Amazon S3, or any third-party public or private cloud

that implements S3 API (MDEV-22606)

Both S3 tables and partitioned S3 tables are discoverable. This means that if you create a partitioned S3 table, both

the partitioned table and its partitions can be directly used by another server that has access to the S3 storage.

(MDEV-22088)

Privileges Made More Granular
3979/4161

https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-21303
https://jira.mariadb.org/browse/MDEV-274
https://jira.mariadb.org/browse/MDEV-22606
https://jira.mariadb.org/browse/MDEV-22088

Split SUPER privilege to smaller privileges (MDEV-21743). New privileges were added so that more fine grained

tuning of what each user can do can be applied:

BINLOG ADMIN

BINLOG REPLAY

CONNECTION ADMIN

FEDERATED ADMIN

READ_ONLY ADMIN

REPLICATION MASTER ADMIN

REPLICATION SLAVE ADMIN

SET USER

The REPLICATION CLIENT privilege was renamed to BINLOG MONITOR. The old syntax is understood for

compatibility (MDEV-21743).

The SHOW MASTER STATUS statement was renamed to SHOW BINLOG STATUS (MDEV-21743). The old

syntax is understood for compatibility.

A number of statements changed the privileges that they require. The old privileges were historically inappropriately

chosen in the upstream. 10.5.2 fixes this problem. Note, these changes are incompatible to previous versions. A

number of GRANT commands might be needed after upgrade.

SHOW BINLOG EVENTS now requires the BINLOG MONITOR privilege (required REPLICATION SLAVE

prior to 10.5.2).

SHOW SLAVE HOSTS now requires the REPLICATION MASTER ADMIN privilege (required REPLICATION

SLAVE prior to 10.5.2).

SHOW SLAVE STATUS now requires the REPLICATION SLAVE ADMIN or the SUPER privilege (required

REPLICATION CLIENT or SUPER prior to 10.5.2).

SHOW RELAYLOG EVENTS now requires the REPLICATION SLAVE ADMIN privilege (required

REPLICATION SLAVE prior to 10.5.2).

In order to help the server understand which version a privilege record was written by, the mysql.global_priv.priv field

contains a new JSON field, version_id (MDEV-21704)

SHOW PRIVILEGES now correctly lists the Delete history privilege, rather than displaying it as Delete

versioning rows . (MDEV-20382)

InnoDB: Performance Improvements etc.

Extend SHOW STATUS LIKE 'Innodb_%' (MDEV-18582)

Clean up INFORMATION_SCHEMA.INNODB_ tables (MDEV-19940)

Doublewrite buffer is unnecessarily used for newly (re)initialized pages (MDEV-19738)

Defer change buffer merge until pages are requested (MDEV-19514)

Remove dummy tablespace for the redo log (MDEV-18115)

Optimize access to InnoDB page header fields (MDEV-21133)

Remove multiple InnoDB buffer pool instances (MDEV-15058)

Columns that indicated the buffer pool instance from the Information Schema innodb_buffer_page,

innodb_buffer_page_lru, innodb_buffer_pool_stats, innodb_cmpmem and innodb_cmpmem_reset tables now

return a dummy value of 0 .

Remove buf_page_t::newest_modification (MDEV-21132)

Replace recv_sys_t::addr_hash with a std::map (MDEV-19586)

Obsolete internal parser for FK in InnoDB (MDEV-20480)

InnoDB thread pool for background tasks (MDEV-16264)

An upgrade will only be possible after a clean shutdown. mariabackup --prepare will not work with backups taken

before version 10.5.2.

Efficient InnoDB redo log record format (MDEV-12353)

Improve InnoDB redo log group commit performance (MDEV-21534)

Do not acquire InnoDB record locks when covering table locks exist (MDEV-14479)

Issue a message on changing deprecated innodb_log_files_in_group (MDEV-21990)

Optimize append only files for NVDIMM (MDEV-17084)

Avoid writing freed InnoDB pages (MDEV-15528)

InnoDB New Defaults for Variables

innodb_adaptive_hash_index now defaults to OFF (MDEV-20487)

innodb_checksum_algorithm now defaults to full_crc32 (MDEV-19534)

InnoDB Removed or Deprecated Variables

innodb_buffer_pool_instances

innodb_checksums (MDEV-19534)

innodb_locks_unsafe_for_binlog (MDEV-19544)

innodb_log_checksums (MDEV-19543)

3980/4161

https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-21704
https://jira.mariadb.org/browse/MDEV-20382
https://jira.mariadb.org/browse/MDEV-18582
https://jira.mariadb.org/browse/MDEV-19940
https://jira.mariadb.org/browse/MDEV-19738
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-18115
https://jira.mariadb.org/browse/MDEV-21133
https://jira.mariadb.org/browse/MDEV-15058
https://jira.mariadb.org/browse/MDEV-21132
https://jira.mariadb.org/browse/MDEV-19586
https://jira.mariadb.org/browse/MDEV-20480
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-21534
https://jira.mariadb.org/browse/MDEV-14479
https://jira.mariadb.org/browse/MDEV-21990
https://jira.mariadb.org/browse/MDEV-17084
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-20487
https://jira.mariadb.org/browse/MDEV-19534
https://jira.mariadb.org/browse/MDEV-19534
https://jira.mariadb.org/browse/MDEV-19544
https://jira.mariadb.org/browse/MDEV-19543

innodb_log_files_in_group (MDEV-14425 & MDEV-20907)

innodb_log_optimize_ddl (MDEV-19747)

innodb_rollback_segments (MDEV-19570)

innodb_scrub_log and innodb_scrub_log_speed (MDEV-21870)

Remove INFORMATION_SCHEMA.INNODB_TABLESPACES_SCRUBBING table and deprecate and ignore:

innodb-background-scrub-data-uncompressed

innodb-background-scrub-data-compressed

innodb-background-scrub-data-interval

innodb-background-scrub-data-check-interval (MDEV-15528)

innodb_stats_sample_pages (MDEV-19551)

innodb_undo_logs (MDEV-19570)

innodb_thread_concurrency

innodb_commit_concurrency

innodb_replication_delay

innodb_concurrency_tickets

innodb_thread_sleep_delay

innodb_adaptive_max_sleep_delay (MDEV-23379)

Performance Schema Updates to Match MySQL 5.7 Instrumentation
and Tables

Memory (MDEV-16431)

Meta data locking (MDL) (MDEV-16432)

Prepared statements (ps) (MDEV-16433)

[show] status instrumentation and tables (MDEV-16438)

Stored procedures (MDEV-16434)

Sxlocks (MDEV-16436)

Transactions (MDEV-16435)

User variables (MDEV-16439)

Galera: Full GTID Support

Add full GTID support to Galera cluster (commit). With this feature all nodes in a cluster will have the same GTID

for replicated events originating from the cluster. Also added a new variable, wsrep_gtid_seq_no , to manually

update the WSREP GTID sequence number in the cluster (similar to how the gtid_seq_no variable is used for non-

WSREP transactions).

Add new mode to wsrep_OSU_method in which Galera checks storage engine of the affected table (MDEV-20051)

Galera: Replicate MariaDB GTID to other nodes in the cluster (MDEV-20720)

Binary Log and Replication: More Metadata

slave_parallel_mode now defaults to optimistic (MDEV-18648).

Make REPLICA a synonym for SLAVE in SQL statements (MDEV-20601)

ENFORCE option for slave_run_triggers_for_rbr (MDEV-21833)

Extended binlog metadata (MDEV-20477) to include new fields. This was done to solve replication issues when the

Master and Slave table had different definitions for a column which could lead to data loss (MDEV-19708). It also

enables us to do better replication with pluggable data types in the future.

The new metadata fields are:

Signedness of Numeric Columns

Character Set of Character Columns and Binary Columns

Column Name

String Value of SET Columns

String Value of ENUM Columns

Primary Key

Character Set of SET Columns and ENUM Columns

Geometry Type

Also added a new global variable, binlog_row_metadata to control the amount of metadata logged. Possible

values are:

FULL - all metadata is logged

MINIMAL - only metadata required by a worker is logged

NO_LOG - No metadata is logged (default)

Binary log DDL entries can now be marked that they should be ignored if the target table doesn't exist (implicit IF

EXISTS).

mariadb-binlog output is extended to show all replication flags. Example of output: SET

@@session.foreign_key_checks=1, @@session.sql_auto_is_null=0, @@session.unique_checks=1,

3981/4161

https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-20907
https://jira.mariadb.org/browse/MDEV-19747
https://jira.mariadb.org/browse/MDEV-19570
https://jira.mariadb.org/browse/MDEV-21870
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-19551
https://jira.mariadb.org/browse/MDEV-19570
https://jira.mariadb.org/browse/MDEV-23379
https://jira.mariadb.org/browse/MDEV-16431
https://jira.mariadb.org/browse/MDEV-16432
https://jira.mariadb.org/browse/MDEV-16433
https://jira.mariadb.org/browse/MDEV-16438
https://jira.mariadb.org/browse/MDEV-16434
https://jira.mariadb.org/browse/MDEV-16436
https://jira.mariadb.org/browse/MDEV-16435
https://jira.mariadb.org/browse/MDEV-16439
https://github.com/MariaDB/server/commit/41bc736871
https://jira.mariadb.org/browse/MDEV-20051
https://jira.mariadb.org/browse/MDEV-20720
https://jira.mariadb.org/browse/MDEV-18648
https://jira.mariadb.org/browse/MDEV-20601
https://jira.mariadb.org/browse/MDEV-21833
https://jira.mariadb.org/browse/MDEV-20477
https://jira.mariadb.org/browse/MDEV-19708

@@session.autocommit=1, @@session.check_constraint_checks=1, @@session.sql_if_exists=0/*!*/ .

SHOW BINLOG EVENTS and SHOW RELAYLOG EVENTS are extended to show replication flags.

Syntax

INSERT ... RETURNING (MDEV-10014) - returns SELECT of inserted rows (analogous to DELETE ...

RETURNING)

REPLACE ... RETURNING (MDEV-10014)

EXCEPT ALL and INTERSECT ALL (MDEV-18844)

Application period tables: WITHOUT OVERLAPS (MDEV-16978)

Setup default partitions for system versioning (MDEV-19903)

Database comments in CREATE DATABASE and ALTER DATABASE statements (MDEV-307)

ALTER TABLE ... RENAME INDEX / KEY (MDEV-7318)

ALTER TABLE ... RENAME COLUMN (MDEV-16290)

ALTER TABLE and RENAME TABLE now support IF EXISTS .

Add VISIBLE attribute for indexes in CREATE TABLE (MDEV-22199)

Recursive CTE cycle detection using CYCLE clause (MDEV-20632)

RELEASE_ALL_LOCKS hold by GET_LOCK() (MDEV-10569)

Fix REFERENCES constraint in column definition (MDEV-20729)

JSON

Added JSON_ARRAYAGG. This returns a JSON array containing an element for each value in a given set of JSON

or SQL values. It acts on a column or an expression that evaluates to a single value.

Added JSON_OBJECTAGG. This returns a JSON object containing key-value pairs. It takes two expressions that

evaluate to a single value, or two column names, as arguments, the first used as a key, and the second as a value.

Thread Pool

Information Schema tables (THREAD_POOL_GROUPS, THREAD_POOL_QUEUES, THREAD_POOL_STATS and

THREAD_POOL_WAITS) for internals of generic thread_pool (MDEV-19313).

Performance Improvements

Speed up binary row logging code

Range optimizer speedups. Removed double calls to records_in_range() for some cases.

Costs for using MEMORY tables updated to be more accurate

Fixed that 'ref' access is preferred over 'range' for the same index.

Improve connect speed (up to 25%). (MDEV-19515)

Query Optimizer

Improve Protocol performance for numeric data by avoiding unnecessary character string conversions (MDEV-23162

, MDEV-23478)

ANALYZE for statements is improved, now it also shows the time spent checking the WHERE clause and doing other

auxiliary operations (MDEV-20854)

Inferred IS NOT NULL predicates can be used by the range optimizer (MDEV-15777)

Allow packed sort keys and values of non-sorted fields in the sort buffer (MDEV-21263 & MDEV-21580)

Makes filesort temporary files much smaller when VARCHAR, CHAR or BLOBs are used!

General

The Information Schema SYSTEM_VARIABLES Table has a new column showing from which config file a variable

derives its value (MDEV-12684)

Switch Perl DBI scripts from DBD::mysql to DBD::MariaDB driver (MDEV-19755)

The Aria max key length is now 2000 bytes, compared to 1000 bytes in MyISAM.

DROP TABLE now reliably deletes table remnants inside a storage engine even if the .frm file is missing (MDEV-

11412)

Accelerated crc32() function for AMD64, ARMv8, POWER 8 (MDEV-22669)

Binary tarball size has been reduced (MDEV-21943)

PCRE (Perl Compatible Regular Expressions)

Migrate to PCRE2 (MDEV-14024), a newer version of the pcre library.

3982/4161

https://jira.mariadb.org/browse/MDEV-10014
https://jira.mariadb.org/browse/MDEV-10014
https://jira.mariadb.org/browse/MDEV-18844
https://jira.mariadb.org/browse/MDEV-16978
https://jira.mariadb.org/browse/MDEV-19903
https://jira.mariadb.org/browse/MDEV-307
https://jira.mariadb.org/browse/MDEV-7318
https://jira.mariadb.org/browse/MDEV-16290
https://jira.mariadb.org/browse/MDEV-22199
https://jira.mariadb.org/browse/MDEV-20632
https://jira.mariadb.org/browse/MDEV-10569
https://jira.mariadb.org/browse/MDEV-20729
https://jira.mariadb.org/browse/MDEV-19313
https://jira.mariadb.org/browse/MDEV-19515
https://jira.mariadb.org/browse/MDEV-23162
https://jira.mariadb.org/browse/MDEV-23478
https://jira.mariadb.org/browse/MDEV-20854
https://jira.mariadb.org/browse/MDEV-15777
https://jira.mariadb.org/browse/MDEV-21263
https://jira.mariadb.org/browse/MDEV-21580
https://jira.mariadb.org/browse/MDEV-12684
https://jira.mariadb.org/browse/MDEV-19755
https://jira.mariadb.org/browse/MDEV-11412
https://jira.mariadb.org/browse/MDEV-22669
https://jira.mariadb.org/browse/MDEV-21943
https://jira.mariadb.org/browse/MDEV-14024

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.5 and Status Variables Added in MariaDB

10.5.

The Information Schema SYSTEM_VARIABLES Table has a new column showing from which config file a variable

derives its value (MDEV-12684).

Port show_old_temporals from MySQL 5.6 (MDEV-19906). If set, old temporal data types (created with a pre-10.0

version of MariaDB) are displayed with a /* mariadb-5.3 */ comment.

Numerous deprecated variables removed (MDEV-18650)

multi_range_count

thread_concurrency

timed_mutexes

Security Vulnerabilities Fixed in MariaDB 10.5

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.5.17

CVE-2023-22084 : MariaDB 10.5.23

CVE-2022-47015 : MariaDB 10.5.20

CVE-2022-38791 : MariaDB 10.5.17

CVE-2022-32091 : MariaDB 10.5.17

CVE-2022-32089 : MariaDB 10.5.17

CVE-2022-32088 : MariaDB 10.5.16

CVE-2022-32087 : MariaDB 10.5.16

CVE-2022-32086 : MariaDB 10.5.16

CVE-2022-32085 : MariaDB 10.5.16

CVE-2022-32084 : MariaDB 10.5.17

CVE-2022-32083 : MariaDB 10.5.16

CVE-2022-32082 : MariaDB 10.5.17

CVE-2022-32081 : MariaDB 10.5.17

CVE-2022-31624 : MariaDB 10.5.13

CVE-2022-27458 : MariaDB 10.5.16

CVE-2022-27457 : MariaDB 10.5.16

CVE-2022-27456 : MariaDB 10.5.16

CVE-2022-27455 : MariaDB 10.5.16

CVE-2022-27452 : MariaDB 10.5.16

CVE-2022-27451 : MariaDB 10.5.16

CVE-2022-27449 : MariaDB 10.5.16

CVE-2022-27448 : MariaDB 10.5.16

CVE-2022-27447 : MariaDB 10.5.16

CVE-2022-27446 : MariaDB 10.5.16

CVE-2022-27445 : MariaDB 10.5.16

CVE-2022-27444 : MariaDB 10.5.16

CVE-2022-27387 : MariaDB 10.5.16

CVE-2022-27386 : MariaDB 10.5.16

CVE-2022-27385 : MariaDB 10.5.13

CVE-2022-27384 : MariaDB 10.5.16

CVE-2022-27383 : MariaDB 10.5.16

CVE-2022-27382 : MariaDB 10.5.16

CVE-2022-27381 : MariaDB 10.5.16

CVE-2022-27380 : MariaDB 10.5.16

CVE-2022-27379 : MariaDB 10.5.16

CVE-2022-27378 : MariaDB 10.5.16

CVE-2022-27377 : MariaDB 10.5.16

CVE-2022-27376 : MariaDB 10.5.16

CVE-2022-24052 : MariaDB 10.5.14

CVE-2022-24051 : MariaDB 10.5.14

CVE-2022-24050 : MariaDB 10.5.14

CVE-2022-24048 : MariaDB 10.5.14

CVE-2022-21595 : MariaDB 10.5.14

CVE-2022-21451 : MariaDB 10.5.10

CVE-2022-21427 : MariaDB 10.5.7

3983/4161

https://jira.mariadb.org/browse/MDEV-12684
https://jira.mariadb.org/browse/MDEV-19906
https://jira.mariadb.org/browse/MDEV-18650
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427

CVE-2022-0778 : MariaDB 10.5.14

CVE-2021-46669 : MariaDB 10.5.16

CVE-2021-46668 : MariaDB 10.5.15

CVE-2021-46667 : MariaDB 10.5.13

CVE-2021-46666 : MariaDB 10.5.11

CVE-2021-46665 : MariaDB 10.5.15

CVE-2021-46664 : MariaDB 10.5.15

CVE-2021-46663 : MariaDB 10.5.15

CVE-2021-46662 : MariaDB 10.5.13

CVE-2021-46661 : MariaDB 10.5.15

CVE-2021-46659 : MariaDB 10.5.14

CVE-2021-46658 : MariaDB 10.5.12

CVE-2021-46657 : MariaDB 10.5.11

CVE-2021-35604 : MariaDB 10.5.13

CVE-2021-27928 : MariaDB 10.5.9

CVE-2021-2389 : MariaDB 10.5.12

CVE-2021-2372 : MariaDB 10.5.12

CVE-2021-2194 : MariaDB 10.5.7

CVE-2021-2166 : MariaDB 10.5.10

CVE-2021-2154 : MariaDB 10.5.10

CVE-2021-2022 : MariaDB 10.5.5

CVE-2020-28912 : MariaDB 10.5.7

CVE-2020-15180 : MariaDB 10.5.6

CVE-2020-14812 : MariaDB 10.5.7

CVE-2020-14789 : MariaDB 10.5.7

CVE-2020-14776 : MariaDB 10.5.7

CVE-2020-14765 : MariaDB 10.5.7

CVE-2018-25032 : MariaDB 10.5.17

Resources
10.5 and beyond (video presentation by Sergei Golubchik)

List of All MariaDB 10.5 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 10.5.24 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 10.5.23 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 10.5.22 Stable (GA) Release Notes Changelog

7 Jun 2023 MariaDB 10.5.21 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.5.20 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.5.19 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.5.18 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.5.17 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.5.16 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.5.15 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.5.14 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.5.13 Stable (GA) Release Notes Changelog

6 Aug 2021 MariaDB 10.5.12 Stable (GA) Release Notes Changelog

23 Jun 2021 MariaDB 10.5.11 Stable (GA) Release Notes Changelog

7 May 2021 MariaDB 10.5.10 Stable (GA) Release Notes Changelog

22 Feb 2021 MariaDB 10.5.9 Stable (GA) Release Notes Changelog

11 Nov 2020 MariaDB 10.5.8 Stable (GA) Release Notes Changelog

3 Nov 2020 MariaDB 10.5.7 Stable (GA) Release Notes Changelog

3984/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://www.youtube.com/watch?v=NG_ClRXdofE
https://mariadb.com/kb/en/mariadb-10-5-24-changelog/
https://mariadb.com/kb/en/mariadb-10-5-23-changelog/
https://mariadb.com/kb/en/mariadb-10-5-22-changelog/
https://mariadb.com/kb/en/mariadb-10-5-21-changelog/
https://mariadb.com/kb/en/mariadb-10-5-20-changelog/
https://mariadb.com/kb/en/mariadb-10-5-19-changelog/
https://mariadb.com/kb/en/mariadb-10-5-18-changelog/
https://mariadb.com/kb/en/mariadb-10517-changelog/
https://mariadb.com/kb/en/mariadb-10516-changelog/
https://mariadb.com/kb/en/mariadb-10515-changelog/
https://mariadb.com/kb/en/mariadb-10514-changelog/
https://mariadb.com/kb/en/mariadb-10513-changelog/
https://mariadb.com/kb/en/mariadb-10512-changelog/
https://mariadb.com/kb/en/mariadb-10511-changelog/
https://mariadb.com/kb/en/mariadb-10510-changelog/
https://mariadb.com/kb/en/mariadb-1059-changelog/
https://mariadb.com/kb/en/mariadb-1058-changelog/
https://mariadb.com/kb/en/mariadb-1057-changelog/

7 Oct 2020 MariaDB 10.5.6 Stable (GA) Release Notes Changelog

10 Aug 2020 MariaDB 10.5.5 Stable (GA) Release Notes Changelog

24 Jun 2020 MariaDB 10.5.4 Stable (GA) Release Notes Changelog

12 May 2020 MariaDB 10.5.3 RC Release Notes Changelog

26 Mar 2020 MariaDB 10.5.2 Beta Release Notes Changelog

14 Feb 2020 MariaDB 10.5.1 Beta Release Notes Changelog

3 Dec 2019 MariaDB 10.5.0 Alpha Release Notes Changelog

7.0.7.2 Release Notes - MariaDB 10.5 Series
MariaDB 10.5.24 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 10.5.23 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 10.5.22 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.5.21 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.5.20 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

MariaDB 10.5.19 Release Notes

Status: Stable (GA) | Release Date: 6 Feb 2023

MariaDB 10.5.18 Release Notes

Status: Stable (GA) | Release Date: 7 Nov 2022

MariaDB 10.5.17 Release Notes

Status: Stable (GA) | Release Date: 15 Aug 2022

MariaDB 10.5.16 Release Notes

Status: Stable (GA) | Release Date: 20 May 2022

MariaDB 10.5.15 Release Notes

Status: Stable (GA) | Release Date: 12 Feb 2022

MariaDB 10.5.14 Release Notes

Status: Stable (GA) | Release Date: 9 Feb 2022

MariaDB 10.5.13 Release Notes

Status: Stable (GA) | Release Date: 8 Nov 2021

MariaDB 10.5.12 Release Notes

Status: Stable (GA) | Release Date: 6 Aug 2021

MariaDB 10.5.11 Release Notes

Status: Stable (GA) | Release Date: 23 Jun 2021

MariaDB 10.5.10 Release Notes

Status: Stable (GA) | Release Date: 7 May 2021

MariaDB 10.5.9 Release Notes

Status: Stable (GA) | Release Date: 22 Feb 2021

2

3985/4161

https://mariadb.com/kb/en/mariadb-1056-changelog/
https://mariadb.com/kb/en/mariadb-1055-changelog/
https://mariadb.com/kb/en/mariadb-1054-changelog/
https://mariadb.com/kb/en/mariadb-1053-changelog/
https://mariadb.com/kb/en/mariadb-1052-changelog/
https://mariadb.com/kb/en/mariadb-1051-changelog/
https://mariadb.com/kb/en/mariadb-1050-changelog/

MariaDB 10.5.8 Release Notes

Status: Stable (GA) | Release Date: 11 Nov 2020

MariaDB 10.5.7 Release Notes

Status: Stable (GA) | Release Date: 3 Nov 2020

MariaDB 10.5.6 Release Notes

Status: Stable (GA) | Release Date: 7 Oct 2020

MariaDB 10.5.5 Release Notes

Status: Stable (GA) | Release Date: 10 Aug 2020

MariaDB 10.5.4 Release Notes

Status: Stable (GA) | Release Date: 24 Jun 2020

MariaDB 10.5.3 Release Notes

Status: RC | Release Date: 12 May 2020

MariaDB 10.5.2 Release Notes

Status: Beta | Release Date: 26 Mar 2020

MariaDB 10.5.1 Release Notes

Status: Beta | Release Date: 14 Feb 2020

MariaDB 10.5.0 Release Notes

Status: Alpha | Release Date: 3 Dec 2019

7.0.7.2.1 MariaDB 10.5.24 Release Notes
Download Release Notes Changelog Overview of 10.5

Release date: 7 Feb 2024

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.24 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Alternate download from mariadb.org

3986/4161

https://mariadb.com/downloads/
https://mariadb.com/kb/en/mariadb-10-5-24-changelog/
https://downloads.mariadb.org/mariadb/10.5.24/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

InnoDB after ALTER TABLE&IMPORT TABLESPACE may not be crash safe (MDEV-32269)

InnoDB fails to restore tablespace first page from doublewrite buffer when page is empty (MDEV-32968)

innodb_fast_shutdown=0 hang after incomplete startup (MDEV-32798)

innodb_undo_log_truncate=ON prevents fast shutdown (MDEV-33062)

Adaptive flush recommendation ignores dirty ratio and checkpoint age (MDEV-31939)

gcol.gcol_purge contaminates further execution of innodb.gap_locks (MDEV-28682)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Adaptive flushing is still not getting invoked in 10.5.11 (MDEV-26055)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

Missing required privilege CONNECTION ADMIN (MDEV-33006)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

mysql_json cannot be used on newly created table (MDEV-32235)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

INSERT ... SELECT Does not produce an optimizer trace (MDEV-29298)

No error for DROP TABLE and no warning for DROP TABLE IF EXISTS with absent table when Spider plugin is

included (MDEV-30170)

ASAN errors in spider_conn_queue_and_merge_loop_check (MDEV-29002)

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Incorrect result interceptor passed to mysql_explain_union() (MDEV-33165)

3987/4161

https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-32269
https://jira.mariadb.org/browse/MDEV-32968
https://jira.mariadb.org/browse/MDEV-32798
https://jira.mariadb.org/browse/MDEV-33062
https://jira.mariadb.org/browse/MDEV-31939
https://jira.mariadb.org/browse/MDEV-28682
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-26055
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-33006
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-32235
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683
https://jira.mariadb.org/browse/MDEV-29298
https://jira.mariadb.org/browse/MDEV-30170
https://jira.mariadb.org/browse/MDEV-29002
https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-33165

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

LONG UNIQUE does not work like unique key when using replace (MDEV-32837)

LONG UNIQUE gives error when used with REPLACE (MDEV-32839)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

JSON_ARRAYAGG charset issue (MDEV-24784)

Server crash in my_decimal::operator= or unexpected ER_DUP_ENTRY upon comparison with INET6 and similar

types (MDEV-32879)

Plugins

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Cluster is inconsistent after SAVEPOINT statement is rolled back (MDEV-32549)

WSREP GTID MODE is inconsistent (MDEV-31905)

IST "Donor does not know my secret" with ssl-mode=VERIFY_CA (MDEV-32344)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

Binlog Checksum is Zeroed by Zlib if Part of Event Data is Empty (MDEV-33283)

General

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

3988/4161

https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-32837
https://jira.mariadb.org/browse/MDEV-32839
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-24784
https://jira.mariadb.org/browse/MDEV-32879
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-32549
https://jira.mariadb.org/browse/MDEV-31905
https://jira.mariadb.org/browse/MDEV-32344
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://jira.mariadb.org/browse/MDEV-33283
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Wrong user in SET DEFAULT ROLE error (MDEV-26875)

quote(NULL) returns incorrect result in view ('NU' instead of 'NULL') (MDEV-28651)

mysql.slow_log reports incorrect start time (MDEV-11628)

Update federated table and column privileges (MDEV-32984)

Changelog
For a complete list of changes made in MariaDB 10.5.24, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.24, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.2 MariaDB 10.5.23 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.23 Release Notes Changelog Overview of 10.5

Release date: 13 Nov 2023

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.23 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Alternate download from mariadb.org

3989/4161

https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169
https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://jira.mariadb.org/browse/MDEV-26875
https://jira.mariadb.org/browse/MDEV-28651
https://jira.mariadb.org/browse/MDEV-11628
https://jira.mariadb.org/browse/MDEV-32984
https://mariadb.com/kb/en/mariadb-10-5-24-changelog/
https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.23/
https://mariadb.com/kb/en/mariadb-10-5-23-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Race condition between page write completion and log checkpoint (MDEV-32511)

After crash recovery, Checksum mismatch + Failing assertion: !i || prev_id + 1 == space_id, (MDEV-31851)

Deadlock due to log_free_check(), involving trx_purge_truncate_rseg_history() and trx_undo_assign_low() (MDEV-

32049)

Write-ahead logging is broken for freed pages (MDEV-32552)

X-lock on supremum for prepared transaction for RR (MDEV-30165)

Optimizer

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

replication breaks when using optimistic replication and replica is a galera node (MDEV-31833)

McAfee database vulnerability scan caused MariaDB crash with signal 6 (system abort) (MDEV-27004)

Data Definition

MariaDB crash on calling function (MDEV-23902)

3990/4161

https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658
https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-32511
https://jira.mariadb.org/browse/MDEV-31851
https://jira.mariadb.org/browse/MDEV-32049
https://jira.mariadb.org/browse/MDEV-32552
https://jira.mariadb.org/browse/MDEV-30165
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-31833
https://jira.mariadb.org/browse/MDEV-27004
https://jira.mariadb.org/browse/MDEV-23902

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

vcol circular references lead to stack overflow (MDEV-31112)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

main.order_by_pack_big fails with view-protocol (MDEV-31460)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

ASAN: heap-buffer-overflow & stack-buffer-overflow in spider_db_mbase_row::append_to_str | SIGSEGV's in

memmove_avx_unaligned_erms from memcpy in Binary_string::q_append , in

Static_binary_string::q_append and my_strntoull10rnd_8bit | Unknown error 12801 (MDEV-29502)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

3991/4161

https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-31112
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455
https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-31460
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29502
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

Assertion `!m_null_value' failed in int FixedBinTypeBundle<FbtImpl>::cmp_item_fbt::compare or in

cmp_item_inet6::compare (MDEV-27207)

type_test.type_test_double fails with 'NUMERIC_SCALE NULL' (MDEV-22243)

LeakSanitizer errors in get_quick_select or Assertion `status_var.local_memory_used == 0 ||

!debug_assert_on_not_freed_memory' failed (MDEV-32476)

Update signal hander user info more compassion and correct url (MDEV-32535)

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 10.5.23, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.23, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.3 MariaDB 10.5.22 Release Notes
3992/4161

https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315
https://jira.mariadb.org/browse/MDEV-27207
https://jira.mariadb.org/browse/MDEV-22243
https://jira.mariadb.org/browse/MDEV-32476
https://jira.mariadb.org/browse/MDEV-32535
https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-10-5-23-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

Download Release Notes Changelog Overview of 10.5

Release date: 14 Aug 2023

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.22 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Ubuntu 18.04 LTS "Bionic"

mariadb-dump --force doesn't ignore error as it should (MDEV-31092)

280 Bytes lost in mysys/array.c, mysys/hash.c, sql/sp.cc, sql/sp.cc, sql/item_create.cc, sql/item_create.cc,

sql/sql_yacc.yy:10748 when using oracle sql_mode (MDEV-26186)

SQL/PL package body does not appear in I_S.ROUTINES.ROUTINE_DEFINITION (MDEV-30662)

Unexpected result when combining DISTINCT, subselect and LIMIT (MDEV-28285)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

innochecksum dies with Floating point exception (MDEV-31641)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

innodb protection against dual processes accessing data insufficient (MDEV-31568)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Recovery or backup failure after innodb_undo_log_truncate=ON (MDEV-31487)

Assertion 'n & PENDING' failed in fil_space_t::set_needs_flush() (MDEV-31442)

fil_node_open_file() releases fil_system.mutex allowing other thread to open its file node (MDEV-31256

)

Freed data pages are not always being scrubbed (MDEV-31253)

innodb_undo_log_truncate=ON fails to wait for purge of enough transaction history (MDEV-31355)

SET GLOBAL innodb_undo_log_truncate=ON does not free space when no undo logs exist (MDEV-31382)

innodb_read_ahead_threshold (linear read-ahead) does not work (MDEV-29967)

fil_ibd_create() may hijack the file handle of an old file (MDEV-31347)

innodb_undo_log_truncate=ON recovery results in a corrupted undo log (MDEV-31373)

Alternate download from mariadb.org

3993/4161

https://mariadb.com/downloads/
https://mariadb.com/kb/en/mariadb-10-5-22-changelog/
https://downloads.mariadb.org/mariadb/10.5.22/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-26186
https://jira.mariadb.org/browse/MDEV-30662
https://jira.mariadb.org/browse/MDEV-28285
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644
https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-31568
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-31487
https://jira.mariadb.org/browse/MDEV-31442
https://jira.mariadb.org/browse/MDEV-31256
https://jira.mariadb.org/browse/MDEV-31253
https://jira.mariadb.org/browse/MDEV-31355
https://jira.mariadb.org/browse/MDEV-31382
https://jira.mariadb.org/browse/MDEV-29967
https://jira.mariadb.org/browse/MDEV-31347
https://jira.mariadb.org/browse/MDEV-31373

Foreign Key Constraint actions don't affect Virtual Column (MDEV-18114)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

Assertion `s->table->opt_range_condition_rows <= s->found_records' failed in

apply_selectivity_for_table (MDEV-31449)

Inconsistency between MRR and SQL layer costs can cause poor query plan (MDEV-31479)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Server crash in store_length , assertion failure in Type_handler_string_result::sort_length (MDEV-

31743)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

On slave XA COMMIT/XA ROLLBACK fail to return an error in read-only mode (MDEV-30978)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

KILL QUERY maintains nodes data consistency but breaks GTID sequence (MDEV-31075)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 10.5.22, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.22, see the MariaDB Foundation release announcement .

3994/4161

https://jira.mariadb.org/browse/MDEV-18114
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-31449
https://jira.mariadb.org/browse/MDEV-31479
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-31743
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30978
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-31075
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013
https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-10-5-22-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.4 MariaDB 10.5.21 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.21 Release Notes Changelog Overview of 10.5

Release date: 7 Jun 2023

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.21 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

InnoDB does not free UNDO after the fix of MDEV-30671 (MDEV-31234)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 10.5.21, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.21, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

Alternate download from mariadb.org

3995/4161

https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.21/
https://mariadb.com/kb/en/mariadb-10-5-21-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31234
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-5-21-changelog/
https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.7.2.5 MariaDB 10.5.20 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.20 Release Notes Changelog Overview of 10.5

Release date: 10 May 2023

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.20 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

rec_get_offsets() is not optimal (MDEV-30567)

Performance regression in fil_space_t::try_to_close() introduced in MDEV-23855 (MDEV-30775)

InnoDB recovery hangs when buffer pool ran out of memory (MDEV-30551)

InnoDB undo log truncation fails to wait for purge of history (MDEV-30671

Fix miscount of doublewrites by Innodb_data_written (MDEV-31124)

Backup
mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Race condition between buffer pool flush and log file deletion in mariadb-backup --prepare (MDEV-30860)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Ensured SHOW-SLAVE-STATUS is processed on the parallel slave having a necessary mutex always intialized

(MDEV-30620)

Fixed the slave applier to report a correct error when gtid_slave_pos insert fails for some (engine) reasons (MDEV-

31038)

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301).

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

A GROUP BY query with MIN(primary_key) in select list and primary_key<>const in the WHERE could

Alternate download from mariadb.org

3996/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.20/
https://mariadb.com/kb/en/mariadb-10-5-20-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034
https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-30775
https://jira.mariadb.org/browse/MDEV-30551
https://jira.mariadb.org/browse/MDEV-30671
https://jira.mariadb.org/browse/MDEV-31124
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-30860
https://jira.mariadb.org/browse/MDEV-29621
https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780
https://jira.mariadb.org/browse/MDEV-30620
https://jira.mariadb.org/browse/MDEV-31038
https://jira.mariadb.org/browse/MDEV-26301
https://jira.mariadb.org/browse/MDEV-20057

produce wrong result when executed with "Using index for group-by" strategy (MDEV-30605)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Images

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes made in MariaDB 10.5.20, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.20, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.6 MariaDB 10.5.19 Release Notes
Download Release Notes Changelog Overview of 10.5

Release date: 6 Feb 2023

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.19 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.5.18 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

Fedora, openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2

digest algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB

Full-text index corruption with system versioning (MDEV-25004)

innodb_undo_log_truncate=ON recovery and backup fixes (MDEV-29999 , MDEV-30179 , MDEV-30438)

Upgrade after a crash is not supported (MDEV-24412)

Remove InnoDB buffer pool load throttling (MDEV-25417)

3997/4161

https://jira.mariadb.org/browse/MDEV-30605
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-5-20-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.5.19/
https://mariadb.com/kb/en/mariadb-10-5-19-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/new-gpg-release-key-rpms/
https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29999
https://jira.mariadb.org/browse/MDEV-30179
https://jira.mariadb.org/browse/MDEV-30438
https://jira.mariadb.org/browse/MDEV-24412
https://jira.mariadb.org/browse/MDEV-25417

InnoDB shutdown hangs when the change buffer is corrupted (MDEV-30009)

innodb_fast_shutdown=0 fails to report change buffer merge progress (MDEV-29984)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mysqlbinlog --verbose is made to show the type of compressed columns (MDEV-25277)

Deadlock is resolved on replica involving BACKUP STAGE BLOCK_COMMIT and a committing user XA (MDEV-30423

)

JSON

JSON_PRETTY added as an alias for JSON_DETAILED (MDEV-19160)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Fedora 35.

In this release repositories for Fedora 37 have been added.

Changelog
For a complete list of changes made in MariaDB 10.5.19, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.19, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.7 MariaDB 10.5.18 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.18 Release Notes Changelog Overview of 10.5

Release date: 7 Nov 2022

MariaDB 10.5 is a previous stable series of MariaDB, maintained until June 2025. It is an evolution of MariaDB 10.4 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

Alternate download from mariadb.org

3998/4161

https://jira.mariadb.org/browse/MDEV-30009
https://jira.mariadb.org/browse/MDEV-29984
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-30423
https://jira.mariadb.org/browse/MDEV-19160
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://mariadb.com/kb/en/mariadb-10-5-19-changelog/
https://mariadb.org/mariadb-10-10-3-10-9-5-10-8-7-10-7-8-10-6-12-10-5-19-10-4-28-and-10-3-38-now-available//
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.18/
https://mariadb.com/kb/en/mariadb-10-5-18-changelog/

MariaDB 10.5.18 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

SSL

The server no longer tolerates incorrectly configured SSL (MDEV-29811). If you have enabled SSL in my.cnf but

have not configured it properly (for example, a certificate file is missing), MariaDB used to silently disable SSL,

leaving you under impression that everything was fine and connections were secure. Since this release, MariaDB will

fail to start if SSL is enabled, but cannot be switched on.

Backup

mariabackup --compress hangs (MDEV-29043)

Assertion on info.page_size failed in xb_delta_open_matching_space (MDEV-18589)

InnoDB

InnoDB unnecessarily extends data files (MDEV-13013)

Adaptive hash index MDEV-27700 , MDEV-29384

MVCC and locking MDEV-29666 , MDEV-27927

Virtual columns MDEV-29299 , MDEV-29753

InnoDB crash recovery fixes (MDEV-29438 , MDEV-29475)

InnoDB crash recovery fixes (MDEV-29559)

MVCC and locking (MDEV-28709)

Race condition between KILL and transaction commit (MDEV-29368)

Galera

Galera updated to 26.4.13

Galera server crashes after 10.3 > 10.4 upgrade (MDEV-29375)

wsrep_incoming_addresses status variable prints 0 as port number if the port is not mentioned in

wsrep_node_incoming_address system variable (MDEV-28868)

JSON

JSON_VALUE() does not parse NULL properties properly (MDEV-27151)

Replication

minor correction in unsafe warning message (MDEV-28827)

False replication error-stop of REVOKE PRIVILEGES from a non-existing user on primary (MDEV-28530) in

combination with a filtering replica is corrected

SET DEFAULT ROLE replication is mended on a replica that filters system tables (MDEV-28294)

XA COMMIT is not binlogged when the XA transaction has not updated any transaction engine (MDEV-25616)

Concurrent CREATE TRIGGER statements made to binlog without any mixup (MDEV-25606)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

3999/4161

https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-29811
https://jira.mariadb.org/browse/MDEV-29043
https://jira.mariadb.org/browse/MDEV-18589
https://jira.mariadb.org/browse/MDEV-13013
https://jira.mariadb.org/browse/MDEV-27700
https://jira.mariadb.org/browse/MDEV-29384
https://jira.mariadb.org/browse/MDEV-29666
https://jira.mariadb.org/browse/MDEV-27927
https://jira.mariadb.org/browse/MDEV-29299
https://jira.mariadb.org/browse/MDEV-29753
https://jira.mariadb.org/browse/MDEV-29438
https://jira.mariadb.org/browse/MDEV-29475
https://jira.mariadb.org/browse/MDEV-29559
https://jira.mariadb.org/browse/MDEV-28709
https://jira.mariadb.org/browse/MDEV-29368
https://jira.mariadb.org/browse/MDEV-29375
https://jira.mariadb.org/browse/MDEV-28868
https://jira.mariadb.org/browse/MDEV-27151
https://jira.mariadb.org/browse/MDEV-28827
https://jira.mariadb.org/browse/MDEV-28530
https://jira.mariadb.org/browse/MDEV-28294
https://jira.mariadb.org/browse/MDEV-25616
https://jira.mariadb.org/browse/MDEV-25606

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Adds OCI labels to image (fixes issue 436 and users need for version)

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Changelog
For a complete list of changes made in MariaDB 10.5.18, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.18, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.8 MariaDB 10.5.17 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.17 Release Notes Changelog Overview of 10.5

Release date: 15 Aug 2022

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.17 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB corruption due to lack of file locking (MDEV-28495)

FULLTEXT search with apostrophe, and mandatory words (MDEV-20797)

ALTER TABLE IMPORT TABLESPACE corrupts an encrypted table (MDEV-28779)

Alternate download from mariadb.org

4000/4161

https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468
https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3
https://mariadb.com/kb/en/mariadb-10-5-18-changelog/
https://mariadb.org/mariadb-10-9-4-10-8-6-10-7-7-10-6-11-10-5-18-10-4-27-and-10-3-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.17/
https://mariadb.com/kb/en/mariadb-10517-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-28495
https://jira.mariadb.org/browse/MDEV-20797
https://jira.mariadb.org/browse/MDEV-28779

ALTER TABLE wrong-result fix (MDEV-26294)

Crash recovery fixes (MDEV-28668 , MDEV-28731)

Replication

explicit_defaults_for_timestamp is stored in binlog, so that CREATE TABLE on slave would always have the same

effect as on master. (MDEV-29078)

ER_SLAVE_INCIDENT error is specified now on slave to be seen with SHOW-SLAVE-STATUS (MDEV-21087)

INCIDENT_EVENT is no longer binlogged when a being logged transaction can be safely rolledback (MDEV-21443

)

sequences related row-format events are made to correspond to binlog_row_image (MDEV-28487)

Possible reason of FLUSH BINARY LOGS hang is eliminated (MDEV-28948)

Galera

Possible to write/update with read_only=ON and not a SUPER privilege (MDEV-28546)

Node crashes with Transport endpoint is not connected mysqld got signal 6 (MDEV-25068)

Galera4 not able to report proper wsrep_incoming_addresses (MDEV-20627)

Galera should replicate nextval()-related changes in sequences with INCREMENT <> 0, at least NOCACHE ones

with engine=InnoDB (MDEV-27862)

Optimizer

Server crash in JOIN_CACHE::free or in copy_fields (MDEV-23809)

Queries that use DISTINCT and an always-constant function like COLLATION(aggegate_func(...)) could cause

a server crash. Note that COLLATION() is a special function - its value is constant even if its argument is not

costant.

Crash when using ANY predicand with redundant subquery in GROUP BY clause (MDEV-29139)

A query with a subuquery in this form could cause a crash:

... ANY (SELECT ... GROUP BY (SELECT redundant_subselect_here)) ...

MariaDB Server SEGV on INSERT .. SELECT (MDEV-26427)

Certain queries in form "INSERT ... SELECT with_aggregate_or_window_func" could cause a crash.

restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (MDEV-28749)

Subquery semi-join optimization could miss LooseScan or FirstMatch strategies for certain queries.

Optimizer uses all partitions after upgrade to 10.3 (MDEV-28246)

For multi-table UPDATE or DELETE queries, the optimizer failed to apply Partition Pruning optimization for the

table that is updated or deleted from.

Range optimizer regression for key IN (const,) (MDEV-25020)

The issue can be observed on MariaDB 10.5.9 and later versions which have the fix for MDEV-9750 . That fix

introduceds optimizer_max_sel_arg_weight.

If one sets optimizer_max_sel_arg_weight to a very high value or zero (which means "unlimited") and runs

queries that produce heavy-weight graphs, they can observe a performance slowdown, e.g.:

table.keyXpartY [NOT] IN (...)

Wrong result with table elimination combined with not_null_range_scan (MDEV-28858)

If one runs with optimizer_switch='not_null_range_scan=on' (which is not enabled by default), a query that

does a join and has const tables could produce a wrong result.

CONNECT

CONNECT Engine now supports INSERT IGNORE with Mysql Table type (MDEV-27766)

mariadb Client

New mariadb client option, -enable-cleartext-plugin . Option does not do anything, and is for MySQL-

compatibility purposes only.

General

explicit_defaults_for_timestamp now also has a session scope, not only global (MDEV-29225)

MariaDB can be built with OpenSSL 3.0
4001/4161

https://jira.mariadb.org/browse/MDEV-26294
https://jira.mariadb.org/browse/MDEV-28668
https://jira.mariadb.org/browse/MDEV-28731
https://jira.mariadb.org/browse/MDEV-29078
https://jira.mariadb.org/browse/MDEV-21087
https://jira.mariadb.org/browse/MDEV-21443
https://jira.mariadb.org/browse/MDEV-28487
https://jira.mariadb.org/browse/MDEV-28948
https://jira.mariadb.org/browse/MDEV-28546
https://jira.mariadb.org/browse/MDEV-25068
https://jira.mariadb.org/browse/MDEV-20627
https://jira.mariadb.org/browse/MDEV-27862
https://jira.mariadb.org/browse/MDEV-23809
https://jira.mariadb.org/browse/MDEV-29139
https://jira.mariadb.org/browse/MDEV-26427
https://jira.mariadb.org/browse/MDEV-28749
https://jira.mariadb.org/browse/MDEV-28246
https://jira.mariadb.org/browse/MDEV-25020
https://jira.mariadb.org/browse/MDEV-9750
https://jira.mariadb.org/browse/MDEV-28858
https://jira.mariadb.org/browse/MDEV-27766
https://jira.mariadb.org/browse/MDEV-29225

HELP was updated to include the latest content

Crash in JSON_EXTRACT (MDEV-29188)

ALTER TABLE ALGORITHM=NOCOPY does not work after upgrade (MDEV-28727)

Server crash upon CREATE VIEW with unknown column in ON condition (MDEV-29088)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Debian 10 "Buster" for

ppc64el

Security

Fixes for the following security vulnerabilities :

CVE-2023-5157

CVE-2022-32082

CVE-2022-32089

CVE-2022-32081

CVE-2018-25032

CVE-2022-32091

CVE-2022-32084

CVE-2022-38791

Changelog
For a complete list of changes made in MariaDB 10.5.17, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.17, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.9 MariaDB 10.5.16 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.16 Release Notes Changelog Overview of 10.5

Release date: 20 May 2022

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.16 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

Alternate download from mariadb.org

4002/4161

https://jira.mariadb.org/browse/MDEV-29188
https://jira.mariadb.org/browse/MDEV-28727
https://jira.mariadb.org/browse/MDEV-29088
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32082
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10517-changelog/
https://mariadb.org/mariadb-10-8-4-10-7-5-10-6-9-10-5-17-10-4-26-and-10-3-36-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.16/
https://mariadb.com/kb/en/mariadb-10516-changelog/
https://mariadb.com/kb/en/release-criteria/

InnoDB

innodb_disallow_writes removed (MDEV-25975)

InnoDB gap locking fixes (MDEV-20605 , MDEV-28422)

InnoDB performance improvements (MDEV-27557 , MDEV-28185)

Replication

Server initialization time gtid_slave_pos purge related reason of crashing in binlog background thread is removed

(MDEV-26473)

Shutdown of the semisync master can't produce inconsistent state anymore (MDEV-11853)

Binlogs disappear after rsync IST (MDEV-28583)

master crash is eliminated in compressed semisync replication protocol with packet counting amendment (MDEV-

25580)

OPTIMIZE on a sequence does not cause counterfactual ER_BINLOG_UNSAFE_STATEMENT anymore (MDEV-

24617)

Automatically generated Gtid_log_list_event is made to recognize within replication event group as a formal member

(MDEV-28550)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE using two or more unique key values at a time with

MIXED format binlogging is corrected (MDEV-28310)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE stops issuing unnecessary "Unsafe statement" with

MIXED binlog format (MDEV-21810)

Incomplete replication event groups are detected to error out by the slave IO thread (MDEV-27697)

mysqlbinlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be listed

with the actual bytes (MDEV-14608)

Backup

Incorrect binlogs after Galera SST using rsync and mariabackup (MDEV-27524)

mariabackup does not detect multi-source replication slave (MDEV-21037)

Useless warning "InnoDB: Allocated tablespace ID <id> for <tablename>, old maximum was 0" during backup stage

(MDEV-27343)

mariabackup prepare fails for incrementals if a new schema is created after full backup is taken (MDEV-28446)

Optimizer

A SEGV in Item_field::used_tables/update_depend_map_for_order... (MDEV-26402)

ANALYZE FORMAT=JSON fields are incorrect for UNION ALL queries (MDEV-27699)

Subquery in an UPDATE query uses full scan instead of range (MDEV-22377)

Assertion `item1->type() == Item::FIELD_ITEM ... (MDEV-19398)

Server crashes in Expression_cache_tracker::fetch_current_stats (MDEV-28268)

MariaDB server crash at Item_subselect::init_expr_cache_tracker (MDEV-26164 , MDEV-26047)

Crash with union of my_decimal type in ORDER BY clause (MDEV-25994)

SIGSEGV in st_join_table::cleanup (MDEV-24560)

Assertion `!eliminated' failed in Item_subselect::exec (MDEV-28437)

General

Server error messages are now available in Chinese (MDEV-28227)

For RHEL/CentOS 7, non x86_64 architectures are no longer supported upstream and so our support will also be

dropped with this release

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Debian 9 "Stretch", Ubuntu

21.10 "Impish", and Fedora 34

Security

Fixes for the following security vulnerabilities :

CVE-2021-46669

CVE-2022-27376

CVE-2022-27377

CVE-2022-27378

CVE-2022-27379

CVE-2022-27380

CVE-2022-27381

CVE-2022-27382

4003/4161

https://jira.mariadb.org/browse/MDEV-25975
https://jira.mariadb.org/browse/MDEV-20605
https://jira.mariadb.org/browse/MDEV-28422
https://jira.mariadb.org/browse/MDEV-27557
https://jira.mariadb.org/browse/MDEV-28185
https://jira.mariadb.org/browse/MDEV-26473
https://jira.mariadb.org/browse/MDEV-11853
https://jira.mariadb.org/browse/MDEV-28583
https://jira.mariadb.org/browse/MDEV-25580
https://jira.mariadb.org/browse/MDEV-24617
https://jira.mariadb.org/browse/MDEV-28550
https://jira.mariadb.org/browse/MDEV-28310
https://jira.mariadb.org/browse/MDEV-21810
https://jira.mariadb.org/browse/MDEV-27697
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-27524
https://jira.mariadb.org/browse/MDEV-21037
https://jira.mariadb.org/browse/MDEV-27343
https://jira.mariadb.org/browse/MDEV-28446
https://jira.mariadb.org/browse/MDEV-26402
https://jira.mariadb.org/browse/MDEV-27699
https://jira.mariadb.org/browse/MDEV-22377
https://jira.mariadb.org/browse/MDEV-19398
https://jira.mariadb.org/browse/MDEV-28268
https://jira.mariadb.org/browse/MDEV-26164
https://jira.mariadb.org/browse/MDEV-26047
https://jira.mariadb.org/browse/MDEV-25994
https://jira.mariadb.org/browse/MDEV-24560
https://jira.mariadb.org/browse/MDEV-28437
https://mariadb.com/kb/en/mariadb-error-codes/
https://jira.mariadb.org/browse/MDEV-28227
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382

CVE-2022-27383

CVE-2022-27384

CVE-2022-27386

CVE-2022-27387

CVE-2022-27444

CVE-2022-27445

CVE-2022-27446

CVE-2022-27447

CVE-2022-27448

CVE-2022-27449

CVE-2022-27451

CVE-2022-27452

CVE-2022-27455

CVE-2022-27456

CVE-2022-27457

CVE-2022-27458

CVE-2022-32087

CVE-2022-32086

CVE-2022-32085

CVE-2022-32083

CVE-2022-32088

Changelog
For a complete list of changes made in MariaDB 10.5.16, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.16, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.10 MariaDB 10.5.15 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.15 Release Notes Changelog Overview of 10.5

Release date: 12 Feb 2022

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.15 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Alternate download from mariadb.org

4004/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-10516-changelog/
https://mariadb.org/mariadb-10-9-1-10-8-3-10-7-4-10-6-8-10-5-16-10-4-25-10-3-35-and-10-2-44-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.15/
https://mariadb.com/kb/en/mariadb-10515-changelog/
https://mariadb.com/kb/en/release-criteria/

Notable Items
This release fixes a blocking problem with the MariaDB 10.5.14 release when manually running mariadb-upgrade.

(MDEV-27789)

See MariaDB 10.5.14 for other changes since the previous release.

InnoDB

Set innodb_change_buffering=none by default (MDEV-27734)

Security

Fixes for the following security vulnerabilities :

CVE-2021-46665

CVE-2021-46664

CVE-2021-46661

CVE-2021-46668

CVE-2021-46663

Changelog
For a complete list of changes made in MariaDB 10.5.15, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.15, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.11 MariaDB 10.5.14 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.14 Release Notes Changelog Overview of 10.5

Release date: 9 Feb 2022

This release is no longer available for download after a problem was noticed when manually running mariadb-upgrade.

See MDEV-27789 for more details.

Please use a later release.

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.14 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Alternate download from mariadb.org

4005/4161

https://jira.mariadb.org/browse/MDEV-27789
https://jira.mariadb.org/browse/MDEV-27734
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-10515-changelog/
https://mariadb.org/mariadb-10-8-2-rc-and-mariadb-10-7-3-10-6-7-10-5-15-10-4-24-10-3-34-and-10-2-43-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://mariadb.org/download/?tab=mariadb&release=10.5.14&product=mariadb
https://mariadb.com/kb/en/mariadb-10514-changelog/
https://jira.mariadb.org/browse/MDEV-27789
https://mariadb.com/kb/en/release-criteria/

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

--skip-symbolic-links does not disallow .isl file creation (MDEV-26870)

Indexed CHAR columns are broken with NO_PAD collations (MDEV-25440)

insert-intention lock conflicts with waiting ORDINARY lock (MDEV-27025)

Crash recovery improvements (MDEV-26784 , MDEV-27022 , MDEV-27183 , MDEV-27610)

Galera

Galera updated to 26.4.11

Galera SST scripts should use ssl_capath (not ssl_ca) for CA directory (MDEV-27181)

Alter Sequence do not replicate to another nodes with in Galera Cluster (MDEV-19353)

Galera crash - Assertion. Possible parallel writeset problem (MDEV-26803)

CREATE TABLE with FOREIGN KEY constraint fails to apply in parallel (MDEV-27276)

Galera cluster node consider old server_id value even after modification of server_id [wsrep_gtid_mode=ON]

(MDEV-26223)

Replication

Seconds behind master corrected from artificial spikes at relay-log rotation (MDEV-16091)

Statement rollback in binlog when transaction creates or drop temporary table is set right (MDEV-26833)

CREATE-or-REPLACE SEQUENCE is made to binlog with the DDL flag to stabilize its parallel execution on slave

(MDEV-27365)

Packaging & Misc

prohibition running two upgrades in parallel (MDEV-27068 , MDEV-27107 , MDEV-27279)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Ubuntu 21.04 Hirsute,

CentOS 8, and Fedora 33

mariadb_repo_setup script updated to version 2022-02-08, with the following fixes and enhancements:

Default location of the script has been moved to: https://r.mariadb.com/downloads/mariadb_repo_setup (old

location is deprecated, but still works)

The GPG keyring file, used with Debian and Ubuntu repositories, has moved to:

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg and the checksum for the file can be found at:

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256

Support for RHEL and SLES aarch64 repositories added

New function added to verify that the MariaDB Server version, if specified on the command line, follows the

correct naming and that a corresponding repository actually exists.

Fixed repository pinning for Ubuntu and Debian repositories

MariaDB Server 10.7 is now the default server version

Docker Library

Faster initialization by disabling binary logging during initialization (MDEV-27074)

mysql_upgrade can be run if needed using the environment variable MARIADB_AUTO_UPGRADE=1 (MDEV-25670

)

A healthcheck script /usr/local/bin/healthcheck.sh is installed in the container with various checking options (MDEV-

25434)

mysql@localhost user is created with the environment variable MARIADB_MYSQL_LOCALHOST_USER=1 and

additional grants (beyond USAGE) with MARIADB_MYSQL_LOCALHOST_GRANTS={global grant list} (MDEV-

27732)

skip innodb buffer pool loads/dumps on temporary startup/shutdown for faster startup/initialization, and accurate

"healthcheck.sh --innodb_buffer_pool_loaded"

change group ownership on datadir/socket dir (issue #401)

log note about note on Securing system users, mysql_secure_installation not required (reddit suggestion)

speed up Docker Library initialization of timezones (MDEV-27608 , MDEV-23326)

Security

Fixes for the following security vulnerabilities :
4006/4161

https://jira.mariadb.org/browse/MDEV-26870
https://jira.mariadb.org/browse/MDEV-25440
https://jira.mariadb.org/browse/MDEV-27025
https://jira.mariadb.org/browse/MDEV-26784
https://jira.mariadb.org/browse/MDEV-27022
https://jira.mariadb.org/browse/MDEV-27183
https://jira.mariadb.org/browse/MDEV-27610
https://jira.mariadb.org/browse/MDEV-27181
https://jira.mariadb.org/browse/MDEV-19353
https://jira.mariadb.org/browse/MDEV-26803
https://jira.mariadb.org/browse/MDEV-27276
https://jira.mariadb.org/browse/MDEV-26223
https://jira.mariadb.org/browse/MDEV-16091
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-27365
https://jira.mariadb.org/browse/MDEV-27068
https://jira.mariadb.org/browse/MDEV-27107
https://jira.mariadb.org/browse/MDEV-27279
https://r.mariadb.com/downloads/mariadb_repo_setup
https://supplychain.mariadb.com/mariadb-keyring-2019.gpg
https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256
https://jira.mariadb.org/browse/MDEV-27074
https://jira.mariadb.org/browse/MDEV-25670
https://jira.mariadb.org/browse/MDEV-25434
https://jira.mariadb.org/browse/MDEV-27732
https://github.com/MariaDB/mariadb-docker/issues/401
https://www.reddit.com/r/docker/comments/rhwf28/mysql_secure_installation_on_mariadb_with_docker/
https://jira.mariadb.org/browse/MDEV-27608
https://jira.mariadb.org/browse/MDEV-23326
https://mariadb.com/kb/en/cve/

CVE-2022-24052

CVE-2022-24051

CVE-2022-24050

CVE-2022-24048

CVE-2021-46659

CVE-2022-0778

CVE-2022-21595

Changelog
For a complete list of changes made in MariaDB 10.5.14, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.14, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.12 MariaDB 10.5.13 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.13 Release Notes Changelog Overview of 10.5

Release date: 8 Nov 2021

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.13 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

Galera

Fix for WSREP: invalid state ROLLED_BACK (FATAL) (MDEV-25114)

InnoDB

ALTER TABLE&IMPORT TABLESPACE fixes (MDEV-18543 , MDEV-20931 , MDEV-26131 , MDEV-26621)

innodb_undo_log_truncate fixes (MDEV-26445 , MDEV-26450 , MDEV-26672 , MDEV-26864)

Page I/O performance fixes (MDEV-25215 , MDEV-26547 , MDEV-26626 , MDEV-26819)

Replication timeouts with XA PREPARE (MDEV-26682)

Alternate download from mariadb.org

4007/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-10514-changelog/
https://mariadb.org/mariadb-10-8-1-rc-and-mariadb-10-7-2-10-6-6-10-5-14-10-4-23-10-3-33-and-10-2-42-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.13/
https://mariadb.com/kb/en/mariadb-10513-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25114
https://jira.mariadb.org/browse/MDEV-18543
https://jira.mariadb.org/browse/MDEV-20931
https://jira.mariadb.org/browse/MDEV-26131
https://jira.mariadb.org/browse/MDEV-26621
https://jira.mariadb.org/browse/MDEV-26445
https://jira.mariadb.org/browse/MDEV-26450
https://jira.mariadb.org/browse/MDEV-26672
https://jira.mariadb.org/browse/MDEV-26864
https://jira.mariadb.org/browse/MDEV-25215
https://jira.mariadb.org/browse/MDEV-26547
https://jira.mariadb.org/browse/MDEV-26626
https://jira.mariadb.org/browse/MDEV-26819
https://jira.mariadb.org/browse/MDEV-26682

Replication

Memory hogging on slave by ROW event applier is eliminated (MDEV-26712)

mysql --binary-mode now properly handles \\0 in data (MDEV-25444)

Fixes race condition between SHOW BINARY LOGS and RESET MASTER (MDEV-20215)

Missed statement rollback in case transaction drops or create temporary table is corrected (MDEV-26833)

Audit Plugin

The QUERY_DDL server_audit_events setting now logs CREATE/DROP [PROCEDURE / FUNCTION / USER]

statements. See MariaDB Audit Plugin - Log Settings. (MDEV-23457)

Packaging & Misc

Session tracking flag in OK_PACKET (MDEV-26868)

Some views force server (and mysqldump) to generate invalid SQL for their definitions (MDEV-26299)

Security

Fixes for the following security vulnerabilities :

CVE-2021-35604

CVE-2021-46667

CVE-2021-46662

CVE-2022-27385

CVE-2022-27385

CVE-2022-31624

Changelog
For a complete list of changes made in MariaDB 10.5.13, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.13, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.13 MariaDB 10.5.12 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.12 Release Notes Changelog Overview of 10.5

Release date: 6 Aug 2021

Warning: This version can cause InnoDB file corruption on FreeBSD and on AIX. If you are using AIX, please, stick to

an earlier release, or upgrade to a more recent release. If you are using FreeBSD, upgrade to the bugfix release (the

version ends with _1) of the mariadb-server from the Ports Collection. See MDEV-26537 .

Alternate download from mariadb.org

4008/4161

https://jira.mariadb.org/browse/MDEV-26712
https://jira.mariadb.org/browse/MDEV-25444
https://jira.mariadb.org/browse/MDEV-20215
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-23457
https://jira.mariadb.org/browse/MDEV-26868
https://jira.mariadb.org/browse/MDEV-26299
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
https://mariadb.com/kb/en/mariadb-10513-changelog/
https://mariadb.org/mariadb-10-7-1-rc-and-mariadb-10-6-5-10-5-13-10-4-22-10-3-32-and-10-2-41-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.12/
https://mariadb.com/kb/en/mariadb-10512-changelog/
https://jira.mariadb.org/browse/MDEV-26537

MariaDB 10.5 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.12 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB no longer acquires advisory file locks by default (MDEV-24393)

Encryption: Automatically disable key rotation checks for file_key_management plugin (MDEV-14180)

Some fixes from MySQL 5.7.35 (MDEV-26205)

Fixed scrubbing on AIX (MDEV-26110)

Improved page flushing performance (MDEV-25954 , MDEV-25948 , MDEV-25801 , MDEV-25113 , MDEV-

26004)

Optimizer

A query that uses ORDER BY .. LIMIT clause and "Range checked for each record optimization" could produce

incorrect results under some circumstances (MDEV-25858)

Queries that have more than 32 equality conditions comparing columns of different tables ("tableX.colX=tableY.colY)

could cause a stack overrun in the query optimizer (MDEV-17783 , MDEV-23937)

"Condition pushdown into derived table" optimization cannot be applied if the expression being pushed refers to a

derived table column which is computed from expression that has a stored function call, @session variable reference,

or other similar construct. The fix for MDEV-25969 makes it so that only the problematic part of the condition is not

pushed. The rest of the condition is now pushed. (MDEV-25969)

A query with window function on the left side of the subquery could cause a crash. (MDEV-25630)

Fixed the issue fixed in MySQL Bug #76803: DML or locking SELECT statements that use outer joins could produce

this warning in the error log: [ERROR] InnoDB: Unlock row could not find a 3 mode lock on the

record. (MDEV-26106)

Packaging & Misc

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Ubuntu 20.10 Groovy

Debian 11 Bullseye repositories added

Galera updated to 26.4.9

Linux on IBM Z (s390x) architecture added with releases on Ubuntu-20.04 Focal

Security

Fixes for the following security vulnerabilities :

CVE-2021-2372

CVE-2021-2389

CVE-2021-46658

Changelog
For a complete list of changes made in MariaDB 10.5.12, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.12, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

4009/4161

https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24393
https://jira.mariadb.org/browse/MDEV-14180
https://jira.mariadb.org/browse/MDEV-26205
https://jira.mariadb.org/browse/MDEV-26110
https://jira.mariadb.org/browse/MDEV-25954
https://jira.mariadb.org/browse/MDEV-25948
https://jira.mariadb.org/browse/MDEV-25801
https://jira.mariadb.org/browse/MDEV-25113
https://jira.mariadb.org/browse/MDEV-26004
https://jira.mariadb.org/browse/MDEV-25858
https://jira.mariadb.org/browse/MDEV-17783
https://jira.mariadb.org/browse/MDEV-23937
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25630
https://jira.mariadb.org/browse/MDEV-26106
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
https://mariadb.com/kb/en/mariadb-10512-changelog/
https://mariadb.org/mariadb-10-6-4-10-5-12-10-4-21-10-3-31-and-10-2-40-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.14 MariaDB 10.5.11 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.11 Release Notes Changelog Overview of 10.5

Release date: 23 Jun 2021

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.11 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Items
This version of MariaDB is being released now to fix the following two regressions:

Table alias from previous statement interferes later commands (MDEV-25672)

Join using derived with aggregation returns incorrect results (MDEV-25714)

In addition to the above, this release also contains the following fixes:

InnoDB

InnoDB spatial indexes miss large geometry fields after MDEV-25459 (MDEV-25758)

Double free of transaction during truncate operation (MDEV-25663)

Double free of table when inplace alter FTS add index fails (MDEV-25721)

Potential hang in purge for virtual columns (MDEV-25664)

Change buffer records are lost under heavy load (MDEV-25783)

Not applying INSERT_REUSE_REDUNDANT (MDEV-25745)

InnoDB recovery fails with [ERROR] InnoDB: Not applying INSERT_REUSE_REDUNDANT due to corruption

(MDEV-25745)

CHECK TABLE harvests InnoDB: Index 'abdcef' contains 10001 entries, should be 10000 (MDEV-25783)

Replication

Do not replicate killed multi-table OPTIMIZE TABLE when the signal arrives before any table has been processed

(MDEV-22530)

Fix optimistic parallel applier to not deadlock on admin commands OPTIMIZE, REPAIR, and ANALYZE (MDEV-

17515)

Backport MDEV-20821 parallel slave server shutdown hang (MDEV-22370)

Removed deprecated --base64-output to correct BINLOG clause in mysqlbinlog output (MDEV-25222)

Security

Fixes for the following security vulnerabilities :

CVE-2021-46666

CVE-2021-46657

Alternate download from mariadb.org

4010/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.11/
https://mariadb.com/kb/en/mariadb-10511-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25672
https://jira.mariadb.org/browse/MDEV-25714
https://jira.mariadb.org/browse/MDEV-25459
https://jira.mariadb.org/browse/MDEV-25758
https://jira.mariadb.org/browse/MDEV-25663
https://jira.mariadb.org/browse/MDEV-25721
https://jira.mariadb.org/browse/MDEV-25664
https://jira.mariadb.org/browse/MDEV-25783
https://jira.mariadb.org/browse/MDEV-25745
https://jira.mariadb.org/browse/MDEV-25745
https://jira.mariadb.org/browse/MDEV-25783
https://jira.mariadb.org/browse/MDEV-22530
https://jira.mariadb.org/browse/MDEV-17515
https://jira.mariadb.org/browse/MDEV-20821
https://jira.mariadb.org/browse/MDEV-22370
https://jira.mariadb.org/browse/MDEV-25222
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657

Changelog
For a complete list of changes made in MariaDB 10.5.11, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.11, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.15 MariaDB 10.5.10 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.10 Release Notes Changelog Overview of 10.5

Release date: 7 May 2021

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.10 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
ST_DISTANCE_SPHERE for calculating the spherical distance between two geometries (point or multipoint) on a

sphere (MDEV-13467)

Crash with invalid multi-table update of view in 2nd execution of SP (MDEV-24823)

Incorrect name resolution for subqueries in ON expressions (MDEV-25362)

Complex query in Store procedure corrupts results (MDEV-25182)

DELETE HISTORY may delete current data on system-versioned table (MDEV-25468)

Crashes with nested table value constructors (MDEV-22786)

Server crashes in thd_clear_errors() (MDEV-23542)

The statement set password=password('') executed in PS mode fails in case it is run by a user with expired

password (MDEV-25197)

mariabackup

RENAME TABLE causes "Ignoring data file" messages (MDEV-25568)

InnoDB

Deprecated the *innodb and *none options in innodb_checksum_algorithm (MDEV-25106)

MVCC read from index on CHAR or VARCHAR wrongly omits rows (MDEV-25459)

Race conditions in persistent statistics (MDEV-10682 , MDEV-18802 , MDEV-25051)

Alternate download from mariadb.org

4011/4161

https://mariadb.com/kb/en/mariadb-10511-changelog/
https://mariadb.org/mariadb-10-5-11-10-4-20-10-3-30-and-10-2-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.10/
https://mariadb.com/kb/en/mariadb-10510-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-13467
https://jira.mariadb.org/browse/MDEV-24823
https://jira.mariadb.org/browse/MDEV-25362
https://jira.mariadb.org/browse/MDEV-25182
https://jira.mariadb.org/browse/MDEV-25468
https://jira.mariadb.org/browse/MDEV-22786
https://jira.mariadb.org/browse/MDEV-23542
https://jira.mariadb.org/browse/MDEV-25197
https://jira.mariadb.org/browse/MDEV-25568
https://jira.mariadb.org/browse/MDEV-25106
https://jira.mariadb.org/browse/MDEV-25459
https://jira.mariadb.org/browse/MDEV-10682
https://jira.mariadb.org/browse/MDEV-18802
https://jira.mariadb.org/browse/MDEV-25051

Sequence created by one connection remains invisible to another (MDEV-24545)

innodb_flush_method=O_DIRECT fails on compressed tables (MDEV-25121)

RESET MASTER hangs (MDEV-24302)

InnoDB crash recovery fixes (MDEV-25031 , MDEV-25110)

Replication

Replication Heartbeat event was uncapable to cary 4GB+ offsets (MDEV-16146)

FLUSH LOGS race against Binlog checkpoint event creation (MDEV-24526)+

slave_compressed_protocol did not work correctly with semi-sync (MDEV-24773)

DROP TABLE should not cause "Query caused different errors on master and slave" on slave when it failed on

master (MDEV-25530)

Killing server during RESET MASTER may lose MyRocks transaction (MDEV-25305)

Galera

Galera updated to 26.4.8

SET PASSWORD command fail with wsrep api (MDEV-25258)

Long BF log wait turns on InnoDB Monitor output without telling, never turns it off (MDEV-25319)

Assertion `state_ == s_exec' failed in wsrep::client_state::start_transaction (MDEV-22227)

Frequently Crashing Mariadb Cluster 10.4.18 (MDEV-24980)

Signal 11 on TABLE_LIST::placeholder() (MDEV-24878)

ALTER TABLE not replicated with Galera in MariaDB 10.5.9 (MDEV-24956)

"Flush SSL" command doesn't reload wsrep cert (MDEV-22668)

Avoid unnecessary rollbacks with SR (MDEV-25553)

Packaging & Misc

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Ubuntu 16.04 Xenial and

Fedora 32

Ubuntu 21.04 Hirsute and Fedora 34 repositories added

Security

Fixes for the following security vulnerabilities :

CVE-2021-2166

CVE-2021-2154

CVE-2022-21451

MongoDB protocol support files for the CONNECT engine are missing in this release.

If you want to use CONNECT engine with MongoDB, you need to download

Mongo2.jar or Mongo3.jar and put a path to this file into the connect_class_path in the my.cnf .

Changelog
For a complete list of changes made in MariaDB 10.5.10, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.10, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

4012/4161

https://jira.mariadb.org/browse/MDEV-24545
https://jira.mariadb.org/browse/MDEV-25121
https://jira.mariadb.org/browse/MDEV-24302
https://jira.mariadb.org/browse/MDEV-25031
https://jira.mariadb.org/browse/MDEV-25110
https://jira.mariadb.org/browse/MDEV-16146
https://jira.mariadb.org/browse/MDEV-24526
https://jira.mariadb.org/browse/MDEV-24773
https://jira.mariadb.org/browse/MDEV-25530
https://jira.mariadb.org/browse/MDEV-25305
https://jira.mariadb.org/browse/MDEV-25258
https://jira.mariadb.org/browse/MDEV-25319
https://jira.mariadb.org/browse/MDEV-22227
https://jira.mariadb.org/browse/MDEV-24980
https://jira.mariadb.org/browse/MDEV-24878
https://jira.mariadb.org/browse/MDEV-24956
https://jira.mariadb.org/browse/MDEV-22668
https://jira.mariadb.org/browse/MDEV-25553
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo2.jar
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo3.jar
https://mariadb.com/kb/en/mariadb-10510-changelog/
https://mariadb.org/mariadb-10-5-10-10-4-19-10-3-29-and-10-2-38-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.7.2.16 MariaDB 10.5.9 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.9 Release Notes Changelog Overview of 10.5

Release date: 22 Feb 2021

Last month long-time MariaDB VP of Engineering, Rasmus Johansson, passed due to

complications from cancer. His loss has been felt keenly by the whole MariaDB team. Our

thoughts are with his family during this difficult time and this release is dedicated to his

memory.

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.9 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes

InnoDB

MDEV-24188 - Hang in buf_page_create() after reusing a previously freed page

MDEV-24275 - InnoDB persistent stats analyze forces full scan forcing lock crash

MDEV-24449 - Corruption of system tablespace or last recovered page

MDEV-24109 - InnoDB hangs with innodb_flush_sync=OFF

MDEV-24537 - innodb_max_dirty_pages_pct_lwm=0 lost its special meaning

Fixed bugs in the handling of freed pages - MDEV-24569 , MDEV-24695 , MDEV-24765 , MDEV-24864

MDEV-12227 - Defer writes to the InnoDB temporary tablespace

Galera

Galera updated to 26.4.7

MDEV-23328 - Server hang due to Galera lock conflict resolution

MDEV-23851 - BF-BF Conflict issue because of UK GAP locks

MDEV-20717 - Plugin system variables and activation options can break mysqld --wsrep_recover

MDEV-24469 - Assertion active() == false failed with "XA START.."

MDEV-23647 - Garbd can't initiate SST anymore in 10.5

MDEV-25179 - wsrep_provider and wsrep_notify_cmd system variables are now read-only

Replication

MDEV-8134 - relay-log is corrected to rotate past 999999

MDEV-23033 - fixed slave applier for row-based events with FK constraints on virtual columns

MDEV-4633 - Relay_Log_Space of Show-Slave-Status is made thread-safe

MDEV-10272 - add master host/port info to slave thread exit messages

MDEV-23846 - improves mysqlbinlog error message issuing

MDEV-24087 - replication of S3 ALTER PARTITION corrected

MDEV-23610 - New privilege REPLICA MONITOR (also accessible as SLAVE MONITOR)

ColumnStore

MariaDB ColumnStore updated to 5.5.1

MariaDB ColumnStore deb and rpm packages now have a version of 10.5.9-5.5.1 so one can see both the server

Alternate download from mariadb.org

4013/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.9/
https://mariadb.com/kb/en/mariadb-1059-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24188
https://jira.mariadb.org/browse/MDEV-24275
https://jira.mariadb.org/browse/MDEV-24449
https://jira.mariadb.org/browse/MDEV-24109
https://jira.mariadb.org/browse/MDEV-24537
https://jira.mariadb.org/browse/MDEV-24569
https://jira.mariadb.org/browse/MDEV-24695
https://jira.mariadb.org/browse/MDEV-24765
https://jira.mariadb.org/browse/MDEV-24864
https://jira.mariadb.org/browse/MDEV-12227
https://jira.mariadb.org/browse/MDEV-23328
https://jira.mariadb.org/browse/MDEV-23851
https://jira.mariadb.org/browse/MDEV-20717
https://jira.mariadb.org/browse/MDEV-24469
https://jira.mariadb.org/browse/MDEV-23647
https://jira.mariadb.org/browse/MDEV-25179
https://jira.mariadb.org/browse/MDEV-8134
https://jira.mariadb.org/browse/MDEV-23033
https://jira.mariadb.org/browse/MDEV-4633
https://jira.mariadb.org/browse/MDEV-10272
https://jira.mariadb.org/browse/MDEV-23846
https://jira.mariadb.org/browse/MDEV-24087
https://jira.mariadb.org/browse/MDEV-23610

version (10.5.9) and the plugin version (5.5.1) without needing to check the Available Versions table in the

ColumnStore docs

The MariaDB ColumnStore plugin is no longer provided for 32-bit x86 (i386) builds

Misc

MariaDB is fixed to build on the Apple M1 CPU

MariaDB is fixed to build on AIX

MDEV-24122 - anomalies in mysql.user tables on previously 5.7 MySQL versions corrected

MDEV-24093 - Detect during mysql_upgrade if type_mysql_json.so is needed and load it

Binary tarballs now use WolfSSL v4.6.0 and pcre2-10.36

MDEV-23630 - mysqldump --system option

Fixes for the following security vulnerabilities :

CVE-2021-27928

Changelog
For a complete list of changes made in MariaDB 10.5.9, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.9, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.17 MariaDB 10.5.8 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.8 Release Notes Changelog Overview of 10.5

Release date: 11 Nov 2020

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
Out-of-cycle release to fix regressions in MariaDB 10.5.7

Follow up to MDEV-19838 to alter protocol checks to support the following implementations (which add garbage to

the end of some packets):

PHP PDO (all versions) (MDEV-24121)

mysqlnd (from PHP < 7.3) (MDEV-24121)

mysql-connector-python (all versions) (MDEV-24134)

Alternate download from mariadb.org

4014/4161

https://mariadb.com/docs/features/mariadb-columnstore/#available-versions
https://jira.mariadb.org/browse/MDEV-24122
https://jira.mariadb.org/browse/MDEV-24093
https://jira.mariadb.org/browse/MDEV-23630
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
https://mariadb.com/kb/en/mariadb-1059-changelog/
https://mariadb.org/mariadb-10-5-9-10-4-18-10-3-28-and-10-2-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.8/
https://mariadb.com/kb/en/mariadb-1058-changelog/
https://jira.mariadb.org/browse/MDEV-19838
https://jira.mariadb.org/browse/MDEV-24121
https://jira.mariadb.org/browse/MDEV-24121
https://jira.mariadb.org/browse/MDEV-24134

and mysql-connector-java (all versions)

Arbitrary InnoDB buffer pool and data file corruption (MDEV-24096)

The query optimizer consumed a lot of memory when handling construct in form of key_column [NOT] IN

(large-list-of constants) (MDEV-24117)

Changelog
For a complete list of changes made in MariaDB 10.5.8, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.8, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.18 MariaDB 10.5.7 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.7 Release Notes Changelog Overview of 10.5

Release date: 3 Nov 2020

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes

This release introduced an InnoDB data corruption bug (MDEV-24096). If any InnoDB tables contain indexed virtual

columns or unique indexes on BLOB or TEXT columns, any InnoDB tables or tablespaces may become irreparably

corrupted.

Improved write performance (MDEV-23399 , MDEV-23855 , MDEV-24037)

MDEV-18323 It is now possible to upgrade from MySQL 5.7 Tables containing JSON, by loading the

MYSQL_JSON datatype plugin first. See Making MariaDB understand MySQL JSON .

Update S3 engine to maturity Gamma

mariadbd --temp-pool option deprecated and defaulted to zero (MDEV-22278)

BLACKHOLE Storage Engine maximum index size increased from 1000 to 3500 bytes (MDEV-24017)

Calculating (auto rounding) issue (MDEV-23702)

Temporary tables can no longer overwrite existing files. Instead an error is returned should a conflict occur (MDEV-

23569)

Binlog checksum verification at recovery time (MDEV-23832)

Verbose print-out of Geometry types by mysqlbinlog (MDEV-22330)

Alternate download from mariadb.org

4015/4161

https://jira.mariadb.org/browse/MDEV-24096
https://jira.mariadb.org/browse/MDEV-24117
https://mariadb.com/kb/en/mariadb-1058-changelog/
https://mariadb.org/mariadb-10-5-8-10-4-17-10-3-27-and-10-2-36-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.7/
https://mariadb.com/kb/en/mariadb-1057-changelog/
https://jira.mariadb.org/browse/MDEV-24096
https://jira.mariadb.org/browse/MDEV-23399
https://jira.mariadb.org/browse/MDEV-23855
https://jira.mariadb.org/browse/MDEV-24037
https://jira.mariadb.org/browse/MDEV-18323
https://mariadb.org/making-mariadb-understand-mysql-json/
https://jira.mariadb.org/browse/MDEV-22278
https://jira.mariadb.org/browse/MDEV-24017
https://jira.mariadb.org/browse/MDEV-23702
https://jira.mariadb.org/browse/MDEV-23569
https://jira.mariadb.org/browse/MDEV-23832
https://jira.mariadb.org/browse/MDEV-22330

SHOW BINLOG EVENTS from <pos> validates <pos> when binlog checksummed (MDEV-21839)

Freeing memory of replicate_do_table (MDEV-23534)

Corrected verbose mysqlbinlog output for multi-record Rows-log-event (MDEV-16372)

SET GLOBAL replicate_do_db = DEFAULT no longer causes crash (MDEV-20744)

User killed queries that were running an index condition pushdown in InnoDB will now return an error (MDEV-23938

)

Wrong direxec param data caused crash; Numerous fixes about Mac builds (by Dmitri Shulga) (MDEV-19838)

server_audit plugin now logs proxy users (MDEV-19443)

Crash on SELECT on a table with indexed virtual columns (MDEV-18366)

InnoDB updated to 5.7.32 (MDEV-23989)

Bug fixes related to adaptive hash index (MDEV-23452 , MDEV-23370)

Fixed a bug in the recovery of encrypted tables (MDEV-23456)

Fixed a race condition in MVCC reads (MDEV-22924)

ALTER TABLE fixes (MDEV-22277 , MDEV-22939 , MDEV-23199 , MDEV-23356 , MDEV-23499 , MDEV-

23672 , MDEV-23685 , MDEV-23722)

Diskspace not reused for BLOB in data file (MDEV-23072)

InnoDB: Failing assertion: !space->referenced() (MDEV-23651)

SIGSEGV in maria_create() because of double free (MDEV-23222)

CREATE TEMPORARY TABLE .. LIKE (system versioned table) returns error if unique index is defined in the table

(MDEV-23968)

Error upon querying the view, that selecting from versioned table with partitions (MDEV-23779)

CREATE .. SELECT wrong result on join versioned table (MDEV-23799)

SIGSEGV in check_fields on UPDATE (MDEV-22805)

Parser fix (MDEV-23094)

Add CRC-32 code to mysys , giving notable speedup in checksum calculation on x64 (MDEV-19935)

Faster CRC-32C checksum calculations (MDEV-23495 , MDEV-22749)

Fixes to potential corruption bugs (MDEV-23973 , MDEV-24054)

Fixed delayed replication with S3 storage engine slave (MDEV-23691)

Deadlock between BACKUP STAGE BLOCK_COMMIT and parallel replication (MDEV-23586)

CREATE fails after DROP without .frm (MDEV-23549)

S3 Storage Engine

Update S3 engine to maturity Gamma

Add the s3_use_http and s3_port system variables

Galera

Galera wsrep library updated to 26.4.6

Fixed assertion failure on before_commit (MDEV-22681)

Fixed assertion after ROLLBACK AND CHAIN (MDEV-22055)

Fixed replication of DROP TRIGGER (MDEV-23638)

IPv6 SST handling improved (MDEV-21770 , MDEV-23576 , MDEV-23580 , MDEV-23581 , MDEV-23574)

Fixed SIGSEGV in lock_rec_unlock (MDEV-23101)

Fixed replication of timezone if only 1 timezone is loaded (MDEV-22626)

Fixed replication of CREATE OR REPLACE TRIGGER (MDEV-21578)

Fixed SST FLUSH TABLES WITH READ LOCK timeout (MDEV-22543)

Notes

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for CentOS/RHEL 6 and Fedora

31

Packages for Ubuntu 20.10 "Groovy Gorilla" added

Packages for Debian 10 "buster" arm64 and ppc64el added

Packages for Debian 9 "stretch" arm64 added

Fixes for the following security vulnerabilities :

CVE-2020-14812

CVE-2020-14765

CVE-2020-14776

CVE-2020-14789

CVE-2020-28912 (MDEV-24040)

CVE-2021-2194 (MDEV-18366)

CVE-2022-21427

4016/4161

https://jira.mariadb.org/browse/MDEV-21839
https://jira.mariadb.org/browse/MDEV-23534
https://jira.mariadb.org/browse/MDEV-16372
https://jira.mariadb.org/browse/MDEV-20744
https://jira.mariadb.org/browse/MDEV-23938
https://jira.mariadb.org/browse/MDEV-19838
https://jira.mariadb.org/browse/MDEV-19443
https://jira.mariadb.org/browse/MDEV-18366
https://jira.mariadb.org/browse/MDEV-23989
https://jira.mariadb.org/browse/MDEV-23452
https://jira.mariadb.org/browse/MDEV-23370
https://jira.mariadb.org/browse/MDEV-23456
https://jira.mariadb.org/browse/MDEV-22924
https://jira.mariadb.org/browse/MDEV-22277
https://jira.mariadb.org/browse/MDEV-22939
https://jira.mariadb.org/browse/MDEV-23199
https://jira.mariadb.org/browse/MDEV-23356
https://jira.mariadb.org/browse/MDEV-23499
https://jira.mariadb.org/browse/MDEV-23672
https://jira.mariadb.org/browse/MDEV-23685
https://jira.mariadb.org/browse/MDEV-23722
https://jira.mariadb.org/browse/MDEV-23072
https://jira.mariadb.org/browse/MDEV-23651
https://jira.mariadb.org/browse/MDEV-23222
https://jira.mariadb.org/browse/MDEV-23968
https://jira.mariadb.org/browse/MDEV-23779
https://jira.mariadb.org/browse/MDEV-23799
https://jira.mariadb.org/browse/MDEV-22805
https://jira.mariadb.org/browse/MDEV-23094
https://jira.mariadb.org/browse/MDEV-19935
https://jira.mariadb.org/browse/MDEV-23495
https://jira.mariadb.org/browse/MDEV-22749
https://jira.mariadb.org/browse/MDEV-23973
https://jira.mariadb.org/browse/MDEV-24054
https://jira.mariadb.org/browse/MDEV-23691
https://jira.mariadb.org/browse/MDEV-23586
https://jira.mariadb.org/browse/MDEV-23549
https://jira.mariadb.org/browse/MDEV-22681
https://jira.mariadb.org/browse/MDEV-22055
https://jira.mariadb.org/browse/MDEV-23638
https://jira.mariadb.org/browse/MDEV-21770
https://jira.mariadb.org/browse/MDEV-23576
https://jira.mariadb.org/browse/MDEV-23580
https://jira.mariadb.org/browse/MDEV-23581
https://jira.mariadb.org/browse/MDEV-23574
https://jira.mariadb.org/browse/MDEV-23101
https://jira.mariadb.org/browse/MDEV-22626
https://jira.mariadb.org/browse/MDEV-21578
https://jira.mariadb.org/browse/MDEV-22543
https://downloads.mariadb.org/mariadb/repositories/#distro=Ubuntu&distro_release=groovy--ubuntu_groovy
https://downloads.mariadb.org/mariadb/repositories/#distro=Debian&distro_release=buster--buster
https://downloads.mariadb.org/mariadb/repositories/#distro=Debian&distro_release=stretch--stretch
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
https://jira.mariadb.org/browse/MDEV-24040
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://jira.mariadb.org/browse/MDEV-18366
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427

Changelog
For a complete list of changes made in MariaDB 10.5.7, with links to detailed information on each push, see the changelog

.

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.19 MariaDB 10.5.6 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download 10.5.6 Release Notes Changelog Overview of 10.5

Release date: 7 Oct 2020

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
Fixes for the following security vulnerabilities :

CVE-2020-15180

Changelog
For a complete list of changes made in MariaDB 10.5.6, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

Alternate download from mariadb.org

7.0.7.2.20 MariaDB 10.5.5 Release Notes
4017/4161

https://mariadb.com/kb/en/mariadb-1057-changelog/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.6/
https://mariadb.com/kb/en/mariadb-1056-changelog/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
https://mariadb.com/kb/en/mariadb-1056-changelog/
https://mariadb.org/mariadb-10-5-6-10-4-15-10-3-25-10-2-34-and-10-1-47-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.5

Release date: 10 Aug 2020

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes

Deprecated variables

innodb_thread_concurrency

innodb_commit_concurrency

innodb_replication_delay

innodb_concurrency_tickets

innodb_thread_sleep_delay

innodb_adaptive_max_sleep_delay (MDEV-23379)

InnoDB

Fixed corruption in delete buffering (MDEV-22497)

Fixed a deadlock in FLUSH TABLES&FOR EXPORT (MDEV-22890)

InnoDB data file extension is not crash-safe (MDEV-23190)

Minor fixes related to encryption and FULLTEXT INDEX

Dropping the adaptive hash index may cause DDL to lock up InnoDB (MDEV-22456)

innodb_log_optimize_ddl=OFF is not crash safe (MDEV-21347)

Mariadb service won't shutdown when it's running and the OS datetime updated backwards (MDEV-17481)

Doublewrite recovery can corrupt data pages (MDEV-11799)

Fixed race conditions related to buffer pool resizing

ALTER TABLE fixes (MDEV-22637 , MDEV-23244 , MDEV-22988 , MDEV-23295 , MDEV-22771 , MDEV-

22811 , MDEV-22899)

Slow InnoDB shutdown on large instance (MDEV-22778)

Fixes to performance regressions introduced in MariaDB 10.5.4 (MDEV-23017 , MDEV-23369 , MDEV-23410)

Performance improvements (MDEV-22110 , MDEV-22930 , MDEV-23379 , MDEV-22778)

Correctly implemented the scrubbing of freed pages (MDEV-8139)

Crash recovery fixes (MDEV-21347 , MDEV-23190 , MDEV-11799)

Replication

Make the binlog dump thread to log into errorlog a requested GTID position (MDEV-20428)

Fix stop of the optimistic parallel slave at requested START-SLAVE-UNTIL position (MDEV-15152)

Properly handle RESET MASTER TO value, when the value exceeds the max allowed 2147483647 (MDEV-22451)

Correct 'relay-log.info' updating by concurrent parallel workers (MDEV-22806)

Eliminate deadlock involving parallel workers, STOP SLAVE and FLUSH TABLES WITH READ LOCK (MDEV-23089

)

Correct master-slave automatic reconnection by slave to always pass through all steps of the initial connect.

Specifically, do not skip master notification about slave binlog checksum awareness (MDEV-14203)

Refine mysqlbinlog output to print out START TRANSACTION at Gtid_log_event processing which satisfies clients

that submit the output with sql_mode=oracle (MDEV-23108)

Replication aborts with ER_SLAVE_CONVERSION_FAILED upon CREATE ... SELECT in ORACLE mode (MDEV-

19632)

Optimizer

Alternate download from mariadb.org

4018/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.5/
https://mariadb.com/kb/en/mariadb-1055-changelog/
https://jira.mariadb.org/browse/MDEV-23379
https://jira.mariadb.org/browse/MDEV-22497
https://jira.mariadb.org/browse/MDEV-22890
https://jira.mariadb.org/browse/MDEV-23190
https://jira.mariadb.org/browse/MDEV-22456
https://jira.mariadb.org/browse/MDEV-21347
https://jira.mariadb.org/browse/MDEV-17481
https://jira.mariadb.org/browse/MDEV-11799
https://jira.mariadb.org/browse/MDEV-22637
https://jira.mariadb.org/browse/MDEV-23244
https://jira.mariadb.org/browse/MDEV-22988
https://jira.mariadb.org/browse/MDEV-23295
https://jira.mariadb.org/browse/MDEV-22771
https://jira.mariadb.org/browse/MDEV-22811
https://jira.mariadb.org/browse/MDEV-22899
https://jira.mariadb.org/browse/MDEV-22778
https://jira.mariadb.org/browse/MDEV-23017
https://jira.mariadb.org/browse/MDEV-23369
https://jira.mariadb.org/browse/MDEV-23410
https://jira.mariadb.org/browse/MDEV-22110
https://jira.mariadb.org/browse/MDEV-22930
https://jira.mariadb.org/browse/MDEV-23379
https://jira.mariadb.org/browse/MDEV-22778
https://jira.mariadb.org/browse/MDEV-8139
https://jira.mariadb.org/browse/MDEV-21347
https://jira.mariadb.org/browse/MDEV-23190
https://jira.mariadb.org/browse/MDEV-11799
https://jira.mariadb.org/browse/MDEV-20428
https://jira.mariadb.org/browse/MDEV-15152
https://jira.mariadb.org/browse/MDEV-22451
https://jira.mariadb.org/browse/MDEV-22806
https://jira.mariadb.org/browse/MDEV-23089
https://jira.mariadb.org/browse/MDEV-14203
https://jira.mariadb.org/browse/MDEV-23108
https://jira.mariadb.org/browse/MDEV-19632

Improve Protocol performance for numeric data by avoiding unnecessary character string conversions (MDEV-23162

)

ALTER TABLE ... ANALYZE PARTITION ... with EITS reads and locks all rows ... (MDEV-21472)

Print ranges in the optimizer trace created for non-indexed columns when optimizer_use_condition_selectivity >2

Now the optimizer trace shows the ranges constructed while getting estimates from EITS (MDEV-22665)

LATERAL DERIVED is not clearly visible in EXPLAIN FORMAT=JSON, make LATERAL DERIVED tables visible in

EXPLAIN FORMAT=JSON output (MDEV-17568)

Crash on WITH RECURSIVE large query (MDEV-22748)

Crash with Prepared Statement with a '?' parameter inside a re-used CTE (MDEV-22779)

Other

div_precision_increment is now taken into account for all intermediate calculations. Previously results could be

unpredictable. Note that this means results will have a lower precision in some cases - see div_precision_increment

(MDEV-19232)

mariadb_schema data type qualifier allowing MariaDB native date types in an SQL_MODE that has conflicting data

type translations.

MariaDB could crash after changing the query_cache size (MDEV-5924)

Errors and SIGSEGV on CREATE TABLE w/ various charsets (MDEV-22111)

Crash in CREATE TABLE AS SELECT when the precision of returning type = 0 (MDEV-22502)

XA: Reject DDL operations between PREPARE and COMMIT (MDEV-22420)

Stop mariabackup --prepare on errors during innodb redo log applying (MDEV-22354)

Server crashes in mysql_alter_table upon adding a non-null date column under NO_ZERO_DATE with

ALGORITHM=INPLACE (MDEV-18042)

Can't uninstall plugin if the library file doesn't exist (MDEV-21258)

Mariabackup parameter cleanup (MDEV-18215 , MDEV-21298 , MDEV-21301 , MDEV-22894)

Rounding functions return wrong datatype (MDEV-23366 , MDEV-23367 , MDEV-23368 , MDEV-23350 ,

MDEV-23351 , MDEV-23337 , MDEV-23323)

Create mariadb.sys user on each update even is the user is not needed (MDEV-23102)

INFORMATION_SCHEMA.INNODB_TABLESPACES_ENCRYPTION required SUPER instead PROCESS privilege

(MDEV-23003)

Reinforce DDL operation rejection after XA PREPARE (MDEV-22420)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.5 for Ubuntu 19.10 Eoan and

Fedora 30

Fixes for the following security vulnerabilities :

CVE-2021-2022

Changelog
For a complete list of changes made in MariaDB 10.5.5, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.21 MariaDB 10.5.4 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Alternate download from mariadb.org

4019/4161

https://jira.mariadb.org/browse/MDEV-23162
https://jira.mariadb.org/browse/MDEV-21472
https://jira.mariadb.org/browse/MDEV-22665
https://jira.mariadb.org/browse/MDEV-17568
https://jira.mariadb.org/browse/MDEV-22748
https://jira.mariadb.org/browse/MDEV-22779
https://jira.mariadb.org/browse/MDEV-19232
https://jira.mariadb.org/browse/MDEV-5924
https://jira.mariadb.org/browse/MDEV-22111
https://jira.mariadb.org/browse/MDEV-22502
https://jira.mariadb.org/browse/MDEV-22420
https://jira.mariadb.org/browse/MDEV-22354
https://jira.mariadb.org/browse/MDEV-18042
https://jira.mariadb.org/browse/MDEV-21258
https://jira.mariadb.org/browse/MDEV-18215
https://jira.mariadb.org/browse/MDEV-21298
https://jira.mariadb.org/browse/MDEV-21301
https://jira.mariadb.org/browse/MDEV-22894
https://jira.mariadb.org/browse/MDEV-23366
https://jira.mariadb.org/browse/MDEV-23367
https://jira.mariadb.org/browse/MDEV-23368
https://jira.mariadb.org/browse/MDEV-23350
https://jira.mariadb.org/browse/MDEV-23351
https://jira.mariadb.org/browse/MDEV-23337
https://jira.mariadb.org/browse/MDEV-23323
https://jira.mariadb.org/browse/MDEV-23102
https://jira.mariadb.org/browse/MDEV-23003
https://jira.mariadb.org/browse/MDEV-22420
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
https://mariadb.com/kb/en/mariadb-1055-changelog/
https://mariadb.org/mariadb-10-5-5-10-4-14-10-3-24-10-2-33-and-10-1-46-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/

Download Release Notes Changelog Overview of 10.5

Release date: 24 Jun 2020

MariaDB 10.5 is the current stable series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.4 is a Stable (GA) release.

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
This is the first Stable (GA) release in the MariaDB 10.5 series.

This release of MariaDB Server includes the S3 storage engine. Note, that plugins have independent maturity levels

and S3 storage engine in 10.5.4 has Alpha maturity.

This release of MariaDB Server includes the MariaDB ColumnStore storage engine. Note, that plugins have

independent maturity levels and MariaDB ColumnStore in 10.5.4 has Beta maturity.

New Gamma version of the Spider Storage Engine, 3.3.15.

DROP TABLE now reliably deletes table remnants inside a storage engine even if the .frm file is missing (MDEV-

11412)

Accelerated crc32() function for AMD64, ARMv8, POWER 8 (MDEV-22669)

Lots of bug fixes, see the changelog .

Galera wsrep library updated to 26.4.5

Variables

Limit innodb_encryption_threads to 255 (MDEV-22258).

Minimum value of max_sort_length raised to 8 (previously 4) so fixed size data types like DOUBLE and BIGINT are

not truncated for lower values of max_sort_length (MDEV-22715).

InnoDB

DROP TABLE improvements: MDEV-8069 , MDEV-11412 , MDEV-22456

InnoDB Performance improvements: MDEV-15053 , MDEV-22593 , MDEV-22697 , MDEV-22871 , MDEV-

22841

Changelog
For a complete list of changes made in MariaDB 10.5.4, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.4, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.22 MariaDB 10.5.3 Release Notes
4020/4161

https://downloads.mariadb.org/mariadb/10.5.4/
https://mariadb.com/kb/en/mariadb-1054-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-11412
https://jira.mariadb.org/browse/MDEV-22669
https://mariadb.com/kb/en/mariadb-1054-changelog/
https://jira.mariadb.org/browse/MDEV-22258
https://jira.mariadb.org/browse/MDEV-22715
https://jira.mariadb.org/browse/MDEV-8069
https://jira.mariadb.org/browse/MDEV-11412
https://jira.mariadb.org/browse/MDEV-22456
https://jira.mariadb.org/browse/MDEV-15053
https://jira.mariadb.org/browse/MDEV-22593
https://jira.mariadb.org/browse/MDEV-22697
https://jira.mariadb.org/browse/MDEV-22871
https://jira.mariadb.org/browse/MDEV-22841
https://mariadb.com/kb/en/mariadb-1054-changelog/
https://mariadb.org/mariadb-10-5-4-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.5

Release date: 12 May 2020

MariaDB 10.5 is the current development series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.3 is a Release Candidate (RC) release.

Do not use non-stable (non-GA) releases in production!

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

Syntax

Application period tables: WITHOUT OVERLAPS (MDEV-16978)

Introduce a file format constraint to ALTER TABLE. See innodb_instant_alter_column_allowed (MDEV-20590)

Large Pages

Modernise Linux Large Page support (multiplesizes) (MDEV-18851)

Storage Engines

Partitioned S3 tables are discoverable. This means that if you create a partitioned S3 table, both the partitioned table

and its partitions can be directly used by another server that has access to the S3 storage. (MDEV-22088)

Performance

Optimizer flag rowid_filter leads to long query (MDEV-21794)

WSREP_ON is unnecessarily expensive to evaluate (MDEV-22203

Misc wsrep performance optimization (MDEV-7962)

Security

Added system user for user view which allows to remove root (MDEV-19650)

WolfSSL updated

ALTER USER doesn't remove excess authentication plugins from mysql.global_priv (MDEV-21928)

mysql_upgrade creating empty global_priv table (MDEV-21244)

Aria

Updated aria_pack to support transactional tables and added the --datadir , --ignore-control-file and --

require-control-file options. More details here

ALTER TABLE

Error on online ADD PRIMARY KEY after instant DROP/reorder (MDEV-21658)

Assertion failure in file data0type.cc (MDEV-20726)

Server aborts upon attempt to create foreign key on spatial field (MDEV-21792)

Alternate download from mariadb.org

4021/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.3
https://mariadb.com/kb/en/mariadb-1053-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-16978
https://jira.mariadb.org/browse/MDEV-20590
https://jira.mariadb.org/browse/MDEV-18851
https://jira.mariadb.org/browse/MDEV-22088
https://jira.mariadb.org/browse/MDEV-21794
https://jira.mariadb.org/browse/MDEV-22203
https://jira.mariadb.org/browse/MDEV-7962
https://jira.mariadb.org/browse/MDEV-19650
https://jira.mariadb.org/browse/MDEV-21928
https://jira.mariadb.org/browse/MDEV-21244
https://github.com/mariadb/server/commit/dbde95d91259a0658715dfb5f8c7e50716fc001b
https://jira.mariadb.org/browse/MDEV-21658
https://jira.mariadb.org/browse/MDEV-20726
https://jira.mariadb.org/browse/MDEV-21792

DROP COLUMN, DROP INDEX is wrongly claimed to be ALGORITHM=INSTANT (MDEV-22465)

Introduce a file format constraint (MDEV-20590)

FORCE all partition to rebuild if any one of the partition does rebuild (MDEV-21832)

InnoDB aborts while adding instant column for discarded tablespace (MDEV-22446)

Misc ALTER TABLE assertion failure (MDEV-22358)

Optimizer

Optimizer, Wrong query results with optimizer_switch="split_materialized=on" (MDEV-21614)

SHOW GRANTS does not quote role names properly (MDEV-20076)

Paritioning INSERT chooses wrong partition for RANGE partitioning by DECIMAL column (MDEV-21195)

Mariabackup

Mariabackup does not honor ignore_db_dirs from server config (MDEV-19347)

Mariabackup --ftwrl-wait-timeout never times out on explicit lock (MDEV-20230)

Crash Recovery

Loop of Read redo log up to LSN (MDEV-21826)

buf_page_get_gen() should apply buffered page initialized redo log during recovery (MDEV-21572)

Running out of file descriptors and eventual crash (MDEV-18027)

Efficient InnoDB redo log record format (MDEV-12353)

Punch holes when pages are freed (MDEV-15528)

Other

Use MariaDB in error messages instead of MySQL (MDEV-17812)

FULLTEXT INDEX, Assertion ` !table->fts->in_queue ' failed in fts_optimize_remove_table (MDEV-21550

)

Wrong estimate of affected BLOB columns in update of PRIMARY KEY (MDEV-22384)

Duplicate key value is silently truncated to 64 characters in print_keydup_error (MDEV-20604)

Session tracking returns incorrectly long tracking data (MDEV-22504)

Add pam_user_map.so file to binary tarball package (MDEV-21913)

Misc fixes for Mac build (MENT-606)

mysql_upgrade is made aware of the upstream slave tables to issue warnings when that takes place (MDEV-10047

)

InnoDB ALTER TABLE fixes (MDEV-21564 , MDEV-19092 , MDEV-21549)

InnoDB FULLTEXT INDEX fixes (MDEV-21563)

Corruption for SET GLOBAL innodb_ string variables (MDEV-22393)

Test suite, Add JUnit support to MTR to generate XML test result (MDEV-22176)

mysqldump parameter, --ignore-table-data , added (MDEV-22037)

Refactored MYSQL_BIN_LOG::xid_count_per_binlog to satisfy UBSAN enabled build (MDEV-20923)

Unregister of slave threads disconnected before COM_BINLOG_DUMP (Bug#29915479)

Server can fail while replicating conditional comments (Bug#28388217)

Added the xml-report option to mysql-test-run (MDEV-22176)

Packages and repositories for Ubuntu 20.04 "focal" added

Changelog
For a complete list of changes made in MariaDB 10.5.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.3, see the MariaDB Foundation release announcement .

Do not use non-stable (non-GA) releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

4022/4161

https://jira.mariadb.org/browse/MDEV-22465
https://jira.mariadb.org/browse/MDEV-20590
https://jira.mariadb.org/browse/MDEV-21832
https://jira.mariadb.org/browse/MDEV-22446
https://jira.mariadb.org/browse/MDEV-22358
https://jira.mariadb.org/browse/MDEV-21614
https://jira.mariadb.org/browse/MDEV-20076
https://jira.mariadb.org/browse/MDEV-21195
https://jira.mariadb.org/browse/MDEV-19347
https://jira.mariadb.org/browse/MDEV-20230
https://jira.mariadb.org/browse/MDEV-21826
https://jira.mariadb.org/browse/MDEV-21572
https://jira.mariadb.org/browse/MDEV-18027
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-17812
https://jira.mariadb.org/browse/MDEV-21550
https://jira.mariadb.org/browse/MDEV-22384
https://jira.mariadb.org/browse/MDEV-20604
https://jira.mariadb.org/browse/MDEV-22504
https://jira.mariadb.org/browse/MDEV-21913
https://jira.mariadb.org/browse/MDEV-10047
https://jira.mariadb.org/browse/MDEV-21564
https://jira.mariadb.org/browse/MDEV-19092
https://jira.mariadb.org/browse/MDEV-21549
https://jira.mariadb.org/browse/MDEV-21563
https://jira.mariadb.org/browse/MDEV-22393
https://jira.mariadb.org/browse/MDEV-22176
https://jira.mariadb.org/browse/MDEV-22037
https://jira.mariadb.org/browse/MDEV-20923
https://jira.mariadb.org/browse/MDEV-22176
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/mariadb-1053-changelog/
https://mariadb.org/mariadb-10-5-3-release-candidate-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.23 MariaDB 10.5.2 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.5

Release date: 26 Mar 2020

MariaDB 10.5 is the current development series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.2 is a Beta release.

Do not use beta releases in production!

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

Syntax

RELEASE_ALL_LOCKS (MDEV-10569)

ALTER TABLE ... RENAME INDEX / KEY (MDEV-7318)

ALTER TABLE ... RENAME COLUMN (MDEV-16290)

Recursive CTE cycle detection using CYCLE clause (MDEV-20632)

ALTER TABLE and RENAME TABLE now support IF EXISTS .

Privileges

Split SUPER privilege to smaller privileges (MDEV-21743). New privileges were added so that more fine grained

tuning of what each user can do can be applied:

BINLOG ADMIN

BINLOG REPLAY

CONNECTION ADMIN

FEDERATED ADMIN

READ_ONLY ADMIN

REPLICATION MASTER ADMIN

REPLICATION SLAVE ADMIN

SET USER

The REPLICATION CLIENT privilege was renamed to BINLOG MONITOR. The old syntax is understood for

compatibility (MDEV-21743).

The SHOW MASTER STATUS statement was renamed to SHOW BINLOG STATUS (MDEV-21743). The old

syntax is understood for compatibility.

A number of statements changed the privileges that they require. The old privileges were historically inappropriately

chosen in the upstream. 10.5.2 fixes this problem. Note, these changes are incompatible to previous versions. A

number of GRANT commands might be needed after upgrade.

SHOW BINLOG EVENTS now requires the BINLOG MONITOR privilege (required REPLICATION SLAVE

Alternate download from mariadb.org

4023/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.2/
https://mariadb.com/kb/en/mariadb-1052-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-10569
https://jira.mariadb.org/browse/MDEV-7318
https://jira.mariadb.org/browse/MDEV-16290
https://jira.mariadb.org/browse/MDEV-20632
https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-21743
https://jira.mariadb.org/browse/MDEV-21743

prior to 10.5.2).

SHOW SLAVE HOSTS now requires the REPLICATION MASTER ADMIN privilege (required REPLICATION

SLAVE prior to 10.5.2).

SHOW SLAVE STATUS now requires the REPLICATION SLAVE ADMIN or the SUPER privilege (required

REPLICATION CLIENT or SUPER prior to 10.5.2).

SHOW RELAYLOG EVENTS now requires the REPLICATION SLAVE ADMIN privilege (required

REPLICATION SLAVE prior to 10.5.2).

In order to help the server understand which version a privilege record was written by, the mysql.global_priv.priv field

contains a new JSON field, version_id (MDEV-21704)

SHOW PRIVILEGES now correctly lists the Delete history privilege, rather than displaying it as Delete

versioning rows . (MDEV-20382)

InnoDB

An upgrade will only be possible after a clean shutdown. mariabackup --prepare will not work with backups taken

before version 10.5.2.

Efficient InnoDB redo log record format (MDEV-12353)

Deprecate and ignore innodb_scrub_log and innodb_scrub_log_speed (MDEV-21870)

Remove INFORMATION_SCHEMA.INNODB_TABLESPACES_SCRUBBING table and deprecate and ignore innodb-

background-scrub-data-uncompressed, innodb-background-scrub-data-compressed, innodb-background-scrub-data-

interval and innodb-background-scrub-data-check-interval (MDEV-15528)

Deprecate and ignore innodb_log_files_in_group (MDEV-14425)

Do not acquire InnoDB record locks when covering table locks exist (MDEV-14479)

Issue a message on changing deprecated innodb_log_files_in_group (MDEV-21990)

Optimize append only files for NVDIMM (MDEV-17084)

Improve innodb redo log group commit performance (MDEV-21534)

Punch holes when pages are freed (MDEV-15528)

Optimizer

Allow packed sort keys in sort buffer (MDEV-21580)

Performance Schema

Merge 5.7 P_S transaction instrumentation and tables (MDEV-16435)

Merge 5.7 P_S memory instrumentation and tables (MDEV-16431)

Merge 5.7 P_S mdl instrumentation and tables (MDEV-16432)

Merge 5.7 P_S sxlocks instrumentation and tables (MDEV-16436)

Merge 5.7 P_S user variables instrumentation and tables (MDEV-16439)

Merge 5.7 P_S [show] status instrumentation and tables (MDEV-16438)

Merge 5.7 P_S ps instrumentation and tables (MDEV-16433)

Merge 5.7 P_S sp instrumentation and tables (MDEV-16434)

Replication

ENFORCE option for slave_run_triggers_for_rbr (MDEV-21833)

ANALYZE FORMAT=JSON

Add information about packed addon fields in ANALYZE FORMAT=JSON (MDEV-21838)

Binaries

All binaries previously beginning with mysql now begin with mariadb , with symlinks for the corresponding mysql

command. (MDEV-21303)

Galera

Galera wsrep library updated to 26.4.4

Galera Cluster Node During IST gets stuck going from "Synced" to "Joining:..." (MDEV-21002)

Other

4024/4161

https://jira.mariadb.org/browse/MDEV-21704
https://jira.mariadb.org/browse/MDEV-20382
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-21870
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-14479
https://jira.mariadb.org/browse/MDEV-21990
https://jira.mariadb.org/browse/MDEV-17084
https://jira.mariadb.org/browse/MDEV-21534
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-21580
https://jira.mariadb.org/browse/MDEV-16435
https://jira.mariadb.org/browse/MDEV-16431
https://jira.mariadb.org/browse/MDEV-16432
https://jira.mariadb.org/browse/MDEV-16436
https://jira.mariadb.org/browse/MDEV-16439
https://jira.mariadb.org/browse/MDEV-16438
https://jira.mariadb.org/browse/MDEV-16433
https://jira.mariadb.org/browse/MDEV-16434
https://jira.mariadb.org/browse/MDEV-21833
https://jira.mariadb.org/browse/MDEV-21838
https://jira.mariadb.org/browse/MDEV-21303
https://jira.mariadb.org/browse/MDEV-21002

HeidiSQL updated to 11.0 (MDEV-22032)

require_secure_transport system variable, for rejecting connections attempted using insecure transport (MDEV-

13362)

sql_if_exists session system variable, which adds an implicit IF EXISTS to ALTER, RENAME and DROP of TABLES,

VIEWS, FUNCTIONS and PACKAGES. (MDEV-19964)

XA PREPARE transactions must survive client disconnection (MDEV-742)

Binary tarball size has been reduced (MDEV-21943)

Changelog
For a complete list of changes made in MariaDB 10.5.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.2, see the MariaDB Foundation release announcement .

Do not use beta releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.7.2.24 MariaDB 10.5.1 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.5

Release date: 14 Feb 2020

MariaDB 10.5 is the current development series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.1 is a Beta release.

Do not use beta releases in production!

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

InnoDB

Remove dummy tablespace for the redo log (MDEV-18115)

Alternate download from mariadb.org

4025/4161

https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-22032
https://jira.mariadb.org/browse/MDEV-13362
https://jira.mariadb.org/browse/MDEV-19964
https://jira.mariadb.org/browse/MDEV-742
https://jira.mariadb.org/browse/MDEV-21943
https://mariadb.com/kb/en/mariadb-1052-changelog/
https://mariadb.org/mariadb-10-5-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.1
https://mariadb.com/kb/en/mariadb-1051-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-18115

Optimize access to InnoDB page header fields (MDEV-21133)

Remove multiple InnoDB buffer pool instances (MDEV-15058)

Deprecate and ignore innodb_buffer_pool_instances and innodb_page_cleaners

Columns that indicated the buffer pool instance from the Information Schema innodb_buffer_page,

innodb_buffer_page_lru, innodb_buffer_pool_stats, innodb_cmpmem and innodb_cmpmem_reset tables now

return a dummy value of 0 .

Deprecate and ignore innodb_log_optimize_ddl (MDEV-19747)

Prefer MDL to dict_sys.latch for innodb background tasks (MDEV-16678)

Use fdatasync() for redo log where appropriate (MDEV-21382)

Replace recv_sys.heap with list of buf_block_t (MDEV-21351)

Several fixes to server hangs (MDEV-16264)

Optimizer

Allow packed values of non-sorted fields in the sort buffer (MDEV-21263)

Replication and Galera

slave_parallel_mode now defaults to optimistic (MDEV-18648).

Make REPLICA a synonym for SLAVE in SQL statements (MDEV-20601)

Galera GTID support (commit)

Add new mode to wsrep_OSU_method in which Galera checks storage engine of the effected table (MDEV-20051)

Galera: Replicate MariaDB GTID to other nodes in the cluster (MDEV-20720)

PCRE

Migrate to PCRE2 (MDEV-14024)

Compatibility

Show internal type for TIMESTAMP, DATETIME, and TIME columns (MDEV-19906)

Variables

Numerous deprecated variables removed (MDEV-18650)

multi_range_count

thread_concurrency

timed_mutexes

Changelog
For a complete list of changes made in MariaDB 10.5.1, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.1, see the MariaDB Foundation release announcement .

Do not use beta releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

4026/4161

https://jira.mariadb.org/browse/MDEV-21133
https://jira.mariadb.org/browse/MDEV-15058
https://jira.mariadb.org/browse/MDEV-19747
https://jira.mariadb.org/browse/MDEV-16678
https://jira.mariadb.org/browse/MDEV-21382
https://jira.mariadb.org/browse/MDEV-21351
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-21263
https://jira.mariadb.org/browse/MDEV-18648
https://jira.mariadb.org/browse/MDEV-20601
https://github.com/MariaDB/server/commit/41bc736871
https://jira.mariadb.org/browse/MDEV-20051
https://jira.mariadb.org/browse/MDEV-20720
https://jira.mariadb.org/browse/MDEV-14024
https://jira.mariadb.org/browse/MDEV-19906
https://jira.mariadb.org/browse/MDEV-18650
https://mariadb.com/kb/en/mariadb-1051-changelog/
https://mariadb.org/mariadb-10-5-1-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.7.2.25 MariaDB 10.5.0 Release Notes

The most recent release of MariaDB 10.5 is:

MariaDB 10.5.24 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.5

Release date: 3 Dec 2019

MariaDB 10.5 is the current development series of MariaDB. It is an evolution of MariaDB 10.4 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.5.0 is an Alpha release.

Do not use alpha releases in production!

For an overview of MariaDB 10.5 see the What is MariaDB 10.5? page.

Thanks, and enjoy MariaDB!

Notable Changes
This is the first alpha release in the MariaDB 10.5 series.

Notable changes of this release include:

INET 6 Data Type

New INET6 data type for storing IPv6 addresses (MDEV-274).

Syntax

INSERT ... RETURNING (MDEV-10014)

REPLACE ... RETURNING (MDEV-10014)

EXCEPT ALL and INTERSECT ALL (MDEV-18844)

Database comments in CREATE DATABASE and ALTER DATABASE statements (MDEV-307)

Setup default partitions for system versioning (MDEV-19903)

Fix REFERENCES constraint in column definition (MDEV-20729)

JSON

JSON_ARRAYAGG

JSON_OBJECTAGG

Add information about packed addon fields in ANALYZE FORMAT=JSON (MDEV-21838)

S3 Storage Engine

S3 Storage Engine, a read-only storage engine that stores its data in Amazon S3 (MDEV-17841)

Thread Pool

Information Schema tables (THREADPOOL_GROUPS, THREADPOOL_QUEUES and THREADPOOL_STATS) for

internals of generic threadpool (MDEV-19313)

InnoDB

innodb_adaptive_hash_index now defaults to OFF (MDEV-20487)

innodb_checksum_algorithm now defaults to full_crc32 (MDEV-19534)

innodb_checksums has been removed (MDEV-19534)

Alternate download from mariadb.org

4027/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.5.24/
https://downloads.mariadb.org/mariadb/10.5.0/
https://mariadb.com/kb/en/mariadb-1050-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-274
https://jira.mariadb.org/browse/MDEV-10014
https://jira.mariadb.org/browse/MDEV-10014
https://jira.mariadb.org/browse/MDEV-18844
https://jira.mariadb.org/browse/MDEV-307
https://jira.mariadb.org/browse/MDEV-19903
https://jira.mariadb.org/browse/MDEV-20729
https://jira.mariadb.org/browse/MDEV-21838
https://jira.mariadb.org/browse/MDEV-17841
https://jira.mariadb.org/browse/MDEV-19313
https://jira.mariadb.org/browse/MDEV-20487
https://jira.mariadb.org/browse/MDEV-19534
https://jira.mariadb.org/browse/MDEV-19534

innodb_log_checksums has been deprecated (MDEV-19543)

innodb_locks_unsafe_for_binlog has been removed (MDEV-19544)

innodb_stats_sample_pages has been removed (MDEV-19551)

innodb_undo_logs has been deprecated (MDEV-19570)

innodb_rollback_segments has been removed (MDEV-19570)

Set innodb_log_files_in_group=1 by default (MDEV-20907)

Extend SHOW STATUS LIKE 'Innodb_%' (MDEV-18582)

Clean up INFORMATION_SCHEMA.INNODB_ tables (MDEV-19940)

Doublewrite buffer is unnecessarily used for newly (re)initialized pages (MDEV-19738)

Defer change buffer merge until pages are requested (MDEV-19514)

InnoDB Refactoring

Remove buf_page_t::newest_modification (MDEV-21132)

Replace recv_sys_t::addr_hash with a std::map (MDEV-19586)

Obsolete internal parser for FK in InnoDB (MDEV-20480)

InnoDB thread pool for background tasks (MDEV-16264)

Binary Log

Extended binlog metadata (MDEV-20477)

Query Optimizer

ANALYZE for statements is improved, now it also shows the time spent checking the WHERE clause and doing other

auxiliary operations (MDEV-20854)

Inferred IS NOT NULL predicates can be used by the range optimizer (MDEV-15777)

Galera

Galera 4 Inconsistency voting (MDEV-17048)

General

The Information Schema SYSTEM_VARIABLES Table has a new column showing from which config file a variable

derives its value (MDEV-12684)

Switch Perl DBI scripts from DBD::mysql to DBD::MariaDB driver (MDEV-19755)

The Aria max key length is now 2000 bytes, compared to 1000 bytes in MyISAM.

Do not use alpha releases in production!

Changelog
For a complete list of changes made in MariaDB 10.5.0, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.0, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

4028/4161

https://jira.mariadb.org/browse/MDEV-19543
https://jira.mariadb.org/browse/MDEV-19544
https://jira.mariadb.org/browse/MDEV-19551
https://jira.mariadb.org/browse/MDEV-19570
https://jira.mariadb.org/browse/MDEV-19570
https://jira.mariadb.org/browse/MDEV-20907
https://jira.mariadb.org/browse/MDEV-18582
https://jira.mariadb.org/browse/MDEV-19940
https://jira.mariadb.org/browse/MDEV-19738
https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-21132
https://jira.mariadb.org/browse/MDEV-19586
https://jira.mariadb.org/browse/MDEV-20480
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-20477
https://jira.mariadb.org/browse/MDEV-20854
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/not_null_range_scan_optimization
https://jira.mariadb.org/browse/MDEV-15777
https://jira.mariadb.org/browse/MDEV-17048
https://jira.mariadb.org/browse/MDEV-12684
https://jira.mariadb.org/browse/MDEV-19755
https://mariadb.com/kb/en/mariadb-1050-changelog/
https://mariadb.org/mariadb-10-5-0-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.8 MariaDB Server 10.4
Changes and Improvements in MariaDB 10.4

Current Version: 10.4.33 | Status: Stable (GA) | Release Date: 7 Feb 2024

Release Notes - MariaDB 10.4 Series

MariaDB 10.4 Series Release Notes

Changelogs - MariaDB 10.4 Series

MariaDB 10.4 changelogs.

There are 2 related questions .

7.0.8.1 Changes and Improvements in MariaDB
10.4

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

MariaDB 10.4 is a previous major stable version. The first stable release of 10.4 was in June 2019, and it will be maintained

until June 2024.

Contents
1. Implemented Features

1. Authentication

2. InnoDB

3. Optimizer

4. Syntax

5. Variables

6. Replication

7. Backup

8. Galera 4

1. Galera 4 Versions

2. New Features in Galera 4

3. Limitations in Galera 4

1. Rolling Upgrades from Galera 3 to Galera 4

9. General

2. Security Vulnerabilities Fixed in MariaDB 10.4

3. List of All MariaDB 10.4 Releases

Implemented Features

Authentication

See Authentication from MariaDB 10.4 for an overview of the changes.

The unix_socket authentication plugin is now default on Unix-like systems, which is a major change to authentication

in MariaDB (MDEV-12484)

User password expiry (MDEV-7597)

Account Locking (MDEV-13095)

The obsolete mysql.host table is no longer created (MDEV-15851)

Much faster privilege checks for MariaDB setups with many user accounts or many database grants (MDEV-15649)

mysql.user table is retired. User accounts and global privileges are now stored in the mysql.global_priv table (MDEV-

17658)

SET PASSWORD support for ed25519 and other authentication plugins (MDEV-12321)

InnoDB

Added instant DROP COLUMN and changing of the order of columns (MDEV-15562)

Alternate download from mariadb.org

4029/4161

https://mariadb.com/kb/en/changes-and-improvements-in-mariadb-10-4/
https://mariadb.com/kb/en/changelogs-mariadb-104-series/
https://mariadb.com/kb/en/mariadb-server-10-4/+questions/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://mariadb.org/about/#maintenance-policy
https://jira.mariadb.org/browse/MDEV-12484
https://jira.mariadb.org/browse/MDEV-7597
https://jira.mariadb.org/browse/MDEV-13095
https://mariadb.com/kb/en/mysqlhost-table/
https://jira.mariadb.org/browse/MDEV-15851
https://jira.mariadb.org/browse/MDEV-15649
https://jira.mariadb.org/browse/MDEV-17658
https://jira.mariadb.org/browse/MDEV-12321
https://jira.mariadb.org/browse/MDEV-15562

More Instant VARCHAR extension or ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPACT (MDEV-15563

)

change CHAR(0) to any VARCHAR

change a CHAR that is longer than 255 bytes to VARCHAR or wider CHAR

change a VARCHAR that is shorter than 128 bytes into any longer VARCHAR

Instant collation or charset changes for non-indexed columns (MDEV-15564)

Reduced redo log volume for undo tablespace initialization (MDEV-17138)

Removed crash-upgrade support for pre-10.2.19 TRUNCATE TABLE (MDEV-13564)

Added key rotation for innodb_encrypt_log (MDEV-12041)

Implement innodb_checksum_algorithm=full_crc32 (MDEV-12026)

Optimizer

Implementation of the optimizer trace, one can enable the optimizer trace by enabling the system variable

optimizer_trace (MDEV-6111)

Engine Independent Table Statistics is now enabled by default; new default values are

use_stat_tables=PREFERABLY_FOR_QUERIES and optimizer_use_condition_selectivity=4 (MDEV-15253)

Two new values for the variable use_stat_tables: COMPLEMENTARY_FOR_QUERIES and

PREFERABLY_FOR_QUERIES (MDEV-17255)

Histograms are now collected by default (MDEV-18608).

analyze_sample_percentage variable added. The default value is 100 (ANALYZE will use the whole table), but

one can also set analyze to only use a sample of table data to collect the statistics.

Condition pushdown optimization now has bigger scope:

Conditions can be pushed into materialized IN-subqueries (MDEV-12387)

Conditions in HAVING clause can be pushed to WHERE. This behavior is controlled through optimizer switch

flag condition_pushdown_from_having .

The optimizer switch flag optimize_join_buffer_size now defaults to on (MDEV-17903)

Rowid Filtering optimization added (MDEV-16188). It is controlled through optimizer switch flag rowid_filter .

Syntax

Temporal tables extended with support for application-time periods (MDEV-16973 , MDEV-16974 , MDEV-16975

, MDEV-17082)

Support of brackets (parentheses) for specifying precedence in UNION/EXCEPT/INTERSECT operations (MDEV-

11953)

New FLUSH SSL command to reload SSL certificates without server restart (MDEV-16266)

New CAST target 4 CAST(x AS INTERVAL DAY_SECOND(N)) (MDEV-17776)

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME (MDEV-16294)

Unique indexes can be created on BLOB or TEXT fields (MDEV-371)

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.4 and Status Variables Added in MariaDB 10.4.

Added to the tcp_nodelay system variable (MDEV-16277)

Removed the Innodb_pages0_read status variable (MDEV-15705).

New sql-mode setting, TIME_ROUND_FRACTIONAL (MDEV-16991)

New variable gtid_cleanup_batch_size for determining how many old rows must accumulate in the

mysql.gtid_slave_pos table before a background job will be run to delete them.

The default for eq_range_index_dive_limit is now 200 (previously 0) (MDEV-18551)

core_file on Windows now defaults to ON (MDEV-18439)

Replication

Speed up rotation of binary logs, SHOW BINARY LOGS etc with optimizing binary log index file locking (MDEV-19116

, MDEV-19117).

A new server command, SHUTDOWN WAIT FOR ALL SLAVES, and a new mysqladmin shutdown --wait-for-all-

slaves option, are added to instruct the server to wait for the last binlog event to be sent to all connected slaves

before shutting down. (MDEV-18450).

Backup

BACKUP STAGE allows one to implement very efficient backups with minimal locking. MDEV-5336 .

4030/4161

https://jira.mariadb.org/browse/MDEV-15563
https://jira.mariadb.org/browse/MDEV-15564
https://jira.mariadb.org/browse/MDEV-17138
https://jira.mariadb.org/browse/MDEV-13564
https://jira.mariadb.org/browse/MDEV-12041
https://jira.mariadb.org/browse/MDEV-12026
https://jira.mariadb.org/browse/MDEV-6111
https://jira.mariadb.org/browse/MDEV-15253
https://jira.mariadb.org/browse/MDEV-17255
https://jira.mariadb.org/browse/MDEV-18608
https://jira.mariadb.org/browse/MDEV-12387
https://jira.mariadb.org/browse/MDEV-17903
https://jira.mariadb.org/browse/MDEV-16188
https://jira.mariadb.org/browse/MDEV-16973
https://jira.mariadb.org/browse/MDEV-16974
https://jira.mariadb.org/browse/MDEV-16975
https://jira.mariadb.org/browse/MDEV-17082
https://jira.mariadb.org/browse/MDEV-11953
https://jira.mariadb.org/browse/MDEV-16266
https://jira.mariadb.org/browse/MDEV-17776
https://jira.mariadb.org/browse/MDEV-16294
https://jira.mariadb.org/browse/MDEV-371
https://jira.mariadb.org/browse/MDEV-16277
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_pages0_read
https://jira.mariadb.org/browse/MDEV-15705
https://jira.mariadb.org/browse/MDEV-16991
https://jira.mariadb.org/browse/MDEV-18551
https://jira.mariadb.org/browse/MDEV-18439
https://jira.mariadb.org/browse/MDEV-19116
https://jira.mariadb.org/browse/MDEV-19117
https://jira.mariadb.org/browse/MDEV-18450
https://jira.mariadb.org/browse/MDEV-5336

Galera 4

In MariaDB 10.4.2 and later, Galera has been upgraded from Galera 3 to Galera 4.

Galera 4 Versions

The following table lists each version of the Galera 4 wsrep provider, and it lists which version of MariaDB each one was first

released in. If you would like to install Galera 4 using yum, apt, or zypper, then the package is called galera-4 .

Galera Version Released in MariaDB Version

26.4.16 11.2.2, 11.1.3, 11.0.4, 10.11.6, 10.10.7, 10.6.16, 10.5.23, 10.4.32

26.4.14 10.10.3, 10.9.5, 10.8.7 , 10.7.8 , 10.6.12, 10.5.19, 10.4.28

26.4.13 10.10.2, 10.9.4, 10.8.6 , 10.7.7 , 10.6.11, 10.5.18, 10.4.27

26.4.12 10.10.1, 10.9.2 , 10.8.4 , 10.7.5 , 10.6.9, 10.5.17, 10.4.26

26.4.11 10.8.1 , 10.7.2 , 10.6.6, 10.5.14, 10.4.22

26.4.9 10.6.4, 10.5.12, 10.4.21

26.4.8 10.6.1, 10.5.10, 10.4.19

26.4.7 10.5.9, 10.4.18

26.4.6 10.5.7, 10.4.16

26.4.5 10.5.4, 10.4.14

26.4.4 10.5.1, 10.4.13

26.4.3 10.5.0, 10.4.9

26.4.2 10.4.4

26.4.1 10.4.3

26.4.0 10.4.2

New Features in Galera 4

The mysql database contains new tables related to Galera replication:

wsrep_cluster

wsrep_cluster_members

wsrep_streaming_log

End users may read but not modify these tables.

The new streaming replication feature allows replicating transactions of unlimited size. With streaming replication, a cluster

is replicating a transaction in small fragments during transaction execution. This transaction fragmenting is controlled by two

new configuration variables:

wsrep_trx_fragment_unit (bytes, rows, statements) defines the metrics for how to measure transaction

size limit for fragmenting. Possible values are:

bytes : transaction9s binlog events buffer size in bytes

rows : number of rows affected by the transaction

statements : number of SQL statements executed in the multi-statement transaction

wsrep_trx_fragment_size defines the limit for fragmenting. When a transaction9s size, in terms of the configured

fragment unit, has grown over this limit, a new fragment will be replicated.

Transactions replicated through galera replication will now process the commit phase using MariaDB's group commit logic.

This will affect transaction throughput, especially when binary logging is enabled in the cluster.

Limitations in Galera 4

Rolling Upgrades from Galera 3 to Galera 4

Rolling upgrades from MariaDB 10.3 (or earlier) to MariaDB 10.4 also require an upgrade from Galera 3 to Galera 4. Galera

4 has a lot of changes and improvements that were not present in Galera 3.

Prior to the General Availability (GA) releases of MariaDB 10.4 and Galera 4, earlier versions of MariaDB 10.4 and Galera 4

had bugs that could lead to problems if Galera 4 nodes were in a cluster with Galera 3 nodes during a rolling upgrade. In

these versions, rolling upgrades were not supported. This meant that, in order to upgrade a cluster, the cluster had to be
4031/4161

https://mariadb.com/kb/en/mariadb-10-8-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-8-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-6-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-7-release-notes/
https://mariadb.com/kb/en/mariadb-10-9-2-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-4-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-5-release-notes/
https://mariadb.com/kb/en/mariadb-10-8-1-release-notes/
https://mariadb.com/kb/en/mariadb-10-7-2-release-notes/

completely stopped, and the nodes could only be restarted after the entire cluster had been upgraded to MariaDB 10.4 and

Galera 4.

These bugs have been fixed in more recent versions, and rolling upgrades from Galera 3 to Galera 4 are supported. In

order to perform a rolling upgrade, it is recommended to upgrade to MariaDB 10.4.6 or later and Galera 26.4.2 or later.

However, as a general rule, users should try to ensure that they are upgrading to the latest versions of MariaDB 10.4 and

Galera 4.

For more detailed information on how to upgrade, see Upgrading from MariaDB 10.3 to MariaDB 10.4 with Galera Cluster.

General

Crash safe Aria-based system tables (MDEV-16421)

Added Linux abstract socket support (MDEV-15655)

Enabled C++11 (MDEV-16410)

Performance improvements in Unicode collations (MDEV-17534 , MDEV-17511 , MDEV-17502 , MDEV-17474

)

User data type plugins (MDEV-4912 , in progress)

Improvements with SQL standard INTERVAL support to help functions TIMESTAMP() and ADDTIME() return more

predictable results.

Historically, MariaDB uses the TIME data type for both "time of the day" values and "duration" values. In the first

meaning the natural value range is from '00:00:00' to '23:59:59.999999', in the second meaning the range is

from '-838:59:59.999999' to '+838:59:59.999999'.

To remove this ambiguity and for the SQL standard conformance we plan to introduce a dedicated data type

INTERVAL that will be able to store values in the range at least from '-87649415:59:59.999999' to

'+87649415:59:59.999999', which will be enough to represent the time difference between TIMESTAMP'0001-

01-01 00:00:00' and TIMESTAMP'9999-12-31 23:59:59.999999'.

As a first step we support this range of values for intermediate calculations when TIME-alike string and numeric

values are used in INTERVAL (i.e. duration) context, e.g. as the second argument of SQL functions

TIMESTAMP(ts,interval) and ADDTIME(ts,interval), so the following can now be calculated:

SELECT ADDTIME(TIMESTAMP'0001-01-01 00:00:00', '87649415:59:59.999999');

-> '9999-12-31 23:59:59.999999'

SELECT TIMESTAMP(DATE'0001-01-01', '87649415:59:59.999999')

-> '9999-12-31 23:59:59.999999'

SELECT ADDTIME(TIME'-838:59:59.999999', '1677:59:59.999998');

-> '838:59:59.999999'

Support for window UDF functions via the new method x_remove (MDEV-15073)

Json service for plugins (MDEV-5313)

Change in behavior for FLUSH TABLES (MDEV-5336).

The JSON_VALID function is automatically used as a CHECK constraint for the JSON data type alias in order to

ensure that a valid json document is inserted (MDEV-13916)

MariaDB Named Commands (MDEV-17591)

MariaDB systemd multi-instance service have changed. See systemd page for details.

Security Vulnerabilities Fixed in MariaDB 10.4

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.4.26

CVE-2023-22084 : MariaDB 10.4.32

CVE-2022-47015 : MariaDB 10.4.29

CVE-2022-38791 : MariaDB 10.4.26

CVE-2022-32091 : MariaDB 10.4.26

CVE-2022-32089 : MariaDB 10.4.26

CVE-2022-32088 : MariaDB 10.4.25

CVE-2022-32087 : MariaDB 10.4.25

CVE-2022-32086 : MariaDB 10.4.25

CVE-2022-32085 : MariaDB 10.4.25

CVE-2022-32084 : MariaDB 10.4.26

CVE-2022-32083 : MariaDB 10.4.25

CVE-2022-32081 : MariaDB 10.4.26
4032/4161

https://jira.mariadb.org/browse/MDEV-16421
https://jira.mariadb.org/browse/MDEV-15655
https://jira.mariadb.org/browse/MDEV-16410
https://jira.mariadb.org/browse/MDEV-17534
https://jira.mariadb.org/browse/MDEV-17511
https://jira.mariadb.org/browse/MDEV-17502
https://jira.mariadb.org/browse/MDEV-17474
https://jira.mariadb.org/browse/MDEV-4912
https://jira.mariadb.org/browse/MDEV-15073
https://jira.mariadb.org/browse/MDEV-5313
https://jira.mariadb.org/browse/MDEV-5336
https://jira.mariadb.org/browse/MDEV-13916
https://jira.mariadb.org/browse/MDEV-17591
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081

CVE-2022-31624 : MariaDB 10.4.22

CVE-2022-27458 : MariaDB 10.4.25

CVE-2022-27457 : MariaDB 10.4.25

CVE-2022-27456 : MariaDB 10.4.25

CVE-2022-27455 : MariaDB 10.4.25

CVE-2022-27452 : MariaDB 10.4.25

CVE-2022-27451 : MariaDB 10.4.25

CVE-2022-27449 : MariaDB 10.4.25

CVE-2022-27448 : MariaDB 10.4.25

CVE-2022-27447 : MariaDB 10.4.25

CVE-2022-27446 : MariaDB 10.4.25

CVE-2022-27445 : MariaDB 10.4.25

CVE-2022-27444 : MariaDB 10.4.25

CVE-2022-27387 : MariaDB 10.4.25

CVE-2022-27386 : MariaDB 10.4.25

CVE-2022-27385 : MariaDB 10.4.22

CVE-2022-27384 : MariaDB 10.4.25

CVE-2022-27383 : MariaDB 10.4.25

CVE-2022-27382 : MariaDB 10.4.25

CVE-2022-27381 : MariaDB 10.4.25

CVE-2022-27380 : MariaDB 10.4.25

CVE-2022-27379 : MariaDB 10.4.25

CVE-2022-27378 : MariaDB 10.4.25

CVE-2022-27377 : MariaDB 10.4.25

CVE-2022-27376 : MariaDB 10.4.25

CVE-2022-24052 : MariaDB 10.4.23

CVE-2022-24051 : MariaDB 10.4.23

CVE-2022-24050 : MariaDB 10.4.23

CVE-2022-24048 : MariaDB 10.4.23

CVE-2022-21595 : MariaDB 10.4.23

CVE-2022-21451 : MariaDB 10.4.19

CVE-2022-21427 : MariaDB 10.4.25

CVE-2022-0778 : MariaDB 10.4.23

CVE-2021-46669 : MariaDB 10.4.25

CVE-2021-46668 : MariaDB 10.4.24

CVE-2021-46667 : MariaDB 10.4.22

CVE-2021-46666 : MariaDB 10.4.20

CVE-2021-46665 : MariaDB 10.4.24

CVE-2021-46664 : MariaDB 10.4.24

CVE-2021-46663 : MariaDB 10.4.24

CVE-2021-46662 : MariaDB 10.4.22

CVE-2021-46661 : MariaDB 10.4.24

CVE-2021-46659 : MariaDB 10.4.23

CVE-2021-46658 : MariaDB 10.4.21

CVE-2021-46657 : MariaDB 10.4.20

CVE-2021-35604 : MariaDB 10.4.22

CVE-2021-27928 : MariaDB 10.4.18

CVE-2021-2389 : MariaDB 10.4.21

CVE-2021-2372 : MariaDB 10.4.21

CVE-2021-2194 : MariaDB 10.4.16

CVE-2021-2166 : MariaDB 10.4.19

CVE-2021-2154 : MariaDB 10.4.19

CVE-2021-2144 : MariaDB 10.4.9

CVE-2021-2022 : MariaDB 10.4.14

CVE-2021-2007 : MariaDB 10.4.7

CVE-2020-7221 : MariaDB 10.4.12

CVE-2020-2922 : MariaDB 10.4.7

CVE-2020-28912 : MariaDB 10.4.16

CVE-2020-2814 : MariaDB 10.4.13

CVE-2020-2812 : MariaDB 10.4.13

CVE-2020-2780 : MariaDB 10.4.9

CVE-2020-2760 : MariaDB 10.4.13

CVE-2020-2752 : MariaDB 10.4.13

CVE-2020-2574 : MariaDB 10.4.12

CVE-2020-15180 : MariaDB 10.4.15

CVE-2020-14812 : MariaDB 10.4.16

CVE-2020-14789 : MariaDB 10.4.16

4033/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7221
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2814
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789

CVE-2020-14776 : MariaDB 10.4.16

CVE-2020-14765 : MariaDB 10.4.16

CVE-2020-13249 : MariaDB 10.4.13

CVE-2019-2974 : MariaDB 10.4.9

CVE-2019-2938 : MariaDB 10.4.9

CVE-2019-2805 : MariaDB 10.4.7

CVE-2019-2758 : MariaDB 10.4.7

CVE-2019-2740 : MariaDB 10.4.7

CVE-2019-2739 : MariaDB 10.4.7

CVE-2019-2737 : MariaDB 10.4.7

CVE-2019-2628 : MariaDB 10.4.5

CVE-2019-2627 : MariaDB 10.4.5

CVE-2019-2614 : MariaDB 10.4.5

CVE-2018-25032 : MariaDB 10.4.26

List of All MariaDB 10.4 Releases

Date Release Status Release Notes Changelog

7 Feb 2024 MariaDB 10.4.33 Stable (GA) Release Notes Changelog

13 Nov 2023 MariaDB 10.4.32 Stable (GA) Release Notes Changelog

14 Aug 2023 MariaDB 10.4.31 Stable (GA) Release Notes Changelog

7 Jun 2023 MariaDB 10.4.30 Stable (GA) Release Notes Changelog

10 May 2023 MariaDB 10.4.29 Stable (GA) Release Notes Changelog

6 Feb 2023 MariaDB 10.4.28 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.4.27 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.4.26 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.4.25 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.4.24 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.4.23 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.4.22 Stable (GA) Release Notes Changelog

6 Aug 2021 MariaDB 10.4.21 Stable (GA) Release Notes Changelog

23 Jun 2021 MariaDB 10.4.20 Stable (GA) Release Notes Changelog

7 May 2021 MariaDB 10.4.19 Stable (GA) Release Notes Changelog

22 Feb 2021 MariaDB 10.4.18 Stable (GA) Release Notes Changelog

11 Nov 2020 MariaDB 10.4.17 Stable (GA) Release Notes Changelog

3 Nov 2020 MariaDB 10.4.16 Stable (GA) Release Notes Changelog

7 Oct 2020 MariaDB 10.4.15 Stable (GA) Release Notes Changelog

10 Aug 2020 MariaDB 10.4.14 Stable (GA) Release Notes Changelog

12 May 2020 MariaDB 10.4.13 Stable (GA) Release Notes Changelog

28 Jan 2020 MariaDB 10.4.12 Stable (GA) Release Notes Changelog

11 Dec 2019 MariaDB 10.4.11 Stable (GA) Release Notes Changelog

8 Nov 2019 MariaDB 10.4.10 Stable (GA) Release Notes Changelog

5 Nov 2019 MariaDB 10.4.9 Stable (GA) Release Notes Changelog

11 Sep 2019 MariaDB 10.4.8 Stable (GA) Release Notes Changelog

31 Jul 2019 MariaDB 10.4.7 Stable (GA) Release Notes Changelog

18 Jun 2019 MariaDB 10.4.6 Stable (GA) Release Notes Changelog

21 May 2019 MariaDB 10.4.5 RC Release Notes Changelog

7 Apr 2019 MariaDB 10.4.4 RC Release Notes Changelog

25 Feb 2019 MariaDB 10.4.3 RC Release Notes Changelog

4034/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13249
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-4-33-changelog/
https://mariadb.com/kb/en/mariadb-10-4-32-changelog/
https://mariadb.com/kb/en/mariadb-10-4-31-changelog/
https://mariadb.com/kb/en/mariadb-10-4-30-changelog/
https://mariadb.com/kb/en/mariadb-10-4-29-changelog/
https://mariadb.com/kb/en/mariadb-10-4-28-changelog/
https://mariadb.com/kb/en/mariadb-10-4-27-changelog/
https://mariadb.com/kb/en/mariadb-10426-changelog/
https://mariadb.com/kb/en/mariadb-10425-changelog/
https://mariadb.com/kb/en/mariadb-10424-changelog/
https://mariadb.com/kb/en/mariadb-10423-changelog/
https://mariadb.com/kb/en/mariadb-10422-changelog/
https://mariadb.com/kb/en/mariadb-10421-changelog/
https://mariadb.com/kb/en/mariadb-10420-changelog/
https://mariadb.com/kb/en/mariadb-10419-changelog/
https://mariadb.com/kb/en/mariadb-10418-changelog/
https://mariadb.com/kb/en/mariadb-10417-changelog/
https://mariadb.com/kb/en/mariadb-10416-changelog/
https://mariadb.com/kb/en/mariadb-10415-changelog/
https://mariadb.com/kb/en/mariadb-10414-changelog/
https://mariadb.com/kb/en/mariadb-10413-changelog/
https://mariadb.com/kb/en/mariadb-10412-changelog/
https://mariadb.com/kb/en/mariadb-10411-changelog/
https://mariadb.com/kb/en/mariadb-10410-changelog/
https://mariadb.com/kb/en/mariadb-1049-changelog/
https://mariadb.com/kb/en/mariadb-1048-changelog/
https://mariadb.com/kb/en/mariadb-1047-changelog/
https://mariadb.com/kb/en/mariadb-1046-changelog/
https://mariadb.com/kb/en/mariadb-1045-changelog/
https://mariadb.com/kb/en/mariadb-1044-changelog/
https://mariadb.com/kb/en/mariadb-1043-changelog/

29 Jan 2019 MariaDB 10.4.2 Beta Release Notes Changelog

20 Dec 2018
MariaDB 10.4.1 Beta Release Notes Changelog

9 Nov 2018 MariaDB 10.4.0 Alpha Release Notes Changelog

7.0.8.2 Release Notes - MariaDB 10.4 Series
MariaDB 10.4.33 Release Notes

Status: Stable (GA) | Release Date: 7 Feb 2024

MariaDB 10.4.32 Release Notes

Status: Stable (GA) | Release Date: 13 Nov 2023

MariaDB 10.4.31 Release Notes

Status: Stable (GA) | Release Date: 14 Aug 2023

MariaDB 10.4.30 Release Notes

Status: Stable (GA) | Release Date: 7 Jun 2023

MariaDB 10.4.29 Release Notes

Status: Stable (GA) | Release Date: 10 May 2023

MariaDB 10.4.28 Release Notes

Status: Stable (GA) | Release Date: 6 Feb 2023

MariaDB 10.4.27 Release Notes

Status: Stable (GA) | Release Date: 7 Nov 2022

MariaDB 10.4.26 Release Notes

Status: Stable (GA) | Release Date: 15 Aug 2022

MariaDB 10.4.25 Release Notes

Status: Stable (GA) | Release Date: 20 May 2022

MariaDB 10.4.24 Release Notes

Status: Stable (GA) | Release Date: 12 Feb 2022

MariaDB 10.4.23 Release Notes

Status: Stable (GA) | Release Date: 9 Feb 2022

MariaDB 10.4.22 Release Notes

Status: Stable (GA) | Release Date: 8 Nov 2021

MariaDB 10.4.21 Release Notes

Status: Stable (GA) | Release Date: 6 Aug 2021

MariaDB 10.4.20 Release Notes

Status: Stable (GA) | Release Date: 23 Jun 2021

MariaDB 10.4.19 Release Notes

Status: Stable (GA) | Release Date: 7 May 2021

MariaDB 10.4.18 Release Notes

Status: Stable (GA) | Release Date: 22 Feb 2021

MariaDB 10.4.17 Release Notes

Status: Stable (GA) | Release Date: 11 Nov 2020

MariaDB 10.4.16 Release Notes

Status: Stable (GA) | Release Date: 3 Nov 2020

4035/4161

https://mariadb.com/kb/en/mariadb-1042-changelog/
https://mariadb.com/kb/en/mariadb-1041-changelog/
https://mariadb.com/kb/en/mariadb-1040-changelog/

MariaDB 10.4.15 Release Notes

Status: Stable (GA) | Release Date: 7 Oct 2020

MariaDB 10.4.14 Release Notes

Status: Stable (GA) | Release Date: 10 Aug 2020

MariaDB 10.4.13 Release Notes

Status: Stable (GA) | Release Date: 12 May 2020

MariaDB 10.4.12 Release Notes

Status: Stable (GA) | Release Date: 28 Jan 2020

MariaDB 10.4.11 Release Notes

Status: Stable (GA) | Release Date: 11 Dec 2019

MariaDB 10.4.10 Release Notes

Status: Stable (GA) | Release Date: 8 Nov 2019

MariaDB 10.4.9 Release Notes

Status: Stable (GA) | Release Date: 5 Nov 2019

MariaDB 10.4.8 Release Notes

Status: Stable (GA) | Release Date: 11 Sep 2019

MariaDB 10.4.7 Release Notes

Status: Stable (GA) | Release Date: 31 Jul 2019

MariaDB 10.4.6 Release Notes

Status: Stable (GA) | Release Date: 18 Jun 2019

MariaDB 10.4.5 Release Notes

Status: Release Candidate (RC) | Release Date: 21 May 2019

MariaDB 10.4.4 Release Notes

Status: Release Candidate | Release Date: 7 Apr 2019

MariaDB 10.4.3 Release Notes

Status: Release Candidate | Release Date: 25 Feb 2019

MariaDB 10.4.2 Release Notes

Status: Beta | Release Date: 29 Jan 2019

MariaDB 10.4.1 Release Notes

Status: Beta | Release Date: 20 Dec 2018

MariaDB 10.4.0 Release Notes

Status: Alpha | Release Date: 9 Nov 20181

7.0.8.2.1 MariaDB 10.4.33 Release Notes
Download Release Notes Changelog Overview of 10.4

Release date: 7 Feb 2024

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.33 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Alternate download from mariadb.org

4036/4161

https://mariadb.com/downloads/
https://mariadb.com/kb/en/mariadb-10-4-33-changelog/
https://downloads.mariadb.org/mariadb/10.4.33/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/

Notable Items
Windows packages were delayed but have now been added to the downloads site

InnoDB

Unique hash key on column prefix is computed incorrectly (MDEV-29954)

Query from I_S.INNODB_SYS_INDEXES exceeding LIMIT ROWS EXAMINED causes ER_UNKNOWN_ERROR and

LeakSanitizer errors in rec_copy_prefix_to_buf_old (MDEV-28613)

Assertion `0' failed in row_sel_convert_mysql_key_to_innobase upon UPDATE using a partial-field key prefix

in search (MDEV-21245)

Assertion failure on REPLACE on ROW_FORMAT=COMPRESSED table (MDEV-31574)

Crash emitting "Unsupported meta-data version number" error message (MDEV-29972)

LeakSanitizer errors in mem_heap_create_block_func upon query from I_S.INNODB_SYS_TABLES with LIMIT

ROWS EXAMINED (MDEV-32890)

Inplace alter rebuild increases file size (MDEV-26740)

BLOB corruption on UPDATE of PRIMARY KEY with FOREIGN KEY (MDEV-31441)

GNU libc posix_fallocate() may be extremely slow (MDEV-32268)

InnoDB wrong error message (MDEV-32833)

Assertion failure on ALTER TABLE&PAGE_COMPRESSED=1 (MDEV-31000)

Backup

mariabackup has wrong or missing plugin-dir default? (MDEV-29110)

mariabackup fails when innodb_max_dirty_pages_pct contains a fraction (is not an integer) (MDEV-20286)

JSON

Wrong function name in ER_JSON_PATH_NO_WILDCARD error message for JSON_REPLACE (MDEV-24541)

JSON_VALID fail to validate integer zero in scientific notation (MDEV-32587)

ASAN errors in Item_func_json_contains_path::val_int upon PS execution (MDEV-32867)

Spider

Thread (10.6+) and server hangs (10.4/10.5) in 'Opening tables' (on optimized builds) and SIGABRT in

safe_mutex_lock (on debug) on I_S read when using Spider (MDEV-29421)

SIGSEGV in spider_db_mbase::append_lock_tables on LOCK TABLES (MDEV-29963)

ASAN heap-use-after-free in spider_link_get_key on LOCK TABLES (MDEV-31357)

Crash when lateral derived is guaranteed to return no rows (MDEV-31279)

Bogus error executing PS for query using CTE with renaming of columns (MDEV-31995)

Spider: Valid LEFT JOIN results in ERROR 1064 (MDEV-26247)

Trying to lock uninitialized mutex or hang upon shutdown after using Spider with query_cache (MDEV-28739)

Spider tests failing in asan/valgrind builds (MDEV-32849)

Backport fixes to spider init bugs to 10.4-10.6 once they have SQL service (MDEV-29870)

Server crash with SIGSEGV or dynamic-stack-buffer-overflow in spider_db_mbase_util::append_table

(MDEV-29163)

heap-use-after-free in ha_spider::lock_tables() , highly sporadic SIGSEGV in intern_close_table

(MDEV-30014)

Syntax error upon query with subquery from Spider table (MDEV-30392)

Spider doesn't recognize semi JOIN (MDEV-31645)

MariaDB, SPIDER engine, usage of REGEXP (MDEV-32986)

Spider: variable spider_same_server_link not functioning correctly (MDEV-29718)

Spider fails to autodiscover structure (did in <=10.5) and reports ERROR 12500 (HY000): unknown (MDEV-33008)

Spider spawns unnecessarily many system threads for stats synchronization (MDEV-29020)

SIGSEGV in spider_db_delete_all_rows on TRUNCATE , UBSAN : member call on null pointer of type 'struct

spider_db_handler' in spider_db_delete_all_rows (MDEV-33191)

mariadb-upgrade fails with 'System table spider_tables is different version' => Can't create

database 'performance_schema' (MDEV-27103)

Spider: SIGSEGV in spider_db_direct_delete, SIGSEGV in spider_db_connect, ASAN: heap-use-after-free in

spider_db_direct_delete (MDEV-28683)

4037/4161

https://jira.mariadb.org/browse/MDEV-29954
https://jira.mariadb.org/browse/MDEV-28613
https://jira.mariadb.org/browse/MDEV-21245
https://jira.mariadb.org/browse/MDEV-31574
https://jira.mariadb.org/browse/MDEV-29972
https://jira.mariadb.org/browse/MDEV-32890
https://jira.mariadb.org/browse/MDEV-26740
https://jira.mariadb.org/browse/MDEV-31441
https://jira.mariadb.org/browse/MDEV-32268
https://jira.mariadb.org/browse/MDEV-32833
https://jira.mariadb.org/browse/MDEV-31000
https://jira.mariadb.org/browse/MDEV-29110
https://jira.mariadb.org/browse/MDEV-20286
https://jira.mariadb.org/browse/MDEV-24541
https://jira.mariadb.org/browse/MDEV-32587
https://jira.mariadb.org/browse/MDEV-32867
https://jira.mariadb.org/browse/MDEV-29421
https://jira.mariadb.org/browse/MDEV-29963
https://jira.mariadb.org/browse/MDEV-31357
https://jira.mariadb.org/browse/MDEV-31279
https://jira.mariadb.org/browse/MDEV-31995
https://jira.mariadb.org/browse/MDEV-26247
https://jira.mariadb.org/browse/MDEV-28739
https://jira.mariadb.org/browse/MDEV-32849
https://jira.mariadb.org/browse/MDEV-29870
https://jira.mariadb.org/browse/MDEV-29163
https://jira.mariadb.org/browse/MDEV-30014
https://jira.mariadb.org/browse/MDEV-30392
https://jira.mariadb.org/browse/MDEV-31645
https://jira.mariadb.org/browse/MDEV-32986
https://jira.mariadb.org/browse/MDEV-29718
https://jira.mariadb.org/browse/MDEV-33008
https://jira.mariadb.org/browse/MDEV-29020
https://jira.mariadb.org/browse/MDEV-33191
https://jira.mariadb.org/browse/MDEV-27103
https://jira.mariadb.org/browse/MDEV-28683

Optimizer

Crash caused by multi-table UPDATE over derived with hanging CTE (MDEV-28615)

Crash on query using CTE with the same name as a base table (MDEV-31657)

Crash with query using constant subquery as left part of IN subquery (MDEV-29362)

Data Definition, Data Manipulation

ALTER SEQUENCE IF NOT EXISTS non_existing_seq Errors rather than note (MDEV-32795)

Unexpected ER_ERROR_ON_RENAME upon DROP non-existing FOREIGN KEY with ALGORITHM=COPY (MDEV-22230

)

FOREIGN_KEY_CHECKS does not prevent non-copy alter from creating invalid FK structure (MDEV-29092)

Assertion `!"wrong page type"' or Assertion `"wrong page type" == 0' failed in innobase_instant_try

on ALTER (MDEV-18322)

Assertion (col.vers_sys_end()) upon inplace ALTER with virtual columns (MDEV-20545)

DELETE with ORDER BY and semijoin optimization causing crash (MDEV-32212)

Invalid expr in cleanup_session_expr() upon INSERT DELAYED (MDEV-29932)

SIGSEGV in my_decimal::operator= and Assertion `0' failed in Item_type_holder::val_decimal on

SELECT (MDEV-29070)

Character Sets, Data Types

InnoDB: CHAR+nopad does not work well (MDEV-26743)

CAST(AS UNSIGNED) fails with --view-protocol (MDEV-32645)

Plugins

Backport SQL service, introduced by MDEV-19275 (MDEV-27595)

"plugin already loaded" should be a Warning, not an Error (MDEV-32041)

mariadb-upgrade should remove mysql.plugin entries for plugins that became bundled (MDEV-32043)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

Inconsistency in Galera caused by ALTER being aborted before entering TOI mode (MDEV-32938)

Assertion `total_length + thd->wsrep_sr().log_position() == saved_pos' failed in int

wsrep_write_cache_inc(THD*, IO_CACHE*, size_t*) (MDEV-28971)

wsrep_provider_options can be truncated on deep and long directory paths (MDEV-32634)

Server crashes in rpl_sql_thread_info::cached_charset_compare / wsrep_apply_events (MDEV-22232)

Galera crash when "create a table as select" (MDEV-27806)

Replication

Server crashes in Item_func_binlog_gtid_pos::val_str / Binary_string::c_ptr_safe (MDEV-33045)

binlog corruption (/tmp no space left on device at the same moment) (MDEV-27436)

multi source replication filters breaking GTID semantic (MDEV-26632)

SHOW SLAVE STATUS Can Deadlock an Errored Slave (MDEV-10653)

main.rpl_mysqldump_slave Fails with "Master binlog wasn't deleted" Assertion (MDEV-32953)

rpl_seconds_behind_master_spike Sensitive to IO Thread Stop Position (MDEV-33327)

General

Upgrade HeidiSQL to 12.6.

BACKUP LOCKS on table to be accessible to those with database LOCK TABLES privileges (MDEV-28367)

Using two temporary tables in OPTIMIZE TABLE lead to crash (MDEV-31523)

REGEXP_REPLACE treats empty strings different than REPLACE in ORACLE mode (MDEV-29095)

CREATE UNIQUE INDEX fails with "ERROR 1286 (42000): Unknown storage engine 'partition'" (MDEV-21618)

Failure when executing PS for query using IN subquery (MDEV-32569)

Potential memory leak on execuing of create view statement (MDEV-32466)

Assertion failures (MDEV-32965)

Two JSON related tests running in PS mode fail on server built with -DWITH_PROTECT_STATEMENT_MEMROOT=YES

(MDEV-32733)

Alter sequence 2nd ps fails while alter sequence 2nd time (no ps) succeeds (MDEV-33169)

4038/4161

https://jira.mariadb.org/browse/MDEV-28615
https://jira.mariadb.org/browse/MDEV-31657
https://jira.mariadb.org/browse/MDEV-29362
https://jira.mariadb.org/browse/MDEV-32795
https://jira.mariadb.org/browse/MDEV-22230
https://jira.mariadb.org/browse/MDEV-29092
https://jira.mariadb.org/browse/MDEV-18322
https://jira.mariadb.org/browse/MDEV-20545
https://jira.mariadb.org/browse/MDEV-32212
https://jira.mariadb.org/browse/MDEV-29932
https://jira.mariadb.org/browse/MDEV-29070
https://jira.mariadb.org/browse/MDEV-26743
https://jira.mariadb.org/browse/MDEV-32645
https://jira.mariadb.org/browse/MDEV-19275
https://jira.mariadb.org/browse/MDEV-27595
https://jira.mariadb.org/browse/MDEV-32041
https://jira.mariadb.org/browse/MDEV-32043
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-32938
https://jira.mariadb.org/browse/MDEV-28971
https://jira.mariadb.org/browse/MDEV-32634
https://jira.mariadb.org/browse/MDEV-22232
https://jira.mariadb.org/browse/MDEV-27806
https://jira.mariadb.org/browse/MDEV-33045
https://jira.mariadb.org/browse/MDEV-27436
https://jira.mariadb.org/browse/MDEV-26632
https://jira.mariadb.org/browse/MDEV-10653
https://jira.mariadb.org/browse/MDEV-32953
https://jira.mariadb.org/browse/MDEV-33327
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-28367
https://jira.mariadb.org/browse/MDEV-31523
https://jira.mariadb.org/browse/MDEV-29095
https://jira.mariadb.org/browse/MDEV-21618
https://jira.mariadb.org/browse/MDEV-32569
https://jira.mariadb.org/browse/MDEV-32466
https://jira.mariadb.org/browse/MDEV-32965
https://jira.mariadb.org/browse/MDEV-32733
https://jira.mariadb.org/browse/MDEV-33169

Set TaskMax=inifinity in the MariaDB systemd unit (MDEV-30236)

Unreliable autocommit flag on connection creation (MDEV-32875)

A connection can control RAND() in following connection (MDEV-33148)

THD::rli_fake/rgi_fake not cleared on new connection (MDEV-32844)

Assertion failures in tdc_remove_table upon interrupted CREATE TABLE LIKE <sequence> (MDEV-20471)

Server crash in find_field_in_table (MDEV-32082)

LPAD in vcol created in ORACLE mode makes table corrupted in non-ORACLE (MDEV-27744)

Failure to call SP invoking another SP with parameter requiring type conversion (MDEV-33270)

The database part is not case sensitive in SP names (MDEV-33019)

EXCHANGE PARTITION with non-matching vcol expression segfault (MDEV-28127)

Changelog
For a complete list of changes made in MariaDB 10.4.33, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.33, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.2 MariaDB 10.4.32 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.32 Release Notes Changelog Overview of 10.4

Release date: 13 Nov 2023

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.32 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

DROP INDEX followed by CREATE INDEX may corrupt data (MDEV-32132)

ROW_FORMAT=COMPRESSED table: InnoDB: 2048 bytes should have been read. Only 0 bytes read. (MDEV-

31875)

Server aborts during alter operation when table doesn't have foreign index (MDEV-32527)

row_merge_fts_doc_tokenize() handles FTS plugin parser inconsistently (MDEV-32578)

InnoDB: tried to purge non-delete-marked record of an index on a virtual column prefix (MDEV-30024)

lock_row_lock_current_waits counter in information_schema.innodb_metrics may become negative (MDEV-30658)

Alternate download from mariadb.org

4039/4161

https://jira.mariadb.org/browse/MDEV-30236
https://jira.mariadb.org/browse/MDEV-32875
https://jira.mariadb.org/browse/MDEV-33148
https://jira.mariadb.org/browse/MDEV-32844
https://jira.mariadb.org/browse/MDEV-20471
https://jira.mariadb.org/browse/MDEV-32082
https://jira.mariadb.org/browse/MDEV-27744
https://jira.mariadb.org/browse/MDEV-33270
https://jira.mariadb.org/browse/MDEV-33019
https://jira.mariadb.org/browse/MDEV-28127
https://mariadb.com/kb/en/mariadb-10-4-33-changelog/
https://mariadb.org/mariadb-11-2-3-11-1-4-11-0-5-10-11-7-10-6-17-10-5-24-10-4-33-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.32/
https://mariadb.com/kb/en/mariadb-10-4-32-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-32132
https://jira.mariadb.org/browse/MDEV-31875
https://jira.mariadb.org/browse/MDEV-32527
https://jira.mariadb.org/browse/MDEV-32578
https://jira.mariadb.org/browse/MDEV-30024
https://jira.mariadb.org/browse/MDEV-30658

SET GLOBAL innodb_max_purge_lag_wait=& hangs if innodb_read_only=ON (MDEV-31813)

Auto-increment no longer works for explicit FTS_DOC_ID (MDEV-32017)

Assertion `pos < table->n_def' failed in dict_table_get_nth_col (MDEV-32337)

innochecksum man pages seem to be inconsistent with the binary (10.2.25) (MDEV-20583)

innodb_compression_algorithm=0 (none) increments Innodb_num_pages_page_compression_error (MDEV-30825

)

wrong table name in innodb's "row too big" errors (MDEV-32128)

Optimize is_file_on_ssd() to speedup opening tablespaces on Windows (MDEV-32228)

Optimizer

Crash when HAVING in a correlated subquery references columns in the outer query (MDEV-29731)

Server crashes at TABLE::add_tmp_key (MDEV-32320)

Server crashes inside filesort at my_decimal::to_binary (MDEV-32324)

Assertion `bitmap_is_set(&m_part_info->read_partitions, m_part_spec.start_part)' failed in

ha_partition::handle_ordered_index_scan (MDEV-24283)

Crash when searching for the best split of derived table (MDEV-32064)

Test case from opt_tvc.test fails with statement memory protection (MDEV-32225)

Significant slowdown for query with many outer joins (MDEV-32351)

test_if_skip_sort_order() should catch the join types JT_EQ_REF, JT_CONST and JT_SYSTEM and skip sort order

for these (MDEV-32475)

Replication

rpl.rpl_parallel_temptable failure due to incorrect commit optimization of temptables (MDEV-10356)

Lock wait timeout with INSERT-SELECT, autoinc, and statement-based replication (MDEV-31482)

strings/ctype-ucs2.c:2336: my_vsnprintf_utf32: Assertion `(n % 4) == 0' failed in my_vsnprintf_utf32 on INSERT

(MDEV-32249)

Assertion fails in MDL_context::acquire_lock upon parallel replication of CREATE SEQUENCE (MDEV-31792)

SHOW SLAVE STATUS Last_SQL_Errno Race Condition on Errored Slave Restart (MDEV-31177)

seconds_behind_master is inaccurate for Delayed replication (MDEV-32265)

detailize the semisync replication magic number error (MDEV-32365)

Parallel replication deadlock victim preference code errorneously removed (MDEV-31655)

Galera

Assertion `state() == s_executing || state() == s_prepared || state() == s_committing || state() == s_must_abort ||

state() == s_replaying' failed. (MDEV-24912)

Assertion `state() == s_executing || state() == s_preparing || state() == s_prepared || state() == s_must_abort || state()

== s_aborting || state() == s_cert_failed || state() == s_must_replay' failed (MDEV-31285)

wsrep_sst_mariabackup not working on FreeBSD (MDEV-31467)

Galera library 26.4.16 fails with every server version (MDEV-32024)

Galera node remains paused after interleaving FTWRLs (MDEV-32282)

Failed to insert streaming client (MDEV-32051)

When set at runtime, wsrep_sst_method accepts any value (MDEV-31470)

galera needs packaging script changes to successfully build (MDEV-32642)

Data Definition

MariaDB crash on calling function (MDEV-23902)

ASAN errors in grn_obj_unlink / ha_mroonga::clear_indexes upon index operations (MDEV-31970)

Scripts and Clients

mariadb-binlog -T/--table (mysqlbinlog) option (MDEV-25369)

mariadb-admin (mysqladmin) wrong error with simple_password_check (MDEV-22418)

mariadb-install-db shows warning on missing directory $pamtooldir/auth_pam_tool_dir (MDEV-32142)

main.mysql_client_test, main.mysql_client_test_comp failed on ASAN build with error: 5888, status: 23, errno: 2

(MDEV-19369)

mariadb-install-db (mysql_install_db) doesn't properly grant proxy privileges to all default root user accounts (MDEV-

21194)

Tests

main.events_stress or events.events_stress fails with view-protocol (MDEV-31455)
4040/4161

https://jira.mariadb.org/browse/MDEV-31813
https://jira.mariadb.org/browse/MDEV-32017
https://jira.mariadb.org/browse/MDEV-32337
https://jira.mariadb.org/browse/MDEV-20583
https://jira.mariadb.org/browse/MDEV-30825
https://jira.mariadb.org/browse/MDEV-32128
https://jira.mariadb.org/browse/MDEV-32228
https://jira.mariadb.org/browse/MDEV-29731
https://jira.mariadb.org/browse/MDEV-32320
https://jira.mariadb.org/browse/MDEV-32324
https://jira.mariadb.org/browse/MDEV-24283
https://jira.mariadb.org/browse/MDEV-32064
https://jira.mariadb.org/browse/MDEV-32225
https://jira.mariadb.org/browse/MDEV-32351
https://jira.mariadb.org/browse/MDEV-32475
https://jira.mariadb.org/browse/MDEV-10356
https://jira.mariadb.org/browse/MDEV-31482
https://jira.mariadb.org/browse/MDEV-32249
https://jira.mariadb.org/browse/MDEV-31792
https://jira.mariadb.org/browse/MDEV-31177
https://jira.mariadb.org/browse/MDEV-32265
https://jira.mariadb.org/browse/MDEV-32365
https://jira.mariadb.org/browse/MDEV-31655
https://jira.mariadb.org/browse/MDEV-24912
https://jira.mariadb.org/browse/MDEV-31285
https://jira.mariadb.org/browse/MDEV-31467
https://jira.mariadb.org/browse/MDEV-32024
https://jira.mariadb.org/browse/MDEV-32282
https://jira.mariadb.org/browse/MDEV-32051
https://jira.mariadb.org/browse/MDEV-31470
https://jira.mariadb.org/browse/MDEV-32642
https://jira.mariadb.org/browse/MDEV-23902
https://jira.mariadb.org/browse/MDEV-31970
https://jira.mariadb.org/browse/MDEV-25369
https://jira.mariadb.org/browse/MDEV-22418
https://jira.mariadb.org/browse/MDEV-32142
https://jira.mariadb.org/browse/MDEV-19369
https://jira.mariadb.org/browse/MDEV-21194
https://jira.mariadb.org/browse/MDEV-31455

main.delete_use_source fails (hangs) with view-protocol (MDEV-31457)

main.sum_distinct-big and main.merge-big fail with timeout with view-protocol (MDEV-31465)

main.secure_file_priv_win fails with 2nd execution PS protocol (MDEV-32023)

Windows : mtr output on is messed up with large MTR_PARALLEL (MDEV-32387)

main.mysql_client_test_comp failed in buildbot, error on exec (MDEV-16641)

MariaBackup

MariaBackup full backup failed with InnoDB: Failing assertion: success in storage/innobase/fil/fil0fil.cc line 657

(MDEV-18200)

mbstream breaks page compression on XFS (MDEV-25734)

Character Sets, Data Types, Collations

Prefix keys for CHAR work differently for MyISAM vs InnoDB (MDEV-30048)

Inconsistent results of DISTINCT with NOPAD (MDEV-30050)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on INSERT (MDEV-28835)

Compressed varchar values lost on joins when sorting on columns from joined table(s) (MDEV-31724)

UBSAN shift exponent X is too large for 64-bit type 'long long int' in sql/field.cc (MDEV-32226)

Wrong bit encoding using COALESCE (MDEV-32244)

Spider

Spider UBSAN runtime error: applying non-zero offset x to null pointer in

st_spider_param_string_parse::restore_delims (MDEV-31117)

Segfault when setting spider_delete_all_rows to 0 and delete all rows of a spider table, ASAN heap-use-after-free in

spider_db_delete_all_rows (MDEV-31996)

ASAN errors in spider_fields::free_conn_holder or spider_create_group_by_handler (MDEV-28998)

General

binlog_do_db option breaks importing sql dumps (MDEV-29989)

Crashes in MDL_key::mdl_key_init with lower-case-table-names=2 (MDEV-32025)

getting error 'Illegal parameter data types row and bigint for operation '+' ' when using ITERATE in a FOR..DO

(MDEV-32275)

Assertion `arena_for_set_stmt== 0' failed in LEX::set_arena_for_set_stmt upon SET STATEMENT (MDEV-17711)

main.mysqlcheck fails on ARM with ASAN use-after-poison in my_mb_wc_filename (MDEV-26494)

main.delayed fails with wrong error code or timeout when executed after main.deadlock_ftwrl (MDEV-27523)

Assertion failed: !pfs->m_idle || (state == PSI_SOCKET_STATE_ACTIVE) (MDEV-28561)

MyISAM wrong server status flags (MDEV-28820)

Server crashes in check_sequence_fields upon CREATE TABLE .. SEQUENCE=1 AS SELECT .. (MDEV-29771)

slow log Rows_examined out of range (MDEV-30820)

" rpm --setugids " breaks PAM authentication (MDEV-30904)

incorrect examined rows in case of stored function usage (MDEV-31742)

Compilation failing on MacOS (unknown warning option -Wno-unused-but-set-variable) (MDEV-31890)

Server crash upon inserting into Mroonga table with compressed column (MDEV-31966)

hash unique corrupts index on virtual blobs (MDEV-32012)

insert into an empty table fails with hash unique (MDEV-32015)

Valgrind/MSAN warnings in dynamic_column_update_move_left (MDEV-32140)

Memory leak showed in MDEV-6146 test suite (MDEV-32223)

Test from subselect.test fails with statement memory protection (MDEV-32245)

Memory leak when executing PS for query with IN subquery (MDEV-32369)

Allow the setting of Auto_increment on FK referenced columns (MDEV-32018)

mariadb-upgrade fails with sql_safe_updates = on (MDEV-29914)

Assertion `!(thd->server_status & (1U | 8192U))' failed in MDL_context::release_transactional_locks (MDEV-32541)

Information schema leaks table names and structure to unauthorized users (MDEV-32500)

Missing CHACHA20-POLY1305 support in WolfSSL (MDEV-31653)

incorrect error about cyclic reference about JSON type virtual column (MDEV-32586)

Disable TLS v1.0 and 1.1 for MariaDB (MDEV-31369)

Better indication of refusing to start because of ProtectHome (MDEV-25177)

Database upgrade fails: slow_log table (MDEV-27757)

myrocks_hotbackup.1 and test suite files installed when engine is disabled (MDEV-29993)

client_ed25519.dll isn't inluded for HeidiSQL. (MDEV-31315)

4041/4161

https://jira.mariadb.org/browse/MDEV-31457
https://jira.mariadb.org/browse/MDEV-31465
https://jira.mariadb.org/browse/MDEV-32023
https://jira.mariadb.org/browse/MDEV-32387
https://jira.mariadb.org/browse/MDEV-16641
https://jira.mariadb.org/browse/MDEV-18200
https://jira.mariadb.org/browse/MDEV-25734
https://jira.mariadb.org/browse/MDEV-30048
https://jira.mariadb.org/browse/MDEV-30050
https://jira.mariadb.org/browse/MDEV-28835
https://jira.mariadb.org/browse/MDEV-31724
https://jira.mariadb.org/browse/MDEV-32226
https://jira.mariadb.org/browse/MDEV-32244
https://jira.mariadb.org/browse/MDEV-31117
https://jira.mariadb.org/browse/MDEV-31996
https://jira.mariadb.org/browse/MDEV-28998
https://jira.mariadb.org/browse/MDEV-29989
https://jira.mariadb.org/browse/MDEV-32025
https://jira.mariadb.org/browse/MDEV-32275
https://jira.mariadb.org/browse/MDEV-17711
https://jira.mariadb.org/browse/MDEV-26494
https://jira.mariadb.org/browse/MDEV-27523
https://jira.mariadb.org/browse/MDEV-28561
https://jira.mariadb.org/browse/MDEV-28820
https://jira.mariadb.org/browse/MDEV-29771
https://jira.mariadb.org/browse/MDEV-30820
https://jira.mariadb.org/browse/MDEV-30904
https://jira.mariadb.org/browse/MDEV-31742
https://jira.mariadb.org/browse/MDEV-31890
https://jira.mariadb.org/browse/MDEV-31966
https://jira.mariadb.org/browse/MDEV-32012
https://jira.mariadb.org/browse/MDEV-32015
https://jira.mariadb.org/browse/MDEV-32140
https://jira.mariadb.org/browse/MDEV-6146
https://jira.mariadb.org/browse/MDEV-32223
https://jira.mariadb.org/browse/MDEV-32245
https://jira.mariadb.org/browse/MDEV-32369
https://jira.mariadb.org/browse/MDEV-32018
https://jira.mariadb.org/browse/MDEV-29914
https://jira.mariadb.org/browse/MDEV-32541
https://jira.mariadb.org/browse/MDEV-32500
https://jira.mariadb.org/browse/MDEV-31653
https://jira.mariadb.org/browse/MDEV-32586
https://jira.mariadb.org/browse/MDEV-31369
https://jira.mariadb.org/browse/MDEV-25177
https://jira.mariadb.org/browse/MDEV-27757
https://jira.mariadb.org/browse/MDEV-29993
https://jira.mariadb.org/browse/MDEV-31315

Docker Official Images

Invert single and double quotes for sql command definitions in healthcheck.sh due to failure under

sql_mode=ANSI_QUOTES - contribution by Dominik Häckel

healthcheck.sh --no-defaults behaviour was corrected - reported by Dominik Häckel

Added /docker-entrypoint-init.d for tar{,compression} from mariadb-backup - instructions

Refactor docker_mariadb_init in the entrypoint for extending the MariaDB image

CIS failure due to world-writable directory /var/run/mysqld, added sticky bit - reported by @ollie1

Add PROXY privileges for root@MARIADB_ROOT_HOST - reported by Matthieu Gusmini

healthcheck.sh added --galera_online test, to match what the mariadb-operator does.

Security

Fixes for the following security vulnerabilities :

CVE-2023-22084

Changelog
For a complete list of changes made in MariaDB 10.4.32, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.32, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.3 MariaDB 10.4.31 Release Notes
Download Release Notes Changelog Overview of 10.4

Release date: 14 Aug 2023

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.31 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

General

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 18.04 LTS "Bionic"

mysqldump --force doesn't ignore error as it should (MDEV-31092)

ROW variables do not get assigned from subselects (MDEV-31250)

Crash after setting global session_track_system_variables to an invalid value (MDEV-25237)

ODKU of non-versioning column inserts history row (MDEV-23100)

UPDATE not working properly on transaction precise system versioned table (MDEV-25644)

Alternate download from mariadb.org

4042/4161

https://github.com/mariadb-operator/mariadb-operator
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22084
https://mariadb.com/kb/en/mariadb-10-4-32-changelog/
https://mariadb.org/mariadb-11-1-3-11-0-4-10-11-6-10-10-7-10-6-16-10-5-23-10-4-32-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://mariadb.com/kb/en/mariadb-10-4-31-changelog/
https://downloads.mariadb.org/mariadb/10.4.31/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31092
https://jira.mariadb.org/browse/MDEV-31250
https://jira.mariadb.org/browse/MDEV-25237
https://jira.mariadb.org/browse/MDEV-23100
https://jira.mariadb.org/browse/MDEV-25644

Assertion `const_item_cache == true' failed in Item_func::fix_fields (MDEV-31319)

ANALYZE doesn't work with pushed derived tables (MDEV-29284)

get_partition_set is never executed in ha_partition::multi_range_key_create_key due to bitwise & with

0 constant (MDEV-24712)

Client can crash the server with a mysql_list_fields("view") call (MDEV-30159)

I_S.parameters not immediatly changed updated after procedure change (MDEV-31064)

Character Sets, Data Types

UBSAN: null pointer passed as argument 1, which is declared to never be null in my_strnncoll_binary on

SELECT ... COUNT or GROUP_CONCAT (MDEV-28384)

Possibly wrong result or Assertion `0' failed in Item_func_round::native_op (MDEV-23838)

Assertion `(length % 4) == 0' failed in my_lengthsp_utf32 on SELECT (MDEV-29019)

UBSAN: negation of -X cannot be represented in type 'long long int' ; cast to an unsigned type to negate this

value to itself in Item_func_mul::int_op and Item_func_round::int_op (MDEV-30932)

Assorted assertion failures in json_find_path with certain collations (MDEV-23187)

InnoDB

innochecksum dies with Floating point exception (MDEV-31641)

Deadlock with 3 concurrent DELETEs by unique key (MDEV-10962)

Assertion `!strcmp(index->table->name.m_name, "SYS_FOREIGN") || !strcmp(index->table-

>name.m_name, "SYS_FOREIGN_COLS")' failed in btr_node_ptr_max_size (MDEV-19216)

MODIFY COLUMN can break FK constraints, and lead to unrestorable dumps (MDEV-31086)

Aria

Various crashes upon INSERT/UPDATE after changing Aria settings (MDEV-28054)

Various crashes/asserts/corruptions when Aria encryption is enabled/used, but the encryption plugin is not loaded

(MDEV-26258)

Spider

SIGSEGV in spider_db_open_item_field and SIGSEGV in spider_db_print_item_type , on SELECT

(MDEV-29447)

Spider variables that double as table params overriding mechanism is buggy (MDEV-31524)

Optimizer

Assertion `last_key_entry >= end_pos' failed in virtual bool JOIN_CACHE_HASHED::put_record() (MDEV-

31348)

Problem with open ranges on prefix blobs keys (MDEV-31800)

Equal on two RANK window functions create wrong result (MDEV-20010)

Recursive CTE execution is interrupted without errors or warnings (MDEV-31214)

MAX_SEL_ARG memory exhaustion is not visible in the optimizer trace (MDEV-30964)

SHOW TABLES not working properly with lower_case_table_names=2 (MDEV-30765)

Segfault on select query using index for group-by and filesort (MDEV-30143)

Replication

Parallel Slave SQL Thread Can Update Seconds_Behind_Master with Active Workers (MDEV-30619)

ALTER SEQUENCE ends up in optimistic parallel slave binlog out-of-order (MDEV-31503)

STOP SLAVE takes very long time on a busy system (MDEV-13915)

rpl.rpl_manual_change_index_file occasionally fails in BB with Result length mismatch (MDEV-30214)

Galera

Node has been dropped from the cluster on Startup / Shutdown with async replica (MDEV-31413)

MariaDB stuck on starting commit state (waiting on commit order critical section) (MDEV-29293)

Assertion state() == s_aborting || state() == s_must_replay failed in int

wsrep::transaction::after_rollback() (MDEV-30013)

Assertion !wsrep_has_changes(thd) || (thd->lex->sql_command == SQLCOM_CREATE_TABLE && !thd-

>is_current_stmt_binlog_format_row()) || thd->wsrep_cs().transaction().state() ==

4043/4161

https://jira.mariadb.org/browse/MDEV-31319
https://jira.mariadb.org/browse/MDEV-29284
https://jira.mariadb.org/browse/MDEV-24712
https://jira.mariadb.org/browse/MDEV-30159
https://jira.mariadb.org/browse/MDEV-31064
https://jira.mariadb.org/browse/MDEV-28384
https://jira.mariadb.org/browse/MDEV-23838
https://jira.mariadb.org/browse/MDEV-29019
https://jira.mariadb.org/browse/MDEV-30932
https://jira.mariadb.org/browse/MDEV-23187
https://jira.mariadb.org/browse/MDEV-31641
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-19216
https://jira.mariadb.org/browse/MDEV-31086
https://jira.mariadb.org/browse/MDEV-28054
https://jira.mariadb.org/browse/MDEV-26258
https://jira.mariadb.org/browse/MDEV-29447
https://jira.mariadb.org/browse/MDEV-31524
https://jira.mariadb.org/browse/MDEV-31348
https://jira.mariadb.org/browse/MDEV-31800
https://jira.mariadb.org/browse/MDEV-20010
https://jira.mariadb.org/browse/MDEV-31214
https://jira.mariadb.org/browse/MDEV-30964
https://jira.mariadb.org/browse/MDEV-30765
https://jira.mariadb.org/browse/MDEV-30143
https://jira.mariadb.org/browse/MDEV-30619
https://jira.mariadb.org/browse/MDEV-31503
https://jira.mariadb.org/browse/MDEV-13915
https://jira.mariadb.org/browse/MDEV-30214
https://jira.mariadb.org/browse/MDEV-31413
https://jira.mariadb.org/browse/MDEV-29293
https://jira.mariadb.org/browse/MDEV-30013

wsrep::transaction::s_aborted failed (MDEV-30388)

Server crashes when wsrep_sst_donor and wsrep_cluster_address set to NULL (MDEV-28433)

Create temporary sequence can cause inconsistency (MDEV-31335)

Galera 4 unable to query cluster state if not primary component (MDEV-21479)

Changelog
For a complete list of changes made in MariaDB 10.4.31, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.31, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.4 MariaDB 10.4.30 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.30 Release Notes Changelog Overview of 10.4

Release date: 7 Jun 2023

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.30 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Server crashes in st_join_table::choose_best_splitting (MDEV-31403)

Crash with condition pushable into derived and containing outer reference (MDEV-31240)

Revert "MDEV-30473 : Do not allow GET_LOCK() / RELEASE_LOCK() in cluster"

Optimizer

Crash with condition pushable into derived and containing outer reference (MDEV-31403 MDEV-31240)

Crash with EXPLAIN EXTENDED for multi-table update of system table (MDEV-31224)

Changelog
For a complete list of changes made in MariaDB 10.4.30, with links to detailed information on each push, see the changelog

Alternate download from mariadb.org

4044/4161

https://jira.mariadb.org/browse/MDEV-30388
https://jira.mariadb.org/browse/MDEV-28433
https://jira.mariadb.org/browse/MDEV-31335
https://jira.mariadb.org/browse/MDEV-21479
https://mariadb.com/kb/en/mariadb-10-4-31-changelog/
https://mariadb.org/mariadb-11-0-3-10-11-5-10-10-6-10-9-8-10-6-15-10-5-22-10-4-31-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.30/
https://mariadb.com/kb/en/mariadb-10-4-30-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-30473
https://jira.mariadb.org/browse/MDEV-31403
https://jira.mariadb.org/browse/MDEV-31240
https://jira.mariadb.org/browse/MDEV-31224
https://mariadb.com/kb/en/mariadb-10-4-30-changelog/

.

Contributors
For a full list of contributors to MariaDB 10.4.30, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.5 MariaDB 10.4.29 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.29 Release Notes Changelog Overview of 10.4

Release date: 10 May 2023

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.29 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

Crash on ROLLBACK in a ROW_FORMAT=COMPRESSED table (MDEV-30882)

UNIQUE USING HASH accepts duplicate entries for tricky collations (MDEV-30034)

rec_get_offsets() is not optimal (MDEV-30567)

Backup
mariadb-backup doesn't utilise innodb-undo-log-directory (if specified as a relative path) during copy-back operation

(MDEV-28187)

mariabackup issues error messages during InnoDB tablespaces export on partial backup preparing (MDEV-29050)

mariadb-backup does not copy Aria logs if aria_log_dir_path is used (MDEV-30968)

Replication

Fixed a deadlock on parallel slave involving full image Write event on the sequence engine (MDEV-29621)

Fixed an attempted out-of-order binlogging error on slave involving ALTER on the sequence engine (MDEV-31077)

Corrected non-versioned master to versioned slave replication on no-unique attribute table (MDEV-30430)

Mended encrypted binlog master to error out to gtid-mode slave when master could not decrypt a binlog file (MDEV-

28798)

Refined optimistic parallel slave to error-exit without any hang (MDEV-30780)

Alternate download from mariadb.org

4045/4161

https://mariadb.org/mariadb-10-11-4-10-10-5-10-9-7-10-6-14-10-5-21-10-4-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.29/
https://mariadb.com/kb/en/mariadb-10-4-29-changelog/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-30882
https://jira.mariadb.org/browse/MDEV-30034
https://jira.mariadb.org/browse/MDEV-30567
https://jira.mariadb.org/browse/MDEV-28187
https://jira.mariadb.org/browse/MDEV-29050
https://jira.mariadb.org/browse/MDEV-30968
https://jira.mariadb.org/browse/MDEV-29621
https://jira.mariadb.org/browse/MDEV-31077
https://jira.mariadb.org/browse/MDEV-30430
https://jira.mariadb.org/browse/MDEV-28798
https://jira.mariadb.org/browse/MDEV-30780

Optimizer

Split Materialized optimization is improved to re-fill the materialized table only if necessary. The fewer number of table

refills is taken into account when choosing query plan, too (MDEV-26301).

Queries using SELECT DISTINCT some_expression(aggregate_function()) could produce wrong query result.

(MDEV-20057)

EXPLAIN could erroneously report that Rowid Filter optimization is used for partitioned tables. Partitioned tables do

not support it. (MDEV-30596)

A bug in selectivity computations for SINGLE/DOUBLE_PREC_HB histograms could cause wrong estimates to be

produced. This could cause the optimizer to pick sub-optimal query plans (MDEV-31067).

Docker Official Images

Add replication setup to containers contributed by Md Sahil (MDEV-29762)

Security

Fixes for the following security vulnerabilities :

CVE-2022-47015

Changelog
For a complete list of changes made in MariaDB 10.4.29, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.29, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.6 MariaDB 10.4.28 Release Notes
Download Release Notes Changelog Overview of 10.4

Release date: 6 Feb 2023

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.28 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items
As mentioned in the 10.4.27 release notes, our Yum/DNF/Zypper repositories for Red Hat Enterprise Linux, CentOS,

openSUSE, and SUSE are changing with this release to being signed with a new GPG key with SHA2 digest

algorithms instead of SHA1. See this blog post and the GPG page for more details.

InnoDB
4046/4161

https://jira.mariadb.org/browse/MDEV-26301
https://jira.mariadb.org/browse/MDEV-20057
https://jira.mariadb.org/browse/MDEV-30596
https://jira.mariadb.org/browse/MDEV-31067
https://jira.mariadb.org/browse/MDEV-29762
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10-4-29-changelog/
https://mariadb.org/mariadb-10-11-3-10-10-4-10-9-6-10-8-8-10-6-13-10-5-20-10-4-29-and-10-3-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://downloads.mariadb.org/mariadb/10.4.28/
https://mariadb.com/kb/en/mariadb-10-4-28-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.org/new-gpg-release-key-rpms/

Full-text index corruption with system versioning (MDEV-25004)

Galera

Fixes for cluster wide write conflict resolving (MDEV-29684)

Replication

Parallel slave applying in binlog order is corrected for admin class of commands including ANALYZE (MDEV-30323

)

Seconds_Behind_Master is now shown now more precisely at the slave applier start, including in the delayed mode

(MDEV-29639)

mysqlbinlog --verbose is made to show the type of compressed columns (MDEV-25277)

JSON

JSON_PRETTY added as an alias for JSON_DETAILED (MDEV-19160)

General

Infinite sequence of recursive calls when processing embedded CTE (MDEV-30248)

Crash with a query containing nested WINDOW clauses (MDEV-30052)

Major performance regression with 10.6.11 (MDEV-29988)

Changelog
For a complete list of changes made in MariaDB 10.4.28, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.28, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.7 MariaDB 10.4.27 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.27 Release Notes Changelog Overview of 10.4

Release date: 7 Nov 2022

MariaDB 10.4 is a previous stable series of MariaDB, maintained until June 2024. It is an evolution of MariaDB 10.3 with

several entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.27 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Alternate download from mariadb.org

4047/4161

https://jira.mariadb.org/browse/MDEV-25004
https://jira.mariadb.org/browse/MDEV-29684
https://jira.mariadb.org/browse/MDEV-30323
https://jira.mariadb.org/browse/MDEV-29639
https://jira.mariadb.org/browse/MDEV-25277
https://jira.mariadb.org/browse/MDEV-19160
https://jira.mariadb.org/browse/MDEV-30248
https://jira.mariadb.org/browse/MDEV-30052
https://jira.mariadb.org/browse/MDEV-29988
https://mariadb.com/kb/en/mariadb-10-4-28-changelog/
https://mariadb.org/mariadb-10-10-3-10-9-5-10-8-7-10-7-8-10-6-12-10-5-19-10-4-28-and-10-3-38-now-available//
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.27/
https://mariadb.com/kb/en/mariadb-10-4-27-changelog/
https://mariadb.com/kb/en/release-criteria/

Thanks, and enjoy MariaDB!

Notable Items

SSL

The server no longer tolerates incorrectly configured SSL (MDEV-29811). If you have enabled SSL in my.cnf but

have not configured it properly (for example, a certificate file is missing), MariaDB used to silently disable SSL,

leaving you under impression that everything was fine and connections were secure. Since this release, MariaDB will

fail to start if SSL is enabled, but cannot be switched on.

Backup

mariabackup --compress hangs (MDEV-29043)

Assertion on info.page_size failed in xb_delta_open_matching_space (MDEV-18589)

InnoDB

InnoDB unnecessarily extends data files (MDEV-13013)

Adaptive hash index MDEV-27700 , MDEV-29384

MVCC and locking MDEV-29666 , MDEV-27927

Virtual columns MDEV-29299 , MDEV-29753

Galera

Galera updated to 26.4.13

Galera server crashes after 10.3 > 10.4 upgrade (MDEV-29375)

wsrep_incoming_addresses status variable prints 0 as port number if the port is not mentioned in

wsrep_node_incoming_address system variable (MDEV-28868)

JSON

JSON_VALUE() does not parse NULL properties properly (MDEV-27151)

Replication

minor correction in unsafe warning message (MDEV-28827)

False replication error-stop of REVOKE PRIVILEGES from a non-existing user on primary (MDEV-28530) in

combination with a filtering replica is corrected

SET DEFAULT ROLE replication is mended on a replica that filters system tables (MDEV-28294)

Repositories

Beginning with the next release (Q1 2023), our Yum, DNF, and Zypper repositories for Red Hat, Fedora, and SUSE

will be migrated to being signed with a new GPG key. The key we are migrating to is the same one we already use for

our Debian and Ubuntu Repositories.

The short Key ID is: 0xC74CD1D8

The long Key ID is: 0xF1656F24C74CD1D8

The full fingerprint of the key is: 177F 4010 FE56 CA33 3630 0305 F165 6F24 C74C D1D8

The key can be imported now in preparation for this change using the following command:

sudo rpm --import https://supplychain.mariadb.com/MariaDB-Server-GPG-KEY

Docker Official Image

The following changes have been made to the docker.io/library/mariadb container image.

The number of gpg packages packages has been removed, leaving enough to apt-get update , but dirmngr that

would fetch keys has been removed. (inspired by issue #469)

The environment variable LANG=C.UTF-8 has been added for those that exec into containers and copy paste UTF8

characters (fixes issue #468).

Adds OCI labels to image (fixes issue 436 and users need for version)

4048/4161

https://jira.mariadb.org/browse/MDEV-29811
https://jira.mariadb.org/browse/MDEV-29043
https://jira.mariadb.org/browse/MDEV-18589
https://jira.mariadb.org/browse/MDEV-13013
https://jira.mariadb.org/browse/MDEV-27700
https://jira.mariadb.org/browse/MDEV-29384
https://jira.mariadb.org/browse/MDEV-29666
https://jira.mariadb.org/browse/MDEV-27927
https://jira.mariadb.org/browse/MDEV-29299
https://jira.mariadb.org/browse/MDEV-29753
https://jira.mariadb.org/browse/MDEV-29375
https://jira.mariadb.org/browse/MDEV-28868
https://jira.mariadb.org/browse/MDEV-27151
https://jira.mariadb.org/browse/MDEV-28827
https://jira.mariadb.org/browse/MDEV-28530
https://jira.mariadb.org/browse/MDEV-28294
https://github.com/MariaDB/mariadb-docker/issues/469
https://github.com/MariaDB/mariadb-docker/issues/468
https://github.com/MariaDB/mariadb-docker/issues/436
https://github.com/MariaDB/mariadb-docker/commit/942cd5347b86c84cc4d493147b17c3e3b93fbee3

MariaDB config: skip-host-cache and skip-name-resolve moved to /etc/mysql/mariadb.conf.d/05-

skipcache.cnf

Security

Fixes for the following security vulnerabilities : <</style

Changelog
For a complete list of changes made in MariaDB 10.4.27, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.27, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.8 MariaDB 10.4.26 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.26 Release Notes Changelog Overview of 10.4

Release date: 15 Aug 2022

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.26 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB corruption due to lack of file locking (MDEV-28495)

FULLTEXT search with apostrophe, and mandatory words (MDEV-20797)

ALTER TABLE IMPORT TABLESPACE corrupts an encrypted table (MDEV-28779)

ALTER TABLE wrong-result fix (MDEV-26294)

Replication

ER_SLAVE_INCIDENT error is specified now on slave to be seen with SHOW-SLAVE-STATUS (MDEV-21087)

INCIDENT_EVENT is no longer binlogged when a being logged transaction can be safely rolledback (MDEV-21443

)

Alternate download from mariadb.org

4049/4161

https://mariadb.com/kb/en/cve/
https://mariadb.com/kb/en/mariadb-10-4-27-changelog/
https://mariadb.org/mariadb-10-9-4-10-8-6-10-7-7-10-6-11-10-5-18-10-4-27-and-10-3-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.26/
https://mariadb.com/kb/en/mariadb-10426-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-28495
https://jira.mariadb.org/browse/MDEV-20797
https://jira.mariadb.org/browse/MDEV-28779
https://jira.mariadb.org/browse/MDEV-26294
https://jira.mariadb.org/browse/MDEV-21087
https://jira.mariadb.org/browse/MDEV-21443

sequences related row-format events are made to correspond to binlog_row_image (MDEV-28487)

Galera

Possible to write/update with read_only=ON and not a SUPER privilege (MDEV-28546)

Node crashes with Transport endpoint is not connected mysqld got signal 6 (MDEV-25068)

Galera4 not able to report proper wsrep_incoming_addresses (MDEV-20627)

Optimizer

Server crash in JOIN_CACHE::free or in copy_fields (MDEV-23809)

Queries that use DISTINCT and an always-constant function like COLLATION(aggegate_func(...)) could cause

a server crash. Note that COLLATION() is a special function - its value is constant even if its argument is not

costant.

Crash when using ANY predicand with redundant subquery in GROUP BY clause (MDEV-29139)

A query with a subuquery in this form could cause a crash:

... ANY (SELECT ... GROUP BY (SELECT redundant_subselect_here)) ...

MariaDB Server SEGV on INSERT .. SELECT (MDEV-26427)

Certain queries in form "INSERT ... SELECT with_aggregate_or_window_func" could cause a crash.

restore_prev_nj_state() doesn't update cur_sj_inner_tables correctly (MDEV-28749)

Subquery semi-join optimization could miss LooseScan or FirstMatch strategies for certain queries.

Optimizer uses all partitions after upgrade to 10.3 (MDEV-28246)

For multi-table UPDATE or DELETE queries, the optimizer failed to apply Partition Pruning optimization for the

table that is updated or deleted from.

CONNECT

CONNECT Engine now supports INSERT IGNORE with Mysql Table type (MDEV-27766)

mysql Client

New mysql client option, -enable-cleartext-plugin . Option does not do anything, and is for MySQL-

compatibility purposes only.

General

Crash in JSON_EXTRACT (MDEV-29188)

ALTER TABLE ALGORITHM=NOCOPY does not work after upgrade (MDEV-28727)

Server crash upon CREATE VIEW with unknown column in ON condition (MDEV-29088)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Debian 10 "Buster" for

ppc64el

Security

Fixes for the following security vulnerabilities :

CVE-2023-5157

CVE-2022-32089

CVE-2022-32081

CVE-2018-25032

CVE-2022-32091

CVE-2022-32084

CVE-2022-38791

Changelog
For a complete list of changes made in MariaDB 10.4.26, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.26, see the MariaDB Foundation release announcement .

4050/4161

https://jira.mariadb.org/browse/MDEV-28487
https://jira.mariadb.org/browse/MDEV-28546
https://jira.mariadb.org/browse/MDEV-25068
https://jira.mariadb.org/browse/MDEV-20627
https://jira.mariadb.org/browse/MDEV-23809
https://jira.mariadb.org/browse/MDEV-29139
https://jira.mariadb.org/browse/MDEV-26427
https://jira.mariadb.org/browse/MDEV-28749
https://jira.mariadb.org/browse/MDEV-28246
https://jira.mariadb.org/browse/MDEV-27766
https://jira.mariadb.org/browse/MDEV-29188
https://jira.mariadb.org/browse/MDEV-28727
https://jira.mariadb.org/browse/MDEV-29088
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32081
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10426-changelog/
https://mariadb.org/mariadb-10-8-4-10-7-5-10-6-9-10-5-17-10-4-26-and-10-3-36-now-available/

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.9 MariaDB 10.4.25 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.25 Release Notes Changelog Overview of 10.4

Release date: 20 May 2022

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.25 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

innodb_disallow_writes removed (MDEV-25975)

InnoDB gap locking fixes (MDEV-20605 , MDEV-28422)

Replication

Server initialization time gtid_slave_pos purge related reason of crashing in binlog background thread is removed

(MDEV-26473)

Shutdown of the semisync master can't produce inconsistent state anymore (MDEV-11853)

Binlogs disappear after rsync IST (MDEV-28583)

master crash is eliminated in compressed semisync replication protocol with packet counting amendment (MDEV-

25580)

OPTIMIZE on a sequence does not cause counterfactual ER_BINLOG_UNSAFE_STATEMENT anymore (MDEV-

24617)

Automatically generated Gtid_log_list_event is made to recognize within replication event group as a formal member

(MDEV-28550)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE using two or more unique key values at a time with

MIXED format binlogging is corrected (MDEV-28310)

Replication unsafe INSERT .. ON DUPLICATE KEY UPDATE stops issuing unnecessary "Unsafe statement" with

MIXED binlog format (MDEV-21810)

Incomplete replication event groups are detected to error out by the slave IO thread (MDEV-27697)

mysqlbinlog --stop-never --raw now flushes the result file to disk after each processed event so the file can be listed

with the actual bytes (MDEV-14608)

Backup

Incorrect binlogs after Galera SST using rsync and mariabackup (MDEV-27524)

mariabackup does not detect multi-source replication slave (MDEV-21037)

Useless warning "InnoDB: Allocated tablespace ID <id> for <tablename>, old maximum was 0" during backup stage

Alternate download from mariadb.org

4051/4161

https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.25/
https://mariadb.com/kb/en/mariadb-10425-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25975
https://jira.mariadb.org/browse/MDEV-20605
https://jira.mariadb.org/browse/MDEV-28422
https://jira.mariadb.org/browse/MDEV-26473
https://jira.mariadb.org/browse/MDEV-11853
https://jira.mariadb.org/browse/MDEV-28583
https://jira.mariadb.org/browse/MDEV-25580
https://jira.mariadb.org/browse/MDEV-24617
https://jira.mariadb.org/browse/MDEV-28550
https://jira.mariadb.org/browse/MDEV-28310
https://jira.mariadb.org/browse/MDEV-21810
https://jira.mariadb.org/browse/MDEV-27697
https://jira.mariadb.org/browse/MDEV-14608
https://jira.mariadb.org/browse/MDEV-27524
https://jira.mariadb.org/browse/MDEV-21037

(MDEV-27343)

mariabackup prepare fails for incrementals if a new schema is created after full backup is taken (MDEV-28446)

Optimizer

A SEGV in Item_field::used_tables/update_depend_map_for_order... (MDEV-26402)

ANALYZE FORMAT=JSON fields are incorrect for UNION ALL queries (MDEV-27699)

Subquery in an UPDATE query uses full scan instead of range (MDEV-22377)

Assertion `item1->type() == Item::FIELD_ITEM ... (MDEV-19398)

Server crashes in Expression_cache_tracker::fetch_current_stats (MDEV-28268)

MariaDB server crash at Item_subselect::init_expr_cache_tracker (MDEV-26164 , MDEV-26047)

Crash with union of my_decimal type in ORDER BY clause (MDEV-25994)

SIGSEGV in st_join_table::cleanup (MDEV-24560)

Assertion `!eliminated' failed in Item_subselect::exec (MDEV-28437)

General

Server error messages are now available in Chinese (MDEV-28227)

For RHEL/CentOS 7, non x86_64 architectures are no longer supported upstream and so our support will also be

dropped with this release

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Debian 9 "Stretch"

Security

Fixes for the following security vulnerabilities :

CVE-2021-46669

CVE-2022-21427

CVE-2022-27376

CVE-2022-27377

CVE-2022-27378

CVE-2022-27379

CVE-2022-27380

CVE-2022-27381

CVE-2022-27382

CVE-2022-27383

CVE-2022-27384

CVE-2022-27386

CVE-2022-27387

CVE-2022-27444

CVE-2022-27445

CVE-2022-27446

CVE-2022-27447

CVE-2022-27448

CVE-2022-27449

CVE-2022-27451

CVE-2022-27452

CVE-2022-27455

CVE-2022-27456

CVE-2022-27457

CVE-2022-27458

CVE-2022-32087

CVE-2022-32086

CVE-2022-32085

CVE-2022-32083

CVE-2022-32088

Changelog
For a complete list of changes made in MariaDB 10.4.25, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.25, see the MariaDB Foundation release announcement .

4052/4161

https://jira.mariadb.org/browse/MDEV-27343
https://jira.mariadb.org/browse/MDEV-28446
https://jira.mariadb.org/browse/MDEV-26402
https://jira.mariadb.org/browse/MDEV-27699
https://jira.mariadb.org/browse/MDEV-22377
https://jira.mariadb.org/browse/MDEV-19398
https://jira.mariadb.org/browse/MDEV-28268
https://jira.mariadb.org/browse/MDEV-26164
https://jira.mariadb.org/browse/MDEV-26047
https://jira.mariadb.org/browse/MDEV-25994
https://jira.mariadb.org/browse/MDEV-24560
https://jira.mariadb.org/browse/MDEV-28437
https://mariadb.com/kb/en/mariadb-error-codes/
https://jira.mariadb.org/browse/MDEV-28227
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27382
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27446
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27455
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32086
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-10425-changelog/
https://mariadb.org/mariadb-10-9-1-10-8-3-10-7-4-10-6-8-10-5-16-10-4-25-10-3-35-and-10-2-44-now-available/

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.10 MariaDB 10.4.24 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.24 Release Notes Changelog Overview of 10.4

Release date: 12 Feb 2022

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.24 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items
This release fixes a blocking problem with the MariaDB 10.4.23 release when manually running mariadb-upgrade.

(MDEV-27789)

See MariaDB 10.4.23 for other changes since the previous release.

Security

Fixes for the following security vulnerabilities :

CVE-2021-46665

CVE-2021-46664

CVE-2021-46661

CVE-2021-46668

CVE-2021-46663

Changelog
For a complete list of changes made in MariaDB 10.4.24, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.24, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

Alternate download from mariadb.org

4053/4161

https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.24/
https://mariadb.com/kb/en/mariadb-10424-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-27789
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-10424-changelog/
https://mariadb.org/mariadb-10-8-2-rc-and-mariadb-10-7-3-10-6-7-10-5-15-10-4-24-10-3-34-and-10-2-43-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.11 MariaDB 10.4.23 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.23 Release Notes Changelog Overview of 10.4

Release date: 9 Feb 2022

This release is no longer available for download after a problem was noticed when manually running mariadb-upgrade.

See MDEV-27789 for more details.

Please use a later release.

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.23 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

--skip-symbolic-links does not disallow .isl file creation (MDEV-26870)

Indexed CHAR columns are broken with NO_PAD collations (MDEV-25440)

Galera

Galera updated to 26.4.11

Galera SST scripts should use ssl_capath (not ssl_ca) for CA directory (MDEV-27181)

Alter Sequence do not replicate to another nodes with in Galera Cluster (MDEV-19353)

Galera crash - Assertion. Possible parallel writeset problem (MDEV-26803)

CREATE TABLE with FOREIGN KEY constraint fails to apply in parallel (MDEV-27276)

Replication

Seconds behind master corrected from artificial spikes at relay-log rotation (MDEV-16091)

Statement rollback in binlog when transaction creates or drop temporary table is set right (MDEV-26833)

CREATE-or-REPLACE SEQUENCE is made to binlog with the DDL flag to stabilize its parallel execution on slave

(MDEV-27365)

Packaging & Misc

prohibition running two upgrades in parallel (MDEV-27068 , MDEV-27107 , MDEV-27279)

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 21.04 Hirsute,

CentOS 8, and Fedora 33

mariadb_repo_setup script updated to version 2022-02-08, with the following fixes and enhancements:

Default location of the script has been moved to: https://r.mariadb.com/downloads/mariadb_repo_setup (old

location is deprecated, but still works)

The GPG keyring file, used with Debian and Ubuntu repositories, has moved to:

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg and the checksum for the file can be found at:

Alternate download from mariadb.org

4054/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://mariadb.org/download/?tab=mariadb&release=10.4.23&product=mariadb%7C
https://mariadb.com/kb/en/mariadb-10423-changelog/
https://jira.mariadb.org/browse/MDEV-27789
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-26870
https://jira.mariadb.org/browse/MDEV-25440
https://jira.mariadb.org/browse/MDEV-27181
https://jira.mariadb.org/browse/MDEV-19353
https://jira.mariadb.org/browse/MDEV-26803
https://jira.mariadb.org/browse/MDEV-27276
https://jira.mariadb.org/browse/MDEV-16091
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-27365
https://jira.mariadb.org/browse/MDEV-27068
https://jira.mariadb.org/browse/MDEV-27107
https://jira.mariadb.org/browse/MDEV-27279
https://r.mariadb.com/downloads/mariadb_repo_setup
https://supplychain.mariadb.com/mariadb-keyring-2019.gpg

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256

Support for RHEL and SLES aarch64 repositories added

New function added to verify that the MariaDB Server version, if specified on the command line, follows the

correct naming and that a corresponding repository actually exists.

Fixed repository pinning for Ubuntu and Debian repositories

MariaDB Server 10.7 is now the default server version

Docker Library

Faster initialization by disabling binary logging during initialization (MDEV-27074)

mysql_upgrade can be run if needed using the environment variable MARIADB_AUTO_UPGRADE=1 (MDEV-25670

)

A healthcheck script /usr/local/bin/healthcheck.sh is installed in the container with various checking options (MDEV-

25434)

mysql@localhost user is created with the environment variable MARIADB_MYSQL_LOCALHOST_USER=1 and

additional grants (beyond USAGE) with MARIADB_MYSQL_LOCALHOST_GRANTS={global grant list} (MDEV-

27732)

skip innodb buffer pool loads/dumps on temporary startup/shutdown for faster startup/initialization, and accurate

"healthcheck.sh --innodb_buffer_pool_loaded"

change group ownership on datadir/socket dir (issue #401)

log note about note on Securing system users, mysql_secure_installation not required (reddit suggestion)

speed up Docker Library initialization of timezones (MDEV-27608 , MDEV-23326)

Security

Fixes for the following security vulnerabilities :

CVE-2022-24052

CVE-2022-24051

CVE-2022-24050

CVE-2022-24048

CVE-2021-46659

CVE-2022-0778

CVE-2022-21595

Changelog
For a complete list of changes made in MariaDB 10.4.23, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.23, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.12 MariaDB 10.4.22 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.22 Release Notes Changelog Overview of 10.4

Alternate download from mariadb.org

4055/4161

https://supplychain.mariadb.com/mariadb-keyring-2019.gpg.sha256
https://jira.mariadb.org/browse/MDEV-27074
https://jira.mariadb.org/browse/MDEV-25670
https://jira.mariadb.org/browse/MDEV-25434
https://jira.mariadb.org/browse/MDEV-27732
https://github.com/MariaDB/mariadb-docker/issues/401
https://www.reddit.com/r/docker/comments/rhwf28/mysql_secure_installation_on_mariadb_with_docker/
https://jira.mariadb.org/browse/MDEV-27608
https://jira.mariadb.org/browse/MDEV-23326
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-10423-changelog/
https://mariadb.org/mariadb-10-8-1-rc-and-mariadb-10-7-2-10-6-6-10-5-14-10-4-23-10-3-33-and-10-2-42-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.22/
https://mariadb.com/kb/en/mariadb-10422-changelog/

Release date: 8 Nov 2021

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.22 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

Galera

Fix for WSREP: invalid state ROLLED_BACK (FATAL) (MDEV-25114)

InnoDB

ALTER TABLE&IMPORT TABLESPACE fixes (MDEV-18543 , MDEV-20931 , MDEV-26131 , MDEV-26621)

innodb_undo_log_truncate fixes (MDEV-26450 , MDEV-26672 , MDEV-26864)

Replication

Memory hogging on slave by ROW event applier is eliminated (MDEV-26712)

mysql --binary-mode now properly handles \\0 in data (MDEV-25444)

Fixes race condition between SHOW BINARY LOGS and RESET MASTER (MDEV-20215)

Missed statement rollback in case transaction drops or create temporary table is corrected (MDEV-26833)

Audit Plugin

The QUERY_DDL server_audit_events setting now logs CREATE/DROP [PROCEDURE / FUNCTION / USER]

statements. See MariaDB Audit Plugin - Log Settings. (MDEV-23457)

Packaging & Misc

Session tracking flag in OK_PACKET (MDEV-26868)

Some views force server (and mysqldump) to generate invalid SQL for their definitions (MDEV-26299)

Security

Fixes for the following security vulnerabilities :

CVE-2021-35604

CVE-2021-46667

CVE-2021-46662

CVE-2022-27385

CVE-2022-27385

CVE-2022-31624

Changelog
For a complete list of changes made in MariaDB 10.4.22, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.22, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

4056/4161

https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25114
https://jira.mariadb.org/browse/MDEV-18543
https://jira.mariadb.org/browse/MDEV-20931
https://jira.mariadb.org/browse/MDEV-26131
https://jira.mariadb.org/browse/MDEV-26621
https://jira.mariadb.org/browse/MDEV-26450
https://jira.mariadb.org/browse/MDEV-26672
https://jira.mariadb.org/browse/MDEV-26864
https://jira.mariadb.org/browse/MDEV-26712
https://jira.mariadb.org/browse/MDEV-25444
https://jira.mariadb.org/browse/MDEV-20215
https://jira.mariadb.org/browse/MDEV-26833
https://jira.mariadb.org/browse/MDEV-23457
https://jira.mariadb.org/browse/MDEV-26868
https://jira.mariadb.org/browse/MDEV-26299
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
https://mariadb.com/kb/en/mariadb-10422-changelog/
https://mariadb.org/mariadb-10-7-1-rc-and-mariadb-10-6-5-10-5-13-10-4-22-10-3-32-and-10-2-41-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.13 MariaDB 10.4.21 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.21 Release Notes Changelog Overview of 10.4

Release date: 6 Aug 2021

Warning: This version can cause InnoDB file corruption on FreeBSD and on AIX. If you are using AIX, please, stick to

an earlier release, or upgrade to a more recent release. If you are using FreeBSD, upgrade to the bugfix release (the

version ends with _1) of the mariadb-server from the Ports Collection. See MDEV-26537 .

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.21 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items

InnoDB

InnoDB no longer acquires advisory file locks by default (MDEV-24393)

Encryption: Automatically disable key rotation checks for file_key_management plugin (MDEV-14180)

Some fixes from MySQL 5.7.35 (MDEV-26205)

Optimizer

A query that uses ORDER BY .. LIMIT clause and "Range checked for each record optimization" could produce

incorrect results under some circumstances (MDEV-25858)

Queries that have more than 32 equality conditions comparing columns of different tables ("tableX.colX=tableY.colY)

could cause a stack overrun in the query optimizer (MDEV-17783 , MDEV-23937)

"Condition pushdown into derived table" optimization cannot be applied if the expression being pushed refers to a

derived table column which is computed from expression that has a stored function call, @session variable reference,

or other similar construct. The fix for MDEV-25969 makes it so that only the problematic part of the condition is not

pushed. The rest of the condition is now pushed. (MDEV-25969)

A query with window function on the left side of the subquery could cause a crash. (MDEV-25630)

Packaging & Misc

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 20.10 Groovy

Galera updated to 26.4.9

Security

Fixes for the following security vulnerabilities :

CVE-2021-2372

CVE-2021-2389

Alternate download from mariadb.org

4057/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.21/
https://mariadb.com/kb/en/mariadb-10421-changelog/
https://jira.mariadb.org/browse/MDEV-26537
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24393
https://jira.mariadb.org/browse/MDEV-14180
https://jira.mariadb.org/browse/MDEV-26205
https://jira.mariadb.org/browse/MDEV-25858
https://jira.mariadb.org/browse/MDEV-17783
https://jira.mariadb.org/browse/MDEV-23937
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25969
https://jira.mariadb.org/browse/MDEV-25630
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389

CVE-2021-46658

MongoDB protocol support files for the CONNECT engine are missing in this release.

If you want to use CONNECT engine with MongoDB, you need to download

Mongo2.jar or Mongo3.jar and put a path to this file into the connect_class_path in the my.cnf .

Changelog
For a complete list of changes made in MariaDB 10.4.21, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.21, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.14 MariaDB 10.4.20 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.20 Release Notes Changelog Overview of 10.4

Release date: 23 Jun 2021

MariaDB 10.4 is a previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.20 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Items
This version of MariaDB is being released now to fix the following two regressions:

Table alias from previous statement interferes later commands (MDEV-25672)

Join using derived with aggregation returns incorrect results (MDEV-25714)

In addition to the above, this release also contains the following fixes:

InnoDB

InnoDB spatial indexes miss large geometry fields after MDEV-25459 (MDEV-25758)

Double free of transaction during truncate operation (MDEV-25663)

Double free of table when inplace alter FTS add index fails (MDEV-25721)

Potential hang in purge for virtual columns (MDEV-25664)

Change buffer entries for secondary indexes are lost on InnoDB restart (MDEV-25869)

Alternate download from mariadb.org

4058/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo2.jar
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo3.jar
https://mariadb.com/kb/en/mariadb-10421-changelog/
https://mariadb.org/mariadb-10-6-4-10-5-12-10-4-21-10-3-31-and-10-2-40-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.20/
https://mariadb.com/kb/en/mariadb-10420-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-25672
https://jira.mariadb.org/browse/MDEV-25714
https://jira.mariadb.org/browse/MDEV-25459
https://jira.mariadb.org/browse/MDEV-25758
https://jira.mariadb.org/browse/MDEV-25663
https://jira.mariadb.org/browse/MDEV-25721
https://jira.mariadb.org/browse/MDEV-25664
https://jira.mariadb.org/browse/MDEV-25869

Replication

Do not replicate killed multi-table OPTIMIZE TABLE when the signal arrives before any table has been processed

(MDEV-22530)

Fix optistic parallel applier to not deadlock on admin commands OPTIMIZE, REPAIR, and ANALYZE (MDEV-17515

)

Backport MDEV-20821 parallel slave server shutdown hang (MDEV-22370)

Security

Fixes for the following security vulnerabilities :

CVE-2021-46666

CVE-2021-46657

MongoDB protocol support files for the CONNECT engine are missing in this release.

If you want to use CONNECT engine with MongoDB, you need to download

Mongo2.jar or Mongo3.jar and put a path to this file into the connect_class_path in the my.cnf .

Changelog
For a complete list of changes made in MariaDB 10.4.20, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.20, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.15 MariaDB 10.4.19 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.19 Release Notes Changelog Overview of 10.4

Release date: 7 May 2021

MariaDB 10.4 is the previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.19 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
ST_DISTANCE_SPHERE for calculating the spherical distance between two geometries (point or multipoint) on a

Alternate download from mariadb.org

4059/4161

https://jira.mariadb.org/browse/MDEV-22530
https://jira.mariadb.org/browse/MDEV-17515
https://jira.mariadb.org/browse/MDEV-20821
https://jira.mariadb.org/browse/MDEV-22370
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo2.jar
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo3.jar
https://mariadb.com/kb/en/mariadb-10420-changelog/
https://mariadb.org/mariadb-10-5-11-10-4-20-10-3-30-and-10-2-39-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.19/
https://mariadb.com/kb/en/mariadb-10419-changelog/
https://mariadb.com/kb/en/release-criteria/

sphere (MDEV-13467)

Crash with invalid multi-table update of view in 2nd execution of SP (MDEV-24823)

Incorrect name resolution for subqueries in ON expressions (MDEV-25362)

Complex query in Store procedure corrupts results (MDEV-25182)

DELETE HISTORY may delete current data on system-versioned table (MDEV-25468)

Crashes with nested table value constructors (MDEV-22786)

Server crashes in thd_clear_errors() (MDEV-23542)

The statement set password=password('') executed in PS mode fails in case it is run by a user with expired

password (MDEV-25197)

mariabackup

RENAME TABLE causes "Ignoring data file" messages (MDEV-25568)

InnoDB

Deprecated the *innodb and *none options in innodb_checksum_algorithm (MDEV-25106)

MVCC read from index on CHAR or VARCHAR wrongly omits rows (MDEV-25459)

Race conditions in persistent statistics (MDEV-10682 , MDEV-18802 , MDEV-25051)

Sequence created by one connection remains invisible to another (MDEV-24545)

innodb_flush_method=O_DIRECT fails on compressed tables (MDEV-25121)

Replication

Replication Heartbeat event was uncapable to cary 4GB+ offsets (MDEV-16146)

FLUSH LOGS race against Binlog checkpoint event creation (MDEV-24526)+

slave_compressed_protocol did not work correctly with semi-sync (MDEV-24773)

Galera

Galera updated to 26.4.8

SET PASSWORD command fail with wsrep api (MDEV-25258)

Long BF log wait turns on InnoDB Monitor output without telling, never turns it off (MDEV-25319)

Assertion `state_ == s_exec' failed in wsrep::client_state::start_transaction (MDEV-22227)

Frequently Crashing Mariadb Cluster 10.4.18 (MDEV-24980)

Signal 11 on TABLE_LIST::placeholder() (MDEV-24878)

ALTER TABLE not replicated with Galera in MariaDB 10.5.9 (MDEV-24956)

"Flush SSL" command doesn't reload wsrep cert (MDEV-22668)

Avoid unnecessary rollbacks with SR (MDEV-25553)

Packaging & Misc

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 16.04 Xenial

Security

Fixes for the following security vulnerabilities :

CVE-2021-2166

CVE-2021-2154

CVE-2022-21451

MongoDB protocol support files for the CONNECT engine are missing in this release.

If you want to use CONNECT engine with MongoDB, you need to download

Mongo2.jar or Mongo3.jar and put a path to this file into the connect_class_path in the my.cnf .

Changelog
For a complete list of changes made in MariaDB 10.4.19, with links to detailed information on each push, see the changelog

.

Contributors
4060/4161

https://jira.mariadb.org/browse/MDEV-13467
https://jira.mariadb.org/browse/MDEV-24823
https://jira.mariadb.org/browse/MDEV-25362
https://jira.mariadb.org/browse/MDEV-25182
https://jira.mariadb.org/browse/MDEV-25468
https://jira.mariadb.org/browse/MDEV-22786
https://jira.mariadb.org/browse/MDEV-23542
https://jira.mariadb.org/browse/MDEV-25197
https://jira.mariadb.org/browse/MDEV-25568
https://jira.mariadb.org/browse/MDEV-25106
https://jira.mariadb.org/browse/MDEV-25459
https://jira.mariadb.org/browse/MDEV-10682
https://jira.mariadb.org/browse/MDEV-18802
https://jira.mariadb.org/browse/MDEV-25051
https://jira.mariadb.org/browse/MDEV-24545
https://jira.mariadb.org/browse/MDEV-25121
https://jira.mariadb.org/browse/MDEV-16146
https://jira.mariadb.org/browse/MDEV-24526
https://jira.mariadb.org/browse/MDEV-24773
https://jira.mariadb.org/browse/MDEV-25258
https://jira.mariadb.org/browse/MDEV-25319
https://jira.mariadb.org/browse/MDEV-22227
https://jira.mariadb.org/browse/MDEV-24980
https://jira.mariadb.org/browse/MDEV-24878
https://jira.mariadb.org/browse/MDEV-24956
https://jira.mariadb.org/browse/MDEV-22668
https://jira.mariadb.org/browse/MDEV-25553
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo2.jar
https://github.com/MariaDB/server/raw/mariadb-10.2.38/storage/connect/mysql-test/connect/std_data/Mongo3.jar
https://mariadb.com/kb/en/mariadb-10419-changelog/

For a full list of contributors to MariaDB 10.4.19, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.16 MariaDB 10.4.18 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.18 Release Notes Changelog Overview of 10.4

Release date: 22 Feb 2021

Last month long-time MariaDB VP of Engineering, Rasmus Johansson, passed due to

complications from cancer. His loss has been felt keenly by the whole MariaDB team. Our

thoughts are with his family during this difficult time and this release is dedicated to his

memory.

MariaDB 10.4 is the previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.18 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes

InnoDB

MDEV-24188 - Hang in buf_page_create() after reusing a previously freed page

MDEV-24275 - InnoDB persistent stats analyze forces full scan forcing lock crash

MDEV-24449 - Corruption of system tablespace or last recovered page

Galera

Galera updated to 26.4.7

MDEV-23328 - Server hang due to Galera lock conflict resolution

MDEV-23851 - BF-BF Conflict issue because of UK GAP locks

MDEV-20717 - Plugin system variables and activation options can break mysqld --wsrep_recover

MDEV-24469 - Assertion active() == false failed with "XA START.."

MDEV-23647 - Garbd can't initiate SST anymore in 10.5

MDEV-25179 - wsrep_provider and wsrep_notify_cmd system variables are now read-only

Replication

MDEV-8134 - relay-log is corrected to rotate past 999999

MDEV-23033 - fixed slave applier for row-based events with FK constraints on virtual columns

MDEV-4633 - Relay_Log_Space of Show-Slave-Status is made thread-safe

Alternate download from mariadb.org

4061/4161

https://mariadb.org/mariadb-10-5-10-10-4-19-10-3-29-and-10-2-38-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.18/
https://mariadb.com/kb/en/mariadb-10418-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24188
https://jira.mariadb.org/browse/MDEV-24275
https://jira.mariadb.org/browse/MDEV-24449
https://jira.mariadb.org/browse/MDEV-23328
https://jira.mariadb.org/browse/MDEV-23851
https://jira.mariadb.org/browse/MDEV-20717
https://jira.mariadb.org/browse/MDEV-24469
https://jira.mariadb.org/browse/MDEV-23647
https://jira.mariadb.org/browse/MDEV-25179
https://jira.mariadb.org/browse/MDEV-8134
https://jira.mariadb.org/browse/MDEV-23033
https://jira.mariadb.org/browse/MDEV-4633

MDEV-10272 - add master host/port info to slave thread exit messages

MDEV-23846 - improves mysqlbinlog error message issuing

Misc

MDEV-24122 - anomalies in mysql.user tables on previously 5.7 MySQL versions corrected

Binary tarballs now use WolfSSL v4.6.0

MDEV-23630 - mysqldump --system option

Fixes for the following security vulnerabilities :

CVE-2021-27928

Changelog
For a complete list of changes made in MariaDB 10.4.18, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.18, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.17 MariaDB 10.4.17 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.17 Release Notes Changelog Overview of 10.4

Release date: 11 Nov 2020

MariaDB 10.4 is the previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.17 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Out-of-cycle release to fix regressions in MariaDB 10.4.16

Follow up to MDEV-19838 to alter protocol checks to support the following implementations (which add garbage to

the end of some packets):

PHP PDO (all versions) (MDEV-24121)

mysqlnd (from PHP < 7.3) (MDEV-24121)

mysql-connector-python (all versions) (MDEV-24134)

and mysql-connector-java (all versions)

Arbitrary InnoDB buffer pool and data file corruption (MDEV-24096)

Alternate download from mariadb.org

4062/4161

https://jira.mariadb.org/browse/MDEV-10272
https://jira.mariadb.org/browse/MDEV-23846
https://jira.mariadb.org/browse/MDEV-24122
https://jira.mariadb.org/browse/MDEV-23630
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
https://mariadb.com/kb/en/mariadb-10418-changelog/
https://mariadb.org/mariadb-10-5-9-10-4-18-10-3-28-and-10-2-37-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.17/
https://mariadb.com/kb/en/mariadb-10417-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-19838
https://jira.mariadb.org/browse/MDEV-24121
https://jira.mariadb.org/browse/MDEV-24121
https://jira.mariadb.org/browse/MDEV-24134
https://jira.mariadb.org/browse/MDEV-24096

The query optimizer consumed a lot of memory when handling construct in form of key_column [NOT] IN

(large-list-of constants) (MDEV-24117)

Changelog
For a complete list of changes made in MariaDB 10.4.17, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.17, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.18 MariaDB 10.4.16 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.16 Release Notes Changelog Overview of 10.4

Release date: 3 Nov 2020

MariaDB 10.4 is the previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.16 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes

This release introduced an InnoDB data corruption bug (MDEV-24096). If any InnoDB tables contain indexed virtual

columns or unique indexes on BLOB or TEXT columns, any InnoDB tables or tablespaces may become irrepairably

corrupted.

Set the default value of innodb_log_optimize_ddl to OFF by default (MDEV-23720)

BLACKHOLE Storage Engine maximum index size increased from 1000 to 3500 bytes (MDEV-24017)

Calculating (auto rounding) issue (MDEV-23702)

Temporary tables can no longer overwrite existing files. Instead an error is returned should a conflict occur (MDEV-

23569)

Binlog checksum verification at recovery time (MDEV-23832)

Verbose print-out of Geometry types by mysqlbinlog (MDEV-22330)

SHOW BINLOG EVENTS from <pos> validates <pos> when binlog checksummed (MDEV-21839)

Freeing memory of replicate_do_table (MDEV-23534)

Corrected verbose mysqlbinlog output for multi-record Rows-log-event (MDEV-16372)

SET GLOBAL replicate_do_db = DEFAULT no longer causes crash (MDEV-20744)

User killed queries that were running an index condition pushdown in InnoDB will now return an error (MDEV-23938

Alternate download from mariadb.org

4063/4161

https://jira.mariadb.org/browse/MDEV-24117
https://mariadb.com/kb/en/mariadb-10417-changelog/
https://mariadb.org/mariadb-10-5-8-10-4-17-10-3-27-and-10-2-36-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.16/
https://mariadb.com/kb/en/mariadb-10416-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-24096
https://jira.mariadb.org/browse/MDEV-23720
https://jira.mariadb.org/browse/MDEV-24017
https://jira.mariadb.org/browse/MDEV-23702
https://jira.mariadb.org/browse/MDEV-23569
https://jira.mariadb.org/browse/MDEV-23832
https://jira.mariadb.org/browse/MDEV-22330
https://jira.mariadb.org/browse/MDEV-21839
https://jira.mariadb.org/browse/MDEV-23534
https://jira.mariadb.org/browse/MDEV-16372
https://jira.mariadb.org/browse/MDEV-20744
https://jira.mariadb.org/browse/MDEV-23938

)

Wrong direxec param data caused crash; Numerous fixes about Mac builds (by Dmitri Shulga) (MDEV-19838)

server_audit plugin now logs proxy users (MDEV-19443)

Crash on SELECT on a table with indexed virtual columns (MDEV-18366)

InnoDB updated to 5.7.32 (MDEV-23989)

Bug fixes related to adaptive hash index (MDEV-23452 , MDEV-23370)

Fixed a bug in the recovery of encrypted tables (MDEV-23456)

Fixed a race condition in MVCC reads (MDEV-22924)

ALTER TABLE fixes (MDEV-22277 , MDEV-22939 , MDEV-23199 , MDEV-23356 , MDEV-23499 , MDEV-

23672 , MDEV-23685 , MDEV-23722)

Diskspace not reused for BLOB in data file (MDEV-23072)

InnoDB: Failing assertion: !space->referenced() (MDEV-23651)

SIGSEGV in maria_create() because of double free (MDEV-23222)

CREATE TEMPORARY TABLE .. LIKE (system versioned table) returns error if unique index is defined in the table

(MDEV-23968)

Error upon querying the view, that selecting from versioned table with partitions (MDEV-23779)

CREATE .. SELECT wrong result on join versioned table (MDEV-23799)

SIGSEGV in check_fields on UPDATE (MDEV-22805)

Parser fix (MDEV-23094)

Fixed crash in Innodb when rowid_filter query is killed (MDEV-22761)

Fixed a crash with the NTH_VALUE function (MDEV-15180)

Computing certain window functions on a server started with --encrypt-tmp_files=ON could cause a wrong query

result or crash (MDEV-23867)

A query with a certain form of WHERE clause over a table with multiple indexes could pick a less efficient range plan

(MDEV-23811)

Fixed a memory leak for correlated subqueries with ROLLUP (MDEV-17066)

Galera

Galera wsrep library updated to 26.4.6

Fixed assertion failure on before_commit (MDEV-22681)

Fixed assertion after ROLLBACK AND CHAIN (MDEV-22055)

IPv6 SST handling improved (MDEV-21770 , MDEV-23576 , MDEV-23580 , MDEV-23581 , MDEV-23574)

Fixed SIGSEGV in lock_rec_unlock (MDEV-23101)

Fixed replication of timezone if only 1 timezone is loaded (MDEV-22626)

Fixed replication of CREATE OR REPLACE TRIGGER (MDEV-21578)

Fixed SST FLUSH TABLES WITH READ LOCK timeout (MDEV-22543)

Notes

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for CentOS/RHEL 6 and Fedora

31

Packages for Ubuntu 20.10 "Groovy Gorilla" added

Packages for Debian 10 "buster" arm64 and ppc64el added

Packages for Debian 9 "stretch" arm64 added

Fixes for the following security vulnerabilities :

CVE-2020-14812

CVE-2020-14765

CVE-2020-14776

CVE-2020-14789

CVE-2020-28912 (MDEV-24040)

CVE-2021-2194 (MDEV-18366)

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

4064/4161

https://jira.mariadb.org/browse/MDEV-19838
https://jira.mariadb.org/browse/MDEV-19443
https://jira.mariadb.org/browse/MDEV-18366
https://jira.mariadb.org/browse/MDEV-23989
https://jira.mariadb.org/browse/MDEV-23452
https://jira.mariadb.org/browse/MDEV-23370
https://jira.mariadb.org/browse/MDEV-23456
https://jira.mariadb.org/browse/MDEV-22924
https://jira.mariadb.org/browse/MDEV-22277
https://jira.mariadb.org/browse/MDEV-22939
https://jira.mariadb.org/browse/MDEV-23199
https://jira.mariadb.org/browse/MDEV-23356
https://jira.mariadb.org/browse/MDEV-23499
https://jira.mariadb.org/browse/MDEV-23672
https://jira.mariadb.org/browse/MDEV-23685
https://jira.mariadb.org/browse/MDEV-23722
https://jira.mariadb.org/browse/MDEV-23072
https://jira.mariadb.org/browse/MDEV-23651
https://jira.mariadb.org/browse/MDEV-23222
https://jira.mariadb.org/browse/MDEV-23968
https://jira.mariadb.org/browse/MDEV-23779
https://jira.mariadb.org/browse/MDEV-23799
https://jira.mariadb.org/browse/MDEV-22805
https://jira.mariadb.org/browse/MDEV-23094
https://jira.mariadb.org/browse/MDEV-22761
https://jira.mariadb.org/browse/MDEV-15180
https://jira.mariadb.org/browse/MDEV-23867
https://jira.mariadb.org/browse/MDEV-23811
https://jira.mariadb.org/browse/MDEV-17066
https://jira.mariadb.org/browse/MDEV-22681
https://jira.mariadb.org/browse/MDEV-22055
https://jira.mariadb.org/browse/MDEV-21770
https://jira.mariadb.org/browse/MDEV-23576
https://jira.mariadb.org/browse/MDEV-23580
https://jira.mariadb.org/browse/MDEV-23581
https://jira.mariadb.org/browse/MDEV-23574
https://jira.mariadb.org/browse/MDEV-23101
https://jira.mariadb.org/browse/MDEV-22626
https://jira.mariadb.org/browse/MDEV-21578
https://jira.mariadb.org/browse/MDEV-22543
https://downloads.mariadb.org/mariadb/repositories/#distro=Ubuntu&distro_release=groovy--ubuntu_groovy
https://downloads.mariadb.org/mariadb/repositories/#distro=Debian&distro_release=buster--buster
https://downloads.mariadb.org/mariadb/repositories/#distro=Debian&distro_release=stretch--stretch
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
https://jira.mariadb.org/browse/MDEV-24040
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://jira.mariadb.org/browse/MDEV-18366
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

7.0.8.2.19 MariaDB 10.4.15 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download 10.4.15 Release Notes Changelog Overview of 10.4

Release date: 7 Oct 2020

MariaDB 10.4 is the previous stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.15 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Fixes for the following security vulnerabilities :

CVE-2020-15180

Changelog
For a complete list of changes made in MariaDB 10.4.15, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.15, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

Alternate download from mariadb.org

7.0.8.2.20 MariaDB 10.4.14 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 10 Aug 2020

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.14 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Alternate download from mariadb.org

4065/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.15/
https://mariadb.com/kb/en/mariadb-10415-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
https://mariadb.com/kb/en/mariadb-10415-changelog/
https://mariadb.org/mariadb-10-5-6-10-4-15-10-3-25-10-2-34-and-10-1-47-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.14/
https://mariadb.com/kb/en/mariadb-10414-changelog/
https://mariadb.com/kb/en/release-criteria/

Thanks, and enjoy MariaDB!

Notable Changes

Variables

Limit innodb_encryption_threads to 255 (MDEV-22258).

Minimum value of max_sort_length raised to 8 (previously 4) so fixed size data types like DOUBLE and BIGINT are

not truncated for lower values of max_sort_length (MDEV-22715).

InnoDB

Fixed corruption in delete buffering (MDEV-22497)

Fixed a deadlock in FLUSH TABLES&FOR EXPORT (MDEV-22890)

InnoDB data file extension is not crash-safe (MDEV-23190)

Minor fixes related to encryption and FULLTEXT INDEX

Dropping the adaptive hash index may cause DDL to lock up InnoDB (MDEV-22456)

innodb_log_optimize_ddl=OFF is not crash safe (MDEV-21347)

Mariadb service won't shutdown when it's running and the OS datetime updated backwards (MDEV-17481)

Doublewrite recovery can corrupt data pages (MDEV-11799)

Fixed race conditions related to buffer pool resizing

ALTER TABLE fixes (MDEV-22637 , MDEV-23244 , MDEV-22988 , MDEV-23295 , MDEV-22771)

Slow InnoDB shutdown on large instance (MDEV-22778)

Performance improvements (MDEV-22778)

Crash recovery fixes (MDEV-21347 , MDEV-23190 , MDEV-11799)

Replication

Make the binlog dump thread to log into errorlog a requested GTID position (MDEV-20428)

Fix stop of the optimistic parallel slave at requested START-SLAVE-UNTIL position (MDEV-15152)

Properly handle RESET MASTER TO value, when the value exceeds the max allowed 2147483647 (MDEV-22451)

Correct 'relay-log.info' updating by concurrent parallel workers (MDEV-22806)

Eliminate deadlock involving parallel workers, STOP SLAVE and FLUSH TABLES WITH READ LOCK (MDEV-23089

)

Correct master-slave automatic reconnection by slave to always pass through all steps of the initial connect.

Specifically, do not skip master notification about slave binlog checksum awareness (MDEV-14203)

Refine mysqlbinlog output to print out START TRANSACTION at Gtid_log_event processing which satisfies clients

that submit the output with sql_mode=oracle (MDEV-23108)

Replication aborts with ER_SLAVE_CONVERSION_FAILED upon CREATE ... SELECT in ORACLE mode (MDEV-

19632)

Optimizer

ALTER TABLE ... ANALYZE PARTITION ... with EITS reads and locks all rows ... (MDEV-21472)

Print ranges in the optimizer trace created for non-indexed columns when

optimizer_use_condition_selectivity >2 Now the optimizer trace shows the ranges constructed while getting

estimates from EITS (MDEV-22665)

LATERAL DERIVED is not clearly visible in EXPLAIN FORMAT=JSON , make LATERAL DERIVED tables visible in

EXPLAIN FORMAT=JSON output (MDEV-17568)

Crash on WITH RECURSIVE large query (MDEV-22748)

Crash with Prepared Statement with a '?' parameter inside a re-used CTE (MDEV-22779)

Other

div_precision_increment is now taken into account for all intermediate calculations. Previously results could be

unpredictable. Note that this means results will have a lower precision in some cases - see div_precision_increment

(MDEV-19232)

mariadb_schema data type qualifier allowing MariaDB native date types in an SQL_MODE that has conflicting data

type translations.

MariaDB could crash after changing the query_cache size (MDEV-5924)

Errors and SIGSEGV on CREATE TABLE w/ various charsets (MDEV-22111)

Crash in CREATE TABLE AS SELECT when the precision of returning type = 0 (MDEV-22502)

4066/4161

https://jira.mariadb.org/browse/MDEV-22258
https://jira.mariadb.org/browse/MDEV-22715
https://jira.mariadb.org/browse/MDEV-22497
https://jira.mariadb.org/browse/MDEV-22890
https://jira.mariadb.org/browse/MDEV-23190
https://jira.mariadb.org/browse/MDEV-22456
https://jira.mariadb.org/browse/MDEV-21347
https://jira.mariadb.org/browse/MDEV-17481
https://jira.mariadb.org/browse/MDEV-11799
https://jira.mariadb.org/browse/MDEV-22637
https://jira.mariadb.org/browse/MDEV-23244
https://jira.mariadb.org/browse/MDEV-22988
https://jira.mariadb.org/browse/MDEV-23295
https://jira.mariadb.org/browse/MDEV-22771
https://jira.mariadb.org/browse/MDEV-22778
https://jira.mariadb.org/browse/MDEV-22778
https://jira.mariadb.org/browse/MDEV-21347
https://jira.mariadb.org/browse/MDEV-23190
https://jira.mariadb.org/browse/MDEV-11799
https://jira.mariadb.org/browse/MDEV-20428
https://jira.mariadb.org/browse/MDEV-15152
https://jira.mariadb.org/browse/MDEV-22451
https://jira.mariadb.org/browse/MDEV-22806
https://jira.mariadb.org/browse/MDEV-23089
https://jira.mariadb.org/browse/MDEV-14203
https://jira.mariadb.org/browse/MDEV-23108
https://jira.mariadb.org/browse/MDEV-19632
https://jira.mariadb.org/browse/MDEV-21472
https://jira.mariadb.org/browse/MDEV-22665
https://jira.mariadb.org/browse/MDEV-17568
https://jira.mariadb.org/browse/MDEV-22748
https://jira.mariadb.org/browse/MDEV-22779
https://jira.mariadb.org/browse/MDEV-19232
https://jira.mariadb.org/browse/MDEV-5924
https://jira.mariadb.org/browse/MDEV-22111
https://jira.mariadb.org/browse/MDEV-22502

XA: Reject DDL operations between PREPARE and COMMIT (MDEV-22420)

Stop mariabackup --prepare on errors during innodb redo log applying (MDEV-22354)

Server crashes in mysql_alter_table upon adding a non-null date column under NO_ZERO_DATE with

ALGORITHM=INPLACE (MDEV-18042)

Can't uninstall plugin if the library file doesn't exist (MDEV-21258)

Mariabackup parameter cleanup (MDEV-18215 , MDEV-21298 , MDEV-21301 , MDEV-22894)

Rounding functions return wrong datatype (MDEV-23366 , MDEV-23367 , MDEV-23368 , MDEV-23350 ,

MDEV-23351 , MDEV-23337 , MDEV-23323)

Create mariadb.sys user on each update even is the user is not needed (MDEV-23102)

Galera wsrep library updated to 26.4.5

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 19.10 Eoan and

Fedora 30

Fixes for the following security vulnerabilities :

CVE-2021-2022

Changelog
For a complete list of changes made in MariaDB 10.4.14, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.5.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.21 MariaDB 10.4.13 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 12 May 2020

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.13 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes

Events

Fixed issue that, from MariaDB 10.3.19 , disabled all events created by a server with a different server_id . Note

that the fix does not re-enable affected events. (MDEV-21758)

Alternate download from mariadb.org

4067/4161

https://jira.mariadb.org/browse/MDEV-22420
https://jira.mariadb.org/browse/MDEV-22354
https://jira.mariadb.org/browse/MDEV-18042
https://jira.mariadb.org/browse/MDEV-21258
https://jira.mariadb.org/browse/MDEV-18215
https://jira.mariadb.org/browse/MDEV-21298
https://jira.mariadb.org/browse/MDEV-21301
https://jira.mariadb.org/browse/MDEV-22894
https://jira.mariadb.org/browse/MDEV-23366
https://jira.mariadb.org/browse/MDEV-23367
https://jira.mariadb.org/browse/MDEV-23368
https://jira.mariadb.org/browse/MDEV-23350
https://jira.mariadb.org/browse/MDEV-23351
https://jira.mariadb.org/browse/MDEV-23337
https://jira.mariadb.org/browse/MDEV-23323
https://jira.mariadb.org/browse/MDEV-23102
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
https://mariadb.com/kb/en/mariadb-10414-changelog/
https://mariadb.org/mariadb-10-5-5-10-4-14-10-3-24-10-2-33-and-10-1-46-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.13/
https://mariadb.com/kb/en/mariadb-10413-changelog/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://jira.mariadb.org/browse/MDEV-21758

Privileges

SHOW PRIVILEGES now correctly lists the Delete history privilege, rather than displaying it as Delete

versioning rows . (MDEV-20382)

Performance

Optimizer flag rowid_filter leads to long query (MDEV-21794)

WSREP_ON is unnecessarily expensive to evaluate (MDEV-22203

Misc wsrep performance optimization (MDEV-7962)

Security

Added system user for user view which allows to remove root (MDEV-19650)

WolfSSL updated

ALTER USER doesn't remove excess authentication plugins from mysql.global_priv (MDEV-21928)

mysql_upgrade creating empty global_priv table (MDEV-21244)

Aria

Updated aria_pack to support transactional tables and added options: --datadir , --ignore-control-file ,

--require-control-file , more details here

ALTER TABLE

Error on online ADD PRIMARY KEY after instant DROP/reorder (MDEV-21658)

Assertion failure in file data0type.cc (MDEV-20726)

Server aborts upon attempt to create foreign key on spatial field (MDEV-21792)

DROP COLUMN, DROP INDEX is wrongly claimed to be ALGORITHM=INSTANT (MDEV-22465)

Introduce a file format constraint to ALTER TABLE. See innodb_instant_alter_column_allowed (MDEV-20590)

FORCE all partition to rebuild if any one of the partition does rebuild (MDEV-21832)

InnoDB aborts while adding instant column for discarded tablespace (MDEV-22446)

FULLTEXT INDEX

Assertion ` !table->fts->in_queue ' failed in fts_optimize_remove_table (MDEV-21550)

FTS thread aborts during shutdown (MDEV-21563)

Optimizer

Optimizer, Wrong query results with optimizer_switch="split_materialized=on" (MDEV-21614)

SHOW GRANTS does not quote role names properly (MDEV-20076)

Paritioning INSERT chooses wrong partition for RANGE partitioning by DECIMAL column (MDEV-21195)

Mariabackup

Mariabackup does not honor ignore_db_dirs from server config (MDEV-19347)

Mariabackup --ftwrl-wait-timeout never times out on explicit lock (MDEV-20230)

Crash Recovery

Running out of file descriptors and eventual crash (MDEV-18027)

Galera

Galera wsrep library updated to 26.4.4

Galera Cluster Node During IST gets stuck going from "Synced" to "Joining:..." (MDEV-21002)

Other

HeidiSQL updated to 11.0 (MDEV-22032)

Wrong estimate of affected BLOB columns in update of PRIMARY KEY (MDEV-22384)

4068/4161

https://jira.mariadb.org/browse/MDEV-20382
https://jira.mariadb.org/browse/MDEV-21794
https://jira.mariadb.org/browse/MDEV-22203
https://jira.mariadb.org/browse/MDEV-7962
https://jira.mariadb.org/browse/MDEV-19650
https://jira.mariadb.org/browse/MDEV-21928
https://jira.mariadb.org/browse/MDEV-21244
https://github.com/mariadb/server/commit/dbde95d91259a0658715dfb5f8c7e50716fc001b
https://jira.mariadb.org/browse/MDEV-21658
https://jira.mariadb.org/browse/MDEV-20726
https://jira.mariadb.org/browse/MDEV-21792
https://jira.mariadb.org/browse/MDEV-22465
https://jira.mariadb.org/browse/MDEV-20590
https://jira.mariadb.org/browse/MDEV-21832
https://jira.mariadb.org/browse/MDEV-22446
https://jira.mariadb.org/browse/MDEV-21550
https://jira.mariadb.org/browse/MDEV-21563
https://jira.mariadb.org/browse/MDEV-21614
https://jira.mariadb.org/browse/MDEV-20076
https://jira.mariadb.org/browse/MDEV-21195
https://jira.mariadb.org/browse/MDEV-19347
https://jira.mariadb.org/browse/MDEV-20230
https://jira.mariadb.org/browse/MDEV-18027
https://jira.mariadb.org/browse/MDEV-21002
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-22032
https://jira.mariadb.org/browse/MDEV-22384

Duplicate key value is silently truncated to 64 characters in print_keydup_error (MDEV-20604)

Session tracking returns incorrectly long tracking data (MDEV-22504)

Add pam_user_map.so file to binary tarball package (MDEV-21913)

mysql_upgrade is made aware of the upstream slave tables to issue warnings when that takes place (MDEV-10047

)

Corruption for SET GLOBAL innodb_ string variables (MDEV-22393)

mysqldump parameter, --ignore-table-data , added (MDEV-22037)

Server can fail while replicating conditional comments (Bug#28388217)

Added the xml-report option to mysql-test-run (MDEV-22176)

Packages and repositories for Ubuntu 20.04 "focal" added

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Debian 8 "Jessie"

Fixes for the following security vulnerabilities :

CVE-2020-2752

CVE-2020-2812

CVE-2020-2814

CVE-2020-2760

CVE-2020-13249

Changelog
For a complete list of changes made in MariaDB 10.4.13, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.13, see the MariaDB Foundation release announcement . Thanks, and enjoy

MariaDB!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.22 MariaDB 10.4.12 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Note that this version contains an issue that disabled all events created by a server with a different server_id. See

MDEV-21758 for details.

Download Release Notes Changelog Overview of 10.4

Release date: 28 Jan 2020

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.12 will be a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Alternate download from mariadb.org

4069/4161

https://jira.mariadb.org/browse/MDEV-20604
https://jira.mariadb.org/browse/MDEV-22504
https://jira.mariadb.org/browse/MDEV-21913
https://jira.mariadb.org/browse/MDEV-10047
https://jira.mariadb.org/browse/MDEV-22393
https://jira.mariadb.org/browse/MDEV-22037
https://jira.mariadb.org/browse/MDEV-22176
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2814
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13249
https://mariadb.com/kb/en/mariadb-10413-changelog/
https://mariadb.org/mariadb-10-4-13-10-3-23-10-2-32-10-1-45-and-5-5-68-now-available
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://jira.mariadb.org/browse/MDEV-21758
https://downloads.mariadb.org/mariadb/10.4.12/
https://mariadb.com/kb/en/mariadb-10412-changelog/
https://mariadb.com/kb/en/release-criteria/

Notable Changes

General

MDEV-21337 : fix aligned_malloc()

MDEV-21343 : Threadpool/Unix- wait_begin() function does not wake/create threa ds, when it should

wolfssl updated to v4.3.0-stable

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Ubuntu 19.04 Disco

Mariabackup

MDEV-21255 : Deadlock of parallel slave and mariabackup (with failed log copy thread)

InnoDB

MDEV-20950 : Reduce size of record offsets

MDEV-19176 : Reduce the memory usage during recovery

MDEV-21429 : TRUNCATE and OPTIMIZE are being refused due to "row size too large"

MDEV-21500 : Server hang when using simulated AIO

MDEV-21509 : Possible hang during purge of history, or rollback

MDEV-21511 : Wrong estimate of affected BLOB columns in update

MDEV-21512 : InnoDB may hang due to SPATIAL INDEX

MDEV-21513 : Avoid some crashes in ALTER TABLE...IMPORT TABLESPACE

MDEV-18865 : Assertion `t->first->versioned_by_id()' failed in innodb_prepare_commit_versioned

MDEV-21260 : InnoDB does not report error when trying open volumes on UNC paths on Windows

Aria

MDEV-14183 : aria_pack segfaults in compress_maria_file

Optimizer

MDEV-21318 : Wrong results with window functions and implicit grouping

MDEV-16579 : Wrong result of query using DISTINCT COUNT(*) OVER (*)

MDEV-21383 : Possible range plan is not used under certain conditions

Replication

MDEV-18046 : Crashes caused by random values to the offset option of SHOW BINLOG EVENT offset command

MDEV-19376 : Semisync Master could crash when it executed RESET MASTER and a replica reconnects using

GTID protocol

MDEV-20821 : parallel slave server shutdown may hang when slave workers were online

Security

Fixes for the following security vulnerabilities :

CVE-2020-2574

CVE-2020-7221

Changelog
For a complete list of changes made in MariaDB 10.4.12, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.12, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

4070/4161

https://jira.mariadb.org/browse/MDEV-21337
https://jira.mariadb.org/browse/MDEV-21343
https://jira.mariadb.org/browse/MDEV-21255
https://jira.mariadb.org/browse/MDEV-20950
https://jira.mariadb.org/browse/MDEV-19176
https://jira.mariadb.org/browse/MDEV-21429
https://jira.mariadb.org/browse/MDEV-21500
https://jira.mariadb.org/browse/MDEV-21509
https://jira.mariadb.org/browse/MDEV-21511
https://jira.mariadb.org/browse/MDEV-21512
https://jira.mariadb.org/browse/MDEV-21513
https://jira.mariadb.org/browse/MDEV-18865
https://jira.mariadb.org/browse/MDEV-21260
https://jira.mariadb.org/browse/MDEV-14183
https://jira.mariadb.org/browse/MDEV-21318
https://jira.mariadb.org/browse/MDEV-16579
https://jira.mariadb.org/browse/MDEV-21383
https://jira.mariadb.org/browse/MDEV-18046
https://jira.mariadb.org/browse/MDEV-19376
https://jira.mariadb.org/browse/MDEV-20821
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7221
https://mariadb.com/kb/en/mariadb-10412-changelog/
https://mariadb.org/mariadb-10-4-12-10-3-22-and-10-2-31-10-1-44-and-5-5-67-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.23 MariaDB 10.4.11 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Note that this version contains an issue that disabled all events created by a server with a different server_id. See

MDEV-21758 for details.

Download Release Notes Changelog Overview of 10.4

Release date: 11 Dec 2019

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.11 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes

General

MDEV-13492 : SEC_E_INVALID_TOKEN when server sends large message during SSL handshake

Mariabackup

MDEV-18310 : Aria engine: Undo phase failed from incremental backup

InnoDB

MDEV-20949 : Stop issuing ' row size ' error on DML

MDEV-20832 : Don't print " row size too large " warnings in error log if innodb_strict_mode=OFF and

log_warnings<=2

MDEV-21024 : Remove redundant writes to the redo log

MDEV-21069 : Crash on DROP TABLE if the data file is corrupted

some cleanup of AIO code, to better report errors

MDEV-20611 : MRR scan over partitioned InnoDB table produces " Out of memory " error

MDEV-21088 : Table cannot be loaded after instant ADD/DROP COLUMN

MDEV-21045 : heap-use-after-poison in ADD PRIMARY KEY after instant ADD COLUMN

MDEV-21172 : Memory leak after failed ADD PRIMARY KEY

MDEV-21158 : trx_undo_seg_free() is never redo-logged

MDEV-20190 : Instant operation fails when add column and collation change on non-indexed column

Optimizer

MDEV-21044 : Wrong result when using a smaller size for sort buffer

MDEV-20611 : MRR scan over partitioned InnoDB table produces "Out of memory" error

MDEV-20407 : mysqld got signal 11 ; rowid_filter

Alternate download from mariadb.org

4071/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://jira.mariadb.org/browse/MDEV-21758
https://downloads.mariadb.org/mariadb/10.4.11/
https://mariadb.com/kb/en/mariadb-10411-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-13492
https://jira.mariadb.org/browse/MDEV-18310
https://jira.mariadb.org/browse/MDEV-20949
https://jira.mariadb.org/browse/MDEV-20832
https://jira.mariadb.org/browse/MDEV-21024
https://jira.mariadb.org/browse/MDEV-21069
https://jira.mariadb.org/browse/MDEV-20611
https://jira.mariadb.org/browse/MDEV-21088
https://jira.mariadb.org/browse/MDEV-21045
https://jira.mariadb.org/browse/MDEV-21172
https://jira.mariadb.org/browse/MDEV-21158
https://jira.mariadb.org/browse/MDEV-20190
https://jira.mariadb.org/browse/MDEV-21044
https://jira.mariadb.org/browse/MDEV-20611
https://jira.mariadb.org/browse/MDEV-20407

Replication

MDEV-19376 : Repl_semi_sync_master::commit_trx assertion failure

MDEV-20707 : Missing memory barrier in parallel replication error handler in wait_for_prior_commit()

Versioning

MDEV-18929 : 2nd execution of SP does not detect ER_VERS_NOT_VERSIONED

MDEV-21011 : Table corruption reported for versioned partitioned table after DELETE

Misc

Packages for Fedora 31 have been added in this release

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for Fedora 29

Changelog
For a complete list of changes made in MariaDB 10.4.11, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.11, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.24 MariaDB 10.4.10 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Note that this version contains an issue that disabled all events created by a server with a different server_id. See

MDEV-21758 for details.

Download Release Notes Changelog Overview of 10.4

Release date: 8 Nov 2019

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.10 will be a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes

Alternate download from mariadb.org

4072/4161

https://jira.mariadb.org/browse/MDEV-19376
https://jira.mariadb.org/browse/MDEV-20707
https://jira.mariadb.org/browse/MDEV-18929
https://jira.mariadb.org/browse/MDEV-21011
https://mariadb.com/kb/en/mariadb-10411-changelog/
https://mariadb.org/mariadb-10-4-11-10-3-21-and-10-2-30-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://jira.mariadb.org/browse/MDEV-21758
https://downloads.mariadb.org/mariadb/10.4.10/
https://mariadb.com/kb/en/mariadb-10410-changelog/
https://mariadb.com/kb/en/release-criteria/

MDEV-20987 : InnoDB fails to start when FTS table has FK relation

See also the release notes for MariaDB 10.4.9 for additional items of note

Changelog
For a complete list of changes made in MariaDB 10.4.10, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.10, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.25 MariaDB 10.4.9 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

After an upgrade MariaDB Server can crash if InnoDB tables exist with a FULLTEXT INDEX and a FOREIGN KEY

constraint attached to them. We got reports that the crash already will be encountered on startup, but a crash is also

possible at a later stage. See MDEV-20987 for more details.

Do not download or use this release.

Download Release Notes Changelog Overview of 10.4

Release date: 5 Nov 2019

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.9 will be a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

MDEV-20864 : Debug-only option innodb_change_buffer_dump for dumping the contents of the InnoDB change

buffer to the server error log at startup.

MariaBackup:

MDEV-18438 : mbstream recreates xtrabackup_info on same directory as backup file

MDEV-20703 : mariabackup creates binlog files in server binlog directory on --prepare --export step

FULLTEXT INDEX:

MDEV-19647 : Server hangs after dropping full text indexes and restart

MDEV-19529 : InnoDB hang on DROP FULLTEXT INDEX

MDEV-19073 : FTS row mismatch after crash recovery

Alternate download from mariadb.org

4073/4161

https://jira.mariadb.org/browse/MDEV-20987
https://mariadb.com/kb/en/mariadb-10410-changelog/
https://mariadb.org/mariadb-10-4-10-10-3-20-10-2-29-and-10-1-43-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://jira.mariadb.org/browse/MDEV-20987
https://mariadb.com/downloads/
https://mariadb.com/kb/en/mariadb-1049-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-20864
https://jira.mariadb.org/browse/MDEV-18438
https://jira.mariadb.org/browse/MDEV-20703
https://jira.mariadb.org/browse/MDEV-19647
https://jira.mariadb.org/browse/MDEV-19529
https://jira.mariadb.org/browse/MDEV-19073

MDEV-20621 : FULLTEXT INDEX activity causes InnoDB hang

MDEV-20927 : Duplicate key with auto increment

ALTER TABLE:

MDEV-20799 : DROP Virtual Column crash

MDEV-20852 : BtrBulk is unnecessarily holding dict_index_t::lock

System-Versioned Tables:

MDEV-16210 : FK constraints on versioned tables use historical rows, which may cause constraint violation

MDEV-20812 : Unexpected ER_ROW_IS_REFERENCED_2 or server crash in

row_ins_foreign_report_err upon DELETE from versioned table with FK

MDEV-20117 : corruption after instant DROP/reorder COLUMN

Galera wsrep library updated to 26.4.3

Packages for Ubuntu 19.10 Eoan have been added in this release

Fixes for the following security vulnerabilities :

CVE-2019-2974

CVE-2019-2938

CVE-2020-2780

CVE-2021-2144

Changelog
For a complete list of changes made in MariaDB 10.4.9, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.9, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.26 MariaDB 10.4.8 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 11 Sep 2019

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.8 will be a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

Connect updated to Connect 1.06.0010

Alternate download from mariadb.org

4074/4161

https://jira.mariadb.org/browse/MDEV-20621
https://jira.mariadb.org/browse/MDEV-20927
https://jira.mariadb.org/browse/MDEV-20799
https://jira.mariadb.org/browse/MDEV-20852
https://jira.mariadb.org/browse/MDEV-16210
https://jira.mariadb.org/browse/MDEV-20812
https://jira.mariadb.org/browse/MDEV-20117
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2938
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
https://mariadb.com/kb/en/mariadb-1049-changelog/
https://mariadb.org/mariadb-10-4-9-10-3-19-and-10-2-28-10-1-42-and-5-5-66-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.8/
https://mariadb.com/kb/en/mariadb-1048-changelog/
https://mariadb.com/kb/en/release-criteria/

MDEV-20231 : Update server HELP

MDEV-20066 : This bug could cause a table to become corrupt if a column was added instantly

MDEV-15326 : A race condition in InnoDB transaction commit that affects record locking was fixed

MDEV-17187 : Table doesn't exist in engine after ALTER of FOREIGN KEY

MDEV-20301 : InnoDB's MVCC has O(N^2) behaviors

MDEV-18128 : Simplify .ibd file creation

MDEV-20060 : Failing assertion: srv_log_file_size <= 512ULL << 30 while preparing backup

MDEV-20247 : Replication hangs with "preparing" and never starts

MDEV-17614 : Remove unnecessary locking for INSERT...ON DUPLICATE KEY UPDATE

MDEV-20311 : row_ins_step accesses uninitialized memory

MDEV-20479 : Assertion failure in dict_table_get_nth_col() after INSTANT DROP COLUMN

MDEV-20340 : Encrypted temporary tables cannot be read with innodb_checksum_algorithm=full_crc32

MDEV-19947 : Repositories for RHEL 8 ppc64le added

Changelog
For a complete list of changes made in MariaDB 10.4.8, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.8, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.27 MariaDB 10.4.7 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 31 Jul 2019

MariaDB 10.4 is the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new features

not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.7 is a Stable (GA) release.

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

MDEV-19922 : HeidiSQL updated to 10.2

MDEV-19795 : Merge upstream MyRocks.

MDEV-17228 : Encrypted temporary tables are not encrypted.

MDEV-18328 : Disks Plugin is now stable and requires the FILE privilege.

MDEV-16508 : Spider - sql_mode not maintained between spider node and data nodes.

Alternate download from mariadb.org

4075/4161

https://jira.mariadb.org/browse/MDEV-20231
https://jira.mariadb.org/browse/MDEV-20066
https://jira.mariadb.org/browse/MDEV-15326
https://jira.mariadb.org/browse/MDEV-17187
https://jira.mariadb.org/browse/MDEV-20301
https://jira.mariadb.org/browse/MDEV-18128
https://jira.mariadb.org/browse/MDEV-20060
https://jira.mariadb.org/browse/MDEV-20247
https://jira.mariadb.org/browse/MDEV-17614
https://jira.mariadb.org/browse/MDEV-20311
https://jira.mariadb.org/browse/MDEV-20479
https://jira.mariadb.org/browse/MDEV-20340
https://jira.mariadb.org/browse/MDEV-19947
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/mariadb-1048-changelog/
https://mariadb.org/mariadb-10-4-8-10-3-18-and-10-2-27-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.7/
https://mariadb.com/kb/en/mariadb-1047-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-19922
https://mariadb.com/kb/en/heidisql/
https://jira.mariadb.org/browse/MDEV-19795
https://jira.mariadb.org/browse/MDEV-17228
https://jira.mariadb.org/browse/MDEV-18328
https://jira.mariadb.org/browse/MDEV-16508

Merge relevant InnoDB changes from MySQL 5.7.27

Adjust spin loops to the x86 PAUSE instruction latency (MDEV-19845)

MDEV-20102 : When the ctas from a big table is interrupted ,then you can't drop or recreate the table

MDEV-19292 : InnoDB's row size calculations were fixed, which might result in "Row size too large" errors when

creating or altering tables with lots columns. This can occur even if previous MariaDB releases did not throw errors for

the same tables. Some workarounds are listed at InnoDB Row Formats Overview: Upgrading Causes Row Size Too

Large Errors.

ALTER TABLE: MDEV-15641 , MDEV-19630 , MDEV-19916 , MDEV-19974 , MDEV-17301 , MDEV-18266

Indexed virtual columns: MDEV-16222 , MDEV-17005 , MDEV-19870

FULLTEXT INDEX: MDEV-14154

Encryption: MDEV-17228 , MDEV-19914

Galera + FOREIGN KEY: MDEV-19660

Recovery & Mariabackup: MDEV-19978

MDEV-20091 : DROP TEMPORARY table is logged despite no CREATE was logged

MDEV-19871 : Add page id matching check in innochecksum tool

MDEV-20179 : Server hangs on shutdown during installation of Spider

As per the MariaDB Deprecation Policy, this will be the last release of MariaDB 10.4 for OpenSUSE 42.3 and Ubuntu

18.10 "Cosmic"

Fixes for the following security vulnerabilities :

CVE-2019-2805

CVE-2019-2740

CVE-2019-2739

CVE-2019-2737

CVE-2019-2758

CVE-2020-2922

CVE-2021-2007

Changelog
For a complete list of changes made in MariaDB 10.4.7, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.7, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.28 MariaDB 10.4.6 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 18 Jun 2019

With this release, MariaDB 10.4 is now the current stable series of MariaDB. It is an evolution of MariaDB 10.3 with several

entirely new features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.6 is a Stable (GA) release.

Alternate download from mariadb.org

4076/4161

https://jira.mariadb.org/browse/MDEV-19845
https://jira.mariadb.org/browse/MDEV-20102
https://jira.mariadb.org/browse/MDEV-19292
https://jira.mariadb.org/browse/MDEV-15641
https://jira.mariadb.org/browse/MDEV-19630
https://jira.mariadb.org/browse/MDEV-19916
https://jira.mariadb.org/browse/MDEV-19974
https://jira.mariadb.org/browse/MDEV-17301
https://jira.mariadb.org/browse/MDEV-18266
https://jira.mariadb.org/browse/MDEV-16222
https://jira.mariadb.org/browse/MDEV-17005
https://jira.mariadb.org/browse/MDEV-19870
https://jira.mariadb.org/browse/MDEV-14154
https://jira.mariadb.org/browse/MDEV-17228
https://jira.mariadb.org/browse/MDEV-19914
https://jira.mariadb.org/browse/MDEV-19660
https://jira.mariadb.org/browse/MDEV-19978
https://jira.mariadb.org/browse/MDEV-20091
https://jira.mariadb.org/browse/MDEV-19871
https://jira.mariadb.org/browse/MDEV-20179
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
https://mariadb.com/kb/en/mariadb-1047-changelog/
https://mariadb.org/mariadb-10-4-7-10-3-17-10-2-26-10-1-41-and-5-5-65-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.6/
https://mariadb.com/kb/en/mariadb-1046-changelog/
https://mariadb.com/kb/en/release-criteria/

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

MariaDB Server is now statically linked with the bundled wolfSSL library in MSI and ZIP packages on Windows, as

well as in .deb packages provided by Debian's and Ubuntu's default repositories (MDEV-18531).

See TLS and Cryptography Libraries Used by MariaDB for more details.

MariaDB Named Commands (MDEV-17591)

System-versioned tables: MDEV-19486

Galera: MDEV-17458

Virtual columns: MDEV-19027 , MDEV-19602

Recovery: MDEV-19541 , MDEV-19587 , MDEV-19435

Encryption: MDEV-19509 , MDEV-19695

Other:

MDEV-19614 - SET GLOBAL innodb_ deadlock due to LOCK_global_system_variables

MDEV-19725 - Incorrect error handling in ALTER TABLE

Changelog
For a complete list of changes made in MariaDB 10.4.6, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.6, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.29 MariaDB 10.4.5 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 21 May 2019

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.5 is a Release Candidate (RC) release.

Do not use non-stable (non-GA) releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Alternate download from mariadb.org

4077/4161

https://jira.mariadb.org/browse/MDEV-18531
https://jira.mariadb.org/browse/MDEV-17591
https://jira.mariadb.org/browse/MDEV-19486
https://jira.mariadb.org/browse/MDEV-17458
https://jira.mariadb.org/browse/MDEV-19027
https://jira.mariadb.org/browse/MDEV-19602
https://jira.mariadb.org/browse/MDEV-19541
https://jira.mariadb.org/browse/MDEV-19587
https://jira.mariadb.org/browse/MDEV-19435
https://jira.mariadb.org/browse/MDEV-19509
https://jira.mariadb.org/browse/MDEV-19695
https://jira.mariadb.org/browse/MDEV-19614
https://jira.mariadb.org/browse/MDEV-19725
https://mariadb.com/kb/en/mariadb-1046-changelog/
https://mariadb.org/mariadb-10-4-6-first-stable-10-4-release-and-mariadb-connector-j-2-4-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.5
https://mariadb.com/kb/en/mariadb-1045-changelog/
https://mariadb.com/kb/en/release-criteria/

Thanks, and enjoy MariaDB!

Notable Changes

General Server

New mysqlimport option, --ignore-foreign-keys (MDEV-788).

Setting sql_mode to MSSQL implements a limited subset of Microsoft SQL Server's language. See

SQL_MODE=MSSQL (MDEV-19142).

Add CAST(expr AS FLOAT) (MDEV-16872).

List of slave transaction errors that will result in a retry rather than a halt (slave_transaction_retry_errors) have been

increased by default, assisting Spider setups to be more robust (MDEV-16543).

MDEV-15458 - Segfault in heap_scan() upon UPDATE after ADD SYSTEM VERSIONING

MDEV-19235 - MariaDB Server compiled for 128 Indexes crashes at startup

JSON

JSON_MERGE_PATCH and JSON_MERGE_PRESERVE (MDEV-13992)

InnoDB

Merge InnoDB changes from MySQL 5.6.44 and 5.7.26

Fixes of corruption or crashes: MDEV-19241 , MDEV-13942 , MDEV-19385 , MDEV-16060 , MDEV-18220 ,

MDEV-17540

InnoDB recovery fixes and speedup: MDEV-12699 , MDEV-19356

Encryption

MDEV-14398 - innodb_encrypt_tables will work even with innodb_encryption_rotate_key_age=0

System-Versioned Tables

MDEV-15966 - System-versioned tables are now protected from TRUNCATE TABLE statements.

Information schema

MDEV-19490 show tables fails when selecting the information_schema database

Statistics

MDEV-19407 - Assertion `field->table->stats_is_read' failed in is_eits_usable

New status variable, Aborted_connects_preauth, that records the number of connection attempts that were aborted

prior to authentication (MDEV-19277).

Packaging

As per the MariaDB Deprecation Policy, this is the last release of MariaDB 10.4 for Fedora 28

Packages and a repository for Fedora 30 and Ubuntu 19.04 "disco" have been added with this release, visit the

Repository Configuration Tool for instructions on adding the repository

Security

Fixes for the following security vulnerabilities :

CVE-2019-2614

CVE-2019-2627

CVE-2019-2628

Changelog
For a complete list of changes made in MariaDB 10.4.5, with links to detailed information on each push, see the changelog

.

4078/4161

https://jira.mariadb.org/browse/MDEV-788
https://jira.mariadb.org/browse/MDEV-19142
https://jira.mariadb.org/browse/MDEV-16872
https://jira.mariadb.org/browse/MDEV-16543
https://jira.mariadb.org/browse/MDEV-15458
https://jira.mariadb.org/browse/MDEV-19235
https://jira.mariadb.org/browse/MDEV-13992
https://jira.mariadb.org/browse/MDEV-19241
https://jira.mariadb.org/browse/MDEV-13942
https://jira.mariadb.org/browse/MDEV-19385
https://jira.mariadb.org/browse/MDEV-16060
https://jira.mariadb.org/browse/MDEV-18220
https://jira.mariadb.org/browse/MDEV-17540
https://jira.mariadb.org/browse/MDEV-12699
https://jira.mariadb.org/browse/MDEV-19356
https://jira.mariadb.org/browse/MDEV-14398
https://jira.mariadb.org/browse/MDEV-15966
https://jira.mariadb.org/browse/MDEV-19490
https://jira.mariadb.org/browse/MDEV-19407
https://jira.mariadb.org/browse/MDEV-19277
https://downloads.mariadb.org/mariadb/repositories/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://mariadb.com/kb/en/mariadb-1045-changelog/

Contributors
For a full list of contributors to MariaDB 10.4.5, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.30 MariaDB 10.4.4 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 7 Apr 2019

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.4 is a Release Candidate release.

Do not use non-stable (non-GA) releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Enhancements:

MDEV-12026 /MDEV-18644 : innodb_checksum_algorithm=full_crc32 (more robust file format)

MDEV-13301 : Optimize DROP INDEX, ADD INDEX into RENAME INDEX

MDEV-17380 : innodb_flush_neighbors=ON should be ignored on SSD

InnoDB data corruption fixes: MDEV-14126 , MDEV-18981 , MDEV-18879 , MDEV-18972 , MDEV-18272

Performance fixes to purge, startup and shutdown: MDEV-18936 , MDEV-18878 , MDEV-18733

Various fixes to ALTER TABLE

Replication:

MDEV-18450 : wait for all slaves shutdown

MDEV-19116 , MDEV-19117 : speed up rotation of binary logs, SHOW BINARY LOGS etc with optimizing

binary log index file locking

Includes Connector/C 3.1.0

Repositories for CentOS 7, RHEL 7 & 8, Fedora 28 & 29, and SLES 12 & 15 now include a src.rpm file that you can

use to build MariaDB. Instructions for doing so are found on the Building MariaDB from a Source RPM page

The Galera library in the repositories has been updated to version 26.4.2

As per the MariaDB Deprecation Policy, this is the last release of MariaDB 10.4 for Ubuntu 14.04 Trusty

Changelog
For a complete list of changes made in MariaDB 10.4.4, with links to detailed information on each push, see the changelog

.

Alternate download from mariadb.org

4079/4161

https://mariadb.org/mariadb-10-4-5-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.4
https://mariadb.com/kb/en/mariadb-1044-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-12026
https://jira.mariadb.org/browse/MDEV-18644
https://jira.mariadb.org/browse/MDEV-13301
https://jira.mariadb.org/browse/MDEV-17380
https://jira.mariadb.org/browse/MDEV-14126
https://jira.mariadb.org/browse/MDEV-18981
https://jira.mariadb.org/browse/MDEV-18879
https://jira.mariadb.org/browse/MDEV-18972
https://jira.mariadb.org/browse/MDEV-18272
https://jira.mariadb.org/browse/MDEV-18936
https://jira.mariadb.org/browse/MDEV-18878
https://jira.mariadb.org/browse/MDEV-18733
https://jira.mariadb.org/browse/MDEV-18450
https://jira.mariadb.org/browse/MDEV-19116
https://jira.mariadb.org/browse/MDEV-19117
https://mariadb.com/kb/en/mariadb-connector-c-310-release-notes/
https://mariadb.com/kb/en/mariadb-1044-changelog/

Contributors
For a full list of contributors to MariaDB 10.4.4, see the MariaDB Foundation release announcement .

7.0.8.2.31 MariaDB 10.4.3 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 25 Feb 2019

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.3 is a Release Candidate release.

Do not use non-stable (non-GA) releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

MDEV-12484 : The unix_socket authentication plugin is now default on Unix-like systems, which is a major change

to authentication in MariaDB

MDEV-11340 : Allow multiple alternative authentication methods for the same user

MDEV-7597 : User password expiry

MDEV-6111 : Implementation of the optimizer trace, one can enable the optimizer trace by enabling the system

variable optimizer_trace

Temporal tables extended with support for application-time periods (MDEV-16973 , MDEV-16974 , MDEV-16975

, MDEV-17082)

MDEV-18551 : The default for eq_range_index_dive_limit is now 200 (previously 0)

MDEV-17903 : The optimizer switch flag optimize_join_buffer_size now defaults to on

New optimizer switch flags rowid_filter and condition_pushdown_from_having

MDEV-18439 : core_file on Windows now defaults to ON

MDEV-18608 : Histograms are now collected by default.

MDEV-13916 : The JSON_VALID function is automatically used as a CHECK constraint for the JSON data type

alias in order to ensure that a valid json document is inserted

Spider updated to 3.3.14

Unique indexes can be created on BLOB or TEXT fields (MDEV-371)

MDEV-18564 : wsrep_load_data_splitting is deprecated and now set to OFF by default

analyze_sample_percentage system variable

InnoDB ALTER TABLE fixes: MDEV-18222 , MDEV-18256 , MDEV-18016 , MDEV-18295 , MDEV-16849 ,

MDEV-18219

Mariabackup fixes: MDEV-18194 , MDEV-18415 , MDEV-18611

New InnoDB features:

MDEV-12026 : Implement innodb_checksum_algorithm=full_crc32

MDEV-15563 : More Instant VARCHAR extension

MDEV-15564 : Instant collation or charset changes for non-indexed columns

MDEV-16188 : Use in-memory PK filters built from range index scans

Debian has stopped supporting the ppc64el architecture for Debian 8 Jessie and so this is the last release of

MariaDB 10.4 on Jessie for that architecture

Changelog

Alternate download from mariadb.org

4080/4161

https://mariadb.org/mariadb-10-4-4-now-available/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.3
https://mariadb.com/kb/en/mariadb-1043-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-12484
https://jira.mariadb.org/browse/MDEV-11340
https://jira.mariadb.org/browse/MDEV-7597
https://jira.mariadb.org/browse/MDEV-6111
https://jira.mariadb.org/browse/MDEV-16973
https://jira.mariadb.org/browse/MDEV-16974
https://jira.mariadb.org/browse/MDEV-16975
https://jira.mariadb.org/browse/MDEV-17082
https://jira.mariadb.org/browse/MDEV-18551
https://jira.mariadb.org/browse/MDEV-17903
https://jira.mariadb.org/browse/MDEV-18439
https://jira.mariadb.org/browse/MDEV-18608
https://jira.mariadb.org/browse/MDEV-13916
https://jira.mariadb.org/browse/MDEV-371
https://jira.mariadb.org/browse/MDEV-18564
https://jira.mariadb.org/browse/MDEV-18222
https://jira.mariadb.org/browse/MDEV-18256
https://jira.mariadb.org/browse/MDEV-18016
https://jira.mariadb.org/browse/MDEV-18295
https://jira.mariadb.org/browse/MDEV-16849
https://jira.mariadb.org/browse/MDEV-18219
https://jira.mariadb.org/browse/MDEV-18194
https://jira.mariadb.org/browse/MDEV-18415
https://jira.mariadb.org/browse/MDEV-18611
https://jira.mariadb.org/browse/MDEV-12026
https://jira.mariadb.org/browse/MDEV-15563
https://jira.mariadb.org/browse/MDEV-15564
https://jira.mariadb.org/browse/MDEV-16188

For a complete list of changes made in MariaDB 10.4.3, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.3, see the MariaDB Foundation release announcement .

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.32 MariaDB 10.4.2 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 29 Jan 2019

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.2 is a Beta release.

Do not use beta releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
Notable changes of this release include:

Galera 4 version 26.4.0 has been added in this release, see the Galera 4 Notes section for details

Account Locking (MDEV-13095)

a number of bugs related to MDEV-15562 Instant DROP COLUMN have been fixed

New variable, max_password_errors for limiting the number of failed connection attempts by a user.

MDEV-17475 : Maximum value of table_definition_cache is now 2097152 .

Galera 4 Notes

Upgrading to Galera 4 version 26.4.0

Rolling upgrades from earlier 10.3 (or older) MariaDB releases are not supported in this release. For upgrading a 10.3-

based cluster, any applications accessing the cluster should be stopped and the cluster shut down. Then for each cluster

node the following procedure should be carried out:

Install MariaDB 10.4.2 and Galera 4 version 26.4.0

Start MariaDB server, but make sure it is not trying to connect to the cluster by configuring wsrep_provider=none

While MariaDB server is running, run mysql_upgrade for the server

Alternate download from mariadb.org

4081/4161

https://mariadb.com/kb/en/mariadb-1043-changelog/
https://mariadb.org/mariadb-10-4-3-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.2/
https://mariadb.com/kb/en/mariadb-1042-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-13095
https://jira.mariadb.org/browse/MDEV-15562
https://jira.mariadb.org/browse/MDEV-17475

Stop MariaDB server

After that, you can bootstrap the cluster. If there was ongoing application load on the cluster during the initial cluster

shutdown phase, you should make sure to bootstrap the cluster with the node which was shutdown last.

We are working on rolling upgrade support for the final GA version of MariaDB 10.4. With a rolling upgrade, a live cluster

can be upgraded node by node, and the cluster is able to process application load when having a hybrid setup of 10.3 and

10.4 nodes.

New Features in Galera 26.4.0

The 8mysql9 schema contains new Galera replication related tables:

wsrep_cluster

wsrep_cluster_members

wsrep_streaming_log

End users may read but not modify these tables.

The new streaming replication feature allows replicating transactions of unlimited size. With streaming replication, a cluster

is replicating a transaction in small fragments during transaction execution. This transaction fragmenting is controlled by two

new configuration variables:

wsrep_trx_fragment_unit (bytes, rows, statements) defines the metrics for how to measure transaction

size limit for fragmenting. Possible values are:

bytes : transaction9s binlog events buffer size in bytes

rows : number of rows affected by the transaction

statements : number of SQL statements executed in the multi-statement transaction

wsrep_trx_fragment_size defines the limit for fragmenting. When a transaction9s size, in terms of the configured

fragment unit, has grown over this limit, a new fragment will be replicated.

Transactions replicated through galera replication will now process the commit phase using MariaDB's group commit logic.

This will affect transaction throughput, especially when binary logging is enabled in the cluster.

Limitations in Galera 26.4.0

Upgrading from 10.3 version 25.3.25 to 10.4.2 version 26.4.0 must happen on a stopped cluster. Only after all nodes

have been upgraded to MariaDB 10.4.2 and Galera 26.4.0 can the cluster be started up

Splitting transactions of LOAD DATA execution will conflict with streaming replication, and should not be used if

streaming replication is configured

Changelog
For a complete list of changes made in MariaDB 10.4.2, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.2, see the MariaDB Foundation release announcement .

Do not use beta releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.33 MariaDB 10.4.1 Release Notes

4082/4161

https://mariadb.com/kb/en/mariadb-1042-changelog/
https://mariadb.org/mariadb-10-4-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 20 Dec 2018

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.1 is a Beta release.

Do not use beta releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
This will be the first beta release in the MariaDB 10.4 series.

Notable changes of this release include:

Syntax

New FLUSH SSL command to reload SSL certificates without server restart (MDEV-16266)

New CAST target 4 CAST(x AS INTERVAL DAY_SECOND(N)) (MDEV-17776)

Variables

New sql-mode setting, TIME_ROUND_FRACTIONAL (MDEV-16991)

Two new values for the variable use_stat_tables: COMPLEMENTARY_FOR_QUERIES and PREFERABLY_FOR_QUERIES

(MDEV-17255)

Engine Independent Table Statistics is now enabled by default; new default values are

use_stat_tables=PREFERABLY_FOR_QUERIES and optimizer_use_condition_selectivity=4 (MDEV-15253)

New variable gtid_cleanup_batch_size for determining how many old rows must accumulate in the

mysql.gtid_slave_pos table before a background job will be run to delete them.

Other Features

Support for window UDF functions via the new method x_remove (MDEV-15073)

Json service for plugins (MDEV-5313)

Much faster privilege checks for MariaDB setups with many user accounts or many database grants (MDEV-15649)

mysql.user table is retired. User accounts and global privileges are now stored in the mysql.global_priv table (MDEV-

17658)

Change in behavior for FLUSH TABLES (MDEV-5336).

Bug Fixes

Lots of miscellaneous fixes, including:

Bug fixes for MDEV-15562 instant DROP COLUMN

Changelog
For a complete list of changes made in MariaDB 10.4.1, with links to detailed information on each push, see the changelog

.

Contributors

Alternate download from mariadb.org

4083/4161

https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.1/
https://mariadb.com/kb/en/mariadb-1041-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-16266
https://jira.mariadb.org/browse/MDEV-17776
https://jira.mariadb.org/browse/MDEV-16991
https://jira.mariadb.org/browse/MDEV-17255
https://jira.mariadb.org/browse/MDEV-15253
https://jira.mariadb.org/browse/MDEV-15073
https://jira.mariadb.org/browse/MDEV-5313
https://jira.mariadb.org/browse/MDEV-15649
https://jira.mariadb.org/browse/MDEV-17658
https://jira.mariadb.org/browse/MDEV-5336
https://jira.mariadb.org/browse/MDEV-15562
https://mariadb.com/kb/en/mariadb-1041-changelog/

For a full list of contributors to MariaDB 10.4.1, see the MariaDB Foundation release announcement .

Do not use beta releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.2.34 MariaDB 10.4.0 Release Notes

The most recent release of MariaDB 10.4 is:

MariaDB 10.4.33 Stable (GA) Download Now

Download Release Notes Changelog Overview of 10.4

Release date: 9 Nov 2018

MariaDB 10.4 is the current development series of MariaDB. It is an evolution of MariaDB 10.3 with several entirely new

features not found anywhere else and with backported and reimplemented features from MySQL.

MariaDB 10.4.0 is an Alpha release.

Do not use alpha releases in production!

For an overview of MariaDB 10.4 see the What is MariaDB 10.4? page.

Thanks, and enjoy MariaDB!

Notable Changes
This will be the first alpha release in the MariaDB 10.4 series.

Notable changes of this release include:

InnoDB

Added instant DROP COLUMN and changing of the order of columns (MDEV-15562)

Reduced redo log volume for undo tablespace initialization (MDEV-17138)

Removed crash-upgrade support for pre-10.2.19 TRUNCATE TABLE (MDEV-13564)

Added key rotation for innodb_encrypt_log (MDEV-12041)

Optimizer

Push conditions into materialized IN subqueries (MDEV-12387)

Variables

Added the tcp_nodelay system variable (MDEV-16277)

Removed the global Innodb_pages0_read status variable (MDEV-15705).

General

Alternate download from mariadb.org

4084/4161

https://mariadb.org/mariadb-10-4-1-and-mariadb-connector-node-js-2-0-2-now-available/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/downloads/
https://downloads.mariadb.org/mariadb/10.4.33/
https://downloads.mariadb.org/mariadb/10.4.0/
https://mariadb.com/kb/en/mariadb-1040-changelog/
https://mariadb.com/kb/en/release-criteria/
https://jira.mariadb.org/browse/MDEV-15562
https://jira.mariadb.org/browse/MDEV-17138
https://jira.mariadb.org/browse/MDEV-13564
https://jira.mariadb.org/browse/MDEV-12041
https://jira.mariadb.org/browse/MDEV-12387
https://jira.mariadb.org/browse/MDEV-16277
https://mariadb.com/kb/en/xtradbinnodb-server-status-variables/#innodb_pages0_read
https://jira.mariadb.org/browse/MDEV-15705

IF NOT EXISTS clause added to INSTALL PLUGIN and IF EXISTS clause added to UNINSTALL PLUGIN and

UNINSTALL SONAME (MDEV-16294)

The obsolete mysql.host table is no longer created (MDEV-15851)

Support of brackets (parentheses) for specifying precedence in UNION/EXCEPT/INTERSECT operations (MDEV-

11953)

Crash safe Aria-based system tables (MDEV-16421)

Added Linux abstract socket support (MDEV-15655)

Enabled C++11 (MDEV-16410)

SET PASSWORD support for ed25519 and other authentication plugins (MDEV-12321)

Performance improvements in Unicode collations (MDEV-17534 , MDEV-17511 , MDEV-17502 , MDEV-17474

)

User data type plugins (MDEV-4912 , in progress)

Improvements with SQL standard INTERVAL support to help functions TIMESTAMP() and ADDTIME() return more

predictable results.

Historically, MariaDB uses the TIME data type for both "time of the day" values and "duration" values. In the first

meaning the natural value range is from '00:00:00' to '23:59:59.999999', in the second meaning the range is

from '-838:59:59.999999' to '+838:59:59.999999'.

To remove this ambiguity and for the SQL standard conformance we plan to introduce a dedicated data type

INTERVAL that will be able to store values in the range at least from '-87649415:59:59.999999' to

'+87649415:59:59.999999', which will be enough to represent the time difference between TIMESTAMP'0001-

01-01 00:00:00' and TIMESTAMP'9999-12-31 23:59:59.999999'.

As a first step we support this range of values for intermediate calculations when TIME-alike string and numeric

values are used in INTERVAL (i.e. duration) context, e.g. as the second argument of SQL functions

TIMESTAMP(ts,interval) and ADDTIME(ts,interval), so the following can now be calculated:

SELECT ADDTIME(TIMESTAMP'0001-01-01 00:00:00', '87649415:59:59.999999');

-> '9999-12-31 23:59:59.999999'

SELECT TIMESTAMP(DATE'0001-01-01', '87649415:59:59.999999')

-> '9999-12-31 23:59:59.999999'

SELECT ADDTIME(TIME'-838:59:59.999999', '1677:59:59.999998');

-> '838:59:59.999999'

Changelog
For a complete list of changes made in MariaDB 10.4.0, with links to detailed information on each push, see the changelog

.

Contributors
For a full list of contributors to MariaDB 10.4.0, see the MariaDB Foundation release announcement .

Do not use alpha releases in production!

Be notified of new MariaDB Server releases automatically by subscribing to the MariaDB Foundation community

announce 'at' lists.mariadb.org announcement list (this is a low traffic, announce-only list). MariaDB plc customers will

be notified for all new releases, security issues and critical bug fixes for all MariaDB plc products thanks to the

Notification Services.

MariaDB may already be included in your favorite OS distribution. More information can be found on the Distributions

which Include MariaDB page.

7.0.8.3 Changes & Improvements in MariaDB
10.3

MariaDB 10.3 is no longer maintained. Please use a more recent release .

4085/4161

https://jira.mariadb.org/browse/MDEV-16294
https://mariadb.com/kb/en/mysqlhost-table/
https://jira.mariadb.org/browse/MDEV-15851
https://jira.mariadb.org/browse/MDEV-11953
https://jira.mariadb.org/browse/MDEV-16421
https://jira.mariadb.org/browse/MDEV-15655
https://jira.mariadb.org/browse/MDEV-16410
https://jira.mariadb.org/browse/MDEV-12321
https://jira.mariadb.org/browse/MDEV-17534
https://jira.mariadb.org/browse/MDEV-17511
https://jira.mariadb.org/browse/MDEV-17502
https://jira.mariadb.org/browse/MDEV-17474
https://jira.mariadb.org/browse/MDEV-4912
https://mariadb.com/kb/en/mariadb-1040-changelog/
https://mariadb.org/first-mariadb-10-4-alpha-release/
https://lists.mariadb.org/postorius/lists/announce.lists.mariadb.org/
https://mariadb.com/kb/en/new-and-old-releases/

The most recent release of MariaDB 10.3 is:

MariaDB 10.3.39 Stable (GA) Download Now

Contents
1. Implemented Features

1. Syntax / General Features

2. Compatibility

3. Compression

4. Encryption

5. Optimizer/Performance

6. Storage Engines

1. InnoDB

2. Spider

3. OQGRAPH

4. Partition Engine

7. Information Schema

8. Logging

9. Replication

10. Data Type API

11. Idle Transactions

12. System Variables

2. Security Vulnerabilities Fixed in MariaDB 10.3

3. Comparison with MySQL

4. List of All MariaDB 10.3 Releases

MariaDB 10.3 is a previous major stable version. The first stable release was in May 2018, and it was maintained until

May 2023.

For details on upgrading from MariaDB 10.2, see Upgrading from MariaDB 10.2 to 10.3 .

MariaDB Server 10.3 is included in MariaDB TX 3.0. Watch the webinar recording to learn more about the new

features included in this release.

The following lists the major new features in MariaDB 10.3:

Implemented Features

Syntax / General Features

System-versioned tables (also known as AS OF) (MDEV-12894)

Table Value Constructors (MDEV-12172) 4 GSoC 2017 project by Galina Shalygina

Transform [NOT] IN predicate with long list of values INTO [NOT] IN subquery (MDEV-12176) 4 GSoC 2017

project by Galina Shalygina

ROW TYPE OF now supports local SP variables (MDEV-14139)

Aggregate stored functions (MDEV-7773) 4 GSoC 2016 project by Varun Gupta

Support for LIMIT clause in GROUP_CONCAT() (MDEV-11297)

PERCENTILE_CONT, PERCENTILE_DISC, and MEDIAN window functions (MDEV-12985)

FOR ... END FOR statement (MDEV-14415)

XA RECOVER FORMAT='SQL' (MDEV-14593)

Oracle compatible SUBSTR() function (MDEV-14012) 4 contribution by Jérôme Brauge

INVISIBLE columns (MDEV-10177) 4 GSoC 2016 project by Sachin Setiya

Various scalability improvements (MDEV-14529 , MDEV-14505)

Sequences can now be used with DEFAULT.

Semi-sync plugin merged into the server (MDEV-13073) 4 contribution by Alibaba

CREATE SEQUENCE (MDEV-10139)

SHOW CREATE SEQUENCE

ALTER SEQUENCE

DROP SEQUENCE

NEXT VALUE FOR

PREVIOUS VALUE FOR

SETVAL()

INTERSECT and EXCEPT. These are both now reserved words and can no longer be used as an identifier without

being quoted (MDEV-10141)

4086/4161

https://mariadb.com/kb/en/mariadb-10339-release-notes/
https://downloads.mariadb.org/mariadb/10.3.39/
https://mariadb.org/about/#maintenance-policy
https://mariadb.com/kb/en/upgrading-from-mariadb-102-to-mariadb-103/
http://go.mariadb.com/mariadbtx3.0_webinar_registration-LP.html?utm_source=kb&utm_campaign=mariadbtx-ondemand-webinar-kb-changes-improvements
https://jira.mariadb.org/browse/MDEV-12894
https://jira.mariadb.org/browse/MDEV-12172
https://jira.mariadb.org/browse/MDEV-12176
https://jira.mariadb.org/browse/MDEV-14139
https://jira.mariadb.org/browse/MDEV-7773
https://jira.mariadb.org/browse/MDEV-11297
https://jira.mariadb.org/browse/MDEV-12985
https://jira.mariadb.org/browse/MDEV-14415
https://jira.mariadb.org/browse/MDEV-14593
https://jira.mariadb.org/browse/MDEV-14012
https://jira.mariadb.org/browse/MDEV-10177
https://jira.mariadb.org/browse/MDEV-14529
https://jira.mariadb.org/browse/MDEV-14505
https://jira.mariadb.org/browse/MDEV-13073
https://jira.mariadb.org/browse/MDEV-10139
https://jira.mariadb.org/browse/MDEV-10141

ROW data type for stored routine variables (MDEV-10914 , MDEV-12007 , MDEV-12291)

TYPE OF and ROW TYPE OF anchored data types for stored routine variables (MDEV-12461)

Cursors with parameters (MDEV-12457)

DDL Fast Fail - WAIT/NOWAIT (MDEV-11379 , MDEV-11388)

CHR() function (MDEV-12685)

DELETE statement can delete from the table that is used in a subquery in the WHERE clause (MDEV-12137)

Stored routine parameters can use ROW TYPE OF (MDEV-13581)

The server now supports the PROXY protocol - see also the new proxy_protocol_networks system variable

(MDEV-11159)

Instant ADD COLUMN (MDEV-11369) 4 Tencent Game DBA Team, developed by vinchen.

UPDATE statements with the same source and target (MDEV-12874) 4 from Jerome Brauge.

ORDER BY and LIMIT in multi-table update (MDEV-13911)

DATE_FORMAT(date, format, locale) - 3 argument form of DATE_FORMAT (MDEV-11553)

The MariaDB SQL/PL stored procedure dialect (enabled with sql_mode=ORACLE) now supports Oracle style

packages. Support for the following statements has been added (MDEV-10591):

CREATE PACKAGE

CREATE PACKAGE BODY

DROP PACKAGE

DROP PACKAGE BODY

SHOW CREATE PACKAGE

SHOW CREATE PACKAGE BODY

New sql_mode SIMULTANEOUS_ASSIGNMENT to make the SET part of the UPDATE statement evaluate all

assignments simultaneously, not left-to-right.

Correctness improvement - TRUNCATE honors transactional locks (MDEV-15061)

Windows binaries now use high-precision timer when available (MDEV-15694). This makes much less probable for

two queries to have the same CURRENT_TIMESTAMP(6) value, for example.

Two new ALTER TABLE ... ALGORITHM options, INSTANT and NOCOPY, which allow operations that would require

any data files to be modified, or that would require rebuilding the clustered index respectively, to be refused rather

than potentially perform slowly (MDEV-13134)

mysqldump --ignore-database option (MDEV-13336)

Compatibility

As a result of implementing Table Value Constructors, the VALUES function has been renamed to VALUE() (MDEV-

12172)

When running with sql_mode=ORACLE, the server now understands a subset of Oracle's PL/SQL language instead

of the traditional MariaDB syntax for stored routines. See MDEV-10142 , MDEV-10764 and

SQL_MODE=ORACLE From MariaDB 10.3 to know the current status.

New sql_mode, EMPTY_STRING_IS_NULL.

INTERSECT and EXCEPT are both now reserved words and can no longer be used as an identifier without being

quoted (MDEV-10141)

Functions that used to only return 64-bit now can return 32-bit results (MDEV-12619).

Compression

Storage-engine Independent Column Compression (MDEV-11371) 4 Tencent Game DBA Team, developed by

willhan, also thanks to AliSQL.

On Linux, shrink the core dumps by omitting the InnoDB buffer pool (MDEV-10814)

Encryption

Temporary files created by merge sort and row log are encrypted if innodb_encrypt_log is set to 1 , regardless of

whether the table encrypted or not (MDEV-12634).

Optimizer/Performance

Condition pushdown through PARTITION BY clause of window functions (MDEV-10855)

New Lateral Derived optimization was introduced.

Numerous performance improvements for high-concurrency load

Numerous scalability and performance improvements to global data structures, including MDEV-14756 , MDEV-

15019 , MDEV-14482 , MDEV-15059 , MDEV-15104

Performance improvements to persistent data structures: MDEV-15090 , MDEV-15132

Storage Engines

4087/4161

https://jira.mariadb.org/browse/MDEV-10914
https://jira.mariadb.org/browse/MDEV-12007
https://jira.mariadb.org/browse/MDEV-12291
https://jira.mariadb.org/browse/MDEV-12461
https://jira.mariadb.org/browse/MDEV-12457
https://jira.mariadb.org/browse/MDEV-11379
https://jira.mariadb.org/browse/MDEV-11388
https://jira.mariadb.org/browse/MDEV-12685
https://jira.mariadb.org/browse/MDEV-12137
https://jira.mariadb.org/browse/MDEV-13581
https://mariadb.com/kb/en/proxy-protocol-support/
https://jira.mariadb.org/browse/MDEV-11159
https://jira.mariadb.org/browse/MDEV-11369
https://jira.mariadb.org/browse/MDEV-12874
https://jira.mariadb.org/browse/MDEV-13911
https://jira.mariadb.org/browse/MDEV-11553
https://jira.mariadb.org/browse/MDEV-10591
https://jira.mariadb.org/browse/MDEV-15061
https://jira.mariadb.org/browse/MDEV-15694
https://jira.mariadb.org/browse/MDEV-13134
https://jira.mariadb.org/browse/MDEV-13336
https://jira.mariadb.org/browse/MDEV-12172
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/SQL_MODE%253DORACLE_From_MariaDB_10.3
https://jira.mariadb.org/browse/MDEV-10142
https://jira.mariadb.org/browse/MDEV-10764
https://jira.mariadb.org/browse/MDEV-10141
https://jira.mariadb.org/browse/MDEV-12619
https://jira.mariadb.org/browse/MDEV-11371
https://jira.mariadb.org/browse/MDEV-10814
https://jira.mariadb.org/browse/MDEV-12634
https://jira.mariadb.org/browse/MDEV-10855
https://jira.mariadb.org/browse/MDEV-14756
https://jira.mariadb.org/browse/MDEV-15019
https://jira.mariadb.org/browse/MDEV-14482
https://jira.mariadb.org/browse/MDEV-15059
https://jira.mariadb.org/browse/MDEV-15104
https://jira.mariadb.org/browse/MDEV-15090
https://jira.mariadb.org/browse/MDEV-15132

InnoDB

innodb_fast_shutdown now has a new mode, 3 , which skips the rollback of connected transactions (MDEV-15832

)

Spider

The Spider storage engine has been updated to 3.3.13. The partitioning storage engine has been updated to support all the

new Spider features including:

Direct join support. This allows Spider to do JOINS and GROUP BYs internally.

Direct update and delete.

Direct aggregates.

slave_transaction_retry_errors and slave-transaction-retry-interval allow more control over handling delays or conflicts

when applying binary logs.

Most of the features were done as part of MDEV-7698 .

OQGRAPH

OQGraph now supports the "leaves" algorithm (MDEV-11271) 4 contribution by Heinz Wiesinger

Partition Engine

Numerous improvements for the partition engine (MDEV-7698) 4 contribution by Kentoku Shiba

Full text support.

Multi-range-read (Gives better performance when handling multiple ranges).

Support for condition pushdown.

HANDLER support

Aggregate pushdown

Bulk update/delete

Information Schema

The Information Schema is optimized to use much less memory when selecting from

INFORMATION_SCHEMA.TABLES or any other table with many VARCHAR or TEXT columns (MDEV-14275)

The Information Schema Columns table now displays system versioning info in the EXTRA column - MDEV-15062

Logging

Disable logging of certain statements to the general log or the slow query log with the log_disabled_statements and

log_slow_disabled_statements system variables.

A new option to log_slow_filter, filsort_priority_queue .

Replication

Per-engine mysql.gtid_slave_pos tables (MDEV-12179) 4 Implemented by Kristian Nielsen funded by Booking.com.

Data Type API

10.3 continues refactoring for the data type API started in 10.2, which will make it possible to have user data type plugins.

This work is still in progress (see MDEV-4912 for the current status and subtasks). Most of the task in this category do not

change the server behavior. Some tasks do have a visible effect .

Idle Transactions

Connections with idle transactions can be automatically killed after a specified time period by means of the

idle_transaction_timeout, idle_readonly_transaction_timeout and idle_write_transaction_timeout system variables.

System Variables

For a list of all new variables, see System Variables Added in MariaDB 10.3 and Status Variables Added in MariaDB 10.3

.

New system variable gtid_pos_auto_engines.

New system variable secure_timestamp for restricting the direct setting of a session timestamp (MDEV-15923)

4088/4161

https://jira.mariadb.org/browse/MDEV-15832
https://jira.mariadb.org/browse/MDEV-7698
https://jira.mariadb.org/browse/MDEV-11271
https://jira.mariadb.org/browse/MDEV-7698
https://jira.mariadb.org/browse/MDEV-14275
https://jira.mariadb.org/browse/MDEV-15062
https://jira.mariadb.org/browse/MDEV-12179
https://jira.mariadb.org/browse/MDEV-4912
https://mariadb.com/kb/en/mariadb-1030-release-notes/#data-type-api
https://mariadb.com/kb/en/system-variables-added-in-mariadb-103/
https://mariadb.com/kb/en/status-variables-added-in-mariadb-103/
https://jira.mariadb.org/browse/MDEV-15923

session variables tracking is enabled by default (MDEV-11825)

Remove deprecated variables innodb_file_format, innodb_file_format_check, innodb_file_format_max and

innodb_large_prefix.

version_source_revision - permits seeing which version of the source was used for the build (MDEV-12583).

Added bind_address as a system variable (MDEV-12542).

The max value of the max_prepared_stmt_count system variable has been increased from 1048576 to 4294967295

The proxy_protocol_networks variable can now be modified without restarting the server (MDEV-15501)

Security Vulnerabilities Fixed in MariaDB 10.3

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2023-5157 : MariaDB 10.3.36

CVE-2022-47015 : MariaDB 10.3.39

CVE-2022-38791 : MariaDB 10.3.36

CVE-2022-32091 : MariaDB 10.3.36

CVE-2022-32088 : MariaDB 10.3.35

CVE-2022-32087 : MariaDB 10.3.35

CVE-2022-32085 : MariaDB 10.3.35

CVE-2022-32084 : MariaDB 10.3.36

CVE-2022-32083 : MariaDB 10.3.35

CVE-2022-31624 : MariaDB 10.3.32

CVE-2022-27458 : MariaDB 10.3.35

CVE-2022-27456 : MariaDB 10.3.35

CVE-2022-27452 : MariaDB 10.3.35

CVE-2022-27449 : MariaDB 10.3.35

CVE-2022-27448 : MariaDB 10.3.35

CVE-2022-27447 : MariaDB 10.3.35

CVE-2022-27445 : MariaDB 10.3.35

CVE-2022-27387 : MariaDB 10.3.35

CVE-2022-27386 : MariaDB 10.3.35

CVE-2022-27385 : MariaDB 10.3.32

CVE-2022-27384 : MariaDB 10.3.35

CVE-2022-27383 : MariaDB 10.3.35

CVE-2022-27381 : MariaDB 10.3.35

CVE-2022-27380 : MariaDB 10.3.35

CVE-2022-27379 : MariaDB 10.3.35

CVE-2022-27378 : MariaDB 10.3.35

CVE-2022-27377 : MariaDB 10.3.35

CVE-2022-27376 : MariaDB 10.3.35

CVE-2022-24052 : MariaDB 10.3.33

CVE-2022-24051 : MariaDB 10.3.33

CVE-2022-24050 : MariaDB 10.3.33

CVE-2022-24048 : MariaDB 10.3.33

CVE-2022-21595 : MariaDB 10.3.33

CVE-2022-21451 : MariaDB 10.3.29

CVE-2022-21427 : MariaDB 10.3.35

CVE-2022-0778 : MariaDB 10.3.33

CVE-2021-46669 : MariaDB 10.3.35

CVE-2021-46668 : MariaDB 10.3.34

CVE-2021-46667 : MariaDB 10.3.32

CVE-2021-46666 : MariaDB 10.3.30

CVE-2021-46665 : MariaDB 10.3.34

CVE-2021-46664 : MariaDB 10.3.34

CVE-2021-46663 : MariaDB 10.3.34

CVE-2021-46662 : MariaDB 10.3.32

CVE-2021-46661 : MariaDB 10.3.34

CVE-2021-46659 : MariaDB 10.3.33

CVE-2021-46658 : MariaDB 10.3.31

CVE-2021-46657 : MariaDB 10.3.30

CVE-2021-35604 : MariaDB 10.3.32

CVE-2021-27928 : MariaDB 10.3.28

CVE-2021-2389 : MariaDB 10.3.31

CVE-2021-2372 : MariaDB 10.3.31
4089/4161

https://jira.mariadb.org/browse/MDEV-11825
https://jira.mariadb.org/browse/MDEV-12583
https://jira.mariadb.org/browse/MDEV-12542
https://jira.mariadb.org/browse/MDEV-15501
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5157
https://mariadb.com/kb/en/mariadb-10-3-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47015
https://mariadb.com/kb/en/mariadb-10339-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-38791
https://mariadb.com/kb/en/mariadb-10-3-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32091
https://mariadb.com/kb/en/mariadb-10-3-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32087
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32085
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32084
https://mariadb.com/kb/en/mariadb-10-3-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
https://mariadb.com/kb/en/mariadb-10-3-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27458
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27456
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27452
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27449
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27448
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27447
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27385
https://mariadb.com/kb/en/mariadb-10-3-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27379
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27376
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
https://mariadb.com/kb/en/mdb-10329-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
https://mariadb.com/kb/en/mariadb-10-3-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
https://mariadb.com/kb/en/mariadb-10-3-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
https://mariadb.com/kb/en/mariadb-10-3-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
https://mariadb.com/kb/en/mdb-10330-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
https://mariadb.com/kb/en/mariadb-10-3-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
https://mariadb.com/kb/en/mariadb-10-3-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-10-3-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46662
https://mariadb.com/kb/en/mariadb-10-3-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
https://mariadb.com/kb/en/mariadb-10-3-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
https://mariadb.com/kb/en/mariadb-10-3-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
https://mariadb.com/kb/en/mdb-10331-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657
https://mariadb.com/kb/en/mdb-10330-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
https://mariadb.com/kb/en/mariadb-10-3-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
https://mariadb.com/kb/en/mdb-10328-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://mariadb.com/kb/en/mdb-10331-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
https://mariadb.com/kb/en/mdb-10331-rn/

CVE-2021-2194 : MariaDB 10.3.26

CVE-2021-2166 : MariaDB 10.3.29

CVE-2021-2154 : MariaDB 10.3.29

CVE-2021-2144 : MariaDB 10.3.19

CVE-2021-2022 : MariaDB 10.3.24

CVE-2021-2007 : MariaDB 10.3.17

CVE-2020-2922 : MariaDB 10.3.17

CVE-2020-28912 : MariaDB 10.3.26

CVE-2020-2814 : MariaDB 10.3.23

CVE-2020-2812 : MariaDB 10.3.23

CVE-2020-2780 : MariaDB 10.3.19

CVE-2020-2760 : MariaDB 10.3.23

CVE-2020-2752 : MariaDB 10.3.23

CVE-2020-2574 : MariaDB 10.3.22

CVE-2020-15180 : MariaDB 10.3.25

CVE-2020-14812 : MariaDB 10.3.26

CVE-2020-14789 : MariaDB 10.3.26

CVE-2020-14776 : MariaDB 10.3.26

CVE-2020-14765 : MariaDB 10.3.26

CVE-2020-13249 : MariaDB 10.3.23

CVE-2019-2974 : MariaDB 10.3.19

CVE-2019-2938 : MariaDB 10.3.19

CVE-2019-2805 : MariaDB 10.3.17

CVE-2019-2758 : MariaDB 10.3.17

CVE-2019-2740 : MariaDB 10.3.17

CVE-2019-2739 : MariaDB 10.3.17

CVE-2019-2737 : MariaDB 10.3.17

CVE-2019-2628 : MariaDB 10.3.15

CVE-2019-2627 : MariaDB 10.3.15

CVE-2019-2614 : MariaDB 10.3.15

CVE-2019-2537 : MariaDB 10.3.13

CVE-2019-2510 : MariaDB 10.3.13

CVE-2019-2503 : MariaDB 10.3.10

CVE-2018-3284 : MariaDB 10.3.11

CVE-2018-3282 : MariaDB 10.3.11

CVE-2018-3277 : MariaDB 10.3.11

CVE-2018-3251 : MariaDB 10.3.11

CVE-2018-3200 : MariaDB 10.3.11

CVE-2018-3185 : MariaDB 10.3.11

CVE-2018-3174 : MariaDB 10.3.11

CVE-2018-3173 : MariaDB 10.3.11

CVE-2018-3162 : MariaDB 10.3.11

CVE-2018-3156 : MariaDB 10.3.11

CVE-2018-3143 : MariaDB 10.3.11

CVE-2018-3066 : MariaDB 10.3.9

CVE-2018-3064 : MariaDB 10.3.9

CVE-2018-3063 : MariaDB 10.3.9

CVE-2018-3060 : MariaDB 10.3.9

CVE-2018-3058 : MariaDB 10.3.9

CVE-2018-25032 : MariaDB 10.3.36

CVE-2016-9843 : MariaDB 10.3.11

Comparison with MySQL
System Variable Differences Between MariaDB 10.3 and MySQL 8.0

Function Differences Between MariaDB 10.3 and MySQL 8.0

System Variable Differences Between MariaDB 10.3 and MySQL 5.7

Function Differences Between MariaDB 10.3 and MySQL 5.7

List of All MariaDB 10.3 Releases

Date Release Status Release Notes Changelog

10 May 2023 MariaDB 10.3.39 Stable (GA) Release Notes Changelog

4090/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
https://mariadb.com/kb/en/mdb-10329-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://mariadb.com/kb/en/mdb-10329-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
https://mariadb.com/kb/en/mariadb-10-3-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
https://mariadb.com/kb/en/mdb-10324-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2814
https://mariadb.com/kb/en/mariadb-10-3-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://mariadb.com/kb/en/mariadb-10-3-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://mariadb.com/kb/en/mariadb-10-3-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://mariadb.com/kb/en/mariadb-10-3-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
https://mariadb.com/kb/en/mariadb-10-3-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
https://mariadb.com/kb/en/mariadb-10-3-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
https://mariadb.com/kb/en/mdb-10325-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://mariadb.com/kb/en/mdb-10326-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13249
https://mariadb.com/kb/en/mariadb-10-3-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
https://mariadb.com/kb/en/mariadb-10-3-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2938
https://mariadb.com/kb/en/mariadb-10-3-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
https://mariadb.com/kb/en/mariadb-10-3-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://mariadb.com/kb/en/mariadb-10-3-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
https://mariadb.com/kb/en/mariadb-10-3-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
https://mariadb.com/kb/en/mariadb-10-3-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://mariadb.com/kb/en/mariadb-10-3-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2510
https://mariadb.com/kb/en/mariadb-10-3-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2503
https://mariadb.com/kb/en/mariadb-10-3-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3284
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3282
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3277
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3200
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3185
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3174
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3173
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3162
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3066
https://mariadb.com/kb/en/mdb-1039-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://mariadb.com/kb/en/mdb-1039-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3063
https://mariadb.com/kb/en/mdb-1039-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3060
https://mariadb.com/kb/en/mdb-1039-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://mariadb.com/kb/en/mdb-1039-rn/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-25032
https://mariadb.com/kb/en/mariadb-10-3-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9843
https://mariadb.com/kb/en/mariadb-10-3-11-release-notes/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-103-and-mysql-80/
https://mariadb.com/kb/en/function-differences-between-mariadb-103-and-mysql-80/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/function-differences-between-mariadb-103-and-mysql-57/
https://mariadb.com/kb/en/mariadb-10339-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-39-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-39-changelog/

6 Feb 2023 MariaDB 10.3.38 Stable (GA) Release Notes Changelog

7 Nov 2022 MariaDB 10.3.37 Stable (GA) Release Notes Changelog

15 Aug 2022 MariaDB 10.3.36 Stable (GA) Release Notes Changelog

20 May 2022 MariaDB 10.3.35 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.3.34 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.3.33 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.3.32 Stable (GA) Release Notes Changelog

6 Aug 2021 MariaDB 10.3.31 Stable (GA) Release Notes Changelog

23 Jun 2021 MariaDB 10.3.30 Stable (GA) Release Notes Changelog

7 May 2021 MariaDB 10.3.29 Stable (GA) Release Notes Changelog

22 Feb 2021 MariaDB 10.3.28 Stable (GA) Release Notes Changelog

11 Nov 2020 MariaDB 10.3.27 Stable (GA) Release Notes Changelog

3 Nov 2020 MariaDB 10.3.26 Stable (GA) Release Notes Changelog

7 Oct 2020 MariaDB 10.3.25 Stable (GA) Release Notes Changelog

10 Aug 2020 MariaDB 10.3.24 Stable (GA) Release Notes Changelog

12 May 2020 MariaDB 10.3.23 Stable (GA) Release Notes Changelog

28 Jan 2020 MariaDB 10.3.22 Stable (GA) Release Notes Changelog

11 Dec 2019 MariaDB 10.3.21 Stable (GA) Release Notes Changelog

8 Nov 2019 MariaDB 10.3.20 Stable (GA) Release Notes Changelog

5 Nov 2019 MariaDB 10.3.19 Stable (GA) Release Notes Changelog

11 Sep 2019 MariaDB 10.3.18 Stable (GA) Release Notes Changelog

31 Jul 2019 MariaDB 10.3.17 Stable (GA) Release Notes Changelog

17 Jun 2019 MariaDB 10.3.16 Stable (GA) Release Notes Changelog

14 May 2019 MariaDB 10.3.15 Stable (GA) Release Notes Changelog

2 Apr 2019 MariaDB 10.3.14 Stable (GA) Release Notes Changelog

21 Feb 2019 MariaDB 10.3.13 Stable (GA) Release Notes Changelog

7 Jan 2019 MariaDB 10.3.12 Stable (GA) Release Notes Changelog

20 Nov 2018 MariaDB 10.3.11 Stable (GA) Release Notes Changelog

4 Oct 2018 MariaDB 10.3.10 Stable (GA) Release Notes Changelog

15 Aug 2018 MariaDB 10.3.9 Stable (GA) Release Notes Changelog

2 Jul 2018 MariaDB 10.3.8 Stable (GA) Release Notes Changelog

25 May 2018 MariaDB 10.3.7 Stable (GA) Release Notes Changelog

16 Apr 2018 MariaDB 10.3.6 Release Candidate (RC) Release Notes Changelog

26 Feb 2018 MariaDB 10.3.5 Release Candidate (RC) Release Notes Changelog

18 Jan 2018 MariaDB 10.3.4 Beta Release Notes Changelog

23 Dec 2017 MariaDB 10.3.3 Beta Release Notes Changelog

9 Oct 2017 MariaDB 10.3.2 Alpha Release Notes Changelog

29 Aug 2017 MariaDB 10.3.1 Alpha Release Notes Changelog

16 Apr 2017 MariaDB 10.3.0 Alpha Release Notes Changelog

7.0.9 MariaDB Server 10.2
Changes & Improvements in MariaDB 10.2

Current Version: 10.2.44 | Status: Stable (GA) | Release Date: 20 May 2022 7

4091/4161

https://mariadb.com/kb/en/mariadb-10338-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-38-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-38-changelog/
https://mariadb.com/kb/en/mariadb-10337-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-37-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-37-changelog/
https://mariadb.com/kb/en/mariadb-10336-release-notes/
https://mariadb.com/kb/en/mariadb-10336-release-notes/
https://mariadb.com/kb/en/mariadb-10336-changelog/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-10335-release-notes/
https://mariadb.com/kb/en/mariadb-10335-changelog/
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://mariadb.com/kb/en/mariadb-10334-changelog/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-10333-release-notes/
https://mariadb.com/kb/en/mariadb-10333-changelog/
https://mariadb.com/kb/en/mariadb-10332-release-notes/
https://mariadb.com/kb/en/mariadb-10332-release-notes/
https://mariadb.com/kb/en/mariadb-10332-changelog/
https://mariadb.com/kb/en/mariadb-10331-release-notes/
https://mariadb.com/kb/en/mariadb-10331-release-notes/
https://mariadb.com/kb/en/mariadb-10331-changelog/
https://mariadb.com/kb/en/mariadb-10330-release-notes/
https://mariadb.com/kb/en/mariadb-10330-release-notes/
https://mariadb.com/kb/en/mariadb-10330-changelog/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10329-release-notes/
https://mariadb.com/kb/en/mariadb-10329-changelog/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10328-release-notes/
https://mariadb.com/kb/en/mariadb-10328-changelog/
https://mariadb.com/kb/en/mariadb-10327-release-notes/
https://mariadb.com/kb/en/mariadb-10327-release-notes/
https://mariadb.com/kb/en/mariadb-10327-changelog/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10326-release-notes/
https://mariadb.com/kb/en/mariadb-10326-changelog/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10325-release-notes/
https://mariadb.com/kb/en/mariadb-10325-changelog/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10324-release-notes/
https://mariadb.com/kb/en/mariadb-10324-changelog/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10323-release-notes/
https://mariadb.com/kb/en/mariadb-10323-changelog/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10322-release-notes/
https://mariadb.com/kb/en/mariadb-10322-changelog/
https://mariadb.com/kb/en/mariadb-10321-release-notes/
https://mariadb.com/kb/en/mariadb-10321-release-notes/
https://mariadb.com/kb/en/mariadb-10321-changelog/
https://mariadb.com/kb/en/mariadb-10320-release-notes/
https://mariadb.com/kb/en/mariadb-10320-release-notes/
https://mariadb.com/kb/en/mariadb-10320-changelog/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-10319-release-notes/
https://mariadb.com/kb/en/mariadb-10319-changelog/
https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10318-release-notes/
https://mariadb.com/kb/en/mariadb-10318-changelog/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10317-release-notes/
https://mariadb.com/kb/en/mariadb-10317-changelog/
https://mariadb.com/kb/en/mariadb-10316-release-notes/
https://mariadb.com/kb/en/mariadb-10316-release-notes/
https://mariadb.com/kb/en/mariadb-10316-changelog/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://mariadb.com/kb/en/mariadb-10315-release-notes/
https://mariadb.com/kb/en/mariadb-10315-changelog/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10314-release-notes/
https://mariadb.com/kb/en/mariadb-10314-changelog/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10313-release-notes/
https://mariadb.com/kb/en/mariadb-10313-changelog/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10312-release-notes/
https://mariadb.com/kb/en/mariadb-10312-changelog/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://mariadb.com/kb/en/mariadb-10311-release-notes/
https://mariadb.com/kb/en/mariadb-10311-changelog/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10310-release-notes/
https://mariadb.com/kb/en/mariadb-10310-changelog/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-1039-release-notes/
https://mariadb.com/kb/en/mariadb-1039-changelog/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/kb/en/mariadb-1038-release-notes/
https://mariadb.com/kb/en/mariadb-1038-changelog/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-release-notes/
https://mariadb.com/kb/en/mariadb-1037-changelog/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-release-notes/
https://mariadb.com/kb/en/mariadb-1036-changelog/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-release-notes/
https://mariadb.com/kb/en/mariadb-1035-changelog/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1034-release-notes/
https://mariadb.com/kb/en/mariadb-1034-changelog/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-release-notes/
https://mariadb.com/kb/en/mariadb-1033-changelog/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-release-notes/
https://mariadb.com/kb/en/mariadb-1032-changelog/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-release-notes/
https://mariadb.com/kb/en/mariadb-1031-changelog/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-release-notes/
https://mariadb.com/kb/en/mariadb-1030-changelog/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-10-2/

Release Notes - MariaDB 10.2 Series

MariaDB 10.2 Series Release Notes

Changelogs - MariaDB 10.2 Series

MariaDB 10.2 changelogs.

7.0.9.1 Changes & Improvements in MariaDB
10.2

MariaDB 10.2 is no longer maintained. Please use a more recent release .

The most recent release of MariaDB 10.2 is:

MariaDB 10.2.44 Stable (GA) Download Now

Contents
1. Implemented Features

1. InnoDB as Default

2. Syntax / General Features

3. Incompatible Changes

4. Triggers

5. Replication / Binary Log

6. GeoJSON / JSON

7. Information Schema

8. EXPLAIN

9. Optimizations

10. Compatibility

11. CONNECT

12. System Variables

13. Status Variables

14. Scripts

15. Other Changes

1. Security Vulnerabilities Fixed in MariaDB 10.2

2. Comparison with MySQL

3. List of All MariaDB 10.2 Releases

MariaDB 10.2 is a previous major stable version. The first stable release was in May 2017.

For details on upgrading from MariaDB 10.1, see Upgrading from MariaDB 10.1 to 10.2 .

The following lists the major new features in MariaDB 10.2:

Implemented Features

InnoDB as Default

InnoDB is now the default storage engine. Until MariaDB 10.1, MariaDB used the XtraDB storage engine as default.

XtraDB in 10.2 is not up to date with the latest features of InnoDB and cannot be used. As the InnoDB on disk format

is identical to XtraDB's this will not cause any problems when upgrading to MariaDB 10.2. See Why does MariaDB

10.2 use InnoDB instead of XtraDB?

Syntax / General Features

MyRocks storage engine added. (It has its own maturity level . In MariaDB 10.2.14 , it is considered Gamma)

(MDEV-9658)

Window functions have been introduced.

The SHOW CREATE USER statement was introduced

New CREATE USER options for limiting resource usage and tls/ssl

New ALTER USER statement

Non-recursive Common Table Expressions

Recursive Common Table Expressions (MDEV-9864)

4092/4161

https://mariadb.com/kb/en/release-notes-mariadb-102-series/
https://mariadb.com/kb/en/changelogs-mariadb-102-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://downloads.mariadb.org/mariadb/10.2.44/
https://mariadb.com/kb/en/upgrading-from-mariadb-101-to-mariadb-102/
https://mariadb.com/kb/en/why-does-mariadb-102-use-innodb-instead-of-xtradb/
https://mariadb.com/kb/en/release-criteria/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://jira.mariadb.org/browse/MDEV-9658
https://jira.mariadb.org/browse/MDEV-9864

New WITH statement. WITH is a common table expression that allows you to refer to a subquery expression many

times in a query (MDEV-8308 & MDEV-9864) 4 Original code from Galina Shalygina

Support for CHECK CONSTRAINT (MDEV-7563)

Support for DEFAULT with expressions (MDEV-10134)

BLOB and TEXT fields can now have a DEFAULT value

Lots of restrictions lifted for Virtual computed columns

Number of supported decimals in DECIMAL has increased from 30 to 38 (MDEV-10138)

Added catchall for list partitions (MDEV-8348)

Oracle-style EXECUTE IMMEDIATE statement (MDEV-10585)

PREPARE Statement/Dynamic SQL now understand most expressions (MDEV-10866 , MDEV-10709).

InnoDB tables now support spatial indexes

ed25519 authentication plugin (MDEV-12160)

Better InnoDB crash recovery progress reporting (MDEV-11027)

Improvements to InnoDB startup/shutdown to make it more robust

AWS Key Management plugin added for Windows, CentOS, RHEL, and Fedora packages

Atomic writes support made more general . Shannon system SSD cards are now supported.

Incompatible Changes

TokuDB has been split into a separate package, mariadb-plugin-tokudb.

SQL_MODE has been changed; in particular, NOT NULL fields with no default will no longer fall back to a dummy

value for inserts which do not specify a value for that field.

Replication from legacy MySQL servers may require setting binlog_checksum to NONE.

New reserved words: OVER, RECURSIVE, and ROWS.

Triggers

Multiple triggers for the same event (MDEV-6112)

The FOLLOWS/PRECEDES clauses have been added to the CREATE TRIGGER statement

Multiple triggers are now counted in the Executed_triggers status variable (MDEV-10915)

SHOW TRIGGERS and SHOW CREATE TRIGGER now include the date and time the trigger was created

Replication / Binary Log

DML_only flashback can rollback instances/databases/tables to an old snapshot (MDEV-10570)

New variable read_binlog_speed_limit permits restricting the speed at which the slave reads the binlog from the

master (MDEV-11064) 4 Original code from Tencent Game DBA Team, developed by chouryzhou.

Delayed replication is supported (MDEV-7145) 4 Backported from MySQL 5.6 by Kristian Nielsen funded by Booking.com.

Compression of events in the binary log is supported (MDEV-11065) 4 Original code from Tencent Game DBA Team, developed by

vinchen.

Default binary log format changed to mixed (MDEV-7635)

Default value of replicate_annotate_row_events changed to ON (MDEV-7635)

Default value of slave_net_timeout reduced to 60 seconds (MDEV-7635)

Default server_id changed from 0 to 1

GeoJSON / JSON

The JSON data type (an alias for LONGTEXT) was introduced.

JSON functions added (MDEV-9143)

Implement ST_AsGeoJSON and ST_GeomFromGeoJSON functions so the spatial features can be imported/exported

using GeoJSON format (MDEV-11042)

Information Schema

An information schema plugin to report all user variables, which creates the Information Schema USER_VARIABLES

Table (MDEV-7331)

Changes to the Information Schema COLUMNS table. Literals are now quoted in the COLUMN_DEFAULT column to

distinguish them from expressions (MDEV-13132), and two new columns added providing information about

generated (virtual, or computed) columns (MDEV-9255).

EXPLAIN

EXPLAIN FORMAT=JSON now shows outer_ref_condition field which contains the condition that the(?)

SELECT checks on each re-execution (MDEV-9652)

4093/4161

https://jira.mariadb.org/browse/MDEV-8308
https://jira.mariadb.org/browse/MDEV-9864
https://jira.mariadb.org/browse/MDEV-7563
https://jira.mariadb.org/browse/MDEV-10134
https://jira.mariadb.org/browse/MDEV-10138
https://jira.mariadb.org/browse/MDEV-8348
https://jira.mariadb.org/browse/MDEV-10585
https://jira.mariadb.org/browse/MDEV-10866
https://jira.mariadb.org/browse/MDEV-10709
https://jira.mariadb.org/browse/MDEV-12160
https://jira.mariadb.org/browse/MDEV-11027
http://www.shannon-sys.com
https://mariadb.com/kb/en/tokudb/
https://jira.mariadb.org/browse/MDEV-6112
https://jira.mariadb.org/browse/MDEV-10915
https://jira.mariadb.org/browse/MDEV-10570
https://jira.mariadb.org/browse/MDEV-11064
https://jira.mariadb.org/browse/MDEV-7145
https://jira.mariadb.org/browse/MDEV-11065
https://jira.mariadb.org/browse/MDEV-7635
https://jira.mariadb.org/browse/MDEV-7635
https://jira.mariadb.org/browse/MDEV-7635
https://jira.mariadb.org/browse/MDEV-9143
https://jira.mariadb.org/browse/MDEV-11042
https://jira.mariadb.org/browse/MDEV-7331
https://jira.mariadb.org/browse/MDEV-13132
https://jira.mariadb.org/browse/MDEV-9255
https://jira.mariadb.org/browse/MDEV-9652

EXPLAIN FORMAT=JSON now shows sort_key field which shows the sort criteria used by filesort operation.

(commit 2078392)

EXPLAIN used to show incorrect information about how the optimizer resolved ORDER BY clause or Distinct .

This was a long-standing problem with roots back in MySQL. Now, after MDEV-8646 and related fixes, the problem

doesn't exist anymore. (For test cases, see MDEV-7982 , MDEV-8857 , MDEV-7885 , MDEV-326)

Optimizations

Connection setup was made faster by moving creation of THD to new thread (MDEV-6150)

Pushdown conditions into non-mergeable views/derived tables (MDEV-9197 , condition-pushdown-into-derived-

table-optimization) 4 Original code from Galina Shalygina

ANALYZE TABLE has been re-implemented so as not to lock the entire table when collecting engine independent

statistics (MDEV-7901)

Internal CRC32 routines use the optimized implementation on Power8 4 MDEV-9872

Table cache can automatically partition itself as needed to reduce the contention (MDEV-10296)

Compatibility

88 new NO PAD collations added. In NO PAD collations, end spaces are significant in comparisons (MDEV-9711)

4 Original code from Daniil Medvedev

MariaDB now works when started with a MySQL 5.7.6+ data directory (MDEV-11170)

CONNECT

Zipped File Tables for the CONNECT storage engine (MDEV-11295)

The CONNECT engine now supports the JDBC Table type (MDEV-9765)

System Variables

For a list of all new system variables, see System Variables Added in MariaDB 10.2 . Variable changes include:

New variable to disable deadlock detection innodb_deadlock_detect

aria_recover has been renamed to aria_recover_options (MDEV-8542)

Default values of the aria_recover and myisam_recover_options system variables changed to BACKUP,QUICK

The server version can now be faked to work around dated applications that require a particular version string

(MDEV-7780)

slave_parallel_workers is now an alias for slave_parallel_threads

New status variables com_alter_user, com_multi and com_show_create_user

New variable for setting a directory for storing temporary non-tablespace InnoDB files, innodb_tmpdir

New variable read_binlog_speed_limit permits restricting the speed at which the slave reads the binlog from the

master (MDEV-11064)

innodb_log_files_in_group can now be set to 1 (MDEV-12061)

The thread pool now gives higher priority to connections that have an active transaction. This can be controlled with

the new thread_pool_prio_kickup_timer and thread_pool_priority system variables. (MDEV-10297)

Default value of group_concat_max_len changed to 1M (MDEV-7635)

Default value of sql_mode changed to

STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

(MDEV-7635) (MariaDB 10.2.4 and later)

Default value of innodb_compression_algorithm changed to zlib - this does not mean pages are now compressed

by default, see compression (MDEV-11838)

Default value of innodb_log_compressed_pages changed to ON from MariaDB 10.1.2 to MariaDB 10.1.25

(MDEV-7635 and MDEV-13247)

Default value of innodb_use_atomic_writes and innodb_use_trim changed to ON

The unused innodb_api_* variables have been removed (MDEV-12050)

tmp_disk_table_size was added to allow one to limit the size of temporary disk tables stored in tmpdir. At the same

time tmp_memory_table_size was added an alias for tmp_table_size. At some point we plan to deprecate

tmp_table_size . (MariaDB 10.2.7 and later).

Status Variables

For a list of all new status variables, see Status Variables Added in MariaDB 10.2 .

Scripts

Continuous binary log backup has been added to mysqlbinlog (MDEV-8713)
4094/4161

https://github.com/MariaDB/server/commit/2078392cc9bb49720ca3949731078af113ae4f43
https://jira.mariadb.org/browse/MDEV-8646
https://jira.mariadb.org/browse/MDEV-7982
https://jira.mariadb.org/browse/MDEV-8857
https://jira.mariadb.org/browse/MDEV-7885
https://jira.mariadb.org/browse/MDEV-326
https://jira.mariadb.org/browse/MDEV-6150
https://jira.mariadb.org/browse/MDEV-9197
https://jira.mariadb.org/browse/MDEV-7901
https://jira.mariadb.org/browse/MDEV-9872
https://jira.mariadb.org/browse/MDEV-10296
https://jira.mariadb.org/browse/MDEV-9711
https://jira.mariadb.org/browse/MDEV-11170
https://jira.mariadb.org/browse/MDEV-11295
https://jira.mariadb.org/browse/MDEV-9765
https://mariadb.com/kb/en/system-variables-added-in-mariadb-102/
https://jira.mariadb.org/browse/MDEV-8542
https://jira.mariadb.org/browse/MDEV-7780
https://jira.mariadb.org/browse/MDEV-11064
https://jira.mariadb.org/browse/MDEV-12061
https://jira.mariadb.org/browse/MDEV-10297
https://jira.mariadb.org/browse/MDEV-7635
https://jira.mariadb.org/browse/MDEV-7635
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://jira.mariadb.org/browse/MDEV-11838
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-10125-release-notes/
https://jira.mariadb.org/browse/MDEV-7635
https://jira.mariadb.org/browse/MDEV-13247
https://jira.mariadb.org/browse/MDEV-12050
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/status-variables-added-in-mariadb-102/
https://jira.mariadb.org/browse/MDEV-8713

mysql_zap and mysqlbug have been removed (MDEV-7376 , MDEV-8654)

Other Changes

Added support for OpenSSL 1.1 and LibreSSL (MDEV-10332)

Persistent AUTO_INCREMENT for InnoDB (MDEV-6076)

Support COM_RESET_CONNECTION (MDEV-10340)

"fast mutexes" have been removed. These aren't faster than normal mutexes, and have been disabled by default for

years (MDEV-8111)

Old GPL client library is gone; now MariaDB Server comes with the LGPL Connector/C client library (MDEV-9055)

MariaDB is no longer compiled with jemalloc

TokuDB is now a separate package, not part of the server RPM (because TokuDB still needs jemalloc).

Upgrading to a new major release no longer requires setting innodb_fast_shutdown to 0 . Omitting it can make the

upgrade process a lot faster. (MDEV-12289)

Security Vulnerabilities Fixed in MariaDB 10.2

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2022-32088 : MariaDB 10.2.44

CVE-2022-32083 : MariaDB 10.2.44

CVE-2022-31624 : MariaDB 10.2.41

CVE-2022-27445 : MariaDB 10.2.44

CVE-2022-27387 : MariaDB 10.2.44

CVE-2022-27386 : MariaDB 10.2.44

CVE-2022-27384 : MariaDB 10.2.44

CVE-2022-27383 : MariaDB 10.2.44

CVE-2022-27381 : MariaDB 10.2.44

CVE-2022-27380 : MariaDB 10.2.44

CVE-2022-27378 : MariaDB 10.2.44

CVE-2022-27377 : MariaDB 10.2.44

CVE-2022-24052 : MariaDB 10.2.42

CVE-2022-24051 : MariaDB 10.2.42

CVE-2022-24050 : MariaDB 10.2.42

CVE-2022-24048 : MariaDB 10.2.42

CVE-2022-21595 : MariaDB 10.2.42

CVE-2022-21451 : MariaDB 10.2.38

CVE-2022-21427 : MariaDB 10.2.44

CVE-2022-0778 : MariaDB 10.2.42

CVE-2021-46669 : MariaDB 10.2.44

CVE-2021-46668 : MariaDB 10.2.43

CVE-2021-46667 : MariaDB 10.2.41

CVE-2021-46666 : MariaDB 10.2.39

CVE-2021-46665 : MariaDB 10.2.43

CVE-2021-46664 : MariaDB 10.2.43

CVE-2021-46663 : MariaDB 10.2.43

CVE-2021-46661 : MariaDB 10.2.43

CVE-2021-46659 : MariaDB 10.2.42

CVE-2021-46658 : MariaDB 10.2.40

CVE-2021-46657 : MariaDB 10.2.39

CVE-2021-35604 : MariaDB 10.2.41

CVE-2021-27928 : MariaDB 10.2.37

CVE-2021-2389 : MariaDB 10.2.40

CVE-2021-2372 : MariaDB 10.2.40

CVE-2021-2194 : MariaDB 10.2.35

CVE-2021-2180 : MariaDB 10.2.38

CVE-2021-2174 : MariaDB 10.2.18

CVE-2021-2166 : MariaDB 10.2.38

CVE-2021-2154 : MariaDB 10.2.38

CVE-2021-2144 : MariaDB 10.2.28

CVE-2021-2022 : MariaDB 10.2.33

CVE-2021-2011 : MariaDB 10.2.15

CVE-2021-2007 : MariaDB 10.2.26

CVE-2020-2922 : MariaDB 10.2.26

4095/4161

https://mariadb.com/kb/en/mysql_zap/
https://jira.mariadb.org/browse/MDEV-7376
https://jira.mariadb.org/browse/MDEV-8654
https://jira.mariadb.org/browse/MDEV-10332
https://jira.mariadb.org/browse/MDEV-6076
https://jira.mariadb.org/browse/MDEV-10340
https://jira.mariadb.org/browse/MDEV-8111
https://jira.mariadb.org/browse/MDEV-9055
https://jira.mariadb.org/browse/MDEV-12289
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32088
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32083
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31624
https://mariadb.com/kb/en/mariadb-10-2-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27445
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27387
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27386
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27384
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27383
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27381
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27380
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27378
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27377
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24052
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24051
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24050
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-24048
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21595
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21451
https://mariadb.com/kb/en/mariadb-10-2-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21427
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0778
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46669
https://mariadb.com/kb/en/mariadb-10-2-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46668
https://mariadb.com/kb/en/mariadb-10-2-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46667
https://mariadb.com/kb/en/mariadb-10-2-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46666
https://mariadb.com/kb/en/mariadb-10-2-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46665
https://mariadb.com/kb/en/mariadb-10-2-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46664
https://mariadb.com/kb/en/mariadb-10-2-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46663
https://mariadb.com/kb/en/mariadb-10-2-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46661
https://mariadb.com/kb/en/mariadb-10-2-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46659
https://mariadb.com/kb/en/mariadb-10-2-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46658
https://mariadb.com/kb/en/mariadb-10-2-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46657
https://mariadb.com/kb/en/mariadb-10-2-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35604
https://mariadb.com/kb/en/mariadb-10-2-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-27928
https://mariadb.com/kb/en/mariadb-10-2-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2389
https://mariadb.com/kb/en/mariadb-10-2-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2372
https://mariadb.com/kb/en/mariadb-10-2-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2194
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2180
https://mariadb.com/kb/en/mariadb-10-2-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2174
https://mariadb.com/kb/en/mariadb-10-2-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2166
https://mariadb.com/kb/en/mariadb-10-2-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2154
https://mariadb.com/kb/en/mariadb-10-2-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
https://mariadb.com/kb/en/mariadb-10-2-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
https://mariadb.com/kb/en/mariadb-10-2-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2011
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/

CVE-2020-28912 : MariaDB 10.2.35

CVE-2020-2814 : MariaDB 10.2.32

CVE-2020-2812 : MariaDB 10.2.32

CVE-2020-2780 : MariaDB 10.2.28

CVE-2020-2760 : MariaDB 10.2.32

CVE-2020-2752 : MariaDB 10.2.32

CVE-2020-2574 : MariaDB 10.2.31

CVE-2020-15180 : MariaDB 10.2.34

CVE-2020-14812 : MariaDB 10.2.35

CVE-2020-14789 : MariaDB 10.2.35

CVE-2020-14776 : MariaDB 10.2.35

CVE-2020-14765 : MariaDB 10.2.35

CVE-2020-14550 : MariaDB 10.2.15

CVE-2020-13249 : MariaDB 10.2.32

CVE-2019-2974 : MariaDB 10.2.28

CVE-2019-2938 : MariaDB 10.2.28

CVE-2019-2805 : MariaDB 10.2.26

CVE-2019-2758 : MariaDB 10.2.26

CVE-2019-2740 : MariaDB 10.2.26

CVE-2019-2739 : MariaDB 10.2.26

CVE-2019-2737 : MariaDB 10.2.26

CVE-2019-2628 : MariaDB 10.2.24

CVE-2019-2627 : MariaDB 10.2.24

CVE-2019-2614 : MariaDB 10.2.24

CVE-2019-2537 : MariaDB 10.2.22

CVE-2019-2510 : MariaDB 10.2.22

CVE-2019-2503 : MariaDB 10.2.18

CVE-2019-2455 : MariaDB 10.2.15

CVE-2018-3284 : MariaDB 10.2.19

CVE-2018-3282 : MariaDB 10.2.19

CVE-2018-3277 : MariaDB 10.2.19

CVE-2018-3251 : MariaDB 10.2.19

CVE-2018-3200 : MariaDB 10.2.19

CVE-2018-3185 : MariaDB 10.2.19

CVE-2018-3174 : MariaDB 10.2.19

CVE-2018-3173 : MariaDB 10.2.19

CVE-2018-3162 : MariaDB 10.2.19

CVE-2018-3156 : MariaDB 10.2.19

CVE-2018-3143 : MariaDB 10.2.19

CVE-2018-3133 : MariaDB 10.2.12

CVE-2018-3081 : MariaDB 10.2.15

CVE-2018-3066 : MariaDB 10.2.17

CVE-2018-3064 : MariaDB 10.2.17

CVE-2018-3063 : MariaDB 10.2.17

CVE-2018-3060 : MariaDB 10.2.17

CVE-2018-3058 : MariaDB 10.2.17

CVE-2018-2819 : MariaDB 10.2.15

CVE-2018-2817 : MariaDB 10.2.15

CVE-2018-2813 : MariaDB 10.2.15

CVE-2018-2810 : MariaDB 10.2.15

CVE-2018-2787 : MariaDB 10.2.15

CVE-2018-2786 : MariaDB 10.2.15

CVE-2018-2784 : MariaDB 10.2.15

CVE-2018-2782 : MariaDB 10.2.15

CVE-2018-2781 : MariaDB 10.2.15

CVE-2018-2777 : MariaDB 10.2.15

CVE-2018-2771 : MariaDB 10.2.15

CVE-2018-2767 : MariaDB 10.2.15

CVE-2018-2766 : MariaDB 10.2.15

CVE-2018-2761 : MariaDB 10.2.15

CVE-2018-2759 : MariaDB 10.2.15

CVE-2018-2755 : MariaDB 10.2.15

CVE-2018-2668 : MariaDB 10.2.13

CVE-2018-2665 : MariaDB 10.2.13

CVE-2018-2640 : MariaDB 10.2.13

CVE-2018-2622 : MariaDB 10.2.13

CVE-2018-2612 : MariaDB 10.2.13

4096/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2814
https://mariadb.com/kb/en/mariadb-10-2-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://mariadb.com/kb/en/mariadb-10-2-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://mariadb.com/kb/en/mariadb-10-2-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2760
https://mariadb.com/kb/en/mariadb-10-2-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
https://mariadb.com/kb/en/mariadb-10-2-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
https://mariadb.com/kb/en/mariadb-10-2-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
https://mariadb.com/kb/en/mariadb-10-2-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14789
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14776
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://mariadb.com/kb/en/mariadb-10-2-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14550
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13249
https://mariadb.com/kb/en/mariadb-10-2-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
https://mariadb.com/kb/en/mariadb-10-2-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2938
https://mariadb.com/kb/en/mariadb-10-2-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2758
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
https://mariadb.com/kb/en/mariadb-10-2-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2628
https://mariadb.com/kb/en/mariadb-10-2-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
https://mariadb.com/kb/en/mariadb-10-2-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
https://mariadb.com/kb/en/mariadb-10-2-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://mariadb.com/kb/en/mariadb-10-2-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2510
https://mariadb.com/kb/en/mariadb-10-2-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2503
https://mariadb.com/kb/en/mariadb-10-2-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2455
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3284
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3282
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3277
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3200
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3185
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3174
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3173
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3162
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3133
https://mariadb.com/kb/en/mariadb-10-2-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3081
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3066
https://mariadb.com/kb/en/mariadb-10-2-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://mariadb.com/kb/en/mariadb-10-2-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3063
https://mariadb.com/kb/en/mariadb-10-2-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3060
https://mariadb.com/kb/en/mariadb-10-2-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://mariadb.com/kb/en/mariadb-10-2-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2819
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2817
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2810
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2786
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2782
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2781
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2777
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2771
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2767
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2766
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2761
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2759
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2755
https://mariadb.com/kb/en/mariadb-10-2-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2668
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2665
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2622
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/

CVE-2018-2562 : MariaDB 10.2.13

CVE-2017-3653 : MariaDB 10.2.8

CVE-2017-3641 : MariaDB 10.2.8

CVE-2017-3636 : MariaDB 10.2.8

CVE-2017-3464 : MariaDB 10.2.6

CVE-2017-3456 : MariaDB 10.2.6

CVE-2017-3453 : MariaDB 10.2.6

CVE-2017-3313 : MariaDB 10.2.5

CVE-2017-3309 : MariaDB 10.2.6

CVE-2017-3308 : MariaDB 10.2.6

CVE-2017-3302 : MariaDB 10.2.5

CVE-2017-3257 : MariaDB 10.2.8

CVE-2017-15365 : MariaDB 10.2.10

CVE-2017-10384 : MariaDB 10.2.8

CVE-2017-10379 : MariaDB 10.2.8

CVE-2017-10378 : MariaDB 10.2.10

CVE-2017-10365 : MariaDB 10.2.8

CVE-2017-10320 : MariaDB 10.2.8

CVE-2017-10286 : MariaDB 10.2.8

CVE-2017-10268 : MariaDB 10.2.10

CVE-2016-9843 : MariaDB 10.2.19

Comparison with MySQL
Incompatibilities and Feature Differences Between MariaDB 10.2 and MySQL 5.7

System Variable Differences Between MariaDB 10.2 and MySQL 5.7

Function Differences Between MariaDB 10.2 and MySQL 5.7

System Variable Differences Between MariaDB 10.2 and MySQL 5.6

Function Differences Between MariaDB 10.2 and MySQL 5.6

List of All MariaDB 10.2 Releases

Date Release Status Release Notes Changelog

20 May 2022 MariaDB 10.2.44 Stable (GA) Release Notes Changelog

12 Feb 2022 MariaDB 10.2.43 Stable (GA) Release Notes Changelog

9 Feb 2022 MariaDB 10.2.42 Stable (GA) Release Notes Changelog

8 Nov 2021 MariaDB 10.2.41 Stable (GA) Release Notes Changelog

6 Aug 2021 MariaDB 10.2.40 Stable (GA) Release Notes Changelog

23 Jun 2021 MariaDB 10.2.39 Stable (GA) Release Notes Changelog

7 May 2021 MariaDB 10.2.38 Stable (GA) Release Notes Changelog

22 Feb 2021 MariaDB 10.2.37 Stable (GA) Release Notes Changelog

11 Nov 2020 MariaDB 10.2.36 Stable (GA) Release Notes Changelog

3 Nov 2020 MariaDB 10.2.35 Stable (GA) Release Notes Changelog

7 Oct 2020 MariaDB 10.2.34 Stable (GA) Release Notes Changelog

10 Aug 2020 MariaDB 10.2.33 Stable (GA) Release Notes Changelog

12 May 2020 MariaDB 10.2.32 Stable (GA) Release Notes Changelog

28 Jan 2020 MariaDB 10.2.31 Stable (GA) Release Notes Changelog

11 Dec 2019 MariaDB 10.2.30 Stable (GA) Release Notes Changelog

8 Nov 2019 MariaDB 10.2.29 Stable (GA) Release Notes Changelog

5 Nov 2019 MariaDB 10.2.28 Stable (GA) Release Notes Changelog

11 Sep 2019 MariaDB 10.2.27 Stable (GA) Release Notes Changelog

31 Jul 2019 MariaDB 10.2.26 Stable (GA) Release Notes Changelog

17 Jun 2019 MariaDB 10.2.25 Stable (GA) Release Notes Changelog

4097/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://mariadb.com/kb/en/mariadb-10-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3641
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3636
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://mariadb.com/kb/en/mariadb-10-2-6-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3456
https://mariadb.com/kb/en/mariadb-10-2-6-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3453
https://mariadb.com/kb/en/mariadb-10-2-6-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3313
https://mariadb.com/kb/en/mariadb-10-2-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3309
https://mariadb.com/kb/en/mariadb-10-2-6-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3308
https://mariadb.com/kb/en/mariadb-10-2-6-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3302
https://mariadb.com/kb/en/mariadb-10-2-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3257
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15365
https://mariadb.com/kb/en/mariadb-10-2-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10384
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10379
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10378
https://mariadb.com/kb/en/mariadb-10-2-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10365
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10320
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10286
https://mariadb.com/kb/en/mariadb-10-2-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10268
https://mariadb.com/kb/en/mariadb-10-2-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9843
https://mariadb.com/kb/en/mariadb-10-2-19-release-notes/
https://mariadb.com/kb/en/incompatibilities-and-feature-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/function-differences-between-mariadb-102-and-mysql-57/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-102-and-mysql-56/
https://mariadb.com/kb/en/function-differences-between-mariadb-102-and-mysql-56/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://mariadb.com/kb/en/mariadb-10244-release-notes/
https://mariadb.com/kb/en/mariadb-10244-changelog/
https://mariadb.com/kb/en/mariadb-10243-release-notes/
https://mariadb.com/kb/en/mariadb-10243-release-notes/
https://mariadb.com/kb/en/mariadb-10243-changelog/
https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10242-release-notes/
https://mariadb.com/kb/en/mariadb-10242-changelog/
https://mariadb.com/kb/en/mariadb-10241-release-notes/
https://mariadb.com/kb/en/mariadb-10241-release-notes/
https://mariadb.com/kb/en/mariadb-10241-changelog/
https://mariadb.com/kb/en/mariadb-10240-release-notes/
https://mariadb.com/kb/en/mariadb-10240-release-notes/
https://mariadb.com/kb/en/mariadb-10240-changelog/
https://mariadb.com/kb/en/mariadb-10239-release-notes/
https://mariadb.com/kb/en/mariadb-10239-release-notes/
https://mariadb.com/kb/en/mariadb-10239-changelog/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10238-release-notes/
https://mariadb.com/kb/en/mariadb-10238-changelog/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10237-release-notes/
https://mariadb.com/kb/en/mariadb-10237-changelog/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10236-release-notes/
https://mariadb.com/kb/en/mariadb-10236-changelog/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10235-release-notes/
https://mariadb.com/kb/en/mariadb-10235-changelog/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10234-release-notes/
https://mariadb.com/kb/en/mariadb-10234-changelog/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10233-release-notes/
https://mariadb.com/kb/en/mariadb-10233-changelog/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10232-release-notes/
https://mariadb.com/kb/en/mariadb-10232-changelog/
https://mariadb.com/kb/en/mariadb-10231-release-notes/
https://mariadb.com/kb/en/mariadb-10231-release-notes/
https://mariadb.com/kb/en/mariadb-10231-changelog/
https://mariadb.com/kb/en/mariadb-10230-release-notes/
https://mariadb.com/kb/en/mariadb-10230-release-notes/
https://mariadb.com/kb/en/mariadb-10230-changelog/
https://mariadb.com/kb/en/mariadb-10229-release-notes/
https://mariadb.com/kb/en/mariadb-10229-release-notes/
https://mariadb.com/kb/en/mariadb-10229-changelog/
https://mariadb.com/kb/en/mariadb-10228-release-notes/
https://mariadb.com/kb/en/mariadb-10228-release-notes/
https://mariadb.com/kb/en/mariadb-10228-changelog/
https://mariadb.com/kb/en/mariadb-10227-release-notes/
https://mariadb.com/kb/en/mariadb-10227-release-notes/
https://mariadb.com/kb/en/mariadb-10227-changelog/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10226-release-notes/
https://mariadb.com/kb/en/mariadb-10226-changelog/
https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/kb/en/mariadb-10225-release-notes/
https://mariadb.com/kb/en/mariadb-10225-changelog/

9 May 2019 MariaDB 10.2.24 Stable (GA) Release Notes Changelog

25 Mar 2019 MariaDB 10.2.23 Stable (GA) Release Notes Changelog

11 Feb 2019 MariaDB 10.2.22 Stable (GA) Release Notes Changelog

2 Jan 2019 MariaDB 10.2.21 Stable (GA) Release Notes Changelog

24 Dec 2018 MariaDB 10.2.20 Stable (GA) Release Notes Changelog

19 Nov 2018 MariaDB 10.2.19 Stable (GA) Release Notes Changelog

25 Sep 2018 MariaDB 10.2.18 Stable (GA) Release Notes Changelog

14 Aug 2018 MariaDB 10.2.17 Stable (GA) Release Notes Changelog

26 Jun 2018 MariaDB 10.2.16 Stable (GA) Release Notes Changelog

17 May 2018 MariaDB 10.2.15 Stable (GA) Release Notes Changelog

27 Mar 2018 MariaDB 10.2.14 Stable (GA) Release Notes Changelog

13 Feb 2018 MariaDB 10.2.13 Stable (GA) Release Notes Changelog

4 Jan 2018 MariaDB 10.2.12 Stable (GA) Release Notes Changelog

28 Nov 2017 MariaDB 10.2.11 Stable (GA) Release Notes Changelog

31 Oct 2017 MariaDB 10.2.10 Stable (GA) Release Notes Changelog

27 Sep 2017 MariaDB 10.2.9 Stable (GA) Release Notes Changelog

18 Aug 2017 MariaDB 10.2.8 Stable (GA) Release Notes Changelog

12 Jul 2017 MariaDB 10.2.7 Stable (GA) Release Notes Changelog

23 May 2017 MariaDB 10.2.6 Stable (GA) Release Notes Changelog

5 Apr 2017 MariaDB 10.2.5 RC Release Notes Changelog

17 Feb 2017 MariaDB 10.2.4 RC Release Notes Changelog

24 Dec 2016 MariaDB 10.2.3 Beta Release Notes Changelog

27 Sep 2016 MariaDB 10.2.2 Beta Release Notes Changelog

4 Jul 2016 MariaDB 10.2.1 Alpha Release Notes Changelog

18 Apr 2016 MariaDB 10.2.0 Alpha Release Notes Changelog

7.0.10 MariaDB Server 10.1
Changes & Improvements in MariaDB 10.1

Current Version: 10.1.48 | Status: Stable (GA) | Release Date: 3 Nov 2020

Release Notes - MariaDB 10.1 Series

MariaDB 10.1 Series Release Notes

Changelogs - MariaDB 10.1 Series

MariaDB 10.1 changelogs.

There are 1 related questions .

6

7.0.10.1 Changes & Improvements in MariaDB
10.1

MariaDB 10.1 is no longer supported. Please use a more recent release .

The most recent release of MariaDB 10.1 is:

4098/4161

https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10224-release-notes/
https://mariadb.com/kb/en/mariadb-10224-changelog/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10223-release-notes/
https://mariadb.com/kb/en/mariadb-10223-changelog/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10222-release-notes/
https://mariadb.com/kb/en/mariadb-10222-changelog/
https://mariadb.com/kb/en/mariadb-10221-release-notes/
https://mariadb.com/kb/en/mariadb-10221-release-notes/
https://mariadb.com/kb/en/mariadb-10221-changelog/
https://mariadb.com/kb/en/mariadb-10220-release-notes/
https://mariadb.com/kb/en/mariadb-10220-release-notes/
https://mariadb.com/kb/en/mariadb-10220-changelog/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10219-release-notes/
https://mariadb.com/kb/en/mariadb-10219-changelog/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10218-release-notes/
https://mariadb.com/kb/en/mariadb-10218-changelog/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10217-release-notes/
https://mariadb.com/kb/en/mariadb-10217-changelog/
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-10216-release-notes/
https://mariadb.com/kb/en/mariadb-10216-changelog/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10215-release-notes/
https://mariadb.com/kb/en/mariadb-10215-changelog/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-10214-release-notes/
https://mariadb.com/kb/en/mariadb-10214-changelog/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-10213-release-notes/
https://mariadb.com/kb/en/mariadb-10213-changelog/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10212-release-notes/
https://mariadb.com/kb/en/mariadb-10212-changelog/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10211-release-notes/
https://mariadb.com/kb/en/mariadb-10211-changelog/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-10210-release-notes/
https://mariadb.com/kb/en/mariadb-10210-changelog/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1029-release-notes/
https://mariadb.com/kb/en/mariadb-1029-changelog/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-release-notes/
https://mariadb.com/kb/en/mariadb-1028-changelog/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-release-notes/
https://mariadb.com/kb/en/mariadb-1027-changelog/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-release-notes/
https://mariadb.com/kb/en/mariadb-1026-changelog/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1025-release-notes/
https://mariadb.com/kb/en/mariadb-1025-changelog/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-release-notes/
https://mariadb.com/kb/en/mariadb-1024-changelog/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-release-notes/
https://mariadb.com/kb/en/mariadb-1023-changelog/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-release-notes/
https://mariadb.com/kb/en/mariadb-1022-changelog/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-release-notes/
https://mariadb.com/kb/en/mariadb-1021-changelog/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-1020-release-notes/
https://mariadb.com/kb/en/mariadb-1020-changelog/
https://mariadb.com/kb/en/release-notes-mariadb-101-series/
https://mariadb.com/kb/en/changelogs-mariadb-101-series/
https://mariadb.com/kb/en/mariadb-server-10-1/+questions/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

MariaDB 10.1.48 Stable (GA) Download Now

Contents
1. Implemented Features

1. Galera

2. Encryption

3. Page Compression

4. Replication

5. Roles

6. Optimization

7. GIS

8. Syntax

9. XtraDB / InnoDB

10. Collations

11. Variables

12. Plugins

13. Security

1. Security Vulnerabilities Fixed in MariaDB 10.1

2. Comparison with MySQL

3. List of all MariaDB 10.1 releases

MariaDB 10.1 is a previous stable version of MariaDB. The first stable release was in October 2014.

For details on upgrading from MariaDB 10.0, see Upgrading from MariaDB 10.0 to 10.1 .

The following lists the major new features in MariaDB 10.1:

Implemented Features

Galera

Galera, a true multi-master solution, is a standard part of MariaDB 10.1.

Two new Information Schema tables for examining wsrep information, WSREP_MEMBERSHIP and

WSREP_STATUS (MDEV-7053)

Encryption

Table, Tablespace and log Encryption.

Page Compression

InnoDB/XtraDB Page Compression

Page compression for FusionIO.

Replication

Optimistic mode of in-order parallel replication (MDEV-6676)

domain_id based replication filters - see CHANGE MASTER TO (MDEV-6593)

Enhanced semisync replication; Wait for at least one slave to acknowledge transaction before committing (MDEV-

162).

Triggers can now be run on the slave for row-based events.

Dump Thread Enhancements from Google. Makes multiple slave setups faster by allowing concurrent reading of

binary log. (MDEV-7257)

Commits in certain instances in parallel replication complete immediately, avoiding losing throughput when many

transactions need conflicting locks. See binlog_commit_wait_count.

RESET_MASTER is extended with TO # which allows one to specify the number of the first binary log. (MDEV-8469

)

Due to the implementation of SQL standards-compliant behavior when dealing with Primary Keys with Nullable

Columns, in certain edge cases, there may be replication issues when replicating from a MariaDB 10.0 master to a

MariaDB 10.1 slave using statement-based replication. See MDEV-12248 .

Roles

SET DEFAULT ROLE (MDEV-5210).

4099/4161

https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://downloads.mariadb.org/mariadb/10.1.48/
https://mariadb.com/kb/en/upgrading-from-mariadb-100-to-101/
https://jira.mariadb.org/browse/MDEV-7053
https://jira.mariadb.org/browse/MDEV-6676
https://jira.mariadb.org/browse/MDEV-6593
https://jira.mariadb.org/browse/MDEV-162
https://jira.mariadb.org/browse/MDEV-7257
https://jira.mariadb.org/browse/MDEV-8469
https://jira.mariadb.org/browse/MDEV-12248
https://jira.mariadb.org/browse/MDEV-5210

New columns for the INFORMATION_SCHEMA.APPLICABLE_ROLES table.

Optimization

ORDER BY optimization is improved by several fixes for real-world cases.

Don't create frm files for temporary tables (MDEV-4260).

MAX_STATEMENT_TIME can be used to automatically abort long running queries. (MDEV-4427).

UNION ALL works without usage of a temporary table (MDEV-334). The feature was backported from MySQL 5.7

Scalability fixes (MDEV-7004). Up to 60% higher throughput in sysbench benchmarks on Power8.

Make simple queries faster as we call malloc() fewer times.

Automatic discovery of performance schema tables (simpler mysql_install_db code). (MDEV-4262), Performance

Schema tables no longer use .frm files.

Other Webscale patches (MDEV-6039)

MDEV-7728 xid cache scalability was significantly improved (by using lock-free hash)

GIS

Support for Spatial Reference systems for the GIS data (MDEV-60), new REF_SYSTEM_ID column attribute can be

used to specify Spatial Reference System ID for columns of spatial data types:

More functions from the OGC standard added (MDEV-4045):

ST_Boundary

ST_ConvexHull

ST_IsRing

ST_PointOnSurface

ST_Relate

INFORMATION_SCHEMA.GEOMETRY_COLUMNS table.

INFORMATION_SCHEMA.SPATIAL_REF_SYS table.

Syntax

Consistent support for IF EXISTS , IF NOT EXISTS , and OR REPLACE clauses:

CREATE DATABASE (MDEV-7280)

CREATE FUNCTION UDF (MDEV-7283)

CREATE ROLE (MDEV-7288)

CREATE SERVER (MDEV-7285)

CREATE USER (MDEV-7288)

CREATE VIEW (MDEV-7283)

DROP ROLE (MDEV-7288)

DROP USER (MDEV-7288)

CREATE EVENT and DROP EVENT (MDEV-7281)

CREATE INDEX and DROP INDEX (MDEV-7284)

CREATE TRIGGER and DROP TRIGGER (MDEV-7286)

Information Schema plugins can now support SHOW and FLUSH statements . New statements include:

SHOW QUERY_RESPONSE_TIME

FLUSH QUERY_RESPONSE_TIME

SHOW LOCALES

New columns for the INFORMATION_SCHEMA.APPLICABLE_ROLES and INFORMATION_SCHEMA.VIEWS

tables.

ANALYZE statement provides output that looks like EXPLAIN output, but also includes data from the query execution

(how many rows were actually read, etc).

EXPLAIN FORMAT=JSON is a re-implementation of similar feature in MySQL 5.6

ANALYZE FORMAT=JSON produces detailed information about the statement execution

GET_LOCK() now supports microseconds in the timeout, no longer rounding fractions to the nearest integer (MDEV-

4018)

Compound statements can be used outside of stored programs.

The number of rows affected by a slow UPDATE or DELETE is now recorded in the slow query log - see also

mysql.slow_log Table. (MDEV-4412)

SQL standards-compliant behavior when dealing with Primary Keys with Nullable Columns. Note that this could cause

replication issues in certain edge cases when replicating from a MariaDB 10.0 master to a MariaDB 10.1 slave. using

statement-based replication. See MDEV-12248 .

Explicit or implicit casts from MAX(string) to INT, DOUBLE or DECIMAL now produce warnings (MDEV-8852).

XtraDB / InnoDB

Allow up to 64K pages in InnoDB (old limit was 16K) (MDEV-6075).

4100/4161

https://jira.mariadb.org/browse/MDEV-4260
https://jira.mariadb.org/browse/MDEV-4427
https://jira.mariadb.org/browse/MDEV-334
https://jira.mariadb.org/browse/MDEV-7004
https://jira.mariadb.org/browse/MDEV-4262
https://jira.mariadb.org/browse/MDEV-6039
https://jira.mariadb.org/browse/MDEV-7728
https://jira.mariadb.org/browse/MDEV-60
http://www.opengeospatial.org/
https://jira.mariadb.org/browse/MDEV-4045
https://jira.mariadb.org/browse/MDEV-7280
https://jira.mariadb.org/browse/MDEV-7283
https://jira.mariadb.org/browse/MDEV-7288
https://jira.mariadb.org/browse/MDEV-7285
https://jira.mariadb.org/browse/MDEV-7288
https://jira.mariadb.org/browse/MDEV-7283
https://jira.mariadb.org/browse/MDEV-7288
https://jira.mariadb.org/browse/MDEV-7288
https://jira.mariadb.org/browse/MDEV-7281
https://jira.mariadb.org/browse/MDEV-7284
https://jira.mariadb.org/browse/MDEV-7286
https://mariadb.com/kb/en/information-schema-plugins-show-and-flush-statements/
https://jira.mariadb.org/browse/MDEV-4018
https://jira.mariadb.org/browse/MDEV-4412
https://jira.mariadb.org/browse/MDEV-12248
https://jira.mariadb.org/browse/MDEV-8852
https://jira.mariadb.org/browse/MDEV-6075

The Facebook/Kakao defragmentation patch (see Defragmenting InnoDB Tablespaces) which uses OPTIMIZE

TABLE to defragment InnoDB tablespaces).

Collations

Added the utf8_thai_520_w2 , utf8mb4_thai_520_w2 , ucs2_thai_520_w2 , utf16_thai_520_w2 and

utf32_thai_520_w2 collations.

Variables

For a list of all new variables, see System Variables Added in MariaDB 10.1 and Status Variables Added in MariaDB 10.1

. Some of these, and other variable-related changes, include:

INFORMATION_SCHEMA.SYSTEM_VARIABLES gives information, like description and value origin, for system

variables (MDEV-6138).

MDEV-6858 New server variable enforce_storage_engine

New status variables to show the number of grants on different objects (see Status Variables Added in MariaDB 10.1

)

Default size of query_alloc_block_size changed from 8192 to 16384 and query_prealloc_size from 8192 to

24576 to avoid the need for simple queries with one join to call my_malloc .

Added variable default-tmp-storage-engine (From MySQL 5.6) (MDEV-6107).

SET STATEMENT - set variables for the duration of the query (MDEV-5231). This is a backport of Per-query

Variable Statement feature of Percona Server 5.6 (which, in turn, is based in MySQL GSoC 2009 project by Joseph

Lukas), with many bugs fixed.

--mysql56-temporal-format option to use the MySQL-5.6 low level formats to store TIME, DATETIME and

TIMESTAMP types. (MDEV-5528)

Backport innodb_default_row_format (MDEV-14904)

mysqld --help --verbose now shows valid variables for ENUM variables. (MDEV-6137)

MDEV-6981 New status variables to track MASTER_GTID_WAIT time.

MDEV-7198 New status variable Slave_skipped_errors.

--silent-startup mysqld option. If specified, mysqld does not print Notes to the error log during startup.

Plugins

Password validation plugin API (MDEV-6431).

simple_password_check password validation plugin. It can enforce a minimum password length and guarantee that a

password contains at least a specified number of uppercase and lowercase letters, digits, and punctuation characters.

cracklib_password_check password validation plugin. It only allows passwords that are strong enough to pass

CrackLib test. This is the same test that pam_cracklib.so does, installed by default on many Linux distributions.

ed25519 authentication plugin for traditional password-based authentication. A new, secure alternative to the old

mysql_native_password plugin.

Security

Enhance security using special compilation options - MariaDB is now compiled with security hardening options by

default. It is an additional protection layer that makes new, yet unknown, security vulnerabilities more difficult to

exploit. (MDEV-5730)

Security Vulnerabilities Fixed in MariaDB 10.1

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2021-2144 : MariaDB 10.1.42

CVE-2021-2022 : MariaDB 10.1.46

CVE-2021-2011 : MariaDB 10.1.33

CVE-2021-2007 : MariaDB 10.1.41

CVE-2020-2922 : MariaDB 10.1.41

CVE-2020-28912 : MariaDB 10.1.48

CVE-2020-2814 : MariaDB 10.1.45

CVE-2020-2812 : MariaDB 10.1.45

CVE-2020-2780 : MariaDB 10.1.42

CVE-2020-2752 : MariaDB 10.1.45

CVE-2020-2574 : MariaDB 10.1.44

4101/4161

https://mariadb.com/kb/en/system-variables-added-in-mariadb-101/
https://mariadb.com/kb/en/status-variables-added-in-mariadb-101/
https://jira.mariadb.org/browse/MDEV-6138
https://jira.mariadb.org/browse/MDEV-6858
https://mariadb.com/kb/en/status-variables-added-in-mariadb-101/
https://jira.mariadb.org/browse/MDEV-6107
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/SET_STATEMENT
https://jira.mariadb.org/browse/MDEV-5231
http://www.percona.com/doc/percona-server/5.6/flexibility/per_query_variable_statement.html
https://jira.mariadb.org/browse/MDEV-5528
https://jira.mariadb.org/browse/MDEV-14904
https://jira.mariadb.org/browse/MDEV-6137
https://jira.mariadb.org/browse/MDEV-6981
https://jira.mariadb.org/browse/MDEV-7198
https://jira.mariadb.org/browse/MDEV-6431
http://sourceforge.net/projects/cracklib/
https://jira.mariadb.org/browse/MDEV-5730
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
https://mariadb.com/kb/en/mariadb-10-1-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2022
https://mariadb.com/kb/en/mariadb-10-1-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2011
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28912
https://mariadb.com/kb/en/mariadb-10-1-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2814
https://mariadb.com/kb/en/mariadb-10-1-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://mariadb.com/kb/en/mariadb-10-1-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://mariadb.com/kb/en/mariadb-10-1-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
https://mariadb.com/kb/en/mariadb-10-1-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
https://mariadb.com/kb/en/mariadb-10-1-44-release-notes/

CVE-2020-15180 : MariaDB 10.1.47

CVE-2020-14812 : MariaDB 10.1.48

CVE-2020-14765 : MariaDB 10.1.48

CVE-2020-14550 : MariaDB 10.1.33

CVE-2019-2974 : MariaDB 10.1.42

CVE-2019-2805 : MariaDB 10.1.41

CVE-2019-2740 : MariaDB 10.1.41

CVE-2019-2739 : MariaDB 10.1.41

CVE-2019-2737 : MariaDB 10.1.41

CVE-2019-2627 : MariaDB 10.1.39

CVE-2019-2614 : MariaDB 10.1.39

CVE-2019-2537 : MariaDB 10.1.38

CVE-2019-2529 : MariaDB 10.1.38

CVE-2019-2503 : MariaDB 10.1.36

CVE-2019-2455 : MariaDB 10.1.33

CVE-2018-3282 : MariaDB 10.1.37

CVE-2018-3251 : MariaDB 10.1.37

CVE-2018-3174 : MariaDB 10.1.37

CVE-2018-3156 : MariaDB 10.1.37

CVE-2018-3143 : MariaDB 10.1.37

CVE-2018-3133 : MariaDB 10.1.30

CVE-2018-3081 : MariaDB 10.1.33

CVE-2018-3066 : MariaDB 10.1.35

CVE-2018-3064 : MariaDB 10.1.35

CVE-2018-3063 : MariaDB 10.1.35

CVE-2018-3058 : MariaDB 10.1.35

CVE-2018-2819 : MariaDB 10.1.33

CVE-2018-2817 : MariaDB 10.1.33

CVE-2018-2813 : MariaDB 10.1.33

CVE-2018-2787 : MariaDB 10.1.33

CVE-2018-2784 : MariaDB 10.1.33

CVE-2018-2782 : MariaDB 10.1.33

CVE-2018-2781 : MariaDB 10.1.33

CVE-2018-2771 : MariaDB 10.1.33

CVE-2018-2767 : MariaDB 10.1.33

CVE-2018-2766 : MariaDB 10.1.33

CVE-2018-2761 : MariaDB 10.1.33

CVE-2018-2755 : MariaDB 10.1.33

CVE-2018-2668 : MariaDB 10.1.31

CVE-2018-2665 : MariaDB 10.1.31

CVE-2018-2640 : MariaDB 10.1.31

CVE-2018-2622 : MariaDB 10.1.31

CVE-2018-2612 : MariaDB 10.1.31

CVE-2018-2562 : MariaDB 10.1.31

CVE-2017-3653 : MariaDB 10.1.26

CVE-2017-3651 : MariaDB 10.1.19

CVE-2017-3641 : MariaDB 10.1.26

CVE-2017-3636 : MariaDB 10.1.26

CVE-2017-3600 : MariaDB 10.1.19

CVE-2017-3464 : MariaDB 10.1.23

CVE-2017-3456 : MariaDB 10.1.23

CVE-2017-3453 : MariaDB 10.1.23

CVE-2017-3318 : MariaDB 10.1.21

CVE-2017-3317 : MariaDB 10.1.21

CVE-2017-3313 : MariaDB 10.1.22

CVE-2017-3312 : MariaDB 10.1.21

CVE-2017-3309 : MariaDB 10.1.23

CVE-2017-3308 : MariaDB 10.1.23

CVE-2017-3302 : MariaDB 10.1.22

CVE-2017-3291 : MariaDB 10.1.21

CVE-2017-3265 : MariaDB 10.1.21

CVE-2017-3258 : MariaDB 10.1.21

CVE-2017-3257 : MariaDB 10.1.21

CVE-2017-3244 : MariaDB 10.1.21

CVE-2017-3243 : MariaDB 10.1.21

CVE-2017-3238 : MariaDB 10.1.21

CVE-2017-15365 : MariaDB 10.1.30

4102/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15180
https://mariadb.com/kb/en/mariadb-10-1-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14812
https://mariadb.com/kb/en/mariadb-10-1-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14765
https://mariadb.com/kb/en/mariadb-10-1-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14550
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
https://mariadb.com/kb/en/mariadb-10-1-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
https://mariadb.com/kb/en/mariadb-10-1-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
https://mariadb.com/kb/en/mariadb-10-1-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
https://mariadb.com/kb/en/mariadb-10-1-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://mariadb.com/kb/en/mariadb-10-1-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2529
https://mariadb.com/kb/en/mariadb-10-1-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2503
https://mariadb.com/kb/en/mariadb-10-1-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2455
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3282
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3174
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3133
https://mariadb.com/kb/en/mariadb-10-1-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3081
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3066
https://mariadb.com/kb/en/mariadb-10-1-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://mariadb.com/kb/en/mariadb-10-1-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3063
https://mariadb.com/kb/en/mariadb-10-1-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://mariadb.com/kb/en/mariadb-10-1-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2819
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2817
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2782
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2781
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2771
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2767
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2766
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2761
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2755
https://mariadb.com/kb/en/mariadb-10-1-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2668
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2665
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2622
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://mariadb.com/kb/en/mariadb-10-1-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3651
https://mariadb.com/kb/en/mariadb-10-1-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3641
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3636
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3600
https://mariadb.com/kb/en/mariadb-10-1-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://mariadb.com/kb/en/mariadb-10-1-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3456
https://mariadb.com/kb/en/mariadb-10-1-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3453
https://mariadb.com/kb/en/mariadb-10-1-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3318
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3317
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3313
https://mariadb.com/kb/en/mariadb-10-1-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3312
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3309
https://mariadb.com/kb/en/mariadb-10-1-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3308
https://mariadb.com/kb/en/mariadb-10-1-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3302
https://mariadb.com/kb/en/mariadb-10-1-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3291
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3265
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3258
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3257
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3243
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3238
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15365
https://mariadb.com/kb/en/mariadb-10-1-30-release-notes/

CVE-2017-10384 : MariaDB 10.1.26

CVE-2017-10379 : MariaDB 10.1.26

CVE-2017-10378 : MariaDB 10.1.29

CVE-2017-10286 : MariaDB 10.1.26

CVE-2017-10268 : MariaDB 10.1.29

CVE-2016-9843 : MariaDB 10.1.37

CVE-2016-8283 : MariaDB 10.1.18

CVE-2016-7440 : MariaDB 10.1.19

CVE-2016-6664 : MariaDB 10.1.21

CVE-2016-6663 : MariaDB 10.1.18

CVE-2016-6662 : MariaDB 10.1.17

CVE-2016-5629 : MariaDB 10.1.18

CVE-2016-5626 : MariaDB 10.1.18

CVE-2016-5624 : MariaDB 10.1.18

CVE-2016-5616 : MariaDB 10.1.18

CVE-2016-5584 : MariaDB 10.1.19

CVE-2016-5483 : MariaDB 10.1.19

CVE-2016-5444 : MariaDB 10.1.14

CVE-2016-5440 : MariaDB 10.1.15

CVE-2016-3615 : MariaDB 10.1.15

CVE-2016-3521 : MariaDB 10.1.15

CVE-2016-3492 : MariaDB 10.1.18

CVE-2016-3477 : MariaDB 10.1.15

CVE-2016-3471 : MariaDB 10.1.9

CVE-2016-3459 : MariaDB 10.1.14

CVE-2016-3452 : MariaDB 10.1.14

CVE-2016-2047 : MariaDB 10.1.10

CVE-2016-0668 : MariaDB 10.1.12

CVE-2016-0666 : MariaDB 10.1.14

CVE-2016-0655 : MariaDB 10.1.14

CVE-2016-0651 : MariaDB 10.1.10

CVE-2016-0650 : MariaDB 10.1.12

CVE-2016-0649 : MariaDB 10.1.12

CVE-2016-0648 : MariaDB 10.1.14

CVE-2016-0647 : MariaDB 10.1.14

CVE-2016-0646 : MariaDB 10.1.12

CVE-2016-0644 : MariaDB 10.1.12

CVE-2016-0643 : MariaDB 10.1.14

CVE-2016-0642 : MariaDB 10.1.10

CVE-2016-0641 : MariaDB 10.1.12

CVE-2016-0640 : MariaDB 10.1.12

CVE-2016-0616 : MariaDB 10.1.10

CVE-2016-0610 : MariaDB 10.1.9

CVE-2016-0609 : MariaDB 10.1.10

CVE-2016-0608 : MariaDB 10.1.10

CVE-2016-0606 : MariaDB 10.1.10

CVE-2016-0600 : MariaDB 10.1.10

CVE-2016-0598 : MariaDB 10.1.10

CVE-2016-0597 : MariaDB 10.1.10

CVE-2016-0596 : MariaDB 10.1.10

CVE-2016-0546 : MariaDB 10.1.10

CVE-2016-0505 : MariaDB 10.1.10

CVE-2015-7744 : MariaDB 10.1.9

CVE-2015-4913 : MariaDB 10.1.8

CVE-2015-4895 : MariaDB 10.1.8

CVE-2015-4879 : MariaDB 10.1.8

CVE-2015-4870 : MariaDB 10.1.8

CVE-2015-4866 : MariaDB 10.1.8

CVE-2015-4864 : MariaDB 10.1.8

CVE-2015-4861 : MariaDB 10.1.8

CVE-2015-4858 : MariaDB 10.1.8

CVE-2015-4836 : MariaDB 10.1.8

CVE-2015-4830 : MariaDB 10.1.8

CVE-2015-4826 : MariaDB 10.1.8

CVE-2015-4819 : MariaDB 10.1.8

CVE-2015-4816 : MariaDB 10.1.8

CVE-2015-4815 : MariaDB 10.1.8

4103/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10384
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10379
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10378
https://mariadb.com/kb/en/mariadb-10-1-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10286
https://mariadb.com/kb/en/mariadb-10-1-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10268
https://mariadb.com/kb/en/mariadb-10-1-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9843
https://mariadb.com/kb/en/mariadb-10-1-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8283
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7440
https://mariadb.com/kb/en/mariadb-10-1-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6664
https://mariadb.com/kb/en/mariadb-10-1-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6663
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6662
https://mariadb.com/kb/en/mariadb-10-1-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5629
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5626
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5624
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5616
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5584
https://mariadb.com/kb/en/mariadb-10-1-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5483
https://mariadb.com/kb/en/mariadb-10-1-19-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5444
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5440
https://mariadb.com/kb/en/mariadb-10-1-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3615
https://mariadb.com/kb/en/mariadb-10-1-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3521
https://mariadb.com/kb/en/mariadb-10-1-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3492
https://mariadb.com/kb/en/mariadb-10-1-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3477
https://mariadb.com/kb/en/mariadb-10-1-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3471
https://mariadb.com/kb/en/mariadb-10-1-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3459
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3452
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2047
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0668
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0666
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0655
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0651
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0650
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0649
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0648
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0647
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0646
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0644
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0643
https://mariadb.com/kb/en/mariadb-10-1-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0642
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0641
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0640
https://mariadb.com/kb/en/mariadb-10-1-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0616
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0610
https://mariadb.com/kb/en/mariadb-10-1-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0609
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0608
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0606
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0600
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0598
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0597
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0596
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0546
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0505
https://mariadb.com/kb/en/mariadb-10-1-10-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7744
https://mariadb.com/kb/en/mariadb-10-1-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4913
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4895
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4879
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4870
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4866
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4864
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4861
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4858
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4836
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4830
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4826
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4819
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4816
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4815
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/

CVE-2015-4807 : MariaDB 10.1.8

CVE-2015-4802 : MariaDB 10.1.8

CVE-2015-4792 : MariaDB 10.1.8

Comparison with MySQL
System Variable Differences Between MariaDB 10.1 and MySQL 5.6

System Variable Differences Between MariaDB 10.1 and MySQL 5.7

List of all MariaDB 10.1 releases

Date Release Status Release Notes Changelog

3 Nov 2020 MariaDB 10.1.48 Stable (GA) Release Notes Changelog

7 Oct 2020 MariaDB 10.1.47 Stable (GA) Release Notes Changelog

10 Aug 2020 MariaDB 10.1.46 Stable (GA) Release Notes Changelog

12 May 2020 MariaDB 10.1.45 Stable (GA) Release Notes Changelog

28 Jan 2020 MariaDB 10.1.44 Stable (GA) Release Notes Changelog

8 Nov 2019 MariaDB 10.1.43 Stable (GA) Release Notes Changelog

5 Nov 2019 MariaDB 10.1.42 Stable (GA) Release Notes Changelog

31 Jul 2019 MariaDB 10.1.41 Stable (GA) Release Notes Changelog

8 May 2019 MariaDB 10.1.40 Stable (GA) Release Notes Changelog

2 May 2019 MariaDB 10.1.39 Stable (GA) Release Notes Changelog

6 Feb 2019 MariaDB 10.1.38 Stable (GA) Release Notes Changelog

2 Nov 2018 MariaDB 10.1.37 Stable (GA) Release Notes Changelog

8 Sep 2018 MariaDB 10.1.36 Stable (GA) Release Notes Changelog

7 Aug 2018 MariaDB 10.1.35 Stable (GA) Release Notes Changelog

18 Jun 2018 MariaDB 10.1.34 Stable (GA) Release Notes Changelog

9 May 2018 MariaDB 10.1.33 Stable (GA) Release Notes Changelog

27 Mar 2018 MariaDB 10.1.32 Stable (GA) Release Notes Changelog

6 Feb 2018 MariaDB 10.1.31 Stable (GA) Release Notes Changelog

22 Dec 2017 MariaDB 10.1.30 Stable (GA) Release Notes Changelog

14 Nov 2017 MariaDB 10.1.29 Stable (GA) Release Notes Changelog

28 Sep 2017 MariaDB 10.1.28 Stable (GA) Release Notes Changelog

25 Sep 2017 MariaDB 10.1.27 Stable (GA) Release Notes Changelog

10 Aug 2017 MariaDB 10.1.26 Stable (GA) Release Notes Changelog

4 Jul 2017 MariaDB 10.1.25 Stable (GA) Release Notes Changelog

31 May 2017 MariaDB 10.1.24 Stable (GA) Release Notes Changelog

3 May 2017 MariaDB 10.1.23 Stable (GA) Release Notes Changelog

14 Mar 2017 MariaDB 10.1.22 Stable (GA) Release Notes Changelog

18 Jan 2017 MariaDB 10.1.21 Stable (GA) Release Notes Changelog

15 Dec 2016 MariaDB 10.1.20 Stable (GA) Release Notes Changelog

7 Nov 2016 MariaDB 10.1.19 Stable (GA) Release Notes Changelog

30 Sep 2016 MariaDB 10.1.18 Stable (GA) Release Notes Changelog

30 Aug 2016 MariaDB 10.1.17 Stable (GA) Release Notes Changelog

4104/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4807
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4802
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4792
https://mariadb.com/kb/en/mariadb-10-1-8-release-notes/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-101-and-mysql-56/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-101-and-mysql-57/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10148-release-notes/
https://mariadb.com/kb/en/mariadb-10148-changelog/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10147-release-notes/
https://mariadb.com/kb/en/mariadb-10147-changelog/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10146-release-notes/
https://mariadb.com/kb/en/mariadb-10146-changelog/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10145-release-notes/
https://mariadb.com/kb/en/mariadb-10145-changelog/
https://mariadb.com/kb/en/mariadb-10144-release-notes/
https://mariadb.com/kb/en/mariadb-10144-release-notes/
https://mariadb.com/kb/en/mariadb-10144-changelog/
https://mariadb.com/kb/en/mariadb-10143-release-notes/
https://mariadb.com/kb/en/mariadb-10143-release-notes/
https://mariadb.com/kb/en/mariadb-10143-changelog/
https://mariadb.com/kb/en/mariadb-10142-release-notes/
https://mariadb.com/kb/en/mariadb-10142-release-notes/
https://mariadb.com/kb/en/mariadb-10142-changelog/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10141-release-notes/
https://mariadb.com/kb/en/mariadb-10141-changelog/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-10140-release-notes/
https://mariadb.com/kb/en/mariadb-10140-changelog/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10139-release-notes/
https://mariadb.com/kb/en/mariadb-10139-changelog/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10138-release-notes/
https://mariadb.com/kb/en/mariadb-10138-changelog/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-10137-release-notes/
https://mariadb.com/kb/en/mariadb-10137-changelog/
https://mariadb.com/kb/en/mariadb-10136-release-notes/
https://mariadb.com/kb/en/mariadb-10136-release-notes/
https://mariadb.com/kb/en/mariadb-10136-changelog/
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mariadb-10135-release-notes/
https://mariadb.com/kb/en/mariadb-10135-changelog/
https://mariadb.com/kb/en/mariadb-10134-release-notes/
https://mariadb.com/kb/en/mariadb-10134-release-notes/
https://mariadb.com/kb/en/mariadb-10134-changelog/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-10133-release-notes/
https://mariadb.com/kb/en/mariadb-10133-changelog/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-10132-release-notes/
https://mariadb.com/kb/en/mariadb-10132-changelog/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10131-release-notes/
https://mariadb.com/kb/en/mariadb-10131-changelog/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10130-release-notes/
https://mariadb.com/kb/en/mariadb-10130-changelog/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-10129-release-notes/
https://mariadb.com/kb/en/mariadb-10129-changelog/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-10128-release-notes/
https://mariadb.com/kb/en/mariadb-10128-changelog/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-10127-release-notes/
https://mariadb.com/kb/en/mariadb-10127-changelog/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10126-release-notes/
https://mariadb.com/kb/en/mariadb-10126-changelog/
https://mariadb.com/kb/en/mariadb-10125-release-notes/
https://mariadb.com/kb/en/mariadb-10125-release-notes/
https://mariadb.com/kb/en/mariadb-10125-changelog/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10124-release-notes/
https://mariadb.com/kb/en/mariadb-10124-changelog/
https://mariadb.com/kb/en/mariadb-10123-release-notes/
https://mariadb.com/kb/en/mariadb-10123-release-notes/
https://mariadb.com/kb/en/mariadb-10123-changelog/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10122-release-notes/
https://mariadb.com/kb/en/mariadb-10122-changelog/
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://mariadb.com/kb/en/mariadb-10121-release-notes/
https://mariadb.com/kb/en/mariadb-10121-changelog/
https://mariadb.com/kb/en/mariadb-10120-release-notes/
https://mariadb.com/kb/en/mariadb-10120-release-notes/
https://mariadb.com/kb/en/mariadb-10120-changelog/
https://mariadb.com/kb/en/mariadb-10119-release-notes/
https://mariadb.com/kb/en/mariadb-10119-release-notes/
https://mariadb.com/kb/en/mariadb-10119-changelog/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10118-release-notes/
https://mariadb.com/kb/en/mariadb-10118-changelog/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-10117-release-notes/
https://mariadb.com/kb/en/mariadb-10117-changelog/

18 Jul 2016 MariaDB 10.1.16 Stable (GA) Release Notes Changelog

1 Jul 2016 MariaDB 10.1.15 Stable (GA) Release Notes Changelog

10 May 2016 MariaDB 10.1.14 Stable (GA) Release Notes Changelog

25 Mar 2016 MariaDB 10.1.13 Stable (GA) Release Notes Changelog

25 Feb 2016 MariaDB 10.1.12 Stable (GA) Release Notes Changelog

29 Jan 2016 MariaDB 10.1.11 Stable (GA) Release Notes Changelog

24 Dec 2015 MariaDB 10.1.10 Stable (GA) Release Notes Changelog

23 Nov 2015 MariaDB 10.1.9 Stable (GA) Release Notes Changelog

17 Oct 2015 MariaDB 10.1.8 Stable (GA) Release Notes Changelog

9 Sep 2015 MariaDB 10.1.7 Release Candidate (RC) Release Notes Changelog

27 Jul 2015 MariaDB 10.1.6 Beta Release Notes Changelog

4 Jun 2015 MariaDB 10.1.5 Beta Release Notes Changelog

13 Apr 2015 MariaDB 10.1.4 Beta Release Notes Changelog

2 Mar 2015 MariaDB 10.1.3 Beta Release Notes Changelog

7 Dec 2014 MariaDB 10.1.2 Alpha Release Notes Changelog

17 Oct 2014 MariaDB 10.1.1 Alpha Release Notes Changelog

30 Jun 2014 MariaDB 10.1.0 Alpha Release Notes Changelog

7.0.11 MariaDB Server 10.0
Changes & Improvements in MariaDB 10.0

Current Version: 10.0.38 | Status: Stable (GA) | Release Date: 31 Jan 2019

Release Notes - MariaDB 10.0 Series

MariaDB 10.0 Series Release Notes

Changelogs - MariaDB 10.0 Series

MariaDB 10.0 changelogs.

7

7.0.11.1 Changes & Improvements in MariaDB
10.0

MariaDB 10.0 is no longer maintained. Please use a more recent release .

The most recent release in the MariaDB 10.0 series is:

MariaDB 10.0.38 Download Now

MariaDB 10.0 is a previous stable series of MariaDB. It is built on the MariaDB 5.5 series with backported features from

MySQL 5.6 and entirely new features not found anywhere else. The first stable release was in March 2014, and the final

release was in January 2019.

For details on upgrading from MariaDB 5.5, see Upgrading from MariaDB 5.5 to MariaDB 10.0 .

Blog posts with details of the reasoning behind calling this version MariaDB 10:

http://blog.mariadb.org/mariadb-10-0-and-mysql-5-6/

http://blog.mariadb.org/what-comes-in-between-mariadb-now-and-mysql-5-6/

http://blog.mariadb.org/explanation-on-mariadb-10-0/

4105/4161

https://mariadb.com/kb/en/mariadb-10116-release-notes/
https://mariadb.com/kb/en/mariadb-10116-release-notes/
https://mariadb.com/kb/en/mariadb-10116-changelog/
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://mariadb.com/kb/en/mariadb-10115-release-notes/
https://mariadb.com/kb/en/mariadb-10115-changelog/
https://mariadb.com/kb/en/mariadb-10114-release-notes/
https://mariadb.com/kb/en/mariadb-10114-release-notes/
https://mariadb.com/kb/en/mariadb-10114-changelog/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10113-release-notes/
https://mariadb.com/kb/en/mariadb-10113-changelog/
https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-10112-release-notes/
https://mariadb.com/kb/en/mariadb-10112-changelog/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10111-release-notes/
https://mariadb.com/kb/en/mariadb-10111-changelog/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10110-release-notes/
https://mariadb.com/kb/en/mariadb-10110-changelog/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-release-notes/
https://mariadb.com/kb/en/mariadb-1019-changelog/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-release-notes/
https://mariadb.com/kb/en/mariadb-1018-changelog/
https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-release-notes/
https://mariadb.com/kb/en/mariadb-1017-changelog/
https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-1016-release-notes/
https://mariadb.com/kb/en/mariadb-1016-changelog/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-1015-release-notes/
https://mariadb.com/kb/en/mariadb-1015-changelog/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/mariadb-1014-release-notes/
https://mariadb.com/kb/en/mariadb-1014-changelog/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-release-notes/
https://mariadb.com/kb/en/mariadb-1013-changelog/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-release-notes/
https://mariadb.com/kb/en/mariadb-1012-changelog/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-release-notes/
https://mariadb.com/kb/en/mariadb-1011-changelog/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1010-release-notes/
https://mariadb.com/kb/en/mariadb-1010-changelog/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-10-0/
https://mariadb.com/kb/en/release-notes-mariadb-100-series/
https://mariadb.com/kb/en/changelogs-mariadb-100-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
https://mariadb.com/kb/en/mariadb-10038-release-notes/
http://downloads.mariadb.org/mariadb/10.0.38
https://mariadb.com/kb/en/upgrading-from-mariadb-55-to-mariadb-100/
http://blog.mariadb.org/mariadb-10-0-and-mysql-5-6/
http://blog.mariadb.org/what-comes-in-between-mariadb-now-and-mysql-5-6/
http://blog.mariadb.org/explanation-on-mariadb-10-0/

Contents
1. Implemented Features

1. New Features

2. New Features Re-implemented From a Similar MySQL Feature

3. New Features Backported from MySQL 5.6

2. Incompatible Changes

3. Security Vulnerabilities Fixed in MariaDB 10.0

4. Comparison with MySQL

5. List of All MariaDB 10.0 Releases

Implemented Features
Features that are in a release.

New Features

For a list of all new variables, see System Variables Added in MariaDB 10.0

Parallel Replication

Global Transaction ID (MDEV-26)

Multi source replication (MDEV-253) 4 Original code from Taobao, developed by Peng Lixun .

Slave started with --binlog-format=STATEMENT can replicate from master with any type of --binlog-format Starting

from MariaDB 10.0.22 .

Cassandra storage engine (MDEV-4695)

CONNECT storage engine (MDEV-4146)

Better table discovery. Sequence storage engine. Assisted discovery in FederatedX (MDEV-3808)

Spider storage engine (MDEV-4438)

TokuDB storage engine (MDEV-4507)

Mroonga full-text search storage engine

QUERY_RESPONSE_TIME plugin

Engine independent table statistics (MDEV-3806)

Subquery optimizations: EXISTS-to-IN optimization, (MDEV-38 - NOT EXISTS to IN), MDEV-537 , MDEV-3862

Histogram-based statistics for non-indexed columns (MDEV-4145)

SHOW EXPLAIN command (MDEV-165)

EXPLAIN in the slow query log (MDEV-407)

Per thread memory usage (MDEV-4011). 4 Original code from Taobao, developed by Peng Lixun .

information_schema.processlist has two new columns: MEMORY_USAGE and EXAMINED_ROWS .

SHOW STATUS has a new variable: Memory_used.

SHOW PLUGINS SONAME 'XXX' (MDEV-3807)

SHUTDOWN statement (MDEV-4660)

Killing a query by query id, not thread id (MDEV-4911)

Faster UNIQUE key generation with ALTER TABLE (MDEV-539)

Implement async commit checkpoint in InnoDB and XtraDB (MDEV-532)

Support for atomic writes on FusionIO DirectFS (MDEV-4338)

DELETE ... RETURNING (MDEV-3814)

IF (NOT) EXISTS clauses for ALTER TABLE (MDEV-318)

CREATE OR REPLACE TABLE (MDEV-5491)

slave-ddl-exec-mode variable to specify how CREATE TABLE and DROP TABLE is replicated.

Dynamic columns now support names (MDEV-377 , summary of changes)

multiple use locks (GET_LOCK) in one connection (MDEV-3917)

Better error messages (all error numbers now include descriptive text explaining what the number means)

table attributes with sysvar as a default value (MDEV-4022)

regular expression enhancements

new regular expression library with modern features (PCRE)

new functions REGEXP_REPLACE, REGEXP_INSTR, REGEXP_SUBSTR.

Roles (MDEV-4397)

metadata_lock_info information schema. Shows you which meta data locks are active.

Adjustable hash size for MyISAM and Aria. This can greatly improve shutdown time (from hours to minutes) if you are

using a lot of MyISAM/Aria tables with delayed keys.

FLUSH TABLES ... FOR EXPORT

The Extended Keys optimization is enabled by default

MariaDB audit plugin

filesort-with-small-limit-optimization is now visible through the slow query log and a new status variable,

4106/4161

https://mariadb.com/kb/en/system-variables-added-in-mariadb-100/
https://jira.mariadb.org/browse/MDEV-26
https://jira.mariadb.org/browse/MDEV-253
http://mysql.taobao.org/index.php/Patch_source_code#Multi-master_replication
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/cassandra-storage-engine/
https://jira.mariadb.org/browse/MDEV-4695
https://jira.mariadb.org/browse/MDEV-4146
https://mariadb.com/kb/en/federatedx/
https://jira.mariadb.org/browse/MDEV-3808
https://jira.mariadb.org/browse/MDEV-4438
https://mariadb.com/kb/en/tokudb/
https://jira.mariadb.org/browse/MDEV-4507
https://jira.mariadb.org/browse/MDEV-3806
https://jira.mariadb.org/browse/MDEV-38
https://jira.mariadb.org/browse/MDEV-537
https://jira.mariadb.org/browse/MDEV-3862
https://jira.mariadb.org/browse/MDEV-4145
https://jira.mariadb.org/browse/MDEV-165
https://jira.mariadb.org/browse/MDEV-407
https://jira.mariadb.org/browse/MDEV-4011
http://mysql.taobao.org/index.php/Patch_source_code#per-thread_memory_usage_statistics
https://jira.mariadb.org/browse/MDEV-3807
https://jira.mariadb.org/browse/MDEV-4660
https://jira.mariadb.org/browse/MDEV-4911
https://jira.mariadb.org/browse/MDEV-539
https://jira.mariadb.org/browse/MDEV-532
https://mariadb.com/kb/en/fusionio-directfs-atomic-write-support/
https://jira.mariadb.org/browse/MDEV-4338
https://jira.mariadb.org/browse/MDEV-3814
https://jira.mariadb.org/browse/MDEV-318
https://jira.mariadb.org/browse/MDEV-5491
https://jira.mariadb.org/browse/MDEV-377
https://jira.mariadb.org/browse/MDEV-3917
https://jira.mariadb.org/browse/MDEV-4022
https://jira.mariadb.org/browse/MDEV-4397

sort_priority_queue_sorts

Error log flood protection

New Features Re-implemented From a Similar MySQL Feature

CURRENT_TIMESTAMP as DEFAULT for DATETIME columns (MDEV-452)

EXPLAIN for INSERT/UPDATE/DELETE (MDEV-3798 , MWL#51)

New Features Backported from MySQL 5.6

New InnoDB 4 from MySQL 5.6.14 in MariaDB 10.0.8 onwards

New Performance schema 4 from MySQL 5.6.10 in MariaDB 10.0.4 onwards

New Information Schema tables, updates and defaults.

Optimized read only transaction (for InnoDB). This includes support for TRANSACTION READ ONLY.

Filesort optimization for queries using the ORDER BY ... LIMIT optimization - A useful optimization for showing

only a few rows of a bigger result set. (MDEV-4026)

backport --plugin-load-add (MDEV-3860)

Online ALTER TABLE (MDEV-3933) (ALGORITHM=INPLACE, etc)

InnoDB persistent statistics.

privileges on temporary tables

character set related extenstions

GET DIAGNOSTICS

EXCHANGE PARTITION

Partition selection

Temporal literals (such as TIME'12:34:56')

WEIGHT_STRING() function

Collation customization improvements (see Supported Characters Sets and Collations)

TO_BASE64() and FROM_BASE64() functions

Incompatible Changes
New reserved word: RETURNING. This can no longer be used as an identifier without being quoted.

Security Vulnerabilities Fixed in MariaDB 10.0

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2021-2032 : MariaDB 10.0.11

CVE-2021-2011 : MariaDB 10.0.35

CVE-2020-14550 : MariaDB 10.0.35

CVE-2019-2537 : MariaDB 10.0.38

CVE-2019-2529 : MariaDB 10.0.38

CVE-2019-2503 : MariaDB 10.0.37

CVE-2019-2481 : MariaDB 10.0.11

CVE-2019-2455 : MariaDB 10.0.35

CVE-2018-3282 : MariaDB 10.0.37

CVE-2018-3251 : MariaDB 10.0.37

CVE-2018-3174 : MariaDB 10.0.37

CVE-2018-3156 : MariaDB 10.0.37

CVE-2018-3143 : MariaDB 10.0.37

CVE-2018-3133 : MariaDB 10.0.34

CVE-2018-3081 : MariaDB 10.0.35

CVE-2018-3066 : MariaDB 10.0.36

CVE-2018-3064 : MariaDB 10.0.36

CVE-2018-3063 : MariaDB 10.0.36

CVE-2018-3058 : MariaDB 10.0.36

CVE-2018-2819 : MariaDB 10.0.35

CVE-2018-2817 : MariaDB 10.0.35

CVE-2018-2813 : MariaDB 10.0.35

CVE-2018-2787 : MariaDB 10.0.35

CVE-2018-2784 : MariaDB 10.0.35

CVE-2018-2782 : MariaDB 10.0.35

4107/4161

https://jira.mariadb.org/browse/MDEV-452
https://jira.mariadb.org/browse/MDEV-3798
http://askmonty.org/worklog/?tid=51
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://jira.mariadb.org/browse/MDEV-4026
https://jira.mariadb.org/browse/MDEV-3860
https://jira.mariadb.org/browse/MDEV-3933
https://mariadb.com/kb/en/get-diagnostics/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2032
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2011
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14550
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2537
https://mariadb.com/kb/en/mariadb-10-0-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2529
https://mariadb.com/kb/en/mariadb-10-0-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2503
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2481
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2455
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3282
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3251
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3174
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3156
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3143
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3133
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3081
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3066
https://mariadb.com/kb/en/mariadb-10-0-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3064
https://mariadb.com/kb/en/mariadb-10-0-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3063
https://mariadb.com/kb/en/mariadb-10-0-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://mariadb.com/kb/en/mariadb-10-0-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2819
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2817
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2787
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2784
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2782
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/

CVE-2018-2781 : MariaDB 10.0.35

CVE-2018-2771 : MariaDB 10.0.35

CVE-2018-2767 : MariaDB 10.0.35

CVE-2018-2766 : MariaDB 10.0.35

CVE-2018-2761 : MariaDB 10.0.35

CVE-2018-2755 : MariaDB 10.0.35

CVE-2018-2668 : MariaDB 10.0.34

CVE-2018-2665 : MariaDB 10.0.34

CVE-2018-2640 : MariaDB 10.0.34

CVE-2018-2622 : MariaDB 10.0.34

CVE-2018-2612 : MariaDB 10.0.34

CVE-2018-2562 : MariaDB 10.0.34

CVE-2017-3653 : MariaDB 10.0.32

CVE-2017-3651 : MariaDB 10.0.28

CVE-2017-3641 : MariaDB 10.0.32

CVE-2017-3636 : MariaDB 10.0.32

CVE-2017-3600 : MariaDB 10.0.28

CVE-2017-3464 : MariaDB 10.0.31

CVE-2017-3456 : MariaDB 10.0.31

CVE-2017-3453 : MariaDB 10.0.31

CVE-2017-3318 : MariaDB 10.0.29

CVE-2017-3317 : MariaDB 10.0.29

CVE-2017-3313 : MariaDB 10.0.30

CVE-2017-3312 : MariaDB 10.0.29

CVE-2017-3309 : MariaDB 10.0.31

CVE-2017-3308 : MariaDB 10.0.31

CVE-2017-3302 : MariaDB 10.0.30

CVE-2017-3291 : MariaDB 10.0.29

CVE-2017-3265 : MariaDB 10.0.29

CVE-2017-3258 : MariaDB 10.0.29

CVE-2017-3257 : MariaDB 10.0.29

CVE-2017-3244 : MariaDB 10.0.29

CVE-2017-3243 : MariaDB 10.0.29

CVE-2017-3238 : MariaDB 10.0.29

CVE-2017-10384 : MariaDB 10.0.32

CVE-2017-10379 : MariaDB 10.0.32

CVE-2017-10378 : MariaDB 10.0.33

CVE-2017-10286 : MariaDB 10.0.32

CVE-2017-10268 : MariaDB 10.0.33

CVE-2016-9843 : MariaDB 10.0.37

CVE-2016-8283 : MariaDB 10.0.28

CVE-2016-7440 : MariaDB 10.0.28

CVE-2016-6664 : MariaDB 10.0.29

CVE-2016-6663 : MariaDB 10.0.28

CVE-2016-6662 : MariaDB 10.0.27

CVE-2016-5630 : MariaDB 10.0.27

CVE-2016-5629 : MariaDB 10.0.28

CVE-2016-5626 : MariaDB 10.0.28

CVE-2016-5624 : MariaDB 10.0.28

CVE-2016-5616 : MariaDB 10.0.28

CVE-2016-5612 : MariaDB 10.0.27

CVE-2016-5584 : MariaDB 10.0.28

CVE-2016-5483 : MariaDB 10.0.28

CVE-2016-5444 : MariaDB 10.0.25

CVE-2016-5440 : MariaDB 10.0.26

CVE-2016-3615 : MariaDB 10.0.26

CVE-2016-3521 : MariaDB 10.0.26

CVE-2016-3492 : MariaDB 10.0.28

CVE-2016-3477 : MariaDB 10.0.26

CVE-2016-3471 : MariaDB 10.0.22

CVE-2016-3459 : MariaDB 10.0.25

CVE-2016-3452 : MariaDB 10.0.25

CVE-2016-2047 : MariaDB 10.0.23

CVE-2016-0668 : MariaDB 10.0.24

CVE-2016-0666 : MariaDB 10.0.25

CVE-2016-0655 : MariaDB 10.0.25

CVE-2016-0651 : MariaDB 10.0.23

4108/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2781
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2771
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2767
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2766
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2761
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2755
https://mariadb.com/kb/en/mariadb-10-0-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2668
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2665
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2622
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2612
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://mariadb.com/kb/en/mariadb-10-0-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3651
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3641
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3636
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3600
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://mariadb.com/kb/en/mariadb-10-0-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3456
https://mariadb.com/kb/en/mariadb-10-0-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3453
https://mariadb.com/kb/en/mariadb-10-0-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3318
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3317
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3313
https://mariadb.com/kb/en/mariadb-10-0-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3312
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3309
https://mariadb.com/kb/en/mariadb-10-0-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3308
https://mariadb.com/kb/en/mariadb-10-0-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3302
https://mariadb.com/kb/en/mariadb-10-0-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3291
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3265
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3258
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3257
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3243
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3238
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10384
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10379
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10378
https://mariadb.com/kb/en/mariadb-10-0-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10286
https://mariadb.com/kb/en/mariadb-10-0-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10268
https://mariadb.com/kb/en/mariadb-10-0-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9843
https://mariadb.com/kb/en/mariadb-10-0-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8283
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7440
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6664
https://mariadb.com/kb/en/mariadb-10-0-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6663
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6662
https://mariadb.com/kb/en/mariadb-10-0-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5630
https://mariadb.com/kb/en/mariadb-10-0-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5629
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5626
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5624
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5616
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612
https://mariadb.com/kb/en/mariadb-10-0-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5584
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5483
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5444
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5440
https://mariadb.com/kb/en/mariadb-10-0-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3615
https://mariadb.com/kb/en/mariadb-10-0-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3521
https://mariadb.com/kb/en/mariadb-10-0-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3492
https://mariadb.com/kb/en/mariadb-10-0-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3477
https://mariadb.com/kb/en/mariadb-10-0-26-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3471
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3459
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3452
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2047
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0668
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0666
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0655
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0651
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/

CVE-2016-0650 : MariaDB 10.0.24

CVE-2016-0649 : MariaDB 10.0.24

CVE-2016-0648 : MariaDB 10.0.25

CVE-2016-0647 : MariaDB 10.0.25

CVE-2016-0646 : MariaDB 10.0.24

CVE-2016-0644 : MariaDB 10.0.24

CVE-2016-0643 : MariaDB 10.0.25

CVE-2016-0642 : MariaDB 10.0.23

CVE-2016-0641 : MariaDB 10.0.24

CVE-2016-0640 : MariaDB 10.0.24

CVE-2016-0616 : MariaDB 10.0.23

CVE-2016-0610 : MariaDB 10.0.22

CVE-2016-0609 : MariaDB 10.0.23

CVE-2016-0608 : MariaDB 10.0.23

CVE-2016-0606 : MariaDB 10.0.23

CVE-2016-0600 : MariaDB 10.0.23

CVE-2016-0598 : MariaDB 10.0.23

CVE-2016-0597 : MariaDB 10.0.23

CVE-2016-0596 : MariaDB 10.0.23

CVE-2016-0546 : MariaDB 10.0.23

CVE-2016-0505 : MariaDB 10.0.23

CVE-2016-0502 : MariaDB 10.0.4

CVE-2015-7744 : MariaDB 10.0.22

CVE-2015-4913 : MariaDB 10.0.22

CVE-2015-4895 : MariaDB 10.0.21

CVE-2015-4879 : MariaDB 10.0.21

CVE-2015-4870 : MariaDB 10.0.22

CVE-2015-4866 : MariaDB 10.0.18

CVE-2015-4864 : MariaDB 10.0.20

CVE-2015-4861 : MariaDB 10.0.22

CVE-2015-4858 : MariaDB 10.0.22

CVE-2015-4836 : MariaDB 10.0.22

CVE-2015-4830 : MariaDB 10.0.22

CVE-2015-4826 : MariaDB 10.0.22

CVE-2015-4819 : MariaDB 10.0.21

CVE-2015-4816 : MariaDB 10.0.21

CVE-2015-4815 : MariaDB 10.0.22

CVE-2015-4807 : MariaDB 10.0.22

CVE-2015-4802 : MariaDB 10.0.22

CVE-2015-4792 : MariaDB 10.0.22

CVE-2015-4757 : MariaDB 10.0.18

CVE-2015-4752 : MariaDB 10.0.20

CVE-2015-3152 : MariaDB 10.0.20

CVE-2015-2648 : MariaDB 10.0.20

CVE-2015-2643 : MariaDB 10.0.20

CVE-2015-2620 : MariaDB 10.0.20

CVE-2015-2582 : MariaDB 10.0.20

CVE-2015-2573 : MariaDB 10.0.17

CVE-2015-2571 : MariaDB 10.0.18

CVE-2015-2568 : MariaDB 10.0.17

CVE-2015-2326 : MariaDB 10.0.18

CVE-2015-2325 : MariaDB 10.0.18

CVE-2015-0505 : MariaDB 10.0.18

CVE-2015-0501 : MariaDB 10.0.18

CVE-2015-0499 : MariaDB 10.0.18

CVE-2015-0441 : MariaDB 10.0.17

CVE-2015-0433 : MariaDB 10.0.17

CVE-2015-0432 : MariaDB 10.0.16

CVE-2015-0411 : MariaDB 10.0.16

CVE-2015-0391 : MariaDB 10.0.13

CVE-2015-0382 : MariaDB 10.0.16

CVE-2015-0381 : MariaDB 10.0.16

CVE-2015-0374 : MariaDB 10.0.16

CVE-2014-8964 : MariaDB 10.0.18

CVE-2014-6568 : MariaDB 10.0.16

CVE-2014-6564 : MariaDB 10.0.13

CVE-2014-6559 : MariaDB 10.0.15

4109/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0650
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0649
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0648
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0647
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0646
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0644
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0643
https://mariadb.com/kb/en/mariadb-10-0-25-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0642
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0641
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0640
https://mariadb.com/kb/en/mariadb-10-0-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0616
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0610
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0609
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0608
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0606
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0600
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0598
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0597
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0596
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0546
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0505
https://mariadb.com/kb/en/mariadb-10-0-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0502
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7744
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4913
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4895
https://mariadb.com/kb/en/mariadb-10-0-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4879
https://mariadb.com/kb/en/mariadb-10-0-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4870
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4866
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4864
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4861
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4858
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4836
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4830
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4826
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4819
https://mariadb.com/kb/en/mariadb-10-0-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4816
https://mariadb.com/kb/en/mariadb-10-0-21-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4815
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4807
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4802
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4792
https://mariadb.com/kb/en/mariadb-10-0-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4757
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4752
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3152
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2648
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2643
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2620
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2582
https://mariadb.com/kb/en/mariadb-10-0-20-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2573
https://mariadb.com/kb/en/mariadb-10-0-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2571
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2568
https://mariadb.com/kb/en/mariadb-10-0-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2326
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2325
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0505
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0501
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0499
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0441
https://mariadb.com/kb/en/mariadb-10-0-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0433
https://mariadb.com/kb/en/mariadb-10-0-17-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0432
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0411
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0391
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0382
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0381
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0374
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8964
https://mariadb.com/kb/en/mariadb-10-0-18-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6568
https://mariadb.com/kb/en/mariadb-10-0-16-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6564
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6559
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/

CVE-2014-6555 : MariaDB 10.0.15

CVE-2014-6551 : MariaDB 10.0.13

CVE-2014-6530 : MariaDB 10.0.13

CVE-2014-6520 : MariaDB 10.0.13

CVE-2014-6507 : MariaDB 10.0.15

CVE-2014-6505 : MariaDB 10.0.13

CVE-2014-6500 : MariaDB 10.0.15

CVE-2014-6496 : MariaDB 10.0.15

CVE-2014-6495 : MariaDB 10.0.13

CVE-2014-6494 : MariaDB 10.0.15

CVE-2014-6491 : MariaDB 10.0.15

CVE-2014-6489 : MariaDB 10.0.13

CVE-2014-6484 : MariaDB 10.0.13

CVE-2014-6478 : MariaDB 10.0.13

CVE-2014-6474 : MariaDB 10.0.13

CVE-2014-6469 : MariaDB 10.0.15

CVE-2014-6464 : MariaDB 10.0.15

CVE-2014-6463 : MariaDB 10.0.13

CVE-2014-4287 : MariaDB 10.0.13

CVE-2014-4274 : MariaDB 10.0.13

CVE-2014-4260 : MariaDB 10.0.12

CVE-2014-4258 : MariaDB 10.0.12

CVE-2014-4243 : MariaDB 10.0.9

CVE-2014-4207 : MariaDB 10.0.12

CVE-2014-3470 : MariaDB 10.0.13

CVE-2014-2494 : MariaDB 10.0.12

CVE-2014-2440 : MariaDB 10.0.11

CVE-2014-2438 : MariaDB 10.0.9

CVE-2014-2436 : MariaDB 10.0.11

CVE-2014-2432 : MariaDB 10.0.9

CVE-2014-2431 : MariaDB 10.0.11

CVE-2014-2430 : MariaDB 10.0.11

CVE-2014-2419 : MariaDB 10.0.9

CVE-2014-0437 : MariaDB 10.0.8

CVE-2014-0420 : MariaDB 10.0.8

CVE-2014-0412 : MariaDB 10.0.8

CVE-2014-0402 : MariaDB 10.0.7

CVE-2014-0401 : MariaDB 10.0.8

CVE-2014-0393 : MariaDB 10.0.7

CVE-2014-0386 : MariaDB 10.0.7

CVE-2014-0384 : MariaDB 10.0.9

CVE-2014-0224 : MariaDB 10.0.13

CVE-2014-0221 : MariaDB 10.0.13

CVE-2014-0198 : MariaDB 10.0.13

CVE-2014-0195 : MariaDB 10.0.13

CVE-2013-5908 : MariaDB 10.0.8

CVE-2013-5891 : MariaDB 10.0.7

CVE-2013-5807 : MariaDB 10.0.5

CVE-2013-3839 : MariaDB 10.0.5

CVE-2013-3812 : MariaDB 10.0.4

CVE-2013-3809 : MariaDB 10.0.4

CVE-2013-3808 : MariaDB 10.0.3

CVE-2013-3805 : MariaDB 10.0.3

CVE-2013-3804 : MariaDB 10.0.4

CVE-2013-3802 : MariaDB 10.0.4

CVE-2013-3801 : MariaDB 10.0.3

CVE-2013-3794 : MariaDB 10.0.3

CVE-2013-3793 : MariaDB 10.0.4

CVE-2013-3783 : MariaDB 10.0.4

CVE-2013-2392 : MariaDB 10.0.3

CVE-2013-2391 : MariaDB 10.0.3

CVE-2013-2389 : MariaDB 10.0.3

CVE-2013-2378 : MariaDB 10.0.2

CVE-2013-2376 : MariaDB 10.0.3

CVE-2013-2375 : MariaDB 10.0.3

CVE-2013-1861 : MariaDB 10.0.4

CVE-2013-1555 : MariaDB 10.0.2

4110/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6555
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6551
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6530
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6520
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6507
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6505
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6500
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6496
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6495
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6494
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6491
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6489
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6484
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6478
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6474
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6469
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6464
https://mariadb.com/kb/en/mariadb-10-0-15-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6463
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4287
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4274
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4260
https://mariadb.com/kb/en/mariadb-10-0-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4258
https://mariadb.com/kb/en/mariadb-10-0-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4243
https://mariadb.com/kb/en/mariadb-10-0-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4207
https://mariadb.com/kb/en/mariadb-10-0-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3470
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2494
https://mariadb.com/kb/en/mariadb-10-0-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2440
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2438
https://mariadb.com/kb/en/mariadb-10-0-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2436
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2432
https://mariadb.com/kb/en/mariadb-10-0-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2431
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2430
https://mariadb.com/kb/en/mariadb-10-0-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2419
https://mariadb.com/kb/en/mariadb-10-0-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0437
https://mariadb.com/kb/en/mariadb-10-0-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0420
https://mariadb.com/kb/en/mariadb-10-0-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0412
https://mariadb.com/kb/en/mariadb-10-0-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0402
https://mariadb.com/kb/en/mariadb-10-0-7-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0401
https://mariadb.com/kb/en/mariadb-10-0-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0393
https://mariadb.com/kb/en/mariadb-10-0-7-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0386
https://mariadb.com/kb/en/mariadb-10-0-7-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0384
https://mariadb.com/kb/en/mariadb-10-0-9-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0221
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0198
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0195
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5908
https://mariadb.com/kb/en/mariadb-10-0-8-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5891
https://mariadb.com/kb/en/mariadb-10-0-7-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5807
https://mariadb.com/kb/en/mariadb-10-0-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3839
https://mariadb.com/kb/en/mariadb-10-0-5-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3812
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3809
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3808
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3805
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3804
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3802
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3801
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3794
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3793
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3783
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2392
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2391
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2389
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2378
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2376
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2375
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1861
https://mariadb.com/kb/en/mariadb-10-0-4-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1555
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/

CVE-2013-1552 : MariaDB 10.0.2

CVE-2013-1544 : MariaDB 10.0.3

CVE-2013-1532 : MariaDB 10.0.3

CVE-2013-1531 : MariaDB 10.0.1

CVE-2013-1526 : MariaDB 10.0.2

CVE-2013-1523 : MariaDB 10.0.2

CVE-2013-1521 : MariaDB 10.0.2

CVE-2013-1512 : MariaDB 10.0.2

CVE-2013-1511 : MariaDB 10.0.3

CVE-2013-1506 : MariaDB 10.0.2

CVE-2013-1502 : MariaDB 10.0.3

CVE-2013-0389 : MariaDB 10.0.1

CVE-2013-0386 : MariaDB 10.0.1

CVE-2013-0385 : MariaDB 10.0.1

CVE-2013-0384 : MariaDB 10.0.1

CVE-2013-0383 : MariaDB 10.0.1

CVE-2013-0371 : MariaDB 10.0.1

CVE-2013-0368 : MariaDB 10.0.1

CVE-2013-0367 : MariaDB 10.0.1

CVE-2012-5627 : MariaDB 10.0.1

CVE-2012-5615 : MariaDB 10.0.13 , MariaDB 10.0.1

CVE-2012-5614 : MariaDB 10.0.2

CVE-2012-5612 : MariaDB 10.0.1

CVE-2012-5611 : MariaDB 10.0.1

CVE-2012-5096 : MariaDB 10.0.1

CVE-2012-4414 : MariaDB 10.0.0

CVE-2012-1705 : MariaDB 10.0.1

CVE-2012-1702 : MariaDB 10.0.1

CVE-2012-0578 : MariaDB 10.0.1

CVE-2012-0574 : MariaDB 10.0.1

CVE-2012-0572 : MariaDB 10.0.1

CVE-2010-5298 : MariaDB 10.0.13

Comparison with MySQL
See System Variable Differences Between MariaDB 10.0 and MySQL 5.6

List of All MariaDB 10.0 Releases

Date Release Status Release Notes Changelog

31 Jan 2019 MariaDB 10.0.38 Stable (GA) Release Notes Changelog

1 Nov 2018 MariaDB 10.0.37 Stable (GA) Release Notes Changelog

1 Aug 2018 MariaDB 10.0.36 Stable (GA) Release Notes Changelog

3 May 2018 MariaDB 10.0.35 Stable (GA) Release Notes Changelog

30 Jan 2018 MariaDB 10.0.34 Stable (GA) Release Notes Changelog

30 Oct 2017 MariaDB 10.0.33 Stable (GA) Release Notes Changelog

7 Aug 2017 MariaDB 10.0.32 Stable (GA) Release Notes Changelog

23 May 2017 MariaDB 10.0.31 Stable (GA) Release Notes Changelog

8 Mar 2017 MariaDB 10.0.30 Stable (GA) Release Notes Changelog

13 Jan 2017 MariaDB 10.0.29 Stable (GA) Release Notes Changelog

28 Oct 2016 MariaDB 10.0.28 Stable (GA) Release Notes Changelog

25 Aug 2016 MariaDB 10.0.27 Stable (GA) Release Notes Changelog

24 Jun 2016 MariaDB 10.0.26 Stable (GA) Release Notes Changelog

30 Apr 2016 MariaDB 10.0.25 Stable (GA) Release Notes Changelog

19 Feb 2016 MariaDB 10.0.24 Stable (GA) Release Notes Changelog

[2]

4111/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1552
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1544
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1532
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1531
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1526
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1523
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1521
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1512
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1511
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1506
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1502
https://mariadb.com/kb/en/mariadb-10-0-3-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0389
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0386
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0385
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0384
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0383
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0371
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0368
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0367
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5627
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5614
https://mariadb.com/kb/en/mariadb-10-0-2-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5612
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5611
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5096
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4414
https://mariadb.com/kb/en/mariadb-10-0-0-release-notes/
https://mariadb.com/kb/en/mariadb-10-0-0-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1705
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1702
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0578
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0574
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0572
https://mariadb.com/kb/en/mariadb-10-0-1-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5298
https://mariadb.com/kb/en/mariadb-10-0-13-release-notes/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-100-and-mysql-56/
https://mariadb.com/kb/en/mariadb-10038-release-notes/
https://mariadb.com/kb/en/mariadb-10038-release-notes/
https://mariadb.com/kb/en/mariadb-10038-changelog/
https://mariadb.com/kb/en/mariadb-10037-release-notes/
https://mariadb.com/kb/en/mariadb-10037-release-notes/
https://mariadb.com/kb/en/mariadb-10037-changelog/
https://mariadb.com/kb/en/mariadb-10036-release-notes/
https://mariadb.com/kb/en/mariadb-10036-release-notes/
https://mariadb.com/kb/en/mariadb-10036-changelog/
https://mariadb.com/kb/en/mariadb-10035-release-notes/
https://mariadb.com/kb/en/mariadb-10035-release-notes/
https://mariadb.com/kb/en/mariadb-10035-changelog/
https://mariadb.com/kb/en/mariadb-10034-release-notes/
https://mariadb.com/kb/en/mariadb-10034-release-notes/
https://mariadb.com/kb/en/mariadb-10034-changelog/
https://mariadb.com/kb/en/mariadb-10033-release-notes/
https://mariadb.com/kb/en/mariadb-10033-release-notes/
https://mariadb.com/kb/en/mariadb-10033-changelog/
https://mariadb.com/kb/en/mariadb-10032-release-notes/
https://mariadb.com/kb/en/mariadb-10032-release-notes/
https://mariadb.com/kb/en/mariadb-10032-changelog/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-10031-release-notes/
https://mariadb.com/kb/en/mariadb-10031-changelog/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-10030-release-notes/
https://mariadb.com/kb/en/mariadb-10030-changelog/
https://mariadb.com/kb/en/mariadb-10029-release-notes/
https://mariadb.com/kb/en/mariadb-10029-release-notes/
https://mariadb.com/kb/en/mariadb-10029-changelog/
https://mariadb.com/kb/en/mariadb-10028-release-notes/
https://mariadb.com/kb/en/mariadb-10028-release-notes/
https://mariadb.com/kb/en/mariadb-10028-changelog/
https://mariadb.com/kb/en/mariadb-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10027-release-notes/
https://mariadb.com/kb/en/mariadb-10027-changelog/
https://mariadb.com/kb/en/mariadb-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10026-release-notes/
https://mariadb.com/kb/en/mariadb-10026-changelog/
https://mariadb.com/kb/en/mariadb-10025-release-notes/
https://mariadb.com/kb/en/mariadb-10025-release-notes/
https://mariadb.com/kb/en/mariadb-10025-changelog/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-10024-release-notes/
https://mariadb.com/kb/en/mariadb-10024-changelog/

18 Dec 2015 MariaDB 10.0.23 Stable (GA) Release Notes Changelog

29 Oct 2015 MariaDB 10.0.22 Stable (GA) Release Notes Changelog

6 Aug 2015 MariaDB 10.0.21 Stable (GA) Release Notes Changelog

18 Jun 2015 MariaDB 10.0.20 Stable (GA) Release Notes Changelog

9 May 2015 MariaDB 10.0.19 Stable (GA) Release Notes Changelog

7 May 2015 MariaDB 10.0.18 Stable (GA) Release Notes Changelog

27 Feb 2015 MariaDB 10.0.17 Stable (GA) Release Notes Changelog

27 Jan 2015 MariaDB 10.0.16 Stable (GA) Release Notes Changelog

25 Nov 2014 MariaDB 10.0.15 Stable (GA) Release Notes Changelog

26 Sep 2014 MariaDB 10.0.14 Stable (GA) Release Notes Changelog

11 Aug 2014 MariaDB 10.0.13 Stable (GA) Release Notes Changelog

16 Jun 2014 MariaDB 10.0.12 Stable (GA) Release Notes Changelog

12 May 2014 MariaDB 10.0.11 Stable (GA) Release Notes Changelog

31 Mar 2014 MariaDB 10.0.10 Stable (GA) Release Notes Changelog

10 Mar 2014 MariaDB 10.0.9 Release Candidate Release Notes Changelog

10 Feb 2014 MariaDB 10.0.8 Release Candidate Release Notes Changelog

27 Dec 2013 MariaDB 10.0.7 Beta Release Notes Changelog

18 Nov 2013 MariaDB 10.0.6 Beta Release Notes Changelog

7 Nov 2013 MariaDB 10.0.5 Beta Release Notes Changelog

16 Aug 2013 MariaDB 10.0.4 Alpha Release Notes Changelog

11 Jun 2013 MariaDB 10.0.3 Alpha Release Notes Changelog

24 Apr 2013 MariaDB 10.0.2 Alpha Release Notes Changelog

6 Feb 2013 MariaDB 10.0.1 Alpha Release Notes Changelog

12 Nov 2012 MariaDB 10.0.0 Alpha Release Notes Changelog

7.0.12 MariaDB Server 5.5
Changes & Improvements in MariaDB 5.5

Current Version: 5.5.68 | Status: Stable (GA) | Release Date: 12 May 2020

Release Notes - MariaDB 5.5 Series

MariaDB 5.5 Series Release Notes

Changelogs - MariaDB 5.5 Series

MariaDB 5.5 changelogs.

There are 2 related questions .

4

7.0.12.1 Changes & Improvements in MariaDB
5.5

MariaDB 5.5 is no longer supported. Please use a more recent release .

4112/4161

https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-10023-release-notes/
https://mariadb.com/kb/en/mariadb-10023-changelog/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-10022-release-notes/
https://mariadb.com/kb/en/mariadb-10022-changelog/
https://mariadb.com/kb/en/mariadb-10021-release-notes/
https://mariadb.com/kb/en/mariadb-10021-release-notes/
https://mariadb.com/kb/en/mariadb-10021-changelog/
https://mariadb.com/kb/en/mariadb-10020-release-notes/
https://mariadb.com/kb/en/mariadb-10020-release-notes/
https://mariadb.com/kb/en/mariadb-10020-changelog/
https://mariadb.com/kb/en/mariadb-10019-release-notes/
https://mariadb.com/kb/en/mariadb-10019-release-notes/
https://mariadb.com/kb/en/mariadb-10019-changelog/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-10018-release-notes/
https://mariadb.com/kb/en/mariadb-10018-changelog/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10017-release-notes/
https://mariadb.com/kb/en/mariadb-10017-changelog/
https://mariadb.com/kb/en/mariadb-10016-release-notes/
https://mariadb.com/kb/en/mariadb-10016-release-notes/
https://mariadb.com/kb/en/mariadb-10016-changelog/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-10015-release-notes/
https://mariadb.com/kb/en/mariadb-10015-changelog/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-release-notes/
https://mariadb.com/kb/en/mariadb-10014-changelog/
https://mariadb.com/kb/en/mariadb-10013-release-notes/
https://mariadb.com/kb/en/mariadb-10013-release-notes/
https://mariadb.com/kb/en/mariadb-10013-changelog/
https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-10012-release-notes/
https://mariadb.com/kb/en/mariadb-10012-changelog/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-10011-release-notes/
https://mariadb.com/kb/en/mariadb-10011-changelog/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-10010-release-notes/
https://mariadb.com/kb/en/mariadb-10010-changelog/
https://mariadb.com/kb/en/mariadb-1009-release-notes/
https://mariadb.com/kb/en/mariadb-1009-release-notes/
https://mariadb.com/kb/en/mariadb-1009-changelog/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-1008-release-notes/
https://mariadb.com/kb/en/mariadb-1008-changelog/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-1007-release-notes/
https://mariadb.com/kb/en/mariadb-1007-changelog/
https://mariadb.com/kb/en/mariadb-1006-release-notes/
https://mariadb.com/kb/en/mariadb-1006-release-notes/
https://mariadb.com/kb/en/mariadb-1006-changelog/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-1005-release-notes/
https://mariadb.com/kb/en/mariadb-1005-changelog/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-release-notes/
https://mariadb.com/kb/en/mariadb-1004-changelog/
https://mariadb.com/kb/en/mariadb-1003-release-notes/
https://mariadb.com/kb/en/mariadb-1003-release-notes/
https://mariadb.com/kb/en/mariadb-1003-changelog/
https://mariadb.com/kb/en/mariadb-1002-release-notes/
https://mariadb.com/kb/en/mariadb-1002-release-notes/
https://mariadb.com/kb/en/mariadb-1002-changelog/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-release-notes/
https://mariadb.com/kb/en/mariadb-1001-changelog/
https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-release-notes/
https://mariadb.com/kb/en/mariadb-1000-changelog/
https://mariadb.com/kb/en/release-notes-mariadb-55-series/
https://mariadb.com/kb/en/changelogs-mariadb-55-series/
https://mariadb.com/kb/en/mariadb-server-5-5/+questions/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/

The most recent release in the MariaDB 5.5 series is:

MariaDB 5.5.68 Download Now

Contents
1. Feature Comparison Matrix

2. New Features

1. Information Schema

3. Minor Extensions

4. Deprecated / Disabled Features

5. Switching Between InnoDB and XtraDB

6. Security Vulnerabilities Fixed in MariaDB 5.5

7. List of All MariaDB 5.5 Releases

MariaDB 5.5 is MariaDB 5.3 + MySQL 5.5, with added features. The first stable release was in April 2012, and the final

release in May 2020.

For upgrading to MariaDB 10.0, the more recent stable release, see Upgrading from MariaDB 5.5 to MariaDB 10.0 .

Feature Comparison Matrix
We have created an Optimizer Feature Comparison Matrix showing the new optimizer features in MariaDB 5.5 and 5.3

compared to MySQL 5.5 and 5.6.

See also a detailed breakdown of System variable differences between MariaDB 5.5 and MySQL 5.5 .

New Features
Significantly more efficient thread pool, comparable in functionality to the closed source feature in MySQL Enterprise.

Non-blocking client API Library (MWL#192)

@@skip_replication option (MWL#234)

SphinxSE updated to version 2.0.4.

Extended Keys support for XtraDB and InnoDB

New INSTALL SONAME statement (MWL#77)

New LIMIT ROWS EXAMINED optimization (MDEV-28)

mysql_real_connect() Changes

In MySQL, and in MariaDB versions before 5.5.21, mysql_real_connect() removes from the MYSQL object

any options set with mysql_option() when it fails. Beginning with MariaDB 5.5.21 , options are preserved

by a failing mysql_real_connect(); use mysql_close() , as normal, to clear them.

This only has effect if the MYSQL object is reused after a mysql_real_connect() failure (which is unusual).

No real-life incompatibilities are expected from this change (it is unlikely that an application would rely on

options being automatically removed between connection attempts).

The variables replicate_do_* , replicate_ignore_* , and replicate_wild_* have been made dynamic, so

they can be changed without requiring a server restart. See Dynamic Replication Variables for more information.

New status variables for checking if features are used. These are very useful in user feedback to tell developers how

much a feature is used:

Feature_dynamic_columns

Feature_fulltext

Feature_gis

Feature_locale

Feature_subquery

Feature_timezone

Feature_trigger

Feature_xml

New status variables to see what's going on:

Opened_views

Executed_triggers

Executed_events

New plugin to log SQL level errors. SQL_ERROR_LOG

New variable OLD_MODE to set compatibility behavior with older MySQL or MariaDB versions.

Information Schema

There are a number of new INFORMATION SCHEMA tables:

4113/4161

https://mariadb.com/kb/en/mariadb-5568-release-notes/
https://downloads.mariadb.org/mariadb/5.5.68/
https://mariadb.com/kb/en/upgrading-from-mariadb-55-to-mariadb-100/
https://mariadb.com/kb/en/optimizer-feature-comparison-matrix/
https://mariadb.com/kb/en/system-variable-differences-between-mariadb-55-and-mysql-55/
https://mariadb.com/kb/en/non-blocking-client-library/
http://askmonty.org/worklog/?tid=192
http://askmonty.org/worklog/?tid=234
http://askmonty.org/worklog/?tid=77
https://jira.mariadb.org/browse/MDEV-28
https://mariadb.com/kb/en/mariadb-5521-release-notes/

INNODB_SYS_COLUMNS

INNODB_SYS_FIELDS

INNODB_SYS_FOREIGN

INNODB_SYS_FOREIGN_COLS

PARAMETERS

TABLESPACES

Minor Extensions
Updates to performance schema tables are not stored in the binary log and thus not replicated to slaves. This is to

ensure that monitoring of the master will not cause a slower performance on all slaves. This also fixes a crash on the

slaves.

New features are added to MariaDB 10.0 .

Deprecated / Disabled Features
PBXT is no longer in the binary builds/distributions. It's however still in the source distributions and in the source

tree. The reason is that PBXT is no longer actively maintained, has a few bugs that are not fixed and is not in

widespread use.

Switching Between InnoDB and XtraDB
MariaDB 5.5 comes with both XtraDB (compiled in) and InnoDB (as a plugin). By default MariaDB 5.5 uses XtraDB. If you

want to switch to use InnoDB you can do:

mysqld --ignore-builtin-innodb --plugin-load=innodb=ha_innodb.so \

--plugin_dir=/usr/local/mysql/lib/mysql/plugin

(plugin_dir should point to where ha_innodb.so is installed)

The above options can of course also be added to your my.cnf file:

[mysqld]

ignore-builtin-innodb

plugin-load=innodb=ha_innodb.so

plugin_dir=/usr/local/mysql/lib/mysql/plugin

If you want you can also compile MariaDB with InnoDB as default .

Security Vulnerabilities Fixed in MariaDB 5.5

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2021-2144 : MariaDB 5.5.66

CVE-2021-2011 : MariaDB 5.5.61

CVE-2021-2007 : MariaDB 5.5.65

CVE-2020-2922 : MariaDB 5.5.65

CVE-2020-2812 : MariaDB 5.5.68

CVE-2020-2780 : MariaDB 5.5.66

CVE-2020-2752 : MariaDB 5.5.68

CVE-2020-2574 : MariaDB 5.5.67

CVE-2020-14550 : MariaDB 5.5.61

CVE-2019-2974 : MariaDB 5.5.66

CVE-2019-2805 : MariaDB 5.5.65

CVE-2019-2740 : MariaDB 5.5.65

CVE-2019-2739 : MariaDB 5.5.65

CVE-2019-2737 : MariaDB 5.5.65

CVE-2019-2627 : MariaDB 5.5.64

CVE-2019-2614 : MariaDB 5.5.64

CVE-2019-2529 : MariaDB 5.5.63

CVE-2019-2503 : MariaDB 5.5.62

4114/4161

https://mariadb.com/kb/en/plans-for-10x/
https://mariadb.com/kb/en/pbxt-storage-engine/
https://mariadb.com/kb/en/about-xtradb/
https://mariadb.com/kb/en/about-xtradb/
https://mariadb.com/kb/en/compiling-with-the-innodb-plugin-from-oracle/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2144
https://mariadb.com/kb/en/mariadb-5-5-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2011
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2007
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2922
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2812
https://mariadb.com/kb/en/mariadb-5-5-68-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2780
https://mariadb.com/kb/en/mariadb-5-5-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2752
https://mariadb.com/kb/en/mariadb-5-5-68-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2574
https://mariadb.com/kb/en/mariadb-5-5-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14550
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2974
https://mariadb.com/kb/en/mariadb-5-5-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2805
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2740
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2739
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2737
https://mariadb.com/kb/en/mariadb-5-5-65-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2627
https://mariadb.com/kb/en/mariadb-5-5-64-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2614
https://mariadb.com/kb/en/mariadb-5-5-64-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2529
https://mariadb.com/kb/en/mariadb-5-5-63-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2503
https://mariadb.com/kb/en/mariadb-5-5-62-release-notes/

CVE-2019-2481 : MariaDB 5.5.37

CVE-2019-2455 : MariaDB 5.5.60

CVE-2018-3282 : MariaDB 5.5.62

CVE-2018-3174 : MariaDB 5.5.62

CVE-2018-3133 : MariaDB 5.5.59

CVE-2018-3081 : MariaDB 5.5.61

CVE-2018-3066 : MariaDB 5.5.61

CVE-2018-3063 : MariaDB 5.5.61

CVE-2018-3058 : MariaDB 5.5.61

CVE-2018-2819 : MariaDB 5.5.60

CVE-2018-2817 : MariaDB 5.5.60

CVE-2018-2813 : MariaDB 5.5.60

CVE-2018-2781 : MariaDB 5.5.60

CVE-2018-2771 : MariaDB 5.5.60

CVE-2018-2767 : MariaDB 5.5.60

CVE-2018-2761 : MariaDB 5.5.60

CVE-2018-2755 : MariaDB 5.5.60

CVE-2018-2668 : MariaDB 5.5.59

CVE-2018-2665 : MariaDB 5.5.59

CVE-2018-2640 : MariaDB 5.5.59

CVE-2018-2622 : MariaDB 5.5.59

CVE-2018-2562 : MariaDB 5.5.59

CVE-2017-3653 : MariaDB 5.5.57

CVE-2017-3651 : MariaDB 5.5.53

CVE-2017-3641 : MariaDB 5.5.57

CVE-2017-3636 : MariaDB 5.5.57

CVE-2017-3600 : MariaDB 5.5.53

CVE-2017-3464 : MariaDB 5.5.55

CVE-2017-3456 : MariaDB 5.5.55

CVE-2017-3453 : MariaDB 5.5.55

CVE-2017-3318 : MariaDB 5.5.54

CVE-2017-3317 : MariaDB 5.5.54

CVE-2017-3313 : MariaDB 5.5.55

CVE-2017-3312 : MariaDB 5.5.54

CVE-2017-3309 : MariaDB 5.5.55

CVE-2017-3308 : MariaDB 5.5.55

CVE-2017-3302 : MariaDB 5.5.55

CVE-2017-3291 : MariaDB 5.5.54

CVE-2017-3265 : MariaDB 5.5.54

CVE-2017-3258 : MariaDB 5.5.54

CVE-2017-3244 : MariaDB 5.5.54

CVE-2017-3243 : MariaDB 5.5.54

CVE-2017-3238 : MariaDB 5.5.54

CVE-2017-10384 : MariaDB 5.5.57

CVE-2017-10379 : MariaDB 5.5.57

CVE-2017-10378 : MariaDB 5.5.58

CVE-2017-10268 : MariaDB 5.5.58

CVE-2016-9843 : MariaDB 5.5.62

CVE-2016-8283 : MariaDB 5.5.52

CVE-2016-7440 : MariaDB 5.5.53

CVE-2016-6664 : MariaDB 5.5.54

CVE-2016-6663 : MariaDB 5.5.52

CVE-2016-6662 : MariaDB 5.5.51

CVE-2016-5629 : MariaDB 5.5.52

CVE-2016-5626 : MariaDB 5.5.52

CVE-2016-5624 : MariaDB 5.5.52

CVE-2016-5616 : MariaDB 5.5.52

CVE-2016-5612 : MariaDB 5.5.51

CVE-2016-5584 : MariaDB 5.5.53

CVE-2016-5483 : MariaDB 5.5.53

CVE-2016-5444 : MariaDB 5.5.49

CVE-2016-5440 : MariaDB 5.5.50

CVE-2016-3615 : MariaDB 5.5.50

CVE-2016-3521 : MariaDB 5.5.50

CVE-2016-3492 : MariaDB 5.5.52

CVE-2016-3477 : MariaDB 5.5.50

CVE-2016-3471 : MariaDB 5.5.46

4115/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2481
https://mariadb.com/kb/en/mariadb-5-5-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2455
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3282
https://mariadb.com/kb/en/mariadb-5-5-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3174
https://mariadb.com/kb/en/mariadb-5-5-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3133
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3081
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3066
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3063
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3058
https://mariadb.com/kb/en/mariadb-5-5-61-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2819
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2817
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2813
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2781
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2771
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2767
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2761
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2755
https://mariadb.com/kb/en/mariadb-5-5-60-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2668
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2665
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2640
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2622
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2562
https://mariadb.com/kb/en/mariadb-5-5-59-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3653
https://mariadb.com/kb/en/mariadb-5-5-57-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3651
https://mariadb.com/kb/en/mariadb-5-5-53-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3641
https://mariadb.com/kb/en/mariadb-5-5-57-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3636
https://mariadb.com/kb/en/mariadb-5-5-57-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3600
https://mariadb.com/kb/en/mariadb-5-5-53-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3464
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3456
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3453
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3318
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3317
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3313
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3312
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3309
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3308
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3302
https://mariadb.com/kb/en/mariadb-5-5-55-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3291
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3265
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3258
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3244
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3243
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3238
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10384
https://mariadb.com/kb/en/mariadb-5-5-57-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10379
https://mariadb.com/kb/en/mariadb-5-5-57-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10378
https://mariadb.com/kb/en/mariadb-5-5-58-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10268
https://mariadb.com/kb/en/mariadb-5-5-58-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9843
https://mariadb.com/kb/en/mariadb-5-5-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8283
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7440
https://mariadb.com/kb/en/mariadb-5-5-53-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6664
https://mariadb.com/kb/en/mariadb-5-5-54-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6663
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6662
https://mariadb.com/kb/en/mariadb-5-5-51-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5629
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5626
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5624
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5616
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5612
https://mariadb.com/kb/en/mariadb-5-5-51-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5584
https://mariadb.com/kb/en/mariadb-5-5-53-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5483
https://mariadb.com/kb/en/mariadb-5-5-53-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5444
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5440
https://mariadb.com/kb/en/mariadb-5-5-50-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3615
https://mariadb.com/kb/en/mariadb-5-5-50-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3521
https://mariadb.com/kb/en/mariadb-5-5-50-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3492
https://mariadb.com/kb/en/mariadb-5-5-52-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3477
https://mariadb.com/kb/en/mariadb-5-5-50-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3471
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/

CVE-2016-3452 : MariaDB 5.5.49

CVE-2016-2047 : MariaDB 5.5.47

CVE-2016-0666 : MariaDB 5.5.49

CVE-2016-0651 : MariaDB 5.5.47

CVE-2016-0650 : MariaDB 5.5.48

CVE-2016-0649 : MariaDB 5.5.48

CVE-2016-0648 : MariaDB 5.5.49

CVE-2016-0647 : MariaDB 5.5.49

CVE-2016-0646 : MariaDB 5.5.48

CVE-2016-0644 : MariaDB 5.5.48

CVE-2016-0643 : MariaDB 5.5.49

CVE-2016-0642 : MariaDB 5.5.47

CVE-2016-0641 : MariaDB 5.5.48

CVE-2016-0640 : MariaDB 5.5.48

CVE-2016-0616 : MariaDB 5.5.47

CVE-2016-0609 : MariaDB 5.5.47

CVE-2016-0608 : MariaDB 5.5.47

CVE-2016-0606 : MariaDB 5.5.47

CVE-2016-0600 : MariaDB 5.5.47

CVE-2016-0598 : MariaDB 5.5.47

CVE-2016-0597 : MariaDB 5.5.47

CVE-2016-0596 : MariaDB 5.5.47

CVE-2016-0546 : MariaDB 5.5.47

CVE-2016-0505 : MariaDB 5.5.47

CVE-2016-0502 : MariaDB 5.5.32

CVE-2015-7744 : MariaDB 5.5.46

CVE-2015-4913 : MariaDB 5.5.46

CVE-2015-4879 : MariaDB 5.5.45

CVE-2015-4870 : MariaDB 5.5.46

CVE-2015-4864 : MariaDB 5.5.44

CVE-2015-4861 : MariaDB 5.5.46

CVE-2015-4858 : MariaDB 5.5.46

CVE-2015-4836 : MariaDB 5.5.46

CVE-2015-4830 : MariaDB 5.5.46

CVE-2015-4826 : MariaDB 5.5.46

CVE-2015-4819 : MariaDB 5.5.45

CVE-2015-4816 : MariaDB 5.5.45

CVE-2015-4815 : MariaDB 5.5.46

CVE-2015-4807 : MariaDB 5.5.46

CVE-2015-4802 : MariaDB 5.5.46

CVE-2015-4792 : MariaDB 5.5.46

CVE-2015-4757 : MariaDB 5.5.43

CVE-2015-4752 : MariaDB 5.5.44

CVE-2015-3152 : MariaDB 5.5.44

CVE-2015-2648 : MariaDB 5.5.44

CVE-2015-2643 : MariaDB 5.5.44

CVE-2015-2620 : MariaDB 5.5.44

CVE-2015-2582 : MariaDB 5.5.44

CVE-2015-2573 : MariaDB 5.5.42

CVE-2015-2571 : MariaDB 5.5.43

CVE-2015-2568 : MariaDB 5.5.42

CVE-2015-0505 : MariaDB 5.5.43

CVE-2015-0501 : MariaDB 5.5.43

CVE-2015-0499 : MariaDB 5.5.43

CVE-2015-0441 : MariaDB 5.5.42

CVE-2015-0433 : MariaDB 5.5.42

CVE-2015-0432 : MariaDB 5.5.41

CVE-2015-0411 : MariaDB 5.5.41

CVE-2015-0391 : MariaDB 5.5.39

CVE-2015-0382 : MariaDB 5.5.41

CVE-2015-0381 : MariaDB 5.5.41

CVE-2015-0374 : MariaDB 5.5.41

CVE-2014-6568 : MariaDB 5.5.41

CVE-2014-6559 : MariaDB 5.5.40

CVE-2014-6555 : MariaDB 5.5.40

CVE-2014-6551 : MariaDB 5.5.39

CVE-2014-6530 : MariaDB 5.5.39

4116/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3452
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2047
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0666
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0651
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0650
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0649
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0648
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0647
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0646
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0644
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0643
https://mariadb.com/kb/en/mariadb-5-5-49-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0642
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0641
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0640
https://mariadb.com/kb/en/mariadb-5-5-48-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0616
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0609
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0608
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0606
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0600
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0598
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0597
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0596
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0546
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0505
https://mariadb.com/kb/en/mariadb-5-5-47-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0502
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7744
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4913
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4879
https://mariadb.com/kb/en/mariadb-5-5-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4870
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4864
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4861
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4858
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4836
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4830
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4826
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4819
https://mariadb.com/kb/en/mariadb-5-5-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4816
https://mariadb.com/kb/en/mariadb-5-5-45-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4815
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4807
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4802
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4792
https://mariadb.com/kb/en/mariadb-5-5-46-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4757
https://mariadb.com/kb/en/mariadb-5-5-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4752
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3152
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2648
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2643
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2620
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2582
https://mariadb.com/kb/en/mariadb-5-5-44-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2573
https://mariadb.com/kb/en/mariadb-5-5-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2571
https://mariadb.com/kb/en/mariadb-5-5-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2568
https://mariadb.com/kb/en/mariadb-5-5-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0505
https://mariadb.com/kb/en/mariadb-5-5-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0501
https://mariadb.com/kb/en/mariadb-5-5-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0499
https://mariadb.com/kb/en/mariadb-5-5-43-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0441
https://mariadb.com/kb/en/mariadb-5-5-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0433
https://mariadb.com/kb/en/mariadb-5-5-42-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0432
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0411
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0391
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0382
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0381
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0374
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6568
https://mariadb.com/kb/en/mariadb-5-5-41-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6559
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6555
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6551
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6530
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/

CVE-2014-6520 : MariaDB 5.5.39

CVE-2014-6507 : MariaDB 5.5.40

CVE-2014-6505 : MariaDB 5.5.39

CVE-2014-6500 : MariaDB 5.5.40

CVE-2014-6496 : MariaDB 5.5.40

CVE-2014-6495 : MariaDB 5.5.39

CVE-2014-6494 : MariaDB 5.5.40

CVE-2014-6491 : MariaDB 5.5.40

CVE-2014-6484 : MariaDB 5.5.39

CVE-2014-6478 : MariaDB 5.5.39

CVE-2014-6469 : MariaDB 5.5.40

CVE-2014-6464 : MariaDB 5.5.40

CVE-2014-6463 : MariaDB 5.5.39

CVE-2014-4287 : MariaDB 5.5.39

CVE-2014-4274 : MariaDB 5.5.39

CVE-2014-4260 : MariaDB 5.5.38

CVE-2014-4258 : MariaDB 5.5.38

CVE-2014-4243 : MariaDB 5.5.36

CVE-2014-4207 : MariaDB 5.5.38

CVE-2014-2494 : MariaDB 5.5.38

CVE-2014-2440 : MariaDB 5.5.37

CVE-2014-2438 : MariaDB 5.5.36

CVE-2014-2436 : MariaDB 5.5.37

CVE-2014-2432 : MariaDB 5.5.36

CVE-2014-2431 : MariaDB 5.5.37

CVE-2014-2430 : MariaDB 5.5.37

CVE-2014-2419 : MariaDB 5.5.36

CVE-2014-0437 : MariaDB 5.5.35

CVE-2014-0420 : MariaDB 5.5.35

CVE-2014-0412 : MariaDB 5.5.35

CVE-2014-0402 : MariaDB 5.5.34

CVE-2014-0401 : MariaDB 5.5.35

CVE-2014-0393 : MariaDB 5.5.34

CVE-2014-0386 : MariaDB 5.5.34

CVE-2014-0384 : MariaDB 5.5.36

CVE-2013-5908 : MariaDB 5.5.35

CVE-2013-5891 : MariaDB 5.5.34

CVE-2013-5807 : MariaDB 5.5.33

CVE-2013-3839 : MariaDB 5.5.33

CVE-2013-3812 : MariaDB 5.5.32

CVE-2013-3809 : MariaDB 5.5.32

CVE-2013-3808 : MariaDB 5.5.31

CVE-2013-3805 : MariaDB 5.5.31

CVE-2013-3804 : MariaDB 5.5.32

CVE-2013-3802 : MariaDB 5.5.32

CVE-2013-3801 : MariaDB 5.5.31

CVE-2013-3794 : MariaDB 5.5.31

CVE-2013-3793 : MariaDB 5.5.32

CVE-2013-3783 : MariaDB 5.5.32

CVE-2013-2392 : MariaDB 5.5.31

CVE-2013-2391 : MariaDB 5.5.31

CVE-2013-2389 : MariaDB 5.5.31

CVE-2013-2378 : MariaDB 5.5.30

CVE-2013-2376 : MariaDB 5.5.31

CVE-2013-2375 : MariaDB 5.5.31

CVE-2013-1861 : MariaDB 5.5.32

CVE-2013-1555 : MariaDB 5.5.30

CVE-2013-1552 : MariaDB 5.5.30

CVE-2013-1548 : MariaDB 5.5.27

CVE-2013-1544 : MariaDB 5.5.31

CVE-2013-1532 : MariaDB 5.5.31

CVE-2013-1531 : MariaDB 5.5.29

CVE-2013-1526 : MariaDB 5.5.30

CVE-2013-1523 : MariaDB 5.5.30

CVE-2013-1521 : MariaDB 5.5.30

CVE-2013-1512 : MariaDB 5.5.30

CVE-2013-1511 : MariaDB 5.5.31

4117/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6520
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6507
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6505
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6500
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6496
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6495
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6494
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6491
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6484
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6478
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6469
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6464
https://mariadb.com/kb/en/mariadb-5-5-40-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6463
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4287
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4274
https://mariadb.com/kb/en/mariadb-5-5-39-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4260
https://mariadb.com/kb/en/mariadb-5-5-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4258
https://mariadb.com/kb/en/mariadb-5-5-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4243
https://mariadb.com/kb/en/mariadb-5-5-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4207
https://mariadb.com/kb/en/mariadb-5-5-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2494
https://mariadb.com/kb/en/mariadb-5-5-38-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2440
https://mariadb.com/kb/en/mariadb-5-5-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2438
https://mariadb.com/kb/en/mariadb-5-5-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2436
https://mariadb.com/kb/en/mariadb-5-5-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2432
https://mariadb.com/kb/en/mariadb-5-5-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2431
https://mariadb.com/kb/en/mariadb-5-5-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2430
https://mariadb.com/kb/en/mariadb-5-5-37-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2419
https://mariadb.com/kb/en/mariadb-5-5-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0437
https://mariadb.com/kb/en/mariadb-5-5-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0420
https://mariadb.com/kb/en/mariadb-5-5-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0412
https://mariadb.com/kb/en/mariadb-5-5-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0402
https://mariadb.com/kb/en/mariadb-5-5-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0401
https://mariadb.com/kb/en/mariadb-5-5-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0393
https://mariadb.com/kb/en/mariadb-5-5-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0386
https://mariadb.com/kb/en/mariadb-5-5-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0384
https://mariadb.com/kb/en/mariadb-5-5-36-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5908
https://mariadb.com/kb/en/mariadb-5-5-35-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5891
https://mariadb.com/kb/en/mariadb-5-5-34-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5807
https://mariadb.com/kb/en/mariadb-5-5-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3839
https://mariadb.com/kb/en/mariadb-5-5-33-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3812
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3809
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3808
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3805
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3804
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3802
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3801
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3794
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3793
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3783
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2392
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2391
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2389
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2378
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2376
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2375
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1861
https://mariadb.com/kb/en/mariadb-5-5-32-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1555
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1552
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1548
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1544
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1532
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1531
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1526
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1523
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1521
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1512
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1511
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/

CVE-2013-1506 : MariaDB 5.5.30

CVE-2013-1502 : MariaDB 5.5.31

CVE-2013-0389 : MariaDB 5.5.29

CVE-2013-0386 : MariaDB 5.5.29

CVE-2013-0385 : MariaDB 5.5.29

CVE-2013-0384 : MariaDB 5.5.29

CVE-2013-0383 : MariaDB 5.5.29

CVE-2013-0371 : MariaDB 5.5.29

CVE-2013-0368 : MariaDB 5.5.29

CVE-2013-0367 : MariaDB 5.5.29

CVE-2012-5627 : MariaDB 5.5.29

CVE-2012-5615 : MariaDB 5.5.29

CVE-2012-5614 : MariaDB 5.5.30

CVE-2012-5612 : MariaDB 5.5.29

CVE-2012-5611 : MariaDB 5.5.29 , MariaDB 5.5.28

CVE-2012-5096 : MariaDB 5.5.29

CVE-2012-5060 : MariaDB 5.5.28

CVE-2012-4414 : MariaDB 5.5.27

CVE-2012-3197 : MariaDB 5.5.27

CVE-2012-3180 : MariaDB 5.5.28

CVE-2012-3177 : MariaDB 5.5.28 , MariaDB 5.5.27

CVE-2012-3173 : MariaDB 5.5.27

CVE-2012-3167 : MariaDB 5.5.27

CVE-2012-3166 : MariaDB 5.5.27

CVE-2012-3163 : MariaDB 5.5.27

CVE-2012-3160 : MariaDB 5.5.28

CVE-2012-3158 : MariaDB 5.5.27

CVE-2012-3150 : MariaDB 5.5.27

CVE-2012-2750 : MariaDB 5.5.23

CVE-2012-1757 : MariaDB 5.5.24

CVE-2012-1756 : MariaDB 5.5.24

CVE-2012-1735 : MariaDB 5.5.24

CVE-2012-1734 : MariaDB 5.5.24

CVE-2012-1705 : MariaDB 5.5.29

CVE-2012-1703 : MariaDB 5.5.22

CVE-2012-1702 : MariaDB 5.5.29

CVE-2012-1697 : MariaDB 5.5.22

CVE-2012-1690 : MariaDB 5.5.22

CVE-2012-1689 : MariaDB 5.5.23

CVE-2012-1688 : MariaDB 5.5.22

CVE-2012-0578 : MariaDB 5.5.29

CVE-2012-0574 : MariaDB 5.5.29

CVE-2012-0572 : MariaDB 5.5.29

CVE-2012-0540 : MariaDB 5.5.24

CVE-2005-0004 : MariaDB 5.5.66

The following CVEs are also fixed in MariaDB 5.5 but the fix is not tied to a specific version number:

CVE-2012-0113

CVE-2011-2262

CVE-2012-0116

CVE-2012-0118

CVE-2012-0496

CVE-2012-0115

CVE-2012-0119

CVE-2012-0120

CVE-2012-0484

CVE-2012-0485

CVE-2012-0486

CVE-2012-0487

CVE-2012-0488

CVE-2012-0489

CVE-2012-0490

CVE-2012-0491

CVE-2012-0495

CVE-2012-0112

CVE-2012-0117

CVE-2012-0114

[2]

[2]

[2]

[2]

4118/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1506
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1502
https://mariadb.com/kb/en/mariadb-5-5-31-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0389
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0386
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0385
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0384
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0383
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0371
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0368
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0367
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5627
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-29-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-29-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5614
https://mariadb.com/kb/en/mariadb-5-5-30-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5612
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-29-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5611
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-28a-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5096
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5060
https://mariadb.com/kb/en/mariadb-5-5-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4414
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-27-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3197
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3180
https://mariadb.com/kb/en/mariadb-5-5-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3177
https://mariadb.com/kb/en/mariadb-5-5-28-release-notes/
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3173
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3167
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3166
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3163
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3160
https://mariadb.com/kb/en/mariadb-5-5-28-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3158
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3150
https://mariadb.com/kb/en/mariadb-5-5-27-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2750
https://mariadb.com/kb/en/mariadb-5-5-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1757
https://mariadb.com/kb/en/mariadb-5-5-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1756
https://mariadb.com/kb/en/mariadb-5-5-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1735
https://mariadb.com/kb/en/mariadb-5-5-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1734
https://mariadb.com/kb/en/mariadb-5-5-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1705
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1703
https://mariadb.com/kb/en/mariadb-5-5-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1702
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1697
https://mariadb.com/kb/en/mariadb-5-5-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1690
https://mariadb.com/kb/en/mariadb-5-5-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1689
https://mariadb.com/kb/en/mariadb-5-5-23-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1688
https://mariadb.com/kb/en/mariadb-5-5-22-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0578
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0574
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0572
https://mariadb.com/kb/en/mariadb-5-5-29-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0540
https://mariadb.com/kb/en/mariadb-5-5-24-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0004
https://mariadb.com/kb/en/mariadb-5-5-66-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0113
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2262
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0116
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0118
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0496
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0115
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0119
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0120
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0484
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0485
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0486
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0487
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0488
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0489
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0490
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0491
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0495
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0112
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0117
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0114

CVE-2012-0492

CVE-2012-0493

CVE-2012-0075

CVE-2012-0494

List of All MariaDB 5.5 Releases

Date Release Status Release Notes Changelog

12 May 2020 MariaDB 5.5.68 Stable (GA) Release Notes Changelog

28 Jan 2020 MariaDB 5.5.67 Stable (GA) Release Notes Changelog

5 Nov 2019 MariaDB 5.5.66 Stable (GA) Release Notes Changelog

31 Jul 2019 MariaDB 5.5.65 Stable (GA) Release Notes Changelog

29 Apr 2019 MariaDB 5.5.64 Stable (GA) Release Notes Changelog

30 Jan 2019 MariaDB 5.5.63 Stable (GA) Release Notes Changelog

26 Oct 2018 MariaDB 5.5.62 Stable (GA) Release Notes Changelog

31 Jul 2018 MariaDB 5.5.61 Stable (GA) Release Notes Changelog

23 Apr 2018 MariaDB 5.5.60 Stable (GA) Release Notes Changelog

19 Jan 2018 MariaDB 5.5.59 Stable (GA) Release Notes Changelog

18 Oct 2017 MariaDB 5.5.58 Stable (GA) Release Notes Changelog

19 Jul 2017 MariaDB 5.5.57 Stable (GA) Release Notes Changelog

3 May 2017 MariaDB 5.5.56 Stable (GA) Release Notes Changelog

13 Apr 2017 MariaDB 5.5.55 Stable (GA) Release Notes Changelog

24 Dec 2016 MariaDB 5.5.54 Stable (GA) Release Notes Changelog

17 Oct 2016 MariaDB 5.5.53 Stable (GA) Release Notes Changelog

13 Sep 2016 MariaDB 5.5.52 Stable (GA) Release Notes Changelog

10 Aug 2016 MariaDB 5.5.51 Stable (GA) Release Notes Changelog

17 Jun 2016 MariaDB 5.5.50 Stable (GA) Release Notes Changelog

22 Apr 2016 MariaDB 5.5.49 Stable (GA) Release Notes Changelog

11 Feb 2016 MariaDB 5.5.48 Stable (GA) Release Notes Changelog

10 Dec 2015 MariaDB 5.5.47 Stable (GA) Release Notes Changelog

12 Oct 2015 MariaDB 5.5.46 Stable (GA) Release Notes Changelog

6 Aug 2015 MariaDB 5.5.45 Stable (GA) Release Notes Changelog

11 Jun 2015 MariaDB 5.5.44 Stable (GA) Release Notes Changelog

1 May 2015 MariaDB 5.5.43 Stable (GA) Release Notes Changelog

19 Feb 2015 MariaDB 5.5.42 Stable (GA) Release Notes Changelog

21 Dec 2014 MariaDB 5.5.41 Stable (GA) Release Notes Changelog

9 Oct 2014 MariaDB 5.5.40 Stable (GA) Release Notes Changelog

5 Aug 2014 MariaDB 5.5.39 Stable (GA) Release Notes Changelog

9 Jun 2014 MariaDB 5.5.38 Stable (GA) Release Notes Changelog

17 Apr 2014 MariaDB 5.5.37 Stable (GA) Release Notes Changelog

25 Feb 2014 MariaDB 5.5.36 Stable (GA) Release Notes Changelog

29 Jan 2014 MariaDB 5.5.35 Stable (GA) Release Notes Changelog

21 Nov 2013 MariaDB 5.5.34 Stable (GA) Release Notes Changelog

20 Sep 2013 MariaDB 5.5.33a Stable (GA) Release Notes Changelog

17 Sep 2013 MariaDB 5.5.33 Stable (GA) Release Notes Changelog

4119/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0492
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0493
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0075
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0494
https://mariadb.com/kb/en/mariadb-5568-release-notes/
https://mariadb.com/kb/en/mariadb-5568-release-notes/
https://mariadb.com/kb/en/mariadb-5568-changelog/
https://mariadb.com/kb/en/mariadb-5567-release-notes/
https://mariadb.com/kb/en/mariadb-5567-release-notes/
https://mariadb.com/kb/en/mariadb-5567-changelog/
https://mariadb.com/kb/en/mariadb-5566-release-notes/
https://mariadb.com/kb/en/mariadb-5566-release-notes/
https://mariadb.com/kb/en/mariadb-5566-changelog/
https://mariadb.com/kb/en/mariadb-5565-release-notes/
https://mariadb.com/kb/en/mariadb-5565-release-notes/
https://mariadb.com/kb/en/mariadb-5565-changelog/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-5564-release-notes/
https://mariadb.com/kb/en/mariadb-5564-changelog/
https://mariadb.com/kb/en/mariadb-5563-release-notes/
https://mariadb.com/kb/en/mariadb-5563-release-notes/
https://mariadb.com/kb/en/mariadb-5563-changelog/
https://mariadb.com/kb/en/mariadb-5562-release-notes/
https://mariadb.com/kb/en/mariadb-5562-release-notes/
https://mariadb.com/kb/en/mariadb-5562-changelog/
https://mariadb.com/kb/en/mariadb-5561-release-notes/
https://mariadb.com/kb/en/mariadb-5561-release-notes/
https://mariadb.com/kb/en/mariadb-5561-changelog/
https://mariadb.com/kb/en/mariadb-5560-release-notes/
https://mariadb.com/kb/en/mariadb-5560-release-notes/
https://mariadb.com/kb/en/mariadb-5560-changelog/
https://mariadb.com/kb/en/mariadb-5559-release-notes/
https://mariadb.com/kb/en/mariadb-5559-release-notes/
https://mariadb.com/kb/en/mariadb-5559-changelog/
https://mariadb.com/kb/en/mariadb-5558-release-notes/
https://mariadb.com/kb/en/mariadb-5558-release-notes/
https://mariadb.com/kb/en/mariadb-5558-changelog/
https://mariadb.com/kb/en/mariadb-5557-release-notes/
https://mariadb.com/kb/en/mariadb-5557-release-notes/
https://mariadb.com/kb/en/mariadb-5557-changelog/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-5556-release-notes/
https://mariadb.com/kb/en/mariadb-5556-changelog/
https://mariadb.com/kb/en/mariadb-5555-release-notes/
https://mariadb.com/kb/en/mariadb-5555-release-notes/
https://mariadb.com/kb/en/mariadb-5555-changelog/
https://mariadb.com/kb/en/mariadb-5554-release-notes/
https://mariadb.com/kb/en/mariadb-5554-release-notes/
https://mariadb.com/kb/en/mariadb-5554-changelog/
https://mariadb.com/kb/en/mariadb-5553-release-notes/
https://mariadb.com/kb/en/mariadb-5553-release-notes/
https://mariadb.com/kb/en/mariadb-5553-changelog/
https://mariadb.com/kb/en/mariadb-5552-release-notes/
https://mariadb.com/kb/en/mariadb-5552-release-notes/
https://mariadb.com/kb/en/mariadb-5552-changelog/
https://mariadb.com/kb/en/mariadb-5551-release-notes/
https://mariadb.com/kb/en/mariadb-5551-release-notes/
https://mariadb.com/kb/en/mariadb-5551-changelog/
https://mariadb.com/kb/en/mariadb-5550-release-notes/
https://mariadb.com/kb/en/mariadb-5550-release-notes/
https://mariadb.com/kb/en/mariadb-5550-changelog/
https://mariadb.com/kb/en/mariadb-5549-release-notes/
https://mariadb.com/kb/en/mariadb-5549-release-notes/
https://mariadb.com/kb/en/mariadb-5549-changelog/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-5548-release-notes/
https://mariadb.com/kb/en/mariadb-5548-changelog/
https://mariadb.com/kb/en/mariadb-5547-release-notes/
https://mariadb.com/kb/en/mariadb-5547-release-notes/
https://mariadb.com/kb/en/mariadb-5547-changelog/
https://mariadb.com/kb/en/mariadb-5546-release-notes/
https://mariadb.com/kb/en/mariadb-5546-release-notes/
https://mariadb.com/kb/en/mariadb-5546-changelog/
https://mariadb.com/kb/en/mariadb-5545-release-notes/
https://mariadb.com/kb/en/mariadb-5545-release-notes/
https://mariadb.com/kb/en/mariadb-5545-changelog/
https://mariadb.com/kb/en/mariadb-5544-release-notes/
https://mariadb.com/kb/en/mariadb-5544-release-notes/
https://mariadb.com/kb/en/mariadb-5544-changelog/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
https://mariadb.com/kb/en/mariadb-5543-release-notes/
https://mariadb.com/kb/en/mariadb-5543-changelog/
https://mariadb.com/kb/en/mariadb-5542-release-notes/
https://mariadb.com/kb/en/mariadb-5542-release-notes/
https://mariadb.com/kb/en/mariadb-5542-changelog/
https://mariadb.com/kb/en/mariadb-5541-release-notes/
https://mariadb.com/kb/en/mariadb-5541-release-notes/
https://mariadb.com/kb/en/mariadb-5541-changelog/
https://mariadb.com/kb/en/mariadb-5540-release-notes/
https://mariadb.com/kb/en/mariadb-5540-release-notes/
https://mariadb.com/kb/en/mariadb-5540-changelog/
https://mariadb.com/kb/en/mariadb-5539-release-notes/
https://mariadb.com/kb/en/mariadb-5539-release-notes/
https://mariadb.com/kb/en/mariadb-5539-changelog/
https://mariadb.com/kb/en/mariadb-5538-release-notes/
https://mariadb.com/kb/en/mariadb-5538-release-notes/
https://mariadb.com/kb/en/mariadb-5538-changelog/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-5537-release-notes/
https://mariadb.com/kb/en/mariadb-5537-changelog/
https://mariadb.com/kb/en/mariadb-5536-release-notes/
https://mariadb.com/kb/en/mariadb-5536-release-notes/
https://mariadb.com/kb/en/mariadb-5536-changelog/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-5535-release-notes/
https://mariadb.com/kb/en/mariadb-5535-changelog/
https://mariadb.com/kb/en/mariadb-5534-release-notes/
https://mariadb.com/kb/en/mariadb-5534-release-notes/
https://mariadb.com/kb/en/mariadb-5534-changelog/
https://mariadb.com/kb/en/mariadb-5533a-release-notes/
https://mariadb.com/kb/en/mariadb-5533a-release-notes/
https://mariadb.com/kb/en/mariadb-5533a-changelog/
https://mariadb.com/kb/en/mariadb-5533-release-notes/
https://mariadb.com/kb/en/mariadb-5533-release-notes/
https://mariadb.com/kb/en/mariadb-5533-changelog/

18 Jul 2013 MariaDB 5.5.32 Stable (GA) Release Notes Changelog

23 May 2013 MariaDB 5.5.31 Stable (GA) Release Notes Changelog

12 Mar 2013 MariaDB 5.5.30 Stable (GA) Release Notes Changelog

30 Jan 2013 MariaDB 5.5.29 Stable (GA) Release Notes Changelog

29 Nov 2012 MariaDB 5.5.28a Stable (GA) Release Notes Changelog

22 Oct 2012 MariaDB 5.5.28 Stable (GA) Release Notes Changelog

7 Sep 2012 MariaDB 5.5.27 Stable (GA) Release Notes Changelog

22 Jun 2012 MariaDB 5.5.25 Stable (GA) Release Notes Changelog

31 May 2012 MariaDB 5.5.24 Stable (GA) Release Notes Changelog

11 Apr 2012 MariaDB 5.5.23 Stable (GA) Release Notes Changelog

29 Mar 2012 MariaDB 5.5.22 Release Candidate Release Notes Changelog

16 Mar 2012 MariaDB 5.5.21 Beta Release Notes Changelog

25 Feb 2012 MariaDB 5.5.20 Alpha Release Notes Changelog

7.0.13 MariaDB Server 5.3
Changes & Improvements in MariaDB 5.3

MariaDB 5.3 is no longer supported. Last release: 5.3.12 | Release Date: 30 Jan 2013

Release Notes - MariaDB 5.3 Series

Release Notes - MariaDB 5.3 Series

Changelogs - MariaDB 5.3 Series

MariaDB 5.3 changelogs.

7.0.13.1 Changes & Improvements in MariaDB
5.3

MariaDB 5.3 is no longer supported. Please use a more recent release .

Download MariaDB 5.3

Date Release Status Release Notes Changelog

30 Jan 2013 MariaDB 5.3.12 Stable (GA) Release Notes Changelog

29 Nov 2012 MariaDB 5.3.11 Stable (GA) Release Notes Changelog

13 Nov 2012 MariaDB 5.3.10 Stable (GA) Release Notes Changelog

02 Oct 2012 MariaDB 5.3.9 Stable (GA) Release Notes Changelog

28 Aug 2012 MariaDB 5.3.8 Stable (GA) Release Notes Changelog

4 May 2012 MariaDB 5.3.7 Stable (GA) Release Notes Changelog

9 Apr 2012 MariaDB 5.3.6 Stable (GA) Release Notes Changelog

29 Feb 2012 MariaDB 5.3.5 Stable (GA) Release Notes Changelog

15 Feb 2012 MariaDB 5.3.4 Release Candidate Release Notes Changelog

21 Dec 2011 MariaDB 5.3.3 Release Candidate Release Notes Changelog

14 Oct 2011 MariaDB 5.3.2 Beta Release Notes Changelog

4120/4161

https://mariadb.com/kb/en/mariadb-5532-release-notes/
https://mariadb.com/kb/en/mariadb-5532-release-notes/
https://mariadb.com/kb/en/mariadb-5532-changelog/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/mariadb-5531-release-notes/
https://mariadb.com/kb/en/mariadb-5531-changelog/
https://mariadb.com/kb/en/mariadb-5530-release-notes/
https://mariadb.com/kb/en/mariadb-5530-release-notes/
https://mariadb.com/kb/en/mariadb-5530-changelog/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
https://mariadb.com/kb/en/mariadb-5529-release-notes/
https://mariadb.com/kb/en/mariadb-5529-changelog/
https://mariadb.com/kb/en/mariadb-5528a-release-notes/
https://mariadb.com/kb/en/mariadb-5528a-release-notes/
https://mariadb.com/kb/en/mariadb-5528a-changelog/
https://mariadb.com/kb/en/mariadb-5528-release-notes/
https://mariadb.com/kb/en/mariadb-5528-release-notes/
https://mariadb.com/kb/en/mariadb-5528-changelog/
https://mariadb.com/kb/en/mariadb-5527-release-notes/
https://mariadb.com/kb/en/mariadb-5527-release-notes/
https://mariadb.com/kb/en/mariadb-5527-changelog/
https://mariadb.com/kb/en/mariadb-5525-release-notes/
https://mariadb.com/kb/en/mariadb-5525-release-notes/
https://mariadb.com/kb/en/mariadb-5525-changelog/
https://mariadb.com/kb/en/mariadb-5524-release-notes/
https://mariadb.com/kb/en/mariadb-5524-release-notes/
https://mariadb.com/kb/en/mariadb-5524-changelog/
https://mariadb.com/kb/en/mariadb-5523-release-notes/
https://mariadb.com/kb/en/mariadb-5523-release-notes/
https://mariadb.com/kb/en/mariadb-5523-changelog/
https://mariadb.com/kb/en/mariadb-5522-release-notes/
https://mariadb.com/kb/en/mariadb-5522-release-notes/
https://mariadb.com/kb/en/mariadb-5522-changelog/
https://mariadb.com/kb/en/mariadb-5521-release-notes/
https://mariadb.com/kb/en/mariadb-5521-release-notes/
https://mariadb.com/kb/en/mariadb-5521-changelog/
https://mariadb.com/kb/en/mariadb-5520-release-notes/
https://mariadb.com/kb/en/mariadb-5520-release-notes/
https://mariadb.com/kb/en/mariadb-5520-changelog/
https://mariadb.com/kb/en/release-notes-mariadb-53-series/
https://mariadb.com/kb/en/changelogs-mariadb-53-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
http://downloads.mariadb.org/mariadb/5.3
https://mariadb.com/kb/en/mariadb-5312-release-notes/
https://mariadb.com/kb/en/mariadb-5312-release-notes/
https://mariadb.com/kb/en/mariadb-5312-changelog/
https://mariadb.com/kb/en/mariadb-5311-release-notes/
https://mariadb.com/kb/en/mariadb-5311-release-notes/
https://mariadb.com/kb/en/mariadb-5311-changelog/
https://mariadb.com/kb/en/mariadb-5310-release-notes/
https://mariadb.com/kb/en/mariadb-5310-release-notes/
https://mariadb.com/kb/en/mariadb-5310-changelog/
https://mariadb.com/kb/en/mariadb-539-release-notes/
https://mariadb.com/kb/en/mariadb-539-release-notes/
https://mariadb.com/kb/en/mariadb-539-changelog/
https://mariadb.com/kb/en/mariadb-538-release-notes/
https://mariadb.com/kb/en/mariadb-538-release-notes/
https://mariadb.com/kb/en/mariadb-538-changelog/
https://mariadb.com/kb/en/mariadb-537-release-notes/
https://mariadb.com/kb/en/mariadb-537-release-notes/
https://mariadb.com/kb/en/mariadb-537-changelog/
https://mariadb.com/kb/en/mariadb-536-release-notes/
https://mariadb.com/kb/en/mariadb-536-release-notes/
https://mariadb.com/kb/en/mariadb-536-changelog/
https://mariadb.com/kb/en/mariadb-535-release-notes/
https://mariadb.com/kb/en/mariadb-535-release-notes/
https://mariadb.com/kb/en/mariadb-535-changelog/
https://mariadb.com/kb/en/mariadb-534-release-notes/
https://mariadb.com/kb/en/mariadb-534-release-notes/
https://mariadb.com/kb/en/mariadb-534-changelog/
https://mariadb.com/kb/en/mariadb-533-release-notes/
https://mariadb.com/kb/en/mariadb-533-release-notes/
https://mariadb.com/kb/en/mariadb-533-changelog/
https://mariadb.com/kb/en/mariadb-532-release-notes/
https://mariadb.com/kb/en/mariadb-532-release-notes/
https://mariadb.com/kb/en/mariadb-532-changelog/

10 Sep 2011 MariaDB 5.3.1 Beta Release Notes Changelog

26 July 2011 MariaDB 5.3.0 Beta Release Notes Changelog

Contents
1. Feature Comparison Matrix

2. Query optimizer

1. Subquery optimizations

2. Optimizations for derived tables and views

3. Disk access optimization

4. Join optimizations

5. Index Merge improvements

6. Optimizer control

3. NoSQL-style interfaces

4. Replication and binary logging

5. Datatypes

6. Windows performance improvements

7. Miscellaneous

8. Security Vulnerabilities Fixed in MariaDB 5.3

The focus for MariaDB 5.3 is to radically improve performance for subqueries, as well as for joins and single-table queries

over large data sets.

MariaDB 5.3 is based on MariaDB 5.2 and thus on MariaDB 5.1 and MySQL 5.1. It is no longer being supported.

Some of the code was backported from MySQL 6.0 (a MySQL version that was never released as GA by Oracle), some

was re-engineered and enriched by new features, and some code was written from scratch.

Any new feature or combination of features can be switched on/off dynamically via the optimizer_switch system variable.

The first stable (GA) release of MariaDB 5.3 was MariaDB 5.3.5 , which was released on 29 Feb 2012.

You can download the latest binaries of MariaDB 5.3 here , or get the latest source code from launchpad.

Feature Comparison Matrix
We have created an Optimizer Feature Comparison Matrix showing the new optimizer features in MariaDB 5.5 and 5.3

compared to MySQL 5.5 and 5.6.

Query optimizer

Subquery optimizations

Subqueries are finally usable in practice. It is no longer necessary to rewrite subqueries manually into joins or into separate

queries. MariaDB 5.3 aims to provide reasonably efficient handling for all kinds of subqueries. All problems with EXPLAIN

taking a long time have also been resolved.

Semi-join subquery optimizations

These transform subqueries into 'semi-joins', entities similar to inner joins, and then use join optimizer to pick the best

semi-join execution strategy. Overall the process is similar to how joins are processed in MySQL,MariaDB and other

database systems.

Table pullout optimization

FirstMatch execution strategy

Semi-join Materialization execution strategy

LooseScan execution strategy

DuplicateWeedout execution strategy

Non-semi-join optimizations

If a subquery is not a semi-join, MariaDB 5.3 will make a cost-based choice between these two strategies:

Materialization for non-correlated subqueries, with efficient NULL-aware execution

IN-to-EXISTS transformation (the only optimization inherited from MariaDB 5.2 and MySQL 5.1/5.5)

Subquery Cache

The subquery cache makes sure that subqueries are re-executed as few times as possible, improving performance of

already optimized subqueries.

Subqueries are never executed during EXPLAIN , thus resulting in almost instant EXPLAIN .

4121/4161

https://mariadb.com/kb/en/mariadb-531-release-notes/
https://mariadb.com/kb/en/mariadb-531-release-notes/
https://mariadb.com/kb/en/mariadb-531-changelog/
https://mariadb.com/kb/en/mariadb-530-release-notes/
https://mariadb.com/kb/en/mariadb-530-release-notes/
https://mariadb.com/kb/en/mariadb-530-changelog/
https://mariadb.com/kb/en/mariadb-535-release-notes/
http://downloads.askmonty.org/MariaDB/5.3/
https://mariadb.com/kb/en/optimizer-feature-comparison-matrix/
http://askmonty.org/worklog/Server-Sprint/?tid=68

DISTINCT and GROUP BY without HAVING are optimized away from subqueries.

The Subquery Optimizations Map shows new subqueries optimizations graphically.

Optimizations for derived tables and views

No early materialization of derived tables (e.g. subqueries in a FROM clause) and materialized views (EXPLAIN is

always instantaneous)

Thanks to Derived Table Merge optimization, mergeable derived tables are now processed like mergeable VIEWs.

Derived Table with Keys optimization gives the optimizer an option to create indexes over materialized derived tables

Fields of merge-able views and derived tables are involved now in all optimizations employing equalities

Disk access optimization

Index Condition Pushdown

Multi-Range-Read optimization (MRR)

Key-ordered retrieval

Join optimizations

Block-based Join Algorithms

Block Nested Loop algorithm can be used for outer joins

Block Hash Join (classic algorithm) is implemented and can be used for any equi-joins

Block Index Join (Batch Key Access Join) is supported and can exploit the benefits of ordered retrievals for primary

and secondary keys provided by the new implementation of MRR

All block based algorithms for joins can use the benefits of new incremental join buffers

All block based algorithms fully support outer joins including nested outer joins

All block based algorithms can use the benefits of the first match optimization for semi-joins and the non-exist

optimization for outer joins

All block based algorithms for joins can exploit the benefits of index condition push-down.

The total memory space used by the query for join buffers can be limited now, and block based algorithms can

allocate join buffers up to their needs (not exceeding the set limits).

Condition over outer tables extracted from ON expressions of outer joins are evaluated before inner tables are

accessed (supported for both regular index join and block index join)

Early checks for nulls for the fields from any null-rejecting conditions are performed

Index Merge improvements

Correct optimization of index_merge vs range access: Fair choice between range and index_merge optimizations

index_merge/sort_intersection strategy

Optimizer control

@@optimizer_switch variable can be used to turn on/off all new optimizations.

NoSQL-style interfaces
HandlerSocket plugin included.

Faster HANDLER commands; HANDLER READ now also work with prepared statements.

Dynamic Columns support.

Replication and binary logging
Group commit for the binary log 4 MariaDB 5.3 implements group commit which works when using XtraDB with the

binary log enabled. (In previous MariaDB releases, and all MySQL releases at the time of writing, group commit

works in InnoDB/XtraDB when the binary log is disabled, but stops working when the binary log is enabled).

Annotation of row-based replication events with the original SQL statement 4 When using row-based replication, the

binary log does not contain SQL statements, only discrete single-row insert/update/delete events. This can make it

harder to read mysqlbinlog output and understand where in an application a given event may have originated,

complicating analysis and debugging.This feature adds an option to include the original SQL statement as a comment

in the binary log (and shown in mysqlbinlog output) for row-based replication events.

Checksums for binlog events. This is a backport of the same feature in MySQL 5.6. It was implemented in MWL#180

.

Enhancements for START TRANSACTION WITH CONSISTENT SNAPSHOT 4 In MariaDB 5.3, START

4122/4161

http://askmonty.org/worklog/?tid=180
https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent/

TRANSACTION WITH CONSISTENT SNAPSHOT now also works with the binary log. This means it is possible to obtain

the binlog position corresponding to a transactional snapshot of the database without blocking any other queries. This

is used by the command " mysqldump -- single-transaction -- master-data " to do a fully non-blocking

backup which can be used to provision a new slave. " START TRANSACTION WITH CONSISTENT SNAPSHOT " now

also works consistently between transactions involving more than one storage engine (currently XTraDB and PBXT

support this).

Row-based replication for tables with no primary key 4 This feature can improve the performance of row-based

replication on tables that do not have a primary key (or other unique key), but which do have another index that can

help locate rows to update or delete. With this feature, index cardinality information from ANALYZE TABLE is

considered when selecting the index to use (before this feature is implemented, the first index was selected

unconditionally).

mysqlbinlog will now omit redundant use statements around BEGIN , SAVEPOINT , COMMIT , and ROLLBACK

events when reading MySQL 5.0 binlogs.

Datatypes
Microsecond support for NOW() and timestamp, time, and datetime columns.

CAST() now supports AS DECIMAL[(M,D)] and AS INT.

CAST() and all other datetime/time functions now supports microsecond fully.

Windows performance improvements
Backported Windows performance patches from MySQL 5.5.

Asynchronous IO in XtraDB is redesigned and is now faster, due to the use of IO completion ports.

Additional durability option for XtraDB : innodb_flush_method can now be O_DSYNC , like on Unixes. The effect of

using this option is that the log file is opened with FILE_FLAG_WRITETHROUGH , and FlushFileBuffers() is not

done. This may improve speed in write-heavy scenarios.

A new Windows MSI installer.

Includes a GUI-tool, HeidiSQL .

Miscellaneous
GIS precise operations

New status variables: Rows_tmp_read , Handler_tmp_write , and Handler_tmp_update which count what

happens with internal temporary tables. Rows_read , Handler_write and Handler_update no longer count

operations on internal temporary tables.

New status variable Handler_read_rnd_deleted , which is number of deleted rows found and skipped while

scanning a table. Before this was part of Handler_read_rnd_next .

New variable 'in_transaction' that is 1 if you are in a transaction, 0 otherwise.

Progress reports for ALTER TABLE and LOAD DATA INFILE . In addition Aria tables gives progress reports for

REPAIR TABLE and CHECK TABLE . The progress can be seen in SHOW PROCESSLIST ,

INFORMATION_SCHEMA.PROCESSLIST and is sent to MariaDB clients that calls mysql_real_connect() with the

new CLIENT_PROGRESS flag. mysql command line client supports the new progress indications.

PBXT consistent commit ordering 4 This feature implements the new commit ordering storage engine API in

PBXT. With this feature, it is possible to use " START TRANSACTION WITH CONSISTENT SNAPSHOT " and get

consistency among transactions which involve both XtraDB and InnoDB. (Without this feature, there is no such

consistency guarantee. For example, even after running " START TRANSACTION WITH CONSISTENT SNAPSHOT " it

was still possible for the InnoDB/XtraDB part of some transaction T to be visible and the PBXT part of the same

transaction T to not be visible.)

MariaDB unique error numbers now start from 1900 to not clash with MySQL error numbers.

/*M!##### */ new executed comment syntax that can be used when you want use new MariaDB syntax but still

want your program to be compatible with MySQL.

A MariaDB optimized version of mytop is included in the MariaDB distribution.

Enhanced KILL syntax:

KILL [HARD | SOFT] [CONNECTION | QUERY] [thread_id | USER user_name]

max_user_connections (both the global variable and the GRANT option) can be set to -1 to stop users from

connecting to the server. The global max_user_connections variable does not affect users with the SUPER

privilege.

The IGNORE directive does not ignore all errors (like fatal errors), only things that are safe to ignore.

You can access the MariaDB 5.3 tree from launchpad .

4123/4161

http://www.facebook.com/note.php?note_id=238505812835782
http://www.facebook.com/note.php?note_id=238687382817625
http://www.heidisql.com/
https://mariadb.com/kb/en/enhancements-for-start-transaction-with-consistent/
http://www.mysqlfanboy.com/mytop
https://launchpad.net/maria/5.3

Security Vulnerabilities Fixed in MariaDB 5.3

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2013-1531 : MariaDB 5.3.12

CVE-2013-0389 : MariaDB 5.3.12

CVE-2013-0385 : MariaDB 5.3.12

CVE-2013-0384 : MariaDB 5.3.12

CVE-2013-0383 : MariaDB 5.3.12

CVE-2013-0375 : MariaDB 5.3.12

CVE-2012-5627 : MariaDB 5.3.12

CVE-2012-5615 : MariaDB 5.3.12

CVE-2012-5612 : MariaDB 5.3.12

CVE-2012-5611 : MariaDB 5.3.12 , MariaDB 5.3.11

CVE-2012-4414 : MariaDB 5.3.8

CVE-2012-1705 : MariaDB 5.3.12

CVE-2012-1702 : MariaDB 5.3.12

CVE-2012-0574 : MariaDB 5.3.12

CVE-2012-0572 : MariaDB 5.3.12

[2]

[2]

[2]

7.0.14 MariaDB Server 5.2
Changes & Improvements in MariaDB 5.2

MariaDB 5.2 is no longer supported. Last release: 5.2.14 | Release Date: 30 Jan 2013

Release Notes - MariaDB 5.2 Series

MariaDB 5.2 Series Release Notes

Changelogs - MariaDB 5.2 Series

MariaDB 5.2 changelogs.

7.0.14.1 Changes & Improvements in MariaDB
5.2

MariaDB 5.2 is no longer supported. Please use a more recent release .

Download MariaDB 5.2

Date Release Status Release Notes Changelog

30 Jan 2013 MariaDB 5.2.14 Stable (GA) Release Notes Changelog

29 Nov 2012 MariaDB 5.2.13 Stable (GA) Release Notes Changelog

6 Apr 2012 MariaDB 5.2.12 Stable (GA) Release Notes Changelog

2 Apr 2012 MariaDB 5.2.11 Stable (GA) Release Notes Changelog

5 Dec 2011 MariaDB 5.2.10 Stable (GA) Release Notes Changelog

22 Sep 2011 MariaDB 5.2.9 Stable (GA) Release Notes Changelog

18 Aug 2011 MariaDB 5.2.8 Stable (GA) Release Notes Changelog

14 Jun 2011 MariaDB 5.2.7 Stable (GA) Release Notes Changelog

12 May 2011 MariaDB 5.2.6 Stable (GA) Release Notes Changelog

3 Mar 2011 MariaDB 5.2.5 Stable (GA) Release Notes Changelog

6 Dec 2010 MariaDB 5.2.4 Stable (GA) Release Notes Changelog

4124/4161

https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1531
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0389
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0385
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0384
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0383
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0375
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5627
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
https://mariadb.com/kb/en/mariadb-5-3-12-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
https://mariadb.com/kb/en/mariadb-5-3-12-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5612
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5611
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
https://mariadb.com/kb/en/mariadb-5-3-11-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4414
https://mariadb.com/kb/en/mariadb-5-3-8-release-notes/
https://mariadb.com/kb/en/mariadb-5-3-8-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1705
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1702
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0574
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0572
https://mariadb.com/kb/en/mariadb-5-3-12-release-notes/
https://mariadb.com/kb/en/release-notes-mariadb-52-series/
https://mariadb.com/kb/en/changelogs-mariadb-52-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
http://downloads.mariadb.org/mariadb/5.2
https://mariadb.com/kb/en/mariadb-5214-release-notes/
https://mariadb.com/kb/en/mariadb-5214-release-notes/
https://mariadb.com/kb/en/mariadb-5214-changelog/
https://mariadb.com/kb/en/mariadb-5213-release-notes/
https://mariadb.com/kb/en/mariadb-5213-release-notes/
https://mariadb.com/kb/en/mariadb-5213-changelog/
https://mariadb.com/kb/en/mariadb-5212-release-notes/
https://mariadb.com/kb/en/mariadb-5212-release-notes/
https://mariadb.com/kb/en/mariadb-5212-changelog/
https://mariadb.com/kb/en/mariadb-5211-release-notes/
https://mariadb.com/kb/en/mariadb-5211-release-notes/
https://mariadb.com/kb/en/mariadb-5211-changelog/
https://mariadb.com/kb/en/mariadb-5210-release-notes/
https://mariadb.com/kb/en/mariadb-5210-release-notes/
https://mariadb.com/kb/en/mariadb-5210-changelog/
https://mariadb.com/kb/en/mariadb-529-release-notes/
https://mariadb.com/kb/en/mariadb-529-release-notes/
https://mariadb.com/kb/en/mariadb-529-changelog/
https://mariadb.com/kb/en/mariadb-528-release-notes/
https://mariadb.com/kb/en/mariadb-528-release-notes/
https://mariadb.com/kb/en/mariadb-528-changelog/
https://mariadb.com/kb/en/mariadb-527-release-notes/
https://mariadb.com/kb/en/mariadb-527-release-notes/
https://mariadb.com/kb/en/mariadb-527-changelog/
https://mariadb.com/kb/en/mariadb-526-release-notes/
https://mariadb.com/kb/en/mariadb-526-release-notes/
https://mariadb.com/kb/en/mariadb-526-changelog/
https://mariadb.com/kb/en/mariadb-525-release-notes/
https://mariadb.com/kb/en/mariadb-525-release-notes/
https://mariadb.com/kb/en/mariadb-525-changelog/
https://mariadb.com/kb/en/mariadb-524-release-notes/
https://mariadb.com/kb/en/mariadb-524-release-notes/
https://mariadb.com/kb/en/mariadb-524-changelog/

10 Nov 2010 MariaDB 5.2.3 Stable (GA) Release Notes Changelog

28 Sep 2010 MariaDB 5.2.2 Release Candidate Release Notes Changelog

18 Jun 2010 MariaDB 5.2.1 Beta Release Notes Changelog

10 Apr 2010 MariaDB 5.2.0 Beta Release Notes Changelog

Contents
1. New storage engines

2. New features

3. Other things

4. Security Vulnerabilities Fixed in MariaDB 5.2

MariaDB 5.2 contains features that didn't have time to go into MariaDB 5.1. For all practical purposes it's a drop in

replacement for MariaDB 5.1 (and thus MySQL 5.1).

MariaDB 5.2 is based on MariaDB 5.1 and thus MySQL 5.1.

The new features in 5.2 are quite isolated and as most have been in use by members in the MySQL community for a long

time. Current versions of MariaDB 5.2 are stable and can be downloaded from http://downloads.askmonty.org .

New storage engines

OQGRAPH

Allows you to handle hierarchies (tree structures) and complex graphs (nodes having many connections in

several directions)

SphinxSE: Text search within MariaDB.

A built-in Sphinx client which allows MariaDB to talk to searchd, run search queries, and obtain search results.

New features

Virtual columns

Columns that are an expression and are calculated on retrieval.

Extended User Statistics

Client, User, Index and Table statistics.

Segmented MyISAM key cache

The key cache's global mutex is split into several mutex which gives a notable speed improvement under multi

user load. We have registered up to 250% more performance thanks to this.

Pluggable Authentication

Authentication is done via an extensible plugin, which makes it easy to add any kind of authentication to

MariaDB.

Storage-engine-specific CREATE TABLE

Allows one to specify additional attributes per field, index or table to the storage engine.

Enhancements to INFORMATION SCHEMA.PLUGINS table

We expose more information about the plugins, like maturity levels.

Group commit for the Aria engine.

Speeds up multi user inserts.

Other things

We have also done several smaller speed improvements, bug fixes and code cleanups.

Security Vulnerabilities Fixed in MariaDB 5.2

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2013-1531 : MariaDB 5.2.14

CVE-2013-0389 : MariaDB 5.2.14

CVE-2013-0385 : MariaDB 5.2.14

CVE-2013-0384 : MariaDB 5.2.14

CVE-2013-0383 : MariaDB 5.2.14

CVE-2013-0375 : MariaDB 5.2.14

[2] 4125/4161

https://mariadb.com/kb/en/mariadb-523-release-notes/
https://mariadb.com/kb/en/mariadb-523-release-notes/
https://mariadb.com/kb/en/mariadb-523-changelog/
https://mariadb.com/kb/en/mariadb-522-release-notes/
https://mariadb.com/kb/en/mariadb-522-release-notes/
https://mariadb.com/kb/en/mariadb-522-changelog/
https://mariadb.com/kb/en/mariadb-521-release-notes/
https://mariadb.com/kb/en/mariadb-521-release-notes/
https://mariadb.com/kb/en/mariadb-521-changelog/
https://mariadb.com/kb/en/mariadb-520-release-notes/
https://mariadb.com/kb/en/mariadb-520-release-notes/
https://mariadb.com/kb/en/mariadb-520-changelog/
https://mariadb.com/kb/en/release-criteria/
http://downloads.askmonty.org
https://mariadb.com/kb/en/segmented-key-cache-performance/
https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1531
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0389
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0385
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0384
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0383
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0375
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/

CVE-2012-5627 : MariaDB 5.2.14

CVE-2012-5615 : MariaDB 5.2.14

CVE-2012-5612 : MariaDB 5.2.14

CVE-2012-5611 : MariaDB 5.2.14 , MariaDB 5.2.13

CVE-2012-4414 : MariaDB 5.2.13

CVE-2012-1705 : MariaDB 5.2.14

CVE-2012-1702 : MariaDB 5.2.14

CVE-2012-0574 : MariaDB 5.2.14

CVE-2012-0572 : MariaDB 5.2.14

[2]

[2]

[2]

7.0.15 MariaDB Server 5.1
Changes & Improvements in MariaDB 5.1

MariaDB 5.1 is no longer supported. Last release: 5.1.67 | Release Date: 30 Jan 2013

Release Notes - MariaDB 5.1 Series

MariaDB 5.1 Series Release Notes

Changelogs - MariaDB 5.1 Series

MariaDB 5.1 changelogs.

7.0.15.1 Changes & Improvements in MariaDB
5.1

MariaDB 5.1 is no longer supported. Please use a more recent release .

Download MariaDB 5.1

Date Release Status Release Notes Changelog

30 Jan 2013 MariaDB 5.1.67 Stable (GA) Release Notes Changelog

29 Nov 2012 MariaDB 5.1.66 Stable (GA) Release Notes Changelog

6 Apr 2012 MariaDB 5.1.62 Stable (GA) Release Notes Changelog

2 Apr 2012 MariaDB 5.1.61 Stable (GA) Release Notes Changelog

5 Dec 2011 MariaDB 5.1.69 Stable (GA) Release Notes Changelog

1 Mar 2011 MariaDB 5.1.55 Stable (GA) Release Notes Changelog

6 Dec 2010 MariaDB 5.1.53 Stable (GA) Release Notes Changelog

19 Nov 2010 MariaDB 5.1.51 Stable (GA) Release Notes Changelog

9 Sep 2010 MariaDB 5.1.50 Stable (GA) Release Notes Changelog

9 Aug 2010 MariaDB 5.1.49 Stable (GA) Release Notes Changelog

1 Jun 2010 MariaDB 5.1.47 Stable (GA) Release Notes Changelog

10 May 2010 MariaDB 5.1.44 b Stable (GA) Release Notes Changelog

24 Mar 2010 MariaDB 5.1.44 Stable (GA) Release Notes Changelog

1 Feb 2010 MariaDB 5.1.42 Stable (GA) Release Notes Changelog

13 Jan 2010 MariaDB 5.1.41 Release Candidate Release Notes Changelog

15 Nov 2009 MariaDB 5.1.39 Beta Release Notes Changelog

29 Oct 2009 MariaDB 5.1.38 Beta Release Notes Changelog

4126/4161

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5627
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
https://mariadb.com/kb/en/mariadb-5-2-14-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5615
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
https://mariadb.com/kb/en/mariadb-5-2-14-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5612
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5611
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
https://mariadb.com/kb/en/mariadb-5-2-13-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4414
https://mariadb.com/kb/en/mariadb-5-2-13-release-notes/
https://mariadb.com/kb/en/mariadb-5-2-13-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1705
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1702
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0574
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0572
https://mariadb.com/kb/en/mariadb-5-2-14-release-notes/
https://mariadb.com/kb/en/release-notes-mariadb-51-series/
https://mariadb.com/kb/en/changelogs-mariadb-51-series/
https://mariadb.com/kb/en/what-is-in-the-different-mariadb-releases/
http://downloads.mariadb.org/mariadb/5.1
https://mariadb.com/kb/en/mariadb-5167-release-notes/
https://mariadb.com/kb/en/mariadb-5167-release-notes/
https://mariadb.com/kb/en/mariadb-5167-changelog/
https://mariadb.com/kb/en/mariadb-5166-release-notes/
https://mariadb.com/kb/en/mariadb-5166-release-notes/
https://mariadb.com/kb/en/mariadb-5166-changelog/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5161-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5169-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5155-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5153-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5151-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5150-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5149-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5147-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5144-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5144-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5142-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5141-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5139-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/
https://mariadb.com/kb/en/mariadb-5138-release-notes/
https://mariadb.com/kb/en/mariadb-5162-release-notes/
https://mariadb.com/kb/en/mariadb-5162-changelog/

Contents
1. New storage engines:

2. Speed improvements

3. Extensions & new features

4. Easier to upgrade

5. Better Testing

6. Fewer warnings and bugs

7. Security Vulnerabilities Fixed in MariaDB 5.1

In short, MariaDB 5.1 is a binary drop in replacement of MySQL 5.1, but with performance like MySQL 5.5 (thanks to

XtraDB), fewer bugs, and more features. Thanks to the extended and improved mysql_upgrade program it's also easier to

upgrade from MySQL 5.0 to MariaDB 5.1 than to MySQL 5.1.

MariaDB 5.1 is based on MySQL 5.1. We do a merge once a month with MySQL5.1 to ensure all MySQL bug fixes get into

MariaDB.

See also:

MariaDB versus MySQL - Compatibility

New storage engines:

Aria: A crash-safe storage engine based on MyISAM.

XtraDB: Drop-in replacement for InnoDB based on the InnoDB plugin.

PBXT : A transactional storage engine with a lot of nice features.

FederatedX : Drop-in replacement for Federated.

Speed improvements

CHECKSUM TABLE is faster.

We have eliminated/improved some not needed character set conversions. Overall speed improvements is 1-5 %

(according to sql-bench) but can be higher for big result sets with all characters between 0x00-0x7f.

Our use of the Aria storage engine enables faster complex queries (queries which normally use disk-based temporary

tables). The Aria storage engine is used for internal temporary tables, which should give you a speedup when doing

complex selects. Aria is usually faster for temporary tables when compared to MyISAM because Aria caches row data

in memory and normally doesn't have to write the temporary rows to disk.

There are some improvements to DBUG code to make its execution faster when debug is compiled in but not used.

Extensions & new features

Table Elimination (New optimization) (MWL#17)

Pool of Threads (Allows you to have 200,000+ connections to MariadB)

MariaDB can handle up to 32 key segments per key (up from 16)

Added --abort-source-on-error to the mysql client.

Microsecond Precision in Processlist

mysqltest extensions

Easier to upgrade

We have made it easy to upgrade from MySQL 5.0 to MariaDB 5.1

InnoDB and Archive tables are now upgraded properly.

More options to mysql_upgrade and mysqlcheck to find out what's going on.

Cleaned up wrong warnings from mysqlcheck.

(Upgrading from MySQL 5.1 to MariaDB 5.1 is a trivial 1 min exercise as MariaDB is a binary drop in replacement of

MySQL. Just remove MySQL and install MariaDB and things will *just work*)

Better Testing

More tests in the test suite.

All tests runs now clean without having to restart test. (Oracle re-runs tests 3 times and assumes things are ok if one

tests works)

Test builds with different configure options to get better feature testing.

Remove invalid tests. (e.g. Don't test feature "X" if that feature is not in the build you are testing.)

4127/4161

https://mariadb.com/kb/en/pbxt/
https://mariadb.com/kb/en/federatedx/
http://askmonty.org/worklog/?tid=17
https://mariadb.com/kb/en/pool-of-threads/
https://mariadb.com/kb/en/upgrading-to-mariadb-from-mysql/

Fewer warnings and bugs

A build is not regarded ok if there are any errors or compiler warnings.

We have fixed a lot of bugs in the MySQL code which we have found while merging the MySQL code into MariaDB

and by running the extended test suite.

Security Vulnerabilities Fixed in MariaDB 5.1

For a complete list of security vulnerabilities (CVEs) fixed across all versions of MariaDB, see the Security

Vulnerabilities Fixed in MariaDB page.

CVE-2013-1548 : MariaDB 5.1.66

CVE-2013-1531 : MariaDB 5.1.67

CVE-2013-0389 : MariaDB 5.1.67

CVE-2013-0385 : MariaDB 5.1.67

CVE-2013-0384 : MariaDB 5.1.67

CVE-2013-0383 : MariaDB 5.1.67

CVE-2013-0375 : MariaDB 5.1.67

CVE-2012-5612 : MariaDB 5.1.67

CVE-2012-5611 : MariaDB 5.1.67 , MariaDB 5.1.66

CVE-2012-5060 : MariaDB 5.1.66

CVE-2012-4414 : MariaDB 5.1.66

CVE-2012-3197 : MariaDB 5.1.66

CVE-2012-3180 : MariaDB 5.1.66

CVE-2012-3177 : MariaDB 5.1.66

CVE-2012-3173 : MariaDB 5.1.66

CVE-2012-3167 : MariaDB 5.1.66

CVE-2012-3166 : MariaDB 5.1.66

CVE-2012-3163 : MariaDB 5.1.66

CVE-2012-3160 : MariaDB 5.1.66

CVE-2012-3158 : MariaDB 5.1.66

CVE-2012-3150 : MariaDB 5.1.66

CVE-2012-1734 : MariaDB 5.1.66

CVE-2012-1705 : MariaDB 5.1.67

CVE-2012-1703 : MariaDB 5.1.62

CVE-2012-1702 : MariaDB 5.1.67

CVE-2012-1690 : MariaDB 5.1.62

CVE-2012-1689 : MariaDB 5.1.66

CVE-2012-1688 : MariaDB 5.1.62

CVE-2012-0574 : MariaDB 5.1.67

CVE-2012-0572 : MariaDB 5.1.67

CVE-2012-0540 : MariaDB 5.1.66

CVE-2009-4484 : MariaDB 5.1.42

The following CVEs are also fixed in MariaDB 5.1 but the fix is not tied to a specific version number:

CVE-2012-0113

CVE-2011-2262

CVE-2012-0116

CVE-2012-0118

CVE-2012-0087

CVE-2012-0101

CVE-2012-0102

CVE-2012-0115

CVE-2012-0119

CVE-2012-0120

CVE-2012-0484

CVE-2012-0485

CVE-2012-0490

CVE-2012-0112

CVE-2012-0114

CVE-2012-0492

CVE-2012-0075

[2]

4128/4161

https://mariadb.com/kb/en/cve/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1548
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1531
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0389
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0385
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0384
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0383
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0375
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5612
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5611
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5060
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4414
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
https://mariadb.com/kb/en/mariadb-5-1-66-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3197
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3180
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3177
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3173
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3167
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3166
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3163
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3160
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3158
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3150
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1734
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1705
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1703
https://mariadb.com/kb/en/mariadb-5-1-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1702
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1690
https://mariadb.com/kb/en/mariadb-5-1-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1689
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1688
https://mariadb.com/kb/en/mariadb-5-1-62-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0574
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0572
https://mariadb.com/kb/en/mariadb-5-1-67-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0540
https://mariadb.com/kb/en/mariadb-5-1-66-release-notes/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4484
https://mariadb.com/kb/en/mariadb-5-1-42-changelog/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0113
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2262
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0116
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0118
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0087
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0101
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0102
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0115
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0119
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0120
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0484
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0485
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0490
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0112
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0114
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0492
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0075

8 The Community
MariaDB is a project developed by the open source community. The MariaDB Foundation is the main steward for the

project. However, anyone can participate in the development.

The following links provides information to help you participate in making MariaDB a success

News & Information

News, web logs and other published information related to MariaDB.

Bug Tracking

How to Report Bugs and Make Feature Requests.

Contributing & Participating

Getting Help With MariaDB

Review of resources available when you need help.

Reporting Documentation Bugs

Reporting a bug or feature request in the MariaDB documentation.

MariaDB Community Bug Reporting

Guidelines for reporting bugs in MariaDB software.

Contributing to the MariaDB Project

How to contribute to the MariaDB project: code, documentation, feedback, etc.

Contributing Code

Guidelines and procedures for contributing code to MariaDB.

Project Suggestions

List of MariaDB Projects in which you might Assist.

Log of MariaDB Contributions

List of contributions and contributors to MariaDB and how to log them.

Donate to the Foundation

Donating to the MariaDB Foundation.

Sponsoring the MariaDB Project

Ways to sponsor the MariaDB project (e.g. with labor or funds).

Web Hosting Providers Offering MariaDB

List of known web hosting providers that offer MariaDB to their clients.

Using Git with MariaDB

How to use git to troubleshoot the source code or contribute code to MariaDB.

Google Summers of Code

Information on Google Summer of Code for each year since 2013.

Google Season of Docs

Information on each Google Season of Docs.

Problems With Character Set

Hello, I have a functional MariaDB cluster, but I want to migrate it to ver...

Friends of MariaDB

People Behind MariaDB

The founders, the MariaDB Foundation and the MariaDB Corporation.

MariaDB Users & Developers

Connect and interact with other MariaDB users and developers.

15

10

2

1

16

2

4129/4161

https://mariadb.com/kb/en/mariadb-foundation/
https://mariadb.com/kb/en/the-table-have-issue-select-is-empty-but-cant-insert-more-data/
https://mariadb.com/kb/en/project-suggestions/
https://mariadb.com/kb/en/log-of-mariadb-contributions/
https://mariadb.com/kb/en/web-hosting-providers-offering-mariadb/
https://mariadb.com/kb/en/google-summers-of-code/
https://mariadb.com/kb/en/google-season-of-docs/
https://mariadb.com/kb/en/problems-with-character-set/
https://mariadb.com/kb/en/friends-of-mariadb/
https://mariadb.com/kb/en/people-behind-mariadb/
https://mariadb.com/kb/en/resources/

Social Media & Networking

List of MariaDB-related social media links and pages.

Applications Supporting MariaDB

Projects which support or work with MariaDB software.

Legal Documents

Legal Matters

Information on Legal Matters and Licenses.

MariaDB Contributor Agreement

The full text of the MariaDB Contributor Agreement, including signature lines.

MariaDB Contributor Agreement FAQ

Frequently asked questions about the MariaDB Contributor Agreement.

MariaDB License

List of licenses for the MariaDB server and clients.

Branding Guidelines

Guidelines for using the MariaDB logo.

MariaDB Trademark Policy

Policies and guidelines on using the MariaDB name and logos, the trademarks of MariaDB.

There are 467 related questions .

16

4

8.1 Bug Tracking
How and where the community can report bugs and file feature requests, and how bug reports are processed for community

users. MariaDB Corporation provides SLA for customer issues (see Technical Support Services).

MariaDB Community Bug Reporting

Guidelines for reporting bugs in MariaDB software.

Reporting Documentation Bugs

Reporting a bug or feature request in the MariaDB documentation.

MariaDB Community Bug Processing

The Bug Reporting and Tracking Process.

MariaDB Security Bug Fixing Policy

Bug fixing policy and how security issues are handled.

Building MariaDB Server for Debugging

How to compile the mysqld daemon with debugging enabled.

Extracting Entries from the Binary Log

Using mariadb-binlog to extract entries from the binary log for debugging.

Profiling Memory Usage

Profiling the memory usage can be useful for finding out why a program appe...

There are 18 related questions .

10

8.1.1 MariaDB Community Bug Reporting

4130/4161

https://mariadb.com/kb/en/social-media-networking/
https://mariadb.com/kb/en/applications-supporting-mariadb/
https://mariadb.com/kb/en/legal-documents/
https://mariadb.com/kb/en/legal-matters/
https://mariadb.com/kb/en/mca/
https://mariadb.com/kb/en/mariadb-contributor-agreement-faq/
https://mariadb.com/kb/en/legal-documents-mariadb-license/
https://mariadb.com/kb/en/branding-guidelines/
https://mariadb.com/kb/en/mariadb-trademark-policy/
https://mariadb.com/kb/en/community/+questions/
https://mariadb.com/services/technical-support-services
https://mariadb.com/kb/en/bug-tracking/+questions/

Contents
1. Known Bugs

2. Reporting a Bug

1. JIRA Privacy

2. Reporting Security Vulnerabilities

3. Contents of a Good Bug Report

4. JIRA Fields

1. Project

2. Type

3. Summary

4. Priority

5. Affected Versions

6. Environment

7. Description

8. Attachments

9. Links

10. Tags

5. Bugs that also Affect MySQL or Percona

3. Collecting Additional Information for a Bug Report

1. Getting a Stack Trace with Details

2. Extracting a Portion of a Binary Log

4. Getting Help with your Servers

For reporting documentation bugs specifically, see Reporting Documentation Bugs.

MariaDB's bug and feature tracker is found at https://jira.mariadb.org .

This page contains general guidelines for the community for reporting bugs in MariaDB products. If you want to discuss a

problem or a new feature with other MariaDB developers, you can find the email lists and forums here .

Known Bugs
First, check that the bug isn't already filed in the MariaDB bugs database .

For the MariaDB bugs database, use JIRA search to check if a report you are going to submit already exists. You are not

expected to be a JIRA search guru, but please at least make some effort.

Choose Issues => Search for issues ;

If the form opens for you with a long blank line at top, press Basic on the right to switch to a simpler mode;

In the Project field, choose the related project, (MDEV for generic MariaDB server and clients);

In the Contains text text field, enter the most significant key words from your future report;

Press Enter or the magnifying glass icon to search.

If you see bug reports which are already closed, pay attention to the 'Fix version/s' field -- it is possible that they were fixed

in the upcoming release. If they are said to be fixed in the release that you are currently using or earlier, you can ignore

them and file a new one (although please mention in your bug report that you found them, it might be useful).

If you find an open bug report, please vote/add a comment that the bug also affects you along with any additional

information you have that may help us to find and fix the bug.

If the bug is not in the MariaDB bugs database yet, then it's time to file a bug report. If you're filing a bug report about a bug

that's already in the MySQL bugs database , please indicate so at the start of the report. Filing bug reports from MySQL in

the MariaDB bugs database makes sense, because:

It shows the MariaDB team that there is interest in having this bug fixed in MariaDB.

It allows work to start on fixing the bug in MariaDB - assigning versions, assigning MariaDB developers to the bug,

etc.

Reporting a Bug
Bugs and feature requests are reported to the MariaDB bugs database .

JIRA Privacy

Please note that our JIRA entries are public, and JIRA is very good at keeping a record of everything that has been done.

What this means is that if you ever include confidential information in the description there will be a log containing it, even

after you've deleted it. The only way to get rid of it will be removing the JIRA entry completely.
4131/4161

https://jira.mariadb.org
https://mariadb.com/kb/en/where-are-other-users-and-developers-of-mariadb/
https://jira.mariadb.org/browse/MDEV
http://bugs.mysql.com/
https://jira.mariadb.org/browse/MDEV

Attachments in JIRA are also public.

Access to a comment can be restricted to a certain group (e.g. Developers only), but the existing groups are rather wide, so

you should not rely on it either.

If you have private information -- SQL fragments, logs, database dumps, etc. -- that you are willing to share with MariaDB

team, but not with the entire world, put it into a file, compress if necessary, upload to the mariadb-ftp-server , and just

mention it in the JIRA description. This way only the MariaDB team will have access to it.

Reporting Security Vulnerabilities

As explained above, all JIRA issues are public. If you believe you have found a security vulnerability, send an email to

security@mariadb.org, please, do not use JIRA for that. We will enter it in JIRA ourselves, following the responsible

disclosure practices.

Contents of a Good Bug Report

Below is the information we need to be able to fix bugs. The more information we get and the easier we can repeat the bug,

the faster it will be fixed.

A good bug report consists of:

a. The environment (Operating system, hardware and MariaDB version) where the bug happened.

b. Any related errors or warnings from the server error log file. Normally it is hostname.err file in your database

directory, but it can be different depending on the distribution and version; if you cannot find it, run SELECT

@@log_error on the running server. If either the variable or the file it points at is empty, the error log most likely goes

to your system log. If this is systemd you can get the last 50 lines of the MariaDB log with journalctl -n 50 -u

mariadb.service . If possible, attach the full unabridged error log at least from the last server restart and till the end

of the log.,

c. If the problem is related to MariaDB updates, or otherwise changing the version of the server, recovery from a

previous crash, and such, then include the previous versions used, and the error log from previous server sessions.

d. The content of your my.cnf file or alternatively the output from mariadbd --print-defaults or SHOW

VARIABLES .

e. Any background information you can provide (stack trace, tables, table definitions (show-create-table SHOW

CREATE TABLE {tablename}), data dumps, query logs).

f. If the bug is about server producing wrong query results: the actual result (what you are getting), the expected result

(what you think should be produced instead), and, unless it is obvious, the reason why you think the current result is

wrong.

g. If the bug about a performance problem, e.g. a certain query is slower on one version than on another, output of

EXPLAIN EXTENDED <query> on both servers. If its a SELECT query use analyze-format-json ANALYZE

FORMAT=JSON.

h. A test case or some other way to repeat the bug. This should preferably be in plain SQL or in mysqltest format. See

mysqltest/README for information about this.

i. If it's impossible to do a test case, then providing us with a backtrace information would be of great help.

JIRA Fields

The section below describes which JIRA fields need to be populated while filing reports, and what should be put there. Apart

from what's mentioned below, you don't have to fill or change any fields while creating a new bug report.

Project

If you are filing a report for MariaDB server, client programs, or MariaDB Galera cluster, the target project is MDEV .

Connectors and MaxScale have separate projects with corresponding names. If you choose a wrong project, bug

processing can be delayed, but there is no reason to panic -- we'll correct it. If you inform us about the mistake, we'll change

it faster.

Some project names include:

CONC - MariaDB Connector/C

CONJ - MariaDB Connector/J

CONJS - MariaDB Connector/node.js

CONPY - MariaDB Connector/Python

MCOL - ColumnStore

MDBF - MariaDB Foundation Development (anything related to the mariadb.org domain)

MDEV - MariaDB server, client programs, or MariaDB Galera Cluster

MXS - MaxScale

ODBC - MariaDB Connector/ODBC
4132/4161

https://mariadb.com/kb/en/mariadb-ftp-server/
mailto:security@mariadb.org
https://en.wikipedia.org/wiki/Responsible_disclosure
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/how-to-produce-a-full-stack-trace-for-mariadbd-the-mariadb-server
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/show-create-table_SHOW_CREATE_TABLE_%257Btablename%257D
file:///srv/kb/mariadb-documentation/mariadb_pdf/output_en/analyze-format-json_ANALYZE_FORMAT%253DJSON
https://mariadb.com/kb/en/how-to-produce-a-full-stack-trace-for-mariadbd/
https://mariadb.org

Type

Feature requests are not the same as bug reports. Specify a Task type for feature requests in Jira , and a Bug type for

bug reports. Like with the project field, choosing a wrong type will put the request to the wrong queue and can delay its

processing, but eventually it will be noticed and amended.

See also plans for next release for things that we are considering to have in the next MariaDB release.

Summary

Please make sure the summary line is informative and distinctive. It should always be easy to recognize your report among

other similar ones, otherwise a reasonable question arises -- why are they not duplicates?

Examples:

good summary: Server crash with insert statement containing DEFAULT into view

not a good summary: mariadbd crash

Generally, we try not to change the original summary without a good reason to do it, so that you can always recognize your

own reports easily.

Priority

We do not have separate Severity/Priority fields in JIRA, so this Priority field serves a double purpose. For original reports, it

indicates the importance of the problem from the reporter's point of view. The default is 'Major'; there are two lower and two

higher values. Please set the value accurately. While we do take it into account during initial processing, increasing the

value above reasonable won't do any good, the only effect will be the waste of time while somebody will be trying to

understand why a trivial problem got such a high priority. After that, the value will be changed, and the report will be

processed in its due time anyway.

Affected Versions

Put everything you know about which versions are affected. There are both major versions (10.6, 10.5 etc.) and minor

versions (10.5.9, 10.4.12, etc.) available for choosing. Please always specify there the exact version(s) (X.Y.Z) which you

are working with, and where you experience the problem.

Additionally, If you know the exact version where the problem appeared, please put it as well. If the problem has been

present, as far as you know, in all previous releases, you can also put there the major version, e.g. 10.0. Alternatively, you

can mention all of it in the description or comments.

Please also note in the description or comments which versions you know as not affected. This information will help to

shorten further processing.

Environment

Put here environment-related information that might be important for reproducing or analyzing the problem: operating

system, hardware, related 3rd-party applications, compilers, etc.

Description

The most important part of the description are steps to reproduce the problem. See more details about bug report contents

above in the section Contents of a good bug report.

If in the process of reproducing, you executed some SQL, don't describe it in words such as "I created a table with text

columns and date columns and populated it with some rows" -- instead, whenever possible, put the exact SQL queries that

you ran. The same goes for problems that you encountered: instead of saying "it did not work, the query failed, I got an

error", always paste the exact output that you received.

Use {noformat}...{noformat} and {code}...{code} blocks for code and console output in the description.

Attachments

If you have SQL code, a database dump, a log etc. of a reasonable size, attach them to the report (archive them first if

necessary). If they are too big, you can upload them to ftp.askmonty.org/private. It is always a good idea to attach your cnf

file(s), unless it is absolutely clear from the nature of the report that configuration is irrelevant.

Links

If you found or filed a bug report either in MariaDB or MySQL or Percona bug base which you think is related to yours, you

4133/4161

https://mariadb.com/kb/en/jira/
https://mariadb.com/kb/en/plans-for-10x/

can put them in the Links section; same for any external links to 3rd-party resources which you find important to mention.

Alternatively, you can just mention them in the description or comments.

Tags

You don't have to set any tags, but if you want to use any for your convenience, feel free to do so. However, please don't put

too generic values -- for example, the tag mariadb is meaningless, because everything there is mariadb . Don't be

surprised if some tags are removed later during report processing.

Bugs that also Affect MySQL or Percona

Our normal practice is to report a bug upstream if it's applicable to their version. While we can do it on your behalf, it is

always better if you do it yourself -- it will be easier for you to track it further.

If the bug affects MySQL, it should also be reported at MySQL bugs database . If the bug affects Percona server and not

MySQL, it should go to Percona Launchpad .

Collecting Additional Information for a Bug Report

Getting a Stack Trace with Details

See the article How to produce a stack trace from a core file .

Extracting a Portion of a Binary Log

See the article here.

Getting Help with your Servers
If you require personalized assistance, want to ensure that the bug is fixed with high priority, or want someone to login to

your server to find out what's wrong, you can always purchase a Support contract from MariaDB plc or use their

consulting services.

8.1.2 Reporting Documentation Bugs
Contents
1. Known Bugs

2. Reporting a Bug

1. JIRA Privacy

2. JIRA Fields

1. Project

2. Type

3. Summary

4. Priority

5. Component/s

6. Affected Version/s

7. Environment

8. Description

9. Links

10. Tags

Documentation bugs and feature requests should be reported at https://jira.mariadb.org .

This page contains general guidelines for the community for reporting documentation bugs.

Known Bugs
First, check that the bug isn't already filed in the MariaDB bugs database .

For the MariaDB bugs database, use JIRA search to check if a report you are going to submit already exists. You are not

expected to be a JIRA search guru, but please at least make some effort.

Choose Issues => Search for issues ;

If the form opens for you with a long blank line at top, press Basic on the right to switch to a simpler mode;

In the Project field, choose the related project, (MDEV for generic MariaDB server and clients);
4134/4161

http://bugs.mysql.com
https://bugs.launchpad.net/percona-server
https://mariadb.com/kb/en/how-to-produce-a-full-stack-trace-for-mariadbd/
http://www.mariadb.com/products/mysql-support
https://jira.mariadb.org
https://jira.mariadb.org/browse/MDEV

In the Contains text text field, enter the most significant key words from your future report;

Press Enter or the magnifying glass icon to search.

If you see bug reports which are already closed, but you still see the error, please confirm that the issue still exists in the

Knowledge Base.

If you find an open bug report, please vote/add a comment that the bug also affects you along with any additional

information you have that may help us to find and fix the bug.

If the bug is not in the MariaDB bugs database yet, then it's time to file a bug report.

Reporting a Bug
Bugs and feature requests are reported to the MariaDB bugs database .

JIRA Privacy

Please note that our JIRA entries are public, and JIRA is very good at keeping a record of everything that has been done.

What this means is that if you ever include confidential information in the description there will be a log containing it, even

after you've deleted it. The only way to get rid of it will be removing the JIRA entry completely.

Attachments in JIRA are also public.

Access to a comment can be restricted to a certain group (e.g. Developers only), but the existing groups are rather wide, so

you should not rely on it either.

JIRA Fields

The section below describes which JIRA fields need to be populated while filing reports, and what should be put there. Apart

from what's mentioned below, you don't have to fill or change any fields while creating a new bug report.

Project

If you are filing a report for documentation about MariaDB server, client programs, or MariaDB Galera Cluster, the target

project is MDEV . Connectors and MaxScale have separate projects with corresponding names. If you choose a wrong

project, bug processing can be delayed, but there is no reason to panic -- we'll correct it. If you inform us about the mistake,

we'll change it faster.

Some project names include:

CONC - MariaDB Connector/C

CONJ - MariaDB Connector/J

CONJS - MariaDB Connector/node.js

CONPY - MariaDB Connector/Python

MCOL - ColumnStore

MDBF - MariaDB Foundation Development (anything related to the mariadb.org domain)

MDEV - MariaDB server, client programs, or MariaDB Galera Cluster

MXS - MaxScale

ODBC - MariaDB Connector/ODBC

Type

Feature requests are not the same as bug reports. Specify a Task type for feature requests in Jira , and a Bug type for

bug reports. Like with the project field, choosing a wrong type will put the request to the wrong queue and can delay its

processing, but eventually it will be noticed and amended.

Summary

Please make sure the summary line is informative and distinctive. It should always be easy to recognize your report among

other similar ones, otherwise a reasonable question arises -- why are they not duplicates?

Examples:

good summary: SELECT max_statement_time clause example gives incorrect results

not a good summary: code example doesn't work

Generally, we try not to change the original summary without a good reason to do it, so that you can always recognize your

own reports easily.

Priority
4135/4161

https://jira.mariadb.org/browse/MDEV
https://mariadb.org
https://mariadb.com/kb/en/jira/

We do not have separate Severity/Priority fields in JIRA, so this Priority field serves a double purpose. For original reports, it

indicates the importance of the problem from the reporter's point of view. The default is 'Major'; there are two lower and two

higher values. Please set the value accurately. While we do take it into account during initial processing, increasing the

value above reasonable won't do any good, the only effect will be the waste of time while somebody will be trying to

understand why a trivial problem got such a high priority. After that, the value will be changed, and the report will be

processed in its due time anyway.

Component/s

Documentation bugs should have "Documentation" added as a component in order to be correctly assigned.

Affected Version/s

Since the documentation is not version-dependent, you can put N/A in this field.

Environment

Usually this can be left empty, but if applicable, put any environment-related information that might be important for

reproducing or analyzing the problem.

Description

The most important part of the description are the steps to reproduce the problem. Link to the page on the Knowledge Base

with the error/s. Where applicable, provide a sample structure and results clearly demonstrating the problem.

Use {noformat}...{noformat} and {code}...{code} blocks for code and console output in the description.

Links

If the documentation error relates to an existing bug/feature request in JIRA (for example an undocumented new feature),

you should link it here. Alternatively, you can just mention them in the description or comments.

Tags

You don't have to set any tags, but if you want to use any for your convenience, feel free to do so. However, please don't put

too generic values -- for example, the tag mariadb is meaningless, because everything there is mariadb . Don't be

surprised if some tags are removed later during report processing.

8.1.3 MariaDB Community Bug Processing

4136/4161

Contents
1. Commitments

2. Bug Verification Routine

1. Incoming Queue

1. Bug Processing Order

2. First Response

2. Need Feedback

1. E-mail Notifications

2. Successful Outcome

3. Incomplete Reports

4. Worst Case Scenario

3. Bug Verification

3. Bug Fixing Routine

1. Sprint Model for Bug Fixing

2. Bugs Chosen for a Sprint

4. Tracking Progress

1. JIRA Fields to Watch

1. Resolution vs. Status

1. Resolution

2. Status

2. Fix Versions

3. Priority

4. Labels

5. Bug Reports with Patches

6. Principles for External Bug Reports

1. Duplicate

2. Cannot Reproduce

This page describes how community bug reports are processed among our products and explains what you need to notice

while tracking bugs.

Commitments
MariaDB does not have any SLA or guaranteed reaction times on bugs in Jira. While we are taking bugs reported by the

community very seriously, and aim to provide response and to handle issues as fast as possible, MariaDB does not have a

dedicated bug verification team, this activity is performed on the best-effort basis.

To make sure your bug report will be confirmed and moved forward faster, please follow the guidelines about creating bug

reports.

Bug Verification Routine
As of today, initial bug processing routine in MariaDB is not strictly formalized. This section describes the de-facto status

rather than any policy.

The process is different for bug reports (*Bug* type in JIRA) vs feature requests (*Task* type). The process described below

is related to bug reports.

Incoming Queue

All new bug reports go to the waiting list, to be reproduced and confirmed by a member of the team. The bug stays in the

queue until one or more of the conditions below are met:

Bug report is assigned to a developer;

Bug report gets status 'Confirmed';

Bug report gets the label 'upstream';

Bug report is closed (on whatever reason).

With other things equal, bug reports in the queue are initially handled in the FIFO manner; however, there are various

factors that make things not equal.

Bug Processing Order

First thing that is taken into account is Priority. It does not mean that everything needs to be filed as Critical; on the

contrary, it means that Priority should be chosen wisely. Although a report with higher Priority will be looked at sooner, as

soon as it becomes clear that the Priority is set to a higher value than the problem deserves, it will be amended and put back

to the queue. However, if the high priority is justified, we will try to process the report as fast as possible.

4137/4161

Another important factor is the quality of the report itself.

If the report is written well and has all information, including a reproducible test case, it can be verified and moved

forward quickly.

If the report is written clearly enough, but does not have enough information, it will get fast enough first response

where we will request the missing details; but the further exchange can take a lot of time until we get everything we

need to work on the issue.

Finally, reports which are written in a tangled and incomprehensible manner get the slowest response time, because

even if eventually it turns out that they do have all required information, it is difficult and time-consuming to extract and

process, so they can be put aside for some time.

First Response

Complete processing of a reported bug can be complicated and time-consuming, especially the reproducing part. We do not

want our users to wait for long not knowing if their bug report has even been noticed, we try to provide first response quicker

than that.

First response to the bug, which we are trying to provide as quickly as possible, is one of these:

If we can reproduce the problem based on the information that was provided in the initial description, the report gets

the status Confirmed.

If it is obvious from the initial description that the bug report is a duplicate of an existing one, or the problem has

already been fixed in later releases or in the upcoming release, or the described behavior is not a bug, or, in very rare

cases, it is admitted to be a bug, but it is not going to be fixed, the report gets closed with the corresponding

Resolution value and a comment with the explanation.

If the bug report at least appears to describe a real bug, but we do not have enough information to proceed, we will

request the information from the reporter, and the report will go to the Need feedback list.

If on some reason it is clear from the bug report that it will be very difficult to reproduce based on the information from

the user, but there is a reason to believe that the problem can be analyzed by code inspection, the bug report can be

assigned to a developer who is an expert in the corresponding area for the analysis.

We realize that "as quickly as possible" is a relative term. The dream scenario is that all reports are responded to in a

matter of hours; however, more realistically, it can take a few days, and in some cases, when the team is overly busy with a

big upcoming release or some other extraordinary events, it can even be weeks.

Need Feedback

When a report does not have all the information to reproduce the problem right away (which is quite often the case), we will

ask the reporter to provide the missing information. Usually it takes more than one iteration to get everything right, so it is

important that you respond to the questions as precisely as you can. Please make sure that you answered all questions (or,

if you cannot answer some of them, please say so, otherwise we will have to ask again, and more time will be wasted on it).

There is no status "Need Feedback" in our JIRA; instead, we are using the label need_feedback . As long as the report has

this label, it remains on the "Waiting for feedback" list. The label is set and removed manually by whoever asks for the

feedback and receives it; so it can happen that the reporter has provided the response, but it remained unnoticed and the

bug keeps waiting. It will be our fault, but human errors happen; it would help a lot if the reporter removed the label along

with providing the feedback.

E-mail Notifications

This question arises fairly often, so it deserves mentioning.

As already said before, the need_feedback label is set and removed manually. JIRA e-mail updates about it can be

confusing when you look at them quickly. For example, when someone removes the label, the email looks like this:

Elena Stepanova updated MDEV-9791:

 Labels: (was: need_feedback)

What it says that the Labels field has become empty, while before it had been need_feedback . People often misread it

and ask "What else do you need from me? I've answered your questions". This update means that at the moment we don't

need anything, your report is back to the incoming queue, and your feedback will be analyzed as soon as possible. Then,

we will possibly ask more questions and set the label again, and the notification will look like this:

Elena Stepanova updated MDEV-9801:

 Labels: need_feedback (was:)

Successful Outcome
4138/4161

If the feedback exchange was fruitful and we received enough information to proceed, the bug report will go through the

normal verification steps.

Incomplete Reports

Reports do not stay open on the "Need Feedback" list forever. After a month of waiting, if we do not get a response from the

reporter, and still cannot proceed without it, we close the report as Incomplete with the corresponding comment. This state

is not irreversible: you can still add comments and provide the information even when the report is closed as Incomplete, and

it will be re-opened.

Worst Case Scenario

Sometimes it happens that after iterations of feedback requests we run out of ideas what else to ask from the reporter, and

still could not verify the bug, or that the reporter is willing to collaborate with us, but cannot provide the necessary

information on objective reasons (usually when the problem happens on a production instance). In some cases we might

close the report as "Cannot reproduce", which we consider our loss; but more often we want to keep it open, in hope that

more information arrives, maybe from a different source, and together with this report they will help us get to the bottom of

the problem; if it happens so, the report gets assigned to somebody without being confirmed, just so it remains at least on

somebody's radar, and it will stay open for a long time. It does not mean it is forgotten, it means that for the time being we hit

the wall. You are very welcome to comment on such reports, whenever you think you might have something to add, because

this is exactly what we are waiting for.

Bug Verification

Normally the bug report has to go through the following steps before it is moved forward to fixing:

the described problem needs to be reproduced;

it needs to be checked against all active post-Beta versions of MariaDB where it is theoretically applicable (as of the

moment of writing this article, it is 5.5, 10.0, 10.1);

in case it is a relatively recent regression, the guilty change needs to be found;

the component or functional area should be determined, so that the bug gets assigned to the right person.

After that the bug is ready for fixing.

Bug Fixing Routine
Sometimes it seems hard to understand from the outside how MariaDB development team chooses which bugs to fix in a

particular release, or why some bugs are fixed faster than others, or why critical bugs stay untouched for a long time.

Sprint Model for Bug Fixing

MariaDB currently uses 1- or 2-week sprint model for server development and bugfixing. It needs a separate article to

describe it in more detail, but for bugfixing, in a nutshell it means the following.

one or two weeks before a scheduled release the team creates a new sprint and evaluates existing bugs which affect

this release;

the selected bugs are added to the new sprint;

during the active sprint, the developer is supposed to work on the tasks which are part of the sprint, unless a true

emergency arises.

There are two important consequences of this model which sometimes cause a confusion:

1) If the current sprint is for one version, e.g. 10.0, and you file a bug for another version, e.g. 10.1, then, even if the bug is

really critical, it won't be jumped on right away: it makes no sense, because the 10.1 is not going to be released next week

anyway, while 10.0 will be. When the 10.0 sprint finishes, and 10.1 sprint starts, your bug will be picked up for that sprint and

fixed then.

2) If the current sprint for 10.1 is already in progress, newly created 10.1 reports normally won't be included into it, unless

they are considered so extremely important that the developer is allowed to ignore the sprint plan.

Bugs Chosen for a Sprint

When a new sprint is created, bugs which affect the scheduled release are evaluated.

from all such bugs assigned to a developer, each developer chooses bugs he is able to work on during the given time

interval;

bug priority plays the most significant role in this process, but this is not the only factor.

Blocker bugs must be either fixed or degraded before the release goes out;

4139/4161

Critical bugs should be chosen above other bugs, except for Blocker s;

among Major bugs,

bugs with patches, either external, or upstream, or internal, are usually prioritized above ordinary bug

reports;

external reports (community reports) are ranked higher than bugs reported by the development team;

bugs which can realistically be fixed in the given time interval are chosen more frequently than those that

are likelly to take several cycles;

bugs which affect the reporter in a worse matter get more attention than those that have viable

workarounds;

Minor bugs are usually fixed when there are no more urgent tasks.

Tracking Progress
If a bug report has passed through verification stage, either being confirmed, or pushed forward to the development-level

analysis as is, there can be various updates on it. It is important to understand what they mean.

JIRA Fields to Watch

All JIRA fields are public, but some of them are mainly used for internal development process, while others are more user-

facing. This article describes which fields should be populated during the initial report submission. There is a different set of

fields important for tracking purposes.

Resolution vs. Status

It might come as counter-intuitive, but in the existing JIRA structure, the Status field does not mean much for the user, it is

mainly used for development and management purposes. On the contrary, the Resoluton field is entirely user-facing: it

does not participate in planning or development. It remains the same 'Unresolved' for the whole life of the report, and is only

changed when the bug gets closed, demonstrating the reason why it was closed.

Resolution

Unresolved - the bug report remains open, the work has not been finished.

Fixed - the bug has been fixed, see Fix version/s and possibly comments to the report for more information. This is

almost always a terminal state, we do not re-open fixed bugs even if they later re-appear; please create a new one

instead. The only case when it can be re-opened is when the 'Fix version/s' have not been released yet.

Duplicate - the bug report is identical to an already existing open (or recently fixed) report, which will be quoted in

the comments and/or links. It is usually a terminal state, unless it is proven later that the report was not a duplicate

after all.

Not a bug - the described behavior is not a bug, there will be a comment explaining why. It is usually a terminal

state, unless you object and show why it is a bug. If the report is in fact a feature request, then rather than closing it as

'Not a bug', we will switch the type to 'Task'.

Incomplete - we had requested feedback from the user and waited for 1 month, but did not receive it. It is a

pseudo-terminal state, the report can be re-opened any time when the requested information is provided.

Cannot reproduce - rather rarely used "resolution", which means we could not find the way to confirm the problem

described by the reporter, and ran out of ideas what other information to request from the reporter in order to

reproduce it.

Won't fix - another rarely used "resolution", which means that the bug is admitted, but we have no intention to fix

it. Usually it happens when the bug only affects old versions, and is not important enough to fix in the old versions; or,

when it is related to systems or architectures we don't officially support.

Status

Open , Confirmed - this distinction is used in our internal queues, but from the user's perspective the difference is

slim: setting the bug report to 'Confirmed' does mean that we are satisfied with the information provided in the report,

but the user will also know about it from our comments and other updates. Otherwise, bugs in both statuses can be

considered for fixing.

In Progress , Stalled - different intermediate states of bugs which help developers to filter their lists and

management to gather a picture of the current activity. For the user, there is no important difference -- despite the

negative semantics, 'Stalled' does not mean that something is wrong with the bug report, only that the developer is not

working on it actively at the moment.

In review - means, literally, that a peer review has been requested.

Closed - means that the bug report is closed, on whatever reason. The real reason is in the 'Resolution' field.

Fix Versions

4140/4161

This is an important field for progress tracking. After the bug is confirmed or otherwise acknowledged, this field is populated

with a set of major versions where we intend to fix it. E.g. if the field is set to 10.0 10.1 , it means that at the moment we

consider it for fixing in some future 10.0 release (not necessarily the next one), and the bugfix will be merged into the next

10.1 release after that; but we do not consider it for fixing in 5.5, even if it is affected to.

To some extent, you can influence the initial plans: if you see that the fix is not targeted for versions where you think it should

be, you can comment on the report, and if you provide convincing arguments and make your case, it can be reconsidered.

The value of the field is not a promise to fix the bug in the mentioned releases. It can be changed both ways: during further

analysis, the developer can find out that it can be safely fixed in an earlier release, or, on the contrary, that it cannot be safely

fixed in the GA release, and the fix can only go to the next versions which are currently under development.

After the bug is fixed, the value of the field is changed to the exact versions, e.g. 10.0.25 10.1.14 . It means that the

patch has been pushed into the 10.0 branch, and will be released with 10.0.25 release; it also means that the patch will be

merged to 10.1 tree and released with 10.1.14 release, but it does not mean that it is already in the 10.1 branch.

Priority

As the other article says, the Priority field serves two purposes. During the initial bug creation, it indicates the importance of

the bug report from the user's perspective (in other bug tracking systems it is called 'Severity' or alike). After the bug has

been confirmed, the same field is used for development purposes, to prioritize bug fixing (real 'Priority'). While we take into

account the reporter's view on the matter, we can change the initial priority both ways, depending on the information we

revealed during the problem analysis, versions affected, etc.

The value of the field normally means the following:

Blocker - we currently think that the bug must be fixed before the next release(s) set in the 'Fix version/s' field;

Critical - the bug should be picked up for fixing earlier than any other bugs apart from blockers;

Major - the bug will be present in the main queue for fixing in the upcoming 'Fix version/s', although only a part of

such bugs will be fixed in every release;

Minor , Trivial - the bugs will be picked up when the assignee does not have more pressing issues for the

upcoming release.

Please note that the Priority field only demonstrates our intentions at the moment, it does not guarantee that things will

happen according to these intentions.

Labels

Labels are mostly used for more convenient filtering and don't carry much importance otherwise. However, there are a few

that affect the processing of a bug report:

need_feedback - its role during the initial bug processing was already described above. However, after a bug is

confirmed and queued for fixing, it should not appear anymore; and even if it's left by mistake, it won't affect the

progress.

upstream - the label means that the bug also exists in the upstream version of the corresponding component -

normally, in MySQL server or a client program, but can also be in Percona's XtraDB or TokuDB. Normally there

should also be a link to the upstream bug report. Setting this label means that we might want to take for a while and

see whether the bug is fixed in the upstream version before we fix it in MariaDB directly. It was usual for 5.5, less

usual for 10.x where bugfixes, apart from InnoDB, are not merged automatically. The label is still set, but it is more for

informational purposes than to affect the priority.

upstream-fixed - the label means that the bug used to exist in the upstream version, but not anymore. It means

that there is nothing more to wait; moreover, it might be worth picking up the bug soon and at least evaluating the

upstream bugfix.

Bug Reports with Patches
MariaDB encourages contributors to provide bug fixes; so, bug reports which come with the fixes in general have a quicker

turnaround. The bug fix can come in a form of Git pull request, or, in simple cases, as a diff pasted in or attached to the bug

report itself.

Principles for External Bug Reports
There are some basic rules for bugs, particularly for setting the Resolution value, which we want to stick to and which

might be different from procedures you came across in other projects. It mainly concerns external bugs (those that come

from the community), for internal ones we can cut corners more freely.

This all is easier to understand if one remembers that the Resolution or its analogues in other bug-tracking systems is a

user-facing field, as already mentioned above, and that it relates more to the report, than to the bug itself.

4141/4161

Duplicate

An older bug report cannot be a duplicate of a newer one, it is nonsensical. The only possible exception is when an older

bug has no useful information whatsoever and the reporter does not provide any helpful feedback, while a newer report was

not closed as a duplicate right away and got some useful updates. The common example of such exception is when the first

report is just an optimized stack trace, no query, no data, nothing to work with, while the second report has a test case. But

if the first reporter at least makes an effort to collaborate, the report deserves to be treated with respect.

Bug reports which have essentially different descriptions and/or test cases should not be duplicates. The common example

is this: a developer creates a bug saying something like "this and that pieces of code are wrong, it should be so and so"; and

then a user files a bug saying "this SQL produces a wrong result on this data set". Even if they are about the same error in

the code at the end, they are not duplicate bug reports.

Obviously, a report can never be a duplicate of anything private (luckily it does not concern MariaDB server so far, as the

bug reports are public).

In general, a bug report is a duplicate of another one if, and only if, the new reporter could find the existing report just by a

reasonable JIRA search.

Cannot Reproduce

A bug report should not be closed as "cannot reproduce" if it was once verified/confirmed, but disappeared in later versions.

It's unfair to the reporter, and also dangerous to the product. We should know why a bug stopped being reproducible --

either we find when and how it was fixed (and close the report as "Fixed in version X by a patch for Y"), or we discover that

it wasn't in fact fixed, but just masked. The simplest example is a change of execution plan in optimizer: server would crash

on a particular query, then due to a change in optimizer it started using a different plan for the same query, so it wouldn't go

through the crashing path anymore. The crash is still there, though.

In general, the "cannot reproduce" resolution is a last resort. Usually if we can't reproduce something, it means that either

the reporter did not provide required information (and then the resolution should be "Incomplete"), or we don't know what to

request from the reporter, and then we should keep thinking, rather than close it. Of course, it happens that the bug is

genuinely not reproducible, but it shouldn't be decided lightly.

8.1.4 MariaDB Security Bug Fixing Policy
See MariaDB Security Policy .

8.1.5 Building MariaDB Server for Debugging
Contents
1. What to Do When You Get a Crash After Installing a Debug Binary

Instructions on how to build a mysqld that contains all the information we need to fix the problem: (A more detailed

explanation can be found here .)

Note: this text has been extracted into a separate article from Reporting bugs, see its full history there.

Add the --core-file option to your /.my.cnf or /etc/my.cnf file under the [mysqld] tag.

Get the latest MariaDB code from GitHub.

Compile MariaDB with the -g compiler flag (Unix).

Optionally: with more checking Compile MariaDB for debugging - will cause slowdown.

Shut down your old mysqld server.

Install the new compiled mysqld binary. Note that if you are compiling same version of MariaDB that you have

already installed it's enough to just copy this one binary!

Restart mysqld.

Compiling with -g should not cause any notable slowdown of the server.

You can of course also do make install, but the above way allows you to go back to your old binary if needed.

If you get any errors about a wrong number of error messages, you can fix that by copying the corresponding language file

from sql/share over your old ones (this should be reasonably safe to do).

cp sql/share/english/* mariadb-install-dir/share/mysql/english

What to Do When You Get a Crash After Installing a
Debug Binary

4142/4161

https://mariadb.org/about/security-policy/
https://mariadb.com/kb/en/how-to-produce-a-full-stack-trace-for-mysqld-the-mariadb-server/

Now when you get a crash do the following:

Create a README file that describes the problem. You can use the mysqlbug script to generate a template for this.

Create a tar file containing the core, the mysqld binary and README. If possible, also add any database files that

could help us repeat the problem!

sh> tar cvfz /tmp/mariadb-bug-'short-description'.tgz mariadb-data-dir/core* mariadb-

install-dir/libexec/mysqld README

Send it to our secure ftp server:

sh> ftp -a ftp.askmonty.org

ftp> cd private

ftp> binary

ftp> put /tmp/mariadb-bug-'short-description'.tgz

ftp> quit

To be able to follow the progress, create a bug report in JIRA about this. This should be easy to do based on the

information you have in your README file.

8.1.6 Extracting Entries from the Binary Log
This article is relevant if the problem is on a replication slave.

Note: this text has been extracted into a separate article from Reporting bugs, see its full history there.

Sometimes a binary log event causes an error of some sort. A whole binary log file is sometimes impractical due to size or

sensitivity reasons.

Step 1: Copy the binary log locally

This is just in case you don't quite extract the right information first. If the binlog expired off and you haven't got the right

information, your bug report may not easily be reproducible.

sudo cp /var/lib/mysql/mysql-bin.000687 ~/

sudo chown $USER: ~/mysql-bin.000687

Step 2: Create an extract header

Binary logs have a header portion. Without the header mariadb-binlog won't be able to read it. The header also contains

valuable session information

We look at the binary log to see how big the header and session information is:

mariadb-binlog --base64-output=decode-rows --verbose mysql-bin.000687 | more

/*!50530 SET @@SESSION.PSEUDO_SLAVE_MODE=1*/;

/*!40019 SET @@session.max_insert_delayed_threads=0*/;

/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

DELIMITER /*!*/;

at 4

#150323 22:45:58 server id 76 end_log_pos 245 Start: binlog v 4, server v 5.5.39-MariaDB-log created 150323 22:45:58

at 245

#150323 22:45:58 server id 76 end_log_pos 328 Query thread_id=9709067 exec_time=0 error_code=0

SET TIMESTAMP=1427116558.923924/*!*/;

SET @@session.pseudo_thread_id=9709067/*!*/;

SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0, @@session.unique_checks=1, @@session.autocommit

SET @@session.sql_mode=0/*!*/;

SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;

/*!\C utf8 *//*!*/;

SET @@session.character_set_client=33,@@session.collation_connection=33,@@session.collation_server=8/*!*/

SET @@session.time_zone='SYSTEM'/*!*/;

SET @@session.lc_time_names=0/*!*/;

SET @@session.collation_database=DEFAULT/*!*/;

BEGIN

/*!*/;

at 328

We see that the session information ends at 328 because of the last line, so we extract to that point.

dd if=mysql-bin.000687 of=mysql-bin.000687-extract-offset-129619 bs=1 count=328

4143/4161

https://mariadb.com/kb/en/jira/

We need to find out at what offset the entry at 129619 ends and it might be useful to extract some previous entries as well.

mariadb-binlog --base64-output=decode-rows --verbose mysql-bin.000687 | grep '^# at ' | grep -C 10

at 127602

at 127690

at 128201

at 128290

at 128378

at 128829

at 128918

at 129006

at 129459

at 129548

at 129619

at 129647

at 130070

at 130097

at 130168

at 130196

at 130738

at 130942

at 130969

at 131040

at 131244

Take a look at those entries with:

mariadb-binlog --base64-output=decode-rows --verbose --start-position 129006 --stop-position 130168

Now let's assume we want to start at our original 129619 and finish before 130168

dd if=mysql-bin.000687 bs=1 skip=129619 count=$((130168 - 129619)) >> mysql-bin.000687-extract-offset-129619

Check the extract:

mariadb-binlog mysql-bin.000687-extract-offset-129619

Upload this to the private uploads or attach to the public bug report if nothing sensitive there.

8.1.7 Profiling Memory Usage
Profiling the memory usage can be useful for finding out why a program appears to use more memory than it should. It is

especially helpful for analyzing OOM situations or other cases where the memory grows linearly and causes problems.

To profile the memory usage of a program, there are multiple options. The following sections describe the methods that are

available.

If a problem in memory usage is identified and it appears to be due to a bug, please open a new bug report on the MariaDB

Jira under the correct project and include the relevant memory profiling output in it. Refer to How to Write a Good Bug

Report for more details.

BPF Compiler Collection (bcc)
The BPF Compiler Collection (bcc) toolkit comes with the memleak program that traces outstanding memory allocations.

This is a very convenient way of debugging high memory usage as it'll immediately show where the memory is allocated at.

The tool will print output once every five seconds with the stacktraces that have the most open allocations. To help analyze

excessive memory usage, collect the output of the memleak program for at least 60 seconds. Use Ctrl+C to interrupt the

collection of the traces.

RHEL, CentOS, Rocky Linux and Fedora

On RHEL based systems, the package is named bcc-tools . After installing it, use the following command to profile the

memory usage:

4144/4161

https://mariadb.com/kb/en/ftp/
https://jira.mariadb.org/
https://github.com/iovisor/bcc

sudo /usr/share/bcc/tools/memleak -p $(pidof mariadbd) | tee memleak.log

Ubuntu and Debian

On Ubuntu/Debian the package is named bpfcc-tools . After installing it, use the following command to profile the

memory usage:

sudo memleak-bpfcc -p $(pidof mariadbd) | tee memleak.log

Jemalloc Heap Profiling
Jemalloc is an alternative to the default glibc memory allocator. It is capable of analyzing the heap memory usage of a

process which allows it to be used to detect all sorts of memory usage problems with a lower overhead compared to tools

like Valgrind. Unlike the ASAN and LSAN sanitizers, it is capable of detecting cases where memory doesn't actually leak but

keeps growing with no upper limit (e.g. items get appended to a list but are never removed).

Ubuntu and Debian

To enable jemalloc, the packages for it must be first installed from the system repositories. Ubuntu 20.04 requires the

following packages to be installed for jemalloc profiling:

apt-get -y install libjemalloc2 libjemalloc-dev binutils

RHEL, CentOS, Rocky Linux and Fedora

The version of jemalloc that is available in most Red Hat repositories is not compiled with memory profiling support enabled.

For RHEL based distributions, the only option is to build jemalloc from source .

Configuring Jemalloc for Heap Profiling

Once installed, edit the systemd service file with systemctl edit mariadb.service and add the following lines into it.

The path to the libjemalloc.so file is OS-specific so make sure it points to the correct file. The example here is for

Ubuntu and Debian environments.

[Service]

Environment=MALLOC_CONF=prof:true,prof_leak:true,prof_gdump:true,lg_prof_sample:18,prof_prefix:/var/lib/mysql/jeprof/jeprof

Environment=LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2

Then create the directory for the profile files:

mkdir /var/lib/mysql/jeprof/

chown mysql:mysql /var/lib/mysql/jeprof/

And finally restart MariaDB with systemctl restart mariadb.service .

The directory in /var/lib/mysql/jeprof/ will start to be filled by versioned files with a .heap suffix. Every time the

virtual memory usage reaches a new high, a file will be created. Initially, the files will be created very often but eventually the

pace will slow down. Once the problematic memory usage has been identified, the latest .heap file can be analyzed with

the jeprof program.

The simplest method is to generate a text report with the following command.

jeprof --txt /usr/sbin/mariadbd $(ls -1 /var/lib/mysql/jeprof/*.heap|sort -V|tail -n 1) > heap-report.txt

A better way to look at the generated heap profile is with the PDF output. However, this requires the installation of extra

packages (apt -y install graphviz ghostscript gv). To generate the PDF report of the latest heap dump, run the

following command:

jeprof --pdf /usr/sbin/mariadbd $(ls -1 /var/lib/mysql/jeprof/*.heap|sort -V|tail -n 1) > heap-report.pdf

4145/4161

https://github.com/jemalloc/jemalloc

The generated heap-report.pdf will contain a breakdown of the memory usage.

Note that the report generation with the jeprof program must be done on the same system where the profiling was done.

If done elsewhere, the binaries do not necessarily match and can cause the report generation to fail.

Tcmalloc Heap Profiling
Similarly to the jemalloc memory allocator, the tcmalloc memory allocator comes with a leak checker and heap profiler.

Installation

RHEL, CentOS and Rocky Linux

On RHEL based systems, the gperftools package is in the EPEL repositories. These must be first enabled by installing

the epel-release package.

sudo dnf -y install epel-release

After this, the gperftools package can be installed.

sudo dnf -y install gperftools

Ubuntu 20.04

sudo apt -y install google-perftools

Service file configuration

Once tcmalloc is installed, edit the systemd service file with systemctl edit mariadb.service and add the following

lines into it.

Note: Make sure to use the correct path to the tcmalloc library in LD_PRELOAD . The following example uses the Debian

location of the library. The file is usually located in /usr/lib64/libtcmalloc_and_profiler.so.4.5.3 on RHEL

systems. The version number of the library can also change which might require other adjustments to the library path.

[Service]

Environment=LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libtcmalloc_and_profiler.so.4.5.3

Environment=HEAPPROFILE=/var/lib/mysql/pprof/mariadbd.prof

Environment=HEAPCHECK=normal

Environment=HEAP_CHECK_AFTER_DESTRUCTORS=true

Then create the directory for the profile files:

mkdir /var/lib/mysql/pprof/

chown mysql:mysql /var/lib/mysql/pprof/

And finally restart MariaDB with systemctl restart mariadb.service .

Report generation

Depending on which OS you are using, the report generation program is named either pprof (RHEL) or google-pprof

(Debian/Ubuntu).

It is important to pick the latest .heap file to analyze. The following command generates the heap-report.pdf from the

latest heap dump. The file will show the breakdown of the memory usage.

pprof --pdf /usr/sbin/mariadbd $(ls /var/lib/mysql/pprof/*.heap|sort -V|tail -n 1) > heap-report.pdf

8.2 Contributing & Participating

4146/4161

https://github.com/google/tcmalloc

There are many ways to contribute to MariaDB.

Getting Help With MariaDB

Review of resources available when you need help.

Reporting Documentation Bugs

Reporting a bug or feature request in the MariaDB documentation.

MariaDB Community Bug Reporting

Guidelines for reporting bugs in MariaDB software.

Contributing to the MariaDB Project

How to contribute to the MariaDB project: code, documentation, feedback, etc.

Contributing Code

Guidelines and procedures for contributing code to MariaDB.

Project Suggestions

List of MariaDB Projects in which you might Assist.

Log of MariaDB Contributions

List of contributions and contributors to MariaDB and how to log them.

Donate to the Foundation

Donating to the MariaDB Foundation.

Sponsoring the MariaDB Project

Ways to sponsor the MariaDB project (e.g. with labor or funds).

Web Hosting Providers Offering MariaDB

List of known web hosting providers that offer MariaDB to their clients.

Using Git with MariaDB

How to use git to troubleshoot the source code or contribute code to MariaDB.

Google Summers of Code

Information on Google Summer of Code for each year since 2013.

Google Season of Docs

Information on each Google Season of Docs.

There are 1 related questions .

15

10

2

1

16

8.2.1 Getting Help With MariaDB
If you can't find help in the MariaDB documentation , you can also subscribe to the mailing lists or Zulip to

communicate with MariaDB users and developers.

There's an active help community on DBA StackExchange .

If you have a question about a feature that is not properly documented or something that is not working as expected, go to

the corresponding Knowledge Base page and ask your question there.

You can report and check on bugs which are unique to MariaDB in JIRA .

In some cases the documentation for MySQL can be used. Note that the MySQL documentation will not mention new

features added in MariaDB, or other changes since introduced in MariaDB. See MariaDB versus MySQL and in greater

detail under the MariaDB category.

MariaDB plc offers commercial support .

8.2.2 Contributing to the MariaDB Project

4147/4161

https://mariadb.com/kb/en/project-suggestions/
https://mariadb.com/kb/en/log-of-mariadb-contributions/
https://mariadb.com/kb/en/web-hosting-providers-offering-mariadb/
https://mariadb.com/kb/en/google-summers-of-code/
https://mariadb.com/kb/en/google-season-of-docs/
https://mariadb.com/kb/en/contributing-participating/+questions/
https://mariadb.com/kb/en/mariadb-documentation/
https://mariadb.com/kb/en/where-are-other-users-and-developers-of-mariadb/
https://mariadb.zulipchat.com
https://dba.stackexchange.com/
https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/jira/
http://dev.mysql.com/doc/
https://mariadb.com/kb/en/mariadb/
http://mariadb.com
https://mariadb.com/services/mariadb-mysql-subscription-services

Contents
1. Getting Started

1. MariaDB Email Lists

2. Getting Started for Developers

The success of MariaDB depends on the participation of the community. MariaDB would not be as good as it is today

without the participation of the entire MariaDB community.

Getting Started
There are several ways to contribute besides Contributing Code, and not all of them require strong C/C++ skills. Areas for

non-developers include:

Reporting Bugs

To report a bug you'll need to sign up for an account by clicking on the Create an account link below the login

fields

Suggesting Features

Answering questions in the Knowledge Base

Helping other people answering problems or even fixing their bugs on IRC in the #maria channel on Libera.Chat

or on MariaDB's Zulip instance at https://mariadb.zulipchat.com .

Testing and Benchmarking

Bug tests can be uploaded to the 'private' directory of our FTP server.

Creating documentation and KB articles for MariaDB, or translating existing documentation .

Advocating MariaDB in your area.

Participate in open source events and talk about MariaDB.

Running a BuildBot on a platform which is not currently represented .

Donate time or money to the MariaDB project.

Ask your company to sponsor a feature.

MariaDB Foundation page on getting involved

Contributing to the Knowledge Base is a great way to help improve MariaDB.

MariaDB Email Lists

A great way to get started in MariaDB is to participate in e-mail discussions via our mailing lists (whichever list best matches

your interests):

developers

discuss

docs

Sensitive security issues can be sent directly to the persons responsible for MariaDB security: security [AT] mariadb (dot)

org.

You can find additional email address, email archives and ways to connect with MariaDB people here .

All MariaDB contributors are expected to follow the Ubuntu Code Of Conduct .

Getting Started for Developers
Contributing Code

See also the pages for new developers on the MariaDB Foundation website:

Getting Started For Developers

Get the Code, Build It, Test It

Writing Good Test Cases for MariaDB Server

Submitting a Pull Request

8.2.3 Contributing Code

4148/4161

https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/jira-project-planning-and-tracking/
https://mariadb.com/kb/en/+questions/
https://mariadb.com/kb/en/irc/
https://mariadb.com/kb/en/irc/
https://mariadb.zulipchat.com
https://mariadb.com/kb/en/ftp/
https://mariadb.com/kb/en/contributing-to-the-askmonty-knowledgebase/
https://mariadb.com/kb/en/translation-howto/
https://mariadb.org/events/
https://mariadb.com/kb/en/buildbot/
http://askmonty.org/buildbot/waterfall
https://mariadb.com/kb/en/donations/
https://mariadb.org/get-involved/
https://mariadb.com/kb/en/contributing-to-the-askmonty-knowledgebase/
https://lists.mariadb.org/postorius/lists/developers.lists.mariadb.org/
https://lists.mariadb.org/postorius/lists/discuss.lists.mariadb.org
https://lists.mariadb.org/postorius/lists/docs.lists.mariadb.org
https://mariadb.com/kb/en/where-are-other-users-and-developers-of-mariadb/
http://www.ubuntu.com/community/conduct
https://mariadb.org/get-involved/getting-started-for-developers/
https://mariadb.org/get-involved/getting-started-for-developers/get-code-build-test/
https://mariadb.org/get-involved/getting-started-for-developers/writing-good-test-cases-mariadb-server/
https://mariadb.org/get-involved/getting-started-for-developers/submitting-pull-request/

Contents
1. Finding Development Projects to Work on

2. What to Expect From a MariaDB Server Developer

1. The Basics

2. What to Have in a Commit Comment

3. Testing

4. Getting Your Code into the Main MariaDB Tree

5. Before Pushing Code to a Stable Branch

6. Working on a New Project

7. Working on a Bug Fix

8. Making Things Easier for Reviewers

9. When Reviewing Code

This page contains general guidelines and procedures for contributing code. If you have any questions we invite you to ask

on the maria-developers mailing list, on our Zulip instance at https://mariadb.zulipchat.com , or on the #maria IRC

channel on https://libera.chat/ . Other email lists and places to find MariaDB can be found here .

General information about contributing to MariaDB (for developers and non-developers) is found on the Contributing to the

MariaDB Project page.

Finding Development Projects to Work on
There are many open development projects for MariaDB which you can contribute to (in addition to any ideas you may have

yourself).

We are using JIRA to manage the MariaDB project. Go to https://jira.mariadb.org and click on "Projects" to get to

the MariaDB project. Browse around the unresolved and unassigned issues to see if there is something that

interests you. Some issues have sponsors and you can be paid for doing them!

A list of beginner friendly tasks is also available.

Check the development plans for the next MariaDB version.

Join maria-developers and ask for suggestions of tasks you could do. Please include your programming experience

and your knowledge of the MariaDB source and how much you know about using MySQL/MariaDB with the email so

that we know which tasks we can suggest to you.

If this is your first project, check out the Suggested Development page. It lists projects that will make a good start.

Join MariaDB's Zulip instance at https://mariadb.zulipchat.com and ask for suggestions.

Join #/maria on https://libera.chat/ IRC and ask for suggestions.

If you have your own ideas, please submit them to JIRA so other MariaDB developers can comment on them and suggest

how to implement them. You can of course also use the maria-developers list for this.

What to Expect From a MariaDB Server Developer
This section is mainly directed to developers with commit rights to the MariaDB git repository. However, we hope it9s also

useful for anyone wanting to contribute code to MariaDB to know what a reviewer will expect from them.

This is not about coding style or if one should prefer C instead of C++. That would be a separate topic that should be created

sooner or later.

The Basics

When coding, try to create code that 'never has to be changed again'. Try to make the code as performant as possible. In

general it is acceptable to spend 50% more time to make the code 15% faster than what you originally intended. Take that

into account when you plan your time estimates! That said, don't try to add classes or functionality that is not yet used.

The code should be easy to read and follow the coding standards of the project. Patches that are smaller and simpler are

often better than complex solutions. Don't make the server depend on new external libraries without first checking with

Sergei or Monty!

Add code comments for anything that is not obvious. When possible, use assertions within the code to document

expectations of arguments etc. In general, if the code requires complex comments, think if there is a better way to structure

the logic. Simpler is often better and with fewer bugs.

What to Have in a Commit Comment

Jira issue number and summary ex: MDEV-23839 innodb_fast_shutdown=0 hang on change buffer merge
4149/4161

https://lists.mariadb.org/postorius/lists/developers.lists.mariadb.org/
https://mariadb.zulipchat.com
https://mariadb.com/kb/en/irc/
https://libera.chat/
https://mariadb.com/kb/en/where-are-other-users-and-developers-of-mariadb/
https://mariadb.com/kb/en/jira/
https://jira.mariadb.org
https://jira.mariadb.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%253D+MDEV+AND+resolution+%253D+Unresolved+AND+assignee+is+EMPTY+ORDER+BY+priority+DESC&mode=hide
https://jira.mariadb.org/issues/?jql=resolution%20%253D%20Unresolved%20AND%20labels%20%253D%20beginner-friendly%20ORDER%20BY%20updated%20DESC
https://mariadb.com/kb/en/development-plans/
https://lists.mariadb.org/postorius/lists/developers.lists.mariadb.org/
https://mariadb.com/kb/en/suggested-development/
https://mariadb.zulipchat.com
https://libera.chat/
https://mariadb.com/kb/en/irc/
https://mariadb.com/kb/en/jira/
https://lists.mariadb.org/postorius/lists/developers.lists.mariadb.org/
https://jira.mariadb.org/browse/MDEV-23839

An empty line

A short description of the problem

A description of the solution

Any extra information needed to understand the patch

The commit message should be self contained and the reviewer shouldn't preferably have to look at the Jira at all to

understand the commit. This doesn9t mean that the commit message should include all background and different

design options considered, as the Jira should contain.

Name of all reviewers and authors should be clear from the commit message. The preferred way would be (one line

per person)

Reviewed-by: email

Co-authored-by: email

See https://docs.github.com/en/free-pro-team@latest/github/committing-changes-to-your-project/creating-a-

commit-with-multiple-authors for details

The default is that all code should be reviewed. Only in really extraordinary cases, like merge (where the original code

was already reviewed) then it can be self-reviewed, which should clear from the commit. In this case the code should

of course be tested extra carefully both locally and in buildbot before pushing.

Testing

All code should have a test case that shows that the new code works or, in case of a bug fix, that the problem is fixed!

It should fail with an unpatched server and work with the new version. In the extreme case that a test case is

practically impossible to do, there needs to be documentation (in the commit message, optionally also in Jira) how the

code was tested.

The test case should have a reference to the Jira issue, if such one exists.

Patches related to performance should be tested either by the developer (for simple commits) or by performance

testers. The result should be put in Jira with a summary in the commit.

Complex patches and should be tested by QA in a bb- branch before pushing. The Jira entry should include

information that this has been done and what kind of test has been run.

For anything not trivial, one should run either Valgrind or ASAN/MSAN on the new code. (Buildbot will do this for you if

you can9t get valgrind or ASAN to work). At least the test case added should be tested by either. If the developer

cannot do that for some reason, he should check the buildbot builders that do this and ensure that at least his test

case doesn9t give any warnings about using not initialized memory or other failures.

For complex code the developer should preferably use gcov or some similar tool to ensure that at least not all not-

error branches are executed. <mtr --gcov= or <dgcov.pl= can help you with this.

Getting Your Code into the Main MariaDB Tree

All code in MariaDB comes from one of the following sources:

MySQL

Code developed by people employed by the MariaDB Foundation .

Code developed by people employed by MariaDB Corporation .

Code shared with the MariaDB Foundation under the MCA .

Code with a known origin that is under a permissive license (BSD or public domain).

If you want the code to be part of the main MariaDB tree, you also have to give the MariaDB Foundation a shared

copyright to your code. This is needed so that the foundation can offer the code to other projects (like MySQL).

You do this by either:

1. Signing the MariaDB Contributor Agreement (MCA) and then scanning and sending it to the foundation.

2. Sending an email to maria-developers where you say that your patch and all fixes to it are provided to the MariaDB

Foundation under the MCA .

3. Licensing your code using the BSD license .

We need shared copyright for the following reasons:

1. to defend the copyright or GPL if someone breaks it (this is the same reason why the Free Software Foundation also

requires copyright assignment for its code)

2. to be able to donate code to MySQL (for example to fix security bugs or new features)

3. to allow people who have a non-free license to the MySQL code to also use MariaDB (the MCA/BSD allows us to

give those companies the rights to all changes between MySQL and MariaDB so they can use MariaDB instead of

MySQL)

More information about the MCA can be found on the MCA FAQ page.

Before Pushing Code to a Stable Branch

Ensure that you have compiled everything for your new code, in a debug server (configured with cmake -

4150/4161

https://docs.github.com/en/free-pro-team@latest/github/committing-changes-to-your-project/creating-a-commit-with-multiple-authors
http://mariadb.org
http://mariadb.com
https://mariadb.com/kb/en/mca/
https://mariadb.com/kb/en/mariadb/
https://mariadb.com/kb/en/mca/
http://launchpad.net/~maria-developers
https://mariadb.com/kb/en/mca/
http://opensource.org/licenses/bsd-license.html
https://www.gnu.org/licenses/why-assign.html
https://mariadb.com/kb/en/mca-faq/

DCMAKE_BUILD_TYPE=Debug) including embedded and all plugins that may be affected by your code change..

Run the mysql-test-run (mtr) test suite locally with your debug server.

For anything complex the full test suite should be run.

For something absolutely trivial, at least the main suite must be run.

Always push first to a bb- branch to test the code. When the bb- branch is green in buildbot you can push to the main

branch. Take care of checking that Windows builds compiles (take extra care of checking this as this often fails) and

that valgrind and msan builds doesn9t show any problems with your new test cases.

If you have to do a rebase before pushing, you have to start from the beginning again.

When porting code from third parties (such as MySQL), make sure to attribute copyright to the right owner, in the

header of each modified file.

For example: Copyright © 2000, 2018, Oracle and/or its affiliates. Copyright © 2009, 2020, MariaDB

The only exception is that if the changes are trivial and the rebase was trivial and the local mysql-test-run worked,

then you can push directly to the main branch. Only do this if you are 99% sure there are no issues! * Please don't

make us regret that we have made this one exception! When we have protected git branches, then the above rule will

be enforced automatically as the protection will take care of this.

Working on a New Project

First create a Jira entry that explains the problems and the different solutions that can be used to solve the problem. If

there is a new syntax include examples of queries and results.

After getting an agreement of the to-be-used solution, update the Jira entry with the detailed architecture of the

suggested solution.

When the architecture is reviewed, the assigned developer can start coding.

When the code is ready, the Jira entry should be updated with the reviewer.

The reviewer checks the code and either approves it to be pushed or gives comments to the developers that should

be fixed. In the later case the developer updates the code and gives it back to the reviewer. This continues until the

code is approved.

If the design changes during the project, the design in Jira needs to be updated.

Working on a Bug Fix

Ensure that the Jira issue is up to date.

For complex bugs that require redesign, follow the process in "Working on a new project"

For simpler bugs, one can skip the listing of different solutions and architecture. However one should still document

the reason for the bug and how it's fixed or to-be-fixed, in a JIRA comment.

Making Things Easier for Reviewers

Ensure that code compiles, all MTR test works before asking for a review

Try to split a bigger project into smaller, self-contained change sets.

Automatic things, like renames of classes, variables, functions etc is better to be done in a separate commit.

When Reviewing Code

Remember that the stability and security of any project hangs a lot on the reviewers. If there is something wrong with an

accepted patch, it's usually the reviewer who is to be blamed for it, as the reviewer was the one who allowed it to go in!

Ensure that the code is licensed under New BSD or another approved license for MariaDB (basically any open source

license not conflicting with GPL) or that the contributor has signed the MCA.

GPL is only allowed for code from MySQL (as MariaDB is already depending on MySQL code).

Ensure that commits are not too large. If the code is very large, give suggestions how to split it into smaller pieces.

Merge commits, when rebasing is possible, are not allowed, to keep history linear.

Check that the commits message describes the commit properly. For code that improves performance, ensure that

Jira and the commit message contains information about the improvements.

Check that there are no unexplained changes in old tests.

Check the quality of the code (no obvious bugs, right algorithms used)

Check if any code can be simplified or optimized. Using already existing functions, are loops optimal, are mutexes

used correctly etc.

Check that there is an appropriate test case for the code. See 8testing9 for what is required!

Ensuring the code follows the coding standard for MariaDB. This document should be created shortly, but in the

meantime ask an old MySQL/MariaDB developer if you are unsure.

Ensuring that the code follows the architecture agreed for in Jira (if it's in Jira).

Code should be easy to understand (good code comments, good function and variable names etc).

Ensure you understand every single line of code that is reviewed. If not, ask the developer to add more comments to

get things clear or ask help from another reviewer.

No performance degradations for all common cases.

4151/4161

Any code that touches any sensitive area (files, communication, login, encryption or security) needs to have another

reviewer that is an expert in this area.

8.2.4 Donate to the Foundation
To donate, please visit the MariaDB Foundation donations page .

8.2.5 Sponsoring the MariaDB Project
Sponsorships are crucial for ongoing and future development of the MariaDB project! There are a number of easy ways you

for you to help the project:

Fund the development of a specific feature. You can find a list of suggested features to sponsor here or in JIRA .

Feel free to sign in and add more projects to either place!

Contribute with developer time. If your organization has talented developers familiar with MariaDB or MySQL

codebase they can become part of the MariaDB team and contribute to the development of the MariaDB project.

Hire a developer that you dedicate to work on the MariaDB project.

A pure donation with no strings attached

To get going with the sponsorship please visit the MariaDB Foundation sponsorships page .

8.2.6 Using Git with MariaDB
Tricks and tips on how to use Git, the source control system MariaDB uses.

MariaDB Source Code

How to get the source code for MariaDB from GitHub.

Using Git

Working with the git repository for the source code of MariaDB on GitHub.

Configuring Git to Send Commit Notices

Configuring git to send emails when committing changes.

17

2.1.2.8.2 MariaDB Source Code

8.2.6.2 Using Git
Contents
1. Just Getting the Source

2. Setup up git for MariaDB

3. Commit comments

4. Branches

1. List Existing Branches

2. To Move to Work on a Specific Branch

3. Making a Local Copy of a Branch (Like bzr clone)

4. Remove Last Commit From a Branch

5. Fetch a Branch Someone Has Done a Rebase on

6. Other Things About Branches

5. Equivalents For Some bzr Commands

6. Commit Emails

7. Attributing Code to Someone Else

8. Applying a Pull Request

9. Examples

1. Diff For Last Commit

2. Applying New Code From Main Tree to a Branch

3. Applying a Bugfix in the Main Branch

4. Dealing With Conflicts When One Tries to Push

10. Finding in Which MariaDB Version a Commit Exists

Just Getting the Source

4152/4161

https://mariadb.org/donate/
https://mariadb.com/kb/en/development-plans/
https://mariadb.com/kb/en/jira-project-planning-and-tracking/
https://mariadb.com/kb/en/donations/
https://mariadb.org/donate/

If you just want to get the latest source and you don't require the ability to push changes to the MariaDB repository, you can

use the following command to check out the latest 10.5 branch:

git clone -b 10.5 https://github.com/MariaDB/server.git

Setup up git for MariaDB
Set your name with git

git config --global user.name "Ivan Ivanov"

git config --global user.email "ivan@mariadb.com"

Go to https://github.com/settings/ssh and add your public SSH key (GitHub Help).

Clone the repository

git clone git@github.com:MariaDB/server.git

cd server

git checkout 10.5

Config repository pull and alias for fast forward:

git config pull.ff only

git config --global alias.ff "merge --ff-only"

Commit comments
In git commit messages are normally formatted as

subject

body

more body

...

That is, the first line is considered a *subject*, much like email subject. Many git commands and pages on github only show

the commit subject, not the complete comment. After the subject goes an empty line, then the detailed description of the

comment. Please, structure your commit comments this way, don't forget the empty line.

Branches
This is an important concept, and git branches do not have equivalents in bzr.

In Bazaar, we all used to have one shared repository, within which there were many branches. This seems to be impossible

with git?

In Git, each repository has only one branch that is currently checked out.

git branch

List Existing Branches

To see which branches exists locally and remotely:

git branch --all

To Move to Work on a Specific Branch

git checkout branch-name

Note that if the output from git branch --all is remotes/origin/XXX you should just use XXX as branch name.

4153/4161

https://github.com/settings/ssh
https://help.github.com/articles/generating-ssh-keys/#step-3-add-your-ssh-key-to-github

Making a Local Copy of a Branch (Like bzr clone)

branch clone old_directory new_directory

cd new_directory

git remote set-url origin git@github.com:MariaDB/server.git

git pull

Remove Last Commit From a Branch

git reset --hard HEAD^

Fetch a Branch Someone Has Done a Rebase on

If you get the following error on pull:

shell> git pull

X11 forwarding request failed on channel 0

fatal: Not possible to fast-forward, aborting.

Instead of removing your copy and then clone, you can do:

git reset --hard origin/##branch-name##

Other Things About Branches

Note: branches whose names start with bb- are automatically put into the buildbot.

Equivalents For Some bzr Commands
CAVEAT UTILITOR. Check the manual before running!

bzr status is git status

bzr diff is git diff

bzr log is git log

bzr revert is git reset --hard

bzr revert filename is git checkout filename

bzr parent is git remote -v (but there are more detailed commands)

bzr parent to-default-mariadb-repo git remote set-url origin git@github.com:MariaDB/server.git

bzr push is git push REMOTENAME BRANCHNAME . REMOTENAME is typically "origin", for example: git push

origin HEAD:10.3-new-feature . The HEAD: stands for "from current branch".

bzr clean-tree --ignored is git clean -Xdf (note the capital X!)

bzr root is git rev-parse --show-toplevel

bzr missing --mine-only is git cherry -v origin (kind-of).

GUIs

bzr gcommit is git citool

bzr viz is gitk

bzr gannotate is git gui blame

Commit Emails
In the MariaDB project, it is a good idea (and a long tradition since MySQL Ab) to have all your commits sent to a

commits@mariadb.org mailing list. It allows others to follow the progress, comment, etc.

A script and instructions on how to setup commit triggers in Git are here: http://bazaar.launchpad.net/~maria-

captains/mariadb-tools/trunk/files/head:/git_template/ . Jira task for commit trigger was MDEV-6278 .

Attributing Code to Someone Else
If you add code on behalf of someone else, please attribute the code to the original author:

Run git citool and move changed files to staged.

4154/4161

http://bazaar.launchpad.net/~maria-captains/mariadb-tools/trunk/files/head:/git_template/
https://jira.mariadb.org/browse/MDEV-6278

Don't commit , abort instead

run git commit --author="Original author name <email_address>"

The above is needed as git citool can't handle the --author option.

Applying a Pull Request
At the end of the pull request page there is a button "Merge pull request" and next to it a link "command line instructions".

Click the link, you'll see something like

Step 1: From your project repository, check out a new branch and test the changes.

git checkout -b mariadb-server-joeuser-cool-feature 10.3

git pull https://github.com/joeuser/mariadb-server cool-feature

Step 2: Merge the changes and update on GitHub.

git checkout 10.3

git merge --no-ff mariadb-server-joeuser-cool-feature

git push origin 10.3

Note where to pull from 4 https:/+/github.com/joeuser/mariadb-server cool-feature.

Now, checkout the branch you want to merge it to, say, bb-10.3-stage, and do the following

git fetch https://github.com/joeuser/mariadb-server cool-feature

git checkout FETCH_HEAD

git rebase @{-1}

Now's the time to compile the code, test it, fix, if necessary. Then

git checkout @{-1}

git ff @{-1}

If you want to do small changes to the pull request, do it in a separate commit, after git rebase @{-1} above. If you

want to do big changes to the pull request, perhaps you shouldn't merge it in the first place, but ask the contributor to fix it?

Examples

Diff For Last Commit

git show

Applying New Code From Main Tree to a Branch

You are working on a branch (NEW_FEATURE) and would like to have into that branch all changes from the main branch

(10.1).

git checkout 10.1

git pull

git checkout NEW_FEATURE

git rebase 10.1

Applying a Bugfix in the Main Branch

You've just fixed and committed a bug in the main 10.1 branch and want to merge it with the latest 10.1. Often a rebase is

better in this case. Assuming your current checked out branch is 10.1:

git fetch origin

git rebase origin/10.1

4155/4161

This will work even if you have done multiple commits in your local 10.1 tree.

Dealing With Conflicts When One Tries to Push

What to do when you have fixed a bug in the main tree but notices that someone has changed the tree since you pulled last

time. This approach ensures that your patch is done in one block and not spread out over several change sets.

git clone 10.1

cd 10.1

< fix a bug here>

git citool

git push

^ and the above fails, because someone has pushed to 10.1 in between

git branch tmp

^ copy our work to branch named 'tmp'

get checkout 10.1

git reset --hard HEAD^

^ remove our work from '10.1' local branch'

git pull

^ get changes from remote

git checkout tmp

git rebase 10.1

^ switch to 'tmp' and try to rebase 'tmp' branch on top of 10.1 branch.

here you will be asked to merge if necessary

git checkout 10.1

git pull --ff . tmp

^ switch back to the '10.1' branch, and pull from 'tmp' branch.

git branch -D tmp

#^ this removes the tmp. branch

git push

Finding in Which MariaDB Version a Commit Exists

sh> git tag --contain e65f667bb60244610512efd7491fc77eccceb9db

mariadb-10.0.30

mariadb-10.1.22

mariadb-10.1.23

mariadb-10.2.5

mariadb-10.3.0

mariadb-galera-10.0.30

8.2.6.3 Configuring Git to Send Commit Notices
Commit emails for MariaDB are sent to commits@mariab.org . You can find the archive here .

To allow others to see what you are working on in your MariaDB tree, you should:

1. subscribe to the email list

2. configure git to send your commits to commits@mariab.org .

Download the post-commit git trigger script. Configure as

git config --global hooks.postcommitrecipients "commits@mariadb.org"

git config --global hooks.postcommitbranches "*"

Also you might want to check the README for the post-commit trigger.

The post-commit git trigger uses sendmail for sending emails. Some platforms don't have sendmail and then you'll need to

modify to make use of something that is supported.

Also, the post-commit trigger is just one approach. You can also use git-email on at least Debian and Fedora to send commit

emails to the MariaDB commits email list.

8.3 Legal Matters

4156/4161

http://lists.askmonty.org/cgi-bin/mailman/listinfo/commits
http://lists.askmonty.org/pipermail/commits
http://lists.askmonty.org/cgi-bin/mailman/listinfo/commits
http://lists.askmonty.org/cgi-bin/mailman/listinfo/commits
http://bazaar.launchpad.net/~maria-captains/mariadb-tools/trunk/view/head:/git_template/hooks/post-commit
http://bazaar.launchpad.net/~maria-captains/mariadb-tools/trunk/view/head:/git_template/README

GNU General Public License, Version 2

Full text of the GNU General Public License, Version 2

Legal Notices for the Knowledge Base

List of licenses and trademarks associated with the content in the MariaDB Knowledge Base.

8.3.1 GNU General Public License, Version 2
 GNU GENERAL PUBLIC LICENSE

 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Lesser General Public License instead.) You can apply it to

your programs, too.

 When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

 We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors' reputations.

 Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and

modification follow.

 GNU GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,
4157/4161

https://mariadb.com/kb/en/gnu-general-public-license-version-2/

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices

 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in

 whole or in part contains or is derived from the Program or any

 part thereof, to be licensed as a whole at no charge to all third

 parties under the terms of this License.

 c) If the modified program normally reads commands interactively

 when run, you must cause it, when started running for such

 interactive use in the most ordinary way, to print or display an

 announcement including an appropriate copyright notice and a

 notice that there is no warranty (or else, saying that you provide

 a warranty) and that users may redistribute the program under

 these conditions, and telling the user how to view a copy of this

 License. (Exception: if the Program itself is interactive but

 does not normally print such an announcement, your work based on

 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable

 source code, which must be distributed under the terms of Sections
4158/4161

 source code, which must be distributed under the terms of Sections

 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three

 years, to give any third party, for a charge no more than your

 cost of physically performing source distribution, a complete

 machine-readable copy of the corresponding source code, to be

 distributed under the terms of Sections 1 and 2 above on a medium

 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer

 to distribute corresponding source code. (This alternative is

 allowed only for noncommercial distribution and only if you

 received the program in object code or executable form with such

 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

 5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

 7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

4159/4161

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

 10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively 4160/4161

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation; either version 2 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along

 with this program; if not, write to the Free Software Foundation, Inc.,

 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author

 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than `show w' and `show c'; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program

 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989

 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License.

8.3.2 Legal Notices for the Knowledge Base
Content is licensed CC BY-SA / Gnu FDL unless otherwise noted.

Comments are owned by their authors.

MariaDB is a trademark of the MariaDB Corporation.

MySQL®, MySQL Enterprise®, Sun®, Sun Microsystems®, InnoDB® and Oracle® are registered trademarks of Oracle

Corporation. All other trademarks are property of their respective owners.

Other product or company names mentioned herein may be trademarks or trade names of their respective companies.

4161/4161

http://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/copyleft/fdl.html

